

K

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

K

I N S I D E M A C I N T O S H

Open Transport

Draft. Confidential.



 Apple Computer, Inc. 4/25/96

K

Apple Computer, Inc.
© 1994-1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, Adobe Illustrator,
Adobe Photoshop, and PostScript
are trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
Docutek is a trademark of Xerox
Corporation.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
NuBus is a trademark of Texas
Instruments.
UNIX is a trademark of UNIX
System Laboratories, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is

authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Contents

Figures, Tables, and Listings xvii

Preface

About This Book

xxi

Format of a Typical Chapter xxiii
Conventions Used in This Book xxiv

Special Fonts xxiv
Types of Notes xxiv

The Development Environment xxv

Chapter 1

Introduction to Open Transport

1-1

Introduction to Open Transport 1-3
Basic Networking Concepts 1-4

Types of Protocols 1-6
Addressing and Data Delivery 1-8
Protocol Stacks and the OSI Model 1-9

About Networking With Open Transport 1-12
Open Transport Architecture 1-12

Open Transport API 1-14
Software Modules 1-15
Drivers and Hardware 1-15

Providers, Endpoints, and Mappers 1-16
Transport Independence 1-20
Endpoints and Protocol Layering 1-21

Deciding Which Protocol to Use 1-22
General Purpose or Special Purpose 1-23
Choice of Protocol Family 1-23
High-Level or Low-Level Protocol 1-23
Connection-Oriented or Connectionless 1-24
Transaction-Based or Transactionless 1-25

Miscellaneous Events 1-26

iv

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Chapter 2

Providers

2-1

About Providers 2-3
Provider Functions 2-5
Modes of Operation 2-6
Provider Events 2-7

Using Providers 2-8
Controlling a Provider’s Modes of Operation 2-8

Specifying How Provider Functions Execute 2-9
Setting a Provider’s Blocking Status 2-10
Setting a Provider’s Send-Acknowledgment Status 2-10

Sending and Receiving Data 2-11
Using Notifier Functions to Handle Provider Events 2-13
Transferring a Provider’s Ownership 2-16
Closing a Provider 2-17

Providers Reference 2-17
Constants and Data Types 2-17

Event Codes 2-17
The TNetbuf Structure 2-23

Functions 2-24
Opening and Closing Providers 2-24
Controlling a Provider’s Mode of Operation 2-28
Installing and Removing a Notifier Function 2-40
Sending Module-Specific Commands 2-43

Application-Defined Functions 2-45

Chapter 3

Endpoints

3-1

About Endpoints 3-5
Endpoint Types and Mode of Service 3-7
Naming Conventions for Endpoint Functions 3-8
Endpoint Options 3-10
Modes of Operation 3-11

Blocking 3-12
Acknowledging Sends 3-13

Endpoint States 3-13
Transport Service Data Units 3-19

Using Endpoints 3-20

v

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Opening and Binding Endpoints 3-21
Obtaining Information About Endpoints 3-23
Handling Events for Endpoints 3-24
Establishing and Terminating Connections 3-27

Establishing a Connection 3-28
Terminating a Connection 3-35

Sending and Receiving Data 3-40
Sending Noncontiguous Data 3-40
Sending Data Using Multiple Sends 3-41
Receiving Data 3-42
No-Copy Receiving 3-42
Transferring Data Efficiently 3-43

Transferring Data Between Transactionless Endpoints 3-43
Using Connectionless Transactionless Service 3-43
 Using Connection-Oriented Transactionless Service 3-44

Transferring Data Between Transaction-Based Endpoints 3-46
Using Connectionless Transaction-Based Service 3-48
Using Connection-Oriented Transaction-Based Service 3-50

Endpoints Reference 3-52
Constants and Data Types 3-52

OTData Constant 3-52
OTBuffer Constant 3-53
Buffer Types Enumeration 3-53
Endpoint Service Types 3-54
Open Transport Flags 3-54
Endpoint Flags 3-55
Endpoint States 3-56
Structure Types 3-57
The TEndpointInfo Structure 3-58
The TBind Structure 3-61
The OTData Structure 3-62
The No-Copy Receive Buffer Structure 3-63
Buffer Information Structure 3-65
The TUnitData Structure 3-65
The TUDErr Structure 3-67
The TUnitRequest Structure 3-68
The TUnitReply Structure 3-70
The TCall Structure 3-72

vi

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

The TRequest Structure 3-76
The TReply Structure 3-77
The TDiscon Structure 3-79

Functions 3-80
Creating Endpoints 3-80
Binding and Unbinding Endpoints 3-86
Obtaining Information About an Endpoint 3-91
Allocating Structures 3-102
Checking a Buffer’s Size 3-106
Doing No-Copy Receives 3-107
Functions for Connectionless Transactionless Endpoints 3-110
Functions for Connectionless Transaction-Based Endpoints 3-117
Establishing A Connection 3-130
Functions for Connection-Oriented Transactionless Endpoints 3-140
Functions for Connection-Oriented Transaction-Based Endpoints 3-147
Tearing Down a Connection 3-159

Chapter 4

Mappers

4-1

About Mappers 4-4
Using Mappers 4-5

Setting Modes of Operation for Mappers 4-5
Specifying Name and Address Information 4-7
Searching for Names 4-7

Retrieving Multiple Entries From the Reply Buffer 4-9
Retrieving Entries in Asynchronous Mode 4-11

Mappers Reference 4-12
Constants and Data Types 4-12

The TRegisterRequest Structure 4-12
The TRegisterReply Structure 4-13
The TLookupRequest Structure 4-13
The TLookupReply Structure 4-15
The TLookupBuffer Structure 4-15

Functions 4-16
Creating Mappers 4-17
Registering and Deleting Names 4-21
Looking Up Names 4-26

vii

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Chapter 5

Option Management

5-1

About Options and Option Negotiation 5-4
Explicit Use of Options and Portability of Code 5-4
Types of Options 5-5
The Format of Option Information 5-8
XTI-Level Options and General Options 5-10

Using Options 5-11
Determining Which Function to Use to Negotiate Options 5-12
Negotiating Options 5-13

Negotiating Multiple Options 5-13
Initiating an Option Negotiation 5-14
Privileged or Read-Only Options 5-15
Error Conditions 5-16

Obtaining the Maximum Size of an Options Buffer 5-18
Setting Option Values 5-18

Specifying Option Values 5-18
Setting Default Values 5-20
Allowing the Endpoint Provider to Select an Option Value 5-21

Retrieving Option Values 5-21
Obtaining Current and Default Values 5-21
Retrieving Values for Connection-Oriented Endpoints 5-22
Retrieving Values for Connectionless Transactionless Endpoints 5-23
Retrieving Values for Connectionless Transaction-Based Endpoints 5-23
Parsing an Options Buffer 5-24

Verifying Option Values 5-25
Option Management Reference 5-25

Constants and Data Types 5-25
XTI-Level Options 5-25
Generic Options 5-28
Status Codes 5-29
Action Flags 5-30
The Linger Structure 5-31
The Keepalive Structure 5-32
The TOption Structure 5-33
The Option Management Structure 5-33

Functions 5-34
Determining and Changing Function Values 5-35

viii

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Manipulating the Format of Option Information 5-39
Finding Options 5-43

Chapter 6

Configuration Management

6-1

About Provider Configurations 6-3
About Port Information 6-5
Using the Configuration Functions 6-8

Determining Whether Open Transport Is Available 6-8
Initializing Open Transport 6-9

Using Open Transport From a Client Application 6-9
Using Open Transport From a Stand-Alone Code Segment 6-9

Creating and Reusing Provider Configurations 6-10
Obtaining Port Information 6-11
Requesting a Port to Yield Ownership 6-13
Registering as an Open Transport Client 6-13

Configuration Management Reference 6-14
Constants and Data Types 6-14

The Gestalt Selector and Response Bits 6-15
Port-Related Events 6-15
The Configuration Structure 6-16
The Port Structure 6-17
The Port Reference 6-19
The Client List Structure 6-22
The Port Close Structure 6-23

Functions 6-23
Initializing and Closing Open Transport 6-24
Creating, Cloning, and Removing a Configuration Structure 6-27
Getting Information About Ports 6-32
Requesting a Port to Yield Ownership 6-42
Registering as a Client 6-44

Chapter 7

Process Management

7-1

About Task Processing in Open Transport 7-3
Using Process Management Functions 7-4

ix

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Using System and Deferred Tasks 7-4
Entering and Leaving Interrupt Processing 7-6
Allocating and Freeing Raw Memory 7-7
Idling or Delaying Your Computer 7-7

Process Management Reference 7-8
Functions 7-8

Checking Synchronous Calls 7-8
Working With System Tasks 7-9
Working With Deferred Tasks 7-14
Entering and Leaving Interrupt Time 7-19
Allocating and Freeing Memory 7-21
Idling and Delaying Processing 7-23

Application-Defined Functions 7-25

Chapter 8

TCP/IP Services

8-1

About the TCP/IP Protocol Family 8-4
About TCP/IP Services 8-6
About the Open Transport DNR 8-9
Using TCP/IP Services 8-11

Using RawIP 8-11
Using IP Multicasting 8-12
Using the Hosts File 8-12
Querying DNS Servers 8-13
Using General Open Transport Functions With TCP/IP 8-14

Obtaining Endpoint Data With TCP/IP 8-15
Using Endpoint Functions With TCP/IP 8-16
Using Mapper Functions With TCP/IP 8-20

TCP/IP Services Reference 8-21
Constants and Data Types 8-21

Basic Types and Constants 8-21
Internet Address Structure 8-23
DNS Address Structure 8-24
DNS Query Information Structure 8-25
Internet Interface Information Structure 8-26
Internet Host Information Structure 8-27
Internet System Information Structure 8-28

x

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

IP Multicast Address Structure 8-28
Internet Mail Exchange Structure 8-29

Options 8-29
Protocol Levels 8-29
TCP Options 8-30
UDP Options 8-32
IP Options 8-32

Functions 8-37
Opening a TCP/IP Service Provider 8-37
Resolving Internet Addresses 8-42
Getting Information About an Internet Host 8-45
Retrieving DNS Query Information 8-49
Address Utilities 8-52

Chapter 9

Introduction to AppleTalk

9-1

About AppleTalk 9-4
AppleTalk Networks and Addresses 9-6
Multinodes 9-8
Handling Miscellaneous Events 9-9
Configuring AppleTalk Protocol Providers 9-9

About AppleTalk Protocols Under Open Transport 9-11
AppleTalk Addressing and the Name Binding Protocol (NBP) 9-13
The AppleTalk Service Provider 9-14
Datagram Delivery Protocol (DDP) 9-15
AppleTalk Data Stream Protocol (ADSP) 9-15
AppleTalk Transaction Protocol (ATP) 9-16
Printer Access Protocol (PAP) 9-16

Chapter 10

AppleTalk Addressing

10-1

About AppleTalk Addressing 10-4
Using AppleTalk Addressing 10-5

Specifying a DDP Address 10-5
Specifying an NBP Address 10-7
Specifying a Combined DDP-NBP Address 10-9

xi

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Specifying and Using a Multinode Address 10-9
Registering Your Endpoint’s Name 10-10
Looking Up Names and Addresses 10-11
Manipulating an NBP Name 10-13

AppleTalk Addressing Reference 10-14
Constants and Data Types 10-14
Basic Constants 10-14

Address Format Constants 10-15
The DDP Address Structure 10-16
The NBP Address Structure 10-17
The Combined DDP-NBP Address Structure 10-18
The Multinode Address Structure 10-19
The NBP Entity Structure 10-20

Functions 10-21

Chapter 11

AppleTalk Service Providers

11-1

About AppleTalk Service Providers 11-4
Using AppleTalk Service Providers 11-5

Obtaining AppleTalk Service Providers 11-6
Working With AppleTalk Zones 11-6
Getting the Name of Your Application’s Zone 11-7
Getting a List of Zone Names for Your

Local Network or Internet 11-8
Getting Information About Your Current AppleTalk Environment 11-9

AppleTalk Service Provider Reference 11-10
Constants and Data Types 11-10

Completion Event Constants 11-10
The AppleTalk Information Structure 11-11

Functions 11-12
Opening an AppleTalk Service Provider 11-12
Obtaining Information About Zones 11-16
Obtaining Information About Your AppleTalk Environment 11-20

xii

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Chapter 12

Datagram Delivery Protocol (DDP)

12-1

About DDP 12-4
Using DDP 12-5

Binding a DDP Endpoint 12-6
Using the DDP Type Field to Filter Packet Delivery 12-7
Using the Self-Send and Checksum Options 12-7
Using Echo Packets 12-8
Working With Multinodes 12-10
The DDP Source Address Option 12-10
Using General Open Transport Functions With DDP 12-10

OTBind 12-11
OTSndUData 12-11
OTRcvUData 12-11

DDP Reference 12-11
Options 12-11

Chapter 13

AppleTalk Data Stream Protocol (ADSP)

13-1

About ADSP 13-3
Using ADSP 13-5

Binding ADSP Endpoints 13-6
Sending and Receiving ADSP Data 13-6

The Enable EOM (End-of-Message) Option 13-7
The Checksum Option 13-9

Sending Expedited Data 13-9
Disconnecting 13-10
Using General Open Transport Functions With ADSP 13-10

OTBind 13-10
OTConnect 13-11
OTRcvConnect 13-11
OTListen 13-11
OTAccept 13-11
OTSnd 13-11
OTRcv 13-12
OTSndDisconnect 13-12
OTRcvDisconnect 13-12

ADSP Reference 13-12

xiii

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Options 13-13

Chapter 14

AppleTalk Transaction Protocol (ATP)

14-1

About ATP 14-4
Using ATP 14-5

At-Least-Once and Exactly-Once Transactions 14-6
Sending and Receiving ATP Data 14-6
Specifying ATP Options 14-7

The Retry Count and Interval Options 14-8
The Release Timer Option 14-8
Other ATP-Specific Options 14-8

Using the ATP Packet Header User Bytes 14-9
Using General Open Transport Functions with ATP 14-9

OTSndURequest 14-10
OTRcvURequest 14-10
OTSndUReply 14-10
OTRcvUReply 14-10

ATP Reference 14-11
Options 14-11

Chapter 15

Printer Access Protocol (PAP)

15-1

About PAP 15-3
Using PAP 15-5

Binding PAP Endpoints 15-6
Specifying PAP Options 15-7

The Enable End-of-Message Option 15-7
The Open Retry Option 15-8
The Server Status Option 15-9

Disconnecting 15-9
Using General Open Transport Functions With PAP 15-9

OTBind 15-9
OTConnect 15-10
OTRcvConnect 15-10
OTListen 15-10

xiv

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

OTAccept 15-10
OTSnd 15-11
OTRcv 15-11
OTSndDisconnect 15-11
OTRcvDisconnect 15-11

PAP Reference 15-12
Options 15-12

Chapter 16

Serial Endpoint Providers

16-1

About Serial Endpoint Providers 16-4
About Serial Communication 16-4
DTR and CTS Signals 16-6
Asynchronous and Synchronous Communication 16-7
Handshaking Methods for Flow Control 16-8

Using Serial Endpoints 16-8
Opening and Closing Serial Endpoints 16-9
Sending and Receiving Data 16-9
Using Serial-Specific Commands 16-10
Using Options to Change Serial Communications Settings 16-11

Setting Flow-Control Handshaking 16-12
Obtaining Status Information About the Serial Port 16-12

Using General Open Transport Functions
With Serial Endpoints 16-14

Obtaining Endpoint Data With Serial Endpoints 16-14
Using Endpoint Functions With Serial Endpoints 16-15

Serial Endpoint Providers Reference 16-17
Constants 16-17
Options 16-19

Protocol Level 16-19
Serial Options 16-19

Serial-Specific Commands 16-23

Appendix A

Open Transport and XTI

A-1

Open Transport Programming Interfaces A-1

xv

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

Function Names A-2
Extensions to XTI A-6
Data Structures A-7
Result Codes A-7

Appendix B

Result Codes

B-1

Glossary

GL-1

Index

IN-1

xvi

Draft. Confidential.



 Apple Computer, Inc. 4/30/96

xvii

Draft.



 Apple Computer, Inc. 4/30/96

Figures, Tables, and Listings

Preface

About This Book

xxi

Chapter 1

Introduction to Open Transport

1-1

Table 1-1

The Open Transport protocol matrix and some Open Transport
protocols 1-7

Figure 1-1

The OSI model and Open Transport protocols 1-10

Figure 1-2

The basic architecture of Open Transport 1-13

Figure 1-3

An Open Transport Provider 1-17

Chapter 2

Providers

2-1

Figure 2-1

The

TNetbuf

 structure 2-12

Listing 2-1

A notifier function 2-14

Chapter 3

Endpoints

3-1

Table 3-1

The names of functions used to transfer data 3-9

Table 3-2

Endpoint states 3-14

Figure 3-1

Possible endpoint states for a connectionless endpoint 3-15

Figure 3-2

Possible endpoint states for a connection-oriented endpoint 3-16

Table 3-3

Functions that can change an endpoint’s state 3-18

Table 3-4

Events that can change an endpoint’s state 3-19

Table 3-5

The Open Transport mode-of-service matrix and some Open
Transport protocols 3-20

Table 3-6

Endpoint functions that behave differently in synchronous and
asynchronous mode 3-25

Table 3-7

Pending asynchronous events and the synchronous functions they
can affect 3-26

Table 3-8

Pending asynchronous events and the functions that clear
them 3-27

Figure 3-3

Establishing a connection in synchronous mode 3-30

Figure 3-4

Establishing a connection in asynchronous mode 3-32

Figure 3-5

An abortive disconnect 3-35

Figure 3-6

Remote orderly disconnect 3-37

xviii

Draft.



 Apple Computer, Inc. 4/30/96

Figure 3-7

A local orderly disconnect 3-39

Figure 3-8

Describing noncontiguous data 3-41

Figure 3-9

How a transaction ID is generated 3-47

Figure 3-10

Data transfer using connectionless transaction-based endpoints in
asynchronous mode 3-50

Figure 3-11

Data transfer using connection-oriented transaction-based endpoints
in asynchronous model 3-51

Chapter 4

Mappers

4-1

Table 4-1

Completion events for asynchronous mapper functions 4-6

Figure 4-1

Format of entries in

OTLookupName reply buffer 4-8
Listing 4-1 Parsing the reply buffer for OTLookupName 4-9

Chapter 5 Option Management 5-1

Figure 5-1 Negotiating an association-related option 5-6
Table 5-1 Open Transport endpoint functions and the types of options they

accept 5-7
Figure 5-2 The format of option information 5-8
Figure 5-3 An options buffer 5-9
Table 5-2 XTI-level options 5-10
Table 5-3 Open Transport generic options 5-11
Listing 5-1 Constructing an options buffer manually 5-19
Listing 5-2 Constructing an options buffer using the OTCreateOptions

function 5-20
Listing 5-3 Using the OTCreateOptionString function to parse through a

buffer 5-24

Chapter 6 Configuration Management 6-1

Chapter 7 Process Management 7-1

Table 7-1 Open Transport functions you can call at interrupt time 7-6

Chapter 8 TCP/IP Services 8-1

Figure 8-1 TCP/IP protocols and functional layers 8-4

xix
Draft.  Apple Computer, Inc. 4/30/96

Table 8-1 The Open Transport protocol matrix and TCP/IP protocols 8-5
Figure 8-2 Internet subnet address 8-8
Table 8-2 Configuration strings for TCP/IP options 8-39

Chapter 9 Introduction to AppleTalk 9-1

Figure 9-1 AppleTalk protocol stack and the OSI model 9-5
Table 9-1 AppleTalk addressing identifiers 9-7
Table 9-2 Protocol identifiers for use in configuring AppleTalk

providers 9-10
Table 9-3 Indicating AppleTalk options in the configuration string 9-11
Table 9-4 Open Transport support for AppleTalk endpoint protocols 9-13

Chapter 10 AppleTalk Addressing 10-1

Listing 10-1 Setting up a DDP Address 10-6
Listing 10-2 Setting up an NBP address 10-9
Table 10-1 Open Transport name-registration functions 10-11
Table 10-1 Open Transport name and address functions 10-12
Table 10-2 Wildcard operators 10-13

Chapter 11 AppleTalk Service Providers 11-1

Figure 11-1 AppleTalk service providers and their underlying delivery
mechanism 11-5

Listing 11-1 Using the DoGetMyZone function synchronously 11-8

Chapter 12 Datagram Delivery Protocol (DDP) 12-1

Figure 12-1 The DDP endpoint provider’s underlying delivery
mechanism 12-5

Table 12-1 Effects of using the DDP type field 12-7

Chapter 13 AppleTalk Data Stream Protocol (ADSP) 13-1

Figure 13-1 The ADSP endpoint provider’s underlying delivery
mechanism 13-4

Listing 13-1 Setting the enable EOM option 13-8

xx
Draft.  Apple Computer, Inc. 4/30/96

Chapter 14 AppleTalk Transaction Protocol (ATP) 14-1

Figure 14-1 The ATP endpoint provider’s underlying delivery mechanism 14-5
Table 14-1 ATP option definitions and default values 14-7

Chapter 15 Printer Access Protocol (PAP) 15-1

Figure 15-1 The PAP endpoint provider’s underlying delivery mechanism 15-4

Chapter 16 Serial Endpoint Providers 16-1

Figure 16-1 The format of serialized bits 16-5

Appendix A Open Transport and XTI A-1

Table A-1 XTI-to-Open Transport function cross-reference A-2
Table A-2 Open Transport-to-XTI function cross-reference A-3
Table A-3 Open Transport Functions not found in XTI A-6
Table A-4 XTI-to-Open Transport data structure cross-reference A-7
Table A-5 XTI-to-Open Transport result code cross-reference A-8

Appendix B Result Codes B-1

Table B-1 Open Transport result codes B-1

xxi
Draft. Confidential.  Apple Computer, Inc. 4/30/96

P R E F A C E

About This Book

This book, Inside Macintosh: Open Transport, describes the 1.1 release of the
Open Transport networking system, which is a communications architecture
that can be used to implement any number of networking and other
communications systems. This book discusses only the implementation of
Open Transport 1.1 on Apple Macintosh computers. Open Transport provides a
set of programming interfaces for applications and processes running on
Macintosh computers.

Note
All of the Open Transport 1.1 programming interfaces
described in this book are compatible with the Mac OS 8
environment. ◆

To get the most out of this book, read the chapters that cover general Open
Transport concepts first. If you are planning to use an AppleTalk or TCP/IP
protocol, read the protocol-specific chapters after you are familiar with Open
Transport’s architecture and general functions. The book is organized with the
more general Open Transport concepts covered in the first seven chapters, with
the more specific material in the later chapters of the book.

It is best to begin by reading the introductory chapter, “Introduction to Open
Transport,” because it introduces many terms that are used throughout the rest
of this book. This chapter also gives an overview of the Open Transport
architecture and the way it is used to implement networking protocols.

The chapter “Providers,” describes the generic Open Transport functions that
you can use with any provider. The chapters “Endpoints” and “Mappers”
introduce functions that are particular for endpoint and mapper providers. The
next three chapters, “Option Management,” “Configuration Management,”and
“Process Management” continue the general discussion of Open Tranport
concepts.

The chapter “TCP/IP Services ” and the seven AppleTalk-specific chapters
describe how to use the Open Transport implementations of AppleTalk and
TCP/IP. The last chapter, “Serial Endpoint Providers,” describes how to use
Open Transport with a serial driver.

xxii
Draft. Confidential.  Apple Computer, Inc. 4/30/96

P R E F A C E

At the end of this book are two appendixes: “Open Transport and XTI” and
“OT Result Codes.”

■ “Open Transport and XTI.” This appendix describes the correspondence
between the XTI and Open Transport client programming interfaces. Open
Transport is a superset of XTI and therefore includes functions that are not
defined in XTI. This appendix focuses on how general provider functions
and endpoint functions correspond to XTI functions.

■ “Result Codes.” This appendix lists the result codes returned by the Open
Transport preferred-C functions.

If you are new to programming for the Macintosh, you can read the book Inside
Macintosh:Overview for a general introduction to general concepts of Macintosh
programming. Other books in the Inside Macintosh series are helpful for specific
information about other aspects of the Macintosh Toolbox and the Macintosh
Operating System. In particular, to benefit most from this book, you should
already be familiar with the run-time environment of Macintosh applications,
as described in the two books Inside Macintosh: Processes and Inside Macintosh:
Memory.

The information in this book constitutes only a part of the body of literature
documenting the AppleTalk and TCP/IP protocol families and the XTI
standard upon which Open Transport is based.

For more information about the AppleTalk protocol family, see the book Inside
AppleTalk, second edition, which has detailed specifications for each of the
AppleTalk protocols.

For more information about the TCP/IP protocol family, see any good book on
TCP/IP. Two such books for information on TCP/IP protocol internals are TCP/
IP Illustrated, Volume 1 by W. Richard Stevens and Internetworking with TCP/IP,
Volume 1 by Douglas E. Comer.

For more information about the XTI standard, see X/Open CAE Specification
(1992): X/Open Transport Interface (XTI). The Open Transport TCP/IP software
modules are based on the UNIX Streams architecture. For more information
about Streams, see UNIX System V Release 4: Programmer’s Guide: STREAMS.

xxiii
Draft. Confidential.  Apple Computer, Inc. 4/30/96

P R E F A C E

Format of a Typical Chapter 0

Most of the chapters in this book follow a standard structure. For example, the
chapter “Endpoints” contains these sections:

■ “About Endpoints.” This section presents a general introduction to
endpoints and endpoint providers.

■ “Using Endpoints.” This section provides an overview of the features
provided by Open Transport for endpoints.

■ “Endpoints Reference.” This section provides a complete reference for the
endpoints and endpoint providers by describing the data types, constants,
and functions they use. Each function description also follows a standard
format, which presents the function declaration followed by a description of
each of its parameters.

The chapters that cover AppleTalk and TCP/IP protocols include a subsection
that describes the protocol-specific information for certain general Open
Transport functions. For example, the chapter “TCP/IP Services” includes the
following section:

■ “Using General Open Transport Functions With TCP/IP.” This section
describes any special considerations that must be taken into account for
general endpoint and mapper Open Transport functions when using them
with the Open Transport TCP/IP implementation.

xxiv

Draft. Confidential.  Apple Computer, Inc. 4/30/96

P R E F A C E

Conventions Used in This Book 0

Inside Macintosh uses special conventions to present certain types of
information.

Special Fonts 0

All code listings, reserved words, and names of actual data structures, fields,
constants, parameters, and routines are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.

Types of Notes 0

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but
not essential to an understanding of the main text. (An
example appears in the chapter “Introduction to Open
Transport” on (page 1-6).) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears in
the chapter “Endpoints” on (page 3-87).) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. (An example appears in the chapter
“Endpoints” on (page 3-63).) ▲

xxv
Draft. Confidential.  Apple Computer, Inc. 4/30/96

P R E F A C E

The Development Environment 0

The Open Transport functions described in this book are available using C or
C++ language interfaces. How you access these functions depends on the
development environment you are using.

All code listings in this book are shown in ANSI C. They show ways of using
various functions and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and in many cases tested. However,
Apple Computer, Inc., does not intend for you to use these code samples in
your application.

APDA is Apple’s worldwide source for over three hundred development tools,
technical resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the quarterly
APDA Tools Catalog featuring all current versions of Apple and the most
popular third-party development tools. Ordering is easy; there are no
membership fees, and application forms are not required for most products.
APDA offers convenient payment and shipping options including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (elsewhere in the world)

Fax: 716-871-6511

AppleLink: APDA

America Online: APDAorder

CompuServe: 76666,2405

Internet: APDA@applelink.apple.com

xxvi
Draft. Confidential.  Apple Computer, Inc. 4/30/96

P R E F A C E

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
20525 Mariani Avenue, M/S 303-2T
Cupertino, CA 95014-6299

C H A P T E R 1

Contents 1-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction to Open Transport

Introduction to Open Transport 1-3
Basic Networking Concepts 1-4

Types of Protocols 1-6
Addressing and Data Delivery 1-8
Protocol Stacks and the OSI Model 1-9

About Networking With Open Transport 1-12
Open Transport Architecture 1-12

Open Transport API 1-14
Software Modules 1-15
Drivers and Hardware 1-15

Providers, Endpoints, and Mappers 1-16
Transport Independence 1-20
Endpoints and Protocol Layering 1-21

Deciding Which Protocol to Use 1-22
General Purpose or Special Purpose 1-23
Choice of Protocol Family 1-23
High-Level or Low-Level Protocol 1-23
Connection-Oriented or Connectionless 1-24
Transaction-Based or Transactionless 1-25

Miscellaneous Events 1-26

C H A P T E R 1

Introduction to Open Transport 1-3
Draft.  Apple Computer, Inc. 4/30/96

Introduction to Open Transport 1

This chapter provides an overview of the Open Transport networking system.
Open Transport is a communications architecture that can be used to
implement any number of networking and other communications systems.
This book discusses only the implementation of Open Transport on Apple
Macintosh computers. Open Transport provides a set of programming
interfaces for applications and processes running on Macintosh computers.

This chapter introduces some of the terminology that is used throughout the
rest of this book. Read this chapter to gain an overview of the Open Transport
architecture and the way it’s used to implement networking protocols. You
should also read this chapter for suggestions on which networking protocols to
use for various application requirements.

This chapter begins with a brief description of Open Transport and the
advantages it provides over earlier Macintosh networking architectures. Next,
“Basic Networking Concepts” defines a variety of terms used in Open
Transport and in networking in general. The section “About Networking With
Open Transport” describes the Open Transport architecture and describes some
concepts important to Open Transport: providers, transport independence, and
endpoints. Finally, the section “Deciding Which Protocol to Use” gives you
guidelines to help you decide which protocol or protocol family to use for a
given purpose.

The chapters that make up the rest of this book describe how to use the Open
Transport programming interface and the Open Transport implementations of
AppleTalk and TCP/IP.

Introduction to Open Transport 1

Open Transport is the networking architecture used by Apple Computer, Inc.
for Macintosh computers. Whereas AppleTalk provided a proprietary
networking system for Macintosh computers, the current Macintosh Operating
System with Open Transport provides not only AppleTalk but also the
industry-standard TCP/IP protocols and serial connections. In addition, the
Open Transport architecture allows developers to add other networking
systems to the Macintosh Operating System without altering the user’s
experience or the application programming interface (API).

C H A P T E R 1

Introduction to Open Transport

1-4 Basic Networking Concepts

Draft.  Apple Computer, Inc. 4/30/96

The independence of the APIs from the underlying networking or transport
technology is called transport independence and is one of the cardinal features
of Open Transport. Whereas the APIs are independent of the networking
system in use, the specific set of functions you call does depend on the nature
of the protocols. For example, you use different functions for a
connection-oriented protocol like AppleTalk Data Stream Protocol (ADSP) than
for a connectionless protocol like Datanet Delivery Protocol (DDP) or Internet
Protocol (IP). Transport independence is described in more detail in “Transport
Independence” on page 1-20.

Other important features of Open Transport are its support of multihoming
and multinodes.

Multihoming allows multiple Ethernet, token ring, FDDI, and other network
interface controller (NIC) cards to be active on a single node at the same time.
In addition to selecting the type of network connection, the user can select a
particular device to be used for the network connection.

Multinode architecture is an AppleTalk feature that allows an application to
acquire node IDs that are additional to the standard node ID that is assigned to
the system when the node joins an AppleTalk network. Multinode architecture
is provided to meet the needs of special-purpose applications that receive and
process AppleTalk packets in a custom manner instead of passing them directly
on to a higher-level AppleTalk protocol for processing. Multinode IDs allow the
system that is running your application to appear as multiple nodes on the
network. The prime example of a multinode application is Apple Remote
Access (ARA). The chapters “AppleTalk Addressing” and “Datagram Delivery
Protocol” in this book describe the use of multinodes.

Basic Networking Concepts 1

Although this book is intended for readers who already have some knowledge
of networking fundamentals, many people use slightly different definitions for
the same networking terms. Therefore, this section provides definitions of
networking and communications terms as used in this book; the following
section, “About Networking With Open Transport,” discusses concepts specific
to Open Transport.

A network is a system of computers and other devices (such as printers and
modems) that are connected in such a way that they can exchange data.

C H A P T E R 1

Introduction to Open Transport

Basic Networking Concepts 1-5
Draft.  Apple Computer, Inc. 4/30/96

A networking system consists of hardware and software. Hardware on a
network includes physical devices such as Macintosh personal computer
workstations, printers, and Macintosh computers acting as file servers, print
servers, and routers; these devices are all referred to as nodes on the network.

If the nodes are not all connected to a single physical cable, special hardware
and software devices must connect the cables in order to forward messages to
their destination addresses. A bridge is a device that connects networking
cables without examining the addresses of messages or making decisions as to
the best route for a message to take. By contrast, a router contains addressing
and routing information that lets it determine from a message’s address the
most efficient route for the message. A message can be passed from router to
router several times before being delivered to its destination.

In order for nodes to exchange data, they must use a common set of rules
defining the format of the data and the manner in which it is to be transmitted.
A protocol is a formalized set of procedural rules for the exchange of
information and for the interactions among the network’s interconnected
nodes. A network software developer implements these rules in software
modules that carry out the functions specified by the protocol.

Whereas a router can connect networks only if they use the same protocol and
address format, a gateway converts addresses and protocols to connect
dissimilar networks.

A set of networks connected by routers or gateways is called an internet. The
term Internet (note the capitalization) is often used to refer to the largest
worldwide system of networks, also called the Worldwide Internet. The basic
protocol used to implement the WorldWide Internet is called the Internet
Protocol, or IP. Because the word internet is used in several different ways, it is
important to note capitalization and context whenever you see this word.

A networking protocol commonly uses the services of another, more
fundamental protocol to achieve its ends. For example, the AppleTalk Data
Stream Protocol (ADSP) uses the Datagram Delivery Protocol (DDP) to
encapsulate the data and deliver it over an AppleTalk network. The protocol
that uses the services of an underlying protocol is said to be a client of the
lower protocol; for example, ADSP is a client of DDP. A set of protocols related
in this fashion is called a protocol stack. Protocol stacks are described in more
detail in “Protocol Stacks and the OSI Model,” beginning on page 1-9.

C H A P T E R 1

Introduction to Open Transport

1-6 Basic Networking Concepts

Draft.  Apple Computer, Inc. 4/30/96

Note
Although it is sometimes important to distinguish between
a protocol and the software that implements the protocol,
in most cases you can infer which is meant from the
context. Accordingly, this book usually uses the term
protocol rather than the more precise term protocol
implementation to refer to the Open Transport
implementation of a protocol. ◆

Types of Protocols 1

Networking protocols can be characterized as connectionless or connection-
oriented, and as transactionless or transaction-based.

A connectionless protocol is one in which a node that wants to communicate
with another simply sends a message without first establishing that the
receiving node is prepared to receive it. Each message sent must include
addressing information so that it can be delivered to its destination.

