
, A/UX Command Reference
Sections l(Q-Z) and 6

Release 3.0

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged -'
software media and manuals for as long as the software product is included in Apple's Media Exchange .,;,._
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the date of your original purchase. See your authorized Apple dealer for program
coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON THE MEDIA AND MANUM5, INCLUDING IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

THEW ARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF All
OTHERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

S Apple Computer, Inc.

© 1992, Apple Computer, Inc., and UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws, this
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original.
Under the law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" Apple logo
(Option-Shift-k) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, Image Writer, LaserWriter, and Macintosh are trademarks of Apple Computer,
Inc., registered in the United States and other countries.

B-NET is a registered trademark of UniSoft Corporation.

DEC and VT102 are trademarks of Digital Equipment Corporation.

Diab lo and Ethernet are registered trademarks of Xerox Corporation.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

Hewlett-Packard 2631 is a trademark of Hewlett-Packard.

IBM is a registered trademark of International Business Machines Corporation.

NFS is a trademark of Sun Microsystems, Inc.

PostScript and Transcripts are trademarks of Adobe Systems Incorporated, registered in the United States.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

A/UX Command Reference

Contents

About This Manual

Section 1 User Commands (Q-Z)

Section 6 Games

- v -

About This Manual

This manual is one of three primary manuals in the set of A/UX reference
manuals. AIUX Command Reference, AIUX Programmer's Reference, and
A/UX System Administrator's Reference contain information about most of the
provisions of A/UX, such as its commands, its library routines, its system calls,
and its file formats.

These reference manuals constitute a compact encyclopedia of A/UX
information. As in an encyclopedia, the information is subdivided into
subdocuments, or ''manual pages.'' The information in each manual-page
subdocument adheres to a distinctive presentation format. For example,
information about command syntax is consistently presented under the heading
"Synopsis." (This format is described in detail later in this preface.)

Because most of us need occasional reminders regarding the order and kind of
arguments that can accompany a command, the information in the "Synopsis"
and "Arguments" sections is presented for use by users at all levels. However,
the information in the ''Description'' section is often written for more advanced
users; novices most likely will not be able to learn about the provisions of A/UX
from these reference manuals alone.

Because these reference manuals are not intended to be tutorials or learning
guides, they should not be the first A/UX books you read. If you are new to
A/UX or are unfamiliar with a specific functional area (such as the Macintosh
Finder), you should first read AIUX Essentials and the other A/UX user guides.
After you have worked with A/UX, the reference manuals can help you
understand new features or refresh your memory about features you already
know.

Manual pages: a standard for presenting information
The headings conventionally used in the manual pages have virtually become an
industry standard for reference documents. Furthermore, the way that this large
collection of subdocuments is conventionally organized into sections and books
is also something of a standard.

Despite the standardization, locating specific information within this large body
of documentation can often be difficult. First you must locate the correct
manual page. Once you have the correct manual page, you can usually go

- vii -

directly to the correct subsection.

To help you locate information, you should read the next section, which
explains several means of finding the information you need.

To help you learn to use these books more effectively, other sections in this
preface describe the presentation standards that are being used. Some of these
are organizational standards that apply at the book and section level. Other
conventions and content standards apply within the scope of each manual page,
such as the use of standard subheadings and the conventional use of certain
fonts and text styles.

Note that the most durable standards have been the standards that apply to the
organization and primary headings of each manual page. Of course there are
areas in which the A/UX reference books are exceptional, particularly in their
more regular use of headings. These books also deviate from industry standards
in a few typographic and style areas, which are described later in this preface.
For example, the Courier font is used consistently to represent text that is
displayed in a terminal window or entered as part of a command line. Other
UNIX® books often use boldface type to represent such text.

There has been more instability with respect to how the manual pages are
collected into sections and books. For more detailed information, see ''Previous
Organization of Sections into Books'' later in this preface.

Locating information in the reference manuals
You can locate information in the reference manuals by using one of the
following tools:

• Table of contents. Each reference manual contains one general table of
contents for the entire manual. Located at the beginning of each new
section of manual pages is a detailed table of contents. (If a section must
span from one binder to another, a tailored table of contents is provided for
each of the subdivisions.) The general table of contents lists the sections
covered in the complete manual. The detailed table of contents lists the
manual pages contained within one section (or section subdivision) along
with a brief description of the A/UX provision that is covered in each
manual page.

• Query commands. The man, what is, and apropos commands display
on-screen all the information contained in a manual page or just the
information in the "Name" section of one or more manual pages that

- viii -

satisfy a search criterion. The next sections tells you how to use the on-line
versions of the manual pages.

• AIUX Reference Summary and Index. This separate manual is considered
part of the A/UX set of reference manuals, but it is not a ''standard''
resource like the other reference materials. Its primary purpose is to help
you locate the correct manual page to refer to in other books. From its
summaries, you might also occasionally find all the information you
required. It contains the following subsections:

• ''Commands by function.'' This subsection classifies the A/UX user
and system administrator commands by the general or most important
function each performs. The summary gives you a broader view of the
commands that are available and the context in which each is often
used. Each command is mentioned just once in this listing.

• ''Command synopses.'' This subsection is a compact collection of
syntax descriptions for all of the commands in AJUX Command
Reference and inA/UX System Administrator's Reference. It may
help you find the syntax of commands more quickly when the syntax
is all you need.

• ''Index.'' The index lists key terms associated with A/UX
subroutines and commands. These key terms can help you locate the
manual page you need when you don't know if such a keyword­
related command or subroutine exists.

The index provided in AIUX Reference Summary and Index is designed to be
more compact and easier to use than the more industry-standard permuted
index, which indiscriminately indexes manual pages under each of the words
found in their "Name" sections.

The manual pages listed in the index portion AIUX Ref ere nee Summary and
Index are indexed under more than one entry; for example, lorder(l) is
included under "archive files," "sorting," and "cross-references." By using
this type of index, you are more likely to find the reference you are looking for
on the first try.

Using the on-line documentation
In addition to the paper documentation in the reference manuals, A/UX provides
several ways to search and read the contents of each manual page from your
A/UX system. An advantage to the on-line version of the documentation is that
the computer performs the work of filtering out (or skipping) all the manual

- ix -

pages other than the one you specifically queried. The only prerequisite is that
you already know its name (or a proper search string). However, you don't have
to know how manual pages are organized by section numbers and by book titles.

To display a manual page on your screen, enter the man command followed by
the name of the manual page you want to see. For example, to display the
manual page for the cat command, including its description, syntax, options,
and other pertinent information, you would enter

man cat

After the first screen of the text of a manual page appears, you can display
subsequent screens of the text with each press of the SPACE BAR, until you reach
the end of the man page. To display subsequent text one line at a time, press
RETURN instead of the SPACE BAR. By pressing Q, you can quit the man
command before viewing all of the manual page.

To display the descriptive information in the "Name" section of any manual
page, enter the what is command followed by the name of the provision you
want described. In the following example, the command prompt is the percent
sign, and the provision that is being queried is the 1 s command:

% whatis ls
ls (1)
% I

- lists the contents of a directory

To display a list of all manual pages whose ''Name'' sections contain a given
keyword or string, enter the apropos command followed by a search word or
search string enclosed in double quote characters. The names of A/UX
provisions are listed on separate lines along with the descriptive information in
the "Name" section of the manual page that describes those provisions.
Sometimes several A/UX provisions are listed on the same line. In those cases,
several A/UX provisions are described on a single manual page. You can tell
which of these names is the formal name for the manual page because it will be
followed by parentheses and an enclosed section number. In the following
example, the command prompt is the percent sign, and the A/UX provisions that
are queried are those which are described in manual pages whose ''Name''
section contains the word ''tape'':

- x -

% apropos tape

mt (1)

frec(lM)

mtio(7)

tc(7)

% I

- magnetic tape manipulating program

- recover files from a backup tape

- interface conventions for magnetic tape devices

- Apple Tape Backup 40SC device driver

These documentation query commands are described more fully in the manual
pages man(I), whatis(l), and apropos(l) inA/UX Command Reference.

Book- and section-level presentation standards
Customarily, three books are used to house three collections of manual pages
that are of concern to three different audiences:

• A/UX Command Reference is intended for users with normal file and
device access privileges.

• A/UX System Administrator's Reference is intended for system
administrators or equivalent users with unlimited device and file access
privileges.

• A/UX Programmer's Reference is intended for programmers.

These books are further divided into sections, each of which contains a set of
manual pages in alphabetical order. The standard sections and the audiences
they serve are as follows:

• For users with normal access privileges, Section I and Section 6 describe
utility and game commands.

• For users with unlimited access privileges, Section IM and Section 8
describe system maintenance commands.

• For programmers, Section 2 describes system calls, Section 3 describes
library routines, Section 4 describes file formats, Section 5 describes
miscellaneous A/UX provisions, and Section 7 describes drivers and
interfaces for devices.

While most of the manual pages describe an A/UX provision of some sort, there
is one important exception per section: The first manual page in Sections I, IM,
2, 3, 4, 5, 6, 7 and 8 has the same name, intro. The intro manual pages do
not describe a command or other provision of A/UX. Instead, they serve as an
introduction to the rest of the manual pages in the section, providing section-

- xi -

specific information and conventions. (These section-introduction manual pages
are also exceptions in terms of the normal alphabetical arrangement of manual
pages inside sections.)

For example, the manual page intro(2) introduces you to return values and
provides an exhaustive list of error code values and their associated error
strings. In the rest of the Section 2 manual pages, the error codes are mentioned
briefly or merely listed, without detailed explanations.

More advanced readers will probably have occasion to use more than one of the
reference manuals. For example, manual pages in the A/UX Programmer's
Reference frequently make references to manual pages in sections contained in
the other two primary reference manuals.

More information about the organization of the reference books is given later in
this preface in ''Current Organization of Sections into Books.''

How manual-page information is presented
The name of the manual page normally appears in both upper comers of each
physical page. Some manual pages describe several routines or commands. For
example, chown and chgrp are both described in a manual page with the
primary name chown(l) at the upper comers. If you tum to the page
chgrp(l), you find a reference to chown(l). (These cross-reference pages are
included only in A/UX Command Reference and A/UX System Administrator's
Reference.) However, if you enter the command man chgrp, the extended­
coverage chown(l) manual page is displayed automatically.

All of the manual pages have a common format that uses the following
subheadings. For the most part, the same kind of information appears under each
of these subheadings. However, for manual pages that describe different kinds
of A/UX provisions, the information under the same heading may differ. So, for
example, the heading "Synopsis" contains syntax illustrations for Sections 1,
IM, and 8, but contains C declaration statements for Sections 2 and 3.

NAME
This section lists the names of the commands, programming routines, or other
A/UX provisions that are described in the manual page. A succinct statement of
their purpose is also provided.

SYNOPSIS
This section provides the syntax of a command or the data-type declarations
associated with a programming routine.

- xii -

ARGUMENTS
This section lists and describes the command options and arguments that can
follow the command name on the command line.

DESCRIPTION
This section describes in detail the usage of a particular command or
programming provision.

EXAMPLES
This section offers representative command lines that illustrate various uses of a
command.

STATUS MESSAGES AND VALUES
This section describes possible error outcomes and, when applicable, possible
success outcomes. For commands, exit values are not usually described if the
command produces the customary zero exit value for success and a nonzero exit
value for failure. For programming routines, the return value from a function is
often an indication of completion status. In such cases, the return value is
normally discussed in the ''Description'' section as well as in this section.

WARNINGS
This section describes possible usage scenarios that can damage the file system
or file integrity or that produce results you would not normally anticipate.

LIMIT A TIO NS
This section describes how the performance of a command or routine could
become unreliable, or areas of functionality that an A/UX provision does not
address.

NOTES
This section provides miscellaneous information regarding a command or
routine, such as author or copyright information.

FILES
This section lists any files needed by the command, along with a brief
description that identifies it as a file, directory, or link.

SEE ALSO
This section provides a list of references to related information.

Visual conventions for the A/UX reference manuals
A/UX books follow specific styling conventions. For example, words that
require special emphasis appear in specific fonts or styles. This section describes

- xiii -

Term

Click

Choose

Drag

Enter

Press

Select

Type

The Courier font

Action

Press and then immediately release the mouse button.

Activate a command that appears in a menu. To
choose a command from a pull-down menu, position
the pointer on the menu title and, while holding down
the mouse button, slide the mouse toward you until
the command is highlighted. Then release the mouse
button.

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse so that the
icon moves to the desired position, and then release
the mouse button.

Type the series of characters indicated, then press the
RETURN key.

Press one key only. (Do not press the RETURN key
afterward.)

To select an icon, position the mouse pointer on the
item, then click (see "Click," above). To select text,
use a drag-style operation (see "Drag," above).
When selecting a range of text, the drag operation
highlights the text from the starting point over and
across lines to the final position of the pointer when
the mouse button was released.

Type the series of characters indicated, without
pressing the RETURN key afterward.

Throughout the A/UX reference manuals, words that appear on the screen or
that you must type exactly as shown are in the Courier font.

- xv -

An ''argument'' is any element that follows the command name. Command
arguments other than command options typically specify the objects upon which
the command should act. You often supply the names of files that you want a
command to process, so file is frequently the last element in syntax illustrations.

Brackets and ellipsis characters in a syntax illustration should be considered part
of a syntax notation. This is represented by the use of body font instead of
Courier for these characters. Their font treatment tells you that you are not
supposed to type these characters as part of the command line. Their meaning as
a syntax notation is described next.

The brackets enclose an optional item or a group of optional items. If an
optional item has constituent parts that are also optional, these parts are
themselves enclosed in brackets, as in this syntax illustration:

lpr [-i [numcols]]

This syntax illustration shows that the indent (- i) command option can be
followed by the number of columns to indent the printed page. It also shows that
you can omit the number of columns; if you do, the lpr command uses the
default indent value.

An ellipsis(...) follows an argument that can be repeated any number of times
on a command line. If the ellipsis follows a bracketed group of items, the group
of items can be repeated any number of times on the command line.

When command options are mutually exclusive, they cannot both be specified at
the same time. In such cases, more than one syntax illustration is usually
provided:

p ax - r [other-option-for-archive-reading] .. .
pax -w[other-option-for-archive-writing] .. .

Outside of syntax illustrations, command options are shown with a leading
hyphen also in the Courier font. When you supply multiple command options in
an actual command line, only one leading hyphen is normally required. For
example the following command line contains two options, - r and - f:

pax -rf /dev/rfloppyO

In the example, the - f option (pronounced ''minus f' ') is entered without its
own hyphen, even though when mentioned in running text it appears with a
leading hyphen.

- xvii -

Because the original section numbers were preserved and then sections were
recollated in accordance with the audience they served, the resulting books do
not, for the most part, contain sequentially numbered sections.

The next section explains in detail how the sections are currently mapped into
books.

There was another factor that led to the need to preserve the original section
numbers. Some routines, system calls, and commands have the same names. To
allow you to distinguish one from another, the section number is often included
along with the name. While new section numbers could have helped distinguish
these entities, the old numbers were much more familiar to UNIX users.

Besides distinguishing amongst identically named A/UX provisions, the section
number helps identify each manual page as one that describes a command, a
system call, a library routine, and so forth. Regular UNIX users sooner or later
memorize what category is identified by each section number. After doing so,
you can deduce how the sections must be split up into books-since each book
serves a particular audience and each section category also goes along with a
particular audience, the match-ups become fairly easy for you to make. The
memorization part of this task is more or less considered an initiation rite for
those who wish to learn to use UNIX effectively.

Until the 3.0 release of A/UX, the organization of sections into books was static.
With the 3.0 release however, Section 7 has been moved out of A/UX System
Administrator's Reference and into A/UX Programmer's Reference. This means
that command provisions are now the exclusive focus of both A/UX Command
Reference and A/UX System Administrator's Reference.

Current organization of sections into books
All manual pages are grouped by section. The sections are grouped by general
function and are numbered according to standard conventions as follows:

User Commands

IM System Maintenance Commands

2 System Calls

3 Subroutines

4 File Formats

- xix -

5 Miscellaneous Facilities

6 Games

7 Drivers and Interfaces for Devices

8 A/UX Startup Shell Commands

Each group or section of manual pages is located in one of the reference books.
Each reference book may comprise more than one binder. This section explains
where these sections are currently located with respect to the three primary
reference books. It also describes any subcategories that may be present in a
given section.

A/UX Command Reference contains Sections I and 6.

• Section 1-U ser Commands
This section describes commands that require no special access privileges.
The commands in Section I may also belong to a special category, such as
networking commands. Where applicable, these categories are indicated by
a letter designation that follows the section number. For example, the ''N''
in ypcat(lN) indicates that this manual page describes a networking
command. Here is an explanation of each subcategory:

IC Communications commands, such as cu and tip.

IG Graphics commands, such as graph and tplot.

IN Networking commands, such as those that help support various
networking subsystems, including the Network File System
(NFS), Remote Process Control (RPC) subsystem, and Internet
subsystem.

• Section 6-Games
This section contains all of the games provided with A/UX, such as
cribbage and worms.

- xx -

A/UX Programmer's Reference contains Sections 2 through 5 and Section 7.

• Section 2-System Calls
This section describes the services provided by the A/UX system kernel,
including the C language interface. It includes two special categories.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the ''N'' in connect(2N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary versions of
these subroutines are in the system libraries in the I 1 ib and /usr I 1 ib
directories. The section includes seven special categories. Where
applicable, these categories are indicated by the letter designation that
follows the section number. For example, the "N" in mount(3N)
indicates that this manual page describes a networking command. Here is
an explanation of each subcategory:

3C C and assembly-language library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard 1/0 library routines

3X Miscellaneous routines

• Section 4-File Formats
This section describes the structure of some files, but does not include files
that are used by only one command (such as the assembler's intermediate
files). The C language struct declarations corresponding to these
formats are in the /usr/include and /usr/include/sys
directories. There is one special category in this section, indicated by the
letter designation ''N'' following the section number:

- xxi -

4N Networking formats

• Section 5-Miscellaneous Facilities
This section describes various character sets, macro packages, and other
miscellaneous facilities. There are two special categories in this section.
Where applicable, these categories are indicated by the letter designation
that follows the section number. For example, the "P" in tcp(lP)
indicates a protocol. Here is an explanation of each subcategory:

5F Protocol families

5P Protocol descriptions

• Section 7-Drivers and Interfaces for Devices
This section describes the drivers and interfaces through which devices are
normally accessed. Access to one or more disk devices is fairly transparent
when you are working with them in terms of files. When you want to use
A/UX commands to communicate with devices more directly, at a level
beyond the moderation of file systems, device files serve your needs. Such
a level of communication permits you to request more explicit operating
modes that may be supported by a disk (such as accessing disk partition
maps), or that may be supported by other types of devices, such as tape
drives and modems. For example, you can access a tape device in
automatic-rewind mode as described in tc(7).

AJUX System Administrator's Reference contains Sections IM and 8.

• Section IM-System Maintenance Commands
This section describes system maintenance programs such as f s ck and
mkfs.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from within the
A/UX Startup shell. This section includes detailed descriptions of the
commands that contribute to the boot process and those that help with the
maintenance of inactive file systems.

For more information
To find out where you need to go for more information about how to use A/UX,
see Road Map to A/UX. This guide contains descriptions of each A/UX guide
and ordering information for all the guides in the A/UX documentation suite.

- xxii -

the conventions used in all the A/UX reference books.

Keys and key combinations
Certain keys on the keyboard have special names. These modifier and character
keys, often used in combination with other keys, perform various functions. In
this book, the names of these keys appear in the format of an initial capital letter
followed by small capital letters.

Here is a list of the most common key names:

CAPS LOCK
COMMAND
CONTROL
DELETE

ENTER
ESCAPE
OPTION

RETURN

SHIFT

SPACE BAR
TAB

Sometimes two or more key names are joined by hyphens. The hyphens indicate
that you press these keys simultaneously to perform a specific function. For
example,

Press CONTROL-K

means "While holding down the CONTROL key, press the K key."

Terminology
In A/UX manuals, a certain term can represent a specific set of actions. For
example, the word ''enter'' indicates that you type a series of characters, then
press the RETURN key. The instruction

Enter whoami.

means "Type whoami, then press the RETURN key." (If you entered this text
at a command prompt, the system would respond by displaying your current
account name.)

Here is a list of common terms and their corresponding actions.

- xiv -

Here's an example:

Type date on the command line and press RETURN.

This instruction means that you should type the word "date" exactly as shown,
then press the RETURN key.

After you press RETURN, text such as this will appear on the screen:

Fri Nov 1 11:15:43 PST 1991

In this case, the Courier font is used to represent exactly what appears on the
screen.

All A/UX manual page names are shown in the Courier font. For example,
1 s (1) indicates that 1 s is the name of a manual page that occurs in Section 1.
More information about the use of the Courier font in manual pages is given in
"Styling of A/UX Command Elements" and in "Styling of Cross-References to
Manual Pages'' later in this preface.

Font styles
Italics are used to indicate that a word or set of words is a placeholder for part of
a command line. Here is a sample command syntax illustration:

cat file

The italicized term file is a placeholder for the name of a file. If you wanted to
display the contents of a file named E 1 vis, you would type the filename
E 1 vi s in place of file. In other words, you would enter

cat Elvis

Styling of A/UX command elements
A/UX commands are entered in accordance with their command syntax. A
typical A/UX command line includes the command name first, followed by
options and arguments. For example, here is an illustration of the syntax for the
wc command:

wc [-1] [-w] file ...

In this syntax illustration, wc is the command, -1 and -ware options, andfi/e
is an argument.

A ''command option'' modifies the action of a command, often by changing its
mode of operation (such as read mode or write mode).

- xvi -

Styling of cross-references to manual pages
The manual pages are organized primarily in terms of sections, and secondarily
in terms of books for different audiences. The standard A/UX cross-reference
notation leaves out the book title, but refers to the section designation:

item(section)

where item is the name of the command, subroutine, or other A/UX provision,
and section is the section where the manual page resides.

For example,

cat(l)

refers to the command cat, which is described in Section 1, which is in AJUX
Command Reference.

As a guide to the location of sections, you can refer to the general table of
contents of each of the primary reference manuals, or to ''Current Organization
of Sections into Books'' later in this preface. (The binder spines are also labeled
with the section numbers, and occasionally section subdivisions, that are in each
binder.)

Note also that there are a number of subcategory designations that can follow
the digit reference in (1), (2), (3), (4), and (5), such as (IN). Detailed
explanations of these subcategory designations are provided later in this preface.

Previous organization of sections into books
You may be curious about the logic behind the numbering of sections. The
derivation of this numbering is much clearer when you realize that originally
there was only one reference manual, the UNIX User Manual. In fact the
manual pages were once considered the primary UNIX documentation, and the
other books were originally considered supplements.

In the early days, all the manual pages easily fit into one book, in sections
numbered 1 through 8. Section 8 originally contained the manual pages that are
now located in Section IM.

With the expansion of the original sections as UNIX grew, it became necessary
to split the original book into several books, and this was done according to the
audience they served. However, the original section numbering was preserved
after the split because by then each number had come to have a particular
meaning to UNIX users.

- xviii -

query(l) query(l)

NAME
query - queries the user for input

SYNOPSIS
query [-t[seconds]] [-r[response]] [-rn]

ARGUMENTS
-rn Watches for a mouse click. If the mouse does get clicked, exit status 2

is returned. Note: This option will be ignored if any other program
(such as a toolbox application) is currently using the mouse.

-r[response]
Changes the default response to the given response. The default
response is y if not set with this option. This option is only useful in
conjunction with the - t option.

- t [seconds]
Times out after the given seconds. If no input has been seen by this
time, query will echo the default response value to standard output
and standard error.

DESCRIPTION
By default, query reads a line from standard input and echoes it to
standard output.

STATUS MESSAGES AND VALUES
Exit status is 0 if everything is OK, 1 for usage error, 2 if mouse is pressed
when query -rn is in use.

FILES
/etc/query

Executable file

SEE ALSO
line(l)

November 1991

rep(IC)

NAME
rep - copies files between two systems

SYNOPSIS
rep file] file2

rep [-r] file ... directory

ARGUMENTS
directory

Specifies the directory into which the files will be copied.

file Specifies the file that is to be copied into the given directory.

file I

rep(IC)

Specifies the file in the current directory that is to be copied into a
remote directory.

file2
Specifies the new file that was copied in the remote directory.

-r Causes rep to copy each subtree rooted at that name if any of the
source files are directories; in this case, the destination host is used.

DESCRIPTION
rep copies files between machines. Each file or directory argument is
either a remote filename of the form rhost: path or a local filename
(containing no : characters, or a I before a :).

By default, the mode and owner of file2 are preserved if it already existed;
otherwise the mode of the source file modified by the umask(2) on the
destination host is used.

If path is not a full pathname, it is interpreted relative to the login directory
on rhost. A path on a remote host may be quoted (using\,", or ')so that
the metacharacters are interpreted remotely.

rep does not prompt for passwords; the current local user name must exist
on rhost and allow remote command execution via remsh(lN).

rep handles third party copies, where neither source nor target files are on
the current machine. Host names may also take the form rname@rhost to
use rname rather than the current user name on the remote host.

EXAMPLES
The command

rep recipe doc:cake

copies the file recipe from the current directory and renames it as cake
in the remote login directory on doc.

November 1991

rcp(lC) rep(IC)

The command

rep -r doc:Test

creates a new directory Test below the current (local) directory. The
local Test contains copies of every file and subdirectory contained in the
remote Test on the machine doc. Note that both examples assume that
there is a login directory on doc and that permissions are set correctly.
See the network issues appendix in A/UX Networking Essentials for more
information.

LIMITATIONS
rep doesn't detect all cases where the target of a copy might be a file
when only a directory should be legal.

rep is confused by any output generated by commands in a . login,
.profile, or. cshrc file on the remote host.

FILES
/usr/bin/rcp

Executable file

SEE ALSO
cp(l), ftp(lN), remsh(lN), rlogin(lN)

A/UX Networking Essentials

November 1991 2

rcs(l) rcs(l)

NAME
res - creates new RCS files or changes attributes of existing RCS files

SYNOPSIS
res [-alogins]] [-Aoldfile] [-cstring] [-e[logins]] [-i] [-l[rev]] [-L]
[-nname[: rev]] [-Nname[: rev]] [-orange] [-q] [-sstate[: rev]]
[-t[txifile]] [-u[rev]] [-U]files

ARGUMENTS
-alogins

1

Appends the login names appearing in the comma-separated list logins
to the access list of the RCS file.

-Aoldfile
Appends the access list of old.file to the access list of the RCS file.

-cstring
Sets the comment leader to string. The comment leader is printed
before every log-message line generated by the keyword Log
during checkout (see co). This is useful for programming languages
without multiline comments. During res -i or initial ci, the
comment leader is guessed from the suffix of the working file.

-e[logins]
Erases the login names appearing in the comma-separated list logins
from the access list of the RCS file. If logins is omitted, the entire
access list is erased.

files Specifies the RCS files to be affected.

- i Creates and initializes a new RCS file, but does not deposit any
revision. If the RCS file has no path prefix, res tries to place it, first
into the subdirectory . /RCS and then into the current directory. If the
RCS file already exists, an error message is printed.

-l[rev]
Locks the revision with number rev. If a branch is given, the latest
revision on that branch is locked. If rev is omitted, the latest revision
on the trunk is locked. Locking prevents overlapping changes. A lock
is removed with ci or res -u.

- L Sets locking to strict. Strict locking means that the owner of an
RCS file is not exempt from locking for checkin. This option should
be used for files that are shared.

-nname[: rev]
Associates the symbolic name name with the branch or revision rev.
res prints an error message if name is already associated with
another number. If rev is omitted, the symbolic name is deleted.

November 1991

rcs(l) rcs(l)

-Nname[: rev]
Overrides a previous assignment of name. Otherwise, this option is
the same as the -n option.

-orange
Deletes (outdates) the revisions given by range. A range consisting of
a single revision number means that revision. A range consisting of a
branch number means the latest revision on that branch. A range of
the form revl-rev2 means revisions revl to rev2 on the same branch,
- rev means from the beginning of the branch containing rev up to and
including rev, and rev- means from revision rev to the end of the
branch containing rev. None of the outdated revisions may have
branches or locks.

-q Specifies quiet mode; diagnostics are not printed.

- sstate[: rev]
Sets the state attribute of the revision rev to state. If rev is omitted,
the latest revision on the trunk is assumed. If rev is a branch number,
the latest revision on that branch is assumed. Any identifier is
acceptable for state. A useful set of states is Exp (for experimental),
Stab (for stable), and Rel (for released). By default, ci sets the
state of a revision to Exp.

- t [txtfile]
Writes descriptive text into the RCS file and deletes the existing text.
If txtfile is omitted, res prompts the user for text supplied from the
standard input, terminated with a line containing a single . or
CONTROL-D. Otherwise, the descriptive text is copied from the file
txtfile. If the - i option is present, descriptive text is requested even if
- t is not given. The prompt is suppressed if the standard input is not
a terminal.

-u[rev]
Unlocks the revision with number rev. If a branch is given, the latest
revision on that branch is unlocked. If rev is omitted, the latest lock
held by the caller is removed. Normally, only the locker of a revision
may unlock it. Anyone else unlocking a revision breaks the lock.
This causes a mail message to be sent to the original locker. The
message contains a commentary solicited from the breaker. The
commentary is terminated with a line containing a single . or
CONTROL-D.

- U Sets locking to non-strict. Non-strict locking means that the owner of
a file need not lock a revision for checkin. This option should not be
used for files that are shared. The default (- L or - U) is determined by
your system administrator.

November 1991 2

res(l) res(l)

DESCRIPTION
res creates new RCS files or changes attributes of existing ones. An RCS
file contains multiple revisions of text, an access list, a change log,
descriptive text, and some control attributes. For res to work, the caller's
login name must be on the access list, unless the access list is empty, the
caller is the owner of the file or the superuser, or the - i option is present.

Files ending in , v are RCS files, and all others are working files. If a
working file is given, res tries to find the corresponding RCS file, first in
directory . /RCS and then in the current directory, as explained in eo(l).

The caller of the command must have read/write permission for the
directory containing the RCS file and read permission for the RCS file
itself. res creates a semaphore file in the same directory as the RCS file to
prevent simultaneous update. For changes, res always creates a new file.
On successful completion, res deletes the old one and renames the new
one. This strategy makes links to RCS files useless.

STATUS MESSAGES AND VALUES
The RCS filename and the revisions outdated are written to the diagnostic
output. The exit status always refers to the last RCS file operated upon,
and is 0 if the operation was successful, 1 if otherwise.

NOTES
Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO

3

ei(l), eo(l), ident(l), resdi ff(l), resintro(l), resmerge(l),
rlog(l)

seestores(IM) in A/UX System Administrator's Reference

resfile(4) inAIUX Programmer's Reference

Walter F. Tichy, ''Design, Implementation, and Evaluation of a Revision
Control System,'' in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, September 1982

November 1991

rcsdiff (l) rcsdiff(l)

NAME
rcsdiff - compares RCS revisions

SYNOPSIS
rcsdiff [-b] [-c] [-e] [-f] [-h] [-i] [-n] [-t] [-w] [-rrevl]
[-rrev2] file ...

ARGUMENTS
-b Causes trailing blanks (spaces and tabs) to be ignored, and other

strings of blanks to compare equal.

- c Produces a di ff with lines of context. The default is to present 3
lines of context and may be changed, e.g., to 10, by - c 10. With the
- c option, the output format is modified slightly: the output
beginning with identification of the files involved and their creation
dates and then each change is separated by a line with a dozen *' s.
The lines removed from.file] are marked with"-"; those added to
.file2 are marked '' +''. Lines which are changed from one file to the
other are marked in both files with '' ! ''.

-e Produces a script of a, c, and d commands for the editor ed, which
will recreate .file2 from file I. In connection with the -e, option, the
following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed
scripts ($2,$3, ...) made by di ff need be on hand. A "latest
version'' appears on the standard output.

(shift; cat$*; echo 'l,$p') I ed - $1

Extra commands are added to the output when comparing directories
with the -e, option so that the result is a sh(l) script for converting
text files which are common to the two directories from their state in
dirl to their state in dir2. Since such a shell script is useful only in a
file that you may run on other files, it is best to redirect the output of
this command into a file.

- f Produces a script similar to that of the - e , option not useful with ed ,
and in the opposite order.

file Specifies the RCS file which has different versions that are to be
compared.

- h Does a fast, half-hearted job. It works only when changed stretches
are short and well-separated, but does work on files of unlimited
length.

- i Ignores lower and upper case character differences.

- n Produces a script similar to that of the - f option but with a count of
changed lines added.

November 1991

rcsdiff (1) rcsdiff (1)

- t Expands tabs in output lines, preserving correct indentation of the
source text.

-w Causes spaces and tabs to be ignored.

-rrevl
Specifies the first revision of the RCS file that is compared with rev2.
If this argument is given, but not rev2, rcsdif f compares rev] of
the RCS file with the contents of the corresponding working file.

-rrev2
Specifies the second revision of the RCS file that is compared with
revl.

DESCRIPTION
rcsdiff runs ucbdiff(l) to compare two revisions of each RCS file
given. A filename ending in , v is an RCS filename, otherwise a working
filename. rcsdiff derives the working filename from the RCS filename
and vice versa, as explained in co(l). Pairs consisting of both an RCS and
a working filename may also be specified.

If both rev] and rev2 are omitted, rcsdiff compares the latest revision
on the trunk with the contents of the corresponding working file. This is
useful for determining what was changed since the last checkin.

If both rev] and rev2 are given, rcsdiff compares revisions rev] and
rev2 of the RCS file.

Both rev 1 and rev2 may be given numerically or symbolically.

EXAMPLES
The command:

rcsdiff f .c

runs ucbdi ff on the latest trunk revision of RCS file f . c, v and the
contents of working file f . c.

NOTES
Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907.
Copyright© 1982 by Walter F. Tichy.

SEE ALSO

2

ci(l), co(l), ucbdiff(l), ident(l), rcs(l), rcsintro(l),
rcsmerge(l), rlog(l)

rcsf ile(4) inA/UX Programmer's Reference

Walter F. Tichy, ''Design, Implementation, and Evaluation of a Revision
Control System,'' in Proceedings of the 6th International Conference on
SoftwareEngineering, IEEE, Tokyo, Sept. 1982

November 1991

rcsmerge(1) rcsmerge(1)

NAME
rcsmerge - merges two versions of an RCS file

SYNOPSIS
rcsmerge -rrevl [-rrev2] [-p] file

ARGUMENTS
file Specifies the RCS file whose versions are to be merged.

-p Prints the results of the merge on the standard output; otherwise the
results overwrite the working file.

-rrevl
Specifies the first revision of the file to be merged. This argument
cannot be omitted.

-rrev2
Specifies the next revision of the file to be merged. If this argument is
omitted, the latest revision on the trunk is assumed.

DESCRIPTION
rcsmerge incorporates the changes between revl and rev2 of an RCS file
into the corresponding working file.

A filename ending in ', v' is an RCS filename, otherwise a working
filename. re smerge derives the working filename from the RCS
filename and vice versa, as explained in c o(l). A pair consisting of both
an RCS and a working filename may also be specified.

Both revl and rev2 may be given numerically or symbolically.

The rcsmerge program prints a warning if there are overlaps and
delimits the overlapping regions as explained in co - j . The command is
useful for incorporating changes into a checked-out revision.

EXAMPLES
Suppose you have released revision 2.8 of f . c. Assume further that you
just completed revision 3.4, when you receive updates to release 2.8 from
someone else. To combine the updates to 2.8 and your changes between
2.8 and 3.4, put the updates to 2.8 into file f. c and execute the command:

rcsmerge -p -r2.8 -r3.4 f.c > f.merged.c

Then examine f. merged. c. Alternatively, if you want to save the
updates to 2.8 in the RCS file, check them in as revision 2.8.1.1 and
execute co -j:

ci -r2.8.1.l f.c
co -r3.4 -j2.8:2.8.l.l f .c

As another example, the following command undoes the changes between
revision 2.4 and 2.8 in your currently checked out revision in f. c.

November 1991

Table of Contents

Section 1: User Commands (Q-Z)

query(l)... queries the user for input
rcp(lC) copies files between two systems
res(1) creates new RCS files or changes attributes of existing RCS files
rcsdiff(l) compares RCS revisions
rcsintro(l) introduces RCS commands
rcsmerge(l)... merges two versions of an RCS file
rcvhex(l) receives and converts Motorola S-records from a port to a file
rdist(l) . distributes remote files
red(l) . see ed(l)
refer(!) finds and inserts literature references in documents
regcmp(l) compiles regular expressions with a file
remsh(IN) invokes to a shell on a remote system
reset(l) see tset(l)
rev(l) reverses characters within each line of text
rez(l) compiles Macintosh resource files from source code
r 1og(1) displays log messages and other information about RCS files
rlogin(IN) logs in to a remote system
rm(1) remove files or directories
rmail(l) see mail(l)
rmdel(l) . removes a delta from an SCCS file
rmdi r(l) see rm(l)
rof fbib(l) prints out all records in a bibliographic database
rpcgen(l) generates C source code from a remote procedure call (RPC) source file
rsh(l) see sh(l)
rup(lN) displays the status of machines on the local network (RPC version)
rupt ime(lN) displays the host status of local machines
rusers(IN) produces a login list for local machines (RPC version)
rwho(IN) . displays a list of the active users from all of the systems on the local network
sact(l).............. . .. displays who has checked a Source Code Control System

(SCCS) file out for editing
sag(IG) generates a system activity graph
sar(l) reports system activity
sccs(l) ... performs SCCS subsystem commands
sccsdiff(l) .. compares two versions of an SCCS file
script(l) starts a shell that records terminal input and output
s db(1) symbolic debugger
sdiff(l) reports side-by-side differences between two files in a side-by-side format
sed(l) edits a stream of data
set f i 1e(1) sets attributes for Macintosh files, such as file type and creator

Section 1

rcsrnerge(1) rcsrnerge(1)

rcsrnerge -r2.8 -r2.4 f.c

Note the order of the arguments and that f. c will be overwritten.

LIMITATIONS
re srnerge does not work for files that contain lines with a single ' . '.

NOTES
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0; Release Date: 83/01115.
Copyright© 1982 by Walter F. Tichy.

SEE ALSO

2

ci(l), co(l), rnerge(l), ident(l), rcs(l), rcsdiff(l), rlog(l)

rcsfile(4) inA/UX Programmer's Reference

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982

November 1991

rcvhex(l) rcvhex(l)

NAME
rcvhex - receives and converts Motorola S-records from a port to a file

SYNOPSIS
rev hex [-p port] [- c command] file

ARGUMENTS
-c command

Ships the specified command (in quotes) over the remote port; the
default is to not ship anything.

file Specifies the file to be created by the rcvhex command.

-p port
Specifies an alternate port for reception; the default port is
/dev/ttyO.

DESCRIPTION
rcvhex translates Motorola S-records shipped from a port into a file.

The file's starting address must be zero and successive records must be
sequential.

FILES
/usr/bin/rcvhex

Executable file

SEE ALSO
hex(l)

November 1991

rdist(l) rdist(l)

NAME
rdi st - distributes remote files

SYNOPSIS
rdist [-b] [-dvar=value] [-fdistfile] [-h] [-i] [-mhost] [-n] [-q]
[- R] [-v] [-w] [-y] [name] ...

rdist [-b] -c name ... [-h] [-i] [-n] [-q] [-R] [-v] [-w] [-y]
[login@] host [: dest]

ARGUMENTS
- b Specifies binary comparison. Perform a binary comparison and

update files if they differ rather than comparing dates and sizes.

-c name
Forces rdi st to interpret the remaining arguments as a small dist.file.
The equivalent dist.file is as follows.

(name ...) ->[login@]host
install [dest];

-dvar=value
Defines var to have value. The -d option is used to define or override
variable definitions in the dist.file. value can be the empty string, one
name, or a list of names surrounded by parentheses and separated by
tabs and/or spaces.

:dest
Specifies the destination system on which the files will be distributed.

-fdistfile
Causes the program to first look for dist.file, then Dist.file to use as the
input, if this option is not present. If no names are specified on the
command line, rdi st will update all of the files and directories listed
in dist.file. Otherwise, the argument is taken to be the name of a file to
be updated or the label of a command to execute. If label and
filenames conflict, it is assumed to be a label. These may be used
together to update specific files using specific commands.

- h Follows symbolic links. Copy the file that the link points to rather
than the link itself.

host Specifies the local host system.

- i Ignores unresolved links. rdi st will normally try to maintain the
link structure of files being transferred and warn the user if all the
links cannot be found.

login @

Specifies the login name used on the destination host. The login name
is the same as the local host unless the destination name is of the

November 1991

rdist(l) rdist(l)

format login@host.

-mhost
Limits which machines are to be updated. Multiple -m arguments can
be given to limit updates to a subset of the hosts listed in dist.file.

- n Prints the commands without executing them. This flag option is
useful for debugging dist.file.

-q Specifies quiet mode. Files that are being modified are normally
printed on standard output. The -q option suppresses this.

- R Removes extraneous files. If a directory is being updated, any files
that exist on the remote host that do not exist in the master directory
are removed. This is useful for maintaining truly identical copies of
directories.

-v Verifies that the files are up to date on all the hosts. Any files that are
out of date will be displayed but no files will be changed nor any mail
sent.

-w Specifies whole mode. The whole filename is appended to the
destination directory name. Normally, only the last component of a
name is used when renaming files. This will preserve the directory
structure of the files being copied instead of flattening the directory
structure. For example, renaming a list of files such as (di r 1 I f 1
dir2 I f2) to dir3 would create files dir3 I dirl I fl and
dir3 I dir2 I f2 instead of dir3 I fl and dir3If2.

-y Specifies younger mode. Files are normally updated if their mtime
and size (see stat(2)) disagree. The -y option causes rdist not to
update files that are younger than the master copy. This can be used
to prevent newer copies on other hosts from being replaced. A
warning message is printed for files which are newer than the master
copy.

DESCRIPTION
rdi st is a program to maintain identical copies of files over multiple
hosts. It preserves the owner, group, mode, and mtime (see stat(2)) of
files if possible and can update programs that are executing. rdi st reads
commands from dist.file to direct the updating of files and/or directories. If
dist.file is '' -'', the standard input is used.

Replace dist.file with a sequence of entries that specify the files to be
copied, the destination hosts, and what operations to perform to do the
updating. Each entry has one of the following formats.

<variabk name> = <namelist>
[label:] <source list> - > <destination list> <command list>
[label:] <source list> : : <time_stamp file> <command list>

November 1991 2

rdist(l) rdist (1)

3

The first format is used for defining variables. The second format is used
for distributing files to other hosts. The third format is used for making
lists of files that have been changed since some given date. The ''source
list'' specifies a list of files and/or directories on the local host which are to
be used as the master copy for distribution. The ''destination list'' is the
list of hosts to which these files are to be copied. Each file in the source list
is added to a list of changes if the file is out of date on the host which is
being updated (second format) or the file is newer than the time stamp file
(third format).

Labels are optional; they are used to identify a command for partial
updates.

Newlines, tabs, and blanks are only used as separators and are otherwise
ignored. Comments begin with "#" and end with a newline.

Variables to be expanded begin with '' $'' followed by one character or a
name enclosed in braces (see the examples at the end).

The source and destination lists have the following format:

<name>
or
' ' (' ' <zero or more names separated by white-space> ' ') ' '

The shell metacharacters ' ' [' ', ' ' J ' ', ' ' { ' ', ' ' } ' ', ' ' * ' ', and ' ' ? ' ' are
recognized and expanded (on the local host only) in the same way as
csh(l). They can be escaped with a backslash. The - character is also
expanded in the same way as csh but is expanded separately on the local
and destination hosts. When the -w option is used with a filename that
begins with - , everything except the home directory is appended to the
destination name. File names which do not begin with / / or - use the
destination user's home directory as the root directory for the rest of the
filename.

The command list consists of zero or more commands of the following
format.

install
<options>opt_dest _name;

notify
<name list>

except
<name list>

except_pat
<pattern list>

special
<name list>string;

November 1991

rdist(l) rdist(l)

The install command is used to copy out of date files and/or
directories. Each source file is copied to each host in the destination list.
Directories are recursively copied in the same way. The parameter,
"opt_dest_name", is optional and is used to rename files. If no install
command appears in the command list or the destination name is not
specified, the source filename is used. Directories in the pathname will be
created if they do not exist on the remote host. To help prevent disasters, a
nonempty directory on a target host will never be replaced with a regular
file or a symbolic link. However, under the -R option, a nonempty
directory will be removed if the corresponding filename is completely
absent on the master host. The options are -R, -h, -i, -v, -w, -y, and
- b and have the same semantics as options on the command line except
they only apply to the files in the source list.

The notify command is used to mail the list of files updated (and any
errors that may have occurred) to the listed names. If no @ appears in the
name, the destination host is appended to the name (e.g., namel@host,
name2@host, . . .) .

The except command is used to update all of the files in the source list
except for the files listed in ''name list''. This is usually used to copy
everything in a directory except certain files.

The except_pat command is like the except command except that
"pattern list" is a list of regular expressions (see ed(l) for details). If one
of the patterns matches some string within a filename, that file will be
ignored. Note that since \ is a quote character, it must be doubled to
become part of the regular expression. Variables are expanded in ''pattern
list'' but not shell file pattern matching characters. To include a $, it must
be escaped with \.

The special command is used to specify sh(l) commands that are to be
executed on the remote host after the file in "name list" is updated or
installed. If the ''name list'' is omitted then the shell commands will be
executed for every file updated or installed. The shell variable FILE is set
to the current filename before executing the commands in ''string.'' A
string starts and ends with quotes () and can cross multiple lines in
distfile. Multiple commands to the shell should be separated by ; .
Commands are executed in the user's home directory on the host being
updated. The special command can be used to rebuild private
databases, etc. after a program has been updated.

EXAMPLES
The following is a small example.
HOSTS (matisse root@arpa)

FILES /bin /lib /usr/bin /usr/games

November 1991 4

rdist(l) rdist(l)

/usr/include/{*.h,{stand,sys,vax*,pascal,machine}/*.h}
/usr/lib /usr/man/man? /usr/ucb /usr/local/rdist)

EXLIB = (Mail.re aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmail.fc sendmail.hf sendmail.st uucp vfont

${FILES} -> ${HOSTS}
install ;

srcs:

except /usr/lib/${EXLIB}
except /usr/games/lib ;
special /usr/lib/sendmail "/usr/lib/sendmail -bz"

/usr/src/bin -> arpa
except_pat \\.o\$ /SCCS\$

IMAGEN = (ips dviimp catdvi)

imagen:
/usr/local/${IMAGEN} -> arpa

install /usr/local/lib
notify ralph ;

${FILES} : : stamp.Cory
notify root@cory ;

STATUS MESSAGES AND VALUES
A complaint about mismatch of rdist version numbers may really stem
from some problem with starting your shell, e.g., you are in too many
groups.

LIMITATIONS
Source files must reside on the local host where rdi st is executed.

There is no easy way to have a special command executed after all files in a
directory have been updated.

Variable expansion only works for name lists; there should be a general
macro facility.

rdist aborts on files which have a negative mtime (before Jan 1, 1970).

There should be a ''force'' option to allow replacement of nonempty
directories by regular files or syml inks. A means of updating file modes
and owners of otherwise identical files is also needed.

FILES
/usr/bin/rdist

Executable file
/tmp/rdist*

Temporary file for update lists

5 November 1991

rdist(l) rdist(l)

SEE ALSO
sh(l), csh(l)

stat(2) inA/UX Programmer's Reference

November 1991 6

red(l) red(1)

See ed(l)

1 November 1991

refer(l) refer(l)

NAME
ref er - finds and inserts literature references in documents

SYNOPSIS
refer [-a[n]] [-b] [-B[/.m]] [-c keys] [-e] [-fn] [-kx] [-l[m,n]]
[-n] [-p bib] [-P] [-s keys] [-S] [file] ...

ARGUMENTS
-a[n]

Reverses the first n author names, for example, Jones, J. A. instead of
J. A. Jones. If n is omitted, all author names are reversed.

- b Specifies bare mode: do not put any flags in text (neither numbers nor
labels).

-B[/. m]
Specifies bibliography mode. Takes a file composed of records
separated by blank lines and turns them into troff input. Label l is
turned into the macro . m with l defaulting to %X and . m defaulting to
. AP (annotation paragraph).

-c keys
Capitalizes (with CAPS SMALL CAPS) the fields whose key-letters are
in keys.

- e Accumulates the references until a sequence of the form

. [

-fn

$LIST$
.]

is encountered, and then writes out all references collected so far and
collapses the references to the same source. Usually, the references
are left where encountered.

Sets the initial footnote number to n instead of the default of 1. With
labels rather than numbers, this is a no-op.

file Specifies the file to be searched.

- k.x Uses labels as specified in a reference data line beginning %x, instead
of numbering references. By default, xis L.

-l[m,n]
Uses labels made from the senior author's last name and the year of
publication, instead of numbering references. Only the first m letters
of the last name and the last n digits of the date are used. If either m
or n is omitted, the entire name or date is used.

-n Does not search /usr I diet /papers I Ind, the default file. If
there is a REFER environment variable, the specified file is searched

November 1991 1

sh(l) .. runs the Bourne shell
shl(l) ... manages the layering of multiple shells
size(1) displays section sizes of common object files
s 1 eep(l) suspends the system for a specified interval of time
sno(l)... runs the SNOBOL interpreter
soelim(l) eliminates the source commands from nroff input
sort(l) ... sorts or merges files
sortbib(l) .. sorts bibliographic database
spel 1(1) . find spelling errors
spellin(l) ... see spell(l)
spline(lG). ... interpolates a smooth curve
spl i t(l) splits a file into a specified number of pieces
ssp(l) produces single spaced output
strings(1) finds the printable strings in an object or other binary file
strip(l) strips symbol and line number information from an object file
st t y(1) sets the modes for a terminal
style(l) analyzes the surface characteristics of documents
su(l) substitutes user ID
subj (1).... generates a list of subjects from documents
sum(l) calculates a checksum
sumdir(l) sums and counts the characters within the files of the given directories
sync(l) updates the superblock
sys 1ine(1) displays the system status on the status line of a terminal
systemfolder(l)...... create a personal System Folder
systemfolder24(1) see systemfolder(l)
tabs(l).................................. sets the tab stops on a terminal
tai 1(1) displays the last part of a file
talk(lN) ... talks to another user via the terminal
tar(l) copies files to or from a tar archive
tbl(l) table formatter for nroff or troff
tc(l) interprets troff output for use at a vintage display device
tcb(l) blocks data to 8K for direct input to .Bl/dev/rmt/tc x
tee(l) transcribes data
telnet(lC) communicates with another host via the TELNET protocol
test(l) evaluates conditions
Text Edi tor(l) lets you edit files interactively through mouse and menu operations
t ftp(1 C) transfers files via the Tri vial File Transfer Protocol (TFTP)
time(1) .. prints the elapsed time during the execution of a command
t imex(1) . reports the elapsed, user, and system time during the execution of a command
ti p(l C) establishes a connection to a remote system
touch(l) updates access and modification times of a file
tp(l) .. copies files to or from a tp archive
tplot(lG) interprets plotter instructions for use at a vintage display device
tput(l)............................ ... queries terminf o database
tr(l) translates characters

ii User Commands (Q-Z)

refer(l) refer(l)

instead of the default file; in this case the -n has no effect.

-p bib
Takes the next argument bib as a file of references to be searched.
The default file is searched last.

