
A/UX Programming
Languages and Tools
Volume 1

Release 3.0

LIMITED WARRANT¥ ON MEDIA AND REPIACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple's Media Exchange
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the date of your original purchase. See your authorized Apple dealer for program
coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON 11IE MEDIA AND MANUlli, INCLUDING IMPLIED WARRANTIES
OF MERCHANTABIIJ1Y AND FITNESS FOR A PARTICUIAR PURPOSE, ARE LIMITED IN
DURATION TO NINE1Y (90) DAYS FROM 11IE DATE OF 11IE ORIGINAL RETAIL PURCHASE OF
nus PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITII RESPECT TO
SOFTWARE, ITS QUAIJTY, PERFORMANCE, MERCHANTABIIJ1Y, OR FITNESS FOR A PARTICUIAR
PURPOSE. AS A RESULT, nus SOFTWARE IS SOLD "AS IS," AND YOU, TIIE PURCHASER, ARE
ASSUMING 11IE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN 11IE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

11IE WARRANTY AND REMEDIES SET FORTII ABOVE ARE EXCLUSIVE AND IN LIEU OF All
OTIIERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

9 Apple Computer, Inc.

© 1992, Apple Computer, Inc., and UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T Information Systems and the
Regents of the University of California, and are reproduced with permission. Under the copyright laws, this
manual may not be copied, in whole or part, without the written consent of Apple or UniSoft. The same
proprietary and copyright notices must be affixed to any permitted copies as were affixed to the original.
Under the law, copying includes translating into another language or format.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" logo (Option­
Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark
infringement and unfair competition in violation of federal and state laws.

©Apple Computer, Inc.
20525 Mariani A venue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, APDA, AppleLink, AppleShare, AppleTalk, A/UX, EtherTalk, Image Writer,
LaserWriter, LocalTalk, Macintosh, MacTCP, MPW, MultiFinder, SANE, and TokenTalk are trademarks of
Apple Computer, Inc., registered in the United States and other countries.

Apple Desktop Bus, Finder, MacX, QuickDraw, ResEdit, and SuperDrive are trademarks of Apple
Computer, Inc.

Adobe, Adobe Illustrator, and Postscript are trademarks of Adobe Systems Incorporated, registered in the
United States.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

ITC Garamond and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Motorola is a registered trademark of Motorola Corporation.

NFS is a registered trademark, and Sun is a trademark, of Sun Microsystems, Inc.

NuBus is a trademark of Texas Instruments.

QuarkXPress is ;.~ registered trademark of Quark, Inc.

UNIX is a registered trademark of UNIX System Laboratories.

VAX is a trademark of Digital Equipment Corporation.

X Window System is a trademark of Massachusetts Institute of Technology.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance of these products.

Contents

Figures and Tables I xxvii

About This Guide I xxxi

Who should use this guide I xxxi
What you need to know I xxxi
What's covered in this guide I xxxii
Where to go for more information I xxxii
How to use this guide I xxxiii
Conventions used in this guide I xxxiii

Keys and key combinations I xxxiii
Terminology I xxxiv
The Courier font I xxxiv
Font styles I xxxv
A/UX command syntax I xxxv
Manual page reference notation I xxxvi
For more information I xxxvii

1 Overview of the A/UX Programming Environment I l -l

Programming languages and compilers I l-3
The compilation process I 1-4

Editing I l -6
Preprocessing I l -6
Compilation I l -7
Optimization I l -8

v

vi Contents

Assembly I l-8
Link editing I l -8

Other development tools I l -9

Libraries and archives I 1-10
The A/UX file system I 1-12

Structure of the file system I 1-12
File descriptors I 1-13
Creating and deleting files I 1-13
Retrieving and changing attributes of files I 1-13
Special files I 1-13

Performing input and output I 1-14
Formatted I/0 I 1-14
Buffered I/0 I 1-15
File I/0 I 1-15
Pipes and fifos I 1-16
Device control I 1-16
Asynchronous I/0 I 1-17

Process control I 1-18
Signals I 1-19
Interprocess communication I l -20
Program pause and wake up I 1-21
Other process attributes I 1-21

Memory management I l-22
Dynamic memory allocation I l -22
Shared memory I l-22

The environment I l -23
Using shell commands I 1-24
Error handling I 1-24
A/UX Toolbox I 1-25
Other C language functions I l -26
Other programming tools I l-27

2 cc Command Syntax I 2-1

Command syntax I 2-2
Default behavior I 2-2
Feature test macros I 2-3
Options I 2-4

Recognized and executed by cc I 2-4
Recognized by cc and passed to as I 2-7
Recognized by cc and passed to ld I 2-7
Recognized by cc and passed to cpp I 2-8

3 C Language Reference I 3-1

Notation conventions I 3-3
Lexical conventions I 3-3

Comments I 3-4
Identifiers (names) I 3-4
Keywords I 3-4
Constants I 3-5

Integer constants I 3-5
Explicit long constants I 3-5
Character constants I 3-5
Floating constants I 3-6
Enumeration constants I 3-6

Strings I 3-7
Hardware characteristics I 3-7

Names I 3-8
Storage class I 3-8
Type I 3-8

Objects and !values I 3-10
Conversions I 3-10

Characters and integers I 3-11
Float and double I 3-11
Floating and integral I 3-11
Pointers and integers I 3-12
Unsigned I 3-12
Arithmetic conversions I 3-12

Contents vii

viii Contents

Expressions I 3-13
Primary expressions I 3-14
Unary operators I 3-17
Multiplicative operators I 3-19
Additive operators I 3-19
Shift operators I 3-20
Relational operators I 3-20
Equality operators I 3-21
Bitwise AND operator I 3-21
Bitwise exclusive OR operator I 3-22
Bitwise inclusive OR operator I 3-22
Logical AND operator I 3-22
Logical OR operator I 3-23
Conditional operator I 3-23
Assignment operators I 3-24
Comma operator I 3-25

Declarations I 3-25
Storage class specifiers I 3-26
Type specifiers I 3-27
Declarators I 3-28

Meaning of declarators I 3-28
Structure and union declarations I 3-31
Enumeration declarations I 3-34
Initialization I 3-35
Type names I 3-37
Typedef I 3-38

Statements I 3-39
Expression statement I 3-39
Compound statement or block I 3-39
Conditional statement I 3-40
while statement I 3-40
do statement I 3-40
for statement I 3-41
switch statement I 3-41
break statement I 3-42
continue statement I 3-42
return statement I 3-43
goto statement I 3-44
Labeled statement I 3-44
Null statement I 3-44

External definitions I 3-45
External function definitions I 3-45
External data definitions I 3-46

Scope rules I 3-47
Lexical scope I 3-47
Scope of externals I 3-48

Compiler control lines I 3-49
Token replacement I 3-50
File inclusion I 3-51
Conditional compilation I 3-51
Line control I 3-52

Implicit declarations I 3-53
Types revisited I 3-53

Structures and unions I 3-53
Functions I 3-54
Arrays, pointers, and subscripting I 3-55
Explicit pointer conversions I 3-56

Constant expressions I 3-57
Portability considerations I 3-58
Syntax summary I 3-59

Expressions I 3-59
Declarations I 3-6 l
Statements I 3-64
External definitions I 3-65
Preprocessor I 3-66

4 C Implementation Notes I 4-1

Data representations I 4-3
Parameter passing in C I 4-5
Setting up the stack I 4-6
Allocating of local variables and registers I 4-7
Returning from a function or subroutine I 4-8
System calls I 4-9
Optimizations I 4-9
Use of register variables I 4-10
Miscellaneous notes I 4-10

Contents ix

5 The Standard C Library (libc) I 5-l

Including functions I 5-3
Including declarations I 5-3
Input/ output control I 5-4

File access functions I 5-4
File status functions I 5-5
Input functions I 5-5
Output functions I 5-6
Miscellaneous functions I 5-6

String manipulation functions I 5-7
Character manipulation I 5-8

Character testing functions I 5-8
Character translation functions I 5-9

Time functions I 5-9
Miscellaneous functions I 5-10

Numeric conversion I 5-10
DES algorithm access I 5-11
Group file access I 5-11
Password file access I 5-12
Parameter access I 5-12
Hash table management I 5-13
Binary tree management I 5-13
Table management I 5-14
Memory allocation I 5-14
Pseudorandom number generation I 5-15
Signal handling functions I 5-16
Miscellaneous I 5-16

6 C Special Libraries I 6-1

Introduction to the C math library I 6-2

x Contents

The math library functions I 6-2
Trigonometric functions I 6-2
Bessel functions I 6-3
Hyperbolic functions I 6-3
Miscellaneous functions I 6-3

Introduction to the C object-file library I 6-4
The object-file library functions I 6-5
Common object-file interface macros (ldfcn. h) I 6-6

7 Shared Libraries I 7-1

Using a shared library I 7-2
What is a shared library? I 7-2
How do shared libraries work? I 7-3
Invoking a shared library I 7-3
Benefits of using a shared library I 7-4
The A/UX shared-library directory I 7-5
Space savings from using a shared library I 7-6
Archive library cautions I 7-6
How using a shared library can increase space usage I 7-7
When not to use a shared library I 7-7
Identifying files that use shared libraries I 7-8
Debugging files that use shared libraries I 7-8

Building a shared library I 7-9
Designing a shared library I 7-9
Handling external references I 7-10
Preparing a shared library I 7-l l
The mkshlib command I 7-12
Command-line arguments I 7-13
The shared-library specification file I 7-13

Specification file structure I 7- l 4
Specification file example I 7- l 7

Directory and file information I 7-20
Additional information I 7-21

8 lint Reference I 8-1

Using lint I 8-2
Options I 8-2

Message categories I 8-4
Unused variables and functions I 8-4
Set/used information I 8-5
Flow of control I 8-6
Function values I 8-7

Contents xi

Type checking I 8-8
Type casts I 8-9
Nonportable character use I 8-9
Assignments of long to int I 8-10
Strange constructions I 8-10
Old syntax I 8-12
Pointer alignment I 8-13
Multiple uses and side effects I 8-13

9 sdb Reference I 9-l
Using sdb I 9-3

Arguments I 9-3
Example I 9-4
Printing a stack trace I 9-6
Examining variables I 9-7

Display and manipulation I 9-10
Displaying the source file I 9-10
Displaying another source file or function I 9-11
Changing the current line display I 9-11

A controlled testing environment I 9-12
Setting and deleting breakpoints I 9-12
Running the program I 9-13
Calling functions I 9-14

Machine-language debugging I 9-15
Displaying machine-language statements I 9-15
Manipulating registers I 9-16
Other commands I 9-16

10 dbx Reference I 10-1

xii Contents

Using dbx I 10-2
dbx syntax I 10-2

Example I 10-4
Command list I 10-5

Execution and tracing commands I 10-5
Example I 10-8

Printing variables and expressions I 10-11
Example I 10-13

Accessing source files I 10-14
Command aliases and variables I 10-16
Machine-level commands I 10-17

Example I 10-19

11 f77 Command Syntax I 11-1

Using f7 7 I 11-2
Related utilities I 11-4

12 Fortran Language Reference I 12-1

Fortran standards I 12-2
Language extensions I 12-2

double complex data type I 12-2
Internal files I 12-2
implicit undefined statement I 12-3
Recursion I 12-3
Automatic storage I 12-3
Variable length input lines I 12-3
Uppercase/lowercase I 12-4
include statement I 12-4
Binary initialization constants I 12-5
Character strings I 12-5
Hollerith I 12-6
Equivalence statements I 12-6
One-trip do loops I 12-6
Commas in formatted input I 12-7
Short integers I 12-7
Additional intrinsic function library I 12-7

Violations of the standard I 12-12
double-precision alignment I 12-12
Dummy procedure arguments I 12-13
t and tl formats I 12-13

Contents xiii

Interprocedure interface I 12-13
Procedure names I 12-14
Data representations I 12-14
Return values I 12-14
Argument lists I 12-16

File formats I 12-17
Preconnected files and file positions I 12-18

13 EFL Reference I 13-1

xiv Contents

efl command syntax I 13-3
Lexical form I 13-4

Character set I 13-4
Tokens I 13-4
Lines I 13-5
Multiple statements on a line I 13-5
Comments I 13-5
include files I 13-6
Identifiers I 13-6
Strings I 13-7
Integer constants I 13-7
Floating-point constants I 13-7
Punctuation I 13-8
Operators I 13-8
Macros I 13-10

Program form I 13-10
Files I 13-10
Procedures I 13-10
Block scope I 13-11
Statements I 13-12
Labels I 13-13

Data types and variables I 13-13
Basic types I 13-13
Constants I 13-14
Variables I 13-15
Arrays I 13-15
Structures I 13-16

Expressions I 13-17
Primaries I 13-18

Constants I 13-18
Variables I 13-19
Array elements I 13-19
Structure members I 13-19
Procedure invocations I 13-19
Input/output expressions I 13-20
Coercions I 13-20
Sizes I 13-21

Parentheses I 13-21
Unary operators I 13-22

Arithmetic I 13-22
Logical I 13-22

Binary operators I 13-22
Arithmetic I 13-22
Logical I 13-23

Relational operators I 13-24
Assignment operators I 13-25
Dynamic structures I 13-25
Repetition operator I 13-26
Constant expressions I 13-26

Declarations I 13-27
Syntax I 13-27
Attributes I 13-28

Arrays I 13-28
Structures I 13-29
Precision I 13-29
Common I 13-29
External I 13-30

Variable list I 13-30
The initial statement I 13-30

Executable statements I 13-31
Expression statements I 13-31
Blocks I 13-31
Test statements I 13-32

if statement I 13-32
if-else statement I 13-32
select statement I 13-33

Loops I 13-34
while statement I 13-34
for statement I 13-35
repeat statement I 13-35
repeat-until statement I 13-36
do loop I 13-36

Contents xv

xvi Contents

Branch statements I 13-37
goto statement I 13-37
break statement I 13-38
next statement I 13-38
return statement I 13-39

Input/output statements I 13-39
1/0 units I 13-39
Binary 1/0 I 13-40
Fonnatted 1/0 I 13-40
Iolists I 13-40
Formats I 13-41
Manipulation statements I 13-41

Procedures I 13-42
procedure statement I 13-42
end statement I 13-42
Argument association I 13-43
Execution and return values I 13-43
Known functions I 13-43

Minimum and maximum functions I 13-44
Absolute value I 13-44
Elementary functions I 13-44
Other generic functions I 13-45

Atavisms I 13-45
Escape lines I 13-45
call statement I 13-46
Obsolete keywords I 13-46
Numeric labels I 13-46
Implicit declarations I 13-46
Computed goto I 13-47
goto statement I 13-47
Dot names I 13-47
Complex constants I 13-48
Function values I 13-49
Equivalence I 13-49
Minimum and maximum functions I 13-49

Compiler options I 13-50
Default options I 13-51
Input language options I 13-51
Input/output error handling I 13-51
Continuation conventions I 13-51
Default formats I 13-51
Alignments and sizes I 13-52

Default input/output units I 13-53
Miscellaneous output control options I 13-53

Examples I 13-53
File copying I 13-53
Matrix multiplication I 13-54
Searching a linked list I 13-54
Walking a tree I 13-56

Portability I 13-58
Primitives I 13-58

Character string copying I 13-59
Character string comparisons I 13-59

Compiler I 13-59
Current version I 13-59
Diagnostics I 13-60
Quality of Fortran produced I 13-60

Constraints on EFL I 13-62
External names I 13-63
Procedure interface I 13-63
Pointers I 13-63
Recursion I 13-63
Storage allocation I 13-63

14 as Reference I 14-1

Warnings I 14-3
Comparison instructions I 14-3
Case sensitivity I 14-4
Overloading of opcodes I 14-4

Using as I 14-5
General syntax rules I 14-6

Format of assembly-language code I 14-6
Comments I 14-7
Identifiers I 14-7

Register identifiers I 14-7
Constants I 14-9

Numeric constants I 14-9
Character constants I 14-10

Other syntactic details I 14-10

Contents xvii

Segments, location counters, and labels I 14-11
Segments I 14-11
Location counters and labels I 14-12

Types I 14-13
Expressions I 14-14
Pseudo-operations I 14-15

Data initialization operations I 14-15
Additional pseudo-operations for MC68040 processors I 14-17
Symbol-definition operations I 14-18
Location counter control operations I 14-18
Symbolic-debugging operations I 14-19

file and ln I 14-20
Symbol-attribute operations I 14-20

Switch table operation I 14-22

Span-dependent optimization I 14-23
Address modes I 14-24

Address-mode syntax I 14-25
Effective address modes I 14-26

Machine instructions I 14-28
Instructions for the MC68881 I 14-36
Instructions for the MC68000-family MMUs I 14-45

15 ld Reference I 15-1

xviii Contents

Using ld I 15-3
Link-editor concepts I 15-5

Memory configuration I 15-5
Sections I 15-5
Addresses I 15-6
Binding I 15-6
Object files I 15-6

Options I 15-7

The 1 a command language I 15-9
Expressions I 15-10
Assignment statements I 15-11
Specifying a memory configuration I 15-13
Region directives I 15-14
Section definition directives I 15-15

File specifications I 15-15
Loading a section at a specified address I 15-16

Aligning an output section I 15-17
Creating holes within output sections I 15-21
Creating and defining symbols at loading time I 15-22
Allocating a section into named memory I 15-23
Initialized section holes or . bss sections I 15-24

Notes and special considerations I 15-26
Using archive libraries I 15-26
Dealing with holes in physical memory I 15-29
Allocation algorithm I 15-30
Incremental loading I 15-31
DSECT, COPY, and NOLOAD sections I 15-32
Output file blocking I 15-33
Nonrelocatable input files I 15-34
The - i ld option I 15-34

Error messages I 15-35
Corrupt input files I 15-35
Errors during output I 15-36
Internal errors I 15-36
Allocation errors I 15-37
Misuse of link-editor directives I 15-38
Misuse of expressions I 15-40
Misuse of options I 15-40
Space constraints I 15-41
Miscellaneous errors I 15-42

Syntax diagram for input directives I 15-43

16 CO FF Ref ere nee I 16-1

COFF structure I 16-3
File header I 16-4

Magic numbers I 16-5
Flags I 16-5
File header declaration I 16-6

Optional header information I 16-7
Standard A/UX system a. out header I 16-7
Optional header declaration I 16-9

Section headers I 16-9
Flags I 16-10
Section header declaration I 16-11
.bss section header I 16-12

Contents xix

Sections I 16-12
Relocation information I 16-13

Relocation entry declaration I 16-14
Line numbers I 16-14

Line number declaration I 16-15
Symbol table I 16-16

Special symbols I 16-16
Inner blocks I 16-18
Symbols and functions I 16-19
Symbol table entries I 16-20
Auxiliary table entries I 16-30

String table I 16-36
Access routines I 16-37

Appendix A Additional Reading I A-1

Appendix B A/UX POSIX Environment I B-1

Compiling programs I B-3

xx Contents

POSIX optional facilities I B-3
Process compatibility flag I B-4
New system calls I B-4
The POSIX library I B-5

Terminal interface control I B-5
Signals I B-6
Configurable system variables I B-7
Miscellaneous I B-7

Header files and feature test macros I B-7
Feature test macros I B-8
<uni std. h> / B-8
<sys/types .h> I B-12
<sys/stat.h> / B-14
<f cntl. h> I B-18
<limits .h> / B-20
<utime. h> / B-26

Migrating programs from A/UX to A/UX POSIX I B-27
Manipulate signal sets I B-27
Terminal control I B-28

tcgetattr I B-28
tcsetat tr I B-29

Configurable system variables I B-30
fpathconf I B-30
sysconf I B-31

Appendix C NUX Guide to POSIX I C-1

1. General I C-2
1.3 Conformance I C-2
1.3.1 Implementation conformance I C-2
1.3.1.1 Requirements I C-2
1.3.1.2 Documentation I C-3
1.3.1.3 Conforming implementation options I C-3
1.3.3 Language-dependent services for the C programming language I C-3

2. Terminology and general requirements I C-4
2.1 Conventions I C-4
2.2 Definitions I C-4
2.2.2 General terms I C-4
2.2.2.4 Appropriate privileges I C-4
2.2.2.27 File I C-4
2.2.2.30 File group class I C-4
2.2.2.55 Parent process ID I C-5
2.2.2.57 Pathname I C-5
2.2.2.69 Read-only file system I C-5
2.2.2.83 Supplementary group ID I C-5
2.3 General concepts I C-5
2.3.1 Extended security controls I C-5
2.3.2 File access permissions I C-5
2.3.5 File times update I C-5
2.4 Errornumbers I C-5
2.5 Primitive system data types I C-7
2.6 Environment description I C-8
2.7 C Language definitions I C-8
2.7.2 POSIX.1 symbols I C-8
2.8 Numerical limits I C-8
2.9 Symbolic constants I C-9

Contents xxi

xxii Contents

3. Process primitives I C-10
3.1 Process creation and execution I C-10
3.1.1 Process creation I C-10
3.1.1.2 Description I C-10
3.1.2 Execute a file I C-10
3.1.2.2 Description I C-10
3.1.2.4 Errors I C-11
3.2 Process termination I C-11
3.2.1 Wait for process termination I C-11
3.2.1.2 Description I C-11
3.2.2 Terminate a process I C-11
3.2.2.2 Description I C-11
3.3 Signals I C-11
3.3.1 Signal concepts I C-11
3.3.1.1 Signal names I C-12
3.3.1.2 Signal generation and delivery I C-12
3.3.1.3 Signal actions I C-12
3.3.2 Send a signal to a process I C-13
3.3.2.2 Description I C-13
3.3.3 Manipulate signal sets I C-13
3.3.3.4 Errors I C-13
3.3.4 Examine and change signal action I C-13
3.3.4.2 Description I C-13
3.3.4.4 Errors I C-14
3.3.6 Examine pending signals I C-14
3.3.6.4 Errors I C-14

4. Process environment I C-14
4.2 User identification I C-14
4.2.4 Getusername I C-14
4.2.4.3 Returns I C-14
4.2.4.4 Errors I C-14
4.4 System identification I C-14
4.4.1 Get system name I C-15
4.4.1.2 Description I C-15
4 .4 .1. 4 Errors I C-15
4.5 Time I C-15
4.5.1 Get system time I C-15
4.5.1.4 Errors I C-15
4.5.2 Get process time I C-15
4.5.2.2 Description I C-15

4.5.2.4 Errors I C-15
4.6 Environment variables I C-16
4.6.1 Environment access I C-16
4.6.1.3 Returns I C-16
4.6.1. 4 Errors I C-16
4.7 Terminal identification I C-16
4.7.1 Generate terminal pathname I C-16
4.7.1.3 Returns I C-16
4.7.1.4 Errors I C-16
4.7.2 Determine terminal device name I C-16
4.7.2.2 Description I C-16
4.7.2.4 Errors I C-16
4.8 Configurable system variables I C-16
4.8.1 Get configurable system variables I C- l 7
4.8.1.2 Description I C-17

5. Files and directories I C-17
5.1 Directories I C- l 7
5.1.1 Format of directory entries I C-17
5.1.2 Directory operations I C-18
5.1.2.2 Description I C-18
5.1.2.4 Errors I C-18
5 .3 General file creation I C- l 9
5.3.1 Open a file I C-19
5.3.1.2 Description I C-19
5.3.3 Set file creation mask I C-19
5.3.3.2 Description I C-19
5.3.4 Link to a file I C-19
5.3.4.2 Description I C-19
5.4 Special file creation I C-20
5.4.1 Make a directory I C-20
5.4.1.2 Description I C-20
5.4.2 Make a FIFO special file I C-20
5.4.2.2 Description I C-20
5.5 File removal I C-20
5.5.1 Remove directory entries I C-20
5.5.1.2 Description I C-20
5.5.2 Remove a directory I C-20
5.5.2.2 Description I C-20
5.6 File characteristics I C-20
5.6.1 File characteristics: Header and data structure I C-21

Contents xxiii

xxiv Contents

5.6.1.2 <sys/stat.h>filemodes I C-21
5.6.2 Get file status I C-21
5.6.2.2 Description I C-21
5.6.2.4 Errors I C-21
5.6.3 Check file accessibility I C-22
5.6.3.2 Description I C-22
5.6.3.4 Errors I C-22
5.6.4 Change file modes I C-22
5.6.4.2 Description I C-22
5.6.5 Change owner and group of a file I C-22
5.6.5.2 Description I C-22
5.7 Configurable pathname variables I C-22
5.7.1 Get configurable pathname variables I C-22
5.7.1.2 Description I C-22
5.7.1.4 Errors I C-23

6. Input and output primitives I C-23
6.4 Input and output I C-23
6.4.1 Read from a file I C-23
6.4.1.2 Description I C-23
6.4.1.4 Errors I C-23
6.4.2 Write to a file I C-24
6.4.2.2 Description I C-24
6.4.2.4 Errors I C-24
6.5 Control operations on files I C-24
6.5.2 File control I C-24
6.5.2.2 Description I C-24
6.5.2.4 Errors I C-24
6.5.3 Reposition read/write file offset I C-24
6.5.3.2 Description I C-25

7. Device-specific and class-specific functions I C-25
7 .1 General terminal interface I C-25
7 .1.1 Interface characteristics I C-25
7.1.1.3 The controlling terminal I C-26
7.1.1.5 Input processing and reading I C-26
7.1.1.6 Canonical mode input processing I C-26
7.1.1.7 Non-canonical mode input processing I C-26
7.1.1.8 Writing data and output processing I C-26
7.1.1.9 Special characters I C-26
7.1.2 Parameters that can be set I C-26
7.1.2.1 tennios structure I C-26

7.1.2.2 Input modes I C-27
7.1.2.3 Output modes I C-27
7.1.2.4 Control modes I C-28
7.1.2.5 Local modes I C-28
7.1.2.6 Special control characters I C-28
7.1.3 Baud rate functions I C-29
7.1.3.2 Description I C-29
7.1.3.4 Errors I C-29
7.2 General terminal interface control functions I C-29
7.2.2 Line control functions I C-29
7.2.2.2 Description I C-29

8. Language-specific services for the C programming language I C-29
8.1 Referenced C language routines I C-29
8.1.1 Extensions to time functions I C-29
8.1.2 Extensions to setlocale() function I C-30
8.1.2.2 Description I C-30
8.2 C Language input/output functions I C-30
8.2.2 Open a stream on a file descriptor I C-30
8.2.2.2 Description I C-30
8.3 Other C language functions I C-30
8.3.2 Set time zone I C-30
8.3.2.2 Description I C-30

9. System databases I C-31
9.1 System databases I C-31
9.2 Database access I C-31
9.2.1 Group database access I C-31
9.2.1.3 Returns I C-31
9.2.2 User database access I C-31
9.2.2.3 Returns I C-31

10. Data interchange format I C-32
10.1 Archive/interchange file format I C-32
10.1.1 Extended tar format I C-32
10.1.2 Extended cpio format I C-33
10.1.2.1 cpio header I C-33
10.1.2.2 cpio filename I C-33
10.1.2.4 cpio special entries I C-33
10.1.2.5 cpio values I C-33
10.1.3 Multiple volumes I C-33

Index I In-1

Contents :xxv

Figures and Tables

Chapter 1 Overview of the A/UX Programming Environment

Figure 1-1
Figure 1-2
Figure 1-3

Table 1-1

Creating a program I 1-5
Including files I 1-7
Insertion of library code /1-9

Buffer versus disk access with asynchronous I/0 I l-17

Chapter 3 C Language Reference

Table 3-1
Table 3-2
Table 3-3

Character constants and escape sequences I 3-6
68000-family hardware characteristics I 3-7
Categorization of fundamental types I 3-9

Chapter 4 C Implementation Notes

Figure 4-1
Figure 4-2
Figure 4-3

Stack contents after evaluation of function call I 4-5
Stack contents after entry to the function call I 4-6
Stack contents after executing prolog code I 4-8

Chapter 10 dbx Reference

Table 10-1 dbx commands I 10-25

Chapter 13 EFL Reference

Figure 13-1 Procedure illustrating block level scope I 13-12
Figure 13-2 File-copying example I 13-53
Figure 13-3 Matrix multiplication example I 13-54
Figure 13-4 Example of searching a linked list I 13-55
Figure 13-5 Pseudocode for a tree walk I 13-56
Figure 13-6 Example of walking a tree I 13-56
Figure 13-7 Fortran code produced from the matrix multiplication example I 13-60
Figure 13-8 Fortran code produced from tree-walk example I 13-61

Table 13-1 Legal characters in EFL I 13-4
Table 13-2 EFL operators I 13-8
Table 13-3 Precedence of operators in EFL I 13-17
Table 13-4 Type of result of binary operation A op B I 13-23
Table 13-5 Truth tables for and and or I 13-24
Table 13-6 Relational operators in EFL I 13-24
Table 13-7 Recognized keyword synonyms I 13-46
Table 13-8 Regular and dots =on forms of operators I 13-48
Table 13-9 Nongeneric functions I 13-50
Table 13-10 Options for changing default read/write formats I 13-52
Table 13-11 Alignment and size options for Fortran data types I 13-52

Chapter 14 as Reference

Figure 14-1 Bitfield concatenation I 14-16
Figure 14-2 Integer boundaries I 14-17

Table 14-1 Options to as I 14-5
Table 14-2 Predefined MC68020 registers I 14-8
Table 14-3 Additional registers for the MC68030 microprocessor I 14-9
Table 14-4 Additional registers for the MC68040 microprocessor I 14-9
Table 14-5 Special character constants I 14-10
Table 14-6 Assembler span-dependent optimizations I 14-24
Table 14-7 Effective address modes I 14-27
Table 14-8 MC68000-family instruction formats I 14-30
Table 14-9 Non-IEEE condition codes I 14-37

xxviii Figures and Tables

Table 14-10 IEEE condition codes I 14-38
Table 14-11 Constants in MC68881 ROM I 14-39
Table 14-12 Floating-point instruction formats I 14-41
Table 14-13 Memory management condition codes: Condition is set I 14-46
Table 14-14 Memory management condition codes: Condition is clear I 14-46
Table 14-15 MMU instruction formats I 14-48

Chapter 15 ld Reference

Table 15-1 ld options I 15-8
Table 15-2 Precedence of operators I 15-11
Table 15-3 Directive expansion I 15-44

Chapter 16 COFF Reference

Figure 16-1 Object file format I 16-3
Figure 16-2 File header declaration I 16-7
Figure 16-3 aouthdr declaration I 16-9
Figure 16-4 Section header declaration I 16-11
Figure 16-5 Relocation entry declaration I 16-14
Figure 16-6 Line number grouping I 16-15
Figure 16-7 Line number entry declaration I 16-15
Figure 16-8 COFF global symbol table I 16-16
Figure 16-9 Special symbols I 16-18
Figure 16-10 Nested blocks I 16-18
Figure 16-11 Example of the symbol table I 16-19
Figure 16-12 Symbol table entry declaration I 16-30
Figure 16-13 Auxiliary symbol table entry I 16-35

Table 16-1 File header contents I 16-5
. Table 16-2 File header flags I 16-6
Table 16-3 Optional header contents I 16-8
Table 16-4 A/UX magic numbers I 16-8
Table 16-5 Section header contents I 16-10
Table 16-6 Section header flags I 16-10
Table 16-7 Relocation section contents I 16-13

Figures and Tables xxix

Table 16-8 VAX and M68000 relocation types I 16-13
Table 16-9 Special symbols in the symbol table I 16-17
Table 16-10 Symbol table entry format I 16-20
Table 16-11 Name field I 16-21
Table 16-12 Storage classes I 16-21
Table 16-13 Storage class by special symbols I 16-23
Table 16-14 Restricted storage class I 16-23
Table 16-15 Storage class and value I 16-24
Table 16-16 Section number I 16-25
Table 16-17 Section number and storage class I 16-26
Table 16-18 Fundamental types I 16-27
Table 16-19 Derived types I 16-27
Table 16-20 Type entries by storage class I 16-29
Table 16-21 Auxiliary symbol table entries I 16-31
Table 16-22 Format for sections in auxiliary table I 16-32
Table 16-23 Format for tag names I 16-32
Table 16-24 Format for end of structures I 16-33
Table 16-25 Format for functions I 16-33
Table 16-26 Format for arrays I 16-33
Table 16-27 Format for beginning of block I 16-34
Table 16-28 Format for end of block I 16-34
Table 16-29 Format for structures, unions, and enumerations I 16-34
Table 16-30 String table I 16-37

xxx Figures and Tables

About This Guide

This guide describes the primary A/UX tools to assist in program development and
compilation. It describes the C and Fortran-77 programming languages, their
accompanying function libraries and archives (including shared libraries), and the utility
programs related to C and Fortran program development. Additionally, this guide details
the A/UX implementation of the POSIX standard.

If you want to learn about the utility programs, libraries, and related tools that
complement the A/UX compilers, you should read A!UX Programming Languages and

Tools, Volume 2.

Who should use this guide

This guide is intended for programmers and developers. This guide does not serve as a
tutorial to help you learn programming skills; rather, it serves as a reference to determine
what tools are available in A/UX and how to use them effectively.

What you need to know

To get the most out of this guide, you need to have a good working knowledge of
programming practices. This guide assumes that you are conversant with a programming
language and with the general process of coding, compiling, testing, debugging, and so
forth. A general knowledge of UNIX is also assumed. You need to know the basic skills

xxxi

of using a Macintosh, such as double-clicking to open a file and dragging the mouse to
choose a menu command.

What's covered in this guide

This guide describes:

• the A/UX programming environment

• the command syntax for the C compiler (cc)

• the C programming language, with implementation notes for Macintosh hardware

• the standard C, math, and object libraries

• shared libraries

• the command syntax for the Fortran compiler (f7 7)

• the Fortran programming language

• e f 1, an extended Fortran language

• other programming-language utilities, such as 1 int, the C program checker; sdb,

the symbolic debugger; as the assembler; 1 d, the link editor; and the Common
Object File Format (COFF)

• POSIX and the A/UX POSIX programming environment, for programming in
conformance with the IEEE POSIX standard

Where to go for more information

If you want to learn about the utility programs, libraries, and related tools that
complement the A/UX compilers, you should read A/UX Programming Languages and
Tools, Volume 2. If you need more information about the Macintosh interface, see A!UX
Toolbox: Macintosh ROM Interface. If you would like information about porting
applications to A/UX, see the A!UX Porting Guide. If you would like more information
about the shell programming environment, see A!UX Shells and Shell Programming.

xxxii About This Guide

How to use this guide

This guide serves as a reference to help you when programming and using these tools.
As a reference book, it is not designed to be read from cover to cover. Each chapter is a
discrete description of a particular tool or class of tools, therefore you should skip
directly to these compact references.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK DoWN ARRow (J,) OPTION SPACE BAR

COMMAND(~) ENTER RETURN TAB

CONTROL ESCAPE RIGHT ARRow (~) UP ARRow (I)

DELETE LEFT ARROW ((----) SHIFT

Sometimes you will see two or more names joined by hyphens. The hyphens indicate
that you use two or more keys together to perform a specific function. For example,

Press COMMAND-K

means "Hold down the COMMAND key and press the K key."

Conventions used in this guide xxxill

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the RETURN key. The instruction

Enter ls

means "Type ls and press the RETURN key."

Here is a list of common terms and the corresponding actions you take.

Term

Click

Drag

Choose

Select

Type

Enter

Action

Press and then immediately release the mouse button.

Position the mouse pointer, press and hold down the mouse button
while moving the mouse, and then release the mouse button.

Activate a command in a menu. To choose a command from a pull­
down menu, click once on the menu title and, while holding down
the mouse button, drag down until the command is highlighted. Then
release the mouse button.

Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type an entry without pressing the RETURN key.

Type the series of characters indicated and press the RETURN key.

The Courier font

Throughout A/UX guides, words that you see on the screen or that you must type exactly
as shown are in the courier font. For example, suppose you see this instruction:

Type date on the command line and press RETURN.

The word date is in the Courier font to indicate that you must type it. Suppose
you then read this explanation:

Once you press RETURN, you'll see something like this:
Tues Oct 17 17:04:00 PDT 1989

In this case, courier is used to represent exactly what appears on the screen.

xxxiv About This Guide

All A/UX manual page names are also shown in the Courier font. For example,
the entry 1 s(l) indicates that 1 s is the name of a manual page in an A/UX reference
manual. See "Manual Page Reference Notation" below for more information on A/UX
command reference manuals.

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat filename

tells you that filename is a placeholder for the name of a file you wish to view. If you
want to view the contents of a file named El vis, type the word El vis in place of
filename. In other words, enter

cat Elvis

New terms appear in boldface where they are defined. Boldface is also used for
steps in a series of instructions.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the
syntax for the wc command:

wc [-1 J [-wJ [directory] ...

In this example, wc is the command, -1 and -w are options, directory is an
argument, and the ellipsis (. ..) indicates that more than one argument can be used. Note
that each command element is separated by a space.

The following list gives more information about the elements of an A/UX command.

Element

command

option

Description

The command name.

A character or group of characters that modifies the command. Most
options have the form - option, where option is a letter representing
an option. Most commands have one or more options.

Conventions used in this guide xxxv

Element

argument

[]

Description

A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

Brackets used to enclose an optional item-that is, an item that is not
essential for execution of the command.

Ellipsis used to indicate that more than one argument can be entered.

For example, the wc command is used to count lines, words, and characters in a
file. Thus, you can enter

wc -w Priscilla

In this command line, -w is the option that instructs the command to count all of the
words in the file, and the argument Priscilla is the file to be searched.

Manual page reference notation

A!UX Command Reference, A/UX Programmer's Reference, A!UX System Administrator's
Reference, Xl 1 Command Reference for A!UX, and Xl 1 Programmer's Reference for
A!UX contain descriptions of commands, subroutines, and other related information.
Such descriptions are known as manual pages(often shortened to man pages). Manual
pages are organized within these references by section numbers. The standard A/UX
cross-reference notation is

command (section)

where command is the name of the command, file, or other facility; section is the
number of the section in which the item resides.

• Items followed by section numbers (lM) and (8) are described in A!UX System
Administrator's Reference.

• Items followed by section numbers (1) and (6) are described in A!UX Command
Reference.

• Items followed by section numbers (2), (3), (4), and (5) are described in A!UX
Programmer's Reference.

• Items followed by section number (lX) are described in Xl 1 Command Reference
forA!UX.

• Items followed by section numbers (3X) and (3Xt) are described in Xl 1

Programmer's Reference for A!UX.

xxxvi About This Guide

For example,

cat(l)

refers to the command cat, which is described in Section 1 of A!UX Command
Reference.

You can display manual pages on the screen by using the man command. For
example, enter the command

man cat

to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit, press the SPACE BAR until you see a
command prompt, or type q at any time to return immediately to your command prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to A/UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

Conventions used in this guide xx:xvii

1 Overview of the A/UX
Programming Environment

Programming languages and compilers I 1-3

Libraries and archives I 1-10

The A/UX file system I 1-12

Performing input and output I 1-14

Process control I 1-18

Memory management I 1-22

The environment I 1-23

Using shell commands I 1-24

Error handling I 1-24

A/UX Toolbox I 1-25

Other C language functions I 1-26

Other programming tools I 1-27

This manual describes some of the program development tools provided with the A/UX

operating system. The A/UX programming environment is a very powerful application

program development environment. Languages and tools that originated on the UNIX®

operating system have gradually migrated to numerous other operating systems, so even

if you are new to the A/UX operating system, you might well have already used many of

these tools.

There are four main kinds of tools that you use to develop application programs

under A/UX:

• language compilers, assemblers, and link editors

• function libraries and archives

• program debugging tools

• other development tools

This manual provides detailed information on the first three categories. A summary of other

important development tools (such as SCCS and make) can be found in the last section of

this chapter; for a complete discussion of these tools, see A/UX Programming Ltmguages

and Tools, Volume 2. Readers should be conversant with the C programming language and

with the general process of coding, compiling, testing, debugging, and so forth.

1-2 Chapter 1 Overview of the A/UX Programming Environment

Programming languages and compilers
The A/UX programming environment includes compilers for several programming
languages:

cc

f77

efl

c89

MPWC

The standard C compiler.

The standard Fortran compiler.

An Extended Fortran Language (EFL) compiler.

An ANSI C compiler available as a separate product in A/UX
Developer's Tools.

A C compiler and development environment for Macintosh
applications that run on A/UX or the Macintosh Operating System (OS).
This is available as a separate product in A/UX Developer's Tools.

In most instances, the C programming language will be your preferred language for
writing applications programs. The C language was developed primarily to provide a
portable way of implementing the UNIX operating system and its numerous utility
programs. Hence, the connections between the language and the operating system are
very deep. Many A/UX utility programs are simply slightly repackaged system calls or
subroutines. For example, the shell command sleep does nothing more than validate
its command-line arguments and then call the s 1 eep subroutine. Because of this tight
connection, it is often a simple matter to translate a shell script into a functionally
equivalent (but much faster) C program.

Aspects of the C language and associated libraries are covered in detail in Chapters 3
through 6. The Fortran language, in its various A/UX incarnations, is discussed in
Chapters 11 through 13.

Programming languages and compilers 1-3

The compilation process

There are six main steps a program goes through on its way to becoming executable:

1. editing

2. preprocessing

3. compilation

4. optimization

5. assembly

6. linking

Of these, the first step is under your direct control, while the remainder is generally
handled by the cc command. You can influence how the command performs these
tasks, but the command takes care of most of the detail work for you. The creation of
most programs also includes another step not noted above-debugging.

The C compilation process is shown in Figure 1-1. Your source file, in text format,
first goes through a preprocessing phase where it can be combined with other text files.
The drawing shows an example in which two header files (f ilel. h and f ile2. h)

and one source code file (file. c) are combined. The resulting source file is then
compiled into an assembly file. This assembly file is then (usually) optimized. After
optimization, the assembler converts the file into machine code. Finally, the link-editor
defines addresses for all functions and variables in your program by resolving external
references, either between your source files or standard system functions. It finishes the
compilation process by producing an executable object file.

The following sections discuss each of these compilation steps in greater detail.

1-4 Chapter 1 Overview of the A/UX Programming Environment

Preprocess
file2.h

filel.h D file.c

o~o
~-Q

Text file

~
Compile

-Assembly file

Finished
application

~ ~ ¢:l

Figure 1-1 Creating a program

Optimize

Assemble

~

=====l:=;t
r=i=t·~~~J
!~-=+-----

Link edit

ll .
.

.
.

100101
000101
000101

Programming languages and compilers 1-5

Editing

Editing a program is straightforward. With the A/UX operating system, you have the
choice of several editors:

1. Text Edi tor. This mouse-based screen editor is unique to A/UX. It is easy to use
and intuitive in its operation.

2. vi. This screen editor, familiar to many users of UNIX systems, is powerful but
requires some perseverance to master.

3. ed. This is a UNIX-based line editor, included for those who prefer to use its editing
features.

You also can supply other editors of your own choosing, such as emacs.

Preprocessing

The preprocessor makes text changes in your source code to get it ready for compilation.
These changes include adding specified files into your source code, replacing macro
text strings, and optionally removing comments. You can include additional sections of
code from other files by using an include directive. This tells the preprocessor to insert a
named file into your source at the location you specify. Figure 1-2 shows the inclusion of
a source file at the beginning of a compilation.

You also can have the system insert the declaration for a C library function into your
program. These declarations are often made in header ftles, which contain descriptions
of the interface to the library routines. By including these header files in your program,
the compiler knows how to generate calls to the library routines that are used within
your program. The libraries containing the routines must also be specified in the loading
phase (this subject is covered more fully in the section "Link Editing," later in this
chapter).

In the A/UX C environment, header files are provided that define the functions
available for both the standard C library (giving you access to standard UNIX functions)
and the Macintosh Toolbox Library (giving you access to Macintosh functions). These
files are in the directories /usr I include and /usr I include/mac, respectively.

1-6 Chapter 1 Overview of the A/UX Programming Environment

test.c

,'

#include "source.c"

Figure 1-2 Including files

Compilation

,,'' source.c

while (getchar
!= EOF) {printf
("Enter a y or
an n: ");
get char();
}

test.i

while (getchar
! = EOF) {printf
("Enter a y or
an n: ");
get char();
}

The compiler goes through the preprocessed source code once. It groups the characters
into tokens and converts them into an internal representation. A token is the smallest
processing unit used by the compiler; such things as keywords (such as char and
long) and operators (such as + and &) are tokens. The internal representations are
converted into assembly code. If part of the internal representation cannot be converted
into assembly code, the compiler reports an error.

Programming languages and compilers 1-7

Optimization

Once source code has been compiled into assembly code, the optimizer changes certain
instructions to make the code more efficient. This is primarily done by changing the forms
of relative address calculation, eliminating unused code, optimizing register allocation,
and rewriting local references to use the stack pointer, thus reducing system overhead.
The optimizer is a stand-alone program that uses assembly code as both its input and
output language. This stage is optional. The optimizer is found in I 1 ib I opt irn.

Assembly

The assembler takes the (optionally) optimized assembly code and converts it into
relocatable machine-language instructions, placing it in an object file (you call the code
at this point object code). Relocatable instructions are not bound to a particular memory
address. Usually the assembled instructions are for the native processor of the system,
though this is not required. The assembler is found in /bin/ as.

Link editing

The link editor performs several functions to create an executable file:

1. The link editor searches the libraries named on the command line to resolve external
references (by default, it also searches a standard set of libraries). An external
reference is a call to a function whose code is not in your program. When the link
editor finds the machine code that satisfies the external reference, it links the code
into your program. This process is shown in Figure 1-3. If the link editor cannot
satisfy all external references, it sends you an error message and exits.

2. The link editor binds the machine code to specific memory locations. For example, all
global variables are assigned memory addresses so that their values can be accessed.

3. The link editor creates an executable binary Common Object File Format (COFF) file.
This process is also called loading.

1-8 Chapter 1 Overview of the A/UX Programming Environment

test.out

001101000101110100
111010101010001000
001010110001011101
001010110101010001
111100001010110100
001010100010111010
101000101010001010
111100101000010101
110000010100000100
000011010001110001
001101000101110100
111010101010001000
001010110001011101
001101000101110100
111010101010001000
001010110001011101

Figure 1-3 Insertion of library code

Other development tools

libc

. 001010110101010001
111100001010110100
001010100010111010
101000101010001010
111010101010001000
001010110001011101
001101000101110100

printf

put char

The following programs for checking and debugging are supported in the A/UX
programming environment:

adb adb is a tool for debugging A/UX applications at the machine code
level. Machine-level debuggers allow you to find the place in the
assembly code that is causing problems. This requires more work than
symbolic debugging because you must then figure out to which line of
source code the faulty assembly instruction corresponds.

dbx dbx is a versatile tool that allows you to symbolically debug your
A/UX applications at either the source or machine code level. Symbolic
debugging allows you to control the program while looking at your
source code. A symbolic debugger helps identify the source line that is
causing problems. dbx also can debug A/UX applications that access
the A/UX Toolbox. dbx is discussed in detail in Chapter 10.

Programming languages and compilers 1-9

lint

sdb

Libraries and archives

The lint program checks C programs for syntax errors, type rule
violations, inefficient constructions, potential bugs, inconsistencies,
and portability problems. You can specify command line options to
instruct 1 int to check only what is necessary for your program.
lint is discussed in detail in Chapter 8.

The sdb program can be used on both C programs and Fortran
(f 7 7) programs to debug core images or source language after you
compile your program using the -g option. sdb is discussed in
detail in Chapter 9.

A library is a collection of functions and declarations. A library archive is a
precompiled library whose routines can be linked to other program modules to produce
an executable program. It is the job of the link editor (la) to select from a library archive
the routines that are necessary to resolve external references in a set of object files.

Code from libraries can be shared; an executable file from the shared library can be
used by multiple applications simultaneously. (In contrast, when you use an executable
file from a library that is not shared, each application receives a copy.) The shared library
often permits more efficient use of system memory than the standard library. A shared
library consists of two sub libraries, containing source archives (host library) and
executable object files (target library). An executable file from the shared library can be
used by multiple applications at the same time. (In contrast, when using an archive
executable file that is not shared, each application receives a copy.) The shared library
often permits more efficient use of system resources than the standard library. The use of
shared libraries is covered in detail in Chapter 7.

Typically, a library archive is indicated by attaching the suffix . a to the name of the
library. Library archives are usually stored in the system directories I 1 ib and
/usr/lib.

1-10 Chapter 1 Overview of the A/UX Programming Environment

The main C language libraries in the A/UX programming environment are listed here:

libc This is the standard library for C language programs. The C library is
made up of functions and declarations used for system calls, file
access, string testing and manipulation, character testing and
manipulation, memory allocation, and other functions. It is covered in
detail in Chapter 5.

libc s

librn

librnac

librnac s

libld

libcurses

libposix

This is the shared library version of 1 i be.

This is the mathematical library for C language programs. This library
provides exponential, Bessel, logarithmic, hyperbolic, and
trigonometric functions. It is covered in detail in Chapter 6.

This is the library for the routines that access the Macintosh Toolbox.
For more information, see A!UX Toolbox: Macintosh ROM Interface.

This is the shared version of librnac.

This library provides functions for the access and manipulation of
COFF files. It is covered in detail in Chapter 6.

This library provides functions for writing to, reading from, and
updating terminal screens. It is covered in detail in A/UX
Programming Languages and Tools, Volume 2.

This library is for the A/UX POSIX environment. It contains functions
that implement the POSIX environment for A/UX. Appendix B
discusses this library in greater detail.

There are also several libraries available for use with the f 7 7 compiler. The
following are the most important:

libF77

libI77

This is the standard Fortran library. It includes various mathematical
routines, string functions, and data conversion routines. This library is
covered in Chapter 11.

This is the Fortran input/ output library. This library is covered in
Chapter 11.

In addition, it is also possible to gain access to routines contained in the standard C
library, 1 ibc, from within a Fortran program. All of these libraries are provided in
precompiled form only.

Libraries and archives 1-11

The A/UX file system
A/UX supports several different file systems. AT&T UNIX file systems, BSD UNIX file
systems, NFS file systems, AppleShare file systems, and Macintosh file systems (HFS) are
all available. In A/UX, you can use the Finder to see all file systems.

All file systems supported by A/UX are hierarchical. The hierarchical file system
allows a volume to be divided into smaller units known as directories. Directories can
contain files as well as other directories. The hierarchical structure matches the user's
perceived desktop hierarchy in the Finder, where folders contain files or additional
folders. In other words, a folder on the desktop is the visual representation of a
directory. In all of the file systems that A/UX supports, files are represented by text icons
and directories are represented by folder icons.

Structure of the file system

In the A/UX operating system, a ftle is a linear stream of bytes terminated by an end-of­
file indicator. No other structure is imposed by the system on a file. This fact makes it
extremely straightforward to write programs that perform simple file manipulation.
Programs can process data streams one character at a time; there is no need to read or
write files according to a fixed-length record format (as in some other operating
environments). In addition, because of this simplicity, the system can treat virtually every
object it handles (such as input/output data streams) as a file. Even terminal screens and
peripherals are dealt with as files.

Files can be placed anywhere (possibly in multiple locations) in a hierarchy of
directories. A directory is simply a file that you cannot write. It contains the names of
the files in that directory and an indication of where to find the files on the disk.

In A/UX, a ftle system is a logical device containing the data structures that
implement all or part of the directory hierarchy. The directory hierarchy is the
collection of all files on the currently mounted (accessible) file systems.

1-12 Chapter 1 Overview of the A/UX Programming Environment

File descriptors

To gain access to a file resident in the file system, a process must first open that file. A
typical way to open a file is to use the open system call. When successful, this call
returns a file descriptor, an integer that can be used in other system calls and
subroutines to refer to the file.
- Three files are opened automatically for each user process running under the A/UX

operating system: stdin, stdout, and stderr. These are the standard input, the
standard output, and the standard error files, and are associated, respectively, with the
file descriptors o, 1, and 2.

Creating and deleting files

The close system call closes an open file. To create a new file, you can use the
creat system call. To remove a file from the file system, you can use the unlink

system call. To create and remove directories, use rnkdir and rrndir.

Retrieving and changing attributes of files

There are a number of other system calls that allow the programmer to ascertain the
status and modify the attributes of files. Among these are stat, chown, chrnod,

chdir, ulirni t, and urnask.

Special files

There is a further kind of file in the A/UX operating system, called a special file. Special
files are contained in the system directory I dev. Each file in I dev contains the
description of a device and is used to associate a device name with a physical device.
There are three classes of special files: block, character, and ftfo, each of which
requires its own input and output system. All three types of special files, however, are
created with the system call rnknod.

The NUX file system 1-13

A block device is a collection of random-access memory blocks. It is accessed through
a layer of software that caches these blocks in an array of system buffers. When a request
occurs to read a block of some device, the buffers are searched to determine whether one
of them contains the requested data; if so, the device does not need to be physically
accessed, because the contents of the buffer can be supplied instead. Writes are
performed in an analogous manner: a buff er is filled with the modified data and the actual
block device is not updated until the operating system flushes its buffers. Some reads and
most writes are thus asynchronous (see "Asynchronous I/0," later in this chapter).

A character device is anything other than a block device. I/0 requests are sent to the
driver virtually untouched. It is up to each device driver to determine how to handle a
character I/0 request. A disk driver, for example, passes the request through untouched
and the transfer is directly from or to user space. For a traditional character device, such
as communications lines and line printers, the driver buffers the user's I/0 requests.

A fifo is a special file that is also referred to as a named pipe. Fifos are discussed,
along with pipes, in the section "Pipes and fifos," later in this chapter.

Perf arming input and output
The C language contains numerous facilities for obtaining data from an input stream and
for sending data into an output stream.

Formatted I/0

It is possible to read and write files according to a fixed format, when it is necessary or
useful to do this. The subroutine scanf, for instance, reads data from the standard
input file in a format specified by its first argument. Similarly, the routine print f puts
data on the standard output file in a format specified by its first argument. In either case,
it is also possible to read or write files other than the standard input or output. See
scanf(3S) and print f(3S) in A!UX Programmer's Reference for details.

1-14 Chapter 1 Overview of the A/UX Programming Environment

Buffered 1/0

It is not necessary to perform either input or output in fixed-length records; primitives
exist for reading characters (bytes), or words (32-bit integers) from the input and for
writing characters or words on the output. See getc(3S) and putc(3S) A!UX
Programmer's Reference for details.

File 1/0

The A/UX system includes a number of system calls and subroutines for performing low­
level input and output. The open and close system calls, which, respectively, open
and close files accessible to programs, have already been mentioned. Associated with
the file descriptor returned by a successful open call is a pointer into the file called a
file pointer. This indicates the point at which subsequent reading or writing is to occur.
If the open call is invoked with the o_APPEND flag, for instance, the file pointer is
positioned at the end of the file; otherwise it is placed at the beginning.

The two most fundamental file I/0 primitives are read and write. The read
call copies a specified number of bytes from the current read position in the file (as
indicated by the file pointer) into a buffer. Conversely, the write call copies a
specified number of bytes from a buffer to the current write position in the file (as
indicated by the file pointer).

The file pointer is moved automatically whenever a read or write is
performed; it also can be moved explicitly, without performing any actual input or
output, with the lseek system call. The position in the file to which the file pointer is
to be moved can be specified as an offset relative to the beginning of the file, the end of
the file, or the current position of the file pointer in the file. In all cases, however, the
return value of the ls eek call is the offset in bytes from the beginning of the file.

Once a file is opened, its status and permissions can be controlled with the fcntl
system call. For example, parts of the file can be locked to prevent either reading or
writing those parts of the file. The fen t 1 call also can be used to duplicate file
descriptors.

Performing input and output 1-15

Pipes and fifos

The A/UX operating system supports yet another type of file, called the pipe. A pipe is a
data stream that must be read in order; that is, there is no random access. Because it is a
type of file, a pipe is assigned an inode when it is created; an unnamed pipe, however,
in contrast to a named pipe, does not reside in a directory or take up space in the file
system. It is a temporary file created by the operating system to pass data between
related processes.

Pipes are created by invoking the pipe system call. Once created, a pipe can be
read or written with the read and write functions mentioned earlier. There must
be a process at each end of the pipe, one writing data and the other reading data. The
data passing through a pipe cannot be reread. At most, a single character of data can be
put back into the pipe using the subroutine ungetc. There are two types of pipes­
named and unnamed. Unlike named pipes, unnamed pipes are unidirectional: data can
flow in only one direction through them. See pipe(2) for details.

A named pipe (also called a fifo special file) allows the same sort of exchange of
data among processes typified by "unnamed" pipes. Because a named pipe is a special
file, it resides in the file system. It is created, like the other special files, with the mknod

system call. A named pipe is opened with the open system call and is read from or
written to with the read and write routines discussed in the next section. Like a
pipe, a fifo requires data to be read in the order in which it was written to the file. A
named pipe allows data to pass in both directions. More importantly, the processes
writing to or reading from the named pipe do not have to be related in any way.

Device control

Output to character special devices can make use of an additional system call, ioctl,

which is used to perform a variety of device control functions. A computer that contained a
built-in speaker, for example, could use ioctl to adjust the parameters affecting
speaker output, such as volume, pitch, or duration. Similarly, a program could use ioct 1

to eject a floppy disk from the computer. The common element here is that ioct 1 is
used to control the device, not to read or write data. See i o ct 1 (2) and section 7 of A!UX
System Administrator's Reference for control commands for a particular device.

1-16 Chapter 1 Overview of the A/UX Programming Environment

Asynchronous I/0

Asynchronous I/0 happens most of the time when the I/0 is both buffered and blocked.
When this happens, reads can precede a request, while writes lag behind.
Historically, the need for anticipatory reading (for faster response to reads) led to
buffering, while the need to minimize disk access led to blocking.

The definition of block caching (see the paragraph in "Special Files" on block
devices, earlier in this chapter) mentions the array of system buffers in which a block
device caches blocks of some file. In fact, the system maintains parallel arrays of buffers,
consisting of input buffers and output buffers. The input buffers receive the results of
reads, while the output buffers hold intended writes.

When a process requests a read call, the system returns the results immediately,
synchronously with the request. Thus, reads do not appear asynchronous, but can be
so. If the data sought already has been cached into an input buffer, there is no need to
read the data from disk, as it already was read into the input buffer previously.

The A/UX operating system buffers write calls until they are absolutely
necessary, because actual disk access is relatively slow. When you ask for a write

(for instance, while editing a file), the operating system responds with the character
count and filename, as if it were writing the file to disk. However, it is actually writing to
the output buffer.

A write call to disk is forced under the following conditions:

• All memory buffers are full.

• sync(2) has been sent, requesting an update of the superblock.

• The system is about to crash, and files must be written to disk to avoid losing them.

Thus the relation in Table 1-1 holds.

Table 1-1 Buffer versus disk access with asynchronous I/0

Process

read

write

Buffer access

synchronous

synchronous

Disk access

asynchronous

asynchronous

Performing input and output 1-17

Process control
Processes are created by the fork system primitive. The newly created process, called
the child, is a copy of the original process, called the parent. There is no detectable
sharing of primary memory between the two processes (though, of course, if the parent
process is executing from a read-only text segment, the child shares the text segment).
Copies of all writable data segments are made for the child process. Files that were open
before the fork is called are shared after the fork is completed. The processes are
informed of their parts in the relationship, allowing them to select their own (usually
nonidentical) destiny. The parent can wait for the termination of any of its children. This
is accomplished through the wait system call.

A process can execute a file through use of the exec system call. This consists of
exchanging the current text and data segments of the process for new text and data
segments specified in the file. The old segments are lost. An exec does not change
processes; the process that performed the exec persists, but after performing the
exec it is executing a different program. Files that were open before the exec

remain open afterward. The exec system call never returns control to the calling process
(except when an error is encountered).

If an executing program (for example, the first pass of a compiler) wants to overlay
itself with another program (for example, the second pass), then the executing program
simply calls the exec system call on the second program. In this sense, an exec is
analogous to a goto statement in the executing program.

If, however, the executing program needs to regain control of execution after it uses
the exec call on a second program, it should first use the fork call to create a child
process, have the child use the exec call on the second program, and have the parent
wait for the child. This is analogous to a subroutine call in the executing program.

A process can terminate by overlaying itself with a new process, as described earlier
in connection with the exec routines. A more standard way to terminate a process is
by invoking the exit system call. Invoking the exit system call closes all open file
descriptors, notifies all parents of the process termination, unlocks all process, text, or
data locks currently active, and returns an exit status to the parent process.

1-18 Chapter 1 Overview of the A/UX Programming Environment

Signals

Process execution can be controlled externally to the process by using signals. A signal
is a software interrupt that usually indicates some exceptional or error condition. The
signal SIGSYS, for instance, indicates that a bad argument to a system call was
detected by the system. See s i gna 1 (3) for a list of signals.

Signals can be sent by the operating system, by the user from the shell, or from
another user program; this is accomplished using either the ki 11 shell command or the
ki 11 system call. The program to which the signal is sent can choose one of three
ways to respond. The program receiving the signal can ignore the signal, it can terminate
upon receipt of the signal, or it can call a function in response to the signal. These
options are selected using the signal system call. Some signals, however, cannot be
caught or ignored. In particular, the SIGKILL signal cannot be ignored by the
receiving process.

A typical signal-handling scenario is as follows: A process indicates that it will catch
designated signals through the signal system call. A signal call simply associates
the address of a process signal-catching routine with the corresponding signals for later
use by the system. When such a signal is delivered, the kernel interrupts user-level
execution and transfers control to the signal-catching routine. The signal catcher notifies
the user process that a signal occurred (for example, through a global flag) and returns
to the kernel. The user-level execution resumes where it left off before the signal arrived.
Normally, the user process checks the global flag at intervals and, finding that a signal
arrived, performs the appropriate processing.

User programs that need to process signals should have a separate signal-catching
subroutine that simply sets a global flag of some type and exits. While it is possible to do
more in a signal catcher, it is not usually wise to do so, especially in cases where the
actions of a signal catcher could interfere with the completion of atomic operations.

The A/UX implementation of signals allows a process to determine which of two
methods to use to process signals. A process can interpret signals in accordance with the
System V Interface Definition (SVID) or with the conventions of the Berkeley Software
Distribution, Release 4.3 (4.3 BSD). The primary difference between the two
implementations of signal handling is that Berkeley signals are said to be reliable1

whereas SVID signals are not. A program handles signals reliably if a signal sent to it is
guaranteed to be processed. This means that if a signal is already being handled, any
new incoming signals are caught and queued until they can be processed. Using SVID­
compatible signals, this is not always the case; in certain circumstances1 a program can

Process control 1-19

lose signals, possibly resulting in the premature termination of the program. For more
details, see set42sig(3) and setcompat(2).

In the A/UX POSIX environment, there is a further implementation of signal handling
that is based largely on the BSD approach. The POSIX implementation is intended to
provide a set of routines that are more portable across operating environments than
either the SVID-compatible or BSD-compatible routines. For a brief discussion of POSIX
signals, see Appendix Bin this volume. More detailed information about POSIX signals
and their relation to SVID and BSD signals can be found in the manual pages entries
sigaction(3P), sigprocmask(3P), sigsetops(3P), and sigsuspend(3P).

Interprocess communication

The type of interaction between independent processes provided by signals is of a rather
limited kind. To allow greater flexibility in the interactions between processes, three
further types of interprocess communication have been developed: semaphores,
message queues, and sockets.

A semaphore is simply a positive integer. Semaphores can function as a means of
interprocess communication because they are stored in a memory location that is
accessible to various programs through certain system calls. By reading the values of
semaphores and, if needed, by altering those values, a program can inspect and control
the operation of another process or group of processes. Programs can, for example,
suspend operation until a particular semaphore attains some value.

A semaphore is created with the semget system call and can be incremented or
decremented (by any process that has such permissions) through the semop system
call. Finally, semaphores can be removed and the memory associated with them freed by
use of the semctl system call. The semctl operation is also used to read and set
values of semaphores.

A message is a discrete portion of data stored in a buffer that is accessible to a
number of independent processes. Any number of messages can be available at one
time, so they are stored in a structure called a message queue. A process can send a
message to such a queue, read messages from it, and alter its process of execution
according to messages it receives.

1-20 Chapter 1 Overview of the A/UX Programming Environment

A message queue is created with the msgget system call. Messages are sent and
received with the calls msgsnd and msgrcv, and message queues are removed with
the ms get 1 system call.

The third type of interprocess communication facility, the socket, is especially suited
for setting up communications networks among different computers and underlies the
Berkeley networking software. A socket is an endpoint for communication; different
processes, and indeed different computers, can exchange data and messages through
sockets. For full details on implementing sockets and programming with them, see A/UX
Network Applications Programming.

Program pause and wake up

There are several ways to suspend program execution until some external event occurs.
As noted, the implementations of both semaphores and message queues allow a process
to wait until a particular semaphore or message is received from some other process. A
program also can be made to pause until it receives a signal with the pause system
call. The signal must, of course, be one that has not been set to be ignored by the calling
process.

Once a process is suspended with the pause system call, it is typically awakened
with the SIGALRM signal. A process can arrange to send this signal to itself after a
specified amount of time by invoking the alarm system call. A call of the form
alarm(n) instructs the alarm clock of the calling process to send the signal SIGALRM

to the calling process after n seconds. This call does not itself suspend execution of the
calling process.

Other process attributes

There are several system calls that allow a process to determine its own process ID, the
process ID of its parent process, and its process group ID. See getpid(2) for details.

Process control 1-21

Memory management

Dynamic memory allocation

Managing the available core memory is an important task for A/UX and any operating
system that allows multiple simultaneous processes and multiple users. The system must
ensure that each process has access to whatever memory it needs, that other processes
do not try to gain access to that memory illegally, and that memory is reclaimed when a
process exits. The system also might need to allocate additional memory to an executing
process. The A/UX environment provides a number of system calls and library routines
for managing the memory storage use of a program.

The primary memory allocation request is rnalloc. A successful call of the form
rnal loc(n) returns a pointer to n bytes of free memory. Memory can be returned to the
operating system by calling the free routine. Other available memory allocation
routines include real loc, cal loc, and cf ree. For an explanation of these
routines, see rnal loc(3C) and Chapter 5, "The Standard C Library (1 ibc)."

These standard memory allocation routines are designed to be space-efficient,
sacrificing speed for smaller data space and code size. There is an alternate set of
memory allocation routines that is designed to run considerably faster than the standard
set of routines, though at the cost of increased code size and increased memory usage.
You can use these time-efficient versions of rnalloc, free, and so forth, by using the
-lrnalloc option to the compiler. See cc(l) and rnalloc(3X).

Shared memory

There is another form of interprocess communication available under the A/UX
operating system called shared memory. Using this facility, a process can arrange to
share a core memory data segment with other processes, thereby allowing a very fast
means for two or more independent processes to share data. This can be useful for
applications such as database management or multiplayer games where several
independent processes need to inspect (or modify) a common data segment.

1-22 Chapter 1 Overview of the NUX Programming Environment

A shared data segment of memory is created using the shrnget system call. Other
processes can then gain access to this segment of memory, provided that they possess
permissions specified at the time the segment was created. A process can attach itself to
a shared segment of memory by invoking the shrnat system call and detach itself from
that segment by invoking the shrndt system call. A shared memory segment is
removed by using the shrnctl system call; this call may also be used to alter the
permissions associated with the memory segment and to perform other operations on
the segment (such as locking it into core memory). For further details on shared
memory, see shrnget(2), shrnct 1(2), and shrnop(2).

The environment
Whenever a program begins running, the operating system makes available to it the set
of all data inherited from the parent process. This set of data is called the environment
and includes an array of strings as well as information from the parent process such as
the user identification (UID), group identification (GID), current directory, and so on.
The program can read the strings it finds in the environment and modify its subsequent
actions according to the results it receives. A program also can change the strings or add
further strings to the environment. By convention, the strings in the environment are of
the form

name= value

The environment that each process inherits includes the names HOME, PATH,

SHELL, TERM, and others. A program can read the environment by executing a call of
the form getenv (name). It can alter the environment it receives from the shell by
executing a call of the form put env (string), where string is of the preceding form.

It is a general characteristic of the A/UX operating system that a process can change
its own environment (and the environment of any subprocesses it creates) but not that of
its parent process. So, a call to putenv affects only the environment of the calling
process and of all processes that the calling process creates. Changes made to the
environment do not persist after that process has exited. For further information, refer to
putenv(3C) and environ(5).

The environment 1-23

Using shell commands
It is possible to execute an arbitrary shell command from within a C program by using
the system subroutine. A call of the form system (string) results in the program
passing string to an instance of I bin I sh for execution, exactly as if string was typed
to the shell during an interactive login session. For instance, if a program detects that a
certain file needs to be time-stamped, it can accomplish this by calling the function

system("touch /usr/tmp/dungeons")

The system subroutine makes no provisions for capturing any output produced by
the executing command. It is possible to send output to a file by including standard shell
redirection metacharacters in the argument string, but the file thereby created must then
be opened and read if the data stored there is to be accessible to the original program.

A better way to get access to the output of a shell command is to use the popen
subroutine. The form of the pop en function is

pop en (string, mode)

where string is exactly like the single argument to system and mode is either r or w,

indicating that the calling program is to read from or write to the specified command. A
successful call to popen returns a pointer to a file stream that can be used in
subsequent reads or writes. See popen(3S) for further details.

It is also possible to process command line arguments from within a C program by
using the getopt subroutine. See getopt(3C) for details and an example.

Error handling
The C language interface to the A/UX operating system provides a general facility for
detecting and reporting error conditions that can arise from invoking many of the system
calls and subroutines discussed above. When a system call returns, it typically returns an
integer value to its calling process. A successful function call usually returns a value of 0.
Some calls, however, return a nonzero, positive value; for instance, a successful open
call returns a non-negative integer that is the file descriptor of the opened file.

1-24 Chapter 1 Overview of the NUX Programming Environment

An unsuccessful system call returns a value of-1. To provide the calling program
with a general and automatic way of further specifying the cause of the error, the system
maintains a global variable, errno, which is automatically set to a nonzero positive
value indicating the cause of the error. Thus, every unsuccessful system call results in the
following two actions:

• A return value of -1 is returned to the calling program.

• The global variable errno is set to some positive integer.

When the program detects an unsuccessful call by inspecting its return value, it can
further inspect the value of errno to determine the precise cause of failure. Note that
errno is not reset by successful system calls, so it is important to inspect its value only
after an unsuccessful system call.

A program can report the occurrence of an error by using the perror subroutine.
perror prints a message on the standard error output file that describes the last error
received by a system call. The printed message consists of two parts: first, the argument
(if any) provided to the call to perror is printed, followed by a colon, a space, and an
-indication of the precise nature of the error. perror determines the nature of the error
by inspecting the errno variable.

It is the responsibility of the calling program to detect and react to error conditions
indicated by unsuccessful function calls. In addition to the errno variable and the
perror subroutine, the A/UX system also provides an array, sys_errlist,

containing the message strings output by perror. See perror(3C) and intro(2)

for further details.

A/UX Toolbox
The A/UX Toolbox is a set of routines and utilities that make the Macintosh ROM code
directly available to a program running under A/UX. It lets you write applications in
A/UX that take advantage of the standard Macintosh user interface tools built into the
ROMs. For a description of the ROM code, see Inside Macintosh.

NUXToolbox 1-25

The A/UX Toolbox bridges the Macintosh and A/UX environments, giving you two
kinds of code compatibility:

• You can write common source code that can be separately built (compiled and
linked) into executable code for both environments.

• You can execute Macintosh binary files under A/UX, within the limitations of the
A/UX Toolbox.

For details on the A/UX Toolbox, please see A!UX Toolbox: Macintosh ROM Interface.

Other C language functions
There are numerous other C language functions available under the A/UX operating
system designed to handle a variety of tasks. For instance, a very rich set of string
functions is available, allowing the programmer to concatenate strings, search for
characters within strings, find substrings of strings, determine the length of strings, and
so forth. See st r ing(3C) for a complete list of the available string functions.

Associated with the string functions are numerous character testing routines. For
instance, the function is as c i i returns a nonzero value if its argument is an ASCII
character; otherwise it returns zero. There are also several character conversion
functions; the function tolower, for example, converts its argument to lowercase. For
details on these functions, see ctype(3C) and conv(3C).

The standard C library also contains functions to accomplish time and date
manipulation, numeric conversion, group file access, password file access, parameter
access, hash table management, random number generation, and so on. A quick browse
through Section 3 of A!UX Programmer's Reference provides an overview of these
various packages.