A connection-oriented protocol is one in which two nodes on the network that
want to communicate must go through a connection-establishment process
called a handshake. This involves the exchange of predetermined signals
between the nodes in which each end identifies itself to the other. Once a
connection is established, the communicating applications or processes on the
nodes at either end can send and receive data without having to add addresses
to the messages or repeat the handshake process. Connection-oriented
protocols provide support for sessions. A session is a logical (as opposed to
physical) connection between two entities on a network or internet. A session
must be set up at the beginning, maintained by the periodic exchange of
information, and broken down at the end. All of these services entail overhead
compared to a connectionless protocol, for which no connection setup or
breakdown is required and for which no session must be maintained.

A connection-oriented session is analogous to a telephone call. The party who
initiates the call knows whether the connection is made because someone at the
other end of the line either answers or not. As long as the connection is
maintained, neither party needs to dial the other telephone number again. A
connectionless protocol is analogous to mail. A person sends a letter expecting
it will be delivered to its destination. Although the mail usually arrives safely,
the sender doesn’t know this unless the recipient initiates a response affirming
it. Each letter sent by either party requires a complete address.

C H A P T E R 1

Introduction to Open Transport

Basic Networking Concepts 1-7
Draft.  Apple Computer, Inc. 4/30/96

A transactionless protocol defines how the data is to be organized and
delivered from one node to another. A connection-oriented transactionless
protocol is used to maintain a symmetrical connection; that is, one in which
both ends have equal control over the communication. Both ends can send and
receive data and initiate or terminate the session. A connectionless
transactionless protocol sends data in discrete datagrams. A datagram, also
referred to as a packet, is a small unit of data that includes a header portion
that holds the destination address (and may contain other information, such as
a checksum value), and a data portion that holds the message text. A
connection-oriented transactionless protocol can send data as a continuous
stream of data or, in some cases, as packets.

If both ends of a connection-oriented transactionless data stream session can
transmit and receive data simultaneously, the connection is referred to as full
duplex. If the two sides have to take turns transmitting and receiving, the
connection is referred to as half duplex.

A transaction-based protocol specifies the sequence and some of the content of
messages passed between nodes. When using a transaction-based protocol, the
application on one node, known as the requester, sends a request to the other
application, known as the responder, to perform a task. The responder
completes the task and returns a response that reports the outcome of the task.
Once one node has issued a request, the receiving node is constrained to
respond in a predefined way. A transaction-based connection is sometimes
referred to as an asymmetrical connection.

Table 1-1 shows where some Open Transport protocols fit in the protocol-type
matrix. A protocol of one type can be a client of a different type. For example,
the connection-oriented transaction-based AppleTalk Session Protocol (ASP) is
a client of the connectionless transaction-based AppleTalk Transaction Protocol
(ATP), which is in turn a client of the connectionless transactionless Datagram
Delivery Protocol (DDP).

Table 1-1 The Open Transport protocol matrix and some Open Transport protocols

Connectionless Connection-oriented

Transactionless PPP
DDP
IP
UDP

Serial connection
ADSP
TCP

Transaction-based ATP ASP

C H A P T E R 1

Introduction to Open Transport

1-8 Basic Networking Concepts

Draft.  Apple Computer, Inc. 4/30/96

Addressing and Data Delivery 1

In order to establish a network connection or to send a message using a
connectionless protocol, you must have the address of the destination. Each
protocol uses a specific type of address, which might be the same as that used
by a lower-level protocol in the protocol stack or might be unique to that
protocol. DDP and IP, for example, use addresses sufficient for node-to-node
delivery of datagrams, through routers if necessary. The protocols and
applications that are clients of DDP are assigned socket numbers. A socket is a
piece of software that serves as an addressable entity on a node. DDP is
responsible for delivering a datagram to the correct socket.

Similarly, IP delivers each datagram to a specific client protocol—such as
Transaction Control Protocol (TCP) or User Datagram Protocol (UDP)—
running on a specific node. The processes running the TCP/IP client protocols
are each assigned a port number; the client protocol is responsible for
delivering the datagram to the correct port number. Each client of IP running
on a socket maintains its own list of port numbers. Whereas AppleTalk
normally assigns socket numbers dynamically to a process when it registers
itself on the network, the TCP/IP port numbers are preassigned by convention
or by previous arrangement between users. For more information about
AppleTalk addresses, see the chapter “AppleTalk Addressing” in this book. For
more information about TCP/IP addresses, see the chapter “TCP/IP Services”
in this book.

Low-level connectionless protocols such as DDP and IP usually provide
best-effort delivery of data. Best-effort delivery means that the protocol
attempts to deliver any packets that meet certain requirements, such as
containing a valid destination address, but the protocol does not inform the
sender when it is unable to deliver the data, nor does it attempt to recover from
error conditions and data loss. Higher-level protocols, on the other hand, can
provide reliable delivery of data. Reliable delivery includes error checking and
recovery from error or loss of data.

C H A P T E R 1

Introduction to Open Transport

Basic Networking Concepts 1-9
Draft.  Apple Computer, Inc. 4/30/96

Protocol Stacks and the OSI Model 1

Most networking systems are designed as layered architectures in which
low-level protocols provide services to higher-level protocols in the same
protocol stack. Network designers relate each protocol to a reference model,
which provides guidelines as to what sort of services should be provided by a
protocol at a certain level in the hierarchy. Because these reference models
provide a framework that makes it easier to compare the services offered by
different protocols, this book shows how each protocol discussed relates to one
or more reference models. In this section, the Open Systems Interconnection
(OSI) model is described. The OSI model is a seven-layered standard that was
published by the International Standards Organization (ISO) in the 1970s. This
is the model with which the AppleTalk networking system architecture is most
closely aligned.

It is important to note that often more than one protocol is defined and
implemented to handle the requirements of a layer in different ways. In
addition, some protocols include functions that span more than one layer
specified by a model. For example, in favor of efficiency, a network protocol
developer may elect to define a single protocol that spans two or more layers of
a reference model.

Figure 1-1 shows the layers of the OSI model and how the AppleTalk and TCP/
IP protocols provided with the Open Transport system software fit into this
model. See the chapter “TCP/IP Services” in this book for a comparison of the
OSI and TCP/IP reference models.

C H A P T E R 1

Introduction to Open Transport

1-10 Basic Networking Concepts

Draft.  Apple Computer, Inc. 4/30/96

Figure 1-1 The OSI model and Open Transport protocols

Each layer of the OSI model has a specific purpose, as follows:

■ The highest layer of the OSI model is the application layer. This layer allows
for the development of application software. Software written at this layer
benefits from the services of all the underlying layers.

■ The presentation layer assumes that an end-to-end path or connection
already exists across the network between the two communicating parties,

ATP, NBP, TCP, UDP

ADSP, ASP, PAP

AFP

Session

Presentation

Application

Transport

Network

Data-link

Physical

OSI Layers Examples

Tenet, FTP

SMTP, SNMP

IP, DDP

Ethernet, Token Ring, FDDI drivers and hardware

Not provided with Open Transport

Provided with Open Transport

C H A P T E R 1

Introduction to Open Transport

Basic Networking Concepts 1-11
Draft.  Apple Computer, Inc. 4/30/96

and it is concerned with the representation of data values for transfer, or the
transfer syntax.

■ The session layer serves as an interface into the transport layer, which is
below it. The session layer allows for establishing a session, which is the
process of setting up a connection over which a dialog between two
applications or processes can occur. Some of the functions that the session
layer provides for are flow control, establishment of synchronization points
for checks and recovery during file transfer, full-duplex and half-duplex
dialogs between processes, and aborts and restarts.

■ The transport layer isolates some of the physical and functional aspects of a
network from the upper three layers. It provides for end-to-end
accountability, ensuring that all packets of data sent across the network are
received and in the correct order. This is the process that is referred to as
reliable delivery of data, and it involves providing a means of identifying
packet loss and supplying a retransmission mechanism. The transport layer
may also provide connection and session management services.

■ The network layer specifies the network routing of data packets between
nodes and the communications between networks, which is referred to as
internetworking.

■ The data-link layer and the physical layer provide for connectivity. The
communication between networked systems can be via a physical cable
made of wire or optical fiber, or it can be via infrared or microwave
transmission. In addition to these, the hardware can include a network
interface controller (NIC), if one is used. The hardware or transport media
and the device drivers for the hardware comprise the physical layer.

The physical hardware provides nodes on a network with a shared data
transmission medium called a data link. The data-link layer includes both a
protocol that specifies the physical aspects of the data link, and the
link-access protocol, which handles the logistics of sending the data packet
over the transport medium.

C H A P T E R 1

Introduction to Open Transport

1-12 About Networking With Open Transport

Draft.  Apple Computer, Inc. 4/30/96

About Networking With Open Transport 1

Networking on the Macintosh is implemented through the Open Transport
system software. The Open Transport software provides an API that gives you
access to the services of the various protocols. The functions you use depend
not on the specific protocol you want to use, but on whether the protocol is
connection-oriented or connectionless, and whether it is transaction-based or
transactionless.

This section describes the architecture of Open Transport and discusses some
basic Open Transport features and concepts.

Open Transport Architecture 1

The Open Transport system software consists of a set of application interface
and utility routines (known collectively as the Open Transport API), a set of
software modules that implement networking protocols and other services,
and hardware drivers. Below the hardware drivers are networking and
communications hardware: cards, cables, and built-in ports. These components
are illustrated in Figure 1-2 and discussed further in the following sections.

C H A P T E R 1

Introduction to Open Transport

About Networking With Open Transport 1-13
Draft.  Apple Computer, Inc. 4/30/96

Figure 1-2 The basic architecture of Open Transport

Application

Open Transport API

Software

modules

Software

modules

Software

modules

Software

modules

Software

modules

Software

modules

Software

modules

Software

modules

Software

modules

DriversDriversDrivers

Communication hardware

Data transport media

C H A P T E R 1

Introduction to Open Transport

1-14 About Networking With Open Transport

Draft.  Apple Computer, Inc. 4/30/96

Open Transport API 1

The Open Transport API consists of two types of functions: utility functions,
which are implemented in header files and software libraries; and interface
functions, which are implemented by the underlying software modules.
Because the interface functions are executed by the software modules, the same
function might operate somewhat differently depending on the specific module
or modules that executes it. Where such dependencies exist, they are described
in the chapter describing a particular protocol.

The Open Transport API is a superset of a standard API defined by the X/Open
Company, Ltd. The X/Open API is called the X/Open Transport Interface, or
XTI. Both XTI and Open Transport are designed to be independent of the
underlying data transport provider; for example, you use the same functions to
send a packet of data whether the packet is being transferred by DDP over an
AppleTalk network or IP over Ethernet. Whereas XTI specifies functions only
for connectionless and connection-oriented protocols, Open Transport also
includes functions for transactionless and transaction-based protocols.

The set of functions you use and the sequence of functions you call depends on
the operation you want to perform and whether the protocol you want to use is
connectionless or connection-oriented, transactionless or transaction-based.

In accordance with XTI, the Open Transport API supports protocol options. An
option is a value of interest to a specific protocol. For example, an option might
enable or disable checksums or specify the priority of a datagram. The
available options and their significance are defined by each implementation of
each protocol. Every option has a default value, and you can almost always use
the default values and not specify any options. It is important to note that,
because each option is protocol dependent, specifying a nondefault value for
an option decreases or eliminates the transport independence of your
application. Protocol options are described throughout this book with the
protocol to which they apply. Option handling is described in the chapter
“Option Management” in this book.

The XTI specification defines a number of asynchronous events that indicate
occurrences such as the arrival of data. Open Transport includes all the
standard events defined by XTI, additional asynchronous events, plus
completion events that individual functions issue when they complete
asynchronous execution. You can poll for asynchronous events, but you cannot

C H A P T E R 1

Introduction to Open Transport

About Networking With Open Transport 1-15
Draft.  Apple Computer, Inc. 4/30/96

poll for completion events. The preferred method for handling all Open
Transport events is to write an event-handling callback function, called a
notifier function. Open Transport event handling and notifier functions are
described in detail in the chapter “Providers” in this book.

Software Modules 1

The software modules shown in Figure 1-2 on page 1-13 are implemented as
Streams modules. The Streams architecture is a UNIX® standard in which
protocols (and other service providers) are implemented as software modules
that communicate between each other using messages. Open Transport
conforms to the Transport Provider Interface (TPI) and Data Link Provider
Interface (DLPI) standards, which describe the content and ordering of the
messages between modules. In a Streams environment, all modules have the
following attributes:

■ They process messages asynchronously. One module can send a message to
another module and then wait for a reply without interfering with any other
system activity.

■ They (that is, all the Open Transport Streams modules) share a single
address space.

■ They may never block; that is, if a module can’t complete an operation, it
must return with an error rather than indefinitely holding up processing.

Note that Figure 1-2 on page 1-13 shows a very simplified version of the actual
Streams architecture. A full AppleTalk or TCP/IP protocol stack has a
half-dozen modules that are interconnected.

You can write your own Streams modules to work with Open Transport. The
Open Transport TCP/IP software modules are based on the UNIX Streams
standard. For more information about Streams, see UNIX System V Release 4:
Programmer’s Guide: STREAMS.

Drivers and Hardware 1

The Open Transport Streams modules communicate with hardware drivers,
which in turn control the flow of data through communications cards or
built-in ports. Normally, the user selects which card or port to use through the
Chooser. Your application can use the default port for a particular protocol or
can configure Open Transport to use a specific port.

C H A P T E R 1

Introduction to Open Transport

1-16 About Networking With Open Transport

Draft.  Apple Computer, Inc. 4/30/96

Open Transport supports multihoming; that is, an individual node can have
more than one hardware device (ports or cards) for a given type of transport.
For example, a single computer can have two Ethernet cards, and the user can
select which card to use.

Providers, Endpoints, and Mappers 1

The concept of a provider is central to an understanding of Open Transport. A
provider is a set of software modules and drivers that provides a service to
clients of Open Transport. For example, when you open an ADSP connection,
Open Transport logically links a set of AppleTalk software modules, a
communications driver, and a card or port to create what is known as an ADSP
endpoint provider. The Open Transport software modules implement the Open
Transport API, which includes functions for three types of providers:

■ endpoint providers

■ mapper providers

■ service providers

You use an endpoint provider to send and receive information over a data link.
Figure 1-3 illustrates an ASP endpoint provider.

C H A P T E R 1

Introduction to Open Transport

About Networking With Open Transport 1-17
Draft.  Apple Computer, Inc. 4/30/96

Figure 1-3 An Open Transport Provider

Application

Open Transport API

ASP

ATP

Provider

IP

Ethernet

driver

Ethernet card

Ethernet cable

C H A P T E R 1

Introduction to Open Transport

1-18 About Networking With Open Transport

Draft.  Apple Computer, Inc. 4/30/96

In order to use an endpoint provider, you must first configure and open an
endpoint. An endpoint consists of a set of data structures, maintained by Open
Transport, that specify the components of the endpoint provider, and the
manner in which that provider is to operate (blocking or nonblocking,
synchronous or asynchronous, and so forth). An endpoint also maintains state
information and other information that Open Transport needs in order to
operate that provider.

The Open Transport endpoint functions provide an application programming
interface (API) to endpoint providers. When you configure an Open Transport
endpoint, you specify which protocol or set of protocols the provider is to use;
the highest-level protocol you specify for the endpoint provider determines
whether the transport mechanism is connectionless or connection-oriented, and
whether it is transactionless or transaction-based. For example, if you specify
ADSP as the highest-level protocol in the endpoint provider, the transport is
connection-oriented and transactionless.

See “Endpoints and Protocol Layering” on page 1-21 for more information on
the configuration of endpoint providers.

You use a mapper provider to relate network addresses to network node
names and to register and remove node names for networks that support this
ability. To use a mapper provider, you must configure and open a mapper, a set
of data structures that store information about the mapper provider for use by
Open Transport.

Mappers implement a standard interface for dealing with addresses. In order
to receive data over a network, a process must have a network address.
Whereas an address is typically a number of significance to the network
software, it is much easier for people using the network to refer to each
addressable entity by some name. Consequently, most networks include some
naming scheme and a facility that converts between names and addresses. A
process using an AppleTalk network must register its name on the network
using the Name-Binding Protocol (NBP), which it accesses through a mapper
provider.

You use service providers to handle features unique to a specific type of Open
Transport service. There is no special term used to refer to the data structures
maintained by Open Transport for a service provider analogous to an endpoint
or mapper.

C H A P T E R 1

Introduction to Open Transport

About Networking With Open Transport 1-19
Draft.  Apple Computer, Inc. 4/30/96

Because the concept of zones is not common to all protocol families, the
AppleTalk service provider API includes functions that deal with AppleTalk
zones. Similarly, the TCP/IP Domain Service Resolver (DNR) provides some
services specific to the TCP/IP protocol family. The TCP/IP service provider
functions provide an interface to the DNR.

Each provider supports some subset of the standard Open Transport functions,
depending on the nature of that provider; for example, an endpoint provider
implements different functions than a mapper provider. What’s more, a
connection-oriented transactionless endpoint provider implements different
functions than a connectionless transaction-based endpoint provider.

Open Transport provides some functions that you can use to control the way a
given endpoint or mapper provider operates. For example, you can control
whether a provider executes functions synchronously or asynchronously.

When you open an endpoint, mapper, or service , the open function returns a
provider reference, analogous to the file reference you get from the File
Manager when you open a file. You must specify that provider reference
whenever you want to execute a function related to that endpoint, mapper, or
service. For example, to send data, you specify the provider reference for the
endpoint you want to use.

C H A P T E R 1

Introduction to Open Transport

1-20 About Networking With Open Transport

Draft.  Apple Computer, Inc. 4/30/96

C++ note

The C++ API for Open Transport includes a class called
TProvider that is the superclass for all provider-related
member functions. Endpoint functions are in class
TEndpoint, mapper functions are in class TMapper, and
service provider functions are in classes corresponding to
specific protocol stacks. For example, the classes
TAppleTalkServices and TInternetServices contain
AppleTalk-specific and TCP/IP-specific member functions.

In object-oriented programming parlance, endpoints,
mappers, and the data structures maintained by Open
Transport for service providers are all objects. An
endpoint, for example, is an object instantiating the class
TEndpoint. An endpoint contains all the data that Open
Transport needs to link together software modules,
drivers, and hardware for a specific endpoint provider. All
of the Open Transport API functions except the functions
that open providers and some utility functions are
included in the class definitions of the various classes of
providers.

You can call public member functions of the TProvider
class for provider objects of any type: these functions are
the general provider functions. Public member functions
defined in a subclass of the TProvider class (for example,
TEndpoint) can be called only for providers belonging to
that subclass—in this example, only from the TEndpoint
subclass. These functions are the type-specific provider
functions. Note that, like endpoints and mappers, each
kind of service (for AppleTalk, TCP/IP, and so on) derives
directly from the TProvider class; there is no common class
of services. ◆

Transport Independence 1

In contrast to earlier application programming interfaces (APIs) for AppleTalk,
in which each protocol had a separate and unique set of routines, Open
Transport provides a single set of functions that you can use with any protocol
or protocol family. The type of endpoint you open (connectionless or
connection-oriented, and transactionless or transaction-based) determines

C H A P T E R 1

Introduction to Open Transport

About Networking With Open Transport 1-21
Draft.  Apple Computer, Inc. 4/30/96

which functions you call to send and receive data, independent of the specific
protocol or protocol family you use.

For example, if you open a connectionless, transactionless endpoint, you use
the OTSndUData function to send data. You use this function whether you are
using DDP, IP, or UDP. If you open a connection-oriented, transactionless
endpoint, on the other hand, you first establish a connection using the
OTConnect and OTRcvConnect functions, and then use the OTSnd function to send
data. You use these same functions whether you are using TCP, ADSP, or any
other Open Transport connection-oriented, transactionless protocol.

You can customize most Open Transport protocols by the specification of
option values. Because options are both protocol dependent and
implementation dependent, the use of any option values other than the
defaults makes your code less transport independent and less portable. Unless
you have a compelling reason to change an option value, don’t specify any
options. You can almost always use the default values provided by Open
Transport.

Although transport independence means that you can use the same API
regardless of the protocol or communcations hardware you want to use, it does
not free you from all knowledge of the transport type. When you open an
endpoint, you must specify the highest-level protocol in the endpoint provider,
and you must call the functions appropriate to the type of that protocol. For
example, although your application can use the same set of functions to send
data through either an ADSP or a TCP connection (that is, functions for a
connection-based transactionless protocol), you must specify which of these
protocols you want to use use when you open the endpoint. Furthermore, to
send data using ASP, you must use a different set of functions—for a
connection-oriented transaction-based protocol.

Endpoints and Protocol Layering 1

When you configure an Open Transport endpoint, you specify the highest-level
protocol to be used by that endpoint provider. Optionally, you can specify
other protocols and ports to be included in the endpoint provider. For example,
if you specify only ADSP, Open Transport uses the default underlying protocol
for ADSP, which is DDP, over the default AppleTalk port. However, you can
specify that ADSP is to use a specific Ethernet card as the port. The endpoint
provider consists of the software modules, drivers, and card or internal port
that are linked together to provide the service. The services provided by an
endpoint provider are an aggregate of the services performed by all the

C H A P T E R 1

Introduction to Open Transport

1-22 Deciding Which Protocol to Use

Draft.  Apple Computer, Inc. 4/30/96

software modules and hardware pieces that make up the provider. For
example, if you specify ADSP to run over DDP through an Ethernet card, you
get a session opened and maintained by ADSP, with data encapsulated in DDP
packets, converted into digital electronic impulses by the Ethernet card, and
transmitted to a DDP address over an Ethernet cable.

Because the type of endpoint you open depends only on the highest-level
protocol in the endpoint provider, protocol layering does not affect the
transport independence of Open Transport. That is, you use the same functions
to open and maintain a connection and to send messages whether you are
using ADSP over DDP through Ethernet, or TCP over IP through token ring.

Deciding Which Protocol to Use 1

Each of the networking protocols available with Open Transport implements a
different set of services. This section provides a brief discussion of the uses of
each of the protocols included with the Open Transport system software on the
Macintosh computer. If you have Open Transport software modules provided
by other vendors than Apple Computer, Inc., you should refer to the
documentation that came with that software to determine its use.

If you have made provision for the user to select the protocol to be used for
communication, you do not need the information in this section. On the other
hand, if you are writing an application to perform a specific function, such as to
act as a data server, then your choice of protocol or protocols to use depends
primarily on your application’s needs. In that case, before you open an
endpoint, you must make several decisions:

■ General purpose or special purpose

■ Choice of protocol family

■ High-level or low-level protocol

■ Connection-oriented or connectionless

■ Transaction-based or transactionless

This section discusses each of these choices in turn.

C H A P T E R 1

Introduction to Open Transport

Deciding Which Protocol to Use 1-23
Draft.  Apple Computer, Inc. 4/30/96

General Purpose or Special Purpose 1

Your choice of protocol is very simple if there is only one protocol that
performs the function you are interested in. For example, if you want to send a
print job directly to an AppleTalk printer, you must use the ter Access Protocol
(PAP); there is no other choice. On the other hand, if you want to transfer data
of a general nature, there are many protocols that can do the job. The following
sections describe the factors you can take into consideration to choose among
those protocols.

Choice of Protocol Family 1

There are two sets of protocols, or protocol families, included with the Open
Transport system software: AppleTalk and TCP/IP. In addition, other
developers can provide protocols and protocol families compatible with Open
Transport. You must decide which protocol family to use for a specific purpose.
For information on the use of other protocols, see the documentation that came
with the software.

AppleTalk is the proprietary networking technology of Apple Computer, Inc.
Every Macintosh computer that has ever been made includes AppleTalk
hardware and system software. If your application needs to communicate with
other Macintosh computers, AppleTalk is a natural choice. Note that the other
computers need not be running Open Transport; the nodes must be running
the same protocol, but need not be using the same implementation of the
protocol.

TCP/IP, on the other hand, is the standard protocol family used by the
Worldwide Internet and by many networks owned by businesses and other
organizations. Many networking applications running on Macintosh
computers that are not using Open Transport cannot communicate over TCP/
IP networks. However, if you wish to communicate with the Worldwide
Internet without going through a gateway, or if you want to connect to a
network that uses TCP/IP protocols, choose one of the Open Transport TCP/IP
protocols.

High-Level or Low-Level Protocol 1

Figure 1-1 on page 1-10 shows the protocols provided by Apple Computer, Inc.
with Open Transport and where they fit in the OSI model. The UDP protocol,
which is part of the TCP/IP protocol family, is a connectionless transactionless

C H A P T E R 1

Introduction to Open Transport

1-24 Deciding Which Protocol to Use

Draft.  Apple Computer, Inc. 4/30/96

protocol that provides a minimal amount of error detection in the form of a
checksum calculation. If UDP finds that the checksum calculated at any point
in the routing process does not match the one calculated when the packet was
sent (and stored in the message header), it discards the packet without
informing either the sender or receiver of the event.

The other high-level protocols shown in Figure 1-1 provide error checking and
error recovery services, including checking for correct packet sequence and
retransmission of lost or damaged packets.

If you use a high-level protocol that provides for reliable delivery of data and
error recovery, you need not implement these services yourself. On the other
hand, these protocols generate somewhat more network traffic than the
lower-level protocols, including handshake and control signals, signals to
maintain sessions, and retransmitted packets.

The network-layer protocols IP and DDP provide best-effort delivery between
nodes on a network. They are connectionless protocols and do not correct for
corruption of data, packet loss, or incorrect packet sequencing. They generate
the least possible amount of network traffic for the data they transmit. These
protocols are appropriate for applications that do not require highly accurate
data transmission and for applications that provide their own error recovery. If
you want to implement your own protocol stack using an AppleTalk or TCP/IP
internet, these are the protocols to use.

Connection-Oriented or Connectionless 1

Connection-oriented protocols ensure reliable delivery of data and do not
require you to repeat the recipient’s address or repeat the connection process
for the duration of the session. Once you have established a connection, the
protocol maintains the connection, informing you if it has closed for any
reason. Because of the reliability of connection-oriented protocols, they are a
good choice whenever you have a lot of data to exchange over a limited period
of time. However, in order to maintain the connection, these protocols
sometimes send control signals, which result in increased network traffic.

Open Transport AppleTalk offers three connection-oriented protocols: ADSP,
ASP, and PAP. ADSP is a full-duplex transactionless protocol, well suited to the
transfer of large amounts of data. ADSP also includes features that let you
authenticate the identity of the party at the other end of the connection and
send encrypted data, which is then decrypted at the other end. The
authentication and encryption features of ADSP are referred to as AppleTalk
Secure Data Stream Protocol (ASDSP).

C H A P T E R 1

Introduction to Open Transport

Deciding Which Protocol to Use 1-25
Draft.  Apple Computer, Inc. 4/30/96

ASP is a transaction-based protocol, best used to implement workstation
applications that require an asymmetrical dialog with a server. ASP provides
for the setting up, maintaining, and closing down of a session between a
workstation and a server. ASP is a client of ATP.

PAP is a transactionless session-layer protocol and a client of ATP. It is intended
primarily for communication with Apple Computer’s printer products.

Open Transport TCP/IP provides one connection-oriented protocol, TCP,
which is a transactionless protocol. TCP, like ADSP, provides highly reliable
data delivery suitable for the transfer of large amounts of data.

Transaction-Based or Transactionless 1

A transaction-based protocol is well suited to many server-client interactions
where the client requests services and there are a limited number of ways in
which the server can respond. File servers and printers are examples of servers
that can use these protocols.

Open Transport AppleTalk includes two transaction-based protocols, ATP
and ASP. ATP is connectionless, and ASP is connection-oriented. ASP is a client
of ATP.

An ATP transaction request must fit in a single packet; however, the response
can contain up to eight packets. ATP transactions are an efficient means of
transporting small amounts of data across the network. ATP provides a reliable
loss-free transport service.

You should use ATP

■ if you want to send a small amount of data

■ if your application requires delivery of all packets

■ if your application can tolerate a minor degree of performance degradation

■ if you do not want to incur the overhead and more extensive performance
degradation involved in maintaining a session

A workstation application that requires a state-dependent service should use
ADSP or ASP instead of ATP. State dependence means that the response to a
request is dependent on a previous request. For example, before a workstation
application connected to a file server can read a file, it must have first issued a
request to open the file. When a dialog is state dependent, all requests must be
delivered in order and duplicate packets must not be sent; ADSP and ASP
provide for this.

C H A P T E R 1

Introduction to Open Transport

1-26 Miscellaneous Events

Draft.  Apple Computer, Inc. 4/30/96

An ATP transaction-based request, such as a workstation application
requesting a server to return the time of day, is independent of other requests
and not state dependent.

The Open Transport system software provide by Apple Computer, Inc. does
not include any transaction-based protocols for the TCP/IP protocol family.

Miscellaneous Events 1

Open Transport AppleTalk maintains a service called the miscellaneous events
service that you can use to ensure that your application is not adversely affected
when an AppleTalk transition occurs. An example of an AppleTalk transition is
an AppleTalk router coming online or a zone name changing. When one of
these events occurs, Open Transport sends a message to the notifier functions
of all endpoints that have registered for reception of miscellaneous events.

Your application can register itself to receive miscellaneous events by using the
OTIoctl function, as described in the chapter “Providers” in this book.

C H A P T E R 2

Contents 2-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Providers

About Providers 2-3
Provider Functions 2-5
Modes of Operation 2-6
Provider Events 2-7

Using Providers 2-8
Controlling a Provider’s Modes of Operation 2-8

Specifying How Provider Functions Execute 2-9
Setting a Provider’s Blocking Status 2-10
Setting a Provider’s Send-Acknowledgment Status 2-10

Sending and Receiving Data 2-11
Using Notifier Functions to Handle Provider Events 2-13
Transferring a Provider’s Ownership 2-16
Closing a Provider 2-17

Providers Reference 2-17
Constants and Data Types 2-17

Event Codes 2-17
The TNetbuf Structure 2-23

Functions 2-24
Opening and Closing Providers 2-24

OTTransferProviderOwnership 2-25
OTWhoAmI 2-26
OTCloseProvider 2-27

Controlling a Provider’s Mode of Operation 2-28
OTSetSynchronous 2-29
OTSetAsynchronous 2-30
OTIsSynchronous 2-31
OTCancelSynchronousCalls 2-32

C H A P T E R 2

2-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

OTSetBlocking 2-33
OTSetNonBlocking 2-34
OTIsNonBlocking 2-35
OTAckSends 2-36
OTDontAckSends 2-38
OTIsAckingSends 2-39

Installing and Removing a Notifier Function 2-40
OTInstallNotifier 2-40
OTRemoveNotifier 2-42

Sending Module-Specific Commands 2-43
OTIoctl 2-43

Application-Defined Functions 2-45
MyNotifierCallbackFunction 2-45

C H A P T E R 2

About Providers 2-3
Draft.  Apple Computer, Inc. 4/30/96

Providers 2

This chapter describes providers, software entities that offer data-oriented
services, and introduces the main types of providers. It also discusses the use of
general provider functions, which you can use with any provider regardless of
its type. You use these functions to

■ open and close providers

■ set a provider’s mode of operation

■ cancel synchronous processing

■ issue a command directly to a Streams module underlying a provider

Later chapters in this book describe each type of provider in detail. Although
the functions you use to open providers are general provider functions, they
are included in the chapter describing individual providers. This chapter
describes only the function you use to close a provider because you use the
same function for all types of providers.

Before you read this chapter, you should read the chapter “Introduction to
Open Transport” in this book. After reading this chapter, you can either read
the chapter describing the provider whose services you are interested in. In
order to use the functions described in this chapter, you must first use the
OTInitOpenTransport function to initialize Open Transport. This function is
described in the chapter “Configuration Management” in this book.

About Providers 2

A provider is a layered set of protocols, implemented by Streams modules, that
provides some kind of data-oriented service. That service might be
implementing a networking protocol, encrypting data, filtering data, and so on.
When you configure a provider, you can layer the modules that implement the
provider to create an arbitrarily complex service for client applications. For
example, you can place an encryption module above the AppleTalk Data
Stream Protocol (ADSP) module, which is placed above an EtherTalk module.
This combination would provide a networking stream of data that was secure
from snooping on the network.

C H A P T E R 2

Providers

2-4 About Providers

Draft.  Apple Computer, Inc. 4/30/96

Open Transport defines three main kinds of providers:

■ endpoint providers

■ mapper providers

■ service providers

An endpoint provider offers a service that creates connections and moves data
from one logical address to another. A mapper provider offers services that
you use to associate, or “map,” network entity names with network addresses.
A service provider lets you perform tasks that are specific to a particular
protocol, such as AppleTalk or TCP/IP. There is one type of service provider
for each protocol family that Open Transport supports.

In the normal course of events you do not communicate directly with the
Streams modules that make up a provider. For example, to use the services of
an endpoint provider, you must open an endpoint and use the functions
defined in the Open Transport application programming interface (API) for
endpoints. The Open Transport API shields your application from the details of
the provider implementation, allowing your application to run with little or no
change, even when the implementation of the provider is changed, updated, or
moved from one platform to another.

To use the services offered by a provider, you must initialize Open Transport
and then call the function that opens the provider. When that function returns,
it passes back to you a reference to the provider you have just created. A
provider reference is like a file handle or a driver reference number. It
associates a function called from your application with a specific provider that
must implement the function; you pass the provider reference as a parameter
to all provider functions. The data type of a provider reference depends on the
type of the provider (endpoint reference, mapper reference, AppleTalk service
reference, and so on).

You can open one provider or many. For example, a server application might
open many providers and use them concurrently. The number of providers you
can create is limited mainly by the availability of system resources, such as
memory. The memory used to create a provider comes partly from your
application heap (approximately 8 bytes) but mostly from the system heap. If
you allocate data structures while using a provider, the memory for the data
structures is allocated entirely from your application heap.

C H A P T E R 2

Providers

About Providers 2-5
Draft.  Apple Computer, Inc. 4/30/96

C++ Note
Providers are objects, and each main type of provider is a class.
Specifically, endpoints, mappers, and the service providers are
all subclasses of the TProvider class. Each type of object has a
defined C++ interface. ◆

Provider Functions 2

Functions that manipulate providers are known as provider functions. Some
provider functions can manipulate providers of any type. These are called
general provider functions and they are documented in the reference section
of this chapter. You use general provider functions to

■ get or set a provider’s default mode of operation, which determines
whether provider functions execute synchronously or asynchronously,
whether a provider can wait to send or receive data, and whether functions
that send data acknowledge having sent the data.

■ install and remove a notifier callback function, which the provider uses to
pass information to your application

■ send a module-specific command, which allows you to communicate
directly with the Streams modules that make up your provider

■ close a provider

In addition to the general provider functions, each type of provider has
type-specific provider functions; these functions work with only that particular
type of provider. For example, endpoint functions work only with endpoint
providers, and mapper functions work only with mapper providers. Each kind
of service provider (for AppleTalk, TCP/IP, and so on) has its own type-specific
provider functions. There are no type-specific provider functions that work
with more than one type of service provider.

Provider functions that accept a provider reference of type ProviderRef are
general: they accept any other type of provider reference as well. But functions
that require a type of provider reference other than ProviderRef (for example,
EndpointRef) are type-specific: they accept only that type of provider reference.