- P Places punctuation marks (. , : ; ? !) after the reference signal
rather than before. (Periods and commas used to be done with
strings.)

-s keys
Sorts references by fields whose keyletters are in the keys string;
permutes the reference numbers in text accordingly. This option
implies -e. The keyletters in keys may be followed by a number to
indicate how many such fields are used, with + taken as a very large
number. The default is AD, which sorts on the senior author and then
date. To sort, for example, on all authors and then, the title, use
-sA+T.

-s Produces references in the Natural or Social Science format.

DESCRIPTION

2

re fer is a preprocessor for n r of f (1) or tr o f f (1) that finds and formats
references for footnotes or endnotes. It is also the base for a series of
programs designed to index, search, sort, and print stand-alone
bibliographies, or other data entered in the appropriate form.

Given an incomplete citation with sufficiently precise keywords, ref er
searches a bibliographic database for references containing these keywords
anywhere in the title, author, journal, and so forth. The input file (or
standard input) is copied to standard output, except for lines between . [
and . J delimiters, which are assumed to contain keywords and are
replaced by information from the bibliographic database. The user may
also search different databases, override particular fields, or add new fields.
The reference data, from whatever source, is assigned to a set of troff
strings. Macro packages such as rns(5) print the finished reference text
from these strings. By default, references are flagged by footnote numbers.

To use your own references, put them in the format described below.
When refer is used with the eqn, neqn, or tbl preprocessors, ref er
should be first, to minimize the volume of data passed through pipes.

The ref er preprocessor and associated programs expect input from a file
of references composed of records separated by blank lines. A record is a
set of lines (fields), each containing one kind of information. Fields start
on a line beginning with a%, followed by a keyletter, then a blank, and
finally the contents of the field, which continue until the next line starting
with % . The output ordering and formatting of fields is controlled by the
macros specified for nroff/troff (for footnotes and endnotes) or

November 1991

refer(l) refer(l)

ro f fbib (for stand-alone bibliographies). For a list of the most common
key-letters and their corresponding fields, see addbib(l).

EXAMPLES
An example of a ref er entry is given below:

%A T. Monroe
%T Creating Inverted Indexes
%B Text Processing Guide
%V 2. 6b
%I Data Systems
%C Berkeley, California
%D 1998

LIMITATIONS
Blank spaces at the end of lines in bibliography fields will cause the
records to sort and reverse incorrectly. Sorting large numbers of references
causes a core dump.

FILES
/usr/ucb/refer

Executable file
/usr/dict/papers

Directory containing default publication lists
/usr /lib/refer

Directory containing companion programs

SEE ALSO
addbib(l), indxbib(l), lookbib(l), rof fbib(l), sortbib(l)

November 1991 3

regcrnp(l) regcrnp(1)

NAME
regcrnp - compiles regular expressions with a file

SYNOPSIS
regcrnp [-] file ...

ARGUMENTS
Places the output in a file suffixed . c.

file Specifies the file to be compiled.

DESCRIPTION
regcrnp, in most cases, precludes the need for calling regcrnp from C
programs. This saves on both execution time and program size. The
command regcrnp compiles the regular expressions infile and places the
output in file. i.

The format of entries infile is a name (C variable) followed by one or more
blanks followed by a regular expression enclosed in double quotes. The
output of regcrnp is C source code. Compiled regular expressions are
represented as extern char vectors. file. i files may thus be included
into C programs, or file . c files may be compiled and later loaded.

In the C program which uses the regcrnp output, regex(abc,line) will
apply the regular expression named abc to line. The status messages for
this command are self-explanatory.

EXAMPLES
This C program:

name" ([A-Za-z J [A-Za-z0-9_] *) $0"

tel no
",1} ([2-9] [01] [1-9])$0) {0,1} *"
" ([2-9] [0-9] {2}) $1 [-] {0, 1}"
" ([0-9] {4}) $2"

that uses the regcrnp output

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

FILES
/usr/bin/regcrnp

Executable file

SEE ALSO
cc(l), lex(l)

November 1991

regcrnp(1) regcrnp(1)

regcrnp(3X) in AIUX Programmer's Reference

November 1991 2

remsh(IN) remsh(IN)

NAME
remsh - invokes to a shell on a remote system

SYNOPSIS
remsh rhost [-1 username] [-n] [command]

ARGUMENTS
command

Specifies the remote command to be executed. If you omit command,
then instead of executing a single command, you are logged in on the
remote host using rlogin(lN).

-1 username
Specifies a different remote user name. By default, the remote user
name that is used is the same as your local user name. The remote
account must have its rhos ts file set up to grant you permission to
log in without prompting you for the password; no provision is made
for specifying a password with a command.

-n Redirects the standard input to /dev/null.

rho st
Specifies the remote host system to connect to.

DESCRIPTION
remsh connects to a specified remote host, rhost, and executes a specified
remote command (command) via a local network. On the remote side, you
get whatever shell is set up for that account. The remsh program copies
its standard input to the remote command, the standard output of the remote
command to its standard output, and the standard error of the remote
command to its standard error. Interrupt, quit, and terminate signals are
propagated to the remote command; remsh normally terminates when the
remote command does.

Shell metacharacters that are not quoted are interpreted on the local
machine while quoted metacharacters are interpreted on the remote
machine. Thus the command

remsh rhost cat remotefile >> localf ile

appends the remote file remote f i 1 e to the local file 1oca1 f i 1 e ,
while

remsh rhost cat remotef ile 11 >> 11 remotef ile. 2

appends remotef ile to remotefile. 2.

Host names are given in the file I etc I hosts. Each host has one
standard name (the first name given in the file), which is rather long and
unambiguous, and optionally one or more nicknames. The remote host
system names for local machines may also be commands in the directory

November I99I

rernsh(lN) rernsh(IN)

/usr /hosts; these names must be linked to the rernsh binaries. If you
put this directory in your search path, then the rernsh may be omitted, as
in the second form of the command, above.

Using rernsh, you cannot run an interactive command (like vi(l));
instead, use rlogin(lN).

FILES
/usr/bin/rernsh

Executable file
/etc/hosts

Host file
/usr/hosts/*

Directory containing host files

SEE ALSO
rlogin(lN), telnet(lC)

AIUX Networking Essentials

November 1991 2

reset(l) reset (1)

See tset(l)

November 1991

rev(1) rev(l)

NAME
rev - reverses characters within each line of text

SYNOPSIS
rev [file]. ..

ARGUMENTS
file Specifies the file that will be copied.

DESCRIPTION
rev copies the named files to the standard output, reversing the order of
characters in every line. If no file is specified, the standard input is copied.

FILES
/usr/ucb/rev

Executable file

November 1991

rez(l) rez (1)

NAME
rez - compiles Macintosh resource files from source code

SYNOPSIS
rez [-a] [-align word-type] [-c reator] [-d macro-assignment]. ..
[-i include-dir]... [-o output-file] [-ov] [-p] [-rd] [-ro]
[-s res-include-dir]. .. [-t type] [-u macro]
[resource-description-file] ...

ARGUMENTS
-align word

1

-align longword
Align resources along word or longword boundaries. This alignment
may allow the Resource Manager to load these resources more
quickly. The -align option is ignored when the -a option is in
effect.

-a Appends the output from rez to the output file instead of replacing
the output file.

-cOcreator
Specifies the creator attribute for the compiled resource file.

-d macro-assignment
Declares a macro and its value in the form

macro=value

This assignment is equivalent to the following form of preprocessor
request:

#define macro [value]

If value is omitted, then macro is set to the null string. (The macro is
still considered to be defined.)

- i include-dir
Searches the specified directory for include files. The system searches
directories according to the order of appearance of any number of - i
options in the command line. To reach the include files provided with
the A/UX Toolbox, use this command: (Note that colons replace
slashes to indicate subdirectories.)

rez -i /:mac:lib:rincludes

-o output-file
Places the output in the file specified by output-file. Specifies the
name of the associated data file; rez automatically appends a percent
sign (%) to the name of the header file containing the resources. The
default output file is rez. Out.

November 1991

rez (1) rez(l)

-ov
Overrides the protection bit when resources are replaced and the - a
option is in effect.

-p Writes version and progress information to diagnostic output.

-rd
Suppresses warning messages if a resource type is redeclared.

resource-description-file

-ro

Specifies files containing (source code) resource descriptions. If you
don't specify any filenames, rez accepts keyboard input.

Sets the mapReadOnly flag in the resource map.

- s res-include-dir
Searches the specified directories for resource include files. (Also see
the description of the - i option earlier in this list.)

-t type
Specifies the type attribute of the compiled resource file. The default
value is APPL.

-u[ndef] macro
Undefines the macro variable macro. Using this option is equivalent
to entering the following preprocessor request:

#undef macro

It is meaningful to undefine only the preset macro variables. (See
Appendix C of "A/UX Toolbox: Macintosh ROM Interface" for a
description of macro variables.)

DESCRIPTION
rez creates a resource file according to a textual series of statements in the
resource description language developed for Macintosh resources. The
resource description language is described in Appendix C, "Resource
Compiler and Decompiler," of "A/UX Toolbox: Macintosh ROM
Interface''.

The data used to build the resource file can come directly from one or more
resource description files, from other text files (through #include and
read directives in the resource description file), and from other resource
files (through the include directive in the resource-description file). The
type declarations for standard Macintosh resources are contained in the
files types.rand sys types. r, located in the directory
/mac/lib/rincludes.

November 1991 2

trof f(l)
true(l) ..
tset(l) ..
tsort(l) .
tty(l)

. formats and typesets files
. provides truth values
. set or reset the terminal to a sensible state
. .. sorts lines in a file topologically

. ... obtains the device filename for the terminal or CommandShell
window where it is invoked

u3b(l) see machid(l)
u3b15(1)... .. see machid(l)
u3b2(1).......... see machid(l)
u3b5(1)............ see machid(l)
u c bd i f f (1) reports differences between two files or directories
u c bd i f f3 (1) reports the differences between three files
ul(l) .. filters special underlining sequences imbedded in text for use at a display device
uname(l) displays identification information about the current system
uncompact(l) see compact(l)
uncompress(l) see compress(l)
uncompressdir(l) see compress(l)
unexpand(l) see expand(l)
unget(l) undoes a previous get of an SCCS file
uni q(1) ... reports repeated lines in a file
unit s(l) rescales quantities according to a the unit of measure specified
unpack(l)....... see pack(l)
updater(l) updates files between two machines
uptime(l) reports how long system has been up
users(l) reports a list of the users who are logged on to the system
uucp(lC) copies files from one system to another system
uudecode(lC) see uuencode(lC)
uuencode(lC) encode and decode a binary file
uugl is t(lC) displays the service grades that are available on your system
uulog(lC) displays information about uucp file transfers
uuname(lC) displays the names of systems to which uucp and cu can connect
uupick(lC)..................... see uuto(lC)
uusend(lC) sends a file to a remote host
uustat(lC) controls uucp jobs and provides status information
uuto(lC) . provide an easy interface to the uucp command, using the public directories
u ux(1 C) runs a command on a remote system
val(l) validate SCCS file
vax(l) see machid(l)
vc(l) manipulates version control information inside a data stream
vedi t(l) see vi(l)
version(1) ... reports version number of files
vi(l) invokes the screen-oriented (visual) display editor
view(l) see vi(l)
w(1) displays a summary of the current system activity
wc(l) counts characters, words, and lines in a file

Section 1 iii

what(l) .. reports identification information for a file
what is(1) reports a brief description for the manual page entry specified
whereis(l). reports the locations of the source, binary, and online

help files for a specified command
which(l) reports the directory path to a file by interpreting PATH and alias settings
who(l) reports users who are currently logged in to the system
whoami(l) prints effective current user ID
write(1) writes to another user
xargs(l)........ builds arguments based on the standard input, passing them

in batches to the specified command which is executed
enough times to deplete all the arguments

xs tr(1) ... reports strings from C programs to implement shared strings
yacc(l) compiles compilers (yet another compiler-compiler)
yes(l) generates y entries in response to requests for input
ypcat(l) lists the contents of a Network Information Service (NIS) map
ypmatch(l) lists the value of a specified key in a Network

Information Service (NIS) map
yppasswd(l)....... changes a login password on the Network Information

Service (NIS) master server
ypwhich(l)... displays the host name of a system's Network

zcat(l) .
zcmp(l) .
zdiff(l)
zmore(l)

iv

Information Service (NIS) server
. see compress(l)

. see compress(l)
. see compress(l)
. see compress(l)

User Commands (Q-Z)

rez (1) rez (1)

The rez command includes macro processing, full expression evaluation,
built-in functions, and system variables.

The rez command never sends output to standard output. By default, rez
writes to a file named rez. Out in the current directory. You can use the
- o option to specify a different output file.

Note: The rez command overwrites any existing resource of the
same type and ID without a warning message. Also, rez cannot
append resources to a resource file in which the Read Only bit is
set. Finally, rez cannot replace a resource file that has a protected
bit set. See also the - ov option in this section.

EXAMPLES
The following example is based on the descriptions in s amp 1 e . r and the
include files in the directory /mac/ lib/rincludes. It generates a
resource file for % s amp 1 e and places the output in an AppleDouble header
file named s amp 1 e:

rez -i /:mac:lib:rincludes sample.r -o sample

STATUS MESSAGES AND VALUES
If no errors or warnings are detected, rez runs silently. Errors and
warnings are written to standard error.

The rez command returns one of these status values:

0 No errors

Error in parameters

2 Syntax error in file

3 I/O or program error

LIMITATIONS
This command is not supported in 24-bit mode. You must run rez from
the command line while logged in with a 32-bit Macintosh session type.

FILES
/mac/bin/rez

Executable file

SEE ALSO
derez(l), setfile(l)

3 November 1991

rlog(l) rlog(l)

NAME
rlog - displays log messages and other information about RCS files

SYNOPSIS
rlog [-ddates] [-h] [-l[lockers]] [-L] [-rrevisions] [-R] [-sstates]
[-t] [-w[logins]]file ...

ARGUMENTS
-ddates

Prints information about revisions with a check.in date and time in the
ranges given by the semicolon-separated list of dates. A range of the
form dl <d2 or d2>dl selects the revisions that were deposited
between dl and d2 (inclusive). A range of the form <d or d> selects
all revisions dated d or earlier. A range of the form d< or >d selects
all revisions dated d or later. A range of the form d selects the single,
latest revision dated d or earlier. The date and time strings d, dl, and
d2 are in the free format explained in co(l). Quoting is normally
necessary, especially for< and >. Note that the separator is a
semicolon.

- h Prints only RCS filename, working filename, head, access list, locks,
symbolic names, and suffix.

-l[lockers]
Prints information about locked revisions. If the comma-separated list
lockers of login names is given, only the revisions locked by the given
login names are displayed. If the list is omitted, all locked revisions
are displayed.

- L Ignores RCS files that have no locks set; convenient in combination
with -R, -h, or -1.

- rrevisions
Prints information about revisions given in the comma-separated list
revisions of revisions and ranges. A range rev 1 - rev2 means revisions
rev 1 to rev2 on the same branch, - rev means revisions from the
beginning of the branch up to and including rev, and rev- means
revisions starting with rev to the end of the branch containing rev. An
argument that is a branch means all revisions on that branch. A range
of branches means all revisions on the branches in that range.

- R Prints only the name of the RCS file; convenient for translating a
working filename into an RCS filename.

-sstates]
Prints information about revisions whose state attributes match one of
the states given in the comma-separated list states.

November 1991

rlog(l) rlog(l)

- t Prints the same as - h, plus the descriptive text.

-w[logins]

file ...

Prints information about revisions checked in by users with login
names appearing in the comma-separated list logins. If logins is
omitted, the user's login is assumed.

Specifies the RCS files for which you want the log messages and other
information.

DESCRIPTION
r 1 og displays information about RCS files. Files ending in , v are RCS
files, all others are working files. If a working file is given, r 1 og tries to
find the corresponding RCS file, first in directory . I RCS and then in the
current directory, as explained in co(l).

The r 1 og program displays the following information for each RCS file:
RCS filename, working filename, head (that is, the number of the latest
revision on the trunk), access list, locks, symbolic names, suffix, total
number of revisions, number of revisions selected for display, and
descriptive text. This is followed by entries for the selected revisions in
reverse chronological order for each branch. For each revision, r 1 og
displays revision number, author, date and time, state, number of lines
added or deleted (with respect to the previous revision), locker of the
revision (if any), and log message. Without options, rlog displays
complete information; the options restrict this output.

The r 1 og command displays the intersection of the revisions selected with
the - d, -1, - s, and -w options intersected with the union of the revisions
selected by the - b and - r options.

EXAMPLES
The following are some examples of using r 1 og.

rlog -L -R RCS/*,v
rlog -L -h RCS/*,v
rlog -L -1 RCS/*,v
rlog RCS/*,v

The first command displays the names of all RCS files in the subdirectory
RCS which have locks. The second command displays the headers of those
files, and the third displays the headers plus the log messages of the locked
revisions. The last command displays complete information.

STATUS MESSAGES AND VALUES

2

The exit status always refers to the last RCS file operated upon, and is 0 if
the operation was successful, 1 if otherwise.

November 1991

rlog(l) rlog(l)

NOTES
This reference manual entry describes a utility that Apple understands to
have been released into the public domain by its author or authors. Apple
has included this public domain utility for your convenience. Use it at your
own discretion. Often the source code can be obtained if additional
requirements are met, such as the purchase of a site license from an author
or institution.

Author: Walter F. Tichy, Purdue University, West Lafayette, IN 47907.
Copyright© 1982 by Walter F. Tichy.

SEE ALSO
ci(l), co(l), ident(l), rcs(l), rcsdiff(l), rcsintro(l),
rcsrnerge(l)

s cc st or cs (1 M) in A/UX System Administrator's Reference

rcsf ile(4) inA/UX Programmer's Reference

Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision
Control System," in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982

November 1991 3

rlogin(lN) rlogin(lN)

NAME
r 1 og in - logs in to a remote system

SYNOPSIS
rlogin rhost [-8] [-ec] [-1 username]

ARGUMENTS
-8 Allows an eight-bit data path; otherwise parity bits are stripped.

-ec Defines the following character, c, as the escape character. No space
separates the option and the argument character.

-1 username
Allows you to log into the remote system as a specified user,
username.

DESCRIPTION
rlogin connects your terminal on the current local host system lhost to
the remote host system rhost via a local network. On the remote side, you
get whatever shell is set up for that account.

Each host has a file I etc/hosts.equiv which contains a list of rhosts
with which it shares account names. (The hosts names must be the
standard names as described in remsh(IN).) When you rlogin as the
same user on an equivalent host, you don't need to give a password. Each
user may also have a private equivalence list in a file . rhos ts in his login
directory. Each line in this file should contain a rhost and a username
separated by a space, giving additional cases where logins without
passwords are to be permitted. If the originating user is not equivalent to
the remote user, then a login and password will be prompted for on the
remote machine as in login(l). To avoid security problems, the
. rhos ts file must be owned by either the remote user or root. Note that,
for security reasons, root is an exception to the above; a superuser on an
equivalent host must still supply the password to login as root unless the
root account has its own private equivalence list in a file . rhos ts in the
root directory. Note that a . rhos ts file for a root account is not
recommended where secure systems are required.

Your remote terminal type is the same as your local terminal type (as given
in your environment TERM variable). All echoing takes place at the remote
site, so that (except for delays) the rlogin is transparent. Flow control
via CONTROL-S and CONTROL-Q and flushing of input and output on
interrupts are handled properly.

Tilde C) is the default escape character. A line of the form "-." (where
'' - '' is the escape character), disconnects the current job from the remote
host.

November 1991

rlogin(lN) rlogin(lN)

The escape sequence "-CONTROL-Z" stops the rlogin process and
returns control to the local machine where the rlogin was initiated. This
applies only if the initiating shell allows job control (csh(l) or ksh(l)). If
your terminal suspend character (see st ty(l)) is not CONTROL-Z,

substitute that character for CONTROL-Z where applicable.

Another function of the escape character applies to nested r 1 og ins. With
multiple levels of rlogins, escapes can be sent to a specified level.
When performing rlogins inside other rlogins, an escape
CCONTROL-Z) returns control to the original shell from which the first
rlogin was initiated. However, control can be returned to other rlogin
processes in the middle by varying the number of tildes.

If you supply two tildes, the rlogin shell invoked by the first rlogin
becomes active. If you supply three tildes, the rlogin shell invoked by
the rlogin shell invoked by the first rlogin becomes active, and so on.

For example, if you begin on machine A, then rlogin to machine B, then
rlogin to machine C, "-CONTROL-Z" returns you to machine A;
"--coNTROL-z" returns you to machine B, etc.

If you choose to redefine the escape character, make sure you remember
which character you have chosen, especially when nesting your rlogins.
The escape sequence ''XCONTROL-Z'' returns you to the first shell that
invoked an rlogin with "X" as the escape character. "XXCONTROL­

Z" returns you to the second. So, if you r 1 og in from A to B using
"X," rlogin from B to C using "Y," and from C to Dusing "X," you
can get to c by typing "XXCONTROL-Z".

The second form of this command requires some preparation before it will
work. The system administrator must pave the way by creating a directory,
usually /usr /hosts and executing the following command:

ln /usr /bin/rernsh rhost

which links the rernsh binaries to rhost. This works for both rlogin and
rernsh, since the rernsh command without a command argument is the
equivalent of the rlogin command.

Note: You must then include /usr /hosts (or the directory
chosen by your system administrator) in the search path specified in
your . login or . profile in order for the second form of this
command to work.

LIMIT A TIO NS
More terminal characteristics should be propagated.

November 1991 2

rlogin(IN)

FILES
/usr/bin/rlogin

Executable file
/usr/hosts/*

Directory for rhost version of the command

SEE ALSO
remsh(lN), st ty(l)

A/UX Networking Essentials

3

rlogin(IN)

November I99I

rm(l) rm(l)

NAME
rm, rmdi r - remove files or directories

SYNOPSIS
rm [-f] [-i] [-r] file ...

rmdir dir ...

ARGUMENTS
dir Specifies the directory to be removed.

- f Forces the execution of the command, no questions asked. This
option can be used when the standard input is not a terminal. Also,
this option prevents error messages from being printed.

file Specifies the file to be removed.

- i Asks (interactively) whether to delete each file, and, under -r,
whether to examine each directory.

- r Causes an error comment to be printed unless this option is given, if
the designated file is a directory. In that case, rm recursively deletes
the entire contents of the specified directory, and the directory itself.

DESCRIPTION
rm removes the entries for one or more files from a directory. If an entry
was the last link to the file, the file is destroyed. Removal of a file requires
write permission in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input is a terminal, its
permissions are printed and a line is read from the standard input. If that
line begins with y, the file is deleted, otherwise the file remains.

rmdir removes entries for the named directories, which must be empty.

EXAMPLES
The command:

rm - r f dirname

will remove the entire contents of the named directory and all
subdirectories, and finally the directory itself, with no questions asked.

STATUS MESSAGES AND VALUES
Generally self-explanatory. It is forbidden to remove the file .. merely to
avoid the antisocial consequences of inadvertently doing something like:

rm -r .*

November 1991

rm(1)

FILES
/bin/rm

Executable file
/bin/rmdir

Executable file

SEE ALSO
mkdir(l)

unl ink(2) in A/UX Programmer's Reference

2

rm(1)

November 1991

rmail(l)

NAME
rmail -handles remote mail received via UUCP

SYNOPSIS
rma i 1 [- Ddomain-name] [-T] login-name ...

ARGUMENTS
login-name

rmail(l)

Specifies the login name of the user to whom the mail message is to be
delivered.

-T Enables debugging.

- Ddomain-name
Sets the domain name. The default domain name is . UUCP.

DESCRIPTION
rmai 1 is invoked by uuxqt to process mail messages received by the
UUCP system. The rmai 1 command collapses lines that begin with
From, as generated by mailers, such as mail and mailx, into a single
line of the form return-path ! sender, and then passes the processed
message to send.mail. The rmail command is designed explicitly for
use with UUCP and send.ma i 1 and fails if it cannot find a line that begins
with From in the mail message.

NOTES
Mail received from a remote computer should have at least one line that
begins with From. For example, if a mail message originates from
venus ! root and is sent to sat urn! john via a computer named
j upi ter, the final mail message will look like this:

From j upi ter ! uucp [optional information]
From venus ! root [optional information]
... text of message ...

As the mail message passes from computer to computer, another From line
is added at the top until the message reaches its destination. Each computer
may append optional information to the From line that it adds. The
rmai 1 command uses the From lines to construct a UUCP path to the user
who sent the mail message. In the above example, the path would be

jupiter!venus!root

November 1991

rmail(l) rmail(l)

When rmai 1 calls sendmai 1 to deliver a message, it does so with these
arguments:

-oee
Causes sendmail to mail back error messages and to exit with 0.

-oi
Causes s endma i 1 to ignore periods (.) in the mail message.

- oMssystem-name . domain-name
Sets the $ s macro in the line that begins with From. For the example
given above, the value of system-name . domain-name would be
jupiter.UUCP

- oMrdomain-name
Sets the $r macro in the domain string. For the example given above,
the value of domain-name would be UUCP.

- f return-path ! sender
Specifies the return path of the user who sent the mail. For the
example given above, the value of return-path would be
j upi ter ! venus and the value of sender would be root.

login-name
Specifies the user to whom the mail is to be delivered. For the
example given above, the value of login-name would be john.

In addition, rmai 1 invokes sendmai 1 with the -odq option (queue the
mail) if the load average is over 3.0. Otherwise, rmail invokes
sendmail with the -odi option (deliver the mail immediately). The
rmail command runs setgid on the group sys so it can read the
I dev I kmem file to determine the load average.

FILES

2

/bin/rmail
Executable file

/usr/lib/sendmail
Executable file invoked by rmai 1 to deliver the mail

November 1991

rrnail(l) rrnail(l)

SEE ALSO
rnail(l), uucp(lC), sendmail(lM)

Chapter 9, "Setting Up Network Mail" inA/UX Network System
Administration

November 1991 3

rmdel(l)

NAME
rmde 1 - removes a delta from an SCCS file

SYNOPSIS
rmdel -r SID [file] ...

ARGUMENTS
file Specifies the SCCS file that will be affected.

- r Removes the delta from the specified SCCS file.

SID Specifies the SCCS Identification String (SID).

DESCRIPTION

rmdel(l)

rmdel removes the delta specified by the SCCS Identification string (SID)
from each named SCCS file. The delta to be removed must be the newest
(most recent) delta in its branch in the delta chain of each named SCCS
file. In addition, the SID specified must not be that of a version being
edited for the purpose of making a delta (i.e., if a p- file (see get(l))
exists for the named SCCS file, the SID specified must not appear in any
entry of the p-file).

If a directory is named, rmde 1 behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the pathname does not begin with s .) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
"SCCS Reference" in A/UX Programming Languages and Tools, Volume
2. Simply stated, they are either: (1) if you make a delta you may remove
it; or (2) if you own the file and directory, you may remove a delta.

EXAMPLES
The command:

rmdel -rl.2 s.testl.c

would remove the latest delta version (i.e., 1.2) for s. test 1. c.

STATUS MESSAGES AND VALUES
Use help for explanations.

FILES
/usr/bin/rmdel

Executable file
x.file

Executable file
z.file

Executable file

November 1991

rrndel (1) rrndel (1)

SEE ALSO
adrnin(l), cdc(l), cornb(l), del ta(l), get(l), help(l), prs(l),
sact(l), sccsdiff(l), unget(l), val(l), what(l)

sec sf ile(4) inAIUX Programmer's Reference

"SCCS Reference" in AJUX Programming Lcmguages and Tools, Volume
2

November 1991 2

rrndir(l) rrndir(l)

See rrn(l)

1 November 1991

roffbib(l) roffbib(l)

NAME
rof fbib- prints out all records in a bibliographic database

SYNOPSIS
roffbib [-e] [-h] [-m name] [-nstart-no] [-opage-range]
-rletter[integer] [-sN] [-Ttty-type] [-x] [file] ...

ARGUMENTS
- e Produces equally spaced words in adjusted lines, using the full

resolution of the particular terminal.

file Specifies the file into which the output from the rof fbib command
is placed.

- h Uses output tabs during horizontal spacing to speed output and reduce
output character count. Tab settings are assumed to be every 8
nominal character widths.

-mname
Prepends to the inputfiles to the /usr I lib/tmac/tmac. name
macro file.

-nstart-no
Numbers the first generated page at start-no.

- opage-range
Prints only pages whose page numbers appear in the page-range of
numbers and ranges, separated by commas. A range x-y means pages
x through y; a range given by -y means from the beginning to page y;
a range given by x- means from page x to the end.

- rletter[integer]
Set the number register referenced by letter to integer.

- s [pages-per-pause]
Specifies the number of pages to print between pauses, causing
nroff to halt to allow paperreceiptofalinefeedor
newline (newlines do not work in pipelines, e.g., with mm). The
default is 1. This option does not work if the output of nroff is
piped through col. When nroff (otrof f) halts between pages, an
ASCII BEL is sent to the terminal.

-Ttty-type
Prepare output for specified terminal. Known tty-types are

2 631 Hewlett-Packard 2631 printer in regular mode

2631-c

2631-e

November 1991

Hewlett-Packard 2631 printer in compressed mode

Hewlett-Packard 2631 printer in expanded mode

rof fbib(l) roffbib(l)

300

300-12

300s

300s-12

37

DASI-300 printer

DASI-300 terminal set to 12-pitch (12 characters per
inch)

DASI-300s printer (300s is a synonym)

DASl-300s terminal set to 12-pitch (12 characters per
inch) (300s-12 is a synonym)

TELETYPE Model 37 terminal (default)

-x Suppresses the printing of these abstracts.

DESCRIPTION
ro f fbib prints out all records in a bibliographic database, in bibliography
format rather than as footnotes or endnotes. Generally it is used in
conjunction with sortbib:

sortbib database I rof fbib

The roffbib program accepts most of the options understood by nroff;
most importantly, -T which specifies terminal type.

If abstracts or comments are entered following the %X field key, rof fbib
will format them into paragraphs for an annotated bibliography. Several
%X fields may be given if several annotation paragraphs are desired.

Four command-line registers control formatting style of the bibliography,
much like the number registers of ms. The command-line argument -rNl
will number the references starting at one (1). The flag -rV2 will double
space the bibliography, while - rVl will double space references but single
space annotation paragraphs. The line length can be changed from the
default 6.5 inches to 6 inches with the - rL 6 i argument, and the page
offset can be set from the default of 0 to one inch by specifying - rO 1 i
(capital 0, not zero).

LIMITATIONS
Users have to rewrite macros to create customized formats.

FILES
/usr/ucb/roffbib

Executable file
/usr/lib/tmac/tmac.bib

Macro file

SEE ALSO
addbib(l), indxbib(l), lookbib(l), nrof f(l), refer(l),
sortbib(l)

2 November 1991

rpcgen(l) rpcgen(l)

NAME
rpcgen - generates C source code from a remote procedure call (RPC)
source file

SYNOPSIS
rpcgen input-file

rpcgen -c [-o output-file] [input-file]

rpcgen -h [-o output-file] [input-file]

rpcgen -1 [-o output-file] [input-file]

rpcgen -m [-o output-file] [input-file]

rpcgen -s transport [-o output-file] [input-file]

ARGUMENTS
-c Causes rpcgen to produce only external data representation (XDR)

routines.

- h Causes rpcgen to produce only C data definitions. The output is
suitable for use as a C include file.

input-file
Specifies the name of a file containing RPC source code. The filename
must have a suffix of . x. The rpcgen command uses the value of
input-file to form the filenames of the output files. For example, if the
value of input-file is proto. x, rpcgen produces a C include file in
proto. h, XDR routines in proto_xdr. c, server-side stubs in
proto_svc. c, and client-side stubs in proto_clnt. c.

-1 Causes rpcgen to produce only client-side stubs.

-m Causes rpcgen to produce only server-side stubs, but not to generate
a routine called main. This option is useful when you are writing
callback routines and when you need to write your own main routine
to do initialization.

-o output-file
Specifies the name of the output file. If you do not use this option,
rpcgen writes to the standard output. You can use this option only
when you also use a -c, -h, -1, -m, or -s option.

- s transport
Causes rpcgen to produce server-side stubs, using the transport
specified by transport. The value of transport can be udp or tcp.
You can use this option more than once to produce an output that
supports multiple transports.

November 1991

rpcgen(l) rpcgen(l)

DESCRIPTION
rpcgen generates C code that implements a RPC protocol. The input to
rpcgen is written in the RPC language, which is similar to the C
language. See A/UX Network Programming Applications for information
about the syntax of the RPC language.

The rpcgen program is most commonly run with just an input-file
argument. In this case, rpcgen generates four output files. There is one
output file for each of these output types: C data definitions, XDR routines,
server-side stubs, and client-side stubs. You can use an option to generate
only one of the output types.

The rpcgen command automatically runs cpp on all input files before
they are interpreted, so all legal cpp directives are legal within an rpcgen
input file. For each type of output file, rpcgen defines one of these
special cpp symbols that you can use in your source code:

RPC_CLNT
This symbol is defined when you are producting client-side stubs.

RPC_HDR
This symbol is defined when you are producing a C include file.

RPC_SVC
This symbol is defined when you are producing server-side stubs.

RPC_XDR
This symbol is defined when you are producing XDR routines.

The rpcgen command passes any line beginning with a percent sign(%)
into the output file without interpreting it.

You can customize some of your XDR routines by leaving those data types
undefined. For every data type that is undefined, rpcgen assumes that
there exists a routine with the name xdr _ prepended to the name of the
undefined type.

LIMITATIONS
Nesting is not supported. To achieve the same effect, you can declare
structures at the top level and use their names inside other structures.

Name clashes can occur when you are using program definitions because
the apparent scoping does not really apply. You can avoid most clashes by
giving unique names for programs, versions, procedures, and types.

SEE ALSO
cpp(l)

2

''Remote Procedure Call (RPC) Programming Guide'' in A/UX Network
Applications Programming (which is available from APDA)

November 1991

rsh(l) rsh(l)

See sh(l)

November 1991

rup(lN) rup(lN)

NAME
rup - displays the status of machines on the local network (RPC version)

SYNOPSIS
rup [-h] [-1] [-t] [host] ...

ARGUMENTS
- h Sorts the display alphabetically by host name.

-1 Sorts the display by load average.

- t Sorts the display by up time.

host Specifies the host whose status is to be displayed.

DESCRIPTION
rup gives a status similar to upt irne for remote machines; it broadcasts
on the local network, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this
order can be changed by specifying one of the options.

When host arguments are given, rather than broadcasting, rup will only
query the list of specified hosts.

A remote host will only respond if it is running the rs tat d daemon,
which is normally started up from inetd(lM).

LIMITATIONS
Broadcasting does not work through gateways.

FILES
/usr/bin/rup

Executable file
/etc/servers

File containing list of hosts

SEE ALSO
rupt irne(lN)

inetd(lM), rstatd(lM) inA/UX System Administrator's Reference

November 1991

ruptime(IN) rupt ime (lN)

NAME
rupt ime - displays the host status of local machines

SYNOPSIS
ruptime [-a] [-1] [-t] [-u]

ARGUMENTS
- a Displays users who are idle an hour or more on the system in addition

to the normal display.

-1 Sorts the listing by load average.

- t Sorts the listing by uptime.

-u Sorts the listing by number of users.

DESCRIPTION
rupt ime gives a status line like uptime for each machine on some local
network; these are formed from packets broadcast by each host on the
network once a minute.

Machines foc which no status report has been received for 5 minutes are
shown as being down.

Normally, the listing is sorted by host name.

FILES
/usr/bin/ruptime

Executable file
/usr/spool/rwho/whod.*

File c~taining system information

SEE ALSO
rwho(lN), uptime(l).

November 1991

rusers(IN) rusers(IN)

NAME
rusers - produces a login list for local machines (RPC version)

SYNOPSIS
rusers [-a] [-h] [-i] [-1] [-u] [host] ...

ARGUMENTS
- a Gives a report for a machine even if no users are logged on.

- h Sorts alphabetically by host name.

host Queries only the list of specified hosts, rather than broadcasting to the
entire network.

-i Sorts by idle time.

-1 Gives a longer listing in the style of who(l). In addition, if a user
hasn't typed to the system for a minute or more, the idle time is
reported.

-u Sorts by number of users.

DESCRIPTION
The rusers command produces output similar to users(l) and who(l),
but for remote machines. It broadcasts on the local network and prints the
responses it receives. Normally, the listing is in the order that responses
are received, but this order can be changed by specifying one of the options
listed later.

The default is to print out a listing in the style of users(l) with one line
per machine.

A remote host will respond only if it is running the rusersd daemon,
which is normally started up from inetd.

FILES
/usr/etc/rusers

Executable file
/etc/servers

File containing list of servers

SEE ALSO
rwho(lN), inetd(lM), rusersd(lM), servers(4).

November I99I

rwho(lN) rwho(lN)

NAME
rwho - displays a list of the active users from all of the systems on the
local network

SYNOPSIS
rwho [-a]

ARGUMENTS
- a Causes rwho to display information about the users who have not

typed on the system for an hour or more

DESCRIPTION
The rwho command produces output similar to who, but for all machines
on the local network. If no report has been received from a machine for 5
minutes then rwho assumes the machine is down, and does not report
users last known to be logged into that machine.

If a user hasn't typed to the system for a minute or more, then rwho
reports this idle time. If a user hasn't typed to the system for an hour or
more, then the user will be omitted from the output of rwho unless the - a
option is given.

LIMIT A TIO NS
This is unwieldy when the number of machines on the local net is large.

FILES
/usr/bin/rwho

Executable file
/usr/spool/rwho/whod.*

File containing system information

SEE ALSO
rupt irne(lN)

rwhod(lM) in A/UX System Administrator's Reference

November 1991

sact (1) sact (1)

NAME
sact - displays who has checked a Source Code Control System (SCCS)
file out for editing

SYNOPSIS
sact [-] file ...

ARGUMENTS
Reads the standard input with each line being taken as the name of an
SCCS file to be processed.

file Specifies the SCCS file that is checked out.

DESCRIPTION
sact informs you of any impending deltas to a named SCCS file. This
situation occurs when get with the -e option has been previously
executed without a subsequent execution of delta. If a directory is
named on the command line, sact behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored.

The output for each named file consists of five fields separated by spaces:

Field 1 Specifies the SID of a delta that currently exists in the
SCCS file to which changes will be made to make the
new delta.

Field 2

Field 3

Field 4

Field 5

EXAMPLES

Specifies the SID for the new delta to be created.

Contains the login name of the user who will make the
delta (that is, the user who executed a get for editing).

Contains the date that get -e was executed.

Contains the time that get -e was executed.

If the user has issued a get -e command, but not a delta command, to
merge the new changes, issuing

sact s.testl.c

would show

1.2 1.3 virginia 82/11/10 16:10:35

indicating that a new version numbered 1.3 is in the process of being made
from version numbered 1.2 by user virginia. The get -e command
for the file was issued on 82111110 at 16: 10:35.

November 1991

sact (1) sact (1)

STATUS MESSAGES AND VALUES
Use help for explanations.

FILES
/usr/bin/sact

Executable file

SEE ALSO
admin(l), cdc(l), comb(l), del ta(l), get(l), help(l), prs(l),
rmdel(l), sccs(l), sccsdiff(l), unget(l), val(l), what(l)

sccsfile(4) inAIUX Programmer's Reference

''SCCS Reference'' in AIUX Programming umguages and Tools, Volume
2

November 1991 2

sag(lG) sag(lG)

NAME
sag - generates a system activity graph

SYNOPSIS
sag [-e time] [-f file] [-i sec] [-s time] [-T term] [-x spec]
[-y spec]

ARGUMENTS

1

-e time
Selects data up to time in the form hh[:mm], where hh is the time in
hours (military time) and mm is the time in minutes. The default is
18: 00.

- f file
Specifies the file used as the data source for sar. The default is the
current daily data file /usr I ad.ml sa I sadd.

The file argument specifies a string that will match a column header in
the sar report, with an optional device name in square brackets, e.g.,
r+w Is [dsk-1 J, or an integer value. op is+, -, *,or I surrounded
by blanks. Up to five names may be specified. Parentheses are not
recognized. Contrary to custom, + and - have precedence over * and
I . Evaluation is left to right. Thus

A I A + B * 100

is evaluated as

(A/(A+B))*lOO

and

A + B I C + D

is

(A+B) I (C+D)

-i sec
Selects data at intervals as close as possible to sec seconds.

-s time
Selects data later than time. The default is 0 8 : 0 0.

-T term
Produces output suitable for terminal term. See tplot(lG) for
known terminals. If term is vpr, output is processed by vpr -p and
queued to a Versatec printer. Default for term is $TERM.

-x spec
Specifies the x axis with spec in the form:

name [op name J ••• [lo hi

November 1991

sag(lG)

-y spec
Specifies the y axis with spec in the form:

name [op name J ••• [lo hi

The -y default is:

-y ''%usr 0 100; %usr + %sys 0 100; \
%usr + %sys + %wio 0 100''

DESCRIPTION

sag(lG)

sag graphically displays the system activity data stored in a binary data
file by a previous sar run. Any of the sar data items may be plotted
singly, or in combination; as cross plots, or versus time. Simple arithmetic
combinations of data may be specified. sag invokes sar and finds the
desired data by string-matching the data column header (run sar to see
what's available). lo and hi are optional numeric scale limits. If
unspecified, they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to
5 spec's separated by ; may be given for -y. Enclose the -x and -y
arguments in 11 11 if blanks or \RETURN are included.

EXAMPLES
Entering:

sag

will show today's CPU utilization.

FILES
/usr/bin/sag

Executable file
/usr/a&n/sa/sadd

Daily data file for day dd

SEE ALSO
sar (1), tplot (lG)

November 1991 2

sar(l) sar(l)

NAME
sar - reports system activity

SYNOPSIS
sar [-a] [-A] [-b] [-c] [-m] [-q] [-u] [-v] [-w] [-y] [-ofile] t [n]

sar [-a] [-A] [-b] [-c] [-etime] [-£.file] [-isec] [-m] [-q] [-stime]
[-u] [-v] [-w] [-y]

ARGUMENTS
- a Reports use of file access system routines:

iget/s,namei/s,dirblk/s.

-A Reports all data. This option is equivalent to the -u, -q, -b, -w, -c,
-a, -y, -v, and -m options.

- b Reports buffer activity:
bread/ s, bwr it Is: transfers per second of data between system
buffers and disk or other block devices.
lread/ s, lwri t Is: accesses of system buffers.
%rcache, %wcache: cache hit ratios, for example,
1-bread/ lread.
pread/ s, pwri t Is: transfers via raw (physical) device
mechanism.

- c Reports system calls.
seal 1 Is: system calls of all types.
sread/s, swrit/s, fork/s, exec/s: specific system calls.
rchar Is, wchar Is: characters transferred by read and write
system calls.

-etime
Specifies the ending time of the report. The format for time is
hh[:mm[:ss]].

-£.file
Extracts data from the given previously-recorded.file.

-isec
Selects records at sec second intervals. If this option is not specified,
all intervals found in the data file are reported.

-m Reports message and semaphore activities.
msg Is, sema/ s: primitives per second.

n Specifies n intervals. The default value for this option is 1.

-a.file
Saves the samples in.file in binary format.

-q Reports average queue length while occupied and percentage of time
occupied:

November 1991

sar(l) sar(l)

runq-sz, %runocc: run queue of processes in memory and
runnable.
swpq-sz, %swpocc-: swap queue of processes swapped out but
ready to run.

-stime
Specifies the starting time of the report. The format for time is
hh[:mm[:ss]].

Specifies t seconds.

-u Reports CPU utilization (the default):
%usr, %sys, %wio, %idle: portion of time running in user mode,
running in system mode, idle with some process waiting for block 1/0,
and otherwise idle.

-v Reports status of process, inode, file, file record lock and file record
header tables.
proc-sz, inod-sz, f ile-sz, lock-sz, fhdr-sz: entries/size
for each table, evaluated once at sampling point;
proc-ov, inod-ov, f ile-ov: overflows occurring between
sampling points.

-w Reports system swapping and switching activity:
swpin/s,swpot/s,bswin/s,bswot/s: bswin/s,bswot/s:
number of transfers and number of 512 byte units transferred for
swapins (including initial loading of some programs) and swapouts;
pswch/ s: process switches.

-y Reports TTY device activity:
rawch/ s, canch/ s, out ch/ s: input character rate, input
character rate processed by canon, and output character rate.
rcvin/ s, xmt in/ s, mdmin/ s: receive, transmit and modem
interrupt rates.

DESCRIPTION
sar, in the first instance, samples cumulative activity counters in the
operating system at n intervals of t seconds.

In the second instance, with no sampling interval specified, sar extracts
data from a previously-recorded.file, either the one specified by the - f
option or, by default, the standard system activity daily data file
/usr I adm/ sa/ sadd for the current day dd.

EXAMPLES
The command:

sar

shows today's CPU activity so far. The command:

November 1991 2

sar(l)

sar -o temp 60 10

watches CPU activity evolve for 10 minutes and saves data.

FILES
/usr/bin/sar

Executable file
/usr I ad.ml sa/ saday-of-month

sar(l)

Daily data file, where day-of-month are digits representing the day of
the month

SEE ALSO
sag(IG)

sadc(lM) in AIUX System Administrator's Reference

''System Activity Package'' in AIUX Local System Administration

3 November 1991

sccs(l) sccs(l)

NAME
s cc s - performs SCCS subsystem commands

SYNOPSIS
sccs command [flags] [args] [-dpath] [-ppath] [-r]

ARGUMENTS
args

-dpath

flags

-ppath

Specifies the arguments to command.

Gives a root directory, path, for the SCCS files. The default is
the current directory.

Specifies the data to be interpreted by the s cc s program, or
the data to be passed to the actual SCCS program. Any flag
options to be interpreted by the s cc s program must appear
before command; any flags to be passed to the actual SCCS
program must come after command. These flags are specific to
the command and are discussed in the documentation for that
command.

Defines the pathname of the directory, path, in which the
SCCS files will be found; SCCS is the default. This option
differs from the - d option in that the - d option is prefixed to
the entire pathname and the -p argument is inserted before the
final component of the pathname. For example:

SCCS -d /x -py get a/b

will convert to

get /x/a/y/s.b

The intent here is to create aliases such as:

alias syssccs sccs -d /usr/src

which will be used as:

syssccs get crnd/who.c

Also, if the environment variable PROJECT is set, its value is
used to determine the - d option. If it begins with a slash, it is
taken directly; otherwise, the home directory of a user of that
name is examined for a subdirectory src or source. If such
a directory is found, it is used.

- r Runs s cc s as the real user rather than as whatever effective
user sccs has set user ID to.

DESCRIPTION
s cc s is a front end to the SCCS programs that helps them mesh more
cleanly with the rest of A/UX. It also includes the capability to run set­
user-id to another user to provide additional protection.

November 1991

sccs(l) sccs(l)

Basically, sccs runs the given command with the specifiedflags and args.
Each argument is normally modified to be prefixed with SCCS Is. Thus,
you may supply get, delta, or info in place of command.

Besides the usual SCCS commands, several pseudo-commands can be
issued, which are:

Ce di t Equivalent to get - e.

delget Perform a delta on the named files and then get new versions.
The new versions will have ID keywords expanded, and will
not be editable. The -m, -p, -r, -s, , and -y options will be
passed to delta, and the -b, -c, -e, -i, -k, -1, -s, and
-x options will be passed to get.

deledi t Equivalent to delget, except that the get phase includes the
-e option. This option is useful for making a "checkpoint" of
your current editing phase. The same options will be passed to
delta as described above, and all the options listed for get
above except - eand- k are passed to edit.

create Create an SCCS file, taking the initial contents from the file of
the same name. Any options to admin are accepted. If the
creation is successful, the files are renamed with a comma on
the front. These should be removed when you are convinced
that the SCCS files have been created successfully.

fix Must be followed by a - r option. This command essentially
removes the named delta, but leaves you with a copy of the
delta with the changes that were in it. It is useful for fixing
small compiler bugs, etc. Since it doesn't leave audit trails, it
should be used carefully.

c 1 e an This routine removes everything from the current directory
that can be recreated from SCCS files. It will not remove any
files being edited. If the -b option is given, branches are
ignored in the determination of whether they are being edited;
this is dangerous if you are keeping the branches in the same
directory.

unedi t This is the opposite of an edit or a get -e. It should be
used with extreme caution, since any changes you made since
the get will be irretrievably lost.

info Give a listing of all files being edited. If the -b option is
given, branches (i.e., SID's with two or fewer components) are
ignored. If the -u option is given (with an optional argument)
then only files being edited by you (or the named user) are
listed.

2 November 1991

sccs(l) sccs(l)

check Like info, except that nothing is printed if nothing is being
edited, and a nonzero exit status is returned if anything is being
edited. The intent is to have this included in an install
entry in a makefile to ensure that everything is included into
the SCCS file before a version is installed.

tell

diffs

Give a newline-separated list of the files being edited on the
standard output. Takes the-band -u options like info and
check.

Give a di ff listing between the current version of the
program(s) you have out for editing and the versions in SCCS
format. The - r, - c, - i, - x, and - t options are passed to
get; the -1, -s, -e, -f, -h, and -b options are passed to
di ff. The -c option is passed to di ff as -c.

prs This command prints out verbose information about the named
files.

Certain commands (such as ad.min) cannot be run set user id by all
users, since this would allow anyone to change the authorizations. These
commands are always run as the real user.

EXAMPLES
To get a file for editing, edit it, and produce a new delta:

secs get -e file.c
ex file.c
secs delta file.c

To get a file from another directory:

secs -p/usr/src/sccs/s. get cc.c

or

secs get /usr/src/sccs/s.cc.c

To make a delta of a large number of files in the current directory:

SCCS delta *.c

To get a list of files being edited that are not on branches:

SCCS info -b

To delta everything being edited by you:

sccs delta 'secs tell -u'

In a makefile, to get source files from an SCCS file if it does not already
exist:

SRCS = <list of source files>
$ (SRCS):

November 1991 3

sccs(l) sccs(l)

secs get $(REL) $@

LIMIT A TIO NS
It should be able to take directory arguments on pseudo-commands like the
SCCS commands do.

FILES
/usr/ucb/sccs

Executable file

SEE ALSO
admin(l), cdc(l), comb(l), delta(l), get(l), help(l), prs(l),
rmdel(l), sact(l), sccsdi ff (l), unget(l), val(l), wha t(l)

4

sec sf ile(4) inA/UX Programmer's Reference

"SCCS Reference" in A/UX Programming Languages and Tools, Volume
2

November 1991

sccsdiff(l) sccsdiff(l)

NAME
sccsdi ff - compares two versions of an SCCS file

SYNOPSIS
sccsdiff -rdeltal -rdelta2 [-p] [-sn] file ...

ARGUMENTS
file Specifies the SCCS file to be compared.

-p Pipes output for each file through pr.

- rdeltal Specifies the earlier delta version of an SCCS file This file is to
be compared with delta2.

- rdelta2 Specifies the later delta version of an SCCS file This file is to
be compared with delta2.

- sn Specifies the file segment size that is passed to di ff. This is
useful when di ff fails due to a high system load.

DESCRIPTION
s cc s di ff compares two versions of an SCCS file and generates the
differences between the two versions. Any number of SCCS files may be
specified, but arguments apply to all files. s cc s di ff first outputs lines
resembling the ed(l) commands to convert file 1 into file2. It then outputs
the actual lines that differ.