1-26 Chapter 1 Overview of the A/UX Programming Environment

Other programming tools

In addition to the compilers, language tools, and debuggers already discussed, the A/UX
programming environment includes many other useful software development tools.
These tools include the following:

awk

be

curses

de

lex

m4

make

SCCS

awk is a file-processing language designed to make common
information retrieval and manipulation tasks easy to state and to
perform. The awk language can be used to generate reports, match
patterns, validate data, or filter data for transmission.

be is a specialized language and compiler for handling arbitrary
precision arithmetic using the de calculator program.

The curses and terminfo packages provide a complete set of
utility routines for writing screen-oriented programs.

de is an interactive desk calculator program for handling arbitrary­
precision integer arithmetic. It has provisions for manipulating
scaled fixed-point numbers and for input and output in bases other
than decimal.

1 ex is a lexical analyzer generator that processes character input
streams and recognizes regular expressions. It accepts high-level,
problem-oriented specifications for character-string matching.

m4 is a general-purpose macro processor. The primary function of
m4 is to allow the replacement of some text by other text. See also the
standard C preprocessor (cpp).

The make program is a program maintenance tool that keeps track of
(and updates) groups of related files. All information about special
libraries, special treatments, or options necessary for compiling multiple
files is contained in a make description file. Using it ensures that all
program modules in your compilations reflect your latest changes.

The source code control system (SCCS) is a version management tool
for source code or text files. In group projects, SCCS prevents multiple
inconsistent versions of files from accumulating in several places. For
a single user, multiple versions of a file can be stored without using a
lot of disk space, previous versions can be reconstructed easily, and
versions can be tracked with a simple, consistent numbering scheme.

Other programming tools 1-27

yacc The yacc program is a parser-generator used to impose structure on
program input. After you create a specification of the input process,
yacc generates a parser function, which calls the user-supplied low­
level input routine (the lexical analyzer) to pick up the basic items,
called tokens, from the input stream. Tokens are organized according
to the input structure rules, called grammar rules. When one of these
rules is recognized, the user code (the action) supplied for this rule is
invoked. Actions have the ability to return values and make use of the
values of other actions.

For information about these tools and how to use them, please refer to A!UX
Programming Languages and Tools, Volume 2. In addition, the A/UX stream editor sed

(which operates on a byte-stream rather than an open file) is documented in A!UX Text
Editing Tools, and all A/UX programs have entries in A/UX Command Reference, A/UX
Programmer's Reference, or A!UX System Administrator's Reference.

As a closing note to this programming overview, you should know that the A/UX
shells are themselves fully programmable interpreted languages. Shell scripts, therefore,
can sometimes provide very rapid prototyping of programming tasks. As mentioned
earlier, it is often a trivial task to translate a shell script into a functionally equivalent C
program. So you can begin generating an application program by using the shell tools:
pipes, input/ output redirection, variables, quotation, and filename substitution. In many
instances, these shell scripts can serve as final versions of your program. The shell
programming facilities are fully documented in A!UX Shells and Shell Programming.

1-28 Chapter 1 Overview of the NUX Programming Environment

2 cc Command Syntax

Command syntax I 2-2

Default behavior I 2-2

Feature test macros I 2-3

Options I 2-4

The cc command is a front-end program that invokes the preprocessor, compiler,

optimizer, assembler, and link editor, as appropriate. (The default is to invoke each one

in turn, except the optimizer, which is invoked only by request.)

This chapter describes the command syntax for cc (see also cc(l) in A/UX

Command Reference).

Command syntax
The syntax for cc is

cc cflagopt ...] file ...

where flagopt is zero or more flag options (see "Options," later in this chapter) and file is
one or more filenames. cc recognizes filenames of the form

file. x

The two-character extension .x identifies the contents of the file, as follows:

Extension Contents Example

.c C source code program.c

. i preprocessor output program.i

. s assembler source program.s

.0 assembler output program.a

.a library archive libc.a

A filename with no extension is assumed to be a library archive.

Default behavior
Running cc with no flag options on a file named file. c invokes the C preprocessor,
the C compiler, the assembler, and the linkage editor in turn. This process produces an
executable file in the current directory; by default, this executable file is named a . out.

cc has a large number of flag options that can be used to control the compilation
process. In addition, other flag options can be passed to the preprocessor, compiler,
assembler, and link editor. The sections that follow describe these flag options.

2-2 Chapter 2 cc Command Syntax

Feature test macros
POSIX specifies certain symbols that are defined in header files. Some of these header
files also can define symbols in addition to those defined by POSIX, potentially
conflicting with symbols defined by an application program. Feature test macros control
the visibility of these symbols in the header files defined by POSIX.

NUX defines the following feature test macros:

_AUX_SOURCE

_BSD_SOURCE

SYSV_SOURCE

POSIX_SOURCE

The feature test macros _SYSV _SOURCE and _BSD_SOURCE represent the
historical implementations on which NUX is based. _Aux_souRCE represents
extensions to the historical implementations that are specific to NUX.
_Posrx_souRCE is normally not defined.

The POSIX standard specifies certain symbols that are defined in header files. Some
of these header files can also define symbols in addition to those defined by POSIX,
potentially conflicting with symbols defined by an application program. Feature test
macros control the visibility of these symbols. When POSIX compilation is selected (with
the -ZP option), test macros other than _Posrx_souRCE are not defined.

Feature test macros 2-3

Options
All options recognized by the cc command are listed on the following pages.

Recognized and executed by cc

Option Argument

-A factor

-a none

-c none

-F none

-f m68881

-g none

-n none

-p none

-s none

Description

Expand the default symbol table allocations for the
compiler, assembler, and link editor. The default
allocation is multiplied by the factor given.

Include source code as comments in the assembly
file generated with the - s option.

Suppress the link-editing phase of compilation and
force a relocatable object file to be produced even if
only one file is compiled.

Do not generate inline code for MC68881 floating­
point coprocessor.

Generate inline code for MC68881 floating-point
coprocessor. This is the default.

Produce symbolic debugging information.

Arrange for the loader to produce an executable file
that is linked in such a manner that the text can be
made read-only and shared (nonvirtual) or pages
(virtual).

Add code to support profiling of the program (see
profil (1).

Compile the named C programs, and leave the
assembler-language output within corresponding
files with . s suffixes.

2-4 Chapter 2 cc Command Syntax

-t [p012al J Find only the designated preprocessor (p),
compiler (o), optimizer (2), assembler (a), and link
editor (1) passes whose names are constructed
with the string argument to the - B option. In the
absence of a - B option and its argument, string is
taken to be I 1 ib/n.

-B string Construct pathnames for substitute preprocessor,
compiler, and link editor passes by concatenating
stringwith the suffixes cpp, ccom, optim, as,
and 1 d. The passes affected may be specified by
the - t option. In the absence of the - t option,
all passes are affected.

-E none Same as the - P option except output is directed to
the standard output.

-0 none Invoke a code optimizer.

-o outfile Specify the name of the final object file, outfile. This
object file is the output of the loader unless the - c
option is specified, in which case it is the ouput of
the assembler. The default ouput file for the loader is
a. out. The default for the assembler is file. o.

-P none Suppress compilation and loading; that is, invoke
only the preprocessor and leave the output on
corresponding files with the . i extension.

-R none Have assembler remove its input file when done.

-T none Truncate symbol names to eight significant characters.

-v none Print the command line for each subprocess
executed.

-W c,argl [,arg2 ... J Pass the argument(s) argl to c, where c is one of
[po 112a1 J , indicating preprocessor (p), compiler

first pass (o), compiler second pass (1), optimizer
(2), assembler (a), or link editor (1), respectively.

-X none Ignored by A/UX for 68000-family processors.

Options 2-5

Option Argument Description

-z flags Special flags to override the default behavior (see
cc(l)). Currently recognizedflagsare as follows:

c Return pointers in aO without copying to dO.

n Emit no code for stack growth.

m Use Motorola SGS compatible stack growth
code.

p Use ts t . b stack probes.

E Ignore all environment variables.

I Emit instructions for MC68881 floating-point
coprocessor.

1 Suppress selection of a loader command file.

t Do not delete temporary files.

p Compile for the A/UX POSIX environment.
Link the file with a library module that calls
setcompat(2) with the COMPAT_POSIX

flag set. Define only the _POS rx_souRCE

feature test macro. See Appendixes B and C
for more information on the POSIX
environment and conformance requirements.

s Compile to be SVID-compatible. Link the file
with a library module that calls
setcompat(2) with the COMPAT_SVID

flag set. Define only the _svsv _SOURCE

feature test macro.

B Compile to be BSD-compatible. Link the file
with a library module that calls
setcompat(2) with the COMPAT_BSD flag
set. Define only the _BSD_SOURCE feature
test macro.

-# none Special debug option that, without actually starting
the program, echoes the names and arguments of
subprocesses that would have started.

2-6 Chapter 2 cc Command Syntax

Recognized by cc and passed to as

The following options are recognized by cc and passed to the assembler. They are
only needed if you are running the assembler on hand-written files that contain
instructions not available with the Motorola 68020 processor. The compiler does not
generate such instructions.

Option

-68851

-68030

-68040

Argument

none

none

none

Description

Directs the assembler to recognize the coprocessor
instructions for a Motorola 68851 PMMU. This is the
default.

Directs the assembler to recognize the memory
management unit (MMU) instructions for a Motorola
68030 processor.

Directs the assembler to recognize the instructions
for a Motorola 68040 processor.

Recognized by cc and passed to ld

Option Argument Description

-1 name Same as -1 in ld(l). Search a library 1 ibx.a,
where xis up to seven characters. A library is
searched when its name is encountered, so the
placement of a - 1 is significant. By default,
libraries are located in LIBDIR. If you plan to use
the - L option, that option must precede -1 on
the command line.

-s none Same as -s in ia(l). Strip line number entries
and symbol table information from the output of
object file.

-L dir Same as -L in ld(l). Search for libname.a in
the named dirbefore looking in LIBDIR. This
option is effective only if it precedes the - 1

option on the command line.

-v none Print the version of the loader that is invoked.

Options 2-7

Recognized by cc and passed to cpp

option Argument

-c none

-D symbo~ =defJ

-I dir

-u symbol

-y none

2-8 Chapter 2 cc Command Syntax

Description

Same as -c in cpp(l). All comments, except
those found on cpp directive lines, are passed
along. The default strips out all comments.

Same as -D in cpp(l). Define the external
symbol and give it the value def(if specified). If no
def is given, symbol is defined as 1.

Search for #inc 1 ude files that do not begin with
I in the named dir before looking in the directories
on the standard list. Thus, #inc 1 ude files whose
names are enclosed in 11 11 (for example,
#inc 1 ude 11 thisfi1e 11

) are first searched for in
the directory of the file being compiled, then in
directories named by the - r options, and last in
directories on the standard list. For #inc 1 ude
files whose names are enclosed in < > (for
example, #include <thisf ile>), the
directory of the file being compiled is not searched.

Remove any initial definition of symbol ("undefine"
symboD, where symbol is a reserved name that is
predefined by the particular preprocessor.

Suppress searching of /usr I include for
header files and instead search only in directories
specified by the - I option.

By using appropriate options, you can terminate compilation early to produce one of
several intermediate translations, as follows:

- c This option produces relocatable object files.

-s

-P

It is often desirable to use this option to save relocatable files so that
changes to one file do not then require that the other files be
recompiled. A separate call to cc, with the relocatable files but
without the - c option, creates the linked executable a . out file. A
relocatable object file created under the - c option has the same
basename as the relocatable object file, but the extension is . o

instead of . c.

This option produces assembly source expansions for C code.

This option produces the output of the preprocessor. When you use
this option, the compilation process stops after preprocessing. Output
from the preprocessor is left in an output file with the extension . i
(for example, f ilel. i). These output files can be subsequently
processed by cc, but only if their filename is changed to one with the
extension . c. Except for those produced by the preprocessor, any
intermediate files can be saved and resubmitted to the cc command,
with other files or libraries included as necessary.

For more information on any of the options that cc(l) passes to the preprocessor
cpp(l), the link editor ia(l), or the assembler as(l), see the appropriate manual page
in A/UX Command Reference.

Options 2-9

3 C Language Reference

Notation conventions I 3-3

Lexical conventions I 3-3

Names I 3-8

Objects and lvalues I 3-10

Conversions I 3-l 0

Expressions I 3-13

Declarations I 3-25

Statements I 3-39

External definitions I 3-45

Scope rules I 3-47

Compiler control lines I 3-49

Implicit declarations I 3-53

Types revisited I 3-5 3

Constant expressions I 3-57

Portability considerations I 3-58

Syntax summary I 3-59

This chapter describes the C programming language. The manner of presentation of C

syntax is meant to help you gain understanding of the language structure. It should not

be taken as a formal definition of the language.

3-2 Chapter 3 C Language Reference

Notation conventions
In the syntax notation used in this chapter, syntactic categories are indicated by italic
type and literal words and characters by courier type. Alternative categories are
listed on separate lines. An optional terminal or nonterminal symbol is indicated by the
subscript opt, so that

[expression opt J

indicates an optional expression enclosed in braces. The syntax is summarized in
"Syntax Summary," the final section in this chapter.

Lexical conventions
There are six classes of tokens:

1. identifiers

2. keywords

3. constants

4. strings

5. operators

6. other separators

Blanks, tabs, newlines, and comments (collectively called white space) are ignored
except as they serve to separate tokens. Some white space is required to separate
otherwise adjacent identifiers, keywords, and constants.

If the input stream is parsed into tokens up to a given character, the next token is
taken to include the longest string of characters that could possibly constitute a token.

Lexical conventions 3-3

Comments

The characters I * introduce a comment, which terminates with the characters * I .

/* Comments/* do not*/ nest*/

+ Note The above comment terminates after the *I following not, leaving
nest* I to be read as code. +

As an extension to the C language, cc recognizes I I to mean the rest of the line
is a comment. For example,

i=lO; //initialize counter ... comment to end of line

Identifiers (names)

An identifier is a sequence of letters and digits. The first character must be a letter. The
underscore (_) counts as a letter. Uppercase and lowercase letters are read differently
and are not interchangeable. Although there is no length limit for names, only the initial
256 characters of the name are significant. This implementation accepts identifiers up to
1024 characters long. Other implementations truncate identifiers to 7 or 8 characters, so
long identifier names are not recommended.

Keywords

The following identifiers are reserved for use as keywords and cannot be used otherwise:

asm do f ortran short unsigned

auto double goto sizeof void

break else if static while

case en um int struct

char extern long switch

continue float register typedef

default for return union

3-4 Chapter 3 C Language Reference

Constants

There are several kinds of constants, each of which has a type. The introduction to types
is given in the "Names" section, and hardware characteristics that affect sizes are
summarized in the subsection "Hardware Characteristics," both later in this chapter. See
also Chapter 4, "C Implementation Notes."

Integer constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with
a zero. An octal constant consists of the digits 0 through 7 only. A sequence of digits
preceded by ox or ox is taken to be a hexadecimal integer. The hexadecimal digits
include a through/(or A through F) with corresponding decimal values 10 through 15.
Otherwise, the integer constant is taken to be decimal. A decimal constant whose value
exceeds the largest signed machine integer is taken to be long. An octal or
hexadecimal constant that exceeds the largest unsigned machine integer is likewise
taken to be long. Otherwise, integer constants are int.

Explicit long constants

A decimal, octal, or hexadecimal integer constant immediately followed by the letter 1

or L is a long constant. As discussed later, on the Macintosh 68000 family of
computers integer and long values are considered identical.

Character constants

A character constant is a character enclosed in single quotes, as in ' x' . The value of a
character constant is the numeric value of the character in the machine character set.

Multicharacter character constants are permitted on the 68000-family processors.
Multicharacter character constants can be differentiated from strings by the following
criterion: strings are enclosed in double quotes (11 11

), while multicharacter character
constants are enclosed in single quotes (' '). Characters are assigned to a word left to
right. For example, when you compile a program including the line

i = 'abed';

i isassignedthevalue Ox61626364.

Lexical conventions 3-5

Two metacharacters, the single quote (')and the backslash(\), are used in escape
sequences. To use these characters literally, they must be "escaped" as shown in Table 3-1.

Table 3-1 Character constants and escape sequences

Character ASCII Escape sequence

Null NUL \0

Newline NL(LF) \n

Horizontal tab HT \t

Vertical tab VT \v

Backspace BS \b

Carriage return CR \r

Form feed FF \f

Backslash \\

Single quote \,

Bit pattern /\ \ onum \onum

The escape \ onum consists of the backslash followed by 1, 2, or 3 octal digits (0
through 7), which are taken to specify the value of the desired character. If the character
following a backslash is not one of those specified, the behavior is undefined. A newline
character is illegal in a character constant. The type of a character constant is int.

Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or
E, and an optionally signed integer exponent. The integer and fraction parts both consist
of a sequence of digits. Either the integer part or the fraction part can be missing, but not
both. Either the decimal point or the e and exponent can be missing, but not both. Every
floating constant has type double.

Enumeration constants

Names declared as enumerators have type int. For more information, see the sections
"Structure and Union Declarations" and "Enumeration Declarations," later in this chapter.

3-6 Chapter 3 C Language Reference

Strings

A string is a sequence of characters surrounded by double quotes, as in "string". A
string has type array of char and storage class static and is initialized with the
given characters. The compiler places a null byte(\ o) at the end of each string so that
programs scanning the string can find its end. In a string, the double-quote character (")
must be preceded by a backslash(\). In addition, the same escapes as described for
character constants can be used.

A backslash(\) and the newline immediately following it are ignored. All strings,
even when formally identical, are distinct.

As an extension, a string may be prefixed by \p to indicate that it is a Pascal string.
It is stored internally with both the terminating null byte and a preceding length count.
Forexample, \pabc isstoredas Ox03616200.

Hardware characteristics

Table 3-2 summarizes certain hardware properties for the 68000-family processors. Note
thatthe ranges for float and double are approximate.

For more information on 68000-family data representation, see Chapter 4, "C
Implementation Notes."

Table 3-2 68000-family hardware characteristics

Type Representation

char 8 bits

short 16
int 32

long 32

float 32

double 64

float range ±to=l38

double range ±10:±307

Lexical conventions 3-7

Names

The C language bases the interpretation of an identifier upon two attributes of the identifier:

• Storage class determines the location and lifetime of the storage associated with an
identifier.

• Type determines the meaning of the values found in the storage of the identifier.

Storage class

There are four declarable storage classes:

• Automatic variables are local to each invocation of a block and are discarded after
exiting the block.

• Static variables are local to a block, but retain their values upon reentry to a block
even after control leaves the block.

• External variables exist and retain their values throughout the execution of the
entire program. They can be used for communication among functions, even
separately compiled functions.

• Register variables are stored in the fast registers of the machine until these registers
run out. The remainder are treated as automatic variables. Like automatic variables,
they are local to each block and disappear after exiting the block.

Type

The C language supports several fundamental types of objects. Objects declared as
characters (char) are large enough to store any member of the implementation
character set. If a genuine character from that character set is stored in a char variable,
its value is equivalent to the integer code for that character. Other quantities can be
stored in character variables, but the implementation is machine dependent. In
particular, char can be signed or unsigned, by default.

3-8 Chapter 3 C Language Reference

Up to three sizes of integer, declared short int, int, and long int, are
available. Longer integers do not provide less storage than shorter ones, but the
implementation can make short integers or long integers, or both, equivalent to plain
integers. "Plain" integers have the natural size suggested by the host machine architecture.
The other sizes are provided to meet special needs. (See "Hardware Characteristics,"
earlier in this chapter, for the sizes of types on the 68000-family processor.)

enum types have the same size as an int or long. The properties of enum

types are identical to those of some integer types, with the exceptions that some
conversions to or from them are not allowed (for example, with float) and that they
can be compared only for equality.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo zn,
where n is the number of bits in the representation.

Because objects of these types can be usefully interpreted as numbers, they are
referred to as arithmetic types. The char and int types of all sizes, whether
unsigned or not, and the enum type are collectively called integral types. The
float and double types are collectively called floating types. Table 3-3
summarizes the categorization of fundamental types.

Table 3-3 Categorization of fundamental types

Category

Type Arithmetic Integral Floating

char x x

double x x

en um x

float x x

int x x

long x x

short x x

Names 3-9

In addition to the fundamental arithmetic types, there is a conceptually infinite class
of derived types, constructed from the fundamental types in the following ways:

• arrays of objects of most types

• functions that return objects of a given type

• pointers to objects of a given type

• structures containing a sequence of objects of various types

• unions capable of containing any one of several objects of various types

In general, these methods of constructing objects can be applied recursively.

Objects and lvalues
An object is a region of storage that can be manipulated. An lvalue is an expression
referring to an object-for example, an identifier. There are operators that yield lvalues.
For example, if E is an expression of pointer type, then * E is an lvalue expression
referring to the object to which E points. The name "lvalue" comes from the
assignment expression El = E2 in which the left operand El must be an lvalue
expression. The discussion of each operator that follows indicates whether it expects
lvalue operands and whether it yields an lvalue.

Conversions

A number of operators can, depending on their operands, cause conversion of the value
of an operand from one type to another. This section explains the result you can expect
from such conversions. The conversions demanded by most ordinary operators are
summarized later in this chapter in "Arithmetic Conversions."

3-10 Chapter 3 C Language Reference

Characters and integers

A char or a short can be used wherever an int is allowed. In all cases the value
is converted to an integer. Conversion of a shorter integer to a longer one preserves sign.
Whether sign extension occurs for characters is machine dependent, but it is guaranteed
that a member of the standard character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII set are all
non-negative. A character constant specified with an octal escape, however, suffers sign
extension and can appear negative; for example, ' \ 3 7 7 ' has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated
on the left. Excess bits are simply discarded.

Float and double

All floating arithmetic in C is carried out in double precision. Whenever a f 1 oat
appears in an expression, it is lengthened to double by right-padding its fraction with
zeros. When a double must be converted to float-for example, by an
assignment-the double is rounded before truncation to float length. This result
is undefined if it cannot be represented as a f 1 oat.

Floating and integral

Conversions of floating values to integral type are rather machine dependent. In
particular, the direction of truncation of negative numbers varies. On the 68000 family,
negative floating values are rounded toward zero. The result is undefined if it does not fit
in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of
accuracy occurs if the destination lacks sufficient bits.

Conversions 3-11

Pointers and integers

An expression of integral type can be added to or subtracted from a pointer (thus,
pointer arithmetic is allowed). In such a case, the first is converted as specified in the
discussion of the addition operator (later). Two pointers to objects of the same type can
be subtracted. In this case, the result is converted to an integer, as specified in the
discussion of the subtraction operator Oater).

Unsigned

Whenever an unsigned integer and a signed integer are combined, the signed integer is
converted to unsigned and the result is unsigned. In a 2's-complement representation,
this conversion is conceptual, and there is no actual change in the bit pattern. The value
of the converted integer is the least unsigned integer congruent to the signed integer
(modulo zwordsize).

When an unsigned short integer is converted to long, the value of the result is the
same numerically as that of the unsigned integer. Thus, the conversion amounts to
padding with zeros on the left.

Arithmetic conversions

A great many operators cause conversions and yield result types in a similar way. From
here on in this document, this pattern is called the usual arithmetic conversions. These
rules are applied in the order in which they appear, if applicable.

+ Note In this implementation, int and long have the same size and do not
require conversions to or from each other. In the following table, therefore, 1 ong is
used in place of int. +

Conversions are performed only if necessary, depending on the operation. If a
char is added to a char, the result remains a char. If an int is the result of
adding a char to a char, the conversion is done before the addition.

3-12 Chapter 3 C Language Reference

• First, char or short is converted to long, and unsigned char or
unsigned short is converted to unsigned long. float is converted to
double.

• Next, if either operand is double, the other one converts to double and the
result is double.

• Next, if either operand is unsigned long, the other one converts to unsigned

long and the result is unsigned long.

• Next, if either operand is long, the other one converts to long and the result is
long.

• Next, if either operand is unsigned, the other one converts to unsigned and
the result is unsigned.

• Finally, if both operands are long, the result is long.

Expressions

The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. For example, the expressions
referred to as the operands of+ are those expressions defined in "Primary Expressions,"
"Unary Operators," and "Multiplicative Operators," later in this chapter. Within each
subpart, the operators have the same precedence. Left or right associativity is specified in
each subsection for the operators discussed therein. The precedence and associativity of
all the expression operators are summarized in the grammar in "Syntax Summary," near
the end of this chapter.

Otherwise, the order of evaluation of expressions is undefined. In particular, the
compiler considers itself free to compute subexpressions in the order it believes most
efficient, even if the subexpressions involve side effects. The order in which
subexpression evaluation takes place is unspecified. Expressions involving a
commutative and associative operator (*, +, &, I, A) can be rearranged arbitrarily,
even in the presence of parentheses; to force a particular order of evaluation, your
program must use an explicit temporary location.

Expressions 3-13

The behavior of overflow and divide by zero exceptions in expression evaluation is
undefined. This implementation, like most that exist, ignores integer overflows. The
integer division by zero exception is enabled by default. The result of an integer division
by zero can be detected using adb on the assembler file-it is designated Inf

(infinity) or NaN (not a number). All other floating-point exceptions are disabled. For
more information on the floating-point exception, see the Motorola MC68881 Floating
Point Coprocessor User's Manual, Motorola part number M68KMASM.

Primary expressions

Primary expressions involving . , ->,subscripting, and function calls group left to right.

primary-expression:

expression-list:

identifier
constant
string
(expression)

primary-expression (expression)
primary-expression (expression-listopt)
primary-expression . identifier
primary-expression - > identifier

expression
expression-list, expression

An identifier is a primary expression, provided it has been suitably declared as
discussed later. Its declaration specifies its type. If the identifier type is

array of some-type

the value of the identifier expression is a pointer to the first object in the array, and the
type of the expression is

pointer to some-type

3-14 Chapter 3 C Language Reference

Moreover, an array identifier is not an lvalue expression. Likewise, an identifier that
is declared

function returning some-type

when used, except in the function-name position of a call, is converted to

pointer to function returning some-type

A constant is a primary expression. Its type can be int, long, or double,

depending on its form. Character constants have type int and floating constants have
type double.

A string is a primary expression. Its type is originally array of char, but following
the same rule given earlier for identifiers, this is modified to pointer to char. The result
is a pointer to the first character in the string (there is an exception in certain initializers;
see "Initialization," later in this chapter).

A parenthetical expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses does not
affect whether the expression is an lvalue.

A primary expression followed by an expression in brackets is a primary expression.
The intuitive meaning is that of a subscript. Usually, the primary expression has type

pointer to some-type

The subscript expression is int, and the type of the result is

some-type

The expression El [E2 J is identical (by definition) to * ((El)+ (E2)) . All the
clues needed to understand this notation are contained in this subsection together with
the discussions in "Unary Operators" and "Additive Operators" on identifiers * and +,
respectively. The implications are summarized in "Arrays, Pointers, and Subscripting"
under "Types Revisited," later in this chapter.

A function call is a primary expression followed by parentheses containing a possibly
empty, comma-separated list of expressions that constitute the actual arguments to the
function. The primary expression must be of type

function returning some-type

and the result of the function call is of type

some-type

Expressions 3-15

As indicated below, a hitherto unseen identifier followed immediately by a left
parenthesis is contextually declared to represent a function returning an integer.
Therefore, in the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call.
Any arguments of type char or short are converted to int. Array names are
converted to pointers. No other conversions are performed automatically; in particular,
the compiler does not compare the types of actual arguments with those of formal
arguments. If conversion is needed, use a cast. For further information, see "Unary
Operators" and "Type Names," later in this chapter.

In preparing for the call to a function, a copy is made of each actual parameter. Thus,
all argument passing in C is strictly by value. A function can change the values of its
formal parameters, but these changes cannot affect the values of the actual parameters. It
is possible to pass a pointer on the understanding that the function can change the value
of the object to which the pointer points. An array name is a pointer expression;
therefore, in effect, array arguments are passed by reference. The order of evaluation of
arguments is undefined by the language; take note that the various compilers differ.
Recursive calls to any function are permitted.

A primary expression followed by a dot, followed by an identifier, is an expression.
The primary expression must be a structure or a union, and the identifier must name a
member of the structure or union. The value is that named member of the structure or
union, and it is an lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from - and >), followed by an
identifier, is an expression. The first expression must be a pointer to a structure or a
union and the identifier must name a member of that structure or union. The result is an
lvalue that refers to the named member of the structure or union to which the pointer
expression points. Thus, the expression El->MOS is the same as (*El) .Mos.

Structures and unions are discussed in greater detail in "Structure and Union
Declarations" and "Enumeration Declarations" under "Declarations."

3-16 Chapter 3 C Language Reference

Unary operators

Expressions with unary operators group right to left.

unary-expression:
* expression
& /value
- expression

expression
~ expression
++ lvalue
-- /value
/value ++

lvalue --
(type-name) expression
size of expression
sizeof (type-name)

The unary operator * means indirection; the expression must be a pointer and the
result is an lvalue referring to the object to which the expression points. If the type of the
expression is

pointer to some-type

the type of the result is

some-type

The result of the unary & operator is a pointer to the object ref erred to by the
lvalue. If the type of the lvalue is

some-type

the type of the result is

pointer to some-type

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity is computed
by subtracting its value from zn, where n is the number of bits in the corresponding
signed type.

There is no unary + operator.

Expressions 3-17

The result of the logical negation operator ! is one (1) if the value of its operand is
zero, and zero if the value of its operand is nonzero. The type of the result is int. It is
applicable to any arithmetic type or to pointers.

The - operator yields the l's-complement of its operand. The usual arithmetic
conversions are performed. The operand must be of the integral type.

The object ref erred to by the lvalue operand of prefix + + is incremented. The value
is the new value of the operand but is not an lvalue. The expression ++x is equivalent
to x = x + 1. See "Additive Operators" and "Assignment Operators," later in this
chapter, for information on conversions.

The lvalue operand of prefix - - is decremented analogously to the prefix + +

operator.
When postfix + + is applied to an lvalue, the result is the value of the object to

which the lvalue refers. After the result is noted, the object is incremented in the way the
prefix + + operator was implemented. The type of the result is the same as the type of
the lvalue expression.

When postfix - - is applied to an lvalue, the result is the value of the object to
which the lvalue refers. After the result is noted, the object is decremented in the same
manner as the prefix - - operator. The type of the result is the same as the type of the
lvalue expression.

An expression preceded by the parenthesized name of a data type causes the
expression value to convert to the named type. This construction is called a cast. Type
names are described in "Type Names," later in this chapter.

The si zeof operator yields its operand size in bytes. (A byte is undefined by the
language except in terms of the value of s i z eo f. In this implementation, as in all
existing ones, however, a byte is the space required to hold a char.) When applied to
an array, the result is the total number of bytes in the array. The size is determined from
the declarations of the objects in the expression. This expression is semantically an
unsigned constant and can be used anywhere a constant is required. Its major use is in
communication with routines like storage allocators and I/0 systems.

The s i z eo f operator also can be applied to a type name enclosed in parentheses.
In that case it yields the size, in bytes, of an object of the indicated type.

The construction sizeof (type) is taken to be a unit, so the expression
sizeof (type) -2 is the same as (sizeof (type)) -2.

3-18 Chapter 3 C Language Reference

Multiplicative operators

The multiplicative operators *, I, and % group left to right. The usual arithmetic
conversions are performed.

multiplicative expression:
expression * expression
expression I expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative and
expressions with several multiplications at the same level can be rearranged by the
compiler. The binary I operator indicates division.

The binary % operator yields the remainder from the division of the first expression
by the second. The operands must be integral.

When positive integers are divided, truncation is toward zero. The remainder has the
same sign as the dividend. It is always true that (a/b) *b + a%b is equal to a (if b

is not zero).

Additive operators

The additive operators + and - group left to right. The usual arithmetic conversions
are performed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an
array and a value of any integral type can be added. The latter is, in all cases, converted
to an address offset by multiplying it by the length of the object to which the pointer
points. The result is a pointer of the same type as the original pointer, which points to
another object in the same array, appropriately offset from the original object. Thus, if P

is a pointer to an object in an array, the expression P+ 1 is a pointer to the next object
in the array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same
level can be rearranged by the compiler.

Expressions 3-19

The result of the - operator is the difference of the operands. The usual arithmetic
conversions are performed. Additionally, a value of any integral type can be subtracted
from a pointer and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted
(through division by the length of the object) to an int representing the number of
objects pointed to. This conversion, in general, gives unexpected results unless the
pointers point to objects in the same array; pointers, even to objects of the same type, do
not necessarily differ by a multiple of the object length.

Shift operators

The shift operators < < and > > group left to right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right operand is
converted to int; the type of the result is that of the left operand. The result is
undefined if the right operand is negative or greater than or equal to the length of the
object in bits.

shift-expression:
expression < < expression
expression > > expression

The value of El«E2 is El (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are zero filled. The value of El»E2 is El right-shifted E2 bit
positions. The right shift is guaranteed to be logical (zero fill) if El is unsigned;

otherwise, it can be arithmetic.

Relational operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

3-20 Chapter 3 C Language Reference

The operators < (less than), > (greater than), <= (less than or equal to), and >=

(greater than or equal to) all yield zero if the specified relation is false and 1 if it is true.
The type of the result is int. The usual arithmetic conversions are performed. You can
compare two pointers; the result depends on the relative locations in the address space
of the objects pointed to. Pointer comparison is portable only when the pointers point to
objects in the same array.

Equality operators

equality-expression:
expression = = expression
expression ! = expression

The = = (equal to) and the ! = (not equal to) operators are exactly analogous to
the relational operators, except they have lower precedence (thus a<b == c<d is 1

whenever a<b and c<d have the same truth value).
You can compare a pointer to an integer only if the integer is the constant zero. A

pointer to which zero has been assigned is guaranteed not to point to any object and
appears to be equal to zero. In conventional usage, such a pointer is considered to be null.

Bitwise AND operator

and-expression:
expression & expression

The & operator is associative; expressions involving & can be rearranged. The
usual arithmetic conversions are performed. The result is the bitwise AND function of the
operands. The operator applies only to integral operands.

Expressions 3-21

Bitwise exclusive OR operator

exclusive-or-expression:
expression "' expression

The "' operator is associative; expressions involving "' can be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise exclusive OR
function of the operands. The operator applies only to integral operands.

Bitwise inclusive OR operator

inclusive-or-expression:
expression I expression

The I operator is associative; expressions involving I can be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise inclusive OR
function of its operands. The operator applies only to integral operands.

Logical AND operator

logical-and-expression:
expression & & expression

The && operator groups left to right. It returns 1 if both its operands evaluate to
nonzero; otherwise it returns zero. Unlike &, && guarantees left-to-right evaluation.
Moreover, the second operand is not evaluated if the first operand is zero.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

3-22 Chapter 3 C Language Reference

Logical 0 R operator

logical-or-expression:
expression I I expression

The I I operator groups left to right. It returns 1 if either of its operands evaluates to
nonzero; otherwise it returns zero. Unlike I, I I guarantees left-to-right evaluation.
Moreover, the second operand is not evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated. If it is
nonzero, the result is the value of the second expression; otherwise, that of the third
expression. If possible, the usual arithmetic conversions are performed to bring the
second and third expressions to a common type. If both are structures or unions of the
same type, the result has that type as well. If both pointers are of the same type, the
result has the common type. Otherwise, one must be a pointer and the other the
constant zero, and the result has the type of the pointer. Only one of the second and
third expressions is evaluated.

Expressions 3-23

Assignment operators

There are a number of assignment operators, all of which group right to left. All require
an lvalue as their left operand. The type of an assignment expression is that of its left
operand. The value is the value stored in the left operand after the assignment takes
place. The two parts of a compound assignment operator are separate tokens.

assignment-expression:
!value = expression
!value + = expression
!value - expression
!value * = expression
!value I = expression
!value % = expression
!value »= expression
!value < < = expression
!value & = expression
!value "= expression
!value I = expression

In the simple assignment with =,the value of the expression replaces that of the
object to which the lvalue refers. If both operands have arithmetic type, the right
operand is converted to the type of the left, preparatory to the assignment. If both
operands are structures or unions, they must be of the same type. If the left operand is a
pointer, the right operand must, in general, be a pointer of the same type. The constant
zero can be assigned to a pointer, however-it is guaranteed that this value produces a
null pointer that is distinguishable from a pointer to any object.

You can understand the behavior of an expression of the form E 1 op = E 2 by
taking it as equivalent to El = El op (E2); however, El is evaluated only once. In
+= and -=,the left operand can be a pointer, in which case the (integral) right
operand is converted as explained in "Additive Operators," earlier in this chapter. All
right operands and all nonpointer left operands must have arithmetic type.

3-24 Chapter 3 C Language Reference

Comma operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right. The value of
the left expression is discarded. The type and value of the result are the type and value
of the right operand. This operator groups left to right. It is useful in situations where
you wish to combine operations on one line and do not care about seeing the first result,
just about using it in the second operation. In contexts where a comma is given a special
meaning, for example, in lists of actual arguments to functions (see "Primary
Expressions," earlier in this chapter) and lists of initializers (see "Initialization," later in
this chapter), the comma operator, as described in this section, can appear only in
parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

Declarations
Declarations are used to specify the interpretation that C gives to each identifier. They
don't necessarily reserve storage associated with the identifier. Declarations have the form

declaration:

decl-specifiers declarator-listopti

The declarators in the declarator-list contain the identifiers being declared. The decl­
specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiersopt
sc-specifier decl-specifiersopt

The list must be self-consistent, as the following section describes.

Declarations 3-25

Storage class specifiers

The storage class specifiers are as follows:

auto

static

extern

register

typedef

The typedef specifier does not reserve storage and is called a "storage class
specifier" only for syntactic convenience (see "Typedef," later in this chapter). The
meanings of the various storage classes are discussed in "Names," earlier in this chapter.

The auto, static, and register declarations also serve as definitions
because they cause an appropriate amount of storage to be reserved. In the extern

case, there must be an external definition (see "External Definitions," later in this chapter)
for the given identifiers, somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration that hints to
the compiler that the variables declared are to be heavily used. Only the first few such
declarations in each function are effective. Moreover, only variables of certain types are
stored in registers. One other restriction applies to register variables: The address-of
operator & cannot be applied to them. Smaller, faster programs can be expected if
register declarations are used appropriately.

At most, .one storage class specifier can be given in a declaration. If the storage class
specifier is missing from a declaration, it is taken to be auto inside a function,
extern outside.

+ Note The exception is that functions are never automatic. •

3-26 Chapter 3 C Language Reference

Type specifiers

The type specifiers are as follows:

type-specifier:
strnct-or-union-specifier
basic-type-specifier
typedef name
en um-specifier

basic-type-specifier:
basic-type

basic-type:
basic-type basic-type-specifier

char

short

int

long

unsigned

float

double

long or short can be specified in conjunction with int; the meaning is the
same as if int were not mentioned. The word long can be specified in conjunction
with float; the meaning is the same as double. unsigned can be specified alone
or in conjunction with int or any of its short or long varieties or with char.

Except for the combinations just described, only a single type specifier can be given
in a declaration. In particular, using long, short, or unsigned as an adjective is
not permitted with typedef names. If the type specifier is missing from a declaration,
it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed later in this chapter
in "Structure and Union Declarations" and "Enumeration Declarations." Declarations with
typedef names are discussed in "Typedef," also later in this chapter.

Declarations 3-27

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of
declarators, each of which can have an initializer, as follows:

declarator-list:
in it-declarator
in it-declarator, declarator-list opt

init-declarator:
declarator initializeropt

Initializers are discussed in "Initialization," later in this chapter. The specifiers in the
declaration indicate the type and storage class of the objects to which the declarators
refer. Declarators have the syntax

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression0pt J

The grouping is the same as in expressions.

Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same form as
the declarator appears in an expression, it yields an object of the indicated type and
storage class.

Each declarator contains exactly one identifier: this is what is being declared. If an
unadorned identifier appears as a declarator, it has the type indicated by the specifier
heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding
of complex declarators can be altered by parentheses (see the following examples).

3-28 Chapter 3 C Language Reference

Now imagine a declaration:

TDJ

where Tis a type specifier (for example, int) and DJ is a declarator. Suppose this
declaration declares the identifier to be of type

[modifier] T

where the [modifier] is empty if DJ is just a plain identifier (so that the type of x in
int xis just int). Then if DJ has the form

*D

the type of the contained identifier is

[modifier] pointer to T

If DJ has the form

D()

the contained identifier has the type

[modifierJfunction returning T

If DJ has the form

D [constant-expression J

or

D[J

the contained identifier has type

[modifier] array of T

In the first case, the constant expression is an expression whose value can be
determined at compile time, whose type is int, and whose value is positive. (Constant
expressions are defined precisely in "Constant Expressions," later in this chapter.) When
several array of specifications are adjacent, a multidimensional array is created. The
constant expressions that specify the bounds of the arrays can be missing only for the
first member of the sequence. This missing section is useful when the array is external
and the actual definition, which allocates storage, is given elsewhere. The first constant
expression also can be omitted when the declarator is followed by initialization. In this
case, the size is calculated from the number of initial elements supplied.

An array can be constructed from one of the basic types, from a pointer, a structure
or union, or from another array (to generate a multidimensional array).

Declarations 3-29

Not all possibilities of the above syntax are actually permitted. The restrictions are as
follows: Functions cannot return arrays or functions although they can return pointers; there
are no arrays of functions, although there can be arrays of pointers to functions; likewise, a
structure or union cannot contain a function, but it can contain a pointer to a function.

As an example, the declaration

int i, *ip, f ()I *fip() I (*pfi) ();

declares

i an integer

*ip a pointer to an integer

f () a function returning an integer

*fip () a function returning a pointer to an integer

(*pfi) () a pointer to a function that returns an integer

It is especially useful to compare the last two:

*fip ()

(*pfi) ()

The binding of * f ip () is * (f ip ()) . If this declaration were part of
an expression in the code, it would call the function f ip. f ip returns
a pointer. Using indirection through this pointer yields an integer.

In the declarator (*pf i) () , or such a construct in an expression,
the parentheses must enclose *pf i to show that the whole thing
yields a function (through indirection through a pointer). When this
function is called, it returns an integer.

As an example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.
Finally,

static int x3d[3] [5] [7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail,
x3 a is an array of three items. Each item is an array of five arrays. Each of the arrays is
an array of seven integers.

3-30 Chapter 3 C Language Reference

Any of the expressions

x3d

x3d[i]

x3d[i] [j]

x3d [i J [j J [k]

can reasonably appear in an expression. The first three have type array and the last has
type int.

Structure and union declarations

A structure is an object made up of a sequence of named members. Each member can
have any type. A union is an object that can, at a given time, contain any one of several
members. Structure and union specifiers have the same form:

struct-or-union-specifier:

struct-or-union:

struct-or-union { struct-decl-list}
struct-or-union identifier { struct-decl-list}
struct-or-union identifier

struct

union

The struct-decl-list is a sequence of declarations for the members of the structure
or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

Declarations 3-31

In the usual case, a strnct-declarator is just a declarator for a member of a structure
or union. A structure member also can consist of a specified number of bits. Such a
member is also called a field; its length, a non-negative constant expression, is set off
from the field name by a colon.

strnct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses that increase as the
declarations are read left to right. Each nonfield member of a structure begins on an
addressing boundary appropriate to its type; therefore, there can be unnamed holes in a
structure. Field members are packed into machine integers; they do not straddle words.
A field that does not fit into the space remaining in a word is put into the next word. No
field can be wider than a word.

A strnct-declaratorwith no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally imposed layouts. As a special
case, a field with a width of zero specifies alignment of the next field on an
implementation-dependent boundary.

The language does not restrict the types of things that are declared as fields, but
implementations are not required to support any except integer fields. Moreover, even
int fields can be considered to be unsigned.

It is strongly recommended that you declare fields as unsigned. In all
implementations, there are no arrays of fields, and the address-of operator & cannot be
applied to them, so that there are no pointers to fields.

A union can be thought of as a structure, all of whose members begin at offset zero
and whose size is sufficient to contain any of its members. At most, one of the members
can be stored in a union at any time.

A structure or union specifier of the second form,

st ru ct identifier { strnct-decl-list}
union identifier { strnct-decl-list}

declares the identifier to be the strncture tag (or union tag) of the structure specified by
the list. A subsequent declaration can then use the third form of specifier,

struct identifier
union identifier

3-32 Chapter 3 C Language Reference

Structure tags allow definition of self-referencing structures. They also permit the
long part of the declaration to be given once and used several times. It is illegal to
declare a structure or union that contains an instance of the structure or union itself, but
it can contain a pointer to an instance of itself.

You can use the third form of a structure or union specifier before a declaration that
gives the complete specification of the specifier in situations in which its size is
unnecessary. The size is unnecessary in two situations: (1) when a pointer to a structure
or union is being declared and (2) when a typedef name is declared to be a
synonym for a structure or union. This, for example, allows the declaration of a pair of
structures that contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary
variables. A particular name cannot be used twice in the same structure, but the same
name can be used in several different structures in the same scope.

A simple but important example of a structure declaration is the binary tree structure,

struct tnode

} ;

char tword [2 0] ;

int count;

struct tnode *left;

struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to similar
structures. Once this declaration is given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of
the given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right->tword[O]

refers to the first character of the two rd member of the right subtree of s.

Declarations 3-33

Enumeration declarations

Enumeration variables and constants have integral type.

en um-specifier:

enum-list:

enumerator:

enurn { enum-list}
en urn identifier { enum-list}
enurn identifier

enumerator
enum-list , enumerator

identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and can appear wherever
constants are required. If no enumerators with = appear, the values of the
corresponding constants begin at zero and increase by 1 as the declaration is read from
left to right. An enumerator with = gives the associated identifier the value indicated;
subsequent identifiers continue the progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each other
and from those of ordinary variables.

The role of the identifier in the en um-specifier is entirely analogous to that of the
structure tag in a struct-specifier, it names a particular enumeration. For example,

enurn color {rnauve,burgundy,claret=20,wine}

enurn color *cp, col;

col = claret;

cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors and then
declares cp as a pointer to an object of that type and col as an object of that type. The
possible values are drawn from the set { o , 1 , 2 o , 21 } .

3-34 Chapter 3 C Language Reference

Initialization

A declarator can specify an initial value for the identifier being declared. The initializer is
preceded by and consists of an expression or a list of values nested in braces.

initializer:

initializer-list:

expression
{ initializer-list}
{ initializer-list, }

expression
initializer-list , initializer-list
{ initializer-list}

initializer-list, }

All the expressions in an initializer for a static or external variable must be constant
expressions (see "Constant Expressions," later in this chapter) or expressions that reduce
to the address of a previously declared variable, possibly offset by a constant expression.
Automatic or register variables can be initialized by arbitrary expressions involving
constants and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.
Automatic and register variables that are not initialized are undefined.

When an initializer applies to a scalar (a pointer or object of arithmetic type), it
consists of a single expression, perhaps in braces. The initial value of the object is taken
from the expression; it is converted in the same way it would be in an assignment.

When the declared variable is an aggregate (a structure or array), the initializer
consists of a brace-enclosed, comma-separated list of initializers for the members of the
aggregate, written in increasing subscript or member order. If the aggregate contains
subaggregates, this rule applies recursively to the members of the aggregate. If there are
fewer initializers in the list than there are members of the aggregate, the aggregate is
padded with zeros. You cannot initialize unions or automatic aggregates.

You can, in some cases, omit braces. If the initializer begins with a left brace, the
succeeding comma-separated list of initializers initializes the members of the aggregate;
the compiler reports an error if there are more initializers than members. If, however, the
initializer does not begin with a left brace, only sufficient elements to account for the
members of the aggregate are taken from the list; any remaining members are left to
initialize the next aggregate member.

Declarations 3-35

A final abbreviation allows a char array to be initialized by a string. In this case,
successive characters of the string initialize the members of the array.

The syntax of char array initialization can be derived from that of numerical array
initialization. For example, the construct

int X [J = { 1, 3 f 5 } i

declares and initializes x as a one-dimensional array that has three members, as no size
was specified and there are three initializers.

Now consider an example of two-dimensional array initialization. The construct

float y [4J [3J =

{1, 3 I 5},

{ 2 t 4, 6} t

{ 3 I 5, 7},

} i

gives a completely bracketed initialization: 1, 3, and 5 initialize the first row of the array
y [o J , namely,

y [OJ [OJ

y [OJ [lJ

y [OJ [2J

Likewise, the next two lines initialize y [1 J and y [2 J . The initializer ends early and
therefore y [3 J is initialized with zero. Precisely the same effect can be achieved with

float y[4J [3J =

1, 3, 5, 2, 4, 6, 3, 5, 7

} i

The initializer for y begins with a left brace but the one for y [o J does not;
therefore, three elements from the list are used. Likewise, the next three are taken
successively for y [1 J and y [2 J .

3-36 Chapter 3 C Language Reference

Also,

float y[4] [3]

{ 1 }, { 2 }, { 3 }, { 4 }

} ;

initializes the first column of y (regarded as a two-dimensional array) and leaves the
rest zero.

A further leap allows for the syntax of character array initialization. Because commas
are common elements within strings, it is handier not to have to separate elements with
them. It is preferable in this situation to presuppose a variable-length one-dimensional
array, the successive elements of which become array members. The array ends when
the string is exhausted, as in the two-dimensional array example, and no commas are
needed, as the initialization happens all at once. Thus, the construct

static char rnsg[J = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note the lack of size
specification, as in the one-dimensional array example.

Type names

In two contexts (to specify type conversions explicitly by means of a cast and as an
argument of sizeof), you should supply the name of a data type. Your program can
do this by using a type name, which, in essence, is a declaration for an object of the
type that omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
*abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression opt J

Declarations 3-37

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, your program
can identify uniquely the location in the abstract-declaratorwhere the identifier appears
if the construction were a declarator in a declaration. The named type is then the same as
the type of the hypothetical identifier. For example,

int

int *

int * [3]

int (*) [3]

int * ()

int (*) ()

int (* [3]) ()

Typedef

is type integer

is type pointer to integer

is type array of three pointers to integers

is type pointer to an array of three integers

is type function returning pointer to integer

is type pointer to function returning an integer

is type array of three pointers to functions returning an integer

Declarations whose storage class is typedef do not define storage, but instead define
identifiers. Your program can later use these identifiers as if they were type keywords
naming fundamental or derived types.

typedef name:
identifier

Within a declaration that involves typedef, each identifier that is part of a
declarator is syntactically equivalent to the type keyword that names the identifier type

. as described in "Meaning of Declarators," earlier in this chapter. For example, after

typedef int MILES, *KLICKSP;

typedef struct {double re, im;} complex;

the constructions

MILES distance;

extern KLICKSP metricp;

complex z, *zp;

are all legal declarations; the following types apply:

3-38 Chapter 3 C Language Reference

Statements

• distance is int

• metricp is a pointer to int

• z is the specified structure comp 1 ex

• zp is a pointer to such a structure

The typedef does not introduce brand new types, only synonyms for types can
be specified in another way. Thus, in the example above, distance is considered to
have exactly the same type as any other int object.

Except as indicated, statements are executed in sequence.

Expression statement

Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls.

Compound statement or block

The compound statement lets your program use several statements where only one is
expected:

compound-statement:
{declaration-list opt statement-list opt}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement

statement statement-list

Statements 3-39

If any of the identifiers in the declaration-list were declared previously, the outer
declaration is pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the
block is entered at the top. Although it is poor practice, your program can transfer into a
block; in that case the initializations are not performed. Initializations of stat i c

variables are performed only once, when the program begins execution. Inside a block,
extern declarations do not reserve storage, so initialization is not permitted.

Conditional statement

The two forms of the conditional statement are

i f (expression) statement
i f (expression) statement e 1 s e statement

In both cases the expression is evaluated. If it is nonzero, the first substatement is
executed. If the expression is zero, the second substatement is executed. The "else"
ambiguity is resolved by connecting an e 1 s e with the last encountered e 1 s e-less if.

whi 1 e statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly as long as the value of the expression remains
nonzero. The test takes place before each execution of the statement.

do statement

The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression is zero. The
test takes place after each execution of the statement.

3-40 Chapter 3 C Language Reference

for statement

The for statement has the form

for (exp-lopti exp-2opti exp-3opt) statement

This statement is equivalent to

exp-lopt

while (exp-2opt)

{

statement

exp-3opti
}

except in the case where a continue appears before or in exp-3. In this case, (all of)
exp-3 is not read or implemented (see "continue Statement").

The first expression specifies initialization for the loop; the second specifies a test made
before each iteration, so that the loop is exited when the expression becomes zero. The
third expression often specifies an incrementation that is performed after each iteration.

Any or all of the expressions can be dropped. A missing exp-2 makes the implied
while clause equivalent to while (1). Other missing expressions are simply
dropped from the expansion above.

switch statement

The switch statement causes control to be transferred to one of several statements,
depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must
be int. The statement is typically compound. Any statement within the statement can
be labeled with one or more case prefixes, as in

case constant-expression:

where the constant expression must be int. No two case constants in the same
switch can have the same value. Constant expressions are precisely defined in
"Constant Expressions," later in this chapter.

Statements 3-41

There also can be no more than one statement prefix of the form

default:

When the switch statement is executed, its expression is evaluated and compared
with each case constant. If one of the case constants is equal to the expression value,
control is passed to the statement following the matched case prefix. If no case constant
matches the expression, control passes to the statement with the def au 1 t prefix. If no
case matches and there is no def au 1 t, none of the statements in the switch are executed.

The prefixes case and default do not alter the flow of control; it continues
unimpeded across such prefixes. To learn about exiting from a switch, see the next
section, "break Statement."

Usually, the statement that is the subject of a switch is compound. Declarations can
appear at the head of this statement, but initializations of automatic or register variables
are ineffective.

break statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch

statement. Control passes to the statement following the terminated statement.

continue statement

The statement

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing
while, do, or for statement-that is, to the end of the loop.

3-42 Chapter 3 C Language Reference

More precisely, in each of the following statements,

Statement 1:

while (exp-1)
exp-2

cont in:;

Statement 2:

do

exp-1
cont in:;

} while (exp-2) ;

Statement 3:

for (exp-1)
exp-2

cont in:;

a continue is equivalent to goto cont in (following the cont in: is a null
statement; see "Null Statement," later in this chapter).

return statement

A function returns to its caller by means of the return statement, which has one of
the two forms

return;

return expression;

In the first case, the returned value is undefined. In the second case, the value of the
expression is returned to the caller of the function. If required, the expression is
converted, as if by assignment, to the type of function in which it appears. Flowing off
the end of a function is equivalent to a return with no returned value. The
expression can be enclosed in parentheses.

Statements 3-43

goto statement

Control can be transferred unconditionally by means of the statement

goto identifier;

The identifier must be a label (see the next section, "Labeled Statement") located in the
current function.

Labeled statement

Any statement can be preceded by label prefixes of the form

identifier:

which serve to declare the identifier as a label. The only use of a label is as a target of a
goto. The scope of a label is the current function, excluding any subblocks in which the
same identifier has been redeclared (see "Scope Rules," later in this chapter).

Null statement

The null statement has the form

A null statement is useful to carry a label just before the ending brace of a compound
statement or to supply a null body to a looping statement such as while.

3-44 Chapter 3 C Language Reference

External definitions
A C program consists of a sequence of external definitions. An external definition
declares an identifier to have storage class extern (by default) or perhaps static,

and a specified type. The type specifier (see "Type Specifiers," earlier in this chapter)
also can be empty, in which case the type is taken to be int. The scope of external
definitions persists to the end of the file in which they are declared, just as the effect of
declarations persists to the end of a block. The syntax of external definitions is the same
as for all declarations, except that only at this level can the code for functions be given.

External function definitions

Function definitions have the form

function-definition:
decl-specifiersopt function-declarator function-body

The only storage class specifiers allowed among the declaration specifiers are
extern or static (see "Scope of Externals," later in this chapter, for the distinction
between them). A function declarator is similar to a declarator for a

function returning some-type

except that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, can be declared in the
declaration list. Any identifier whose type is not given is taken to be int. The only
storage class that can be specified is register; if it is specified, the corresponding
actual parameter is copied, if possible, into a register at the outset of the function.

External definitions 3-45

A simple example of a complete function definition is

int max(a, b, c)

int a, b, c;

int m;

m = (a > b) ? a : b;

return ((m > c) ? m : c) ;

Here, int is the type-specifier; max (a, b, c) is the function-declarator; int

a, b, c; is the declaration-list for the formal parameters, and { ... } is the block
giving the code for the statement.

The C compiler converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double.

All char and short formal parameter declarations are similarly adjusted to read
int. Also, because a reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of the array, declarations of
formal parameters declared

array of some-type

are adjusted to read

pointer to some-type

External data definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data can be extern (the default) or static, but not
auto or register.

3-46 Chapter 3 C Language Reference

Scope rules
A C program doesn't have to be compiled entirely at the same time. The source text of
the program can be kept in several files and precompiled routines can be loaded from
libraries. Communication among the functions of a program can be carried out through
both explicit calls and manipulation of external data.

Therefore, there are two kinds of scope to consider: (1) lexical scope, which is
essentially the region of a program within which your program can use some identifier
without drawing "undefined identifier" diagnostics, and (2) scope of externals, which
is the scope associated with external identifiers; it is characterized by the rule that states
that references to the same external identifier are references to the same object.

Lexical scope

The lexical scope of identifiers that are declared in external definitions persists from the
definition through the end of the source file in which they appear.

The lexical scope of identifiers that are formal parameters persists through the
function with which they are associated.

The lexical scope of identifiers that are declared at the head of a block persists until
the end of the block.

The lexical scope of labels is the whole of the function in which they appear.
In all cases, however, if an identifier is explicitly declared at the head of a block,

including the block constituting a function, any declaration of that identifier outside the
block is suspe"'1Lied until the end of the block.

Remember also that tags, idenLf iers associated with ordinary variables, and identities
associated with structure and union members form three disjoint classes that do not
conflict (see "Structure and Union Declarations" and "Enumeration Declarations," earlier
in this chapter). Members and tags follow the same scope rules as other identifiers.

The enum constants are in the same class as ordinary variables and follow the same
scope rules.

Scope rules 3-47

The typedef names are in the same class as ordinary identifiers. They can be
redeclared in inner blocks, but an explicit type must be given in the inner declaration.

typedef float distance;

auto int distance;

The int must be present in the second declaration or it is taken as a declaration
with no declarators and with type distance.

Scope of externals

If a function refers to an identifier that's declared to be extern, somewhere among the
files or libraries that constitute the complete program there must be at least one external
definition for that identifier. All functions in a given program that refer to the same
external identifier are ref erring to the same object, so you must take care that the type
and size you specify in the definition are compatible with those specified by each
function that references the data.

It is illegal to initialize any external identifier explicitly more than once in the set of
files and libraries that make up a multifile program. Your program can have more than
one data definition for any external nonfunction identifier, however; explicit use of
extern does not change the meaning of an external declaration.

With a more restrictive compiler, the use of the extern storage class takes on an
additional meaning. With such a compiler, the explicit appearance of the extern

keyword in the external data declarations of identities without initialization indicates that
the storage of the identifier is allocated elsewhere, either in that file or in another file.
Your program must have exactly one definition of each external identifier (without
extern) in the set of files and libraries composing a multifile program.

3-48 Chapter 3 C Language Reference

The A/UX C compiler accepts multiply defined externals. For future portability of
code, however, you might find it easier to observe the above restrictions in any case. To
help you do this, you can use the -M flag option to ld, which causes the link editor to
check for multiply defined externals. (The flag option should be entered on the cc

command line and is passed to ld by cc.) ld prints a warning message if any
multiple definitions are found.

In addition, in A/UX, ld warns you, by default, if the size of these multiple
extems differs among the files in which it is found. This catches such errors as a
variable defined as char in one file and as int in another. You can use the -t

flag option to ld to disable this check. To invoke this option on the cc command line,
you must pass it explicitly to ld through the -w option to cc, as

cc -Wl-t

where -w passes an argument to the link editor (1), and -t is the argument passed
to 1 d. This form must be used, as the - t option to cc is already defined to mean
something else.

Together, the -M and -t flag options to ld allow for simulation of the more
restrictive environment required by other machines. Using these options, you might find
it easier to write code that ports to more restrictive compilers with fewer, if any, changes.

Identifiers declared static at the top level in external definitions are not visible
in other files. Functions can be declared static. This provides a way of hiding
globals, and hence should be used with caution.

Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional
compilation, and inclusion of named files. Lines beginning with # communicate with
this preprocessor. There can be any number of blanks and horizontal tabs between the
and the directive. These lines have syntax independent of the rest of the language;
they can appear anywhere. Their effect lasts (independent of scope) until the end of the
source program file.

Compiler control lines 3-49

Token replacement

A compiler-control line of the form

#define identifier token-string

causes the preprocessor to replace subsequent instances of the identifier with the given
string of tokens. Semicolons in or at the end of the token string are taken as part of that
string. A line of the form

#de f in e identifier (identifier, . . .) token-string

where there is no space between the first identifier and the (is a macro definition with
arguments. It can have zero or more formal parameters. Subsequent instances of the first
identifier, followed by a (, a sequence of tokens delimited by commas, and a) are
replaced by the token string in the definition. Each occurrence of an identifier mentioned
in the formal parameter list of the definition is replaced by the corresponding token
string from the call.

The actual arguments in the call are token strings separated by commas; however,
commas in quoted strings or commas protected by parentheses do not separate arguments.
The number of formal and actual parameters must be the same. Strings and character
constants in the token-string are scanned for formal parameters, but strings and character
constants in the rest of the program are not scanned for defined identifiers for replacement.

In both forms, the replacement string is rescanned for more defined identifiers. In
both forms, a long definition can be continued on another line by preceding the newline
with a backslash(\). This facility is most valuable for definition of "manifest constants,"
as in

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

#undef identifier

causes the identifier preprocessor (if any) to be dropped.
If a #define identifier is the subject of a subsequent #define with no

intervening #undef, the two token strings are compared textually. If the two token
strings are not identical (all white space is considered equivalent), the identifier is
considered to be redefined.

3-50 Chapter 3 C Language Reference

File inclusion

A compiler control line of the form

#inc 1 ude "filename"

causes that line to be replaced by the entire contents of the file filename. The named file
is first searched for in the directory of the file containing the #inc 1 ude, and then in a
sequence of specified or standard places. Alternatively, a control line of the form

#inc 1 ude <filename>

searches only the specified or standard places and not the directory of the #inc 1 ude

(how the places are specified is not part of the language). #include statements can
be nested.

Conditional compilation

A compiler control line of the form

i f restricted-constant expression

checks whether the restricted-constant expression evaluates to nonzero. (Constant
expressions are discussed in "Constant Expressions," later in this chapter. Here, the
restricted-constant expression cannot contain s i z eo f casts or an enumeration constant.)

A restricted-constant expression also can contain the additional unary expression

defined identifier

or

defined (identifier)

each of which evaluates to one if the identifier is currently defined in the preprocessor,
and to zero if it is not.

All currently defined identifiers in restricted-constant expressions are replaced by their
token strings (except those identifiers modified by defined), just as in normal text. The
restricted-constant expression is evaluated only after all expressions are finished. During
this evaluation, all identifiers undefined to the procedure evaluate to zero.

Compiler control lines 3-51

A control line of the form

i fnde f identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it
has been the subject of a #define control line. It is equivalent to #if! def

(identifier) .
A control line of the form

i fndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is equivalent
to #if! defined (identifier).

All three forms are followed by an arbitrary number of lines that can include the
control line

#else

followed by the control line

#endif

If the checked condition is true, any lines between # e 1 s e and # endi f are
ignored. If the checked condition is false, any lines between the test and #else or,
lacking #else, #endif, are ignored.

These constructions can be nested.

Line control

For the benefit of other preprocessors that generate C programs, a line of the form

#line constant filename

causes the compiler to believe, for purposes of error diagnostics, that the line number of
the next source line is given by the constant and the current input file is named by
filename. If filename is absent, the remembered filename does not change.

3-52 Chapter 3 C Language Reference

Implicit declarations
When you are writing a program, you don't always have to specify both the storage class
and type of identifiers in a declaration. The storage class is supplied by the context in
external definitions, declarations of formal parameters, and structure members. In a
declaration inside a function, if you specify a storage class but no type, the identifier is
assumed to be int. If you specify a type but no storage class, the identifier is assumed
to be auto. An exception to the latter rule is made for functions, because auto

functions do not exist. If the type of an identifier is

function returning some-type

it is implicitly declared to be extern.

In an expression, an undeclared identifier followed by (is contextually declared to
be function returning int.

Types revisited
This section summarizes the operations that can be performed on objects of certain types.

Structures and unions

Structures and unions can be assigned, passed as arguments to functions, and returned
by functions. Other plausible operators, such as equality comparison and structure casts,
are not implemented.

In a reference to a structure or union member, the name on the right of the - > or
dot (.) must specify a member of the aggregate that is named or pointed to by the
expression on the left. In general, a member of a union cannot be inspected unless that
member has a value assigned more recently than any other member that overlaps the
same space. One special guarantee is made by the language, however, to simplify the
use of unions: If a union contains several structures that share a common initial sequence
and the union currently contains one of these structures, you can inspect the common
part of any member in which it occurs. For example, the following is a legal fragment.

Types revisited 3-53

union

struct

int

} n;

struct

int

int

ni;

struct

int

float

} nf;

} u;

u.nf .type = FLOAT;

u.nf .floatnode = 3.14;

if (u.n.type == FLOAT)

type;

type;

intnode;

type;

floatnode;

... sin(u.nf.floatnode)

Functions

A program can do only two things with a function: call it or take its address. If the name
of a function appears in an expression, not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one function to another, your program
can include

int f ();

g (f);

3-54 Chapter 3 C Language Reference

The definition of g can read

g(funcp)

int (*funcp) ();

(*funcp) ();

Notice that f must be declared explicitly in the calling routine because its appearance
in g (f) was not followed by (.

Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is converted into a
pointer to the first member of the array. Because of this conversion, arrays are not
lvalues. By definition, the subscript operator [J is interpreted in such a way that
El [E2 J is identical to * ((El) + (E2)) . Because of the conversion rules that apply to
+,if El is an array and E2 an integer, El [E2 J refers to the E2th member of El.

Therefore, despite its asymmetric appearance, subscripting is a commutative operation.
A consistent rule is followed in the case of multidimensional arrays. If E is an n­

dimensional array of rank ixj x ... xk, then E appearing in an expression is converted to a
pointer to an (n-1)-dimensional array with rank j x ... xk. If the * operator is applied
to this pointer, either explicitly or implicitly as a result of subscripting, the result is the
pointed-to (n-1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x [3 J [5 J ;

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to
a pointer to (the first of three) five-membered arrays of integers. In the expression
x [i J , which is equivalent to * (x + i) , x is first converted to a pointer as described;
then i is converted to the type of x, which involves multiplying i by the length of
the object to which the pointer points, namely, five-integer objects.

Types revisited 3-55

The results are added and indirection applied to yield an array (of five integers),
which, in turn, is converted to a pointer to the first of the integers. If there is another
subscript, the same argument applies again; this time the result is an integer.

Arrays in Care stored by rows (last subscript varies most quickly). The first subscript
in the declaration helps determine the amount of storage consumed by an array, but
plays no other part in subscript calculations.

Explicit pointer conversions

Certain conversions involving pointers are permitted but have implementation­
dependent aspects. They are all specified by means of an explicit type-conversion
operator; see "Unary Operators" and "Type Names," both earlier in this chapter.

A pointer can be converted to any of the integral types large enough to hold it.
Whether an int or long is required is machine-dependent. The mapping function
is also machine-dependent, but is intended to be unsurprising to those who know the
addressing structure of the machine. Details for this machine are given below.

An object of integral type can be converted explicitly to a pointer. The mapping
always carries an integer converted from a pointer back to the same pointer, but is
otherwise machine-dependent.

A pointer to one type can be converted to a pointer to another type. The resulting
pointer can cause addressing exceptions upon use, if the subject pointer does not refer
to an object suitably aligned in storage. It is guaranteed that a pointer to an object of a
given size can be converted to a pointer to an object of a smaller size and back again
without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object
to allocate, and return a char pointer,

extern char *alloc();

double *dp;

dp = (double *) alloc(sizeof (double));

*dp = 22.0 I 7.0;

3-56 Chapter 3 C Language Reference

The alloc must ensure (in a machine-dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function is portable.

In A/UX, pointers are 32 bits long and measure bytes. This is the same size as an
int or long. The char values have no alignment requirements; everything else
must have an even address.

Constant expressions

In several places C requires expressions that evaluate to a constant:

• after case

• as array bounds

• in initializers

In the first two cases, the expression can involve only integer constants, character
constants, casts to integral types, enumeration constants, and s i z eo f expressions,
possibly connected by the binary operators,

=-*/%&1"'

<< >> == != < > <= >= && I I

or by the unary operators,

or by the ternary operators,

? :

Parentheses can be used for grouping, but not for function calls.
When writing your program, you have more latitude with initializers. In addition to

constant expressions, you also can use floating constants and arbitrary casts. You also
can apply the unary & operator to external or static objects and to external or static
arrays subscripted with a constant expression. You can apply the unary & implicitly by
appearance of unsubscripted arrays and functions. The basic rule is that initializers must
evaluate either to a constant or to the address of a previously declared external or static
object-plus or minus a constant.

Constant expressions 3-57

Portability considerations
Certain parts of C are inherently machine-dependent. The following description of
potential trouble spots is meant not to be complete, but to point out the main ones.

Purely hardware issues like word size and the properties of floating-point arithmetic
and integer division have not proven to be problems. Other facets of the hardware are
reflected in differing implementations. Some of these, particularly sign extension
(converting a negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most others are only
minor problems.

The number of register variables that actually can be placed in registers varies
from machine to machine, as does the set of valid types. Nonetheless, the compilers all
do things properly for their own machines; excess or invalid register declarations
are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly
unwise to write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The
order in which side effects take place is also unspecified.

Because character constants are really objects of type int, multicharacter constants
can be permitted. The specific implementation is machine-dependent, because the order
in which characters are assigned to a word varies from one machine to another. (See
"Character Constants," earlier in this chapter, for the treatment of multicharacter
character constants on the 68020.)

Fields are assigned to words, and characters to integers, from right to left on some
machines and from left to right on other machines. (Bit fields run from left to right in this
implementation.) These differences are invisible to isolated programs that do not indulge
in type punning (that is, by converting an int pointer to a char pointer and
inspecting the storage pointed to), but must be accounted for when conforming to
externally imposed storage layouts.

3-58 Chapter 3 C Language Reference

Syntax summary
This summary of C syntax is intended more for aiding comprehension than as an exact
statement of the language.

Expressions

The basic expressions are

expression:

primary
* expression
& !value
- expression

expression
- expression
++ !value
-- !value
!value ++

!value --
size of expression
sizeof Uype-name)
(type-name) expression
expression binop expression
expression ? expression : expression
!value asgnop expression
expression, expression

Syntax summary 3-59

primary:

!value:

identifier
constant
string
(expression)

primary (expression-listopt)

primary [expression J

!value . identifier
primary - > identifier

identifier
primary [expression J

!value . identifier
primary - > identifier
* expression
(!value)

The primary-expression operators

() [] ->

have highest priority and group left to right. The unary operators

* & ++ sizeof (type-name)

have priority below the primary operators but above any binary operator and group right
to left. Binary operators group left to right; they have decreasing priority, as shown here:

binop:

* I %

+

>> <<

< > <= >=

!=

&

&&

l l

3-60 Chapter 3 C Language Reference

The conditional operator groups right to left. Assignment operators all have the same
priority and all group right to left.

asgnop:
+= *- I= %=

>>= <<= &= I=

The comma operator has the lowest priority and groups left to right.