C H A P T E R 2

Providers

2-6 About Providers

Draft.  Apple Computer, Inc. 4/30/96

C++ Note
You can call public member functions of the TProvider
class from any provider: these functions are the general
provider functions. Public member functions defined in a
subclass of the TProvider class (for example, TEndpoint) can
be called only from providers belonging to that subclass
(in this example, only from the TEndpoint subclass): these
are the type-specific provider functions. Note that, like
endpoints and mappers, each kind of service provider (for
AppleTalk, TCP/IP, and so on) derives directly from the
TProvider class; there is no common class of service
providers. ◆

You cannot call most provider functions or other Open Transport functions at
interrupt time. You cannot include these functions in any interrupt routine
from an external device, VBL task, Time Manager task, or Deferred Task
Manager task. You can only call these functions at system task time (primary
interrupt level) or at deferred task time (secondary interrupt level) scheduled
by the Open Transport function OTScheduleDeferredTask. For more information
and a list of those functions you can call from an interrupt, see the chapter
“Process Management” in this book.

Modes of Operation 2

For each provider, you can use general provider functions to specify

■ how provider functions execute

In synchronous mode, provider functions return only when they complete
execution. In asynchronous mode, they return as soon as they are queued
for execution. Applications running under an operating system that does not
use threads, can avoid awkward delays and generally improve performance
by calling functions asynchronously.

■ the provider’s blocking status

A provider’s blocking status affects how functions that send and receive
data behave when they must wait to complete an operation. If a provider is
blocking, it waits for as long as it takes to send or receive data. If a provider
is nonblocking, the provider attempts to send or receive data and, if it
cannot do so immediately, it returns with a result indicating why it could not
complete the operation.

C H A P T E R 2

Providers

About Providers 2-7
Draft.  Apple Computer, Inc. 4/30/96

■ the provider’s send-acknowledgment status

A provider’s send-acknowledgment status determines whether endpoint
functions that send data make an internal copy of the data before sending it
and whether they advise the provider when the data has actually been sent.
Open Transport ignores the send-acknowledgment status for mapper,
AppleTalk Services, and TCP/IP providers.

For more information about how you use general provider functions to control
a provider’s mode of operation, see the section “Controlling a Provider’s
Modes of Operation” on page 2-8.

Provider Events 2

Open Transport defines two kinds of events called provider events. These
events are unique to the Open Transport architecture and not events in the
usual Macintosh sense: they are not processed by the Event Manager, and they
have no associated event record. Rather, Open Transport uses provider events
to inform your application that something has occurred which demands your
immediate attention or to signal the fact that a function executing in
asynchronous mode has completed. The first kind of event is called an
asynchronous event; the second kind of event is called a completion event. In
this book, the term event refers to a provider event, except where noted
otherwise.

A provider uses asynchronous events to notify your application that data has
arrived or that a request for a connection or disconnection is pending. Most
asynchronous events defined for Open Transport have equivalents in the X/
Open Transport Interface (XTI), from which the Open Transport interface
derives. XTI does not define completion events. As just mentioned, a provider
uses completion events to notify your application that an asynchronous
function has finished executing. Some functions are inherently synchronous
and have no corresponding completion event. For example, if an endpoint
provider is in asynchronous mode and you execute the OTGetEndpointState
function, the function returns information about the state of the endpoint
immediately. The description of a function indicates whether the function
behaves differently in asynchronous mode.

A provider event is identified by a provider event code. These are listed and
described in the event codes enumeration beginning on page 2-17. All provider
event codes begin with the prefix T_, as in T_DATA. Provider event codes for
completion events end in the suffix COMPLETE, as in T_BINDCOMPLETE. Codes for
asynchronous events have no uniform suffix.

C H A P T E R 2

Providers

2-8 Using Providers

Draft.  Apple Computer, Inc. 4/30/96

In general, to receive notice of provider events, you must provide a notifier
function and install it for the provider. A notifier function is a function that
you write and that the provider can call when an event occurs. When the
provider calls this function, it uses the function’s parameters to pass back
information about the event that occurred, and if this is a completion event, it
also passes back additional information about the result of the function that
completed and a pointer to any other information passed back by the function.
The section “Using Notifier Functions to Handle Provider Events,” beginning
on page 2-13 provides additional information about notifier functions and the
issues involved in asynchronous processing. You can also refer to
“Application-Defined Functions,” beginning on page 2-45 for a description of
the notifier function.

Using Providers 2

This section explains how you obtain and change a provider’s mode of
operation, it introduces the TNetBuf structure, which is universally used in
Open Transport to transfer data, it provides more detailed discussion of
asynchronous processing and the use of notifier functions, and it explains how
you close a provider.

In addition to the functions used to set a provider’s mode of operation and to
close a provider, general provider functions include the OTIoctl function,
which you can use to communicate directly with a Streams module
implementing a networking protocol. For more information, see the description
of the function in the reference section to this chapter.

Controlling a Provider’s Modes of Operation 2

A provider’s mode of operation determines how provider functions execute
and determines the behavior of provider functions that send and receive data.
You can control a provider’s mode of operation by calling general provider
functions to specify whether provider functions execute synchronously or
asynchronously, whether provider functions can block, and whether they can
acknowledge sends. The following three sections provide additional
information about how you can obtain a provider’s current mode of operation
and how you can change it.

C H A P T E R 2

Providers

Using Providers 2-9
Draft.  Apple Computer, Inc. 4/30/96

Specifying How Provider Functions Execute 2

For each provider, you can control whether provider functions run
synchronously or asynchronously. When you open a provider, you set its
default mode of execution. For example, when you open an endpoint provider,
you can use either the function OTOpenEndpoint or OTAsyncOpenEndpoint. If you
open an endpoint provider using the OTAsyncOpenEndpoint function, Open
Transport creates the provider and sets the default execution mode for all the
provider’s functions to asynchronous.

A provider’s default mode of execution remains in effect until you change it by
calling either the OTSetSynchronous function or the OTSetAsynchronous function.
The new mode remains in effect until you change the mode again. A provider’s
mode of execution affects only that provider. If you use two or more providers,
they need not operate in the same mode.

In general, you should use providers in asynchronous mode. Although you can
call all of a provider’s functions synchronously, doing so generally results in a
poor user experience because the user’s system can do nothing else while a
function is executing. This is especially likely to happen when heavy network
traffic prevents a function that is sending or receiving data from completing.
However, asynchronous processing does require some additional work: you
must make sure that memory you have allocated for a function’s output
parameters is persistent and you must use some sort of mechanism to
determine when the function has actually completed. These issues are taken up
in the section “Using Notifier Functions to Handle Provider Events,” beginning
on page 2-13.

If you plan to call provider functions in synchronous mode, you should avoid
doing so when you don’t know how long it might take for a function to
complete or when the function is being called from a function that executes at
interrupt time.

The return behavior of certain provider functions is controlled not only by a
provider’s mode of execution but also by the provider’s blocking status,
described in the following section. Changing a provider’s mode of execution
does not change its blocking status.

C H A P T E R 2

Providers

2-10 Using Providers

Draft.  Apple Computer, Inc. 4/30/96

Setting a Provider’s Blocking Status 2

A newly created provider does not block, regardless of which Open Transport
function created it. After a provider is created, you can change its blocking
status as often as you like. A provider’s blocking status affects only that
provider.

■ You use the OTSetBlocking function to set a provider’s mode of operation
to blocking.

■ You use the OTSetNonBlocking function to set a provider’s mode of operation
to nonblocking.

■ You use the OTIsNonBlocking function to determine whether a
provider blocks.

If a provider is nonblocking, provider functions that cannot complete send or
receive operations return an error indicating why the operation could not
complete. The result returned might be

■ kEAGAINErr or kEWOULDBLOCKErr, indicating that the function would have to be
queued before it could execute

■ kOTNoDataErr, indicating that data has not yet arrived

■ kOTFlowErr, indicating that network traffic is too heavy to allow immediate
execution

In all these cases, you should call the function again.

Setting a Provider’s Send-Acknowledgment Status 2

You can control the behavior of provider functions that send data by specifying
that a provider acknowledge sends. For now, you can only specify that
endpoint providers acknowledge sends.

By default, providers do not acknowledge sends. This means that when you
use a function that sends data, the provider copies the data into an internal
buffer and then sends the data. Once the provider has copied the data into its
own buffer, it releases the buffer you have allocated for the data. As soon as the
function returns, you can change the contents of your buffer—even if the
provider has not yet sent the data it copied.

If you use the OTAckSends function to specify that the endpoint provider
acknowledge sends and you call a function that sends data, the endpoint
provider does not copy data from your buffer before sending it. Instead it reads

C H A P T E R 2

Providers

Using Providers 2-11
Draft.  Apple Computer, Inc. 4/30/96

data directly from your buffer while sending. For this reason, you must not
change the contents of your buffer until the endpoint provider is no longer
using it. Sometimes, particularly if the endpoint is in blocking mode, a send
operation can be delayed. The provider lets you know that it has finished using
the buffer by calling your notifier function and passing T_MEMORYRELEASED for
the code parameter, a pointer to the buffer that was sent in the cookie
parameter, and the size of the buffer in the result parameter.

Only endpoint provider functions are affected by your calling the OTAckSends
and OTDontAckSends functions. For additional information, see the discussion of
an endpoint’s mode of operation in the chapter “Endpoints” in this book.

Sending and Receiving Data 2

Most provider functions that transfer data pass a parameter of type TNetbuf
that specifies the size and location of user data. Such data is usually an address,
option information, or actual data that you want to transfer. You can think of
the TNetbuf structure as Open Transport’s universal bucket, used to hold and
pass on different kinds of information. Figure 2-1 shows how the TNetbuf
structure refers to data in memory.

C H A P T E R 2

Providers

2-12 Using Providers

Draft.  Apple Computer, Inc. 4/30/96

Figure 2-1 The TNetbuf structure

The structure is composed of three fields: the buf field, the len field, and the
maxlen field. The buf field contains the beginning address of the data; the len
field specifies the size of the data; and the maxlen field specifies the maximum
size the data could take up. How you use this structure depends on whether
the structure specifies an input or output parameter:

■ If you are sending information (the structure is used to specify an input
parameter), you must allocate a buffer and initialize it to contain the data
you want to send. Then you must set the buf field to point to the buffer and
set the len field to specify the size of the data.

■ If you are receiving information (the structure is used to specify an output
parameter), you must allocate a buffer into which the function can place the
information when it returns. Then you must set the buf field to point to the
buffer and set the maxlen field to specify the maximum size of the data that
could be placed in the buffer. When the function returns, it sets the len field
to the actual size of the data.

If you are using an endpoint provider, Open Transport also allows you to send
noncontiguous data. If you need to do this, you use an OTData structure to

ADSP

NBPATP

ZIP PAP

Standard link-access Streams modules

Ethernet

Token ring

FDDI

LocalTalk

DDP

Session

Transport

Network

Data-link

Physical

C H A P T E R 2

Providers

Using Providers 2-13
Draft.  Apple Computer, Inc. 4/30/96

specify the size and location of the data. For more information, see the chapter
“Endpoints” in this book.

If you want to do a no-copy receive (that is, to receive data without doing the
usual extra buffer copying involved in receiving data), you use a special
OTBuffer structure that specifies the size and location of the data. For more
information, see the chapter “Endpoints” in this book.

Using Notifier Functions to Handle Provider Events 2

When provider functions execute asynchronously, you can continue processing
without having to wait for a function to complete execution. In some cases, you
might need to know when the function has finished executing, either because
further processing depends on the results of that operation or because you
need to use memory you have allocated for that function. In order to meet this
need, the Open Transport architecture defines completion events, which are
generated by a provider when an asynchronous function completes execution.
To pass the event to your application as well as other information about the
function that has completed, the provider calls a notifier function, that you
have written and installed for that provider. The provider uses the notifier’s
parameters to pass the following information back to your application:

■ an event code identifying the function that has completed

■ the function result

■ a pointer to additional information that the function is returning

This parameter is called the cookie parameter. For example, when you call a
function that assigns an address to an endpoint, you can request a particular
address. When the function returns, it passes back the address that is
actually assigned to the endpoint. If you call the function asynchronously,
this information is referenced by the cookie parameter.

■ a context pointer for your use

You define this pointer when you install the notifier function. When the
provider calls the notifier, it passes this pointer back to you.

If you open a provider in asynchronous mode, you install a notifier function by
passing a pointer to it in one of the parameters to the function used to open the
provider. If you open a provider in synchronous mode, you must call the
OTInstallNotifier function to install the notifier. To remove a notifier, call the
OTRemoveNotifier function. If you want to change notifiers, you must call the

C H A P T E R 2

Providers

2-14 Using Providers

Draft.  Apple Computer, Inc. 4/30/96

OTRemoveNotifier function to remove the old notifier, and then call the
OTInstallNotifier function to install the new notifier.

You are responsible for the contents of a notifier function. Typically, such a
function tests to see whether the function that just completed has returned an
error. If it has not, it uses a switch statement to transfer control to different
subroutines, depending on the event code passed to the notifier. Listing 2-1
shows the skeleton of a notifier function used to handle events for an endpoint
that is being used to accept connection requests. As you can see, the notifier
does not need to handle every completion event, just those that you expect to
happen and that have meaning for the provider you are opening. For a more
detailed discussion of this code fragment, see the section describing
connection-oriented endpoints in the chapter “Endpoints” in this book.

You can use a notifier function to handle asynchronous events as well as
completion events. A provider uses asynchronous events to inform your
application that data has arrived or that a connection or disconnection request
is pending. Endpoint providers have the option of using an endpoint provider
function to poll for these events, but all other providers must use the notifier
function to respond to asynchronous events. The method used is the same as
for completion events. You must include case statements in the notifier that are
pertinent to the asynchronous events you expect to receive.

Listing 2-1 A notifier function

pascal void MyConnectorEventHandler(EndpointRef *listenEP,
OTEventCode event, OTResult result, void* cookie)

{

// set the global error result, only if result is negative
if (result < 0)

gOTErr = result;
else

gOTErr = kOTNoError;

switch (event)
{

case T_OPENCOMPLETE:
// set flag that the listener endpoint has
// completed processing

gAsyncProcessActive = false;

C H A P T E R 2

Providers

Using Providers 2-15
Draft.  Apple Computer, Inc. 4/30/96

if (result == kOTNoError)
gListenConnectEP = (EndpointRef)cookie;

break;

case T_BINDCOMPLETE:
break;

case T_LISTEN:
// don't expect to get a connect request on this endpoint

break;
case T_ACCEPTCOMPLETE:

break;
case T_ORDREL:
case T_DISCONNECT:
case T_DISCONNECTCOMPLETE:
// decrement our use counter here

gListenT_LISTENcnt--;
break;

case T_RESET:
break;

default:
break;

}
}

The provider calls your notifier function at deferred task time or at system task
time. This means that the routines called from your notifier

■ must be reentrant

■ cannot move memory

■ can’t depend on validity of handles to unlocked blocks

■ should not perform time-consuming tasks

■ should not be synchronous

■ cannot call Open Transport functions in synchronous mode

The only exception to these rules occurs when you are responding to the event
kOTProviderWillClose. See the event codes enumeration beginning on page 2-17
for additional information.

C H A P T E R 2

Providers

2-16 Using Providers

Draft.  Apple Computer, Inc. 4/30/96

If you execute provider functions asynchronously, you must also take special
care about the duration of the function’s variables. A function that is executed
asynchronously returns immediately, and the stack frame of the function that
called it might be torn down before you have had a chance to retrieve the
information returned in the parameters to the asynchronous function (using
the notifier function’s cookie parameter). If these parameters are local variables
in the calling function, the information passed back by the asynchronous
function is lost. To avoid this situation, you need to write the function that calls
the asynchronous function in such a way that the memory pointed to by
its parameters is not overwritten. For example, you could make these
variables global.

Transferring a Provider’s Ownership 2

Open Transport keeps track of the owner of each provider, and when a client
dies or quits without closing all of its outstanding providers, Open Transport
attempts to close them on behalf of the client. Every shared library, code
resource, or program that creates an endpoint, or uses one of the endpoint
functions that allocate memory on behalf of the client, is a client of Open
Transport. For ASLM shared libraries and applications, Open Transport can
clean up after the library or application easily. For CFM shared libraries,
however, the client must call CloseOpenTransport before terminating (this can be
done by making CloseOpenTransport the termination procedure for the CFM
library).

Although it’s not a frequent occurrence, there may be times when it is not
convenient for you to lose access to a provider. For example, if you are still
using a provider created by a shared library when that shared library is
unloaded or you are still using a provider reference passed by another
application when that application quits, you will find yourself using invalid
references unexpectedly.

In cases where you do not want Open Transport to close a given provider, you
can define yourself as its new owner with the OTTransferProviderOwnership
function (page 2-25). You need to obtain the previous owner’s client ID before
the client terminates, and then pass it to Open Transport along with the
provider reference for the provider. Open Transport allocates a new provider
reference and returns the new reference to you. The old provider reference is
then obsolete and should not be used.

C H A P T E R 2

Providers

Providers Reference 2-17
Draft.  Apple Computer, Inc. 4/30/96

Closing a Provider 2

There are two instances in which you need to close a provider:

■ when you are through using the services offered by a provider

You do this by calling the OTCloseProvider function and passing the provider
reference of the provider you wish to close.

■ in response to a kOTProviderWillClose event

Closing a provider deletes all memory reserved for it in the system heap,
deletes its resources, and cancels any provider functions that are currently
executing. If the provider is in asynchronous mode, it is your responsibility
to make sure that all outstanding functions have completed before you close
the provider.

If you must close the provider in response to a kOTProviderWillClose event,
note that Open Transport issues this event only at system task time. This means
that you can set the endpoint to synchronous mode (from within the notifier
function) and call functions synchronously to do whatever clean up is
necessary before you return from the notifier.

Providers Reference 2

This section describes general provider data types and functions, which you
can use with providers of any type.

Constants and Data Types 2

This section describes the constants and data types that you can use with
general provider functions.

Event Codes 2

Your application can include a notifier function that the provider calls to
inform you that an asynchronous function has completed or that an
asynchronous event has occurred. The provider passes an event code for the
function’s code parameter. The event code specifies the name of the

C H A P T E R 2

Providers

2-18 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

asynchronous function that has completed or the name of an asynchronous
event that has occurred. The provider can also pass information using the
result and cookie parameters to the notifier function. Normally, if the provider
calls your notifier because an asynchronous function has completed, the result
parameter contains the result code for the function and the cookie parameter
contains additional information whose meaning varies with the function called.
For example, if you call the OTAsyncOpenEndpoint function, the cookie parameter
would contain the endpoint reference for the endpoint provider you just
opened.

Most of the codes specified by the event codes enumeration are used by
endpoint providers and relate to the use of endpoint functions. You might need
to read the “Endpoints” chapter in this book to make sense of the following
constant name descriptions.

The constant names that the provider can use for the event code are given by
the following enumeration:

enum {
T_LISTEN = (OTEventCode)0x0001,
T_CONNECT = (OTEventCode)0x0002,
T_DATA = (OTEventCode)0x0004,
T_EXDATA = (OTEventCode)0x0008,
T_DISCONNECT = (OTEventCode)0x0010,
T_ERROR = (OTEventCode)0x0020,
T_UDERR = (OTEventCode)0x0040,
T_ORDREL = (OTEventCode)0x0080,
T_GODATA = (OTEventCode)0x0100,
T_GOEXDATA = (OTEventCode)0x0200,
T_REQUEST = (OTEventCode)0x0400,
T_REPLY = (OTEventCode)0x0800,
T_PASSCON = (OTEventCode)0x1000,
T_RESET = (OTEventCode)0x2000,
T_BINDCOMPLETE = (OTEventCode)0x20000001,
T_UNBINDCOMPLETE = (OTEventCode)0x20000002,
T_ACCEPTCOMPLETE = (OTEventCode)0x20000003,
T_REPLYCOMPLETE = (OTEventCode)0x20000004,
T_DISCONNECTCOMPLETE = (OTEventCode)0x20000005,
T_OPTMGMTCOMPLETE = (OTEventCode)0x20000006,
T_OPENCOMPLETE = (OTEventCode)0x20000007,
T_GETPROTADDRCOMPLETE = (OTEventCode)0x20000008,
T_RESOLVEADDRCOMPLETE = (OTEventCode)0x20000009,

C H A P T E R 2

Providers

Providers Reference 2-19
Draft.  Apple Computer, Inc. 4/30/96

T_GETINFOCOMPLETE = (OTEventCode)0x2000000A,
T_SYNCCOMPLETE = (OTEventCode)0x2000000B,
T_MEMORYRELEASED = (OTEventCode)0x2000000C,
T_REGNAMECOMPLETE = (OTEventCode)0x2000000D,
T_DELNAMECOMPLETE = (OTEventCode)0x2000000E,
T_LKUPNAMECOMPLETE = (OTEventCode)0x2000000F,
T_LKUPNAMERESULT = (OTEventCode)0x20000010,
kOTProviderIsDisconnected = (OTEventCode)0x23000001,
kOTProviderIsReconnected = (OTEventCode)0x23000002.
kOTProviderWillClose = (OTEventCode)0x24000001,
kOTProviderIsClosed = (OTEventCode)0x24000002,
kOTConfigurationChanged = (OTEventCode)0x26000001,

};

Constant descriptions

T_LISTEN A connection request has arrived. Call the OTListen
function to read the request.

T_CONNECT The passive peer has accepted a connection that you
requested using the OTConnect function. Call the
OTRcvConnect function to retrieve any data or option
information that the passive peer has specified when
accepting the function or to retrieve the address to which
you are actually connected. The cookie parameter to the
notifier function is the sndCall parameter that you
specified when calling the OTConnect function.

T_DATA Normal data has arrived. Depending on the mode of
service you are using, you can call the OTRcvUData function
or the OTRcv function to read it. Continue reading data
until the function returns with the kOTNoDataErr result; you
do not get another indication that data has arrived until
you have read the entire unit.

T_EXDATA Expedited data has arrived. Use the OTRcv function to read
it. Continue reading data by calling the OTRcv function
until the function returns with the kOTNoDataErr result; you
do not get another indication that data has arrived until
you have read the entire unit.

T_DISCONNECT A connection has been torn down or rejected. Use the
OTRcvDisconnect function to clear the event.

C H A P T E R 2

Providers

2-20 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

If the event is used to signify that a connection has been
terminated, the cookie parameter to the notifier is NULL.
If the event indicates a rejected connection request, the
cookie parameter to the notification routine is the same as
the sndCall parameter that you passed to the OTConnect
function.

T_UDERR The provider was not able to send the data you specified
using the OTSndUData function even though the function
returned successfully. You must call the OTRcvUDErr
function to clear this event and determine why the
function failed.

T_ORDREL The remote client has called the OTSndOrderlyDisconnect
function to initiate an orderly disconnect. You must call the
OTRcvOrderlyDisconnect function to acknowledge receiving
the event and to retrieve any data that might have been
sent with the disconnection request.

T_GODATA Flow-control restrictions have been lifted. You can now
send normal data.

T_GOEXDATA Flow-control restrictions have been lifted. You can now
send expedited data.

T_REQUEST A request has arrived. Depending on the mode of service
you are using, you can call the OTRcvRequest function or
the OTRcvURequest function to receive it. You must
continue to call the function until it returns with the
kOTNoDataErr result.

T_REPLY A response to a request has arrived. Depending on the
mode of service you are using, you can call the OTRcvReply
function or OTRcvUReply function to receive it. You must
continue to call the function until it returns with the
kOTNoDataErr result.

T_PASSCON When the OTAccept function completes, the endpoint
provider passes this event to the endpoint receiving the
connection (whether that endpoint is the same as or
different from the endpoint that calls the OTAccept
function.) The cookie parameter contains the endpoint
reference of the endpoint that called the OTAccept function.

T_RESET A connection-oriented endpoint has received a reset from
the remote end and has flushed all unread and unsent

C H A P T E R 2

Providers

Providers Reference 2-21
Draft.  Apple Computer, Inc. 4/30/96

data. This only occurs for some types of endpoints, and
generally leaves the endpoint in an unknown state.

T_BINDCOMPLETE The OTBind function has completed. The cookie parameter
contains the retAddr parameter of the bind call.

T_UNBINDCOMPLETE The OTUnbind function has completed. The cookie
parameter is meaningless.

T_ACCEPTCOMPLETE The OTAccept function has completed. The cookie
parameter contains the endpoint reference of the endpoint
to which you passed off the connection.

T_REPLYCOMPLETE The OTSndUReply or OTSndReply functions have completed.
The cookie parameter contains the sequence number of the
request retrieved with the OTRcvURequest or OTRcvRequest
function.

T_DISCONNECTCOMPLETE
The OTSndDisconnect function has completed. The cookie
parameter contains the call parameter of the
OTSndDisconnect function.

T_OPTMGMTCOMPLETE The OTOptionManagement function has completed. The
cookie parameter contains the ret parameter that you have
passed to the function.

T_OPENCOMPLETE An asynchronous call to open a provider has completed.
The cookie parameter contains the provider reference.

T_GETPROTADDRCOMPLETE
The OTGetProtAddress function has completed. The cookie
parameter contains the peerAddr parameter that you
passed to the OTGetProtocolAddress function. If you passed
NULL for that parameter, the cookie parameter contains the
address passed in the boundAddr parameter.

T_RESOLVEADDRCOMPLETE
The OTResolveAddress function has completed. The cookie
parameter contains the retAddr parameter of the
OTResolveAddress function.

T_GETINFOCOMPLETE The OTGetEndpointInfo function has completed. The cookie
parameter contains the info parameter of the
OTGetEndpointInfo function.

T_SYNCCOMPLETE The OTSync function has completed. The cookie parameter
is meaningless.

C H A P T E R 2

Providers

2-22 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

T_MEMORYRELEASED You are using an asynchronous endpoint that
acknowledges sends and an OTSnd or OTSndUData function
has completed and is done using the buffers containing the
data you are sending. If you have called the OTSnd function,
the cookie parameter contains the buf parameter. If you
have called the OTSndUData function, the cookie parameter
contains the udata parameter. The result parameter
contains the number of bytes that were sent. This might be
less than the number you meant to send due to
flow-control or memory restrictions.

T_REGNAMECOMPLETE The OTRegisterName function has completed. The cookie
parameter contains the name parameter of the
OTRegisterName function.

T_DELNAMECOMPLETE The OTDeleteName function or the OTDeleteNameByID
function has completed. The cookie parameter contains the
name parameter or the id parameter of the function,
respectively.

T_LKUPNAMECOMPLETE
The OTLookupName function has completed. The cookie
parameter contains the reply parameter of the
OTLookUpName function.

T_LKUPNAMERESULT An OTLookupName function has found a name and is
returning it, but the lookup is not yet complete. The cookie
parameter contains the reply parameter passed to the
OTLookupName function.

kOTProviderIsDisconnected
Your provider was bound with qlen parameter value
greater than 0 and it has been disconnected (is no longer
listening). You receive this event after a port has accepted a
request to temporarily yield ownership of a port to another
provider, which causes this provider to be disconnected
from the port in question. This currently only happens
with serial ports, but could also happen with other
connection-oriented drivers that have characteristics
similar to serial ports. You get a kOTProviderIsReconnected
message when the port reverts back to this provider’s
ownership again.

C H A P T E R 2

Providers

Providers Reference 2-23
Draft.  Apple Computer, Inc. 4/30/96

kOTProviderIsReconnected
Your provider has been reconnected, that is, the cause for
its disconnection has been relieved.

kOTProviderWillClose
When you return from the notifier function, Open
Transport will close the provider whose reference is
contained in the cookie parameter. The result parameter
contains a code specifying the reason why the provider
had to close. For example, the user decided to switch links
using the control panel.
You can only get this event at system task time.
Consequently, you are allowed to set the endpoint to
synchronous mode (from within the notifier function) and
call functions synchronously before you return from the
notifier, at which point, the provider is closed. At this
point, any calls other than OTCloseProvider will fail with a
kOTOutStateErr.

kOTProviderIsClosed
The provider has closed. The reason for being closed can
be found in the OTResult value passed to your notifier. The
reasons typically are kOTPortHasDiedErr,
kOTPortWasEjectedErr, or kOTPortLostConnectionErr. At
this point, any calls other than OTCloseProvider will fail
with a kOTOutStateErr.

The TNetbuf Structure 2

You use a TNetbuf structure to specify the location and size of a buffer that
contains an address, option information, or user data. Provider functions use
TNetbuf structures both as input parameters and output parameters. If you are
using a TNetbuf structure as an input parameter, you use it to specify the
location and size of a buffer containing information you want to send. If you
are using a TNetbuf structure as an output parameter, you use it to specify the
location and the maximum size of the buffer used to hold information when
the function returns.

C H A P T E R 2

Providers

2-24 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

The TNetbuf structure is defined by the TNetbuf data type.

struct TNetbuf {
UInt32 maxlen;
UInt32 len;
UInt8* buf;

};

Field descriptions
maxlen The size (in bytes) of the buffer to which the buf field

points. You must set the maxlen field before passing a
TNetbuf structure to a provider function as an output
parameter. Open Transport ignores this field if you pass
the TNetbuf structure as an input parameter.

len The actual length (in bytes) of the information in the buffer
to which the buf field points. If you are using the TNetbuf
structure as an input parameter, you must set this field.
If you pass the TNetbuf structure as an output parameter,
on return, the provider function sets this field to the
number of bytes the function has actually placed in the
buffer referenced by the buf field.

buf A pointer to a buffer. You must make sure that the buf field
points to a valid buffer and that the buffer is large enough
to store the information for which it is intended.

Functions 2

This section describes general provider functions. Before you can use these
functions, you must initialize the Open Transport software by calling the
InitOpenTransport function, which is described in the chapter “Configuration
Management” in this book.

Opening and Closing Providers 2

To create and open a provider, you use a type-specific provider function—for
example, the OTOpenEndpoint or OTAsyncOpenEndpoint function creates and
opens an endpoint. These functions are included in the chapters describing
individual providers. When you finish using a provider of any type, always
call the OTCloseProvider function to close and delete the provider.

C H A P T E R 2

Providers

Providers Reference 2-25
Draft.  Apple Computer, Inc. 4/30/96

OTTransferProviderOwnership 2

Transfers a provider’s ownership to a new client.

C INTERFACE

ProviderRef OTTransferProviderOwnership(
ProviderRef ref,
OTClient prevOwner,
OSStatus* errPtr);

C++ INTERFACE

ProviderRef TProvider::OTTransferProviderOwnership(
OTClient prevOwner,
OSStatus* errPtr);

PARAMETERS

ref The provider reference for the provider to be transferred.

prevOwner The client ID of the previous owner.

errPtr A pointer to a result code.

DESCRIPTION

The OTTransferProviderOwnership function transfers the ownership of the
provider indicated by the ref parameter to the current Open Transport client.
The previous owner must provide the owner-to-be with its client ID, obtained
by using the OTWhoAmI function; this is then used by the owner-to-be in the
prevOwner parameter. Open Transport allocates a new provider reference and
returns the new reference as the function result. The old provider reference is
then obsolete and should not be used.

SPECIAL CONSIDERATIONS

When installing a notifier into a provider, Open Transport assumes that the
OTNotifyProcPtr pointer is in the same architecture as the call is being made.

C H A P T E R 2

Providers

2-26 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

After transferring ownership, remove any already installed notifiers and install
your own, unless your architecture is such that a cross-architecture notifier is
what you want.

▲ W A R N I N G

As long as the client that created the provider remains
loaded and is in the same architecture (that is, the
PowerPC as opposed to the 68000-family Macintosh CPU
environments) as the client using the provider, no damage
is done by not making this call. However, if the provider
was created under a different architecture than the current
client using the provider, attempting to close the provider
causes a crash. If you do not use the
OTTransferProviderOwnership function, it is vital that the
provider be closed under the same architecture that
opened the provider. ▲

SEE ALSO

To get a client ID, call the OTWhoAmI function (page 2-26).

OTWhoAmI 2

Returns the current client’s client ID.

C INTERFACE

OSClient OTWhoAmI(void);

C++ INTERFACE

None. C++ applications use the C interface to this function.

DESCRIPTION

The OTWhoAmI function returns the current client’s client ID. This function is
used by the current owner of a provider that is to be transferred to a new

C H A P T E R 2

Providers

Providers Reference 2-27
Draft.  Apple Computer, Inc. 4/30/96

owner. The current client provides this ID to the new owner for use as the
OTTransferProviderOwnership function’s prevOwner parameter.

SEE ALSO

To transfer ownership, use the OTTransferProviderOwnership function
(page 2-25).

OTCloseProvider 2

Closes a provider of any type—endpoint, mapper, or service provider.

C INTERFACE

OSStatus OTCloseProvider(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::Close()

PARAMETERS

ref The provider reference of the provider to be closed and deleted.

DESCRIPTION

The OTCloseProvider function closes the provider that you specify in the ref
parameter. Closing the provider deletes all memory reserved for it in the
system heap, deletes its resources, and cancels any provider functions that are
currently executing.

Open Transport does not guarantee that all outstanding functions have
completed before it closes the provider. It is ultimately your responsibility to
make sure that all provider functions that you care about have finished
executing, before you close and delete a provider.

C H A P T E R 2

Providers

2-28 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

▲ W A R N I N G

You need to be sure that are no outstanding
T_MEMORY_RELEASED events for a provider before you close
the provider. Otherwise, Open Transport attempts to
deliver the event to a provider that no longer exists, with
unpredictable results, such as crashing the system. ▲

SEE ALSO

To create and open an endpoint, call the OTOpenEndpoint function or the
OTAsyncOpenEndpoint function, both described in the chapter “Endpoints” in
this book.

To create and open a mapper, call the OTOpenMapper function or the
OTAsyncOpenMapper function, both described in the chapter “Mappers” in
this book.

To create and open a AppleTalk service provider, call the
OTOpenAppleTalkServices function or the OTAsyncOpenAppleTalkServices
function, both described in the chapter “AppleTalk Services” in this book.

To create and open a TCP/IP service provider, call the OTOpenInternetServices
function or the OTAsyncOpenInternetServices function, both described in the
chapter “TCP/IP Services” in this book.

Controlling a Provider’s Mode of Operation 2

A provider’s mode of operation determines whether the provider runs
synchronously or asynchronously, whether the provider blocks, and whether
the provider acknowledges sends.

By default, providers created synchronously operate in synchronous mode;
providers created asynchronously operate in asynchronous mode. You can use
the OTSetSynchronous or OTSetAsynchronous function to specify how provider
functions should execute. You can use the OTCanMakeSyncCall function to find
out whether Open Transport permits synchronous calls at a given moment. You
can find out a provider’s current mode of execution by calling the
OTIsSynchronous function. If synchronous functions are in progress on a
provider, you can cancel all of them by calling the OTCancelSynchronousCalls
function.

A provider’s blocking status governs how provider functions proceed when
they cannot read or write data without waiting. If a provider blocks, it waits

C H A P T E R 2

Providers

Providers Reference 2-29
Draft.  Apple Computer, Inc. 4/30/96

until it is able to read or write data, which might require that it wait
indefinitely. If a provider does not block, the function used to read or write
data returns an error, specifying why it could not complete the operation. You
can set a provider’s blocking status by calling the OTSetBlocking or
OTSetNonBlocking function. You can find out a provider’s current blocking
status by calling the OTIsNonBlocking function. By default, providers do not
block. For more information about blocking, see the section “Setting a
Provider’s Blocking Status,” beginning on page 2-10.