EXAMPLES
To show the differences between version 1.1 and version 1.2 of the file,
testl. center:

sccsdiff -rl.1 -rl.2 s.testl.c

STATUS MESSAGES AND VALUES
fik: No differences

If the two versions are the same.

Use help for explanations.

FILES
/usr/bin/sccsdiff

Executable file
/trnp/get?????

Temporary file

SEE ALSO
adrnin(l), bdiff(l), cdc(l), cornb(l), delta(l), diff(l), get(l),
help(l), pr(l), sccs(l)

"SCCS Reference" in AIUX Programming Languages and Tools, Volume
2

November 1991

script(l) script(1)

NAME
script - starts a shell that records terminal input and output

SYNOPSIS
script (-a] [file]

ARGUMENTS
- a Writes or appends the typescript to file.

file Specifies the file that is to be written to. If a filename is not given, the
typescript is saved in the file typescript.

DESCRIPTION
script makes a typescript of everything printed on your terminal. The
typescript is written to file, or appended to file if the - a option is given. It
can be sent to the line printer later with the lp or lpr commands.

Note that script uses both standard input and standard output and that
neither may be redirected via a pipe, < or >.

The script ends when the forked shell exits.

This program is useful when using a CRT and a hard-copy record of the
dialog is desired, as for a student handing in a program that was developed
on a crt when hard-copy terminals are in short supply.

LIMIT A TIO NS
script places everything in the log file, meaning everything typed or
appearing on the screen, including control characters. If vi is invoked,
whatever appeared on-screen (including invisible characters) will be placed
in the log file. Control characters useful for screen output will appear as
garbage and will be illegible in a script. Thus, it is a good idea not to use
vi while using script.

FILES
/usr/bin/script

Executable file

SEE ALSO
lpr(l)

November 1991

sdb(l) sdb(l)

NAME
s db - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [obj.file [corfile [directory]]]

ARGUMENTS
corfile

Specifies a core image file produced after executing obj.file; the default
for corfile is core. The core file need not be present. A - in place of
corfile forces sdb to ignore any core image file.

directory
Specifies the directory into which the source files used in constructing
obj.file must be placed.

obj.file
Specifies an executable program file which has been compiled with
the - g (debug) option. If the file has not been compiled with the -g
option, or if it is not an executable file, the symbolic capabilities of
s db are limited, but the file can still be examined and the program
debugged. The default for obj.file is a . out.

-w Permits overwriting locations in obj.file.

-w Disables the checking feature and its accompanying warnings that are
produced when an obj.file is produced.

DESCRIPTION
sdb is a symbolic debugger which can be used with C and Fortran
programs. It may be used to examine their object files and core files and to
provide a controlled environment for their execution.

It is useful to know that at any time there is a "current line" and "current
file.'' If cor.file exists, then they are initially set to the line and file
containing the source statement at which the process terminated.
Otherwise, they are set to the first line in main(). The current line and file
may be changed with the source file examination commands.

By default, warnings are provided if the source files used in producing
obj.file cannot be found, or are newer than obj.file. This checking feature
and the accompanying warnings may be disabled by the use of the -w
option.

Names of variables are written just as they are in C or f 7 7 (1). Variables
local to a procedure may be accessed using the form procedure : variable .
If no procedure name is given, the procedure containing the current line is
used by default.

November 1991

sdb(l) sdb(l)

2

It is also possible to refer to structure members as variable . member,
pointers to structure members as variable->member, and array elements
as variable[number]. Pointers may be dereferenced by using the form
pointer[0] . Combinations of these forms may also be used. f 7 7 common
variables may be referenced by using the name of the common block
instead of the structure name. Blank common variables may be named by
the form . variable . A number may be used in place of a structure
variable name, in which case the number is viewed as the address of the
structure, and the template used for the structure is that of the last structure
referenced by s db. An unqualified structure variable may also be used
with various commands. Generally, sdb interprets a structure as a set of
variables; thus, it displays the values of all the elements of a structure when
it is requested to display a structure. An exception to this interpretation
occurs when displaying variable addresses. An entire structure does have
an address, and it is this value sdb displays, not the addresses of individual
elements.

Elements of a multidimensional array may be referenced as

variable[number] [number] ...

or as

variable [number, number, ...]

In place of number, the form number; number may be used to indicate a
range of values, * may be used to indicate all legitimate values for that
subscript, or subscripts may be omitted entirely if they are the last
subscripts and the full range of values is desired. As with structures, s db
displays all the values of an array or of the section of an array if trailing
subscripts are omitted. It displays only the address of the array itself or of
the section specified by the user if subscripts are omitted. A
multidimensional parameter in an f 7 7 program cannot be displayed as an
array, but it is actually a pointer, whose value is the location of the array.
The array itself can be accessed symbolically from the calling function.

A particular instance of a variable on the stack may be referenced by using
the form procedure : variable, number. All the variations mentioned in
naming variables may be used. number is the occurrence of the specified
procedure on the stack, counting the top, or most current, as the first. If no
procedure is specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input
in decimal, octal, or hexadecimal.

November 1991

sdb(1) sdb(l)

Line numbers in the source program are referred to as.file-name: number or
procedure: number. In either case the number is relative to the beginning
of the file. If no procedure or filename is given, the current file is used by
default. If no number is given, the first line of the named procedure or file
is used.

While a process is running under sdb all addresses refer to the executing
program; otherwise they refer to obj.file or corfile.

Addresses
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two
triples (bl, el,fl) and (b2, e2, j2). The file address corresponding to a
written address is calculated as follows:

bladdress<el

file address=address+fl-bl

otherwise

b2address<e2

file address=address+j2-b2,

otherwise, the requested address is not legal. In some cases (for example,
for programs with separated I and D space) the two segments for a file may
overlap.

The initial setting of both mappings is suitable for normal a . out and
core files. If either file is not of the kind expected then, for that file, bl is
set to 0, e 1 is set to the maximum file size, and f 1 is set to O; in this way the
whole file can be examined with no address translation.

In order for s db to be used on large files, all appropriate values are kept as
signed 32-bit integers.

Commands
The commands for examining data in the program are:

t Prints a stack trace of the terminated or halted program.

T Prints the top line of the stack trace.

variable I elm
Prints the value of variable according to length l and format m. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers
are:

b one byte

November 1991 3

sdb(l) sdb(l)

4

h two bytes (half word)

1 four bytes (long word)

Legal values for m are:

c character

d decimal

u decimal, unsigned

o octal

x hexadecimal

f 32-bit single precision floating point

g 64-bit double precision floating point

s Assumes variable is a string pointer and print characters starting
at the address pointed to by the variable.

a Prints characters starting at the variable's address. This format
may not be used with register variables.

p pointer to procedure

i Disassembles machine-language instruction with addresses
printed numerically and symbolically.

I Disassembles machine-language instruction with addresses
printed numerically only.

The length specifiers are only effective with the formats c, d, u, o and x.
Any of the specifiers, c, l, and m, may be omitted. If all are omitted, s db
chooses a length and a format suitable for the variable's type, as declared
in the program. If m is specified, then this format is used for displaying the
variable. A length specifier determines the output length of the value to be
displayed, sometimes resulting in truncation. A count specifier c tells sdb
to display that many units of memory' beginning at the address of variable.
The number of bytes in one such unit of memory is determined by the
length specifier l, or, if no length is given, by the size associated with the
variable. If a count specifier is used for the s or a command, then that
many characters are printed. Otherwise successive characters are printed
until either a null byte is reached or 128 characters are printed. The last
variable may be redisplayed with the command . I.

The sh(l) metacharacters * and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, variables local to the current procedure and
global variables are matched; if a procedure name is specified, only
variables local to that procedure are matched. To match only global
variables, the form : pattern is used.

November 1991

sdb(l) sdb(1)

linenumber? lm
variable:? lm

Prints the value at the address from a . out or I space given by
linenumber or variable (procedure name), according to the format lm.
The default format is 'i'.

variable=lm
linenumber=lm
number=lm

Prints the address of variable or linenumber, or the value of number,
in the format specified by lm. If no format is given, then lx is used.
The last variant of this command provides a convenient way to
convert between decimal, octal and hexadecimal.

variable ! value
Sets variable to the given value. The value may be a number, a
character constant or a variable. The value must be well defined;
expressions that produce more than one value, such as structures, are
not allowed. Character constants are denoted 'character. Numbers
are viewed as integers unless a decimal point or exponent is used. In
this case, they are treated as having the type double. Registers are
viewed as integers. The variable may be an expression that indicates
more than one variable, such as an array or structure name. If the
address of a variable is given, it is regarded as the address of a
variable of type int. C conventions are used in any type conversions
necessary to perform the indicated assignment.

x Prints the machine registers and the current machine-language
instruction.

X Prints the current machine-language instruction.

The commands for examining source files are:

e procedure
e file-name
e directory/
e directory file-name

The first two forms set the current file to the file containing procedure
or to file-name. The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory. The
default is the current working directory. The latter two forms change
the value of directory. If no procedure, filename, or directory is
given, the current procedure name and filename are reported.

I regular expression I
Searches forward from the current line for a line containing a string
matching regular expression as in ed(l). The trailing I may be

November 1991 5

sdb(l) sdb(l)

6

elided.

? regular expression?
Searches backward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing ? may be
elided.

p Prints the current line.

z Prints the current line followed by the next 9 lines. Set the current line
to the last line printed.

w Creates a window. Prints the 10 lines around the current line.

number
Sets the current line to the given line number, then prints the new
current line.

count+
Advances the current line by count lines, then prints the new current
line.

count -
Retreats the current line by count lines, then prints the new current
line.

The commands for controlling the execution of the source program are:

count r args
count R

Runs the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument
beginning with< or> causes redirection for the standard input or
output respectively. If count is given, it specifies the number of
breakpoints to be ignored.

linenumber c count
linenumber C count

Continues after a breakpoint or interrupt. If count is given, it specifies
the number of breakpoints to be ignored. C continues with the signal
that caused the program to stop reactivated and c ignores it. If a
linenumber is specified then a temporary breakpoint is placed at the
line and execution is continued. The breakpoint is deleted when the
command finishes.

linenumber g count
Continues after a breakpoint with execution resumed at the given line.
If count is given, it specifies the number of breakpoints to be ignored.

November 1991

sdb(1) sdb(1)

s count
S count

i

Single steps the program through count lines. If no count is given
then the program is run for one line. sis equivalent to s except it
steps through procedure calls.

I Single steps by one machine-language instruction. I steps with the
signal that caused the program to stop reactivated and i ignores it.

variable$m count
address:m count

Single steps (as with s) until the specified location is modified with a
new value. If count is omitted, it is effectively infinity. variable must
be accessible from the current procedure. Since this command is done
by software, it can be very slow.

level v
Toggles verbose mode, for use when single stepping with S, s, or rn.
If level is omitted, then just the current source file and/or subroutine
name is printed when either changes. If level is 1 or greater, each C
source line is printed before it is executed; if level is 2 or greater, each
assembler statement is also printed. A v turns verbose mode off if it is
on for any level.

k Kills the program being debugged.

procedure (argl, arg2, ...)
procedure (arg 1, arg2, ...) /m

Executes the named procedure with the given arguments. Arguments
can be integer, character or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given, it defaults to d.

linenumber b commands
Sets a breakpoint at the given line. If a procedure name without a
line number is given (for example, proc:), a breakpoint is placed at
the first line in the procedure even if it was not compiled with the -g
option. If no linenumber is given, a breakpoint is placed at the
current line. If no commands are given, execution stops just before
the breakpoint and control is returned to sdb. Otherwise the
commands are executed when the breakpoint is encountered and
execution continues. Multiple commands are specified by separating
them with semicolons. If k is used as a command to execute at a
breakpoint, control returns to sdb, instead of continuing execution.

November 1991 7

sdb(l) sdb(l)

8

B Prints a list of the currently active breakpoints.

linenumber d
Deletes a breakpoint at the given line. If no linenumber is given, the
breakpoints are deleted interactively. Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d, the breakpoint is deleted.

D Deletes all breakpoints.

1 Prints the last executed line.

linenumber a
Announces. If linenumber is of the form proc: number, the
command effectively does a linenumber bl. If linenumber is of the
form proc:, the command effectively does a proc: b T.

Miscellaneous commands:

!command
Interprets the command by sh(l).

newline
Advances the current line by one line and print the new current line
if the previous command printed a source line. If the previous
command displayed a memory location, displays the next memory
location.

CONTROL-D

Scrolls. Print the next 10 lines of instructions, source, or data,
depending on which was printed last.

<filename
Reads commands from.filename until the end of file is reached, then
continues to accept commands from standard input. When s db is
told to display a variable by a command in such a file, the variable
name is displayed along with the value. This command may not be
nested; < may not appear as a command in a file.

M Prints the address maps.

M[/][*] b e f
Records new values for the address map. The arguments ? and I
specify the text and data maps, respectively. The first segment, (bl,
el, fl), is changed unless * is specified, in which case the second
segment, (b2, e2, f2), of the mapping is changed. If fewer than three
values are given, the remaining map parameters are left unchanged.

" string
Prints the given string. The C escape sequences of the form
\character are recognized, where character is a nonnumeric

November 1991

sdb(1) sdb(1)

character.

q Exits the debugger.

The following commands also exist and are intended only for debugging
the debugger:

V Prints the version number.

Q Prints a list of procedures and files being debugged.

Y Toggles debug output.

WARNINGS
Data stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some
information may be missing.

LIMITATIONS
If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the procedure is started. This makes it impossible to use a
procedure which formats data from a core image.

The default type for printing f 7 7 parameters is incorrect. Their address is
printed instead of their value.

Tracebacks containing f 7 7 subprograms with multiple entry points may
print too many arguments in the wrong order, but their values are correct.

The range of an f 7 7 array subscript is assumed to be 1 to n, where n is the
dimension corresponding to that subscript. This is only significant when
the user omits a subscript, or uses * to indicate the full range. There is no
problem in general with arrays having subscripts whose lower bounds are
not 1.

FILES
/usr/bin/sdb

Executable file
a.out

Compiled file
core

Core file

SEE ALSO
adb(l), cc(l), ctrace(l), f77(1), sh(l)

a. out(4), core(4) inAIUX Programmer's Reference

"sdb Reference" inA/UX Programming Languages and Tools, Volume 1

November 1991 9

sdiff (1) sdiff (1)

NAME
sdi ff - reports side-by-side differences between two files in a side-by­
side format

SYNOPSIS
sdiff [-1] [-o output] [-s] [-w cols]filel file2

ARGUMENTS
file I

Specifies the file to be compared withfile2 .

.file2
Specifies the file to be compared with file I.

-1 Prints only the left side of any lines that are identical.

-o output
Specifies output as the name of a third file that is created as a user
controlled merging of.file] and.file2. Identical lines of .filel and.file2
are copied to output.

- s Does not print identical lines.

-w cols
Specifies cols, as the width of the output line. The default line length
is 130 characters. The width must be between 20 and 200.

DESCRIPTION

1

sdi ff uses the output of di ff to produce a side-by-side listing of two
files indicating those lines that are different. Each line of the two files is
printed with a blank gutter between them if the lines are identical, a< in
the gutter if the line only exists in.file], a > in the gutter if the line only
exists in.file2, and a I for lines that are different.

Sets of differences, as produced by di ff (1), are printed; a set of
differences share a common gutter character. After printing each set of
differences, sdi ff prompts the user with a % and waits for one of the
following user-typed commands:

1 appends the left column to the output file

r appends the right column to the output file

s turns on silent mode; does not print identical lines

v turns off silent mode

e 1
calls the editor with the left column

e r
calls the editor with the right column

November 1991

sdiff(l) sdiff (1)

e b
calls the editor with the concatenation of left and right

e calls the editor with a zero length file

q exits from the program

On exit from the editor, the resulting file is concatenated on the end of the
output file.

EXAMPLES
If f i 1e1 contains:

x
a
b
c
d

and f i le2 contains:

y
a
d
c

then the command:

sdiff filel file2

would print:

x
a
b
c
d

<
<

y
a

d
> c

FILES
/usr/bin/sdiff

Executable file

SEE ALSO
bdif f(l), diff(l), ed(l), sccsdiff(l)

November 1991 2

sed(l) sed(l)

NAME
sed- edits a stream of data

SYNOPSIS
sed [-n] -e command-line-script ffile]. ..

sed [-n] - f script.file ffile]. ..

ARGUMENTS
- e command-line-script

Causes the script to be taken directly from the command line
(command-line-script). These options accumulate, so many scripts
can be used in one invocation of the command. If there is just one - e
option and no - f script.file options, the - e option may be omitted.
Note that all shell metacharacters must be quoted when a command
line script is supplied, so care must be taken when using the - e
option.

- f script.file
Causes the script to be taken from file script.file.

file Specifies the file or files that are edited, then sent to the standard
output.

-n Suppresses the default output: output will only be generated if
explicitly asked for by certain sed commands (p, P, i, r, and the p
option of the s command).

DESCRIPTION
sed copies the named.files (standard input default) to the standard output,
edited according to a script of s ed commands.

A script consists of editing commands, one per line, of the following form:

[address[, address]] function

In normal operation, sed cyclically copies a line of input into a pattern
space (unless there is something left after a D command), applies in
sequence all commands whose addresses select that pattern space, and at
the end of the script copies the pattern space to the standard output (except
under -n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

Replace address with either a decimal number that counts input lines
cumulatively across files, a $ that addresses the last line of input, or a
context address, i.e., a I regular expression I in the style of ed(l) modified
as follows:

November 1991

sed(l) sed(l)

In a context address, the construction \?regular expression?, where
? is any character, is identical to I regular expression/ . Note that in
the context address \ xabc \ xde f x, the second x stands for itself, so
that the regular expression is abcxde f.

The escape sequence \n matches a newline embedded in the pattern
space.

A period (.)matches any character except the terminal newline of the
pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches
the address.

A command line with two addresses selects the inclusive range from the
first pattern space that matches the first address through the next pattern
space that matches the second. (If the second address is a number less than
or equal to the line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to nonselected pattern spaces by use
of the negation function (!)(see below).

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

Replace text with one or more lines, all but the last of which end with a
backslash(\) to hide the newline. Backslashes in such text are treated like
backslashes in the replacement string of an s command, and may be used
to protect initial blanks and tabs against the stripping that is done on every
script line.

When rfile or wfile are used in a command, they must terminate the
command line and must be preceded by exactly one blank. Each wfile is
created before processing begins. There can be at most I 0 distinct wfile
arguments.

(l)a \
text Appends. Places text on the output before reading the next input line.

(2)b label
Branches to the : command bearing the label. If label is empty,
branch to the end of the script.

(2)c\
text Changes. Deletes the pattern space. With 0 or I address or at the end

of a 2-address range, place text on the output. Starts the next cycle.

(2)d
Deletes the pattern space and starts the next cycle.

November 1991 2

sed(l) sed(l)

3

(2)D

(2)g

(2)G

(2)h

(2)H

Deletes the initial segment of the pattern space through the first
newline, then starts the next cycle.

Replaces the contents of the pattern space by the contents of the hold
space.

Appends the contents of the hold space to the pattern space.

Replaces the contents of the hold space by the contents of the pattern
space.

Appends the contents of the pattern space to the hold space.

(l)i \
text Inserts. Places text on the standard output.

(2)1

(2)n

(2)N

(2)p

(2)P

(l)q

Lists the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two-digit ASCII and long
lines are folded.

Copies the pattern space to the standard output. Replaces the pattern
space with the next line of input.

Appends the next line of input to the pattern space with an embedded
newline. (The current line number changes.)

Prints. Copies the pattern space to the standard output.

Copies the initial segment of the pattern space through the first
newline to the standard output.

Quits. Branches to the end of the script. Does not start a new cycle.

(l)r rfile
Reads the contents of rfile. Places them on the output before reading
the next input line.

(2) s /regular expression/replacement/flags
Substitutes the replacement string for instances of the regular
expression in the pattern space. Any character may be used instead of
I. For a more complete description, see ed(l). The.flags option is

November 1991

sed(l) sed(l)

zero or more of:

n n= 1 - 512. Substitutes for just the nth occurrence of the regular
expression.

g Substitutes globally. Substitute for all nonoverlapping instances
of the regular expression rather than just the first one.

p Prints the pattern space if a replacement was made.

w wjile
Writes. Appends the pattern space to wfile if a replacement was
made.

(2)t label
Tests. Branches to the : command bearing the label if any
substitutions have been made since the most recent reading of an input
line or execution of at. If label is empty, branch to the end of the
script.

(2)w wjile
Writes. Appends the pattern space to wjile.

(2)x
Exchanges the contents of the pattern and hold spaces.

(2)ylstring 1/string21
Transforms. Replaces all occurrences of characters in string 1 with the
corresponding character in string2. The lengths of string] and string2
must be equal.

(2) ! function
Applies the function (or group, if function is {) only to lines not
selected by the address(es).

(0): label

(1)=

(2){

Bears a label for b and t commands to branch to. This command
does nothing.

Places the current line number on the standard output as a line.

Executes the following commands through a matching } only when
the pattern space is selected.

(0) Ignores an empty command.

(0)#
Treats the entire line as a comment with one exception, if this option
appears as the first character on the first line of a script file. If the
character after the # is an "n", then the default output will be

November 1991 4

sed(l) sed(l)

suppressed, as if the -n option had been invoked. The rest of the line
after #n is also ignored. It is an error for the # command to be used
on any line by the first line of the file. A script file must contain at
least one noncomment line.

EXAMPLES
The following command will process input file according to the
sedf ile script, and place the results inf ilea:

sed -f sedfile inputfile > filea

The sedf ile script:

4 a\
xxxxxxxxxxxxx

would insert a row of Xs after line 4.

WARNINGS
Operations based on a deleted line are lost. For example, if you insert text
before line 4 and then delete line 4, the inserted text is lost. Reads at line 0
are actually reads before line 1, so deleting line 1 erases these reads.
Writes are lost as well, although the filename is created.

FILES
/bin/sed

Executable file

SEE ALSO
awk(l), ed(l), grep(l), lex(l)

5 November 1991

setfile(l) setfile(l)

NAME
set f i 1 e - sets attributes for Macintosh files, such as file type and
creator

SYNOPSIS
set file [-aattribute-string] [-ccreator]
[- lhorizantal-pixels, vertical-pixels] [-ttype] [data-file] ...

ARGUMENTS
- aattribute-string

Enables or disables any one or more Boolean attributes for a file
through the inclusion of uppercase or lowercase letters in
attribute-string. Use uppercase characters to enable the attribute and
lowercase characters to disable the attribute:

a
A Enables or disables the switch-launch attribute (if possible).

d
D Enables or disables the desktop-located attribute.

i
I Enables or disables the initial attribute.

1
L Enables or disables the locked attribute.

m
M Enables or disables the shared attribute.

s
S Enables or disables the system attribute.

v
V Enables or disables the invisible attribute.

-ccreator
Sets the creator attribute for the file to the four-letter string creator.
Replace creator with the actual strings used by a Macintosh
application. creator code includes spaces, tabs, or metacharacters.
Enclose the code in quotation marks.

data-file
Specifies the Macintosh file to be changed. If you are working with a
pair of AppleDouble files, specify the name of the data file only, not
the name of the header file. The set f i 1 e command automatically
looks for the associated header file, which should have the same name
as the data file, but with a percent sign(%) prefix. If set file cannot
find the header file, it creates one.

November 1991

setfile(l) set f i le(l)

- lhorizontal-pixels, vertical-pixels
Sets the horizontal and vertical coordinates for the icon location to
horizontal-pixels pixels from the left extreme and vertical-pixels
pixels from the upper extreme.

-ttype
Sets the type attribute for the file to the four-letter string. Replace type
with the actual strings used by a Macintosh application. type code
includes spaces, tabs, or metacharacters. Enclose the code in
quotation marks.

DESCRIPTION
set f i 1 e sets the file type and creator of an AppleSingle file or the header
file of an AppleDouble pair. See Inside Macintosh, Volume III, for a
description of file types and creators.

Most Macintosh applications open a document file only if they recognize
the type and creator. The Macintosh OS stores a file's type and creator in
the directory. A/UX stores the type and creator as an entry in either an
AppleSingle file or the header file of an AppleDouble pair. When an A/UX
Toolbox application creates a file by using the normal File Manager
routines, it automatically creates an AppleSingle file with the appropriate
type and creator. (See the description of the File Manager in Chapter 4 of
Inside Macintosh.)

The set file command is useful when a file's type and creator are lost
during a file transfer from the Macintosh environment to A/UX. The
set f i 1 e program is also useful when you want to use a data file that was
created by the standard A/UX file system instead of the A/UX Toolbox File
Manager.

The usual symptom of an incorrect type is the file's failure to appear in the
Open Standard File dialog box.

EXAMPLES
This command establishes the type of the data files 'report' and 'house' as
PNTG and the creator as MPNT:

setfile -t PNTG -c MPNT report house

FILES
/rnac/bin/setf ile

Executable file

SEE ALSO
derez(l), rez(l)

2 November 1991

sh(l) sh(l)

NAME
sh, rs h - runs the Bourne shell

SYNOPSIS
sh [-c string] [-i] [-r] [-s] [-a] [-e] [-f] [-h] [-k] [-n] [-t] [-u]
[-v] [-x] [args]. ..]

rsh [-c string] [-i] [-r] [-s] [-a] [-e] [-f] [-h] [-k] [-n] [-t] [-u]
[-v] [-x] [args] ...]

ARGUMENTS
- a Marks variables which are modified or created for export.

-c string
Reads commands from the string.

- e Exits immediately if a command exits with a nonzero exit status.

- f Disables filename generation.

- h Locates and remembers function commands as functions are defined
(function commands are normally located when the function is
executed).

- i Causes the shell to be interactive if this option is present or if the shell
input and output are attached to a terminal. In this case, Terminate is
ignored (so that ki 11 0 does not kill an interactive shell) and
Interrupt is caught and ignored (so that wait is interruptible). In all
cases, Quit is ignored by the shell.

- k Places all keyword arguments in the environment for a command, not
just those that precede the command name.

- n Reads commands, but does not execute them.

- r Invokes a restricted shell.

- s Reads commands from the standard input if this option is present or if
no arguments remain. Any remaining arguments specify the
positional parameters. Shell output, except for special commands (see
"Special Commands"), is written to file descriptor 2.

-t Exits after reading and executing one command.

-u Treats unset variables as an error when substituting.

-v Prints shell input lines as they are read.

- x Prints commands and their arguments as they are executed.

DESCRIPTION
sh is a command programming language that executes commands read
from a terminal or a file. rs h is a restricted version of the standard
command interpreter sh; it is used to set up login names and execution

November 1991

sh(l) sh(l)

environments whose capabilities are more controlled than those of the
standard shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or
underscores beginning with a letter or underscore. A parameter is a
name, a digit, or any of the characters: *, @, #, ? , -, $,and ! .

Commands

2

A s imp 1 e- command is a sequence of nonblank words separated by
blanks. The first word specifies the name of the command to be executed.
Except as specified below, the remaining words are passed as arguments to
the invoked command. The command name is passed as argument 0 (see
exec(2)). The value of a simple-command is its exit status if it terminates
normally, or (octal) 200+status if it terminates abnormally (see s ignal(3)
for a list of status values).

A pipeline is a sequence of one or more commands separated by "I"
(or, for historical compatibility, by "). The standard output of each
command but the last is connected by a pipe(2) to the standard input of
the next command. Each command is run as a separate process; the shell
waits for the last command to terminate. The exit status of a pipeline is the
exit status of the last command.

A list is a sequence of one or more pipelines separated by a ; , &, &&, or
I I, and optionally terminated by a ; or&. Of these four symbols, ; and &

have equal precedence, which is lower than that of && and I I . The
symbols && and I I also have equal precedence. A semicolon (;) causes
sequential execution of the preceding pipeline; an ampersand(&) causes
asynchronous execution of the preceding pipeline (i.e., the shell does not
wait for that pipeline to finish). The symbol && (I I) causes the list
following it to be executed only if the preceding pipeline returns a zero
(nonzero) exit status. An arbitrary number of newlines may appear in a
list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for name [in word ...] do list done
Sets name to the next word taken from the in word list, each time a
command is executed. If in word ... is omitted, then the for
command executes the do list once for each positional parameter that
is set (see "Parameter Substitution," below). Execution ends when
there are no more words in the list.

case word in [pattern[I pattern] list ; ;]. .. esac
Executes the list associated with the first pattern that matches word.

November 1991

sh(l) sh(l)

The form of the patterns is the same as that used for file-name
generation (see "Filename Generation") except that a slash, a leading
dot, or a dot immediately following a slash need not be matched
explicitly.

if list then list [el if list then list] ... [else list] f i
Executes the list following if. If it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following
e 1 i f is executed and, if its value is zero, the list following the next
then is executed. Failing that, the else list is executed. If no else
list or then list is executed, then the if command returns a zero exit
status.

while list do list done

(list)

Repeatedly executes the while list and, if the exit status of the last
command in the list is zero, executes the do list; otherwise the loop
terminates. If no commands in the do list are executed, then the
while command returns a zero exit status; until may be used in
place of whi 1 e to negate the loop termination test.

Executes list in a subshell.

{list}
Executes list.

name () {list}
Defines a function which is referenced by name. The body of the
function is the list of commands between { and } . Execution of
functions is described below (see "Execution," below).

The following words are recognized only as the first word of a command
and when not quoted:

if then else elif
for while until do

Comments

f i case
done

esac

A word beginning with # causes that word and all the following characters
up to a newline to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents
(' ')may be used as part or all of a word; trailing newlines are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are
two types of parameters, positional and keyword. If parameter is a
digit, it is a positional parameter. Positional parameters may be assigned

November 1991 3

sh(l) sh(l)

values by set. Keyword parameters (also known as variables) may be
assigned values by writing:

name=value [name=value]

Pattern-matching is not performed on value. There cannot be a function
and a variable with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. If
parameter is * or@, all the positional parameters, starting with $1,
are substituted (separated by spaces). Parameter $ 0 is set from
argument zero when the shell is invoked.

${parameter : -word}
If parameter is set and is non-null, substitute its value; otherwise
substitute word.

${parameter : =word}
If parameter is not set or is null, set it to word; the value of the
parameter is substituted. Positional parameters may not be assigned in
this way.

${parameter : ?word}
If parameter is set and is non-null, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, the message
"parameter nul 1 or not set" is printed.

${parameter : +word}
If parameter is set and is non-null, substitute word; otherwise
substitute nothing.

In the above command, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is executed only
if d is not set or is null:

echo ${d:- 'pwd'}

If the colon (:) is omitted from the above expressions, the shell checks
only whether parameter is set or not.

The following parameters are set automatically by the shell:

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set
command.

? The decimal value returned by the last synchronously-executed
command.

4 November 1991

sh(l) sh(l)

$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:

HOME
The default argument (home directory) for the cd command.

PATH
The search path for commands (see "Execution," below). You
may not change PA TH if executing under rs h.

CDPATH
The search path for the cd command.

MAIL
If you have set this parameter to the name of a mail file and you
have not set the MAILPATH parameter, the shell informs you of
the arrival of mail in the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the
l'.fAILPATH or MAIL parameters. The default value is 600
seconds (10 minutes). If this parameter is set to 0, the shell will
check before each prompt.

MAILPATH
A colon-separated (:) list of filenames. If this parameter is set,
the shell informs the user of the arrival of mail in any of the
specified files. Each filename may be followed by % and a
message that will be printed when the modification time changes.
The default message is "You have rnai 1."

PSl
Primary prompt string, by default ' ' $ ' ' .

PS2
Secondary prompt string, by default ' ' > ' ' .

IFS
Internal field separators, normally space, tab, and newline.

SHACCT
If this parameter is set to the name of a file writable by the user,
the shell will write an accounting record in the file for each shell
procedure executed. Accounting routines such as acctcorn(l)
and acctcrns(IM) can be used to analyze the data collected.

SHELL
When the shell is invoked, it scans the environment (see

November 1991 5

sh(l) sh(l)

''Environment,'' below) for this name. If it is found and there is
an r in the filename part of its value, the shell becomes a
restricted shell.

The shell gives default values to PATH, PSl, PS2, MAILCHECK, and IFS.
HOME and MAIL are set by login(l)).

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and
split into distinct arguments where such characters are found. Explicit null
arguments (" or ' ') are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

Filename Generation
Following substitution, each command word is scanned for the characters
*, ? , and [. If one of these characters appears, the word is regarded as a
pat tern. The word is replaced with alphabetically-sorted filenames that
match the pattern. If no filename is found that matches the pattern, the
word is left unchanged. The character . at the start of a filename or
immediately following a I, as well as the character I itself, must be
matched explicitly.

*
?

Matches any string, including the null string.

Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening
' ' ['' is a '' ! '' , any character not enclosed is matched.

Quoting
The following characters have a special meaning to the shell and cause
termination of a word unless quoted:

; & () I ~ < > newline space tab

A character may be quoted (i.e., made to stand for itself) by preceding it
with a \. The pair \newline is ignored. All characters enclosed between a
pair of single quote marks (' '), except a single quote, are quoted. Inside
double quote marks(""), parameter and command substitution occurs and \
quotes the characters \, ' , , and $. The string, $ *, is equivalent to $1
$ 2 ... , whereas $@ is equivalent to $1 2

Prompting

6

When used interactively, the shell prompts with the value of P s 1 before
reading a command. If, at any time, a newline is typed and further input is
needed to complete a command, the secondary prompt (i.e., the value of
PS 2) is issued.

November 1991

sh(l) sh(l)

Input/Output
Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may appear
anywhere in a simple-command or may precede or follow a command and
are not passed on to the invoked command; substitution occurs before
word or digit is used:

<word
Uses file word as standard input (file descriptor 0).

>word
Uses file word as standard output (file descriptor 1). If the file does
not exist, it is created; otherwise, it is truncated to zero length.

>>word
Uses file word as standard output. If the file exists, output is appended
to it (by first seeking to the end-of-file); otherwise, the file is created.

«[-]
word The shell input is read up to a line that is the same as word, or

to an end-of-file. The resulting document becomes the standard input.
If any character of word is quoted, no interpretation is placed upon the
characters of the document; otherwise, parameter and command
substitution occurs, (unescaped) \newline is ignored, and \ must be
used to quote the characters \, $, ' , and the first character of word. If
- is appended to<<, all leading tabs are stripped from word and from
the document.

<&digit

<&-

Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.

The standard input is closed. Similarly for the standard output using
>&-.

If any of the above is preceded by a digit, the file descriptor which will be
associated with the file is that specified by the digit (instead of the default 0
or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file
descriptor 1.

The order in which redirections are specified is significant. The shell
evaluates redirections left-to-right. For example:

... l>XXX2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2

November 1991 7

sh(l) sh(l)

with the file associated with file descriptor 1 (i.e., xxx). If the order of
redirections were reversed, file descriptor 2 would be associated with the
terminal (assuming file descriptor 1 had been) and file descriptor 1 would
be associated with file xxx.

If a command is followed by &, the default standard input for the command
is the empty file I dev In u 11. Otherwise, the environment for the
execution of a command contains the file descriptors of the invoking shell,
as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment

8

The environment (see environ(5)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument list.
The shell interacts with the environment in several ways. On invocation,
the shell scans the environment and creates a parameter for each name
found, giving it the corresponding value. If the user modifies the values of
any of these parameters or creates new parameters, none of these affects
the environment unless the export command is used to bind the shell's
parameter to the environment (see also set -a). A parameter may be
removed from the environment with the unset command. The
environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, minus any
pairs removed by unset, plus any modifications or additions, all of which
must be noted in export commands.

The environment for any simple-command may be augmented by prefixing
it with one or more assignments to parameters. Thus:

TERM= 4 5 0 cmd

and

(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the - k option is set, all keyword arguments are placed in the
environment, even if they occur after the command name. The following
command first prints a=b c and then, after the -k option is set, prints only
c:

echo a=b c #first time prints a=b c
set -k #puts all keyword args in env
echo a=b c #nowprintsonly" c; a=b goes to env

November 1991

sh(l) sh(l)

Signals
The interrupt and quit signals for an invoked command are ignored if the
command is followed by&; otherwise signals have the values inherited by
the shell from its parent, with the exception of signal 11 (but see also the
trap command below).

Execution
Each time a command is executed, the above substitutions are carried out.
If a command name matches one of the special commands listed below
(see ''Special Commands''), it is executed in the shell process. If the
command name does not match a special command, but matches the name
of a defined function, the function is executed in the shell process (note that
this differs from the execution of shell procedures, which takes place in
subshells). The positional parameters $1, $ 2, ... are set to the arguments
of the function. If the command name matches neither a special command
nor the name of a defined function, a new process is created and an attempt
is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory
containing the command. Altemati ve directory names are separated by a
colon (:). The default path is : /bin: /usr /bin (specifying the current
directory, /bin, and /usr /bin, in that order). Note that the current
directory is specified by a null pathname, which can appear immediately
after the equals sign or between the colon delimiters anywhere else in the
path list. If the command name contains a I the search path is not used;
such commands will not be executed by the restricted shell. Otherwise,
each directory in the path is searched for an executable file. If the file has
execute permission but is not an a . out file, it is assumed to be a file
containing shell commands. A subshell is spawned to read it. A
parenthesized command is also executed in a subshell.

The location in the search path where a command was found is
remembered by the shell (to help avoid unnecessary execs later). If the
command was found in a relative directory, its location must be
redetermined whenever the current directory changes. The shell forgets all
remembered locations whenever the PA TH variable is changed or the hash
- r command is executed (see below).

Special Commands
Input/output redirection is now permitted for these commands. File
descriptor 1 is the default output location.

No effect; the command does nothing. A zero exit code is returned.

file
Read and execute commands from file and return. The search path
specified by PA TH is used to find the directory containing file.

November 1991 9

sh(l) sh(l)

10

break [n]
Exit from the enclosing for or while loop, if any. If n is specified,
break n levels.

cd [arg]
Change the current directory to arg. The shell parameter HOME is the
default arg. The shell parameter CDPATH defines the search path for
the directory containing arg. Alternative directory names are
separated by a colon (:). The default path is null (i.e., the empty
string, specifying the current directory). Note that the current
directory is specified by a null pathname, which can appear
immediately after the equals sign or between the colon delimiters
anywhere else in the path list. If arg begins with a I, the search path
is not used. Otherwise, each directory in the path is searched for arg.
The cd command may not be executed by rsh.

continue [n]
Resume the next iteration of the enclosing for or whi 1 e loop. If n
is specified, resume at the n-th enclosing loop.

echo [arg ...]
Echo arguments. Arguments are written separated by blanks and
terminated by a newline on the standard output. It understands C-like
escape conventions.

eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed (an end­
of-file will also cause the shell to exit).

export [name ...]
The given names are marked for automatic export to the environment
of subsequently-executed commands. If no arguments are given, a list
of all names that are exported in this shell is printed. Function names
may not be exported.

hash [-r][name ...]
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The

November 1991

sh(l) sh(l)

- r option causes the shell to forget all remembered locations. If no
arguments are given, information (hits and cost) about remembered
commands is presented. hits is the number of times a command has
been invoked by the shell process. cost is a measure of the work
required to locate a command in the search path. There are certain
situations which require that the stored location of a command be
recalculated. Commands for which this will be done are indicated by
an asterisk (*) adjacent to the hits information. cost will be
incremented when the recalculation is done.

newgrp [arg ...]

pwd

Equivalent to exec newgrp arg ... Changes a user's group
identification. The user remains logged in, and the current directory is
unchanged, but calculations of access permissions to files are
performed with respect to the new real and effective group IDs. The
user is always given a new shell, replacing the current shell, by
newgrp, regardless of whether it terminated successfully or due to an
error condition (i.e., unknown group).

With no arguments, newgrp changes the group identification back to
the group specified in the user's password file entry.

If the first argument to newgrp is a-, the environment is changed to
what would be expected if the user actually logged in again.

This built-in version executes faster than the A/UX command
newgrp(l) but is otherwise identical.

Print the current working directory. This built-in version executes
faster than the A/UX command pwd(1) but is otherwise identical.

read [name ...]
One line is read from the standard input and the first word is assigned
to the first name, the second word to the second name, etc., with
leftover words assigned to the last name. The return code is 0 unless
an end-of-file is encountered.

readonly[name ...]
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no
arguments are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is
omitted, the return status is that of the last command executed.

set [aefhkntuvx--[arg] ...]
See the ''Arguments'' section at the beginning of this manual page for

November 1991 11

sh(l) sh(l)

12

the argument descriptions to the set command. Using + rather than
- causes these options to be turned off. These options can also be
used upon invocation of the shell. The current set of options may be
found in $ - . The remaining arguments are positional parameters and
are assigned, in order, to $1, $ 2, ... If no arguments are given, the
values of all names are printed.

shift [n]
The positional parameters from $ n + 1... are renamed $1 If n
is not given, it is assumed to be 1.

test
Evaluates the expression expr and, if its value is true, returns a zero
(true) exit status; otherwise, a nonzero (false) exit status is returned;
test also returns a nonzero exit status if there are no arguments. The
superuser is always granted execute permission even though (1)
execute permission is meaningful only for directories and regular files,
and (2) exec requires that at least one execute mode bit be set for a
regular file to be executable. The following primitives are used to
construct expr:

-r file
Returns true if file exists and is readable.

-w file
Returns true if file exists and is writable.

-x file
Returns true if file exists and is executable.

- f file
Returns true if file exists and is a regular file.

-d file
Returns true if file exists and is a directory.

-c file
Returns true if file exists and is a character special file.

-b file
Returns true if file exists and is a block special file.

-p file
Returns true if file exists and is a named pipe (FIFO).

-u file
Returns true if file exists and its set user ID bit is set.

-g file
Returns true if file exists and its set group ID bit is set.

November 1991

sh(l) sh(l)

-k file
Returns true if file exists and its sticky bit is set.

-s file
Returns true if file exists and has a size greater than zero.

-t [tildes]
Returns true if the open file whose file descriptor number is fildes
(1 by default) is associated with a terminal device.

-z sl
Returns true if the length of string sl is zero.

-n sl
Returns true if the length of the string sl is nonzero.

sl = s2
Returns true if strings s 1 and s2 are identical.

sl ! = s2
Returns true if strings s 1 and s2 are not identical.

s 1 Returns true if s 1 is not the null string.

nl -eq n2
Returns true if the integers nl and n2 are algebraically equal.
Any of the comparisons -ne, -gt, -ge, -lt, and -le may be
used in place of -eq.

These primaries may be combined with the following operators:

unary negation operator.

-a binary AND operator.

-o binary OR operator (-a has higher precedence than -o).

(expr)
parentheses for grouping.

Notice that all the operators and options are separate
arguments to test. Notice also that parentheses are
meaningful to the shell and, therefore, must be escaped.

test is typically used in shell scripts as in the following
example, which prints the message '' f oo is a
directory" if it is found to be one when test is run.
For example,

if test -d foo
then

echo "foo is a dir"
f i

November 1991 13

sh(l) sh(l)

times
Print the accumulated user and system times for processes run
from the shell.

trap [arg][n]. ..
The command arg is to be read and executed when the shell
receives signal(s) n. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Trap commands are
executed in order of signal number. Any attempt to set a trap on
a signal that was ignored on entry to the current shell is
ineffective. An attempt to trap on signal 11 (memory fault)
produces an error. If arg is absent, all trap(s) n are reset to their
original values. If arg is the null string, this signal is ignored by
the shell and by the commands it invokes. If n is 0, the command
arg is executed on exit from the shell. The trap command with
no arguments prints a list of commands associated with each
signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a
command name.

ul imi t [f][n]
Imposes a size limit of n. The - f option imposes a size limit of n
blocks on files written by child processes (files of any size may
be read). With no argument, the current limit is printed. If no
options option is given, - f is assumed.

umask[nnn]
The user file-creation mask is set to nnn (see umask(2)). If nnn
is omitted, the current value of the mask is printed.

unset[name ...]
For each name, remove the corresponding variable or function.
The variables PATH, PSl, PS2, MAILCHECK, and IFS cannot be
unset.

wait [n]
Waits for the specified process and reports its termination status.
If n is not given, all currently active child processes are waited
for and the return code is zero.

Invocation

14

If the shell is invoked through exec(2) and the first character of argument
zero is-, commands are read initially from /etc/profile and from
$HOME/ .profile, if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as
I bin I sh. The - c, - i, - r, and - s options are interpreted by the shell on

November 1991

sh(l) sh(l)

invocation only. Note that, unless the -c or -s option is specified, the first
argument is assumed to be the name of a file containing commands, and the
remaining arguments are passed as positional parameters to that command
file.

rsh Only
rsh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rsh are identical to those of sh, except that the following are
disallowed:

changing directory
setting the value of $PATH
specifying path or command names containing I
redirecting output (> and >>)

The restrictions above are enforced after . prof i 1 e is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end-user
shell procedures that have access to the full power of the standard shell,
while imposing a limited menu of commands; this scheme assumes that the
end-user does not have write and execute permissions in the same
directory.

The net effect of these rules is that the writer of the . profile has
complete control over user actions, by performing guaranteed setup actions
and leaving the user in an appropriate directory (probably not the login
directory).

The system administrator often sets up a directory of commands (i.e.,
/usr /rbin) that can be safely invoked by rsh. Some systems also
provide a restricted editor red.

EXAMPLES
Enter the command:

sh -x scriptl

to execute each command in script 1, echoing the command just before
executing it.

STATUS MESSAGES AND VALVES
Errors detected by the shell, such as syntax errors, cause the shell to return
a nonzero exit status. If the shell is being used noninteractively, execution
of the shell file is abandoned. Otherwise, the shell returns the exit status of
the last command executed (see also the exit command above).

November 1991 15

sh(l) sh(l)

WARNINGS
If a command is executed, and a command with the same name is installed
in a directory in the search path before the directory where the original
command was found, the shell will continue to exec the original
command. Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give the
correct response. Use the cd command with a full pathname to correct this
situation.

LIMITATIONS
Filename pattern matching is not done on redirected I/O filenames.

FILES
/bin/sh

Executable file
/etc/profile

Profile file
$HOME/.profile

Profile file for the home directory
/tmp/sh*

Temporary file
/dev/null

Temporary file
SEE ALSO

16

csh(l), chsh(l), echo(l), env(l), ksh(l), login(l), newgrp(l),
pwd(l)

acctcms(IM), acctcom(IM) in A/UX System Administrator's
Reference

dup(2), exec(2), fork(2), pipe(2), ulimi t(2), umask(2), wai t(2),
signal(3), a. out(4), prof ile(4), environ(5) inA/UX
Programmer's Reference

"Bourne Shell Reference" in A/UX Shells and Shell Programming

November 1991

shl (1)

NAME
shl - manages the layering of multiple shells

SYNOPSIS
shl

DESCRIPTION
shl allows a user to interact with more than one shell from a single
terminal. The user controls these shells, known as layers, using the
commands described below.

shl(l)

The current layer is the layer which can receive input from the keyboard.
Other layers attempting to read from the keyboard are blocked. Output
from multiple layers is multiplexed onto the terminal.

The st ty character swtch (set to CONTROL-z if NULL) is used to switch
control to shl from a layer. The shl program has its own prompt, >>>,
to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device
(! dev I sxt I???). The virtual device can be manipulated like a real tty
device using stty and ioctl. Each layer has its own process group ID.

Note: Only one instance of shell layering may be invoked in any
given login session.

Definitions
A name is a sequence of characters delimited by a blank, tab or newline.
Only the first eight characters are significant. The names (1) through (7)
cannot be used when creating a layer. They are used by shl when no
name is supplied. They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level. Any
unique prefix is accepted.

create [name]
Creates a layer called name and makes it the current layer. If no
argument is given, a layer will be created with a name of the form(#)
where# is the last digit of the virtual device bound to the layer. The
shell prompt variable PS 1 is set to the name of the layer followed by a
space. A maximum of seven layers can be created.

block name [name] ...
Blocks the output of the corresponding layer when it is not the current
layer, for each name.

delete name [name]. ..
Deletes the corresponding layer for each name. All processes in the
process group of the layer are sent the SIGHUP signal (see

November 1991

shl(l) shl (1)

s ignal(3)).

help(or?)
Prints the syntax of the shl commands.

layers [-l][name] ...
Lists the layer name and its process group for each name. The -1
option produces a ps(l)-like listing. If no arguments are given,
information is presented for all existing layers.

resume [name]
(followed by RETURN). Makes the layer referenced by name the
current layer. If no argument is given, the last existing current layer
will be resumed.

toggle
(followed by RETURN). Resumes the layer that was current before the
last current layer.

unblock name [name] ...
Does not block the output of the corresponding layer when it is not the
current layer, for each name.

quit
Exits shl. All layers are sent the SIGHUP signal.

name
(followed by RETURN). Makes the layer referenced by name the
current layer.

FILES
/usr/bin/shl

Executable file
/dev/sxt/???

Virtual tty device files
$SHELL

Variable file containing pathname of the shell to use (default is
/bin/sh).

SEE ALSO

2

sh(l), stty(l),

ioctl(2), signal(3), sxt(7) inAIUX Programmer's Reference

A/UX Shells and Shell Programming

November 1991

size(l) size(l)

NAME
size - displays section sizes of common object files

SYNOPSIS
s i z e [- d] [- o] [- V] [- x] file ...

ARGUMENTS
-d Displays numbers in decimal.

- o Displays numbers in octal.

- V Supplies the version information on the size command.

-x Forces hexadecimal output in shell scripts.

DESCRIPTION
The size command produces section size information for each section in
the common object files. The name of the section is shown followed by its
size in bytes, physical address, and virtual address.

STATUS MESSAGES AND VALUES
size: name: cannot open

name cannot be read

size: name: bad magic
name is not an object file

FILES
/bin/size

Executable file

SEE ALSO
as(l), cc(l), ld(l)

a. out(4) inAIUX Programmer's Reference

November 1991

sleep(l) sleep(l)

NAME
s 1 eep - suspends the system for a specified interval of time

SYNOPSIS
sleep time

ARGUMENTS
time

Specifies the number of seconds you wish the system to be suspended.
This argument must be less than 65536 seconds.

DESCRIPTION
sleep suspends execution for a specified number of seconds. It is used to
execute a command after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

EXAMPLES
The script:

command
sleep 37

label:
command >> x
command >> x
date >> x
sleep 10
goto label

would execute the two commands and append the results to file x, then
sleep for 10 seconds and repeat the process.

FILES
/bin/sleep

Executable file

SEE ALSO
alarrn(2), sleep(3C) inAIUX Programmer's Reference

November 1991

sno(l) sno(l)

NAME
sno - runs the SNOBOL interpreter

SYNOPSIS
sno [file]. ..

ARGUMENTS
file Specifies the file to be interpreted by the sno command.

DESCRIPTION
sno is a SNOBOL compiler and interpreter (with slight differences). The
sno command obtains input from the concatenation of the named.files and
the standard input. All input through a statement containing the label end
is considered program and is compiled. The rest is available to sys pit.

The sno command differs from SNOBOL in the following ways:

There are no unanchored searches. To get the same effect:

a**b
Performs unanchored search for b.

a*x*b=xc
Specifies an unanchored assignment.

There is no back referencing.

x=abc
a*x*x

Specifies an unanchored search for abc.

Function declaration is done at compile time by the use of the
(non unique) label define. Execution of a function call begins at the
statement following the define. Functions cannot be defined at run
time, and the use of the name define is preempted. There is no
provision for automatic variables other than parameters. Here are a
few examples:

define f ()
define f (a, b, c)

All labels except define (even end) must have a nonempty
statement.