Declarations

declaration:

decl-specifiers:

sc-specifier:

type-specifier:

decl-specifiers init-declarator-list0pt;

type-specifier decl-specifiersopt
sc-specifier decl-specifiersopt

auto

static

extern

register

typedef

basic-type-specifier
struct-or-union-specifier
typedef name
en um-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

Syntax summary 3-61

basic-type

en um-specifier:

enum-list:

enumerator:

char

short

int

long

unsigned

float

double

en urn { enum-list}
en urn identifier { enum-list}
enurn identifier

enumerator
enum-list, enumerator

identifier
identifier = constant-expression

in it-declarator-list:

init-declarator:

declarator:

in it-declarator
init-declarator, init-declarator-list

declarator initializeropt

identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionoprJ

3-62 Chapter 3 C Language Reference

struct-or-union-specifier:

struct-decl-list:

st ru ct { struct-decl-list}
st ru ct identifier { struct-decl-list}
st ru ct identifier
union { struct-decl-list}
union identifier { struct-decl-list}
union identifier

struct-declaration
struct-declaration struct-decl-list
struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-list:
struct-declarator

initializer:

initializer-list:

type-name:

struct-declarator, struct-declarator-list
struct-declarator:
declarator
declarator: constant-expression
: constant-expression

expression
{ initializer-list}
{ initializer-list, }

expression
initializer-list, initializer-list
{ initializer-list}
{ initializer-list, }

type-specifier abstract-declarator

Syntax summary 3-63

abstract-declarator :
empty

typedef name:

Statements

(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression opt J

identifier

compound-statement:

declaration-list:

statement-list:

{ declaration-listopt statement-listopt}

declaration
declaration declaration-list

statement
statement statement-list
statement:
compound-statement
expression ;
i f (expression) statement
if (expression) statement e 1 s e statement
whi 1 e (expression) statement
do statement while (expression) ;
for (exp opt; exp opt; exp opt) statement
switch (expression) statement
case constant-expression: statement
default: statement
break;

3-64 Chapter 3 C Language Reference

continue;

return;

return expression;
goto identifier;
identifier: statement

External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:

type-specifieropt function-declarator function-body

function-declarator:

parameter-list:

function-body:

data-definition:

declarator (parameter-list opt)

identifier
identifier, parameter-list

{ declaration-listopt compound-statement}

extern0pt declaration;
static opt declaration;

Syntax summary 3-65

Preprocessor

#define identifier token-string

#define identifier (identifier, ...) token-string

#unde f identifier

#inc 1 ude "filename"

#include <filename>

i f restricted-constant-expression

#if def identifier

i fnde f identifier

#else

#endif

1 ine constant "filename"

3-66 Chapter 3 C Language Reference

4 C Implementation Notes

Data representations I 4-3

Parameter passing in C I 4-5

Setting up the stack I 4-6

Allocating local variables and registers I 4-7

Returning from a function or subroutine I 4-8

System calls I 4-9

Optimizations I 4-9

Use of register variables I 4-10

Miscellaneous notes I 4-10

This chapter describes the NUX C programming language, including how data is

represented, how data is passed between functions, the environment of a function, and

the calling mechanism for a function. The information in this chapter is intended for

programmers who must have detailed knowledge of the interface mechanisms to match

C code with the assembler. It is also intended for those who wish to write new system

functions or mathematical functions.

When a C program is compiled and assembled, the program is split into three parts:

text

data

bss

The executable code of the program; the compiler/assembler

combination produces this.

The initialized data area; this contains literal constants, character

strings, and so on. The compiler/assembler combination produces this.

The uninitialized data areas; the loader generates and clears this area to

zero at load time. This is a feature of the system and can be relied upon.

During execution of a program, the stack area contains indeterminate data. In other

words, its previous contents (if any) cannot be relied upon.

4-2 Chapter 4 C Implementation Notes

Data representations
In general, all data elements of whatever size are stored so that their least significant bit
is in the highest addressed byte and their most significant bit is in the lowest addressed
byte. The list below describes the representation of data:

char

short

long

float

double

pointer

array

Values of type char occupy 8 bits. Such values can be aligned on
any byte boundary.

Values of type short occupy 16 bits. Values of type short are
aligned on word (16-bit) address boundaries.

Values of type long occupy 32 bits. A long value is the same as
an int value in 68020 C. Values of this type are aligned on word
(16-bit) address boundaries.

Values of type float occupy 32 bits. All float values are
automatically converted to type double for computation purposes,
except when testing for zero or nonzero. Values of this type are
aligned on word (16-bit) boundaries. A float value consists of a
sign bit, followed by an 8-bit biased exponent, followed by a 23- bit
mantissa (24 bits including the hidden bit). Values of type float

are stored in IEEE Floating Point Standard P754 representation.

Values of type double occupy 64 bits. Values of this type are
aligned on word (16-bit) boundaries. A double value consists of a
sign bit, followed by an 11-bit biased exponent, followed by a 52-bit
mantissa (53 bits including the hidden bit). Values of type double
are stored in IEEE representation.

All pointers are represented as long (32-bit) values. Pointers are
aligned on word (16-bit) boundaries.

The base address of an array value is always aligned on a word (16-
bit) address boundary. Elements of an array are stored contiguously,
one after the other. Elements of multidimensional arrays are stored in
row-major order. That is, the last dimension of an array varies the
most quickly. When a multidimensional array is declared, it is
possible to omit the size specification for the last dimension. In such
a case, what is allocated is actually an array of pointers to the
elements of the last dimension.

Data representations 4-3

struct and
union

Within structures and unions, it is possible to obtain unfilled holes of
size char. This is because the compiler rounds addresses up to 16-bit
boundaries to accommodate word-aligned elements.

struct

int

char

short

} ;

This situation can best be demonstrated by an example. Consider the
following structure:

x; /* This is a 32-bit element */

y; /* Takes up a single byte */

z; /* Aligned on 16-bit boundary */

The total number of bytes declared above is seven: four for the int,
one for the char, and two for the short.

In reality, the z field, which is a short, is aligned on a 16-bit
boundary by the C compiler. In this case, the compiler inserts a hole
after the char element y to align the short element z. The
net effect of these machinations is a structure that behaves like this:

struct {

} ;

int x;

char y;

char dummy;

short z;

/* This is a 32-bit element */

/* Takes up a single byte */

/* Fills the structure */

/* Aligned to a 16-bit boundary */

The C compiler never reorders any parts of a structure. Similar
considerations apply to arrays of structures or unions. Each element of
an array (other than an array of char) begins on a 16-bit boundary.

For a detailed treatment of data storage, consult The C Programming Language by
Kernighan and Ritchie.

4-4 Chapter 4 C Implementation Notes

Parameter passing in C
The C programming language is unique in that it really has only functions. The effect of a
subroutine is achieved simply by having a function that does not return a value. The type
of such a function should be void.

Another unique feature of C is that parameters to functions are always passed by
value. The C programming language has no concept of declaring parameters to be
passed by reference, as in languages such as Pascal. To pass a parameter by reference in
a C program, the programmer must pass the address of the parameter explicitly. The
called function must be aware that it is receiving an address instead of a value, and the
appropriate code must be present to handle that case.

When a function is called, its parameters (if any) are evaluated and then pushed onto
the stack in reverse order. All parameters are pushed onto the stack as 32-bit longs,

except for floats and doubles, which are pushed as 64-bit doubles. If a
parameter is shorter than 32 bits, it is expanded to a 32-bit value with sign extension, if
necessary. The calling procedure is responsible for popping the parameters off the stack.

Consider a C function call such as

ferry (charon, 7, &styx, 1<<10);

After parameter evaluation, but just before the call, the stack looks like this:

o/osp - Value of variable charon

7

Address of variable styx
r---

1024
-

... Previous stack contents ...

Figure 4-1 Stack contents after evaluation of function call

Functions are called by issuing either a bsr instruction or a j sr instruction,
depending on whether the callee is within a 16-bit addressing range or not and whether
the C optimizer was used. The bsr or j sr instruction pushes the return address
onto the stack and then branches to the indicated function. After the call, on entry to the
function, the stack looks like Figure 4-2.

Parameter passing in C 4-5

o/osp---. Return address

Value of variable char on

7

Address of variable styx

1024

... Previous stack contents ...

Figure 4-2 Stack contents after entry to the function call

In each function, register %a6 is used as a stack frame base. The stack location
referenced by % a 6 contains the return address.

Setting up the stack
Upon entry into the function, the prolog code is executed. The prolog code allocates
sufficient space on the stack for the local variables, plus sufficient space to save any
registers that this function uses. The prolog code looks like this:

link.l %fp,&F%1

movm.l &M% 1, (4 , % sp)

The F % 1 constant is the size of the stack frame for the local variables, plus 4 bytes
for each ordinary register variable and 12 bytes for each f 1 oat or doub 1 e register
variable.

The M% 1 constant is a mask to determine which registers need to be saved on the
stack for this particular function. This is dependent on the register variables that the
programmer declared for that particular routine. If the function has floating-point register
variables, the movm. 1 instruction is followed by

fmovm &FPM%1, (FP0%1, %sp)

which saves the floating-point registers used by the routine for register variables of types
float and double. FP0%1 is the offset of the floating register save area, and
FPM% 1 is a mask to tell the fmovm instruction which registers to save.

4-6 Chapter 4 C Implementation Notes

Allocating local variables and registers
A total of ten registers are available for register variables. Six of these are data (%d)

registers, and four are address (%a) registers. The available %a registers are %a2

through %a5. The available %d registers are %d2 through %d7. There are also six
floating-point registers on the 68881 (% f p2 through % f p 7) available for register
variables of type float and double.

The location of a function return value depends on the type of the function.
Functions that return integral types (char, short, int, long, or the unsigned

versions of any of these) return their results in %d0. Functions returning pointers return
their results in %a0, while float and double functions use %fp0. Structure­
valued and union-valued functions return their results in % do if the entire st ru ct or
union fits in 32 bits; otherwise, the return value is stored in a special temporary area
inside the function, a pointer to this temporary area is returned in % a o, and if the return
value is used, code is generated to copy the returned struct or union into the
appropriate place.

Remember that undeclared functions are assumed to be of type int. It follows that
functions must be declared if they return values of type float, double, pointer,

struct, or union, or else the generated code is wrong. Use the lint program to
find places where functions are not declared (see Chapter 8, "lint Reference").

pointer register variables are assigned only to address registers, float and
double register variables only to floating-point registers. Other register variables are
assigned only to data registers. Register declarations are ignored for variables of type
struct or union.

Register variables are allocated to registers in the order in which they are declared in
the C source program, starting at the low end (%a2, %d2, or %fp2) of the appropriate
type of register.

If there are more register variables of either kind than there are registers to
accommodate them, the remaining variables are allocated on the stack as local variables,
just as if the register attribute had never been given in the declaration.

When the prolog code is completed, the stack looks like Figure 4-3.

Allocating local variables and registers 4-7

o/osp- Next argument list starts here

...

Register save area

...

. . .

Floating register save area

...

. . .

Local variables

...

%a6 - old %a6

Return address

Value of variable char on

7

Address of variable styx

1024

... Previous stack contents ...

Figure 4-3 Stack contents after executing prolog code

Returning from a function or subroutine
Upon reaching a return statement, either explicit or implicit, the function executes
the epilog code. If the function has a return value, it is generated from the line

return (expression) ;

4-8 Chapter 4 C Implementation Notes

The value of expression (converted, if necessary, to match the type of the function) is
placed in register %dO, %aO, or %fpO, as appropriate, and the epilog code is executed
to effect a return from the function. The epilog code looks like this:

movm.l

unlk

rts

(4, %sp) I &M%1

%fp

The movm. 1 instruction restores any registers that were saved during the prolog. If
there were floating-point register variables, the movm. 1 instruction is followed by

fmovm (FP0%1, %sp), &FPM%1

which restores the floating-point registers that were saved. The stack frame base pointer
in % fp is then put back to the point where % f p once again points to the return
address, and the function is exited through the rt s instruction, which pops the stack
to the state it was in prior to the original call and returns to the function that called it.

System calls
The C compiler generates code for system calls by calling library routines that place the
system call number in register % a o and execute a TRAP & o instruction.

Parameters are passed on the user stack in the C calling convention. On return from
the system call, errors are signaled by the carry flag being set. The C interface to the
system calls typically returns a -1 on error, as the carry flag cannot be tested from C.

Optimizations
The C compiler can be run to optimize the code it generates, making that code both
compact and fast. The command line

cc -o file

generates optimized code.

Optimizations 4-9

Use of register variables
The decision to declare a variable in a register should depend on the number of times
that variable is referenced during the execution of a function. If a variable is used more
than twice in a function, it can be declared as a register variable. If a variable is used less
than twice in a function, it is not useful to declare it as a register variable, because the
amount of time spent saving and restoring that register is more than the time saved in
using a register instead of a location on the stack.

Miscellaneous notes
The object files created by the assembler and linker use the common object file format
(see Chapter 16, "COFF Reference").

The C compiler accepts multiply defined external variables, as long as no more than
one of the definitions includes an initialization.

The C compiler supports floating and double variables by using the 68881. Floating­
point data values are represented in IEEE standard floating-point format.

4-10 Chapter 4 C Implementation Notes

5 The Standard C Library Cl ibc)

Including functions I 5-3

Including declarations I 5-3

Input/ output control I 5-4

String manipulation functions I 5-7

Character manipulation I 5-8

Time functions I 5-9

Miscellaneous functions I 5-10

This chapter describes the A/UX C library. A library is a collection of related functions

and declarations. Using a library simplifies programming efforts by linking what is

needed, allowing use of locally produced functions, and so on. All the functions

described in this chapter are also described in Section 3 of A!VX Programmer's

Reference. Most of the declarations described in this chapter are also described in

Section 5 of A!VX Programmer's Reference.

This C library is the basic library for C language programs. The C library is made up of

functions and declarations used for file access, string testing and manipulation, character

testing and manipulation, memory allocation, and other functions. This library is

described in greater detail later in this chapter.

5-2 Chapter 5 The Standard C Library (libc)

Including functions
The C library is made up of several types of functions. When a program is being
compiled, the compiler automatically searches the C language library to locate and
include functions that are used in the program. All C library functions are loaded
automatically by the compiler, although you must sometimes include the proper header
files, with its various declarations in your program, for the functions to work properly. C
library functions are divided into the following types:

• input/ output control

• string manipulation

• character manipulation

• time functions

• miscellaneous functions

Including declarations
Some functions need a set of declarations to operate properly. A set of declarations is
stored in a file called a header ftle (with a . h extension). Header files for the C library
are stored in the /usr I include directory. To include a certain header file in your
program, you must specify the following near the top of the file containing the program:

#inc 1 ude <file. h>

where file. h is the name of the header file. Because the header files define the type of
functions and various preprocessor constants, you must include them before invoking
the functions they declare.

Including declarations 5-3

Input/ output control
C library functions are automatically included as needed during the compiling of a C
language program. No command line request is needed.

You must include the header file required by the input/ output functions near the
beginning of each file that references an input or output function:

#include <stdio.h>

The input/ output functions are grouped into the following categories:

• file access

• file status

• input

• output

• miscellaneous

File access functions

Function

f close

f dopen

f ileno

f open

f reopen

f seek

pc lose

pop en

rewind

Reference

fclose(3S)

fopen(3S)

ferror(3S)

fopen(3S)

fopen(3S)

f seek(3S)

popen(3S)

popen(3S)

f seek(3S)

5-4 Chapter 5 The Standard C Library (libc)

Brief description

close an open stream

associate stream with a file opened with the
open(2) system call

file descriptor associated with an open stream

open a file with specified permissions and return a
pointer to a stream that is used in subsequent
references to the file

substitute named file in place of open stream

reposition the file pointer

close a stream opened by popen

create pipe as a stream between calling process
and command

reposition file pointer at beginning of file

setbuf

setvbuf

setbuf(3S)

setbuf(3S)

File status functions

Function Reference

clearerr ferror(3S)

f eof ferror(3S)

f error ferror(3S)

ft ell fseek(3S)

Input functions

Function Reference

f getc getc(3S)

fgets gets(3S)

f read fread(3S)

f scanf scanf(3S)

getc getc(3S)

get char getc(3S)

gets gets(3S)

getw getc(3S)

scanf scanf(3S)

sscanf scanf(3S)

ungetc ungetc(3S)

assign buffering to stream

similar to setbuf, but allowing finer control

Brief description

watch for side effects; reset error condition on stream

watch for side effects; test for end-of-file (EOF) on
stream

watch for side effects; test for error condition on
stream

return current position in the file

Brief description

true function for getc(3S)

read string from stream

general buffered read from stream

formatted read from stream

watch for side effects; read character from stream

watch for side effects; read character from
standard input

read string from standard input

read word from stream

read using format from standard input

formatted read from a string

put back one character on stream

Input/ output control 5-5

Output functions

Function Reference Brief description

fflush f close(3S) write all currently buffered characters from stream

fprintf printf(3S) formatted write to stream

fputc putc(3S) true function for put c (3S)

fputs puts(3S) write string to stream

fwrite fread(3S) general buffered write to stream

printf printf(3S) print using format to standard output

putc putc(3S) watch for side effects; write character to standard
output

put char putc(3S) watch for side effects; write character to standard
output

puts puts(3S) write string to standard output

putw putc(3S) write word to stream

sprintf printf(3S) formatted write to string

vfprintf vprint(3C) print using format to stream by varargs(3X)
argument list

vprintf vprint(3C) print using format to standard output by
varargs(3X) argument list

vsprintf vprintf(3C) print using format to stream string by
varargs(3X) argument list

Miscellaneous functions

Function Reference Brief description

ctermid ctermid(3S) return filename for controlling terminal

cuserid cuserid(3S) return login name for owner of current process

system system(3S) execute shell command

tempnam t empnam(3S) create temporary filename using directory and prefix

tmpnam tmpnam(3S) create temporary filename

tmpf ile tmpfile(3S) create temporary file

5-6 Chapter 5 The Standard C Library (libc)

String manipulation functions
These functions are used to locate characters within a string or to copy, concatenate, or
compare strings. These functions are automatically located and loaded during the compiling
of a C language program. No command-line request is needed because these functions are
part of the C library. The string manipulation functions are declared in a header file that you
should include near the beginning of each file that uses any of these functions:

#include <string.h>

Function Reference Brief description

strcat string(3C) concatenate two strings

strchr string(3C) search string for character

strcmp string(3C) compares two strings

strcpy string(3C) copy string

strcspn string(3C) length of initial string not containing set of characters

strlen string(3C) length of string

strncat string(3C) concatenate two strings with a maximum length

strncmp string(3C) compare two strings with a maximum length

strncpy string(3C) copy string over string with a maximum length

strpbrk string(3C) search string for any set of characters

strrchr string(3C) search string backward for character

strspn string(3C) length of initial string containing set of characters

strtok string(3C) search string for token separated by any of a set of
characters

String manipulation functions 5-7

Character manipulation
The following functions and declarations are used for testing and translating ASCII

characters. These functions are located and loaded automatically during the compiling of
a C language program. No command-line request is needed because these functions are
part of the C library.

You should include the declarations associated with these functions near the
beginning of the file being compiled:

#include <Ctype.h>

Character testing functions

These functions can be used to identify characters as uppercase or lowercase letters,
digits, punctuation, and so on:

Function Reference Brief description

isalnum ctype(3C) return true if character is alphanumeric

isalpha ctype(3C) return true if character is alphabetic

isascii ctype(3C) return true if integer is an ASCII character

iscntrl ctype(3C) return true if character is a control character

isdigit ctype(3C) return true if character is a digit

isgraph ctype(3C) return true if character is a printable character

is lower ctype(3C) return true if character is a lowercase letter

isprint ctype(3C) return true if character is a printing character
including space

ispunct ctype(3C) return true if character is a punctuation character

is space ctype(3C) return true if character is a white space character

is upper ctype(3C) return true if character is an uppercase letter

isxdigit ctype(3C) return true if character is a hex digit

5-8 Chapter 5 The Standard C Library (libc)

Character translation functions

These functions provide translation of uppercase to lowercase, lowercase to uppercase,
and integer to ASCII:

Function Reference Brief description

toascii conv(3C) convert integer to ASCII character

tolower conv(3C) convert character to lowercase

toupper conv(3C) convert character to uppercase

Time functions
These functions are used for gaining access to and reformatting the current date and time
values of the system. These functions are located and loaded automatically during the
compiling of a C language program. No command-line request is needed because these
functions are part of the C library.

You should include the header file associated with these functions near the
beginning of any file using the time functions:

#include <time.h>

These functions (except t z set) convert a time such as returned by t ime(2):

Function Reference Brief description

asctime ctime(3C) return string representation of date and time

ctime ctime(3C) return string representation of date and time, given
integer form

gm time ctime(3C) return Greenwich mean time

local time ctime(3C) return local time

tzset ctime(3C) set time-zone field from environment variable

Time functions 5-9

Miscellaneous functions
These functions support a wide variety of operations:

• numeric conversion

• DES algorithm access

• group file access

• password file access

• parameter access

• hash table management

• binary tree management

• table management

• memory allocation

• pseudorandom number generation

These functions are automatically located and included in a program being compiled.
No command-line request is needed because these functions are part of the C library.

Some of these functions require declarations to be included. These are described
following the descriptions of the functions.

Numeric conversion

The following functions perform numeric conversion:

Function Reference Brief description

a641 a641(3C) convert string to base 64 ASCII

at of atof(3C) convert string to floating

atoi atof(3C) convert string to integer

atol atof(3C) convert string to 1 ong

f rexp frexp(3C) split floating into mantissa and exponent

13tol 13tol(3C) convert 3-byte integer to 1 ong

5-10 Chapter 5 The Standard C Library (libc)

lto13 13tol(3C) convert long to 3-byte integer

ldexp frexp(3C) combine mantissa and exponent

164a a641(3C) convert base 64 ASCII to string

modf frexp(3C) split mantissa into integer and fraction

DES algorithm access

The following functions allow access to the Data Encryption Standard (DES) algorithm
used on the A/UX operating system. (Not present in international distributions.) The DES
algorithm is implemented with variations to frustrate use of hardware implementations of
the DES for key search:

Function Reference Brief description

crypt crypt(3C) encode string

encrypt crypt(3C) encode/decode string of O's and l's

set key crypt(3C) initialize for subsequent use of encrypt

Group file access

The following functions are used to obtain entries from the group file (stored in
I etc I group). You must include declarations for these functions in the program being
compiled with the line

#include <grp.h>

Function Reference Brief description

endgrent getgrent(3C) close group file being processed

getgrent getgrent(3C) get next group file entry

getgrgid getgrent(3C) return next group with matching group ID

getgrnam getgrent(3C) return next group with matching name

setgrent getgrent(3C) rewind group file being processed

f getgrent getgrent(3C) get next group file entry from a specified file

Miscellaneous functions 5-11

Password file access

These functions are used to search for and gain access to information stored in the
password file(; etc /passwd). Some functions require declarations that you can
include in the program being compiled by adding the line

#include <pwd.h>

Function Reference Brief description

endpwent getpwent(3C) close password file being processed

getpw getpw(3C) search password file for user ID

getpwent getpwent(3C) get next password file entry

getpwnarn getpwent(3C) return next entry with matching name

getpwuid getpwent(3C) return next entry with matching user ID

putpwent putpwent(3C) write entry on stream

setpwent getpwent(3C) rewind password file being examined

f getpwent getpwent(3C) get next password file entry from specified file

Parameter access

The following functions provide access to several different types of parameters. None
requires any declarations:

Function Reference Brief description

get opt getopt(3C) get next option from option list

getcwd getcwd(3C) return string representation of current working
directory

getenv getenv(3C) return string value associated with environment
variable

get pass get pas s(3C) read string from terminal without echoing

putenv putenv(3C) change or add value of environment variable

5-12 Chapter 5 The Standard C Library (libc)

Hash table management

The following functions are used to manage hash search tables. You should include the
header file associated with these functions in the program being compiled. You can do
so by including the line

#include <search.h>

near the beginning of any file using the search functions:

Function Reference Brief description

hcreate hsearch(3C) create hash table

hdestroy hsearch(3C) destroy hash table

hsearch hsearch(3C) search hash table for entry

Binary tree management

These functions are used to manage a binary tree. You should include the header file
associated with these functions near the beginning of any file using the search functions:

#include <search.h>

Function Reference Brief description

tdelete tsearch(3C) delete nodes from binary tree

tfind tsearch(3C) find element in binary tree

tsearch tsearch(3C) look for and add element to binary tree

twalk tsearch(3C) walk binary tree

Miscellaneous functions 5-13

Table management

These functions are used to manage a table. Because none of these functions allocate
storage, sufficient memory must be allocated before using these functions. You should
include the header file associated with these functions near the beginning of any file
using the search functions:

#include <search.h>

Function Reference Brief description

bsearch bsearch(3C) search table using binary search

lsearch lsearch(3C) look for and add element in table (linear search)

lfind lsearch(3C) find element in table (linear search)

qsort qsort(3C) sort table using quick-sort algorithm

Memory allocation

To use these routines, either include the following line in your program:

#include <malloc.h>

or compile your program with the command

cc [option ... J [file ... J -lmalloc

or both.
The following functions provide a means by which memory can be dynamically

allocated or freed:

Function Reference Brief description

calloc malloc(3C) allocate zeroed storage

free malloc(3C) free previously allocated storage

malloc malloc(3C) allocate storage

realloc malloc(3C) change size of allocated storage

The following is another set of memory allocation functions available. They are faster
than the (3C) versions, but require more memory.

5-14 Chapter 5 The Standard C Library (libc)

Function Reference Brief description

calloc malloc(3X) allocate zeroed storage

free malloc(3X) free previously allocated storage

malloc malloc(3X) allocate storage

mallopt malloc(3X) control allocation algorithm

malinfo malloc(3X) space usage

realloc malloc(3X) change size of allocated storage

Pseudorandom number generation

The following functions are used to generate pseudorandom numbers. The function
names that end with 48 are a family of interfaces to a pseudorandom number generator
based on the linear congruent algorithm and 48-bit integer arithmetic. The rand and
srand functions provide an interface to a multiplicative congruent random number
generator with a period of 232.

+ Note For intervals, the notation [a to bJ means that a and bare included in the
range, whereas the notation (a to b) means that a and bare not included, but all points
in between are in the range. Therefore, the notation [a to b) means that a is included,
as is everything from a to b, and b is not included. •

Function Reference Brief description

drand48 drand4 8(3C) random double over the interval [Oto 1)

lcong48 drand48(3C) set parameters for drand48, lrand48, and
mrand48

lrand48 drand48(3C) random long over the interval [0 to 231)

mrand48 drand4 8(3C) random long over the interval [-231 to 231)

rand rand(3C) random integer over the interval [0 to 32767)

seed48 drand48(3C) seed the generator for drand48, lrand48, and
mrand48

Miscellaneous functions 5-15

Function Reference Brief description

srand rand(3C) seed the generator for rand

srand48 drand4 8(3C) seed the generator for drand48 lrand48, and
mranb48 using a long

Signal handling functions

The functions gs i gna 1 and s s i gna 1 implement a software facility similar to
signal(3) in A!VX Programmer's Reference. This facility lets you indicate the
disposition of error conditions and allows you to handle signals for your own purposes.
The declarations associated with these functions should be included near the beginning
of any file using the signal handling functions.

#include <signal.h>

These declarations define ASCII names for the 15 software signals.

Function Reference Brief description

gsignal s s i gna 1 (3C) send a software signal

ssignal s s i gna 1 (3C) arrange for handling of software signals

Miscellaneous

These functions do not fall into any previously described category:

Function Reference Brief description

abort abort(3C) cause an IOT signal to be sent to the process

abs abs(3C) return the absolute integer value

ecvt ecvt(3C) convert double to string

f cvt ecvt(3C) convert double to string using Fortran format

gcvt ecvt(3C) convert double to string using Fortran F or E
format

isatty t tyname(3C) test whether integer file descriptor is associated with
a terminal

5-16 Chapter 5 The Standard C Library (libc)

rnkternp

monitor

swab

ttynarne

rnk t ernp(3C) create filename using template

rnoni tor(3C) cause process to record a histogram of program
counter location

swab(3C) swap and copy bytes

t t ynarne(3C) return pathname of terminal associated with integer
file descriptor

Miscellaneous functions 5-17

6 C Special Libraries

Introduction to the C math library I 6-2

Introduction to the C object-file library I 6-4

A/UX provides two special C libraries, the math library and the object-file library. This

chapter describes both of these libraries.

As stated in Chapter 5, a library is a collection of related functions and declarations. All

the functions described here are also described in Section 3 of A!UX Programmer's

Reference. Most of the declarations described in this chapter can be found in ma th(5) in

A!UX Programmer's Reference.

Introduction to the C math library
The C math library is made up of functions and a header file. The functions can be
located and loaded during compile time if you make this request on the command line:

cc file. c -lm

This causes the link editor to search the math library. In addition to the request to
load the functions, you should include the header file of the math library near the
beginning of the first file being compiled:.

#include <math.h>

The math library functions

The math-library functions are grouped into the following categories:

• trigonometric functions

• Bessel functions

• hyperbolic functions

• miscellaneous functions

Trigonometric functions

These functions are used to compute angles (in radian measure), sines, cosines, and
tangents. All of these values are expressed in double precision.

Function Reference Brief description

a cos trig(3M) return arc cosine

as in trig(3M) return arc sine

atan trig(3M) return arc tangent

atan2 trig(3M) return arc tangent of a ratio

cos trig(3M) return cosine

sin trig(3M) return sine

tan trig(3M) return tangent

6-2 Chapter 6 C Special Libraries

Bessel functions

These functions calculate Bessel functions of the first and second kinds of several orders
for real values. j o, j 1, and j n are Bessel functions of x of the first kind, while yo,

y 1, and yn are Bessel functions of x of the second kind. The value of x must be positive:

Function Reference Brief description

jO bessel(3M) give result of order 0

jl bessel(3M) give result of order 1

jn bessel(3M) give result of order n

yO bessel(3M) give result of order 0

yl bessel(3M) give result of order 1

yn bessel(3M) give result of order n

Hyperbolic functions

These functions are used to compute the hyperbolic sine, cosine, and tangent for real
values:

Function Reference Brief description

co sh sinh(3M) return hyperbolic cosine

sinh sinh(3M) return hyperbolic sine

tanh sinh(3M) return hyperbolic tangent

Miscellaneous functions

These functions cover a wide variety of operations, such as natural logarithm,
exponential, and absolute value. In addition, several are provided to truncate the integer
portion of double-precision numbers:

Function

ceil

exp

f abs

Reference

f loor(3M)

exp(3M)

f loor(3M)

Brief description

return the smallest integer not less than a given value

return the exponential function of a given value

return the absolute value of a given value

Introduction to the C math library 6-3

Function Reference Brief description

floor floor(3M) return the largest integer not greater than a given
value

f mod floor(3M) return the remainder produced by the division of
two given values

gamma gamma(3M) return the natural log of the absolute value of the
result of applying the gamma function to a given
value

hypot hypot(3M) return the square root of the sum of the squares of
two numbers

log exp(3M) return the natural logarithm of a given value

loglO exp(3M) return the logarithm base ten of a given value

matherr ma therr(3M) error-handling function

pow exp(3M) return the result of a given value raised to another
given value

sqrt exp(3M) return the square root of a given value

Introduction to the C object-file library

The C object-file library provides functions for accessing and manipulating object files.
Some of these functions locate portions of an object file such as the symbol table, the file
header, sections, and line number entries associated with a function. Other functions
read these types of entries into memory. For a description of object-file format, see
Chapter 16, "COFF Reference," in this manual.

These functions are usually used only by compilers, link editors, cross-reference
generators, and so on. Most applications programmers do not need to use them.

The object-file library functions reside in /usr I 1ib/1 ibld. a and can be
located and loaded at compile time if you give the following command-line request:

cc file -lld

The command causes the link editor to search the object-file library. The argument -11 a
must appear after all files that reference functions in 1 ibld. a.

6-4 Chapter 6 C Special Libraries

In addition, you must include various header files:

#include <stdio.h>

#include <a.out.h>

#include <ldfcn.h>

The object-file library functions

Function Reference Brief description

ldaclose ldclose(3X) close object file

ldahread ldahread(3X) read archive header

ldaopen ldopen(3X) open object file for reading

ldclose ldclose(3X) close object file being processed

ldfhread ldfhread(3X) read file header of object file being processed

ldgetname ldgetname(3X) retrieve name of an object-file symbol table entry

ldlinit ldlread(3X) prepare object file for reading line number entries
through ldlitem

ldlitem ldlread(3X) read line number entry from object file after
ldlinit

ldlread ldlread(3X) read line number entry from object file

ldlseek ldlseek(3X) seek to the line number entries of the object file
being processed

ldnlseek ldlseek(3X) seek to the line number entries of the object file
being processed given the name of a section

ldnrseek ldrseek(3X) seek to the relocation entries of the object file given
the name of a section

ldnshread ldshread(3X) read section header of the named section of the
object file

ldnsseek ldsseek(3X) seek to the section of the object file being processed
given the name of a section

ldohseek ldohseek(3X) seek to the optional file header of the object file
being processed

Introduction to the C object-file library 6-5

Function Reference Brief description

ldopen ldopen(3X) open object file for reading

ldrseek ldrseek(3X) seek to the relocation entries of the object file
being processed

ldshread ldshread(3X) read section header of an object file being processed

ldsseek ldsseek(3X) seek to the section of the object file being processed

ldtbindex ldtbindex(3X) return the long index of the symbol table entry at the
current position of the object file being processed

ldtbread ldtbread(3X) read a specific symbol table entry of the object file
being processed

ldtbseek ldtbseek(3X) seek to the symbol table of the object file being
processed

sgetl sput1(3X) access long integer data in a machine-
independent format

sputl sputl(3X) translate a long integer into a machine-
independent format

Common object-file interface macros (ldfcn. h)

The interface between the calling program and the object-file access routines is based on
the defined type ldf ile, which is defined in the header file ldfcn. h (see
ldf cn(3X)). The primary purpose of this structure is to provide uniform access both to
simple object files and to object files that are members of an archive file.

The function 1 dop en allocates and initializes the 1dfi1 e structure and returns
a pointer to that structure to the calling program. You can gain access to the fields of the
ldfile structure individually through the following macros.

6-6 Chapter 6 C Special Libraries

Macro

type

IOPTR

OFFSET

HEADER

Reference

ldfcn(3X)

ldfcn(3X)

ldfcn(3X)

ldfcn(3X)

Brief description

return the magic number of the file, which is used
to distinguish between archive files and simple
object files

return the file pointer that was opened by
ldopen and is used by the input/output functions
of the C library

return the file address of the beginning of the object
file; this value is nonzero only if the object file is a
member of the archive file

access the file header structure of the object file

Additional macros are provided to access an object file. These macros parallel the
input/output functions in the C library; each macro translates a reference to an ldf ile

structure into a reference to its file descriptor field. The available macros are described in
ldfcn(3X) in A/fil" Programmer's Reference.

Introduction to the C object-file library 6-7

7 Shared Libraries

Using a shared library I 7-2

Building a shared library I 7-9

A shared library is similar in function to a normal, nonshared library. For the developer

compiling a program, specifying a shared library on the command line is done just as

with a nonshared library. There is no functional difference for the application user who

invokes the resulting application, except that the application using a shared library can

yield certain efficiency benefits.

This chapter is presented in two parts. The first part, "Using a Shared Library," explains

what a shared library is and the benefits you can obtain by using a shared-library version

rather than a nonshared-library version of an archive.

The second section of this chapter, "Building a Shared Library," provides information to

library developers and advanced programmers who are building shared libraries. You do

not need to read this section to use shared libraries. For library developers, this section

describes how to prepare a specification file for a shared library and how to use

mkshl ib(l) to create a shared library from that specification file and the object files

specified on the command line. An example specification file is provided.

Using a shared library
This section describes what a shared library is and how to use one to build executable
object files. The section also describes the benefits and drawbacks of using a shared library.
Finally, it tells how to determine whether an executable object file uses a shared library.

What is a shared library?

When a program calls on a shared library for library routines, those routines are made
available at run time to that program, and to any other program that calls on that shared
library and happens to be running at the same time. Each program receives its own copy
of the . data segment portion of the shared-library routines, but all programs share
the . text segment of the shared library. (In contrast to the shared library, each
program that makes use of a nonshared library receives a private copy of any library
routines required.)

A shared library actually consists of two files (two sublibraries) containing source
archives and executable object files, referred to as the host file and the target file,
respectively. The executable code for a shared library is in the Common Object File
Format (COFF). This code is accessed from the applications that call it by means of a
special addressing structure provided within the application during link-edit.

The host and target files can be on different systems. A host file is an archive that
provides information used during link-edit. (Chapter 15 of this manual provides
information about the link editor, ld. For additional information about archive libraries,
see ar(4).) The name of the host file is included on the compilation command line in
the same way as with a nonshared library. All operations that can be performed on a
nonshared library can be performed on a host file.

The target file contains the executable code for all the routines in the library. This
library is brought into memory, if not already present, during execution of a program
that calls upon it. The library is attached to a user's process during execution.

7-2 Chapter 7 Shared Libraries

How do shared libraries work?

Shared libraries are built using the process described in "Building a Shared Library," later
in this chapter. The rnkshl ib utility uses information given to it in a specification file
to construct a host and a target file. The specification file names the object files from
which a shared library can be constructed. To oversimplify, the process involves splitting
up sections from these object files. The target file receives the . text, . data, and
. bs s sections.

The host file has symbol information, used by the link editor, for all sections in both
libraries.

When a compilation command specifies a host file, the executable object file that
results receives a special section called . 1 ib, which contains a pathname to the target
shared library.

At execution time, the first invocation of a target shared library by an application
results in the calling application being linked to the . text, . data, and . bss

sections of that library. Successive applications referencing that target shared library
while it is in memory link to the . text section and to private copies of the . data

and . bss sections.

Invoking a shared library

Link editing or compiling with a shared library is done in the same way as with a
nonshared library. The name of the host file is supplied on the command line. Shared­
library files have a _s suffix to distinguish the shared-library version from the
nonshared-library version. For example, 1 ibc_s is the shared-library version of
libc, the standard C library. Here is the pattern for the cc command line.

cc sourcefile -1 host-libraryfile

For the shared-library version of the standard C library, 1 ibc_s, the host filename
is c_s, as shown here:

cc file. c -lc_s

Here is an example using that host:

cc hello_world.c -lc_s

Using a shared library 7-3

The relocatable (nonshared) C library is still available; this library is searched by
default during the compilation or link editing of C programs.

To link all the files in your current directory with 1 ibc_s, use the following
command:

cc *.c -le s

The search for symbol definitions proceeds from one library archive to another in the
order they are specified on the command line, until the first definition is found.
Normally, you should include the -1 c_s argument after all other -1 arguments on
the command line. The shared C library is treated like the relocatable C library, which is
searched, by default, after all other libraries specified on a command line are searched.
(If the argument for the standard C library, -le, is on the command line,
-lc_s must precede it. Otherwise, the standard library is used before the shared
version can be invoked.)

You should not have to change the code in any applications you already have when
you use a shared library with them.

Application source code in C or assembly language is compatible with both
nonshared- and shared-library archives. When coding a new application for use with a
shared library, you should use your standard coding conventions.

Benefits of using a shared library

A shared library offers several benefits for individual users and for the system as a whole.
For each application that calls on a shared library rather than a nonshared library, the
application can gain these benefits:

Disk storage space Because shared-library code is not copied in all the executable object
savings files that use the code, these files are smaller and use less disk space.

Memory savings Because they share library code at run time, the dynamic memory
needs of the process are reduced.

7-4 Chapter 7 Shared Libraries

Easier executable
file maintenance

Updating a shared library effectively updates all executable files using
that library. Correcting an error in shared-library code, or enhancing
that code, provides the benefits of the new code to all processes that
use the library.
In contrast, a nonshared library cannot provide this maintenance
benefit. Changes to their archive libraries do not affect executable files
made earlier, because code is copied to the files during link editing
rather than during execution.

These individual benefits accrue to the system. Savings in storage space for many
individual applications are multiplied for general storage savings. Smaller processes
provide efficiencies when swapping applications.

The capability for current maintenance is an important user benefit. For development
work, using a shared library ensures that team members are using the most current
routines. The benefits are similar for application work, in which using a shared library
can ensure that all data is processed using the same version of the required routines.

The NUX shared-library directory

A/UX currently provides two target files (1 ibc_s and 1 ibcrnac_s), both in the
directory I shl ib, which is the suggested location for target files. As other shared
libraries become available from software vendors or from your own development, they
should be placed in that directory.

The _s suffix is a convention used to distinguish the shared-library version from
the nonshared-library version. For example, 1 ibc_s is the shared-library version of
libc, the standard C library. libcrnac_s is the shared version of libcrnac, the
glue routines that access the Macintosh Toolbox. The host library for 1 ib_s is
1 ibc_s . a and is located in the I 1 ib directory. The host file for 1 ibcrnac s is
libcrnac s. a and is located in the /usr /lib directory.

Using a shared library 7-5

Space savings from using a shared library

A well-designed shared library almost always saves space. To determine what savings are
gained from using a shared library, you can try building the same application with both a
nonshared and shared library, assuming both versions are available. (Source code is
compatible with either form of library.) Then, compare the two versions of the application
for size and performance. Here is a demonstration you can enter and try immediately:

% cat hello.c

main()

printf ("Hello world\n");

}

$ cc -o unshared hello.c

$ cc -o shared hello.c -le s

$ ls -1 unshared shared

-rwxrwxrwx 2 jim 12658 Nov 11 unshared

-rwxrwxrwx 2 jim 7980 Nov 11 shared

The 1 s -1 command shows the actual size of the object files. In this example, the
sizes are 12658 bytes and 7980 bytes for the unshared and shared-library options. The
size(l) command is not accurate for this purpose.

Archive library cautions

Here are some points to keep in mind when using a nonshared or shared archive library:

• Don't define symbols in your application with the same names as those in a library.

• Although there are exceptions, avoid redefining standard library routines, such as
printf and strcmp. Replacements that are incompatibly defined can cause any
library, shared or not, to behave incorrectly.

• Don't use undocumented library routines.

• Don't try to manipulate the underlying implementation, which is subject to change.

7-6 Chapter 7 Shared Libraries

How using a shared library can increase space usage

A host file can add space to an executable object file, if the library has unresolved
references. The ld link editor uses static linking, which requires that all external
references in a program be resolved before the program is executed. A shared library can
have imported symbols, which are used but not defined by the library. These symbols
can introduce unresolved references during the linking process. To resolve these
references, the link editor must add the . ini t section of the corresponding routine
(from the host file) to the . text section of the executable object file, which increases
the size of the executable object file.

A target file can increase the memory requirements of a process. Again, recall from
"How Do Shared Libraries Work?" in this chapter that a shared-library target file can have
both text and data regions connected to a process. Although the text region is shared by
all processes that use the library, the data region is not. Each process using the shared
library receives its own copy of the entire data region. Naturally, this region adds to the
memory requirements of the process. If an application uses only a small part of a shared
library text and data, then executing the application can require more memory with a
shared library than without it.

For example, it is unwise to use the shared C library to access only strcmp.

Compiling with a nonshared version of the library places only strcmp in the
executable object file. Compiling with the shared version, while producing a slightly
smaller version of the executable object file, means that a private copy of the . data

and . bs s sections of the target shared library is placed in storage, reserved for the
executable object file. The memory cost outweighs the savings. The nonshared-library
version is more appropriate.

When not to use a shared library

There are various situations for which the use of a shared library is not recommended.
The previous section "How Using a Shared Library Can Increase Space Usage" points out
some of them. Some other cases are listed here.

When making your decision about which form of library to use, remember that
shared libraries are not available on versions of A/UX prior to Release 2.0. If your
application must run on prior versions, you must use a nonshared library.

Using a shared library 7-7

During debugging, you might need to use a nonshared-library version if you
encounter certain difficulties. See "Debugging Files That Use Shared Libraries," later in
this chapter, for more information.

Identifying files that use shared libraries

To determine whether an executable file uses a shared library, you can use the durnp(l)

command to look at the section headers for the file.
If the file has a . 1 ib section, a shared library is needed. If the file has no . 1 ib

section, it does not use a shared library. The command to use is

dump - hv filename

If the file uses a shared library, the display also shows sections corresponding to
target file sections. These are dummy sections and do not contain actual section data.

Debugging files that use shared libraries

Debugging support for shared libraries is currently limited. Information from shared
libraries is not dumped to core files and sdb(l) does not read the symbol tables of
shared libraries. You can use sdb to single step through shared-library code, but
cannot set breakpoints in the shared-library area. If you encounter an error that appears
not to be in your application code, you might find debugging easier if you recompile the
application with the nonshared version of the library. See Chapter 9 for more
information on sdb.

7-8 Chapter 7 Shared Libraries

Building a shared library
This section describes the process of building shared libraries in several phases leading
up to the execution of the mkshl ib command that is used to build and maintain
shared libraries. The first phase is designing the shared library, in which the routines or
object files to go into the library are selected. The next phase is preparing the object files
that are to go into the shared library. The third phase is to prepare the specification file
that describes the shared library to the mkshl ib command. The final phase is
executing the mkshl ib command to build the host and target files, which can be
done at one time or with separate invocations of the mkshl ib command.

In practice, the entire sequence of phases can be done iteratively. In developing a
production shared library, you can build several versions of a shared library, with more
or fewer object files, and try them in practical use to determine the best combination,
rather than attempting to settle all design and selection questions before proceeding.

Also, once the preparatory work is done and a specification library is available, the
mkshl ib command can be executed to make new copies of the host or target library.
Minor changes can be made to the specification file, such as changing the target library
pathname.

Designing a shared library

This phase consists of selecting what is appropriate to put in a shared library. Routines
that have little code in comparison to their . data and . bss sections are not good
candidates, because only the code portion can actually be shared.

The routines to be included should be often-used routines. The entire target library is
brought into memory to serve applications that call upon it. When that target library
includes routines seldom used by the applications calling on it, then space is wasted.
Less-used routines should be made available in nonshared form, where they are
included in only those applications that actually use them.

You might wish to develop more than one shared library customized for groups that
need a particular combination of routines, rather than including a variety of routines in
one general shared library.

Building a shared library 7-9

When a shared library is used during software development, considerations of space
or frequency of use can be overridden by the importance of having certain routines in
common use by all software modules under development.

Building different versions of a shared library and profiling actual use can be used to
settle certain design questions.

One feature of shared libraries is that the host file can contain both nonshared
routines and linking information for shared routines. Such a host file allows sharing of
often-used routines with access to less-often-used routines. When the application file is
linked to that host file, any nonshared routines that are referenced are copied in as usual;
shared routines are accessed at time of execution.

Such a host library is developed as follows. The host is built using mkshl ib and
contains as shared-library routines those files listed in the specification file under the
#objects directive. The nonshared routines are added afterward, using the archiver
program (see ar(l)). One of the host files built is /lib/ libc_s. a.

Handling external references

If desired, a shared library can reference routines and variables not contained within the
target file. These are called external references.

If you have no external references, the information that follows does not apply. You
can proceed to "Preparing a Shared Library," later in this chapter.

All external references must be resolved, which is done in two phases of the
development process: when preparing object files for inclusion in the library and when
developing the specification file.

Prepare an include file that aliases all imported variables (variables external to a
routine, the value of which must be imported). All such references, whether to a routine
or to a variable, are defined by specifying a pointer, in the form

#define import pointer

When compiling the object files, include this file in every source file that requires it to
resolve imported variables.

7-10 Chapter 7 Shared Libraries

Next, create a source file with declarations to initialize all the imported variables to
zero or null. Use statements of the form

int (*pointer) o;
The type specified on the left must match the type required for the variable. Compile this
source to produce an object file and include this object file in the object file specification
list, preferably as the first file. In the example specification file, this file is def. o.

When preparing the specification file, provide an initialization line for every
external reference.

What is the effect of all this? Using the include file and the declaration file described
here provides resolution of external references that allows a self-contained target file to
be built. The target file code contains null pointers for all these references, but the
information necessary to provide the true values is available in the . data section.

The initialization line in the specification file informs the mkshl ib command that
initialization code is required. The code is then developed, using information on where
the required value can be obtained. The initialization code goes into a special section
named . ini t, which is placed in the host file. Each object file requiring initialization
has an . in it section.

When an application linked to a host file uses an object file that has an associated
. ini t section, then a copy of the required . ini t section is placed in the
application executable file.

Preparing a shared library

The object files selected for inclusion should be compiled without the -g flag (debug)
option. If this rule is violated, the process of building a shared library fails.

All data files, global and static, should be listed under the #objects directive in
the specification file. It is good practice to place global data and static data in separate
files. Interspersing global data, static data, and regular objects in one file can lead to
unexpected behavior when using the library. In the example shown under "Specification
File Example," later in this chapter, the global data file is def. o.

The files to be included do not usually need any special reworking. If files contain
external references, see "Handling External References," earlier in this chapter.

Building a shared library 7-11

The rnkshlib command

The rnkshl ib command is used to build and maintain shared libraries. The command
can be used to build both host and target libraries or only one of these. The rnkshl ib

command requires the name of a specification file that contains information necessary to
build the host and target files.

The user interface to rnkshl ib consists of this information and command-line
arguments:

rnkshlib specs [-n J -t target [-h host J

To build both files, provide both names. For example,

rnkshlib -s rnyspec -t lib_s -h lib_s.a

To build only the target file, do not provide a host name. For example,

rnkshlib -s rnyspec -t lib_s

A host file is required to access the target file through the link-edit process. In the
example above, the host file can be on a different system and the command can be
building a local target file, lib_s. The specification file rnyspec establishes a
pathname to the target file.

The -n option can be used to build only a new host file. For example,

rnkshlib -s rnyspec -t lib_s -h lib_s.a -n

The name of a target file must be supplied, although only the host is to be built. In the
example the target file name is lib_s.

To build the host and target files, rnkshl ib invokes other tools, such as the
archiver, ar(l), the assembler, as(l), and the link editor, ld(l).

7-12 Chapter 7 Shared Libraries

Command-line arguments

The following command-line arguments are recognized:

- s specs Provide the name of the shared-library specification file, specs, which
contains the information necessary to build the shared library. Its
contents include a list of the object files to be included in the shared
library, the branch-table specifications for the target file, the pathname
where the target file is to be created, and the start addresses of the
. text and . data sections for the target file. Initialization
specifications for imported variables are given in this file, if necessary.
Imported variables are addresses external to the target file, such as the
addresses of routines and variables that the library can call upon.
Details about the shared-library specification file are given in the next
section, "The Shared-Library Specification File."

- t target Specify the name, target! of the target file to be produced.

-h host

-n

The location where the target file is to be built can be different from
the location specified in the #target directive of the specification
file. However, the target file can function only when placed in the
location given in the specification file, with execution permission set.

Specify the name of the host file, host. If not specified, then the host
file is not produced. The host file can be built in a convenient
directory and moved later to the appropriate directory(! 1 ib or
/usr /lib).

Do not generate a new target file. This option is used to update the
host file only. The -t flag option and the target filename must still
be supplied, because a version of the target file is needed to build the
host file.

The shared-library specification file

The specification file contains all the information necessary to build both the host and target
shared libraries. The file contains directive names and associated specification information.
Directive names must be at the start of the line. Some directives have specification
information on the same line, and some directives introduce multiple specifications on
following lines. Lines following such a directive are interpreted as specification lines for that
directive, until another directive or the end of the file is encountered.

Building a shared library 7-13

Specification ftle structure

The six possible directives are the following:

comment-text

#address section-name address

#branch

ini t object

#objects file

#target pathname

Their use is described in the following paragraphs. Directives can be given in any order
in the specification file, except for the # ini t directive.

comment-text
Specifies that the remainder of the line is a comment. All comment-text on that line is
ignored. Comment lines can occur anywhere. Comments are optional, but
recommended.

#address section-name address
Specify the start address in the virtual address space at which to bind the section-name
of the target file. Typically, address directives are provided for the . text and . data

sections of the target file. Addresses must be on a 256 kilobyte (KB) boundary, which
corresponds to the current memory management segment size.

The . bss section is grouped with the . data section and does not require a start
address.

There are constraints on the choice of addresses. The address cannot be the same as
those specified for any other shared library, unless the two target shared libraries are
never used at the same time. The address specifications for the two target shared libraries
currently provided with A/UX are as follows:

libc s

libmac s

7-14 Chapter 7 Shared Libraries

.text

.data

.text

.data

Ox47f00000

Ox47fc0000

Ox47e00000

Ox47ec0000

The address values specified using the #address directive should be in the range
48000000 through 50000000. The addresses starting at 40000000 and ending below
48000000 are reserved.

#branch

The branch-table specifications appear in the following format:

branch-table-specification
branch-table-specification
branch-table-specification

All lines following the #bran ch directive are interpreted as branch-table
specifications, until another directive is encountered. Only one #bran ch directive can
be in a specification file. The branch table built from these specifications consists of jump
instructions to the specified functions.

Branch-table specification lines have the following format:

function-name position

Only functions should be given branch-table entries, and those functions must be
external. Eachfunction-namecan appear only once. The position value is the slot
location of the function name in the branch table. The value of position for each
function-name given is the slot (or range of slots taken). The value of position is a single
integer or a range of integers of the form positionl -position2. (The use of a position
range is given later.) Values start with 1, each position value can be used only once, and
all position values from 1 to the highest value used must be accounted for.

A position range also can be used to reserve empty slots in the branch table for later
use. Only the highest value of the range is associated with the function name. The
remaining positions in the range can be used later for other functions.

When adding functions to an existing library, provide the new functions at higher
positions than in the existing branch table. Changing positions in an existing branch
table renders that shared library unusable by previously linked applications.

Building a shared library 7-15

ini t object

initialization
initialization
initialization

Specify objectwith the name of an object file that requires initialization code because
it uses an imported variable. Each object file that requires initialization must be specified.
If the shared library being built is completely self-contained (uses no imported variable),
then no # ini t directive is used because no initialization code is necessary.

All #init directives must be placed afterthe #objects directive and its
associated specifications in the specification file.

An # ini t directive is followed by one or more initialization specification lines
pertaining to the object file, object, named in the directive. Each line following the
directive is interpreted as a specification line until another directive is encountered.
Specify each line of initialization by using the following format:

import pointer

The placeholder import refers to an imported variable, and pointeris a pointer
defined within the object file named in the # ini t directive preceding the initialization
line. For each initialization line so specified, initialization code is generated in the form

pointer = &import;

in which the value of pointer is set to the absolute address of import. This
initialization code is placed in the corresponding object file in the host file.

For additional information, see "Handling External References," earlier in this chapter.

7-16 Chapter 7 Shared Libraries

#objects file

file
file
file

Specify each entry of file with the names of the object files constituting the target
shared library.

This directive can be specified only once per shared-library specification file. The
lines following the directive are interpreted as specifications of file until another directive
is encountered.

#target pathname
Specify the absolute path for the location of the target file on the target system. This
pathname is copied into executable object files and tells the operating system where to
find the target file when executing a file that uses it. The maximum length for pathname
is 64 characters.

Specification ftle example

The specification file specifies controlling information to mkshl ib about how the shared
library is to be developed. "The Shared-Library Specification File," earlier in this chapter,
gives detailed information about the statements that are used in the specification file.

The following example shows how specification statements work together. There are
six types of statements: a comment statement, which mkshl ib ignores, and five that
are interpreted by mkshl ib. The example that follows shows all six types:

Example Shared Library

#target /shlib/example_s

#address .text Ox47f00000

Building a shared library 7-17

#address .data Ox47fc0000

Only one branch table allowed.

#branch

malloc

free

realloc

sbrk

cerror%

memcpy

#objects

1

2

3

4

6

7

def .o

extdata.o

malloc.o

sfiles/sbrk.o

sfiles/cerror.o

Init statement(s) must be after #objects statements

#init def.o

end libc end

An explanation of the example file follows. First, look at the general layout of the
example. Notice that blank lines can be inserted for readability. A comment line tells
about the file.

Example Shared Library

The # # shows that this is a comment line. The mkshl ib utility ignores this line
when using the specification file. As the rest of the example shows, comment lines can
occur between any other lines without affecting the interpretation of this file.

The #target statement establishes the pathname where the target file is read
or created.

#target /shlib/example_s

7-18 Chapter 7 Shared Libraries

The two #address statements provide the locations for the . text and . data

segments of the target file when it is brought into memory. The target file is one file.

#address .text Ox47f00000

#address .data Ox47fc0000

The #branch statement signals the start of the branch table.

#branch

rnalloc 1

free 2

realloc 3

sbrk 4

cerror% 6

rnerncpy 7

The branch table lists the names of all functions in the library that are available
externally. The branch table that is constructed from this specification contains a jump
statement to each named routine. Any function within the library that is not called from
outside the library does not need to be listed. The numbers after the names are position
numbers, specifying the slot in the branch table in which to place the jump statement.

The #objects statement introduces a list of object files in the library. This tells the
rnkshl ib command what object files to process to produce the host and target file.

#objects

def .o

xtdata.o

rnalloc.o

sfiles/sbrk.o

sfiles/cerror.o

The # ini t statement is required for this library because there is an unresolved
reference in an object file, in this case, the def . o object file.

#init def .o

end libc end

Building a shared library 7-19

The # ini t statement follows the #objects statement because the def. o object
must be defined (listed under an #object statement) before the #ini t

statement that refers to it. The line that follows the # ini t statement is called an
initialization line.

end libc_end

This initialization line assigns an address to end, the absolute address of
1 ibc_end. There is only one initialization line for the # ini t def . o statement
because there is only one unresolved reference in def . o. The statement causes an
. ini t section for def. o to be placed in the host file. There are no other # ini t

statements because no other objects have unresolved references. For information on the
ini t statement, see "Handling External References," earlier in this chapter.

In the preparation of the object files that go into this example, here is how this
reference is resolved. A header file, def . h, contains this statement:

#define end (*libc_end)

Every source file in the library that references end includes def . h.

The pointer is initialized with the C statement, in def. c, by the declaration

int (*libc_end) 0;

The result of compiling such external references is an object file, def . o in this
example, that should be placed first in the object file list.

Directory and file information

The mkshlib command is in the directory /usr /bin/mkshlib. The suggested
directories for shared libraries are as follows:

/lib/* s.a

or

/usr/lib/*_s.a

/shlib/*_s

7-20 Chapter 7 Shared Libraries

host (archive) library
target (executable) library

Additional information

Additional information relating to topics discussed here can be found in the command
reference and programmer's reference documentation: ar(l), as(l), cc(l), ld(l),

a. out(4), and ar(4).

Building a shared library 7-21

8 lint Reference

Using lint I 8-2

Message categories I 8-4

The 1 int program can be used to detect bugs, obscurities, inconsistencies, and

portability problems in C programs. It is generally more restrictive than the C compiler.

Constructions that the C compiler accepts without complaint, 1 int considers wasteful

or error prone. The 1 int program is also more rigid than the C compiler with regard

to the C language type rules. Also, 1 int accepts multiple files and library

specifications and checks them for consistency.

You can suppress some or all of the 1 int checking mechanisms if they aren't

necessary for a given application.

Using lint

The lint command has the form

1 int [option ... J file... library-descriptor ...

where options are optional flags that control 1 int checking and messages, files are the
files to be checked by lint (files containing C language programs must have a . c

extension; this is mandatory for both 1 int and the C compiler), and library­
descriptors are the names of the libraries to be used in checking the program.

The 1 int library files are processed almost exactly like ordinary source files. The
only difference is that functions that are defined in a library file but aren't used in a
source file do not result in messages.

The lint program does not simulate a full library search algorithm and prints
messages if the source files contain a redefinition of a library routine.

Options

When you use more than one option, you should combine them into a single argument,
such as -ab or -xha.

The options that are currently supported by the lint program are as follows:

-a

-b

-c

8-2 Chapter 8 lint Reference

Use this option to suppress messages concerning the assignment of
long values to variables that are not long. This option is often
useful because there are a number of legitimate reasons for assigning
long values to type int.

Use this option to suppress messages concerning break statements
that are unreachable. For example, programs generated by yacc

and 1 ex (see A!UX Programming Languages and Tools, Volume 2,
for information on these programs) can have hundreds of unreachable
break statements. If the C compiler optimizer were used, these
unreachable statements would be of little importance, but the resulting
messages would clutter up the lint output. The -b option takes
care of this problem.

Use this option to treat casts as though they were assignments subject
to warning messages. (The default is to pass all legal casts without
comment, no matter how bizarre the type mixing seems.)

-h

-ly

-n

-p

-u

-v

-x

-o name

Use this option only to suppress the use of heuristics. By default,
heuristics are used to check for wasteful or error-prone constructions
and to detect bugs. For example, by default, 1 int prints messages
about variables declared in inner blocks whose names conflict with
the names of variables declared in outer blocks. Though this
construction is considered legal, it is bad programming style and
frequently a bug.
Use this option to specify libraries you want to include and have
checked by 1 int. The source code is tested for compatibility with
these libraries. This is done by getting access to library description
files whose names are constructed from the library arguments. These
files must all begin with the comment
/* LINTLIBRARY */

This comment must then be followed by a series of dummy function
definitions. The critical parts of these definitions are as follows:

• the declaration of the function return type

• whether the dummy function returns a value

• the number and types of arguments to the function

The VARARGS and ARGSUSED comments can be used to specify
features of the library functions.

Use this option to suppress checking for compatibility with either the
standard or the portable lint library. In effect, this option
suppresses all library checking.

Use this option to check program portability to other dialects of C
language. This option checks a file containing descriptions of standard
library routines that are expected to be portable.

Use this option to suppress messages concerning function and
external variables that are used and not defined or defined and not
used. For more information, refer to "Unused Variables and Functions"
later in this chapter.

Use this option to suppress messages concerning unused function
arguments. For more information, refer to "Unused Variables and
Functions" later in this chapter.

This option suppresses messages about variables referenced by
external declarations but never used.

Use this option to create a lint library from input files named
11 ib-1 name. ln.

Using lint 8-3

The - D, - u, and - I flag options of cpp(l) are also recognized as separate
arguments. By default, lint checks the programs you give it against a standard library
file that contains descriptions of programs normally loaded when a C program is run.
When the -p option is used, another file is checked that contains descriptions of the
standard library routines expected to be portable across various machines. You can use
the -n option to suppress all library checking.

Message categories
The following subsections describe the major categories of messages printed by lint.

Unused variables and functions

As sets of programs evolve and develop, variables and function arguments that were
used previously cannot be used in subsequent versions. It's not uncommon for external
variables or even entire functions to become unnecessary and yet not be removed from
the source. Although these types of errors rarely cause working programs to fail, they are
a source of inefficiency and make programs harder to understand and change. Also,
information about such unused variables and functions occasionally can serve to help
discover bugs.

The 1 int program prints messages about variables and functions that are defined
but not otherwise mentioned.

You can suppress messages regarding variables that are declared through explicit
extern statements but are never referenced. The statement

extern double sin();

evokes no comment if sin is never used, providing the - x option is used.

+ Note This agrees with the semantics of the C compiler. •

If these unused external declarations are of interest, you can use 1 int without the
-x option.

8-4 Chapter 8 lint Reference

In some programming styles, many functions are written with similar interfaces.
Frequently, some of the arguments are unused in many of the calls. The -v option is
available to suppress the printing of messages about unused arguments, including those
arguments that are unused and declared as register arguments. This can prevent a waste
of the register resources of the machine.

To suppress such messages for one function only, add the comment

!* ARGSUSED */

to the program before the function. Also, you can use the comment

/* VARARGS */

to suppress messages about variable numbers of arguments in calls to a function. If you
want to check the first several arguments and leave the later ones unchecked, include a
digit giving the number of arguments that should be checked. For example,

!* VARARGS2 */

causes only the first two arguments to be checked.
One case in which information about unused or undefined variables is more

distracting than helpful is when lint is applied to some but not all files out of a
collection that is to be loaded at one time.

In this case, many of the functions and variables defined cannot be used. Conversely,
many functions and variables defined elsewhere can be used. The - u option can be
used to suppress the spurious messages that might otherwise appear.

Set/used information

The 1 int program attempts to detect cases where a variable is used before it is set.
The 1 int program detects local variables (automatic and register storage classes)
whose first use appears earlier than the first assignment to the variable. It assumes that
taking the address of a variable constitutes a "use," as the actual use can occur at any
later time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm
very simple and quick to implement because the true flow of control need not be
discovered. It does mean that lint can print messages about some programs that are
legal, but these programs would probably be considered bad on stylistic grounds.
Because static and external variables are initialized to zero, no meaningful information

Message categories 8-5

can be discovered about their uses. The lint program does deal with initialized
automatic variables.

The set/used information also permits recognition of those local variables that are set
and never used. These are a frequent source of inefficiency and also can be symptomatic
of bugs.

Flow of control

The 1 int program tries to detect unreachable portions of the programs that it
processes. It prints messages about unlabeled statements immediately following goto,

break, continue, or return statements. An attempt is made to detect loops that
can never be left at the bottom and to recognize the special cases while (1) and
for (; ;) as infinite loops.

The 1 int program also prints messages about loops that cannot be entered at the
top. Some valid programs can have such loops but they are considered to be bad style at
best and bugs at worst.

The lint program has no way of detecting functions that are called and never
returned. Thus, a call to exit can cause unreachable code that 1 int does not detect.
This can seriously affect the determination of returned function values (see the next
section, "Function Values"). If a particular place in the program cannot be reached but
this is not apparent to 1 int, you can add the comment

/* NOTREACHED */

at the appropriate place. This informs 1 int that a portion of the program cannot be
reached.

If you give the - b option, 1 int does not print a message about unreachable
break statements. Programs generated by yacc and especially lex can have
hundreds of unreachable break statements. The -o option in the C compiler often
eliminates the resulting object code inefficiency. These unreachable statements are of
little importance. There is usually nothing you can do about them, and the resulting
messages would clutter up the 1 int output. If you want to get these messages, you
can invoke lint without the -b option.

8-6 Chapter 8 lint Reference

Function values

Sometimes functions return values that are never used. Sometimes programs incorrectly
use function "values" that are never returned. The 1 int program addresses these
problems in a number of ways.

Locally, within a function definition, the appearance of both

return (expr) ;

and

return;

is cause for alarm. The 1 int program gives you the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by
the control flow of a program reaching the end of the function. For example,

f (a) {

if (a) return (3);

g () i

In this example, if the result of a is false, f calls g and returns with no defined
return value. This triggers a message from 1 int. If g, like exit, never returns, the
message still is produced when, in fact, nothing is wrong. In practice, some potentially
serious bugs have been discovered by using this feature.

On a global scale, lint detects cases where a function returns a value that is
seldom or never used. When the value is never used, it can constitute an inefficiency in
the function definition. When the value is seldom used, it can represent bad style (for
example, not testing for error conditions).

The serious problem of using a function value when the function does not return one
is also detected.

Message categories 8-7

Type checking

The lint program enforces the C language type-checking rules more strictly than do
the compilers. The additional checking is in four major areas:

• across certain binary operators and implied assignments

• at the structure selection operators

• between the definition and uses of functions

• in the use of enumerations

There are several operators that have an implied balance between operand types.
The assignment, conditional (?:),and relational operators have this property. The
argument of a return statement and expressions used in initialization suffer similar
conversions. In these operations, char, short, int, long, unsigned, float,

and double types can be freely mixed.
The types of pointers must agree exactly except that arrays of xs can, of course, be

intermixed with pointers to xs.
The type-checking rules also require that, in structure references, the left operand of

the -> must be a pointer to structure; the left operand of the dot (.) must be a structure;
and the right operand of both operators must be a member of the structure implied by
the left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types f 1 oat

and double can be freely matched, as can the types char, short, int, and
unsigned. Also, pointers can be matched with the associated arrays. Aside from this,
all actual arguments must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types or other enumerations and that the only operations applied are
=,initialization, ==, ! =,function arguments, and return values.

If you want to tum off strict type checking for an expression, you should add the
comment

/* NOSTRICT */

to the program immediately before the expression. This comment prevents strict type
checking for the next line in the program only.

8-8 Chapter 8 lint Reference

Type casts

The type-cast feature in the C language was introduced largely as an aid to producing
more portable programs. Consider the assignment

p = 1;

where p is a character pointer. The lint program prints a message as a result of
detecting this. Consider the assignment

p = (char *)1;

in which a cast is used to convert the integer to a character pointer. The programmer's
intentions are clearly signaled. It seems harsh for 1 int to continue to print messages
about this. On the other hand, if this code is moved to another machine, such code
should be looked at carefully. The - c flag controls the printing of comments about
casts. When -c is in effect, casts are treated as though they were assignments subject
to messages. Otherwise, all legal casts are passed without comment, no matter how
strange the type mixing seems to be.

Nonportable character use

On some systems, characters are signed quantities with a range from -128 to 127. On
other C language implementations, characters take on only positive values. Thus, lint

prints messages about certain comparisons and assignments being illegal or nonportable.
For example,

char c;

if ((c = get char ()) < 0) ...

works on one machine but fails on machines whose characters always take on positive
values. The real solution is to declare c an integer because get char is actually
returning integer values. In any case, 1 int prints the message

nonportable character comparison

Message categories 8-9

A similar issue arises with bitfields. When constant values are assigned to bitfields,
the field can be too small to hold the value. This is true especially because on some
machines bitfields are considered signed quantities. While it might seem logical to
consider that a two bitfield declared of type int cannot hold the value 3, the problem
disappears if the bitfield is declared to have type unsigned.

Assignments of long to int

Bugs can arise from the assignment of long to int, which can truncate the contents.
(Truncation happens only when long types hold a longer quantity than int types.
In the current implementation, long types are the same length as int types.) This
can happen in programs that are incompletely converted to use typedef statements.
When a typedef variable is changed from int to long, the program can stop
working. This is because some intermediate results can be assigned to int types,
which are truncated. Because there are a number of legitimate reasons for assigning
long types to int types, detecting these assignments is disabled by the -a option.
If 1 int is using the -p option to detect possible portability problems, however, it
can print the message

warning: conversion from long may lose accuracy

even if you're using the -a option.

Strange constructions

Several perfectly legal but somewhat strange constructions are detected by 1 int. The
messages hopefully encourage better code quality and clearer style and can even point
out bugs. The -h option is used to suppress the majority of these checks.

8-10 Chapters lint Reference

For example, in

*p++;

the * does nothing. This provokes the message

null effect

from lint. For another example,

unsigned x;

if(x < 0) ...

results in a test that never succeeds. For a third example,

unsigned x;

if(x > 0) ...

is equivalent to

if (x != 0)

which might not be the intended action. The 1 int program prints the message

degenerate unsigned comparison

in these latter two cases.
If a program contains something similar to

if (1 ! = 0) ...

1 int prints the message

constant in conditional context

because the comparison of 1 to 0 gives a constant result.
Another construction detected by 1 int involves operator precedence. Bugs that

arise from misunderstandings about operator precedence can be compounded by
spacing and formatting, making such bugs extremely hard to find. For example,

if (x& 0 7 7 = = 0) ...

or

X<<2 + 40

probably do not do what was intended. The best solution is to enclose such expressions
in parentheses; 1 int encourages this with an appropriate message.

When the - h option is not used, 1 int prints messages about variables that are
redeclared in inner blocks in a way that conflicts with their use in outer blocks. Although
this is considered legal, it remains bad style, usually unnecessary, and frequently a bug.

Message categories 8-11

Old syntax

Several forms of older syntax are now illegal. These fall into two classes: (1) assignment
operators and (2) initialization.

The older forms of assignment operators (for example, = +, = - , and so on) can
cause ambiguous expressions. For example,

a =-1;

can be taken as either

a =- 1;

or

a = -1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a
macro substitution. The newer and preferred operators (for example, + = and - =)
have no such ambiguities. To encourage abandoning the older forms, 1 int prints
messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1;

to initialize x to 1. This also caused syntactic difficulties. For example,

int x (-1);

looks somewhat like the beginning of a function definition

int x (y) { ...

The compiler must read past x to determine the correct meaning. Again, the
problem is even more perplexing when the initializer involves a macro. The current
syntax places an equal sign between the variable and the initializer. For example,

int x = -1;

This is free of any possible syntactic ambiguity.

8-12 Chapter 8 lint Reference

Pointer alignment

Certain pointer assignments can be reasonable on some machines and illegal on others,
due entirely to alignment restrictions. The lint program tries to detect cases where
such alignment problems might arise by finding pointers that are assigned to other
pointers. This message appears:

possible pointer alignment problem

Multiple uses and side effects

In complicated expressions, the best order in which to evaluate subexpressions can
depend on the machine being used. For example, on machines (like the PDP-11) in
which the stack runs backward, function arguments are probably best evaluated from
right to left. On machines with a stack running forward, left to right seems most
attractive. Function calls embedded as arguments of other functions might or might not
be treated in a similar manner to ordinary arguments. The same uncertainty arises with
other operators that have side effects, such as the assignment operators and the
increment and decrement operators.