You can use the OTAckSends or OTDontAckSends function to specify whether a
provider acknowledges sends. This determines how a provider handles data
that you send and whether it informs you when it has sent the data. To
determine whether a provider acknowledges sends, you call the
OTIsAckingSends function. By default, providers do not acknowledge sends.
Mapper and individual service providers like AppleTalk and TCP/IP ignore
the setting of this attribute. However, the behavior of endpoint functions that
send data is affected by the endpoint provider’s acknowledgment status.

OTSetSynchronous 2

Sets a provider’s mode of execution to synchronous.

C INTERFACE

OSStatus OTSetSynchronous(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetSynchronous();

PARAMETERS

ref The provider reference of the provider whose mode of
execution you want to set.

C H A P T E R 2

Providers

2-30 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTSetSynchronous function causes all provider functions to run
synchronously when using the provider that you specify.

Changing a provider’s mode of execution does not affect its notifier function, if
any is installed for this provider; the notifier function remains installed.

SEE ALSO

Modes of execution and notifier functions are described in “Specifying How
Provider Functions Execute” on page 2-9.

To set a provider to asynchronous mode, call the OTSetAsynchronous function,
described next. To find out a provider’s mode of execution, call the
OTIsSynchronous function (page 2-31).

OTSetAsynchronous 2

Sets a provider’s mode of execution to asynchronous.

C INTERFACE

OSStatus OTSetAsynchronous(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetAsynchronous();

PARAMETERS

ref The provider reference of the provider whose mode of
execution you want to set.

DESCRIPTION

The OTSetAsynchronous function causes all functions for the provider specified
in the ref parameter to run asynchronously. You must install a notifier function

C H A P T E R 2

Providers

Providers Reference 2-31
Draft.  Apple Computer, Inc. 4/30/96

for the provider if it needs to receive completion events. You can install a
notifier function either before or after calling the OTSetAsynchronous function.

Changing a provider’s mode of execution does not affect its notifier function, if
any; the notifier function remains installed.

SEE ALSO

Provider events are described in “Provider Events” on page 2-7.

Modes of operation and notifier functions are described in “Specifying How
Provider Functions Execute” on page 2-9.

To set a provider to asynchronous mode, call the OTSetAsynchronous function
(page 2-30). To find out a provider’s mode of execution, call the
OTIsSynchronous function (page 2-31).

OTIsSynchronous 2

Returns a provider’s current mode of execution.

C INTERFACE

Boolean OTIsSynchronous(ProviderRef ref);

C++ INTERFACE

Boolean TProvider::IsSynchronous();

PARAMETERS

ref The provider reference for the provider whose mode of
execution you want to obtain.

C H A P T E R 2

Providers

2-32 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTIsSynchronous function returns true if a provider is in synchronous
mode or returns false if the provider is in asynchronous mode.

SEE ALSO

To set a provider to synchronous mode, call the OTSetSynchronous function
(page 2-29). To set a provider to asynchronous mode, call the
OTSetAsynchronous function (page 2-30).

OTCancelSynchronousCalls 2

Cancels any currently executing synchronous function for a specified provider.

C INTERFACE

OSStatus OTCancelSynchronousCalls(ProviderRef ref);

C++ INTERFACE

void TProvider::CancelSynchronousCalls(OSStatus err);

PARAMETERS

ref The provider reference for the provider whose synchronous
function you want to cancel.

DESCRIPTION

The OTCancelSynchronousCalls function cancels any currently executing
synchronous function for the provider that you specify. The provider need not
be in synchronous mode when you call this function.

Typically, you would call the OTCancelSynchronousCalls function at interrupt
time by installing a Time Manager task that executes after a given amount of

C H A P T E R 2

Providers

Providers Reference 2-33
Draft.  Apple Computer, Inc. 4/30/96

time has passed. You could do this to prevent a synchronous function from
hanging the system.

IMPORTANT

The OTCancelSynchronousCalls function may cause a
provider to be unusable. Typically, once this call is made,
the only thing you can do with the provider is close it. For
example, calling the OTCancelSynchronousCalls function on
a connection-oriented endpoint might break its connection
and render the endpoint unusable. ▲

SEE ALSO

To set a provider to synchronous mode, call the OTSetSynchronous function
(page 2-29). To find out a provider’s current mode of execution, call the
OTIsSynchronous function (page 2-31).

Time Manager tasks are described in the Time Manager chapter of Inside
Macintosh: Processes.

OTSetBlocking 2

Allows a provider to wait or block until it is able to send or receive data.

C INTERFACE

OSStatus OTSetBlocking(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetBlocking();

PARAMETERS

ref The provider reference of the provider that is to block.

C H A P T E R 2

Providers

2-34 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTSetBlocking function causes provider functions that send or receive data
to wait if current conditions prevent them from completing an operation. By
default, a provider is in nonblocking mode, in which case, if a provider
function were unable to complete sending or receiving data, it would return
immediately with a result that would tell you why the operation was unable to
complete.

If a provider is in blocking mode and you call the OTCloseProvider function
to close the provider, Open Transport gives each Streams module up to
15 seconds to process outgoing commands. It is recommended that you call the
OTSetNonBlocking function before you call the OTCloseProvider function.

SEE ALSO

Blocking is described in “Setting a Provider’s Blocking Status” on page 2-10.

To set a provider’s blocking status to nonblocking, call the OTSetNonBlocking
function (page 2-34). To find out a provider’s blocking status, call the
OTIsNonBlocking function (page 2-35).

Blocking attributes affect endpoint providers more than other providers. For
more information see the discussion about modes of operation in the chapter
“Endpoints” in this book.

OTSetNonBlocking 2

Does not allow a provider to wait if it cannot currently complete a function that
sends or receives data.

C INTERFACE

OSStatus OTSetNonBlocking(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetNonBlocking();

C H A P T E R 2

Providers

Providers Reference 2-35
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The provider reference of the provider whose blocking mode is
being set.

DESCRIPTION

The OTSetNonBlocking function causes provider functions to return a result code
immediately, instead of waiting for a function that sends or receives data to
complete. When you open a provider, its mode of operation is set to
nonblocking by default.

If a provider is in nonblocking mode and you call the OTCloseProvider function,
the provider flushes all outgoing commands in the stream and immediately
close the provider. Conversely, in blocking mode, the provider would give each
Streams module up to 15 seconds to flush outgoing commands. It is
recommended that you call the OTSetNonblocking function before you call the
OTCloseProvider function.

SEE ALSO

Blocking is described in “Setting a Provider’s Blocking Status” on page 2-10.

To set a provider’s blocking status to blocking, call the OTSetBlocking function,
(page 2-33). To find out a provider’s blocking status, call the OTIsNonBlocking
function (page 2-35).

Blocking attributes affect endpoint providers more than other providers. For
more information, see the discussion about modes of operation in the chapter
“Endpoints” in this book.

OTIsNonBlocking 2

Returns a provider’s current blocking status.

C INTERFACE

Boolean OTIsNonBlocking(ProviderRef ref);

C H A P T E R 2

Providers

2-36 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACE

Boolean TProvider::IsNonBlocking();

PARAMETERS

ref The provider reference of the provider whose blocking status
is sought.

DESCRIPTION

The OTIsNonBlocking function returns true if the provider’s current blocking
status is nonblocking or returns false if it is blocking.

SEE ALSO

Blocking is described in “Setting a Provider’s Blocking Status” on page 2-10.

To set a provider’s blocking status to blocking, call the OTSetBlocking function
(page 2-33). To set a provider’s blocking status to nonblocking, call the
OTSetNonBlocking function (page 2-34).

Blocking attributes affect endpoint providers more than other providers. For
more information see the discussion about modes of operation in the chapter
“Endpoints” in this book.

OTAckSends 2

Specifies that a provider make an internal copy of data being sent and that it
notify you when it has finished sending data.

C INTERFACE

OSStatus OTAckSends(ProviderRef ref);

C H A P T E R 2

Providers

Providers Reference 2-37
Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACE

OSStatus TProvider::AckSends();

PARAMETERS

ref The provider reference of the provider that is sending data.

DESCRIPTION

By default, providers make an internal copy of data before sending it and they
do not acknowledge sends. If you use the OTAckSends function to specify that
the provider acknowledge sends and you call a function that sends data, the
provider does not copy the data before sending it. Instead, it reads data directly
from your buffer while sending. For this reason, you must not change the
contents of your buffer until the provider is no longer using it. The provider
lets you know that it has finished using the buffer by calling your notifier
function and passing T_MEMORYRELEASED event code for the code parameter, a
pointer to the buffer that was sent in the cookie parameter, and the size of the
buffer in the result parameter.

If you have not installed a notifier function for the provider, this function
returns the kOTAccessErr result.

If a send is currently outstanding on the provider, from a call to the OTSnd,
OTSndUData, OTSndUReply, OTSndURequest, OTSndReply, or OTSndrequest function,
the OTAckSends function returns a kOTChangeStateErr message.

▲ W A R N I N G

You need to be sure that are no outstanding
T_MEMORY_RELEASED events for a provider before you close
the provider. Otherwise, Open Transport attempts to
deliver the event to a provider that no longer exists, with
unpredictable results, such as crashing the system. ▲

SPECIAL CONSIDERATIONS

Do not wait for a T_MEMORYRELEASED event from a previous send operation to
trigger more sends. When a T_MEMORYRELEASED event occurs depends on how
the underlying provider is implemented. It may hold on to memory until the

C H A P T E R 2

Providers

2-38 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

next send occurs, or have some other functionality which causes it to delay
releasing memory.

SEE ALSO

To request that the provider copy the data before sending it, use the
OTDontAckSends function, described in the next section.

To find out a provider’s current send-acknowledgment status, call the
OTIsAckingSends function (page 2-39).

For additional information, see “Setting a Provider’s Send-Acknowledgment
Status” on page 2-10.

The send-acknowledgment status of a provider is ignored by mapper
providers, AppleTalk providers, and TCP/IP providers. For information about
how endpoint providers are affected, see the discussion of an endpoint’s mode
of operation in the chapter “Endpoints” in this book.

OTDontAckSends 2

Specifies that a provider copy data before sending it.

C INTERFACE

OSStatus OTDontAckSends(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::DontAckSends();

PARAMETERS

ref The provider reference of the provider that is sending data.

C H A P T E R 2

Providers

Providers Reference 2-39
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

By default, providers do not acknowledge sends. You need to call the
OTDontAckSends function only if you have used the OTAckSends function to turn
on send-acknowledgment for a provider.

If a send is currently outstanding on the provider, from a call to the OTSnd,
OTSndUData, OTSndUReply, OTSndURequest, OTSndReply, or OTSndrequest function,
the OTDontAckSends function returns a kOTChangeStateErr message.

SEE ALSO

To prevent buffer copying and request completion events for provider
functions that send data, call the OTAckSends function, described on page 2-36.

To find out whether a provider is acknowledging sends, call the
OTIsAckingSends function (page 2-39).

For additional information, see “Setting a Provider’s Send-Acknowledgment
Status” on page 2-10.

OTIsAckingSends 2

Determines whether a provider is acknowledging sends.

C INTERFACE

Boolean OTIsAckingSends(ProviderRef ref);

C++ INTERFACE

Boolean TProvider::IsAckingSends();

PARAMETERS

ref The provider reference of the provider sending data.

C H A P T E R 2

Providers

2-40 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTIsAckingSends function returns true if the provider acknowledges sends
and false if it does not.

SEE ALSO

To specify that a provider acknowledge sends, call the OTAckSends function
(page 2-36). To specify that a provider not acknowledge sends, call the
OTDontAckSends function (page 2-38).

For additional information, see “Setting a Provider’s Send-Acknowledgment
Status” on page 2-10.

Installing and Removing a Notifier Function 2

To receive notice of provider events, you must install a notifier function. If the
provider is synchronous, you do this by calling the OTInstallNotifier function.
If the provider is asynchronous, you install the notifier by passing a pointer to
the notifier function as a parameter to the function used to open the provider.
To remove a notifier function, call the OTRemoveNotifier function.

OTInstallNotifier 2

Installs a notifier function.

C INTERFACE

OSStatus OTInstallNotifier(ProviderRef ref, OTNotifyProcPtr proc,
void* contextPtr);

C++ INTERFACE

OSStatus TProvider::InstallNotifier(OTNotifyProcPtr proc,
void* contextPtr);

C H A P T E R 2

Providers

Providers Reference 2-41
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The provider reference of the provider for which you are
installing a notifier.

proc A pointer to a notifier function that you provide.

For C++ applications, the proc parameter must point to either a
C function or a static member function.

contextPtr A context pointer for your use. The provider passes this value
unchanged to your notifier function when it calls the function.

DESCRIPTION

The OTInstallNotifier function installs a notifier function for the provider that
you specify. Changing a provider’s mode of execution does not affect the
notifier function. The notifier function remains installed until you remove it
using the OTRemoveNotifier function or until you close the provider.

Before calling the OTInstallNotifier function, you must open the provider for
which you want to install the notifier. If you open a provider asynchronously
(for example, with the OTAsyncOpenEndpoint function), you must pass a pointer
to a notifier function as a parameter to the function used to open the provider.
In this case, you don’t need to call the OTInstallNotifier function unless you
want to install a different notifier function. If you do, you must call the
OTRemoveNotifier function before calling the OTInstallNotifier function.

Opening a provider synchronously (for example, with the OTOpenEndpoint
function) opens the provider but does not install a notifier function for it. If you
need a notifier function for a provider opened synchronously, you must call the
OTInstallNotifier function. This notifier would not return completion events,
but would return asynchronous events advising you of the arrival of data, of
changes in flow-control restrictions, and so on.

Call the OTInstallNotifier function only when no provider functions are
executing for the provider that you specify. Otherwise, the OTInstallNotifier
function returns the result code kOTStateChangeErr.

If you try to install a notifier function for a provider that already has a notifier,
the function returns with the kOTAccessErr result.

C H A P T E R 2

Providers

2-42 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

IMPORTANT

On 68000-based Macintosh computers, the
OTInstallNotifier function saves the current value of the
A5 register. Open Transport restores the A5 register to this
saved value when calling the notifier function you install.
If your environment stores context information in a
register other than A5, your notifier function must save
and restore the value of that register. ▲

SEE ALSO

Notifier functions are described in “Application-Defined Functions”
(page 2-45).

To remove an installed notifier function, call the OTRemoveNotifier function,
described in the next section.

OTRemoveNotifier 2

Removes a provider’s notifier function.

C INTERFACE

void OTRemoveNotifier(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::RemoveNotifier();

PARAMETERS

ref A provider reference for the provider whose notifier function is
to be removed.

C H A P T E R 2

Providers

Providers Reference 2-43
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTRemoveNotifier function removes the notifier (if any) currently installed
for the provider specified by the ref parameter.

SEE ALSO

Notifier functions are described in the section “Application-Defined Functions”
(page 2-45).

To install a notifier function, call the OTInstallNotifier function (page 2-40).

Sending Module-Specific Commands 2

You can define module-specific commands for an Open Transport protocol
module. Open Transport does not interpret these commands; it merely relays
them from your application to the protocol module. You can send a
module-specific command to an Open Transport protocol module by using the
OTIoctl function.

OTIoctl 2

Sends a module-specific command to an Open Transport protocol module.

C INTERFACE

SInt32 OTIoctl(ProviderRef ref, UInt32 cmd, void* data);

C++ INTERFACE

SInt32 TProvider::Ioctl(UInt32 cmd, void* data);

C H A P T E R 2

Providers

2-44 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The provider reference of the provider affected by the specified
command.

cmd A routine selector for the module-specific command.

data Data to be used by the module-specific command, or a pointer
to such data. The interpretation of the data parameter is
command specific.

DESCRIPTION

The OTIoctl function sends a module-specific command to an Open Transport
protocol module. The OTIoctl function runs synchronously or asynchronously,
matching the provider’s mode of execution.

If the OTIoctl function completes synchronously without error, it returns 0 or a
positive integer. The positive integer’s meaning is command specific. If the
OTIoctl function fails while executing synchronously, its return value is a
negative integer corresponding to an Open Transport result code.

If the OTIoctl function runs asynchronously, it returns immediately with a
return value kOTNoError or another Open Transport result code. When the
function completes execution, Open Transport calls the notifier function you
specify, passing the event code kStreamIoctlEvent and a result parameter
indicating the result of the completed OTIoctl function. If the value of the
result parameter is greater than 0, the corresponding result code is defined by
the command; otherwise, the value of the result parameter corresponds to an
Open Transport result code.

SPECIAL CONSIDERATIONS

Using the OTIoctl function makes your application module dependent; you
should not use the OTIoctl function if you want your application to be
transport independent.

SEE ALSO

Positive return values for the OTIoctl function are defined by the
Open Transport module that you are using. Refer to the documentation for that
module for information.

C H A P T E R 2

Providers

Providers Reference 2-45
Draft.  Apple Computer, Inc. 4/30/96

Application-Defined Functions 2

To receive notice of provider events, you must write and install a notifier
function. A notifier function is the callback function that a provider uses to
communicate information back to your application for all events affecting a
particular provider. A provider in asynchronous mode must have a notifier
function to receive completion events.

Most providers must also use a notifier function to retrieve asynchronous
events. An endpoint provider can poll for asynchronous events using the
OTLook function, but a mapper provider or a service provider cannot poll for
asynchronous events; it must use a notifier function instead. In general, it is
recommended that all providers use notifier functions to handle both
asynchronous and completion events.

MyNotifierCallbackFunction 2

After you install a notifier function on a provider, the provider calls the notifier
function each time an Open Transport event occurs for that provider.

C INTERFACE

void MyNotifierCallbackFunction(void* contextPtr, OTEventCode code,
OTResult result, void* cookie);

C++ INTERFACE

In C++, a notifier function can be either a C function (as in the C interface) or a
member function of a class—the TOTProcNotifier class, the TOTMethodNotifier
class, or a subclass of these. The return type and parameters of a notifier
function are the same whether the notifier function is a C function or a C++
member function.

C H A P T E R 2

Providers

2-46 Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

contextPtr The value you specified for the contextPtr parameter when
installing this notifier function. You can use this parameter in
any way that is useful to you. If you do not need it, you can set
the pointer to nil.

code An event code indicating the event that occurred. Possible
values for event codes are given in the event code enumeration
(page 2-17).

result For completion events, the result code of the completed
provider function, identified by the code parameter. For
completion events, the meaning of the result parameter is
event specific. (For most asynchronous events, the result
parameter has no meaning and can be ignored.) For additional
information, see the description of the individual function.

cookie A pointer to data. The meaning and type of the data vary
depending on the function that has completed executing. For
additional information, see the event codes enumeration
(page 2-17).

DESCRIPTION

Using a notifier function is the recommended way for your application to
handle completion and asynchronous events. After you install a notifier
function for a provider, the function is called by the provider each time an
Open Transport event occurs for that provider. For a completion event, the
provider passes the function result in the result parameter, the event code in
the code parameter, and any additional information in the cookie parameter.
For an asynchronous event, the provider usually passes the event code in the
code parameter and passes no other information.

Open Transport calls your notifier function at secondary interrupt level
(deferred task time). For this reason, your notifier function is subject to the
same rules and restrictions as are all Macintosh functions that can be called at
interrupt time; these restrictions are summarized in the section “Using Notifier
Functions to Handle Provider Events,” beginning on page 2-13.

You can install the same notifier function for two or more providers. But each
time you install the same notifier function for a different provider, you must
pass a different value in the contextPtr parameter of the function that installs
the notifier. The data structure referenced by the contextPtr parameter points

C H A P T E R 2

Providers

Providers Reference 2-47
Draft.  Apple Computer, Inc. 4/30/96

must include a provider reference or some other identifier that uniquely
identifies the provider for which the notifier is called.

SPECIAL CONSIDERATIONS

The following information applies to applications written for 68000-family
machines. Before calling your notifier function, Open Transport restores the A5
register to the value it had when you installed the notifier function. Thus, if
your development environment saves your application context in the A5
register, your notifier function need not restore its A5 world. But if your
development environment saves your application context in a register other
than A5, your notifier function must save and restore that register.

SEE ALSO

To install a notifier function for an existing provider, call the OTInstallNotifier
function (page 2-40). You can also install a provider when you open a provider
asynchronously by passing a pointer to the notifier function as a parameter to
the function used to open the provider. For additional information, see the
reference section of the chapter describing the provider of interest.

To remove a notifier function, call the OTRemoveNotifier function (page 2-42).

For a list and description of event codes see the event codes enumeration
(page 2-17).

For an example of a notifier function, see Listing 2-1 on page 2-14.

C H A P T E R 3

Contents 3-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 Endpoints

About Endpoints 3-5
Endpoint Types and Mode of Service 3-7
Naming Conventions for Endpoint Functions 3-8
Endpoint Options 3-10
Modes of Operation 3-11

Blocking 3-12
Acknowledging Sends 3-13

Endpoint States 3-13
Transport Service Data Units 3-19

Using Endpoints 3-20
Opening and Binding Endpoints 3-21
Obtaining Information About Endpoints 3-23
Handling Events for Endpoints 3-24
Establishing and Terminating Connections 3-27

Establishing a Connection 3-28
Terminating a Connection 3-35

Sending and Receiving Data 3-40
Sending Noncontiguous Data 3-40
Sending Data Using Multiple Sends 3-41
Receiving Data 3-42
No-Copy Receiving 3-42
Transferring Data Efficiently 3-43

Transferring Data Between Transactionless Endpoints 3-43
Using Connectionless Transactionless Service 3-43
 Using Connection-Oriented Transactionless Service 3-44

Transferring Data Between Transaction-Based Endpoints 3-46
Using Connectionless Transaction-Based Service 3-48

C H A P T E R 3

3-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

Using Connection-Oriented Transaction-Based Service 3-50
Endpoints Reference 3-52

Constants and Data Types 3-52
OTData Constant 3-52
OTBuffer Constant 3-53
Buffer Types Enumeration 3-53
Endpoint Service Types 3-54
Open Transport Flags 3-54
Endpoint Flags 3-55
Endpoint States 3-56
Structure Types 3-57
The TEndpointInfo Structure 3-58
The TBind Structure 3-61
The OTData Structure 3-62
The No-Copy Receive Buffer Structure 3-63
Buffer Information Structure 3-65
The TUnitData Structure 3-65
The TUDErr Structure 3-67
The TUnitRequest Structure 3-68
The TUnitReply Structure 3-70
The TCall Structure 3-72
The TRequest Structure 3-76
The TReply Structure 3-77
The TDiscon Structure 3-79

Functions 3-80
Creating Endpoints 3-80

OTAsyncOpenEndpoint 3-81
OTOpenEndpoint 3-84

Binding and Unbinding Endpoints 3-86
OTBind 3-87
OTUnbind 3-90

Obtaining Information About an Endpoint 3-91
OTGetEndpointInfo 3-92
OTGetEndpointState 3-93
OTLook 3-95
OTGetProtAddress 3-96
OTResolveAddress 3-98
OTSync 3-100

C H A P T E R 3

Contents 3-3
Draft.  Apple Computer, Inc. 4/30/96

Allocating Structures 3-102
OTAlloc 3-102
OTFree 3-105

Checking a Buffer’s Size 3-106
OTCountDataBytes 3-106

Doing No-Copy Receives 3-107
OTReleaseBuffer 3-108
OTBuffer 3-108
OTReadBuffer 3-109

Functions for Connectionless Transactionless Endpoints 3-110
OTSndUData 3-111
OTRcvUDErr 3-113
OTRcvUData 3-115

Functions for Connectionless Transaction-Based Endpoints 3-117
OTSndURequest 3-117
OTRcvURequest 3-120
OTSndUReply 3-122
OTRcvUReply 3-125
OTCancelURequest 3-128
OTCancelUReply 3-129

Establishing A Connection 3-130
OTConnect 3-131
OTRcvConnect 3-133
OTListen 3-135
OTAccept 3-137

Functions for Connection-Oriented Transactionless Endpoints 3-140
OTSnd 3-140
OTRcv 3-144

Functions for Connection-Oriented Transaction-Based Endpoints 3-147
OTSndRequest 3-147
OTRcvRequest 3-149
OTSndReply 3-151
OTRcvReply 3-154
OTCancelRequest 3-156
OTCancelReply 3-158

Tearing Down a Connection 3-159
OTSndDisconnect 3-159
OTRcvDisconnect 3-161

C H A P T E R 3

3-4 Contents

Draft.  Apple Computer, Inc. 4/30/96

OTSndOrderlyDisconnect 3-163
OTRcvOrderlyDisconnect 3-164

C H A P T E R 3

About Endpoints 3-5
Draft.  Apple Computer, Inc. 4/30/96

Endpoints 3

This chapter explains how your application can use endpoints to communicate
with endpoint providers, the layered set of protocol modules that provide data
transfer services. The chapter describes

■ the services offered by different types of endpoint providers

■ the concept of transport independence and the use of options

■ how an endpoint’s mode of execution and mode of operation affect the
behavior of endpoint functions

■ how you use endpoint functions to obtain information about endpoints, to
establish connections, and to transfer data

To understand this chapter, you must first read the chapters “Introduction to
Open Transport” and “Providers,” which introduce many of the concepts
discussed and further elaborated in this chapter.

This chapter offers minimal information about options, values you can specify
that link the behavior of your application to the specific configuration of an
endpoint provider. For information about options, you must read the chapter
“Option Management” in this book.

About Endpoints 3

An endpoint is the communications path between your application and an
endpoint provider, which is a layered set of protocols that define how data and
other information are exchanged between you and a remote client. The
endpoint consists of a set of data structures, maintained by Open Transport,
that specify the components of the endpoint provider, and the manner in which
the provider is to operate. In the process of opening an endpoint, you configure
the endpoint provider and specify the protocol or set of protocols you want to
use to transfer data and, if required, the hardware link. The chapter
“Configuration Management” in this book explains how you specify the
software and hardware support your application requires. Whether you specify
a single protocol or a layered set of protocols, the type of service provided by
the highest-level protocol defines the type of the endpoint. For example, if you
specify the AppleTalk Transaction Protocol (ATP), which offers connectionless
transaction-based service, the endpoint is a connectionless transaction-based
endpoint.

C H A P T E R 3

Endpoints

3-6 About Endpoints

Draft.  Apple Computer, Inc. 4/30/96

When you open an endpoint, Open Transport creates a data structure that
contains information about the services the endpoint provider offers, the limits
on the size of data it can send and receive, the size of internal buffers used to
hold data, the current state of the endpoint, and so on. Open Transport obtains
this information from the particular protocol implementations that you specify
when you configure the endpoint provider. You can access information in some
fields of this structure by calling functions that return information about the
endpoint provider. Other fields of the structure are private and can be accessed
only by Open Transport.

Opening an endpoint also creates an endpoint reference, an number that
uniquely identifies this endpoint and that you must specify when calling any
function relating to this endpoint.

Before you can use the endpoint to transfer data, you must bind the endpoint—
that is, you must associate the endpoint with a logical address. Depending on
the protocol you use, you can specify this address as a symbolic name or as a
network address. Specific address binding rules and address formats also vary
with the protocol you use. In general, you cannot bind more than one
connectionless endpoint to an address, but you can bind several
connection-oriented endpoints to a single address.

Open Transport functions that you can use only with endpoints are called
endpoint functions. You use endpoint functions to create and bind an
endpoint, to obtain information about an endpoint, to establish and break
down connections, and to transfer data. What functions you can call for an
endpoint depends on the type of the endpoint and on its state. The behavior of
a function is determined by the endpoint’s mode of operation. In order to write
Open Transport applications that behave in a reliable and predictable manner,
it is important that you understand how these factors affect the behavior of an
endpoint provider. The rest of this section describes the different types of
endpoints, describes the effect of an endpoint’s mode of operation on the
behavior of endpoint functions, and explains how Open Transport uses
information about endpoint states to manage endpoints.

C H A P T E R 3

Endpoints

About Endpoints 3-7
Draft.  Apple Computer, Inc. 4/30/96

Endpoint Types and Mode of Service 3

There are four types of endpoints, each offering a different mode of service:

■ connection-oriented transactionless service

Either endpoint can initiate this type of service. It allows for the transfer of
very large amounts of data with guaranteed data delivery and a reliable data
stream.

■ connection-oriented transaction-based service

Either endpoint can initiate the connection, but only the endpoint sending
the request can initiate a transaction. Using this service, you can conclude an
unlimited number of parallel transactions. This service guarantees delivery
and can detect duplicate sends.

■ connectionless transactionless service

Either endpoint can initiate this type of service. Some protocols can calculate
checksums for incoming packets, but generally this service provides only
best-effort delivery and allows the transfer of relatively small amounts of
data at one time.

■ connectionless transaction-based service

Only the endpoint sending a request can initiate this type of service. It
allows for the transfer of larger amounts of data, provides some error
checking, detects duplicate sends, and guarantees that response packets are
delivered in the order sent.

As you can tell from the foregoing description, in Open Transport there is no
such thing as a connectionless endpoint. It would have to be either a
connectionless transaction-based endpoint or a connectionless transactionless
endpoint. However, because there are issues that affect endpoints inasmuch as
they are connectionless and not connection-oriented or transactionless and not
transaction-based, when this chapter identifies an endpoint using only one
service name, you should assume that the endpoint can be in one of two modes
of service. Thus, the term transaction-based endpoint can refer either to a
connectionless transaction-based endpoint or to a connection-oriented
transaction-based endpoint.

C H A P T E R 3

Endpoints

3-8 About Endpoints

Draft.  Apple Computer, Inc. 4/30/96

The chapter “Introduction to Open Transport” in this book defines and
describes the different services that each type of endpoint offers and explains
some of the criteria you might use for selecting a specific type. The
documentation for the protocol you are using provides information about how
a mode of service is implemented for your endpoint and the options that you
can use to fine-tune its behavior. The section “Using Endpoints” beginning on
page 3-20 describes how you use endpoint functions to implement these
services. However, before you read that section, you might find it helpful to
understand the naming conventions used for endpoint functions because these
are directly related to an endpoint’s mode of service. These conventions are
described in the next section.

Naming Conventions for Endpoint Functions 3

You can use endpoint functions that return information about the endpoint’s
state, address, mode of execution, or mode of operation with all endpoint
types. However, which endpoint functions you can call to transfer data
depends on the type of the endpoint. There is no single function that you can
use to send data or to receive data. For each type of endpoint you open, you
must use a send function that is specific to that type. For example, when you
send data using a connectionless transactionless endpoint, you call the
OTSndUData function; when you send data using a connection-oriented
transactionless endpoint, you call the OTSnd function. Table 3-1 presents a
summary of the function names for functions used to transfer data. The
functions are grouped together based on the endpoint’s mode of service. Look
over this table briefly and see if you can spot the distinguishing trait for each
group of names.

C H A P T E R 3

Endpoints

About Endpoints 3-9
Draft.  Apple Computer, Inc. 4/30/96

The following bulleted items explain the rationale for the conventions used to
name the different groups of functions:

■ Transaction-based endpoints send and receive requests and replies. If a
function name contains the string “Request” or “Reply,” you use the
function for a transaction-based endpoint; for example, OTSndURequest or
OTSndRequest.

■ Transactionless endpoints send and receive data, not requests or replies. If a
function name contains the string “Snd” or “Rcv” but does not contain
“Request” or “Reply,” you use the function for a transactionless endpoint;
for example, OTSnd or OTSndUData.

■ Connectionless endpoints must include the destination address as a
parameter to every send operation and the source address as a parameter to
every receive operation. This is signalled by the letter “U” in the name of a
function. Thus, you call the OTSndUData function for a connectionless
transactionless endpoint, but you call the OTRcvURequest function for a
connectionless transaction-based endpoint.

Table 3-1 The names of functions used to transfer data

Connectionless Connection-oriented

Transactionless OTSndUData

OTRcvUData

OTRcvUDErr

OTSnd

OTRcv

Transaction-based OTSndURequest

OTRcvURequest

OTSndUReply

OTRcvUReply

OTCancelURequest

OTCancelUReply

OTSndRequest

OTRcvRequest

OTSndReply

OTRcvReply

OTCancelRequest

OTCancelReply

C H A P T E R 3

Endpoints

3-10 About Endpoints

Draft.  Apple Computer, Inc. 4/30/96

■ Connection-oriented endpoints do not need to include addresses in send
and receive operations because establishing the connection also determines
the addresses, which do not change during a session. The names of
functions that can be called for connection-oriented endpoints are exactly
the same as for connectionless endpoints except that the “U” is omitted.
Thus, you call the OTSnd function for a connection-oriented transactionless
endpoint and the OTSndRequest function for a connection-oriented
transaction-based endpoint.

Of course, you can use the functions that establish and tear down connections
only with connection-oriented endpoints. These functions suggest their use in
their names: for example, OTConnect or OTSndDisconnect. Connection-oriented
endpoints support two kinds of disconnects: abortive disconnects and orderly
disconnects. An abortive disconnect breaks a connection immediately, even if
this were to result in loss of data; an orderly disconnect allows an endpoint to
send all data remaining in its send buffer before it breaks a connection. These
two kinds of disconnects are reflected in the names of the functions used:
OTSndDisconnect for an abortive disconnect and OTSndOrderlyDisconnect for an
orderly disconnect.

Endpoint Options 3

The goal of Open Transport is to allow one type of endpoint to communicate
with the same type of endpoint (or with a remote client offering the same mode
of service) simply by having the application reconfigure the endpoint provider
so as to use the protocol of the remote client. Reconfiguring the endpoint
provider would require very minimal changes to the application and
consequently make your application virtually independent of the underlying
transport used to transfer data. Achieving transport independence, however,
also means being willing to forego any special advantages or features that a
protocol has to offer. If it is not possible for you to do without these features,
you can use options to take advantage of protocol-specific features. An option
is a value that you can set for an endpoint, which links the behavior of your
application to the specific protocol that you have used to configure the
endpoint provider. By using options, you can take advantage of a service that is
unique to a protocol.

C H A P T E R 3

Endpoints

About Endpoints 3-11
Draft.  Apple Computer, Inc. 4/30/96

In general, the use of options decreases the portability of your application.
When you open an endpoint, the endpoint provider creates a buffer containing
default option values that it chooses to ensure maximum portability across
protocol families and system platforms. It is recommended that you use these
values rather than setting different values. However, if you need to customize
transport services, you might need to specify different option values. Selecting
alternate option values begins a process called option negotiation. During this
process, option values are negotiated between an endpoint and its provider or,
if the option affects a connection or transaction, between a local and remote
endpoint and their providers. The providers must conclude this negotiation
process before you can use an endpoint to transfer data. Besides noting those
instances in which you can specify option information when calling endpoint
functions, this chapter provides no information about options. For detailed
information about options and for a description of the OTOptionManagement
endpoint function, see the chapter “Option Management” in this book.

Modes of Operation 3

An endpoint provider, like other Open Transport providers, can also be
characterized by its mode of operation, which determines

■ whether the functions used for that endpoint provider execute
synchronously or asynchronously.