Labels, functions, and variables must all have distinct names. In
particular, the nonempty statement on end cannot merely name a
label.

Ifs tart is a label in the program, program execution will start there.
If not, execution begins with the first executable statement; define
is not an executable statement.

November 1991

sno(l) sno(l)

There are no built-in functions.

Parentheses for arithmetic are not needed. Normal precedence
applies. Because of this, the arithmetic operators I and * must be set
off by spaces.

The right side of assignments must be nonempty.

Either ' or 11 11 11 11 11 11 may be used for literal quotes.

The pseudo-variable sysppt is not available.

FILES
/usr/bin/sno

Executable file

SEE ALSO
awk(l)

SNOBOL, a String Manipulation Language, by D. J. Farber, R. E.
Griswold, and I. P. Polonsky, JACM 11 (1964), pp. 21-30

2 November 1991

soelim(l) soelim(l)

NAME
soelim- eliminates the source commands from nroff input

SYNOPSIS
soe 1 im [file]. ..

ARGUMENTS
file Specifies the file to be read by the soelim command.

DESCRIPTION
soel im reads the specified files or the standard input and performs the
textual inclusion implied by the nroff directives of the form

.so somefile

when they appear at the beginning of input lines. This is useful since
programs such as tbl do not normally do this; it allows the placement of
individual tables in separate files to be run as a part of a large document.

An argument consisting of a single minus (-) is taken to be a filename
corresponding to the standard input.

Note that inclusion can be suppressed by using ' instead of . , such as

'so /usr/lib/tmac.s

EXAMPLES
Here is a sample usage of the so e 1 im command:

soelim exum?.n I tbl I nroff -mm I col I lp

LIMITATIONS
The format of the source commands must be consistent; exactly one blank
must precede and no blanks follow the filename.

FILES
/usr/ucb/soelim

Executable file

SEE ALSO
col(l), eqn(l), nroff(l), tbl(l), troff(l)

November 1991

sort (1) sort (1)

NAME
sort - sorts or merges files

SYNOPSIS
sort [-b] [-c] [-d] [-f] [-i] [-rn] [-M] [-n] [-o output] [-r] [-tx]
[-u] [-y [kmem]] [- zrecsz] [+posl [-pos2]] [file ...]

ARGUMENTS
- b Ignores leading blanks when determining the beginning and ending

positions of a restricted sort key. If the - b option is specified before
the first +posl argument, it is applied to all +posl arguments.
Otherwise, the b option may be attached independently to each +posl
or -pos2 argument (as shown later).

- c Checks that the input file is sorted according to the ordering rules.
This option gives no output unless the file is out of sort.

-d Uses ''dictionary'' order. Only letters, digits, and blanks (spaces and
tabs) are significant in comparisons.

- f Folds lowercase letters into uppercase.

file Specifies the file containing the information to be sorted.

-i Ignores characters outside the ASCII range 040-0176 in non-numeric
comparisons.

-rn Merges only because the input files are already sorted.

- M Compares as months. The first three nonblank characters of the field
are folded to uppercase and compared so that JAN< FEB< ... < DEC.
Invalid fields compare low to JAN. The - M option implies the - b
option (see later in this section).

-n Sorts by arithmetic value an initial numeric string, consisting of
optional blanks, an optional minus sign, and zero or more digits with
optional decimal point. The - n option implies the - b option (as
described later). Note that the -b option is only effective when
restricted sort-key specifications are in effect.

-o output
Places the output in the file output instead of in the standard output.
This file may be the same as one of the inputs. There may be optional
blanks between - o and output.

+posl
-pos2

Restricts a sort key to one beginning at pos 1 and ending just before
pos2. The characters at positions posl and pos2 are included in the
sort key (provided that pos2 does not precede posl). A missing -pos2
designates the end of the line. Both of these options, pos 1 and pos2,

November 1991

sort(l) sort (1)

have the form m . n optionally followed by one or more of the options
b, d, f, i, n, r, where m specifies the number of fields to skip from
the beginning of the line and n specifies the number of characters to
skip beyond. Thus, a starting position specified by +m. n is
interpreted to mean the n+ 1st character in the m+ 1st field. A missing
. n means . 0, indicating the first character of the m+ 1st field. If the b
option is in effect, n is counted from the first nonblank in the m+ 1st
field; +m. Ob refers to the first nonblank character in the m+lst field.

- r Reverses the sense of comparisons.

- tx Uses x as the field-separator character; x is not considered to be part of
a field (although it may be included in a sort key). Each occurrence of
x is significant. For example, xx delimits an empty field.

-u Suppresses all but one (unique) line in each set of lines having equal
keys.

-y kmem
Sorts using a specified amount of kilobytes of memory, kmem. The
amount of main memory used by the sort has a large impact on its
performance. Sorting a small file in a large amount of memory is a
waste. If this option is omitted, sort begins using a system default
memory size and continues to use more space as needed. If this
option is presented with the value, kmem, sort starts using that
number of kilobytes of memory, unless the administrative minimum or
maximum is violated, in which case the corresponding extremum is
used. Thus, -yO is guaranteed to start with minimum memory. By
convention, -y (with no argument) starts with maximum memory.

- zrecsz
Records in the sort phase the size of the longest line read so buffers
can be allocated during the merge phase. If the sort phase is omitted
via the - c or -m options, a popular system default size is used. Lines
longer than the buffer size cause sort to terminate abnormally.
Supplying the actual number of bytes (or some larger value) in the
longest line to be merged prevents abnormal termination.

DESCRIPTION
sort sorts lines of all the named files together and writes the result on the
standard output. The standard input is read if - is used as a filename or no
input files are named.

Comparisons are based on one or more sort keys extracted from each line
of input. By default there is one sort key (the entire input line) and
ordering is lexicographic by bytes in machine collating sequence.

November 1991 2

sort (1) sort (1)

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When
attached to a specific sort key (as described later), the specified ordering
options override all global ordering options for that key.

Specifying posl and pos2 involves the notion of a field, a minimal
sequence of characters followed by a field separator or a newline. By
default, the first blank (space or tab) of a sequence of blanks acts as the
field separator. All blanks in a sequence of blanks are considered to be part
of the next field; for example, all blanks at the beginning of a line are
considered to be part of the first field. The treatment of field separators can
be altered by using the - b or - tx options.

A last position specified by - m . n is interpreted to mean the nth character
(including separators) after the last character of the mth field. A missing
. n means . 0, indicating the last character of the mth field. If the b option
is in effect, n is counted from the last leading blank in the m+ 1st field;
- m . 1 b refers to the first nonblank in the m+ 1st field.

When there are multiple sort keys, later keys are compared only after all
earlier keys compare equal. Lines that otherwise compare equal are
ordered with all bytes significant.

EXAMPLES

3

To sort the contents of infile with the second field as the sort key, use the
command

sort + 1 -2 infile

To sort, in reverse order, the contents of infilel and infile2, placing the
output in outfile and using the first character of the second field as the sort
key, use the command

sort -r -o outfile +l. 0 -1. 2 infilel infile2

To sort, in reverse order, the contents of infilel and infile2 using the first
nonblank character of the second field as the sort key, use the command

sort -r +1. Ob -1. lb infilel infile2

To print the password file (seepasswd(4)) sorted by the numeric user ID
(the third colon-separated field), use the command

sort -t: +2n -3 /etc/passwd

To print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the -um, with just one input
file, makes the choice of a unique representative from a set of equal lines
predictable), use the command

sort -um +2 -3 infile

November 1991

sort (1) sort (1)

STATUS MESSAGES AND VALUES
The sort program comments and exits with nonzero status for various
trouble conditions (for example, when input lines are too long), and for
disorder discovered under the - c option.

When a newline character is missing from the last line of an input file,
sort appends one, prints a warning message, and continues.

FILES
/bin/sort

Executable file
/usr/tmp/stm???

Temporary file

SEE ALSO
comm(l), j oin(l), rev(l), sortbib(l), tsort(l), uniq(l)

November 1991 4

sortbib(1) sortbib(1)

NAME
sortbib - sorts bibliographic database

SYNOPSIS
sortbib [-skeys] database ...

ARGUMENTS
database

keys

Specifies the database containing the files to be sorted. No more than
16 databases may be sorted together at one time.

Specifies the user-specified keys that will be used when sorting files.

- s Enables you to specify new values for the keys argument. For
instance, - sATD will sort by author, title, and date, while - sA + D will
sort by all authors, and date. Sort keys past the fourth are not
meaningful.

DESCRIPTION

1

sortbib sorts files of records containing refer key-letters by user­
specified keys. Records may be separated by blank lines, or by . [and . J

delimiters, but the two styles may not be mixed together. This program
reads through each database and pulls out key fields, which are sorted
separately. The sorted key fields contain the file pointer, byte offset, and
length of corresponding records. These records are delivered using disk
seeks and reads, so sortbib may not be used in a pipeline to read
standard input. Records longer than 4096 characters will be truncated.

By default, sortbib alphabetizes by the first %A and the %D fields, which
contain the senior author and date.

The sortbib program sorts on the last word on the %A line, which is
assumed to be the author's last name. A word in the final position, such as
j r . or ed . , will be ignored if the name beforehand ends with a comma.
Authors with two-word last names or unusual constructions can be sorted
correctly by using the nroff convention\ 0 in place of a blank. A %Q
field is considered to be the same as %A, except sorting begins with the first,
not the last, word. sortbib sorts on the last word of the %D line, usually
the year. It also ignores leading articles (like A or The) when sorting by
titles in the %Tor %J fields; it will ignore articles of any modem European
language.

If a sort-significant field is absent from a record, sortbib places that
record before other records containing that field.

November 1991

sortbib(1) sortbib(1)

LIMITATIONS
Records with missing author fields should probably be sorted by title.

FILES
/usr/ucb/sortbib

Executable file

SEE ALSO
addbib(l), indxbib(l), lookbib(l), refer(l), roffbib(l)

November 1991 2

spell(l) spell(l)

NAME
spell, hashrnake, spellin, hashcheck-find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-1] [+local-file] [file]. ..

hashrnake

spellin n

hashcheck spelling-list

ARGUMENTS
+local-file

Specifies the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of
words that are correct spellings (in addition to the spelling list
included in spel 1) for each job. Under the +local-file option, words
found in local-file are removed from the output of spell.

-b Checks the British spelling. In addition to preferring centre,
colour, programme, speciality, travelled, and so on, this
option insists upon -ise in words like standardise.

file Specifies the user-specified file that is to be searched for spelling
errors.

-1 Causes the s pe 11 command to follow the chains of all included files.

n Specifies the number of hash codes to be read by the spell in
routine.

spelling-list
Specifies the compressed spelling list that is read by the hashcheck
routine.

-v Causes all words not literally in the spelling list to be printed.
Plausible derivations from the words in the spelling list are indicated.

- x Prints every plausible stem with = for each word.

DESCRIPTION
spell collects words from each named.file and locates them in a spelling
list. Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, or suffixes) from words in the spelling list are printed
on the standard output. If no file is named, words are collected from the
standard input.

By default, spell, like derof f (1), follows chains of included files (.so
and . nx tr of f(l) requests), unless the names of such included files begin
with /usr/lib.

November 1991

spell(!) spell(!)

The spell command ignores most trof f(l), tbl(l), and eqn(l)
constructions.

Three hashrnake, spell in, and hashcheck routines help maintain
and check the hash lists used by spell.

hashrnake reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spell in reads hash codes from the standard input and writes a
compressed spelling list on the standard output. Information about the hash
coding is printed on standard error. The compressed spelling list from the
spell in output is in binary format and should be generally redirected
into a file or a pipe.

hashcheck reads a compressed spelling list and recreates the nine-digit
hash codes for all the words in it; it writes these codes on the standard
output. The spelling list is based on many sources, and while more
haphazard than an ordinary dictionary, it is also more effective with respect
to proper names and popular technical words. Coverage of the specialized
vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated
below with their default settings and listed in the section ''FILES.'' Copies
of all output are accumulated in the history file. The stop list filters out
misspellings (for example, thier=thy-y+ier) that would otherwise pass.

EXAMPLES
Entering:

spell filea fileb filec > mistakes

would put a list of the words from f i 1 ea, f i 1 eb, and f i 1 e c that were
not part of the on-line dictionary into the file mis takes.

The following example creates the hashed spelling list hl is t and checks
the result by comparing the two temporary files; they should be equal.

cat wds I /usr/lib/spell/hashrnake I sort -u >trnpl
cat trnpl I /usr/lib/spell/spellin 'cat trnpl I we -1' >hlist
cat hlist I /usr/lib/spell/hashcheck >trnp2
diff trnpl trnp2

LIMIT A TIO NS
The spelling list's coverage is uneven; new installations will probably wish
to monitor the output for several months to gather local additions.
Typically, these are kept in a separate local file that is added to the hashed
spelling-list via spell in.

November 1991 2

spell(l)

The British spellings are incomplete.

FILES
/bin/spell

Executable file
/usr /lib/ spell

Executable file
/usr/lib/spell/spellin

Executable file
/usr/lib/spell/hashcheck

Executable file
/usr/lib/spell/hashmake

Executable file
D_SPELL=/usr/lib/spell/hlist[ab]

Executable file
S_SPELL=/usr/lib/spell/hstop

Executable file
H_SPELL=/usr/lib/spell/spellhist

Spell history file
/usr/lib/spell/spellprog

Executable file
/usr/lib/spell/compress

Executable file

SEE ALSO

spell(l)

diction(l), deroff(l), eqn(l), sed(l), sort(l), style(l), tbl(l),
tee(l), troff(l)

3 November 1991

spellin(l) spellin(l)

See spell(l)

November 1991

spline(IG) spline(IG)

NAME
spline -interpolates a smooth curve

SYNOPSIS
spline [-a] [-k] [-n] [-p] [-xlower [upper]]

ARGUMENTS
-a Supplies abscissas automatically (they are missing from the input);

spacing is given by the next argument, or is assumed to be 1 if next
argument is not a number.

- k Sets the constant k used in the boundary value computation:

y~ = ky'{' y~ = ky~-1
by the next argument (default k = 0).

-n Spaces output points so that approximately n intervals occur between
the lower and upper x limits (the default is n = 100).

-p Makes output periodic, i.e., match derivatives at ends. First and last
input values should normally agree.

-x[lower [upper]]
Specifies the next 1 (or 2) arguments are lower (and upper) x limits.
Normally, these limits are calculated from the data. Automatic
abscissas start at lower limit (default 0).

DESCRIPTION
spline takes pairs of numbers from the standard input as abscissas and
ordinates of a function. It produces a similar set, which is approximately
equally spaced and includes the input set, on the standard output. The
cubic spline output (R. W. Hamming, Numerical Methods for Scientists
and Engineers, 2nd ed., pp. 349ft) has two continuous derivatives, and
sufficiently many points to look smooth when plotted.

EXAMPLES
The command:

spline -n 10 > spline.out
0 0
1 2
2 4
3 9

will create the file spline. out with the contents:

3.000000
2.666667
2.333333
2.000000

8.999999
7.096296
5.370370
4.000000

November 1991

spline(lG) spline(lG)

1.666667
1.333333
1.000000
0.666667
0.333333
0.000000

3.096296
2.503703
2.000000
1.407407
0.725926
0.000000

STATUS MESSAGES AND VALUES
When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

LIMITATIONS
A limit of 1,000 input points is enforced silently.

FILES
/usr/bin/spline

Executable file

SEE ALSO
graph(IG), tplot(IG)

November 1991 2

split(l) split(l)

NAME
split - splits a file into a specified number of pieces

SYNOPSIS
split[-] [-n] f.file [output-file] ...]

ARGUMENTS
Causes split to read the standard input.

file Specifies the user-specified input file that is read by sp 1 it. If no file
is specified, sp 1 it reads the standard input.

-n Specifies the number of line pieces the input file should be split into.
The default is 1000 lines.

output-file
Specifies the name of the output file. The name of the first output file
has aa appended, and so on lexicographically, up to z z (a maximum
of 676 files). The output file cannot be longer than 12 characters. If
no output filename is given, x is used, which is the default.

DESCRIPTION
s p 1 it reads from the specified file and writes it in the specified number of
line pieces onto a set of output files.

EXAMPLES
The command:

split -100 filea newfile

would split f i 1 ea into 100-line pieces and put them in newf i 1 eaa,
newf ileab, and so forth until the end of filea.

FILES
/usr/bin/split

Executable file

SEE ALSO
bf s(l), cs pl i t(l), f spl i t(l)

1 November 1991

ssp(l) ssp(l)

NAME
ssp - produces single spaced output

SYNOPSIS
ssp [-] [name]. ..

ARGUMENTS
Removes all blank lines.

name
Specifies the name of the input file to be affected.

DESCRIPTION
ssp removes extra blank lines from its input, compressing two or more
blank lines into one. Note that if a line contains any characters at all
(including spaces or tabs), then ssp does not considered it to be blank.
ssp can be used directly, or as a filter after nroff or other text formatting
operations.

EXAMPLES
The command:

nroff -ms f ilea f ileb I ssp > f ilec

would nroff the files with the -ms macro package, then single space the
output and put it into f i 1 e c.

FILES
/usr/bin/ssp

Executable file

SEE ALSO
awk(l), sed(l)

November 1991

strings(!) strings(!)

NAME
strings - finds the printable strings in an object or other binary file

SYNOPSIS
strings [-] [-o] [-number] file ...

ARGUMENTS
Causes strings to only look in the initialized data space of object
files, unless this option is given.

file Specifies the binary file to be searched.

-o Causes each string to be preceded by its offset in the file (in octal).

-number
Causes the specified number to be used as the minimum string length,
rather than 4.

DESCRIPTION
strings looks for ASCII strings in a binary file. A string is any
sequence of 4 or more printing characters ending with a newline or a null.

The strings program is useful for identifying random object files and
many other things.

EXAMPLES
Entering the command:

strings objl

will locate the ASCII-character strings in the object file obj 1.

LIMITATIONS
The algorithm for identifying strings is extremely primitive.

FILES
/bin/strings

Executable file

SEE ALSO
od(l), xs tr(l)

November 1991

strip(l) strip(l)

NAME
strip - strips symbol and line number information from an object file

SYNOPSIS
strip [- 1] [- r] [- s] [- V] [- x] file ...

ARGUMENTS
file Specifies the object file to be stripped.

-1 Strips line number information only; does not strip any symbol table
information.

- r Resets the relocation indexes into the symbol table.

- s Resets the line number indexes into the symbol table (do not remove).
Resets the relocation indexes into the symbol table.

- V Prints the version of the strip command executing on the standard
error output.

- x Does not strip static or external symbol information.

DESCRIPTION
The strip command strips the symbol table and line number information
from object files, including archives. When strip has been performed,
no symbolic debugging access is available for that file; therefore, this
command is normally run only on production modules that have been
debugged and tested.

The amount of information stripped from the symbol table can be
controlled by using the options.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip complains and terminates without
stripping.file unless the - r option is used.

If the strip command is executed on a common archive file (see ar(4))
the archive symbol table is removed. The archive symbol table must be
restored by executing the ar(1) command with the s option before the
archive can be link edited by the ld(l) command. strip instructs the
user with appropriate warning messages when this situation arises.

The purpose of this command is to reduce the file storage overhead taken
by the object file.

STATUS MESSAGES AND VALUES
strip: name: cannot open

name cannot be read.

strip: name: bad magic
name is not an object file.

November 1991

strip(l) strip(l)

strip: name: relocation entries present
name contains relocation entries and the - r option was not used;
therefore, the symbol table information cannot be stripped.

FILES
/bin/strip

Executable file
/usr/tmp/str??????

Temporary file

SEE ALSO
as(l), cc(l), ld(l), sdb(l)

ar(4), a. out(4) in AIUX Programmer's Reference

2 November 1991

stty(l) stty(l)

NAME
st t y - sets the modes for a terminal

SYNOPSIS
st t y [- a] [- g] [- n file] [options]

ARGUMENTS
- a Causes st t y to report all of the option settings.

-g Reports current settings in a form that can be used as an argument to
another st ty command.

-n file
Causes st t y to open the file specified by file with the option
O_NODELAY and uses it as standard input. (This means that it will
open modem-controlled lines immediately instead of waiting for a
carrier.)

options
Specifies the various options listed in one of the five groups under the
''DESCRIPTION'' section.

DESCRIPTION
st t y sets certain terminal 1/0 modes for the device that is the current
standard input; without arguments, it reports the settings of certain modes.

Detailed information about the modes listed in the groups ''Control
Modes'', ''Input Modes'', ''Output Modes'', ''Local Modes'', and
"Control Assignments" may be found in termio(7). Options in the
''Combination Modes'' group are implemented by using options in any of
those five groups. Note that many combinations of options make no sense;
however, no checking is performed.

Control Modes
parenb (-parenb)

Enables (disables) parity generation and detection.

parodd (-parodd)
Selects odd (even) parity.

cs5 cs6 cs7 cs8
Selects character size; see termio(7).

0 Hangs up the phone line immediately.

50 75 110 134 150 200 300 600 1200
1800 2400 4800 9600 exta extb

Sets terminal baud to the number given, if possible. (All speeds are
not supported by all hardware interfaces; 9600 baud is assumed.)
19200 is equivalent to exta. 38400 is equivalent to extb.

November 1991

stty(l) stty(l)

hupcl(-hupcl)
Hangs up (does not hang up) modem connection on last close.

hup (-hup)
Works the same as hupcl (-hupcl).

cstopb (-cstopb)
Uses two (one) stop bits per character.

cread (-cread)
Enables (disables) the receiver.

clocal (-clocal)
Assumes a line without (with) modem control.

loblk (-loblk)
Blocks (does not block) output from a noncurrent layer.

Input Modes

2

ignbrk (-ignbrk)
Ignores (does not ignore) break on input.

brkint (-brkint)
Signals (does not signal) INTR on break.

ignpar (-ignpar)
Ignores (does not ignore) parity errors.

parmrk (-parmrk)
Marks (does not mark) parity errors; see termio(7).

inpck (-inpck)
Enables (disables) input parity checking.

istrip(-istrip)
Strips (does not strip) input characters to seven bits.

inlcr (-inlcr)
Maps (does not map) NL to CR on input.

igncr (-igncr)
Ignores (does not ignore) CR on input.

icrnl (-icrnl)
Maps (does not map) CR to NL on input.

iuclc (-iuclc)
Maps (does not map) uppercase alphabetics to lowercase on input.

ixon (- ixon)
Enables (disables) START/STOP output control. Output is stopped by
sending an ASCII DC3 and started by sending an ASCII DC 1.

November 1991

stty(l) stty(l)

ixany (-ixany)
Allows any character (only DC 1) to restart output.

ixoff (-ixoff)
Requests that the system send (not send) ST ART/STOP characters
when the input queue is nearly empty/full.

Output Modes
opost (-opost)

Post-processes output (does not post-process output; ignores all other
output modes).

olcuc (-olcuc)
Maps (does not map) lowercase alphabetics to uppercase on output.

onlcr (-onlcr)
Maps (does not map) NL to CR-NL on output.

ocrnl (-ocrnl)
Maps (does not map) CR to NL on output.

onocr (-onocr)
Does not (does) output a CR at column zero.

onlret(-onlret)
NL performs (does not perform) the CR function on the terminal.

of ill (-of ill)
Uses fill characters (uses timing) for delays.

ofdel (-ofdel)
Fills characters are DELs (NULs).

crO crl cr2 cr3
Selects style of delay for returns; see termio(7).

nlO nll
Selects style of delay for linefeeds; see termio(7).

tabO tabl tab2 tab3
Selects style of delay for horizontal tabs; see termio(7).

bsO bsl
Selects style of delay for backspaces; see termio(7).

ffO ffl
Selects style of delay for form-feeds; see termio(7).

vtO vtl
Selects style of delay for vertical tabs; see termio(7).

November 1991 3

stty(l) st ty(l)

Local Modes
isig (-isig)

Enables (disables) the checking of characters against the special
control characters INTR, QUIT, and SWTCH.

icanon (-icanon)
Enables (disables) canonical input (ERASE and KILL processing).

xcase (-xcase)
Canonicals (unprocessed) uppernower-case presentation.

echo (-echo)
Echoes back (does not echo back) every character typed.

echoe (-echoe)
Echoes (does not echo) ERASE character as a backspace-space­
backspace string.

Note: This mode will erase the ERASEed character on many
CRT terminals; however, it does not keep track of column
position and, as a result, may be confusing on escaped
characters, tabs, and backspaces.

echok (-echok)
Echoes (does not echo) NL after KILL character.

lfkc (-lfkc)
Works the same as echok (-echok); obsolete.

echonl (-echonl)
Echoes (does not echo) NL.

no fl sh (-noflsh)
Disables (enables) flush after INTR, QUIT, or SWTCH.

stwrap(-stwrap)
Disables (enables) truncation of lines longer than 79 characters on a
synchronous line.

stflush(-stflush)
Enables (disables) flush on a synchronous line after every wri te(3).

s tappl (- s tappl)
Uses application mode (uses line mode) on a synchronm~s line.

Control Assignments
erase c

4

Sets the erase character to c (by default, sets to DELETE in the A/UX
standard distribution).

kill c
Sets the kill character to c (by default, sets to CONTROL-U in the

November 1991

stty(l) stty(l)

A/UX standard distribution).

intr c
Sets the interrupt character to c (by default, sets to CONTROL-C in the
A/UX standard distribution).

quit c
Sets the quit character to c (by default, sets to CONTROL-I in the A/UX
standard distribution).

swtch c
Sets the switch character to c (by default, sets to CONTROL- ' in the
A/UX standard distribution).

eof c
Sets the EOF character to c (by default, sets to CONTROL-Din the
A/UX standard distribution).

eol c
Sets the EOL character to c (by default, sets to CONTROL- ' in the
A/UX standard distribution).

min c
Sets the min character to c (min is used only with -icanon; see
termio(7).

time c
Sets the time character to c (time is used only with -icanon; see
termio(7).

If c is preceded by a circumflex (") appropriately escaped from the
shell, then the value used is the corresponding control character (for
example, "dis a CONTROL-D, "? is interpreted as DELETE, and " - is
interpreted as undefined).

line i
Sets the line discipline to i (0 ~ i < 127).

BSD 4.2 Compatible Features
susp c

Sets the suspend character to c. When typed, the suspend character
sends SIGTSTP to the current process group.

dsusp c
Sends SIGTSTP to the current process group, when this option is set
and a program attempts to read terminal input,

tostop (-tostop)
Stops background processes which write on the control tty until
brought into foreground by the shell, when this option is set.

November 1991 5

stty(l) stty(l)

Combination Modes
evenp or parity

Enables parenb and cs 7.

oddp
Enables parenb, cs 7, and parodd.

-parity, -evenp, or -oddp
Disables parenb, and sets cs 8.

raw (-raw or cooked)
Enables (disables) raw input and output (no ERASE, KILL, INTR,
QUIT, SWTCH, EOT, or output post processing).

nl (-nl)
Unsets (sets) icrnl and onlcr. In addition -nl unsets inlcr,
igncr, ocrnl, and onlret.

lease (-lease)
Sets (unsets) xcase, iuclc, and olcuc.

LCASE (- LCASE)
Works the same as lease (-lease).

tabs (-tabs or tab3)
Preserves (expands to spaces) tabs when printing.

ek Resets the ERASE and KILL characters back to normal DELETE and
CONTROL-U.

sane

term

Resets all modes to some reasonable values.

Sets all modes suitable for the terminal type term, where term is one
of tty33, tty37, vt05, tn300, ti 700, or tek.

Hardware-specific Modes

6

modem (-modem)
Enables (disables) modem control for this device. Normally, this is
only turned on for lines connected to modems. Such lines cannot be
opened; see open(2) unless the device's data carrier detect line
(DCD) is asserted by an external device such as a modem. Not all
devices support this option; refer to the specific device's
documentation for details. This option is on by default for
/dev/modem and /dev/ttyO. Since it uses the same signal line as
d tr f 1 ow and emodem, these options cannot be used at the same
time.

emodem (- emodem)
Enables (disables) ''European style'' modem control. Similar to

November 1991

stty(l) stty(l)

modem, as described previously. Refer to termio(7) for further
information.

dtrflow (-dtrflow)
hxctl (-hxctl)

Enables hardware flow control for this device using the DCD line as
input. This is normally used as a flow control with devices such as
printers. Not all devices support this option; refer to the specific
device's documentation for details. These options are on by default
for /dev /printer and /dev/ttyl. Since they use the same
signal line as modem and emodem, dtrf low cannot be used at the
same time as those options. Note that dtrf low and hxctl are
synonymous and cannot be used at the same time.

flow (-flow)
Enables hardware flow control using the request to send and clear to
send lines (RTS/CTS) on a serial device. Not all devices support this
option; refer to the specific device's documentation for details. Often
it is preferable and easier to use XON/XOFF (ixon, ixoff and
ixany) which is supported for all devices.

The hardware-specific modes all apply to modem control; not all devices
support all or any of them. If any of them are supported, then
UIOCTTSTAT is supported. The default mode is
UIOCNOMODEM/UIOCNOFLOW. All these are ''remembered'' when a
device is closed and reopened again.

FILES
/bin/stty

Executable file

SEE ALSO
tabs(l)

ioctl(2), termio(7) inA/UX Programmer's Reference

November 1991 7

style(l) style(l)

NAME
style - analyzes the surface characteristics of documents

SYNOPSIS
style [-a] [-e] [-1 num] [-ml] [-mm] [-p] [-P] [-r num]file ...

ARGUMENTS
- a Prints all sentences with their length and readability index.

-e Prints all sentences that begin with an expletive.

file Specifies the file to be analyzed.

-1 num
Prints all sentences longer than the specified number, num.

-ml
Causes dero ff to skip lists. This option should be used if the
document contains many lists of nonsentences.

-mm
Overrides the default macro package -ms with the -mm macro
package.

-p Prints all sentences that contain a passive verb.

- P Prints parts of speech of the words in the document.

-r num
Prints all sentences whose readability index is greater than the
specified number, num.

DESCRIPTION
sty 1 e analyzes the surface characteristics of the writing style of a
document. It reports on readability, sentence length and structure, word
length and usage, verb type, and sentence openers. Because style runs
dero ff before looking at the text, formatting header files should be
included as part of the input.

LIMITATIONS
Use of nonstandard formatting macros may cause incorrect sentence
breaks.

FILES
/usr/ucb/style

Executable file
/usr /lib/ stylel

File containing style information
/usr /lib/ style2

File containing style information
/usr/lib/style3

File containing style information

November 1991

style(1) style(l)

SEE ALSO
derof f (1), diet ion(l), spel 1(1)

November 1991 2

su(l) su(l)

NAME
su - substitutes user ID

SYNOPSIS
su [-] [name[arg ...]]

ARGUMENTS
Changes your environment to that of name for the temporary login
session.

arg Specifies the information that is passed to the program invoked as
the shell. When using programs like sh(l), an arg of the form
- c string executes string via the shell and an argument of - r will
give the user a restricted shell.

name Specifies the name of the user you wish to assume.

DESCRIPTION
s u allows a user to become another user without logging off. The default
user name is root (that is, superuser).

To use su, the appropriate password must be supplied (unless one is
already root). If the password is correct, su will execute a new shell
with the real and effective user ID set to that of the specified user. The new
shell will be the optional program named in the shell field of the specified
user's password file entry (see passwd(4)), or /bin/ sh if none is
specified (see sh(l)). To restore normal user ID privileges, type an EOF
(CONTROL-D) to the new shell.

The following statements are true only if the optional program named in
the shell field of the specified user's password file entry is like sh(1). If
the first argument to su is a-, the environment will be changed to what
would be expected if the user actually logged in as the specified user. This
is done by invoking the program used as the shell with an argO value
whose first character is - , thus causing the system's profile
(/etc I prof i 1 e) and then the specified user's profile (.prof i 1 e in the
new HOME directory) to be executed. Otherwise, the environment is passed
along with the possible exception of $PA TH, which is set to
/bin: I etc: /usr /bin: /usr I etc for root.

Note that if the optional program used as the shell is /bin/ sh, the user's
. prof i 1 e can check argO for - sh or - su to determine if it was invoked
by login(l) or su(l), respectively. If the user's program is other than
/bin/ sh, then the program is invoked with an argO of -program by both
login(l) and su(l).

All attempts to become another user using s u are logged in the log file
/usr I adm/ sulog.

November 1991

su(l) su(l)

EXAMPLES
The command

su joshua

would cause the system to prompt for j oshua's password; if the password
is typed in correctly, j oshua's identity is substituted.

To become user just in while retaining the previously exported
environment, execute

su justin

To become user just in but change the environment to what would be
expected if just in had originally logged in, execute

su - justin

To execute command with the temporary environment and permission of
user just in, type

su - just in -c "command args"

FILES
/bin/su

Executable file
/etc/passwd

Password file
/etc/profile

Profile file
$HOME.profile

Home directory profile file
/usr/adm/sulog

Log of substitute users

SEE ALSO
csh(l), env(l), ksh(l), login(!), sh(l)

passwd(4), prof ile(4), environ(5) in Ilm

November 1991 2

subj (1) subj (1)

NAME
subj - generates a list of subjects from documents

SYNOPSIS
subj file ...

ARGUMENTS
file Specifies the file that is to be searched for subjects.

DESCRIPTION
subj searches files for subjects that might be appropriate in a subject-page
index and prints the list of subjects on the standard output. The document
should contain formatting commands (from nroff, troff, and mm
among others) to make the best use of subj.

WARNINGS
subj selects sequences of capitalized words as subjects except the first
word in each sentence. Thus, if a sentence begins with a proper noun, the
capitalization rule will not select this word as a subject. On the other hand,
since each sentence is expected to begin on a newline, the first word of a
sentence that begins in the middle of a line may be erroneously selected.

The output of subj may not be appropriate for your needs and should be
edited accordingly.

LIMITATIONS
The subj program also selects as subjects modifier-noun sequences from
the abstract, headings, and topic sentences (the first sentence in each
paragraph), and occasionally a word is incorrectly categorized as a noun or
adjective.

FILES
/usr/bin/subj

Executable file

SEE ALSO
rnrn(l), ndx(l), troff(l)

November 1991

surn(l) surn(l)

NAME
s urn - calculates a checksum

SYNOPSIS
s urn [- r] file ...

ARGUMENTS
file Specifies the file to be calculated by the s urn command.

- r Causes an alternate algorithm to be used in computing the checksum.

DESCRIPTION
sum calculates and displays a 16-bit checksum for the named file, and also
displays the number of blocks in the file. It is typically used to look for bad
spots, or to validate a file communicated over some transmission line.

EXAMPLES
The command:

sum f ilea

produces the checksum and the block count off ilea.

STATUS MESSAGES AND VALUES
Read error is indistinguishable from end-of-file on most devices; check
the block count.

FILES
/bin/sum

Executable file

SEE ALSO
surndir(l), wc(l)

November 1991

sumdir(1) sumdir(l)

NAME
sumdir - sums and counts the characters within the files of the given
directories

SYNOPSIS
sumdir [directories]

ARGUMENTS
directories

Specifies the directories that contain the files to be checked.

DESCRIPTION
sumdir provides a recursive checksum of all files in the specified
directory. It calculates and prints a 16-bit checksum for the named file, and
also prints the number of characters in the file.

It is typically used to look for bad spots on the file system, or to validate a
file transmitted over some transmission line.

The output from this program differs from the output from the sum(l)
program in that sumdir prints the number of characters rather than the
number of blocks in the file.

EXAMPLES
The command:

sumdir manl

produces the checksum and the character count of the files in the manl
directory.

FILES
/usr/bin/sumdir

Executable file

SEE ALSO
sum(l)

1 November 1991

sync(l) sync(l)

NAME
sync - updates the superblock

SYNOPSIS
sync

DESCRIPTION
sync executes the sync system primitive. If the system is to be stopped,
sync must be called to insure file system integrity. It will flush all
previously unwritten system buffers out to disk, thus assuring that all file
modifications up to that point will be saved. See sync(2) for details.

EXAMPLES
The command:

sync

should be typed to flush all internal disk buffers, before bringing down the
system.

FILES
/bin/sync

Executable file

SEE ALSO
shutdown(lM) in A/UX System Administrator's Reference

sync(2) in A/UX Programmer's Reference

November 1991

sysline(l) sysline(l)

NAME
sys 1 ine - displays the system status on the status line of a terminal

SYNOPSIS
sysline [+seconds] [-b] [-c] [-d] [-D] [-e] [-h] [-H remote] [-i]
[- j] [- 1] [- m] [-p] [-q] [- r] [- s]

ARGUMENTS
+seconds

Specifies the interval (in seconds) in which the status line is updated.
The default is 60 seconds.

- b Beeps once every half hour and twice every hour, just like those
obnoxious watches you keep hearing.

- c Clears the status line for 5 seconds before each redisplay.

-d Debugs and prints status line data in human-readable format.

- D Prints out the current day/date before the time.

- e Prints out only the information. Does not print out the control
commands necessary to put the information on the bottom line. This
option is useful for putting the output of sys 1 ine onto the mode line
of an emacs window.

- h Prints out the host machine's name after the time.

-H remote
Prints the load average on the remote host remote. If the host is down,
or is not sending out rwhod packets, then the down time is printed
instead.

-i Prints out the process ID of the sys line process onto standard
output upon startup. With this information you can send the alarm
signal to the sysline process to cause it to update immediately.
sys line writes to the standard error, so you can redirect the
standard output into a file to catch the process id.

-j Forces the sysline output to be left-justified even on terminals capable
of cursor movement on the status line.

-1 Does not print the names of people who log in and out.

-m Does not check for mail.

-p Does not report the number of processes, which are runnable and
suspended.

-q Does not print out diagnostic messages if something goes wrong when
starting up.

November 1991

sysline(l) sysline(l)

- r Does not display in reverse video.

- s Prints ''short'' form of line by left-justifying. if! escapes are not
allowed in the status line. Some terminals (the tvi 'sand Freedom
1 0 0 's, for example) do not allow cursor movement (or other
"intelligent" operations) in the status line. For these terminals,
sys line normally uses blanks to cause right-justification. This
option will disable the adding of the blanks.

DESCRIPTION
sys 1 ine runs in the background and periodically displays system status
information on the status line of the terminal. Not all terminals have a
status line. Those that do include the h19, c108, aaa, vtlOO,
tvi92 5 /tvi9 50, and Freedom 10 0. Of these, only the hl 9 termcap
entry supports the status line.

Note: The Macintosh monitor does not have a status line.

If no options are given, sys 1 ine displays the time of day, the current load
average, the change in load average in the last 5 minutes, the number of
users (followed by u), the number of runnable processes (followed by r),
the number of suspended processes (followed bys), and the users who
have logged on and off since the last status report. Finally, if new mail has
arrived, a summary of it is printed. If there is unread mail in your mailbox,
an asterisk will appear after the display of the number of users. The
display is normally in reverse video (if your terminal supports this in the
status line) and is right-justified to reduce distraction. Every fifth display is
done in normal video to give the screen a chance to rest.

If you have a file named . who in your home directory, then the contents of
that file are printed first. One common use of this feature is to alias chdir,
pushd, and popd to place the current directory stack in - I . who after it
changes the new directory.

If you have a file . syslinelock in your home directory, then sys line
will not update its statistics and write on your screen; it will just go to sleep
for a minute. This is useful if you want to disable sys line momentarily.
Note that it may take a few seconds from the time the lock file is created
until you are guaranteed that sysline will not write on the screen.

LIMITATIONS
If you interrupt the display, you may find your cursor missing or stuck on
the status line. The best thing to do is to reset the terminal.

If there is too much for one line, the excess is thrown away.

November 1991 2

sysline(l)

FILES
/usr/ucb/sysline

Executable file
/etc/termcap

Terminal capabilities file
/etc/utmp

File containing names of people who are logged in
/dev/kmem

File containing process table
/usr/spool/rwho/whod.*

File containing who/uptime
information for remote hosts

${HOME}/.who
File containing information to print on bottom line

${HOME}/.syslinelock
Lock file; when it exists, sys 1 ine will not print.

SEE ALSO
ps(l)

pstat(lM) inA/UX System Administrator's Reference

3

sysline(l)

November 1991

systemfolder(1) systemfolder(l)

NAME
systemfolder, systemfolder24 - create a personal System
Folder

SYNOPSIS
systemfolder[-f][-u userj

systemfolder24 [-f] [-u user]

ARGUMENTS
- f Forces the update of the System file. By default, the System file is not

updated if it already exists in the personal System Folder. This
convention prevents overwriting of personal fonts, desk accessories,
and so on.

-u user
Creates a personal System Folder for the user designated by user. This
option is generally used only by the system administrator. In this
case, the System Folder is created in the home directory of the user
designated by user.

DESCRIPTION
systemfolder allows you to create a personal Macintosh System Folder
in your home directory. When you enter the Finder environment, this
personal System Folder is used instead of the global System Folder,
I mac I sys I System F o 1 de r. Files are copied (privately modifiable)
and linked (shared) from read-only versions stored in
/mac /lib/ SystemFiles. If a personal System Folder already exists,
it is updated with any files from Sys t emF i 1 es that are not present in the
personal folder.

The systemf older2 4 command creates a personal System Folder
specifically for use with 24-bit mode.

You can install a 24-bit System Folder to allow the use of certain desk
accessories or inits that are not 32-bit clean. Note that you do not need a
24-bit System Folder to run 24-bit applications under the Finder (24-bit).

FILES
$HOME/System Folder

Directory corresponding to a new System Folder
$HOME/System Folder24

Directory corresponding to a new System Folder for 24 bit mode
/mac/lib/SystemFiles/private/*

Files that are copied into a new System Folder
/mac/lib/SystemFiles/shared/*

Files that become links in a new System Folder

November 1991

systemfolder24(1) systemfolder24(1)

See systemfolder(l)

November 1991

systernfolder(1) systernfolder(1)

SEE ALSO
startrnac(lM) inAIUX System Administrator's Reference

2 November 1991

tabs(l) tabs(l)

NAME
tabs - sets the tab stops on a terminal

SYNOPSIS
tabs [tabspec] [+rn[n]] [-Ttype]

ARGUMENTS
m[n]

Specifies the margin argument that is used for some terminals. This
option causes all tabs to be moved over n columns by making column
n+ 1 the left margin. If +rn is given without a value of n, the value
assumed is 10. For a TerrniNet, the first value in the tab list should
be 1, or the margin will move even further to the right. The normal
(left-most) margin on most terminals is obtained by +rnO. The margin
for most terminals is reset only when the +rn option is given explicitly.

tabspec
Specifies the table specification. If no tabspec is given, the default
value is -8, i.e., UNIX "standard" tabs. The lowest column number
is 1. Note that for tabs, column 1 always refers to the left-most
column on a terminal, even one whose column markers begin at 0,
e.g., the DASI 300, DASI 300s, and DASI 450. Replace tabspec with
one of the following:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2
1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55

-c2

-c3

COBOL, normal format

1,6,10,14,49
COBOL, compact format (columns 1-6 omitted). Using this
code, the first typed character corresponds to card column 7, one
space gets you to column 8, and a tab reaches column 12. Files
using this tab setup should include a format specification as
follows:

<:t-c2 rn6 s66 d:>"

(see the --file option).

1,6, 10, 14, 18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs
than -c2. This is the recommended format for COBOL. The

November 1991

tabs(l)

2

appropriate format specification is:

<:t-c3 rn6 s66 d:>

(see the - -file option).

-f 1,7, 11,15,19,23
FORTRAN

-p 1,5,9,13, 17 ,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIV AC 1100 Assembler

tabs(l)

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n,
etc. Note that such a setting leaves a left margin of n columns on
TerrniNet terminals only. Of particular importance is the
value - 8: this represents the UNIX ''standard'' tab setting, and
is the most likely tab setting to be found at a terminal. It is
required for use with the nroff - h option for high-speed
output. Another special case is the value - 0, implying no tabs.

nl,n2, ...
The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is
preceded by a plus sign, it is taken as an increment to be added to
the previous value. Thus, the tab lists l , 10 , 2 0 , 3 0 and
l , 1 0 , + 1 0 , + 10 are considered identical.

- -file
If the name of a file is given, tabs reads the first line of the file,
searching for a format specification. If it finds one there, it sets
the tab stops according to it, otherwise it sets them as - 8. This
type of specification may be used to make sure that a tabbed file
is printed with correct tab settings, and would be used with the
pr(l) command:

tabs - -file; pr file

-Ttype
Specifies the terminal type. tabs usually needs to know the
type of terminal in order to set tabs and always needs to know the
type to set margins. type is a name listed in terrn(5). If no -T
option is supplied, tabs searches for the $TERM value in the
environment (see environ(5)). If no type can be found, tabs

November 1991

tabs(l) tabs(l)

tries a sequence that will work for many terminals.

DESCRIPTION
tabs sets the tab stops on the user's terminal according to the tab
specification tabspec, after clearing any previous settings. The user must
have remotely-settable hardware tabs.

Users of TermiNet terminals should be aware that they behave
differently from most other terminals for some tab settings. The first
number in a list of tab settings becomes the left margin on a TermiNet
terminal. Thus, any list of tab numbers whose first element is other than 1
causes a margin to be left on a TermiNet terminal, but not on other
terminals. A tab list beginning with 1 causes the same effect regardless of
terminal type. It is possible to set a left margin on some other terminals,
although in a different way (see below).

If the -Ttype or +m[n] option occurs more than once, the last value given
takes effect.

Tab and margin setting is performed via the standard output.

EXAMPLES
This command will send commands to the terminal to set the tabs for
COBOL format remotely:

tabs -c

The following command will set tabs in columns 6, 12 and 18:

tabs 6,12,18

The command:

tabs -10

will set tabs in columns 11, 21, 31, 41, 51, 61, and 71.

LIMITATIONS
There is no consistency among different terminals regarding ways of
clearing tabs and setting the left margin.

It is generally impossible to change the left margin usefully without also
setting tabs.

The tabs command clears only 20 tabs (on terminals requiring a long
sequence), but is willing to set 64.

STATUS MESSAGES AND VALUES
illegal tabs

When arbitrary tabs are ordered incorrectly.

illegal increment
When a zero or missing increment is found in an arbitrary
specification.

November 1991 3

tabs(l) tabs(l)

unknown tab code
When a predefined code cannot be found, where predefined codes
include:

-a-a2-c-c2-c3-f-p-s-u

can't open
If the - -file option is used, and file can't be opened.

file indirection
If the - -file option is used and the specification in that file points to
yet another file. Indirection of this form is not permitted.

FILES
/usr/bin/tabs

Executable file

SEE ALSO
nrof f(l), pr(l), tset(l)

terrn(4), environ(5) inA/UX Programmer's Reference

4 November 1991

tail(l)

NAME
ta i 1 - displays the last part of a file

SYNOPSIS
tail [±[number][[b][f]]] [file]

tai 1 [±[number][[c][f]]] [file]

tail [±[number][[l][f]]] [file]

ARGUMENTS
±number

tail(l)

Starts copying at the specified distance +number from the beginning,
or the specified distance -number from the end of the input. If
number is null, the value 10 is assumed. The specified distance is
counted by lines (-1) by default.

b Counts the specified distance, ±number, in units of blocks.

c Counts the specified distance, ±number, in units of characters.

-f Enters an endless loop (wherein it sleeps for a second and then
attempts to read and copy further records from the input file) instead
of terminating after the line of the input file has been copied, if the
input file is not a pipe. Thus it may be used to monitor the growth of a
file that is being written by some other process. You must interrupt
ta i 1 to escape this loop.

file Specifies the file to be used in the ta i 1 command. If no file is
specified, the standard input is used.

1 Counts the specified distance, ±number, in units of lines. This is the
default.

DESCRIPTION
ta i 1 copies the named file to the standard output beginning at a
designated place.

EXAMPLES
To print the last ten lines of the file jack, followed by any lines that are
appended to jack between the time tai 1 is initiated and interrupted,
enter:

tail -f jack

The command:

tail -15cf jack

will print the last 15 characters of the file jack, followed by any lines that
are appended to jack between the time tail is initiated and interrupted.

November 1991

tail(l) tail(l)

LIMITATIONS
Any tails relative to the end of the file are treasured up in a buffer, and
thus are limited in length. Various kinds of anomalous behavior may
happen with character special files.

FILES
/bin/tail

Executable file

SEE ALSO
cat(l), dd(l), head(l), rnore(l), pg(l)

2 November 1991

talk(lN) talk(lN)

NAME
ta 1 k - talks to another user via the terminal

SYNOPSIS
talk user [ttyname]

ARGUMENTS
user

Specifies the login name of the person you wish to talk to.

tty name
Specifies the terminal that the person you wish to talk to is using.

DESCRIPTION
ta 1 k is a visual communication program that copies lines from your
terminal to that of another user.

If you wish to talk to someone on your own machine, then user is just the
login name of the person you wish to talk to. If you wish to talk to a user
on another host connected via Ethernet to a local network running the
TCP/IP networking software, user is of one of these forms:

host! user
host. user
host: user
user@host

If you want to talk to a user who is logged in more than once, the ttyname
argument may be used to indicate the appropriate terminal name.

While in a talk session, typing CONTROL-L will cause the screen to be
reprinted, while your erase and kill characters will work in talk as
normal.

To exit a talk session, just type your interrupt character; talk then moves
the cursor to the bottom of the screen and restores the terminal.

Permission to talk may be denied or granted by use of the mes g command.
At the invocation of ta 1 k, talking is allowed. Certain commands, in
particular nrof f(l) and pr(l), disallow messages in order to prevent
messy output.

EXAMPLES
When ta 1 k is first called, it sends the message

Message from TalkDaemon@his machine
talk: connection requested by yourname@yourmachine.
talk: respond with: talk your name@your machine

to the user you wish to talk to. At this point, the recipient of the message
should reply by typing

November 1991 1

talk(lN) talk(lN)

talk yourname@your machine

It doesn't matter from which machine the recipient replies, as long as his
login name is the same. Once communication is established, the two
parties may type simultaneously, with their output appearing in separate
windows.

FILES
/usr/bin/talk

Executable file
/etc/hosts

File containing list of host machines
/etc/utmp

File containing terminal information

SEE ALSO
mail(l), mesg(l), who(l), write(l)

2 November 1991

tar(l) tar(l)

NAME
tar - copies files to or from a tar archive

SYNOPSIS
tar [-]c[O ... 7[density]][i1 vbBdf s] [bBdfs-arg]. .. file .. .

tar [-]r[O ... 7 [density]][il vbBdf s] [bBdfs-arg] ... file .. .

tar [-] t [0 ... 7][i vw] [f archive] ffile-in-archive]. ..

tar [-]u[0 ... 7[density]][ilvbBdfs] [bBdfs-arg]. .. file ...

tar [-]x[0 ... 7][t imovw[f archive] ffile-in-archive]. ..

ARGUMENTS
0 ... 7 [density]

-b

-B

Selects a tape drive, where a digit between 0 and 7 is the drive
number corresponding to a 9-track tape drive and density is the
density to be established:

-1 low (800 bpi)

-m medium (1600 bpi)

-h high (6250 bpi)

The default is Om (drive number 0 at 1600 bpi).

Note that the drive number is unrelated to SCSI ID numbers. The
command option that can be used to select a particular SCSI device is
- f (described later in this list).

(-c, -r, -u modes)
Lets you specify the blocking factor for tape records as one of the
supplied bBdfs-arg values. The default value is 1, the maximum is 20.
This command option should only be used with raw magnetic tape
devices (see the -f option). The block size is determined
automatically when reading tapes.