To avoid compromising the efficiency of the C language on a particular machine, the
C language leaves the order of evaluation of complicated expressions up to the local
compiler. In fact, the various C compilers differ considerably in the order in which they
evaluate complicated expressions. In particular, if any variable changed by a side effect
is also used elsewhere in the same expression, the result is explicitly undefined.

The lint program checks for the important special case where a simple scalar
variable is affected. For example,

a[i] = b[i++J;

causes 1 int to print the message

warning: i evaluation order undefined

to call attention to this condition.

Message categories 8-13

9 s db Reference

Using sdb I 9-3

Display and manipulation I 9-10

A controlled testing environment I 9-12

Machine-language debugging I 9-15

This symbolic debugger is useful for debugging A/UX applications that do not call the

A/UX Toolbox. Symbolic access to all variables is available, and procedures can be

called directly from s db. The s db program is useful both for examining core images

of cancelled programs and for providing an environment in which you can monitor and

control the execution of a program. This debugger works on source code compiled with

the A/UX compilers c89, cc, and f77.

The s db program allows you to interact with a debugged program at the source

language level. When debugging a core image from a cancelled program, s db reports

which line in the source program caused the error and allows symbolic access to all

variables, displayed in the proper format.

You can place breakpoints at selected statements or step through the program line by

line. To facilitate specification of lines in the program without a source listing, sdb

provides a mechanism for examining the source text. You can call procedures directly

from the debugger. This feature is useful both for testing individual procedures and for

calling user-provided routines that provide formatted printouts of structured data.

9-2 Chapter 9 sdb Reference

Using sdb

To use sdb to its full capabilities, you need to compile the source program with the -g

option. This causes the compiler to generate additional information about the variables
and statements of the compiled program. When the - g option is specified, you can use
sdb to trace the called functions at the time of the termination and to display the values
of variables interactively.

A typical sequence of shell commands for debugging a core image is

cc -g prgm.c -o prgm

pr gm

Bus error - core dumped

sdb prgm

main~25: x[i] = O;

*
In this example, the program prgm was compiled with the -g option and then
executed. An error caused a core dump. The sdb program was then invoked to
examine the core dump to determine the cause of the error. It reports that the bus error
occurred in function main at line 2 5 (line numbers are always relative to the
beginning of the file) and displays the source text of the offending line. sdb then
prompts you with an *, indicating that it awaits a command.

It is useful to know that sdb keeps track of the current function and current line. In
this example, they are initially set to main and 2 5, respectively.

Arguments

In the above example, sdb was called with one argument, prgrn. In general, sdb

takes the following three arguments on the command line:

1. The name of the executable file to be debugged, which defaults to a . out when
not specified. Even with the new COFF format, the executable file is named a. out.

However, sdb does not work on old a. out format files. Only COFF files can be
used with s db.

2. The name of the core file, defaulting to core.

3. The name of the directory containing the source of the program being debugged.

Using sdb 9-3

The sdb program currently requires all source code to reside in a single directory.
The default is the working directory. In the previous example, the default value for the
second and third arguments was desired, so only the first argument was specified.

If an error occurs in a function that was not compiled with the - g option, s db

prints the function name and the address at which the error occurred. The current line
and function are set to the first executable line in main. The sdb program prints error
message if main was not compiled with the -g option, but debugging can continue
for those routines compiled with the -g option.

Example

The following example is a typical example of how s db can be used. The first part of
the example is the source file used to create the output file. The second part illustrates a
sample session with sdb.

cat testdiv2.c

main(argc, argv, envp)

int argc;

char **argv, **envp; {

int i;

div2(i)

int i; {

i = div2(-1)

printf ("-1/2

int j;

j = i>>l;

return(j)

cc -g testdiv2.c

a.out

-1/2 -1

9-4 Chapter 9 sdb Reference

%d\n", i);

-With the output file created, sdb can now be invoked to find the problem:

Session

sdb

No core image

* j"'·div2

7: div2(i)

*z

7:

8:

9:

10:

11:

*div2:b

div2(i)

int j;

j = i>>l;

return(j);

Annotations

warning message from s db

search for functioµ di v2

it starts on line 7

print the next few lines

place breakpoint at start of di v2

div2:9 b sdb echoes procedure name and line number

*r

a.out

Breakpoint at

div:2:9: j = i>>l;

run the program
sdb echoes command line executed
execution stops just before line 9

* t print trace of subroutine calls
div2(i=-1) [testdiv2.c:9]

main (argc=l, ...

* i I print i

-1

*s

div2:10: return(j);

*j/

-1

*9d

single step
execution stops before line 1 o

print j

delete the breakpoint
(continued)ltt>-

Using sdb 9-5

Session

*div2(1)/

0

*div2(-2)/

-1

*div2(-3)/

-2

*q

Printing a stack trace

Annotations

run di v2 with other arguments

It's often useful to obtain a listing of the function calls that led to the error. You can do so
with the t command. For example,

*t

sub(x=2,y=3)

inter (i=16012)

[prgrn.c:25]

[prgrrn.c:96

rnain(argc=l,argv=Ox7fffff54,

envp=Ox7 ff ff f Sc) [prgrn. c: 15]

This indicates that the error occurred within the function sub at line 2 s in file
prgrn. c. The sub function was called with the arguments x=2 and y=3 from
inter at line 96. The inter function was called from main at line 15. The
main function is always called by the shell with three arguments often ref erred to as
argc, argv, and envp. Note that argv and envp are pointers, so their values
are printed in hexadecimal.

9-6 Chapter 9 sdb Reference

Examining variables

You can use the sdb program to display variables in the stopped program. To do so,
type each name followed by a slash. For example,

*errflag/

causes sdb to display the value of variable err flag. Unless otherwise specified,
variables are assumed to be local to or accessible from the current function. To specify a
different function, use the form

*sub:i/

to display variable i in function sub . f 7 7 users can specify a common block
variable in the same manner.

The sdb program supports a limited form of pattern matching for variable and
function names. The symbol * is used to match any sequence of characters of a
variable name; ? matches any single character.

The following commands are useful examples of wildcards:

x/

*sub:y?

**/

The command * x * I prints the values of all variables beginning with x, the
command *sub : y? I prints the values of all two-letter variables in function sub

beginning with y, and the command * * I prints all variables. In the first and last
examples, only variables accessible from the current function are printed. The command

**:*/

displays the variables for each function on the call stack.
The sdb program normally displays the variable in a format determined by its type,

as declared in the source program. If you want to request a different format, place a
specifier after the slash. The specifier consists of an optional length specification
followed by the format. The length specifiers are as follows:

b one byte

h two bytes (half word)

1 four bytes (long word)

Using sdb 9-7

The lengths are effective with the formats d, o, x, and u only. If you don't
specify a length, the word length of the host machine is used. A numeric length specifier
can be used for the s or a commands. These commands normally print characters
until either a null is reached or 128 characters are printed. The number specifies how
many characters should be printed.

You can use a number of format specifiers with sdb, as follows:

a print characters, starting at the variable address, until a null is reached

c character

d decimal

f 32-bit single-precision floating point

g 64-bit double-precision floating point

i interpret as a machine-language instruction

o octal

p pointer to function

s assume variable is a string pointer and print characters starting at the address pointed
to by variable until a null is reached

u decimal unsigned

x hexadecimal

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.
The sdb program also knows about structures, arrays, and pointers so that all of

the following commands work:

*array[2] [3] I

*syrn.id/

*psyrn->usage/

*xsyrn[20] .p->usage/

9-8 Chapter 9 sdb Reference

The only restriction is that array subscripts must be numbers. Depending on your
machine, you might be able to gain access only to one-dimensional arrays. Note that as a
special case,

*psym->/d

displays the location pointed to by psym in decimal.
You also can display core locations by specifying their absolute addresses. The

command

*1024/

displays location 1o2 4 in decimal. As in the C language, numbers also can be specified
in octal or hexadecimal, so the above command is equivalent to both

*02000/

and

*Ox400/

It is possible to mix numbers and variables. For example,

*1000.x/

refers to an element of a structure starting at address 1 o o o, and

*1000->x/

refers to an element of a structure whose address is at 1 o o o. For commands of the type
* 1 o o o . x I and * 1 o o o - > x I, the s db program uses the structure template of the
last structure referenced.

The address of a variable is printed with the =.For example,

*i=

displays the address of i. Another useful feature, discussed more later, is the command

*.I

which redisplays the last variable typed.

Using sdb 9-9

Display and manipulation
The s db program is designed to make it easy for you to debug a program without
constantly referring to a current source listing. Facilities are provided that perform
context searches within the source files of the program you're debugging and display
selected portions of the source files. The commands are similar to those of the A/UX:
system text editor ed(l). Like the editor, sdb keeps track of the current file and the
current line within the file.

The s db program also knows how the lines of a file are partitioned into functions,
so it can find the current function. As noted elsewhere, the current function is used by a
number of sdb commands.

Displaying the source file

There are four commands for displaying lines in the source file. They are useful for
examining the source program and for determining the context of the current line. The
commands are as follows:

p

w

z

CONTROL-D

Prints the current line.

Prints a window of ten lines around the current line.

Prints ten lines starting at the current line; this command also advances
the current line by ten.

Scrolls and prints the next ten lines and advances the current line by
ten; this command is used to display long segments of the program
cleanly.

When a line from a file is printed, it is preceded by its line number. This not only
gives an indication of its relative position in the file but also is used as input by some
sdb commands.

9-10 Chapter 9 sdb Reference

Displaying another source file or function

The e command is used to display a different source file. Without any arguments, the e

command prints the current function and filename. Additionally, these forms can be used:

*e function

*e file.c

The first form makes the file containing the named function the current file. The
current line becomes the first line of the function. The other form causes the named file
to become current. In this case, the current line becomes the first line of the named file.

Changing the current line display

The z and CoNTROL-D commands have a side effect of making a new line the current
line in the source file. The following paragraphs describe other commands that change
the display.

There are two commands for searching for instances of regular expressions in source
files, which are the following:

*/regular expression/

*?regular expression?

This command searches forward through the file
for a line containing a string that matches the
regular expression.

This command searches backward through the file
for the same thing.

The trailing slash character (I) and question mark (?) can be omitted from these
commands. Regular expression matching is identical to that of ed(l).

The + and - commands can be used to move the current line forward or
backward by a specified number of lines. Typing a new line advances the current line by
one and typing a number causes that line to become the current line in the file. These
commands can be combined with the display commands. For example,

*+15z

advances the current line by 15 and then prints 10 lines.

Display and manipulation 9-11

A controlled testing environment
One very useful feature of sdb is breakpoint debugging. After entering sdb, certain
lines in the source program can be specified to be breakpoints. The program is then
started with the sdb command. The program is executed as normal until it's about to
execute one of the breakpoints. The program stops and sdb reports the breakpoint
where the program stopped. At this point, sdb commands can be used to display the
trace of function calls and the values of variables. If you're satisfied the program is
working correctly up to the breakpoint, you can delete some breakpoints and set others;
then program execution can continue from the point at which it stopped.

A useful alternative to setting breakpoints is single stepping. You can request the sdb

program to execute the next line of the program and then stop. This feature is especially
useful for testing new programs, so they can be verified statement by statement.

If an attempt is made to single step through a function that is not compiled with the
-g option, execution proceeds until a statement in a function compiled with the -g

option is reached.
You also can have the program execute one machine-level instruction at a time. This

is particularly useful when the program is not compiled with the - g option.

Setting and deleting breakpoints

You can set breakpoints at any line in a function that contains executable code. The
command formats are as follows:

*12b

*proc:12b

*proc:b

*b

Sets a breakpoint at line 12 in the current file; line numbering starts at
the beginning of the file, as printed by the source file display commands.

Sets a breakpoint at line 12 of function proc.

Sets a breakpoint at the first line of proc.

Sets a breakpoint at the current line.

You can delete breakpoints with the following commands:

*12d

*proc:12d

*proc:d

9-12 Chapter 9 sdb Reference

Deletes a breakpoint at line 12 in the current file.

Deletes a breakpoint at line 12 of function proc.

Deletes a breakpoint at the first line of proc.

In addition, you can use the command d to interactively delete the breakpoints.
Each breakpoint location is printed, and a line is read from the user. You can delete a
breakpoint if you specify a y or d at the beginning of the line.

The B command prints a list of the current breakpoints, and the D command deletes
all breakpoints. sdb can automatically perform a sequence of commands at a breakpoint
and then continue execution. You can do this with another form of the b command:

*12b t;x/

This causes both a trace back and the printing of value x each time execution gets to line
12. The a command is a variation of the above command with the following two forms:

*proc:12a prints the source line each time it is about to be executed

*proc:a prints the function name and its arguments each time it is called

For both forms of the a command, execution continues after the function name or
source line is printed.

Running the program

The r command begins program execution. It restarts the program as if it were
invoked from the shell. The command

*r args

runs the program with the given arguments as if it were typed on the shell command
line. If no arguments are specified, sdb uses the arguments from the last execution of
the program. To run a program with no arguments, use the R command.

After the program starts, execution continues until a breakpoint is encountered, a
signal such as interrupt or quit occurs, or the program terminates. In all cases, after an
appropriate message is printed, control returns to sdb.

You can use the c command to continue executing a stopped program. A line
number can be specified, as in

*proc:12c

A controlled testing environment 9-13

This places a temporary breakpoint at the named line. sdb deletes the breakpoint
when the c command finishes. There is also a c command that continues but passes
back to the program the signal that stopped the program. This is useful for testing user­
written signal handlers. Execution can be continued at a specified line with the g

command. For example,

*17 g

continues at line 1 7 of the current function. Use this command to avoid executing a
section of code that you know to be bad. You should not attempt to continue execution
in a function other than the one in which the breakpoint is located.

Use the s command to run the program for a single line. It is useful for slowly
executing the program to examine its behavior in detail. An important alternative is the s
command. This command is like the s command, but does not stop within called
functions. Use it when you're confident that the called function works correctly but you
want to test the calling routine.

The i command runs the program one machine-level instruction at a time, while
ignoring the signal that stopped the program. Its uses are similar to those of the s

command. There is also an I command, which causes the program to execute one
machine-level instruction at a time, but passes the signal that stopped the program back
to the program.

Calling functions

You can call any of the program functions from sdb. This is useful both for testing
individual functions with different arguments and for calling a function that prints
structured data in a nice way. There are two ways to call a function:

*proc(argl, arg2, ...)

*proc(argl, arg2, ...)/m

The first simply executes the function. You can use the second format for calling
functions; it executes the function and prints the value that it returns. The call prints the
value in decimal format unless some other format is specified by m. Arguments to
functions can be integer, character, or string constants or values of variables that are
accessible from the current function.

9-14 Chapter 9 sdb Reference

If a function is called when the program isn't stopped at a breakpoint (such as when
a core image is being debugged), all variables are initialized before the function is
started. This makes it impossible to use a function that formats data from a dump.

Machine-language debugging

The sdb program has facilities for examining programs at the machine-language level.
You can print the machine-language statements associated with a line in the source
code, and you can place breakpoints at arbitrary addresses. You also can use the sdb

program to display or modify the contents of the machine registers.

Displaying machine-language statements

To display the machine-language statements associated with line 2 s in function
main, use the command

*rnain:25?

The ? command is identical to the I command except that it displays from text
space. The default format for printing text space is the i format, which interprets the
machine-language instructions. You can press CoNTROL-D to print the next ten instructions.

You can specify absolute addresses instead of line numbers by appending a colon(:)
to them. For example,

*Ox1024:?

displays the contents of address Oxl o 2 4 in text space. Note that the command

*Ox1024?

displays the instruction corresponding to line ox 1o2 4 in the current function. You
also can set or delete a breakpoint by specifying its absolute address. For example,

*Oxl024:b

sets a breakpoint at address Ox1024.

Machine-language debugging 9-15

Manipulating registers

The x command prints the values of all the registers. Also, you can name individual
registers instead of variables by appending a % to their names. For example,

*r3%

displays the value of register r 3.

Other commands

Use the q command to exit sdb. The exclamation mark (!)command in sdb is
identical to the same command in ed(l). It takes you to the shell, where you can
execute a command.

You can change the values of variables when the program is stopped at a breakpoint.
You can do this with the command

* variable! value

which sets the variable to the value you enter. The value can be a number, character
constant, register, or the name of another variable. If the variable is of type float or
double, it also can be a floating-point constant.

9-16 Chapter 9 sdb Reference

10 dbx Reference

Using dbx I 10-2

This chapter describes the dbx debugger, a tool for source-level debugging and

execution of C programs under A/UX.

The debugger operates by running the program being debugged as a child process. The

debugger maintains control of the program being debugged by means of system hooks

available through the ptrace(2) system call.

Using dbx

The dbx debugger can be used to symbolically debug all A/UX applications. It is
particularly useful if the application makes calls to the A/UX Toolbox. The debugger can
examine several kinds of code, including Macintosh and COFF binaries.

For C code compiled with the appropriate options, dbx can provide the following
functions:

• examination of the symbol table

• variable, expression, and condition tracing

• function and procedure tracing

• source-line tracing

• signal trapping

• variable assignment

• step-by-step execution

• variable-printing and expression-printing capabilities

• real-time editing capability

dbx also has the capability of examining object code at the machine-language level
and its machine-level facilities can be used on any program. The ability to examine
machine language is useful when you don't have the source code for a program or when
you want to inspect compiled assembly code to see exactly what the compiler and
optimizer did to your source code.

dbx syntax

The command-line syntax for dbx is

dbx [-rJ [-iJ [-DJ [-I dirJ [-c fileJ [objfile [coredumpJ J

The obffile is an object file produced by the c 8 9, cc, or f7 7 compilers. To use
symbolic debugging, the object file must be created using the -g compiler command
option. Object files created with the -g option contain a symbol table that includes the
names of all the source files translated by the compiler to create it. These files are
available for examination while using the debugger. Files created without the -g

10-2 Chapter 10 dbx Reference

option can be debugged, but the symbol-table information is not available. Object files
created with the - c option are intermediate relocatable object code files, which can be
examined but not run. (Such files are called "dot-oh" files (. o) after the extension
appended to the filename.)

+ Note Optimized code cannot be symbolically debugged with dbx; the code
optimizer is disabled when the - g option of the C compiler is used. •

If a file named core exists in the current directory or a coredump file is specified,
dbx can be used to examine the state of the program when it faulted.

If the file . dbxini t exists in the current directory, the debugger commands in it
are executed. dbx also checks for a . dbxini t in the user's home directory, if there
isn't one in the current directory.

The command line options and their meanings are as follows:

-c file

-r

-D

-I dir

Execute the dbx commands in the file before reading from
standard input.

Force dbx to act as though standard input is a terminal.

Execute objfile immediately. (If it terminates successfully, dbx exits.
Otherwise, dbx reports the reason for termination and you are
offered the option of entering the debugger or letting the program
fault. dbx reads from I dev It t y when - r is specified and
standard input is not a terminal.)

Add Macintosh OS trap names; this is used in debugging Macintosh
hybrid applications.

Add dir to the list of directories that are searched when looking for a
source file. (Normally dbx looks for source files in the current
directory and in the directory where objfile is located. The directory
search path also can be set within dbx with the use command.)

Unless - r is specified, dbx just prompts using the prompt (dbx) and waits for
a command.

Using dbx 10-3

Example

The following example shows first a C source-code file and then the invocation of the
dbx debugger.

/*this is a C source code file, hello.c */

#include <stdio.h>

int globall;

int global2 = 2;

main (char *argc[], int argv, char *envp[])

register int a;

int b;

a 10;

b 20 + global2;

printme (a, b);

exit (0);

static printme (int a, int b)

printf ("hello world %d %d \n", a, b);

To use the debugger on this file, you first compile the file,

cc -g hello.c -o hello

then invoke the debugger

dbx hello

The debugger responds with something like

dbx version 3.6 of 5/15/91 21:01 (salmon).

Type 'help' for help.

reading symbolic information

The debugger is now ready to accept commands.

10-4 Chapter 10 dbx Reference

Command list

Table 10-1 shows an alphabetical list of dbx commands. The following sections group
the commands by function and describe them in detail.

Table 10-1 dbx commands

alias f unc run tracei

assign help set unalias

call ignore sh unset

catch list source up

cont next status use

delete nexti step what is

down print stepi where

dump quit stop where is

edit rerun stopi which

file return trace

Execution and tracing commands

You can use a variety of commands (discussed in the following list) to see how the
program executes. breakpoints can be set in several ways: dbx can stop at a certain
source-line number, at a certain signal, when a procedure or function is called, when a
variable is changed, or when a condition becomes true.

run [argsJ [<filename] [>filename]
rerun [mgsJ [<filename] [>filename]
These commands start executing objfile, passing args as command-line arguments; the
characters < and > can be used to redirect output and input in the usual manner.
When rerun is used without any arguments, the previous argument list is passed to
the program; otherwise it is identical to run.

Using dbx 10-5

trace [in procedure/function] [if condition]
trace source-line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-line-number [i f condition]
trace variable [in procedure/function] [if condition]
These commands have tracing information printed when the program is executed. A
number is associated with the command that can be used with the delete command
to turn off the tracing.

The first argument describes what is to be traced. If it is a source-line number, dbx

prints the line immediately prior to being executed. Source-line numbers in a file other
than the current one must be preceded by the name of the file in double quotation
marks and a colon, for example,

"yoyodyne.c":21

If the argument is a procedure or function name, every time it is called dbx prints
information telling what routine called it, from what source line it was called, and what
parameters were passed to it. In addition, its return is noted. If the argument is a
function, dbx also prints the value that function returns.

If the argument is an expression with an at clause, dbx prints the value of the
expression whenever the identified source line is reached.

If the argument is a variable, dbx prints the name and value of the variable
whenever it changes. Execution is substantially slower during this form of tracing.

If no argument is specified, dbx prints all source lines before executing them.
Execution is substantially slower during this form of tracing.

The clause "in procedure/function" restricts tracing information to be printed only
while executing inside the given procedure or function.

The term condition is a Boolean expression and is evaluated prior to printing the
tracing information; if it is false, the information is not printed.

stop if condition
st op at source-line-number [if condition]
stop in procedure/function [if condition]
st op variable [i f condition]
These commands stop execution when the given line is reached, procedure or function
is called, variable is changed, or condition becomes true. Execution can be resumed with
the cont command.

10-6 Chapter 10 dbx Reference

status [> filename]
This command prints the currently active trace and stop commands.

delete command-number ...
This command removes traces or stops corresponding to the given numbers. The
status command prints the numbers associated with traces and stops.

catch number
catch signal-name
ignore number
ignore signal-name
These commands start or stop trapping a signal before it is sent to the program. This is
useful when a program being debugged handles signals such as interrupts. A signal can
be specified by number or by a name (for example, SIG INT). Signal names are not
case sensitive and the s r G prefix is optional. By default, all signals are trapped except
SIGCONT, SIGCHILD, SIGALRM, and SIGKILL.

cont integer
cont signal-name
These commands continue execution from where the process stopped. If a signal is
specified, the process continues as though it received the signal. Otherwise, the process
is continued as though it had not stopped.

Execution cannot be continued if the process finishes, that is, if it called exit. Even
if this call is made, however, the user can examine the program state because dbx

does not allow the process to actually exit.

step

This command executes one source line.

next

This command executes up to the next source line. The difference between next and
step is that if the line contains a call to a procedure or function, the step command
stops at the beginning of that block, while the next command does not.

Using dbx 10-7

return [procedure]
This command continues until the named procedure is returned to, or until the current
procedure returns, if none is specified.

ca 11 procedure (parameters)
This command executes the object code associated with the named procedure or function.

Example

The following examples of dbx sessions demonstrate the various commands. To begin
the examples for this chapter, the source is listed first so you know the number of the
program assigned to each source line. (The 1 is t command is covered in the section
"Accessing Source Files," later in this chapter.)

(dbx) list 1, 100

1 #include <stdio.h>

2

3 int globall;

4 int global2 = 2;

5

6 main (char *argc[], int argv, char *envp[])

7

8

9 register int a;

10 int b;

11

12

13

a

b

10;

20 + global2;

14 printme (a, b);

15 exit (0) ;

16

17

18 static printme (int a, int b)

10-8 Chapter 10 dbx Reference

19

20

21 printf ("hello world %d %d \n", a, b);

22

The run command executes the program.

(dbx) run

hello world 10 22

The st op command sets breakpoints at source lines 12 and 14, and the
status command checks which commands are active.

(dbx) stop at 12

[1] stop at "hello.c":12

(dbx) stop at 14

[2] stop at "hello.c":14

(dbx) status

[1] stop at "hello.c":12

[2] stop at "hello.c":14

The delete command removes the breakpoint at source line 12, and again the
status command checks which commands are active.

(dbx) delete 1

(dbx) status

[2] stop at "hello.c" :14

The run command executes the program until the breakpoint is reached. The
program stops and reports the source line at which it stopped. The cont command is
subsequently used to resume execution.

(dbx) run

[2] stopped in main at line 14 in file "hello.c"

14 printme (a, b);

(dbx) cont

hello world 10 22

execution completed

Using dbx 10-9

You also can use the step command to single step through the execution after a
breakpoint.

(dbx) run

[2] stopped in main at line 14 in file "hello.c"

14 printme (a, b);

(dbx) step

stopped in printme at line 20 in file "hello.c"

20

(dbx) step

stopped in printme at line 21 in file "hello.c"

21

(dbx) step

printf ("hello world %d %d \n", a, b);

hello world 10 22

program exited

The trace command prints information as the program is executing. Again, the
status command reports all stop and trace settings.

(dbx) trace

[5] trace

(dbx) status

[2] stop at "hello.c":l4

[5] trace

When a trace command is given without arguments, each source line is printed
immediately before it is executed.

(dbx) run

entering

trace:

trace:

trace:

trace:

function

8

12

13

14

main

a 10;

b 20 + global2;

printme (a, b);

[2] stopped in main at line 14 in file "hello.c"

14

(dbx) cont

10-10 Chapter 10 dbx Reference

printme (a, b);

entering function printme

trace: 20

trace: 21 printf ("hello world %d %d \n", a, b);

hello world 10 22

program exited

You also can trace functions, variables, expressions, and specific source lines.

(dbx) status

[SJ trace

(dbx) delete 5

(dbx) trace printme

[8] trace printme

(dbx) run

calling printme(a 10, b 22) from function main

hello world 10 22

returning 19 from printme

execution completed

Printing variables and expressions

Names are resolved, first using the static scope of the current function and then using the
dynamic scope if the name is not defined in the static scope. If static and dynamic
searches do not yield a result, dbx chooses an arbitrary symbol and prints the message

[using qualified name]

The name resolution procedure can be overridden by qualifying an identifier with a
block name, for example, module. variable. For C, dbx treats source files as modules
named by the filename without the usual . c suffix.

Expressions are specified with an approximately common subset of C and Pascal
syntax. Indirection can be denoted using either a prefix * or a suffix "; array subscripts
are enclosed by brackets ([J). The field reference operator (.)can be used with pointers
as well as records, making the C operator -> unnecessary (although it is supported).

Using dbx 10-11

Types of expressions are checked; the type of an expression can be overridden by
using type-name (expression). When there is no corresponding named type, the special
constructs & type-name and $ $tag-name can be used to represent a pointer to a named
type or C structure tag.

assign variable = expression
Assign the value of the expression to the variable.

dump [procedure] [>filename]
Print the names and values of variables in the given procedure, or the current one if
none is specified. If the procedure given is " . ", all the active variables are dumped.

print expression [, expression ... J

Print the values of the expressions.

whatis name
Print the declaration of the given name, which can be qualified with block names as
explained earlier in this section.

which identifier
Print the full qualification of the given identifier, that is, the outer blocks with which the
identifier is associated.

up [count]
down [count]
Move the current function, which is used for resolving names, up or down the stack
count levels. The default count is 1.

where

Print a list of the active procedures and functions and the argument passed to them.

whereis identifier
Print the full qualification of all the symbols whose name matches the given identifier.
The order in which the symbols are printed is not meaningful.

10-12 Chapter 10 dbx Reference

Example

To show the effect of some of these commands, the following example sets a breakpoint
and runs the program:

(dbx) stop at 13

[1] stop at "hello.c":13

(dbx) run

[1] stopped in main at line 13 in file "hello.c"

13 b = 20 + global2;

The assign command lets you change the value of a variable; the print

command displays the value of variables of expressions. Note that at the breakpoint, b

is not assigned a value because the program stops before the source line is executed.

(dbx) assign a 80

(dbx) print a, b

80 0

(dbx) cont

hello world 80 22

execution completed

The where command prints a list of the active functions and the arguments passed
to them.

(dbx) run

[1] stopped in main at line 13 in file "hello.c"

13 b = 20 + global2;

(dbx) wheLe

main(argc = Oxl, argv

13 in "hello.c"

_start() at OxlOb

4294966980, envp Oxfffffecc), line

The whereis command prints a list of all the functions its argument is located within.

(dbx) whereis a

hello.printme.a hello.main.a

Using dbx 10-13

The dump command prints the names and values of all variables in a given
function (or the current function if none is named).

(dbx) dump

main(argc = Oxl, argv

13 in "hello.c"

b 0

a 10

(dbx) assign a 80

(dbx) dump

main(argc = Oxl, argv

13 in "hello.c"

b 0

a 80

4294966980, envp Oxfffffecc), line

4294966980, envp Oxfffffecc), line

The what is command prints the declaration of the variable or function you
provide as an argument to the command.

(dbx) whatis a

register int a;

(dbx) whatis printme

int printme(a, b)

int a;

int b;

Accessing source files

I regular expression [I J

? regular expression [? J

Search forward or backward in the current source file for the given pattern.

10-14 Chapter 10 dbx Reference

edit [filename]
edit procedure/function-name
Invoke an editor on filename or the current source file if no filename is specified. If a
procedure or function name is specified, the editor is invoked on the file that contains it.
Which editor is invoked by default depends on the installation. You can override the
default by setting the environment variable EDITOR to the name of the desired editor.

f i 1 e [filename]
Change the current source filename to filename. If none is specified, the current source
filename is printed.

func [procedure/function]
Change the current function. If none is specified, print the current function. Changing
the current function implicitly changes the current source file to the one that contains the
function; it also changes the current scope used for name resolution.

1 is t [source-line-number [, source-line-number] J

1 is t procedure/function
List the lines in the current source file from the first line number to the second, inclusive.
If no lines are specified, the next $listwindow lines are listed (the default is 10). If
the name of a procedure or function is given, lines n-k to n+ k are listed, where n is the
first statement in the procedure or function and k is defined by the value
$listwindow. An example of the list command is shown in the example portion of
the section "Execution and Tracing Commands," earlier in this chapter.

use directory-list
Set the list of directories to be searched when looking for source files.

Using dbx 10-15

Command aliases and variables

When commands are processed, dbx first checks to see whether the word is an alias
for either a command or a string. If it is an alias, then dbx treats the input as though
the corresponding string (with values substituted for any parameters) were entered. The
formats for aliases are as follows:

alias name name

alias name string

alias name (parameters) string

For example, to define an alias rr for the command rerun, you can use the
command

alias rr rerun

To define an alias called b that sets a stop at a particular line, you can use the
command

alias b(x) "stop at x"

The command b (12) subsequently expands to st op at 12.

set name [= expression]
The set command defines values for debugger variables. The names of these
variables cannot conflict with names in the program being debugged and are expanded
to the corresponding expression within other commands. The following variables have a
special meaning:

$hexchars
$hexints
$hexof fsets
$hexstrings

$listwindow

10-16 Chapter 10 dbx Reference

When these variables are set, dbx prints out characters, integers,
offsets from registers, or character pointers, respectively, in
hexadecimal.

The value of this variable specifies the number of lines to list around a
function or when the 1 is t command is given without any
parameters. Its default value is 10.

$unsafecall When $unsaf ecall is set, strict type checking is turned off for
$unsafeassign arguments to subroutine calls or function calls (for example, in the

call statement). When $unsafeassign is set, strict type
checking between the two sides of an assign statement is turned off.
These variables should be used only with great care, because they
severely limit the usefulness of dbx for detecting errors.

unalias name Remove the alias for name.

unset name Delete the debugger variable associated with name.

Machine-level commands

tracei [addres~ [if condJ

tracei [variable] [at address] [if condJ

stopi [address] [if condJ

s topi [at J [address] [if condJ

Turn on machine-level tracing or set a stop using a machine-instruction address.

stepi

nexti

Execute a single step as in step or next, but do a single instruction rather than a
source line.

address, address/ [mode]

address I [count] [mode]

Print the contents of memory starting at the first address and continuing up to the second
address or until count items are printed. If the address is " . ", the address following the
one printed most recently is used. The mode specifies how memory is to be printed; if it
is omitted, the previous mode specified is used. The initial mode, x, prints a long word
in hexadecimal. The following modes are supported:

i print the machine instruction

a print a short word in decimal

Using dbx 10-17

D print a long word in decimal

o print a short word in octal

o print a long word in octal

x print a short word in hexadecimal

x print a long word in hexadecimal

b print a byte in octal

c print a byte as a character

s print a string of characters terminated by a null byte

f print a single-precision real number

g print a double-precision real number

Symbolic addresses are specified by preceding the name with an & .

MC68000-family registers are denoted by $dn for the data registers, $an for the
address registers, and $ fpn for the floating-point registers, where n is the number of
the register. Addresses can be expressions made up of other addresses and the operators
+, -, and indirection (unary *).

help

Print out a synopsis of dbx commands.

quit

Exit dbx.

sh command-line
Pass the command line to the shell for execution. The SHELL environment variable
determines which shell is used.

source filename
Read dbx commands from the given filename.

10-18 Chapter 10 dbx Reference

Example

The following is an example of the tracei command in which the breakpoints are
cleared (though this is not necessary), the tracei command given, and the program run.
The debugger prints all the assembly-language statements just before they are executed.

(dbx) status

[1] stop at "hello.c":l3

(dbx) delete 1

(dbx) tracei

[4] tracei

(dbx) run

tracei: 000000d6

tracei: 000000d8

tracei: OOOOOOdc

tracei: OOOOOOeO

tracei: 000000e4

tracei: 000000e6

tracei: 000000e8

tracei: 000000e6

tracei: 000000e8

tracei: OOOOOOea

tracei: OOOOOOee

tracei: 000000f4

tracei: OOOOOOfa

tracei: 00000100

tracei: 00000106

subq.l

mov.l

lea

mov.l

mov.l

tst.l

bne.b

tst.l

bne.b

mov.l

mov.l

jsr

jsr

jsr

jsr

&Ox8,%sp

Ox8 (%sp), (%sp)

Oxc(%sp) ,%a0

%a0,0x4(%sp)

%a0,%al

(%a0)+

Oxe6

(%a0)+

Oxe6

%a0,0x8(%sp)

%a0,0x400988

initfpu

is tart

_compatmode

main
(continuedY.

Using dbx 10-19

entering function main

tracei: 00000118 link.l %a6,&0xfffffff4

tracei: OOOOOlle movrn.l &<d2,d3>,0x4(%sp)

tracei: 00000124 fmovrn.x &<>, (Oxc,%a7)

tracei: 0000012e mov.l &Oxa,%d2

tracei: 00000130 mov.l Ox4009b0,%d0

tracei: 00000136 add.l &Oxl4,%d0

tracei: 0000013c mov.l %d0,%d3

tracei: 0000013e mov.l %d3,-(%sp)

tracei: 00000140 mov.l %d2,-(%sp)

tracei: 00000142 bsr printme

entering function

tracei: 00000166

tracei: 0000016c

tracei: 00000172

tracei: 0000017c

tracei: 00000180

tracei: 00000184

tracei: 0000018a

hello world 10 22

program exited

printme

link.l

movrn .1

fmovrn.x

mov.l

mov.l

mov.l

bsr.l

You terminate dbx with the quit command:

(dbx) quit

10-20 Chapter 10 dbx Reference

%a6,&0xfffffffc

&<>,0x4(%sp)

&<>, (0x4,%a7)

Oxc(%fp) ,-(%sp)

Ox8(%fp) ,-(%sp)

&Ox4009b4,-(%sp)

printf

11 f 7 7 Command Syntax

Using f7 7 I 11-2

Related utilities I 11-4

This chapter describes how to invoke and use the A/UX Fortran 77 compiler.

The f 7 7 command compiles and loads Fortran and Fortran-related files into an

executable module. The f7 7 command invokes the C compiler to translate C source

files and the assembler to translate assembler source files. If EFL (compiler) source files

are given as arguments to the f 7 7 command, they are translated into Fortran before

being presented to this Fortran compiler (see Chapter 13, "ELF Reference"). Object files

are link-edited unless the - c option is used.

+ Note The f 7 7 and cc commands have slightly different link-editing sequences.

Fortran programs need two extra libraries, libI77. a and libF77. a, and an

additional startup routine. +

Using f77

The command to run the A/UX Fortran compiler is

f7 7 [option ... J [jileJ

The following options have the same meaning in the Fortran compiler as in cc(l)

(see ld(l) for load-time options):

-A factor

-c

-g

-w

-p

-0

-s

-o output

Expand the default symbol table allocations for the assembler and link
editor. (The default allocation is multiplied by the factor given.)

Suppress loading and produce . o files for each source file.

Have the compiler produce additional symbol-table information for
sdb(l); also pass the -lg flag to ld(l).

Suppress all warning messages. (If the option is -w6 6, only Fortran
66 compatibility warnings are suppressed.)

Prepare object files for profiling (see prof(l)).

Invoke an object-code optimizer.

Compile the named programs, and leave the assembler-language
output on corresponding files with a . s suffix (no . o is created).

Name the final output file output instead of a. out (default).

The following options are specific to f 7 7:

-onetrip

-u

-c
-F

-rn

Compile do loops that are performed at least once if reached.
(Fortran 77 do loops are not performed at all if the upper limit is
smaller than the lower limit.)

Make the default type of a variable undefined rather than using
the default Fortran rules.

Compile code to check that subscripts are within declared array bounds.

Apply EFL preprocessor to relevant files. (Put the result in the file with
the extension changed to . f, but do not compile.)

Apply the M4 preprocessor to each . e file before transforming it
with the EFL preprocessor.

11-2 Chapter 11 f77 Command Syntax

- N table entries Set the maximum number of table entries to the number entries.

-E X

Replace table with one of the following letter designations
corresponding to a compiler table:

q equivalence table

x external names table

s statement number table

c control block table

n identifier table

To allow up to 1000 statement numbers, use the option with these
arguments:
-NslOOO

Use the string x as an EFL option in processing . e files.

Other arguments are taken to be loader option arguments, f 7 7 -compatible object
programs (typically produced by an earlier run), or libraries of f7 7-compatible routines.
These programs, together with the results of any specified compilations, are loaded (in
the order given) to produce an executable program with the name a. out (default).

The file argument to f 7 7 can have one of the following suffixes:

. f Fortran source file

.e EFL source file

.c C language source file

. s assembler source file

.o object file

Arguments are processed as follows:

• Arguments whose names end with . f are taken to be Fortran 77 source programs
(When compiled, a source program produces an object file with the same root name,
but with a . o substituted for the . f extension.)

• Arguments whose names end with . e are taken to be EFL source programs

• Arguments whose names end with . c or . s are taken to be C or assembly source
programs, respectively, and are compiled or assembled, producing a . o file

Using f77 11-3

Related utilities
These utilities are useful adjuncts to f 7 7. Their special characteristics are described in
the following list:

efl

asa

fsplit

Compiles a program written in Extended Fortran Language (EFL) into
Fortran 77. (See Chapter 13, "ELF Reference," for information on how
to use this command.)

Interprets the output of Fortran programs that use ASA carriage control
characters. (See asa(l) for information on how to use this
command.)

Splits the named file(s) into separate files, with one procedure per file.
(See f spl i t(l) for information on how to use this command.)

11-4 Chapter 11 f77 Command Syntax

12 Fortran Language Reference

Fortran standards I 12-2

Language extensions I 12-2

Violations of the standard I 12-12

Interprocedure interface I 12-13

File formats I 12-17

This chapter describes the Fortran 77 run-time system and language as implemented on

the A/UX system. Also described are the interfaces between procedures and the file

formats assumed by the I/0 system.

Please note that this chapter only describes the differences between the A/UX Fortran 77

and the ANSI Standard Fortran 77 and is not intended to be a complete language reference.

Fortran standards

Fortran 77 and Fortran 66 are names for two standardized versions of the language.
Fortran 77 includes almost all of Fortran 66. The most important additions are a

character string data type, file-oriented input/output statements, and random access I/0.
The f7 7 language described in this chapter is an extended version of a Fortran 77

standard language, as specified in ANSI Standard XJ.9-1978 Fortran.
Most of the extensions included in f 7 7 are useful additions; however, some are

necessary to facilitate communication with C language functions, allowing easier
compilation of old (Fortran 66) programs.

Language extensions

double complex data type

In the double complex data type, each datum is represented by a pair of double­
precision real variables. A double complex version of every complex built-in
function is provided.

Internal files

The Fortran 77 American National Standard introduces internal files (memory arrays) but
restricts their use to formatted sequential I/0 statements. The A/UX I/0
system also permits internal files to be used in direct and unformatted reads

and writes.

12-2 Chapter 12 Fortran Language Reference

implicit undefined statement

Fortran has a rule that the variable type that does not appear in a type statement is
integer if its first letter is i, j, k, 1, m, or n. Otherwise, it is real. Fortran 77
has an imp 1 i cit statement for overriding this rule. An additional type statement,
undefined, is permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism. The compiler issues a diagnostic for each
variable that is used but does not appear in a type statement. Specifying the -u

compiler option is equivalent to beginning each procedure with this statement.

Recursion

Procedures can call themselves directly or through a chain of other procedures. This
differs from ANSI Standard Fortran 77, which does not allow any form of recursion.

Automatic storage

static and automatic are recognized keywords in this implementation, but not
in ANSI Standard Fortran 77. These keywords can appear in implicit statements or
as types in type statements. Local variables are static by default; there is exactly one copy
of the datum, and its value is retained between calls. There is one copy of each variable
declared automatic for each invocation of the procedure. Automatic variables cannot
appear in equivalence, data, or save statements.

Variable length input lines

The Fortran 77 American National Standard expects input to the compiler to be in a 72-
column format (except in comment lines).

• The first five characters are the statement number.

• The next character is the continuation character.

Language extensions 12-3

• The next 66 are the body of the line.

• If there are fewer than 72 characters on a line, the compiler pads it with blanks.

• Characters after the first 72 are ignored.

To make it easier for you to type in Fortran programs, this compiler also accepts
input in variable length lines:

• An ampersand(&) in the first position of a line indicates a continuation line; the
remaining characters form the body of the line.

• A tab character in one of the first six positions of a line signals the end of the
statement number and continuation part of the line; the remaining characters form
the body of the line.

• A tab anywhere except in one of the first six positions on the line is treated as
another kind of blank by the compiler.

Uppercase/lowercase

In the Fortran 77 Standard, there are only 26 letters because Fortran is a one-case
language. This compiler expects lowercase input.

By default, the compiler converts all uppercase characters to lowercase except those
inside character constants. If you specify the - u compiler option, uppercase letters are
not transformed. In this mode, you can specify external names that have uppercase
letters and you can have distinct variables differing in case only.

If the - u option is set, keywords are recognized only if they appear in lowercase.

inc 1 ude statement

The statement

include 'stuff'

is replaced by the contents of the file stuff. The inc 1 ude statements can be nested
to a reasonable depth, currently ten.

12-4 Chapter 12 Fortran Language Reference

Binary initialization constants

A logical, real, or integer variable can be initialized in a data statement by a
binary constant, which is denoted by a letter, followed by a quoted string. If the letter is
b, the string is binary and only zeros and ones (0 and 1) are permitted. If the letter is o,

the string is octal, with digits zero through seven (0-7). If the letter is z or x, the string
is hexadecimal, with digits zero through nine (0-9), a through f. Thus, the statements

integer a(3)

data a/b'1010' ,o'12' ,z'a'/

initialize all three elements of a to 1 o.

Character strings

To be compatible with the C language, this compiler recognizes the following
backslash escapes:

\n newline

\t tab

\b backspace

\f form feed

\0 null

\' apostrophe (does not terminate a string)

\II quotation mark (does not terminate a string)

\\ \ (backslash)

\x the character (in general)

Fortran 77 has only one quoting character: the apostrophe (').This compiler and I/0

system recognize both the apostrophe and the double quote (11
). If a string begins with

one variety of quotation mark, you can embed the other within it without using the
repeated quote or backslash escapes.

Language extensions 12-5

Character string constants and scalar local character variables (except those declared
with an equivalence statement) are aligned to integer word boundaries. Each
character string constant appearing outside a data statement is followed by a null
character to ease communication with C language routines.

Hollerith

Fortran 77 does not have the old Hollerith (nh) notation, although the new Standard
recommends implementing it to improve compatibility with old programs. In this
compiler, Hollerith data can be used in place of character string constants and also can
be used to initialize noncharacter variables in data statements.

Equivalence statements

This compiler permits single subscripts in equivalence statements under the
interpretation that all missing subscripts are equal to one. A warning message is printed
for each such incomplete subscript.

One-trip do loops

The Fortran 77 American National Standard requires that the range of a do loop not be
performed if the initial value is already past the limit value. For example,

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once.

To accommodate old programs, although they are in violation of the 1977 Standard,
this compiler offers the -onetrip compiler option, which causes loops whose initial
value is greater than or equal to the limit value to be performed exactly once.

12-6 Chapter 12 Fortran Language Reference

Commas in formatted input

The I/0 system attempts to be more lenient than the Fortran 77 American National
Standard when it seems worthwhile to do so. When you request a formatted read of
noncharacter variables, commas can be used as value separators in the input record,
overriding the field lengths given in the format statement. Thus, if you have the format

(ilO, f20.10, i4)

the record

-345, . 05e-3, 12

is read correctly.

Short integers

This compiler accepts declarations of type integer* 2. (Ordinary integers follow the
Fortran rules about occupying the same space as a real variable; they are assumed to
be of C language type long int; half word integers are of C language type short

int.) An expression involving only objects of type integer*2 is also of that type.
Generic functions return short or long integers, depending on the actual types of their
arguments. If a procedure is compiled using the - r 2 flag, all small integer constants are
of type integer* 2. If the precision of an integer-valued intrinsic function cannot be
determined by the generic function rules, the compiler chooses one that returns the
prevailing length (integer* 2 when the - 12 command flag is in effect). When the
-I2 option is in effect, all quantities of type logical are deemed short. Note that
these short integer and logical quantities do not obey the standard rules for
storage association.

Additional intrinsic function library

This compiler supports all the intrinsic functions specified in the Fortran 77 Standard. In
addition, there are functions for performing bitwise Boolean operations (or, and,

xor, and not) and for accessing command arguments (getarg and iargc).

The following is the Fortran intrinsic function library plus some additional functions.
These functions are automatically available to the Fortran programmer and require no

Language extensions 12-7

special invocation of the compiler. The dagger (t) beside some of the commands
indicates that they are not part of ANSI standard F77. In parentheses beside each
function description is the location for the command in A!UX Programmer's Reference.

These functions are as follows:

tabort

abs

a cos

airnag

aint

a log

alog7

arnaxO

arnaxl

amino

arninl

arnod

tand

anint

as in

atan

atan2

cabs

ccos

cexp

char

clog

crnplx

conjg

cos

terminate program (abort(3F))

absolute value (rnax(3F))

arccosine (acos(3F))

imaginary part of complex argument (airnag(3F))

integer part (aint(3F))

natural logarithm (log(3F))

common logarithm (alogl o(3F))

maximum value (rnax(3F))

maximum value (rnax(3F))

minimum value (rnin(3F))

minimum value (rnin(3F))

rnod(3F)

bitwise Boolean (bool(3F))

nearest integer (round(3F))

arcsine (asin(3F))

arctangent (atan(3F))

arctangent (a tan2(3F))

complex absolute value (abs(3F))

complex cosine (cos(3F))

complex exponential (exp(3F))

explicit type conversion (f type(3F))

complex natural logarithm (log(3F))

explicit type conversion (f type(3F))

complex conjugate (conj g(3F))

cosine (cos(3F))

12-8 Chapter 12 Fortran Language Reference

co sh

cs in

csqrt

dabs

dacos

dasin

datan

datan2

db le

tdcmplx

tdconjg

dcos

dcosh

ddim

dexp

dim

tdimag

dint

dlog

dloglO

dmaxl

dminl

dmod

dnint

dprod

dsign

dsin

dsinh

dsqrt

hyperbolic cosine (cosh(3F))

complex sine (s in(3F))

complex square root (sqrt(3F))

absolute value (abs(3F))

arccosine (acos(3F))

arcsine (asin(3F))

arctangent (atan(3F))

double-precision arctangent (atan2(3F))

explicit type conversion (f type(3F))

explicit type conversion (f type(3F))

complex conjugate (conj g(3F))

cosine (dcos(3F))

hyperbolic cosine (cosh(3F))

positive difference (dim(3F))

exponential (exp(3F))

positive difference (dim(3F))

imaginary part of complex argument (aimag(3F))

integer part (aint(3F))

natural logarithm (log(3F))

common logarithm (logl0(3F))

maximum value (max(3F))

minimum value (min(3F))

remaindering (dmod(3F))

nearest integer (round(3F))

double-precision product (dprod(3F))

transfer of sign (s i gn(3F))

sine (s in(3F))

hyperbolic sine (sinh(3F))

square root (sqrt(3F))

Language extensions 12-9

dtan

dtanh

exp

float

tgetarg

tgetenv

iabs

iargc

ichar

idirn

idint

idnint

if ix

index

int

ti rand

isign

len

lge

lgt

lle

llt

log

loglO

hshift

max

rnaxO

rnaxl

tangent (tan(3F))

hyperbolic tangent (t anh(3F))

exponential (exp(3F))

explicit type conversion (f type(3F))

return command-line argument (getarg(3F))

return environment variable (getenv(3F))

absolute value (abs(3F))

return number of arguments (iargc(3F))

explicit type conversion (ftype(3F))

positive difference (dirn(3F))

explicit type conversion (f type(3F))

nearest integer (round(3F))

explicit type conversion (ftype(3F))

return location of substring (index(3F))

explicit type conversion (ftype(3F))

random number generator

transfer of sign (sign(3F))

return length of string (len(3F))

string comparison (strcrnp(3F))

string comparison (strcrnp(3F))

string comparison (st r crnp(3F))

string comparison (strcrnp(3F))

natural logarithm (log(3F))

common logarithm (logl o(3F))

bitwise Boolean (bool(3F))

maximum value (rnax(3F))

maximum value (rnax(3F))

maximum value (rnax(3F))

12-10 Chapter 12 Fortran Language Reference

tmclock

min

minO

minl

mod

nint

tnot

tor

tr and

real

trshift

sign

tsignal

sin

sinh

sngl

sqrt

tsrand

tsystem

tan

tanh

txor

tzabs

return Fortran time accounting (mclock(3F))

minimum value (min(3F))

minimum value (min(3F))

minimum value (min(3F))

remaindering (mod(3F))

nearest integer (bool(3F))

bitwise Boolean (bool(3F))

bitwise Boolean (bool(3F))

random number generator (rand(3F))

explicit type conversion (f type(3F))

bitwise Boolean (boo 1 (3F))

transfer of sign (sign(3F))

specify action on receipt of system signal (signal(3F))

sine (sine(3F))

hyperbolic sine (sinh(3F))

explicit type conversion (f type(3F))

square root (sqrt(3F))

random number generator (r and(3F))

issue a shell command (system(3F))

tangent (tan(3F))

hyperbolic tangent (tanh(3F))

bitwise Boolean (bool(3F))

complex absolute value (abs(3F))

For more information on the f 7 7 intrinsic function commands, see A!UX
Command Reference.

Language extensions 12-11

Violations of the standard
The following sections describe the three known ways in which the A/UX system
implementation of Fortran 77 violates the new American National Standard. These
known exceptions are:

1. double-precision alignment

2. dummy procedure arguments

3. t and tl formats

Double-precision alignment

The Fortran 77 American National Standard permits common or equivalence

statements to force a double-precision quantity onto an odd word boundary. For example,

real a(4)

double precision b,c

equivalence (a(l) ,b), (a(4) ,c)

Some machines require that double-precision quantities be on double word
boundaries; other machines run less efficiently if this alignment rule is not observed. It is
possible to tell which equivalence and common variables suffer from a forced odd
alignment, but every double-precision argument must be assumed on a bad boundary.

To load a double-precision quantity on some machines, you must use two separate
operations:

1. Move the upper and lower halves into the halves of an aligned temporary location.

2. Load the destination from the temporary location.

To store such a result, you must reverse the order of the above two operations.
All double-precision real and complex quantities must fall on even word boundaries

on machines with corresponding hardware requirements or if the source code issues a
diagnostic whenever there is a violation of the odd-boundary rule.

12-12 Chapter 12 Fortran Language Reference

Dummy procedure arguments

If any argument of a procedure is of type character, all dummy procedure
arguments of that procedure must be declared in an external statement. For an
example illustrating this, see "Argument Lists" later in this chapter.

This requirement arises as a subtle corollary of the way Fortran represents character
string arguments. A warning is printed if a dummy procedure is not declared
external. The same code is correct (in this regard), however, if there are no
character arguments.

t and t 1 formats

The t (absolute tab) and tl (leftward tab) format codes allow you to reread or
rewrite part of a record that is already processed.

This compiler implementation uses "seeks." Therefore, if the standard output unit is
not one that allows seeks, such as a terminal, the program is in error.

The implementation chosen includes the following benefits:

• There is no upper limit on the length of a record.

• You do not have to predeclare any record lengths, except where specifically required
by Fortran or by the operating system.

Interprocedure interface

The following sections provide information necessary for writing C language procedures
that call or are called by Fortran procedures. Specifically, you should understand the
conventions regarding the following language concepts:

1. procedure names

2. data representation

3. return values

4. argument lists

Interprocedure interface 12-13

Procedure names

On A/UX systems, the compiler appends an underscore to the name of a common block
for a Fortran procedure to distinguish it from a C language procedure or an external
variable with the same user-assigned name.

Fortran library procedure names have embedded underscores, to avoid clashes with
user-assigned subroutine names.

Data representations

The following list shows corresponding Fortran and C language declarations:

Fortran C language

integer*2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct {float r, i;} x;

double complex x struct {double dr, di;} x;

character*6 x char x[6];

By the rules of Fortran, integer, logical, and real data occupy the same­
sized areas in memory.

Return values

A function of type integer, logical, real, or double precision, declared
as a C language function, returns the corresponding type.

12-14 Chapter 12 Fortran Language Reference

A complex or double complex function is equivalent to a C language
routine with an additional initial argument that points to the place where the return value
is to be stored. Thus,

complex function f (arg ...)

is equivalent to

struct {float r, i;} temp;

f_ (&temp, arg ...)

A character-valued function is equivalent to a C language routine with two extra
initial arguments:

• a data address

• a length

Thus,

character* 15 function g (arg ...)

is equivalent to

char result[J;

long int length;

g_(result, length, arg ...)

and can be invoked in the C language by

char chars[15];

g_(chars, 15L, arg ...);

Subroutines are invoked as if they were integer-valued functions whose value
specifies which alternate return to use. Alternate return arguments, or statement labels,
are not passed to the function, but are used to do an indexed branch in the calling
procedure. If the subroutine has no entry points with alternate return arguments, the
returned value is undefined. Thus, the statement

call nret(*l, *2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

Interprocedure interface 12-15

Argument lists

All Fortran arguments are passed by address.
For every argument that is of type character or a dummy procedure, an

argument giving the length of the value is passed. The string lengths are long int

quantities passed by value.

The order of arguments is then:

1. extra arguments for complex and character functions

2. address for each datum or function

3. a long int for each character or procedure argument

Thus, the call in

external f

character*7 s

integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int f ();

char s[7];

long int b[3];

sam_(f, &b[l], s, OL, 7L);

Note that the first element of a C language array always has subscript 0, but Fortran
arrays begin at 1 by default. For example, in C, the above array of 3 elements would be
subscripted 0, 1, 2; in f77 they are subscripted 1, 2, 3.

Fortran arrays are stored in column-major order. C language arrays are stored in row­
major order. The stored order for each language is given by the numbers in the sample
two-dimensional arrays that follow:

f77:

1 3
2 4

12-16 Chapter 12 Fortran Language Reference

C:

File formats

1 2
3 4

Fortran requires four kinds of external files:

1. sequential formatted

2. sequential unformatted

3. direct formatted

4. direct unformatted

On A/UX systems, these are all implemented as ordinary files that are assumed to
have the proper internal structure.

Fortran 1/0 is based on records. When a direct file is opened in a Fortran
program, the record length of the records must be given. This is used by the Fortran I/0
system to make the file look as if it were made up of records of the given length. In the
special case that the record length is given as one, the files are not considered to be
divided into records but are treated as ordinary files on the A/UX system (byte­
addressable byte strings). A read or write request on such a file keeps consuming
bytes until satisfied, rather than being restricted to a single record.

The peculiar requirements on sequential unformatted files make it unlikely
that they are ever read or written by any means except Fortran 1/0 statements. Each
record is preceded and followed by an integer containing the record length, in bytes.

The Fortran 1/0 system breaks sequential formatted files into records
while reading by using each newline as a record separator. The result of reading off the
end of a record is undefined, according to the Fortran 77 American National Standard.
The 1/0 system is permissive and treats the record as being extended by blanks. On
output, the I/0 system writes a newline at the end of each record. It is also possible for
programs to write newlines for themselves. This is an error, but the only effect is that the
single record you thought was written is treated as more than one record when being
read or backspaced over.

File formats 12-17

Preconnected files and file positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the
standard error unit. All are connected for sequential formatted 1/0.

All the other units are also preconnected when execution begins. Unit n is connected
to a file named fort. n. These files need not exist and is not created unless their units
are used without first executing an open. The default connection is for sequential

formatted I/0.
The Fortran 77 Standard does not specify where a file that is opened explicitly for

sequential I/0 is positioned initially. In fact, the I/0 system positions the file at the
beginning. If the file contains data, a write overwrites it. To position a file to the end,
you must read until an end-of-file condition is reached. The preconnected units 0, 5, and
6 are positioned as they come from the parent process.

12-18 Chapter 12 Fortran Language Reference

13 EFL Reference

e f 1 command syntax I 13-3

Lexical form I 13-4

Program form I 13-10

Data types and variables I 13-13

Expressions I 13-17

Declarations I 13-27

Executable statements I 13-31

Procedures I 13-42

Atavisms I 13-45

Compiler options I 13-50

Examples I 13-53

Portability I 13-58

Compiler I 13-59

Constraints on EFL I 13-62

This chapter is a reference for the EFL programming language. It describes the features

and use of the language; although supplemented by the chapters on Fortran, it can stand

alone as an arbiter of the EFL language. To use this chapter, you should be somewhat

familiar with a procedural language.

EFL is a clean, general-purpose computer language intended to encourage portable

programming. It has a uniform and readable syntax and good data and control flow

structuring.

EFL programs can be translated into efficient Fortran code. This means that you can take

advantage of the Fortran libraries and benefit from the portability that comes with the

use of a standardized language. Even though EFL originally stood for "Extended Fortran

Language," the EFL compiler is much more than a simple preprocessor.

The EFL compiler attempts to diagnose all syntax errors, provide readable Fortran

output, and avoid a number of Fortran restrictions. For example, while EFL allows

variable white space in its input, standard Fortran requires that comment indicators and

data are placed in standard, specified columns and does not compile properly if these

columns are not used. In addition, EFL is a structured language, while standard Fortran

uses goto and continue statements. These and other Fortran restrictions are

mentioned in sections such as "Continuation Conventions" and "Miscellaneous Output

Control Options," later in this chapter.

EFL is especially useful for numeric programs and lets you express complicated ideas in a

comprehensible way, while giving you access to the power of the Fortran environment.

13-2 Chapter 13 EFL Reference

e f 1 command syntax
In examples and syntax specifications in this chapter, a construct surrounded by double
brackets represents a list of one or more of those items, separated by commas. Thus, the
notation [[item]] can refer to any of the following entities:

item
item, item
item, item, item

To increase the legibility of EFL programs, you can break some of the statement
forms without an explicit continuation. A square (n) in the syntax represents a point
where an end-of-line is ignored.

The A/UX e fl command has the following syntax:

e fl [-w] [-#] [-c] fjilename .. .]

The options for e fl are as follows:

-w suppresses warning messages

- # suppresses comments in the generated program and the flag option

-c causes comments to be included in the generated program (on by default)

An argument with an embedded = (equal sign) sets an e fl option as if it
appeared in an option statement at the start of the program. Many options are
described in the section "Compiler Options," later in this chapter. A set of defaults for a
particular target machine can be selected by one of the choices: system=unix,

system=gcos, or system=cray. The default setting of the system option is the
same as the machine on which the compiler is running. Other specific options determine
the style of input/ output, error handling, continuation conventions, the number of
characters packed per word, and default formats.

e fl command syntax 13-3

Lexical farm

Character set

The characters in Table 13-1 are legal in an EFL program.

Table 13-1 Legal characters in EFL

Letters

Digits

White space

Quotes

Number sign

Continuation

Braces

Parentheses

Other

a b c d e f g h i j k 1 m

n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

blank tab

I ; . + - * I = < > & - I $

Even though all the examples are printed in lowercase, case is ignored, except within
strings (for example, a and A are treated as the same character). An exclamation
mark (!)can be used in place of a tilde(-) as the logical unary operator "complement."
Square brackets ([and J) can be used in place of braces ({ and }) for punctuation.

Outside a character string or comment, a sequence of one or more spaces or tab
characters acts as a single space and terminates a token.

Tokens

A program is made up of a sequence of tokens. Each token is a sequence of characters.
A blank terminates any token except a quoted string. An end-of-line also terminates a
token unless you signal explicit continuation by an underscore.

13-4 Chapter 13 EFL Reference

Lines

EFL is a line-oriented language. Except in special cases where continuation is made
explicit by use of an underscore U, the end of a line marks the end of a token and the
end of a statement.

You can use the trailing portion of a line for a comment. Diagnostic messages are
labeled with the line number of the file in which they are detected.

You can continue lines explicitly by using the underscore U character. If the last
character of a line (after comments and trailing white space are stripped) is an
underscore, the end of the line and the initial blanks on the next line are ignored.
Underscores are ignored in other contexts, except inside quoted strings. Thus,

1_000_000

000

equals 109.
There are also rules for continuing lines automatically: the end-of-line is ignored

whenever it's obvious that the statement is not complete. A statement is continued if the last
token on a line is an operator, comma, left brace, or left parenthesis, but a statement is not
continued if unbalanced braces or parentheses exist. Some compound statements also are
continued automatically; these points are noted in the sections on executable statements.

Multiple statements on a line

A semicolon terminates the current statement. Therefore, you can write more than one
statement on a line. A line consisting only of a semicolon, or a semicolon following a
semicolon, forms a null statement.

Comments

You can place a comment at the end of any line. It is introduced by a number sign (#)

and continues to the end of the line. The number sign and succeeding characters on the
line are discarded. A blank line is also considered a comment. Comments have no effect
on execution.

+ Note A number sign inside a quoted string does not mark a comment. +

Lexical form 13-5

13-6

inc 1 ude files

You can insert the contents of a file j oe at a certain point in the source text by
referencing it in the line

include joe

No statement or comment can follow an inc 1 ude on a line. In effect, the inc 1 ude

line is replaced by the lines in the named file, but diagnostics refer to the line number in
the included file. include statements can be nested at least ten deep.

Identifiers

An identifier is a name used in an EFL program consisting of a letter or a letter followed
by letters or digits. The following list shows reserved words that have special meaning in
EFL and therefore should not be used as identifiers. You should use these words only for
the purposes described in this chapter.

array exit precision

automatic external procedure

break false read

call field readbin

case for real

character function repeat

common go return

complex goto select

continue if short

debug implicit sizeof

default include static

define initial struct

dimension integer subroutine

do internal true

double lengthof until

doubleprecision logical value

else long while

end next write

equivalence option writebin

Chapter 13 EFL Reference

Strings

A character string is a sequence of characters surrounded by quotation marks. If the
string is bounded by single-quotation marks (·), it may contain double-quotation marks
("),and vice versa. You may not break a quoted string across a line boundary. Legal
character strings include

'hello there'

"ain't misbehavin'"

Integer constants

An integer constant is a sequence of one or more digits:

0

57

123456

Floating-point constants

A floating-point constant contains a dot, an exponent field, or both. An exponent
field is the letter d or e followed by an optionally signed integer constant. If I and] are
integer constants and Eis an exponent field, then a floating constant has one of the
following forms:

.I

I.

If

IE

I.E

.IE

IJE

Lexical form 13-7

Punctuation

You can use certain characters to group or to separate objects in the language, as follows:

parentheses

braces

comma

semicolon

colon

end-of-line <CR>

The end-of-line is a token (statement separator) if the line is nonblank or noncontinued.

Operators

The EFL operators are written as sequences of one or more nonalphanumeric characters,
as shown in Table 13-2.

Table 13-2 EFL operators

Operator

+

+

++

*

I

**

<

<=

>

>=

13-8 Chapter 13 EFL Reference

Meaning

unary plus (no effect)

binary plus (a+ b)

prefix plus (a = a + 1)

prefix minus (a= a -1)

binary minus (a - b)

times (ax b)

divided by (a+ b)

exponentiation (ab)

is less than (a < b)

is less than or equal (a:::;; b)

is greater than (a> b)

is greater than or equal (a~ b)

equal (a= b)

Table 13-2 EFL operators (continued)

Operator

$

&&

11

&

+=

I=

*=

**=

&&=

11=

&=

I=

->

Meaning

does not equal (a:t:b)

repetition (2$a = aa)

fp decimal point (a.exp field)

logical and (a/\ b)

logical or (av b)

and (a and b)

or (a orb)

assign equal (a "gets" b)

assign plus (a= a+ b)

assign minus (a= a - b)

assign divide (a= a+ b)

assign times (a =ax b)

assign exp (a= ab)

assign logical and (a= a/\ b)

assign logical or (a= av b)

assign and (a= a and b)

assign or (a= a orb)

leftside = structure name

Note: "fp" stands for "floating point."

A dot (.) is an operator if it qualifies a structure element name, but not if it acts as a
decimal point in a numeric constant. There is a special mode (see "Atavisms," later in this
chapter) in which some of the operators can be represented by a string consisting of a
dot, an identifier, and another dot (for example, . 1 t .) .

Lexical form 13-9

Macros

EFL has a simple macro substitution facility. You can define an identifier to be equal to a
string of tokens; whenever that name appears as a token in the program, the string
replaces it. A macro name is given a value in a define statement such as

define count n += 1

Any time the name count appears in the program, it is replaced by the statement

n += 1

A define statement must appear alone on a line; the format is

define name definition-string

Trailing comments are part of the definition-string.

Program form

Files

A file is a sequence of lines and is compiled as a single unit. It can contain one or more
procedures. Declarations and options that appear outside a procedure affect the
succeeding procedures on that file.

Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has a name by
which it is invoked (the first procedure invoked during execution, known as the main
procedure, has a null name).

13-10 Chapter 13 EFL Reference

Block scope

You can form statements into groups inside a procedure. Then, their influence on the
rest of the program is determined by their location in the program, the resulting scope of
their effect, or both.

The beginning of a program file is at "nesting level" zero. Any options, macro
definitions, or variable declarations you enter are also at level zero.

After the declarations, if you enter a left brace, this marks the beginning of a new
block and increases the nesting level by one; a right brace decreases the nesting level by
one. Braces that are inside declarations do not mark blocks (see "Blocks," later in this
chapter, for further information on blocks).

You can then enter a procedure statement for level 1. The text immediately following
the procedure statement is also at level 1. An end statement marks the end of the
procedure and level 1 and returns you to level 0 within the program.

If you define a name (variable or macro) at level 0, it remains defined throughout
that block and in all deeper (higher numbered: for example, 1, 2, 3) nesting levels,
unless that name is redefined or redeclared. If, for example, you define a variable in
level 0 (for example, a = 7), a is 7 throughout the program. If you want to include a
subroutine at a deeper level and that subroutine needs a to equal 3, you can redefine a

for that subroutine. a equals 3 in that subroutine only, however, because as soon as the
program leaves the subroutine, the definition set forth in level 0 prevails.

A procedure illustrating block level scope might look like the code shown in
Figure 13-1.

Program form 13-11

Figure 13-1 Procedure illustrating block level scope

block 0

procedure george

real x

x = 2

if (x > 2)

new block

integer x # a different variable

do x = 1,7

write (, x)

end of block

end # end of procedure, return to block 0

Statements

Statements are of the following types:

option

include

define

procedure

end

declarative

executable

The opt ion statement is described in "Compiler Options," later in this chapter.
The include, define, and end statements were described previously; you cannot
follow them with another statement on a line. Each procedure begins with a
procedure statement and finishes with an end statement. Declarations or
declarative statements describe types and values of variables and procedures.
executable statements cause specific actions to occur. A block is an example of an
executable statement; it is made up of declarative and executable statements.

13-12 Chapter 13 EFL Reference

Labels

An executable statement can have a label, which can be used in a branch statement. A
label is an identifier followed by a colon, appearing at the margin to the left of some
statement, such as error: shown here:

read(, x)

if (x < 3) goto error

error: fatal("bad input")

Data types and variables
EFL supports a small number of basic (scalar) types. You can define objects made up of
variables of basic type (that is, aggregates) and then define other defined aggregates.

Basic types

The basic types are as follows:

logical

integer

field (m: n)

real

complex

long real

A logical quantity can take on the two values true and
false.

An integer can take on any whole number value in a machine­
dependent range.

A fie 1 d quantity is an integer restricted to a particular closed
interval ([m: n]).

A real quantity is a floating-point approximation to a real or
rational number; real quantities are represented as single-precision
floating-point numbers.

A complex quantity is an approximation to a complex number
and is represented as a pair of real types.

A long real is a more precise approximation to a rational number;
long real types are double-precision floating-point numbers.

Data types and variables 13-13

long complex A long complex quantity is an approximation to a complex
number and is represented as a pair of long real types.

character(n) A character quantity is a fixed-length string of n characters.

Constants

There is a notation for a constant of each basic type.
A logical can take on the following two values:

true

false

An integer or field constant is a fixed-point constant, optionally preceded
by a plus or minus sign, as in

17

-94

+6

0

A long real "double-precision" constant is a floating-point constant containing
an exponent field that begins with the letter d. A real "single-precision" constant is
any other floating-point constant. A real or long real constant can be preceded
by a plus or minus sign. The following are valid real constants:

17.3

-.4

7.9e-6 (= 7 . 9 x 1 o-6)

14e9 (= 1.4 x 1010)

The following are valid long real constants:

7.9d-6 (= 7.9 x 10-6)

5d3

A character constant is a quoted string. Consider the following example:

"bad input"

"I'm real, not integer"

13-14 Chapter 13 EFL Reference

Variables

A variable is a quantity with a name and a location; at any particular time the variable
also can have a value. A variable is said to be "undefined" before it is initialized or
assigned its first value.

Each variable has certain attributes:

• storage class

• scope

• precision

A variable storage class is the association of its name and its location. A storage
class can be either transitory or permanent.

• Transitory association is achieved when arguments are passed to procedures.

• Other associations are considered permanent or static associations.

The scope of a variable can be global or local:

1. The names of common areas are global. Global variables can be used anywhere in
the program, as they are known throughout the program.

2. All other names are considered local to the block in which they are declared.

(For further information about scope, refer to "Block Scope," earlier in this chapter.)
Floating-point variables are either of normal or long precision. Normal precision is 32

bits; long precision is 64 bits. You can state this attribute independently of the basic type.

Arrays

You can declare rectangular arrays (of any dimension) of values of the same type. The
index set is always a cross-product of intervals of integers. The lower and upper bounds
of the intervals must be constants for arrays that are local or common. A formal
argument array can have intervals that are of length equal to that of one of the other
formal arguments. An element of an array is denoted by the array name, followed by a
parenthesized, comma-separated list of integer values, each of which must lie within the
corresponding interval. The intervals can include negative numbers. Entire arrays can be

Data types and variables 13-15

passed as procedure arguments or in input/ output lists, or they can be initialized; all
other array references must be to individual elements.

For example, the declared integer array

array (2, 10) chance

can have the elements

chance (3)

chance (2, 8)

Structures

You can define new types that are made up of elements of other types. This compound
object is known as a structure; its constituents are called members of the structure.