The chapter “Providers” in this book contains a detailed discussion of the
issues involved in selecting one or another mode of execution. The section
“Handling Events for Endpoints,” beginning on page 3-24 offers additional
information about how an endpoint provider’s mode of execution
specifically affects endpoint functions.

■ whether the provider blocks or waits when sending or receiving data and

■ whether the provider copies data that you want to send before sending it.

The chapter “Providers” also introduces these concepts and describes the
functions you use to get and set a provider’s mode of operation. The rest of this
section contains a more detailed discussion of how blocking and
acknowledging sends specifically affect endpoint functions.

C H A P T E R 3

Endpoints

3-12 About Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Blocking 3

If an endpoint provider is blocking, functions that you use to send or receive
data do not complete until they actually write or read the amount of data that
you have specified should be written or read.

■ You specify the amount of data you expect to write, by setting the len field
of a TNetBuf structure to the length of the data in the data buffer. If the size of
data in the data buffer is smaller than the size you specified in the len field,
the function will not complete. Under the same circumstances, if the
endpoint is not blocking, the function will complete.

■ You specify the amount of data you expect to read, by setting the maxlen
field of a TNetBuf structure. If the size of the incoming data is smaller than
the value specified in the maxlen field, the function will not complete. Under
the same circumstances, if the endpoint is not blocking, the function will
complete.

If you are sending data faster than the network can handle it, this gives rise to
flow-control restrictions. If an endpoint is blocking, a send function waits until
flow-control restrictions are lifted before it executes. A send function must also
wait if an endpoint provider cannot deal with a request immediately, but must
queue the request before it is able to handle it.

If an endpoint provider is nonblocking or asynchronous and a send function
cannot complete due to flow-control restrictions, the function returns with the
kOTFlowErr result or it returns a positive integer. If the function returns the
kOTFlowErr result, this means that it has not been able to send any data; if it
returns a positive integer, this represents the amount of data it has been able to
send. When flow-control restrictions are lifted, the provider issues a T_GODATA
or T_GOEXDATA event. Upon receiving this event, you should execute the send
function again to send the remaining data.

If an endpoint provider is nonblocking or asynchronous and a send function
cannot complete because the request for function execution would have to be
queued, the function returns with the kEAGAINErr or kEWOULDBLOCKErr result.
You should try to execute the command later.

If an endpoint provider is in synchronous blocking mode and a receive
function cannot complete because the data has not arrived, the function does
not return until either data actually arrives and the size of the data is equal to
the maximum size you specified for the receive buffer, or data arrives and the

C H A P T E R 3

Endpoints

About Endpoints 3-13
Draft.  Apple Computer, Inc. 4/30/96

T_MORE flag is not set (there’s an EOM marker, which means that you have
retrieved all the data sent). If an endpoint provider is nonblocking and a
receive function cannot complete because data has not yet arrived, the function
returns with the kOTNoDataErr. You should try calling the function again later.

An endpoint provider is nonblocking unless you use the OTSetBlocking
function to change its mode of operation.

Acknowledging Sends 3

You can also affect the behavior of functions that send data by specifying that
the endpoint provider acknowledge sends. By default, Open Transport does
not acknowledge the completion of send operations. This means that when you
call a function to send data, Open Transport copies the data from the client
buffer into a different buffer and then sends it. If you ask Open Transport to
acknowledge sends, it relies on the fact that your data buffer will remain stable
until the endpoint provider can actually send the data. After it sends the data,
the provider calls your notifier function passing T_MEMORYRELEASED for the code
parameter, a pointer to the buffer that was sent in the cookie parameter, and the
size of the buffer in the result parameter.

Endpoint States 3

Each endpoint has an attribute known as its endpoint state. An endpoint state
governs which endpoint functions you can call for the endpoint. For example,
if you open an endpoint but do not bind it, it is in the T_UNBND state and the
only two functions you can call for the endpoint are OTCloseProvider or OTBind.
The endpoint’s mode of service determines the possible states an endpoint can
be in while it is transferring data. For example, a connectionless endpoint can
only transfer data while it is in the T_IDLE state; a connection-oriented endpoint
can only transfer data while it is in the T_DATAXFER state. Table 3-2 describes
possible endpoint states for connectionless and connection-oriented endpoints
and suggests in parentheses an English equivalent for the name of each
constant.

C H A P T E R 3

Endpoints

3-14 About Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Table 3-2 Endpoint states

State Meaning

T_UNINIT This endpoint has been closed and destroyed or has not been
used. (Uninitialized)

T_UNBND This endpoint is initialized but has not yet been bound to an
address. (Unbound)

T_IDLE This endpoint has been bound to an address and is ready for
use. Connectionless endpoints can send or receive data;
connection-oriented endpoints can initiate or listen for a
connection. (Idle)

T_OUTCON This connection-oriented endpoint has initiated a connection
and is waiting for the peer endpoint to accept the connection.
(Outgoing connection request)

T_INCON This connection-oriented endpoint has received a connection
request but has not yet accepted or rejected the request.
(Incoming connection request)

T_DATAXFER This connection-oriented endpoint can now transfer data
because the connection has been established. (Data transfer
mode)

T_OUTREL This connection-oriented endpoint has issued an orderly
disconnect that the peer endpoint has not acknowledged. The
endpoint can continue to read data but must not send any more
data. (Outgoing release request)

T_INREL This connection-oriented endpoint has received a request for
an orderly disconnect, which it has not yet acknowledged. The
endpoint can continue to send data until it acknowledges the
disconnection request, but it must not read data. (Incoming
release request)

C H A P T E R 3

Endpoints

About Endpoints 3-15
Draft.  Apple Computer, Inc. 4/30/96

Figure 3-1 shows a diagram illustrating the possible endpoint states for a
connectionless endpoint.

Figure 3-1 Possible endpoint states for a connectionless endpoint

A connectionless endpoint can be in one of three states: T_UNINIT,T_UNBND, or
T_IDLE. Before you open the endpoint, it is in the T_UNINIT state. After you open
the endpoint but before you bind it, it is in the T_UNBND state. After you bind the
endpoint, it is in the T_IDLE state and is ready to transfer data. A connectionless
transactionless endpoint would use the OTSndUData or OTRcvUData functions to
transfer data; a connectionless transaction-based endpoint would use the
OTSndURequest, OTRcvURequest, OTSndUReply, and OTRcvUReply functions to
transfer data. When the endpoint finishes transferring data, you must first
unbind the endpoint—that is, dissociate the endpoint from its address. At this
stage, the endpoint returns to the T_UNBND state. Then you can close the
endpoint, at which time the endpoint returns to the T_UNINIT state.

Figure 3-2 shows a state diagram illustrating the possible endpoint states for a
connection-oriented endpoint.

ADSP

NBPATP

ZIP PAP

Standard link-access Streams modules

Ethernet

Token ring

FDDI

LocalTalk

DDP

Session

Transport

Network

Data-link

Physical

C H A P T E R 3

Endpoints

3-16 About Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Figure 3-2 Possible endpoint states for a connection-oriented endpoint

T_UNINIT

T_UNBND

T_IDLE

T_INCON T_OUTCON

T_INREL T_OUTREL

T_DATAXFER

OTCloseProvider

OTUnbind

OTConnect

OTRcvConnect

OTSnd

OTOpenEndpoint

OTBind

OTListen

OTAccept

OTRcv

Key:

Active peer

Passive peer

OTRcvDisconnect

OTSndDisconnect

OTRcvOrderlyDisconnect

OTSndOrderlyDisconnectT_ORDREL event

C H A P T E R 3

Endpoints

About Endpoints 3-17
Draft.  Apple Computer, Inc. 4/30/96

Like a connectionless endpoint, a connection-oriented endpoint is in the
T_UNINIT state until you open it and then, in the T_UNBND state until you bind it.
After you bind an endpoint but before you inititate a connection, an endpoint is
in the T_IDLE state.

During the connection process, the endpoint provider initiating the connection,
known as the active peer, calls the OTConnect function to request a connection.
At this point, the active peer is in the T_OUTCON state. The endpoint provider
listening for a connection request, known as the passive peer, calls the OTListen
function to read an incoming request. After it has read the request, the passive
peer changes to the T_INCON state. It can now either accept the connection using
the OTAccept function or reject the connection using the OTSndDisconnect
function. If the endpoint accepts the connection, it changes to the T_DATAXFER
state; if it rejects the connection it goes back to the T_IDLE state.

The active peer must acknowledge the response using the OTRcvConnect
function (for a connection that has been accepted) or the OTRcvDisconnect
function (for a connection that has been rejected). Calling the OTRcvConnect
function establishes the connection and places the active peer in the T_DATAXFER
state. Calling the OTSndDisconnect function rejects the connection and places the
active peer in the T_IDLE state. After they are connected, endpoints can transfer
data using simple send and receive operations or using transaction requests
and replies, depending on whether the endpoint is transactionless or
transaction-based.

When the client applications have finished transferring data, they must tear
down the connection by using an orderly disconnect process if possible. That
is, the active peer, should check to see whether the protocol supports an orderly
disconnect. If it does, the active peer initiates this process by calling the
OTSndOrderlyDisconnect function. This places the active peer in the T_OUTREL
state. It also creates a pending T_ORDREL event for the other endpoint. The
passive peer can retrieve the event using a notifier function or using the OTLook
function. It must then acknowledge receiving the disconnection request by
calling the OTRcvOrderlyDisconnect function. Then it must tear down its side of
the connection by also calling the OTSndOrderlyDisconnect function, which the
other side must also acknowledge. Disconnecting the endpoints places them in
the T_IDLE state again, and you can reconnect or close them.

Open Transport uses endpoint state information to manage endpoints.
Consequently, it is crucial that you call functions in the right sequence and that
you call functions to acknowledge receipt of data as well as of connection and
disconnection requests. Sending these acknowledgments is necessary to leave
the endpoint in an appropriate state for further processing. In your application,

C H A P T E R 3

Endpoints

3-18 About Endpoints

Draft.  Apple Computer, Inc. 4/30/96

you can sometimes use the OTGetEndpointState function to determine an
endpoint’s state, which is one more way to test for successful completion of a
function.

Table 3-3 lists the functions that can change an endpoint’s state and specifies
what the resulting state is depending on whether the function succeeds or fails.

The arrival of an asynchronous event can also change the state of an endpoint.
Table 3-4 shows the state of the endpoint before the event is received and the
state of the endpoint after the event is consumed. An event is consumed or
cleared when your application acknowledges receipt of the event. For example,
if you get a T_LISTEN event, you call the OTListen function; after you get a
T_DISCONNECT event, you call the OTRcvDisconnect function.

Table 3-3 Functions that can change an endpoint’s state

State
before call Function

State after call

No error If error

T_UNINIT OTOpenEndpoint T_UNBND N/A

Any CloseProvider T_UNINIT N/A

T_UNBND OTBind T_IDLE T_UNBND

T_IDLE OTUnbind T_UNBND N/A

T_IDLE OTConnect T_OUTCON T_IDLE

T_OUTCON OTRcvConnect T_DATAXFER T_IDLE

T_INCON OTAccept T_DATAXFER T_IDLE

T_DATAXFER OTSndDisconnect
OTSndOrderlyDisconnect
 OTRcvDisconnect
OTRcvOrderlyDisconnect

T_IDLE T_DATAXFER

C H A P T E R 3

Endpoints

About Endpoints 3-19
Draft.  Apple Computer, Inc. 4/30/96

The section “Handling Events for Endpoints” on page 3-24 lists the
asynchronous events that a provider can issue and the functions you must call
to clear these events.

Transport Service Data Units 3

The main purpose of endpoints is to transfer data. The terms transport service
data unit and expedited transport service unit are used to describe the size and
kind of data that a particular endpoint can handle when it is transferring data
in discrete units known as datagrams. Not all protocols use transport service
data units to transfer data.

A transport service data unit (TSDU), whether it is normal or expedited, refers
to the largest piece of data that an endpoint can transfer with boundaries and
content preserved unchanged. Different types of endpoints and different
endpoint implementations support different size TSDUs.

An expedited transport service data unit (ETSDU), refers to the largest piece
of expedited data than an endpoint can transfer. Expedited data is considered
to be urgent. An endpoint provider that can handle expedited data guarantees
that this data takes precedence over any other normal data that is being
transmitted. Not all endpoint providers can transfer expedited data. Usually,
connection-oriented and transaction-based endpoints require the use of
expedited data for control or attention messages, and therefore the
implementation of these types of endpoints often supports the transfer of
expedited data.

Table 3-4 Events that can change an endpoint’s state

Old State Event New State

T_IDLE T_LISTEN T_INCON

T_IDLE T_CONNECT T_DATAXFER

T_IDLE T_PASSCON T_DATAXFER

T_OUTCON,
T_DATAXFER

T_DISCONNECT T_IDLE

T_DATAXFER T_ORDREL T_INREL

C H A P T E R 3

Endpoints

3-20 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

When you open an endpoint, Open Transport creates an endpoint information
structure, a TEndpointInfo structure, that you can examine to find out whether
the endpoint supports normal or expedited data and the maximum size of this
data. The section “Obtaining Information About Endpoints,” beginning on
page 3-23 explains how you examine this structure to find out this information.

Using Endpoints 3

This section begins by explaining how you create an endpoint and associate it
with an address. Next, it introduces the functions you can use to obtain
information about endpoints and discusses some issues relating to
asynchronous processing that specifically affect endpoint providers. Then, it
explains some issues relating to data transfer that apply to all types of endpoint
providers. Finally, it describes how you can implement each mode of service.

No matter what mode of service you want to implement, you must read the
sections “Opening and Binding Endpoints,” “Obtaining Information About
Endpoints,” “Handling Events for Endpoints,” and “Sending and Receiving
Data.” After you have read these sections, you can read the section describing
the mode of service you are interested in implementing. Table 3-5 shows how
some of the Open Transport protocols fit with an endpoint’s mode of service.
For example, if you want to use ATP, you would need to read the section
“Using Connectionless Transaction-Based Service,” beginning on page 3-48. If
you want to use ADSP, you would need to read the section “Establishing and
Terminating Connections,” beginning on page 3-27 and the section “Using
Connection-Oriented Transactionless Service,” beginning on page 3-44.

Table 3-5 The Open Transport mode-of-service matrix and some Open Transport
protocols

Connectionless Connection-oriented

Transactionless DDP
PPP
IP
UDP

Serial connection
ADSP
PAP
TCP

Transaction-based ATP ASP

C H A P T E R 3

Endpoints

Using Endpoints 3-21
Draft.  Apple Computer, Inc. 4/30/96

Note
The sections that follow present information in such a way
as to suggest that communication is always taking place
between two Open Transport clients. This does not have to
be true. For example, an Open Transport client using a
connectionless transactionless DDP endpoint can
communicate seamlessly with a client using AppleTalk’s
DDP protocol and interface. However, because this book is
about Open Transport, we always show how
communication works between two Open Transport
clients. ◆

Opening and Binding Endpoints 3

Before you can open and bind an endpoint, you must have initialized Open
Transport and determined what the endpoint configuration is going to be.
Then, you can open and bind the endpoint. You open the endpoint with the
OTOpenEndpoint or OTAsyncOpenEndpoint functions. Opening an endpoint with
the OTOpenEndpoint function sets the default mode of execution to be
synchronous; opening an endpoint with the OTAsyncOpenEndpoint function sets
the default mode of execution to be asynchronous. You can change an
endpoint’s mode of execution at any time by calling the OTSetSynchronous or
OTSetAsynchronous function, which are described in the chapter “Providers” in
this book.

One of the parameters that you pass to the function used to open the endpoint
is a pointer to a configuration structure that Open Transport needs to define the
protocol stack providing data transport services. You can use the same
configuration for more than one endpoint; however, if you do so, you must use
the OTCloneConfiguration function to get a valid copy of the configuration
structure. The chapter “Configuration Management,” in this book, contains
information about creating a configuration structure for an endpoint provider.

If you use the OTAsyncOpenEndpoint function to open an endpoint, you also
specify the entry point to a notifier function that the endpoint provider can
use to call your application when an asynchronous or completion event takes
place. If you use the OTOpenEndpoint function to open an endpoint, and you
want to handle asynchronous events using a notifier function, you must
use the OTInstallNotifier function to install your notifier function. The
OTInstallNotifier function is described in the chapter “Providers” in
this book.

C H A P T E R 3

Endpoints

3-22 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Opening an endpoint also sets up a private data structure used by Open
Transport to manage the endpoint provider’s operations. This data structure
contains information about

■ the endpoint’s mode of operation, mode of execution, and mode of service

■ the size of internal buffers used for sending data and receiving data

■ the size of normal transport service data units (TSDUs) and expedited
transport service data units (ETSDUs) or, in the case of transactions, the size
of replies and requests

■ the maximum size of buffers used to hold address and option information
for the endpoint

■ default option values for the endpoint

Some of this information is private; the rest can be retrieved by calling
functions that return information about the endpoint. These functions are
described in the next section, “Obtaining Information About Endpoints.”

When the function you use to open the endpoint returns, it passes back to you
an endpoint reference. You must pass this reference as a parameter to any
endpoint provider function or any general provider function. For example, you
pass this reference as a parameter to the OTBind function, which you must use
to bind an endpoint after opening it. Binding an endpoint associates the
endpoint with a logical address. Depending on the protocol you use and on
your application’s needs, you can select a specific address or you can have the
protocol choose an address for you. For information about valid address
formats, consult the documentation for your protocol. The general rule for
binding endpoints is simple: you cannot bind more than one connectionless
endpoint to a single address. You can bind more than one connection-oriented
endpoint to the same address; for additional information about this possibility,
see the section “Processing Multiple Connection Requests” on page 3-33.

No matter what mode of service you need to implement, you must know how
to obtain information about the endpoints you have opened and how to handle
asynchronous and completion events for these endpoints. These issues are
addressed in the next two sections, “Obtaining Information About Endpoints”
and “Handling Events for Endpoints.” After you read these sections, you can
proceed by reading about the mode of service you want to implement.

C H A P T E R 3

Endpoints

Using Endpoints 3-23
Draft.  Apple Computer, Inc. 4/30/96

Obtaining Information About Endpoints 3

You can use endpoint functions to obtain information about an endpoint’s
mode of service, state, or address. You can also call general provider functions
to determine an endpoint’s mode of execution and mode of operation:

■ To obtain information about an endpoint’s mode of execution, you call the
OTIsSynchronous function. The function returns a positive integer to indicate
that the endpoint is in synchronous mode, or 0 if it is in asynchronous mode.

■ To obtain information about an endpoint’s mode of operation, you call the
OTIsNonBlocking or the OTIsAckingSends functions.

The TEndpointInfo structure contains most of the information you need to
determine how you can use an endpoint. This structure specifies the maximum
size of the buffers you need to allocate when calling functions that return
address and option information or data, and it also contains more specific
details about the mode of service the endpoint provides. For example, if you
have opened a connection-oriented endpoint, the servtype field of the
TEndpointInfo structure specifies whether the endpoint supports orderly
release. You can obtain a pointer to this structure when you open the endpoint,
when you bind the endpoint, or when you call the OTGetEndpointInfo function.

To obtain information about an endpoint’s state, you call the
OTGetEndpointState function. This function returns a positive integer indicating
the endpoint state or a negative integer corresponding to a result code. Table
3-2 on page 3-14 lists and describes endpoint states. If the endpoint is in
asynchronous mode and you are not using a notifier function, you might be
able to use the OTGetEndpointState function to poll the endpoint and determine
whether a specific function has finished executing. The completion of some
functions result in an endpoint’s changing state. For additional information, see
Table 3-3 on page 3-18.

To obtain address information about an endpoint or its peer, you can use one of
the following two functions:

■ OTGetProtAddress, which returns the address to which the endpoint is
bound. If the endpoint is connection-oriented and currently connected, this
function also returns the address to which the endpoint is connected.

■ OTResolveAddress, which returns the lowest-layer protocol address that
corresponds to the name of the endpoint. If you are looking up the address
that corresponds to a single name, you can use this function rather than
having to open the mapper provider and use the mapper function
OTLookUpName.

C H A P T E R 3

Endpoints

3-24 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

For information about the address formats for the protocol you are using,
please consult the documentation supplied for the protocol. For information
about obtaining the addresses that correspond to a name pattern, see the
chapter “Mappers” in this book.

Handling Events for Endpoints 3

The section about modes of execution in the chapter “Providers” describes the
functions you use to determine what a provider’s mode of execution is and to
change that mode if needed. It also discusses the special problems that might
arise in asynchronous processing and recommends ways of handling these
problems.

Like other providers, endpoint providers can operate synchronously or
asynchronously. When possible, you should use endpoints in asynchronous
mode. If you do, you need to create a notifier function that the provider can call
to inform you when an asynchronous function has completed or when an
asynchronous event has arrived. Event handling for endpoints is basically the
same as that described for providers in the chapter “Providers.” One slight
difference lies in the way the endpoint provider generates T_DATA, T_EXDATA,
and T_REQUEST asynchronous events, which signal the arrival of incoming data
or of an incoming transaction request. For the sake of efficiency, the provider
notifies you just once that incoming data has arrived. To read all the data, you
must call the function that clears the event until the function returns with the
kOTNoDataErr result. For information about which functions to use to clear these
events, see Table 3-8 on page 3-27.

You do not have to issue these calls in the notification routine itself, but until
you make the consuming calls and receive a kOTNoDataErr error, another T_DATA,
T_EXDATA, or T_REQUEST event will not be issued. You should also be prepared for
being notified that data is available, but then receiving a kOTNoDataErr error
when trying to read the data.

One exception to this rule occurs when dealing with transaction protocols.
When the client gets a T_REPLY event , OTRcvUReply is called until a kOTNoDataErr
is returned. If this is deferred from the notification function to the foreground,
the following sequence can occur: While the client is busy reading replies in the
foreground, a request arrives. This will cause a T_REQUEST event to be
generated. If the foreground client was calling OTRcvUReply at this point in time,
a kOTLookErr will be generated rather than a kOTNoDataErr. In this case (and the
converse case for T_REQUEST events), another T_REPLY event will be generated
when a new reply arrives.

C H A P T E R 3

Endpoints

Using Endpoints 3-25
Draft.  Apple Computer, Inc. 4/30/96

If we look at this operationally, the transport provider has a queue of data or
commands to deliver to the client. If the queue is empty when the data or
command arrives, a notification is delivered to the client. If the queue is not
empty, then no notification is delivered to the client at the time the data or
command is queued. Instead, whenever the client reads the data or command
at the head of the queue, Open Transport peeks at the next element of the
queue, if it exists. If this next element of the queue is of the same type as what
was at the head of the queue, no event is generated. If there is a difference, a
new event is delivered to the client. This new event is typically delivered to the
client just prior to returning from the function which removed the head
element of the queue.

Not all endpoint functions are affected by an endpoint’s mode of execution.
Those functions that do behave differently when they are executed
asynchronously are listed in Table 3-6. For each function, the table lists the
corresponding completion event.

Table 3-6 Endpoint functions that behave differently in synchronous and
asynchronous mode

Function Completion event

OTOptionManagement T_OPTIONMANGEMENTCOMPLETE

OTBind T_BINDCOMPLETE

OTUnbind T_UNBINDCOMPLETE

OTAccept T_ACCEPTCOMPLETE

OTSndRequest T_REQUESTCOMPLETE

OTSndReply T_REPLYCOMPLETE

OTSndURequest T_REQUESTCOMPLETE

OTSndUReply T_REPLYCOMPLETE

OTDisconnect T_DISCONNECTCOMPLETE

OTGetProtAddress T_GETPROTADDRCOMPLETE

OTResolveAddress T_RESOLVEADDRCOMPLETE

C H A P T E R 3

Endpoints

3-26 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

For compatibility with the XTI standard, Open Transport also includes the
endpoint provider function OTLook. You can use the OTLook function

■ to poll for asynchronous events, like incoming data or connection requests

■ to determine the cause of a kOTLookErr result

Asynchronous functions can return this result. In addition, asynchronous
events that require immediate attention can cause some synchronous
functions to fail with the kOTLookErr result. In this case, you can call the
OTLook function to determine the event that caused the function to fail. Table
3-7 lists the functions that can return the result kOTLookErr when the
corresponding event is pending.

Table 3-7 Pending asynchronous events and the synchronous functions they can
affect

Function that fails Pending events

OTAccept, OTConnect T_DISCONNECT, T_LISTEN

OTListen, OTRcvConnect,
OTRcvOrderlyDisconnect,
OTSndOrderlyDisconnect,OTSndDisconnect

T_DISCONNECT

OTRcv, OTRcvRequest, OTRcvReply,
OTSnd, OTSndRequest, OTSndReply

T_DISCONNECT, T_ORDREL

OTRcvUData, OTSndUData T_UDERR

OTUnbind T_LISTEN, T_DATA

C H A P T E R 3

Endpoints

Using Endpoints 3-27
Draft.  Apple Computer, Inc. 4/30/96

Having used the OTLook function to determine what asynchronous event
caused your function to fail, you must call one of the functions listed in
Table 3-8 to clear the event, and then you can retry the function that failed.

Establishing and Terminating Connections 3

To implement a connection-oriented service, you must complete the
following steps:

■ establish a connection

■ process any data associated with establishing the connection if this is
permitted for the endpoint

■ transfer data

■ terminate the connection when you are finished transferring data

The following sections explain how you establish and terminate a connection.
The functions you use to establish and terminate a connection are the same for
transactionless as for transaction-based service. The calls you use to transfer
data differ depending on which mode of service you choose—transactionless
or transaction-based. The section “Using Connection-Oriented Transactionless

Table 3-8 Pending asynchronous events and the functions that clear them

Pending event
Open Transport function
that clears the event

T_LISTEN OTListen

T_CONNECT OTRcvConnect

T_DATA OTRcv, OTRcvUData

T_EXDATA OTRcv

T_DISCONNECT OTRcvDisconnect

T_UDERR OTRcvUDErr

T_ORDREL OTRcvOrderlyDisconnect

T_GODATA OTSnd, OTSndUData

T_GOEXDATA OTSnd

C H A P T E R 3

Endpoints

3-28 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Service” on page 3-44 explains how you transfer data once you have
established a connection. In the text that follows, active peer refers to the
endpoint initiating a connection; passive peer refers to the endpoint accepting a
connection request.

Before you can use a connection-oriented endpoint to initiate or accept a
connection, you must open and bind the endpoint. For example, if you are
using AppleTalk, you might open an ADSP endpoint, which offers
connection-oriented transactionless service. You don’t have to do anything
special to bind an endpoint that is intended to be the active peer of a
connection. However, when you bind an endpoint intended to be the passive
peer of a connection, you must specify a value for the qlen field of the reqAddr
parameter for the OTBind function. The qlen field indicates the number of
outstanding connection requests that can be queued for that endpoint. Note
that the value you specify indicates the desired value. Open Transport might
negotiate a lower value, depending upon the number of internal buffers
available. The negotiated value of outstanding connection indications is
returned to you in the qlen field of the retAddr parameter for the OTBind
function.

You are allowed to bind multiple connection-oriented endpoints to a single
address. However, only one of these endpoints can accept incoming connection
requests. That is, only one endpoint can specify a value for qlen that is greater
than 0. For more information, see the section “Processing Multiple Connection
Requests” on page 3-33.

Establishing a Connection 3

You use the following functions to establish a connection:

Active peer calls Passive peer calls Meaning

OTConnect Requests a connection to the
passive peer.

OTListen Listens for an incoming connection
request.

OTAccept Accepts the connection request
identified by the OTListen function.
The connection can be accepted by
a different endpoint than the one
listening for incoming connection
requests.

C H A P T E R 3

Endpoints

Using Endpoints 3-29
Draft.  Apple Computer, Inc. 4/30/96

Figure 3-3 illustrates the process of establishing a connection in
synchronous mode.

OTRcvConnect Reads the status of a pending or
completed asynchronous call to the
OTConnect function.

OTSndDisconnect Rejects an incoming connection
request.

OTRcvDisconnect Identifies the cause of a rejected
connection and acknowledges the
corresponding disconnection event.

Active peer calls Passive peer calls Meaning

C H A P T E R 3

Endpoints

3-30 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Figure 3-3 Establishing a connection in synchronous mode

OTConnect

Active Passive

OTListen

OTConnect

returns with

kNoErr

OTAccept

OTRcvDisconnect

OTSndDisconnect

T_LISTEN

Accepted?
Yes

OTConnect

returns with

kOTLookErr

No

Endpoint is in

T_DATAXFER state

Endpoint is in

T_IDLE state

Notifier

C H A P T E R 3

Endpoints

Using Endpoints 3-31
Draft.  Apple Computer, Inc. 4/30/96

As Figure 3-3 shows, if the active peer is in synchronous mode, the OTConnect
function does not return until the connection has been established or the
connection attempt has been rejected. If the passive peer has a notifier function
installed, the endpoint provider calls it, passing T_LISTEN for the code
parameter. The notifier calls the OTListen function, which reads the connection
request. The passive peer can now either accept the connection request using
the OTAccept function or reject the request by calling the OTSndDisconnect
function. The connection attempt might also fail if the request is never received
and the endpoint provider times out the call to the OTConnect function.

If the passive peer calls the OTAccept function to accept the connection, the
OTConnect function returns with kNoErr. If the passive peer rejects the
connection by executing the OTSndDisconnect function or the request is timed
out, the OTConnect function returns with kOTLookErr. When the OTConnect
function returns, the active peer must examine the result and, depending on
the outcome, either begin to transfer data if the function succeeds or call the
OTRcvDisconnect function if the function fails. The active peer must call the
OTRcvDisconnect function to restore the endpoint to a valid state for subsequent
operations. Note that even though the passive peer is in a synchronous state,
you can use a notifier function to be called in case of a T_LISTEN event.
Alternately, you could also use the OTLook function to poll the passive endpoint
for a T_LISTEN event.

If the active peer is in asynchronous mode, the OTConnect function returns right
away, and the active peer must rely on its notifier function to determine
whether the call succeeded. Figure 3-4 illustrates the process of establishing a
connection when the active peer is in asynchronous mode.

C H A P T E R 3

Endpoints

3-32 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Figure 3-4 Establishing a connection in asynchronous mode

OTConnect

Active Passive

OTListen

OTAccept

OTSndDisconnect

T_LISTEN

T_CONNECT

T_DISCONNECT

T_ACCEPTCOMPLETE

T_DISCONNECTCOMPLETE

OTRcvConnect

OTRcvDisconnecct

Notifier

Notifier

Notifier

Accepted?
Yes

No

Endpoint is in

T_DATAXFER state

C H A P T E R 3

Endpoints

Using Endpoints 3-33
Draft.  Apple Computer, Inc. 4/30/96

The active peer calls the OTConnect function, which returns right away with a
code of kOTNoError. The endpoint provider calls the passive peer’s notifier,
passing T_LISTEN for the code parameter. If the passive peer accepts the
connection, the endpoint provider calls the active peer’s notifier, passing
T_CONNECT for the code parameter.

 If the passive peer rejects the connection or if the connection times out, the
endpoint provider calls the active peer’s notifier, passing T_DISCONNECT for the
code parameter. The active peer must then call either the OTRcvConnect function
in response to a T_CONNECT event or the OTRcvDisconnect function in response to
a T_DISCONNECT event. The endpoint provider, in turn, passes the
T_ACCEPTCOMPLETE event back to the passive peer (for a successful connection) or
the T_DISCONNECTCOMPLETE event (for a failed connection). The passive peer
requires the information provided by these two events to determine whether
the connection succeeded.

Sending User Data With Connection or Disconnection Requests 3

The OTConnect function and the OTSndDisconnect function both pass data
structures that include fields for data that you might want to send at the time
that you are setting up or tearing down a connection. However, you can only
send data when calling these two functions if the connect and discon fields of
the TEndpointInfo structure specify that the endpoint can send data with
connection or disconnection requests. The amount of data sent must not exceed
the limits specified by these two fields. To determine whether the endpoint
provider for your endpoint supports data transfer during the establishment of
a connection, you must examine the connect and discon fields of the
TEndpointInfo structure for the endpoint.

Processing Multiple Connection Requests 3

If you process multiple connection requests for a single endpoint, you must
make sure that the number of outstanding connection requests does not exceed
the limit defined for the listening endpoint when you bound that endpoint. An
outstanding connection request is a request that you have read using the
OTListen function but that you have neither accepted nor rejected. You must
also decide whether to accept connections on the same endpoint that is
listening for the connections or on a different endpoint.

When you bind the passive endpoint, you must specify a value greater than 0
for the qlen field of the reqAddr parameter to the OTBind function. This value
indicates the number of outstanding connections that the provider can queue

C H A P T E R 3

Endpoints

3-34 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

for this endpoint. Note that Open Transport might negotiate this number to a
lower value. If it does, the negotiated value is returned in the qlen field of the
retAddr parameter when the OTBind function returns. As you process incoming
connection requests, you must check that the number of connections still
waiting to be processed does not exceed this negotiated value for the listening
endpoint. How you do this depends on the number of outstanding requests
and on whether you are accepting connection requests on the same endpoint as
the endpoint listening for requests or accepting them on a different endpoint.
Connection acceptance is governed by the following rules:

■ You can bind more than one connection-oriented endpoint to the same
address, but you can use only one of these endpoints to listen for connection
requests.

■ If you accept a connection on the same endpoint that is listening for
connection requests, you must have responded to all previous connection
requests received on the endpoint using OTAccept or OTSndDisconnect
functions. Otherwise, the OTAccept function fails. If you have not responded
to all previous connection requests, you should accept the connection on a
different endpoint.

If you accept a connection on the same endpoint that received the
connection request and there are outstanding connection or disconnection
indications for that endpoint, the OTAccept function fails.

■ If you accept a connection on an endpoint that is different from the endpoint
that received the connection request, you do not have to bind the endpoint
to which you are passing off the connection. If the endpoint is not bound,
the endpoint provider automatically binds it to the address of the endpoint
that listened for the connection request.

If you choose to explicitly bind the endpoint accepting the connection to the
address of the endpoint listening for the connection, you must set the qlen
field of the reqAddr parameter to the OTBind function to 0.

What these rules add up to in practical terms is that if you anticipate managing
more than one connection at a time, you should open an endpoint to listen for
connections and then open additional endpoints as needed to accept incoming
connections. The decision of whether to bind the additional endpoints to the
same address or to a different address is affected only by the availability of
endpoints to your application.

C H A P T E R 3

Endpoints

Using Endpoints 3-35
Draft.  Apple Computer, Inc. 4/30/96

Terminating a Connection 3

You can terminate a connection using either an abortive or orderly disconnect.
During an abortive disconnect, the connection is torn down without the
underlying protocol taking any steps to make sure that data being transferred
has been sent and received. When the client calls the OTSndDisconnect function,
the connection is immediately torn down, and the client cannot be sure that the
provider actually sent any locally buffered data. During an orderly disconnect,
the underlying protocol ensures at least that all outgoing data is actually sent.
Some protocols go further than this, using an over-the-wire handshake that
allows both peers to finish transferring data and agree to disconnect. The
following sections describe the steps required for abortive and orderly
disconnects.