(-c, -r, -u modes)
Lets you specify the number of 512-byte blocks that fit on the media
as one of the supplied bBdfs-arg values. This permits tar to correctly
issue prompts requesting insertion of additional media during lengthy

November 1991

tar(l) tar(l)

2

archival operations.

bBdfs-arg
(-c, -r, -u modes)
Specifies one of the arguments associated with the - b, - B, - d, - f, or
- s command options. Note that these values are detached from their
associated command options. However, they must be entered in an
order that matches the order of the related command options. For
more information regarding legal replacement values, refer to each of
the specific command options elsewhere in this alphabetical list.

-c Creates a new archive, overwriting any old information within an
archive.

-d
(-c, -r, -u modes)
Lets you specify the tape's density as one of the supplied bBdfs-arg
values. The default value is 1600 (BPI).

- f Lets you specify the archive file or device as one of the supplied
bBdfs-arg values. The default value is I dev /mt I Om.

file

If the value is given as - , tar writes to the standard output or reads
from the standard input, in accordance with other command options.
Thus, tar may be used at the head or the tail of a command pipeline
as shown in ''Examples.''

(-c, -r, -u modes)
Specifies what to archive in terms of a file or directory. If a directory
is specified, the contents of it (including nested directories and files)
are archived. Note that tar does not follow symbolic links properly,
but that it does correctly handle hard file links.

file-in-archive
(-t mode)
Specifies what to list from an archive in terms of one or more
exactly-matching filenames (or pathnames) that you know are located
inside an archive and that you wish to be displayed (see the other
options for use when retrieving files from archives, -m and - o).

file-in-archive
(-x mode)
Specifies what to retrieve from an archive in terms of one or more
exactly-matching filenames (or pathnames) of files that are located
inside an archive and that you wish to retrieve. If the file named
matches a directory whose contents had been written into archive, this
directory is (recursively) extracted. If a named file from within
archive does not exist on the system, the file is created with the same

November 1991

tar(l) tar(l)

mode as in the archive, except that the set-user-ID and set-group-ID
bits are not set unless you are superuser. If the file exists, its
permissions are not changed except for the bits described above. The
owner, group, and modification time are restored (if possible). If no
file-in-archive arguments are given, the entire content of archive is
extracted. Note that if several files with the same name are on the
tape, the last one overwrites all earlier ones.

- i Establishes the preference to ignore symbolic links (see related
information within ''Limitations'').

-1

-m

-o

(-c, -r, -u modes)
Establishes the preference to report error messages if links cannot be
followed, causing certain data to be skipped. If -1 is not specified, no
error messages are printed.

(-x mode only)
Establishes new modification times for files retrieved from an archive
rather than preserving the original modification dates and times. The
modification time of the file will be the time of extraction.

(-x mode only)
Establishes the user ID and group ID for retrieved files as those of the
user running the program rather than those recorded when the archive
was created.

- r Appends archive data onto an existing archive rather than overwriting
and destroying the previous archive. This command mode may not
work on all devices because it requires the ability to perform ''seek''
operations within the media.

- s Lets you specify the tape's length in feet as one of the supplied
bBdfs-arg values. This value together with the density allows tar to
calculate when the end of the tape is reached, so that it can prompt for
another tape in a sequence of tapes. The default length is 2300 feet.

- t Displays the contents of an archive without copying any files out of it.

-u Appends to an archive conditionally, adding files to the archive file or
device (see the -f option) only if they are not already there or have
been modified since last written on that archive.

-v Establishes a preference to provide regular feedback about the work
underway. Normally, tar does its work without displaying progress
messages. The -v (verbose) option causes it to type the name of each
file it treats, preceded by the function letter. When used along with

November 1991 3

tar(l)

-w

tar(l)

the -t option, -v gives, in addition to the name, information about
the tape entries.

(-t, -x modes)
Requests confirmation between individual read or write operations.
When this command option is present, tar prints the action to be
taken, followed by the name of the file, and then waits for the user's
confirmation. If a word beginning with y is given, the action is
performed. Any other input means ''no''.

-x Retrieves (extracts) files from an archive file or device.

DESCRIPTION
tar saves and retrieves files within an archive, which is often stored on
removable media such as magnetic tape or 3.5-inch disks. Archives come
in two basic varieties. Archives that are not embedded inside of files are
called archives. They can occupy all of the available storage space.
Archives that are embedded within files inside of file systems are called
archive files. They can occupy the remaining storage once the overhead
for the file system has been subtracted from the disk or tape media. The
terms archive and tar-formatted data are not specific with regard to a
storage format.

When placed inside a normal file, an archive acquires all the usual file
attributes, such as a filename and permission settings. When archive files
are created, the file attributes are those associated with Macintosh files if
the archive file is copied to a Macintosh disk using the Finder, or UNIX file
attributes if left to reside on an A/UX file system.

Five possible modes of operation are selected through the leading
command option. Of these, two perform read operations, and three
perform a variety of write operations. Use the -x option to read from a
tar-formatted stream of data. The following command line uses tar to
read from the 3.5-inch disk inside drive zero and retrieve all of its
tar-formatted files.

tar -xf /dev/rfloppyO

The -c option creates a stream of tar-formatted data containing a copy of
all the files supplied as file arguments. To create an archival version of each
of the files cover, body, and graph inside of the archive file named
project. arc, use

tar -cf project.arc cover body graph

4 November 1991

tar(l)

EXAMPLES
cd fromdir; tar cf - . I (cd todir; tar xf -)

will copy directories from one directory tree (f rorndir) to another
(todir).

STATUS MESSAGES AND VALUES

tar(l)

If tar reports that not enough memory is available to hold the link tables,
then the archive will not reliably maintain information about which files are
linked.

LIMIT A TIO NS
There is no way to ask for the nth occurrence of a file inside a given
archive.

Tape errors are handled ungracefully.

The - b option should not be used with archives that are going to be
updated. The current magnetic tape driver cannot backspace raw magnetic
tape. If the archive is on a disk file, the - b option should not be used at all,
because updating an archive stored on disk can destroy it.

The current limit on filename length is 100 characters.

Empty directories are skipped when creating a tar archive.

Note that tar corn is not the same as tar crnO.

tar is unable to create archives containing device files.

FILES
/usr/bin/tar
/dev/rrnt/*
/dev/rnt/*
/trnp/tar*

SEE ALSO
ar(l), cpio(l), dd(l), tp(l)

dump. bsd(IM) in A/UX System Administrator's Reference

tar(4) in AIUX Programmer's Reference

November 1991 5

tbl (1) tbl (1)

NAME
tbl - table formatter for nroff or troff

SYNOPSIS
tbl [-TX] [file]. ..

ARGUMENTS
file Specifies the file (that contains a table) to be formatted. If no

filenames are given as arguments (or if - is specified as the last
argument), tbl reads the standard input, so it may be used as a filter.
When it is used with eqn(l) or neqn, tbl should come first to
minimize the volume of data passed through pipes.

-TX
Forces tbl to use only full vertical line motions, making the output
more suitable for devices that cannot generate partial vertical line
motions (for example, line printers).

DESCRIPTION
tbl is a preprocessor that formats tables for nroff or troff. The input
files are copied to the standard output, except for lines between . TS and
. TE command lines, which are assumed to describe tables and are
reformatted by tbl. (The . TS and . TE command lines are not altered by
tbl.)

The . Ts command line is followed by global options, which are:

center
Centers the table (default is left adjust).

expand
Makes the table as wide as the current line length.

box
Encloses the table in a box.

doublebox
Encloses the table in a double box.

allbox
Encloses each item of the table in a box.

tab(x)
Uses the character x instead of a tab to separate items in a line of input
data.

The global options, if any, are terminated with a semicolon (;).

Next come lines describing the format of each line of the table. Each such
format line describes one line of the actual table, except that the last format
line (which must end with a period) describes all remaining lines of the
table. Each column of each line of the table is described by a single

November 1991

tbl(l) tbl (1)

keyletter, optionally followed by specifiers that determine the font and
point size of the corresponding item, that indicate where vertical bars are to
appear between columns, that determine column width, intercolumn
spacing, etc. The available keyletters are:

c Centers item within the column.

r Right adjusts item within the column.

1 Left adjusts item within the column.

n Numerically adjusts item in the column. Units positions of
numbers are aligned vertically.

s Spans previous item on the left into this column.

a Centers longest line in this column and then left adjusts all other
lines in this column with respect to that centered line.

Spans down previous entry in this column.

Replaces this entry with a horizontal line.

Replaces this entry with a double horizontal line.

The characters Band I stand for the bold and italic fonts, respectively.
The character I indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for the
table, followed finally by . TE. Within such data lines, data items are
normally separated by tab characters.

If a data line consists of only_ or=, a single or double line, respectively, is
drawn across the table at that point. If a single item in a data line consists
of only_ or=, then that item is replaced by a single or double line.

Full details of all these and other features of tbl are given in the reference
manual cited below.

EXAMPLES
In the following input, CONTROL-I (" I) represents a tab (which should be
typed as a genuine tab):

.TS
center box
cB s s
cI cI s
cI I cI s
1 I n n
Household I Population

Town"IHouseholds
"I Number" I Size

November 1991 2

tbl (1)

BedminsterAI789AI3.26
Bernards Twp. A I 3 0 8 7 A I 3 . 7 4
BernardsvilleAI2018AI3.30
Bound BrookAI3425AI3.04
BridgewaterAI7897AI3.81
Far HillsAI240AI3.19
.TE

yields:

Household Po_l!_ulation

Town
Households

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Bridgewater
Far Hills

LIMITATIONS
See LIMITATIONS under nrof f(l).

FILES
/bin/tbl

Executable file

SEE ALSO

Number
789

3087
2018
3425
7897

240

eqn(l), mm(l), mvt(l), nroff(!), troff(!)

Size
3.26
3.74
3.30
3.04
3.81
3.19

mm(5), ms(5), mv(5) in A/UX Programmer's Reference

"tbl Reference" inAIUX Text Processing Tools

3

tbl (1)

November 1991

tc(l) tc(l)

NAME
t c - interprets troff output for use at a vintage display device

SYNOPSIS
tc [-a n] [-e] [-o list] [-t] [file] ...

ARGUMENTS
-an

Sets the aspect ratio to n; the default is 1.5.

- e Does not erase before each page.

-o list
Prints only the pages enumerated in list. The list consists of pages and
page ranges (for example, 5-17) separated by commas. The range n­
goes from n to the end; the range -n goes from the beginning to and
including page n.

- t Does not wait between pages (for directing output into a file).

DESCRIPTION
tc interprets its input (standard input default) as output from trof f(l).
The standard output of tc is intended for a TEKTRONIX 4015 (a 4014
terminal with ASCII and APL character sets). The various typeface sizes
are mapped into the 4014's four sizes; the entire troff character set is
drawn with the 4014's character generator, by using overstruck
combinations where necessary, producing an altogether displeasing effect.

Typical usage is:

troff troff-options file I tc

At the end of each page, tc waits for a newline (empty line) from the
keyboard before continuing to the next page. In this wait state, the
following commands are recognized:

!cmd
Sends cmd to the shell.

e Inverts the state of the screen erase.

n Prints page n (previously printed).

-n Skips backward n pages.

olist
Sets - o list to list.

p Prints current page again.

an Sets the aspect ratio to n.

? Prints list of available options.

November 1991

tc(l) tc(l)

LIMITATIONS
Font distinctions are lost.

The tc command needs a -w option to wait for input to arrive.

FILES
/usr/bin/tc

Executable file

SEE ALSO
4014(1), nroff(l), tplot(lG), troff(l)

2 November 1991

tcb(l) tcb(l)

NAME
t cb - blocks data to 8K for direct input to I dev I rrnt It ex

SYNOPSIS
command-line I tcb >/dev/rrnt/tcx

ARGUMENTS
command-line

Specifies the command line which generates the output channeled to
the t cb command.

x Specifies the Small Computer System Interface (SCSI) ID of the tape
cartridge drive.

DESCRIPTION
t cb reads standard input and writes standard output in a blocking format
suitable for the Apple Tape Backup 40SC. The output of t cb is always
blocked at 8K to satisfy the blocking requirements of the tape cartridge
drive. The last output block is zero-filled as necessary. If the output of
t cb is sent through another pipe before being directed to the tape cartridge
drive, the tape-specific blocking of tcb data is lost.

To create an archive that is larger than one tape, specify tar along with
the - B option and a size argument. This option allows you to specify the
capacity of the tape cartridge in terms of 512-byte blocks. You compute
the capacity by using a conversion factor of 2048 blocks per MB.

To read from an archive written with tar and tcb, use dd(l) and specify
an 8K blocking size. Better performance results from using a larger input
buffer size, as long as the buffer size is a multiple of 8K:

dd if=/dev/rrnt/tcx ibs=20x8K !tar xvf -

EXAMPLES
The following example illustrates how to create a tar archive on cartridge
tape. The SCSI ID of your tape cartridge drive is 2 in this example. Type:

tar cvf - . I tcb >/dev/rrnt/tc2

SEE ALSO
dd(l), tar(l)

tc(7) in AIUX Programmer's Reference

November 1991

tee(l) tee(l)

NAME
tee - transcribes data

SYNOPSIS
tee [-i] [-a] [file]. ..

ARGUMENTS
- a Causes the output to be appended to the files rather than overwriting

them.

file Specifies the file that contains the transcribed data.

- i Ignores interrupts.

DESCRIPTION
tee transcribes the standard input to the standard output and makes copies
in the specified files.

EXAMPLES
The command:

make I tee x

will cause the output of the make program to be recorded on file x as well
as printed on standard output.

FILES
/bin/tee

Executable file

November 1991

telnet(IC) telnet(IC)

NAME
telnet - communicates with another host via the TELNET protocol

SYNOPSIS
telnet host [port]

telnet

ARGUMENTS
host [port]

Specifies the name of the host system you wish to connect to, and the
port number of that host.

DESCRIPTION
telnet is used to communicate with another host using the TELNET
protocol.

If telnet is invoked with arguments, it performs an open command (see
the "open" command below) with those arguments.

If telnet is invoked without arguments, it enters command mode,
indicated by its prompt ("telnet>"). In this mode, it accepts and
executes the commands listed below.

Once a connection has been opened, telnet enters an input mode. The
input mode entered will be either "character at a time" or "line by line"
depending on what the remote system supports.

In ''character at a time'' mode, most text typed is immediately sent to the
remote host for processing.

In "line by line" mode, all text is echoed locally, and (normally) only
completed lines are sent to the remote host. The ''local echo character''
(initially '' "E' ')may be used to tum off and on the local echo (this would
mostly be used to enter passwords without the password being echoed).

In either mode, if the localchars toggle is TRUE (the default in line mode;
see below), the user's quit, interrupt, and flush characters are trapped
locally, and sent as TELNET protocol sequences to the remote side. There
are options (see toggle auto.flush and toggle autosynch below) which
cause this action to flush subsequent output to the terminal (until the remote
host acknowledges the TELNET sequence) and flush previous terminal
input (in the case of quit and interrupt).

While connected to a remote host, telnet command mode may be
entered by typing the telnet "escape character" (initially"" J ").
When in command mode, the normal terminal editing conventions are
available.

November 1991

telnet(lC) telnet(lC)

Commands

2

The following commands are available. Only enough of each command to
uniquely identify it need be typed (this is also true for arguments to the
mode, set, toggle, and display commands).

open host [port]
Opens a connection to the named host. If no port number is specified,
telnet attempts to contact a TELNET server at the default port.
The host specification may be either a host name (see hosts(4)) or
an Internet address specified in the ''dot notation'' (see inet(3N)).

close
Closes a TELNET session and returns to command mode.

quit
Closes any open TELNET session and exits telnet. An end of file
(in command mode) will also close a session and exit.

z Suspends telnet. This command only works when the user is using
the csh(l).

mode type
Sets type to either line (for "line by line" mode) or character (for
"character at a time" mode). The remote host is asked for permission
to go into the requested mode. If the remote host is capable of
entering that mode, the requested mode will be entered.

status
Shows the current status of telnet. This includes the peer one is
connected to, as well as the current mode.

display [argument] ...
Displays all, or some, of the set and toggle values (see below).

?[command]
Gets help. With no arguments, telnet prints a help summary. If a
command is specified, telnet prints the help information for just
that command.

send arguments
Sends one or more special character sequences to the remote host.
The following are the arguments which may be specified (more than
one argument may be specified at a time):

escape
Sends the current telnet escape character (initially"~ J ").

synch
Sends the TELNET SYNCH sequence. This sequence causes the
remote system to discard all previously typed (but not yet read)

November 1991

telnet (IC) telnet (IC)

input. This sequence is sent as TCP urgent data (and may not
work if the remote system is a 4.2 BSD system; if it doesn't
work, a lowercase ''r'' may be echoed on the terminal).

brk Sends the TELNET BRK (Break) sequence, which may have
significance to the remote system.

ip Sends the TELNET IP (Interrupt Process) sequence, which
should cause the remote system to abort the currently running
process.

ao Sends the TELNET AO (Abort Output) sequence, which should
cause the remote system to flush all outputfrom the remote
system to the user's terminal.

ayt Sends the TELNET A YT (Are You There) sequence, to which
the remote system may or may not choose to respond.

ec Sends the TELNET EC (Erase Character) sequence, which
should cause the remote system to erase the last character
entered.

el Sends the TELNET EL (Erase Line) sequence, which should
cause the remote system to erase the line currently being entered.

ga Sends the TELNET GA (Go Ahead) sequence, which likely has
no significance to the remote system.

nop Sends the TELNET NOP (No OPeration) sequence.

? Prints out help information for the send command.

set argument value
Set any one of a number of telnet variables to a specific value. The
special value ''off'' turns off the function associated with the variable.
The values of variables may be interrogated with the dis p 1 a y
command. The variables which may be specified are:

echo
This is the value (initially "" E") which, when in "line by line"
mode, toggles between doing local echoing of entered characters
(for normal processing), and suppressing echoing of entered
characters (for entering, say, a password).

escape
This is the telnet escape character (initially"" [")which
causes entry into telnet command mode (when connected to a
remote system).

interrupt
If telnet is in localchars mode (see toggle localchars
below) and the interrupt character is typed, a TELNET IP

November 1991 3

telnet(lC) telnet(lC)

4

sequence (see send ip above) is sent to the remote host. The
initial value for the interrupt character is taken to be the
terminal's interrupt character.

quit If telnet is in localchars mode (see toggle localchars
below) and the quit character is typed, a TELNET BRK sequence
(see send brk above) is sent to the remote host. The initial value
for the quit character is taken to be the terminal's quit character.

flushoutput
If telnet is in localchars mode (see toggle localchars
below) and theflushoutput character is typed, a TELNET AO
sequence (see send ao above) is sent to the remote host. The
initial value for the flush character is taken to be the terminal's
flush character.

erase
If telnet is in localchars mode (see toggle localchars
below), and if telnet is operating in "character at a time"
mode, then when this character is typed, a TELNET EC sequence
(see send ec above) is sent to the remote system. The initial
value for the erase character is taken to be the terminal's erase
character.

kill If telnet is in localchars mode (see toggle localchars
below), and if telnet is operating in ''character at a time'' mode,
then when this character is typed, a TELNET EL sequence (see
send el above) is sent to the remote system. The initial value
for the kill character is taken to be the terminal's kill character.

eof If telnet is operating in "line by line" mode, entering this
character as the first character on a line will cause this character
to be sent to the remote system. The initial value of the EOF
character is taken to be the terminal's EOF character.

toggle arguments ...
Toggles (between TRUE and FALSE) various flags that control how
telnet responds to events. More than one argument may be
specified. The state of these flags may be interrogated with the
display command. Valid arguments are:

locale ha rs
If this is TRUE, then the flush, interrupt, quit, erase, and kill
characters (see set above) are recognized locally, and
transformed into (hopefully) appropriate TELNET control
sequences (respectively ao, ip, brk, ec, and el; see send above).
The initial value for this toggle is TRUE in "line by line" mode,
and FALSE in "character at a time" mode.

November 1991

telnet(lC) telnet(lC)

autofiush
If autofiush and localchars are both TRUE, then when the ao,
interrupt or quit characters are recognized (and transformed into
TELNET sequences; see set above for details), telnet
refuses to display any data on the user's terminal until the remote
system acknowledges (via a TELNET Timing Mark option) that
it has processed those TELNET sequences. The initial value for
this toggle is TRUE if the terminal user had not done an
st ty no fl sh, otherwise FALSE (see st ty (1)) .

autosynch
If autosynch and localchars are both TRUE, then when either the
interrupt or quit characters is typed (see set above for
descriptions of the interrupt and quit characters), the resulting
TELNET sequence sent is followed by the TELNET SYNCH
sequence. This procedure should cause the remote system to
begin throwing away all previously typed input until both of the
TELNET sequences have been read and acted upon. The initial
value of this toggle is FALSE.

crmod
Toggle carriage return mode. When this mode is enabled, most
carriage return characters received from the remote host will be
mapped into a carriage return followed by a linefeed. This mode
does not affect those characters typed by the user, only those
received from the remote host. This mode is not very useful
unless the remote host only sends carriage return, but never
linefeed. The initial value for this toggle is FALSE.

debug
Toggles socket level debugging (useful only to the superuser).
The initial value for this toggle is FALSE.

options
Toggles the display of some internal telnet protocol
processing (having to do with TELNET options). The initial
value for this toggle is FALSE.

netdata
Toggles the display of all network data (in hexadecimal format).
The initial value for this toggle is FALSE.

? Displays the legal toggle commands.

LIMIT A TIO NS
There is no adequate way for dealing with flow control.

November 1991 5

telnet(IC) telnet(lC)

On some remote systems, echo has to be turned off manually when in ''line
by line'' mode.

There is enough settable state to justify a . telnet re file.

No capability for a . telnet re file is provided.

In "line by line" mode, the terminal's EOF character is only recognized
(and sent to the remote system) when it is the first character on a line.

FILES
/usr/bin/telnet

Executable file

SEE ALSO
cu(lC), ftp(lN), rlogin(lN), tip(lC), uucp(lC)

telnetd(lM) in A/UX System Administrator's Reference

6 November 1991

test(l)

NAME
test - evaluates conditions

SYNOPSIS
test [expr]

ARGUMENTS
expr

test(l)

Specifies the expression to be evaluated by the test command.

DESCRIPTION
test evaluates the expression expr and, if its value is true, returns a zero
(true) exit status; otherwise, a nonzero (false) exit status is returned. The
test command also returns a nonzero exit status if there are no
arguments.

The superuser is always granted execute permission even though execute
permission is meaningful only for directories and regular files and exec
requires that at least one execute mode bit be set for a regular file to be
executable. The following primitives are used to construct expr:

-r file
True if file exists and is readable.

-w file
True if file exists and is writable.

-x file
True if file exists and is executable.

- f file
True if file exists and is a regular file.

-d file
True if file exists and is a directory.

-c file
True if file exists and is a character device file.

-b file
True if file exists and is a block device file.

-p file
True if file exists and is a named pipe (FIFO).

-u file
True if file exists and its set-user-ID bit is set.

-g file
True if file exists and its set-group-ID bit is set.

-k file
True if file exists and its sticky bit is set.

November 1991

test(l) test(l)

-s file
True if file exists and has a size greater than zero.

-t [tildes]
True if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

-z sl
True if the length of string sl is zero.

-n sl
True if the length of string sl is nonzero.

sl = s2
True if strings s 1 and s2 are identical.

sl ! = s2
True if strings sl and s2 are not identical.

sl True if sl is not the null string.

nl -eq n2
True if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -1 t, and - le may be used in place of
-eq.

These primaries may be combined with the following operators:

Unary negation operator.

-a Binary AND operator.

-o Binary OR operator (-a has higher precedence than -o).

(expr)
Parentheses for grouping.

Notice that all the operators and flags are separate arguments to t est.
Notice also that parentheses are meaningful to the shell and, therefore,
must be escaped.

EXAMPLES
The test command is typically used in shell scripts (sh(l)), as follows:

if test -d foo
then

echo "foo is a directory"
f i

The following message:

f oo is a directory

will print if it is found to be one when test is run.

2 November 1991

test(l) test(l)

FILES
/bin/test

Executable file

SEE ALSO
f ind(l), ksh(l), sh(l)

''Bourne Shell Reference'' in AIUX Shells and Shell Programming

"Korn Shell Reference" in AIUX Shells and Shell Programming

November 1991 3

Text Edi tor(l) Text Edi tor(l)

NAME
Text Edi tor - lets you edit files interactively through mouse and menu
operations

SYNOPSIS
Text Edi tor [file]. ..

ARGUMENTS
file Specifies the file to be edited.

DESCRIPTION
Text Edi tor is a mouse-based text-editing program for use with both
Macintosh and A/UX text-only files. It is compatible with A/UX 2.0 and
later systems. Text Edi tor provides an alternative to the vi anded text
editors for those who prefer to work with the mouse and pull-down menus
rather than with keyboard commands.

You can start TextEditor by double-clicking its icon, by double­
clicking the icon of a Macintosh or A/UX text file while Text Edi tor is
the default editor, or by typing Text Edi tor on the A/UX command line.
(For the last two launch methods to work, your startup file should set the
search directory list stored in PATH to include /mac /bin, and
FINDER_EDITOR should be set to /mac /bin/TextEdi tor.) For
more information about making Text Edi tor the default editor, see AJUX
Essentials.

If you double-click a file icon or specify a filename when invoking
Text Edi tor from the command line, the text of that file appears in the
first window displayed; otherwise, the first window is empty.
Text Edi tor lets you open several windows at once, each displaying text
from a different file; however, you can work in only one window at a time.
The window in which you are working is called the "active window."

You can scroll and page through the text in the active window by using the
scroll bar that appears at its right side, as described in AIUX Essentials .

Files created or edited by Text Edi tor are saved as text-only files of type
'TEXT'. They can contain tab and newline characters but no other
formatting information. This file structure is compatible with that of other
applications that create text-only files; for example, Text Edi tor can
process MacWrite files saved with the Text Only option.

The tab setting, font setting, selection, window settings, auto-indent state,
invisible character state, and markers applicable to a file are saved with the
file in its resource fork. This resource fork appears as a file named %file in
the A/UX directory that contains the primary file. You can tell
Text Edi tor not to save this resource file by clicking the Save Text Only
radio button in the dialog box that appears when you select any of the
following items from the File menu: New, Close, Save As, and Save a

November 1991

TextEditor(l) Text Edi tor(l)

Copy.

Mouse-Based Editing
In Text Edi tor, the procedure for inserting text entered from the
keyboard is simple. Use the mouse to position the I-beam pointer on the
screen at any place in the text inside the text window and then click (press
and release) the mouse button. When you click, a blinking vertical bar
appears at the pointer position to mark the current text-insertion point.
Characters you enter from the keyboard always appear at this insertion
point. At any time, you can move the pointer to a new place in the text and
click to establish a new insertion point.

Caution: Except for the tab and newline characters, Text Edi tor
ignores zero-width (control) characters generated by the keyboard.
If you need to enter such a character into a document, generate it in
the Key Caps desk accessory (accessible in the Apple menu) and
use the Copy and Paste menu items in the Edit menu to transfer it to
the document.

The general procedure for using Text Edi tor to edit or otherwise modify
existing text comprises two steps: First you select the text to be changed
and then you choose the operation you want to perform on the selection.

If you select text and immediately enter one or more characters from the
keyboard, rather than choosing a menu item, Text Edi tor deletes the
selected text and inserts the text entered from the keyboard in its place.

In many cases, Text Edi tor lets you undo an operation if you make a
mistake. Choose Undo from the Edit menu immediately after the faulty
operation.

The next section, ''Text Selection,'' tells you how to select a range of text.
The subsequent section, ''Menu Items,'' describes the operations you can
perform.

Text Selection
You can use several techniques to select a range of text for a
Text Edi tor editing operation.

Double-clicking. When you position the pointer on a word and click the
mouse button twice in rapid succession, Text Edi tor selects that word.
This technique is called ''double-clicking.'' In this selection mode,
Text Edi tor recognizes two character domains. One domain contains
the uppercase and lowercase letters, the ten numerals, and the underscore
character; the other domain contains all other characters, including
punctuation, space, and newline. If you double-click a character from the
letter domain, Text Edi tor selects text in both directions from that
character to the first character belonging to the punctuation domain. If you

November 1991 2

Text Edi tor(l) Text Edi tor(l)

3

double-click on a punctuation character, except for one of the enclosing
characters described later in ''Enclosed Text Selection,'' Text Edit or
selects just that character.

Triple-clicking. When you place the cursor anywhere within a line of text
and click the mouse button three times in rapid succession, Text Edi tor
selects the entire line. This technique is called ''triple-clicking.''

Dragging. When you move the pointer over text from one place to another
while holding down the mouse button, Text Edi tor selects all the text
the pointer passes over until you release the mouse button. This technique
is called ''dragging.'' By dragging, you can select any amount of text from
a single character to an entire document. When you attempt to move the
pointer above or below the text currently displayed, Text Edi tor
automatically scrolls the window to display more text.

Shift selection. When you move the pointer to a place other than the
current insertion point and then click while holding down the SHIFT key,
Text Edi tor selects all the text between the insertion point and the
pointer position, even when they are on different pages of the document
and the insertion point is not visible.

Marker selection. You can create names for selections of text as
described in "Mark Menu" in the "Menu Items" section, later in the
''Description'' section. To select a piece of text that you have previously
named, you just choose its name from the Mark menu.

Enclosed-text selection. When you double-click on particular delimiters,
Text Edi tor selects all text between the delimiter you double-clicked
and its mating delimiter. The delimiter characters and their mates are

(text)

[text]
{text}

This method of selecting text works both backward and forward. For
example, if you double-click on a right bracket, Text Edi tor searches
backward for the first preceding left bracket. It also correctly parses nested
structures that use the same enclosing characters.

When you double-click the first occurrence of a delimiter in the following
list, Text Edi tor forward-selects all text between it and the next
occurrence of the same delimiter. The self-mating delimiters are

I \

When you make a selection by double-clicking any of the delimiter
characters just listed, Text Edi tor selects all characters between that
delimiter and the mating delimiter. The search for the mating character

November 1991

Text Edi tor(l) TextEditor(l)

continues until the beginning or end of the document is reached. The
resulting selection does not include the delimiters themselves. If
Text Edi tor does not find a mating delimiter, it selects only the
character that you originally double-clicked.

Menu Items
Text Edi tor displays menus titled File, Edit, Find, Mark, and Window in
the menu bar at the top of the screen, plus the Apple menu at the far left.
Each menu contains menu items that perform various Text Edi tor
actions.

To choose a menu item, position the pointer on a menu title, press the
mouse button, and move the mouse downward while holding down the
mouse button. Release the button when the pointer has highlighted the
desired item. Menu actions operate only on the active window.

You can invoke many menu actions from the keyboard by holding down
the COMMAND key (not CONTROL) while typing a character. The character
required is shown beside the COMMAND-key symbol in the menu display.
Such COMMAND-key equivalents can be entered with lowercase characters;
you don't need to hold down the SHIFT key as well.

The sections that follow describe the actions performed by the various
Text Edi tor menu items.

Apple menu. At the far left of the menu bar, the Apple symbol is the title
of a menu that contains the About TextEditor menu item. Choosing that
menu item displays a dialog box that gives version information.

File menu. The menu items in the File menu let you create, retrieve, and
save files, print text, and quit Text Edi tor. The File menu contains the
following menu items:

New ...
Creates a new empty file of type 'TEXT'. This menu item first
displays a dialog box that lets you enter a filename and select a
directory to contain the document. When you click the Desktop
button in this dialog box, Text Edi tor lists the names of disks
(volumes) that appear on the desktop, to allow you to switch between
them. Once you have selected a volume, and possibly a folder or
nested folder on a volume, you can click the New button to create an
empty file in the selected location. At that time, a new, active
Text Edi tor window appears.

The dialog box contains radio buttons that let you specify whether the
resulting file will be saved with its formatting information or as text
only.

November 1991 4

Text Edi tor(l) TextEditor(l)

5

The COMMAND-key equivalent for the New menu item is COMMAND­
N.

Open ...
Opens an existing text file from a disk. This menu item first displays a
list of all files of type 'TEXT' that are available in the current
directory. You can click the Desktop button to view the names of
disks (volumes) that appear on the desktop. To open a file, double­
click its name, or select its name and then click the Open button.
When you open a file for the first time, Text Edi tor places the
insertion point at the beginning of the text. When you open the file
subsequently, it appears in the last state in which Text Edi tor saved
it; the previous selection or insertion point is preserved (if you have
saved formatting information) unless the file has been modified by
other software. To open a nonmodifiable copy of a file, click the
Read-Only checkbox. If the file you specify is already open in
Text Edi tor, its window is made active. The COMMAND-key
equivalent for the Open menu item is COMMAND-0.

Close

Save

Closes the active window and removes it from view. You can display
the window later by using the Window menu. This menu item does
not save the window contents on a disk.

If you have not previously saved the file, a dialog box appears that lets
you specify whether the file being closed is to be saved and, if so,
whether it should be saved with formatting information or as a text­
only file. The COMMAND-key equivalent for the Close menu item is
COMMAND-W.

Saves the contents of the active window on a disk, in the file that was
originally opened, without closing the window. This menu item is
dimmed if the contents of the file have not been changed since the last
Save action. The COMMAND-key equivalent for the Save menu item is
COMMAND-S.

Save As ...
Allows you to make a copy of the currently active file, which you
must then save under a different name. This menu item saves the
current contents of the window as the new file, and allows you to
continue editing the new file. The old file is left unchanged with its
original name.

Save a Copy ...
Allows you to save the current state of the active window to a new file
with the name "Copy Of file."

November 1991

Text Edi tor(l) Text Edi tor(l)

Revert to Saved
Discards all changes that you have made to the contents of the active
window since they were last saved. This menu item is dimmed if the
contents of the file have not been changed since the last Save action.

Page Setup
Displays a dialog box that lets you set the page size, orientation, and
reduction or enlargement for subsequent printing actions.

Print Window

Quit

Prints text from the active window. If part of the text is selected,
Text Edi tor prints only the selection; otherwise, it prints the entire
document displayed in the window. Use the Chooser desk accessory,
available in the Apple menu, to specify which printer to use. Use the
Page Setup menu item to specify page size, orientation, and scale.

Quits Text Edi tor and returns you to the Finder. If there are
unsaved changes to any files, Text Edi tor gives you a chance to
save them. The COMMAND-key equivalent for the Quit menu item is
COMMAND-Q.

Edit menu. The menu items in the Edit menu allow you to move text and
perform global formatting actions. The Edit menu contains the following
menu items:

Undo
Reverses the most recent text change. If you choose Undo a second
time, the change is reinstated. This menu action does not affect
changes to the resource fork, such as font or tab settings. If there was
no previous action taken, this menu item is dimmed. The COMMAND­
key equivalent for the Undo menu item is COMMAND-Z.

Cut Removes the currently selected text from the active window and
places it in the Clipboard. The COMMAND-key equivalent for the Cut
menu item is COMMAND-X.

Copy
Copies the currently selected text in the active window to the
Clipboard without deleting it from the window. The COMMAND-key
equivalent for the Copy menu item is COMMAND-C.

Paste
Replaces the currently selected text in the active window with the
contents of the Clipboard. If there is no current selection,
Text Edi tor inserts the contents of the Clipboard at the current
insertion point. The COMMAND-key equivalent for the Paste menu
item is COMMAND-V.

November 1991 6

Text Edi tor(1) Text Edi tor(l)

7

Clear
Deletes the currently selected text from the active window. The
keyboard equivalent for the Clear menu item is DELETE.

Select All
Selects the entire document that is displayed in the active window.
The COMMAND-key equivalent for the Select All menu item is
COMMAND-A.

Show Clipboard
Opens a new, active Text Edi tor window that displays the contents
of the Clipboard, if any.

Format. ..
Displays a dialog box that lets you set typography and indentation for
the entire document that is displayed in the active window.

The scroll box lets you select a font and size for the active window by
clicking items in the lists.

The Auto Indent checkbox in the Format dialog box turns auto­
indenting on and off. When auto-indenting is on, press RETURN to
align text with the left margin of the preceding line. You can override
auto-indenting for any single line, aligning it to the far left margin, by
holding down OPTION while you press RETURN.

The Show Invisibles checkbox in the Format dialog box turns the
display mode for invisible characters on and off. When display mode
is on, all characters in the document are displayed, including those
normally invisible. Tabs are shown as triangles, spaces as diamonds,
newlines as logical negation characters (---,), and all other normally
invisible characters as upside-down question marks.

The Tabs text box in the Format dialog box lets you enter the number
of spaces signified by each tab character in the active window.

Align
Aligns the left margin of all the currently selected text in the active
window with the top line of the selection.

Shift Left
Moves the currently selected text in the active window one tab
measure to the left, preserving indentation within the selection. The
COMMAND-key equivalent for the Shift Left menu item is COMMAND­
{. If you also hold down the SHIFT key while pressing COMMAND- {,
the distance moved becomes one space instead of one tab.

Shift Right
Performs the same action as Shift Left, but moves the selection to the
right. The COMMAND-key equivalent for the Shift Right menu item is

November 1991

Text Edi tor(l) TextEditor(l)

COMMAND-}.

Find menu. The menu items in the Find menu help you find and replace
text in the active window.

All search actions start by displaying a dialog box that lets you specify the
following options by clicking a checkbox:

Literal
Finds the exact string you entered, wherever it may appear, even if it
is part of another string.

Entire Word
Finds the string you entered only if it constitutes an entire word. The
determination of word boundaries is the same as with double-clicking,
described in "Text Selection," earlier in the "Description" section.
The Entire Word and Literal options are mutually exclusive.

Case Sensitive
Finds the string you entered only if the uppercase and lowercase status
of all letters in the found string is the same as that of the letters in the
search string.

Search Backward
Searches from the current selection or insertion point toward the
beginning of the document. You can temporarily reverse the direction
of searching, either from forward to backward or from backward to
forward, by holding down the SHIFT key when you start a search
operation.

Wrap-around Search
Searches forward to the end of the document, then starts searching
again from the beginning to the current selection or insertion point. If
Search Backward is also selected, Wrap-around Search does the same
operation in the reverse direction.

By default, only the Literal checkbox is selected. Whenever a search fails,
Text Edi tor produces a beep, or other sound you set as your preferred
alert sound.

The Find menu contains the following menu items:

Find ...
Finds the next occurrence of the string you specify in the text box.
Text Edi tor scrolls the active window to display the found string
and selects the text it has found. The COMMAND-key equivalent for
the Find menu item is COMMAND-F.

Find Same
Repeats the most recent Find operation. The COMMAND-key

November 1991 8

Text Edi tor(l) Text Edi tor(1)

9

equivalent for the Find Same menu item is COMMAND-G.

Find Selection
Finds the next occurrence of the currently selected text. The
COMMAND-key equivalent for the Find Selection menu item is
COMMAND-H.

Display Selection
Scrolls the active window to display the currently selected text.

Replace ...
Finds the next occurrence of the string you specify in the text box and
replaces it with another string that you also specify in a second text
box. The COMMAND-key equivalent for the Replace menu item is
COMMAND-R.

Replace Same
Repeats the latest Replace operation. The COMMAND-key equivalent
for the Replace Same menu item is COMMAND-T.

Mark menu. The menu items in the Mark menu help you navigate long
documents. They let you associate labels with pieces of text so you can
easily find them later. They also make it easy to select large pieces of text,
as explained in "Text Selection," earlier in the "Description" section.

The upper part of the Mark menu, above the horizontal line, contains the
menu items Mark and Unmark; the lower part contains a list of all mark
labels that you have created for the currently active window. The Mark
and Unmark menu items perform the following actions:

Mark ...
Displays a dialog box that lets you attach a label to a text position. If
you previously selected a piece of text, the label applies to the whole
selection; if not, it applies to the current position of the insertion point.
If you try to create a label by using a name that is already taken,
Text Edi tor displays a dialog box that lets you either replace the
old marker or choose a new name. The COMMAND-key equivalent for
the Mark menu item is COMMAND-M.

Unmark. ..
Displays a dialog box that lets you remove unwanted markers. The
Unmark dialog box shows you a list of all current markers. You can
select one or more of them, by clicking or dragging, and then click the
Delete button. If you decide you don't want to delete a marker, click
the Cancel button.

When you choose one of the label items in the lower part of the menu,
Text Edi tor scrolls the active window to the marked text and either
selects it (if you originally marked a selection) or places the insertion point

November 1991

Text Edi tor(1) Text Edi tor(l)

at the marked position.

Window menu. The menu items in the Window menu allow you to
arrange and display Text Edi tor windows. The upper part of the
Window menu, above the horizontal line, contains the menu items Tile
Windows and Stack Windows; the lower part contains a list of the absolute
pathnames of all open Text Edi tor windows.

The menu items in the upper part of the Window menu perform the
following actions:

Tile Windows
Arranges the currently open windows vertically, so that at least part of
the contents of each is visible.

Stack Windows
Arranges the currently open windows in a diagonally staggered
overlapping pattern, with the active window in front. The active
window is the only one whose contents are visible.

When you choose one of the windows listed in the lower part of the menu,
Text Edi tor makes it the active window. The names of currently
displayed windows are listed in the order in which they were originally
displayed. In addition, they are marked as follows:

Check symbol
Indicates the currently active window.

Round bullet (•)
Indicates the window that was active just before the currently active
window, and hence is second to the front.

Underline(_)
Indicates any window containing changes that have not yet been
saved.

FILES
/mac/bin/TextEditor

Executable file

SEE ALSO
ed(l), ex(l), sed(l), vi(l)

A/UX Essentials

A/UX Text Editing Tools

MPW 3.0 Reference

November 1991 10

tftp(IC) tftp(IC)

NAME
t ftp - transfers files via the Tri vial File Transfer Protocol (TFTP)

SYNOPSIS
tf tp [host]

ARGUMENTS
host Causes t ftp to use the specified remote host system (host) as the

default host for future transfers (see the connect command below).

DESCRIPTION
t ftp is the user interface to the Internet TFTP (Trivial File Transfer
Protocol), which allows users to transfer files to and from a remote
machine.

Commands
Once tftp is running, it issues the prompt tftp> and recognizes the
following commands:

connect host-name [port]
Sets the host (and optionally port) for transfers. Note that the TFTP
protocol, unlike the FTP protocol, does not maintain connections
between transfers; thus, the connect command does not actually
create a connection, but merely remembers what host is to be used for
transfers. You do not have to use the connect command; the remote
host can be specified as part of the get or put commands.

mode transfer-mode
Sets the mode for transfers; The transfer-mode argument may be one
of ascii or binary. The default is ascii.

put file
put localfile remotefile
put file... remote-directory

Puts a file or set of files to the specified remote file or directory. The
destination can be in one of two forms: a filename on the remote host,
if the host has already been specified, or a string of the form
host :filename to specify both a host and filename at the same time. If
the latter form is used, the hostname specified becomes the default for
future transfers. If the remote-directory form is used, the remote host
is assumed to be a UNIX machine.

get filename
get remotename localname
get file ...

Gets a file or set of files from the specified sources. source can be in
one of two forms: a filename on the remote host, if the host has
already been specified, or a string of the form to specify both a host
and filename at the same time. If the latter form is used, the last

November I99I

tftp(lC)

hostname specified becomes the default for future transfers.

quit
Exits t ftp. An end of file also exits.

verbose
Toggles verbose mode.

trace
Toggles packet tracing.

status
Shows current status.

rexmt retransmission-timeout
Sets the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Sets the total transmission timeout, in seconds.

ascii
Causes t ftp to set the mode to ''mode ascii.''

binary
Causes t ftp to set the mode to ''mode binary.''

? [command-name]. ..
Prints help information.

LIMIT A TIO NS

tftp(IC)

Because there is no user-login or validation within the TFTP protocol, the
remote site will probably have some sort of file-access restrictions in place.
The exact methods are specific to each site and therefore difficult to
document here.

FILES
/usr/bin/tftp

Executable file

November 1991 2

time(l) time(l)

NAME
time - prints the elapsed time during the execution of a command

SYNOPSIS
time command

ARGUMENTS
command

Specifies the user-specified command that is being timed.

DESCRIPTION
time executes the command then prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of
the command. Times are reported in seconds.

The times are printed on the standard error output.

EXAMPLES
The command:

time nroff -mm f ilea

will, in sh, perform the formatting and report the time at the end of the file,
e.g.:

real 22.0
user 8.6
sys 6.4

In csh, where time is a built-in command, the time report might be:

8.9u 7.0s 0:29 54%

which reports, respectively, the user time, system time, real time, and
percentage of real time that the CPU was active, which is the sum of the
user and system times divided by the real elapsed time.

FILES
/bin/time

Executable file

SEE ALSO
csh(l), timex(l)

t imes(2) in A/UX Programmer's Reference

1 November 1991

tirnex(1) t irnex(1)

NAME
t irnex - reports the elapsed, user, and system time during the execution
of a command

SYNOPSIS
tirnex [-o] [-p[fhkrnrt]] [-s] command

ARGUMENTS
command

Specifies the user-specified command that is sent to the shell for
execution.

- o Reports the total number of blocks read or written and total characters
transferred by command and all its children.

-p[fhkrnrt]
Lists process accounting records for command and all its children.
The suboptions f, h, k, rn, r, and t modify the data items reported, as
defined in acctcorn(lM). tirnex always reports the number of
blocks read or written and the number of characters transferred.

- s Reports total system activity (not just that due to command) that
occurred during the execution interval of command. The t irnex
program reports all the data items listed in sar(l).

DESCRIPTION
t irnex sends the given command to the shell for execution, then reports
(in seconds) the elapsed time, user time, and system time spent in
execution. Optionally, t irnex may list or summarize process accounting
data for the command and all its children, or report total system activity
during the execution interval.

The output of t irnex is written on the standard error output.

EXAMPLES
This command:

tirnex ps -el

runs the ps command (with the correct options), then produces statistics
concerning the command and system activity during the command to the

November 1991

timex(l) timex(l)

standard error output.

WARNINGS
Process records associated with command are selected from the accounting
file /usr I adm/pacct by inference, since process genealogy is not
available. Background processes having the same user ID, terminal ID,
and execution time window will be included spuriously.

FILES
/usr/bin/timex

Executable file
/usr/lib/sa/timex

File containing system activity information

SEE ALSO
sar(l), t ime(l)

acctcom(IM) in A/UX System Administrator's Reference

2 November 1991

tip(IC) tip(IC)

NAME
tip - establishes a connection to a remote system

SYNOPSIS
tip [-v] [-speed] system-name

tip [-v] [-speed] phone-number

ARGUMENTS
phone-number

Specifies the telephone number of the modem that is connected to the
remote system you wish to connect to.

speed
Specifies the baud rate of the terminal. If speed is specified as 300
baud, but no system name is given, then tip assumes that a host with
the name tip300 exists in the /etc/remote file. Similarily, if
this option is not given, but a phone-number is provided, then tip
looks for a host with the name tipO. Refer to remote(4) for a full
description.

system-name
Specifies the name of the remote system you wish to connect to.

-v Causes tip to display the sets as they are made.

DESCRIPTION
tip establishes a full-duplex connection to another machine, giving the
appearance of being logged in directly on the remote CPU. You must have
a login (or equivalent) on the machine to which you wish to connect.

Typed characters are normally transmitted directly to the remote machine
(which does the echoing as well). A tilde C) appearing as the first
character of a line is an escape signal; the following are recognized.

Drops the connection and exit (you may still be logged in on the
remote machine). You may also use -coNTROL-D as a synonym for

-c[name]
Changes directory to name (no argument implies change to your home
directory).

- ! Escapes to a shell (exiting the shell will return you to tip).

> Copies file from local to remote. tip prompts for the name of a local
file to transmit.

< Copies file from remote to local. tip prompts first for the name of
the file to be sent, then for a command to be executed on the remote
machine.

November 1991

tip(lC) tip(lC)

2

-P from [to]
Sends a file to a remote UNIX host. The put command causes the
remote UNIX system to run the command string cat>' to', while
tip sends it the from file. If the to file isn't specified, the from
filename is used. This command is actually a UNIX-specific version
of the - > command.

-t from [to]
Takes a file from a remote UNIX host. As in the put command, the to
file defaults to the from filename if the to file isn't specified. The
remote host executes the command string

cat 'from' ;echo CONTROL-A

to send the file tot ip.

- I Pipes the output from a remote command to a local UNIX process.
The tip command will prompt the user for both the remote command
and the local command. The command string sent to the local UNIX
system is processed by the shell. Note that the eo f read variable
should be set to the appropriate value before this escape is used.

- # Sends an interrupt signal to the remote system. For systems that do
not support the necessary ioct 1 call, the break is simulated by a
sequence of line speed changes and delete characters.

s Sets a variable (see the discussion later in this section).

-coNTROL-Z
Stops tip (available only with job control).

- ? Gets a summary of the tilde escapes

The tip command uses the file I etc Ir emote to find how to reach a
particular system and to find out how it should operate while talking to the
system. Each system has a default baud with which to establish a
connection. If this value is not suitable, the baud to be used may be
specified on the command line, for example, tip - 3 0 0 mds.

When tip establishes a connection, it sends out a connection message to
the remote system; the default value, if any, is defined in I etc I remote.

The tip command also uses I etc Id i a 1 up to determine which modem
escape sequences to use; refer to remote(4) and dialup(4) for details.

When tip prompts for an argument (for example, during setup of a file
transfer), the line typed may be edited with the standard erase and kill
characters. A null line in response to a prompt or an interrupt will abort the
dialogue and return to the remote machine.

November 1991

tip(lC) tip(lC)

The tip command guards against multiple users connecting to a remote
system by opening modems and terminal lines with exclusive access, and
by honoring the locking protocol used by uucp(lC).

During file transfers, tip provides a running count of the number of lines
transferred. When using the-> and - <commands, the eofread and
eofwri te variables are used to recognize end-of-file when reading, and
specify end-of-file when writing (see "Variables" later in this section).
File transfers normally depend on ixon/ixof f mode for flow control (see
stty(l)). If the remote system does not support ixon/ixoff mode,
echocheck may be set to indicate that tip should synchronize with the
remote system on the echo of each transmitted character.

When tip must dial a telephone number to connect to a system, it will
print various messages indicating its actions. tip supports the DEC DN-
11 and Racal-Vadic 831 auto-call-units; the DEC DF02 and DF03, Ventel
212+, Racal-Vadic 3451, Bizcomp 1031and1032 integral call
unit/modems, and Apple modems.

Variables
tip maintains a set of variables that control its operation. Some of these
variables are read-only to normal users (root is allowed to change
anything of interest). Variables may be displayed and set through the s
escape. The syntax for variables is patterned after vi(l) and mailx(l).
Supplying all as an argument to the set command displays all variables
readable by the user. Alternatively, the user may request display of a
particular variable by attaching a ? to the end. For example, escape?
displays the current escape character.

Variables are numeric, string, character, or boolean values. Boolean
variables are set merely by specifying their names; they may be reset by
prefixing a ! to the name. Other variable types are set by concatenating an
= and the value. The entire assignment must not have any blanks in it. A
single set command may be used to interrogate, as well as set, a number of
variables. Variables may be initialized at run time by placing set
commands (without the - s prefix in the file . t iprc in the user's home
directory).

Certain common variables have abbreviations. Following is a list of
common variables, with a description of each one, an abbreviation, and a
default value (when applicable). The data type of each variable is listed in
parentheses.

baudrate
(num) The baud at which the connection was established; abbreviated
ba.