You can name the structure. This name then acts as a type name in the remaining
statements within the scope of its declaration. The elements of a structure can be of any
type (including previously defined structures), or they can be arrays of such objects. You
can pass entire structures to procedures or use them in input/ output lists; you also can
reference individual elements of structures.

The following structure might represent a symbol table:

struct tableentry

13-16 Chapter 13 EFL Reference

character(8) name

integer hashvalue

integer numberofelements

field(O:l) initialized, used, set

field(O:lO) type

Expressions
Expressions are syntactic forms that yield a value. An expression can have any of the
following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

The precedence of EFL operators, pictured from highest to lowest, is shown in the
following table. Lines separate the precedence levels. The meanings of these operators
are described in "Unary Operators" and "Binary Operators," both later in this chapter.

Table 13-3 Precedence of operators in EFL

Priority

Highest

Operator

->

**

*
I

+

++

+

<

<=

>

>=

&

&&

Meaning

leftside = structure name

fp decimal point (a.exp field)

exponentiation (ab)

times (ax b)

divided by (a + b)

unary plus (no effect)

unary minus (negation)

prefix plus (a = a + 1)

prefix minus (a = a - 1)

binary plus (a+ b)

binary minus (a - b)

is less than (a< b)

is less than or equal (a$ b)

is greater than (a> b)

is greater than or equal (a;;::: b)

equal (a= b)

does not equal (a-:;:. b)

and (a and b)

logical and (a /\ b)

(continuedY.

Expressions 13-17

Table 13-3 Precedence of operators in EFL (continued)

Priority Operator Meaning

or (a orb)

11 logical or (av b)

$ repetition (2$a = aa)

Lowest assign equal (a "gets" b)

+= assign plus (a= a+ b)

assign minus (a= a - b)

*= assign times (a =ax b)

I= assign divide (a= a +b)

**= assign exp (a = ab)

&= assign and (a= a and b)

I= assign or (a= a orb)

&&= assign logical and (a = a /\ b)

11 = assign logical or (a= a _lb)

The following are examples of expressions:

a<b && b<c

-(a+ sin(x)) I (5+cos(x))**2

Primaries

Primaries are the basic elements of expressions. They include constants, variables,
array elements, structure members, procedure invocations, input/ output expressions,
coercions, and sizes.

Constants

Constants are described in "Constants," earlier in this chapter.

13-18 Chapter 13 EFL Reference

Variables

Scalar variable names are primaries. They can appear on the left or right side of an
assignment. Unqualified names of aggregates (structures or arrays) can appear only as
procedure arguments and in input/ output lists.

Array elements

You can denote an element of an array with the array name, followed by a parenthesized
list of subscripts, with one integer value for each declared dimension.

a(5)

b(6,-3,4)

Structure members

A structure name, followed by a dot, followed by the name of a member of that structure
constitutes a reference to that element. If that element is itself a structure, the reference
can be further qualified.

a.b

x(3) .y(4) .z(5)

Procedure invocations

You can invoke a procedure by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-1, ... , expression-n)

The procedurename is either the name of a variable declared external (see
"Attributes," later in this chapter), the name of a function known to the EFL compiler
(see "Known Functions," later in this chapter), or the actual name of a procedure as it
appears in a procedure statement. If a procedurename is declared external and is an
argument of the current procedure, it is associated with the procedure name passed as
actual argument; otherwise, it is the actual name of a procedure. Each expression in the
above is called an actual argument.

Expressions 13-19

The following examples are procedure invocations:

f (x)

work()

g (x f y + 3 f I XX I)

When one of these procedure invocations is going to be performed, each of the
actual argument expressions is evaluated first. The types, precisions, and bounds of
actual and formal arguments should agree.

If an actual argument is a variable name, array element, or structure member, the
called procedure can use the corresponding formal argument as the left side of an
assignment or in an input list; otherwise, it can use only the value.

After the formal and actual arguments are associated, control is passed to the first
executable statement of the procedure. When a return statement is executed in that
procedure, or when control reaches the end statement of that procedure, the function
value is made available as the value of the procedure invocation. The type of the value is
determined by the attributes of the procedurename that are declared or implied in the
calling procedure. These must agree with the attributes declared for the function in its
procedure. In the special case of a generic function, the type of the result is also affected
by the type of the argument (see "Procedures," later in this chapter).

Input/ output expressions

The EFL input/ output syntactic forms can be used as integer primaries that have a
nonzero value, if an error occurs during the input or output.

Coercions

You can coerce or convert an expression of one precision or type to another by an
expression with the form

attributes (expression)

At present, the only attributes permitted are precision and basic types. Attributes are
separated by white space.

An arithmetic value of one type can be coerced to any other arithmetic type. A
character expression of one length can be coerced to a character expression of another
length. Logical expressions cannot be coerced to a nonlogical type.

13-20 Chapter 13 EFL Reference

As a special case, a quantity of complex or long complex type can be
constructed from two integer or real quantities by passing two expressions (separated by
a comma) in the coercion. Examples and equivalent values are

integer(S.3) 5

long real(S) = 5.0dO

complex(S,3) = 5+3i

Most conversions are done implicitly, as most binary operators permit operands of
different arithmetic types. Explicit coercions are most useful when you need to convert
the type of an actual argument to match that of the corresponding formal parameter in a
procedure call.

Sizes

The notation that yields the amount of memory required to store a datum or an item of
specified type is

sizeof (/eftside)
s i z eo f (attributes)

In the first case, leftside can denote a variable, array, array element, or structure
member. In the second case, attributes can denote an item of a specified type. The value
of s i z eo f is an integer, which gives the size in arbitrary units. If the size is needed in
terms of the size of some specific unit, this can be computed by division:

sizeof (x) I sizeof (integer)

yields the size of the variable x in integer words.
The distance between consecutive elements of an array cannot equal sizeof

because certain data types require final padding on some machines. The lengthof

operator gives this larger value, again in arbitrary units. The syntax is as follows:

lengthof (leftside)
lengthof (attributes)

Parentheses

An expression surrounded by parentheses is itself an expression. A parenthesized
expression is evaluated before any larger expression of which it is a part is evaluated.

Expressions 13-21

Unary operators

All the unary operators in EFL are prefix operators. The result of a unary operator has the
same type as its operand.

Arithmetic

Unary + has no effect. A unary - yields the negative of its operand.
The prefix operator + + adds one to its operand. The prefix operator - - subtracts

one from its operand. The value of either expression is the result of the addition or
subtraction. For these two operators, the operand must be a scalar, array element, or
structure member of arithmetic type. As a side effect, the operand value is changed.

Logical

The only logical unary operator is complement (-). This operator is defined by the
following equations.

- true = false

- false = true

Binary operators

Most EFL operators have two operands separated by the operator. Because the character
set is limited, some of the operators are denoted by strings of two or three special
characters. All binary operators except exponentiation are left associative.

Arithmetic

The binary arithmetic operators are as follows:

+ addition

*

I

**

13-22 Chapter 13 EFL Reference

subtraction

multiplication

division

exponentiation

Exponentiation is right associative:

a**b**c = a** (b**c) = a (be)

The operations have the conventional meanings:

8 + 2 10

8 - 2 6

8 * 2 16

8/2 4

8 ** 2 = 8 2 = 64

The type of the result of a binary operation A op B is determined by the types of
its operands, as shown in Table 13-4.

Table 13-4 Type of result of binary operation A op B

Type of A

r

Ir Ir

c c

le le

r

Ir

c

le

TypeofB

Ir

Ir

Ir

Ir

le

le

Note: i = integer, r = real, Ir = long real, c = complex, le = long complex.

c

c

c

le

c

le

le

le

le

le

le

le

If the type of an operand differs from the type of the result, the calculation is done as
if the operand were first coerced to the type of the result. If both operands are integers,
the result is of type integer and is computed exactly (quotients are truncated toward
zero, so 8/3 = 2).

Logical

The two binary logical operations in EFL, and and or, are defined by the truth tables
shown in Table 13-5.

Expressions 13-23

Table 13-5 Truth tables for and and or

A B A and B A or B

false false false false

false true false true

true false false true

true true true true

Each of these operators comes in two forms. In one form, the order of evaluation is
specified. The expression

a && b

is evaluated by first evaluating a; if it is false, the expression is false and b is not
evaluated; otherwise, the expression has the value of b. The expression

a 11 b

is evaluated by first evaluating a; if it is true, then the expression is true and b is not
evaluated; otherwise, the expression has the value of b. The other forms of the operators
(&for and, and I for or) do not imply an order of evaluation. With the latter operators,
the compiler can evaluate the operands in any order, thus speeding up the code.

Relational operators

There are six relations between arithmetic quantities. These operators are not associative.

Table 13-6 Relational operators in EFL

EFL operator

<

<=

>

>=

13-24 Chapter 13 EFL Reference

Meaning

<Less than

::; Less than or equal to

=Equal to

Not equal to

> Greater than

~ Greater than or equal to

Because the complex numbers are not ordered, the only relational operators that can
take complex operands are == and ~=. The character collating sequence is not defined.

Assignment operators

All the assignment operators are right associative. The simple form of assignment is

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure member of
basic type. This statement computes the expression on the right side and stores that
value (possibly after coercing the value to the type of the left side) in the location named
by the left side. The value of the assignment expression is the value assigned to the left
side after coercion.

Corresponding to each binary operator is an assignment operator. For each binary
operator, the assignment operator is formed by concatenating an equal sign(=) to the
operator with no space between them. For the case of binary +, the assignment operator
becomes + =, and the assignment

a += b

is translated as

a = a + b

Thus, the assignment

n += 2

adds 2 to n. The basic-left-side is evaluated only once.

Dynamic structures

EFL does not have an address (pointer, reference) type. There is a notation, however, for
dynamic structures:

left-side - > structurename

This expression is a structure with the shape implied by structurename but starting at
the location of left-side. In effect, this overlays the structure template on the specified
location. The left-side must be a variable, array, array element, or structure member. The

Expressions 13-25

type of the left-side must be one of the types in the structure declaration. An element of
such a structure is denoted in the usual way, using the dot operator. Thus,

place(i) -> st.nth

refers to the nth member of the st structure starting at the i th element of the
array place.

Repetition operator

Inside a list, an element of the form

integer-constant-expression $ constant-expression

is equivalent to the appearance of the expression a number of times equal to the first
expression. Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, 5)

Constant expressions

If you build an expression out of operators (other than functions) and constants, the
value of the expression is a constant and can be used anywhere a constant is required.

13-26 Chapter 13 EFL Reference

Declarations
Declaration statements describe the meaning, shape, and size of named objects in the
EFL language.

Syntax

A declaration statement is made up of attributes and variables. Declaration statements
are of two forms:

attributes variable-list
attributes {declarations}

In the first case, each name in the variable-list has the specified attributes. In the
second, each name in the declarations also has the specified attributes. A variable name
may appear in more than one variable list, as long as the attributes are not contradictory.
Each name of a nonargument variable may be accompanied by an initial value
specification. The declarations inside the braces are one or more declaration statements.
Here are some examples of declarations:

integer k=2

long real b(7,3)

common(cname)

integer i

long real array(5,0:3) x, y

character(7) ch

Declarations 13-27

Attributes

The following attributes are basic types in declarations:

logical

integer

field(m: n)

character (k)

real

complex

In the above list, the quantities k) m) and n denote integer constant expressions with the
properties k > 0 and n > m.

Arrays

The dimensionality can be declared by an array attribute:

array (b1, ... , bn)

Each of the bi can be a single integer expression or a pair of integer expressions
separated by a colon. The pair of expressions form a lower and an upper bound; the
single expression is an upper bound with an implied lower bound of 1. The number of
dimensions is equal to n) the number of bounds.

Each of the integer expressions must be a constant. An exception is permitted only if
each of the variables associated with an array declarator is a formal argument of the
procedure. In this case, each bound must have the property that upper - lower+ 1 is
equal to a formal argument of the procedure. (The compiler has limited ability to
simplify expressions, but it recognizes important cases such as (o : n -1).) The upper
bound for the last dimension (bJ can be marked by an asterisk (*)if the size of the array
is unknown.

The following attributes are legal array:

array(5)

array(5, 1:5, -3:0)

array(5, *)

array(O:rn-1, rn)

13-28 Chapter 13 EFL Reference

Structures

A structure declaration is of the form

struct [strnctnameJ {declarations}

If the optional strnctname is present, it takes the place of a type name within the rest
of its scope. Each name that appears inside a declaration is a member of the structure
and has a special meaning when used to qualify any variable declared with the structure
type. The declarations inside the braces are one or more declaration statements.

A name can appear as a member of any number of structures. It also can be the name
of an ordinary variable, as a structure member name is used only in contexts where the
parent type is known.

The following code shows examples of valid structure attributes:

struct xx

integer a, b

real x(5)

struct { xx z(3); character(5) y }

The last line defines a structure that contains an array of three xxs and a character string.

Precision

Variables of floating-point (real or complex) type can be declared to be long to
ensure that they have higher precision than ordinary floating-point variables. The default
precision is short.

Common

Certain objects called common areas have external scope and can be referenced by any
procedure that has a declaration for the name using a

common (common-area-name)

attribute. All the variables declared with a particular common attribute are in the same
block. The order in which they are declared is significant; declarations for the same
block in different procedures must have the variables in the same order and with the
same types, precision, and shapes, although not necessarily with the same names.

Declarations 13-29

External

If a name is used as the procedure name in a procedure invocation, it is implicitly
declared to have the external attribute. If a procedure name is to be passed as an
argument, you must declare it in a statement with the form

external [[name] J

If a name has the external attribute and is a formal argument of the procedure,
it is associated with a procedure identifier passed as an actual argument at each call. If
the name is not a formal argument, it is the actual name of a procedure as it appears in
the corresponding procedure statement.

Variable list

The variable list in a declaration consists of a name, an optional dimension specification,
and an optional initial value specification. The name follows the usual rules.

The dimension specification has the same form and meaning as the list enclosed in
parentheses in an array attribute.

The initial value specification has an equal sign (=) followed by a constant
expression. If the name is an array, the right side of the equal sign can be a list of
constant expressions or repeated elements or lists enclosed in parentheses; the total
number of elements in the list must not exceed the number of elements in the array.
Array elements are filled in column-major order.

The initial statement

An initial value also can be specified for a simple variable, array, array element, or
member of a structure using a statement with the form

initial [[var = val] J

where var can be a variable name, array element specification, or member of structure,
and val is the initial value specified.

The right side follows the same rules as for an initial value specification in other
declaration statements.

13-30 Chapter 13 EFL Reference

Executable statements
Every useful EFL program must contain executable statements; otherwise, it cannot do
anything. Executable statements are frequently made up of other statements. While
blocks are the most obvious example of this, many other forms are made up of
statements as well.

To increase the legibility of EFL programs, you can break some of the statement
forms without an explicit continuation. A square (I_ I) in the syntax represents a point
where an end-of-line is ignored.

Expression statements

A procedure invocation that returns no value is known as a subroutine call. Such an
invocation is a statement. Examples include:

work(in, out)

run()

Input/output statements (see "Input/Output Statements," later in this chapter)
resemble procedure invocations but do not yield a value. If an error occurs here, the
program stops.

An expression that is a simple assignment (=) or a compound assignment (+ =, - =,
and so on) is a statement, such as

a = b

a= sin(x)/6

x *= y

Blocks

A block is a compound statement that acts as a single statement. A block uses the
following syntax:

{ [[declaration J J [[executable-statement] J }

A block can be used anywhere a statement is permitted. A block is not an expression
and does not have a value. The following code shows a sample block.

Executable statements 13-31

integer i # this variable is unknown

outside the braces of this block

big = 0

do i = 1,n

if (big < a (i))

big= a(i)

Test statements

A test statement permits execution of another statement or group of statements based
on the outcome of a conditional expression.

There are several forms of test statements:

• i f statements

• if-else statements

• select statements

if statement

The simplest of the test statements is the if statement. Its form is

i f (logical-expression) D statement

where LJ means the line can be broken at this point.
First, the logical-expression is evaluated; if it is true, the statement is executed; if it is

not, the statement is skipped.

if-else statement

A more general statement is of the form

if (logical-expression) D statement-1 D

e 1 s e 11 statement-2

where I l means the line can be broken at this point.

13-32 Chapter 13 EFL Reference

Just as with the if statement, the logical-expression is evaluated and, if it's true,
statement-1 is executed; if not, statement-2 is executed. Either of the consequent
statements can itself be an if -e 1 s e statement, so a completely nested test sequence
is possible. For example,

if (x<y)

if (a<b)

k 1

else

k 2

else

if (a<b)

m 1

else

m = 2

An else statement applies to the nearest preceding if that is not already
followed by an else.

A more common use of the if -e 1 s e test statement is the sequential test:

if (x==l)

k = 1

else if (x==3

k = 2

else

k = 3

x==S)

You can use any number of e 1 s e if statements within a single if -e 1 s e

statement to test for several conditions; if, however, you need more than two else if

statements, you might prefer to use a select statement instead.

s e 1 e ct statement

Much like the switch statement in the C shell or case statements in many
programming languages, a s e 1 e ct statement is used to direct the branching of a
program based on the result of a conditional or arithmetic expression. A s e 1 e ct

statement has the general form

select (expression) D block

Executable statements 13-33

Inside the block, two special types of labels are recognized. A prefix with the form

case [[constant] J :

marks the statement to which control is passed if the value of the expression in the
select is equal to one of the case constants. If the expression does not equal any
of these constants but there is a label default inside the select, a branch is taken
to that point; otherwise, the statement following the right brace is executed.

Once execution begins at a case or default label, it continues until the next
case or def a ult is encountered. An example follows:

select(x)

case 1:

k = 1

case 3,5:

k = 2

default:

k = 3

Loops

The loop constructs (while, for, repeat, repeat-until, and do) provide
an efficient way to repeat an operation or series of operations. Loop termination is
generally initiated by the failure of a logical or iterative test statement. Although the
while loop is the simplest construct, and consequently the most frequently used, each
construct has its own strengths to be exploited in a given application.

w hi 1 e statement

This construct has the form

w hi 1 e (logical-expression) n statement

First, the logical-expression is evaluated; if it is true, statement is executed and the
logical-expression is evaluated again. If it is false, statement is not executed and program
execution continues at the next statement.

13-34 Chapter 13 EFL Reference

for statement

The for statement is a more elaborate looping construct. It has the form

for (initial-statement, LJ logical-expression,
LJ iteration-statement) LJ body-statement

Except for the behavior of the next statement (see "Branch Statements," later in
this chapter), this construct is equivalent to

initial-statement

w hi 1 e (logical-expression)
{

body-statement
iteration-statement

This form is useful for general arithmetic iterations and for various pointer-type
operations. The sum of the integers from 1 to 100 can be computed by the fragment

n = 0

for(i = 1, i <= 100, i += 1)

n += i

Alternatively, the computation can be done by the single statement

for ({n=O; i=l}, i<=lOO, {n+=i; ++i})

Note that the body of the for loop is a null statement in this case. An example of
following a linked list is provided later.

repeat statement

The statement

repeat LJ statement

executes the statement, then executes it again, without any termination test. A test inside
the statement is needed to stop the loop.

Executable statements 13-35

repeat-until statement

The while loop performs a test before each iteration. The statement

repeat LJ statement LJ until (logical-expression)

executes the statement, then evaluates the logical-expression. If the logical-expression is
true, the loop is complete; otherwise, control returns to the statement. Thus, the body is
always executed at least once. The until refers to the nearest preceding repeat

that is not paired with an un ti 1. In practice, this appears to be the least frequently
used looping construct.

do loop

The simple arithmetic progression is a very common one in numeric applications. EFL

has a special loop form for ranging over an ascending arithmetic sequence:

do variable = expression-1, expression-2, expression-3
statement

The variable is first given the value expression-1. The statement is executed, then
expression-3 is added to the variable. The loop is repeated until the variable exceeds
expression-2. If expression-3 and the preceding comma are omitted, the increment is
taken to be 1. The loop above is equivalent to

t2 = expression-2
t3 = expression-3
for (variable=expression-1, variable<=t2, variable+=t3)

statement

(the compiler translates EFL do statements into Fortran do statements, which are
usually compiled into excellent code). The do variable cannot be changed inside of
the loop and expression-1 must not exceed expression-2. The sum of the first hundred
positive integers can be computed by the following code:

n = 0

do i = 1, 100

n += i

13-36 Chapter 13 EFL Reference

Branch statements

It is not considered good programming practice to use branch statements if you can use
a loop construct instead. If you must use a branch statement, however, EFL provides a
few for your convenience.

goto statement

The most general, and most risky, branch statement is the simple, unconditional

goto label

After this statement, the statement following the given label is performed. Inside a
select, the case labels of that block can be used as labels, for example,

select(k)

case 1:

error(7)

case 2:

case 3:

k = 5

goto case 4

case 4:

fixup(k)

goto default

default:

prmsg (11 ouch 11
)

k = 2

goto case 4

If two select statements are nested, the case labels of the outer select

are not accessible from the inner one.

Executable statements 13-37

break statement

A safer statement is one that transfers control to the statement following the current
select or loop form. A statement of this sort is almost always needed in a
repeat loop:

repeat

do a computation
if (finished)
break

More general forms permit controlling a branch out of more than one construct.
For example,

break 3

transfers control to the statement following the third loop and select surrounding
the statement.

You can specify the type of construct from which control is to be transferred, for
example, for, while, repeat, do, or select. For example,

break while

breaks out of the first surrounding while statement. Either of the statements

break 3 for

break for 3

transfers to the statement after the third enclosing for loop.

next statement

The next statement causes the first surrounding loop statement to go to the next
iteration. The next operation performed is the test of a while, the iteration-statement
of a for, the body of a repeat, the test of a repeat ... un ti 1, or the increment
of a do. Elaborations similar to those for break are available, as follows.

13-38 Chapter 13 EFL Reference

next

next 3

next 3 for

next for 3

A next statement ignores select statements.

return statement

The last statement of a procedure is followed by a return of control to the caller. If you
want to effect such a return from any other point in the procedure, a return

statement should be executed. Inside a function procedure, the function value is
specified as an argument of the statement

return (expression)

Input/ output statements

EFL has two input statements (read and readbin), two output statements (write

and writebin), and three control statements (endfile, rewind, and
backspace). You can use any of these forms either as a primary with an integer

value or as a statement.
If an exception occurs when one of these forms is used as a statement, the result is

undefined but probably treated as a fatal error. If these forms are used in a context
where they return a value, they return zero if no exception occurs. For the input forms, a
negative value indicates end-of-file and a positive value indicates an error. EFL
input/ output statements reflect very strongly the facilities of Fortran.

1/0 units

Each I/0 statement refers to a "unit," which is identified by a small positive integer. Two
special units are defined by EFL: the "standard input unit" and the "standard output
unit." If no unit is specified in an I/0 transmission statement, these units are assumed.

The data on the unit are organized into records. These records can be read or
written in a fixed sequence. Each transmission moves an integral number of records.
Transmission proceeds from the first record until the end-of-file character is reached.

Executable statements 13-39

Binaryl/0

The readbin and wri tebin statements transmit data in a machine-dependent
but swift manner. The statements are of the form

wri tebin (unit, binary-output-list)

readbin (unit, binary-input-list)

Each statement moves one unformatted record between storage and the device. unit
is an integer expression. A binary-output-list is an iolist without any format specifiers.· A
binary-input-list is an iolist without format specifiers, in which each of the expressions is
a variable name, array element, or structure member.

Formatted 1/0

The read and write statements transmit data in the form of lines of characters.
Each statement moves one or more records Oines). Numbers are translated into decimal
notation. The exact form of the lines is determined by format specifications, whether
provided explicitly in the statement or implicitly. The syntax of the statements is

write (unit, formatted-output-list)

read (unit, formatted-input-list)

The lists are of the same form as for binary 1/0, except that they can include format
specifications. If unit is omitted, the standard input or output unit is used.

Io lists

An iolist specifies a set of values to be written or a set of variables into which values are
to be read. An iolist is a list of one or more ioexpressions, with the form

expression
{ iolist}
do-specification { iolist}

For formatted 1/0, an ioexpression also can have the forms

ioexpression: format-specifier
: format-specifier

A do-specification looks just like a d statement and has a similar effect: the values
in the braces are transmitted repeatedly until the do execution is complete.

13-40 Chapter 13 EFL Reference

Formats

The following formats are permissible format-specifiers. The quantities w, d, and k must
be integer constant expressions:

i (W) integer with w digits

f (w, d) floating-point number of w characters, d of them to the right of the
decimal point

e (w, d) floating-point number of w characters, d of them to the right of the
decimal point, with the exponent field marked with the letter e

l(W)

c

c(W)

s (k)

x(k)

logical field of width w characters, the first of which is t or f (the
rest are blank on output, ignored on input), standing for true and
false, respectively

character string of width equal to the length of the datum

character string of width w

skip k lines

skip k spaces

use the characters inside the string as a Fortran format

If you do not specify a format for an item in a formatted input/ output statement, the
EFL compiler chooses a default form.

If an item in a list is an array name, the entire array is transmitted as a sequence of
elements, each with its own format. The elements are transmitted in column-major order,
the same order that is used for array initializations.

Manipulation statements

The three input/ output statements

backspace (unit)

rewind (unit)

endf i le (unit)

look like ordinary procedure calls, but you can use them either as statements or as
integer expressions that yield nonzero if an error is detected.

backspace causes the specified unit to back up so that the next read rereads
the previous record and the next write overwrites it.

Executable statements 13-41

rewind moves the device to its beginning so that the next input statement reads
the first record.

endf i 1 e causes the file to be marked so that the record most recently written is
the last record on the file and any attempt to read past it is an error.

Procedures
Procedures are the basic unit of an EFL program and provide the means of segmenting a
program into separately compilable and named parts.

procedure statement

Each procedure begins with a statement with one of the following forms:

procedure

attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ([[name]])

The first form specifies the main procedure, where execution begins. In the other
forms, the attributes can specify precision and type or they can be omitted entirely. You
can declare the procedure precision and type in an ordinary declaration statement. If you
do not declare a type, the procedure is a subroutine and no value can be returned for it.
Otherwise, the procedure is a function and a value of the declared type is returned for
each call.

Each name inside the parentheses in the last form above is called a f omzal argument
of the procedure.

end statement

Each procedure terminates with the statement

end

13-42 Chapter 13 EFL Reference

Argument association

When a procedure is invoked, the actual arguments are evaluated. If the actual argument
is one of the following:

• the name of a variable

• an array element

• a structure member

that entity becomes associated with the formal argument. The procedure can reference
the values in the entity and assign values to it. Otherwise, the value of the actual
argument is associated with the formal argument, but the procedure cannot change the
formal argument value.

If the value of one of the arguments is changed in the procedure, the corresponding
actual argument is not permitted to be associated with another formal argument or with a
common element that is referenced in the procedure.

Execution and return values

After actual and formal arguments are associated, control passes to the first executable
statement of the procedure. Control returns to the invoker when the end statement of
the procedure is reached or when a return statement is executed. If the procedure is
a function (has a declared type) and a return(value) is executed, the value is
coerced to the correct type and precision and returned.

Known functions

A number of functions that are known to EFL need not be declared. The compiler knows
the types of these functions. Some of them are generic; that is, they name a family of
functions that differ in the types of their arguments and return values. The compiler chooses
which element of the set to invoke, based on the attributes of the actual arguments.

Procedures 13-43

Minimum and maximum functions

The generic functions are min and max. The min calls return the value of their
smallest argument; the max calls return the value of their largest argument. These are
the only functions that can take different numbers of arguments in different calls. If any
of the arguments are long real, then the result is long real. If any of the
arguments are real, the result is real. Otherwise, all arguments and results must be
integer. Sample function calls follow:

min (5, x, -3. 2 0)

max(i, z)

Absolute value

The abs function is a generic function that returns the magnitude of its argument.
For integer and real arguments, the type of the result is identical to the type
of the argument; for complex arguments, the type of the result is the real of the
same precision.

Elementary functions

Generic functions take arguments of real, long real, or complex type and
return a result of the same type:

Function Description

sin sine function

cos cosine function

exp exponential function (eX)

log natural (base e) logarithm

loglO common (base 10) logarithm

sqrt square root function c-'1 x)

13-44 Chapter 13 EFL Reference

Atavisms

In addition, the following functions accept only real or long real arguments:

Function

atan

atan2

Description

arctangent function

arctangent of x I y

Other generic functions

The sign function takes two arguments of identical type: x and y. It returns positive x
or negative x according to the sign of y.

The mod function yields the remainder of its first argument divided by its
second argument:

Function

sign (x, y)

mod (X, y)

Description

sign conversion function

remainder function

These functions accept integer and real arguments.

The following constructs are included to ease the conversion of old Fortran programs
to EFL.

Escape lines

To make use of nonstandard features of the local Fortran compiler, it is occasionally
necessary to pass a particular line through to the EFL compiler output. Such a line is
called an escape line and must begin with a percent sign(%). Escape lines are copied
through to the output without change, except that the percent sign is removed. Inside a
procedure, each escape line is treated as an executable statement. If a sequence of lines
constitutes a continued Fortran statement, you should enclose it in braces.

Atavisms 13-45

call statement

You can precede a subroutine call with the keyword call, as follows:

call joe

call work (1 7)

Obsolete keywords

The keywords in Table 13-7 are recognized as synonyms of EFL keywords.

Table 13-7 Recognized keyword synonyms

Fortran

double precision

function

subroutine

Numeric labels

EFL

long real

procedure

procedure (untyped)

Standard statement labels are identifiers. A numeric (positive integer constant) label is
also permitted. The colon is optional following a numeric label.

Implicit declarations

If a name is used but does not appear in a declaration, the EFL compiler gives a warning
and assumes a declaration for it. If it is used in the context of a procedure invocation, it is
assumed to be a procedure name; otherwise, it is assumed to be a local variable defined
at nesting level 1 in the current procedure. The assumed type is determined by the first
letter of the name. The association of letters and types can be given in an imp 1 i cit

statement, with syntax

implicit (letter-list) type

13-46 Chapter 13 EFL Reference

where a letter-list is a list of individual letters or ranges (pair of letters separated by a
minus sign). If no implicit statement appears, the following rules are assumed:

implicit (a-h, o-z) real

implicit (i-n) integer

Computed goto

Fortran contains an indexed multiway branch. You can use this facility in EFL by the
computed goto

goto ([[label]]) , expression

The expression must be of type integer and positive, but no larger than the
number of labels in the list. Control is passed to the statement that is marked by the label
whose position in the list is equal to the expression.

goto statement

In unconditional and computed goto statements, you can separate the go and to

words, as in

go to xyz

Dot names

Fortran uses a restricted character set and represents certain operators (op) by
multicharacter sequences. There is an option, dots=on (see "Compiler Options,"
later in this chapter), that forces the compiler to recognize the forms in the second
column in Table 13-8.

Atavisms 13-47

Table 13-8 Regular and dots=on forms of operators

EFL op dots=on form

< .lt.

<= .le.

> .gt.

>= .ge.

.eq .

. ne .

& . and.

.or .

&& . andand.

11 .oror .

. not .

true . true.

false .false.

In this mode, you cannot name any structure element 1 t, le, and so on. The basic
forms in the left column, however, are always recognized.

Complex constants

You can write a complex constant as a list of real quantities enclosed in parentheses,
such as

(1.5, 3.0)

The preferred notation is by type coercion, as follows:

complex(l.5, 3.0)

13-48 Chapter 13 EFL Reference

Function values

The preferred way to return a value from a function in EFL is the return (value)
construct. The name of the function acts as a variable to which values can be assigned;
however, an ordinary return statement returns the last value assigned to that name
as the function value.

Equivalence

A statement with the form

equivalence v1 , V2, ... , Vn

declares that each of the vi starts at the same memory location. Each of the vi can be a
variable name, array element name, or structure member.

Minimum and maximum functions

There are a number of nongeneric functions in this category that differ in the types of
arguments they require and types of return values. They also can have variable numbers
of arguments, but all the arguments must have the same type. The nongeneric functions
are shown in Table 13-9.

Atavisms 13-49

Table 13-9 Nongeneric functions

Function Argument type Result type

amino integer real

aminl real real

minO integer integer

minl real integer

dminl long real long real

amax:O integer real

amaxl real real

maxO integer integer

maxl real integer

dmaxl long real long real

Compiler options
You can use a number of options to control the output and tailor it for various compilers
and systems. The chosen defaults are conservative, but you might sometimes need to
change the output to match peculiarities of the target environment.

Options are set with statements with the form

option [[opt]]

where each opt is of one of the forms

option name

option name= optionvalue

The optionvalue is either a constant (numeric or string) or a name associated with that
option. The two names yes and no apply to a number of options.

13-50 Chapter 13 EFL Reference

Default options

Each option has a default setting. You can change the whole set of defaults to those
appropriate for a particular environment by using the system option. At present, the
only valid values are system=unix and system=gcos.

Input language options

The dots option determines whether the compiler recognizes . 1 t . and similar
forms. The default setting is no.

Input/ output error handling

The ioerror optioncanbegiventhreevalues: none, ibm,or fortran77. The
none value means that none of the I/0 statements can be used in expressions, as there is
no way to detect errors. The implementation of the ibm form uses ERR= and END=
clauses. The implementation of the fortran77 form uses IOSTAT= clauses.

Continuation conventions

By default, continued Fortran statements are indicated by a character in column 6
(Standard Fortran). The option continue=columnl puts an ampersand(&) in the
first column of the continued lines instead.

Default formats

If you do not specify a format for a datum in an iolist for a read or write
statement, a default is provided. You can change the default formats by setting certain
options, as shown in Table 13-10.

The associated value must be a Fortran format, such as

option rformat=2.6

Compiler options 13-51

Table 13-10 Options for changing default read/write formats

Option Type

iformat integer

rf ormat real

df ormat long real

zformat complex

zdf ormat long complex

lformat logical

Alignments and sizes

To implement character variables, structures, and the s i z eo f and 1 en gt ho f

operators, you must know how much space various Fortran data types require and what
boundary alignment properties they demand. The relevant options are shown in
Table 13-11.

The sizes are in terms of an arbitrary unit; the alignment is in the same unit. The
option charprint gives the number of characters per integer variable.

Table 13-11 Alignment and size options for Fortran data types

Fortran Size Alignment
type option option

integer isize ialign

real rsize ralign

long real dsize dalign

complex zsize zalign

logical lsize lalign

13-52 Chapter 13 EFL Reference

Examples

Default input/ output units

The options ftnin and ftnout are the numbers of the standard input and output
units. The default values are ftnin=5 and ftnout=6.

Miscellaneous output control options

Each Fortran procedure the compiler generates is preceded by the value of the
procheader option.

No Hollerith strings are passed as subroutine arguments if hollincall=no is
specified.

The Fortran statement numbers normally start at one and increase by one. You can
change the increment value by using the de 1 ta st no option.

The following short examples of EFL programming show some of the convenience of
the language.

File copying

The short program in Figure 13-2 copies the standard input to the standard output, provided
that the input is a formatted file containing lines no longer than a hundred characters.

Figure 13-2 File-copying example

procedure # main program

character(lOO) line

while(read(, line) 0)

write(, line)

end

Examples 13-53

Because read returns zero until the end-of-file (or a read error), this program
keeps reading and writing until the input is exhausted.

Matrix multiplication

The procedure in Figure 13-3 multiplies the m x n matrix a by the n x p matrix b to give
the m x p matrix c. The calculation obeys the formula.

Figure 13-3 Matrix multiplication example

cif =I. aik bkf
procedure matmul(a,b,c, m,n,p)

integer i, j, k, m, n, p

long real a(m,n), b(n,p), c(m,p)

do i l, m

do j l,p

end

c(i,j) = 0

do k = l,n

c(i,j) += a(i,k) * b(k,j)

Searching a linked list

If you have a list of number pairs (x, y), that list is stored as a linked list and sorted in
ascending order of x values. The procedure in Figure 13-4 searches this list for a
particular value of x and returns the corresponding y value.

13-54 Chapter 13 EFL Reference

Figure 13-4 Example of searching a linked list

define LAST 0

define NOTFOUND -1

integer procedure val(list, first, x)

list is an array of structures.

Each structure contains a thread index value,

an x, and a y value.

struct

integer nextindex

integer x, y

} list(*)

integer first, p, arg

for(p

p

first ' p-=LAST && list(p) .X<=X '

list(p) .nextindex)

if (list(p) .x == x)

return(list(p) .y

return(NOTFOUND)

end

The search is a single for loop that begins with the head of the list and examines
items until the list is exhausted (p==LAST) or it is known that the specified value is not
on the list (1 is t (p) . x > x). The two tests in the conjunction must be performed in
the specified order to avoid using an invalid subscript in the 1 is t (p) reference.
Therefore, the && operator is used. The next element in the chain is found by the
iteration statement p=list (p) . next index.

Examples 13-55

Walking a tree

An example of a more complicated problem is if you have an expression tree stored in a
common area and you want to print out an infix form of the tree. Each node is either a
leaf (containing a numeric value) or a binary operator, pointing to a left and right
descendent. In a recursive language, such a tree walk is implemented by the simple
pseudocode shown in Figure 13-5.

Figure 13-5 Pseudocode for a tree walk

if this node is a leaf

print its value

otherwise

print a left parenthesis

print the left node

print the operator

print the right node

print a right parenthesis

In a nonrecursive language like EFL, you need to maintain an explicit stack to keep
track of the current state of the computation. The procedure in Figure 13-6 calls a procedure
out ch to print a single character and a procedure out val to print a value.

Figure 13-6 Example of walking a tree

procedure walk(first) # print an expression tree

integer first # index of root node

integer currentnode

integer stackdepth

cornrnon(nodes) struct

character(l) op

integer leftp, rightp

real val

} tree(lOO) # array of structures

13-56 Chapter 13 EFL Reference

struct

integer nextstate

integer nodep

} stackframe(lOO)

define NODE

define STACK

tree(currentnode)

stackframe(stackdepth)

nextstate values

define DOWN 1

define LEFT 2

define RIGHT 3

initialize stack with root mode

stackdepth = 1

STACK.nextstate = DOWN

STACK.nodep = first

while(stackdepth > 0)

currentnode = STACK.nodep

select(STACK.nextstate)

case DOWN:

if (NODE.op 11 11
) # a leaf

outval(NODE.val)

stackdepth -= 1

(continuedY.

Examples 13-57

Portability

end

else {# a binary operator node

outch (11
(

11
)

STACK.nextstate LEFT

stackdepth += 1

STACK.nextstate = DOWN

STACK.nodep = NODE.leftp

case LEFT:

outch(NODE.op)

RIGHT STACK.nextstate

stackdepth += 1

STACK.nextstate = DOWN

STACK.nodep = NODE.rightp

case RIGHT:

outch (11
)

11
)

stackdepth - 1

One of the major goals of the EFL language is to make it easy to write portable programs.
The output of the EFL compiler is intended to be acceptable to any Standard Fortran
compiler (unless the fort ran 7 7 option is specified).

Primitives

Certain EFL operations cannot be implemented in portable Fortran, so a few machine­
dependent procedures must be provided in each environment.

13-58 Chapter 13 EFL Reference

Compiler

Character string copying

Call the subroutine e f 1 as c to copy one character string to another. If the target string
is shorter than the source, the final characters are not copied. If the target string is longer,
its end is padded with blanks. The calling sequence is

subroutine eflasc(a, la, b, lb)

integer a(*), la, b(*), lb

It must copy the first lb characters from b to the first la characters of a.

Character string comparisons

The function e f 1 crnc is invoked to determine the order of two character strings. The
declaration is

integer function eflcrnc(a, la, b, lb)

integer a(*), la, b(*), lb

The function returns a negative value if string a of length la precedes string b

of length lb. It returns zero if the strings are equal and a positive value otherwise. If the
strings are of different lengths, the comparison is carried out as if the end of the shorter
string were padded with blanks.

Current version

The current version of the EFL compiler is a two-pass translator written in portable C. It
implements all the features of the language described earlier except for long

complex numbers.

Compiler 13-59

Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and filename (if known) in
which the error was detected. Warnings are given for variables that are used but not
explicitly declared.

Quality of Fortran produced

The Fortran produced by EFL is clean and readable. The variable names that appear in
the EFL program are used in the Fortran code when possible, and the bodies of loops
and test constructs are indented. Statement numbers are consecutive. Few unneeded
goto and continue statements are used. It is considered a compiler bug if
incorrect Fortran is produced (except for escaped lines). Figure 13-7 shows the Fortran
procedure produced by the EFL compiler for the matrix multiplication example (see
"Examples," earlier in this chapter).

Figure 13-7 Fortran code produced from matrix multiplication example

subroutine matmul(a, b, c, m, n, p)

integer m, n, p

double precision a(m, n), b(n, p), c(m, p)

integer i, j, k

do 3 i = l, m

do 2 j = l, p

c(i, j) = 0

do 1 k = 1, n

c(i, j) = c(i, j)+a(i, k)*b(k, j)

1 continue

2 continue

3 continue

end

Figure 13-8 shows the procedure for the tree walk.

13-60 Chapter 13 EFL Reference

Figure 13-8 Fortran code produced from tree-walk example

subroutine walk(first)

integer first

common /nodes/ tree

integer tree(4, 100)

real tree1(4, 100)

integer staame(2, 100), stapth, curode

integer constl(l)

equivalence (tree(l,l), treel(l,l))

data constl(l)/4h I

c print out an expression tree

c index of root node

c array of structures

c nextstate values

c initialize stack with root node

stapth = 1

staame(l, stapth) 1

staame(2, stapth) first

1 if (stapth .le. 0) goto 9

curode = staame(2, stapth)

goto 7

2 if (tree(l, curode) .ne. constl(l)) goto 3

call outval(tree1(4, curode))

c a leaf

stapth

goto 4

3 call outch(lh()

stapth-1

(continued;.

Compiler 13-61

c a binary

4

5

6

7

8

operator node

staame(l, stapth) 2

stapth = stapth+l

staame(l, stapth) 1

staame(2, stapth) tree(2,

goto 8

call outch(tree(l, curode))

staame(l, stapth) = 3

stapth = stapth+l

1

curode)

staame(l, stapth)

staame(2, stapth)

goto 8

tree(3, curode)

call outch (lh))

stapth = stapth-1

goto 8

if (staame(l, stapth)

if (staame(l, stapth)

if (staame(l, stapth)

continue

goto 1

.eq. 3) goto 6

.eq. 2) goto 5

.eq. 1) goto 2

9 continue

end

Constraints on EFL

Although Fortran can be used to simulate any finite computation, there are realistic limits
on the generality of a language that can be translated into Fortran. Implementation
strategy constrained the design of EFL. Some of the restrictions are minor (for example,
six-character external names), but others are sweeping (for example, lack of pointer
variables). The following sections describe the major limitations imposed by Fortran.

13-62 Chapter 13 EFL Reference

External names

In Fortran, external names (procedure and common block names) cannot be longer than six
characters. Furthermore, an external name is global to the entire program. Therefore, EFL
can support block structure within a procedure, but it can have only one level of external
name if the EFL procedures are to be compilable separately, as are Fortran procedures.

Procedure interface

The Fortran standards, in effect, permit arguments to be passed between Fortran
procedures, either by reference or by copy-in/ copy-out. This flexibility of specification
shows through into EFL. A program that depends on the method of argument
transmission is illegal in either language.

There are no procedure-valued variables in Fortran. That is, a procedure name can
only be passed as an argument or invoked; it cannot be stored.

Pointers

The most difficult problem with Fortran is its lack of a pointer-like data type. Compiler
implementation would have been far easier, and the language itself simplified considerably,
if certain cases were handled by pointers. Although there are several ways of simulating
pointers by using subscripts, this raises problems of external variables and initialization.

Recursion

Fortran procedures are not recursive, so it was not practical to permit EFL procedures to
be recursive. As in the case of pointers, recursion can be simulated in EFL, but not
without considerable effort.

Storage allocation

The definition of Fortran does not specify the lifetime of variables. It is possible but
cumbersome to implement stack or heap storage disciplines by using common blocks.

Constraints on EFL 13-63

14 as Reference

Warnings I 14-3

Using as I 14-5

General syntax rules I 14-6

Segments, location counters, and labels I 14-11

Types I 14-13

Expressions I 14-14

Pseudo-operations I 14-15

Span-dependent optimization I 14-23

Address modes I 14-24

Machine instructions I 14-28

Programmers familiar with the MC68000 family of microprocessors should be able to

debug code produced by as, the A/UX resident assembler, after reviewing this

chapter-but this is not a reference for the processor itself. Details about the effects of

instructions, meaning of status register bits, handling of interrupts, and many other issues

are not dealt with here. This chapter should, therefore, be used in conjunction with the

reference manuals in the following list.

• MC68020 32-Bit Microprocessor User's Manual (Prentice-Hall, 1984)

• MC68030 Enhanced 32-Bit Microprocessor User's Manual, Second Edition (Prentice-

Hall, 1989)

• MC68040 32-Bit Microprocessor User's Manual (Prentice-Hall, 1991)

• MC68851 Paged Memory Management Unit User's Manual (Motorola, Inc., 1985)

• MC68881/68882 Floating Point Coprocessor User's Manual (Motorola, Inc., 1985)

14-2 Chapter 14 as Reference

Warnings
The as user should be aware that although, for the most part, there is a direct
correspondence between as notation and the notation used in the documents listed in
the introduction to this chapter, several exceptions could result in incorrect code. In
addition to the exceptions described in the following paragraphs, refer also to the
sections "Address Mode Syntax" and "Machine Instructions" later in this chapter for
further information to help you avoid this.

Comparison instructions

The order of the operands in compare instructions follows one convention in the
MC68000-family reference manuals and the opposite convention in as. Using the
convention of the MC68000-family reference manuals, you might write

CMP.W D5, D3 # Is D3 less than D5?

BLE IS LESS # Branch if less.

Using the as convention, you would write

cmp.w

ble

%d3,%d5

is less

Is d3 less than d5 ?

Branch if less.

The convention used by as makes for straightforward reading of compare and
branch instruction sequences, with this exception: if a compare instruction is replaced by
a subtract instruction, the effect on the condition codes is entirely different. This result
can be confusing to programmers who are used to thinking of a comparison as a
subtraction whose result is not stowd. Users of as who become accustomed to its
convention find that both the compare and subtract notations make sense in their
respective contexts.

Warnings 14-3

Case sensitivity

In the A/UX implementation, only lowercase instruction and register names are valid.
For example,

mov %dl,%d2

is acceptable, while

MOV %Dl,%D2

is not. This requirement is especially important for those who wish to port existing
assembly code from other machines.

Overloading of opcodes

Another issue that users must be aware of arises from the MC68000-family
microprocessors using several different instructions to do essentially the same thing. For
example, the MC68020 Programmer's Reference Manual lists the instructions SUB,

SUBA, SUBI, and SUBQ, which all have the effect of subtracting their source operand
from their destination operand. as replaces the separate suba, subi, and subq

instructions, allowing all these operations to be specified by a single assembly
instruction, sub. On the basis of the operands given to the sub instruction, the as

assembler selects the appropriate MC68000-family operation code.
The danger created by this convenience is that it can give the impression that all

forms of the SUB operation are semantically identical when, in fact, they are not. The
MC68020 Programmer's Reference Manual shows that while SUB, SUBI, and SUBQ

all affect the condition codes in a consistent way, SUBA does not affect the condition
codes at all. Consequently, the as user must be aware that when the destination of a
sub instruction is an address register (which causes the sub to be mapped into the
operation code for suba), the condition codes are not affected.

14-4 Chapter 14 as Reference

Using as

The A/UX command as invokes the assembler. It has the following syntax:

as [-rnJ [-n] [-o outfileJ [-RJ [-VJ [-A factor] filename

The command options listed in Table 14-1 can be specified in any order.

Table 14-1 Options to as

Option

-A factor

-R

-v
* -m

-n

-o outfile

-68030

-68040

-68851

Description

Expand the default symbol table by the factor given.

Remove (unlink) the input file after assembly is completed; this command option is
off, by default.

Write the version number of the assembler being run on the standard error output.

Run the m4 macro preprocessor on the input to the assembler.

Tum off long/short address optimization; by default, address optimization takes place.

Put the output of assembly in outfile; by default, the output filename is formed by
removing the . s suffix, if there is one, from the input filename and appending an
.o suffix.

Assemble for the MC68030 processor and MC68030 MMU; this option gives you
access to an enhanced feature set as compared with the default MC68020 assembly,
but the code does not run on the original Macintosh II model computer.

Assemble for the MC68040 processor and MC68040 MMU; this option gives you
access to an enhanced feature set as compared with the default MC68020 assembly,
but the code does not run on the original Macintosh II model computer.

Assemble for the MC68851 Memory Management Unit (MMU); this command option
is on, by default.

* If the -m command option is used, keywords for m4 cannot be used as identifiers
(variables, functions, labels, and so on) in the input file because m4 cannot determine which
are assembler symbols and which are real m4 macros.

Using as 14-5

General syntax rules

The following sections discuss the components of the assembly language produced by
the as assembler.

Format of assembly-language code

Typical lines of as assembly code look like these:

Clear a block of memory at location %a3

text 2

mov.w &const,%dl

loop:

dbf

init2:

clr.l (%a3)+

%dl,loop # go back for const

repetitions

clr.l count; clr.l credit; clr.l debit;

where the suffix to clr is always the letter 1 (ell), while %dl indicates data register
1 (one).

These general points about the example should be noted:

• An identifier occurring at the beginning of a line and followed by a colon (:) is a
label In the example above, loop and init2 are labels. One or more labels can
precede any assembly-language instruction or pseudo-operation. Refer to the section
"Location Counters and Labels" later in this chapter for additional information.

• A line of assembly code need not include an instruction. It can consist of a comment
alone (introduced by #), or a label alone (terminated by :), or it can be entirely blank.

• It is good practice to use tabs to align assembly-language operations and their
operands into columns, but this is not a requirement of the assembler. An opcode
can appear at the beginning of the line, if desired, and spaces can precede a label. A
single blank or tab suffices to separate an opcode from its operands. Additional
blanks and tabs are ignored by the assembler.

14-6 Chapter 14 as Reference

• It is permissible to write several instructions on one line, separating them by
semicolons. The semicolon is syntactically equivalent to a newline character;
however, a semicolon inside a comment is ignored.

Comments

Comments are introduced by the character # and continue to the end of the line.
Comments can appear anywhere; the assembler disregards them.

Identifiers

An identifier is a name for a variable, label, register, or function. It consists of a string of
characters taken from the set a - z , A - z , _, ~ , % , and o - 9. The first character of
an identifier must be a letter (uppercase or lowercase) or an underscore. The assembler
distinguishes between uppercase and lowercase letters; for example, con3 5, Con3 5,

and CON3 5 are three distinct identifiers.
Identifiers can be up 1024 characters long (this limit is imposed by the loader).
The value of an identifier is established by the set pseudo-operation (refer to the

section "Symbol-Definition Operations" later in this chapter) or by using it as a label
(refer to the section "Location Counters and Labels" later in this chapter).

The tilde character (~) has special significance to the assembler. A tilde used alone as
an identifier means "the current location." A tilde used as the first character in an
identifier becomes a period (.)in the symbol table. This is provided for backward
compatibility. The assembler now directly supports symbols such as . eos and
. of ake to be entered into the symbol table, as required by the Common Object File
Format. Information about file formats is provided in Section 4 of the A!UX
Programmer's Reference.

Register identifiers

A register identifier is an identifier preceded by the character % . It represents one of the
MC68000-family microprocessor registers. The predefined MC68020 register identifiers
are shown in Table 14-2.

General syntax rules 14-7

Table 14-2 Predefined MC68020 registers

Name

%d0-7

%a0-5

%a6

%a7,

%pc

%ccr

%isp

%msp

%sr

%vbr

%sf c

%df c

%cacr

%caar

%usp

Description

Data registers

Address registers

Address register (also defined as %fp)

User stack pointer (also defined as %sp)

Program counter

Condition code register

Interrupt stack pointer

Master stack pointer

Status register

Vector base register

Alternate function code register (also defined as %sfcr)

Alternate function code register (also defined as %df er)

Cache control register

Cache address register

To preserve the upward compatibility of MC68000 code, the identifiers %a 7, · % sp,

and %usp represent the same machine register. Likewise, %a6 and % fp are
equivalent. Use of both %a7 and %sp, or %a6 and %fp, in the same program can
result in confusion and should be avoided. The registers % sf c and % sf c r are also
equivalent, as are %dfc and %df er.

The entire register set of the MC68000 and MC68010 is included in the MC68020
register set. Table 14-3 shows the new control registers for the MC68030. Table 14-4
shows the new control registers for the MC68040.

Various registers can be suppressed; these suppressed registers (also called zero
registers) are used in various complex MC68020 addressing modes. The notation for
suppressed registers is % z d n for data register n, % z an for address register n, and
% zpc for the suppressed program counter.

14-8 Chapter 14 as Reference

Table 14-3 Additional registers for the MC68030 microprocessor

Name

%crp

%srp

%tc

%tt0, %ttl

%psr

Description

CPU root pointer

Supervisor root pointer

Translation control register

Translation registers

MMU status register

Table 14-4 Additional registers for the MC68040 microprocessor

Name

%itt0

%ittl

%dtt0

%dttl

%rrrrnusr

%urp

Constants

Description

Instruction transparent translation register 0

Instruction transparent translation register 1

Data transparent translation register 0

Data transparent translation register 1

MMU status register

User root pointer register

as deals only with integer constants. They can be entered in decimal, octal, or
hexadecimal, or they can be entered as character constants. Internally, as treats all
constants as 32-bit binary 2's-complement quantities.

Numeric constants

A decimal constant is a string of digits beginning with a nonzero digit. An octal constant
is a string of digits beginning with zero. A hexadecimal constant consists of the
characters ox or ox followed by a string of characters from the set o - 9 , a - f , and
A- F. In hexadecimal constants, uppercase and lowercase letters are not distinguished.
The following are some examples.

General syntax rules 14-9

set const,35 # decimal 35

mov.w &035,%dl # octal 35 (decimal 29)

set const, Ox35 # hex 35 (decimal 53)

mov.w &Oxff,%dl #hex ff (decimal 255)

Character constants

An ordinary character constant consists of a single quotation mark (') followed by an
arbitrary ASCII character other than the backslash (\). The value of the constant is equal
to the ASCII code for the character. For example, the character constant 'A has value
Ox41. Special meanings of characters are overridden when used in character constants;
for example, if ' # is used, the # is not treated as introducing a comment.

Special character constants convey special information to the assembler. A special
character constant consists of ' \ followed by another character. All the special
character constants are listed in Table 14-5.

Table 14-5 Special character constants

Constant Value Meaning

'\b Ox08 Backspace

'\t Ox09 Horizontal tab

'\n OxOa Newline Cline feed)

I \v Ox Ob Vertical tab

'\f OxOc Form feed

'\r OxOd Carriage return

'\\ Ox5c Backslash

Other syntactic details

A discussion of expression syntax appears in the section "Expressions," later in this
chapter. Information about the syntax of specific components of as instructions and
pseudo-operations is given in the sections "Pseudo-operations," "Span-Dependent
Optimization," and "Address-Mode Syntax," all later in this chapter.

14-10 Chapter 14 as Reference

Segments, location counters, and labels
The following sections describe how the assembler arranges and locates various pieces
of code.

Segments

A program in as assembly language can be broken into segments known as text,

data, and bss segments. The convention regarding the use of these segments is to
place instructions in text segments, initialized data in data segments, and
uninitialized data in bs s segments. The assembler does not enforce this convention,
however. For example, it permits intermixing of instructions and data in a text

segment if specifically directed to mix the segments. Routines to be placed in the shared
library also can have an ini t segment, which contains initialization fragments. An
ini t segment is treated similarly to a text segment.

This convention of using separate text, data, and bs s segments permits the
sharing of text segments between programs on systems using shared memory, such
as A/UX. If several copies of a program are running at once, which can happen when
users are logged in over a network, there is only one instance of the text segment in
memory, thus conserving memory space.

Primarily to simplify compiler code generation, the assembler permits up to four
separate text segments and four separate data segments named o, 1, 2, and 3.

The assembly-language program can switch freely among them by using assembler
pseudo-operations. (See the section "Location Counter Control Operations" later in this
chapter.) This flexibility can be handy, for example, if you want to put all the constants
in one segment and all the functions in another. When generating the object file, the
assembler concatenates the text segments to generate a single text segment and
the data segments to generate a single data segment. Thus, the object file contains
only one text segment and only one data segment. There is always only one bs s

segment, and it maps directly into the object file.

Segments, location counters, and labels 14-11

Because the assembler keeps together everything from a given segment when
generating the object file, the order in which information appears in the object file is
unlikely to be the same as in the assembly-language file. For example, if the data for a
program consists of

data 1 # segment 1

short Oxllll

data 0 # segment 0

long Oxf ff ff ff f

data 1 # segment 1

byte Oxf f

the assembler groups the data for segment 0 together (in the order the assembler
encounters it), then groups the data for segment 1. It then places the data for segment 1
after the data for segment 0 as it builds the object file. Thus, for the example just given,
equivalent object code is generated by

data 1

data

long

short

byte

0

Oxffffffff

Oxllll

Oxf f

In this equivalent code example, the first statement

data 1

is effectively ignored.

Location counters and labels

The assembler maintains separate location counters for the bs s segment and for each of
the text and data segments. The location counter for a given segment is
incremented by 1 for each byte generated in that segment.

14-12 Chapter 14 as Reference

Types

The location counters allow values to be assigned to labels. When an identifier is
used as a label in the assembly-language input, the value of the current location counter
is assigned to the identifier. The assembler also keeps track of the segment in which the
label appeared. Thus, the identifier represents a memory location relative to the
beginning of a particular segment. Any label relative to the location counter should be
within the text segment.

Identifiers and expressions can have values of different types.
In the simplest case, an expression or identifier can have an absolute value, such as

29, -5000, or 262143.

+ Note The term absolute value is not used here in the mathematical sense. •

An expression or identifier can have a value relative to the start of a particular
segment. Such a value is known as a relocatable value. The memory location
represented by such an expression cannot be known at assembly time, but the relative
values of two such expressions (that is, the difference between them) can be known if
they refer to the same segment.

Identifiers that appear as labels have relocatable values.
If an identifier is never assigned a value, it is assumed to be an undefined external.

Such identifiers can be used with the expectation that their values are defined in another
program and, therefore, known at load time, but the relative values of undefined
externals cannot be known.

Types 14-13

Expressions
Since the value of some expressions cannot be known at assembly time, expressions
involving such values also cannot be known at assembly time. This section provides the
rules for determining whether expressions involving unknown values can be solved.

For conciseness, the following abbreviations are useful:

abs

rel

ext

absolute expression

relocatable expression

undefined external

All constants are absolute expressions. An identifier can be thought of as an
expression having the identifier type. Expressions can be built up from lesser
expressions using the operators +, - , *, and I, according to the following type rules:

afu + afu afu

abs
abs

abs
rel
ext
rel

abs
abs
-abs

+

+

*
I

rel
ext

abs
abs
abs
rel

abs
abs
abs

rel
ext

abs
rel
ext
abs

abs
abs

+

+

abs
abs

rel
ext

(provided that the two relocatable
expressions are relative to the same
segment)

rel - rel expressions are permitted only within the context of a switch statement.
(See the section "Switch Table Operation" later in this chapter.) Use of a rel - rel
expression is dangerous, particularly when dealing with identifiers from text

segments. The problem is that the assembler determines the value of the expression
before it resolves all questions concerning span-dependent optimizations.

The unary minus operator takes the highest precedence; the next highest precedence
is given to * and I ; and lowest precedence is given to + and binary - . Parentheses
can be used to coerce the order of evaluation.

14-14 Chapter 14 as Reference

If the result of a division is a positive noninteger, it is truncated toward zero. If the
result is a negative noninteger, the direction of truncation cannot be guaranteed.

Pseudo-operations

This section details instructions to the assembler that do not involve expressions or
operators. Collectively these are known as pseudo-operations. Any pseudo-operation
can be preceded by a period (.);this option is provided for backward compatibility.

Data initialization operations

The following pseudo-operations allocate memory space for a program:

byte abs, abs, ...
One or more arguments, separated by commas, can be given. The values of the
arguments are computed to produce successive bytes in the assembly output.

short abs, abs, ...
One or more arguments, separated by commas, can be given. The values of the
arguments are computed to produce successive 16-bit words in the assembly output.

long expr, expr, ...
One or more expressions, separated by commas, can be given. Each expression can be
absolute, relocatable, or undefined external. A 32-bit quantity is generated for each such
argument (in the case of relocatable or undefined external expressions, the actual value
cannot be filled in until load time). Alternatively, the arguments can be bitfield
expressions. A bitfield expression has the form

n:value

where both n and value denote absolute expressions. The quantity n represents a field
width; the low-order n bits of value become the contents of the bitfield. Successive
bitfields fill up 32-bit 1 ong quantities, starting with the high-order part. If the sum of

Pseudo-operations 14-15

the lengths of the bitfields is less than 32 bits, the assembler creates a 32-bit long with
O's filling out the low-order bits. For example,

long 4: -1, 16: Ox7f, 12:0, 5000

and

long 4: -1, 16: Ox7f, 5000

are equivalent to

long Oxf007f000, 5000

as shown in Figure 14-1.

,--4:-1---, 16:0x7f 12:0------..
r-f---., r-0-..---0-..---7-..---f---., r-0-..---0-..---0---..,

111111!11 lololololo!o!ololol1l1!1l1l1!1!1I !olo!o!olo!o!o!o!olo!o!ol
\ I I I I
\ I I I I

\I I I I

\I I I I
\I I/

\I II
\I II I

l1!1!1!1jo!o!o!o!o!o!o!o!o!1!1!1!1!1!1!1jo!o!o!o!o!o!o!o!o!o!o!ol
'------------Oxf007f000------------J

Figure 14-1 Bitfield concatenation

Bitfields cannot span pairs of 32-bit 1 on gs. Thus,

long 24: Oxa, 24: Oxb, 24:0xc

yields the same result as

long OxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO

as shown in Figure 14-2.

space abs
The assembler computes the value of abs and generates the resultant number of bytes of
0 data. For example,

space 6

is equivalent to

byte 0,0,0,0,0,0

14-16 Chapter 14 as Reference

~------ 24:x00000a ------~

-----------OxOOOOOaOO---------~

lol1lol1lololololololololol
'-0-A-0-A-0-A-O_A_O_A_a___.A_ Padded by ____j

assembler

Figure 14-2 Integer boundaries

Additional pseudo-operations for MC68040 processors

You can use the following pseudo-operation to set the type of processor (CPU):

cpu type

The argument type can have one of the following values:

Value Description

o or 6 8 o o o sets the MC68000 CPU and does not set an MMU

2 o or 6 8 o 2 o sets the MC68020 CPU and does not change the MMU

3 o or 6 8 o 3 o sets the MC68030 CPU and MC68030 MMU

4 o or 6 8 o 4 o sets the MC68040 CPU and MC68040 MMU

You also can set the type of MMU with the pseudo operation

rnmu type

The argument type can have one of the following values:

Value Description

o sets no MMU

851 or 68851 sets the MC68851 MMU

3 o or 6 8 o 3 o sets the MC68030 MMU

4 o or 6 8 o 4 o sets the MC68040 MMU

Pseudo-operations 14-17

Symbol-definition operations

The following pseudo-operations allocate memory space for a program:

set identifier, expr
The value of identifier is set equal to expr, which can be absolute or relocatable.

comm identifier, abs
The named identifier is assigned to a common area of size abs bytes. If identifier is not
defined by another program, the loader allocates space for it.

lcomm identifier, abs
The named identifier is assigned to a local common area of size abs bytes. This results in
allocating space in the bs s segment. The type of identifier becomes relocatable.

global identifier
This causes identifierto be externally visible. If identifier is defined in the current
program, declaring it global allows the loader to resolve references to identifierin
other programs. If identifier is not defined in the current program, the assembler expects
an external resolution.

Location counter control operations

The following pseudo-operations define the segment in which code is to be allocated
and the alignment within that segment:

data abs
The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the number of the
data segment into which assembly is to be directed. If no argument is present,
assembly is directed into data segment 0.

14-18 Chapter 14 as Reference

text abs
The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the number of the
text segment into which assembly is to be directed. If no argument is present,
assembly is directed into text segment 0. Before the first text or data operation
is encountered, assembly is, by default, directed into text segment 0.

org expr
The current location counter is set to expr, which must represent a value in the current
segment and must not be less than the current location counter.

even

The current location counter is rounded up to the next even value.

long even

The current location counter is rounded up to the next 4-byte multiple value.

align n
The current location counter is rounded to a multiple of n bytes, where n can be 2, 4, 8,
or 16. even is equivalent to align 2; longeven is equivalent to align 4.

init

The assembly is directed into the ini t segment. This operation is typically used for
shared-library initialization fragments.

Symbolic-debugging operations

The assembler allows for symbolic-debugging information to be placed into the object
code file with special pseudo-operations. The information typically includes line
numbers and information about C language symbols, such as their type and storage
class. The C compilers, cc and c89, generate symbolic-debugging information when
the -g command option is used. Assembler programmers also can include such
information in source files.

Pseudo-operations 14-19

file and ln

The f i 1 e pseudo-operation passes the name of the source file into the object file
symbol table. It has the form

file "filename"

where filename must be enclosed in straight double quotation marks.
The ln pseudo-operation makes a line-number table entry in the object file; that is,

it associates a line number with a memory location. Usually the memory location is the
current location in text. The format is

ln line [,value]

where line is the line number. The optional value is the address in a text, data, or
bs s segment to associate with the line number. The default when value is omitted
(which is usually the case) is the current location in text.

Symbol-attribute operations

The basic symbolic testing pseudo-operations are def and ende f. These operations
enclose other pseudo-operations that assign attributes to a symbol and must be paired.
The basic syntax for using def and ende f is

def name
attrasgn
attrasgn

endef

where attrasgn can be any one of the attribute-assigning operations shown in the list at
the end of this section.

The term def creates a symbol table entry but does not define the symbol. Because
an undefined symbol is treated as external, a symbol that appears in a def pseudo­
operation but never acquires a value causes an error at load time.

To allow the assembler to calculate the sizes of functions for other tools, each
def I en def pair that defines a function name must be matched by a def/ ende f

pair after the function in which a storage class of -1 is assigned, where -1 is the
physical end of a function.

14-20 Chapter 14 as Reference

The following paragraphs describe the attribute-assigning operations (attrasgn in the
syntax diagram just discussed). These operations apply to the symbol name that
appeared in the opening def pseudo-operation.

val expr
The val operation assigns the value exprto name. The type of the expression expr
determines with which section name is associated. If value is ~, the current location in
the text section is used.

scl expr
The s c 1 operation declares a storage class for name. The expression expr must yield
an absolute value that corresponds to the C compiler internal representation of a storage
class. The special value -1 designates the physical end of a function.

type expr
The type operation declares the C language type of name. The expression exprmust
yield an absolute value that corresponds to the C compiler internal representation of a
basic or derived type.

tag expr
The tag operation associates name with the structure, enumeration, or union named
strthat must have already been declared with a def I endef pair.

line expr
The 1 ine operation provides the line number of name, where name is a block symbol.
The expression expr should yield an absolute value that represents a line number.

size expr
The s i z e operation gives a size for name. The expression expr must yield an absolute
value. When name is a structure or an array with a predetermined extent, expr gives the
size in bytes. For bitfields, the size is in bits.

dim exprl,expr2, ...
The dim operation indicates that name is an array. Each of the expressions must yield
an absolute value that provides the corresponding array dimension.

Pseudo-operations 14-21

Switch table operation

The C compiler generates a compact set of instructions for the C language switch

construct. For example,

sub.l &1,%d0

cmp.l %d0,&4

bhi L%21

add.w %d0,%d0

mov.w 10(%pc,%d0.w) ,%d0

jmp 6(%pc,%d0.w)

swbeg &5

L%22:

short L%15-L%22

short L%21-L%22

short L%16-L%22

short L%21-L%22

short L%17-L%22

The special swbeg pseudo-operation communicates to the assembler that the lines
following it contain rel - rel subtractions. Ordinarily, such subtractions are risky because
of span-dependent optimization. In this case, however, the assembler makes special
allowances for the subtraction, because the compiler guarantees that both symbols are
defined in the current assembler file and that one of the symbols is a fixed distance away
from the current location.

The swbeg pseudo-operation takes an argument that looks like an immediate
operand. The argument is the number of lines following the swbeg instruction that
contain switch table entries. swbeg inserts two words into text. The first is the
illegal instruction code. The second is the number of table entries that follow. The
disassembler dis(l) needs the illegal instruction as a hint that what follows is a
switch table. Otherwise, dis(l) tries to decode the table entries as instructions when
they are really differences between two symbols.

14-22 Chapter 14 as Reference

Span-dependent optimization
The assembler chooses the object code it generates according to the distance between
an instruction and its operands. Several choices are available; distances can be expressed
with 8-, 16-, or 32-bit displacements. These are called the short, long, and very long
forms, respectively.

Choosing the smallest, fastest form is called span-dependent optimization. Span­
dependent optimization occurs most obviously in the choice of object code for branches
and jumps. It also occurs when an operand can be represented by the program counter
relative address mode instead of as an absolute two-word (long) address. The span­
dependent optimization capability is normally enabled; the - n command option
disables it. When this capability is disabled, the assembler makes worst-case assumptions
about the types of object code that must be generated. Span-dependent optimizations
are performed only within text segment 0. Any reference outside text segment 0
is assumed to be a worst case.

The C compilers, cc and c 8 9, generate branch instructions without a specific
offset size. When the optimizer is used, it identifies branches that can be represented by
the short form, and it changes the operation accordingly. The assembler chooses only
between long and very long representations for branches.

Although the largest offset specification allowed is a word, large programs
conceivably can have need for a branch to a location that cannot be reached by a word
displacement. Therefore, equivalent long forms of these instructions might be needed.
When the assembler encounters a branch instruction without a size specification, it tries
to choose between the long and very long forms of the instruction. If the operand can be
represented in a word, the long form of the instruction is generated. Otherwise, the very
long form is generated. For unconditional branches (for example, br, bra, and bsr),

the very long form is just the equivalent jump (j mp and j s r) with an absolute (instead
of pc-relative) address operand. For conditional branches, the equivalent very long
form is a conditional branch around a jump, where the conditional test is reversed.

Table 14-6 summarizes span-dependent optimizations. Again, the assembler chooses
only between the long form and the very long form, while the optimizer chooses
between the short and long forms for branches (but not bsr).

Span-dependent optimization 14-23

Table 14-6 Assembler span-dependent optimizations

Instruction Short form Long form

br, bra, bsr Byte offset Word offset

Conditional branch Byte offset Word offset

Very long form

jmp or j sr with absolute long address

Short conditional branch with reversed
condition around jmp with absolute
long address

jmp, jsr

lea, pea

pc-relative address Absolute long address

pc-relative address Absolute long address

Branch instructions can have either a byte, word, or long pc-relative address
operand. The assembler still chooses between word and long representations for
branches if no byte size specification is given; however, the long form is replaced by a
branch long with pc-relative address instead of a jump with absolute long address.

Address modes
The as assembler provides you with nine basic kinds of addressing modes:

• register direct

• register indirect

• register indirect with index

• memory indirect

• program counter indirect with displacement

• program counter indirect with index

• program counter memory indirect

• absolute

• immediate

14-24 Chapter 14 as Reference

Address-mode syntax

In the tables in the remainder of this chapter, the following abbreviations are used:

An/an

bd

d

Dn/dn

od

PC/pc

Ri!ri

sci

[]

()

Address register, where n is any digit from 0 through 7.

2's-complement base displacement that is added before indirection
takes place; the size can be 16 or 32 bits.

2's-complement or sign-extended displacement that is added as part of
effective address calculation; size can be 8or16 bits. (When omitted,
the assembler uses the 0 value.)

Data register, where n is any digit from 0 through 7.

Outer displacement that is added as part of effective address
calculation after memory indirection; the size can be 16 or 32 bits.

Program counter.

Index register i can be any address or data register with an optional
size designation (that is, ri. w for 16 bits or ri. l for 32 bits); the
default size is 16 bits (. w).

Optional scale factor that can be multiplied times index register in
some modes. (Values for sci are 1, 2, 4, or 8; the default is 1.)

Grouping characters used to enclose an indirect expression; these are
required characters. (Addressing arguments can occur in any order
within the brackets.)