Using an Abortive Disconnect 3

You use the OTSndDisconnect and OTRcvDisconnect functions to perform an
abortive disconnect. Figure 3-5 illustrates the process for two asynchronous
endpoints. The figure shows the active peer initiating the disconnection; in fact,
either endpoint can initiate the disconnection.

Figure 3-5 An abortive disconnect

OTSndDisconnect

Active Passive

OTRcvDisconnect

T_DISCONNECT

T_DISCONNECTCOMPLETE
NotifierNotifier

Notifier

C H A P T E R 3

Endpoints

3-36 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

In asynchronous mode, the endpoint initiating the disconnection calls the
OTSndDisconnect function. Parameters to the function identify the endpoint and
point to a TCall structure that is only of interest if the endpoint provider
supports sending data with disconnection requests. To determine whether your
protocol does, you must examine the value of the discon field of the
TEndpointInfo structure for your endpoint. If you do not want to send data or if
you cannot send data to the passive peer, you can set TCall to a NULL pointer.

The endpoint provider receiving the disconnect request calls the passive peer’s
notifier function, passing T_DISCONNECT for the code parameter. The client must
acknowledge the disconnection event by calling the function OTRcvDisconnect.
This function clears the event and retrieves any data sent with the event.
Parameters to the OTRcvDisconnect function identify the endpoint sending the
disconnection and point to a TDiscon structure that is only of interest if the
endpoint provider supports sending data with disconnection requests or if the
passive peer is managing multiple connections and needs to inform the active
peer which of the connections has been closed by using the sequence field of the
TDiscon structure. Otherwise, you can set TDiscon to a NULL pointer. When the
connection has been closed, the endpoint provider calls the active peer’s
notifier, passing T_DISCONNECTCOMPLETE for the event parameter. At this time the
endpoint is once more in the T_IDLE state.

Using Orderly Disconnects 3

There are two kinds of orderly disconnects: remote orderly disconnects and
local orderly disconnects. The first kind, supported by TCP, provides an
over-the-wire (three-way) handshake that guarantees that all data has been
sent and that both peers have agreed to disconnect. The second kind,
supported by ADSP and most other connection-oriented transactionless
protocols, is a locally implemented orderly release mechanism ensuring that
data currently being transferred has been received by both peers before the
connection is torn down. To determine whether your protocol supports orderly
disconnects, you must examine the servtype field of the TEndpointInfo
structure for the endpoint. A value of T_COTS_ORD or T_TRANS_ORD indicates that
the endpoint supports orderly release. It is safest to assume, unless you know
for certain it to be otherwise, that the endpoint supports only local orderly
disconnects.

C H A P T E R 3

Endpoints

Using Endpoints 3-37
Draft.  Apple Computer, Inc. 4/30/96

Figure 3-6 shows the steps required to complete a remote orderly disconnect.
The figure shows the active peer initiating the disconnection; in fact, either peer
can initiate the disconnection.

Figure 3-6 Remote orderly disconnect

OTSndOrderlyDisconnect

Active Passive

Receive/send

data

OTSndOrderlyDisconnect

OTRcvOrderlyDisconnect

OTRcvOrderlyDisconnect

T_ORDEREL

T_ORDEREL

Send data

Receive data

Notifier

Notifier

C H A P T E R 3

Endpoints

3-38 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

The active peer initiates the disconnection by calling the
OTSndOrderlyDisconnect function to begin the process and to let the remote
endpoint know that the active peer will not send any more data. (Following the
call to this function, the active peer can receive data but it cannot send any
more data.) The provider calls the passive peer’s notifier function, passing
T_ORDREL for the code parameter. In response, the passive peer must read any
unread data and can send additional data. After it has finished reading the
data, it must call the OTRcvOrderlyDisconnect function to acknowledge receipt
of the orderly release indication. After calling this function, the passive peer
must not attempt to read any more data; however, it can continue to send data.
When the passive peer is finished sending any additional data, it must call the
OTSndOrderlyDisconnect function to complete its part of the disconnection.
Following this call, it cannot send any data. The endpoint provider calls the
active peer’s notifier, passing T_ORDREL for the code parameter, and the active
peer calls the OTRcvOrderlyDisconnect function to acknowledge receipt of the
disconnection event and to place the endpoint in the T_IDLE state if this was the
only outstanding connection.

Figure 3-7 shows the steps required to complete a local orderly disconnect.

C H A P T E R 3

Endpoints

Using Endpoints 3-39
Draft.  Apple Computer, Inc. 4/30/96

Figure 3-7 A local orderly disconnect

As you can see, the sequence of steps is very similar to that shown in
Figure 3-6. The main difference is that the connection is broken as soon as the
active peer calls the OTSndOrderlyDisconnect function. As a result, either peer
can continue to read any unread data, but neither peer can send data after the
initial call to the OTSndOrderlyDisconnect function.

OTSndOrderlyDisconnect

Active Passive

Receive data

OTSndOrderlyDisconnect

OTRcvOrderlyDisconnect

OTRcvOrderlyDisconnect

T_ORDEREL

T_ORDEREL

Recieve data

Notifier

Notifier

C H A P T E R 3

Endpoints

3-40 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Sending and Receiving Data 3

This section describes some of the issues that affect send and receive operations
inasmuch as these issues affect every type of endpoint. After you read this
section, you can read whichever section describes the type of data transfer you
are interested in.

Sending Noncontiguous Data 3

When sending data, you normally use a TNetbuf structure to specify the
location and size of the buffer containing the data to be sent. Open Transport
also allows you to send data that is not contiguous; however, you need to use a
different structure to specify the location of the data fragments in memory. This
structure is called the OTData structure.

Figure 3-8 shows how you use OTData structures to describe noncontiguous
data. The first structure, myOTD1, contains information about the first data
fragment: the fData field contains the starting address of the fragment, and the
fLen field contains the length of the fragment. The field fNext contains the
address of the OTData structure, myOTD2, which specifies the size and location of
the second fragment. In turn, the structure myOTD2, contains the address of the
OTData structure that specifies the location and size of the third fragment. You
must set the fNext field of the OTData structure used to describe the last data
fragment to NULL.

C H A P T E R 3

Endpoints

Using Endpoints 3-41
Draft.  Apple Computer, Inc. 4/30/96

Figure 3-8 Describing noncontiguous data

Sending Data Using Multiple Sends 3

If you are sending a data unit using multiple sends, you must do the following:

1. Set the T_MORE bit in the flags field each time you call the function. This lets
the provider know that it has not yet read the entire data unit.

2. Clear the T_MORE bit the last time you call the function. This lets the provider
know that the data unit is complete.

Even though you are using multiple sends to send the data, the total size of the
data sent cannot exceed the value specified for the tsdu field (for normal data
or replies) or etsdu field (for expedited data or requests) of the TEndpointInfo
structure for the endpoint.

myOTD1

fNext

fData

fLen

OTData structures

myOTD2

fNext

fData

fLen

myOTD3

fNext

fData

fLen

Noncontiguous data

First fragment

Second fragment

Third fragment

fLen

C H A P T E R 3

Endpoints

3-42 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Sending data using multiple sends does not necessarily affect the way in which
the remote client receives the data. That is, just because you have used several
calls to a send function to send data does not mean that the remote client must
call a receiving function several times to read the data.

Receiving Data 3

If you are reading data and if the T_MORE bit in the flags field is set, this means
that the buffer you have allocated to hold the data is not big enough. You must
copy the data you have already received to a different buffer and then call the
receive function again to read more data until the T_MORE bit is cleared, which
indicates that you have read the entire data unit.

No-Copy Receiving 3

Open Transport allows you to receive data without doing the extra copying
that is normally involved in receiving data, which can save time and resources.
For example, you might have received some data that needs to be written to
disk and you have four files, each with a different buffer, that are expecting
data. Normally what you would do is store the data into a temporary buffer
while you determined which of the four files was the right destination. When
you identified the target, you’d then copy the data from the temporary buffer
into that file’s buffer.

A no-copy receive allows you to peek at the data when you receive it and write
it out immediately. Open Transport does this by giving you access to a special
no-copy receive buffer, OTBuffer. To take advantage of this buffer, it is
absolutely crucial that you

■ don’t touch it

■ release it quickly

■ only release it once; don’t release it multiple times

▲ W A R N I N G

The no-copy receive buffer is read-only and you must
never under any circumstances attempt to write to it. if
you write to it, you can crash the system. ▲

You need to release the no-copy receive buffer (with the OTReleaseBuffer
function) as soon as you are finished using it so that are not tying up system
resources required elsewhere. If you hold onto the buffer, one consequence is

C H A P T E R 3

Endpoints

Using Endpoints 3-43
Draft.  Apple Computer, Inc. 4/30/96

that your Ethernet driver starts making its own copies as it receives more data,
and if it isn’t well designed, it may run out of space and lose packets.

The no-copy receive buffer is actually a linked chain of buffers, with the next
buffer pointed to by the fNext field in each buffer. You can access all of the
received data by tracing the chain of fNext pointers. For your convenience,
Open Transport provides the OTBufferInfo structure and the utility functions,
OTReadBuffer and OTBufferDataSize, to read through the OTBuffer structure.

Transferring Data Efficiently 3

Some protocols support XTI-level options that you can use to change the size of
Open Transport’s internal send and receive buffers and to change the size of
the “low-water mark” that Open Transport uses to determine how much data
should accumulate in these buffers before it sends the data or lets the client
know that data has arrived. If your protocol supports these options, you can
reset these values to fit your application’s needs. For more information, see the
section describing XTI-level options in the chapter “Option Management” in
this book.

Transferring Data Between Transactionless Endpoints 3

Open Transport defines two sets of functions that you can use to send and
receive data. You use one set with connectionless service and the other with
connection-oriented service.

Using Connectionless Transactionless Service 3

You use connectionless transactionless service, as provided by AppleTalk’s
DDP for example, to send and receive discrete data packets. Most often
applications use higher-level protocols that depend, in turn, upon more basic
protocols that use connectionless transactionless service. For example, all of
AppleTalk’s higher-level protocols make use of DDP to send and receive data.

After opening and binding a connectionless transactionless endpoint, you can
use three functions to send and receive data:

■ the OTSndUData function to send data

■ the OTRcvUData function to receive data

■ the OTRcvUDErr function to determine why a send operation did not succeed

C H A P T E R 3

Endpoints

3-44 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Either endpoint can send or receive data. However, the endpoint sending data
cannot determine whether the other endpoint has actually received the data.

Some endpoints are not able to determine that the specified address or options
are invalid until after the data is sent. In this case, the sender’s endpoint
provider issues the T_UDERR event. You should include code in your notifier
function that calls the OTRcvUDErr function in response to this event to
determine what caused the send function to fail and to place the sending
endpoint in the correct state for further processing.

If the endpoint receiving data has allocated a buffer that is too small to hold the
data, the OTRcvUData function returns with the T_MORE bit set in the flags
parameter. In this case, you should call the OTRcvUData function repeatedly until
the T_MORE bit is cleared.

 Using Connection-Oriented Transactionless Service 3

You use connection-oriented transactionless service, such as provided by ADSP,
to exchange full-duplex streams of data across a network. Connection-oriented
transactionless endpoints use the OTSnd function to send data and the OTRcv
function to receive data. Either endpoint can call either of these functions.
Parameters to the OTSnd function identify the endpoint sending the data, the
buffer that holds the data, the size of the data, and a flags value that specifies
whether the data sent is normal or expedited and whether multiple sends are
being used to send the data. Parameters to the OTRcv function identify the
receiving endpoint, the area in memory where the data should be copied, the
size of the data, and a flags value that specifies whether the client needs to call
OTRcv more than once to retrieve the data being sent.

Some endpoints support the use of expedited data, and some support the use
of separators to break the data stream into logical units. You need to examine
the endpoint’s TEndpointInfo structure to determine if the endpoint supports
either of these features:

■ The etsdu field of the TEndpointInfo structure specifies whether the endpoint
supports the use of expedited data and, if so, specifies its size. For example,
ADSP supports the use of expedited data to send attention messages
between peer endpoints. In general, it is recommended that you do not use
expedited data because doing so results in code that is not transport
independent.

■ The tsdu field of the TEndpointInfo structure specifies the maximum size of
normal data that the endpoint can send or receive. In those cases where the

C H A P T E R 3

Endpoints

Using Endpoints 3-45
Draft.  Apple Computer, Inc. 4/30/96

endpoint supports the breaking up of the data stream into logical units, the
TSDU size specifies what the maximum size of any such unit may be.

IMPORTANT

Values for the tsdu and etsdu fields of the TEndpointInfo
structure that are returned when you open an endpoint
might change after the endpoint is connected because the
endpoint providers can negotiate different values when
establishing a connection. If the endpoint supports
variable maximum limits for TSDU and ETSDU size, you
should call the OTGetEndpointInfo function after the
connection has been established to determine what the
current limits are. ▲

To send expedited data, you must set the T_EXPEDITED bit in the flags
parameter. If the receiving client is in the middle of reading normal data and
the OTRcv function returns expedited data, the next OTRcv that returns without
T_EXPEDITED set in the flags field resumes the sending of normal data at the
point where it was interrupted. It is the responsibility of the client to remember
where that was.

There are several ways of breaking up a data stream into logical size units.

■ If the endpoint supports it, enable the use of the T_MORE flag to the OTSnd
function. For example, using ADSP, you can do this by setting the EOM option
when you connect the endpoints. Sending data with the T_MORE bit set
informs the receiving endpoint that the TSDU is being sent using multiple
OTSnd calls. When sending the last packet, do not set the T_MORE bit. Because
these packets are guaranteed to be delivered in the order sent, the receiving
endpoint can determine when the last packet has arrived by examining
the flags.

■ If the endpoint supports it, send a zero-length TSDU to indicate the end of a
TSDU. The receiving endpoint needs to test the nbytes field of the OTSnd
function to determine if this is the last transmission. To determine whether
the endpoint supports this feature, you need to examine the flags field of
the TEndpointInfo structure; zero-length TSDUs are supported if the
T_SENDZERO bit is set.

■ Use the data transferred with your first send to specify the name and size of
the file that you want to send. The receiving endpoint can save the size value
and decrement it by the value specified by the nbytes parameter of each

C H A P T E R 3

Endpoints

3-46 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

subsequent send until the number equals 0. This last method is the only one
that is transport-independent.

Transferring Data Between Transaction-Based Endpoints 3

Open Transport defines two sets of functions that you can use to conclude a
transaction. One set is defined for connectionless transactions; the other set is
defined for connection-oriented transactions. A transaction is a process during
which one endpoint, the requester, sends a request for a service. The remote
endpoint, called the responder, reads the request, performs the service, and
sends a reply. When the requester receives the reply, the transaction is complete.

You can implement applications that use transactions in the following
two ways:

■ You can write a single application that handles both the requester and
responder actions of a transaction and run that application on two
networked nodes. This method allows each application to act as either the
requester or the responder. Either side can initiate a transaction, but only one
side can control the communication during a single transaction.

■ You can write two applications, one implementing the requester part of a
transaction and the other implementing the responder side. This model
lends itself well to a client-server relationship, in which many nodes on a
network run the requester application (client), while one or more nodes run
the responder application (server); one server can respond to transaction
requests from several clients.

Because one endpoint can conduct multiple transactions at any one time, it is
crucial that requesters and responders be able to distinguish one transaction
from another. This is done by means of a transaction ID, a number that
uniquely identifies a transaction. Because this is not the same number for the
requester as it is for the responder, some explanation is required. Figure 3-9
shows how the transaction ID is generated by the requesting application and
the provider during the course of a transaction.

C H A P T E R 3

Endpoints

Using Endpoints 3-47
Draft.  Apple Computer, Inc. 4/30/96

Figure 3-9 How a transaction ID is generated

The requester initiates a transaction by sending a request. The requester passes
information about the request in a data structure that includes a seq field,
which specifies the transaction ID of the request. The requester initializes this
field to some arbitrary, unique number. Before sending the request, the
endpoint provider saves this number in an internal table and assigns another
number to the seq field, which it guarantees to be unique for the requester’s
machine. The endpoint provider also saves the new number along with the

address

options

data

sequence = 1001

address

options

data

sequence = 5123

1001 : 5123

Send request Read request

address

options

data

sequence = 1001

address

options

data

sequence = 5123

Read reply Send reply

ResponderRequester

1001 : 5123

C H A P T E R 3

Endpoints

3-48 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

requester-generated sequence number. For example, in Figure 3-9, the requester
assigns the number 1001; the endpoint provider assigns the number 5123.

When the responder receives the request, it reads the request information,
including the provider-generated sequence number, into buffers it has reserved
for the request data. When the responder sends a reply, it specifies the sequence
number it read when it received the request.

Before the requester’s endpoint provider advises the requester that the reply
has arrived, it examines the sequence number of the reply and looks in its
internal table to determine which requester-generated sequence number it
matches. It then substitutes that number for the sequence number it received
from the responder. By using this method Open Transport guarantees that
transactions are uniquely identified, and the requester is able to match
incoming replies with outgoing requests.

Using Connectionless Transaction-Based Service 3

You use connectionless transaction-based service, such as provided by ATP, to
enable two connectionless endpoints to complete a transaction.

The requester initiates the transaction by calling the OTSndURequest function.
Parameters to the OTSndURequest function specify the destination address, the
request data, any options, and a sequence number to identify this transaction.
The requester must supply a sequence number if it is sending multiple
requests, so that later on it can match replies to requests. The requester can
cancel an outgoing request by calling the OTCancelURequest function. A
requester can implement its own timeout mechanism by installing a Time
Manager task and calling the OTCancelURequest function after a specific amount
of time has elapsed without a response to the request.

If the responder is synchronous and blocking, the OTRcvURequest function
returns after it has read the request. If the responder is asynchronous or not
blocking and has a notifier installed, the endpoint provider calls the notifier,
passing T_REQUEST for the code parameter. When the responder receives this
event, it must call the OTRcvURequest function to read the request. On return,
parameters to the OTRcvURequest function specify the address of the requester,
option values, the request data, flags information, and a sequence number to

C H A P T E R 3

Endpoints

Using Endpoints 3-49
Draft.  Apple Computer, Inc. 4/30/96

identify the transaction. When the responder sends a reply to the request, it
must use the same sequence number for the reply. If the responder’s buffer is
too small to contain the request, the endpoint provider sets the T_MORE bit in the
flags parameter. The responder must call the OTRcvURequest function until the
T_MORE bit is clear. This indicates that the entire request has been read.

Having read the request, the responder can reply to the request using the
OTSndUReply function or reject the request using the OTCancelUReply function.
Although the requester is not advised that the responder has rejected a request,
it’s important that the responder explicitly cancel an incoming request in order
to free memory reserved by the OTRcvURequest function.

If the requester is in synchronous blocking mode, the OTRcvUReply function
waits until a reply comes in. Otherwise, if a notifier is installed, the endpoint
provider calls the notifier, passing T_REPLY for the code parameter. The notifier
must call the OTRcvUReply function. On return, parameters to the function
specify the address of the endpoint sending the reply, specify option values,
flag values, reply data, and a sequence number that identifies the request
matching this reply. If the T_MORE bit is set in the flags parameter, the requester
has allocated a buffer that is too small to contain the reply data. The requester
must call the OTRcvUReply function until the T_MORE bit is clear; this indicates
that the complete reply has been read.

If the request is rejected or fails in some other way, the requester receives the
T_REPLY event. However, the OTRcvUReply function returns with the result
kETIMEDOUTErr. Otherwise, the only useful information returned by the function
is the sequence number of the request that has failed.

Figure 3-10 illustrates how connectionless transaction-based endpoints in
asynchronous mode exchange data.

C H A P T E R 3

Endpoints

3-50 Using Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Figure 3-10 Data transfer using connectionless transaction-based endpoints in
asynchronous mode

Using Connection-Oriented Transaction-Based Service 3

Connection-oriented transaction-based endpoints allow you to transfer data in
exactly the same way as connectionless transaction-based endpoints except
that, because the endpoints are connected, it is not necessary to specify an
address when using the functions to send and receive requests and replies. The
only other difference is that a connection-oriented transaction may be
interrupted by a connection or disconnection request.

The section “Using Connectionless Transaction-Based Service,” beginning on
page 3-48 describes the sequence of functions used to transfer data using a
transaction. Figure 3-11 shows the sequence of functions called during a
connection-oriented transaction; both requester and responder are in
asynchronous mode. This sequence is the same as for connectionless
transaction-based service, as shown in Figure 3-10 on page 3-50. Of course, you

OTSndURequest

Requester Responder

OTRcvURequest

OTSndUReply OTCancelUReply

OTRcvUReply
T_REPLYCOMPLETE

T_REPLY

T_REQUEST
Notifier

Notifier

Notifier

C H A P T E R 3

Endpoints

Using Endpoints 3-51
Draft.  Apple Computer, Inc. 4/30/96

use different functions to complete these two types of transactions: the names
of the functions shown in Figure 3-11 do not include a “U” in the function
name.

Figure 3-11 Data transfer using connection-oriented transaction-based endpoints in
asynchronous model

For information about how to handle disconnection requests that might occur
during a transaction, see “Using Orderly Disconnects,” beginning on page 3-36.

OTSndRequest

Requester Responder

OTRcvRequest

OTSndReply OTCancelReply

OTRcvReply
T_REPLYCOMPLETE

T_REPLY

T_REQUEST
Notifier

Notifier

Notifier

C H A P T E R 3

Endpoints

3-52 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

Endpoints Reference 3

This section describes the data types and functions that you use with
endpoints. You can also use general provider data types and functions with
endpoints. General structures and functions are described in the reference
section of the chapter “Providers” in this book.

Note
Some endpoint data types and functions correspond exactly to
those in the X/Open Transport Interface (XTI), from which
Open Transport derives its application programming interface.
Appendix A lists these data types and functions. You can refer
to these data types and functions by their Open Transport
names or their corresponding XTI names. For example, you
can refer to the Open Transport function OTBind by the XTI
name t_bind. This chapter refers to endpoint data types and
functions by their Open Transport names. ◆

Constants and Data Types 3

This section describes the constants and data types that you can use with
endpoints. The data types include general types that you can use with any type
of endpoint and specific types that you can use only with one type of endpoint.
The general types (the TEndpointInfo structure, the TBind structure, and the
OTData structure) are described first, just following the descriptions of constants.

OTData Constant 3

When transferring data that is noncontiguous, you need to use an OTData buffer
instead of the TNetbuf structure. Open Transport provides a constant that you
can use when you send or receive data to indicate that the value in the TNetbuf
structure is actually a pointer to an OTData buffer.

enum {
kNetbufDataIsOTData = (size_t)0xfffffffeU

};

C H A P T E R 3

Endpoints

Endpoints Reference 3-53
Draft.  Apple Computer, Inc. 4/30/96

OTBuffer Constant 3

When receiving data without making a copy, you need to point to an OTBuffer
pointer. Open Transport provides a constant that you can use instead of the
nbytes parameter of the OTRcv function or the udata.maxlen field used with
other receive functions to indicate that you are doing this.

enum {
kNetbufDataIsOTBufferStar= (size_t)0xfffffffdU

};

Buffer Types Enumeration 3

Each of the structures described by the structure types enumeration contains
fields that point to different kinds of buffers. When you allocate memory for
such a structure using the OTAlloc function (page 3-102), you can also specify
that these buffers be allocated by specifying one or more of the constant names
given by the buffer types enumeration.

The length of the allocated buffer is at least as large as the size returned for the
endpoint by the OTGetEndpointInfo function (page 3-92). For each buffer
allocated, the OTAlloc function sets the maxlen field to the length of the buffer,
and the len field to 0. To specify more than one constant name, use the bitOR
operator to combine values.

enum {
T_ADDR = 0x01,
T_OPT = 0x02,
T_UDATA = 0x04,
T_ALL = 0xffff

};

Constant descriptions

T_ADDR The addr field of the TBind, TCall, TUDErr, TUnitRequest, or
TUnitData structures.

T_OPT The opt field of the TOptMgmt, TCall, TUDErr, TRequest,
TReply, TUnitRequest, TUnitReply, or TUnitData structures.

T_UDATA The udata field of the TCall, TDiscon, TUnitData, TRequest,
TReply, TUnitRequest, or TUnitReply structures. The value

C H A P T E R 3

Endpoints

3-54 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

of the udata.maxlen field depends upon the structure being
allocated.

T_ALL All relevant fields of the desired structure are allocated.

Endpoint Service Types 3

Open Transport uses the servtype field of the TEndpointInfo structure
(page 3-58) to indicate the kind of service the endpoint provides. The constant
names that Open Transport can return for this field are given by the endpoint
service enumeration:

enum {
T_COTS = 1,
T_COTS_ORD = 2,
T_CLTS = 3,
T_TRANS = 5,
T_TRANS_ORD = 6,
T_TRANS_CLTS = 7

};

Constant descriptions

T_COTS Connection-oriented transactionless service without
orderly release.

T_COTS_ORD Connection-oriented transactionless service with optional
orderly release.

T_CLTS Connectionless transactionless service.
T_TRANS Connection-oriented transaction-based service without

orderly release.
T_TRANS_ORD Connection-oriented transaction-based service with

optional orderly release.
T_TRANS_CLTS Connectionless transaction-based service.

Open Transport Flags 3

Open Transport uses the OTFlags enumeration to specify additional information
about data that is being transmitted. The constant names that Open Transport
can return for this field are given by the Open Transport flags enumeration.

C H A P T E R 3

Endpoints

Endpoints Reference 3-55
Draft.  Apple Computer, Inc. 4/30/96

typedef UInt32 OTFlags;

enum {
T_MORE = 0x001,/* More data to come in message */
T_EXPEDITED = 0x002,/* Data is expedited, if possible */
T_ACKNOWLEDGED = 0x004,/* Acknowledge transaction */
T_PARTIALDATA = 0x008,/* Partial data - more coming */
T_NORECEIPT = 0x010/* No event on transaction done */
T_TIMEDOUT = 0x020/* Reply timed out */

};

Constant descriptions

T_MORE There is more data for the current TSDU or ETSDU. The
next send or receive operation will handle additional data
for this TSDU or ETSDU.

T_EXPEDITED The data is sent as expedited data if the endpoint supports
expedited data.

T_ACKNOWLEDGED The transaction must be acknowledged before the send or
receive function can complete.

T_PARTIALDATA There is more data for the current TSDU or ETSDU. Unlike
T_MORE, T_PARTIALDATA does not guarantee that the next
send or receive operation will handle additional data for
this TSDU or ETSDU.

T_NORECEIPT There is no need to send a T_REPLY_COMPLETE event to
complete the transaction. If you don’t need to know when
the transaction is actually done, you can set this flag to
improve performance.

T_TIMEDOUT The reply timed out. If a protocol such as ATP loses the
acknowledgement for a transaction that needs to be
acknowledged, the transaction will eventually time out.
Since the reply didn’t really fail (it just timed out), Open
Transport can send a T_REPLY_COMPLETE event to complete
the transaction and set this flag to explain what happened.

Endpoint Flags 3

Open Transport uses the flags field of the TEndpointInfo structure (page 3-58)
to specify additional information about the endpoint. The constant names that

C H A P T E R 3

Endpoints

3-56 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

Open Transport can return for this field are given by the endpoint flags
enumeration:

enum {
T_SENDZERO = 0x001,
T_XPG4_1 = 0x002,
T_CAN_SUPPORT_MDATA = 0x10000000,
T_CAN_RESOLVE_ADDR = 0x40000000,
T_CAN_SUPPLY_MIB = 0x20000000

};

Constant descriptions

T_SENDZERO This endpoint lets you send and receive zero-length
TSDUs.

T_XPG4_1 This endpoint supports the OTGetProtAddress function.
T_CAN_SUPPORT_MDATA

This endpoint supports M_DATA, that is, it permits sending
raw packets. This is Streams-specific and is found in the
mistreams.h header file. When you send such a packet, set
the packet’s addr.buf field to a null value and set its
addr.len field to –1. This indicates that the data portion of
the TUnitData structure already has the header information
in it.

T_CAN_RESOLVE_ADDR This endpoint supports the OTResolveAddress function.
T_CAN_SUPPLY_MIB This endpoint can supply the Management Information

Base (MIB) data used by the Simple Network Management
Protocol (SNMP).

Endpoint States 3

The OTGetEndpointState function (page 3-93) returns an integer specifying the
current state of an endpoint. Integer values and their corresponding constant
names are given by the endpoint states enumeration. For information about
endpoint states, see the section “Endpoint States” on page 3-13.

enum {
T_UNINIT = 0, /* endpoint is uninitialized */
T_UNBND = 1, /* endpoint is unbound */
T_IDLE = 2, /* idle */

C H A P T E R 3

Endpoints

Endpoints Reference 3-57
Draft.  Apple Computer, Inc. 4/30/96

T_OUTCON = 3, /* outgoing connection pending */
T_INCON = 4, /* incoming connection pending */
T_DATAXFER = 5, /* data transfer */
T_OUTREL = 6, /* outgoing orderly release */
T_INREL = 7 /* incoming orderly release */

};

Constant descriptions

T_UNINIT This endpoint has been closed and destroyed.
T_UNBND This endpoint is initialized but has not yet been bound to

an address.
T_IDLE This endpoint has been bound to an address and is ready

for use: connectionless endpoints can send or receive data;
connection-oriented endpoints can initiate or listen for a
connection.

T_OUTCON This endpoint has initiated a connection and is waiting for
the peer endpoint to accept the connection.

T_INCON This endpoint has received a connection request but has
not yet accepted or rejected the request.

T_DATAXFER This connection-oriented endpoint can now transfer data
because the connection has been established.

T_OUTREL This endpoint has issued an orderly disconnect that the
peer has not acknowledged. The endpoint can continue to
read data, but must not send any more data.

T_INREL This endpoint has received a request for an orderly
disconnect, which it has not yet acknowledged. The
endpoint can continue to send data until it acknowledges
the disconnection request, but it must not read data.

Structure Types 3

The OTAlloc function (page 3-102) allocates a data structure that you specify
using one of the constant names given by the structure types enumeration:

enum {
T_BIND = (OTStructType)1,
T_OPTMGMT = (OTStructType)2,
T_CALL = (OTStructType)3,
T_DIS = (OTStructType)4,

C H A P T E R 3

Endpoints

3-58 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

T_UNITDATA = (OTStructType)5,
T_UDERROR = (OTStructType)6,
T_INFO = (OTStructType)7,
T_REPLYDATA = (OTStructType)8,
T_REQUESTDATA = (OTStructType)9,
T_UNITREQUEST = (OTStructType)10,
T_UNITREPLY = (OTStructType)11

};

Constant descriptions

T_BIND Specifies the TBind structure (page 3-61).
T_OPTMGMT Specifies the TOptMgmt structure, described in the chapter

“Option Management” in this book.
T_CALL Specifies the TCall structure (page 3-72).
T_DIS Specifies the TDiscon structure (page 3-161).
T_UNITDATA Specifies the TUnitData structure (page 3-65).
T_UDERROR Specifies the TUDError structure (page 3-67).
T_INFO Specifies the TEndpointInfo structure (page 3-58).
T_REPLYDATA Specifies the TReply structure (page 3-77).
T_REQUESTDATA Specifies the TRequest structure (page 3-76).
T_UNITREQUEST Specifies the TUnitRequest structure(page 3-68).
T_UNITREPLY Specifies the TUnitReply structure (page 3-70).

The TEndpointInfo Structure 3

The TEndpointInfo structure describes the initial characteristics of an endpoint
that you opened by calling the OTOpenEndpoint function (page 3-92) or the
OTAsyncOpenEndpoint function (page 3-86). These functions return as a
parameter a pointer to a TEndpointInfo structure, if there is one. The
TEndpointInfo structure is optional; some endpoints might not provide one,
depending on which protocol modules they use. You can also obtain a pointer
to the TEndpointInfo structure by calling the OTGetEndpointInfo function
(page 3-92) or the OTBind function (page 3-87).

You use the TEndpointInfo structure to find out how large a buffer you must
allocate to send or receive information for the endpoint and what kind of
services the endpoint provides.

C H A P T E R 3

Endpoints

Endpoints Reference 3-59
Draft.  Apple Computer, Inc. 4/30/96

IMPORTANT

It is recommended that you do not hard-code
TEndpointInfo field values into your application when
specifying the maximum length of buffers because these
values might change. ▲

The TEndpointInfo structure is defined by the TEndpointInfo data type.

struct TEndpointInfo
{

SInt32 addr; /* maximum size of an address */
SInt32 options; /* maximum size of options */
SInt32 tsdu; /* normal data transmit unit size*/
SInt32 etsdu; /* expedited data transmit unit size */
SInt32 connect; /* maximum data size on connect */
SInt32 discon; /* maximum data size on disconnect */
UInt32 servtype; /* service type */
UInt32 flags; /* flags */

};
typedef struct TEndpointInfo TEndpointInfo;

Field descriptions
addr A value greater than 0 indicates the maximum size (in

bytes) of a protocol address to which you can bind this
endpoint. A value of T_INVALID indicates that this endpoint
does not allow access to protocol addresses; it is being
used for serial communication.

options A value greater than 0 indicates the maximum number of
bytes needed to store the protocol-specific options that this
endpoint supports, if any. A value of T_INVALID indicates
that this endpoint has no protocol-specific options that you
can set.

tsdu For a transactionless endpoint, a positive value indicates
the maximum number of bytes in a transport service data
unit (TSDU) for this endpoint. A value of T_INFINITE
indicates that there is no limit to the size of a TSDU. A
value of 0 indicates that the provider does not support the
concept of a TSDU. This means that you can send a data
stream with no logical boundaries preserved across a
connection. A value of T_INVALID indicates that this

C H A P T E R 3

Endpoints

3-60 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

endpoint cannot transfer normal data (as opposed to
expedited data).
For a transaction-based endpoint, this field indicates the
maximum number of bytes in a response.

etsdu For a transactionless endpoint, a positive value indicates
the maximum number of bytes in an expedited transport
service data unit (ETSDU) for this endpoint. A value of
T_INFINITE indicates that there is no limit to the size of a
ETSDU. A value of 0 indicates that this endpoint does not
support the concept of an ETSDU. This means that you can
send an expedited data stream with no logical boundaries
preserved across a connection. A value of T_INVALID
indicates that this endpoint cannot transfer expedited data.
For a transaction-based endpoint, this field indicates the
maximum number of bytes in a request.

connect For a connection-oriented endpoint, a value greater than 0
indicates the maximum amount of data (in bytes) that you
can send with the OTSnd function (page 3-140) or OTAccept
function (page 3-137). A value of T_INVALID indicates that
this endpoint does not let you send data with these
functions. This field is meaningless for other types of
endpoints.

discon For a connection-oriented endpoint, a value greater than 0
indicates the maximum amount of data (in bytes) that you
can send using the OTSndDisconnect function (page 3-159)
and the OTSndOrderlyDisconnect function (page 3-163). A
value of T_INVALID indicates that this endpoint does not let
you send data with these functions. This field is
meaningless for other types of endpoints.

servtype A constant that indicates what kind of service the endpoint
provides. Possible values are given by the endpoint service
enumeration (page 3-54).

flags A bit field that provides additional information about the
endpoint. Possible values are given by the endpoint flags
enumeration (page 3-55).