November 1991 3

tip(lC) tip(lC)

4

beautify
(bool) Discard unprintable characters when a session is being scripted;
abbreviated be.

dial timeout
(num) When dialing a telephone number, the time (in seconds) needed
for a connection to be established; abbreviated di a 1.

echocheck
(bool) Synchronize with the remote host during file transfer by waiting
for the echo of the last character to be transmitted; default is fa 1 s e.

eof cmd
(str) The string sent to indicate the end of remote command output
(usually a prompt string) during a - I pipe.

eof read
(str) The set of characters which signify an end-of-transmission during
a - < file transfer command; abbreviated eo fr.

eofwrite

eol

(str) The string sent to indicate end-of-transmission during a - > file
transfer command; abbreviated eofw.

(str) The set of characters which indicate an end-of-line. The tip
program will recognize escape characters only after an end-of-line.

escape
(char) The command prefix (escape) character; abbreviated es;
default value is tilde C).

exceptions
(str) The set of characters which should not be discarded due to the
beautification switch; abbreviated ex; default value is \ t \ n \ f \ b.

force
(char) The character used to force literal data transmission;
abbreviated f o; default value is CONTROL-P.

framesize
(num) The amount of data (in bytes) to buffer between file system
writes when receiving files; abbreviated fr.

half duplex
(bool) Connection is half-duplex; abbreviated hdx. Default is
false.

host
(str) The name of the host connected to; abbreviated ho.

November 1991

tip(lC) tip(lC)

local echo

log

(bool) Echo input locally; abbreviated le. Default is false.

(str) The name of the file in which to log transaction activity reports.
The default value is /usr I ad.ml aculog.

prompt
(char) The character which indicates an end-of-line on the remote
host; abbreviated pr; default value is \n. This value is used to
synchronize during data transfers. The count of lines transferred
during a file transfer command is based on receipt of this character.

raise
(bool) Uppercase mapping mode; abbreviated ra; default value is
fa 1 s e. When this mode is enabled, all lowercase letters will be
mapped to uppercase by tip for transmission to the remote machine.

raisechar
(char) The input character used to toggle uppercase mapping mode;
abbreviated re; default value is CONTROL-@.

record
(str) The name of the file in which a session script is recorded;
abbreviated rec; default value is tip. record.

script
(boo/) Session scripting mode; abbreviated sc; default is false.
When script is true, tip will record everything transmitted by
the remote machine in the script record file specified in record. If
the beautify switch is on, only printable ASCII characters will be
included in the script file (those characters between 040 and 0177).
The variable exceptions is used to indicate characters which are
an exception to the normal beautification rules.

tabexpand
(bool) Expand tabs to spaces during file transfers; abbreviated tab;
default value is false. Each tab is expanded to 8 spaces.

verbose
(bool) Verbose mode; abbreviated verb; default is true. When
verbose mode is enabled, tip prints messages while dialing, shows
the current number of lines transferred during a file transfer operation,
and more.

SHELL
(str) The name of the shell to use for the - ! command; default value
is /bin/ sh or taken from the environment.

November 1991 5

tip(lC) tip(lC)

HOME
(str) The home directory to use for the - c command; default value is
taken from the environment.

LIMITATIONS
The full set of variables is undocumented and probably should be pared
down.

FILES
/usr/ucb/tip

Executable file

/etc/dialup
File containing modem escape sequences

/etc/remote
File containing global system descriptions

/etc/phones
File containing global telephone number data base

${REMOTE}
File containing private system descriptions

${PHONES}
File containing private telephone numbers

-;.tiprc
Initialization file

/usr/spool/uucp/LCK*
Lock file to avoid conflicts with uucp

SEE ALSO

6

cu(lC), ftp(lN), telnet(lC), uucp(lC)

dialup(4), remote(4), phones(4) inA/UX Programmer's Reference

"Using cu and tip to Connect to a Remote System" in A/UX Networking
Essentials

November 1991

touch(l) touch(l)

NAME
touch - updates access and modification times of a file

SYNOPSIS
touch [-a] [-c] [-m] [mmddhhmm[yy]] file ...

ARGUMENTS
-a Updates only the access times. The default is -am.

-c Silently prevents touch from creating the file if it did not previously
exist.

file Specifies the file to be updated.

-m Updates only the modification times. The default is -am.

mmddhhmm
Specifies the month (mm), day (dd), hour (hh), and minute (mm) that
the specified file is updated.

yy Specifies the year that the specified file is updated.

DESCRIPTION
touch causes the access and modification times of each argument to be
updated. The filename is created if it does not exist. If no time is specified
(see date(l)) the current time is used.

The return code from touch is the number of files for which the times
could not be successfully modified (including files that did not exist and
were not created).

EXAMPLES
Enter this command:

touch f ilea f ileb

to set the "date last modified" of the two files to the current date.

LIMITATIONS
You can't touch a numeric filename without preceding that filename with
the date or with a non-numeric filename on the command line. For
example,

touch 100

will not work, however

touch 0723093584 100

or

touch f ilel 100

will work.

November 1991

touch(1)

FILES
/bin/touch

Executable file

SEE ALSO
date(l)

utime(2) inA/UX Programmer's Reference

2

touch(l)

November 1991

tp(l)

NAME
tp - copies files to or from a tp archive

SYNOPSIS
tp d[[0 ... 7] [i] [m] [v] [w]] ffile-in-archive] ...

tp r[[0 ... 7] [c] [i] [m] [v] [w]] ffile-in-archive] ...

tp t[[0 ... 7] [i] [m] [v] [w]] ffile-in-archive] ...

tp u[[0 ... 7] [c] [i] [m] [v] [w]] ffile-in-archive]. ..

tp x[[0 ... 7] [f] [i] [m] [v] [w]] ffile-in-archive]. ..

ARGUMENTS
0 ... 7

tp(l)

Selects the drive on which the tape is mounted. Normally, 0 is the
default.

- c Creates a fresh dump; the tape directory is cleared before beginning.
This option is assumed with magnetic tape since it is impossible to
selectively overwrite magnetic tape.

-d Deletes the namedfile-in-archive from the tape. At least one name
argument must be given. This function is not permitted on magnetic
tapes.

- f Uses the first file-in-archive rather than a tape, as the archive. This
option is known to work only with the x function.

file-in-archive
Specifies a file that resides in the archive from which data is being
read. If file-in-archive is a directory, the program refers to the files
and (recursively) subdirectories of that directory.

-i Notes the errors when reading and writing the tape, but no action is
taken. Normally, errors cause a return to the command level.

-m Specifies magnetic tape as opposed to DECtape.

-r Writes afile-in-archive onto the tape. If files with the same names
already exist, they are replaced. "Same" is determined by string
comparison, so . abc can never be the same as /usr I sbo I abc
even if /usr I sbo is the current directory. If file-in-archive is not
given, . is the default.

- t Lists the names of the specified file-in-archive. If file-in-archive is not
given, the entire contents of the tape is listed.

November 1991

tp(l) tp(l)

-u Updates the tape. u is liker, but a file is replaced only if its
modification date is later than the date stored on the tape; that is to
say, if it has changed since it was dumped. u is the default command
if none is given.

-v Types the name of each file it treats preceded by the function letter.
Normally tp does its work silently. When used with the t function, v
gives more information about the tape entries than just the name.

-w Pauses before treating each file, types the indicative letter and the
filename (as with v) and awaits the user's response. Response y
means ''yes'', so the file is treated. Null response means ''no'', and
the file does not take part in whatever is being done. Response x
means "exit"; the tp command terminates immediately. When used
with the x function, files previously asked about have been extracted
already. When used with the r, u, and d functions, no change has
been made to the tape.

-x Extracts.file-in-archive from the tape to the file system. The owner
and mode are restored. If file-in-archive is not given, the entire
contents of the tape are extracted.

DESCRIPTION
t p saves and restores files within an archive, which frequently takes the
form of magnetic tape media. Its actions are controlled by the key
argument.

The t p program is useful for importing tapes made on older systems.

EXAMPLES
Enter this command:

tp x f ilel

to extract f i 1e1 from a t p formatted magnetic tape mounted on drive 0.

STATUS MESSAGES AND VALUES
Several; the nonobvious one is Phase error, which means the file
changed after it was selected for dumping but before it was dumped.

LIMITATIONS

2

A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by t p
difficult to carry to other machines; tar avoids the problem.

tp does not copy zero-length files to tape.

November 1991

tp(l)

FILES
/bin/tp

Executable file
/dev/tap?

Device file
/dev/rnt?

Device file

SEE ALSO
ar(l), cpio(l), tar(l)

dump. bsd(lM) in AJUX System Administrator's Reference

November 1991

tp(l)

3

tplot(lG) tplot(lG)

NAME
tplot - interprets plotter instructions for use at a vintage display device

SYNOPSIS
tplot [-Tterminal [-e raster-file]]

ARGUMENTS
- e raster-file

Causes a previously scan-converted file, raster-file, to be sent to the
plotter.

-Tterminal
Specifies a terminal that is to be given the plotting instructions. If a
terminal is not specified, the environment parameter $TERM (see
environ(5)) is used.

DESCRIPTION
These commands read plotting instructions (see plot(4)) from the
standard input and in general produce, on the standard output, plotting
instructions suitable for a particular terminal. Known terminals are:

300
DASI 300.

300S
DASI 300s.

450
DASI 450.

4014
Tektronix 4014.

ver
Versatec D l 200A. This version of p 1 o t places a scan-converted
image in I us r I tmp Ir aster$ $ and sends the result directly to the
plotter device, rather than to the standard output.

EXAMPLES
The command:

tplot -T4014 graph.out

will use the encoded information in graph. out to plot a graph on a
Tektronix 4014-type terminal.

FILES
/bin/tplot

Executable file
/usr/lib/t300

Plotting instructions file
/usr/lib/t300s

Plotting instructions file

November 1991

tplot(lG)

/usr /lib/t450
Plotting instructions file

/usr /lib/t4014
Plotting instructions file

/usr/lib/vplot
Plotting instructions file

/usr/tmp/raster$$
Temporary file

SEE ALSO

tplot(lG)

plot(3X), plot(4), term(4) in AIUX Programmer's Reference

November 1991 2

tput(l) tput(l)

NAME
tput - queries terminf o database

SYNOPSIS
tput [-Ttype] capname

ARGUMENTS
-Ttype Indicates the type of terminal. Normally this option is

unnecessary, as the default is taken from the environment
variable $TERM.

capname Indicates the attribute from the terminf o database. See
terminfo(4).

DESCRIPTION
tput uses the terminf o database to make terminal-dependent
capabilities and information available to the shell. The t put command
generates a string if the attribute (capability name) is of type string, or an
integer if the attribute is of type integer. If the attribute is of type boolean,
tput simply sets the exit code (0 for TRUE, 1 for FALSE), and generates
no output.

EXAMPLES
To echo the clear-screen sequence for the current terminal, enter:

tput clear

To print the number of columns for the current terminal, enter:

tput cols

To print the number of columns for the 450 terminal, enter:

tput -T450 cols

To set the shell variable bold to standout mode sequence for current
terminal, enter:

bold='tput smso'

This might be followed by a prompt:

echo "${bold}Please type in your name: \c"

To set exit code to indicate if current terminal is a hardcopy terminal, enter:

tput he

STATUS MESSAGES AND VALVES
-1 Usage error

- 2 Bad terminal type

-3 Bad capname

November 1991

tput(l) tput(l)

If a capname is requested for a terminal that has no value for that capname
(for example, tput -T450 lines), -1 is printed.

FILES
/usr/bin/tput

Executable file
/usr/lib/terminfo/?/*

Terminal descriptor files
/usr/include/term.h

Definition files
/usr/include/curses.h

Terminal information file

SEE ALSO
stty(l)

terminfo(4) inA!UX Programmer's Reference

November 1991 2

tr(l) tr(l)

NAME
tr - translates characters

SYNOPSIS
tr [-c] [-d] [-s] [string] [string2]]

ARGUMENTS
- c Complements the set of characters in string 1 with respect to the

universe of characters whose ASCII codes are 001through377 octal.

-d Deletes all input characters in string 1.

- s Squeezes all strings of repeated output characters in string2 into single
characters.

string 1 [string2]
Specifies the input characters (string I) and the output characters
(string2).

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into string 1 and string2:

[a- z] Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

[a *n] Stands for n repetitions of a. If the first digit of n is 0, n is
considered octal; otherwise, n is taken to be decimal. A zero
or missing n is taken to be huge; this facility is useful for
padding string2.

The escape character \ may be used, as in the shell, to remove special
meaning from any character in a string. In addition, \ followed by 1,
2, or 3 octal digits stands for the character whose ASCII code is given
by those digits.

DESCRIPTION
tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in string 1 are
mapped into the corresponding characters of string2. For the substitution
to work correctly, string2 must have at least as many characters as string];
excess characters in either string are ignored by tr.

Similarly, when using the -c option, string] must have at least as many
characters as the complement of string 1.

EXAMPLES
To create a list of all the words in f i 1e1, one per line in f i 1e2, enter:

tr -cs 11 [A-Z] [a-z] 11 11 [\012*] 11 <filel >file2

where a word is taken to be a maximal string of alphabetics. (The strings
are quoted to protect the special characters from interpretation by the shell;

November 1991

tr(l) tr(l)

012 is the ASCII code for newline.) This was accomplished via the
following translations: tr substitutes the newline character for all the
alphabetics in f i 1e1, reconstitutes the alphabetics with the - c option,
squeezes the newlines to one per occurrence with the - s option, and
directs the output to f i 1e2.

LIMITATIONS
Won't handle ASCII NUL in string I or string2; always deletes NUL from
input.

FILES
/usr/bin/tr

Executable file
SEE ALSO

dd(l), ed(l), sh(l)

ascii(5) in AIUX Programmer's Reference

"Other Text Processing Tools" in AIUX Text Processing Tools

November 1991 2

troff(l) troff(l)

NAME
troff - formats and typesets files

SYNOPSIS
troff[-] [-a] [-i] [-mname] [-nN] [-olist] [-q] [-raN] [-sN]
[-Tdest] [file ...]

ARGUMENTS
Specifies a filename corresponding to the standard input.

- a Sends a printable ASCII approximation of the results to the standard
output.

file Specifies the file to be processed through troff. If this argument is
not present, the standard input is read.

- i Reads standard input after the input files are exhausted.

-mname

-nN

Inserts the I us r I 1 i b I tma c I tma c . name macro file at the
beginning of the input files.

Numbers the first generated page N.

-olist
Prints only pages whose page numbers appear in the comma-separated
list of numbers and ranges. A range N-M means pages N through M;
an initial -N means from the beginning to page N; and a final N­
means from N to the end. (See LIMIT A TIO NS, later in this section.)

-q Invokes the simultaneous input-output mode of the . rd request.

-raN

-sN

Sets register a (one character name) to N.

Generates output to encourage typesetter to stop every N pages,
produce a trailer to allow changing cassettes, and resume when the
typesetter's start button is pressed.

-Tdest
Prepares output for device dest, which may be a laser printer or a
typesetter. For POSTSCRIPT output destined for an Apple LaserWriter,
use -Tpsc, and pipe the output to the POSTSCRIPT filter psdi t.

The supported typesetter is the Autologic APS-5 (-Taps). For output
destined for an Apple ImageWriter II printer, use the -Tiw option and
pipe the output to da i w(1). Other output devices may be available.

November 1991

troff(l) troff (I)

DESCRIPTION
troff formats text in the named files for printing on a phototypesetter. It
is the new "device-independent" version of troff.

EXAMPLES
To request the formatting of pages 4, 8, 9, and 10 of a document contained
in the files named.file] andfile2, and to invoke the abc macro package,
enter:

troff -04,8-10 -mabc filel file2

LIMITATIONS
The . t 1 request may not be used before the first break-producing request
in the input to troff.

troff recognizes only Eastern Standard Time; as a result, depending on
the time of the year and on your local time zone, the date that troff
generates may be off by one day from your idea of what the date is.

When troff is used with the -olist option inside a pipeline (for example,
with one or more of cw, eqn, and tbl), it may cause a harmless broken
pipe message if the last page of the document is not specified in list.

FILES
/bin/troff

Executable file
/usr/lib/suftab

Suffix hyphenation tables file
/tmp/ta$#

Temporary file
/tmp/trtmp*

Temporary file
/usr/lib/tmac/tmac.*

Standard macro files and pointers file
/usr/lib/macros/*

Standard macro files
/usr/lib/font/dev*/*

Font width tables files

SEE ALSO
checknr(l), cw(l), daps(l), daiw(l), derof f(l), eqn(l), grap(l),
mmt(l), nrof f(l), otroff(l), pic(l), psdi t(l), tbl(l), tc(l)

mm(5), ms(5), mv(5) in A/UX Programmer's Reference

''nroff /troff Reference'' inA/UX Text Processing Tools

November 1991 2

troff(l) troff (I)

"Introduction to troff and mm" inA/UX Text Processing Tools

3 November 1991

true(1)

NAME
true, false -provides truth values

SYNOPSIS
true

false

DESCRIPTION
true does nothing, returning an exit status of zero.

fa 1 s e does nothing, returning a nonzero exit status.

They are typically used in input to sh and/or ksh.

EXAMPLES
while true
do

command
done

STATUS MESSAGES AND VALUES

true(l)

The true command has exit status zero, false has exit status nonzero.

FILES
/bin/true

Executable file
/bin/false

Executable file

SEE ALSO
ksh(l), sh(l)

November 1991

tset(l) tset(l)

NAME
tset, reset - set or reset the terminal to a sensible state

SYNOPSIS
tset [-][-a type] [-A] [-d type] [-ec] [-Ee] [-kc] [-1] [-rn port]
[-p type] [-Q] [-r] [-s] [-S]

reset

ARGUMENTS
Prints the terminal type on the standard output. For compatibility with
earlier versions of ts et, this option is accepted, but its use is
discouraged.

-a type
Operates the same as the -rn arpanet: type. For compatibility with
earlier versions of ts et, this option is accepted, but its use is
discouraged.

- A Prompts the user for the terminal type.

-d type
Operates the same as the -rn dial up: type. For compatibility with
earlier versions of ts et, this option is accepted, but its use is
discouraged.

- ec Sets the erase character to be the named character c on all terminals,
the default being the backspace character on the terminal, usually
CONTROL-H.

- Ee Sets the erase character to c only if the terminal can backspace. For
compatibility with earlier versions of tset, this option is accepted,
but its use is discouraged.

- kc Sets the line kill character to be the named character c on all
terminals. The c character defaults to CONTROL-X (for purely
historical reasons); CONTROL-CT is the preferred setting. No kill
processing is done if - k is not specified.

-1 Suppresses outputting terminal initialization strings.

-rn port
Specifies which terminal type is used on the given port type identifier,
port, an optional baud specification. and the terminal type to be used
if the mapping conditions are satisfied. If more than one mapping is
specified, the first applicable mapping prevails. A missing type
identifier matches all identifiers.

To avoid problems with metacharacters, it is best to place the entire
argument to the -rn (map) option within quotation marks (' '). Users
of cs h must also put a \ before any ! used here.

November 1991

tset(l) tset(l)

-p type
Operates the same as the -m pl ugboard: type. For compatibility
with earlier versions of ts et, this option is accepted, but its use is
discouraged.

-Q Suppresses printing the Erase set to and Kill set to
messages.

- r Prints the terminal type on the diagnostic output. For compatibility
with earlier versions of tset, this option is accepted, but its use is
discouraged.

- s Returns the terminal type as specified by the -m option, and
information about the terminal to a shell's environment. When using
the Bourne shell, sh, the command:

eval 'tset -s option ...

or when using the C shell, csh, the command:

ts et - s options . . . > ts et$ $
source tset$$
rm tset$$

generates as output a sequence of shell commands which place the
variables TERM and TERMCAP in the environment; see environ(5).

- S Outputs the strings to be assigned to TERM and TERMCAP in the
environment, rather than commands for a shell.

DESCRIPTION
ts et causes terminal-dependent processing, such as setting erase and kill
characters, setting or resetting delays, and so on. It first determines the type
of terminal involved, names for which are specified by the
/etc/termcap data base, and then does necessary initializations and
mode settings. In the case where no argument types are specified, tset
simply reads the terminal type out of the environment variable TERM and
reinitializes the terminal. The rest of this discussion concerns itself with
type initialization, typically done once at login, and options used at
initialization time to determine the terminal type and set up terminal
modes.

When used in a startup script .profile (for sh users) or. login (for
csh users), it is desirable to give information about the types of terminals
usually used when connecting to the computer through a modem. These
ports are initially identified as being dial up, plugboard, or arpanet,
and so on.

November 1991 2

tset(l) tset(l)

Bauds are specified as with st ty, and are compared with the speed of the
diagnostic output (which is almost always the control terminal). The baud
test may be any combination of: >, =, <, @,and ! ; @is a synonym for=
and ! inverts the sense of the test.

Once it knows the terminal type, tset engages in terminal mode setting.
This normally involves sending an initialization sequence to the terminal
and setting the single character erase (and optionally the line-kill (full line
erase)) characters. t set reports these settings by printing the diagnostic
messages Kill set to c and Erase set to con the standard
error output, unless the -Q option is specified.

On terminals that can backspace but not overstrike (such as a CRT), and
when the erase character is the default erase character (# on standard
systems), the erase character is changed to a CONTROL-H (backspace).

reset sets the terminal to cooked mode, turns off cbreak and raw
modes, turns on nl, and restores special undefined characters to their
default values.

This is most useful after a program dies, leaving a terminal in a funny state;
you have to type newline reset newline to get it to work, since RETURN
(CONTROL-M) may not be recognized in this state; often none of the input
will be echoed.

It is a good idea to follow reset with tset.

EXAMPLES

3

If the port in use is a dial up at a speed greater than 300 baud or if the port is
a dialup at a speed of 300 baud or less, you can set the terminal type to an
adrn3a or to a dw2, respectively, by entering:

tset -rn 'dialup>300:adrn3a' -rn dialup:dw2 \
-rn 'plugboard:?adrn3a'

Note: The above command can be entered on one line by omitting
the backslash character.

If the type argument begins with a question mark (such as ? adrn3 a), you
are asked if you really want that type. A null response means to use that
type; otherwise, another type can be entered which will be used instead.
Therefore, in this case, you will be queried on a plugboard port as to
whether you are using an adrn3 a. For other ports, the port type will be
taken from the I etc It t y type file or a final, the default type option may
be given on the command line, not preceded by a -rn option.

A typical . login file for a csh user that invokes tset would be:

set noglob
set term= ('tset -e -s -r -d\?h19')

November 1991

tset(l) tset(l)

setenv TERM "$term[l]"
setenv TERMCAP "$term[2]"
unset term noglob

This . login sets the environment variables TERM and TERMCAP for the
user's current terminal according to the file I etc It t y type. If the
terminal line is a dialup line, the user is prompted for the proper terminal
type.

reset

returns the user's terminal to a usable state after being accidentally set by
an interrupted process.

LIMIT A TIO NS
Should be merged with st t y.

reset doesn't set tabs properly; it can't intuitively read personal choices
for interrupt and line kill characters, so it leaves these set to the local
system standards.

It could be well argued that the shell should be responsible for insuring that
the terminal remains in a sane state; this would eliminate the need for this
program.

FILES
/bin/tset
/bin/reset

Executable file
/etc/ttytype

File containing terminal types
/etc/termcap

Terminal capabilities file

SEE ALSO
csh(l), sh(l), stty(l)

termcap(4), t tytype(4), environ(5) in AJUX Programmer's
Reference

November 1991 4

tsort (1) tsort(l)

NAME
tsort - sorts lines in a file topologically

SYNOPSIS
tsort [file]

ARGUMENTS
file Specifies the input file on which the sort will be performed. If this

option is not specified, the standard input is understood.

DESCRIPTION
t sort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input file.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

EXAMPLES
To build a new library from existing . o files, enter:

ar er library 'lorder *.o I tsort'

STATUS MESSAGES AND VALUES
Odd data : there is an odd number of fields in the input file.

LIMITATIONS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering
a library archive file.

FILES
/usr/bin/tsort

Executable file

SEE ALSO
lorder(l), sort(l), sortbib(l)

November 1991

tty(l) t ty(l)

NAME
tty - obtains the device filename for the terminal or CommandShell
window where it is invoked

SYNOPSIS
tty [-1] [-s]

ARGUMENTS
-1 Prints the synchronous line number to which the user's terminal is

connected, if it is on an active synchronous line.

- s Inhibits printing of the terminal's pathname, allowing one to test just
the exit code.

DESCRIPTION
tty displays the pathname of the terminal currently being used.

EXAMPLES
If you are using tty7 and you enter:

tty

the following will display:

/dev/tty7

STATUS MESSAGES AND VALUES
2 if invalid options were specified

0 if standard input is a terminal

1 otherwise

not on an active synchronous line
if the standard input is not a synchronous terminal and the -1 option
is specified.

not a tty

FILES

if the standard input is not a terminal and the - s option is not
specified.

/bin/tty
Executable file

SEE ALSO
t tyname(3C) in A/UX Programmer's Reference

November 1991

u3b(l) u3b(l)

See machid(l)

November 1991

u3b15(1) u3b15(1)

See machid(l)

November 1991

u3b2 (1) u3b2 (1)

See machid(l)

November 1991

u3b5(1) u3b5(1)

See machid(l)

November 1991

ucbdiff(l) ucbdiff(l)

NAME
ucbdi ff - reports differences between two files or directories

SYNOPSIS
ucbdiff [-b] [-c] [-e] [-f] [-h] [-i] [-1] [-n] [-r] [-s] [-S file]
[-t] [-w] dirl dir2

ucbdiff [-b] [-c] [-e] [-f] [-h] [-i] [-n] [-t] [-w]filel file2

ucbdiff [-b] [-Dstring] [-i] [-w]filel file2

ARGUMENTS
-b Ignores trailing blanks (spaces and tabs) and other strings of blanks to

compare equal.

-c Produces a ucbdi ff with lines of context. The default is to present
3 lines of context; this may be changed, for example to I 0, by - c 10.
With -c, the output format is modified slightly. The output begins
with an identification of the files involved and their creation dates;
then each change is separated by a line with a dozen * 's. The lines
removed from file I are marked with a -; those added to file2 are
marked +. Lines which are changed from one file to the other are
marked in both files with a ! .

Changes that are separated by fewer than the number of lines in the
current context are grouped together on output. (This is a change
from the previous ucbdi ff - c but the resulting output is usually
much easier to interpret.)

-e Produces a script of a, c, and d commands for theed, editor which
will recreate .file2 from file I. In connection with -e, the following
shell program may help maintain multiple versions of a file. Only an
ancestral file ($1) and a chain of version-to-version ed scripts ($ 2,
$ 3 , ...) made by ucbdi ff need be on hand. A "latest version"
appears on the standard output.

(shift;cat $*;echo 'l,$p') led - $1

Extra commands are added to the output when comparing directories
with -e, so that the result is a sh script for converting text files
common to the two directories from their state in dir 1 to their state in
dir2.

- f Produces a script similar to that of - e, but in the opposite order and
not useful with ed.

- h Does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but will work on files of unlimited
length.

November 1991

ucbdiff(l) ucbdiff(l)

- i Ignores the case of letters. For example, A will compare equal to a.

-n Produces a script similar to that of -e, but in the opposite order and
with a count of changed lines on each insert or delete command. This
is the form used by rcsdiff.

-t Expands tabs in output lines. Normal or -c output adds character(s)
to the front of each line, which may alter the indentation of the
original source lines and make the output listing difficult to interpret.
This option will preserve the original source's indentation.

-w Totally ignores whitespace (blanks and tabs). This option is similar to
- b. For example, the following two lines will compare equal.

dirl dir2

if (a == b)
if (a==b)

Specifies the two directories to be compared.

-Dstring
Creates a merged version of Ji.lei andfile2 on the standard output with
C preprocessor controls included, so that a compilation of the result
without defining string is equivalent to compiling file I, while defining
string will yield file2.

file] file2
Specifies the two files to be compared.

-1 Displays long output format. Each set of text file differences is piped
through pr to paginate the output; other differences are remembered
and summarized after all text file differences are reported.

- r Causes application of ucbdi ff recursively to common
subdirectories encountered.

- s Reports files which are the same and are otherwise not mentioned.

-Sfile
Starts a directory ucbdi ff in the middle, beginning with specified
file.

DESCRIPTION
ucbdiff is used by the rcs(l) Revision Control System. If both
arguments are directories, ucbdi ff sorts the contents of the directories by
name and then runs the regular file di ff algorithm (described later in this
section) on text files which are different. Binary files which differ,
common subdirectories, and files which appear in only one directory are
listed.

November 1991 2

ucbdiff(l) ucbdiff(l)

When ucbdi ff is run on regular files and when comparing text files
which differ during directory comparison, ucbdi ff tells what lines must
be changed in the files to bring them into agreement. Except in rare
circumstances, ucbdi ff finds the smallest sufficient set of file
differences. If neither file] nor file2 is a directory, then either may be given
as - , in which case the standard input is used. If file 1 is a directory, then a
file in that directory whose filename is the same as the filename of file2 is
used (and vice versa).

There are several options for output format; the default output format
contains lines of these forms:

nl a n3, n4
nl, n2 d n3
nl , n2 c n3, n4

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for d and
reading backward, one may ascertain how to equally convert file2 into file 1.
As in ed, identical pairs (where nl=n2 or n3=n4) are abbreviated as a
single number.

Following each of these lines are all the lines affected in the first file
flagged by<, then all the lines that are affected in the second file flagged by
>.

STATUS MESSAGES AND VALUES
Exit status is 0 for no differences, 1 for some, 2 for trouble.

LIMITATIONS
Editing scripts produced under the - e or - f option are naive about
creating lines consisting of a single period (.).

When comparing directories with the - b, -w, or - i options specified,
ucbdi ff first compares the files like crnp and then decides to run the
ucbdi ff algorithm if they are not equal. This may cause a small amount
of spurious output if the files then turn out to be identical because the only
differences are insignificant blank string or case differences.

FILES
/usr/ucb/ucbdiff

Executable file
/tmp/d?????

3

Temporary file
/usr/lib/ucbdiffh

File used with the - h option
/bin/di ff

Executable file used for directory comparisons

November 1991

ucbdiff(l)

/bin/pr
Executable file

SEE ALSO

ucbdif f (1)

cc(l), cmp(l), comm(l), diff(l), ed(l), rcs(l), ucbdiff3(1)

November 1991 4

ucbdi f f3 (1) ucbdi f f3 (1)

NAME
ucbdi ff 3 - reports the differences between three files

SYNOPSIS
ucbdiff3 [-e] [-E] [-x[-3]] [-X[-3]] verl ver2ver3

ARGUMENTS
- e Publishes a script for the ed editor that will incorporate into ver 1 all

changes between ver2 and ver3 (the changes that would normally be
flagged==== and ====3).

- E Publishes a script for the ed editor that will incorporate into ver 1 all
changes between ver2 and ver3, but treat overlapping changes
(changes that would be flagged with = = = = in the normal listing)
differently. The overlapping lines from both files will be inserted by
the edit script, bracketed by<<<<<< and >>>>>>lines.

verl ver2 ver3
Specifies three versions of a file.

-x[-3]
Produces a script to incorporate only the changes flagged = = = =
(====3).

- X[-3]
Produces a script to incorporate only the changes that would be
flagged = = = = (= = = = 3), in the normal listing differently. The changes
from both files will be inserted by the edit script, bracketed by
<<<<<<and>>>>>> lines.

DESCRIPTION
ucbdi f f3 is used by the res Revision Control System. The ucbdi f f3
command compares three versions of a file and publishes disagreeing
ranges of text flagged with these codes.

====1

====2

====3

all three files differ

ver 1 is different

ver2 is different

ver3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of two ways:

f: nla Appends text after line number nl in filef, wheref = 1, 2, or 3.

f: nl, n2c Changes text in the range line nl to line n2. If nl = n2, the
range may be abbreviated to nl.

November 1991

ucbdi f f3 (1) ucbdif f3 (1)

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed.

EXAMPLES
Suppose lines 7-8 are changed in both verl and ver2. Applying the edit
script generated by the command

ucbdiff3 -E verl ver2 ver3

to verl results in the file:

lines 1-6 ofverl
<<<<<<< verl
lines 7-8 of verl

lines 7-8 of ver3
>>>>>>> ver3
rest ofverl

The - E option is used by RCS merge to insure that overlapping changes
in the merged files are preserved and brought to someone's attention.

LIMITATIONS
Text lines that consist of a single period(.) will defeat the -e option.

FILES
/usr/ucb/ucbdiff3

Executable file
/trnp/d3?????

Temporary file
/usr/lib/ucbdiff3

Library file

SEE ALSO
diff(l), diff3(1), rcs(l), ucbdiff(l)

November 1991 2

ul(l) ul(l)

NAME
ul - filters special underlining sequences imbedded in text for use at a
display device

SYNOPSIS
ul [-t terminal] [file] ...

ARGUMENTS
file Specifies the file that is to be run through the filter.

-t terminal
Specifies the type of terminal being used. If this option is not given,
the environment is searched, and if necessary,
I us r I 1 i b I t e rrni n f o is read to determine the appropriate
sequences for underlining. If none of the fields us, ue, or uc are
present, and if so and s e are present, standout mode is used to
indicate underlining.

DESCRIPTION
ul reads the named files (or standard input if none are given) and translates
occurrences of underscores to the sequence which indicates underlining.

If the terminal can overstrike, or handles underlining automatically, ul
behaves like cat. If the terminal cannot underline, underlining is ignored.

EXAMPLES
Enter this command:

ul f ilel

to display f i 1e1 on the terminal with underlined portions of the file either
underlined, or in reverse video when this option is supported for the
terminal.

LIMIT A TIO NS
The nroff program usually outputs a series of backspaces and underlines
intermixed with the text to indicate underlining. No attempt is made to
optimize the backward motion.

FILES
/usr/bin/ul

Executable file
/bin/cat

Executable file
/usr/lib/terrninfo

Terminal information file

November 1991

ul(l) ul(l)

SEE ALSO
colcrt(l), rnan(l), nroff(l)

November 1991 2

uname(l) uname(1)

NAME
uname - displays identification information about the current system

SYNOPSIS
uname [-a] [-m] [-n] [-r] [-s] [-v]

ARGUMENTS
- a Displays the system name, nodename, operating system release,

operating system version, and the machine hardware name.

-m Displays the machine hardware name.

-n Displays the nodename. The nodename may be a name that the
system is known by to a communications network.

- r Displays the operating system release.

- s Displays the system name. This option is the default.

-v Displays the operating system version.

DESCRIPTION
uname displays the name of the current system on the standard output file.
It is mainly useful to determine which system is being used. The options
cause selected information returned by uname to be displayed.

EXAMPLES
If you enter:

uuname

from an A/UX system, the following will display:

A/UX

FILES
/bin/uname

Executable file

SEE ALSO
uname(2) in AIUX Programmer's Reference

November 1991

uncompact(1) uncompact (1)

See compact(l)

November 1991

uncompress(!) uncompress (1)

See compress(!)

November 1991

uncompressdir(1) uncompressdir(1)

See compress(l)

November 1991

unexpand(1) unexpand(l)

See expand(1)

November 1991

unget(l) unget(l)

NAME
unget - undoes a previous get of an SCCS file

SYNOPSIS
unget [-n] [-rS/D] [-s] file ...

ARGUMENTS
file Specifies the affected SCCS file. If a name of - is given, the standard

input is read with each line being taken as the name of an SCCS file to
be processed.

-n Retains the retrieved file which would normally be removed from the
current directory.

-rSID
Uniquely identifies which delta is no longer intended. (This would
have been specified by get as the "new delta") The use of this
option is necessary only if two or more outstanding gets for editing
on the same SCCS file were done by the same person (login name). A
message results if the specified SID is ambiguous, or if it is necessary
and omitted on the command line.

-s Suppresses the printout, on the standard output, of the intended delta's
SID.

DESCRIPTION
unget undoes the effect of a get -e command done prior to creating the
intended new delta. If a directory is named, unget behaves as though
each file in the directory were specified as a named file, except that non­
SCCS files and unreadable files are silently ignored.

The options apply independently to each named file.

EXAMPLES
The command:

% unget s.testl.c
1. 2

undoes version 1.2 of testl. c set up for editing by an earlier get -e
command.

STATUS MESSAGES AND VALUES
Use help for explanations.

FILES
/usr/bin/unget

Executable file

November 1991

unget(1) unget(l)

SEE ALSO

2

adrnin(l), cdc(l), cornb(l), delta(l), get(l), help(l), prs(l),
rrndel(l), sact(l), sccs(l), sccsdiff(l), val(l), what(l)

sec sf ile(4) inA/UX Programmer's Reference

"SCCS Reference" in AJUX Programming Languages and Tools, Volume
2

November 1991

uniq(l) uniq(l)

NAME
uni q - reports repeated lines in a file

SYNOPSIS
uniq [-c] [-d] [+num] [-num] [-u] [in.file [ouifile]]

ARGUMENTS
-c Supersedes the -u and -d option and generates an output report in

default style but with each line preceded by a count of the number of
times it occurred.

-d Writes one copy of just the repeated lines. The normal mode output is
the union of the -u and -d mode outputs.

in.file
Specifies the input file that uni q is going to read.

+num
The first num characters are ignored. Fields are skipped before
characters.

-num
The first num fields together with any blanks before each are ignored.
A field is defined as a string of nonspace, nontab characters separated
by tabs and spaces from its neighbors.

ouifile
Specifies the output file into which the repeated lines will be written.

-u Outputs only the lines that are not repeated in the original file.

DESCRIPTION
uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder
is written in the output file. in.file and ouifile should always be different.
Note that repeated lines must be adjacent in order to be found; see
sort(l).

EXAMPLES
To print the contents of f i 1e1 with adjacent identical lines removed,
enter:

uniq f ilel

FILES
/usr/bin/uniq

Executable file

November 1991

uniq(l) uniq(l)

SEE ALSO
corrun(l), di ff (1), sort(l)

2 November 1991

units(!) units(!)

NAME
units - rescales quantities according to a the unit of measure specified

SYNOPSIS
units

DESCRIPTION
units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively (see the examples).

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed
positive integers, division by the usual sign (see the second example).

units only does multiplicative scale changes; thus it can convert Kelvin
to Rankine, but not Celsius to Fahrenheit. Most familiar units,
abbreviations, and metric prefixes are recognized, together with a generous
leavening of exotica and a few constants of nature including:

pi

c

e

g

force

mole

water

au

ratio of circumference to diameter

speed of light

charge on an electron

acceleration of gravity

same as g

Avogadro's number

pressure head per unit height of water

astronomical unit

The pound unit is not recognized as a unit of mass, the lb abbreviation is.
Compound names are run together, (for example, lightyear). British
units that differ from their U.S. counterparts are prefixed with br, thus:
brg a 11 on. For a complete list of units, type

cat /usr/lib/unittab

EXAMPLES
You have: inch
You want:

cm
* 2.540000e+OO
I 3.937008e-Ol

Youhave: 15 lbs force/in2
You want:

atm

November 1991

uni ts(l)

* l.020689e+OO
I 9.797299e-01

FILES

2

/usr/bin/units
Executable file

/usr/lib/unittab
Table file

units(!)

November 1991

unpack(l) unpack(l)

See pack(l)

November 1991

updater(!) updater(!)

NAME
updater - updates files between two machines

SYNOPSIS
updater [d] [r] [u] local remote .. .

updater [p] [r] [u] local remote .. .

updater [t] [r] [u] local remote .. .

ARGUMENTS
-d Lists the difference between the files on the local and remote

machines.

local
Specifies the local directory name.

-p Puts files from the local machine onto the remote machine to update
the remote machine.

- r Replaces a file if it did not exist on the destination machine.

remote
Specifies the remote directory names. Only one remote name can be
specified if the p (put) key is specified.

- t Takes files from the remote machine to update the local machine.

-u Updates a file only if it exists on both machines. This is the default
condition.

DESCRIPTION
updater updates files between two machines.

Algorithm
Open I dev It t y 0 to the remote machine.

st t y the local port and send a st t y command to the remote machine to
condition both ends of the connection.

Send a

remote; sumdir. lsort+2>

to remote machine for each remote system;

local;sumdir. lsort>/tmp/l"

for local machine.

Wait for remote to complete.

Take /tmp/rXXXXX.

November 1991

updater(!) updater(!)

Do a comparison between the local and the union of the remotes:

exists on remote only:
If both the t and r keys are specified, take the file; otherwise list the
file.

exists on local only:
If both p and r keys are specified, put the file; otherwise list the file.

exist on both but different:
If t key is specified, take the file.
If p key is specified, put the file.
If d key is specified, list the file.

same:
nothing

EXAMPLES
To use I dev It tyO to communicate with a remote machine and compare
directories on the remote and local systems, enter:

updater d ...

FILES
/usr/bin/updater

Executable file

November 1991 2

uptime(l) uptime(l)

NAME
uptime - reports how long system has been up

SYNOPSIS
uptime

DESCRIPTION
uptime prints the current time, the length of time the system has been up,
the number of users currently logged into the system, and the average
number of jobs in the run queue over the last 1, 5, and 15 minutes. It is,
essentially, the first line of a w command.

FILES
/usr/ucb/uptime

Executable file
/dev/kmem

Temporary file
/etc/utmp

Temporary file

SEE ALSO
ps(l), ruptime(lN), w(l)

November 1991

users(l) users(l)

NAME
users - reports a list of the users who are logged on to the system

SYNOPSIS
users [file]

ARGUMENTS
file Specifies the file from which users reads user information. The

default file is I etc I u tmp.

DESCRIPTION
users lists the login names of the users currently on the system in a
compact, one-line format.

FILES
/usr/ucb/users

Executable file
/etc/utmp

Temporary file

SEE ALSO
f inger(l), w(l), who(l)

November 1991

uucp(IC) uucp(IC)

NAME
uucp - copies files from one system to another system

SYNOPSIS
uucp [-c] [-C] [-d] [-f] [-ggrade] [-j] [-m] [-nlogin-name] [-r]
[- sfile] [-xdebug-level] source-file destination-file

ARGUMENTS
- c Reads the actual source file, rather than a copy, when the file is

transferred. This option is the default.

-c Makes a copy of the source file in
/usr I spool /uucp I system/ grade, where system is the name of
the system to which the file is being sent and grade is the priority
assigned to the transfer. If you use this option, the copy, rather than
the original file, is used to make the transfer. This option is useful if
you want to modify the file after submitting your uucp request, but do
not want the modified file to be transferred.

-d Makes any intermediate directories at the destination. This option is
the default.

destination-file
Specifies the pathname and filename of the copied file on the targeted
system.

- f Prevents the making of any intermediate directories that may be
necessary for the copy to complete successfully.

-ggrade
Specifies a grade that is used to prioritize file transfers. The value of
grade is a string of one or more alphanumeric characters. To see the
available priorities, use the uuglist command, which displays a list
of priorities or a message that says to use a single letter or number.

- j Writes the job identification string on the standard output. The string
can be used by uustat to obtain the status or terminate a uucp job
and is valid as long as the job remains queued on the local system.

-m Sends mail to the requester when the transfer is complete. This option
does not work when you are receiving multiple files as the result of
one uucp request. The -s option overrides this option.

-nlogin-name
Sends mail to login-name on the remote system to notify a user that a
file has been transferred.

- r Queues the job, but does not begin the transfer.

-sfile
Writes status information about the transfer into file. This option

November 1991

uucp(IC) uucp(lC)

overrides the -m option.

source-file
Specifies the source and destination of a file that uucp is to copy.
Both arguments have this form:

[[system!]. ..]pathname

The system portion of the argument must be a system that is known to
uucp on your system. You can use the uuname command to learn
the names of systems that are known on your system. See
uucico(IM) for additional information. SeeA!UX Network System
Administration for details.

The pathname portion of source and destination arguments can
contain the shell metacharacters ? , *, - , and [J , which are expanded
on the appropriate system. In most cases, shell metacharacters must be
protected from expansion by the local shell by enclosing the command
in double quotation marks ("), or by preceding the metacharacter with
a backslash (\). You specify the pathname portion of the source and
destination arguments by using one of the following forms:

• An absolute or relative pathname.

• An optional pathname preceded by - login-name where
login-name is a login name on the destination system; the value
of -login-name is expanded to that user's home directory.

• A pathname of - I.file. In this case, uucp forms the pathname by
appending - I.file to the string lusr I spool luucppublic.
The file portion of the pathname is treated as a filename if just
one file is being transferred by this request. To override the
treatment of file as a file, follow it with I. For example, - I dan I
causes the lusrlspoolluucppublicldan directory to be
made if it does not exist and to be the repository of the
transferred file. If the source-file argument expands to multiple
files or if file is already a directory, file is treated as a directory.

• The current directory.

If the resulting pathname does not exist on the remote system, the
copy operation fails.

If destination-file is a directory, the basename of source-file is used to
name the transferred file.

- xdebug-level
Writes debugging information on standard output. The value of
debug-level is a number from 0 to 9. Higher numbers produce more
detailed debugging information.

November 1991 2

uucp(lC) uucp(lC)

DESCRIPTION
uucp copies files from one system to another system, using both serial and
Ethernet connections. The successful completion of a uucp command
depends on the correct configuration of uucp files on your system. For
detailed information about configuring uucp, see A/UX Network System
Administration.

EXAMPLES
The following command transfers the file my f i 1 e, which resides in the
current directory, to the home directory of a user called art on a system
named hugo:

uucp myfile hugo!~art

The success of this command depends on your permission to read the file
and the permission of uucp on the system named hugo to write the file in
the home directory of the user called art.

The following command transfers the files that begin with R in the I tmp
directory to the /usr I spool /uucppublic directory on a system
named sparkie. If there are other files queued for tweetie, these files
are sent before files of a lower priority. The command also sends mail to
the requester when the transfer to tweetie completes and causes mail to
be sent to a user called nancy on sparkie when the files arrive on
sparkie.

uucp -ghigh -m -nnancy /tmp/R* \
tweetie!junebug!sparkie!~

The success of this command depends on the ability of the systems named
tweet ie and j unebug to forward files.

WARNINGS

3

Some versions of uucp cannot forward files. When specifying more than
one system name in a source or destination file argument, take care to
ensure that intermediate systems along the route are able to forward files. If
an intermediate system cannot forward, the file transfer will fail. The A/UX
Release 3.0 version of uucp forwards files correctly if the COMMANDS

keyword in the Permissions file includes uucp. See A/UX Network
System Administration for details.

For security reasons, your access to remote files and directories may be
severely restricted when you are both sending and receiving files. You can
ask a responsible person on the remote system to copy the files to an
accessible directory, such as /usr I spool /uucppubl ic, or send them
to you.

November 1991

uucp(lC) uucp(lC)

Regardless of the source file's owner and permission bit settings, when the
transfer is complete, the transferred copy of the file is owned by uucp and
the file's permission bits are set to 666 (read and write permission for
owner, group, and others).

LIMIT A TIO NS
If you are logged in as root and try to send a file in a directory that is
unsearchable by other users or try to send a file that is unreadable by other
users, uucp will fail with a can't read error message.

FILES
/usr/bin/uucp

Executable file
/usr/lib/uucp/*

Directory of uucp commands and configuration files
/usr/lib/uucp/uucico

Executable file that actually transfers files
/usr/spool/uucp

Directories containing the queued jobs
/usr/spool/uucppublic/*

Public directory for receiving and sending files

SEE ALSO
basenarne(l), rnail(l), uuglist(lC), uusend(lC), uustat(lC),
uux(lC)

uuc ico(lM), uuxqt(lM) in A/UX System Administrator's Reference

Chapter 8, "Setting Up the UUCP System," in A/UX Network System
Administration

November 1991 4

uudecode(IC) uudecode(IC)

See uuencode(lC)

November I 99 I

uuencode(IC) uuencode(IC)

NAME
uuencode, uudecode - encode and decode a binary file

SYNOPSIS
uuencode [source-file] decoded-name

uudecode [encoded-file]

ARGUMENTS
decoded-name

Specifies that name that the file is to have when it is decoded by
uudecode. This argument is required. The uuencode command
stores decoded-name, in the encoded file's header, as well as the
permission mode of source-file, for use by uudecode.

encoded-file
Specifies the name of a file to be decoded. If you do not specify this
argument, uudecode reads from the standard input.

source-file
Specifies the name of a file to be encoded. If you do not specify this
argument, uuencode reads from the standard input.

DESCRIPTION
uuencode reads a binary file, such as an executable program, converts
the data to ASCII representation, and writes the converted data to the
standard output. The ASCII representation of the file can then be
transferred by programs that handle only ASCII data, such as ma i 1. The
encoded file is an ordinary ASCII text file that you can edit with any text
editor. But it is best only to change the permission mode and the value of
encoded-file, stored in the header, which is the first line of the output, to
avoid corrupting the decoded binary.

The uudecode command converts an encoded file into its normal binary
representation, removes any leading and trailing lines that may be added by
mail programs, and creates the file so that it has the name and permission
mode that is stored in the header of encoded-file.

LIMITATIONS
The encoded file's size is expanded by 35 percent; 3 bytes become 4, plus
control information, causing it to take longer to transmit than the equivalent
binary.

When you run uudecode, you must have permission to write the file by
using the name stored in the header of the encoded file. In addition,
uudecode is owned by uucp and fails with a permission denied
message if you run it in a directory whose permission mode does not allow
other users to write.

November 1991

uuencode(lC)

FILES
/usr/bin/uudecode

Executable file
/usr/bin/uuencode

Executable file

SEE ALSO
rnail(l), uucp(lC), uux(lC)

2

uuencode(lC)

November 1991

uuglist(IC) uuglist(IC)

NAME
uuglist - displays the service grades that are available on your system

SYNOPSIS
uuglist [-1] [-u] [-xdebug-level]

ARGUMENTS
-1 Displays the correspondence of configurable service grades, as defined

in the file /usr I lib/uucp/Grades, to the single-letter service
grades that the UUCP system actually uses.

- u Displays the grades that you are allowed to use.

-xdebug-level
Writes debugging information on standard output. The value of
debug-level is a number from 0 to 9. Higher numbers produce more
detailed debugging information.

DESCRIPTION
u ug 1 is t displays all the service grades that are available for use with the
-g option of uucp and uux on your system.

Internally, the UUCP system uses single-letter grades ranging from A,
which has the highest priority, to z, which has the lowest priority. When
uucp and uux queue a job, the control files for the job are created in a
directory named for its grade (for example, the directory z in
/usr I spool /uucp/ system-name). When uucico processes jobs, it
transfers jobs that have the highest priority first. The default grade is z.
Your system administrator can use the Grades file to associate a
particular word (such as high), with a letter, such as A, so that you can use
words, rather than letters, as arguments to the -g option of the uucp and
uux commands. To see the words that are associated with grades, use the
-1 option to uuglist. The Grades file can also be used to prevent
users from using certain grades. To see the grades that you can use, use the
-u option to uuglist.

STATUS MESSAGES AND VALUES
The uuglist command displays this message when the file
/usr I lib/uucp/Grades does not exist:

No administrator defined service grades available
on this machine, use single letter/number only.

If you run uuglist when the /usr I lib/uucp/Grades file contains
invalid data, one of the following messages is be mailed to the uucp user
account:

Error encountered in the restrictions field of the
Grades file. Field contents (contents) .

November 1991

uuglist(lC) uuglist(lC)

Error encountered in action field of the Grades file.
Field contents (conUn~)

Your system may forward these mail messages to the root user account.