Grouping characters used to enclose an entire effective address; these
are required characters. (Addressing arguments can occur in any order
within the parentheses.)

Indicate that a scale factor is optional; these are not required characters.

It is important to note that expressions used for the absolute addressing modes need
not be absolute expressions in the sense previously described in the section "Types."
Although the addresses used in those addressing modes must ultimately be filled in with
constants, that can be done later by the loader. The assembler need not be able to
compute them. Indeed, the absolute long addressing mode is commonly used for
accessing undefined external addresses. Several examples follow that illustrate the use of
this notation.

Address modes 14-25

• %d 7 indicates data register 7.

• (%a3) indicates the contents of address register 3.

• 14 (%a4) indicates that the decimal displacement 14 is added to the contents of
address register 4.

• (% a 1 . w) indicates the contents of the word in address register 1; the register is
treated as an index register.

• (%d3 . w { * 2 }) indicates the contents of the word in index register d3; the register
is treated as an index register and the contents of the register are multiplied by 2.

Effective address modes

Table 14-7 summarizes the as syntax for MC68000-family addressing modes. In
Table 14-7, the index register notation should be understood as ri. size* scale, where
both size and scale are optional. The MC68000-family user's manuals provide
information about generating effective addresses and assembler syntax.

Note that suppressed address register %zan can be used in place of %an,

suppressed PC register %zpc can be used in place of %pc, and suppressed data
register % zdn can be used in place of %dn, if you want them suppressed.

Address modes for the MC68020 use two different formats of extension. The brief
format provides fast indexed addressing, while the full format provides a number of
options in size of displacement and indirection. The assembler generates the brief format
if the effective address expression is not memory indirect, the value of displacement is
within a byte, and no base or index suppression is specified; otherwise, the assembler
generates the full format.

Some variations of the MC68020 addressing modes might be redundant with the
MC68000 address register indirect, address register indirect with displacement, and
program counter with displacement modes. The assembler selects the more efficient
mode when redundancy occurs. For example, when the assembler sees the form (An),

it generates address register indirect mode.
The assembler generates address register indirect with displacement when it

encounters any of the following forms (as long as bd fits in 16 bits or less):

bd(An)

(bd,An)

(An, bd)

14-26 Chapter 14 as Reference

Table 14-7 Effective address modes

MC680x0 notation

Dn

An

(An)

(An)+

-(An)

d(An)

(An,Ri)

d(An,Ri)

(An, Ri{* sci})

(bd,An, Ri{ *sci})

([bd,An,Ri{*scl} J, od)

([bd,AnJ, Ri{*scl}, od)

d(PC)

d(PC, Ri)

(bd, PC, Ri { *sci})

([bd, PCJ , Ri{ *sci}, od)

([bd, PC, Ri{*scl} J, od)

xxx.w

XXX.L

as notation

%dn

%an

(%an)

(%an)+

-(%an)

d(%an)

(%an, %ri.w)

(%an, %ri. l)

d(%an, %ri.w)

d (%an, % ri. 1)

(%an, %ri{* sci})

(bd, %an, %ri{*scl})

([bd, %an, % ri {*sci} J , od)

([bd, %an J , % ri {*sci}, od)

d(%pc)

d (%pc, % rn. 1)

d(%pc, %m.w)

(;,,vi, %pc, % ri {*sci})

([bd, %pc J , %ri{ *sci}, od)

([bd, %pc, % ri {*sci} J , od)

xxx

xxx

Address mode

Data register direct

Address register direct

Address register indirect

Address register indirect with postincrement*

Address register indirect with predecrement*

Address register indirect with displacement (d
signifies a signed 16-bit absolute displacement)

Address register indirect with index

Address register indirect with index plus
displacement (d signifies a signed 8-bit absolute
displacement)

Address register direct with index

Address register direct with index plus base
displacement

Memory indirect with preindexing plus base and
outer displacement

Memory indirect with postindexing plus base and
outer displacement

Program counter indirect with displacement (d

signifies 16-bit displacement)

Program counter direct with index and
displacement (d signifies 8-bit displacement)

Program counter direct with index and base
displacement

Program counter memory indirect with
postindexing plus base and outer displacement

Program counter memory indirect with preindexing
plus base and outer displacement

Absolute short address (xxx signifies an expression
yielding a 16-bit memory address)

Absolute long address (xxx signifies an expression
yielding a 32-bit memory address)

(continued;.

Address modes 14-27

Table 14-7 Effective address modes (continued)

MC680xO notation as notation

D#XXX &xxx

Address mode

Immediate data (xxx signifies an absolute constant
expression)

* If the address register is the stack pointer and the operand size is byte, the address is changed by 2 rather than 1 to
keep the stack pointer aligned to a word boundary.

Machine instructions

The general forms of an MC68000-family microprocessor instruction are

inst

inst operand

inst operand, operand

where inst is the instruction followed by 0, 1, or 2 operands. An operand can be actual
data (called an immediate operand), but often operand is the effective address of the
data to be used in the instruction.

Table 14-8 shows how MC68000-family instructions should be written to ensure that
the as assembler correctly understands them. The following abbreviations are used in
Table 14-8.

A

cc

14-28 Chapter 14 as Reference

The letter A, as in add.A, stands for one of the address operation
size attribute letters w or 1, representing a word or long
operation, respectively.

In the contexts bCC, db CC, and s CC, the letters CC represent any
of the following condition code designations (except that f and t

cannot be used in the bCCinstruction):

cc carry clear

cs carry set

eq equal

f false

ge greater or equal

d

EA

(eq)

FC

I

I

L

mask

offset

PCC

Q

gt greater than

hi high

hs high or same (=cc)

le less or equal

lo low (=cs)

ls low or same

lt less than

mi minus

ne not equal

pl plus

t true

vc overflow clear

vs overflow set

2's-complement or sign-extended displacement that is added as part of
effective address calculation; the size can be 8 or 16 bits. (When
omitted, the assembler uses value of 0.)

An arbitrary effective address.

The two forms of machine instruction are equivalent.

A function code that can be a data register, %sfc, %dfc, or an
absolute expression with value 0 through 7 for MC68030 addressing or
0 through 15 for 68851 addressing.

An absolute expression representing a level, 0 through 7.

An absolute expression, used as an immediate operand.

A label reference, or any expression representing a memory address in
the current segment.

An absolute expression with value 0 through 7 for MC68030
addressing or 0 through 15 for 68851 addressing.

Either an immediate operand or a data register.

One of the MC68851 PMMU condition codes.

An absolute expression evaluating to a number from 1 through 8.

Machine instructions 14-29

s

width

The letter S, as in add. S, stands for one of the operation size
attribute letters b, w, or 1, representing a byte, word, or long
operation, respectively.

Either an immediate operand or a data register.

Registers are designated using the following components:

% Register call.

a

d

r

x,y, m, n

Address register.

Data register.

Either data or address register.

Any digit from 0 through 7, where x * y, m * n, and x * m, and y * n.

These components are combined to form the following register designations:

%ax, %ay, %an Address registers.

%dx, %dy, %dn Data registers.

%mr (P)MMUregister(%crp, %srp, %tt0, %ttl, %drp, %pcsr,
%psr, %cal, %val, %sec, %ac, %badX, %bacx).

%re

%rx, %ry, %rn

(eq)

Control register (%sfc, %dfc, %cacr, %vbr, %caar, %rnsp,
%isp).

Either data or address registers.

The two forms of machine instruction are equivalent.

Table 14-8 MC68000-family instruction formats

Mnemonic Assembler syntax Operation

ABCD abcd.b %dy,%dx Add decimal with extend
abcd.b - (%ay), - (%ax)

ADD add.S EA,%dn Add binary
add.S %dn,EA

ADDA add.A EA, %an Add address

ADDI add.S &!,EA Add immediate

ADDQ add.S &Q,EA Add quick

ADDX addx.S %dy, %dx Add extended
addx.S - (%ay), - (%ax)

14-30 Chapter 14 as Reference

Table 14-8 MC68000-family instruction formats (continued)

Mnemonic Assembler syntax Operation

AND and.S EA,%dn AND logical
and.S %dn,EA

ANDI and.S &/,EA AND immediate

ANDI to CCR and.b &/,%cc AND immediate to condition code register

ANDI to SR and.w &/, %sr AND immediate to status register

ASL asl.S %dx, %dy Arithmetic shift (left)
asl.S &Q, %dy
asl.w &l,EA

ASR asr.S %dx, %dy Arithmetic shift (right)
asr.S &Q,%dy
asr.w &l,EA

Bee bCC L Branch conditionally (16-bit displacement)
bCC.b L Branch conditionally (short) (8-bit displacement)
bCC.l L Branch conditionally (long) (32-bit displacement)

BCHG bchg %dn,EA Test a bit and change
bchg &I,EA Note: bchg must be written with no suffix. If the

second operand is a data register, . 1 is assumed;
otherwise, .b is used

BCLR bclr %dn,EA Test a bit and clear
bclr &!,EA Note: bclr must be written with no suffix. If the

second operand is a data register, . 1 is assumed;
otherwise, .b is used.

BFCHG bf chg EA { offset: width} Complement bitfield

BFCLR bf clr EA { offset: width Clear bitfield

BFEXTS bfexts EA { offset: width} , %d n Extract bitfield (signed)

BFEXTU bf extu EA { offset: width} , %d n Extract bitfield (unsigned)

BFFFO bfffo EA { offset: width} , %d n Find first one in bitfield

BFINS bfins %d n, EA { offset: width} Insert bitfield

BFSET bf set EA { offset: width} Set bitfield

BFTST bf tst EA { offset: width} Test bitfield

BKPT bkpt &/ Breakpoint

BRA bra.S L Branch always
br.S L Same as bra. S

(continued>--

Machine instructions 14-31

Table 14-8 MC68000-family instruction formats (continued)

Mnemonic Assembler syntax Operation

BSET bset %dn,EA Test a bit and set
bset &/,EA Note: bset must be written with no suffix. If the

second operand is a data register, . 1 is assumed;
otherwise, .b is used.

BSR bsr.S L Branch to subroutine

BTST btst %dn,EA Test a bit and set
btst &!,EA Note: btst must be written with no suffix. If the

second operand is a data register, . 1 is assumed;
otherwise, . b is used.

CALLM callm &/,EA Call module

CAS cas.S %dX,%dy,EA Compare and swap operands

CAS2 cas2.S %dx: %dy, %dm: %dn, Compare and swap dual operands
(%1X) : (%ry)

CHK chk.A EA, %dn Check register against bounds

CHK2 chk2.S EA, %rn Check register against bounds

CLR clr.S EA Clear an operand

CMP cmp.S %dn,EA Compare*

CMPA cmpa.A %an, EA Compare address* t
CMPI cmpi.S EA,&/ Compare immediate* t
CMPM cmpm.S (%ax)+, (%ay) + Compare memory* t
CMP2 cmp2.S %rn, EA Compare register against bounds t
DBcc db CC %dn,L Test condition, decrement, and branch

dbra %dn,L Decrement and branch always

DIVS divs.w EA, %dx Signed divide 32/16-> 16r:l6q

tdivs.l EA, %dx Signed divide (long) 32/32 -> 32q
divs.l EA, %dx

divs.l EA, %dx:%dy Signed divide (long) 32/32-> 32r:32q*

DIVSL tdivs.l EA, %dx: %dy Signed divide (long) 64/32-> 32r:32q

DIVU divu.w EA, %dn Unsigned divide 32/16-> 16r:l6q

tdivu.l EA, %dx Unsigned divide (long) 32/32 -> 32(eq)
divu.l EA, %dx

DIVUL divu.l EA, %dx:%dy Unsigned divide (long) 64/32 -> 32r:32q§
tdivu.l EA, %dx:%dy Unsigned divide (long) 32/32 -> 32r:32q11

14-32 Chapter 14 as Reference

Table 14-8 MC68000-family instruction formats (continued)

Mnemonic Assembler syntax Operation

EOR eor.S %dn,EA Exclusive OR logical

EORI eor.S &/,EA Exclusive OR immediate

EORI to CCR eor.b &/,%cc Exclusive OR immediate to condition code register

EORI to SR eor.w &/, %sr Exclusive OR- immediate to the status register

EXG exg %rx, %ry Exchange registers

EXT ext.w %dn Sign-extend low-order byte of data to word
ext.l %dn Sign-extend low-order word of data to long

EXTB extw.l %dn Same as ext . 1
extb.l %dn Sign-extend low-order byte of data to long

ILLEGAL illegal Illegal instruction

JMP jmp EA Jump

JSR jsr EA Jump to subroutine

LEA lea EA, %an Load effective address

LINK link.A %an,&/ Link and allocate

LSL lsl.S %dx,%dy Logical shift (left)
lsl.S &Q, %dy
lsl.S EA

LSR lsr.S %dx,%dy Logical shift (right)
lsr.S &Q,&dy
lsr.S EA

MOVE move.S EA,EA Move data from source to destination#**

MOVE16 move16 EA,EA Move 16 byte block from source to destination# tt
MOVE to CCR move.w EA,%cc Move to condition code register#

MOVE from CCR move.w %cc, EA Move from condition code register#

MOVE to SR move.w EA,%sr Move to the status registel

MOVE from SR move.w %sr,EA Move from the status register#

MOVE USP move.l %usp, %an Move user stack pointer#
move.l %an, %usp

MO VEA move.A EA, %an Move address#

MOVEC move.l %re, %rn Move from/to control registel
move.l %rn, %re

(continued~

Machine instructions 14-33

Table 14-8 MC68000-family instruction formats (continued)

Mnemonic Assembler syntax Operation

MOVEM movem.A EA,&! Move multiple registers# fl:
movem.A &/,EA

MOVEP movep.A %dx, d(%ay) Move peripheral data#
movep.A d(%ay), %dx

MOVEQ move.l &/, %dn Move quick#

MOVES moves.S %rn, EA Move to/from address space#
moves.S EA, %rn

MULS muls.w EA, %dX Signed multiply 16*16-> 32

tmuls.l EA, %dX Signed multiply (long) 32*32-> 32 (eq)
muls.l EA, %dx

muls.l EA, %dx:%dy Signed multiply (long) 32*32 -> 64

MULU mulu.w EA,%dx Unsigned multiply 16*16-> 32

tmulu.l EA, %dx Unsigned multiply (long) 32*32 -> 32(eq)
mulu.l EA, %dx

mulu.l EA, %dX:%dy Unsigned multiply (long) 32*32 -> 64

NBCD nbcd EA Negate decimal with extend

NEG neg.S EA Negate

NEGX negx.S EA Negate with extend

NOP nop No operation

NOT not.S EA Logical complement

OR or.S EA, %dn Inclusive OR logical
or.S %dn,EA

ORI ori.S &/,EA Inclusive OR immediate; equivalent to or.S

ORI to CCR ori.w &/,%cc Inclusive OR immediate to condition code register;
equivalent to or. w

ORI to SR ori.w &/, %sr Inclusive OR immediate to the status register;
equivalent to or.w

PACK pack -(%ax) ,-(%ay),&/ Pack BCD
pack %dx, %dy,&l

PEA pea EA Push effective address

RESET reset Reset external devices

14-34 Chapter 14 as Reference

Table 14-8 MC68000-family instruction formats (continued)

Mnemonic Assembler syntax Operation

ROL rol.S %dx, %dy Rotate left without extend
rol.S &Q, %dy
rol.w EA

ROR ror.S %dx, %dy Rotate right without extend
ror.S &Q,%dy
ror.w EA

ROXL roxl.S %dx, %dy Rotate left with extend
roxl.S &Q, %dy
roxl.w EA

ROXR roxr.S %dx, %dy Rotate right with extend
roxr.S &Q, %dy
roxr.w EA

RTD rtd &I Return and deallocate parameters

RTE rte %rn Return from exception

RTM rtm Return from module

RTR rtr Return and restore condition codes

RTS rts Return from subroutine

SBCD sbcd %dy, %dx Subtract decimal with extend
sbcd -(%ay) I -(%ax)

Sec sCC EA Set according to condition

STOP stop &! Load status register and stop

SUB sub.S EA, %dn Subtract binary
%dn,EA

SUBA sub.A EA, %an Subtract address

SUBI sub.S &!,EA Subtract immediate (subi also works)

SUBQ sub.S &Q,EA Subtract quick (subq also works)

SUBX subx.S %dy,%dx Subtract with extend
-(%ay) I -(%ax)

SWAP swap %dn Swap register halves

TAS tas EA Test and set an operand

TRAP trap &! Trap

TRAPV trapv Trap on overflow

(continued;..

Machine instructions 14-35

Table 14-8 MC68000-family instruction formats (continued)

Mnemonic Assembler syntax Operation

TRAP cc tCC Trap on condition (eq)
trap CC
tpCC.A &/

trap CC.A &! (eq)

TST tst.S EA Test an operand

UNLK unlk %an Unlink

UNPK unpk -(%ax), -(%ay) ,&/ Unpack BCD
unpk %dx, %dy,&l

* The order of operands in as is the reverse of that in the MC68881 Programmer's Reference Manual.

t The cmp . S syntax is also recognized.

l Whenever %dx and %d y are the same register, the form is equivalent to the di vs . 1 EA, %dx form.

§ Whenever %dx and %d y are the same register, the form is equivalent to the di vu . 1 EA, %dx form.
11 Whenever %dx and %d y are the same register, the form is equivalent to the tdi vu. 1 EA, %dx form.

#In all move commands, move can be shortened to mov.

** If the destination is an address register, the instruction generated is MOVEA.

tt This instruction is available on the MC68040 only.

The immediate operand is a mask designating which registers are to be moved to memory or which are to receive
memory data. Not all addressing modes are permitted and the correspondence between mask bits and register numbers
depends on the addressing mode.

Instructions for the MC68881

All Macintosh computers that run A/UX are equipped with floating-point coprocessor
capability; this is embedded in the microprocessor on systems with a 68040 or higher
microprocessor. The coprocessor uses special instructions that are introduced in this
section.

A/UX and the MC68881 coprocessor fully support the IEEE standard for handling
NaN (Not a Number) conditions. To maximize flexibility there are two modes of
handling unordered conditions: non-IEEE and IEEE. These condition codes are shown in
Tables 14-9 and 14-10, respectively. Non-IEEE condition codes are used in the two
following cases.

14-36 Chapter 14 as Reference

• when porting a program that does not support the IEEE standard

• when generating code that does not support the IEEE floating-point concepts (for
example, the unordered condition)

When non-IEEE condition codes are used, an exception is generated when an
unordered condition is found. It is the responsibility of the application to test for and
handle these conditions. Generally, A/UX users want to use the IEEE condition codes.

Table 14-9 Non-IEEE condition codes

cc Meaning

ge Greater than or equal

gl Greater or less than

gle Greater or less than or equal

gt Greater than

le Less than or equal

lt Less than

ngt Not greater than

nge Not greater than or equal

nlt Not less than

ngl Not greater or less than

nle Not less than or equal

ngle Not greater or less than or equal

sneq Signaling not equal

sf Signaling false

seq Signaling equal

st Signaling true

Machine instructions 14-37

Table 14-10 IEEE condition codes

cc Meaning

eq Equal

oge Ordered greater than or equal

ogl Ordered greater or less than

ogt Ordered greater than

ole Ordered less than or equal

olt Ordered less than

or Ordered

t True

ule Unordered or less or equal

ult Unordered or less than

uge Unordered or greater than or equal

ueq Unordered or equal

ugt Unordered or greater than

un Unordered

neq Not equal

f False

The floating-point coprocessor also supports a set of standard constants that are kept
in ROM. The MC68881 constant ROM values are shown in Table 14-11. In this table, ccc
indicates a constant condition code designator.

14-38 Chapter 14 as Reference

Table 14-11 Constants in MC68881 ROM

CCC Value CCC Value

OxO pi 3x5 10**4

OxB log10(2) 3x6 10**8

OxC e 3x7 10**16

OxD log2(e) 3x8 10**32

OxE loglO(e) 3x9 10**64

OxF 0.0 3xA 10**128

3x0 ln(2) 3xB 10**256

3xl ln(lO) 3xC 10**512

3x2 10**0 3xD 10**1024

3x3 10**1 3xE 10**2048

3x4 10**2 3xF 10**4096

Table 14-12 shows how the floating-point coprocessor (MC68881) instructions
should be written to be understood by the as assembler. Abbreviations used in
Table 14-12 are as follows:

A

B

cc

CCC

EA

I

L

source format letters w or 1

source format letters b, w, 1, s, or p

any of the floating-point condition code designations listed in
Table 14-9 and Table 14-10

any of the ROM constants listed in Table 14-11

an effective address

an absolute expression, used as an immediate operand

a label reference or any expression representing a memory address in
the current segment

Machine instructions 14-39

SF

R

source format letters:
b byte integer
d double precision
1 long word integer
p packed binary code decimal
s single precision
w word integer
x extended precision

rounding precision letters:
s single precision
d = double precision

+ Note The source format must be specified if more than one source format is
permitted, otherwise a default source format of extended precision (x) is assumed.
Source format need not be specified if only one format is permitted by the operation. +

% control floating-point control register

%dn data register, where 0 ::; n::; 7

% fpcr floating-point control register

%fpiar floating-point instruction address register

% f pm, % f p n, floating-point data registers, where m, n, and q are digits from 0
%fpq through 7

% fpsr floating-point status register

% iaddr floating-point instruction address register

% status floating-point status register

14-40 Chapter 14 as Reference

Table 14-12 Floating-point instruction formats

Mnemonic Assembler syntax Operation

FABS fabs. SF EA, %fpn Absolute value function
fRabs.SF EA, %fpn

fabs.x %fpm, %fpn

fRabs.x %fpm, %fpn

fabs.x %fpn

fRabs.x %fpn

FACOS facos. SF EA, %fpn Arccosine function
facos.x %fpm, %fpn

facos.x %fpn

FADD fadd. SF EA, %fpn Floating-point add
fadd. SF EA, %fpn

fadd.x %fpm, %fpn

fRadd.x %fpm, %fpn

FASIN fasin. SF EA, %fpn Arcsine function
fasin.x %fpm, %fpn

fasin.x %fpn

FATAN fatan. SF EA, %fpn Arctangent function
fatan.x %fpm, %fpn

fatan.x %fpn

FATANH fatanh.SF EA, %fpn Hyperbolic arctangent function
fatanh.x %fpm, %fpn

fatanh.x %fpn

FBcc fbCC.A L Coprocessor branch conditionally

FCMP fcmp. SF %fpn, EA Floating-point compare*
fcmp.x %fpn, %fpm

FCOS fcos. SF EA, %fpn Cosine function
fcos.x %fpm, %fpn

fcos.x %fpn

FCOSH fcosh. SF EA, %fpn Hyperbolic cosine function
fcosh.x %fpm, %fpn

fcosh.x %fpn

FDBcc fdbCC.w %dn,L Decrement and branch on condition

FDIV fdiv. SF EA, %fpn Floating-point divide
fRdiv.SF EA, %fpn

fdiv.x %fpm, %fpn

fRdiv.x %fpm, %fpn

(continued;,.

Machine instructions 14-41

Table 14-12 Floating-point instruction formats (continued)

Mnemonic Assembler syntax Operation

FFETOX fetox. SF EA, %fpn eXfunction
fetox.x %fpm, %fpn

fetox.x %fpn

FETOXMl fetoxml. SF EA, %tpn ex (x-1) function
fetoxml.x %fpm, %fpn

fetoxml.x %fpn

FGETEXP fgetexp. SF EA, %fpn Get the exponent function
fgetexp.x %fpm, %fpn

fgetexp.x %fpn

FGETMAN fgetman.SF EA, %fpn Get the mantissa function
fgetman.x %fpm, %fpn

fgetman.x %fpn

FINT fint.SF EA, %fpn Integer part function
fint.x %fpm, %fpn

fint.x %fpn

FINTRZ fintrz. SF EA, %fpn Integer part, round-to-zero function
fintrz.x %fpm, %fpn

fintrz.x %fpn

FLOG2 flog2. SF EA, %fpn Binary log function
flog2 .x %fpm, %fpn

flog2 .x %fpn

FLOGlO floglO. SF EA, %tpn Common log function
floglO .x %fpm,%fpn

floglO .x %fpn

FLOGN flogn. SF EA, %fpn Natural log function
flogn.x %fpm, %fpn

flogn.x %fpn

FLOGNPl flognpl. SF EA, %fpn Natural log (x+ 1) function
flognpl .x %fpm, %fpn

flognpl.x %fpn

FMOD fmod.SF EA, %fpn Floating-point modulo
fmod.x %fpm, %fpn

FMOVE mov. SF EA, %fpn Move to floating-point registert
fmov.x %fpm, %fpn

fRmov.x %fpm, %fpn

14-42 Chapter 14 as Reference

Table 14-12 Floating-point instruction formats (continued)

Mnemonic Assembler syntax Operation

fmove. SF %fpn,EA Move from floating-point register to memory t
fmove.SF %fpn,EA
fmove.p %fpn, EA{&/}
fmove.p %fpn, EA{%dn}

fmove.l EA, % control Move from memory to special registert
fmove.l EA, %status
fmove.l EA, %iaddr

fmove.l %control, EA Move to memory from special registert
fmove.l %status, EA
fmove.l %iaddr, EA

FMOVECR fmovcr.x &CCC, %fpn Move a ROM-stored value to a floating-point registert t §

FMOVEM fmovem.x EA,&! Move to multiple floating-point registert f

fmovem.x &!,EA Move from multiple registers to memoryt t
fmovem.x EA, %dn Move to a data registert

fmovem.x %dn,EA Move a data register to memory t

fmovem.l % control, EA Move to special registers (1, 2, or 3 registers, separated
fmovem.l %status, EA by commas)t
fmovem.l %iaddr,EA

fmovem.l EA, % control Move from special registers (1, 2, or 3 registers,
fmovem.l EA, %status separated by commas)t
fmovem.l EA, %iaddr

FMUL fmul. SF EA, %fpn Floating-point multiply
fmul.SF EA, %fpn
fmul.x %fpm, %fpn
fRmul .x %fpm, %fpn

FNEG fneg. SF EA, %fpn Negate function
fneg.SF EA, %fpn
fneg.x %fpm, %fpn
fRneg.x %fpm, %fpn
fneg.x %fpn
fRneg.x %fpn

FNOP f nop Floating-point no-op

FREM frem. SF EA, %fpn Floating-point remainder
frem.x %fpm, %fpn

FRESTORE frestore EA Restore internal state of coprocessor

(continued;.-

Machine instructions 14-43

Table 14-12 Floating-point instruction formats (continued)

Mnemonic Assembler syntax Operation

FSAVE f save EA Coprocessor save

FSCALE fscale. SF EA, %fpn Floating-point scale exponent

fscale.x %fpm, %fpn

FScc fsCC.b EA Set on condition

FSGLDIV fsgldiv.B EA, %fpn Floating-point single-precision divide
fsgldiv.s %fpm, %fpn

FSGLMUL fsglmul. B fsglmul.s Floating-point single-precision multiply
fsglmul.s %fpm, %fpn

FSIN fsin. SF EA, %fpn Sine function
fsin.x %fpm, %fpn

fsin.x %fpn

FSINCOS fsincos.SF EA, %fpn:%fpq Sine/ cosine function
fsincos.x %fpm, %fpn: %fpq

FSINH fsinh.SF EA, %fpn Hyperbolic sine function

fsinh.x %fpm,%fpn

fsinh.x %fpn

FSQRT fsqrt. SF EA, %fpn Square root function
fRsqrt. SF EA, %fpn
fsqrt.x %fpm, %fpn

fRsqrt.x %fpm, %fpn

fsqrt.x %fpn

fRsqrt.x %fpn

FSUB fsub. SF EA, %fpn Floating-point subtract
fRsub.SF EA, %fpn

fsub.x %fpm, %fpn

fRsub.x %fpm, %fpn

FTAN ftan. SF EA, %fpn Tangent function
ftan.x %fpm, %fpn

ftan.x %fpn

FTANH ftanh. SF EA, %fpn Hyperbolic tangent function
ftanh.x %fpm, %fpn

ftanh.x %fpn

FTENTOX ftentox. SF EA, %fpn 10x function
ftentox.x %fpm, %fpn

ftentox.x %fpn

FT cc ft CC Trap on condition without a parameter

14-44 Chapter 14 as Reference

Table 14-12 Floating-point instruction formats (continued)

Mnemonic

ffPcc

FTRAPcc

FTRAPcc

FTST

fIWOTOX

Assembler syntax

ftpCC.A

ftrapCC

ftrapCC.A

ftest. SF
ftest.x

ft st. SF
ftst.x

ftwotox. SF
ftwotox.x

ftwotox.x

&I

&!

EA
%fpm

EA
%fpm

EA, %fpn

%fpm, %fpn
%fpn

Operation

Trap on condition with a parameter

Trap on condition without a parameter

Trap on condition with a parameter

Floating-point test an operand **

2xfunction

* The order of operands in as is the reverse of that in the MC68881 Programmer's Reference Manual.
**The ft st form (floating-point trap on signal true) is no longer supported due to a conflict with the FfST (floating­
point test-an-operand instruction).

t In all (floating-point) move commands, move may be shortened to mov.

t The immediate operand is a mask designating which registers are to be moved to memory or which registers are to
receive memory data. Not all addressing modes are permitted, and the correspondence between mask bits and register
numbers depends on the addressing mode used.

§See Table 14-11, "Constants in MC68881 ROM."

Instructions for the MC68000-family MMUs

The tables in this section show how instructions for the memory management unit (the
paged memory management unit, PMMU, in the Macintosh II computer) should be
written to be understood by the as assembler.

The conditions that the memory management unit tests can be either set or cleared.
Tables 14-13 and 14-14 show the mnemonics for these states. In Table 14-15, CC
represents any of the condition code designations listed in Tables 14-13 and 14-14.

Machine instructions 14-45

Table 14-13 Memory management condition codes: Condition is set

cc Meaning

bs Bus error

ls Limit violation

SS Supervisor violation

as Access level violation

WS Write protected

is Invalid

gs Gate

cs Globally shared

Table 14-14 Memory management condition codes: Condition is clear

cc Meaning

be Bus error

le Limit violation

SC Supervisor violation

ac Access level violation

WC Write protected

ic Invalid

gc Gate

cc Globally shared

Additional abbreviations used in Table 14-15 are as follows:

D

EA

14-46 Chapter 14 as Reference

represents an absolute expression used as an immediate operand
depth level in the PTESTR/PTESTW instructions, where 0:::; D:::; 7

represents an effective address

FC

I

L

M

%an

%dn

%pm

represents one of the following function codes:
I an absolute expression used as an immediate operand
%df c the destination function code register
%dn a data register
% s f c the source function code register
% sf c r the source function code register

represents an absolute expression used as an immediate operand

a label reference or any expression representing a memory address in
the current segment

represents an absolute expression used as an immediate operand
mask in the PFLUSH/PFLUSHS instructions, where 0::; M::; 15

represents an address register 0 through 7

represents a data register 0 through 7

represents one of the following PMMU registers:
%ac access control register
%bac breakpoint acknowledge control register 0 through 7
%bad breakpoint acknowledge data register 0 through 7
%cal current access level register
% c rp CPU root pointer register
%drp DMA root pointer register
%pcsr cache status register
%psr status register
% s cc stack change control register
% s rp supervisor root pointer register
% t c transition control register
%val validate access level register

+ Note The source format must be specified if more than one source format is
permitted, otherwise a default source format of w is assumed. The source format need
not be specified if only one format is permitted by the operation. +

Machine instructions 14-4 7

Table 14-15 MMU instruction formats

Mnemonic Assembler syntax Operation

PB cc pbCC.A L Branch on PMMU condition

PD Bee pdbCC.w %dn,L Test, decrement, branch

PFLUSH pflush FC,&M Invalidate the set of ATC entries with the given function
code

pflush FC,&M,EA Invalidate the set of ATC entries with the given function
code and effective address

PFLUSHA pflusha Invalidate all ATC entries

PFLUSHR pflushr EA Invalidate ATC and RPT entries matching effective
address*

PFLUSHS pflushs FC,&M Invalidate the set of ATC entries with the given function
code, even if SGS bit is set*

pf lushs FC,&M,EA Invalidate the set of ATC entries with the given function
code and effective address, even if SGS bit is set

PLOADR ploadr FC,EA Load an entry into the ATC for read access

PLOADW ploadw FC,EA Load an entry into the ATC for write access

PMOVE pmove.A %pm, EA Move data from PMMU register to destination t
pmove.A EA,%pm Move data from destination to PMMU register*

PMOVEFD pmove EA, %pm Move data from destination to MMU registerF

PRESTO RE pre store EA Restore function*

PSAVE psaye EA Save function*

PScc psCC EA Set on PMMU condition

PTESTR pt es tr FC,EA,&D Get information about logical address; set bit for read

ptestr FC,EA,&D, %an Get information about logical address and load register;
set bit for read

PTESTW ptestw FC,EA,&D Get information about logical address; set bit for write

ptestw FC,EA,&D, %an Get information about logical address and load register;
set bit for write

PTRAPcc pt CC Trap on PMMU condition
ptrapCC
pt CC.A
ptrapCC.A

PTRAPpcc pt rap PCC Trap on PMMU condition*

14-48 Chapter 14 as Reference

Table 14-15 MMU instruction formats (continued)

Mnemonic

PVALID

Assembler syntax

pvalid

pvalid

%val,EA

%an, EA

*These instructions are available on the MC68851 only.

t The pmov. syntax is also recognized.

t This instruction is available on the MC68030 only.

Operation

Validate a pointer against VAL register*

Validate a pointer against address register*

Machine instructions 14-49

15 1 d Reference

Using ld I 15-3

The 1 a command language I 15-9

Notes and special considerations I 15-26

Error messages I 15-35

Syntax diagram for input directives I 15-43

This chapter describes the A/UX link editor, ld, which creates executable object files by

combining object files, performing relocation, and resolving external references. ld

also processes symbolic debugging information. The input to ld is made up of

relocatable object files produced by a compiler, an assembler, or a previous ld run.

The link editor combines these object files to form either a relocatable or an absolute

(executable) object file. In other documentation, the link editor is also called a loader.

ld supports a command language that lets you control the loading process with great

flexibility and precision. Although the link-edit process is controlled in detail through use

of this language (described later), most programmers do not require this degree of

flexibility. The manual page ia(l) in A/UX Command Reference provides detailed

instruction in the use of this command. This chapter is a reference to enable you to

determine what functions ld performs.

The command language allows the link editor to perform the following functions:

• specify the machine memory configuration

• combine object file sections in particular fashions

• cause the files to be bound to specific addresses or within specific portions of memory

• define or redefine global symbols at load time

15-2 Chapter 15 ld Reference

Using ld

To use the link editor, give the following command:

1 d [options] filename . . .

Files passed to 1 d must be object files, archive libraries containing object files, or
text source files containing ld directives. ld uses the magic number of the file (the
first 2 bytes of the file) to determine the type of the file. If ld does not recognize the
magic number, it assumes the file is a text file containing 1 d directives and attempts to
parse it.

Input object files and archive libraries of object files are loaded together to form an
output object file. If there are no unresolved references, the file should be executable.
For additional information, see the section "Object Files" later in this chapter.

Object files have the form name. o throughout the examples in this chapter. The
names of actual input object files need not follow this convention.

If you merely want to load the object files file 1. o and file2. o, use the command:

ld filel. o file2. o

No directives to ld are needed. If no errors are encountered during the load, the
output is left in the default file a . out.

ld combines the input file sections in order. That is, if each ofjilel. o andfile2. o

contains the standard sections . text, . data, and . bss, the output object file also
contains these three sections. 1 d creates the output . text section by concatenating
the . text sections fromfilel. o andfile2. o. The . data and . bss sections are
formed similarly. Then, ld binds the output . text section at address OxOOOOOO. The
output . data and . bss sections are loaded together into contiguous addresses.

Instead of entering the names of files to be loaded, or entering 1 d options on the
1 d command line, you can place this information in a separate file and simply pass the
file to 1 d. Such an input file containing link editor directives is referred to as an ijile in
this chapter. Its usefulness is explained in the paragraphs that follow . ld automatically
searches for an i-file named def au 1 t . 1 d in the list of library directories (see the -1

and -L options under "Options," later in this chapter). The default directory for this
search is /usr /lib.

Using ld 15-3

For example, if you frequently load the object files filel. o, file2. o, and file3. o

with the same options f 1 and f2, you can enter the command

ld -fl -f2filel. o file2. o file3. o

each time you must invoke 1 d. Alternatively, you could create an i-file containing the
statements

1
f2
filel. o

file2. o

file3. o

and use the following command:

ld ifile

Note that it is permissible to specify some of the object files to be loaded in the i-file
and to specify others on the command line, as well as to specify some options in the i­
file and others on the command line. Note also that either white space or newlines can
separate the statements ip an i-file. Input object files are loaded in the order they are
encountered, whether of1 the command line or in an i-file. As an example, if a command
line were

1 d file 1 . o ifile file2. o

and the i-file contained

file3. o

file4. o

the order of loading would be

1. filel. o

2. file3. o

3. file4. o

4. file2. o

Note from this example that an i-file is read and processed immediately upon being
encountered in the command line.

15-4 Chapter 15 ld Reference

Link editor concepts

There are several concepts and definitions that can help you become familiar with the
link editor.

Memory configuration

The virtual memory of an A/UX system is, for purposes of allocation, partitioned into
configured memory and unconfigured memory. Con.figured memory indicates a range of
memory for which the appropriate single in-line memory modules (SIMMs) are installed
and available for use. Unconfigured memory denotes a range of memory for which no
chips are installed or that is reserved by the operating system or the NuBus address
space. The default is to treat all memory as configured.

+ Note Nothing can be loaded into unconfigured memory. •

Specifying a certain memory range as unconfigured is one way of marking the
addresses in that range as illegal or nonexistent with respect to the loading process.
Memory configurations other than the default must be specified explicitly.

Unless otherwise specified, all discussion in this chapter of memory, addresses, and
so on, concerns the configured sections of the address space.

Sections

A section of an object file is the smallest unit of relocation and must be a contiguous
block of memory. You can identify a section with a starting address and a size.
Information describing all the sections in a file is stored in section headers at the start of
the file. Sections from input files are combined to form output sections that contain
executable text, data, or a mixture of both. Although there can be holes or gaps between
input sections (and between output sections), storage is allocated contiguously within
each output section and cannot overlap a hole in memory.

Using ld 15-5

Addresses

The physical address of a section or symbol is the relative offset from address zero of the
address space. The physical address of an object is not necessarily the location at which
it is placed when the process is executed. For example, on a system with paging, the
address is relative to address zero of the virtual space and the system performs another
address translation.

Binding

You might need to have a section begin at a specific, predefined address in the address
space. The process of specifying this starting address is called binding, and the section in
question is said to be "bound to" or "bound at" the required address. While binding is
most commonly relevant to output sections, you also can bind global symbols with an
assignment statement in the ld command language.

Object files

Object files are produced both by the assembler (typically as a result of invoking the
compiler) and by ld. ld accepts relocatable object files as input and produces an
output object file that might or might not be relocatable. Under special circumstances,
the input object files given to ld also can be absolute files. (See the section
"Nonrelocatable Input Files" later in this chapter for details.)

Files produced by the compiler or assembler always contain three sections:

.text

.data

.bss

contains the instruction text (for example, executable instructions)

contains initialized data variables

contains uninitialized data variables

Files using shared libraries contain two additional sections:

.init

.lib

15-6 Chapter 15 ld Reference

contains shared-library initialization fragments

contains the pathname to the shared library (for files using shared­
library executable files)

Files calling shared-library executable files also contain dummy sections
corresponding to the sections of the shared object file. For additional information, see
Chapter 7, "Shared Libraries."

Here is an example of a typical (nonshared library) C program. If the source
contained the following global declarations (not declared inside a function),

int i = 100;

char abc[200];

and the assignment,

abc[i] = O;

compiled code from the C assignment would be stored in . text, the variable i

would be located in . data, and abc would be located in . bss.

There is an exception, however, to this rule: Both initialized and uninitialized statics
are allocated to the . data section (the value of an uninitialized static in a . data

section is zero).

Options

You can intersperse options with filenames both on the command line and in an i-file.
The ordering of options is not significant, except for the -1 and - L options for
specifying libraries.

The -1 option is shorthand notation for specifying an archive library, which is a
collection of object files. Thus, as is the case with any object file, libraries are searched as
they are encountered. The - L option specifies an alternative directory for searching for
libraries. To be effective, an - L option must, therefore, appear before any -1 options.

All options for ld must be preceded by a hyphen(-), whether in the i-file or on
the ld command line. Options that have an argument (except for the -1 and -L

options) are separated from the argument by white space (blanks or tabs). Table 15-1
lists the supported options.

Using ld 15-7

Table 15-1 ld options

Option

-A/actor

-F

-Ldir

-M

-N

-s

-v

-vsnum

Description

Expands the default symbol table by the factor given.

Performs the alignment necessary for demand paging. (Sections are aligned on stricter boundaries in the
address space. Sections are blocked in the output file so that they begin on file-system block boundaries.
In addition, the magic number 0413 is stored in the file header.)

Changes the algorithm for searching for libraries to look in dir before looking in the default location. (This
option is used for ld libraries in the same way the - I option is for compiler #inc 1 ude files. The
- L option is useful for finding libraries that are not in the standard library directory. To be useful, though,
this option must appear before the -1 option.)

Prints a warning message for all external variables that are multiply defined.

Adjusts the load point of the data section so that it immediately follows the text section when loaded and
stores the magic number 0407 in the header. (This prevents the text from being shared, which is the default.)

Requests a silent ld run. (All error messages from errors that do not immediately stop the ld run are
suppressed.)

Prints, on the standard error output, a version id identifying the version of ld involved.

Takes num as a decimal version number identifying the a. out file that is produced. (The version stamp
is stored in the system header. This option is not directly recognized by the compiler [eel, so you must use
the -w option to pass the version number to the link editor; for example,
-wl, -vs num
where -w is an option to cc allowing arguments to be passed, 1 stands for the link editor [the
destination of the argument], and -vs num are the arguments to ld that set the version number for the
a. out file. Note that the space between -vs and num is required.)

-ess Defines the primary entry point of the output file to be the symbol given by the argument ss.

-f bb Sets the default fill value. (The argument bb is a 2-byte constant. This value is used to fill holes formed
within output sections. It is also used to initialize input . bss sections when they are combined with
other non . bss input sections. If you don't use the -f option, the default fill value is zero for all
sections except the . tv section, whose default fill value is OxFFFF.)

-ild Generates the sections reserved for use by the incremental link editor. (-ild invokes the -r option.)

-1 file Specifies an archive library file as ld input. (The argument file is a character string [less than ten
characters] immediately following the -1 without any intervening white space. As an example, - le

refers to libc. a, -le to libC. a, and so on. The given archive library must contain valid object files
as its members. The directory searched defaults to /usr /lib, finding /usr /lib/libc. a,
/usr /lib/libC. a, and so on. [See also the -L option.])

-m Produces a map or list of the input/output sections (including holes) on the standard output.

-o nn Names the output object file. (The argument nn is the name of the A/UX system file to be used as the output
file. The default output object filename is a. out. The option nn can be a full or partial A/UX pathname.)

15-8 Chapter 15 ld Reference

Table 15-1 ld options (continued)

Option Description

-r Retains relocation entries in the output object file. (Relocation entries must be saved if the output file is to
be used as an input file in a subsequent ld call. If the -r option is used, unresolved references do not
prevent the creation of an output object file [such a file is not executable, of course]).

-s Strips line number entries and symbol table information from the output object file. (Because relocation
entries [-r option] are meaningless without the symbol table, you cannot use -r if you use -s. All
symbols are stripped, including global and undefined symbols.)

-t Disables checking of all instances of a multiply defined symbol to be sure they are the same size.

-usym Introduces an unresolved external symbol into the output file symbol table. (The argument sym is the name
of the symbol. This option is useful for loading entirely from a library, since the symbol table is initially
empty and an unresolved reference is needed to force the loading of an initial routine from the library.)

-x Does not preserve any local (nonglobal) symbols in the output symbol table; enter external and static
symbols only. (This option saves some space in the output file.)

-z Catches references through NULL pointers. (The z is a mnemonic for "Do not place anything in
address O." This option is overridden if any section or memory directives are used.)

The 1 a command language
The command language of 1 d allows you control over all phases of the loading
process. Typically, ld operates on files created by as without needing your
intervention. However, you can write your own program specifying how ld is to
manipulate the components of object files.

Input to ld is a series of directives that together have the effect of combining
various reloctable input object files, binding all objects to known addresses, and resolving
object references so that the resulting output object file is self-consistent and executable.

The ld command language 15-9

Expressions

Expressions can contain global symbols, constants, and most of the basic C language
operators (see the last section of this chapter, "Syntax Diagram for Input Directives").
Constants in 1 a are defined as in C, with a number recognized as decimal unless
preceded with o for octal or ox for hexadecimal.

+ Note All numbers are treated as type long int. +

Symbol names can contain uppercase or lowercase letters, digits, and the underscore
U. Symbols within an expression have the value of the address of the symbol only. ld
does not perform a symbol table look-up to find the contents of a symbol, the
dimensionality of an array, structure elements declared in a C program, and anything
other than the value of the address.

ld uses a lex-generated input scanner to identify symbols, numbers, operators,
and other elements. The current scanner design makes the following names reserved
and unavailable as symbol or section names:

ALIGN LENGTH RANGE
ASSIGN MEMORY SECTIONS
BLOCK NO LOAD SPARE
DSECT ORIGIN TV
GROUP PHY

align len phy
assign length range
block 0 spare
group org
1 origin

Supported operators are shown in order of precedence in Table 15-2. These operators
have the same meaning as in the C language. Precedence decreases from the top to the
bottom of the table. Operators on the same line have the same precedence.

15-10 Chapter 15 ld Reference

Table 15-2 Precedence of operators

Operator symbols

+ - (unary minus)

* I %

+ - (binary minus)

>> <<

!= > < <= >=

&

&&

11

+= *= I=

Assignment statements

External symbols can be defined and assigned addresses through the assignment
statement. The syntax of the assignment statement is

symbol = expression;

or

symbol op = expression;

where op is one of the operators + -
'

*,or I.

+ Note Assignment statements must terminate with a semicolon. •

All assignment statements (with one exception, described in the following
paragraph) are evaluated after allocation is performed; therefore, evaluation occurs after
all input file-defined symbols are appropriately relocated but before the actual relocation
of the text and data. Therefore, if an assignment statement expression contains any
symbol name, the address used for that symbol in the evaluation of the expression
reflects the symbol address in the output object file. References to symbols given a value

The ld command language 15-11

through an assignment statement within text and data access this latest assigned value.
Assignment statements are processed in the same order in which they are input to 1 d.

Assignment statements are normally placed outside the scope of any section­
definition directives. (See the section "Section Definition Directives," later in this
chapter.) However, there is a special symbol, a dot (.), that can occur only within a
section-definition directive. This symbol refers to the current address of the ld location
counter. Thus, assignment expressions involving a dot are evaluated during the
allocation phase of 1 d.

Assigning a value to the dot (.) symbol within a section-definition directive
increments or resets the ld location counter and can create holes within the section (as
described in "Section Definition Directives," later in this chapter).

Assigning the value of dot (.) to a conventional symbol permits the final allocated
address of a particular point within the load run to be saved.

a 1 i gn is provided as a shorthand notation to allow you to align a symbol to an n­
byte boundary within an output section, where n is a power of 2. For example, the
expression

align (n)

is equivalent to

(. + n - 1) & (n - 1)

Link editor expressions can have either an absolute or a relocatable value,
corresponding to a type of absolute or relocatable. When ld creates a symbol through
an assignment statement, the symbol value takes on the type of the expression. That type
depends on the following rules:

• An expression with a single relocatable symbol (and zero or more constants or
absolute symbols) is relocatable. The value is in relation to the section of the
referenced symbol.

• All other expressions have absolute values.

15-12 Chapter 15 ld Reference

Specifying a memory configuration

MEMORY directives are used to specify the following directives:

• the total size of the virtual space of an A/UX system

• the configured and unconfigured areas of the virtual space

If you do not supply any directives, ld assumes that all memory is configured.
Macintosh computers that run A/UX have a minimum of 4 MB of RAM and use a virtual
memory space of 4 GB. Generally, the only reason you would want to specify MEMORY

directives for an A/UX application is to run it explicitly in physical, rather than virtual,
memory space.

Using MEMORY directives, you can assign an arbitrary name of up to eight
characters to a virtual address range. Output sections can then be forced to be bound to
virtual addresses within specified memory areas. Memory names can contain uppercase
or lowercase letters, digits, and the three special characters dollar sign($), dot (.),or
underscore (_).Names of memory ranges are used only by ld and are not carried in
the output file symbol table or headers.

+ Note When you use MEMORY directives, all virtual memory that is not described in
a MEMORY directive is considered to be unconfigured. ld does not use unconfigured
memory in the allocation process; hence, nothing can be loaded, bound, or assigned to
an address within unconfigured memory. •

As an option on the MEMORY directive, you can associate attributes with a named
memory area. Doing so restricts the memory areas (with specific attributes) to which an
output section can be bound. The attributes you assign to output sections are recorded
in the appropriate section headers in the output file to allow for possible error checking
in the future. For example, putting a text section into writable memory is one potential
error condition. Currently, error checking of this type is not implemented.

The attributes currently accepted are as follows:

R readable memory

w writable memory

x executable (instructions can reside in this memory)

I initializable (stack areas are typically not initialized)

The ld command language 15-13

Other attributes can be added in the future, if necessary. If you do not specify any
attributes in a MEMORY directive or if you do not supply any MEMORY directives,
memory areas assume all of the attributes of w, R, r, and x.

The syntax of the MEMORY directive is

MEMORY

name (attr) : origin virt-addr[, J length mem-length

The keyword origin (or org or o) must precede the origin of a memory range
and length (or len or 1) must precede the length, as shown in the preceding
prototype. The origin operand refers to the virtual address of the memory range.
origin and length are entered as long integer constants in decimal, octal, or
hexadecimal (standard C syntax). Origin and length specifications, as well as individual
MEMORY directives, can be separated by white space or a comma.

By specifying MEMORY directives, you can tell ld that memory is configured in some
manner other than the default. For example, if you need to prevent anything from being
loaded to the first OxlOOOO words of memory, you can do so with a MEMORY directive:

MEMORY

valid org OxlOOOO, len OxFEOOOO

Region directives

This implementation of A/UX does not support region specifications, which are usually
used only when developing UNIX kernels.

15-14 Chapter 15 ld Reference

Section definition directives

You can use the SECTIONS directive to describe how input sections are to be
combined, to direct where output sections should be placed (both in relation to each
other and to the entire virtual memory space), and to permit the renaming of output
sections. Sections in ld are equivalent to segments in as.

In the default case (where no SECTIONS directives are given), all input sections of
the same name appear in an output section of that name. For example, if a number of
object files from the compiler are loaded, each containing the three sections . text,

. data, and . bs s, the output object file also contains the three sections . text,

. data, and . bss. If two object files are loaded, one containing sections sl and s2
and the other containing sections s3 and s4, the output object file contains the four
sections sl, s2, s3, and s4. The order of these sections depends on the order in which the
link editor sees the input files.

The basic syntax of the SECTIONS directive is

SECTIONS

secname :

file-specification
assignment-statement . . .

The various types of section definition directives are discussed in the remainder of this
section.

File specifications

Within a section definition, the files and file sections to be included in the output section
are listed in the order in which they are to appear. Sections from an input file are
specified by

filename (secname ...)

The ld command language 15-15

Sections of an input file are separated by white space or commas (or both), as are the
file specifications themselves.

If a filename appears with no sections listed, all sections from the file are loaded into
the current output section; for example,

SECTIONS

outsecl:

filel. o (secl)
file2. o

file3. o (secl, sec2)

The order in which the input sections appear in the output section outsecl is given as
follows:

1. Section secl from file filel. o.

2. All sections fromfile2. o, in the order they appear in the file.

3. Section secl from file file3. o, then section sec2 from file file3. o.

If any additional input files contain input sections named outsecl, these sections are
loaded following the last section named in the outsecl definition. If there are any other
input sections infilel. o or file3. o, they are placed in output sections with the same
names as the input sections.

Loading a section at a specified address

You might want to bond an output section to a specific virtual address to take advantage
of a particular paging efficiency. This can be done as shown in the following
SECTIONS directive example.

15-16 Chapter 15 ld Reference

SECTIONS

outsec addr:

file-spec (secname)

addr is the bonding address, expressed as a C constant. If outsec does not fit at addr
(perhaps because of holes in the memory configuration or because outsec is too large to fit
without overlapping some other output section), ld issues an appropriate error message.

As long as output sections do not overlap and there is enough space, they can be
bound anywhere in configured memory. The SECTIONS directives that define output
sections do not have to be given to 1 a in any particular order.

1 a does not ensure that the size of each section consists of an even number of bytes
or that each section starts on an even byte boundary. The assembler ensures that the size
(in bytes) of a section is evenly divisible by four. Although it is not recommended, you
can use the ld directives to force a section to start on an odd byte boundary, if
unforeseen circumstances force you into this solution. If a section starts on an odd byte
boundary, the section contents either are accessed incorrectly or are not executed
properly. If you specify an odd byte boundary, ld issues a warning message.

Aligning an output section

You can request that an output section be bound to a virtual address that falls on an n­

byte boundary, where n is a power of 2. The ALIGN option of the SECTIONS

directive performs this function, so that the option

ALIGN(n)

is equivalent to specifying a bonding address of

(. + n - 1) & (n - 1)

+ Note This AL I GN option is different from the a 1 i gn option discussed in the
section "Assignment Statements," earlier in this chapter. ALIGN binds sections to an
address boundary, while align binds a specific object to an address boundary. •

The ld command language 15-17

You should note that the as assembler always pads the sections it generates to a
full word length, making explicit alignment specifications unnecessary. This also holds
true for the compilers c B 9 and cc. Here is an example of section alignment:

SECTIONS

outsec ALIGN (Ox2 o o o o) :

file-spec (secname)

The output section outsec is not bound to any given address, but is loaded to some
virtual address that is a multiple of Ox20000 (for example, at address OxO, Ox20000,
Ox40000, Ox60000, and so on).

The default section alignment action for ld on MC68000-family systems is to align
the code (.text) at byte 0 and the data (.data and . bss combined) at the 4 MB
boundary (byte 10487576). Since MMU requirements vary from system to system,
alignment is not always desirable. The version of 1 d for MC68000-family systems,
therefore, provides a mechanism to allow the specification of different section
alignments for each system, allowing you to align each section separately on n-byte
boundaries, where n is a multiple of 512.

The default allocation algorithm for ld is as follows:

1. Load all input . text sections together into one output section. This output section
is called . text and is bound to an address of OxO.

2. Load all input . data sections together into one output section. This output section is
called . data and is bound to an address aligned to a machine-dependent constant.

3. Load all input . bss sections together into one output section. This output section is
called . bss and is allocated so as to follow the output section . data immediately.
Note that the output section . bss is not given any particular address alignment.

Specifying any SECTIONS directives results in this default allocation not being
performed.

15-18 Chapter 15 ld Reference

When all input files are processed (and if no override is provided), ld searches the
list of library directories (as with the -1 flag option) for a file named default. ld. If
this file is found, it is processed as an ld instruction file (or i-file). The default. ld

file should specify the required alignment, as outlined in the following paragraphs. If it
does not exist, the default alignment action is taken.

The default. ld file should appear as in the following example, with align­
value replaced by the alignment requirement in bytes. The default allocation of ld is
equivalent to supplying the following directive:

SECTIONS

.text : { }

GROUP ALIGN (align-value) :

.data

.bss

In this example, the variable align-value is a machine-dependent constant.

+ Note The current (MC68000 family) system requires a data rounding of 2 MB. This
requirement is subject to change as systems evolve. •

The GROUP directive ensures that the two output sections, . data and . bss,

are allocated (grouped) together. Bonding or alignment information is supplied only for
the group and not for the output sections contained within the group. The sections
making up the group are allocated in the order listed in the directive.

If you want to place . text, . data, and . bss in the same segment, you should
use the following SECTIONS directive.

The ld command language 15-19

SECTIONS

GROUP

.text

.data

.bss

Note that there are still three output sections (.text, . data, and . bss), but they
are now allocated into consecutive virtual memory.

This entire group of output sections can be bound to a starting address or aligned
simply by adding a field to the GROUP directive. To bind to OxCOOOO, use

GROUP OxCOOOO: {

To align to OxlOOOO, use

GROUP ALIGN(OxlOOOO):

With this addition, first the output section . text is bound at OxCOOOO (or is aligned to
OxlOOOO); the remaining members of the group are allocated into the next available
memory locations in order of their appearance.

When the GROUP directive is not used, each output section is treated as an
independent entity:

SECTIONS

. text: { }

.data ALIGN(Ox20000): { }

.bss:

The . text section starts at virtual address OxO and the . data section at a virtual
address aligned to Ox20000. The . bss section follows immediately after the . text

section, but only if there is enough space. If there is not enough space, it follows the
. data section.

The order in which output sections are defined to 1 d cannot be used to force a
certain allocation order in the output file.

15-20 Chapter 15 ld Reference

Files that need to load in a shared library have the . ini t and . text sections
grouped together. In the final stage of loading, the . ini t section becomes part of the
. text section.

Creating holes within output sections

The special dot (.) symbol appears only within section definitions and assignment
statements. When it appears on the left side of an assignment statement, it causes the
1 d location counter to be incremented or reset, and a hole is left in the output section.

Holes that are built into output sections in this manner take up physical space in the
output file and are initialized using a fill character (either the default fill character, OxOO,
or a supplied fill character). See the definition of the - f option in the section "Options"
and the discussion of filling holes in the section "Initialized Section Holes or . bs s

Sections" in this chapter.
Consider the following section definition:

SECTIONS

outsec:

. += OxlOOO;

fl.o (.text)

. += OxlOO;

/2.o (.text)

. = align (4);

/3.o (.text)

The effect of this command is as follows:

1. A OxlOOO byte hole, filled with the default fill character, is left at the beginning of the
section. Input file fl.o (. text) is loaded after this hole.

2. The text of input file f2. o begins at Oxl 00 bytes following the end of fl. o (. text) .

3. The text of /3. o is loaded to start at the next full word boundary following the text
of f2. o with respect to the beginning of outsec.

The ld command language 15-21

For the purposes of allocating and aligning addresses within an output section, ld

treats the output section as if it began at address zero. If, in this example, outsec is
ultimately loaded to start at an odd address, the part of outsec built from f3. o (. text)

also starts at an odd address, even thoughf3. o (. text) is aligned to a full word
boundary. You can prevent this result by specifying an alignment factor for the entire
output section:

outsec ALIGN (4) : {

Expressions that decrement the dot (.) symbol are illegal. For example, subtracting a
value from the location counter is not allowed, since overwrites are not allowed. The most
common operators in expressions that assign a value to the dot (.) are + = and a 1 i gn.

Creating and defining symbols at loading time

You can use the assignment instruction of ld to give symbols a loading-dependent
value. Typically, there are three types of assignments:

• use of the dot (.) to adjust the 1 d location counter during allocation

• use of the dot (.) to assign an allocation-dependent value to a symbol

• assignment of an allocation-independent value to a symbol

The first case was discussed in the previous section. The second case provides a
means to assign addresses (known only after allocation) to symbols; for example,

SECTIONS

outsecl: {jile-spec (secname) }
outsec2:

file 1 . o (s 1)
s2_start =

file2. o (s2)
s2_end - l;

15-22 Chapter 15 ld Reference

The symbol s2_start is defined to be the address offile2. o (s2), and s2_end is
the address of the last byte of file2. o (s2) . Consider the following example:

SECTIONS

outsecl:

filel. o (. data)

mark = . ;

. += 4;

file2. o (. data)

In this example, the symbol mark is created and is equal to the address of the
first byte beyond the end of the file 1 . o . data section. Four bytes are reserved for a
future run-time initialization of the symbol mark. The type of the symbol is a long
integer (32 bits).

Assignment instructions involving the dot (.) symbol must appear within SECTIONS

definitions, since they are evaluated during allocation. Assignment instructions that do not
involve the dot (.) symbol can appear within SECTIONS definitions, but typically do
not. Such instructions are evaluated after allocation is complete.

It is risky to reassign a defined symbol to a different address. For example, if a
symbol within . data is defined, initialized, and referred to within a set of object files
being loaded, the symbol table entry for that symbol is changed to reflect the new,
reassigned physical address. The associated initialized data are not moved to the new
address. 1 a issues warning messages for each defined symbol that is being redefined
within an i-file. Assignments of absolute values to new symbols are safe, however,
because there are no references or initialized data associated with the symbol.

Allocating a section into named memory

The link editor provides a mechanism for allowing you to specify a section to be loaded
somewhere within a specific, named memory area (as previously specified on a
MEMORY directive) using the > operator. The > notation is borrowed from the UNIX
system concept of redirected output. Consider the following example:

The ld command language 15-23

MEMORY

meml:
mem2 (RW):

mem3 (RW):

meml:

SECTIONS

o=OxOOOOOO

o=Ox020000

o=Ox070000

o=Ox120000

outsec 1 : {j 1 . o (. data)

outsec2: {j2. o (.data)

> meml
> mem3

l=OxlOOOO

1=0x40000

1=0x40000

1=0x04000

This code fragment directs ld to place outsecl at the first location within the
memory area named meml that is large enough to hold the section (somewhere within
the address range OxO-OxFFFF or Ox120000-0x123FF). The outsec2is to be
placed similarly in the address range Ox7 o o o o-OxAFFFF.

Initialized section holes or . b s s sections

When holes are created within a section (as in the example in the section "Creating
Holes Within Output Sections," earlier in this chapter), ld normally puts out bytes of
zero as fill. By default, . bs s sections are not initialized at all; that is, no initialized
data, not even zeros, are generated for any . bs s section by the assembler or supplied
by the link editor.

You can use initialization options in a SECTIONS directive to set such holes or to
set . bs s sections to an arbitrary 2-byte pattern.

+ Note Such initialization options apply only to . bs s sections or holes. •

15-24 Chapter 15 ld Reference

In an application, for example, you might want an uninitialized data table to be
initialized to a constant value without recompiling the . o file or filling a hole in the
text area with a transfer to an error routine. You can designate that either specific areas
within an output section or the entire output be initialized. Because no text is generated
for an uninitialized . bs s section, however, the entire section is initialized if part of
such a section is initialized.

In other words, if a . bss section is to be combined with a . text or . data

section (both of which are initialized), or if part of an output . bs s section is to be
initialized, one of the following conditions holds:

• Explicit initialization options must be used to initialize all . bs s sections in the
output section.

• ld uses the default fill value to initialize all . bss sections in the output section.

Consider the following ld i-file:

SECTIONS

secl:

fl. o (.text)

. += Ox200;

f2.o (.text)

} = OxDFFF

sec2:

fl. o (.bss)

f2. o (.bss)

} = Ox1234

sec3:
{

f3.o (.bss)

} = OxFFFF

sec4: {f4. o (. bss) }

The ld command language 15-25

In the preceding example, the Ox200 byte hole in section secl is filled with the value
OxDFFF. In section sec2,f1. o (. bss) is initialized to the default fill value of oxoo

and /2. o (. bs s) is initialized to Oxl 2 3 4. All . bs s sections within sec3, as well as
all holes, are initialized to OxFFFF. Section sec4 is not initialized; that is, no data are
written to the object file for this section.

Notes and special considerations
The following sections are collections of additional information that are helpful in
understanding the link editor.

Using archive libraries

Each member of an archive library (for example, 1 ibc . a) is a complete object file,
typically consisting of the standard three sections:

• .text

• .data

• .bss

Shared-library archives contain one or two additional sections:

• . init

•. lib

In addition to these sections, files calling on shared-library executable files contain
dummy sections corresponding to sections of the shared object. For further information,
see Chapter 7, "Shared Libraries."

Archive libraries are created through the use of the A/UX system ar command on
object files generated by running cc or as. Shared libraries are created using the
rnkshl ib command. An archive library is always processed using selective inclusion:
Only those members that resolve existing undefined-symbol references are taken from
the library for loading.

15-26 Chapter 15 ld Reference

Libraries can be placed both inside and outside section definitions. In both cases, a
member of a library is included for loading whenever the following conditions exist:

• A reference to a symbol is defined in that member.

• The reference is found by ld prior to the actual scanning of the library.

When a library member is included by searching the library inside a SECTIONS

directive, all input sections from the member are included in the output section being
defined.

When a library member is included by searching the library outside a SECTIONS

directive, all input sections from the member are included in the output section with the
same name. That is, the . text section of the member goes into the output section
named . text, the . data section of the member goes into . data, the . bss section
of the member goes into . bss, and so on. If necessary, new output sections are defined to
provide a place to put the input sections. Note, however, the following conditions:

• Specific members of a library cannot be referred explicitly in an i-file.

• The default rules for the placement of members and sections cannot be overridden
when they apply to archive library members.

The -1 option is a shorthand notation for specifying an input file coming from a
predefined set of directories and having a predefined name. By convention, such files
are archive libraries. They do not, however, have to be. Furthermore, you can specify
archive libraries without using the -1 option simply by giving the full or relative A/UX
system pathname.

+ Note The ordering of archive libraries is important, because a member extracted
from the library must satisfy a reference that is known to be unresolved at the time the
library is searched. •

You can specify archive libraries more than once. They are searched every time they
are encountered. Archive files have a symbol table at the beginning of the archive. ld

cycles through this symbol table until it determines that it cannot resolve any more
references from that library.

ld uses a random-access library. All machines running pre-System V UNIX use an
old format library that must be searched linearly.

Notes and special considerations 15-27

The link editor makes one search through a library in the old format, but continues to
search through a library in the new format until it determines that it can resolve no more
references from that library. Because of the different searching algorithms used,
programs that are ported from pre-System V UNIX machines can include files from
libraries in a different order.

Be careful when using archive libraries in a subsystem loading environment. If a
member of an archive (an object file) is to be included in a subsystem final load file,
there must be a reference within the subsystem being loaded to a symbol defined in that
object file. You can use the -u option to create unresolved references that force the
loading of archive members.

Consider the following example:

• The input files filel. o and file2. o each contain a reference to the external
function FCN.

• Input.ft/el. o contains a reference to symbol ABC.

• Input file2. o contains a reference to symbol XYZ.

• Library liba. a, member 0, contains a definition of XYZ.

• Library libc. a, member 0, contains a definition of ABC.

• Both libraries have a member 1 that defines FCN.

Depending on the order in which files and libraries appear on the command line,
different library members can be included for loading. If the 1 d command is entered as

1 d file 1 . o -1 a file2. o -1 c

the FCN references are satisfied by liba. a, member 1; ABC is obtained from
1 ibc . a, member O; and XYZ remains undefined (because the library 1 iba. a is
searched before file2. o is specified). If the ld command is entered as

1 d file 1 . o file2. o -1 a -1 c

the FCN references are satisfied by liba. a, member 1; ABC is obtained from
libc. a, member O; and XYZ is obtained from liba. a, member 0. If the ld

command is entered as

1 d file 1 . o file2. o -1 c -1 a

the FCN references are satisfied by 1 ibc. a, member 1; ABC is obtained from
libc. a, member O; and XYZ is obtained from liba. a, member 0.

15-28 Chapter 15 ld Reference

You can use the -u option to force the loading of library members when the
loading run does not contain an actual external reference to the members. For example,

ld -u routl -la

creates an undefined symbol called routl in the ld global symbol table. If any
member of library 1 iba. a defines this symbol, that member is extracted. Without the
-u option, there would have been no trigger to cause ld to search the archive library.

Dealing with holes in physical memory

When memory configurations are defined so that unconfigured areas exist in virtual
memory, each application or user has the responsibility to form output sections that fit
into memory. For example, assume that memory is configured as follows:

MEMORY

meml: 0 OxOOOOO 1 Ox02000

mem2: 0 Ox40000 1 Ox05000

mem3: 0 Ox20000 1 = OxlOOOO

Let the files fl . o, /2. o, ... Jn. o each contain the standard three sections . text,

. data, and . bss, and let the combined . text section be Ox12000 bytes. There is
no configured area of memory into which this section can be placed. Appropriate
directives must be supplied to break up the . text output section so that ld can
perform allocation. For example,

SECTIONS

txtl:

fl. o (. text)

/2.o (.text)

/3. o (. text)

(continued>--

Notes and special considerations 15-29

txt2:
{

/4. o (. text)

/5.o (.text)

/6.o (.text)

Allocation algorithm

An output section is formed either as a result of a SECTIONS directive or by
combining input sections of the same name. An output section can be made up of zero
or more input sections. After the composition of an output section is determined, it must
be allocated into configured virtual memory. ld uses an algorithm that attempts to
minimize fragmentation of memory, which increases the possibility that a loading run
can allocate all output sections within the specified virtual memory configuration. The
algorithm proceeds as follows:

1. It allocates any output sections for which explicit bonding addresses are specified.

2. It allocates any output sections to be included in a specified memory area. In both
this and the succeeding step, each output section is placed into the first available
space within the (named) memory area, taking into consideration any alignment.

3. It allocates output sections that are not handled by steps 1 or 2.

If all memory is contiguous and configured (the default), and no SECTIONS

directives are given, output sections are allocated in the order they appear to ld,

normally . text, . data, . bss. Otherwise, output sections are allocated, in the
order they were defined or made known to ld, into the first available space in which
they fit.

15-30 Chapter 15 ld Reference

Incremental loading

As previously mentioned, the output of 1 a can be used as an input file to subsequent
ld runs, provided that the relocation information is retained (using the -r option).
With large applications you might find it desirable to partition C programs into
subsystems, load each subsystem independently, and then load the entire application.
For example,

Step 1:

ld -r -o outf ilel i-filel

/* i-filel */

SECTIONS

ssl:

Step 2:

fl.o

f2.o

fn.o

ld -r -o outfile2 i-f ile2

/* i-file2 */

SECTIONS

ss2:

gl.o

g2.o

gn.o

Notes and special considerations 15-31

Step 3:
ld -a -m -o final.out outfilel outfile2

By judiciously forming subsystems, applications can achieve a form of incremental
loading, whereby it is necessary to reload only a portion of the total load when a few
programs are recompiled. To apply this technique, follow two simple rules:

1. Intermediate loads must contain only SECTIONS declarations and be concerned
only with the formation of output sections from input files and input sections. You
must not do any binding of output sections in these runs.

2. All allocation and memory directives, as well as any assignment statements, must be
included only in the final 1 d call.

DSECT, COPY, and NOLOAD sections

You can give sections a type in a section definition.

The DSECT option creates a dummy section, which has the following properties:

1. It does not participate in the memory allocation for output sections. As a result, it
does not take up memory and does not show up in the memory map (the -m

option) generated by 1 d.

2. It can overlay other output sections and even unconfigured memory. Dummy
sections can overlay other dummy sections.

3. The global symbols defined within the dummy section are relocated normally. That is,
they appear in the output file symbol table with the same value they would have if the
dummy section were actually loaded at its virtual address. Other input sections can
reference DSECT-defined symbols. Undefined external symbols found within a dummy
section cause specified archive libraries to be searched; any members that define such
symbols are loaded normally (not in the dummy section or as a dummy section).

4. None of the section contents, relocation information, or line-number information
associated with the section is written to the output file.

A copy section is created by the COPY option. The only difference between a copy
section and a dummy section is that the contents of a copy section and all associated
information are written to the output file.

15-32 Chapter 15 ld Reference

A noload section is allocated virtual space, appears in the memory map, and so forth.
A section of the type NO LOAD differs from a normal output section in that text and data
are not written to the output file. For example,

SECTIONS

narnel Ox200000 (DSECT) {jilel. o}

narne2 Ox400000 (COPY) {jile2. o}

narne3 Ox600000 (NOLOAD) {jile3. o}

Here, none of the sections fromfilel. o are allocated, but all symbols are relocated
as though the sections were loaded at the specified address. Other sections can refer to
any of the global symbols and are resolved correctly.

Output file blocking

You can use two options to affect the physical file offsets of the information written to
the output file by 1 d:

• The BLOCK option permits any output section to be aligned in the output field at a
specified n-byte boundary.

• The - B option causes padding sections to be generated in the output file.

Both features are provided explicitly for the use of ldp, which constructs pfile. The
output sections of a pfile have certain requirements in terms of physical file offsets.
These requirements can be met by using BLOCK and - B.