C H A P T E R 3

Endpoints

Endpoints Reference 3-61
Draft.  Apple Computer, Inc. 4/30/96

The TBind Structure 3

The TBind structure describes the protocol address to which an endpoint is
currently bound or connected, or specifies the protocol address to which you
wish to bind or connect the endpoint. For a connection-oriented endpoint, the
TBind structure also specifies the actual or desired number of connection
requests that can be concurrently outstanding for the endpoint.

You pass the TBind structure as a parameter to the OTBind function (page 3-87),
the OTGetProtAddress function (page 3-96), and OTResolveAddress function
(page 3-98).

The TBind structure is defined by the TBind data type.

struct TBind
{

TNetbuf addr;
OTQLen qlen;

};
typedef struct TBind TBind;

Field descriptions
addr A TNetbuf structure that contains information about an

address. The addr.maxlen field specifies the maximum size
of the address, the addr.len field specifies the actual length
of the address, and the addr.buf field points to the buffer
containing the address.

When specifying an address, you must allocate a buffer for
the address and initialize it, you must set the addr.buf field
to point to this buffer, and you must set the addr.len field
to the size of the address.
When requesting an address, you must allocate a buffer in
which the address is to be placed, you must set the
addr.buf field to point to this buffer, and you must set the
addr.maxlen field to the maximum size of the address that
is being returned. You determine this value by examining
the addr field of the TEndpointInfo structure for the
endpoint.

qlen For a connection-oriented endpoint, the maximum number
of connection requests that can be concurrently
outstanding for this endpoint. For more information, see

C H A P T E R 3

Endpoints

3-62 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

the description of the OTBind function (page 3-87). For
connectionless endpoints, this field has no meaning.

The OTData Structure 3

You use the OTData structure to specify the location and size of noncontiguous
data. You can use this structure in place of the normal TNetbuf structure to
describe a data buffer when sending data using the OTSndUData function
(page 3-111), the OTSndURequest function (page 3-117), the OTSndUReply function
(page 3-122), the OTSnd function (page 3-140), the OTSndRequest function
(page 3-147), and the OTSndReply function (page 3-151).

▲ W A R N I N G

The OTData structure is an Apple extension to the XTI
specification. Using it might cause your program not to
work when ported to other XTI/STREAMS
environments. ▲

When transferring data, you normally specify a pointer to a TNetbuf structure
that specifies the location and size of the buffer containing the data. However,
you cannot use a TNetbuf structure to describe data that is noncontiguous.
Instead you must use an OTData structure to describe each separate chunk of
data. When the function that sends the data executes, it is able to locate all
the chunks of data, given a pointer to the OTData structure that describes the
first chunk.

Using the OTData structure enables you to send data that is not contiguous, but
the total size of the data fragments must not exceed the maximum size of data
that the endpoint can send. The limits for normal and expedited data are
specified in the tsdu and etsdu fields of the TEndpointInfo structure for the
endpoint.

Each OTData structure specifies the location of a data fragment, the size of the
fragment, and the location of the OTData structure that specifies the location and
size of the next data fragment. The data information structure is defined by the
OTData type.

struct OTData {
void* fNext;
void* fData;

C H A P T E R 3

Endpoints

Endpoints Reference 3-63
Draft.  Apple Computer, Inc. 4/30/96

size_t fLen;
};
typedef struct OTData OTData;

Field descriptions
fNext A pointer to the OTData structure that describes the next

data fragment. Specify a NULL pointer for the last data
fragment.

fData A pointer to the data fragment.
fLen A long specifying the size of the fragment in bytes.

The No-Copy Receive Buffer Structure 3

You use the no-copy receive buffer structure to specify that you wish to receive
data without copying it. You can point to this structure when receiving data
with the OTRcvUData function (page 3-115), the OTRcvURequest function
(page 3-120), the OTRcvUReply function (page 3-125), the OTRcv function
(page 3-144), the OTRcvRequest function (page 3-149), and the OTRcvReply
function (page 3-154).

Note
If you are familiar with Streams mblk_t data structures,
you can see that the no-copy receive buffer structure is just
a slight modification of the mblk_t structure. ◆

You can only use this buffer for data; you cannot use it for the address or
options that may be associated with the incoming data. For example, in the
case of an incoming TUnitData structure, you can only capture the udata
portion, not the addr or opt fields.

▲ W A R N I N G

Under no circumstance write to this data structure. It is
read-only. If you write to it, you can crash the system. ▲

The no-copy receive buffer structure is defined by the OTBuffer data type.

struct OTBuffer
{

void* fLink;
void* fLink2;
OTBuffer* fNext;

C H A P T E R 3

Endpoints

3-64 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

UInt8* fData;
size_t fLen;
void* fSave;
UInt8 fBand;
UInt8 fType;
UInt8 fPad1;
UInt8 fFlags;

};

typedef struct OTBuffer OTBuffer;

Field descriptions
fLink Reserved.

fLink2 Reserved.
fNext A pointer to the next OTBuffer structure in the linked

chain. By tracing the chain of fNext pointers, you can
access all of the data associated with the message.

fData A pointer to the data portion of this OTBuffer structure.
fLen The length of data pointed to by the fData field.
fSave Reserved.
fBand The band used for the data transmission. It must be a

value between 0 and 255.
fType The type of the data (normally M_DATA, M_PROTO, or

M_PCPROTO).
fPad1 Reserved.
fFlags The flags associated with the data (MSGMARK, MSGDELIM).

IMPORTANT

Once you have copied the data out of the no-copy receive
buffer, you need to call the OTReleaseBuffer function as
quickly as possible to return the buffer to Open
Transport. ▲

In many cases, for performance reasons, drivers pass their actual DMA buffers
when they return data. If this is the case, when you do a no-copy receive, you
are getting the actual DMA buffers from the driver. If you hold on to the buffer
for too long, you may begin to starve the driver for DMA buffers, which
adversely affects the performance of the system. It is very important that if you
are doing a no-copy receive, you hold onto the buffer for as short a time as

C H A P T E R 3

Endpoints

Endpoints Reference 3-65
Draft.  Apple Computer, Inc. 4/30/96

possible. If it seems necessary to hold on to the buffer for any length of time,
overall performance is better if you instead make a copy of the data and return
the buffer to the system.

Buffer Information Structure 3

The buffer information structure is provided for your convenience in keeping
track of where you last left off in an OTBuffer structure. Because the no-copy
receive buffer structure (OTBuffer) is read-only, you may need to copy the data
in sections as you progress through the no-copy receive buffer.

The buffer information structure is defined by the OTBufferInfo data type.

struct OTBufferInfo
{

OTBuffer* fBuffer;
size_t fOffset;
UInt8 fPad;

};

typedef struct OTBufferInfo OTBufferInfo;

Field descriptions
fBuffer A pointer to the no-copy receive buffer.

fOffset An offset indicating how much of the buffer to read.
fPad Reserved.

The TUnitData Structure 3

You use the TUnitData structure to describe the data being sent with the
OTSndUData function (page 3-111) and the data being read with the OTRcvUData
function (page 3-115); you pass this structure as a parameter to each of these
functions.

The TUnitData structure is defined by the TUnitData type.

struct TUnitData
{ TNetbuf addr;

TNetbuf opt;

C H A P T E R 3

Endpoints

3-66 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

TNetbuf udata;
};

typedef struct TUnitData TUnitData;

Field descriptions
addr A TNetbuf structure that contains information about an

address.

In the udata parameter to the OTSndUData function, this field
specifies the location and size of the destination address.
You must allocate a buffer to hold the address and
initialize the addr.buf field to point to that buffer. You
must set the addr.len field to the length of the address.
In the udata parameter to the OTRcvUData function, on
return, this field specifies the location and size of the
address of the endpoint that has sent the data. You must
allocate a buffer to contain the address, initialize the
addr.buf field to point to it, and set the addr.maxlen field to
specify its maximum size.

opt A TNetbuf structure that contains information about
options.
In the udata parameter to the OTSndUData function, this field
specifies the location and size of options. You must allocate
a buffer to hold the options and initialize the opt.buf field
to point to that buffer. You must set the opt.len field to the
length of the options buffer. If you do not want to specify
any options, set the opt.len field to 0.
In the udata parameter to the OTRcvUData function, on
return, this field contains any association-related options
specified by the endpoint sending data. To read these
options, you must allocate a buffer into which the provider
can place the options; you must set the opt.buf field to
point to the buffer; and you must set the opt.maxlen field
to the maximum size of the buffer.

udata A TNetbuf structure that contains information about the
data being transferred.
In the udata parameter to the OTSndUData function, this field
specifies the location and size of the buffer containing the
data to be sent. You must allocate a buffer for the data and
initialize the udata.buf field to point to that buffer. You

C H A P T E R 3

Endpoints

Endpoints Reference 3-67
Draft.  Apple Computer, Inc. 4/30/96

must set the udata.len field to the size of the data being
sent.
If you are sending data that is not stored contiguously, the
udata.buf field is a pointer to an OTData structure that
describes the first data fragment. In this case, you must set
the udata.len field to the constant kNetbufDataIsOTData.
In the udata parameter to the OTRcvUData function, this field
specifies the location and size of the buffer into which the
data being received is going to be placed when the
function returns. You must allocate a buffer for the data,
set the udata.buf field to point to it, and set the
udata.maxlen field to the maximum length of this buffer.
If you are doing a no-copy receive, the udata.buf field is a
pointer to an OTBuffer pointer. In this case, you must set
the udata.maxlen field to the constant
kNetbufDataIsOTBufferStar.

The TUDErr Structure 3

The TUDErr structure points to information that explains why the OTSndUData
function (page 3-111) has failed. You pass this structure as a parameter to the
OTRcvUDErr function (page 3-113).

The TUDErr structure is defined by the TUDErr type.

struct TUDErr
{ TNetbuf addr;

TNetbuf opt;
SInt32 error;

};
typedef struct TUDErr TUDErr;

Field descriptions

addr A TNetbuf structure that contains information about the
destination address of the data sent using the OTSndUData
function. The OTRcvUDErr function fills in this structure
when the function returns. You must allocate a buffer to
contain the address, initialize the addr.buf field to point to
it, and set the addr.maxlen field to specify its maximum
size.

C H A P T E R 3

Endpoints

3-68 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

opt A TNetbuf structure that contains information about the
options associated with the data sent using the OTSndUData
function. The OTRcvUDErr function fills in this structure
when the function returns. If you want to know this
information, you must allocate a buffer to contain the
option data, initialize the opt.buf field to point to it, and
initialize the opt.maxlen field to specify the maximum size
of the buffer. If you are not interested in option
information, set the opt.len field to 0.

error A long that, on return, specifies a protocol-dependent error
code for the OTSndUData function that failed.

The TUnitRequest Structure 3

You use the TUnitRequest structure to specify information about the data being
sent with the OTSndURequest function (page 3-117) and the data being read with
the OTRcvURequest function (page 3-120); you pass a pointer to this structure as
a parameter to each of these functions.

The TUnitRequest structure is defined by the TUnitRequest data type.

struct TUnitRequest
{ TNetbuf addr;

TNetbuf opt;
TNetbuf udata;
OTSequence sequence;

};
typedef struct TUnitRequest TUnitRequest;

Field descriptions
addr A TNetbuf structure that contains information about an

address.

In the req parameter to the OTSndURequest function, this
field specifies the location and size of a buffer containing
the address of the responder. You must allocate a buffer for
the address and specify the address. You must set the
addr.buf field to point to this buffer and set the addr.len
field to the length of the address.
In the req parameter to the OTRcvURequest function, this
field specifies the location and size of a buffer containing

C H A P T E R 3

Endpoints

Endpoints Reference 3-69
Draft.  Apple Computer, Inc. 4/30/96

the address of the endpoint that made the request; the field
is filled in by the OTRcvURequest function when it returns.
You must allocate a buffer to hold address information and
set the addr.buf field to point to it. You must also set the
addr.maxlen field to the maximum size of the address.

opt A TNetbuf structure that contains information about the
options associated with this request.
In the req parameter to the OTSndURequest function, this
field specifies the location and size of a buffer containing
the options you want to negotiate. You must allocate a
buffer that contains the option information and set the
opt.buf field to point to it. You must set the opt.len field to
the length of the option data or to 0 if you don’t want to
specify any options.
In the req parameter to the OTRcvURequest function, this
field specifies the location and size of a buffer containing
the association-related options specified by the requester.
Otherwise, this buffer is empty. When the OTRcvURequest
function returns, it places option information in this buffer.
You must allocate a buffer to contain the option
information and set the opt.buf field to point to this buffer.
You must set the opt.maxlen field to the maximum size
necessary to hold option information for the endpoint.

udata A TNetbuf structure that contains information about the
request data.
In the req parameter to the OTSndURequest function, this
field specifies the location and size of a buffer containing
the request data. You must allocate a buffer for the request
data, initialize the udata.buf field to point to it, and set the
udata.len field to the size of the request. The request size
must not exceed the value for the etsdu field of the
TEndpointInfo structure for the endpoint.
If you are sending data that is not stored contiguously, the
udata.buf field is a pointer to an OTData structure that
describes the first data fragment. In this case, you must set
the udata.len field to the kNetbufDataIsOTData constant.
In the req parameter to the OTRcvURequest function, this
field specifies the location and size of a buffer containing
the request. You must allocate a buffer into which the

C H A P T E R 3

Endpoints

3-70 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

OTRcvURequest function can place the request and set the
udata.buf field to point to it. You must set the udata.maxlen
field to the maximum size of the request data.
If you are doing a no-copy receive, the udata.buf field is a
pointer to an OTBuffer pointer. In this case, you must set
the udata.maxlen field to the constant
kNetbufDataIsOTBufferStar.

sequence A long that specifies the transaction ID for this transaction.
You set this field to any desired value when you send
the request.
When you read the request, this value is generated by the
endpoint provider. You need to save this value and use it
for the sequence field when sending a reply.

The TUnitReply Structure 3

You use the TUnitReply structure to specify the data being sent with the
OTSndUReply function (page 3-122) and the data being read with the OTRcvUReply
function (page 3-125). You pass a pointer to the TUnitReply structure as a
parameter to each of these functions.

The TUnitReply structure is defined by the TUnitReply data type.

struct TUnitReply
{

TNetbuf addr;
TNetbuf opt;
TNetbuf udata;
OTSequence sequence;

};
typedef struct TUnitReplyTUnitReply;

Field descriptions
addr A TNetbuf structure that contains information about

an address.

In the reply parameter to the OTSndUReply function, this
field specifies the location and size of a buffer containing
the address of the requester. You are not required to
provide this information. If you do not want to provide

C H A P T E R 3

Endpoints

Endpoints Reference 3-71
Draft.  Apple Computer, Inc. 4/30/96

address information, set the addr.len field to 0. To specify
an address, you must allocate a buffer for the address and
initialize it to the destination address. Then you set the
addr.buf field to point to the buffer and set the addr.len
field to the length of the address.
In the reply parameter to the OTRcvUReply function, this
field specifies the location and size of a buffer containing
the address of the endpoint sending the reply. You must
allocate a buffer into which the address is placed when the
function returns, and you must set the addr.buf field to
point to this buffer. You must also set the addr.maxlen field
to the maximum size of the buffer.

opt A TNetbuf structure that contains information about the
options associated with this reply.
In the reply parameter to the OTSndUReply function, this
field specifies the location and size of a buffer containing
the options that you set for this reply. You must set the
opt.len field to the length of the options or to 0 if you
don’t want to specify any options.
In the reply parameter to the OTRcvUReply function, this
field specifies the location and size of a buffer containing
the association-related options that the responder has sent
using the OTSndUReply function. You must allocate a buffer
to hold option information and set the reply.opt field to
point to it. When the OTRcvUReply function returns, it fills
this buffer with option information. You must set the
reply.maxlen field to the maximum size necessary to hold
option information.

udata A TNetbuf structure that contains information about the
reply data.
In the reply parameter to the OTSndUReply function, this
field specifies the location and size of a buffer containing
the reply data sent to the requester. You allocate a buffer
that contains the reply data, set the udata.buf field to point
to that buffer, and set the udata.len field to specify the size
of the reply. The size cannot exceed the value specified for
the tsdu field of the TEndpointInfo structure for the
endpoint.

C H A P T E R 3

Endpoints

3-72 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

If you are sending data that is not stored contiguously, the
udata.buf field is a pointer to an OTData structure that
describes the first data fragment. In this case, you must set
the udata.len field to kNetbufDataIsOTData.
In the reply parameter to the OTRcvUReply function, this
field specifies the location and size of a buffer into which
the function places the reply data on return. You must
allocate a buffer to hold the data, set the udata.buf field to
point to it, and set the udata.maxlen field to the maximum
size of this buffer. The size must not exceed the value
specified for the tsdu field of the TEndpointInfo structure
for this endpoint.
If you are doing a no-copy receive, the udata.buf field is a
pointer to an OTBuffer pointer. In this case, you must set
the udata.maxlen field to the constant
kNetbufDataIsOTBufferStar.

sequence A long that specifies the transaction ID for this transaction.
When sending a reply, you set this field to the value for
this field that you read with the OTRcvURequest function.
When receiving a reply, if you have sent out multiple
requests, you use this field to match incoming replies to
outgoing requests.

The TCall Structure 3

You use the TCall structure to specify the options and data associated with
establishing a connection. You pass a pointer to this structure as a parameter to
the OTConnect function (page 3-131), the OTRcvConnect function (page 3-133), the
OTListen function (page 3-135), and the OTAccept function (page 3-137).

The TCall structure is defined by the TCall data type.

struct TCall
{

TNetbuf addr;
TNetbuf opt;
TNetbuf udata;
OTSequence sequence;

C H A P T E R 3

Endpoints

Endpoints Reference 3-73
Draft.  Apple Computer, Inc. 4/30/96

};

typedef struct TCall TCall;

Field descriptions
addr A TNetbuf structure that specifies the location and size of a

buffer containing an address. If you are using the TCall
structure to send information, you must allocate a buffer
and initialize it to contain the address, you must set the
addr.buf field to point to the buffer, and you must set the
addr.len field to the size of the address. If you are using
the TCall structure to receive information, you must
allocate a buffer into which the function can place the
address when it returns, you must set the addr.buf field to
point to this buffer, and you must set the addr.maxlen field
to the maximum size of the address.

In the sndCall parameter to the OTConnect function, you
must use this field to specify information about the
address of the remote peer.
In the rcvCall parameter to the OTConnect function, on
return, this field contains information about the address to
which you are actually connected.
In the call parameter to the OTRcvConnect function, on
return, this field contains information about the address to
which you are actually connected.
In the call parameter to the OTListen function, on return,
this field contains information about the address of the
peer that requested the connection. The function returns
the address in a format that you can use in future calls to
the OTConnect function (page 3-131), the OTSndDisconnect
function (page 3-159), the OTSndOrderlyDisconnect function
(page 3-163), or the OTAccept function (page 3-137).
In the call parameter to the OTAccept function, you can use
this field to specify information about the address of the
peer that requested the connection. If you do not want to
specify a value, set the addr.len field to 0.
In the call parameter to the OTSndDisconnect function, this
field is reserved.

C H A P T E R 3

Endpoints

3-74 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

opt A TNetbuf structure that specifies the location and size of a
buffer containing option information. If you are using the
TCall structure to send information, you must allocate a
buffer and initialize it to contain the option information,
you must set the opt.buf field to point to the buffer, and
you must set the opt.len field to the size of the option
data. Set the opt.len field to 0 if you don’t want to specify
any options. If you are using the TCall structure to receive
information, you must allocate a buffer into which the
function can place option data when it returns, you must
set the opt.buf field to point to this buffer, and you must
set the opt.maxlen field to the maximum size of the option
information.
In the sndCall parameter to the OTConnect function, you
can use this field to specify the options you want to
negotiate.
In the rcvCall parameter to the OTConnect function, on
return, this field specifies the options that have been
negotiated for this connection.
In the call parameter to the OTRcvConnect function, on
return, this field specifies the options that have been
negotiated for this connection.
In the call parameter to the OTListen function, on return,
this field specifies the options that the peer has requested
for this connection.
In the call parameter to the OTAccept function, you can use
this field to specify the options that you want to use for the
connection. Specifying 0 for the opt.len field means that
you accept the connection unconditionally.
In the call parameter to the OTSndDisconnect function, this
field is reserved.

udata A TNetbuf structure that specifies the location and size of a
buffer containing data associated with a connection or
disconnection request. Not all endpoints support the
sending of data while establishing or tearing down a
connection. Examine the connect or discon field of the
TEndpointInfo structure for the endpoint to determine if
the endpoint supports the sending of data and to find out
the maximum size of the data you can send.

C H A P T E R 3

Endpoints

Endpoints Reference 3-75
Draft.  Apple Computer, Inc. 4/30/96

If you are using the TCall structure to send data, you must
allocate a buffer and initialize it to contain the data, you
must set the udata.buf field to point to the buffer, and you
must set the udata.len field to the size of the data. If you
are using the TCall structure to receive information, you
must allocate a buffer into which the function can place the
data when it returns, you must set the udata.buf field to
point to this buffer, and you must set the udata.maxlen
field to the maximum size of the data.
In the sndCall parameter to the OTConnect function, you
can use this field to specify the data associated with the
connection request.
In the rcvCall parameter to the OTConnect function, on
return, this field specifies data that has been sent by the
peer accepting the connection.
In the call parameter to the OTListen function, on return,
this field specifies data that has been sent by the peer
accepting the connection.
In the call parameter to the OTAccept function, you can use
this field to specify data you want to send back to the peer
that requested the connection.
In the call parameter to the OTSndDisconnect function, this
field specifies the location and size of any data associated
with the disconnection request.

sequence A long that is used by the OTListen and OTAccept functions
to specify the connection ID.
In the call parameter to the OTListen function, on return,
this field contains the connection ID of the incoming
request.
In the call parameter to the OTAccept function, you must
use this field to specify the connection ID of the connection
request that you are accepting. This must be the same
value that was passed to you by the OTListen function
when you received the connection request.
In the call parameter to the OTSndDisconnect function, this
field specifies the same connection ID as was returned by
the OTListen function when the connection request was
received. You must specify a value if you are calling the
OTSndDisconnect function to reject a connection request.

C H A P T E R 3

Endpoints

3-76 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

This field is only meaningful if the endpoint is in the
T_INCON state.

The TRequest Structure 3

You use the TRequest structure to specify the data being sent with the
OTSndRequest function (page 3-147) and the data being read with the
OTRcvRequest function (page 3-149). You pass a pointer to this structure as a
parameter to each of these functions.

The TRequest structure is defined by the TRequest data type.

struct TRequest
{

TNetbuf data;
TNetbuf opt;
OTSequence sequence;

};
typedef struct TRequest TRequest;

Field descriptions
data A TNetbuf structure specifying the location and size of the

request data buffer.

In the req parameter to the OTSndRequest function, this field
specifies the location and size of a buffer containing the
request. You must allocate a buffer for the request data, set
the data.buf field to point to it, and set the data.len field
to the size of the request data. The size of the request
cannot exceed the value specified for the etsdu field of the
TEndpointInfo structure for the endpoint.
If you are sending data that is not stored contiguously, the
data.buf field is a pointer to an OTData structure that
describes the first data fragment. In this case, you must set
the udata.len field to kNetbufDataIsOTData.
In the req parameter to the OTRcvRequest function, on
return, this field specifies the location and size of a buffer
containing the incoming request. You must allocate a
buffer into which the request data is placed when the
function returns and set the data.buf field to point to it.
You must set the data.maxlen field to the maximum size of

C H A P T E R 3

Endpoints

Endpoints Reference 3-77
Draft.  Apple Computer, Inc. 4/30/96

the request data; this value cannot exceed the etsdu value
specified for the endpoint. On return, the data.len field
contains the actual length of the data sent.
If you are doing a no-copy receive, the data.buf field is a
pointer to an OTBuffer pointer. In this case, you must set
the data.maxlen field to the constant
kNetbufDataIsOTBufferStar.

opt A TNetbuf structure specifying the location and size of the
options buffer.
In the req parameter to the OTSndRequest function, this field
specifies the location and size of a buffer containing the
options you want to negotiate for this request. You must
allocate a buffer that contains the option data, set the
opt.buf field to point to it, and set the opt.len field to the
size of the option data. Set the opt.len field to 0 if there are
no options.
In the req parameter to the OTRcvRequest function, on
return, this field specifies the location and size of a buffer
containing the association-related options specified by the
requester. You must allocate a buffer into which the
endpoint provider can place the option data when the
function returns, and set the opt.buf field to point to it. Set
the opt.maxlen field to the maximum size of this buffer.

sequence A long that specifies the transaction ID of the current
transaction.
You set this field to any desired value when you send
the request.
When you read the request, this value is generated by the
endpoint provider. You need to save this value and use it
for the sequence field when sending a reply.

The TReply Structure 3

You use the TReply structure to specify the data being sent with the OTSndReply
function (page 3-151) and the data being read with the OTRcvReply function
(page 3-154). You pass this structure as a parameter to each of these functions.

The TReply structure is defined by the TReply data type.

C H A P T E R 3

Endpoints

3-78 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

struct TReply
{

TNetbuf data;
TNetbuf opt;
OTSequence sequence;

};
typedef struct TReply TReply;

Field descriptions
data A TNetbuf structure specifying the location and size of the

reply buffer.

In the reply parameter to the OTSndReply function, this
field specifies the location and size of a buffer containing
the reply data. You must allocate and initialize a buffer that
contains the data and set the data.buf field to point to it.
You must set the data.len field to the size of the reply data.
The size of the reply must not exceed the value specified
for the tsdu field of the TEndpointInfo structure for this
endpoint.
In the reply parameter to the OTRcvReply function, on
return, this field specifies the size and location of a buffer
into which the function places the data to be read. You
must allocate a buffer for this data, set the data.buf field to
point to it, and set the data.maxlen field to the maximum
size of the buffer. This value must not exceed the value
specified for the tsdu field of the TEndpointInfo structure
for this endpoint.
If you are doing a no-copy receive, the data.buf field is a
pointer to an OTBuffer pointer. In this case, you must set
the data.maxlen field to the constant
kNetbufDataIsOTBufferStar.

opt A TNetbuf structure describing the size and location of an
option buffer.
In the reply parameter to the OTSndReply function, this
field specifies the location and size of a buffer containing
the options you want to set. You must allocate a buffer for
the option values, set the opt.buf field to point to it, and
set the opt.len field to the length of the options or to 0 if
don’t want to specify any options.

C H A P T E R 3

Endpoints

Endpoints Reference 3-79
Draft.  Apple Computer, Inc. 4/30/96

In the reply parameter to the OTRcvReply function, on
return, this field specifies the location and size of a buffer
containing the association-related options sent with the
OTSndReply function. You must allocate a buffer for the
option information, set the opt.buf field to point to it, and
set the opt.maxlen field to the maximum size of the buffer.

sequence A long that specifies the transaction ID of the current
transaction.
When sending a reply, you set this field to the value that
you read with the OTRcvURequest function for this field.
When receiving a reply, if you have sent out multiple
requests, you use this field to match incoming replies to
outgoing requests.

The TDiscon Structure 3

You use the TDiscon structure to specify any user data sent with the
disconnection and retrieved by the OTRcvDisconnect function (page 3-161). You
pass this structure as a parameter to this function.

The TDiscon structure is defined by the TDiscon data type.

struct TDiscon
{

TNetbuf udata;
OTReason reason;
OTSequence sequence;

};
typedef struct TDiscon TDiscon;

Field descriptions
udata A TNetbuf structure that is filled in with data sent with the

OTSndDisconnect function. You must allocate a buffer in
which the data is placed when the function returns, and
you must initialize the udata.maxlen field to indicate the
maximum size of the data that can be sent with the
disconnection request.

reason A long specifying an error code that identifies the reason
for the disconnection. These codes are supplied by the

C H A P T E R 3

Endpoints

3-80 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

protocol. For additional information, consult the
documentation provided for the protocol you are using.

sequence A long specifying an outstanding connection request that
has been rejected. This field is meaningful only when you
have issued several connection requests to the same
endpoint and are awaiting the results.

Functions 3

This section describes endpoint functions, provider functions that you use only
with endpoints. The first four subsections—“Creating Endpoints,” “Binding
and Unbinding Endpoints,” “Obtaining Information About an Endpoint,” and
“Allocating Structures” —describe functions that you can use with any
endpoint. The remaining subsections describe functions that you can use only
with specific types of endpoints, as indicated by the subsection title; for
example, “Functions for Connectionless Transactionless Endpoints.” Endpoint
types are described in “Endpoint Types and Mode of Service” on page 3-7.

You can also use general provider functions with endpoints. General provider
functions and structures are described in the reference section of the chapter
“Providers” in this book.

Creating Endpoints 3

To transfer information, you need to create an endpoint and assign it an
address. To create an endpoint, you call the OTOpenEndpoint or
OTAsyncOpenEndpoint function. You must create an endpoint before calling any
endpoint functions. After creating an endpoint, you must bind it by assigning it
a protocol address. After binding, the endpoint is ready for use. When you
finish using an endpoint, always call the function OTCloseProvider to close and
delete the endpoint.

For more information about binding an endpoint, see “Binding and Unbinding
Endpoints,” beginning on page 3-86. For a description of the OTCloseProvider
function, see the reference section of the chapter “Providers” in this book.

C H A P T E R 3

Endpoints

Endpoints Reference 3-81
Draft.  Apple Computer, Inc. 4/30/96

OTAsyncOpenEndpoint 3

Opens an endpoint and installs a notifier callback function for the endpoint.

The OTAsyncOpenEndpoint function is asynchronous, and creates an endpoint
that operates asynchronously.

C INTERFACE

OSStatus OTAsyncOpenEndpoint(OTConfiguration* config,
OTOpenFlags oflag,
TEndpointInfo* info,
OTNotifyProcPtr proc,
void* contextPtr);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to an endpoint configuration structure that specifies
the endpoint’s characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration function.

oflag Reserved; must be set to 0.

info A pointer to a TEndpointInfo structure to be filled in by the
OTAsyncOpenEndpoint function. Specify NULL for this parameter if
you do not want the OTAsyncOpenEndpoint function to return
endpoint information.

proc A pointer to a notifier callback function for this endpoint. If you
do not provide a notifier function, your application cannot
receive completion events, including the event advising you
that the endpoint has been created. Specify NULL for this
parameter if you do not want to provide a notifier function. In
this case, you can use the OTLook function to poll for
asynchronous events (but not for completion events).

C H A P T E R 3

Endpoints

3-82 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

contextPtr A pointer for your use. The endpoint provider passes this
pointer value when calling the notifier function you specify in
the proc parameter. You might use the contextPtr parameter,
for example, to pass to your notifier function information about
your application’s current context.

DESCRIPTION

The OTAsyncOpenEndpoint function opens an endpoint having the characteristics
specified by the config parameter. The OTAsyncOpenEndpoint function runs
asynchronously, returning a result code as soon as the function has been
queued for execution. How processing proceeds then depends on this result
code.

If the result code is any except kOTNoError, an error occurred and Open
Transport does not queue the function for execution. The OTAsyncOpenEndpoint
function creates no endpoint and does not call the notifier function that you
specified in the proc parameter.

If the result code is kOTNoError, the OTAsyncOpenEndpoint function attempts to
create an endpoint. Then it calls the notifier function that you specified in the
proc parameter, passing T_OPENCOMPLETE for the code parameter, a result code in
the result parameter, and the endpoint reference for the newly created
endpoint in the cookie parameter. It is recommended that you use the
OTAsyncOpenEndpoint function to install a notifier function rather than using the
OTInstallNotifier function to do it.

An endpoint created by the OTAsyncOpenEndpoint function operates in
asynchronous mode, unless you change the endpoint’s mode of execution by
calling the OTSetSynchronous function. When an endpoint is in asynchronous
mode, all provider functions that use the endpoint execute asynchronously.

By default, a newly created endpoint does not block and does not acknowledge
sends. To change the endpoint’s default mode of operation, you can call the
OTSetBlocking function and the OTIsAckingSends function.

The preliminary state of an endpoint is T_UNBND, meaning that the endpoint is
not bound to a protocol address. Before using the endpoint to transfer data,
you must bind it to a protocol address by calling the OTBind function.

C H A P T E R 3

Endpoints

Endpoints Reference 3-83
Draft.  Apple Computer, Inc. 4/30/96

SPECIAL CONSIDERATIONS

The OTAsyncOpenEndpoint function destroys the configuration structure
returned by the OTCreateConfiguration function. If you want to use the same
configuration to open additional endpoints, you must obtain a valid copy of
the configuration structure by calling the OTCloneConfiguration function before
you call the OTAsyncOpenEndpoint function.

COMPLETION EVENT CODES

SEE ALSO

To create an OTConfiguration structure, use the OTCreateConfiguration function
described in the chapter “Configuration Management” in this book.

To obtain a copy of the OTConfiguration structure, use the
OTCloneConfiguration function described in the chapter “Configuration
Management” in this book.

When you open an endpoint, Open Transport also creates the TEndpointInfo
structure, which contains important information about the endpoint
(page 3-58).

To create an endpoint synchronously, call the OTOpenEndpoint function
(page 3-84).

You can use the OTLook function (page 3-95) to poll for asynchronous events.

Modes of execution are defined in the section “Modes of Operation,” beginning
on page 3-11. For information about changing an endpoint’s mode of execution,
see the chapter “Providers” in this book.

For information about notifier functions, see the chapter “Providers” in
this book.

Endpoint states are defined and listed in“Endpoint States,” beginning on
page 3-13.

To close and delete an endpoint, call the OTCloseProvider function described in
the chapter “Providers” in this book.

T_OPENCOMPLETE 0x20000007 The OTAsyncOpenEndpoint function has
completed. The cookie parameter of the
notifier function points to the endpoint
reference for the new endpoint.

C H A P T E R 3

Endpoints

3-84 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

To bind a protocol address to an endpoint, call the OTBind function (page 3-87).

The OTSetAsync, OTSetBlocking, and OTIsAckingSends functions are described
in the chapter “Providers” in this book.

OTOpenEndpoint 3

Opens an endpoint. This function is synchronous, and creates an endpoint that
operates synchronously. It is strongly recommended that you use endpoints in
asynchronous mode whenever possible.

C INTERFACE

EndpointRef OTOpenEndpoint (OTConfiguration* config,
OTOpenFlags oflag,
TEndpointInfo* info,
OSStatus* err);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to an endpoint configuration structure that specifies
the endpoint’s characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration function. The
OTOpenEndpoint function deletes the configuration structure
when creating the endpoint or attempting to create it.

oflag Reserved; must be set to 0.

info A pointer to an TEndpointInfo structure to be filled in by the
OTOpenEndpoint function. Specify NULL for this parameter if you
do not want the OTOpenEndpoint function to provide endpoint
information.

err A pointer to the result code for this function.

C H A P T E R 3

Endpoints

Endpoints Reference 3-85
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTOpenEndpoint function opens an endpoint having the configuration
specified by the config parameter. The function returns an endpoint reference,
by which you refer to the created endpoint when calling provider functions. If
the OTOpenEndpoint function fails, its return value is NULL.