FILES
/usr/bin/uuglist

Executable file
/usr/lib/uucp

Directory of uucp commands and configuration files
/usr/lib/uucp/Grades

File that contains the available service grades
SEE ALSO

uucp(lC), uux(lC)

Appendix B, ''Customizing the UUCP System,'' in AIUX Network System
Administration

2 November 1991

uulog(IC) uulog(IC)

NAME
uulog - displays information about uucp file transfers

SYNOPSIS
uulog [-cqx] [-l[hours]] [-lines] [-fsystem] [system]. ..

uulog [-cqx] [-l[hours]] [-lines] [-ssystem] [system] ...

ARGUMENTS
-c Displays the contents of the uucp log files.

-fsystem
Displays the last ten lines, and any lines that are subsequently added,
to the log file for the system specified by system. To stop this
command, send an interrupt, for example by pressing CONTROL-C.

-l[hours]
Displays log entries that have been made within the last number of
hours, as specified by hours. The default value of hours is 2.

-lines
Specifies the number of lines to display when using the - f system
option. The maximum value of lines is 999.

-q Displays the contents of the uux log files.

-ssystem
Displays information for the system specified by system.

-x Displays the contents of the uuxqt log files.

DESCRIPTION
uulog displays the contents of the uucico log files. If you specify the
name of a system, uulog displays the contents of the uuc ico log file for
that system only. If you do not specify the name of a system, uulog
displays the contents of all uucico log files. You can use the -c, -q, or
-x option to display the contents of the uucp, uux, uuxqt log files,
respectively.

FILES
/usr/bin/uulog

Executable file
/usr/lib/uucp

Directory of UUCP commands and configuration files
/usr/spool/uucp/.Log/uucico/~s~m

Log file of uuc ico transfers for system
/usr I spool /uucp/. Log /uucp/ system

Log files of uucp transfers for system
/usr I spool /uucp/. Log /uux/ system

Log files of uux transfers for system

November I99I

uulog(lC)

/usr/spool/uucp/.Log/uuxqt/~s~m

Log files of u uxqt transfers for system
SEE ALSO

uucp(l), uustat(lC), uux(lC), uuxqt(lC)

uulog(lC)

Chapter 8, "Setting Up UUCP System," in AIUX Network System
Administration

2 November 1991

uuname(lC) uuname(lC)

NAME
uuname - displays the names of systems to which uucp and cu can
connect

SYNOPSIS
uuname [-c] [-1]

ARGUMENTS
- c Lists the names of systems to which cu can automatically connect by

specifying a system name. This option is useful only if your system
uses the /usr I 1 ib/uucp/ Sys files file to tell cu to use a file
other than the default I us r I 1 i b I uucp I Systems file to get
configuration information for remote systems. If you do not specify
this option, uuname lists all the systems to which uucp can connect
or, if your system does not use /usr /lib/uucp/Sysf iles, all
the systems to which both uucp and cu can connect.

-1 Displays the system name of the local system.

DESCRIPTION
uuname reads the file /usr I 1 ib/uucp/ Systems, and other files if
specified by I us r /1 i b I uucp I Sys f i 1 es, to get and display the names
of systems to which uucp and cu have been configured to connect.

FILES
/usr/bin/uuname

Executable file
/usr/lib/uucp

Directory of uucp commands and configuration files
/usr I lib/uucp/file

File used exclusively by cu or uucp, as specified by the file
/usr I lib/uucp/ Sys files, containing configuration
information for remote systems

/usr/lib/uucp/Sysfiles
File specifying that cu or uucp is to use a file other than the default
file, /usr I lib/uucp/ Systems, to get configuration information
for remote systems

/usr/lib/uucp/Systems
File containing configuration information for remote systems

SEE ALSO
cu(l), uucp(l)

Chapter 8, ''Setting Up the UUCP System,'' in AIUX Network System
Administration

November 1991

uupick(lC) uupick(lC)

See uuto(lC)

November 1991

uusend(lC) uusend(lC)

NAME
uusend - sends a file to a remote host

SYNOPSIS
uusend [-m file-permission] -r source.file system]! ... remote.file

ARGUMENTS
-m file-permission

Causes the value of .file-permission to be used as the file's file
permission when it is delivered. The value of file-permission is an
octal number. If this argument is not specified, the file permissions of
the input file are used.

- r Queues the job but does not start the file transfer.

remote.file
Specifies the name of the file when it is delivered. The value of
remote.file can be an absolute pathname or can include the
- login-name syntax. For example, a remote.file argument with the
value -mike I letter causes the file specified by source.file to be
named 1 et t er and placed in the home directory of the user named
mike on the last system named in the uusend command line.

source.file
Specifies the name of a file that is to be sent. The value of source.file
can be - , which causes the standard input to be used.

system]! ...
Specifies the systems involved.

DESCRIPTION
uusend sends a file to a given location on a remote system by acting as a
front-end to the uux command. The system need not be directly connected
to the local system, but a chain of uucp links must be used to connect the
two systems.

STATUS MESSAGES AND VALUES
If uucp fails on any system beyond the first system, you will not be
notified.

LIMITATIONS
All systems in a multisystem uucp command must have the uusend
command available and allow remote execution of it; for that reason,
uusend is included with this release.

Some versions of the uux command (but not the A/UX Release 3.0
version) prevent the input of a binary file. If this limitation exists in any
system along the line, the file is severely damaged.

November 1991

uusend(IC)

FILES
/usr/ucb/uusend

Executable file
SEE ALSO

uucp(lC), uuencode(lC), uux(lC)

uusend(lC)

"Using UUCP to Connect to a Remote System" in AIUX Networking
Essentials

2 November 1991

uustat(IC) uustat(lC)

NAME
uustat - controls uucp jobs and provides status information

SYNOPSIS
uustat [-a] [-Sjob-status] [[-j] [-ssystem]] [-ulogin-name]
[- xdebug-level]

uustat -kjob-id [-n] [-xdebug-level]

uustat -m [-xdebug-level]

uustat -p [-xdebug-level]

uustat -q [-xdebug-level]

uustat -rjob-id [-n] [-xdebug-level]

uustat -tsystem [-dminutes] [-c] [-xdebug-level]

ARGUMENTS
- a Lists all jobs in the queue. You can use this option with the - j option.

- c Reports the average queue time rather than the average transfer rate.
You can use this option only in conjunction with the - t option.

-dminutes
Overrides the 60-minute default so that uustat reports statistics for
the number of minutes specified by minutes.

- j Lists the total number of jobs displayed. You can use this option with
the - a or the - s option.

-kjob-id
Cancels the uucp request whose job identification is job-id. This
option is effective only if used by the user that originated the uucp
job or if made by a user logged in as root or uucp. If the job is
canceled by a user logged in as root or uucp, uustat notifies the
user who originated the uucp request by sending mail.

-m Reports the status of the most recent connection to all systems for
which a log file exists.

-n Suppresses information written on the standard output, but does not
suppress information written on the standard error. You can use this
option with the - k or the - r option.

-p Causes uustat to examine the lock files and run the command ps
- f lp for each process ID that it finds.

-q Lists the jobs queued for each system. If a status file exists for the
system, its date, time, and status information are displayed. If the
display includes a number in parentheses next to the number of C or X
files, the number in parentheses is the age in days of the oldest C • or

November 1991

uustat(IC) uustat(IC)

2

X. file for that system. The Retry column represents the number of
hours until the next possible call. The Count column is the number
of failure attempts. For systems with a moderate number of
outstanding jobs, uustat -q may take 30 seconds or more to
produce a report.

-rjob-id
Rejuvenates the job ID specified by job-id. The modification time of
the files associated with job-id is set to the current time, which
prevents uucleanup from deleting the job because it has become
old.

-ssystem
Reports the status of all uucp requests for the remote system
specified by system. You can use this option in conjunction with the
-j and -u options.

- Sjob-status
Reports the state of the job, whose type is specified by job-status. The
value of job-status can be one or more of the following options in any
combination:

c Reports jobs that have completed successfully. The completed­
state information is maintained in the accounting log, which is
optional and therefore may be unavailable.

i Reports interrupted jobs. A job is interrupted if the transfer
began but was terminated before the file was completely
transferred.

q Reports queued jobs. A job is queued if the transfer has not
started.

r Reports running jobs. A job is running when the transfer has
begun.

You can use the - S option with the - a, - j , - s, and -u options.

-tsystem
Reports the average transfer rate for the past 60 minutes for the
remote system specified by system. These calculations are based on
information contained in the optional performance log and therefore
may not be available. Calculations can only be made from the time
that the performance log was last cleaned up. The - t option produces
no message when the data needed for the calculations is not being
logged.

-ulogin-name
Reports the status of all uucp requests issued by the user specified by
login-name. You can use this option in conjunction with the - s

November 1991

uustat(lC) uustat(lC)

option.

-xdebug-level
Writes debugging information on standard output. The value of
debug-level is a number from 0 to 9. Higher numbers produce more
detailed debugging information.

DESCRIPTION
uus tat displays the status of UUCP jobs, cancels jobs, provides remote­
system performance information in terms of average transfer rates or
average queue times, and provides specific information, organized by
system or by user, about connections.

The uustat command without any options displays the status and job
identification number of all UUCP requests that have yet to be transferred
or have recently completed successfully. You can use options to cause
uustat to provide other types of information about uucp activity on your
system.

You can use the - a, - j , -m, -n, -p, -q, or - rjob-id option to get general
status information. Unless otherwise noted, these options cannot appear
with any other options on the uustat command line.

EXAMPLES
Here is an example of the output produced by the -q option:

eagle 3C
mh3bs3 2C

04/07-11:07 NO DEVICES AVAILABLE
07/07-10:42 SUCCESSFUL

The first column is the system name. The second column tells how many
control files are waiting to be processed. Each control file can specify the
transmisson of 0 or more files; if 0, uuc i co is to poll the remote system to
see if it has files to send to your system. The third column reflects the date
and time of the most recent attempt to connect to the system, and the fourth
column represents the status of that attempt.

Here is an example that uses the - t and - c options to display the amount
of time for which jobs remain in the queue for the system named eagle:

uustat -teagle -d50 -c

The command produces output in this format:
average queue time to eagle for last 50 minutes: 5 seconds

The same command without the - c option produces output in this format:

average transfer rate with [eagle] \
for last [50] minutes: 2000.88 bytes/sec

Here is an example of the output of the - s option, which displays all of the
jobs queued for a specific system, and the -u option, which displays all of
the jobs queued by a specific user:

November 1991 3

uustat(lC) uustat(lC)

eagleNlbd7
eagleClbd8

4/07-11:07
4/07-11: 07
4/07-11:07

S eagle dan 522 /home/dan/A
S eagle dan 59 D.3b2al2ce4924
S eagle dan rmail mike

The first column is the job ID of the job. The second column is the date
and time the job was queued. The third column is an S if the job is sending
a file or an R if the job is requesting a file. The fourth column is the name
of the system the file is being transferred to or from. The fifth column is
the login name of the user who queued the job. The sixth column is the
size of the file in bytes, or, in the case of a remote execution command such
as rma i 1, the name of the command. When the size appears in this
column, the filename is displayed in the seventh column. This filename can
either be the name given by the user or an internal name, such as
D . 3b2a1ce4 9 2 4, that is created for data files associated with remote
executions.

The output of the - S option is the same as the output for the - s and - u
options except that the job states are appended as the last output word.

Here is an example that uses the - S and the c options to display the current
list of completed jobs:

uustat -Sc

Here is an example of the output of this command:
eagleClbd3 completed

NOTES
If you use the -C option of uucp, which specifies that uucp is to transfer
the file from the file itself rather than making a copy in
/usr I spool /uucp, and the file is later moved or deleted before uucp
can transfer it, uustat reports a file size of -99999. Such a job eventually
fails because the file to be transferred cannot be found.

FILES
/usr/lib/uucp

Directory of uucp commands and configuration files
/usr/spool/uucp/*

Files, organized by system name, that contain the control information
that makes up a uucp job

/usr/uucp/.Adrnin/account
Log of accounting information

/usr/uucp/.Adrnin/perflog
Log of performance information

SEE ALSO
uucp(lC), uulog(lC)

4 November 1991

uustat(lC) uustat(lC)

Chapter 8, "Setting Up the UUCP System," in AIUX Network System
Administration

November 1991 5

uuto(IC) uuto(IC)

NAME
uuto, uupick - provide an easy interface to the uucp command,
using the public directories

SYNOPSIS
uuto [-rn] [-p]file ... destination

uupick [-ssystem]

ARGUMENTS
destination

Specifies a path of system names over which the files are to be
transmitted and the login name of a user on the last system who is to
receive the files. The destination argument has the form

system]! [system2 !]. .. login-name

The value of system] must be the name of a remote system in your
/usr/lib/uucp/Systerns file. Use the uunarne command to
see the names of systems in that file. For the transfer to complete
successfully, the value of system2 must be configured in the
/usr /1 ib/uucp/ Systems file, or its equivalent, on system] and
so on through the chain of systems.

The value of login-name must be the login name of a user on the
remote system specified by the last value of system in the chain.

file Specifies the file or files that are to be transferred to the remote
system. The value of the file argument can be the name of a single file;
the name of a directory, in which case all the files in the directory
hierarchy are transferred; or a string containing shell metacharacters
that expand to one or more file or directory names.

-rn Sends mail to the user of the uuto command when the transfer to the
system] is complete.

-p Runs uucp so that it copies files into the spool directory and uses the
copy to make the transfer. If you do not use this option, the actual file
is read to make the file transfer. In this case, you must not move,
delete, or rename the file until the transfer is complete, or the transfer
will fail.

-ssystem
Specifies the name of a system when you are using the uupick
command and causes uupick to display information about files from
the system specified by system only. If you do not use this option,
uupick displays information about files you have received from all
systems.

November I99I

uuto(lC) uuto(lC)

DESCRIPTION
uuto provides an easy-to-use interface to the uucp command. The files
(or directories and files if the file argument is a directory) are transferred to
a directory named for your system in
/usr I spool /uucppublic /receive/ login-name/system-name,
where login-name is the value of the login-name component of the
destination argument and the value of system-name is the name of the
system that delivered the file. The user specified by login-name is notified
by rnai 1 when the files arrive.

uupick allows you to accept or dispose of files that have been transmitted
by uuto. For each file or directory that uupick finds for you, it displays
the following message on the standard output:

from system system: [file file] [dir dir] ?

Then uupick waits for you to enter one of the following disposition
commands:

!command
Returns to the shell, which runs the command specified by command,
and returns to uupick.

* Displays a summary of uupick commands.

a[dir]
Acts the same way as the -m option except that uupick moves all of
the files sent from system.

CONTROL-D

Acts the same way as the q command.

d Deletes the file or directory.

m[dir]
Moves the file or directory to the directory specified by dir. The value
of dir can be a full pathname (in which $HOME is allowed) or a
relative pathname. If the value of dir is a relative pathname, uupick
uses your current directory and the value of dir as the directory into
which to move the file. If you do provide a dir argument, uupick
uses the current directory.

p Displays the contents of the file.

q Exits uupick.

RETURN

Causes u u to to go on to next the file or directory.

November 1991 2

uuto(lC) uuto(lC)

WARNINGS
To send a file whose name begins with a period, such as . prof i 1 e, you
must specify the period rather than relying on the shell to expand a
metacharacter for you. For example, the following file specifications are
correct:

.profile

.prof*

.profil?

The following file specifications will not work:

*profile
?profile

FILES
/usr/bin/uupick

Executable file
/usr/bin/uuto

Executable file
/usr/lib/uucp

Directory of uucp commands and configuration files
/usr/spool/uucppublic

Directory into which uuto transfers files

SEE ALSO
mail(l), uucp(lC), uuname(lC), uustat(lC), uux(lC)

uucleanup(lM) in AIUX System Administrator's Reference

3 November 1991

uux(lC) uux(lC)

NAME
u ux - runs a command on a remote system

SYNOPSIS
uux [-] [-aname] [-b] [-C] [-c] [-ggrade] [-j] [-n] [-p] [-r]
[- sfile] [-xdebug-level] [- z] command-string

ARGUMENTS
Causes the standard input to u ux to be used as the standard input of
the command specified by command-string. This argument has the
same effect as the -p option.

- alogin-name
Uses the value of login-name, rather than using your login name, as
the initiator of the u ux request. If you use this option, notification
messages are sent to the user whose login name is login-name.

- b Returns in a notification message, the standard input that was provided
to the uux command if the exit status is nonzero.

- c Copies from the actual file rather than making a copy in the directory
/usr I spool /uucp and uses that copy to make the transfer. This
option is on by default.

- C Makes a copy of a file to be transferred in the directory
/usr I spool /uucp and uses the copy to make the transfer.

command-string
Specifies one or more arguments that look like a shell command line,
except that the command and filenames may be prepended by
system ! , where system is the name of a system configured in the
/usr /lib/uucp/ Systems file. If you do not specify a system,
uux runs the command on your local system.

A filename consists of one of the following:

• A full pathname.

• A pathname preceded by ~login-name, where login-name is a
login name of a user on the specified system and is replaced by
the full pathname of that user's login directory.

• A relative pathname, which uux converts to a full pathname by
prepending the full pathname of the current directory.

-ggrade
Specifies a grade. The value of grade is a string of one or more
alphanumeric characters that specifies a service grade, or priority. To
see the available grades, use the uuglist command, which displays
a list of grades or a message that tells you to use a single letter or
number.

November 1991

uux(lC) uux(lC)

- j Writes the job identification string on the standard output. You can
use the job identification with the uustat command to cancel a job
or get its status.

-n Prevents uux from notifying you if the command fails. If you do not
use this option, uux sends you a mail message describing the failure.

-p Causes the standard input to uux to be used as the standard input of
the command specified by command-string. This argument has the
same effect as a hyphen (-).

- r Queues the job but does not start the file transfer.

- sfile
Reports the status of the transfer in the file specified by file.

-xdebug-level
Writes debugging information on the standard output. The value of
debug-level is a number from 0 to 9. Higher numbers produce more
detailed debugging information.

- z Sends mail when the file transfer completes successfully.

DESCRIPTION
uux runs a command on a remote system. You can use uux to gather files
from specified systems, run a command on the files on a specified system,
and then send the standard output of the command to a file on a specified
system. For security reasons, some system administrators limit to mai 1
the commands that remote u ux commands can run.

The uux command sends mail to notify you if the remote system disallows
the requested command. You can disable the notification by using the -n
option.

EXAMPLES

2

Here is a command that gets the files f ileA and f ileB from system2
and system3, and uses them as arguments to di ff, which is run on
systeml. The command puts the result of di ff in the file file. dif f
in the directory /usr I spool /uucppublic, which is expanded from
the tilde C), on system4:
uux "systeml!diff system2!/home/dan/fileA

system3!/a4/dan/fileB > \
!system4-/dan/file.diff"

You should quote any special shell characters, such as comma (,), right
angle bracket(>), semicolon (;),and pipe (I), either by enclosing the
entire command string in quotation marks or by quoting the special
characters as individual arguments.

November 1991

uux(lC) uux(lC)

uux attempts to get all appropriate files to the specified system where they
are processed. The filenames of output files must be escaped with
parentheses. For example, if you are logged in on sys t eml, and want to
run uucp on system2 to copy a file from system2 to /tmp on
system3, the following uux command would be appropriate:
uux "system2!uucp system2!/usr/file (system3!/tmp)"

The same command, but without parentheses, will fail because u ux will
attempt to put system3 ! /tmp on system2 prior to running uucp on
system2.

The following example gets the file I us r I f i 1 e from sys t em2 and
sends it to systeml, performs cut on that file, and sends the result to the
file I us r I f i 1 e on sys t em3. Note that parentheses are not required in
this example because the only ouput is the result of redirection.
uux "systeml!cut -fl system2!/usr/file > system3!/usr/file"

LIMIT A TIO NS
Only the first command of a shell pipeline can be preceded by a system
value. All other commands are executed on the system specified by the
first command.

The asterisk shell metacharacter (*)does not expand as you probably want.

The shell tokens < < and > > are not implemented.

The execution of commands on remote systems takes place in a directory
known to uucp and its related commands. All files required to run the
command are put in this directory unless they already reside on the remote
system. You must, therefore, take care to avoid name collisions that result
in the overwriting of one file by another. For example, this command fails
because the file xy z is first transferred from sys t em2 and then
overwritten by the transfer from system3, which results in only one
argument for the di ff command:

uux "systeml!diff system2!/home/dan/xyz \
system3!/home/dan/xyz > !xyz.diff"

If di ff is permitted on the remote system, this command does work
because the file xy z is transferred to the execution directory from
system3, then transferred to systeml, and then compared with
/home/dan/xyz on systeml:

uux "systeml!diff systeml!/home/dan/xyz \
system3!/home/dan/xyz > !xyz.diff"

You can use u ux to transfer protected files that you own and files that are
in protected directories that you own. However, if you are logged in as
root and your directories cannot be searched by other users, the request
will fail.

November 1991 3

uux(lC)

FILES
/usr/bin/uux

Executable file
/usr/lib/uucp

Directory of uucp commands and configuration files
/usr/lib/uucp/Perrnissions

File that limits the commands that u ux can run
/usr/spool/uucp

Directory of queued uucp jobs
SEE ALSO

uucp(lC), uuglist(lC), uustat(lC)

uuxqt(lM) in A/UX System Administrator's Reference

uux(lC)

Chapter 8, "Setting Up the UUCP System," inAIUX Network System
Administration

4 November 1991

val(l) val(l)

NAME
v a 1 - validate SCCS file

SYNOPSIS
val-

val [-mname] [-rSID] [-s] [-ytype] file ...

ARGUMENTS
Causes reading of the standard input until an end-of-file condition is
detected. Each line read is independently processed as if it were a
command line argument list.

file Specifies the name of the SCCS file to be validated.

-mname
Compares the name argument value with the SCCS %M% keyword in
file.

-rSID
Checks to determine if the SCCS delta number, SID (SCCS
/Dentification String), is is ambiguous (e.g., - r 1 is ambiguous
because it physically does not exist but implies 1.1, 1.2, etc., which
may exist) or invalid (e.g., -rl. 0 or -rl. 1. 0 are invalid because
neither case can exist as a valid delta number). If the SID is valid and
not ambiguous, a check is made to determine if it actually exists.

- s Silences the message normally generated on the standard output for
any error that is detected while processing each named file on a given
command line.

-ytype
Causes val to compare the argument value type with the SCCS %Y%
keyword infile.

DESCRIPTION
val determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to val
may appear in any order.

val generates diagnostic messages on the standard output for each
command line and file processed, and also returns a single 8-bit code upon
exit as described below.

The 8-bit code returned by val is a disjunction of the possible errors, i.e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:

bit 0 = missing file argument
bit 1 =unknown or duplicate keyletter argument
bit 2 = corrupted SCCS file

November 1991

val (1) val (1)

bit 3 = cannot open file or file not SCCS
bit 4 = SID is invalid or ambiguous
bit 5 = SID does not exist
bit 6 = %Y%, -y mismatch
bit 7 = %M%, -m mismatch

Note that val can process two or more files on a given command line and
in tum can process multiple command lines (when reading the standard
input). In these cases an aggregate code is returned - a logical OR of the
codes generated for each command line and file processed.

EXAMPLES
val
-ye -mabc s.abc
-mxyz -ypll s.xyz

first checks if file s. abc has a value c for its type flag and value abc for
the module name flag. Once processing of the first file is completed, val
then processes the remaining files (in this case s . xy z) to determine if they
meet the characteristics specified by the keyletter arguments associated
with them.

STATUS MESSAGES AND VALVES
Use help for explanations.

LIMITATIONS
val can process up to 50 files on a single command line. Any number
above 50 will produce a core dump.

FILES
/usr/bin/val

Executable file

SEE ALSO

2

admin(l), cdc(l), comb(l), delta(l), get(l), help(l), prs(l),
rmdel(l), sact(l), sccs(l), sccsdi ff(l), unget(l), what(l)

sccsf ile(4) inA/UX Programmer's Reference

"SCCS Reference" in A/UX Programming Languages and Tools, Volume
2

November 1991

vax(l) vax(l)

See machid(l)

November 1991

vc(1) vc(l)

NAME
vc - manipulates version control information inside a data stream

SYNOPSIS
vc [-a] [-cchar] [-s] [-t] [keyword=value]. ..

ARGUMENTS
- a Forces replacement of keywords surrounded by control characters

with their assigned value in all text lines and not just in vc statements.
An uninterpreted control character may be included in a value by
preceding it with \. If a literal \ is desired, then it too must be
preceded by \.

-cchar
Specifies a control character to be used in place of : .

keyword=value
Specifies the user declared keyword that was set by . de 1 and the
value it was assisgned. A keyword is composed of 9 or less
alphanumerics; the first must be alphabetic. A value is any ASCII
string that can be created with ed; a numeric value is an unsigned
string of digits. Keyword values may not contain blanks or tabs. See
"Version Control Statements" later in this manual page for details.

- s Silences warning messages (not error) that are normally printed on the
output.

- t Ignores all characters from the beginning of a line up to and including
the first tab character for the purpose of detecting a control statement.
If one is found, all characters up to and including the tabs are
discarded.

DESCRIPTION
The vc command copies lines from the standard input to the standard
output under control of its arguments and control statements encountered in
the standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear
in plain text and/or control statements.

The copying of lines from the standard input to the standard output is
conditional, based on tests (in control statements) of keyword values
specified in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
(unless the -t option is used, in which case, all characters up to and
including the first tab are ignored, and what follows begins the control
statement). The default control character is colon (:) . This can be
changed by the -c option (see below). Input lines beginning with a
backslash (\) followed by a control character are not control lines and are

November 1991

vc(l) vc(l)

copied to the standard output with the backslash removed. Lines beginning
with a backslash followed by a noncontrol character are copied in their
entirety.

Replacement of keywords by values is done whenever a keyword
surrounded by control characters is encountered on a version control
statement.

Version Control Statements
: de 1 keyword[, ... , keyword]

Declares keywords. All keywords must be declared.

: asg keyword=value
Assigns values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line
and all previous asg's for that keyword. Keywords declared, but not
assigned values have null values.

: i f condition

:end
Skips lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied
to the standard output. If the condition is false, all intervening lines
are discarded, including control statements. Note that intervening if
statements and matching end statements are recognized solely for the
purpose of maintaining the proper if - end matching.

The syntax of a condition is:

<cond> .. - ["not"] <Or>
<Or> .. - <and> I <and> "I II <Or>
<and> .. - <exp> I <exp> "&" <and>
<exp> .. - II (II <Or> II) II I <value> <Op> <value>
<Op> .. - "-" II!=" "<" I ">"
<value> .. - <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

equal
! = not equal
& and
I or
> greater than
< less than

November 1991 2

vc(l) vc(1)

() used for logical groupings
not may only occur immediately after the if, and when present,

inverts the value of the entire condition

The > and < operate only on unsigned integer values (e.g., : O 12 >
12 is false). All other operators take strings as arguments (e.g., :
012 ! = 12 is true). The precedence of the operators (from highest
to lowest) is:

!= > <

&

I

all of equal precedence

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least
one blank or tab.

: : text
Replaces keywords on lines that are copied to the standard output.
The two leading control characters are removed, and keywords
surrounded by control characters in text are replaced by their value
before the line is copied to the output file. This action is independent
of the - a option.

:on
:off

Tums on or off keyword replacement on all lines.

: ctl char
Changes the control character to char.

: msg message
Prints the given message on the output.

: err message
Prints the given message followed by:

ERROR: err statement on line ... (915)

on the output. vc halts execution, and returns an exit code of 1.

EXAMPLES

3

If you have a file named note containing:

:dcl NAME,PLACE
:NAME: I

Just a note to remind you that we have a meeting
scheduled Monday morning at :PLACE:.

the command

November 1991

vc(1) vc(l)

vc -a NAME=Joe PLACE=University < note

will produce

Joe,
Just a note to remind you that we have a meeting
scheduled Monday morning at the University.

STATUS MESSAGES AND VALUES
0 normal

1 any error

Use help for explanations.

FILES
/usr/bin/vc

Executable file

SEE ALSO
admin(l), cdc(l), comb(l), del ta(l), ed(l), get(l), help(l),
rmdel(l), prs(l), sact(l), sccs(l), sccsdi ff(l), unget(l),
val(l), what(l)

sccsfile(4) inA/UX Programmer's Reference

''SCCS Reference'' in A/UX Programming Languages and Tools, Volume
2

November 1991 4

vedit(l) vedit(l)

See vi(l)

November 1991

version(!) version(!)

NAME
version - reports version number of files

SYNOPSIS
version file ...

ARGUMENTS
file Specifies the file for which you want the version number.

DESCRIPTION
version takes a list of files and reports the version number. If the file is
not a binary, it reports:

not a binary

If there is not a version number associated with the file, it reports:

No version header

The version command also reports the object file format of the file, such
as either

Coff object file format

or

Old a.out object file format.

The version command is useful for determining which version of the
current program you are running.

EXAMPLES
The command

version /bin/version

prints the version number of the version program.

FILES
/bin/version

Executable file

SEE ALSO
strings(l), what(l)

November 1991 1

vi(l) vi(l)

NAME
vi, view, vedi t - invokes the screen-oriented (visual) display editor

SYNOPSIS
vi [+command] [-1] [-r [file]] [-R] [-t tag] [-wn] [-x] name ...

view[+command] [-1] [-r [file]] [-R] [-t tag] [-wn] [-x] name .. .

vedit [+command] [-1] [-r [file]] [-R] [-t tag] [-wn] [-x] name .. .

ARGUMENTS
+command

Interprets the specified ex command before editing begins.

-1 Starts the LISP mode; indents appropriately for 1 is p code, the () ,
{}, [[, and J J commands in vi and open are modified to have
meaning for 1 is p.

name
Specifies the name of the file to be edited.

-r [file]
Recovers file after an editor or system crash. If file is not specified, a
list of all saved files will be printed.

- R Starts read only mode; the readonly flag is set, preventing
accidental overwriting of the file.

-t tag

-wn

Edits the file containing the tag and positions the editor at its
definition.

Sets the default window size to n. This is useful when using the editor
over a slow speed line.

-x Starts encryption mode; a key is prompted for allowing creation or
editing of an encrypted file. This encryption scheme is not secure.

DESCRIPTION

1

vi (visual) is a display-oriented text editor based on an underlying line
editor ex(1). It is possible to use the command mode of ex from within
vi and vice versa. The file $HOME/. exrc and the variable EXINIT can
be used to establish preferences (initializations) that take effect whenever
you run vi or ex. For example, to invoke line numbering mode
automatically you could place the following string in the exrc file or
assign it as a quoted argument to EXINIT, which you would then export:

set number

November 1991

vi(l) vi(l)

When using vi, changes you make to the file are reflected by what you see
on your terminal screen. The position of the cursor on the screen indicates
the position within the file.

The name argument indicates files to be edited.

The view invocation is the same as vi except that the readonly flag is
set.

The vedi t invocation is intended for beginners. The report flag is set
to 1, and the showmode and novice flags are set. These defaults make it
easier to initially learn the editor.

Modes
Command

Normal and initial mode. Other modes return to command mode upon
completion. ESCAPE is used to cancel a partial command.

Input
Entered by an a, i, A, I, o, 0, c, c, s, s, or R. Text may then be
entered. Input mode is normally terminated with Esc character, or
abnormally with interrupt.

Last line
Reading input for : , I, ? or ! ; terminate with RETURN to execute,
interrupt to cancel.

Sample Commands
f--!.i~

arrow keys move the cursor

h j k 1
same as arrow keys

i text ESCAPE
insert text

cwnew ESCAPE
change word to new

easESCAPE
pluralize word

x delete a character

dw delete a word

dd delete a line

3dd
delete 3 lines

November 1991 2

vi(l) vi(l)

u undo previous change

zz exit vi, saving changes

:q!RETURN
quit, discarding changes

I text RETURN
search for text

CONTROL-U, CONTROL-D
scroll up or down

: ex-cmdRETVRN
any ex or ed command

Counts before vi commands
Numbers may be typed as a prefix to some commands. They are
interpreted in one of these ways:

line/column number
z G I

scroll amount
CONTROL-D CONTROL-U

repeat effect
most of the rest

Interrupting and Canceling
ESCAPE

ends insert mode or abandons a partially-entered command

interrupt
interrupts any command that is still underway

CONTROL-L
reprints screen

CONTROL-R
reprints screen if CONTROL-Lis----) key

File Manipulation
:wRETURN

write back changes

:qRETURN
quit

:q!RETURN
quit, discard changes

:enameRETURN
edit file name

3 November 1991

vi(1) vi(l)

: e !RETURN
reedit, discard changes

:e+nameRETURN
edit, starting at end

: e+nRETURN
edit starting at line n

: e#RETURN
edit alternate file

: wnameRETURN
write file name

BI :w ! name RETURN
overwrite file name

: shRETURN
run shell, then return

: ! cmdRETURN
run cmd, then return

:nRETURN
edit next file in arglist

: nargsRETURN
specify new arglist

CONTROL-G
show current file and line

: tatagRETURN
tag file entry tag

In general, any ex or ed command (such as substitute or global) may be
typed, preceded by a colon and followed by a RETURN.

Positioning Within a File
CONTROL-F

forward screen

CONTROL-B
backward screen

CONTROL-D
scroll down half screen

CONTROL-U
scroll up half screen

G go to specified line (end default)

November 1991 4

vi(l)

/pat
next line matching pat

?pat
prev line matching pat

n repeat last I or ?

N reverse last I or ?

/pat+n
nth line after pat

?pat?-n
nth line before pat

J J next section/function

[[previous section/function

beginning of sentence

end of sentence

beginning of paragraph

end of paragraph

% find matching () { or }

Adjusting the Screen
CONTROL-L

clear and redraw

CONTROL-R

retype, eliminate @ lines

zRETURN

redraw, current at window top

z-RETURN

... at bottom

z .RETURN

/pat I z - RETURN

pat line at bottom

zn. RETURN

use n line window

CONTROL-E

scroll window down 1 line

CONTROL-Y

scroll window up 1 line

5

vi(l)

November 1991

vi(l)

Marking and Returning
move cursor to previous context

... at first nonwhite in line

mx mark current position with letter x

'x move cursor to mark x

'x ... at first nonwhite in line

Line Positioning
H top line on screen

L last line on screen

M middle line on screen

+ next line, at first nonwhite

previous line, at first nonwhite

RETURN
return, same as +

-1-
j next line, same column

1'
k previous line, same column

Character Positioning
" first nonwhite

0 beginning of line

$ end of line

h
--t forward

1
~ backward

CONTROL-H
same as ~

space
same as --t

fx find x forward

Fx same as f, but in the backward direction

tx moves cursor forward to x

Tx back up to x

November 1991

vi(l)

6

vi(1)

repeat last f F t or T

inverse of ;

to specified column

% find matching ({) or }

Words, Sentences, and Paragraphs
w word forward

b back word

e end of word

to next sentence

to next paragraph

back sentence

back paragraph

W blank delimited word

B back W

E to end of W

Commands for LISP Mode
) Forward s-expression

} ... but do not stop at atoms

Back s-expression

... but do not stop at atoms

Corrections During Insert
CONTROL-H

erase last character

CONTROL-W
erase last word

erase
your erase, same as CONTROL-H

kill your kill, erase input this line

\ quotes CONTROL-H, your erase and kill

ESCAPE
ends insertion, back to command

interrupt
your interrupt, terminates insert

7

vi(l)

November 1991

vi(l) vi(l)

CONTROL-D
backtab over autoindent

iCONTROL-D

kill autoindent, save for next

OCONTROL-D

... but at margin next also

CONTROL-V
quote nonprinting character

Insert and Replace
a append after cursor

i insert before cursor

A append at end of line

I insert before first nonblank

o open line below

O open line above

rx replace single character with x

RtextESCAPE
replace characters

Operators
Operators are followed by a cursor motion, and affect all text that would
have been moved over. For example, since w moves over a word, dw
deletes the word that would be moved over. Double the operator, for
example, dd to affect whole lines.

d delete

c change

y yank lines to buffer

< left shift

> right shift

filter through command

indent for LISP

Miscellaneous Operations
C change rest of line (c $)

D delete rest of line (d$)

s substitute chars (c 1)

November 1991 8

vi(l) vi(l)

s substitute lines (cc)

J join lines

x delete characters (dl)

x ... before cursor (dh)

y yank lines (yy)

Yank and Put
put inserts the text most recently deleted or yanked. If a buffer is named,
however, the text in that buffer is put instead.

p put back text after cursor

P put text before cursor
11 xp put text from buff er x
11 xy yank text to buff er x
11 xd delete text into buff er x

Undo, Redo, and Retrieve
u undo last change

u restore current line

repeat last change

lldp

retrieve dth last delete

LIMIT A TIO NS
Software tabs using CONTROL-T work immediately after the autoindent
only.

Left and right shifts on intelligent terminals do not make use of insert and
delete character operations in the terminal.

FILES
$HOME/.exrc

9

File containing ex initialization commands
/usr/bin/vi

Executable file
/usr/bin/view

Executable file
/usr/bin/vedit

Executable file

November 1991

vi(1)

SEE ALSO
ex(l)

"Using vi," in A/UX Text Editing Tools

November 1991

vi(l)

10

view(l) view(l)

See vi(l)

November 1991

w(l) w(l)

NAME
w - displays a summary of the current system activity

SYNOPSIS
w [-h] [-1] [-s] [-u] [user]

ARGUMENTS
- h Suppresses the heading.

-1 Gives the long output, which is the default.

- s Asks for a short form of output. In the short form, the tty is
abbreviated, the login time and CPU times are left off, as are the
arguments to commands.

-u Suppresses everything but the heading, as in uptime(l).

user
Causes the output to be restricted to the specified user.

DESCRIPTION
w prints a summary of the current activity on the system, including what
each user is doing. The heading line shows the current time of day, how
long the system has been up, the number of users logged into the system,
and the load averages. The load average numbers give the number of jobs
in the run queue averaged over 1, 5 and 15 minutes.

The fields output are: the users login name, the name of the tty the user is
on, the time of day the user logged on, the number of minutes since the
user last typed anything, the CPU time used by all processes and their
children on that terminal, the CPU time used by the currently active
processes, the name and arguments of the current process.

LIMITATIONS
The notion of the current process is muddy. The current algorithm selects
the highest numbered process on the terminal that is not ignoring interrupts,
or, if there is none, the highest numbered process on the terminal. This
fails, for example, in critical sections of programs like the shell and editor,
or when faulty programs running in the background fork and fail to ignore
interrupts. (In cases where no process can be found, w prints-.)

The CPU time is only an estimate; in particular, if someone leaves a
background process running after logging out, the person currently on that
terminal is charged with the time.

Background processes are not shown, even though they account for much
of the load on the system.

Sometimes processes, typically those in the background, are printed with
null or garbaged arguments. In these cases, the name of the command is
printed in parentheses.

November 1991 1

w(1) w(l)

The w command does not know about the new conventions for detection of
background jobs. It will sometimes find a background job instead of the
right one.

FILES
/usr/ucb/w

Executable file
/etc/utmp

File containing user status information
/dev/kmem

Device file

SEE ALSO
who(l), f inger(l), ps(l), upt ime(l), users(l)

utmp(4) inA/UX Programmer's Reference

2 November 1991

we(1) wc(l)

NAME
we - counts characters, words, and lines in a file

SYNOPSIS
we [-[chunk-size]] [file]. ..

ARGUMENTS
- [chunk-size]

Specifies one or more things to count. Replace chunk-size with one or
a combination of the following options:

c Requests a report of the number of characters in a file.

1 Requests a report of the number of lines in a file.

w Requests a report of the number of words in a file.

file Specifies the file to be counted.

DESCRIPTION
we counts lines, words, and characters in the specified files or in the
standard input (if no files appear). It also keeps a total count for allfiles. A
word is a maximal string of characters delimited by spaces, tabs, or
newlines.

The options may be used in any combination; the default is -1 we.

Whenfiles are specified on the command line, they will be printed along
with the counts.

EXAMPLES
Enter this command:

we f ilea f ileb f ilec

to report the number of lines, words, and characters in each of the files, as
well as the totals.

FILES
/bin/we

Executable file

SEE ALSO
sum(l), sumdir(l)

November 1991

what(l) what(l)

NAME
what - reports identification information for a file

SYNOPSIS
what [-s] file ...

ARGUMENTS
file Specifies the file to be searched.

- s Quits after finding the first occurrence of pattern in each file.

DESCRIPTION
what searches the given files for all occurrences of the pattern that get
substitutes for % z % (this is @(#) at this printing) and prints out what follows
until the first ' ', >, newline, \, or null character. For example, if the C
program in file f . c contains

char ident[] = ' ' @ (#)
identification information'';

and f . c is compiled to yield f . o and a . out, then the command

what f .c f .o a.out

will print

f . c : identification information

f. o: identification information

a.out:
identification information

The what program is intended to be used in conjunction with the SCCS
command get, which inserts identifying information automatical1y, but it
can also be used where the information is inserted manually.

EXAMPLES
If test 1 . c has the following string:

char v[J = "@(#)1 testl.c 2";

typing

what testl.c

would print the following:

testl.c:
1 testl. c 2

STATUS MESSAGES AND VALUES

1

The exit status is 0 if any matches are found, otherwise it is 1. Use the
help command for explanations.

November 1991

what(l) what(l)

LIMITATIONS
It is possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

FILES
/usr/bin/what

Executable file

SEE ALSO
admin(l), cdc(l), cornb(l), del ta(l), get(l), help(l), prs(l),
rrndel(l), sact(l), sccs(l), sccsdiff(l), unget(l), val(l)

sec sf ile(4) in A/UX Programmer's Reference

''SCCS Reference'' in A/UX Programming Languages and Tools, Volume
2

November 1991 2

whatis(l) whatis(l)

NAME
what is - reports a brief description for the manual page entry specified

SYNOPSIS
whatis command ...

ARGUMENTS
command

Specifies the command you wish to display information about.

DESCRIPTION
what is looks up a given command and gives the header line from the
manual section. You may then run the man(1) command to get more
information.

EXAMPLES
If you type:

whatis ed

you will see:

red ed (1) - text editor

This tells you that the section for ed is 1. To see the entire manual entry
for ed, on the terminal, enter:

man 1 ed

FILES
/usr/ucb/whatis

Executable file
/usr/lib/whatis

Executable file

SEE ALSO
apropos(l), man(l), wherei s(l), which(l)

November 1991

whereis(l) whereis(l)

NAME
whereis - reports the locations of the source, binary, and online help
files for a specified command

SYNOPSIS
whereis [-b] [-B dir [-f]] [-m] [-M dir [-f]] [-s] [-S dir [-f]]
[-u] file ...

ARGUMENTS
-b Searches only for binaries.

-B dir
Searches in the specified directory, dir, for binaries.

- f Terminates the last specified directory list and signals the start of the
filenames.

-m Searches only for manual sections.

-M dir
Searches in the specified directory, dir, for manual sections.

file Specifies the file to be located.

- s Searches only for sources.

-S dir [-f]
Searches in the specified directory, dir, for sources.

-u Searches for unusual entries. A file is considered unusual if it does
not have one entry of each requested type.

DESCRIPTION
wherei s locates source, binary, and manual sections for specified files.
The suppliedfile(s) are first stripped of leading pathname components and
standard extensions for source files and manual entries (such as . c and
. lm). Prefixes of s . resulting from use of source code control are also
dealt with. whereis then attempts to locate the desired program in a list
of standard places.

EXAMPLES
To ask for those files in the current directory which have no
documentation, enter:

whereis -m -u *
The following finds all the files in /usr /bin which are not documented
in /usr /man/manl with source in /usr I src I cmd:

cd /usr/ucb
whereis -u -M /usr/man/manl -S /usr/src/cmd -f *

November 1991

whereis(l) whereis(l)

LIMITATIONS
Since the program uses chdir to run faster, pathnames given with the -M,
-s, and - B must be full; that is, they must begin with a I.

FILES
/usr/bin/whereis

Executable file
/usr/src/*

Source files
/usr/catman/man/*

Files containing on-line manual pages
/bin

Directory containing administrative binary files
/lib

Directory containing administrative library files
/etc

Directory containing administrative executable command files
/usr/bin

Directory containing user binary files
/usr/lib

Directory containing user library files
/usr/etc

Directory containing user executable command files
/usr/ucb

Directory containing user executable files

SEE ALSO
whatis(l), which(l)

2 November 1991

which(l) which(l)

NAME
which - reports the directory path to a file by interpreting PATH and
alias settings

SYNOPSIS
which [name]. ..

ARGUMENTS
name

Specifies the name that which searches for the executable file(s).

DESCRIPTION
which takes a list of names and looks for the files which would be
executed had these names been given as commands. Each argument is
expanded if it is aliased, and is searched for along the user's path. Both
aliases and paths are taken from the user's . cshrc file.

STATUS MESSAGES AND VALUES
A value is given for names which are aliased to more than a single word, or
if an executable file with the argument name was not found in the path.

NOTES
which Operates only with csh.

FILES
/usr/ucb/which

Executable file
-;.cshrc

Source file containing aliases and path values

SEE ALSO
whereis(l), which(l)

November 1991

who(l) who(1)

NAME
who - reports users who are currently logged in to the system

SYNOPSIS
who [-a] [-b] [-d] [-H] [-1] [-p] [-s] [-t] [-T] [-u] [file]

who -r [-d] [-1] [-p] [-u] [file]

who - q [file]

who am i

who am I

ARGUMENTS
-a Processes I etc I u tmp or the file specified by the file argument, with

all options turned on.

- b Indicates the time and date of the last reboot.

-d Displays all processes that have expired and have not been respawned
by ini t.

file Specifies the file to be examined. Usually,file is I etc /wtmp which
contains a history of all the logins since the file was last created.

- H Prints column headings above the regular output.

-1 Lists only those lines on which the system is waiting for someone to
log in. The name field (described in the "Description" later in this
manual page) contains LOGIN in such cases. Other fields are the
same as for user entries except that the state field does not exist.

-p Lists any non-get ty process that is currently active and has been
previously spawned by ini t. The name field contains the name of
the program executed by ini t as found in I etc I ini t tab. The
state, line, and activity fields have no meaning. The comment field
shows the id field of the line from I etc Ii nit tab that spawned this
process. See ini t tab(4). The exit field appears for dead processes
and contains the termination and exit values (as returned by wai t(2))
of the dead process. This option can be useful in determining why a
process terminated.

-q Displays only the names and the number of users currently logged in.
When this option is used, all other options are ignored.

-r Indicates the current run-level of the ini t process as part of an
expanded listing of the system status. If the run-level shown is 2, then
the system is currently running in multi-user mode.

- s Lists only the name, line, time, and remote host (if any) fields. This
option is the default.

November 1991

who(l) who(l)

- t Indicates the last change to the system clock (by means of the
date(l) command) by a user logged in as root. See su(l).

-T Does the same thing as the -u option, and also prints the state field of
the terminal line. The state field describes whether someone else can
write to that terminal. A+ appears if the terminal is writable by
anyone; a - appears if it is not. A user logged in as root can write to
all lines having a + or a - in the state field. If a bad line is
encountered, a ? is printed.

-u Lists only those users who are currently logged in. The name field
contains the user's login name. The line field contains the name of the
line as found in the directory I dev. The time field contains the time
that the user logged in. The activity field contains the number of hours
and minutes since activity last occurred on that particular line. A dot
(.)indicates that the terminal has seen activity in the last minute and
is therefore "current." If more than 24 hours have elapsed or the line
has not been used since boot time, the entry is marked o 1 d. This field
is useful when you are trying to determine whether a person is
working at the terminal or not. The pid field contains the process ID
of the user's shell. The comment field contains the comment field
associated with this line as found in I etc I ini t tab (see
ini t tab(4)). This field can contain information about where the
terminal is located, the telephone number of the dataset, the type of
terminal if hard-wired, and so on.

DESCRIPTION
who can list the user's login name, the terminal line, the login time, the
elapsed time since activity occurred on the line, and the process ID of the
command interpreter (shell) for each current A/UX system user. It
examines the /etc/utmp file to obtain its information. If file is given,
that file is examined. Usually,file will be I etc /wtmp, which contains a
history of all the logins since the file was last created.

If the who command is issued with am i or am I at the end, the
command identifies the invoking user.

Except for the default - s option, the general format for output entries is as
follows:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the
system clock, as well as other processes spawned by the ini t process.

November 1991 2

who(1) who(l)

EXAMPLES
The following command reports the name under which you are currently
logged in.

who am i

FILES
/bin/who

Executable file
/etc/inittab

Initialization table file
/etc/utmp

Temporary file
/etc/wtmp

Temporary file

SEE ALSO
date(l), login(l), mesg(l), ps(l), su(l), users(l), w(l), whoami(l)

wait(2), inittab(4), utmp(4) inAIUX Programmer's Reference

ini t(lM) in AIUX System Administrator's Reference

3 November 1991

whoami(l) whoami(l)

NAME
whoami - prints effective current user ID

SYNOPSIS
whoami

DESCRIPTION
whoami prints who you are. It works even if you are logged in as
superuser, while who am i does not since it uses I etc I u tmp.

FILES
/usr/bin/whoami

Executable file
/etc/passwd

Name data base file

SEE ALSO
id(l), who(l)

November 1991 1

write(l) wri te(l)

NAME
write - writes to another user

SYNOPSIS
write user [line]

ARGUMENTS
line Indicates which line or terminal (such as (tty 0 0)) to send the

message to. If this argument is not specified, the first writable
instance of the user found in I etc /utmp is assumed and the
following message posted:

user is logged on more than one place.
You are connected to terminal.
Other locations are:
terminal

user Specifies the name of the person you wish to send a message to.

DESCRIPTION
write copies lines from your terminal to that of another user. Writing to
others is normally allowed by default. Certain commands, in particular
nrof f(l) and pr(l) prevent messages from being sent to avoid
interference with their output. However, if the user has superuser
permissions, messages can be forced onto a write-inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell
to execute the rest of the line as a command.

Permission to write may be denied or granted by use of the mesg
command.

The following protocol is suggested for using the write command:

• When you first write to another user, wait for them to write back
before starting to send.

• Each person should end a message with a distinctive signal (i.e., (o)
for "over") so that the other person knows when to reply. The signal
(oo) (for ''over and out'') is suggested when conversation is to be

terminated.

EXAMPLES
If you want to write to a user account named cheryl at terminal (tty)
number 2, enter:

write cheryl tty2

If Cheryl has her terminal set to receive messages with mesg y (refer to
mesg(l)), she will receive the message:

Message from yourname (tty??) [date] ...

November 1991

write(l) write(l)

where tty?? is your terminal number and date is the time and date the
message was sent. Once the connection is successful, two bells are sent to
your terminal which indicates that the data you are typing is being sent.

The user, Cheryl, should write back at this point. Communication can
continue until an end of file is read from the terminal, an interrupt is sent
from either user, or the recipient (Cheryl, in this example) has executed the
mesg n command. When this occurs, write writes EOT on the other
terminal and exits.

STATUS MESSAGES AND VALUES
user is not logged in

The person you are trying to write to is not logged in.

Permission denied
The person you are trying to write to denies that permission with the
mes g command.

Warning: cannot respond, set mesg -y
Your terminal is set to mesg n and the recipient cannot respond to
you.

Can no longer write to user
The recipient has denied permission with the mesg n command after
you started writing.