You can apply the BLOCK option to any output section or GROUP directive. It
directs ld to align a section at a specified byte offset in the output file. It has no effect
on the address at which the section is allocated or on any part of the loading process. It
is used purely to adjust the physical position of the section in the output file:

SECTIONS

.text BLOCK(Ox200) :{

.data ALIGN(Ox20000)BLOCK(Ox200) :{

Notes and special considerations 15-33

In this SECTIONS directive example, ld ensures that each section, . text and
. data, is physically written at a file offset that is a multiple of Ox200 (for example, at an
offset of 0, Ox200, Ox400, ... , and so on, in the file).

Nonrelocatable input files

If you intend to use a file produced by 1 d in a subsequent 1 d run, you should set the
- r option for the first 1 a run. This preserves relocation information and permits the
sections of the file to be relocated by the subsequent 1 d run.

When 1 d detects an input file that does not have relocation or symbol table
information, it gives a warning message. Such information can be removed by ld (see
the -s option in the section "Options," earlier in this chapter) or by the strip(l)

program. Note, however, that the loading run continues, using the nonrelocatable input
file. For such a load to be successful (that is, actually and correctly loading all input files,
relocating all symbols, resolving unresolved references, and so on), two conditions for
the nonrelocatable input files must be met:

1. Each input file must not have unresolved external references.

2. Each input file must be bound to the same virtual address as it was in the ld run
that created it.

Note that if these two conditions are not met for all nonrelocatable input files, no
error messages are issued. Because of this restriction, you must take extreme care when
supplying such input files to ld.

The - i 1 a option

When the - i 1 d option is used, the link editor creates a pair of dummy sections of type
DSECT for each unallocated, configured area of memory. These dummy sections have
unique names in the form of . i_l_dnn, where nn is a 2-digit decimal integer in the
range from 00 through 99. At most, 50 pairs of these sections are created by the link
editor. These sections identify the boundaries of the unused memory space and are
similar to . bs s sections in that they do not contain any text or initialized data. The link
editor also creates a dummy section named . history. These sections are used later
by the incremental link editor.

15-34 Chapter 15 ld Reference

Error messages
The following sections report the error messages you can receive from 1 d. The sections
are arranged by general topic.

Corrupt input files

Certain error messages indicate that the input file is corrupt, nonexistent, or unreadable.
If you receive any of them, you should check that the file is in the correct directory with
the correct permissions. If the object file is corrupt, try recompiling or reassembling it.
The error messages are as follows:

Can't open name.

Can't read archive header from archive name.

Can't read file header of archive name.

Can't read 1st word of file name.

Can't seek to the beginning of file name.

Fail to read file header of name.

Fail to read lnno of section sect of file name.

Fail to read magic number of file name.

Fail to read section headers of file name.

Fail to read section headers of library name member number.

Fail to read symbol table of file name.

Fail to read symbol table when searching libraries.

Fail to read the aux entry of file name.

Fail to read the field to be relocated.

Fail to seek to symbol table of file name.

Fail to seek to symbol table when searching libraries.

Fail to seek to the end of library name member number.

Error messages 15-35

Fail to skip aux entries when searching libraries.

Fail to skip the mem of struct of name.

Illegal relocation type.

No reloc entry found for symbol.

Reloc entries out of order in section sect of file name.

Seek to name section sect failed.

Seek to name section sect lnno failed.

Seek to name section sect reloc entries failed.

Seek to relocation entries for section sect in file name failed.

Errors during output

Certain errors occur because ld cannot write to the output file. This usually indicates
that the file system is out of space. These kinds of messages include the following:

Cannot complete output file name. Write error.

Fail to copy the rest of section num of file name.

Fail to copy the bytes that need no reloc of section num of

file.

name I/O error on output file name.

Internal errors

Certain messages indicate that something is wrong with ld internally. If you receive
them, there is probably nothing you can do except to obtain help from another
experienced user of ld. Such messages are as follows:

Attempt to free nonallocated memory.

Attempt to reinitialize the SDP aux space.

Attempt to reinitialize the SDP slot space.

15-36 Chapter 15 ld Reference

Default allocation did not put .data and .bss into the same

region.

Failed to close SDP symbol space.

Failure dumping an AIDFNXXX data structure.

Failure in closing SDP aux space.

Failure to initialize the SDP aux space.

Failure to initialize the SDP slot space.

Internal error: audit_groups, address mismatch.

Internal error: audit_group, finds a node failure.

Internal error: fail to seek to the member of name.

Internal error: in allocate lists, list confusion (numnum).

Internal error: invalid aux table id.

Internal error: invalid symbol table id.

Internal error: negative aux table ld.

Internal error: negative symbol table id.

Internal error: no symtab entry for DOT.

Internal error: split_scns, size of sect exceeds its new

displacement.

Allocation errors

Certain error messages appear during the allocation phase of the load. They generally
appear if a section or group does not fit at a certain address or if the given MEMORY or
SECTION directives conflict in some way. If you are using an i-file and receive such
messages, check that MEMORY and SECTION directives allow enough room for the
sections to ensure that nothing overlaps and that nothing is being placed in
unconfigured memory. For more information, see the sections "The ld Command

Error messages 15-37

Language" and "Notes and Special Considerations," both earlier in this chapter. These
messages are as follows:

Bond address address for sect is not in configured memory.

Bond address address for sect overlays previously allocated

section sect at address.

Can't allocate output section sect, of size num.

Can't allocate section sect into owner mem.

Default allocation failed: name is too large.

GROUP containing section sect is too big.

Memory types namel and name2 overlap.

Output section sect not allocated into a region.

sect at address overlays previously allocated section sect at

address.

sect, bonded at address, won't fit into configured memory.

sect enters unconfigured memory at address.

Section sect in file name is too big.

Misuse of link editor directives

Certain error messages are explanations that occur following the misuse of an input
directive. If you receive them, review the appropriate section in this chapter. These
messages and brief explanations of their causes follow:

Adding name(sect) to multiple output sections.

The input section is mentioned twice in the SECTIONS directive.

Bad attribute value in MEMORY directive: c.

The attribute c is illegal. An attribute must be one of R, w, x, or I.

15-38 Chapter 15 ld Reference

Bad flag value in SECTIONS directive, option.
Only the -1 option is allowed inside a SECTIONS directive.

Bad fill value.

The fill value must be a 2-byte constant.

Bonding excludes alignment.

The section is bound at the given address, regardless of the alignment of that address.

Cannot align a section within a group.

Cannot bond a section within a group.

Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group can be aligned or bound to an
address, but the sections making up the group cannot be handled individually.

DSECT sect can't be given an owner.

DSECT sect can't be linked to an attribute.

Because dummy sections do not participate in the memory allocation, it is meaningless
for a dummy section to be given an owner or an attribute.

Region commands not allowed.

The A/UX implementation of the link editor does not accept the REG r ON commands.

Section sect not built.

The most likely cause of this is a syntax error in the SECTIONS directive.

Semicolon required after expression.

Statement ignored.

This is caused by a syntax error in an expression.

Usage of unimplemented syntax.

The A/UX implementation of 1 d does not accept all possible commands.

Error messages 15-39

Misuse of expressions

Certain errors arise from the misuse of an input expression. If you receive any of the
following messages, please review the appropriate section in this chapter.

Absolute symbol name being redefined.

An absolute symbol cannot be redefined.

ALIGN illegal in this context.

Alignment of a symbol can be done only within a SECTIONS directive.

Attempt to decrement DOT.

Illegal assignment of physical address to DOT.

Illegal operator in expression.

Misuse of DOT symbol in assignment instruction.

You cannot use the dot (.) symbol in assignment statements that are outside of
SECTIONS directives.

Symbol name is undefined.

All symbols referred to in an assignment statement must be defined.

Symbol name from file name being redefined.

A defined symbol cannot be redefined in an assignment statement.

Undefined symbol in expression.

All symbols used in expressions must be defined.

Misuse of options

Certain errors arise from the misuse of options. If you receive any of the following
messages, please review the appropriate section of this book.

Both -r and -s flags are set.

-s flag turned off.

Can't find library libx.a.

15-40 Chapter 15 ld Reference

-L path too long (string) .

-o file name too large (>128 char), truncated to (String).

Too many -L options, seven allowed.

Some options require space before the argument, and some do not; see the section
"Options," earlier in this chapter. Including extra space or not including the required
space is the most likely cause of the following messages:

option flag does not specify a number.

option is an in val id flag.

-e flag does not specify a legal symbol name: name.

-f flag does not specify a two-byte number: num.

No directory given with -L.

-o flag does not specify a valid file name: string.

-1 flag (specifying a default library) is not supported.

-u flag does not specify a legal symbol name: name.

Space constraints

Certain error messages can occur if 1 d attempts to allocate more space than is
available. If you receive them, you should attempt to decrease the amount of space used
by ld. You can do this by making the i-file less complicated or by using the -r option
to create intermediate files. These space constraint messages are as follows:

Fail to allocate num bytes for slotvec table.

Internal error: aux table overflow.

Internal error: symbol table overflow.

Memory allocation failure on num-byte call.

Memory allocation failure on realloc call.

Run is too large and complex.

Error messages 15-41

Miscellaneous errors

Errors occur for many reasons. If one occurs that is not explained in a previous section,
refer to the error message for an indication of where to look in this reference.
Miscellaneous error messages are as follows:

Archive symbol table is empty in archive name, execute

'ar ts name' to restore archive symbol table.

On systems with a random-access archive capability, such as A/UX, the link editor
requires that all archives have a symbol table. This symbol table might have been
removed by strip.

Can It create intermediate ld file name.
Can It open internal file name.
These two messages are possible only when the link editor uses two processes. They
indicate that the temp directory (usually /tmp or /usr /tmp) is out of space, or that
the link editor does not have permission to write in it.

Cannot create output file name
You might not have write permission in the directory where the output file is to be written.

File name is of unknown type, magic number = num.
Ifile nesting limit exceeded with file name
i-files can be nested 16 deep.

Library name, member has no relocation information.

Multiply defined symbol sym, in name has more than one size.

A multiply defined symbol is not defined in the same manner in all files.

name(sect) not found.

An input section specified in a SECTIONS directive was not found in the input file.

Section sect starts on an odd byte boundary!

This warning occurs only if you specifically bind a section at an odd boundary.

15-42 Chapter 15 ld Reference

Sections .text, .data or .bss not found;

Optional header may be useless.

The system a. out header uses values found in the . text, . data, and . bss

section headers.

Line nbr entry (numnum) found for nonrelocatable symbol:

Section sect, file name.
This error is generally caused by an interaction of yacc(l) and cc(l). See the section
"Notes and Special Considerations," earlier in this chapter.

Undefined symbol sym first referenced in file name.
Unless you use the - r option, 1 d requires that all referenced symbols be defined.

Unexpected EOF (End Of File).

There is a syntax error in the i-file.

Syntax diagram for input directives
Input to 1 d is a series of directives that together have the effect of combining various
relocatable input object files, binding all objects to known addresses, and resolving
object references so the resulting output object file is self-consistent and executable.
Table 15-3 contains syntax diagrams for the input directives.

In Table 15-3, a particular notation is used. The terms on the left define the terms on
the right. For example, the expansion

term ---+ directive 1
directive2

means that term can be made up of directivel or directive2.

+ Note Number suffixes have been added to some metalanguage terms to illustrate
treatment of multiple arguments. You should ignore these suffixes when seeking the
definition of such terms. •

Syntax diagram for input directives 15-43

Ellipses(. ..) indicate that several of the elements on the right can comprise a left­
hand element. For example, the expansion

term directive ...

means that term is made up of one or more directives. Brackets indicate optional
directives, and braces indicate that the contents must be included in the directive.

For flags, one or more blanks, tabs, or newlines can be substituted wherever there is
a space between a flag option and its argument.

Table 15-3 Directive expansion

Directive

file

cmd

memory

memory-spec

attributes

origin-spec

length-spec

origin

length

sections

sec-or-group

section

sec-options

addr

align-option

15-44 Chapter 15 ld Reference

Expanded directive

cmd ...

memory
sections
assignment
filename
flags

MEMORY { memory-specl [[, l memory-spec2]. ..

name [attributes] : origin-spec [, l length-spec

([R][W][X][I]

origin = long

length = long

ORIGIN
o[rigin]
o[rg]

LENGTH
l[ength]
l[en]

SECTIONS {sec-or-group ... }

section
group
library

name sec-options : { statement-list } [fill] [mem-spec]

[addr] [align-option] [block-option] [type-option]

long

align (long)

Table 15-3 Directive expansion (continued)

Directive ---+ Expanded directive

align ---+ ALIGN
---+ align

block-option ---+ block (/ong)

block ---+ BLOCK
---+ block

type-option ---+ (DSECT)
---+ (NOLOAD)
---+ (COPY)

statement-list ---+ statementl [statement2] ...

statement ---+ filename [(name-list) l f.fill] library assignment

name-list ---+ namel [[, l name2] ...

fill ---+ =long

library ---+ -lname

assignment ---+ /side assign-op expr end

/side ---+ name
---+

assign-op ---+

---+ +=
---+

---+ *=
---+ I=

expr ---+ term
---+ expr binary-op expr *

term ---+ long
---+ name
---+ align (term) *
---+ (expr)
---+ unary-op term

unary-op ---+

---+

(continued>--

Syntax diagram for input directives 15-45

Table 15-3 Directive expansion (continued)

Directive

binary-op

end

group

group-options

section-list

mem-spec

15-46 Chapter 15 ld Reference

Expanded directive

*
I
%

+

>>

<<

!=

>

<

<=

>=

&

&&
11

GROUP group_ options : {section-list} [mem-spec]

[addn [align-option l

sectionl [[, [section2] ...

>name
> attributes

Table 15-3 Directive expansion (continued)

Directive

flags

name

long

filename

pathname

Expanded directive

-e name
-f long
-ild
-lname
-m
-o filename
-r

-s

-t

-u name
-x
-z
-F
-Lpathname
-M
-N
-s
-v
-vs long

Any valid symbol name.

Any valid long integer constant.

Any valid A/UX operating system filename; it can include a full
or partial pathname.

Any valid A/UX operating system pathname (full or partial).

* These appear to be circular references, but in practice they are (eventually) resolved by
definition to a defined element.

Syntax diagram for input directives 15-47

16 COFF Reference

COFF structure I 16-3

File header I 16-4

Optional header information I 16-7

Section headers I 16-9

Sections I 16-12

Relocation information I 16-13

Line numbers I 16-14

Symbol table I 16-16

String table I 16-36

Access routines I 16-37

This chapter describes the Common Object File Format (COFF). COFF is the output file

produced on A/UX systems by the assembler (as) and the link editor (ld). The term

"common" refers to how this format is used on a number of processors and operating

systems, including A/UX.

COFF is flexible enough to meet the demands of most jobs, yet simple enough to be easily

incorporated into existing projects. Some of the key features of COFF are as follows:

• Applications can add system-dependent information to the object file without

causing access utilities to become obsolete.

• Space is provided for symbolic information that debuggers and other applications use.

• You can make some modifications in the object file construction at compile time.

16-2 Chapter 16 COFF Reference

COFF structure
The object file supports user-defined sections and contains extensive information for
symbolic software testing. An object file contains the following elements:

• a file header

• optional header information

• a table of section headers

• data corresponding to the section header

• relocation information

• line numbers

• a symbol table

• a string table

Figure 16-1 shows the overall structure.

File header

Optional information (A/UX system a . out header) ...
Section 1 header ...
Section n header

Raw data for section 1 ...
Raw data for section n

Relocation info for section 1 ...
Relocation info for section n

Line numbers for section 1

Line numbers for section n

Symbol table

String table

Figure 16-1 Object file format

COFF structure 16-3

The last four sections (relocation, line numbers, symbol table, and string table) might
be missing if the program is linked with the - s option of the link editor or if the
relocation (line number) information, symbol table, and string table are removed by the
strip command.

The line number information does not appear unless you compile the program with
the compiler (cc) -g option. Also, if there are no unresolved external references after
linking, the relocation information is no longer needed and is absent. The string table is
also absent if the source file does not contain any symbols with names longer than eight
characters. An object file that contains no errors or unresolved references can be executed.

File header

section A section is the smallest portion of an object file that is relocated and
treated as one separate and distinct entity. There are three default
sections: . text, . data, and . bss. Additional sections
accommodate multiple text or data segments, shared data segments,
or user-specified sections. When the file is executed, however, the
A/UX operating system loads only the . text and . data

memory. The kernel clears the . bs s section. Executables using a
shared library have additional sections: . 1 ib and dummy sections
corresponding to the target shared object. An . ini t section
specified for a shared-library executable file is placed within a . text

section of the object file.

physical address This is the physical location in memory where a section is loaded.

virtual address This is the offset of a section with respect to the beginning of its
segment or region. All relocatable references in a section assume that
the section occupies the virtual address at execution time.

The file header contains the 20 bytes of information shown in Table 16-1. The last two
bytes are flags used by ld and object file utilities. For more explicit information regarding
the C language file header structure, see f i 1ehdr(4) in A/UX Programmer's Reference.

16-4 Chapter 16 COFF Reference

Table 16-1 File header contents

Bytes

0-1

2-3

4-7

8-11

12-15

16-17

18-19

Declaration Name

unsigned short f _magic

unsigned short f _nscns

long int f_timdat

long int f_symptr

long int f_nsyms

unsigned short f_opthdr

unsigned short f_flags

Description

Magic number as defined by the symbol MAGIC

in the file a.out .h

Number of section headers (equals the number of
sections)

Time and date stamp indicating when the file was
created relative to the number of elapsed seconds
since 00 00:00 GMT, January 1, 1970

File pointer containing the starting address of the
symbol table

Number of entries in the symbol table

Number of bytes in the optional header

Flags

The size of optional header information (f_opthdr) is used by all referencing
programs that seek to the beginning of the section header table. This enables the same
utility programs to work correctly on files originally targeted for different systems. On a
VAX system, the optional header is 28 bytes.

Magic numbers

The magic number specifies the machine on which the object file is executable. The
magic number for A/UX is 0520.

For a complete list of all currently defined magic numbers, refer to the header file
filehdr. h.

Flags

The last two bytes of the file header are flags that describe the type of the object file. The
A/UX version of COFF has no use for some of these, but they are included here for
commonality. The currently defined flags are shown in Table 16-2.

File header 16-5

Table 16-2 File header flags

Mnemonic Flag

F_RELFLG 00001

F_EXEC 00002

F_LNNO 00004

F_LSYMS 00010

F_MINMAL 00020

F_UPDATE 00040

F_SWABD 00100

F_AR16WR 00200

F_AR32WR 00400

F_AR32W 01000

F_PATCH 02000

F_NODF 02000

Meaning

Relocation information stripped from the file

File is executable (that is, no unresolved external references)

Line numbers stripped from file

Local symbols stripped from file

Not used by A/UX

Not used by A/UX

This file had its bytes swabbed (that is, the bytes of symbol
table name entries are reversed)

Created on an AR16WR machine (PDP-11)

Created on an AR32WR machine (VAX)

Created on an AR32W machine (M68000)

Not used by A/UX

(Minimal file only) No decision functions for replaced functions

Note: AR16WR defines the machine architecture (AR) as 16 bits per word (16), right-to-left byte

order with the least significant byte first (WR); AR32WR defines the machine architecture (AR) as
32 bits per word (32), right-to-left byte order with the least significant byte first (WR); and

AR32W defines the machine architecture (AR) as 32 bits per word (32), left-to-right byte order

with the most significant byte first (W).

File header declaration

The C structure declaration for the file header is given in Figure 16-2. You can find
this declaration in the header file f i 1 ehdr . h. See f i 1ehdr(4) in A/UX
Programmer's Reference.

16-6 Chapter 16 COFF Reference

Figure 16-2 File header declaration

struct f ilehdr

unsigned short f_magic;

unsigned short f _nscns;

long f_timdat;

long f _symptr;

long f _nsyms;

unsigned short f _opthdr;

unsigned short f_f lags;

} i

#define FILHDR struct f ilehdr

#define FILHSZ sizeof (FILHDR)

Optional header information

/*

/*

I*

/*

/*

I*

/*

magic number */

number of sections */

time/date stamp */

file ptr to symtab */

symtab entries *I

sizeof (opt hdr) */

flags */

The template for optional information varies among the different systems that use COFF.
Applications place all system-dependent information into this record. This allows
different operating systems access to information that only that particular operating
system uses, without forcing all COFF files to save space for that information. General
utility programs (for example, the symbol table access library functions) can be made to
work properly on any common object file by using the size of optional header
information in bytes 16-17 of the file header f_opthdr.

Standard A/UX system a. out header

By default, files produced by the link editor always have a standard A/UX System
a . out header in the optional header field. The fields of the optional header are
described in Table 16-3.

Optional header information 16-7

Table 16-3 Optional header contents

Bytes Declaration Name Description

0-1 short magic Magic number

2-3 short vs tamp Version stamp

4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized data in bytes

12-15 long int bsize Size of uninitialized data in bytes

16-19 long int entry Entry point

20-23 long int text_start Base address of text

24-27 long int data_start Base address of data

The magic number in the optional header supplies operating-system-dependent
information about the object file, whereas the magic number in the file header specifies the
machine on which the object file runs. The magic number in the optional header supplies
information telling the operating system of that machine how that file should be executed.
The magic numbers recognized by the A/UX operating system are shown in Table 16-4.

The magic number for the A/UX operating system is a machine-dependent
constant that can be found in the header file a . out . h. See a . out (4) in A!UX
Programmer's Reference.

Table 16-4 A/UX magic numbers

Value

0407

0410

0413

16-8 Chapter 16 COFF Reference

Meaning

The text segment is not write protected or sharable; the data segment is contiguous
with the text segment.

The data segment starts at the next segment following the text segment and the text
segment is write-protected.

The text segment is demand-paged from the file system, with separate instruction
and data space.

Optional header declaration

The C language structure declaration used for the A/UX system a . out file header is
given in Figure 16-3. This declaration can be found in the header file aouthdr. h.

Figure 16-3 aouthdr declaration

typedef struct aouthdr

short magic;

short vstamp;

/* magic number */

/* version stamp */

long tsize; /* text size (bytes) padded */

/* to word boundary */

long dsize; /* initialized data size */

long bsize; /* uninitialized data size */

long entry; /* entry point */

long text_start; /* base of text, this file */

long data_start /* base of data, this file */

} AOUTHDR;

Section headers
Every object file has a table of section headers to specify the layout of data within the
file. Every section in an object file also has its own header. The section header table has
one entry for every section in the file. Each entry contains descriptive information about
the section, as shown in Table 16-5.

Section headers 16-9

Table 16-5 Section header contents

Bytes Declaration Name Description

0-7 char s_name 8-char null padded section name

8-11 long int s_paddr Physical address of section

12-15 long int s_vaddr Virtual address of section

16-19 long int s_size Section size in bytes*

20123 long int s_scnptr File pointer to raw data t

24127 long int s_relptr File pointer to relocation entriest

28131 long int s_lnnoptr File pointer to line number entriest

32133 unsigned short s_nreloc Number of relocation entries

34135 unsigned short s_nlnno Number of line number entries

36139 long int s_flags Flags

* The size of a section is always padded to a multiple of 4 bytes.

t File pointers are byte offsets that can be used to locate the start of data, relocation, or line number entries for the
section. They can be readily used with the NUX operating system function f seek(3S).

Flags

The lower four bits of the flag field indicate a section type, as shown in Table 16-6.

Table 16-6 Section header flags

Mnemonic Flag

STYP_REG OxOO

STYP_DSECT OxOl

STYP_NOLOAD Ox02

STYP_GROUP Ox04

STYP_PAD Ox08

STYP_COPY OxlO

STYP_TEXT Ox20

STYP_DATA Ox40

16-10 Chapter 16 COFF Reference

Meaning

Regular section (allocated, relocated, loaded).

Dummy section (not allocated, relocated, not loaded).

No-load section (allocated, relocated, not loaded).

Grouped section (formed from input sections).

Padding section (not allocated, not relocated, loaded).

Copy section (for a decision function used in updating fields;
not allocated, not relocated, loaded, relocation and line
number entries processed normally).

Section contains executable text only.

Section contains initialized data only.

Table 16-6 Section header flags (continued)

Mnemonic Flag Meaning

STYP_BSS

STYP_LIB

Ox80 Section contains only uninitialized data.

Ox200 Section contains the shared-library pathname (treated similarly
to STYP_NOLOAD).

STYPE_INIT Ox400 Section contains shared-library initialization fragments (treated
similarly to STYP_TEXT).

Section header declaration

The C structure declaration for the section headers is described in Figure 16-4. You can
find this declaration in the header file scnhdr. h (see scnhdr(4) in A!UX
Programmer's Reference):

Figure 16-4 Section header declaration

struct scnhdr

} i

char s_name[8];

long s__paddr;

long s_vaddr;

long s_size;

long s_scnptr;

long s_relptr;

long s_lnnoptr;

unsigned short s_nreloc;

unsigned short s_nlnno;

long s_f lags

#define SCNHDR struct scnhdr

#define SCNHSZ sizeof (SCNHDR)

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

section name */

physical address */

virtual address */

section size */

file pointer to section */

raw data */

file pointer to */

relocation */

file pointer to line */

number *!

relocation entries */

line number entries */

flags */

Section headers 16-11

Sections

. bs s section header

The one deviation from the rule in the section header table is the entry for uninitialized
data in a . bs s section. A . bs s section has a size, symbols that refer to it, and
symbols that are defined in it. At the same time, a . bs s section has no relocation
entries, no line number entries, and no data. Therefore, a . bss section has an entry in
the section header table, but occupies no space elsewhere in the file. In this case, the
number of relocation and line number entries, as well as all file pointers in a . bs s

section header, are zero.

Section headers are followed by the appropriate number of bytes of text or data. The raw
data for each section begins on a full word boundary in the file.

Files produced by the cc compiler and the as assembler always contain three
sections: . text, . data, and . bss. The . text section contains the instruction
text (that is, executable code); the . data section contains initialized data variables;
and the . bs s section contains uninitialized data variables.

The link editor SECTIONS directives (see Chapter 15, "ld Reference") let you
perform the following functions:

• describe how input sections are to be combined

• direct the placement of output sections

• rename output sections

If you do not include any SECTIONS directives, each input section appears in an
output section of the same name. For example, if a number of object files from the
compiler are linked (each containing the three sections . text, . data, and . bss),

the output object file also contains those three sections. Executables using shared
libraries have additional sections: . 1 ib containing the pathname to shared targets and
additional dummy sections (not loaded) corresponding to the sections in the shared
target object.

16-12 Chapter 16 COFF Reference

Relocation information
Object files have one relocation entry for each relocatable reference in the text or data. The
relocation information consists of entries with the 10-byte format, as shown in Table 16-7.

Table 16-7 Relocation section contents

Bytes Declaration Name Description

0-3 long int r_vaddr (Virtual) address of reference

4-7 long int r_symndx Symbol table index

8-9 unsigned short r_type Relocation type

The first four bytes of the entry make up the virtual address of the text or data to which
the entry applies. The next field is the index, counted from zero, of the symbol table entry
that is being referenced. The type field indicates the type of relocation to be applied.

As the link editor reads each input section and performs relocation, the relocation
entries are read. They direct how references found within the input section are treated.

The currently recognized relocation types are given in Table 16-8 and are
documented in the header file reloc. h.

Table 16-8 VAX and M68000 relocation types

Mnemonic Flag Meaning

R_ABS 0 Reference is absolute; no relocation is necessary; the entry is
ignored

R_RELBYTE 017 Direct 8-bit reference to the symbol virtual address

R_RELWORD 020 Direct 16-bit reference to the symbol virtual address

R_RELLONG 021 Direct 32-bit reference to the symbol virtual address (a VAX
relocation type)

R_PCRBYTE 022 A PC-relative 8-bit reference to the symbol virtual address

R_PCRWORD 024 A PC-relative 16-bit reference to the symbol virtual address

R_PCRLONG 024 A PC-relative 32-bit reference to the symbol virtual address

Relocation information 16-13

On VAX processors, relocation of a symbol index of -1 indicates that the amount by
which the section is being relocated is added to the relocatable address. In other words,
the relative difference between the current segment start address and the program load
address is added to the relocatable address.

The as assembler automatically generates relocation entries, which are then used
by the link editor to resolve external references in the file.

Relocation entry declaration

The structure declaration for relocation entries is given in Figure 16-5. This declaration
can be found in the header file reloc. h.

Figure 16-5 Relocation entry declaration

struct reloc {

long r_vaddr; /* ref virt addr */

long r_syrnndx; /* index into syrntab */

unsigned short r_type; /* reloc type */

} ;

#define RELOC struct reloc

#define RELSZ 10 /* sizeof (RELOC) */

Line numbers
When invoked with the - g option, the NUX system compilers (cc, f 7 7) generate an
entry in the object file for every C language source line where a break point can be
inserted. You can then reference line numbers using a software debugger like sdb. All
line numbers in a section are grouped by functions, as shown in Figure 16-6.

The first entry in a function grouping has line number zero and has, in place of the
physical address, an index into the symbol table for the entry containing the function
name. Subsequent entries have actual line numbers and addresses of the text
corresponding to the line numbers. The line number entries appear in increasing order
of address.

16-14 Chapter 16 COFF Reference

Symbol index 0

Physical address Line number

Physical address Line number
Symbol index 0

Physical address Line number

Physical address Line number

Figure 16-6 Line number grouping

Line number declaration

Figure 16-7 contains the structure declaration currently used for line number entries. This
declaration can be found in the header file 1 in en um. h.

Figure 16-7 Line number entry declaration

strut lineno

union {

long l_symndx;

long l_paddr;

} l_addr;

unsigned short l_lnno;

} ;

#define LINENO struct lineno

#define LINESZ 6

/* symbol table index of

function name */

/* physical address of line

number */

/* line number */

/* sizeof (LINENO) */

Line numbers 16-15

Symbol table
Because of symbolic debugging requirements, the order of symbols in the symbol table is
very important. Symbols appear in the symbol table in the sequence shown in Figure 16-8.

Filename 1

Function 1

Local symbols for function 1

Function 2

Local symbols for function 2 ...
Statics ...

Filename 2

Function 1

Local symbols for function 1 ...
Statics ...

Defined global symbols

Undefined global symbols

Figure 16-8 COFF global symbol table

The word statics means symbols defined in the C language storage class static

outside any function. The symbol table consists of at least one fixed-length entry per
symbol, with some symbols followed by auxiliary entries of the same size. The entry for
each symbol is a structure that holds the name (null-padded), structure value, type, and
other information.

Special symbols

The symbol table contains some special symbols that are generated by the cc

compiler, the as assembler, and other tools, as listed in Table 16-9.

16-16 Chapter 16 COFF Reference

Table 16-9 Special symbols in the symbol table

Symbol

.file

.text

.bss

.init

.lib

.bb

.eb

.ef

.target

.xfake

.eos

_etext,etext

_edata,edata

_end, end

Meaning

Filename

Address of . text section

Address of . bss section

Address of . ini t section (shared-library routine; contains initialization)

Address of . lib section (shared-library routine; contains target pathname)

Address of start of inner block

Address of end of inner block

Address of end of function

Pointer to the structure or union returned by a function

Dummy tag name for structure, union, or enumeration

End of members of structure, union, or enumeration

Next available address after the end of the output section . text

Next available address after the end of the output section . data

Next available address after the end of the output section . bss

Six of these special symbols occur in pairs. The . bb and . eb symbols indicate
the boundaries of inner blocks. A . bf and . ef pair brackets each function and
. xfake and . eos form a pair that names and defines the limit of structures, unions,
and enumerations that were not named. The . eos symbol also appears after named
structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the cc compiler invents
a name to be used in the symbol table. The name chosen for the symbol table is
. Xf ake, where xis an integer. If there are three unnamed structures, unions, or
enumerations in the source, their tag names are . Ofake, lfake, and . 2 fake.

Each of the special symbols has different information stored in the symbol table entry
as well as the auxiliary entry.

Symbol table 16-17

Inner blocks
The C language defines a block as a compound statement that begins and ends with
braces ({ and }). An inner block is a block that occurs within a function (which is also
a block), such as if, while or switch.

For each inner block that has local symbols defined, a special symbol, . bb, is put in
the symbol table immediately before the first local symbol of that block. Another special
symbol, . eb, is put in the symbol table immediately after the last local symbol of that
block. Figure 16-9 shows this sequence.

Figure 16-9 Special symbols

.bb

Local symbols for that block:

.eb

Because inner blocks can be nested by several levels, the . bb I . eb pairs and
associated symbols also can be nested. The code illustrated in Figure 16-10 is used as an
example of nested blocks. The symbol table built for the coding example in Figure 16-10
is shown in Figure 16-11.

Figure 16-10 Nested blocks

/* block 1 */

int i;

char c;

/* block 2 */

long a;

/* block 3 */

int x;

/* block 3 */

/* block 2 *!

/* block 4 */

long ii

/* block 4 */

/* block 1 */

16-18 Chapter 16 COFF Reference

Figure 16-11 Example of the symbol table

. bb for block 1

Local symbols for block 1:

i

c

. bb for block 2

Local symbols for block 2:

a

. bb for block 3

Local symbols for block 3:

x

. eb for block 3

. eb for block 2

. bb for block 4

Local symbols for block 4:

. eb for block 4

. eb for block 1

Symbols and functions

For each function, a special symbol, . bf, is put between the function name and the first
local symbol of the function in the symbol table. Also, a special symbol, . e f, is put
immediately after the last local symbol of the function in the symbol table. The sequence
is shown in the following example:
Function name:

.bf

Local symbol:

.ef

Symbol table 16-19

If the return value of the function is a structure or union, a special symbol, . target,

is put between the function name and the . bf. The sequence is shown here:

Function name:

.target

.bf

Local symbol:

.ef

The cc compiler invents . target to store the function-returned structure or
union. The symbol . target is an automatic variable with pointer type. Its value field
in the symbol is always zero.

Symbol table entries

All symbols, regardless of storage class and type, have the same format for their entries
in the symbol table. The symbol table entries each contain the 18 bytes of information.
The meaning of each of the fields in the symbol table entry is described in Table 16-10.
The declarations can be found in syms . h header file.

It should be noted that indexes for symbol table entries begin at zero and count
upward. Each auxiliary entry also counts as one symbol.

Table 16-10 Symbol table entry format

Bytes Declaration

0-7 char

8-11 long int

12-13 short

14-15 unsigned short

16 char

17 char

16-20 Chapter 16 COFF Reference

Name

_name

n_value

n_scnum

n_type

n_sclass

n_numaux

Description

8-character null-padded symbol name or an offset
to a symbol name stored in the string table

Symbol value; storage class dependent

Section number of symbol

Basic and derived type specification

Storage class of symbol

Number of auxiliary entries

The first eight bytes in the symbol table entry are the symbol name field. This field is
defined as the union of a character array and two 1 ong types. A symbol name can be
up to 50 characters long. If the symbol name is eight characters or less, the (null-padded)
symbol name is stored there. If the symbol name is longer than eight characters, the
entire symbol name is stored in the string table. In this case, the eight bytes contain two
long integers; the first is zero, and the second is the offset (relative to the beginning of
the string table) of the name in the string table. Because there can be no symbols with a
null name, the zeros on the first four bytes serve to distinguish a symbol table entry with
an offset from one with a name in the first eight bytes, as shown in Table 16-11.

Table 16-11 Name field

Bytes Declaration Name Description

0-7 char n_name 8-character null-padded symbol name

0-3 long n_zeros Zero in this field indicates the name is in the
string table

4-7 long n_of f set Offset of the name in the string table

Some special symbols are generated by the compiler and link editor, as discussed in
"Special Symbols," earlier in this chapter. Special symbol names always start with a dot,
such as . file, . Sfake, and . bb.

The storage class field has one of the values described in Table 16-12. You can find
these define statementsintheheaderfile storclass.h.

Table 16-12 Storage classes

Mnemonic Value Storage class

C_EFCN -1 Physical end of a function

C_NULL 0

C_AUTO Automatic variable

C_EXT 2 External symbol

C_STAT 3 Static

C_REG 4 Register variable

C_EXTDEF 5 External definition
(continuedY.

Symbol table 16-21

Table 16-12 Storage classes (continued)

Mnemonic Value Storage class

C_LABEL 6 Label

C_ULABEL 7 Undefined label

C_MOS 8 Member of structure

C_ARG 9 Function argument

C_STRTAG 10 Structure tag

C_MOU 11 Member of union

C_UNTAG 12 Union tag

C_TPDEF 13 Type definition

C_USTATIC 14 Uninitialized static

C_ENTAG 15 Enumeration tag

C_MOE 16 Member of enumeration

C_REGPARM 17 Register parameter

C_FIELD 18 Bit field

C_BLOCK 100 Beginning and end of block

C_FCN 101 Beginning and end of function

C_EOS 102 End of structure

C_FILE 103 Filename

C_LINE 104 Used only by utility programs

C_ALIAS 105 Duplicate tag

C_HIDDEN 106 Like static, used to avoid name conflicts

All these storage classes, except for c_ALIAS and c_HIDDEN, are generated by
the cc compiler or as assembler. They are not used by any A/UX system tools.

There are some "dummy" storage classes defined in the header file that are used
only internally by the C compiler (cc) and the assembler (as). These storage classes
are as follows:

C_EFCN

C_EXTDEF

C_ULABEL

16-22 Chapter 16 COFF Reference

C_USTATIC

C_LINE

Some special symbols are restricted to certain storage classes, listed in Table 16-13.

Table 16-13 Storage class by special symbols

Special symbol Storage class

.file C_FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.target C_AUTO

.xfake CSTRTAG, C_UNTAG, C_ENTAG

.eos C_EOS

.text C_STAT

.data C_STAT

.bss C_STAT

Some storage classes are used only for certain special symbols as shown in Table 16-14.

Table 16-14 Restricted storage class

Storage class Special symbol

C_BLOCK .bb, .eb

C_FCN .bf, .ef

C_EOS .eos

C_FILE .file

The meaning of a symbol value depends on its storage class. This relationship is
summarized in Tables 16-15 and 16-16.

Symbol table 16-23

If a symbol is the last symbol in the object file and has storage class c_FILE

(. f i 1 e symbol), its value equals the symbol table entry index of the first global
symbol. That is, the . file entries form a one-way linked list in the symbol table. If
there are no more . f i 1 e entries in the symbol table, the value of the symbol is the
index of the first global symbol.

Relocatable symbols have a value equal to their virtual address. When the section is
relocated by the link editor, the value of these symbols changes.

Table 16-15 Storage class and value

Storage class Meaning

C_AUTO Stack offset in bytes

C_EXT Relocatable address

C_STAT Relocatable address

C_REG Register number

C_LABEL Relocatable address

C_MOS Offset in bytes

C_ARG Stack offset in bytes

C_STRTAG 0

C_MOU Offset

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE Enumeration value

C_REGPARM Register number

C_FIELD Bit displacement

C_BLOCK Relocatable address

C_FCN Relocatable address

C_EOS Size

C_EOS Size

C_FILE (See text)

16-24 Chapter 16 COFF Reference

Section numbers are declared in the header file syrns . h and are listed in Table 16-16.

Table 16-16 Section number

Mnemonic Section number Meaning

N_DEBUG -2 Special symbolic debugging symbol

N_ABS -1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1-077767 Section number where symbol was defined

A special section number (-2) marks symbolic debugging symbols, including
structure (or union or enumeration) tag names, typedef statements, and the name of
the file. A section number of -1 indicates that the symbol has a value but is not
relocatable. Examples of absolute-valued symbols include automatic and register
variables, function arguments, and . eos symbols. The . text, . data, and . bss

symbols default to section numbers 1, 2, and 3, respectively.
With one exception, a section number of zero indicates a relocatable external symbol

that is not defined in the current file. The one exception is a multiply defined external
symbol (for example, a Fortran COMMON directive or an uninitialized variable defined
external to a function in C). In the symbol table of each file where the symbol is defined,
the section number of the symbol is zero and the value of the symbol is a positive
number giving the size of the symbol. When the files are combined, the link editor
combines all the input symbols into one symbol with the section number of the . bs s

section. The maximum size of all the input symbols with the same name is used to
allocate space for the symbol, and the value becomes the address of the symbol. This is
the only case where a symbol has a section number of zero and a nonzero value.

Symbols having certain storage classes are also restricted to certain section numbers.
They are shown in Table 16-17.

Symbol table 16-25

Table 16-17 Section number and storage class

Storage class Section number

C_AUTO N_ABS

C_EXT N_ABS, N_UNDEF, N_SCNUM

C_STAT N_SCNUM

C_REG N_ABS

C_LABEL N_UNDEF, N_SCNUM

C_MOS N_ABS

C_ARG N_ABS

C_STRTAG N_DEBUG

C_MOU N_ABS

C_UNTAG N_DEBUG

C_TPDEF N_DEBUG

C_ENTAG N_DEBUG

C_MOE N_ABS

C_REGPARM N_ABS

C_FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N_SCNUM

C_EOS N_ABS

C_FILE N_DEBUG

C_ALIAS N_DEBUG

The type field in the symbol table entry contains information about the basic and
derived type for the symbol. This information is generated by cc. The VAX and
MC68000-family cc compilers generate this information only if the -g option is used.
Each symbol has exactly one basic or fundamental type, but can have more than one
derived type. The format of the 16-bit type entry is

I ct6 I cts I ct4 I d3 I ct2 I dl I typ I

16-26 Chapter 16 COFF Reference

Bits 0 through 3, called typ, indicate one of the fundamental types shown in
Table 16-18.

Table 16-18 Fundamental types

Mnemonic Value Type

T_NULL 0 Type not assigned

T_ARG Function argument (used only by compiler)

T_CHAR 2 Character

T_SHORT 3 Short integer

T_INT 4 Integer

T_LONG 5 Long integer

T_FLOAT 6 Floating point

T_OOUBLE 7 Double word

T_STRUCT 8 Structure

T_UNION 9 Union

T_ENUM 10 Enumeration

T_MOE 11 Member of enumeration

T_UINT 14 Unsigned integer

T_ULONG 15 Unsigned long

Bits 4 through 15 are arranged as six 2-bit fields marked dl through d6. These a
fields represent levels of the derived types shown in Table 16-19.

Table 16-19 Derived types

Mnemonic Value Type

IYI'_NON 0 No derived type

IYI'_PTR Pointer

IYI'_FCN 2 Function

IYI'_ARY 3 Array

Symbol table 16-27

The following examples demonstrate interpretation of the symbol table entry
representing type:

char *June();

Here, June is the name of a function that returns a pointer to a character. The
fundamental type of June is 2 (character), the dl field is 2 (function), and the d2

field is 1 (pointer). Therefore, the type word in the symbol table for June contains the
hexadecimal number Ox62, which is interpreted to mean "a function that returns a
pointer to a character."

short * tabptr[10 J [2 5 J [3 J ;

Here, tabptr is a three-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); each of the dl, d2, and d3 fields
contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type entry in the
symbol table contains the hexadecimal number Ox7f7, indicating "a three-dimensional
array of pointers to short integers."

Table 16-20 shows the type entries that are legal for each storage class.
Conditions for the a entries apply to dl through d6, except that it is impossible

to have two consecutive derived types of function.
Although function arguments can be declared as arrays, they are changed to pointers

by default. Therefore, no function argument can have array as its first derived type.

16-28 Chapter 16 COFF Reference

Table 16-20 Type entries by storage class

Storage class

C_AUTO

C_EXT

C_STAT

C_REG

C_LABEL

C_MOS

C_ARG

C_STRTAG

C_MOU

C_UNTAG

C_TPDEF

C_ENTAG

C_MOE

C_REGPARM

C_FIELD

C_BLOCK

C_FCN

C_EOS

C_FILE

C_ALIAS

dentry

Function Array

x

x x

x x

x

x

x

x

Pointer

x

x

x

x

x

x

x

x

x

typ entry basic type

Any except T_MOE

Any except T_MOE

Any except T_MOE

Any except T_MOE

T_NULL

Any except T_MOE

Any except T_MOE

T_STRUCT

Any except T_MOE

T_UNION

Any except T_MOE

T_ENUM

T_MOE

Any except T_MOE

T_ENUM,
T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

T_NULL

T_NULL

T_NULL

T_NULL

T_STRUCT,
T_UNION,
T_ENUM

Symbol table 16-29

The C language structure declaration for the symbol table entry is given in
Figure 16-12. This declaration can be found in the header file syms . h.

Figure 16-12 Symbol table entry declaration

struct syment

union {

char _n_name[SYMNMLEN]; /* symbol name*/

struct {

/* symbol name */ long _n_zeros;

long _n_offset; /* location in string table */

_n_n;

char *_n_nptr[2]; /* allows overlaying */

_n;

long

short

n_value; /*

n_scnum; /*

symbol value */

section number */

unsigned short n_type; /* type & derived */

char n_sclass; I* storage class */

char n_numaux; /* # of aux entries

} ;

#define n_name _n._n_name

#define n_nptr _n._n_nptr[l]

#define n - zeros _n._n_n._n_zeros

#define n_of f set _n._n_n._n_offset

#define SYMNMLEN 8

#define SYMENT struct syment

*/

#define SYMESZ 18 /* symbol table entry size */

Auxiliary table entries

Currently, there is, at most, one auxiliary entry per symbol. The auxilia1y table entry
contains the same number of bytes as the symbol table entry. Unlike symbol table
entries, however, the format of an auxiliary table entry of a symbol depends on its type
and storage class. Table 16-21 lists auxiliary table entry formats by type and storage class.

16-30 Chapter 16 COFF Reference

Table 16-21 Auxiliary symbol table entries

Type entry

Name Storage class d2 typ Auxiliary entry format

.file C_FILE DT_NON T_NULL Filename

.text, C_STAT DT_NON T_NULL Section

.data,

.bss

tagname C_STRTAG DT_NON T_NULL Tag name
C_UNTAG

C_ENTAG

.eos C_EOS DT_NON T_NULL End of structure

Jena me C_EXT DT_FCN Any except T_MOE Function
C_STAT

amtame C_AUTO DT_ARY Any except T_MOE Array
C_STAT

C_MOS

C_MOU

C_TPDEF

.bb C_BLOCK DT_NON T_NULL Beginning of block

.eb C_BLOCK DT_NON T_NULL End of block

.bf, .ef C_FCN DT_NON T_NULL Beginning and end
of function

Name related to C_AUTO DT_PTR T_STRUCT Name related to
structure, union, C_STAT DT_ARR T_UNION, structure, union,
enumeration C_MOS DT_NON T_ENUM enumeration

C_MOU

C_TPDEF

In the preceding table, tagname means any symbol name, including the special
symbol .xf ake, and fcname and arrname represent any symbol name.

Any symbol that satisfies more than one condition should have a union format in its
auxiliary entry. Symbols that do not satisfy any of the above conditions should not have
any auxiliary entry.

Each of the auxiliary table entries for a filename contains a 14-character filename in
bytes zero through 13. The remaining bytes are zero, regardless of the size of the entry.

The auxiliary table entries for sections have the format as shown in Table 16-22.

Symbol table 16-31

Table 16-22 Format for sections in auxiliary table

Bytes Declaration Name Description

0--3 long int x_scnlen Section length

4-6 unsigned short x_nreloc Number of relocation entries

6-7 unsigned short x_nlinno Number of line numbers

8--17 dummy Unused (filled with zeros)

The auxiliary table entries for tag names have the format shown in Table 16-23. The
auxiliary table entries for the end of structures have the format shown in Table 16-24.
The auxiliary table entries for functions have the format shown in Table 16-25. The
auxiliary table entries for arrays have the format shown in Table 16-26. The auxiliary
table entries for the beginning of blocks have the format shown in Table 16-27. The
auxiliary table entries for the end of blocks have the format shown in Table 16-28. The
auxiliary table entries for structure, union, and enumeration symbols have the format
shown in Table 16-29.

Table 16-23 Format for tag names

Bytes Declaration Name Description

0--5 dummy Unused (filled with zeros)

6-7 unsigned short x_size Size of struct, union,
and enumeration

8--11 dummy Unused (filled with zeros)

12-15 long int x_endndx Index of next entry beyond
this structure, union, or
enumeration

16-17 dummy Unused (filled with zeros)

16-32 Chapter 16 COFF Reference

Table 16-24 Format for end of structures

Bytes Declaration Name Description

0-3 long int x_tagndx Tag index

4-5 dummy Unused (filled with zeros)

6-7 unsigned short x_size Size of struct, union, or
enumeration

8-17 dummy Unused (filled with zeros)

Table 16-25 Format for functions

Bytes Declaration Name Description

0-3 long int x_tagndx Tag index

4-7 long int x_f size Size of function (in bytes)

8-11 long int x_lnnoptr File pointer to line number

12-15 long int x_endndx Index of next entry beyond
this function

16-17 unsigned short x_tvndx Index of the function address
in the transfer vector table
(not used by A/UX operating
system)

Table 16-26 Format for arrays

Bytes Declaration Name Description

0-3 long int x_tagndx Tag index

4-5 unsigned short x_lnno Line number of declaration

6-7 unsigned short x_size Size of array

8-9 unsigned short x_dimen[O] First dimension

10-11 unsigned short x_dimen[l] Second dimension

12-13 unsigned short x_dimen[2] Third dimension

14-15 unsigned short x_dimen[3] Fourth dimension

16-17 dummy Unused (filled with zeros)

Symbol table 16-33

Table 16-27 Fonnat for beginning of block

Bytes

0-3

4-5

6-11

12-15

16-17

Declaration

unsigned short

long int

Table 16-28 Fonnat for end of block

Bytes Declaration

0-3

4-5 unsigned short

6-17

Name

dummy

x_lnno

dummy

x_endndx

dummy

Name

dummy

x_lnno

dummy

Table 16-29 Format for structures, unions, and enumerations

Bytes Declaration Name

0-3 long int x_tagndx

4-5 dummy

6-7 unsigned short x_size

8--17 dummy

Description

Unused (filled with zeros)

C-source line number

Unused (filled with zeros)

Index of next entry past this
block

Unused (filled with zeros)

Description

Used (filled with zeros)

C-source line number

Unused (filled with zeros)

Description

Tag index

Unused (filled with zeros)

Size of the structure,
union, or enumeration

Unused (filled with zeros)

Names defined by typedef might or might not have auxiliary table entries. For example,

typedef struct people STUDENT;

struct people {

char name(20];

long id;

} ;

typedef gtruct people EMPLOYEE;

16-34 Chapter 16 COFF Reference

The symbol EMPLOYEE has an auxiliary table entry in the symbol table, but the
symbol STUDENT does not.

The C language structure declaration for an auxiliary symbol table entry is given in
Figure 16-13. This declaration can be found in the header file syrns . h.

Figure 16-13 Auxiliary symbol table entry

union auxent

struct {

long x_tagndx;

union {

struct

unsigned short x_lnno;

unsigned short x_size;

x_lnsz;

long x_fsize;

x_rnisc;

union {

struct

long x_lnnoptr;

long x_endndx;

x_f cn;

struct {

unsigned short x_dirnen[DIMNUM];

x_syrn;

x_ary;

x_fcnary;

unsigned short x_tvndx;

struct

char x_fnarne[FILNMLEN];

x_file;

struct {

long x_scnlen;

(continued~

Symbol table 16-35

unsigned short x_nreloc;

unsigned short x_nlinno;

x _sen;

struct {

long x_tvfill;

unsigned short x_tvlen;

unsigned short x_tvran[2];

x_tv;

#define FILNMLEN 14

#define DIMNUM 4

#define AUXENT union auxent

#define AUXESZ 18

String table
Symbol table names longer than eight characters are stored contiguously in the string
table, with each symbol name delimited by a null byte. The first four bytes of the string
table are the size of the string table in bytes; offsets into the string table are therefore
greater than or equal to four.

For example, given a file containing two symbols with names longer than eight
characters, long_name_l and another_one, the string table has the format
shown in Table 16-30.

16-36 Chapter 16 COFF Reference

Table 16-30 String table

'1' 'o' 'n' 'g'

' - ' 'n' 'a' 'm'

'e' ' - ' '1' '\0'

'a' 'n' 'o' 't'

'h' 'e' 'r' ' - '

'o' 'n' 'e' '\0'

+ Note The index of long_name_l in the string table is 4, and the index of
another_one is 16. +

Access routines
Supplied with every standard A/UX system release is a set of access routines that are
used for reading the various parts of a common object file. Although the calling program
must know the detailed structure of the parts of the object file it processes, the routines
effectively insulate the calling program from the knowledge of the overall structure of
the object file. In this way, you can concern yourself with the section you are interested
in without knowing all the object file details.

The access routines can be divided into four categories:

1. functions that open or close an object file

2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular section of the object file

4. functions that return the symbol table index for a particular symbol

These routines can be found in the library 1 ibld. a and are listed, along with a
summary of what is available, in A/UX Programmer's Reference under ldfcn(3X).

Access routines 16-37

Appendix A:
Additional Reading

Bach, Maurice J. The Design of the UNIX Operating System. Englewood Cliffs, NJ: Prentice-Hall,
1986. (internal algorithms and data structures)

Harbison, Samuel P., and Steele, Guy L., Jr. CA Reference Manual. Englewood Cliffs, NJ:
Prentice-Hall, 1984.

Kernighan, Brian W., and Plauger, P. J. The Elements of Programming Style. New York: McGraw­
Hill, 1974. (coding and design techniques)

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language. Englewood Cliffs,
NJ: Prentice-Hall, 1988.

MC68020 32-Bit Microprocessor User's Manual. 2d ed. Motorola, 1985.

MC68881 Floating-Point Coprocessor User's Manual. Motorola, 1985.

Rochkind, Marc]. Advanced UNIX Programming. Englewood Cliffs, NJ: Prentice-Hall, 1985.
(UNIX system calls)

System V Inteiface Definition. AT&T, 1986.

Appendix B:
A/UX POSIX Environment

Compiling programs I B-3

POSIX optional facilities I B-3

Process compatibility flag I B-4

New system calls I B-4

The POSIX library I B-5

Header files and feature test macros I B-7

Migrating programs from A/UX to A/UX POSIX I B-27

The Institute of Electrical and Electronics Engineers (IEEE) standard Portable Operating

System Interface for Computer Environments (PO SIX) 1003 .1-1990 is a standard

developed to promote portability of applications across operating system environments.

For more detailed information about A/UX POSIX compliance, see Appendix C, "The

A/UX Guide to POSIX." The A/UX POSIX environment is compliant with this standard

and with the United States Federal Information Processing Standard (FIPS) #151-1.

This appendix describes the A/UX POSIX environment. There is a new library,

libposix. a, containing new and modified system calls and subroutines for the A/UX

POSIX environment. There are new symbolic constants in several header files and a few

new header files. Correct use of POSIX functionality requires programs to be compiled

with a new option to cc. This appendix provides information on these additions to

A/UX and gives some examples of how to use the new functions.

B-2 Appendix B A/UX POSIX Environment

Compiling programs
To compile a program for the POSIX environment, use the cc command with the -ZP

option. For example, to compile file f oo . c the following command is used:

cc -o foo -ZP foo.c

The -ZP flag ensures that libposix is searched before libc, links the program
with a library module that calls setcornpat(2) with the COMPAT_POSIX flag set,
and defines the Posrx_souRCE feature test macro.

POSIX optional facilities
POSIX specifies numerous optional facilities. These options are indicated by flags
defined in the header file <uni std. h>. A/UX POSIX supports the following options:

Define name Description

POSIX_JOB_CONTROL Job control based on the 4.2BSD model is present.

POSIX_CHOWN_RESTRICTED chown(2) can only be called by processes with
effective user ID of zero.

NGROUPS_MAX Process permissions include supplementary
groups' IDs.

POSIX_SAVED_rns The effective user and group IDs are saved by
exec(2).

POSIX_VDISABLE Terminal special characters defined in the c_cc
array can be individually disabled using the value
specified by _POSIX_V_DISABLE.

_POSIX_NO_TRUNC Pathname components longer than NAME_MAX

generate an error.

POSIX optional facilities B-3

Process compatibility flag
NUX has a process compatibility flag that is associated with each process. The system
calls setcompat(2) and getcompat(2) are used to change and examine this flag.
Where there is conflicting functionality defined by System V and BSD, the process
compatibility flag allows applications to select which functionality to use. This flag is also
used to support incompatible features defined by POSIX.

The following POSIX options are supported by the corresponding compatibility flags:

POSIX option Flag

_POSIX_CHOWN RESTRICTED COMPAT_BSDCHOWN

POSIX_NOTRUNC COMPAT_BSDNOTRUNC

COMPAT_Posrx is a composite flag equivalent to all of the following:

COMPAT_BSDGROUPS

COMPAT_BSDCHOWN

COMPAT_BSDSIGNALS

COMPAT_BSDTTY

COMPAT_BSDNOTRUNC

COMPAT_EXEC

COMPAT_SETUGID

COMPAT_POSIXFUS

New system calls
There are four new system calls in A/UX POSIX. These functions are discussed in more
detail in section 2 of the A!UX Programmer's Reference.

Function

setpgid(2)

sigpending(2)

setsid(2)

waitpid(2)

B-4 Appendix B A!UX POSIX Environment

Description

set process group ID for job control

examine pending signals

create session and set process group ID

obtain status information regarding child processes

The POSIX library
All of the functions listed in this section are discussed in more detail in the A!VX
Programmer's Reference.

Terminal interface control

POSIX specifies a new general terminal interface; this is discussed in termios(7P) in
A!VX System Administrator's Reference. The following functions replace the traditional
ioct1(2) interface for terminal control. The tcsetpgrpO and tcgetpgrpQ

functions are part of the POSIX job control option.

Function Reference Description

tcdrain tcdrain(3P) wait until all written data is transmitted

tcf low tcdrain(3P) suspend or restart input or output

tcf lush tcdrain(3P) discard data not transmitted

tcgetattr tcgetat tr(3P) get terminal attributes

tcgetpgrp tcgetpgrp(3P) get distinguished process group ID

tcsendbreak tcdrain(3P) send a break

tcsetattr tcgetat tr(3P) set terminal attributes

tcsetpgrp tcsetpgrp(3P) set distinguished process group ID

The following functions allow changes to the baud rate in the control structure. A/UX
does not support different values for the input and output baud rate; both
cf setispeeaO and cfsetospeeaO change the input and output baud rates.

Function Reference Description

cfgetispeed cfgetospeed(3P) return input baud rate

cfgetospeed cf getospeed(3P) return output baud rate

cfgetospeed cf getospeed(3P) set input baud rate

cf setispeed cfgetospeed(3P) set output baud rate

The POSIX library B-5

Signals

POSIX specifies new signal functions that are modeled on 4.2BSD signals. Some of the
new functions have corollaries in the BSD signal environment:

POSIX function

sigaction(3P)

sigprocmask(3P)

sigsuspend(3P)

BSD function

sigvec(2)

sigsetmask(2)

sigpause(2)

There are five functions provided for manipulating signal sets. These routines
provide functionality similar to that of the sigmas k() macro.

Function Reference Description

sigaction sigaction(3P) examine and change signal action

sigaddset sigsetops(3P) add a signal to a signal set

sigdelset sigsetops(3P) delete a signal from a signal set

sigfillset s igsetops(3P) initialize a signal set to include all
POSIX-defined signals

sigemptyset sigsetops(3P) initialize a signal set to exclude all
POSIX-defined signals

sigismember s igsetops(3P) determine whether a signal is a
member of a signal set

sigprocmask sigprocmask(3P) examine and change blocked
signals

sigsuspend s igsuspend(3P) wait for a signal

B-6 Appendix B A/UX POSIX Environment

Configurable system variables

POSIX introduced the following new routines, which allow an application to query
environment and system variables at runtime:

Function Reference Description

fpathconf pathconf(3P) get current values of configurable file-related
variables

pathconf pathconf(3P) get current values of configurable file-related
variables

sysconf sysconf(3P) get values of configurable system variables

Miscellaneous

The POSIX environment has the following new routine:

Function

mkf ifo

Reference

mkfifo(3P)

Description

make a FIFO special file

Header files and feature test macros

POSIX specifies certain symbols that are defined in header files. The available header
files are as follows:

unistd.h

sys/types.h

sys/stat.h

fcntl.h

limits.h

utime.h

Header files and feature test macros B-7

Some of these header files also can define symbols in addition to those defined by
POSIX, potentially conflicting with symbols defined by an application program. These
potential problems can be dealt with by using feature test macros, which control the
visibility of these symbols in the header files required by POSIX.

The rest of this section describes feature test macros and lists the contents of
available header files.

Feature test macros

A/UX defines the following feature test macros:

SYSV_SOURCE

_BSD_SOURCE

_AUX_SOURCE

_FIPS_151 SOURCE

The feature test macros _sYsv _souRCE and _BSD_SOURCE represent the
historical implementations on which A/UX is based. _Aux_souRCE represents
extensions to the historical implementations that are specific to A/UX.

The feature test macro _FIPS_l51_SOURCE represents functionality specific to
the initial version of the POSIX FIPS and is present for backward compatibility only.
Application programs should not use this feature test macro.

Feature test macros can be invoked on the cc command line. See Chapter 2, "cc

Command Syntax,'' for a description of the command-line arguments and their effects.

<unistd.h>

#ifndef ~unistd_h

#define ~unistd_h

#ifdef SYSV_SOURCE

/* lockf(... , function, ...) values*/

#define F_ULOCK 0

B-8 Appendix B NUX POSIX Environment

/* Unlock a previously locked */

/* region */

#define F - LOCK 1 /* Lock a region for exclusive

/* use */

#define F_TLOCK 2 /* Test and lock a region for

/* exclusive use */

#define F_TEST 3 /* Test a region for

/* processes locks *I

#endif /* SYSV_SOURCE */

#ifdef POSIX_SOURCE

#ifndef NULL

#define

#endif

NULL 0

/* access (... , mode) values *I

#define R_OK 4 /* read permission

#define W_OK 2 /* write permission

*/

*/

other

#define x - OK 1 I* execute or search permission */

#define F - OK 0 /* existence only */

/* lseek(... , whence) values*/

#define SEEK_SET 0 /* beginning of file */

#define SEEK_CUR 1 /* current position */

#define SEEK_END 2 /* end of file */

/* initial file descriptor values */

#define

#define

#define

STDIN_FILENO 0

STDOUT_FILENO 1

STDERR_FILENO 2

/* POSIX option flags */

#define POSIX_JOB_CONTROL

#define POSIX_SAVED_IDS

#define POSIX_VERSION

#define POSIX_CHOWN_RESTRICTED

#define POSIX_NO_TRUNC

#define POSIX_VDISABLE

1

1

198808L

1

1

0377

*/

*/

*/

(continued)•

Header files and feature test macros B-9

/* sysconf () names */

#define SC_ARG_MAX OxOOOOOOOl

#define SC_CHILD_MAX Ox00000002

#define SC_CLK_TCK Ox00000004

#define - SC_NGROUPS _MAX Ox00000008

#define SC_OPEN_MAX OxOOOOOOlO

#define SC_JOB_CONTROL Ox00000200

#define SC_SAVED_IDS Ox00002000

#define SC_ VERSION Ox00004000

I* pathconf () names */

#define PC_LINK_MAX Ox00020000

#define PC_MAX_CANON Ox00040000

#define - PC_MAX_INPUT Ox00080000

#define PC_NAME_MAX OxOOlOOOOO

#define - PC_PATH_MAX Ox00200000

#define PC PIPE_BUF Ox00800000

#define PC_CHOWN_RESTRICTED OxOlOOOOOO

#define - PC_NO_TRUNC Ox20000000

#define PC_VDISABLE Ox80000000

/* POSIX miscellaneous function declarations */ extern char

*getcwd(), *getlogin(), *ttyname();

#ifdef _FIPS 151 SOURCE

/* POSIX option flags (artifacts from Draft 12) */

#define POSIX_CHOWN_SUP_GRP 1

#define POSIX_UTIME_OWNER 1

#define - POSIX_GROUP PARENT 1

#define POSIX_KILL - SAVED 1

#define POSIX_EXIT_SIGHUP 1

#define POSIX_KILL_PID_NEGl 1

#define POSIX_DIR_DOTS 1

#define POSIX_PGID_CLEAR 1

#define POSIX_V_DISABLE POSIX_VDISABLE

B-10 Appendix B NUX POSIX Environment

!* sysconf () names (artifacts from Draft 12) */

#define SC_PASS_MAX Ox00000020

#define - SC PID_MAX Ox00000040

#define SC_UID_MAX Ox00000080

#define SC_EXIT_SIGHUP OxOOOOOlOO

#define SC_KILL_PID_NEGl Ox00000400

#define SC KILL_SAVED Ox00000800

#define SC PGID_CLEAR OxOOOOlOOO

/* pathconf () names (artifacts from Draft 12) */

#define - PC_FCHR_MAX OxOOOlOOOO

#define PC PIPE_MAX Ox00400000

#define PC_CHOWN_SUP_GRP Ox02000000

#define PC_DIR_DOTS Ox04000000

#define PC_GROUP_PARENT Ox08000000

#define PC LINK_DIR OxlOOOOOOO

#define PC_UTIME_OWNER Ox40000000

#define PC_V_DISABLE PC_VDISABLE

#endif /* FIPS - 151 SOURCE */

#endif /* - POSIX_SOURCE */

#endif /* - unistd_h */

Header files and feature test macros B-11

<sys/types.h>

The following types are defined in <sys/types. h> for the POSIX environment:

#ifndef ~sys_types_h

#define ~sys_types_h

#define _TYPES_

/*

/* for backwards compatibility */

* System-dependent parameters and types

*/

typedef char * caddr t·
- I

typedef long clock t·
- I

typedef short cnt t·
- I

typedef long daddr t·
- I

typedef unsigned short dev_t;

typedef int gid_t;

#ifdef PO SIX SOURCE -
typedef unsigned long ino_t;

#else

typedef unsigned short ino_t;

#endif /* POSIX_SOURCE */

typedef long

typedef int

typedef unsigned short

typedef short

typedef long

typedef long

typedef int

typedef int

typedef int

typedef long

typedef long

*/

typedef unsigned char

B-12 Appendix B A/UX POSIX Environment

key_t;

label_t [13 J ;

mode_t;

nlink_t;

off_t;

paddr_t;

pid_t;

ptrdiff_t;

size_t;

time_t;

ubadr_t; /* physical unibus address

uchar_t;

typedef unsigned short ushort _t;

typedef int uid t.
- I

typedef unsigned int uint _t;

typedef unsigned long ulong_t;

typedef unsigned int wchar t.
- I

#ifndef NULL

#define NULL 0

#endif I* NULL */

/*

* To be excluded from visibility control,

* types must end in _t.

*/

#ifdef SYSV_SOURCE

typedef

typedef

unsigned int uint;

unsigned long ulong;

typedef unsigned char unchar;

typedef unsigned short ushort;

#endif /* SYSV_SOURCE */

#ifdef BSD_SOURCE

typedef struct fd_set { long fds_bits[l]; } fd_set;

typedef struct{int r[l] ;} *physadr;

typedef struct _quad { long val[2]; } quad;

typedef unsigned char u_char;

typedef unsigned short u_short;

typedef unsigned int

typedef unsigned long

#endif /* _BSD_SOURCE */

#ifdef _AUX_SOURCE

u_int;

u_long;

typedef unsigned long ino_tl;

#endif /* _AUX_SOURCE */

#endif /* !~sys_types_h */

Header files and feature test macros B-13

<sys/stat.h>

The header file <sys Is tat . h> has the following defines for the POSIX environment:

#ifndef ~sys_stat_h

#define ~sys_stat_h

/*

* Structure of the result of stat

*/

#ifdef POSIX_SOURCE

struct stat

dev_t

short

mode_t

nlink_t

int

dev_t

of f_t

time t

ino_t

#ifdef _AUX_SOURCE

#define st inol st ino

#endif /* _AUX_SOURCE */

} i

time_t

int

time_t

int

long

long

uid_t

gid_t

B-14 Appendix B A/UX POSIX Environment

st_dev;

st_spareO;

st_mode;

st_nlink;

st_sparel;

st_rdev;

st_size;

st_atime;

st_ino;

/* backward compatibility */

st_mtime;

st_spare2;

st_ctime;

st_spare3;

st_blksize;

st_blocks;

st_uid;

st_gid;

#else /* ! POSIX_SOURCE */

struct stat

dev_ t

ino t -

mode t -
nlink t -

short

short

dev_ t

off t

time t -

#ifdef _AUX SOURCE -

#else /*

#endif

} ;

#endif

#define

#define

/*

/*

ino tl -

- AUX_ SOURCE */

ulong_t

_AUX - SOURCE */

time t -
int

time t -
int

long

long

long

PO SIX SOURCE */ - -

S ISUID

S ISGID

04000

02000

st_dev;

st_ino;

st_mode;

st_nlink;

st_uid;

st_gid;

st_rdev;

st_size;

st_atime;

st_inol;

st_inol;

st_mtime;

st_spare2;

st_ctime;

st_spare3;

st_blksize;

st_blocks;

st_spare4[2];

/* set user id on execution */

/* set group id on execution */

(continued)•

Header files and feature test macros B-15

#if defined(_SYSV_SOURCE) I I defined(_BSD_SOURCE)

/* historical file type constants */

#define s IFMT 0170000 /* type of file */

#define s I FIFO 0010000 /* fifo */

#define s IFCHR 0020000 /* character special */

#define s I FD IR 0040000 /* directory */

#define s IFBLK 0060000 /* block special */

#define s - IFREG 0100000 /* regular */

/* additional (historical) file modes */

#define s ISVTX 01000 /* save swapped text even after use

#define s - IREA 00400 /* read permission, owner */

#define s - I WRITE 00200 /* write permission, owner */

#define s I EXEC 00100 /* execute/search permission, owner -

#define S_ISFIFO(m)

#define S_ISCHR(m)

#define S_ISDIR(m)

#define S_ISBLK(m)

#define S_ISREG(m)

#else

#ifdef POSIX_SOURCE

/*

(((m) & S_IFMT)

(((m) & S_IFMT)

(((m) & S_IFMT)

(((m) & S_IFMT)

(((m) & S_IFMT)

S_IFIFO)

S_IFCHR)

S_IFDIR)

S_IFBLK)

S_IFREG)

* POSIX doesn't require the historical versions

* of these file type constants (see above).

*/

#define

#define

#define

#define

#define

#define

s IFMT 0170000 /* type of file */

S IFIFO 0010000 /* fifo */

S IFCHR 0020000 /* character special */

_S_IFDIR 0040000 /* directory */

S IFBLK 0060000 /* block special */

S IFREG 0100000 /* regular */

B-16 Appendix B NUX POSIX Environment

*/

*/

#define

#define

#define

#define

#define

S_ISFIFO(m) (((m) & _S_IFMT)

S_ISCHR(m) (((m) & _S_IFMT)

S_ISDIR(m) (((m) & _S_IFMT)

S_ISBLK(m) (((m) & _S_IFMT)

S_ISREG(m) (((m) & _S_IFMT)

#endif /* POSIX_SOURCE */

#endif /* SYSV_SOURCE I I _BSD_SOURCE */

#ifdef _BSD_SOURCE

/* additional file types */

_S_IFIFO)

_S_IFCHR)

_S_IFDIR)

_S_IFBLK)

_S_IFREG)

#define

#define

S_IFLNK

S IFSOCK

0120000 /* symbolic link */

0140000 /* socket */

#define

#define

S_ISLNK(m)

S_ISSOCK(m)

(((m) & S_IFMT)

(((m) & S_IFMT)

S_IFLNK)

S_IFSOCK)

#endif /* _BSD_SOURCE */

#if defined(_SYSV_SOURCE) I I defined(_POSIX_SOURCE)

#define s I RU SR 00400 /* read permission, owner */

#define s - I WU SR 00200 /* write permission, owner */

#define s I XU SR 00100 /* execute/search permission,

*/

#define s IRWXU (S IRUSR I s - IWUSR I S_IXUSR)

#define s IRGRP 00040 !* read permission, group */

#define s IWGRP 00020 /* write permission, group *!