FILES
/bin/write

Executable file
/etc/utmp

Temporary file
/bin/sh

Shell file

SEE ALSO
mail(l), mesg(l), nroff(l), pr(l), sh(l), talk(IN), who(l)

wal l(lM) in A/UX System Administrator's Reference

November 1991 2

xargs(1) xargs(l)

NAME
xargs - builds arguments based on the standard input, passing them in
batches to the specified command which is executed enough times to
deplete all the arguments

SYNOPSIS
xargs [-eeofstr] [-ireplstr] [-lnumber] [-nnumber] [-p] [-ssize]
[-t] [-x] [command [cmd-args]]

ARGUMENTS
command

Specifies the given command which xargs executes.

cmd-args
Represents the arguments that are passed to the specified command
when it is executed.

-eeofstr
Specifies the logical end-of-file string. Underbar (_)is assumed for
the logical EOF string if - e is not coded. The value - e with no eofstr
coded turns off the logical EOF string capability (underbar is taken
literally). xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

-ireplstr
Indicates the insert mode. The command is executed for each line
from standard input, taking the entire line as a single argument,
inserting it in cmd-args for each occurrence of replstr. A maximum
of 5 arguments in cmd-args may each contain one or more instances
of replstr. Blanks and tabs at the beginning of each line are thrown
away. Constructed arguments may not grow larger than 255
characters, and the - x option is forced. { } is assumed for rep ls tr if
not specified.

-lnumber
Executes command for each nonempty number lines of arguments
from standard input. The last invocation of command will be with
fewer lines of arguments if fewer than number remain. A line is
considered to end with the first newline unless the last character of the
line is a blank or a tab; a trailing blank/tab signals continuation
through the next nonempty line. If number is omitted, 1 is assumed.
The - x option is forced.

November 1991

xargs(l) xargs (1)

-nnumber
Executes command using as many standard input arguments as
possible, up to number arguments maximum. Fewer arguments will
be used if their total size is greater than size characters, and for the last
invocation if there are fewer than number arguments remaining. If the
-x option is also coded, each number arguments must fit in the size
limitation, else xargs terminates execution.

-p Specifies the prompt mode. The user is asked whether to execute
command at each invocation. Trace mode (- t) is turned on to print
the command instance to be executed, followed by a ? . . . prompt. A
reply of y (optionally followed by anything) will execute the
command; anything else, including just a carriage return, skips that
particular invocation of command.

-ssize
The maximum total size of each argument list is set to size characters;
size must be a positive integer less than or equal to 1180. If - s is not
coded, 1180 is taken as the default. Note that the character count for
size includes one extra character for each argument and the count of
characters in the command name.

- t Indicates the trace mode. The command and each constructed
argument list are echoed to file descriptor 2 just prior to their
execution.

-x Causes xargs to terminate if any argument list would be greater than
size characters; -xis forced by the -i and -1 options. When none of
the - i, -1, or - n options are coded, the total length of all arguments
must be within the size limit.

DESCRIPTION
xargs combines the fixed cmd-args with arguments read from standard
input to execute the specified command one or more times. The number of
arguments read for each command invocation and the manner in which
they are combined are determined by the options specified.

The replacement for command, may be a shell file. In any case, xargs
searches for commands as directed by the $PATH variable. If command is
omitted, /bin/ echo is used.

Arguments read in from standard input are defined to be contiguous strings
of characters delimited by one or more blanks, tabs, or newlines; empty
lines are always discarded. Blanks and tabs may be embedded as part of an
argument if escaped or quoted. Characters enclosed in quotes (single or
double) are taken literally, and the delimiting quotes are removed. Outside
of quoted strings, a backslash(\) will escape the next character.

November 1991 2

xargs(1) xargs(1)

Each argument list is constructed starting with cmd-args, followed by some
number of arguments read from standard input (Exception: see the - i
option). The -i, -1, and -n options determine how arguments are
selected for each command invocation. When none of these options are
coded, cmd-args are followed by arguments read continuously from
standard input until an internal buffer is full, and then command is executed
with the accumulated arguments. This process is repeated until there are
no more arguments. When there are option conflicts (for example, -1
versus -n), the last option has precedence.

The xargs program will terminate if: it cannot execute command; or if
command returns a -1 exit status.

When command is a shell program, it should explicitly exit (see sh(l))
with an appropriate value to avoid accidentally returning with -1 .

EXAMPLES
Enter this command:

ls $1 I xargs -i -t rnv $1/{} $2/{}

to move all files from directory $1 to directory $ 2, and echo each move
command just before doing it.

Entering the command:

(lognarne; date; echo $0 $*) I xargs >>log

will combine the output of the parenthesized commands onto one line,
which is then echoed to the end of file log.

This command:

ls I xargs -p -1 ar r arch
ls I xargs -p -1 I xargs ar r arch

causes the user to be asked which files in the current directory are to be
archived and archives them into arch one at a time in the first instance, or
as in the second instance, many at a time.

Enter:

echo $* I xargs -n2 diff

to execute di ff (1) with successive pairs of arguments originally typed as
shell arguments.

FILES
/usr/bin/xargs

Executable file

3 November 1991

xargs(l) xargs(1)

SEE ALSO
csh(l), ksh(l), sh(l)

November 1991 4

xstr(l) xstr(l)

NAME
xs tr - reports strings from C programs to implement shared strings

SYNOPSIS
xstr [-] [-c] [file]

ARGUMENTS
Causes xstr to read from its standard input.

- c Extracts the strings from the C source program into file, replacing
string references by expressions of the form (&xs tr [number])for
some number. An appropriate declaration of xstr is prefixed to.file.
The resulting C text is placed in the file x. c, to then be compiled.
The strings from.file are placed in the strings data base if they are not
already there. Repeated strings and strings which are suffices of
existing strings do not cause changes to the data base.

file Specifies the name of the file that the strings will be extracted from.

DESCRIPTION
xstr maintains a file called strings into which strings in component
parts of a large program are hashed. These strings are replaced with
references to this common area. This serves to implement shared constant
strings, most useful if they are also read-only.

After all components of a large program have been compiled, a file xs. c
declaring the common x st r space can be created by a command of the
form

xstr

This xs. c file should then be compiled and loaded with the rest of the
program. If possible, the array can be made read-only (shared) saving
space and swap overhead.

It may be useful to run xs tr after the C preprocessor if any macro
definitions yield strings or if there is conditional code which contains
strings which may not, in fact, be needed.

EXAMPLES
An appropriate command sequence for running xs tr after the C
preprocessor is:

cc -E file.c I xstr -c -
cc -c x.c
mv x . o file . o

The xstr program does not touch the file strings unless new items are
added, thus make can avoid remaking xs. o unless truly necessary.

November 1991

xstr(l) xstr(l)

The xstr program can also be used on a single file. A command

xstr file

creates files x. c and xs . c as before, without using or affecting any
strings file in the same directory.

STATUS MESSAGES AND VALUES
If a string is a suffix of another string in the data base, but the shorter string
is seen first by xstr both strings will be placed in the data base, when just
placing the longer one there will do.

FILES
/usr/bin/xstr

Executable file
strings

Data base of strings
x.c

Massaged C source file
xs.c

C source file for definition of array xs tr
/tmp/xs*

Temporary file when "xstr .file" doesn't touch strings

SEE ALSO
mkstr(l), strings(l)

November 1991 2

yacc(l) yacc(l)

NAME
yacc - compiles compilers (yet another compiler-compiler)

SYNOPSIS
yacc [-d] [-1] [-t] [-v] grammar

ARGUMENTS
-d Generates they. tab. h file with the #define statements that

associate the yacc-assigned "token codes" with the
user-declared ''token names.'' This allows source files other than
y . tab . c to access the token codes.

grammar
Specifies the data that will be converted by yacc.

-1 Prevents the code produced in y . tab . c from containing any # 1 in e
constructs. This option should only be used after the grammar and the
associated actions are fully debugged.

- t Compiles the runtime debugging code.

-v Prepares they. output file which contains a description of the
parsing tables and a report on conflicts generated by ambiguities in the
grammar.

DESCRIPTION
yacc converts a context-free grammar into a set of tables for a simple
automaton which executes an 1 r parsing algorithm. The grammar may be
ambiguous; specified precedence rules are used to break ambiguities.

The output file, y. tab. c, must be compiled by the C compiler to produce
a program yyparse. This program must be loaded with the lexical
analyzer program, yylex, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user. The lex
routine is useful for creating lexical analyzers usable by yacc.

Runtime debugging code is always generated in y. tab. c under
conditional compilation control. By default, this code is not included when
y. tab. c is compiled. However, when yacc's -t option is used, this
debugging code will be compiled by default. Independent of whether the
- t option was used, the runtime debugging code is under the control of
YYDEBUG, a pre-processor symbol. If YYDEBUG has a nonzero value, then
the debugging code is included. If its value is zero, then the code will not
be included. The size and execution time of a program produced without
the runtime debugging code will be smaller and slightly faster.

EXAMPLES
To process a file called f ilel. yin yacc format, enter:

yacc filel.y

November 1991

yacc(l) yacc(l)

STATUS MESSAGES AND VALVES
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y . output
file. Similarly, if some rules are not reachable from the start symbol, this is
also reported.

LIMIT A TIO NS
Because filenames are fixed, only one yacc process can be active in a
given directory at a time.

FILES
/bin/yacc

Executable file
y.output

Output file
y. tab.c

File
y.tab.h

File
yacc.trnp

Temporary file
yacc.debug

Temporary file
yacc.acts

Temporary file
/usr/lib/yaccpar

Temporary file

SEE ALSO
lex(l)

rnal loc(3X) in A/UX Programmer's Reference

The yacc reference in A/UX Programming Languages and Tools, Volume 2

November 1991 2

yes(l) yes(l)

NAME
yes - generates y entries in response to requests for input

SYNOPSIS
yes [expletive]

ARGUMENTS
[expletive]

Outputs expletive repeatedly. If expletive is a multiple word, the
words must be enclosed in quotes.

DESCRIPTION
yes repeatedly outputs y. Termination is by the interrupt character (by
default, CONTROL-c in the A/UX standard distribution).

FILES
/usr/ucb/yes

Executable file

November 1991

ypcat(l) ypcat(l)

NAME
ypca t - lists the contents of a Network Information Service (NIS) map

SYNOPSIS
ypcat [-d domain-name] [-k] [-t] map-or-nick-name

ypcat -x

ARGUMENTS
- d domain-name

Specifies a domain other than the local system's domain as returned
by the domainname command.

- k Displays each key and its corresponding value.

- t Inhibits the translation of a nickname to a map name. For example,
ypcat -t passwd fails because there is no map named passwd,
whereas the passwd in ypcat passwd is translated to ypcat
passwd. byname.

- x Displays the map nickname table. The table lists the nicknames the
command knows of and indicates the long map name associated with
each nickname.

DESCRIPTION
ypcat lists the contents of the NIS map specified by map-or-nick-name,
which may be either the name of a map or a map's "nickname." The
ypca t command uses the NIS service to determine the server from which
to get the map.

The most common use of NIS is to provide lookup service for
administrative files such as the I etc /passwd file. When a system is
managed by NIS, each system on the network has a local I etc/passwd
file that contains required administrative entries. The master server
maintains a global password file containing a login entry for each user of a
system on the network. The global password file is used to generate a file
that in NIS terminology is called a map. The NIS subsystem uses the map
to provide information when commands, running on an NIS client, request
NIS service.

The information in maps is sorted in a variety of ways. For example, one of
the password maps is passwd. byname in which the entries are sorted by
login name.

The map name passwd. byname is an example of a long map name. To
accommodate the System V file system, which limits names to 14
characters, the A/UX® implementation of NIS uses short map names and
translates any long map names into short map names. In addition to long
map names and short map names, the most commonly used maps have
nicknames. Here is a list of nicknames, long map names, short map names,

November 1991

ypcat(l) ypcat(l)

and the source files they correspond to:

Nickname Long map name Short map name Source file
aliases mail.aliases m.a /usr/lib/aliases
ethers ethers.byname e.nm /etc/ethers
group group.byname grp.nm /etc/group
hosts hosts.byaddr hst.ad /etc/hosts
passwd passwd.byname pwd.nm /etc/passwd
protocols protocols.bynumber ptc.nr /etc/protocols

net group netg /etc/netgroup
networks networks.byaddr ntw.ad /etc/networks
services services.byname SVC.nm /etc/services

Refer to yp f i 1 es (4) and yp s e rv(1 M) for an overview of NIS.

EXAMPLES
To see the contents of the global password file, enter:

ypcat passwd

FILES
/usr/bin/ypcat

Executable file
SEE ALSO

domainname(l), ypmatch(l)

ypserv(lM) in AIUX System Administrator's Reference

ypfiles(4) inA/UX Programmer's Reference

Chapter 4, "Setting Up the Network Information Service," in A/UX
Network System Administration

2 November 1991

ypmatch(l) ypmatch(l)

NAME
ypma t ch - lists the value of a specified key in a Network Information
Service (NIS) map

SYNOPSIS
ypmatch [-d domain] [-k] [-t] key ... nickname-or-map-name

ypmatch -x

ARGUMENTS
-d domain

Specifies a domain other than the local system's domain as returned
by the do ma i nname command.

-k Causes ypmatch to display the value of the key argument, followed
by a colon (:), before displaying the value of the key itself. This
option is useful only if the keys are not duplicated in the values, or if
you've specified so many keys that the output could be confusing.

- t Inhibits the translation of a nickname to a map name. For example,
ypcat -t passwd fails because there is no map named passwd,
whereas the passwd string in ypcat passwd is translated to
ypcat passwd.byname.

- x Displays the map nickname table. The table lists the nicknames the
command knows of and indicates the long map name associated with
each nickname.

DESCRIPTION
ypma t ch lists the values associated with one or more keys from the NIS
map specified by a nickname-or-map-name, which may be the nickname,
long name, or short name of a map. See ypcat(l) for a discussion of map
names and their values.

When you specify multiple keys, the same map is searched for each key.
The keys must be exact values insofar as capitalization and length are
concerned. Pattern matching is not available.

STATUS MESSAGES AND VALUES
If ypmatch cannot match a key, the following message is displayed:

Can't match key. Reason: no such key in map.

FILES
/usr/bin/ypmatch

Executable file
SEE ALSO

ypcat(l)

November 1991

ypmatch(l) ypmatch(l)

2

ypfiles(4) inA/UX Programmer's Reference

Chapter 4, "Setting Up the Network Information Service," in AIUX
Network System Administration

November 1991

yppasswd(l) yppas swd(1)

NAME
yppasswd - changes a login password on the Network Information
Service (NIS) master server

SYNOPSIS
yppasswd [login-name]

ARGUMENTS
login-name

Specifies the login name of the user whose password is to be changed.
If you do not specify a value for login-name, yppasswd attempts to
change your password.

DESCRIPTION
yppasswd adds or changes a password in the I etc /passwd file on the
NIS master server. The master server must be running the password
daemon, yppasswdd, for this command to work.

Before changing an existing password, yppasswd prompts for the old
password, as stored in the I etc /passwd file on the NIS master server,
and then prompts twice for the new password to verify your entry.

New passwords can have a minimum of four characters if they use a
sufficiently rich alphabet and must have at least six characters if all of the
characters are in the same case. These rules are discarded if you enter the
same password often enough.

A normal user can change his or her password only. A user who is logged
in as root can change the password of any user. In either case,
yppasswd prompts for the old password.

LIMIT A TIO NS
The yppasswd command uses an update protocol that passes all the
information to yppas swdd in one remote procedure call, without ever
looking at it. Thus, if you type your old password incorrectly, you are not
notified until after you have entered and verified your new password.

FILES
/usr/bin/yppasswd

Executable file
SEE ALSO

passwd(l)

yppasswdd(IM) in AIUX Programmer's Reference

ypf iles(4) in AIUX System Administrator's Reference

Chapter 4, "Setting Up the Network Information Service," in A/UX
Network System Administration

November 1991

ypwhich(l) ypwhich(l)

NAME
ypwhich - displays the host name of a system's Network Information
Service (NIS) server

SYNOPSIS
ypwhich [-d domain-name] [-Vl] [host-name]

ypwhich [-d domain-name] [-V2] [host-name]

ypwhich [-d domain-name] [[-t] -m [map-or-nickname]]

ypwhich -x

ARGUMENTS
-d domain-name

Specifies a domain other than the local system's domain as returned
by the do ma i nname command.

host-name
Specifies the name of a system to ask about rather than the local
system. This argument can be used only with the -d, -Vl, and -V2
options.

-m [map-or-nickname]
Displays the NIS master server for a map. The value of
map-or-nickname can be a nickname, a long map name, or a short
map name. See ypcat(l) for a discussion of map names and their
values. If you do not specify a map-or-nickname argument, ypwhich
produces a list of available maps and their servers. You cannot
specify a host-name argument with this option.

-t map-name

-Vl

-V2

Inhibits the translation of a nickname to a map name. The value of
map-name can be a long or short map name. See yp cat (1) for a
discussion of map names and their values. This option is useful if a
map name is identical to a nickname.

Displays the host name of a server that is serving client processing
which uses the version 1 NIS protocol. The version 1 protocol is the
old version of the protocol.

Displays the host name of a server that is serving client processing
which uses the version 2 NIS protocol. The version 2 protocol is the
current version of the protocol.

-x Displays the map nickname table. The table lists the nicknames the
command knows of and indicates the long map name associated with
each nickname.

November 1991

ypwhich(l) ypwhich(l)

DESCRIPTION
ypwhich displays the host name of the NIS server that is supplying NIS
services to an NIS client or displays the system that is the NIS master
server for a map. If run without any argument, ypwhich displays the
name of the NIS server for the local system. If you specify host-name,
ypwhich displays the name of that system's NIS master server.

If you do not use the -Vl or -V2 option, ypwhich attempts to locate the
server that supplies version 2 services. If no version 2 server is currently
found, ypwhich attempts to locate the server supplying version 1
services. Because NIS servers and clients are backward-compatible, you
seldom need to be concerned about which version is currently in use.

Refer to ypf i les(4) and ypserv(lM) for an overview of the NIS.

FILES
/usr/bin/ypwhich

Executable file
SEE ALSO

rpcinfo(lM), ypserv(lM), ypset(IM) in A/UX System
Administrator's Reference

ypf iles(4) inA/UX Programmer's Reference

Chapter 4, ''Setting Up the Network Information Service,'' in A/UX
Network System Administration

November 1991 2

zcat(l) zcat(l)

See compress(!)

November 1991

zcmp(l) zcmp(l)

See compress(!)

November 1991

zdiff(l) zdiff(l)

See compress(l)

November 1991

zrnore(l) zrnore(1)

See cornpress(l)

November 1991

Section 6: Games

intro(6) .
aliens(6).
ar i thmet ic(6)
autorobots(6) .

Table of Contents

....... introduction to games
. ... plays the game of Space Invaders (A!UX version)
. provides arithmetic problems
........................... plays the game of autorobots

. plays the game of backgammon back(6)
bcd(6).
bj (6).

.............. simulates a punched card corresponding to a text argument

chase(6)
craps(6)
cribbage(6)
cubic(6)
fish(6) ..
fortune(6) ..
hangman(6) .
life(6)
mastermind(6) .
maze(6) ..
moo(6) .
number(6)
quiz(6)
rain(6)
robots(6) ..
trek(6)
tt t(6) ..
twinkle(6) .

. plays the game of black jack
. plays the game of chase

. plays the game of craps
. plays the game of cribbage

........... see ttt(6)
. plays the game of "Go Fish"

. plays the game of fortune telling
. plays the game of hangman

. plays the game of life
.......................... plays the game of Mastermind

. generates a maze

. plays the game of moo
. converts Arabic numerals to English
..... gives associative knowledge tests on various subjects

. animates raindrops
. plays the game of robots

. plays the game of trek
. play the game of tic-tac-toe
. plays the game of twinkle, twinkle little stars

worm(6) plays the game of growing worm
worms(6)
wump(6)

Section 6

. .. plays the game of worms
. .. plays the game of hunt-the-wumpus

intro(6) intro(6)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational programs found in
the /usr I games directory.

November 1991

aliens(6) aliens(6)

NAME
aliens -plays the game of Space Invaders (A/UX version)

SYNOPSIS
aliens

DESCRIPTION
aliens is the A/UX version of Space Invaders, where alien invaders attack
the earth. The program is pretty much self-documenting.

LIMIT A TIO NS
The program is a CPU hog. It needs to be rewritten. It doesn't do well on
terminals that run slower than 9600 baud.

FILES
/usr/garnes/aliens

Executable file
/usr/garnes/alienslog

Log file

November 1991

arithmetic(6) ari thmetic(6)

NAME
arithmetic - provides arithmetic problems

SYNOPSIS
arithmetic[+][-] [x] [/][range]

ARGUMENTS
+ Causes addition problems to be generated.

Causes subtraction problems to be generated.

x Causes multiplication problems to be generated.

I Causes division problems to be generated.

range Indicates a decimal number; all addends, subtrahends, differences,
multiplicands, divisors, and quotients will be less than or equal to
the value of range. The default range is I 0.

DESCRIPTION
arithmetic types out simple arithmetic problems, and waits for an
answer to be typed in. If the answer is correct, it types back Right!, and
a new problem. If the answer is wrong, it replies What?, and waits for
another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt.

The options, +, - , x, or I, determine the kind of problem to be generated.
One or more options can be given. If more than one is given, the different
types of problems will be mixed in random order. The default is + - .

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem
which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct
answers, since the learner should, in principle, be able to calculate them.
Thus the program is intended to provide drill for someone just past the first
learning stage, not to teach number facts. For almost all users, the relevant
statistic should be time per problem, not percent correct.

FILES
/usr/games/arithmetic

Executable file

November 1991

autorobots(6) autorobots(6)

NAME
autorobots -plays the game of autorobots

SYNOPSIS
autorobots

DESCRIPTION
The object of the game autorobots is to move around inside of the box
on the screen without getting eaten by the robots chasing you and without
running into any robots or junk heaps. The robots move continuously.

If a robot runs into another robot or junk heap while chasing you, they
crash and leave a junk heap.

You start out with 10 robots worth 10 points each. If you defeat all of
them, you get 20 robots worth 20 points each. Then 30, and so forth, until
you get eaten!

The game keeps track of the top 10 scores and prints them at the end of the
game.

The valid commands are described on the screen.

FILES
/usr/games/autorobots

Executable file

November 1991

back(6) back(6)

NAME
back - plays the game of backgammon

SYNOPSIS
back

DESCRIPTION
back is a program which provides a partner for the game of backgammon.
It is designed to play at three different levels of skill, one of which you
must select. In addition to selecting the opponent's level, you may also
indicate that you would like to roll your own dice during your turns (for the
superstitious players). You will also be given the opportunity to move first.
The practice of each player rolling one die for the first move is not
incorporated.

The points are numbered 1-24, with 1 being white's extreme inner table, 24
being brown's inner table, 0 being the bar for removed white pieces and 25
the bar for brown. For details on how moves are expressed, type y when
back asks Instructions? at the beginning of the game. When back
first asks Move?, type ? to see a list of move options other than entering
your numerical move.

When the game is finished, back will ask you if you want postmortem
statistics. If you respond with y, back will attempt to append to or create
a file . backlog in your home directory.

LIMITATIONS
The only level really worth playing is expert, and it only plays the
forward game.

Doubling is not implemented.

FILES
/usr/garnes/back

Executable file
/usr/garnes/lib/backrules

File containing rules for back
$HOME/.backlog

Statistics file

November 1991

bed(6)

NAME
bed - simulates a punched card corresponding to a text argument

SYNOPSIS
bed text

ARGUMENTS
text Specifies data that is input by the user.

DESCRIPTION
bed converts the literal text into a form familiar to old-timers. This
program works best on hard copy terminals.

FILES
/usr/games/bed

Executable file

bed(6)

November 1991

bj(6) bj (6)

NAME
bj - plays the game of black jack

SYNOPSIS
bj

DESCRIPTION
bj is a serious attempt at simulating the dealer in the game of black jack
(or twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

You natural (blackjack) pays $3; a dealer natural loses $2. Both
dealer and player naturals is a push (no money exchange).

If the dealer has an ace up, you are allowed to make an insurance
bet against the chance of a dealer natural. If this bet is not taken, play
resumes as normal. If the bet is taken, it is a side bet where you win $2
if the dealer has a natural, and you lose $1 if the dealer does not.

If you are dealt two cards of the same value, you are allowed to
double. You are allowed to play two hands, each with one of these
cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, you may double down.
You may double the bet ($2 to $4) and receive exactly one more card
on that hand.

Under normal play, you may hit (draw a card) as long as your total is
not over twenty-one. If you bust (go over twenty-one), the dealer
wins the bet.

When you stand (decide not to hit), the dealer hits until a total of
seventeen or more has been attained. If the dealer busts, you win the
bet.

If both you and the dealer stand, the one with the largest total wins. A
tie is a push.

The machine deals and keeps score. The following questions will be asked
at appropriate times. Each question is answered by y followed by a
newline for yes, or just newline for no.

? (means, do you want a hit?)
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the action (total
bet) and standing (total won or lost) is printed.

November 1991

bj (6) bj (6)

To exit, hit the interrupt key and the action and standing will be printed.

FILES
/usr/games/bj

Executable file

2 November 1991

chase(6)

NAME
chase - plays the game of chase

SYNOPSIS
chase [nrobots] [nfences]

ARGUMENTS
nrobots

nfences

DESCRIPTION

Specifies the number of robots to chase you.

Specifies the number of fences to be displayed.

chase(6)

The object of the game chase is to move around inside of the box on the
screen without getting eaten by the robots chasing you and without running
into anything.

If a robot runs into another robot while chasing you, they crash and leave a
junk heap. If a robot runs into a fence, it is destroyed.

If you can survive until all the robots are destroyed, you have won!

If you do not specify either nrobots or nfences, chase will prompt you for
them.

The valid commands are described on the screen.

FILES
/usr/games/chase

Executable file

November 1991

craps(6) craps(6)

NAME
craps -plays the game of craps

SYNOPSIS
craps

DESCRIPTION
craps is a form of the game of craps that is played in Las Vegas. The
program simulates the roller, while you (the player) place bets. You
may choose, at any time, to bet with the roller or with the House. A bet of
a negative amount is taken as a bet with the House; any other bet is a bet
with the roller.

You start off with a bankroll of $2,000. The program prompts with:

bet?

The bet can be all or part of your bankroll. Any bet over the total bankroll
is rejected and the program prompts with bet? until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The following rules
apply (the player wins or loses depending on whether the bet is placed with
the roller or with the House; the odds are even). The ''first'' roll is the roll
immediately following a bet:

1. On the first roll:

7 or 11 wins for the roller;
2, 3, or 12 wins for the House;
any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:

point roller wins;
7 House wins;
any other number roll again.

If you lose the entire bankroll, the House will offer to lend you an
additional $2,000. The program will prompt:

marker?

A yes (or y) consummates the loan. Any other reply terminates the game.

If you owe the House money, the House reminds you, before a bet is
placed, of how many markers are outstanding.

If, at any time, you have a bankroll exceeding $2,000 and an outstanding
marker, the House asks:

Repay marker?

A reply of yes (or y) indicates your willingness to repay the loan. If only
1 marker is outstanding, it is immediately repaid. However, if more than 1

November 1991

craps(6) craps(6)

marker is outstanding, the House asks:

How many?

markers you would like to repay. If an invalid number is entered (or just a
carriage return), an appropriate message is printed and the program will
prompt with How many? until a valid number is entered.

If you accumulate 10 markers (a total of $20,000 borrowed from the
House), the program informs you of the situation and exits.

Should your bankroll exceed $50,000 and you have outstanding markers,
the total amount of money borrowed will automatically be repaid to the
House.

If you accumulate $100,000 or more, you will break the bank. The
program then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the case of
bet? or How many?).

To exit, send an interrupt. The program will indicate whether you won,
lost, or broke even.

NOTES
The random number generator for the die numbers uses the seconds from
the time of day. Depending on system usage, these numbers, at times, may
seem strange but occurrences of this type in a real dice situation are not
uncommon.

FILES
/usr/games/craps

Executable file

November 1991 2

cribbage(6) cribbage(6)

NAME
cribbage - plays the game of cribbage

SYNOPSIS
cribbage [-e] [-q] [-r] name ...

ARGUMENTS
- e Provides an explanation of the correct score when you make a

mistake scoring your hand or crib. (This is especially useful for
beginning players.)

name Specifies the given name.

-q Prints a shorter form of all messages; this is only recommended for
users who have played the game without specifying this option.

- r Cuts the deck randomly, instead of asking you to cut the deck.

DESCRIPTION
er ibbage plays the card game cribbage, with the program playing one
hand and you the other. The program will initially ask you if the rules of
the game are needed; if so, it will print out the appropriate section from
According to Hoyle with more.

The cribbage game first asks you whether you wish to play a short game
("once around," to 61) or a long game ("twice around," to 121). A
response of s will result in a short game, any other response will play a
long game.

At the start of the first game, the program asks you to cut the deck to
determine who gets the first crib. You should respond with a number
between 0 and 51, indicating how many cards down the deck is to be cut.
Whoever cuts the lower ranked card gets the first crib. If more than one
game is played, the loser of the previous game gets the first crib in the
current game.

For each hand, the program first prints your hand, whose crib it is, and then
asks you to discard two cards into the crib. The cards are prompted for one
per line, and are typed as explained below.

After discarding, the program cuts the deck (if it is your crib) or asks you to
cut the deck (for its crib); in the latter case, the appropriate response is a
number from 0 to 39 indicating how far down the remaining 40 cards are to
be cut.

After cutting the deck, play starts with the nondealer (the person who
doesn't have the crib) leading the first card. Play continues, as per
cribbage, until all cards are exhausted. The program keeps track of the
scoring of all points and the total of the cards on the table.

November 1991

cribbage(6) cribbage(6)

After play, the hands are scored. The program requests you to score his
hand (and the crib, if it is yours) by printing out the appropriate cards (and
the cut card enclosed in brackets). Play continues until one player reaches
the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing
the lowest legal value; when cutting the deck this is equivalent to choosing
the top card.

Cards are specified as rank followed by suit. The ranks may be specified as
one of: a, 2, 3, 4, 5, 6, 7, 8, 9, t, j, q, and k, or alternatively, one of:
ace,two,three,four,five,six,seven,eight,nine,ten,
jack, queen, and king, respectively. Suits may be specified as: s, h,
d, and c, or alternatively as: spades, hearts, diamonds, and clubs,
respectively. A card may be specified as: <rank> <suit>, or: <rank> of
<suit>. If the single letter rank and suit designations are used, the space
separating the suit and rank may be left out. Also, if only one card of the
desired rank is playable, typing the rank is sufficient. For example, if your
hand was ''2H, 4D, 5C, 6H, JC, KD'' and it was desired to discard the
King of Diamonds, any of the following could be typed:

k
king
kd
k d
k of d
king d
king of d
k diamonds
k of diamonds
king diamonds
king of diamonds

FILES
/usr/games/cribbage

Executable file

November 1991 2

cubic(6) cubic(6)

See ttt(6)

November 1991

fish(6) f ish(6)

NAME
fish - plays the game of ''Go Fish''

SYNOPSIS
fish

DESCRIPTION
fish plays the children's card game of "Go Fish." The object is to
accumulate "books" of 4 cards with the same face value.

The players alternate turns; each tum begins with one player selecting a
card from his hand and asking the other player for all cards of that face
value. If the other player has one or more cards of that face value in his
hand, those cards are given to the first player, and the first player makes
another request. Eventually, the first player asks for a card which is not in
the second player's hand: the second player replies GO FISH! The first
player then draws a card from the ''pool'' of undealt cards. If this is the
card that was last requested, the player may draw again.

When a book is made, either through drawing or requesting, the cards are
laid down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8,
9, 10, j, q, or k when asked.

Pressing RETURN gives you information about the size of my hand and the
pool, and tells you about my books. Saying p as a first guess puts you into
"pro" level; the default is pretty dumb.

FILES
/usr/garnes/fish

Executable file

November 1991

fortune(6) fortune(6)

NAME
fortune - plays the game of fortune telling

SYNOPSIS
fortune

DESCRIPTION
fortune prints out a random, hopefully interesting, adage.

FILES
/usr/garnes/fortune

Executable file
/usr/garnes/lib/fortunes

File containing fortunes

November 1991

hangman(6) hangman(6)

NAME
hangman - plays the game of hangman

SYNOPSIS
hangman [dictionary]

ARGUMENTS
dictionary

Specifies an alternate dictionary to be used with the game.

DESCRIPTION
The object of the game hangman is to guess the word that the system
picks by guessing the letters within that word. The word must be at least
seven letters long and be listed in a dictionary. You guess the letters one at
a time.

LIMITATIONS
Hyphenated compounds are run together.

FILES
/usr/games/hangman

Executable file
/usr /lib/w2 00 6

Temporary file

November 1991

life(6) life(6)

NAME
1 if e - plays the game of life

SYNOPSIS
life [-r]

ARGUMENTS
- r Treats the screen as a torus; that is, the top and bottom lines and the

left and right columns are considered adjacent.

DESCRIPTION
1 if e is a pattern-generating game set up for interactive use on a video
terminal. To play the game, you use a series of commands to set up a
pattern on the screen and then let it generate further patterns from that
pattern.

For each square in the matrix, look at it and its 8 adjacent neighbors. If the
present square is unoccupied and exactly 3 of its neighboring squares are
occupied, then that square will be occupied in the next pattern. If the
present square is occupied and 2 or 3 of its neighboring squares are
occupied, then that square will be occupied in the next pattern. Otherwise,
the present square will not be occupied in the next pattern.

The edges of the screen are normally treated as an unoccupied void.

The pattern generation number and the number of occupied squares are
displayed in the lower left corner of the screen.

Following is a list of commands available to the user. In these descriptions,
m and n may be replaced by any numbers.

m,na
Adds a block of elements. The first number specifies the horizontal
width and the second number specifies the vertical height. If a
number is not specified, the default is 1.

nc Steps through the next n patterns. If no number is specified, step
forever. The operation can be cancelled by typing an interrupt.

m,nd
Deletes a block of elements. The first number specifies the horizontal
width and the second number specifies the vertical height. If a
number is not specified, the default is 1.

nf Generates a little flier at the present location. The number (modulo 8)
determines the direction.

m,ng
Moves to absolute screen location. The first number specifies the
horizontal location and the second number specifies the vertical
location. If a number is not specified, the default is 0.

November 1991

life(6) life(6)

nh Moves left n steps. If no number is specified, the default is 1.

n j Moves down n steps. The default is 1.

nk Moves up n steps. The default is 1.

nl Moves right n steps. The default is 1.

nn Steps through the next n patterns. If no number is specified, generate
the next pattern. The operation can be cancelled by typing an
interrupt.

p Puts the last yanked or deleted block at the present location.

q Quits the game.

m,ny
Yanks a block of elements. The first number specifies the horizontal
width and the second number specifies the vertical height. If a
number is not specified, the default is 1.

C Clears the pattern.

nF Generates a big flier at the present location. The number (modulo 8)
determines the direction.

nH Moves to the left margin.

nJ Moves to the bottom margin.

nK Moves to the top margin.

nL Moves to the right margin.

nCONTROL-H
Moves left n steps. If no number is specified, the default is 1.

nCONTROL-J
Moves down n steps. The default is 1.

nCONTROL-K
Moves up n steps. The default is 1.

nCONTROL-L
Moves right n steps. The default is 1.

CONTROL-R
Redraws the screen. This is used for those occasions when the
terminal screws up.

Repeats the last add (a) or delete (d) operation.

Repeats the last move (h, j , k, 1) operation.

November 1991 2

life(6)

LIMIT A TIO NS
The following features are planned but not implemented.

m,ns
Saves the selected area in a file.

R Restores from a file.

m Generates a macro command.

Escapes the shell.

e Edits a file.

i Inputs commands from a file.

FILES
/usr/games/life

Executable file

3

life(6)

November 1991

mastermind(6) mastermind(6)

NAME
mastermind-plays the game of Mastermind

SYNOPSIS
mastermind

DESCRIPTION
mastermind plays the board game Mastermind. The playing field is a
number of slots, in which a number of colored pegs can be placed.

The object of the game is to guess a hidden sequence of colored pegs.
Each guess consists of a possible sequence of colored pegs. The guesser's
opponent then answers with two numbers: the number of pegs in the guess
that exactly match the corresponding pegs in the configuration, and the
number of pegs in the guess that match in color but not in position. Play
continues until the sequence is guessed correctly. Then players change
positions and the program will try to guess your hidden sequence.

The guesser's opponent gets one point for each guess made. You have a
chance to decide before starting how many slots and how many colors you
want to use. Any time it is your tum to enter a guess, you can review the
board by typing review instead of your guess.

FILES
/usr/games/mastermind

Executable file
/usr/games/mmhow

Instruction file

November 1991

maze(6)

NAME
maze - generates a maze

SYNOPSIS
maze

DESCRIPTION
maze asks a few questions and then prints a maze.

LIMIT A TIO NS
Some mazes (especially small ones) have no solutions.

FILES
/usr/games/maze

Executable file

maze(6)

November 1991

moo(6) moo(6)

NAME
moo - plays the game of moo

SYNOPSIS
moo

DESCRIPTION
moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. You guess four distinct
digits being scored on each guess.

A cow is a correct digit in an incorrect position. A bu 11 is a correct digit
in a correct position. The game continues until you guess the number (a
score of four bulls).

FILES
/usr/games/moo

Executable file

November 1991

number(6) number(6)

NAME
number - converts Arabic numerals to English

SYNOPSIS
number

DESCRIPTION
number copies the standard input to the standard output, changing each
decimal number to a fully spelled out version.

FILES
/usr/games/number

Executable file

November 1991

quiz(6) quiz(6)

NAME
quiz - gives associative knowledge tests on various subjects

SYNOPSIS
quiz [-ifile] [-t] [category] category2]

ARGUMENTS
category 1 category2

Causes quiz to ask items chosen from category] and expects
answers from category2, or vice versa. If no categories are specified,
quiz gives instructions and lists the available categories.

-ifile
Causes the named.file to be substituted for the default index file. The
lines of these files have the syntax:

1 ine = category newline I category : line
category = alternate I category I alternate
alternate = empty I alternate primary
primary = character I [category [I option
option = {category}

The first category on each line of an index names an information file.
The remaining categories specify the order and contents of the data in
each line of the information file. Information files have the same
syntax.

-t Specifies a tutorial mode, where missed questions are repeated
later, and material is gradually introduced as you learn.

DESCRIPTION
quiz tells a correct answer whenever you type a bare newline. At the end
of input, upon interrupt, or when questions run out, quiz reports a score
and terminates.

A backslash \ is used, as with sh, to quote syntactically significant
characters or to insert transparent newlines into a line. When either a
question or its answer is empty, quiz will refrain from asking it.

LIMITATIONS
The construct

a I ab

doesn't work in an information file. Use a { b}.

FILES
/usr/games/quiz

Executable file
/usr/games/lib/quiz/index

Index file

November 1991

quiz(6) quiz(6)

/usr/games/lib/quiz/*
Files containing quiz information

2 November 1991

rain(6) rain(6)

NAME
rain - animates raindrops

SYNOPSIS
rain

DESCRIPTION
The display of rain is modeled after the VAXNMS program of the same
name. The terminal has to be set for 9600 baud to obtain the proper effect.

As with all programs that use termcap, the TERM environment variable
must be set (and exported) to the type of the terminal being used.

FILES
/usr/games/rain

Executable file
/etc/termcap

Terminal capabilities file

November 1991

robots(6) robots(6)

NAME
robots - plays the game of robots

SYNOPSIS
robots

DESCRIPTION
The object of the game robots is to move around inside of the box on the
screen without getting eaten by the robots chasing you and without running
into anything.

If a robot runs into another robot while chasing you, they crash and leave a
junk heap.

You start out with 10 robots worth 10 points each. If you defeat all of
them, you get 20 robots worth 20 points each. Then 30, etc. Until you get
eaten!

The game keeps track of the top 10 scores and prints them at the end of the
game.

The valid commands are described on the screen.

FILES
/usr/games/robots

Executable file

November 1991

trek(6) trek(6)

NAME
trek - plays the game of trek

SYNOPSIS
trek [[-a] file]

ARGUMENTS
-a Appends the log of the game to the specified.file; does not truncate.

file Specifies the file onto which the log of the game is written.

DESCRIPTION
trek is a game of space glory and war. Below is a summary of
commands. For complete documentation, see Trek by Eric Allman.

The game will ask you what length game you would like. Valid responses
are short, medium, and long. You may also type restart, which
restarts a previously saved game. You will then be prompted for the skill,
to which you must respond novice, fair, good, expert,
commodore, or impossible. You should normally start out with
novice and work up.

In general, throughout the game, if you forget what is appropriate the game
will tell you what it expects if you just type in a question mark.

Commands
abandon
cloak up/down
computer request; ...
destruct
help
lrscan
phasers automatic amount
phasers manual amtl course! spread! ...
torpedo course [yes] angle/no
ram course distance
shell
srscan [yes/no]
status
undock
warp warp_factor

FILES
/usr/games/trek

Executable file

November 1991

capture

damages
dock
impulse course distance
move course distance

rest time
shields up/down

terminate yes/no
visual course

ttt(6) ttt(6)

NAME
t t t, cubic - play the game of tic-tac-toe

SYNOPSIS
ttt

cubic

DESCRIPTION
t t t is the X and 0 game popular in the first grade. This is a learning
program that never makes the same mistake twice. Although it learns, it
learns slowly. It must lose nearly 80 games to completely know the game.

cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are
specified as a sequence of three coordinate numbers in the range 1-4.

FILES

1

/usr/games/ttt
Executable file

/usr/games/ttt.k
File

/usr/games/cubic
Executable file

November 1991

twinkle(6) twinkle(6)

NAME
twinkle -plays the game of twinkle, twinkle little stars

SYNOPSIS
twinkle [-] [+] [s file] [density] [density2]]

ARGUMENTS
Prints out the present screen density (the percentage of the screen that
will be filled with stars) in the lower-left corner of the screen. This
number changes as stars go on and off.

+ Does not "randomize" before starting. The screen starts out
completely blank and stars are added, bit by bit. In this case, the
density rises beyond the specified density, then falls to the required
percentage.

density 1 density2
Specifies the density of the screen. If this option is not specified,
density is .5 (50% of the screen is filled with stars).
If only density] is given, density is I/density].
If both density 1 and density2 are given, density is the resultant of
density ll(density 1 +density2).

s file
Saves binary density onfile in case you want to see the density curve
that a particular density specification produced during the life of the
show.

DESCRIPTION
twinkle causes a specified density of "stars" to twinkle on the screen.

EXAMPLES
The command:

twinkle -+ 2 6

would start from a blank screen and twinkle stars to a final density of 2/8,
or 25%. The densities would be shown in the lower-left corner, as a
three-place decimal.

FILES
/usr/games/twinkle

Executable file

November 1991

worm(6) worm(6)

NAME
worm - plays the game of growing worm

SYNOPSIS
worm [size]

ARGUMENTS
size Specifies the initial length of the worm. Replace size with a number

between 1 and 7 5.

DESCRIPTION
In the game worm, you are a little worm, your body is the string of os on
the screen, and your head is the @. You move around with the h, j, k, and
1 keys. If you don't press any keys, you continue in the direction you last
moved. The uppercase H, J, K, and L keys move you as if you had pressed
the corresponding lowercase key several times (9 for HL and 5 for JK)
unless you run into a digit, then it stops.

On the screen you will see a digit. If the worm eats the digit, it will grow
longer. The actual amount by which the worm will grow longer depends
upon which digit was eaten. The object of the game is to see how long you
can make the worm grow.

The game ends when the worm runs into either the sides of the screen or
itself. The current score (how much the worm has grown) is kept in the
upper left comer of the screen.

LIMITATIONS
If the initial length of the worm is set to less than one or more than 75,
various strange things happen.

FILES
/usr/games/worm

Executable file

1 November 1991

worms(6) worms(6)

NAME
worms - plays the game of worms

SYNOPSIS
worms [-field] [-length n] [-number n] [-trail]

ARGUMENTS
-field

Fills the entire window (field) with the words WORM. The
characters in the field disappear when the worms cross their path. The
worms continue to be active after they have eaten the field.

-length n
Specifies the length of the worms to be n characters long.

-number n
Creates n number of worms in the field.

-trail
Causes each worm to leave a trail of dots (.) behind it.

DESCRIPTION
worms first clears the active window, then simulates two worms made of
of asterisks (*), and one worm made of dollar signs ($) wiggling around
the window area, or fie 1 d. Each worm is one character in width and
approximately 20 characters in length.

The worms will continue in motion until an interrupt is sent.

STATUS MESSAGES AND VALUES
Invalid length

Value not in range 2 <= length <= 1024

Invalid number of worms
Value not in range 1 <= number <= 40

TERM: parameter not set
The TERM environment variable is not defined. To fix things, run the
commands

TERM=terminal-type
export TERM

Unknown terminal type
The terminal type (as determined from the TERM environment
variable) is not defined in I etc It e rmc a p.

Terminal not capable of cursor motion
The terminal is incapable of running this program.

November 1991

worrns(6) worrns(6)

LIMITATIONS
The lower right character position will not be properly updated on a
terminal that wraps at the right margin.

Terminal initialization is not performed.

FILES
/usr/garnes/worrns

Executable file
/etc/termcap

Terminal capabilities file

2 November 1991

wump(6) wump(6)

NAME
wump - plays the game of hunt-the-wumpus

SYNOPSIS
wump

DESCRIPTION
wump invokes the game of "Hunt the Wumpus." A Wumpus is a creature
that lives in a cave containing several rooms that are connected by tunnels.

You wander among the rooms, trying to shoot the Wumpus with an arrow,
meanwhile trying to avoid being eaten by the Wumpus and falling into
Bottomless Pits. There are also Super Bats, which are likely to pick you up
and drop you into some random room.

The program asks various questions which you answer one per line. You
can ask the program to give you a more detailed description of the
questions, if you wish.

LIMITATIONS
It will never replace Adventure.

NOTES
This program is based on one described in "People's Computer
Company," 2, 2 (November 1973).

FILES
/usr/games/wump

Executable file

November 1991 1

A!UX Command Reference was written, edited, and
composed on a desktop publishing system using Apple
Macintosh computers, and troff running on NUX.
Page proofs were created on Apple LaserWriter printers.
Final pages were output directly to 70 millimeter film on
an Electrocomp 2000 Electron Beam Recorder.
Postscript, the page-description language for the
LaserWriter, was developed by Adobe Systems
Incorporated.

Text type and display type are Times, Garamond, and
Helvetica. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Apple
Courier, a fixed-width font.

Writers: Erik Akin, Mike Elola, Kristi Fredrickson,
Michael Hinkson, Linda Kinnier, Paul Pannish, Cheryl
Salgado, Kathy Wallace, and Laura Wirth

Writing Group Lead: Mike Elola

Developmental Editor: Silvio Orsino

Art Director: Tamara Whiteside

Production Editor: Jeannette Allen

Production Supervisor: Robin Kerns

Special thanks to Anne Szabla and Chris Wozniak

	00-01-i
	00-02-ii
	00-03-iii
	00-04-iv
	00-05-v
	00-06-vi
	00-07-vii
	00-08-viii
	00-09-ix
	00-10-x
	00-11-xi
	00-12-xii
	00-13-xiii
	00-14-xiv
	00-15-xv
	00-17-xvii
	00-19-xix
	00-20-xx
	00-21-xxi
	00-22-xxii
	00-24-xiv
	00-26-xvi
	00-28-xviii
	01-001
	01-002
	01-003
	01-004
	01-005
	01-006
	01-007
	01-008
	01-009
	01-01-i
	01-010
	01-011
	01-012
	01-013
	01-014
	01-015
	01-016
	01-017
	01-018
	01-019
	01-02-ii
	01-020
	01-021
	01-022
	01-023
	01-024
	01-025
	01-026
	01-027
	01-028
	01-029
	01-03-iii
	01-03-iv
	01-030
	01-031
	01-032
	01-033
	01-034
	01-035
	01-036
	01-037
	01-038
	01-039
	01-040
	01-041
	01-042
	01-043
	01-044
	01-045
	01-046
	01-047
	01-048
	01-049
	01-050
	01-051
	01-052
	01-053
	01-054
	01-055
	01-056
	01-057
	01-058
	01-059
	01-060
	01-061
	01-062
	01-063
	01-064
	01-065
	01-066
	01-067
	01-068
	01-069
	01-070
	01-071
	01-072
	01-073
	01-074
	01-075
	01-076
	01-077
	01-078
	01-079
	01-080
	01-081
	01-082
	01-083
	01-084
	01-085
	01-086
	01-087
	01-088
	01-089
	01-090
	01-091
	01-092
	01-093
	01-094
	01-095
	01-096
	01-097
	01-098
	01-099
	01-100
	01-101
	01-102
	01-103
	01-104
	01-105
	01-106
	01-107
	01-108
	01-109
	01-110
	01-111
	01-112
	01-113
	01-114
	01-115
	01-116
	01-117
	01-118
	01-119
	01-120
	01-121
	01-122
	01-123
	01-124
	01-125
	01-126
	01-127
	01-128
	01-129
	01-130
	01-131
	01-132
	01-133
	01-134
	01-135
	01-136
	01-137
	01-138
	01-139
	01-140
	01-141
	01-142
	01-143
	01-145
	01-146
	01-147
	01-148
	01-149
	01-150
	01-151
	01-152
	01-153
	01-154
	01-155
	01-156
	01-157
	01-158
	01-159
	01-160b
	01-161
	01-161b
	01-162
	01-162b
	01-163
	01-164
	01-165
	01-166
	01-167
	01-168
	01-169
	01-170
	01-171
	01-172
	01-173
	01-174
	01-175
	01-176
	01-177
	01-178
	01-179
	01-180
	01-181
	01-182
	01-183
	01-184
	01-185
	01-186
	01-187
	01-188
	01-189
	01-190
	01-191
	01-192
	01-193
	01-194
	01-195
	01-196
	01-197
	01-198
	01-199
	01-200
	01-201
	01-202
	01-203
	01-204
	01-205
	01-206
	01-207
	01-208
	01-209
	01-210
	01-211
	01-212
	01-213
	01-214
	01-215
	01-216
	01-217
	01-218
	01-219
	01-220
	01-221
	01-222
	01-223
	01-224
	01-225
	01-226
	01-227
	01-228
	01-229
	01-230
	01-231
	01-232
	01-233
	01-234
	01-235
	01-236
	01-237
	01-238
	01-239
	01-240
	01-241
	01-242
	01-243
	01-244
	01-245
	01-246
	01-247
	01-248
	01-249
	01-250
	01-251
	01-252
	01-253
	01-254
	01-255
	01-256
	01-257
	01-258
	01-259
	01-260
	01-261
	01-262
	01-263
	01-264
	01-265
	01-266
	01-267
	01-268
	01-269
	01-270
	01-271
	01-272
	01-273
	01-274
	01-275
	01-276
	01-277
	01-278
	01-279
	01-280
	01-281
	01-282
	01-283
	01-284
	01-285
	01-286
	01-287
	01-288
	01-289
	01-290
	01-291
	01-292
	01-293
	01-294
	01-295
	01-296
	01-297
	01-298
	01-299
	01-300
	01-301
	01-302
	01-303
	01-304
	01-305
	01-306
	01-307
	01-308
	01-309
	01-310
	01-311
	01-312
	01-313
	01-314
	01-315
	01-316
	01-317
	01-318
	01-319
	01-320
	01-321
	01-322
	01-323
	01-324
	01-325
	01-326
	06-01-i
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	Back-01