#define s IXGRP 00010 /* execute/search permission,

*/

#define s IRWXG (S IRGRP I s - IWGRP I S_IXGRP)

#define s I ROTH 00004 /* read permission, other */

#define s I WO TH 00002 /* write permission, other */

#define s IXOTH 00001 /* execute/search permission,

*/

#define s - IRWXO (S_IROTH I s IWOTH - I S_IXOTH)

#endif /* _SYSV_SOURCE I I _POSIX_SOURCE */

#endif /* !~sys_stat_h */

owner

group

other

Header files and feature test macros B-17

<fcntl.h>

The following defines are in <fcntl. h>:

#ifndef

#define

f cntl_h

f cntl_h

/* Flag values accessible to open(2) and fcntl(2) */

/* (The first three can only be set by open) */

#if defined(_SYSV_SOURCE) I I defined(_POSIX_SOURCE)

#ifndef _sys_f ile_h

#define

#define

#define

#define

/* Flag

#define

#define

#define

O_RDONLY 0

O_WRONLY 1

O_RDWR 2

O_APPEND Ox08

values accessible

O_CREAT OxlOO

O_TRUNC Ox200

O_EXCL Ox400

/* fcntl(2) requests */

#define F_DUPFD 0 /*

#define F_GETFD 1 /*

#define F - SETFD 2 /*

#define F_GETFL 3 /*

#define F - SET FL 4 /*

#define F_GETLK 5 /*

#define F - SETLK 6 /*

#define F - SETLKW 7 /*

/*append (writes guaranteed at

the end)*/

only to open(2) */

/* open with file creat

(uses third open arg)*/

/* open with truncation */

/* exclusive open */

Duplicate f ildes *I

Get f ildes flags */

Set f ildes flags */

Get file flags */

Set file flags */

Get file lock */

Set file lock */

Set file lock and wait */

#endif /* !_sys_ f ile_h */

B-18 Appendix B A/UX POSIX Environment

/* file segment locking set data type */

/* - information passed to system by user */

struct flock {

short

short

long

long

#ifdef POSIX SOURCE -

pid_t

#else /* POSIX_SOURCE */

int

endif /* POSIX_SOURCE */

} ;

1 _type;

1 _whence;

1 _start;

l_len; /* len = 0

until end of file

l_pid;

l_pid; #

/* file segment locking types */

#define F_RDLCK 01 /* Read lock */

#define F_WRLCK 02 /* Write lock */

#define F_UNLCK 03 /* Remove lock(s) */

#endif /* SYSV_SOURCE I I - POSIX_SOURCE */

#ifdef SYSV_SOURCE

means

*/

/* Historical flag values accessible to open(2) and

fcntl(2) */

#define O_NDELAY 04 /* Non-blocking I/0 */

#endif /* SYSV_SOURCE */

#ifdef _BSD_SOURCE

/*Additional fcntl(2) requests */

#define F_GETOWN 8

#define F_SETOWN 9

#endif /* _BSD_SOURCE */

/* Get owner */

/* Set owner */

(continued)•

Header files and feature test macros B-19

#ifdef POSIX_SOURCE

/* File access mode mask */

#define O_ACCMODE 03

/* POSIX-defined argument to F_SETFD */

#define FD_CLOEXEC OxOOOl

/*

* POSIX-def ined flag values accessible

* to open(2) and/or fcntl(2)

*/

#define O_NONBLOCK Ox00004000 /* O_NDELAY POSIX style */

#define O_NOCTTY Ox00008000 /* don't assign

controlling tty */

#endif /* POSIX_SOURCE */

#ifdef _AUX_SOURCE

/* Implementation-defined flag values accessible to open(2) */

#define O_GETCTTY OxOOOlOOOO /* force controlling

tty assignment */

#define O_GLOBAL Ox80000000 /* force allocation from

global table */

#endif /* _AUX_SOURCE */

#endif /* fcntl_h */

<limits.h>

The header file < 1 imi ts . h> contains the following constants:

#ifndef

#define

/*

limits_h

limits_h

* These symbolic names are defined in the SVID, ANSI C,

* POSIX, and/or intro(2).

*/

B-20 Appendix B AIUX POSIX Environment

/*

* sizes of integral types; constants defined by ANSI C

*/

/* number of bits in a char */

#define CHAR_BIT 8

/* max integer value of a char */

#define SCHAR_MAX 127

#define UCHAR_MAX 255

#define CHAR_MAX SCHAR_MAX

/* min integer value of a char */

#define SCHAR_MIN -128

#define CHAR_MIN SCHAR_MIN

/* max decimal value of a long */

#define LONG_MAX 2147483647

/* min decimal value of a long */

#define LONG_MIN -2147483648

/* max decimal value of a short */

#define SHRT_MAX 32767

!* min decimal value of a short */

#define SHRT_MIN -32768

/* max decimal value of an int */

#define INT_MAX LONG_MAX

/* min decimal value of an int */

#define INT_MIN LONG_MIN

!* max decimal value of an unsigned long */

#define ULONG_MAX 4294967295

/* max decimal value of an unsigned short */

#define USHRT_MAX 65535

(continued)•

Header files and feature test macros B-21

/* max decimal value of an unsigned int */

#define UINT_MAX ULONG_MAX

/* max number of bytes in multibyte character, */

/* for any supported locale */

#define MB_LEN_MAX 2

/*

* operating system constants and other numeric constants

* not defined by ANSI C; where applicable, cross-referenced

* to constant and/or file used internally; configurable by

* kconfig(lm) values are also cross-referenced to <sys/var.h>

* and uvar(2)

*/

#ifdef SYSV_SOURCE

/* max number of processes per user id;

cf. MAXUP <sys/config.h>, v.v_maxup <sys/var.h> */

#define CHILD_MAX 25

/* max size of a file in bytes; see ULIMIT below */

#define FCHR_MAX 0 /* overflow! */

/* number of bits in a long */

#define LONG_BIT WORD_BIT

/* max decimal value of a double */

#define MAXDOUBLE l.79769313486231470e+308

/* max number of bytes in terminal input line;

cf. CANBSIZ <Sys/param.h> */

#define MAX_CHAR 256

/* max number of characters in a file name;

cf. SVFSDIRSIZ <svfs/fsdir.h> */

#define NAME_MAX 14

/* max value for a process ID; cf. MAXPID <sys/param.h> */

#define PID_MAX 30000

B-22 Appendix B NUX POSIX Environment

/* max number of bytes written to a pipe in a write;

PIPSIZ <svfs/inode.h> */

#define PIPE_MAX 5120

/* max number of processes system-wide;

cf. NPROC <sys/config.h>, v.v_proc <sys/var.h> */

#define PROC_MAX 50

/* number of bytes in a physical I/0 block;

cf. DEV_BSIZE <Sys/param.h> */

#define STD_BLK 512

/* number of chars in uname(2) strings; cf. <sys/utsname.h> */

#define SYS_NMLN 9

/* max number of open files system-wide;

cf. NFILE <sys/config.h>, v.v_file <sys/var.h> */

#define SYS_OPEN 100

/* max number of unique names generated by tmpnam(3) */

#define TMP_MAX 17576

/* max value for a user or group ID;

cf. MAXUID <sys/param.h> */

#define UID_MAX 60000

/* max decimal value of an unsigned int */

#define USI_MAX ULONG_MAX

/* number of bits in a word (int) */

#define WORD_BIT 32

#endif /* SYSV_SOURCE */

#ifdef POSIX_SOURCE

/*

* minimum values for implementation-specific

* constants defined by POSIX.1

*/

(continued)•

Header files and feature test macros B-23

#define POSIX_ARG_MAX 4096

#define POSIX_CHILD_MAX 6

#define POSIX_LINK_MAX 8

#define POSIX_MAX_CANON 255

#define POSIX_MAX_INPUT 255

#define POSIX_NAME_MAX 14

#define POSIX_NGROUPS_MAX 0

#define POSIX_OPEN_MAX 16

#define POSIX_PATH_MAX 255

#define POSIX_PIPE_BUF 512

#ifdef CHILD_MAX

#undef CHILD_MAX

#endif /* CHILD_MAX */

/*

POSIX requires indeterminate values to be omitted. NAME_MAX is file-system
dependent; use pathconf () to obtain a value for NAME_MAX.

*!

#ifdef

#undef

#endif

NAME_MAX

NAME_MAX

/* NAME_MAX */

/* max number of supplementary group IDs; */

/* cf. NGROUPS <Sys/param.h> */

#define NGROUPS_MAX 8

/* max number of bytes in canonical input line; */

/* cf. CANBSIZ <sys/param.h> */

#define MAX_ CANON 256

/* max number of bytes in terminal input queue; */

!* cf. CANBSIZ <Sys/param.h> */

#define MAX_ INPUT 256

#endif /* POSIX_SOURCE */

#if defined(_SYSV_SOURCE) I I defined(_POSIX_SOURCE)

/*

B-24 Appendix B A!UX POSIX Environment

/*max length of arguments to exec(2); */

/* cf. NCARGS <Sys/param.h> */

#define ARG_MAX 5120

/* max number of links per file; */

/* cf. MAXLINK <Sys/param.h> */

#define LINK_MAX 1000

/* max number of open files per process; */

/* cf. NOFILE <Sys/param.h> */

#define OPEN_MAX 32

/* max number of characters in a path name; */

/* cf. MAXPATHLEN <sys/param.h> */

#define PATH_MAX 1024

/* max number of bytes atomic in write to a pipe; */

/* PIPSIZ <Svfs/inode.h> */

#define PIPE_BUF 5120

#endif /* SYSV_SOURCE I I POSIX_SOURCE */

#if defined(_SYSV_SOURCE) I I defined(_FIPS_151_SOURCE)

/*

* CLK_TCK is also defined in <time.h>,

* for historical reasons.

* number of clock ticks per second;

* cf. HZ and CLKTICK <sys/param.h>

*/

#ifndef CLK_TCK

#define CLK_TCK

#endif /* !CLK_TCK */

/* max number of characters in a password */

#define PASS_MAX 8

60

/* max value for a process ID; cf. MAXPID <sys/param.h> */

#define PID_MAX 30000

(continued)•

Header files and feature test macros B-25

* max value for a user or group ID; cf. MAXUID <sys/param.h>

*/

#define UID_MAX

#endif /* SYSV_SOURCE I I _FIPS_l51 SOURCE */

#ifdef _AUX_SOURCE

/* max size of file in 512-byte blocks; */

/* cf. CDLIMIT <sys/param.h>, ulimit(2) */

#define ULIMIT

#endif /* _AUX_SOURCE */

#endif /* limits_h */

<utime.h>

60000

16777216

The header file <utime. h> defines the utimbuf structure for use with utime(2P):

struct utimbuf {

} i

time_t actime;

time_t modtime;

B-26 Appendix B A/UX POSIX Environment

Migrating programs from A/UX
to A/UX POSIX

In this section, several examples are presented illustrating differences between the
standard A/UX environment and the A/UX POSIX environment. In the first example,
identical signal-catching behavior is obtained in both environments. In the second,
identical terminal interface setup is shown. In the third and fourth, determining the
values of system variables is demonstrated.

Manipulate signal sets

The following code fragment shows how a program uses 4.2BSD signals to set up an
interrupt-handling routine for SIGINT and block SIGQUIT signals, while handling
a SIGINT signal.

#include <signal.h>

int interrupt();

struct sigvec s;

struct sigvec os;

s.sv_handler = interrupt;

s.sv_rnask = sigrnask(SIGQUIT);

s.sv_onstack = O;

if (sigvec(SIGINT, &s, &os) == -1)

perror("sigvec");

interrupt ()

printf ("Interrupt\n");

Migrating programs from A/UX to A/UX POSIX B-27

The same example, using A/UX POSIX signal functions:

#include <signal.h>

extern void interrupt();

struct sigaction action;

struct sigaction oldaction;

if (sigemptyset(&action.sa_mask) -1)

perror("siginitset");

if (sigaddset(&action.sa_mask, SIGQUIT) -1)

perror("sigaddset");

action.sa_handler = interrupt;

action.sa_flags = O;

if (sigaction(SIGINT, &action, &oldaction) -1)

void

interrupt ()

perror("sigaction");

printf ("Interrupt\n");

Terminal control

tcgetat tr(3P) and tcsetat tr(3P) are used to get and set terminal attributes.

Previously, ioct1(2) was used for getting and setting terminal attributes.

tcgetattr

Using ioctlO, a program gets the value of the suspend character as follows:

#include <sys/ioctl.h>

struct ltchars le;

char suspend;

B-28 Appendix B A/UX POSIX Environment

if (ioctl(O, TIOCGLTC, &le) -1)

return (-1);

suspend = lc.t_suspc;

In the A/UX PO SIX environment, t cg et at t rO is used:

#include <unistd.h>

#include <termios.h>

struct termios t;

char suspend;

if (tcgetattr(STDIN_FILENO, &t) == -1)

perror("tcgetattr");

suspend t.c_cc[VSUSP];

tcsetattr

The following code fragment sets the TOSTOP flag for a process using ioct1(2):

#include <sys/termio.h>

#include <sys/ioctl.h>

int compat;

compat = TOSTOP;

if (ioctl(l, TIOCSCOMPAT, &compat) -1)

perror ("compat") ;

In the POSIX environment, tcsetat trO is used to set the TOSTOP flag as follows:

#include <unistd.h>

#include <termios.h>

struct termios t;

if (tcgetattr(STDOUT_FILENO, &t) -1)

perror("tcgetattr");

t.c_lflag I= TOSTOP;

if (tcsetattr(STDOUT_FILENO, TCSANOW, &t) -1)

perror("tcsetattr");

Migrating programs from A/UX to A/UX POSIX B-29

Configurable system variables

New functionality is provided in the POSIX environment to query system and file-related
variables. The three routines, sysconf0, pathconf0, and fpathconf0 provide
this functionality.

fpathconf

The following example uses fpathconf0 to determine the size of a buffer used to
hold pathnames:

#include <stdio.h>

#include <sys/types.h>

#include <fcntl.h>

#include <unistd.h>

#include <limits.h>

long i;

int fd;

har *buf;

char *malloc();

if ((fd = open(". /file", O_RDWR)) -1)

if ((i

if ((buf

perror ("open") ;

fpathconf (fd, _PC_PATH_MAX))

perror("fpathconf");

malloc((unsigned) i))

perror("malloc");

NULL)

B-30 Appendix B A/UX POSIX Environment

-1)

sysconf

The following example uses sysconfO to allocate space for a table to keep track of
child processes:

#include <stdio.h>

#include <unistd.h>

#include <lirnits.h>

struct cldp

} i

int pid;

int info;

struct cldp *buf;

long i;

char *rnalloc();

i = sysconf (_SC_CHILD_MAX);

if (((char *)buf =
rnalloc ((unsigned) (i * sizeof (struct cldp))))

perror("rnalloc");

NULL)

Migrating programs from A/UX to A/UX POSIX B-31

Appendix C:
A/UX Guide to POSIX

1. General I C-2

2. Terminology and general requirements I C-4

3. Process primitives I C-10

4. Process environment I C-14

5. Files and directories I C-17

6. Input and output primitives I C-23

7. Device-specific and class-specific functions I C-25

8. Language-specific services for the C programming language I C-29

9. System databases I C-31

10. Data interchange format I C-32

1. General
This appendix describes the Apple A/UX implementation of the IEEE Standard 1003.1-
1990, Portable Operating System Interface for Computer Environments, also known as
POSIX.1. POSIX.1 was approved by the IEEE Standards Board on September 28, 1990.
POSIX.1 is also an international standard, ISO 9945-1, dated December 7, 1990. The
A/UX implementation also complies with the United States Federal Information
Processing Standard (FIPS) 151-1, which is equivalent to POSIX.1 with certain
implementation options required.

1.3 Conformance

1.3.1 Implementation conformance

1.3.1.1 Requirements
A/UX provides a complete POSIX environment. When compiling conforming POSIX
applications, however, special flags or options must be used with the compiler in order
to provide the application with the POSIX environment; once the application is
compiled, the application is executed normally.

Conforming POSIX applications must be compiled by invoking the A/UX C compiler
with a special option, -ZP, and specifying the A/UX POSIX library,
I lib/ libposix. a, as in this example:

cc -ZP sample.c -lposix

These options cause the compiler front end to arrange for the following. The - z P

option will cause the C preprocessor, cpp(l), to be invoked with the feature test macro
_Posrx_souRCE defined and other A/UX feature test macros disabled; section 2.7.2,
"POSIX.1 Symbols." To allow a POSIX application to use these A/UX extensions, replace
this option with an explicit definition of _Posrx_souRCE, as shown here:

cc -D_POSIX_SOURCE sample.c -lposix

The -lpos ix option instructs the link editor, ld(l), to link the A/UX POSIX
library before the standard C library, I 1ibcI1 ibc . a. This is necessary since the A/UX
POSIX library contains some functions that also exist in the standard C library. The
POSIX library also arranges for the application startup code to set the A/UX POSIX
process compatibility flags; see setcompat(2).

C-2 Appendix C A/UX Guide to POSIX

The POSIX library should be specified on the command line before any additional
libraries required by the application. For example, you might use the following
command to link your application with the shared version of the standard C library in
order to reduce the size of the compiled application on disk:

cc -D_POSIX_SOURCE sample.c -lposix -lc_s

For additional information about these options, see cc(l).

1.3.1.2 Documentation
This document fulfills the documentation requirements in section 1.3.1.2 of POSIX.1 and
describes the behavior that is implementation defined or where the standard specifies that
implementations may vary. This document, along with POSIX.1, fully describes the A/UX
POSIX implementation. The format and organization of this document follow POSIX.1.

+ Note Strictly conforming POSIX.1 applications may not depend on unspecified or
implementation-defined behavior described in this document. Applications that
depend on such behavior may be unportable to other POSIX environments and/ or future
versions of this implementation. •

1.3.1.3 Conforming implementation options
A/UX supports all three implementation options described in section 1.3.1.3 of POSIX.1.

{NGROUPS_MAX}

{_POSIX_JOB_CONTROL}

{_POSIX_CHOWN_RESTRICTED}

multiple groups option

job control option

administrative/ security option

1.3.3 Language-dependent services for the C programming language
A/UX conforms to POSIX.1, C Language Binding (Common-Usage C Language­
Dependent System Support).

1. General C-3

2. Terminology and general requirements

2.1 Conventions
This document uses the following typographic conventions.

1. The italic font is used for:
11 Symbolic parameters that are substituted with actual values by the application, for

example, path.

2. The bold font is used to represent environment variables, for example, PATH, and
cross-references to defined terms, for example, file.

3. The constant-width (courier) font is used for:

o Examples of system input or output where exact usage is depicted.
o C language data types and function names, for example, openO.
: 1 Global external variable names, for example, errno.
o References to symbolic constants and C language header files.
r References to the A/UX system documentation, the A/UX Programmers and

Administrators References, for example, ini t(lm); the relevant section number
is indicated within the parentheses.

2.2 Definitions

2.2.2 General terms

2.2.2.4 Appropriate privileges
If a function call requires appropriate privileges, the effective user ID of the calling
process must be zero.

2.2.2.27 File
In addition to the ftle types specified by POSIX.1, A/UX supports two additional file types:
symbolic links and sockets; these types are defined in <sys/ stat. h> as S_IFLNK

and s_IFSOCK, respectively. See symlink(2) and socket(2) for more information.

2.2.2.30 File group class
No other members of a ftle group class are defined.

C-4 Appendix C A/UX Guide to POSIX

2.2.2.55 Parent process ID
After the creator's lifetime has ended, the parent process ID of the created process is
the process ID of ini t(lM).

2.2.2.57 Pathname
A pathname that begins with two successive slashes is interpreted as if it begins with a
single slash.

2.2.2.69 Read-only ftle system
A read-only file system is specified using rnount(2) or rnount(lM).

2.2.2.83 Supplementary group ID
A process's effective group ID is included in its list of supplementary group IDs.

2.3 General concepts

2.3.1 Extended security controls
There are no extended security controls.

2.3.2 File access permissions
There are no additional file access permissions or alternative access methods.

2.3.5 File times update
The A/UX extensions f sync(2), ftruncate(2), rnknod(2), syrnlink(2) and
truncate(2) will change the values of st_atirne, st_rntirne, and st_ctirne.

2.4 Error numbers
The following additional error numbers are defined in <errno. h>.

ENOTBLK

ETXTBSY

ENOMSG

EID RM

ECHRNG

EL2NSYNC

block device required

text file busy

no message of desired type

identifier removed

channel number out of range

level 2 not synchronized

2. Terminology and general requirements C-5

EL3HLT

EL3RST

ELNRNG

EUNATCH

ENOCSI

EL2HLT

EWOULDBLOCK

EINPROGRESS

EAL READY

ENOTSOCK

EDESTADDRREQ

EMSGSIZE

EPROTOTYPE

ENOPROTOOPT

EPROTONOSUPPORT

ESOCKTNOSUPPORT

EOPNOTSUPP

EPFNOSUPPORT

EAFNOSUPPORT

EADDRINUSE

EADDRNOTAVAIL

ENETDOWN

ENETUNREACH

ENETRESET

ECONNABORTED

ECONNRESET

ENOBUFS

EISCONN

ENOTCONN

ESHUTDOWN

C-6 Appendix C A/UX Guide to POSIX

level 3 halted

level 3 reset

link number out of range

protocol driver not attached

no CSI structure available

level 2 halted

operation would block

operation now in progress

operation already in progress

socket operation on a nonsocket

destination address required

message too long

protocol wrong type for socket

protocol not available

protocol not supported

socket type not supported

operation not supported on socket

protocol family not supported

address family not supported by protocol

address already in use

can't assign requested address

network is down

network is unreachable

network dropped connection on reset

software caused connection abort

connection reset by peer

no buff er space available

socket is already connected

socket is not connected

can't send after socket shutdown

ETOOMANYREFS too many references

ETIMEDOUT connection timed out

ECONNREFUSED connection refused

ELOOP too many levels of symbolic links

EHOSTDOWN host is down

EHOSTUNREACH no route to host

ENOS TR device not a stream

ENODATA no data (for no delay I/0)

ETIME timer expired

ENO SR out of streams resources

ES TALE stale NFS file handle

EREMOTE too many levels of remote in path

EPROCLIM too many processes

EU SERS too many users

EDQUOT disk quota exceeded

EDEADLOCK locking deadlock error

ENOLCK no record locks available

EFAULT will be generated when an invalid address is passed as an argument to a
function.

EFBIG will never occur if the system default value of the per-process file size limit is
used; see ulimi t(2) and ULIMIT in <limits. h>. This file size limit is expressed
in 512-byte blocks; in terms of bytes, the default limit is greater than ULONG_MAX, thus
ULONG_MAX will be exceeded before the file size limit is reached. A process may
change its file size limit using ul imi t(2).

2.5 Primitive system data types
The following additional implementation-defined data types are defined in
<sys/types. h>:

typedef
typedef

typedef

char *
short

long

caddr_t;
cnt_t;

daddr_t;

2. Terminology and general requirements C 7

C-8

typedef long key_t;

typedef int label _t[13];

typedef long paddr_t;

typedef long ubadr t· - I

typedef unsigned char uchar _ti

typedef unsigned int uint_t;

typedef unsigned long ulong_t;

typedef unsigned short ushort _t;

2.6 Environment description
A/UX allows the use of the entire character set for environment variable names. However,
as recommended in this section of POSIX.1, applications should only create names that
are composed solely of characters from the portable filename character set.

2. 7 C Language definitions

2.7.2 POSIX.1 symbols
In addition to _Posrx_souRCE, the A/UX C language header files use the feature test
macros _SYSV _SOURCE, _BSD_SOURCE, and _Aux_souRCE. These macros
control the visibility of symbols specified by or derived from the historical
implementations on which the A/UX POSIX environment is based.

The feature test macro _FIPS_151_SOURCE is also used to provide backwards
compatibility with the original version of the POSIX FIPS, which was based on Draft 12 of
POSIX.1, dated October 12, 1987. _FIPS_l51_SOURCE is obsolete and its use in new
applications is strongly discouraged.

2.8 Numerical limits
These magnitude limitations are fixed by A/UX in < 1 imi ts . h>:

Name Value

{NGROUPS_MAX} 8

{ARG_MAX} 5120

{CHILD_MAX} *

{OPEN_MAX} 32

{STREAM_MAX} 32

Appendix C A/UX Guide to POSIX

{TZNAME_MAX} 50
{LINK_MAX} 32767
{MAX_ CANON} 256
{MAX_INPUT} 256
{NAME_MAX} *

{PATH_MAX} 1024
{PIPE_BUF} 5120
{SSIZE_MAX} 2147483647

*cHILD_MAx and NAME_MAX are run-time variant. Applications may query these
values using sysconf.

2.9 Symbolic constants
The following symbolic constants are defined in <uni std. h>.

Values for the mode argument to access(2):

R_OK 4 read permission

W_OK 2 write permission

X_OK 1 execute or search permission

F_OK 0 existence only

Values for the whence argument to lseek(2):

SEEK_SET

SEEK_ CUR

SEEK_END

0

1

2

POSIX flag options:

{_POSIX_JOB_CONTROL}

{_POSIX_CHOWN_RESTRICTED}

{_POSIX_SAVED_IDS}

{_POSIX_NO_TRUNC}

{_POSIX_V_DISABLE}

{_POSIX_VERSION}

beginning of file

current position

end of file

1

1

1

1

0377

199009L

2. Terminology and general requirements C-9

3. Process primitives

3.1 Process creation and execution

3.1.1 Process creation
Function: fork ()

3.1.1.2 Description
These additional process characteristics are inherited by the child process:

• process compatibility flags

• profiling status

• scheduling parameters, see nice(2)

• all attached shared memory segments

• trace flag

• mapped regions of physical memory, see phys(2)

• resource limits, see ul imi t(2)

Open directory stream positioning is shared with the parent process. Process locks,
text locks, and data locks are not inherited by the child. The semadj values are cleared
for the child process.

3.1.2 Execute a ftle
Functions: execl (), execv (), exec le (), execve (), execlp (),

execvp ()

3.1.2.2 Description
If the PA TH environment variable is undefined, the directories searched to find the file
are /bin and /usr /bin.

The number of bytes available for a new process's argument and environment lists,
ARG_MAX, includes null terminators.

If the exec function failed, but was able to locate the process image, the
s t_a time field is marked for update.

C-10 Appendix C A/UX Guide to PO SIX

3.1.2.4 Errors
A/UX will detect an error and set errno to EACCES if a process attempts to execute
a file that is not a regular file.

A/UX will detect an error and set errno to ENOMEM if the new process image
requires more memory than is allowed by the hardware or system-imposed memory
management constraints.

3.2 Process termination

3.2.1 Wait for process termination
Functions: wait (), wai tpid ()

3.2.1.2 Description
If a parent process terminates without waiting for its children to terminate, the children
will be assigned the parent process ID 1. This process ID corresponds to the initialization
process, ini t(lM).

If the child process is stopped, the high order 8 bits of status will contain the number of
the signal that caused the process to stop, and the low order 8 bits will be set equal to 0177.

3.2.2 Terminate a process
Function: _exit ()

3.2.2.2 Description
If a parent process terminates without waiting for its children to terminate, the children
will be assigned the parent process ID 1. This process ID corresponds to the initialization
process, ini t(lM).

3.3 Signals

3.3.1 Signal concepts

3. Process primitives C-11

3.3.1.1 Signal names
The following additional signals are defined in <signal. h>.

SIGTRAP trace trap

SIGIOT IOT instruction

SIG EMT EMT instruction

SIGBUS bus error

SIGSYS bad argument to a system call

SIGPWR power-fail restart

SIGVTALRM virtual time alarm

SIG PROF profiling timer alarm

SIGWINCH window size change

SIGURG urgent condition present on socket

SIG IO I/0 is possible on a descriptor

3.3.1.2 Signal generation and delivery
If there is a subsequent instance of a pending signal, the signal will be delivered only once.

Under the following conditions, which are not specified by POSIX.1, A/UX may
generate the following signals.

SIGTRAP trace/breakpoint trap

SIGBUS bus error

SIGSYS bad argument to a system call

SIGPWR power-fail restart

SIGVTALRM virtual time alarm

SIGPROF profiling timer alarm

SIGWINCH window size change

SIGURG urgent socket condition

3.3.1.3 Signal actions
If a process ignores SIGSEGV or SIGILL, the instruction is restarted. If a process
ignores SIGFPE, the offending instruction is skipped.

C-12 Appendix C A/UX Guide to POSIX

If the action for SIGCHLD is set to SIG_IGN, the behavior is as if the action were
set to SIG_DFL.

There are three arguments to signal catching functions: a signal number, a code, and
a pointer to a sigcontext structure; this structure is defined in <sys I signal. h>.

If a signal-catching function for SIGSEGV or SIGILL returns normally, the
instruction is restarted. If a signal-catching function for SIGFPE returns normally, the
offending instruction is skipped.

Establishing a signal-catching function for SIGCHLD while a process has child
processes is permitted.

3.3.2 Send a signal to a process
Function: ki 11 ()

3.3.2.2 · Description
The ki 11 () function excludes certain processes from a selected list of processes;
these "system processes" are process ID 0 and 1.

If pid is -1, the behavior of the ki 11 () function is as follows. If the sending
process has appropriate privileges, the signal will be sent to all processes, excluding the
system processes.

3.3.3 Manipulate signal sets
Functions: sigaddset (), sigdelset (), sigismember ()

3.3.3.4 Errors
The functions sigaddset (), sigdelset (),and sigismember () detect the
condition that sets errno to EINVAL.

3.3.4 Examine and change signal action
Function: sigaction ()

3.3.4.2 Description
These additional flag bits for sa_flags of the s igact ion structure are defined in
<signal. h>:

SA_ONSTACK

SA_INTERRUPT

take signal on signal stack

do not restart system call on signal return

3. Process primitives C-13

If the previous action for sig had been established by the s i gna 1 () function, the
values of the fields in the structure pointed to by oact will be as follows: the sa_rnask

and sa_flags fields will be set to zero and the sa_handler field will contain the
address of the handler that was originally passed to the s i gna 1 () function.

3.3.4.4 Errors
An attempt to set the SIG_DFL action for a signal that cannot be caught or ignored
will cause the return value to be set to -1 and errno to be set to EINVAL.

3.3.6 Examine pending signals
Function: sigpending ()

3.3.6.4 Errors
If set points to an invalid address, sigpending () will return -1 and set errno to
EFAULT.

4. Process environment

4.2 User identification

4.2.4 Get user name
Function: getlogin ()

4.2.4.3 Returns
The return value points to static data whose content is overwritten by each call.

4.2.4.4 Errors
There are no error conditions for getlogin () other than the user name not being
found.

4.4 System identification

C-14 Appendix C A/UX Guide to POSIX

4.4.1 Get system name
Function: uname ()

4.4.1.2 Description
The utsname structureisdefinedin <sys/utsname.h>:

struct utsname

char sysname[9];

char nodename[9];

char release[9];

char version[9];

char machine[9];

} ;

The values for members of u t sname are string constants defined at the time the
system is created or initiated.

4.4.1.4 Errors

If name points to an invalid address, uname () will retum-1 and set errno to EFAULT.

4.5 Time

4.5.1 Get system time
Function: time ()

4.5.1.4 Errors

If t/ocpoints to an illegal address, time () will retum-1 and set errno to EFAULT.

4.5.2 Get process time
Function: times ()

4.5.2.2 Description
There are no additional members of the tms structure in <sys It ime s . h>.

4.5.2.4 Errors

If bu.fferpoints to an illegal address, times () will retum-1 and set errno to
EFAULT.

4. Process environment C-15

4.6 Environment variables

4.6.1 Environment access
Function: getenv ()

4.6.1.3 Returns
The return value from getenv () points to the environment list, not static data.

4.6.1.4 Errors
There are no error conditions for getenv () other than the environment variable not
being found.

4. 7 Terminal identification

4. 7.1 Generate terminal pathname
Function: cterrnid ()

4.7.1.3 Returns
Ifs is a NULL pointer, the string is generated in static data that may be overwritten by a
subsequent call to cterrnid().

4.7.1.4 Errors
There are no error conditions for cterrnid ().

4. 7.2 Determine terminal device name
Function: ttynarne (), isatty ()

4.7.2.2 Description
The return value of t tynarne () points to static data that is overwritten by each call.

4. 7 .2.4 Errors
There are no error conditions for t t ynarne () or is atty () other than fildes not
describing a terminal device.

4.8 Configurable system variables

C-16 Appendix C A/UX Guide to POSIX

4.8.1 Get configurable system variables

4.8.1.2 Description
A/UX supports the following additional configurable system variables. These variables
are supported for backwards compatibility only; their use in new applications is strongly
discouraged. The macros listed below are only defined if the feature test macro
_FIPS_l5 l_SOURCE is defined. For definitions of these variables, see Draft 12 of
POSIX.1, dated October 12, 1987.

Variable

PASS_MAX

PID_MAX

UID_MAX

POSIX_EXIT_SIGHUP

5. Files and directories

5.1 Directories

5.1.1 Format of directory entries

Name value

SC PASS_MAX

SC PID_MAX

_SC_UID_MAX

_SC_EXIT_SIGHUP

A/UX supports two file-system types on local storage media: System V and Berkeley. Each
directory is a file that contains one entry for each file contained in the directory. In System V

file systems, directory entries are defined by the structure svf sdirect in
<svfs/fsdir .h>:

#define

struct

} ;

SVFSDIRSIZ

svf sdirect

ino_t

char

14

d_ino;

_name[SVFSDIRSIZ];

5. Files and directories C-17

For Berkeley file systems, directory entries are defined by the structure direct in
<uf s I fsdir. h>:

#define MAXNAMLEN 255

struct direct

u_long d_fileno;

u - short d_reclen;

u - short d_namlen;

char d_name[MAXNAMLEN + 1] i

} i

The dirent structure in <dirent. h> has three elements in addition to
d_name:

#define SYS_NAME_MAX 255

struct

} i

dirent

u_long

u_short

u_short

char

5.1.2 Directory operations

5.1.2.2 Description

d_f ileno;

d_reclen;

d_namlen;

d_name[_SYS_NAME_MAX + 1];

The type DIR is implemented on top of a file descriptor.
The pointer returned by readdir () points to data that may be overwritten by a

subsequent call on the same directory stream.
The readdir () function buffers several directory entries per actual read operation.
Upon return from the closedir () function, the value of dirpno longer points to

an accessible object of type DIR.

5.1.2.4 Errors
A/UX detects the conditions that would cause opendir to set errno to the values
EMFILE and ENFILE.

This implementation detects the condition that would cause readdir to set
errno to the value EBADF.

C-18 Appendix C A/UX Guide to POSIX

A/UX detects the condition that would cause closedir to set errno to the
value EBADF.

5.3 General me creation

5.3.1 Open a me
Function: open ()

5.3.1.2 Description
The following additional flags for oflag are defined in <fcntl. h>:

o_NDELAY request System V, nonblocking I/0

O_GETCTTY

O_GLOBAL

force assignment of the controlling terminal

allocate descriptor from global file table

If bits in mode other than file permissions are used, the permissions on the file will be
undefined.

If open () is called with O_EXCL, o_CREAT must also be present; otherwise
o_EXCL will be ignored.

5.3.3 Set me creation mask
Function: uma s k ()

5.3.3.2 Description
A/UX defines one additional bit in the type mode_t, which may be masked with the file
mode creation mask. s _r SVTX, defined in <sys Is tat . h>, indicates to the system
that memory regions associated with this file should not be released after use.

5.3.4 Link to a me
Function: 1 ink ()

5.3.4.2 Description
A/UX does not support linking across file systems. The A/UX extension syml ink (2)

provides this functionality.
Processes with appropriate privileges may use 1 ink () on directories.
The calling process is not required to have permission to access the existing file.

5. Files and directories C-19

5.4 Special ftle creation

5.4.1 Make a directory
Function: mkdi r ()

5.4.1.2 Description
If bits in mode other than file permissions are used, the permissions on the directory will
be undefined.

In the A/UX POSIX environment, the directory's group ID shall be set to the group ID
of the directory in which the directory is being created.

5.4.2 Make a FIFO special ftle
Function: mk f i f o ()

5.4.2.2 Description
If bits in mode other than file permissions are used, the permissions on the Fr FO

special file will be undefined.

5.5 File removal

5.5.1 Remove directory entries

5.5.1.2 Description
Processes with appropriate privileges may use unlink () on directories.

5.5.2 Remove a directory
Function: rmdi r ()

5.5.2.2 Description
If an attempt is made to remove the root directory, rmdir () will return -1 and set
errno to EBUSY.

If an attempt is made to remove the current working directory, rmdir () will
return -1 and set errno to EINVAL.

5.6 File characteristics

C-20 Appendix C A/UX Guide to POSIX

5.6.1 File characteristics: Header and data structure
The stat structure is defined in <sys/stat .h>:

struct stat

dev - t st_dev;

ino - t st _ino;

mode - t st_mode;

nlink - t st_nlink;

uid - t st_uid;

gid_t st_gid;

dev - t st_rdev;

off t st _size;

time - t st_atime;

time t st_mtime;

time t st_ctime;

long st_blksize;

long st_blocks;

} ;

s t_rdev is defined only for block or character devices. For these devices, s t_rdev

specifies the device ID.

5.6.1.2 <sys/stat.h> ftlemodes
No other bits are included in S_IRWXU, S_IRWXG, and s IRWXO.

5.6.2 Get file status
Functions: stat (), fstat ()

5.6.2.2 Description
This implementation does not provide any additional or alternate file access controls.

5.6.2.4 Errors
This implementation detects the following additional error conditions for stat () ;

EFAULT buf or path points to an invalid address

ELOOP too many symbolic links were encountered in translating a pathname

5. Files and directories C-21

5.6.3 Check file accessibility
Function: chrnod ()

5.6.3.2 Description
A process with appropriate privileges is always granted execute permission even though
execute permission is meaningful only for directories and regular files, and exec

requires that at least one execute mode bit be set for regular files to be executable.

5.6.3.4 Errors
The A/UX implementation of access () detects the condition that sets errno to
EINVAL.

5.6.4 Change file modes
Function: chrnod ()

5.6.4.2 Description
s_rsurn and s_ISGID bits may be ignored if the owner is the superuser and the file
system is a remotely mounted file system.

chrnod () of an open file has no effect on the open file descriptor(s).

5.6.5 Change owner and group of a ftle
Function: chown ()

5.6.5.2 Description
If a process with appropriate privileges performs a chown () , the s_r sum and
s_ISGID bits are not changed.

5. 7 Configurable pathname variables

5.7.1 Get configurable pathname variables

5.7.1.2 Description
A/UX supports the following additional configurable pathname variables. These variables
are supported for backwards compatibility only; their use in new applications is strongly
discouraged. The macros listed below are only defined if the feature test macro

C-22 Appendix C A/UX Guide to POSIX

_FIPS_151_SOURCE is defined. For definitions of these variables, see Draft 12 of
POSIX.1, dated October 12, 1987.

Variable

POSIX_CHOWN SUP_GRP

POSIX_DIR_DOTS

POSIX_GROUP_PARENT

POSIX_UTIME_OWNER

Name value

_PC_CHOWN_SUP_GRP

_PC_DIR_DOTS

_PC_GROUP_PARENT

_PC_UTIME_OWNER

A/UX does not impose any restrictions on the association of variable names with file
types for which the limit or option may not be relevant.

5.7.1.4 Errors

This implementation detects the conditions that set errno to the following values:
EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, and EBADF.

6. Input and output primitives

6.4 Input and output

6.4.1 Read from a ftle
Function: read ()

6.4.1.2 Description
If read () is interrupted by a signal after successfully reading some data, it will return
the number of bytes read.

After end-of-file is reached, subsequent read () requests on a device special file
will return zero.

If nbyte is greater than INT_MAX, read () will return -1 and set errno to
EINVAL.

6.4.1.4 Errors

The error EIO will be reported if a physical hardware error occurs.

6. Input and output primitives C-23

6.4.2 Write to a ftle
Function: write ()

6.4.2.2 Description
If write () is interrupted by a signal after successfully writing some data, it will return
the number of bytes written.

Ifnbyteisgreaterthan INT_MAX, write() willreturn-landset errno to
EINVAL.

6.4.2.4 Errors

EFBIG will never occur if the system default value of the per-process file size limit is
used; see ulimit(2) and ULIMIT in <limits.h>.Thisfilesizelimitis
expressed in 512-byte blocks; in terms of bytes, the default limit is greater than
ULONG_MAX, thus ULONG_MAX will be exceeded before the file size limit is reached.
A process may change its file size limit using ul imi t (2) .

The error EIO will be reported if a physical hardware error occurs.
If errno has the value EINTR following a write (),no data was written.

6.5 Control operations on ftles

6.5.2 File control
Function: f cntl ()

6.5.2.2 Description
Other than those defined, status bits are ignored if they are set when fen t 1 () is called
with F _SETFL as the value for cmd.

A/UX supports advisory record locking for regular files only.
If l_l en is negative when attempting to lock, the lock will succeed. However, this

is not recommended as the checks for existing locks will not find conflicts if there are
locks that were specified in this manner.

6.5.2.4 Errors

This implementation detects the conditions that would set errno to EDEADLK.

6.5.3 Reposition read/write ftle offset

C-24 Appendix C A/UX Guide to POSIX

6.5.3.2 Description
In the A/UX implementation, an lseek () on a device that is incapable of seeking will
not report an error, and the file offset will be adjusted as if the call were successful.

7. Device-specific and class-specific functions

7.1 General terminal interface
A/UX runs on the Apple Macintosh family of computers. These systems all support two
on-board, asynchronous communication ports. Usually referred to as the "modem" and
"printer" ports, these ports may be accessed from the file system as I dev It tyO and
I dev It tyl, respectively.

By default, the modem port supports modem control; however, the printer port does
not. To enable modem control on the printer port, issue the following command; see
st ty(l) for more information:

stty -n /dev/ttyl modem

Modem control will remain enabled until the system is restarted; add the above
command to the system startup script, I etc I re, to reset the printer port each time the
system is booted.

Additional communication ports may be added to Macintosh platforms using the
system expansion slot(s). The hardware supplier must provide A/UX software drivers
that support POSIX.1 semantics, including modem control and break transmission. For
more information, see the A/UX Device Driver Kit, which is available from the Apple
Programmers and Developers Association (APDA).

The Macintosh IIfx computer and Macintosh Quadra 900 computer support a serial
input/output processor (IOP) that speeds data transfers for the on-board communication
ports. The serial IOP does not fully support POSIX.1 semantics, however; see Macintosh
Technical Note #184 for more details. To enable complete POSIX.1 compatibility on
these terminal interfaces, obtain the "serial switch" Control Panel Device (CDEV) from
your Apple representative.

In addition to supporting asynchronous communications ports, the terminal interface
supports network connections via the pseudo-terminal interface; see pty(4).

7 .1.1 Interface characteristics

7. Device- and class-specific functions C-25

7.1.1.3 The controlling terminal
In this implementation, the controlling terminal for a session is allocated by the session
leader when the session leader opens the first terminal device file that is not already
associated with a session.

7.1.1.5 Input processing and reading
If MAX_INPUT is exceeded, the input queue is flushed.

7.1.1.6 Canonical mode input processing
If MAX_CANON is exceeded, the additional characters are discarded.

7.1.1.7 Noncanonical mode input processing
MIN is stored in an unsigned character; therefore, the value of MIN cannot be greater
than 256, which is the value of MAX_ INPUT.

7.1.1.8 Writing data and output processing
The STREAMS subsystem includes a buffering mechanism, however, the older,
c 1 is t subsystem does not.

7.1.1.9 Special characters
The START and STOP characters cannot be changed. There are no multi-byte special
character sequences. There are two additional single-byte special characters:

EOL ASCII NUL additional line delimiter

NL ASCII LF line delimiter

7.1.2 Parameters that can be set

7.1.2.1 termios structure
There is one additional member, c_line, in the termios structure in
<termios. h>:

#define NCCS 12

struct termios

tcflag_t c_iflag;

tcflag_t c_oflag;

tcflag_t c_cflag;

C-26 Appendix C NUX Guide to POSIX

} ;

tcflag_t

char

cc_t

c_lflag;

c_line;

c_cc [NCCS] ;

The c_l ine field specifies the line discipline number.

7.1.2.2 Input modes
The break condition is only defined for asynchronous data transmission. If the terminal
supports other modes of transmission, the break condition is driver-specific.

START will be transmitted when the input queue is nearly empty. STOP will be
transmitted when the input queue is nearly full.

The initial input control value is all bits clear.

7.1.2.3 Output modes
If OPOST is set, output characters are postprocessed as indicated by the remaining
flags. Additional flags supported for c_oflag are:

OLCUC

ONLCR

OCRNL

ONOCR

ONLRET

OF ILL

OFDEL

NLDLY
TAB3

BSDLY

BSO
BSl

VTDLY
VTO
VTl

FFDLY
FFO

FFl

map lowercase to uppercase on output

map NL to CR-NL on output

map CR to NL on output

no CR output at column zero

NL performs CR function

use fill characters for delay

fill is DEL, else NUL

select newline delays

select backspace delays

select vertical-tab delay

select form feed delays

7. Device- and class-specific functions C-27

The initial output control value is all bits clear.

7.1.2.4 Control modes
The control modes are only defined for asynchronous data transmission. The initial
hardware control values are B9600, css, and CREAD.

7.1.2.5 Local modes
If ECHOE and I CANON are set, the ERASE character will cause nothing to occur if
there is no character to erase on the current line of the display.

If ECHOK and I CANON are set, the KILL character will cause this
implementation to echo the newline character, \n, after the KILL character.

There are no implementation-defined functions associated with the input stream when
IEXTEN is set. Setting IEXTEN has no effect on ICANON, ISIG, IXON, or IXOFF.

The initial local control value is all bits clear.

7.1.2.6 Special control characters
The number of elements in the c_cc array is the value of NCCS. NCCS is currently
defined in <termios. h> to be 12.

A/UX does not support changing the START and STOP characters. The character
values in the c_cc array indexed by the VSTART and VSTOP subscripts are
ignored when tcsetattr is called.

The initial values of the control characters are described below:

ESC ASCII ESC

INTR CONTROL-C

QUIT ASCII FS

ERASE DEL

KILL CONTROL-U

EOF CONTROL-D

START CONTROL-Q

STOP CONTROL-S

SWTCH CONTROL-Z

SUSP - POSIX_V_DISABLE

DSUSP - POSIX_V_DISABLE

C-28 Appendix C A/UX Guide to POSIX

7.1.3 Baud rate functions
Functions: cfgetispeed (), cfgetospeed (), cfsetispeed (),

cfsetospeed ()

7.1.3.2 Description
Attempts to set unsupported baud rates using these functions will not return an error.

7.1.3.4 Errors

A/UX will detect an error if the functions c fset ispeed () and cf setospeed ()

are called with an invalid value for speed; the functions will return -1 and set errno

to EINVAL.

7.2 General terminal interface control functions

7.2.2 Line control functions
Functions: tcdrain (), tcflow (), tcflush (), tcsendbreak ()

7.2.2.2 Description
If duration is nonzero, tcsendbreak will not send a break.

If the terminal is not using asynchronous serial data transmission, the break condition
is driver-specific.

8. Language-specific services for
the C programming language

8.1 Referenced C language routines
A/UX conforms to the C Language Binding (Common-Usage C Language-Dependent
System Support).

8.1.1 Extensions to time functions
If the first character of the environment variable TZ is a colon (:),the characters
following the colon are interpreted as a pathname.

8. Language-specific services for the C programming language C-29

8.1.2 Extensions to setlocale () function

8.1.2.2 Description
This implementation supports only the "C" and "POSIX" locales.

If no non-NULL environment variable is present to supply a value, set locale

sets the specified category to the "C" locale.

8.2 C Language input/ output functions

8.2.2 Open a stream on a ftle descriptor
Function: f dopen ()

8.2.2.2 Description
There are no addition values for the type argument for f dopen () .

8.3 Other C language functions

8.3.2 Set time zone
Function: t z set ()

8.3.2.2 Description
If TZ is absent from the environment, the default time-zone information is determined
from the file /etc/zoneinfo/localtime; see tzfile(4).

C-30 Appendix C A/UX Guide to POSIX

9. System databases

9.1 System databases
The group and user databases are implemented by the files I etc I group and
I etc /passwd, respectively.

If the initial user program field in the user database is null, the Bourne command
shell will be used; see sh(l).

If the initial working directory field in the user database is null, the user's home
directory will be the root directory.

There are two additional fields in a password file entry. An encrypted password field
follows the login name and a field for the user's real name follows the numeric group id.
There is an optional comment field that follows the numeric gid field.

A group file entry has an encrypted password field following the name field.

9.2 Database access

9.2.1 Group database access
Functions: getgrgid (), getgrnam ()

9.2.1.3 R.eturns
The functions getgrgid () and getgrnam () access the same static data, thus the
result of a call to either function may be overwritten by a subsequent call or a call to the
other routine.

9.2.2 User database access
Functions: getpwuid (), getpwnam ()

9.2.2.3 R.eturns
The functions getpwuid () and getpwnam () access the same static data, thus the
result of a call to either function may be overwritten by a subsequent call or a call to the
other routine.

9. System databases C-31

This passwd structure is defined in <pwd. h>:

struct passwd

char *pw_name;

char *pw__passwd;

uid_ t *pw_uid;

gid_t *pw_gid;

char *pw_age;

char *pw_comment;

char *pw_gecos;

char *pw_dir;

char *pw_shell;

} i

This group structure is defined in <grp. h>:

struct group

char *gr_name;

char *gr_passwd;

gid_t gr_gid;

char **gr_mem;

} i

10. Data interchange format

10.1 Archive/interchange ftle format
pax(l) may be used to read and create archives.

10.1.1 Extended tar format
A/UX supports the use of characters outside the portable filename characters set in
names for files, users, and groups. The Macintosh character set is defined in Inside
Macintosh, Volume I, page 247.

If a filename is found on the medium that would create an invalid pathname, the file
will not be created and the data will not be stored.

C-32 Appendix C NIDC Guide to POSIX

This implementation allows the use of the TSVTX mode.
The devmajorand devminorfields are used to construct the value of st_rdev for

device files created on the file system.
The value s is used in the type.flag field to represent the socket file type.

10.1.2 Extended cp i o format

10.1.2.1 cpio header
The values of c_dev, c_ino, and c_rdev are the values in the corresponding
fields of the data structure returned by stat () .

Special files are created with the major and minor numbers specified by s t_rdev

for the file in the archive.

10.1.2.2 cpio fdename
If a filename is found on the medium that would create an invalid pathname, the file will
not be created and the data will not be stored.

10.1.2.4 cpio special entries
For other special files, c f i 1 es i z e is set to zero.

10.1.2.5 cpio values
c_rsvTx, C_ISLNK, and c_rssocK are supported in this implementation.

10.1.3 Multiple volumes
The user will be prompted for the next file when EOF is encountered.

10. Data interchange format C-33

Index

! logical negation 3-18
%caar register 14-8
%cacr register 14-8
%ccr register 14-8
%df c register 14-8
%df cr register 14-8
% fp register 14-8
% i sp register 14-8
%msp register 14-8
%pc register 14-8
%sfc register 14-8
%sfcr register 14-8
%sp register 14-8
%sr register 14-8
%usp register 14-8
%vbr register 14-8
& pointer operator 3-17
- l's complement operator 3-18
- negative operand 3-17
* pointer operator 3-17
++ increment 3-18
-- decrement 3-18
.bss 4-2, 16-12

section header 16-12
. data 4-2, 16-12
·text 4-2, 16-12
I dev system directory 1-13
/etc/passwd 5-12
/lib 1-10
/usr/lib 1-10

A
a.out header 16-7
A/UX:Toolbox 1-25
abed instruction 14-30
abs function 13-44
absolute values 14-13
access routines 16-37
adb 1-9
add instruction 14-30
additive operators 3-18
address

binding 15-6
physical 15-6

address modes 14-24 to 14-28
formats 14-26, 15-18, 15-19
syntax 14-25

addx instruction 14-30
aggregates 3-34, 3-35, 13-13
alias command 10-16
align operation 14-19
alignment 4-3 to 4-5
and instruction 14-30
AND operator 3-22
AppleShare file systems 1-12
arithmetic conversions 3-12
arithmetic type 3-9
array 3-51

alignment 4-3
auxiliary table entries 16-33

dimension 14-21
efl 13-15, 13-28
multidimensional 4-3

as 2-7
as syntax 14-5
asa command 11-4
asl instruction 14-31
asm keyword 3-4
asr instruction 14-31
assembly 1-8
assign command 10-12
assignment operators 3-24

efl 13-25
illegal usage 8-12

associations
permanent 13-15
static 13-15
transitory 13-15

attribute assignment 14-21
auto keyword 3-4
automatic keyword 12-3
automatic variables 3-8
awk 1-27

B
backspace statement 13-41
be 1-27
bCC instruction 14-31
Bessel functions 6-3, 6-19

In-1

binary constant 12-5
binary operators

efl 13-22
binary tree functions 5-13
binding 15-6
bitfields 8-10 ,14-15
block 1-13, 13-31, 16-18

auxiliary table entries 16-34
caching 1-14

block statement 3-37
branch statements

efl 13-37
break statement 3-4, 3-40, 8-6, 13_38
break points

debugging 9-12
deleting 9-12
setting 9-12

break statement 3-40
byte 3-18
byte operation 14-15, 14-17

c
Clanguage

assignment operators 3-24
declarations 3-25 to 3-38
portability 3-53
statement 3-37

C libraries 1-12
C syntax summary 3-53
call command 10-8, 13-46
calloc command 1-22
case sensitivity 3-4, 14-4

in Fortran 12-4
cast construction 3-18
catch command 10-7, 10-24
cc

character extensions 2-2
default behavior 2-2
options 2-4
syntax 2-2

cfree 1-22
char keyword 3-4
char type 3-6, 4-3

In-2 Index

character 1-13
constants 3-5, 14-10
conversion 3-11
functions 5-8
portability 8-9
signed 3-11
type 13-14

character-valued function 12-15
chdir command 1-13
child process 1-18
chown command 1-13
close command 1-13
coercions 13-20
COFF

flags 16-5
comm operation 14-18
comma operator 3-25
comments 3-4, 14-7

efl 13-5
Common Object File Format 1-8

16-1 to 16-39 '
compare operands 14-3
compilation

conditional 3-47
compilers 1-3

control lines 3-46
compiling process 1-4
complex type 13-13
compound statement 3-37
condition codes 14-4
conditional operator 3-23
conditional statement 3-38
constants 3-5 to 3-6, 14-9

binary 12-5
character 3-5
common 13-15
enumeration 3-6
explicit long 3-4
floating 3-6
integers 3-5

cont command 10-7
continue keyword 3-4
continue statement 3-40
COPY section 15-30

cpp 2-8
creat command 1-13
curses 1-28

D
data

external definitions 3-43
initialization 14-15
operation 14-18
representation 4-3, 4-5

comparing C and Fortran 12-14
Data Encryption Standard (DES) 5-l l
dbx 1-9, 10-1to10-20

execution commands 10-5
prompt 10-3
tracing commands 10-5

de 1-28
debugging 1-9

breakpoint 9-12
machine level 9-15
sdb utility 9-1 to 9-16

declarations 3-25 to 3-38
enumeration 3-32
implicit 3-49
structure 3-30
union 3-30

declarators 3-27
def operation 14-20
default keyword 3-4
default ld file 15-19
default section alignment 15-18
definitions

external 3-42
delete command 10-7
pES. See Data Encryption Standard
dim operation 14-21
directories 1-12

hierarchy 1-12
do keyword 3-4
do statement 3-38
dot names 13-47
double type 3-4, 3-9, 4-3

complex data type 12-2
precision alignment 12-12

down command 10-29
DSECT section 15-32
dump command 10-12, 10-29
dump utility 7-8
dynamic memory allocation 1-22
dynamic structures

efl 13-25

E
ed 1-6
edit command 10-15
editors 1-6
effective address modes 14-26 to 14-27
efl

binary operators 13-23
character set 13-4
comments 13-5
compared to Fortran 13-2
compiler options 13-50
constants 13-14
constraints 13-62
examples 13-53
execution 13-43
identifiers 13-6
known functions 13-43
macros 13-10
options 13-3
pointers 13-63
recursion 13-63
syntax 13-3
types 13-13
variables 13-15

eflasc subroutine 13-59
eflcmc function 13-59
else statement 3-4
end statement 13-42
endef operation 14-20
endf ile statement 13-41
enum type 3-4, 3-9
enumeration constants 3-6
enumeration variables 3-32
environment 1-23
epilog code 4-9

equivalence statements 12-6
errno 1-25
error handling 1-24
escape line 13-45
escape sequences 3-4

Fortran 12-5
even operation 14-19
exec 1-18
exit 1-18
explicit long constants 3-3
exponent field 13-7
expression statement 3-37
expressions 3-13 to 3-25, 14-14

constant 3-5 2
efl 13-17
primary 3-14 to 13-16, 3-18

extern keyword 3-4
external definitions 3-42
external variables 3-8
externals, scope of 3-47, 3-48
externs

multiple 3-45

F
f77

options 11-2
program suffixes 11-3
syntax 11-2

fabs instruction 14-41
facos instruction 14-41
feature test macros 2-3
fgetman instruction 14-45, 47, 49, 51
field type 13-13
fifo 1-13
fifo special file 1-16
file(s) 1-12

access function 5-4
changing attributes 1-13
closing 1-13
command 10-15
deleting 1-13
descriptor 1-13
efl 13-10
group access 5-11

header 1-6, 16-4
declaration 16-6

inclusion 3-47
opening 1-13
operation 14-20
pointer 1-15
reading 1-15
special 1-13
status functions 5-5
systems 1-12 to 1-14

AppleShare 1-12
directory 1-12
hierarchy 1-12
Macintosh 1-12
NFS 1-12
structure 1-12
UNIX 1-12

writing 1-15
filehdr 16-4
f int instruction 14-45, 14-47, 14-49,

14-51
f intrz instruction 14-45, 14-47,

14-49, 14-51
flags

COFF 16-5
float

constants 3-6
keyword 3-4
type 3-4, 3-9, 4-3
values 3-11

floating-point constant 13-7
floglO instruction 14-42
flog2 instruction 14-42
flogn instruction 14-42
flognpl instruction 14-42
fmod instruction 14-42
fmove instruction 14-42
for statement 3-4, 3-38
fork 1-18
Fortran 3-4

arguments 12-16
C interactions 12-13
case 12-4
character strings 12-5

Index In-3

Fortran (continued)
deviations 12-12
escape seqeunces 12-5
file formats 12-17
input 12-3
intrinsic functions 12-7
libraries 1-11
records 12-17
return values 12-14
standards 12-2

fsplit command 11-4
func command 10-15
function(s) 3-16, 3-50

G

auxiliary table entries 16-33
binary tree 5-13
call 3-15
external definition 3-42
file status 5-5
hash table 5-13
input 5-5
intrinsic 12-7
math library 6-2, 6-4, 6-18 to 6-20
nongeneric efl 13-49
object file 6-5, 6-22
output 5-6
return values 8-7
signal 5-16
special symbol 16-19
table 5-14
undeclared 4-7

getenv 1-23
global operation 14-18
global variables 13-15
goto statement 3-4, 3-41, 13-47
gsignal function 5-16

H
hardware properties 3-7
hash table functions 5-13
header files 1-6, 5-3
help command 10-35

In-4 Index

holes 15-21, 15-24, 15-29
Hollerith notation 12-6
host file 7-2
hyperbolic functions 6-3, 6-19

I,J
1/0. See Input/Output
identifier 3-4, 3-8, 3-14, 14-7

efl 13-6
if keyword 3-4
ignore command 10-7
implicit statement 12-3, 13-46
inc 1 ude files

efl 13-6
include statement 1-6, 12-4
ini t operation 14-19
initialization

problems 8-12
inner block 16-18
input functions 5-5
Input/Output

asynchronous 1-17
buffered 1-15
file 1-15
formatted 1-14

int type 3-4, 3-9
integers 3-10, 3-12

constants 3-5, 13-7
conversion 3-11
signed 3-12
type 13-13
unsigned 3-12

integral type 3-9, 3-11
interprocess communication 1-20
intrinsic functions 12-7
ioctl 1-16
ioexpression 13-40
iolist 13-40

K
keywords 1-7, 3-4
kill 1-19

L
labeled statement 3-41
labels 13-13, 14-12
1 corrrrn operation 14-17
ld command 2-7, 7-7

. bss sections 15-24
allocation 15-29
archive libraries 15-25
COPY section 15-32
DSECT section 15-32
error messages 15-33 to 15-40
file

blocking 3-31
nonrelocatable input 15-32

input syntax 15-40
loading, incremental 15-29
memory holes 15-28
NOLOAD section 15-32
options 15-7
section holes 15-24
sections allocation 3-23
symbol

creation 15-22
definition 15-22

syntax 15-3
usage 15-3

ldf ile structure 6-6, 6-23
ldopen function 6-6, 6-23
length keyword 15-14
lex 1-27
lexical scope 3-47
libc 1-11
libc_s 1-11, 7-5
libcurses 1-11
libF77 1-11
libI77 1-11
libld 1-11
libld.a library 16-37
libm 1-11
libmac 1-11
libmac_s 1-11, 7-5
libposix 1-11
library 1-10, 5-1

C object file 6-4, 6-20

cautions 7-6
functions 5-3

character 5-8
input 5-4
miscellaneous 5-10
output 5-6
string 5-7
time 5-9

ld 15-25
math C 6-2, 6-4, 6-18 to 6-20
shared 7-1 to 7-21
standard C 5-1

line control 3-48
line numbers 16-14
line operation 14-21
1 in en um. h header file 16-15
link editor. See ld command
lint command 1-10

command line 8-2
flow of control 8-6
function values 8-7
library files 8-2
message categories 8-4
options 8-2
type checking 8-8
variable usage 8-4 to 8-6

list command 10-15
ln operation 14-20
loading 1-8
local variables 13-15
location counter 14-12

operations 14-18
logical type 13-13
long type 3-4, 3-6, 4-3

complex type 13-14
int type 3-9
operation 14-15
precision 13-15
real type 13-13

longeven operation 14-19
loop constructs

efl 13-34
lvalue 3-10

M
m4 1-28
machine instructions 14-28
machine-language

debugging 9-15
Macintosh file systems 1-12
Macintosh Programmer's Workshop 1-9
Macintosh user interface 1-25
macros

common object interface 6-6, 6-23
efl 13-10

magic number 16-5, 16-8
main procedure

efl 13-10
malloc command 1-22
make command 1-27
math

Bessel functions 6-3, 6-19
functions 6-18 to 6-20
hyperbolic functions 6-3, 6-19
library C 6-2, 6-4, 6-18 to 6-20
trigonometric functions 6-2, 6-18

max function 13-44
MC680x0 instructions 14-30
memory

allocation 1-22, 5-14
attributes 15-13
configuration 15-5, 15-13
management 1-22
shared 1-22
storage size 13-21
unconfigured 15-5

MEMORY directives 15-13
message 1-20
message queue 1-20
microprocessor instructions 14-30

to 14-38
min function 13-44
mkdir command 1-13
mkshlib command 7-12
mod function 13-45
MPW C compiler 1-9
msgctl call 1-21
msgget call 1-21

msgrcv call 1-21
msgsnd call 1-21
multiple externs 3-49
multiplicative operators 3-19

N
named pipe 1-14, 1-16
next command 10-7
next statement 13-38
next i command 10-17
NFS file systems 1-13
NOLOAD section 15-32
normal precision 13-15
null statement 3-41
number generation 5-15
numeric constants 14-9
numeric conversion 5-1 o

0
object 3-10
object file 15-6

access routines 16-37
components 16-3
file header 16-4
functions 6-5, 6-22
interface macros 6-6, 6-23
library 6-4, 6-20
relocation entry 16-13
section 16-4

opcode overloading 14-4
open 1-15
operand order conventions 14-3
operators 1-7

assignment 3-24
equality 3-21
multiplicative 3-19
relational 3-21
shift 3-20

optimization 1-8, 4-9, 14-23
OR operator

exclusive 3-22
logical 3-22

org operation 14-19

Index In-5

origrn keyword 15-14
output functions 5-6

p
padding 15-18
parameter passing 4-5
parent process 1-18
parenthetical expression 3-15
password file 5-12
pause 1-21
pbCC instruction 14-48
pdbCC instruction 14-48
permanent associations 13-15
perror 1-25
pflush instruction 14-48
pflusha instruction 14-48
pfl ushr instruction 14-48
pflushs instruction 14-48
physical address 16-4
pipe 1-16

named 1-16
ploadr instruction 14-48
ploadw instruction 14-48
pmove instruction 14-48
pmovef d instruction 14-48
pointer(s) 3-12, 4-3

alignment 8-13
arithmetic 3-12
conversions 3-51
efl 13-63
register variables 4-7

popen command 1-24
portability

character use 8-9
C language 3-53
efl 13-58

POSIX 2-3
signals 1-20

postfix
decrementing 3-18
incrementing 3-18

precision 13-15, 13-29

In-6 Index

prefix
decrementing 3-18
incrementing 3-18

preprocessor 1-6
prestore instruction 14-56
primaries 13-18
primary expressions 3-14 to 3-16
print command 10-12
printf 1-14
print memory 10-17
procedure statement 13-42
procedures

efl 13-10
processes 1-18

creation 1-18
termination 1-18

program components
. bss 4-2
. data 4-2
. text 4-2

prolog code 4-6
psave instruction 14-56
psCC instruction 14-56
pseudo-operation 14-15
ptCC instruction 14-56
ptestr instruction 14-56
ptestw instruction 14-56
ptrap instruction 14-52
ptrapCC instruction 14-56
putenv 1-23
pvalid instruction 14-56

Q
quit command 10-18

R
rand function 5-15
read 1-15
readbin statement 13-40
real type 13-13
realloc 1-22
records 13-40

inFortran 12-17

recursion
efl 13-63
Fortran 12-3

region directives 15-14
register(s) 3-4

identifiers 14-7
suppression 14-26
variables 3-8, 4-7, 4-10

relational operators 3-21
relocatable values 14-13
relocation entry 16-13

declaration 16-14
reloc.h headerfile 16-14
rerun command 10-5
reserved names 15-1 o
return statement 3-4, 3-41, 4-8, 10-8
rewind statement 13-41
rmdir 1-13
run command 10-5

s
scalar 3-34, 3-35
scanf 1-14
SCCS 1-27
scl operation 14-21
scope 3-47, 13-11

block level 13-11
external 3-43
lexical 3-43

sdb 1-10, 9-1to9-16
breakpoint debugging 9-10
calling functions 9-14
examining variables 9-7
format specifiers 9-8
machine-level debugging 9-15
pattern matching 9-7
program execution 9-13
registers 9-16
shared library 7-8
single stepping 9-12
variable format 9-7

SECTIONS directive 15-15
section header 16-9

.bss 16-12

declaration 16-11
flags 16-10

section padding 15-18
segments 14-11
select statement 13-33
semaphore 1-20
semget call 1-20
semop call 1-20
set command 10-16
set operation 14-18
sh command 10-18
shared library 7-1to7-21

benefit 7-4
building 7-9
compiling 7-11
debugging 7-8
directory locations 7-20
external references 7-10
file inclusion 7-11
host file 7-2
invoking 7-3
specification file 7-13
target file 7-2

shared memory 1-22
shell commands 1-24
shift operators 3-20
shl ib directory 7-5
shmct call 1-23
shmget call 1-23
shmop call 1-23
short int type 3-9
short operation 14-15
short type 3-3, 3-6, 4-4
SIGALRM 1-21
sign function 13-45
signals 1-19, 1-20

BSD 1-19
function 5-16
POSIX 1-20
reliable 1-19
System V 1-19

signed integers 3-12
size operation 14-21
sizeof 3-4, 3-18

socket 1-21
source command 10-18
space operation 14-16
span-dependent optimization 14-23
special files 1-13
special symbols 16-16

storage classes 16-23
specification file 7-13
specifiers

storage class 3-26
type 3-26

srand function 5-15
ssignal function 5-16
stack

contents with functions 4-5
setting up 4-5

stat 1-13
statement 3-37
statements

efl 13-12
labels 12-15

static 3-4
associations 13-15
keyword 3-4, 12-3
variables 3-8

stderr 1-13
stdin 1-13
stdout 1-13
step command 10-7
stepi command 10-17
stop command 10-6
stopi command 10-17
storage class 3-8, 13-15, 16-21

operation 14-20
specifiers 3-26
type entries 16-29

storclass header file 16-21
strings 3-7

character, in efl 13-7
functions 5-7
table 16-36

struct 3-4
structure(s) 3-49, 13-16

auxiliary table entries 16-33

declaration 3-30
efl declaration 13-29
efl member 13-29
member 13-16

sub instruction 14-4
subroutine call 13-31
switch

keyword 3-4
statement 3-39

switch table operation 14-22
symbol

attributes 14-20
definition 14-18
fundamental type 16-26
special function 16-19
table 16-16

auxiliary entries 16-30
entries 16-20
order 16-16
special 16-17

syms. h header file 16-20, 16-25
system 1-24
system calls 4-9

errors 4-9

T
t format code 12-13
table functions 5-14
tag operation 14-21
target file 7-2
test statement 13-32
text operation 14-19
TextEditor 1-6
tilde character 14-7
time functions 5-9
tl format code 12-13
token 1-7, 3-3, 13-4

replacement 3-46
Toolbox 1-25
trace command 10-6
tracei command 10-17
transitory association 13-15
trigonometric functions 6-2, 6-18

Index In-7

type 3-8, 3-10, 7-8, 14-13
arithmetic 3-9
casts 8-9
checking 8-8
double 3-9
efl 13-13
enum 3-9
float 3-9
floating 3-9
int 3-9
integral 3-9
long int 3-9
name 3-35, 3-37
operation 3-49, 14-21
punning 3-53, 3-58
short int 3-9
specifiers 3-26
unsigned 3-9

typedef 3-36
variable 3-4, 8-10

ln-8 Index

u
ulimit 1-13
umask 1-13
unalias command 10-17
unary operators 3-17 to 3-18

efl 13-22
undefined externals 14-13
undefined statement 12-3
union

declaration 3-30
keyword 3-4

unlink 1-13
unset command 10-17
unsigned keyword 3-4
unsigned integers 3-12
unsigned type 3-9
up command 10-12
use command 10-15

v
val operation 14-21
variable(s)

efl 13-15
global 13-15
local 13-15

vi 1-6
virtual address 16-4
void type 3-4, 4-5

W,X
whatis command 10-12
where command 10-12
whereis command 10-12
which command 10-12
while 3-4

statement 3-38
write 1-15, 1-17
writebin statement 13-40

Y,Z
yacc command 1-27

The Apple Publishing System

AIUX Programming Languages and Tools, Volume 1,
was written, edited, and composed on a desktop
publishing system using Apple Macintosh computers, an
AppleTalk network system, Microsoft Word, and
QuarkXPress. Line art was created with Adobe Illustrator.
Proof pages were printed on Apple LaserWriter printers.
Final pages were output directly to 70-mm film on an
Electrocomp 2000 Electron Beam Recorder. Postscript®,
the LaserWriter page-description language, was
developed by Adobe Systems Incorporated.

Text and display type are Apple's corporate font, a
condensed version of ITC Garamond®. Bullets are ITC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier, a fixed-width font.

Writer:]. Eric Akin
Developmental Editors: Paul Dreyfus and Scott Smith
Design Director: Lisa Mirski
Art Director: Tamara Whiteside
Production Editor: Debbie McDaniel

Special thanks to Jeannette Allen, Tom Berry, Kristi
Fredrickson, Gene Garbutt, Michael Hinkson, John
Morley, John Sovereign, Kristen Webster, Laura Wirth,
and Chris Wozniak

	00-01-i
	00-02-ii
	00-03-iii
	00-04-iv
	00-05-v
	00-06-vi
	00-07-vii
	00-08-viii
	00-09-ix
	00-10-x
	00-11-xi
	00-12-xii
	00-13-xiii
	00-14-xiv
	00-15-xv
	00-16-xvi
	00-17-xvii
	00-18-xviii
	00-19-xix
	00-20-xx
	00-21-xxi
	00-22-xxii
	00-23-xxiii
	00-24-xxiv
	00-25-xxv
	00-26-xxvi
	00-27-xxvii
	00-28-xxviii
	00-29-xxix
	00-30-xxx
	00-31-xxxi
	00-32-xxxii
	00-33-xxxiii
	00-34-xxxiv
	00-35-xxxv
	00-36-xxxvi
	00-37-xxxvii
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	13-52
	13-53
	13-54
	13-55
	13-56
	13-57
	13-58
	13-59
	13-60
	13-61
	13-62
	13-63
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10