An endpoint created by the OTOpenEndpoint function operates in synchronous
mode, unless you change the endpoint’s mode of execution by calling the
OTSetAsynchronous function. When an endpoint is in synchronous mode, all
provider functions that use the endpoint execute synchronously.

By default, a newly created endpoint does not block and does not acknowledge
sends. To change the endpoint’s default mode of operation, you can call the
OTSetBlocking function and the OTIsAckingSends function.

The initial state of an endpoint is T_UNBND, meaning that the endpoint is not
bound to an address. Before using the endpoint to transfer data, you must bind
it to an address by calling the OTBind function.

SPECIAL CONSIDERATIONS

The OTOpenEndpoint function changes the contents of memory and writes
information to disk; your application should not call the OTOpenEndpoint
function at interrupt time.

The OTOpenEndpoint function destroys the configuration structure returned by
the OTCreateConfiguration function. If you want to use the same configuration
to open additional endpoints, you must obtain a valid copy of the
configuration structure before calling the OTOpenEndpoint function, by calling
the OTCloneConfiguration function.

SEE ALSO

To create an OTConfiguration structure, use the OTCreateConfiguration function
described in the chapter “Configuration Management” in this book.

To obtain a copy of the OTConfiguration structure, use the
OTCloneConfiguration function described in the chapter “Configuration
Management” in this book.

To create an endpoint that operates asynchronously, call the
OTAsyncOpenEndpoint function (page 3-81).

C H A P T E R 3

Endpoints

3-86 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

Modes of execution are defined in the section “Modes of Operation,” beginning
on page 3-11. For information about changing an endpoint’s mode of execution,
see the chapter “Providers” in this book.

When you open an endpoint, Open Transport also creates the TEndpointInfo
structure, which contains important information about the endpoint
(page 3-58).

Endpoint states are defined and listed in“Endpoint States,” beginning on
page 3-13.

To close and delete an endpoint, call the OTCloseProvider function described in
the chapter “Providers” in this book.

To bind a protocol address to an endpoint, call the OTBind function (page 3-87).

The OTSetAsync, OTSetBlocking, and OTIsAckingSends functions are described
in the chapter “Providers” in this book.

Binding and Unbinding Endpoints 3

Binding an endpoint is the process of assigning an address to it. An address is
the value by which a provider’s highest-layer protocol module identifies the
endpoint. For example, in AppleTalk, the protocol address of an ADSP
endpoint is its network ID, node ID, and DDP socket number; in TCP/IP, the
protocol address of a UDP endpoint is its port number and IP address. An
endpoint must have a protocol address to transfer information.

You assign an address to an endpoint by calling the OTBind function. After
binding, connectionless endpoints can send and receive data;
connection-oriented endpoints can send and receive connection requests. If you
use the OTAccept function (page 3-137) to pass off a connection request to
another endpoint, it is not necessary to bind that endpoint first.

An endpoint can be bound to only one address at a time. If you no longer need
to use an endpoint or if you want to change its address, you can unbind the
endpoint using the OTUnbind function. In this case, Open Transport dissociates
the endpoint from the address assigned to it. After the endpoint is unbound,
you can close the endpoint using the OTCloseProvider function, or you can bind
the endpoint to another address by using the OTBind function. You should not
assume, after unbinding an endpoint, that you can bind the endpoint again to
its former address. Of course, you can request the previous address when
calling the OTBind function.

C H A P T E R 3

Endpoints

Endpoints Reference 3-87
Draft.  Apple Computer, Inc. 4/30/96

IMPORTANT

You must not close an endpoint during binding and
unbinding; closing an endpoint deallocates memory
reserved for it and the structures it uses. ▲

OTBind 3

Assigns an address to an endpoint.

C INTERFACE

OSStatus OTBind(EndpointRef ref, TBind* reqAddr, TBind* retAddr);

C++ INTERFACES

OSStatus TEndpoint::Bind(TBind* reqAddr, TBind* retAddr);

PARAMETERS

ref The endpoint reference of the endpoint that you are binding.

reqAddr A pointer to a TBind structure (page 3-61) that contains
information about the address to which you want to bind the
endpoint and the number of possible outstanding connection
requests if this is a connection-oriented endpoint.

If you specify NIL for the reqAddr parameter, Open Transport
chooses a protocol address for you and requests 0 as the
endpoint’s maximum number of concurrent outstanding
connect indications.

 If you want Open Transport to assign an address for you, set
the addr.len field of the TBind structure to 0.

retAddr A pointer to a TBind structure (page 3-61) that, on return,
indicates the address to which the endpoint is actually bound
and, for connection-oriented endpoints, indicates the maximum

C H A P T E R 3

Endpoints

3-88 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

number of concurrent outstanding connect indications that this
endpoint actually allows. The TBind structure is described on
page 3-61.

You can set this parameter to nil if you do not care to know
what address the endpoint is bound to or what the negotiated
value of qlen is.

DESCRIPTION

You call the OTBind function to request an address that an endpoint be bound
to. You can either use the reqAddr parameter to request that the endpoint be
bound to a specific address or allow the endpoint provider to assign an address
dynamically by passing nil for this parameter. Consult the documentation for
the top-level protocol you are using to determine whether it is preferable to
have the address assigned dynamically. The function returns the address to
which the endpoint is actually bound in the retAddr parameter. This might be
different from the address you requested, if you requested a specific address.

If you are binding a connection-oriented endpoint, you must use the
reqAddr->qlen field to specify the number of connection requests that may be
outstanding for this endpoint. The retAddr->qlen field specifies, on return, the
actual number of connection requests allowed for the endpoint. This number
might be smaller than the number you requested. Note that when the endpoint
is actually connected, the number might be further decreased by negotiations
taking place at that time.

If you call the OTBind function asynchronously and you have not installed a
notifier function, the only way to determine when the function completes is to
poll the endpoint using the OTGetEndpointState function. This function returns
a kOTStateChangeErr until the bind completes. When the endpoint is bound, the
state is either T_UNBND if the bind failed, or T_IDLE if it succeeded.

You can cancel an asynchronous bind that is still in progress by calling the
OTUnbind function.

You must not bind more than one connectionless endpoint to a single address.
Some connection-oriented protocols let you bind two or more endpoints to the
same address. In such instances, you must use only one of the endpoints to
listen for connection requests for that address. When binding the endpoint
listening for a connection, you must set the reqAddr->qlen field of the OTBind
function to a value greater than or equal to 1. When binding the other
endpoints, you must set the reqAddr->qlen field to 0.

C H A P T E R 3

Endpoints

Endpoints Reference 3-89
Draft.  Apple Computer, Inc. 4/30/96

If you accept a connection for an endpoint that is also listening for connection
requests, the address of that endpoint is deemed “busy” for the duration of the
connection, and you must not bind another endpoint for listening to that same
address. This requirement prevents more than one endpoint bound to the same
address from accepting connection requests. If you have to bind another
listening endpoint to the same address, you must first use the OTUnbind
function to unbind the first endpoint or use the OTCloseProvider function to
close it.

SPECIAL CONSIDERATIONS

In asynchronous mode, the endpoint provider might call your notifier function
before the function’s initial return.

An endpoint may not allow an explicit binding of more than one endpoint to
the same protocol address, although it allows more than one connection to be
accepted for the same protocol address. To ensure portability, do not bind
endpoints that are used as responding endpoints in a call to the OTAccept
function, if the responding address is to be the same as the called address.

COMPLETION EVENT CODES

VALID STATES

All except T_UNINIT

SEE ALSO

To unbind an endpoint call the OTUnbind function (described next).

The TBind structure (page 3-61) is used to specify the address to which the
endpoint is bound.

You use the OTCloseProvider function, described in the chapter “Providers” in
this book, to close a provider.

For additional information about binding multiple connection-oriented
endpoints to the same address, see “Processing Multiple Connection Requests,”

T_BINDCOMPLETE 0x20000001 The OTBind function has completed. The
cookie parameter passed to the notifier
function points to the retAddr parameter.

C H A P T E R 3

Endpoints

3-90 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

beginning on page 3-33, the OTConnect function (page 3-131), and the OTAccept
function (page 3-137).

For information on how to use this function with a TCP/IP protocol, see
page 8-16 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-10 in the ADSP chapter, page 12-11 in the DDP chapter, and page 15-9
in the PAP chapter.

OTUnbind 3

Dissociates an endpoint from its address or cancels an asynchronous call to the
OTBind function.

C INTERFACE

OSStatus OTUnbind(EndpointRef ref);

C++ INTERFACES

OSStatus TEndpoint::Unbind();

PARAMETERS

ref The endpoint reference of the endpoint that you are unbinding.

DESCRIPTION

If you call the OTUnbind function asynchronously and you have not installed a
notifier function, the only way to determine that the endpoint has been
unbound is to use the OTGetEndpointState function to poll the state of the
endpoint. The function returns the kOTStateChangeErr result when the OTUnbind
function returns. If the function succeeds, the state of the endpoint is T_UNBND. If
it fails, its state is T_IDLE.

C H A P T E R 3

Endpoints

Endpoints Reference 3-91
Draft.  Apple Computer, Inc. 4/30/96

After you unbind an endpoint, you can no longer use it to send or receive
information. You can use the OTCloseProvider function to deallocate memory
reserved for the endpoint, or you can use the OTBind function to associate it
with another address and then resume transferring data or establishing a
connection.

SPECIAL CONSIDERATIONS

In asynchronous mode, the endpoint provider might call your notifier function
before the function’s initial return.

VALID STATES

T_IDLE

COMPLETION EVENT CODES

SEE ALSO

To bind an endpoint, use the OTBind function, described on page 3-87.

To obtain information about the endpoint’s state, use the OTGetEndpointState
function, described on page 3-93.

The OTCloseProvider function is described in the chapter “Providers” in
this book.

Obtaining Information About an Endpoint 3

You use the functions described in this section to obtain information about an
endpoint. The OTGetEndpointInfo function returns information about the mode
of service provided by the endpoint and the maximum size of the buffers used
to specify address and option information and to hold data. Two functions
return information about an endpoint’s address: the OTGetProtAddress returns
the endpoint’s address and, if the endpoint is connected, the address of its peer.
The OTResolveAddress function returns the protocol address that corresponds to
an endpoint name. To obtain the state of the endpoint, you can call the

T_UNBINDCOMPLETE 0x20000002 The OTUnbind function has completed.
The cookie parameter of the endpoint’s
notifier function is not used.

C H A P T E R 3

Endpoints

3-92 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

OTGetEndpointState function. To determine whether there are any
asynchronous events pending for the endpoint, you can call the OTLook
function. Finally, the OTSync function is provided to accommodate existing XTI
applications that use this function.

In addition to the functions described in this section, you can use general
provider functions to determine an endpoint’s mode of execution
(OTIsSynchronous) or an endpoint’s mode of operation (OTIsAckingSends,
OTIsNonBlocking). For more information about these functions, see the reference
section of the chapter “Providers” in this book.

OTGetEndpointInfo 3

Obtains information about an endpoint that has been opened.

C INTERFACE

OSStatus OTGetEndpointInfo(EndpointRef ref, TEndpointInfo* info);

C++ INTERFACE

OSStatus TEndpoint::GetEndpointInfo(TEndpointInfo* info);

PARAMETERS

ref The endpoint reference of the endpoint whose characteristics
you want to determine.

info A pointer to a TEndpointInfo structure (page 3-58) that describes
the endpoint’s mode of service and the size of the buffers you
can use to specify address and option information and to hold
data.

DESCRIPTION

The OTGetEndpointInfo function returns information about

C H A P T E R 3

Endpoints

Endpoints Reference 3-93
Draft.  Apple Computer, Inc. 4/30/96

■ the maximum size of buffers used to specify an endpoint’s address and
option values

■ the maximum size of normal and expedited data you can transfer using this
endpoint or, for transaction-based endpoints, the maximum size of requests
and replies

■ the size of data you can transfer when initiating or tearing down a
connection

■ the services supported by the endpoint

■ any additional characteristics of this endpoint

COMPLETION EVENT CODES

VALID STATES

All

SEE ALSO

The OTGetEndpointInfo function returns a TEndpointInfo structure (page 3-58).

To obtain the current state of the endpoint, use the OTGetEndpointState function
(described next).

OTGetEndpointState 3

Obtains the current state of an endpoint.

C INTERFACE

OTResult OTGetEndpointState(EndpointRef ref);

T_GETINFOCOMPLETE 0x2000000A The OTGetEndpointInfo function has
completed. The cookie parameter of
the endpoint’s notifier function
contains the info parameter.

C H A P T E R 3

Endpoints

3-94 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACE

OTResult TEndpoint::GetEndpointState();

PARAMETERS

ref The endpoint reference of the endpoint whose state you want to
determine.

DESCRIPTION

The OTGetEndpointState function returns an integer greater than or equal to 0
indicating the state of the specified endpoint. The endpoint state enumeration
describes possible endpoint states and lists their decimal value.

If the function fails, it returns a negative integer specifying the error code. You
must open an endpoint before you can determine its state.

You might need to know an endpoint’s state in order to determine whether a
function has completed or whether the endpoint is in an appropriate state for
the function that you want to call next.

This function returns endpoint state information immediately, whether the
endpoint is in synchronous or asynchronous mode.

VALID STATES

All

SEE ALSO

For general information about the services provided by an endpoint and the
size of buffers it can use, use the OTGetEndpointInfo function (page 3-92).

The section “Endpoint States,” beginning on page 3-13 explains how you use a
knowledge of an endpoint’s state to manage endpoints.

The endpoint state enumeration (page 3-56), describes possible endpoint states
and lists their decimal value.

Use the OTOpenEndpoint function (page 3-84) or the OTAsyncOpenEndpoint
function (page 3-86) to open an endpoint.

C H A P T E R 3

Endpoints

Endpoints Reference 3-95
Draft.  Apple Computer, Inc. 4/30/96

OTLook 3

Determines the current asynchronous event pending for an endpoint.

C INTERFACE

OTResult OTLook(EndpointRef ref);

C++ INTERFACE

OTResult TEndpoint::Look();

PARAMETERS

ref The endpoint reference of the endpoint.

DESCRIPTION

You use the OTLook function in one of two cases. First, if the endpoint is in
synchronous mode, you can call the OTLook function to poll for incoming data
or connection requests. Second, certain asynchronous events might cause a
synchronous function to fail with the result kOTLookErr. For example, if you call
OTAccept and the endpoint gets a T_DISCONNECT event, the OTAccept function
returns with kOTLookErr. In this case, you need to call the OTLook function to
determine what event caused the original function to fail. Table 3-7 on
page 3-26 lists the functions that might return the kOTLookErr result and the
events that can cause these functions to fail.

The OTLook function returns an integer value that specifies the asynchronous
event pending for the endpoint specified by the ref parameter. On error, OTLook
returns a negative integer corresponding to a result code.

If there are multiple events pending, the OTLook function first looks for one of
the following events: T_LISTEN, T_CONNECT, T_DISCONNECT, T_UDERR, or T_ORDREL. If
it finds more than one of these, it returns them to you in first-in, first-out order.
After processing these events, the OTLook function looks for the T_DATA,
T_REQUEST, and T_REPLY events. If it finds more than one of these, it returns
them to you in first-in, first-out order. You cannot use the OTLook function to
poll for completion events.

C H A P T E R 3

Endpoints

3-96 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

Unless you are operating exclusively in synchronous mode, it is recommended
that you use notifier functions to get information about pending events for an
endpoint.

VALID STATES

All

SEE ALSO

For additional information on asynchronous processing and on handling
asynchronous and completion events, see the section “Handling Events for
Endpoints,” beginning on page 3-24 and the chapter “Providers” in this book.

Table 3-7 on page 3-26 lists the functions that might return the kOTLookErr result
and the events that can cause these functions to fail.

The reference section of the chapter “Providers” in this book lists values
returned for pending asynchronous events and describes their meanings.

For information on how to use this function with a TCP/IP protocol, see
page 8-16 in the TCP/IP chapter.

OTGetProtAddress 3

Obtains the address to which an endpoint is bound and, if the endpoint is
currently connected, obtains the address of its peer.

C INTERFACE

OSStatus OTGetProtAddress(EndpointRef ref, TBind* boundAddr,
TBind* peerAddr)

C++ INTERFACE

OSStatus TEndpoint::GetProtAddress(TBind* boundAddr,
TBind* peerAddr);

C H A P T E R 3

Endpoints

Endpoints Reference 3-97
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The endpoint reference of the endpoint whose local and peer
address is sought.

boundAddr A pointer to a TBind structure (page 3-61). The boundAddr->addr
field is a TNetBuf structure that describes the address of the
endpoint specified by the ref parameter. You must allocate a
buffer for the address information and
initialize the addr.buf field to point to that buffer. You must also
initialize the addr.maxlen field to the maximum size of
the address.

If you are calling this function only to determine the address of
the peer endpoint, you can set the boundAddr parameter to NIL.

The boundAddr->qlen field is ignored.

peerAddr A pointer to a TBind structure (page 3-61). If the endpoint
specified by the ref parameter is currently connected, the
peerAddr->addr field is a TNetbuf structure that describes
the address of the endpoint’s peer. The boundAddr->qlen field
is ignored.

DESCRIPTION

The OTGetProtAddress function returns the address to which an endpoint is
bound in the boundAddr parameter and, if the endpoint is currently connected,
the address of its peer in the peerAddr parameter. Not all endpoints support this
function. A value of T_XPG4_1 in the flags field of the TEndpointInfo structure
indicates that the endpoint does support this function.

You are responsible for initializing the buffers required to hold the local and
peer addresses. The addr field of the TEndpointInfo structure specifies the
maximum amount of memory needed to store the address of an endpoint. Use
this value to set the size of the buffers.

The information returned by the OTGetProtAddress function is affected by the
state of the endpoint specified by the ref parameter. If the endpoint is in the
T_UNBND state, the boundAddr->addr.len field is set to 0. If the endpoint is not in
the T_DATAXFER state, the peerAddr->addr.len field is set to 0.

If the endpoint is in asynchronous mode and a notifier is not installed, it is not
possible to determine when the function completes.

C H A P T E R 3

Endpoints

3-98 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

VALID STATES

All

SEE ALSO

The TBind structure (page 3-61) describes the address to which an endpoint
is bound.

The flags field of the TEndpointInfo structure (page 3-55) indicates whether the
endpoint supports this function.

For information on how to use this function with a TCP/IP protocol, see
page 8-17 in the TCP/IP chapter.

For more information about the peer endpoint, see the description of the
OTAccept function (page 3-137).

OTResolveAddress 3

Returns the protocol address that corresponds to the name of an endpoint.

C INTERFACE

OSStatus OTResolveAddress(EndpointRef ref, TBind* req, TBind* ret);

C++ INTERFACE

OSStatus TEndpoint::ResolveAddress(TBind* req, TBind* ret);

T_GETPROTADDRCOMPLETE 0x20000008 The OTGetProtAddress function
has completed. The cookie
parameter of the notifier function
contains the peerAddr parameter
unless it is nil, in which case the
cookie parameter contains the
boundAddr parameter.

C H A P T E R 3

Endpoints

Endpoints Reference 3-99
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The endpoint reference of the endpoint whose address is sought.

req A pointer to a TBind structure (page 3-61). The req->addr.buf
field points to a buffer containing the name of the endpoint,
which must be in an appropriate format for the protocol family.
For example, for AppleTalk this must be an NBP address.

ret A pointer to a TBind structure (page 3-61). The ret->addr.buf
field points to a buffer containing the lowest-level address that
corresponds to the address pointed to by the req->addr.buf
field of the req parameter.

DESCRIPTION

The OTResolveAddress function returns the lowest-level address for your
endpoint. Not all endpoints support this function. A value of CAN_RESOLVE_ADDR
in the flags field of the TEndpointInfo structure indicates that the endpoint
does support this function. Using this function saves you the trouble of
opening and closing a mapper provider if the only reason you have for
opening the mapper is to look up the address corresponding to a specific
endpoint name. You would still have to open the mapper if you needed to look
up a name pattern—that is, if the name included any wildcard characters.

You are responsible for initializing the buffers described by the req and ret
parameters required to hold the addresses. To determine how large these
buffers should be, examine the addr field of the TEndpointInfo structure, which
specifies the maximum amount of memory needed to store an address for the
endpoint specified by the ref parameter.

If a notifier is not installed, it is not possible to determine when the
OTResolveAddress function completes.

C H A P T E R 3

Endpoints

3-100 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

VALID STATES

All states are valid except T_UNINT.

SEE ALSO

For additional information about the format used to describe the address
passed in the ret parameter, please consult the documentation provided for the
protocol you are using as the lowest-level protocol.

The TBind structure (page 3-61) describes the address to which an endpoint
is bound.

The flags field (page 3-55) of the TEndpointInfo structure (page 3-58) indicates
whether the endpoint supports this function.

OTSync 3

Ensures that the endpoint provider and the client have the same information
about an endpoint’s state.

C INTERFACE

OTResult OTSync(EndpointRef ref);

C++ INTERFACE

OTResult TEndpoint::Sync();

T_RESOLVEADDRCOMPLETE 0x20000009 The OTResolveAddress function
has completed. The cookie
parameter of the notifier
function contains the result
parameter.

C H A P T E R 3

Endpoints

Endpoints Reference 3-101
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The endpoint reference of the endpoint whose state information
is being synchronized.

DESCRIPTION

The provider’s and the client’s knowledge about an endpoint’s state might get
out of sync if the provider and the client occupy different memory spaces. The
current run-time environment does not support separate memory spaces;
therefore, this function is currently provided so that existing XTI-based
applications that make this call do not have to be modified.

If the OTSync function succeeds, it returns an integer value of 0 or greater that
specifies the current state of the endpoint, as follows:

T_UNINIT = 0
T_UNBND = 1
T_IDLE = 2
T_OUTCON = 3
T_INCON = 4
T_DATAXFER = 5
T_OUTREL = 6
T_INREL = 7

If the OTSync function fails, it returns a negative integer corresponding to a
result code.

If a notifier is not installed and the endpoint is in asynchronous mode, it is not
possible to determine when the OTSync function completes.

COMPLETION EVENT CODES

VALID STATES

All

T_SYNCCOMPLETE 0x2000000B The OTSync function has completed. The
cookie parameter of the notifier function
is meaningless.

C H A P T E R 3

Endpoints

3-102 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

If you are simply interested in obtaining information about the state of an
endpoint, call the OTGetEndpointState function (page 3-93).

Allocating Structures 3

You use the OTAlloc and OTFree functions to allocate and free memory. These
functions are mainly provided for XTI compatibility. In general, you should not
use these functions to allocate and free structures on every call because this
degrades performance. For a more detailed discussion of asynchronous
processing and memory allocation, see the chapter “Providers” in this book.

OTAlloc 3

Allocates an XTI data structure.

C INTERFACE

void* OTAlloc (EndpointRef ref, OTStructType structType,
UInt32 fields, OSStatus* err);

C++ INTERFACE

void* TEndpoint::Alloc(OTStructType structType, int fields,
OSStatus* err = NULL);

PARAMETERS

ref The endpoint reference of the endpoint for which the data
structure is allocated.

structType A long specifying the constant name of the structure for which
memory is to be allocated. Possible values for the structType
parameter are given by the structure types enumeration
(page 3-57).

C H A P T E R 3

Endpoints

Endpoints Reference 3-103
Draft.  Apple Computer, Inc. 4/30/96

fields An integer specifying the structure fields for which buffers are
to be allocated.

Each structure that you can specify for structType, except for
T_INFO, contains at least one field of type TNetbuf. For each such
field, you can use the fields parameter to specify that the
buffer described by TNetbuf also be allocated. The length of the
allocated buffer is at least as large as the size returned for the
endpoint by the OTGetEndpointInfo function. For each buffer
allocated, the OTAlloc function sets the maxlen field to the length
of the buffer and sets the len field to 0.

You can specify one or more constant names for the fields
parameter. Possible values for constant names are given by the
buffer types enumeration (page 3-52). To specify more than one
constant name, use the bitOR operator to combine values.

DESCRIPTION

The OTAlloc function allocates a data structure for use in a subsequent call. You
use the structType parameter to specify the structure to be allocated and the
fields parameter to specify the substructures to be allocated. If the OTAlloc
function succeeds, it returns a pointer to the desired structure. The OTAlloc
function is provided mainly for compatibility with XTI. Although using this
function along with the OTFree function can save you coding work, this is at the
price of slower performance. In general, you should not allocate and free
structures on every call. Instead, you should declare structures that are to be
passed as parameters to endpoint functions just as you would any other
variables or data structures.

It is easiest to understand what the OTAlloc function does by considering what
you would have to do if you did not use it. If you declared structType
structures as normal data structures, you would have to declare the data
structure and then initialize the maxlen and buf fields of every TNetbuf type
field contained by the structure. To determine the appropriate size of each
buffer, you would have to call the OTGetEndpointInfo function. For example, if
you call the OTGetProtAddress function to get the protocol address of an
endpoint, you must pass a parameter of type TBind. The addr.buf field of the
TBind structure points to a buffer that is large enough to hold the endpoint’s
protocol address. To determine how large the buffer has to be, you call the
OTGetEndpointInfo function; then you allocate the memory for the buffer and
initialize the addr.buf field to point to the buffer and initialize the addr.maxlen

C H A P T E R 3

Endpoints

3-104 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

field to specify how large the buffer can be. The OTAlloc function does all this
work for you. Given the previous example, if you make the call

TBind* boundAddr = OTAlloc(T_BIND, T_ADDR);

the OTAlloc function allocates the TBind structure, initializes the TNetbuf field
that is used to describe the endpoint address, and allocates memory for the
buffer in which the address is to be stored. All buffers allocated are guaranteed
to be of the appropriate size for the kind of endpoint specified by the ref
parameter. You must not use the pointer returned by the OTAlloc function in
calls to any other endpoint.

If the requested structure contains TNetbuf fields and you do not specify these
fields using the fields parameter, the OTAlloc function sets the maxlen, len, and
buf fields of these TNetbuf structures to 0.

SPECIAL CONSIDERATIONS

If you specify T_UDATA or T_ALL for the fields parameter and the endpoint
information structure defines the tsdu or etsdu size for the endpoint to be of
infinite length, the OTAlloc function does not allocate a data buffer for the
endpoint.

VALID STATES

All

SEE ALSO

To deallocate memory allocated with the OTAlloc function, use the OTFree
function (described next).

You use the structure types enumeration (page 3-57) to specify the structure for
which memory is to be allocated.

You use the buffer types enumeration (page 3-52) to specify which TNetbuf
structures should be allocated for the structure type you select.

The TBind structure (page 3-61) specifies the address of an endpoint.

The TEndpointInfo structure (page 3-58) specifies the maximum size of buffers
used to hold an endpoint’s address, options, and data.

C H A P T E R 3

Endpoints

Endpoints Reference 3-105
Draft.  Apple Computer, Inc. 4/30/96

To allocate raw memory, use the OTAllocMem function, and to deallocate the
allocated raw memory, use the OTFreeMem function, both described in the
chapter “Process Management.”

OTFree 3

Frees memory allocated using the OTAlloc function.

C INTERFACE

OSStatus OTFree(void* ptr, OTStructType structType);

C++ INTERFACE

OSResult TEndpoint::Free(void* ptr, OTStructType structType);

PARAMETERS

ptr A pointer to the structure to be deallocated. This is the pointer
returned by the OTAlloc function.

structType The name of the structure for which you allocated memory
using the OTAlloc function. Possible constant names are given
by the structure types enumeration. (page 3-57)

DESCRIPTION

In order to use the OTFree function, you must not have changed the memory
allocated by the OTAlloc function for the structure specified by the structType
parameter or for any of the buffers to which it points.

You are responsible for passing a structType parameter that exactly matches
the type of structure being freed.

The OTFree function, along with the OTAlloc function, is provided mainly for
compatibility with XTI.

C H A P T E R 3

Endpoints

3-106 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

VALID STATES

All

SEE ALSO

The OTAlloc function (page 3-102) allocates the memory OTFree deallocates.

You use one of the constant names given by the structure types enumeration
(page 3-57) to specify the structure to be freed.

To allocate raw memory, use the OTAllocMem function, and to deallocate the
allocated raw memory, use the OTFreeMem function, both described in the
chapter “Process Management.”

Checking a Buffer’s Size 3

Open Transport provides a function, OTCountDataBytes, for checking a buffer’s
size before an endpoint handles it.

OTCountDataBytes 3

Returns the amount of data currently available to be handled.

C INTERFACE

OTResult OTCountDataBytes(EndpointRef ref, size_t* countPtr);

C++ INTERFACE

OTResult TEndpoint::CountDataBytes(size_t* countPtr);

PARAMETERS

ref The endpoint reference of the endpoint to which the data has
been sent and which will be reading or otherwise using the data.

C H A P T E R 3

Endpoints

Endpoints Reference 3-107
Draft.  Apple Computer, Inc. 4/30/96

countPtr A pointer to a buffer containing the size (in bytes) of the data in
the topmost packet or stream buffer.

DESCRIPTION

If the function returns successfully, the countPtr parameter points to a buffer
containing the the number of bytes in the message buffer at the top of the
stream. How you might want to handle the data depends on which event is
outstanding. For example, if you have a T_DATA outstanding, then the buffer
indicates the data available to be read; if you have a T_DISCONNECT outstanding,
then the buffer indicates the number of bytes in the disconnect.

Additionally, what the function counts depends on the type of endpoint. If it is
packet-oriented, the function counts the number of bytes in the topmost packet;
if it’s stream-oriented, the function counts the total amount of nonexpedited
data or the amount of expedited data in the topmost buffer at stream head.
That is, if nonexpedited data was received in more than one piece, the function
provides a count of the sum of the pieces, but if expedited data was received in
multiple parts, the function only provides a count of the data in the topmost
buffer.

If the buffer points at data to be read, this does not mean that this is all the data
that was sent. You might need to do additional reads to get the rest of the data.
You can call this function upon receipt of a T_DATA event to find out how much
data is currently available and to determine whether you need to allocate larger
buffers before calling a function that reads the data.

Because what this function counts depends on which event is the most current
outstanding event and other events can occur before the function can complete,
never use this count as more than a hint.

VALID STATES

All

Doing No-Copy Receives 3

Open Transport provides several functions for handling no-copy receives: the
OTReleaseBuffer, OTReadBuffer, and the OTBufferDataSize functions.

C H A P T E R 3

Endpoints

3-108 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

OTReleaseBuffer 3

Returns the no-copy receive buffer to the system.

C INTERFACE

void OTReleaseBuffer(OTBuffer* buf);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

buf A pointer to the no-copy receive buffer to be released.

DESCRIPTION

Once a no-copy receive is completed, you need to release the OTBuffer structure
as quickly as possible by calling this function.

VALID STATES

All

SEE ALSO

The OTBuffer function (page 3-108) obtains the size of the no-copy receive
buffer and the OTReadBuffer (page 3-109) function reads from this buffer.

The no-copy receive buffer structure is described by the OTBuffer data type
(page 3-63).

OTBuffer 3

Obtains the size of the no-copy receive buffer.

C H A P T E R 3

Endpoints

Endpoints Reference 3-109
Draft.  Apple Computer, Inc. 4/30/96

C INTERFACE

size_t OTBuffer(OTBuffer* buf);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

buf A pointer to a no-copy receive buffer.

VALID STATES

All

SEE ALSO

The OTReleaseBuffer function (page 3-108) obtains the size of the no-copy
receive buffer and the OTReadBuffer (page 3-109) function reads from this buffer.

The no-copy receive buffer structure is described by the OTBuffer data type
(page 3-63).

OTReadBuffer 3

Reads the next portion of a no-copy receive buffer.

C INTERFACE

Boolean OTReadBuffer(OTBufferInfo* info, void* buf, size_t* len);

C++ INTERFACE

None. C++ applications use the C interface to this function.

C H A P T E R 3

Endpoints

3-110 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

info A pointer to the buffer information structure to be read.

buf A pointer to a buffer into which to place the data.

len The number of bytes actually read.

DESCRIPTION

This function returns true when it has read all of the bytes from the buffer
information structure pointed to by the info parameter. It returns false when
there are more bytes still to be read.

VALID STATES

All

SEE ALSO

The OTReleaseBuffer function (page 3-108) obtains the size of the no-copy
receive buffer and the OTBuffer (page 3-108) function reads from this buffer.

The no-copy receive buffer structure is described by the OTBuffer data type
(page 3-63).

Functions for Connectionless Transactionless Endpoints 3

You can use a connectionless transactionless endpoint to transfer data after
the endpoint is bound and while it is in the T_IDLE state. Connectionless
transactionless service used by protocols such as DDP, IP, PPP, or 802.2 is
described at greater length in the section “Using Connectionless
Transactionless Service,” beginning on page 3-43. This section describes the
functions used to send and receive data, OTSndUData and OTRcvUData. You use
The TUnitData structure (page 3-65) with these functions to specify the data
being transferred.

Some endpoint implementations do not detect an error in the attempt to send a
datagram until after the OTSndUData function has returned successfully. In this
case, Open Transport uses the T_UDERR event to notify the client sending the
data. You can receive the event either by calling the OTLook function(page 3-95)
or by including this case in your notifier function. To determine why the

C H A P T E R 3

Endpoints

Endpoints Reference 3-111
Draft.  Apple Computer, Inc. 4/30/96

OTSndUData function failed, you must call the OTRcvUDErr function, which is also
described in this section. Due to the nature of connectionless transactionless
service, you are not notified if the data fails to reach its destination.

OTSndUData 3

Sends data using a connectionless transactionless endpoint.

C INTERFACE

OSStatus OTSndUData(EndpointRef ref, TUnitData* udata);

C++ INTERFACE

OSStatus TEndpoint::SndUData(TUnitData* udata);

PARAMETERS

ref The endpoint reference of the endpoint sending the data.

udata A pointer to a TUnitData structure (page 3-65) that specifies the
data to be sent and its destination.

DESCRIPTION

If the endpoint is in synchronous, blocking mode, the OTSndUData function
returns immediately. If flow-control restrictions prevent its sending the data, it
retries the operation until it is able to send it. If the endpoint is in nonblocking
mode, the OTSndUData function returns a kOTFlowErr result if flow-control
restrictions prevent the data from being sent. When the endpoint provider is
able to send the data, it calls your notifier function, passing T_GODATA for the
code parameter. You can then call the OTSndUData function from your notifier to
send the data. You can also retrieve this event by polling the endpoint using the
OTLook function.

Some endpoint providers are not able to detect immediately whether you
specified incorrect address or option information. In such cases, the provider

C H A P T E R 3

Endpoints

3-112 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

calls your notifier function when it detects the error, passing the T_UDERR for the
code parameter to advise you that an error has occurred. You can determine the
cause of this event by calling the OTRcvUDErr function and examining the value
of the uderr->error parameter. It is important that you call the OTRcvUDErr
function even if you are not interested in examining the cause of the error.
Failing to do this leaves the endpoint in an invalid state for doing other sends
and makes the endpoint provider unable to deallocate memory reserved for
internal buffers associated with the send.

The next table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the OTSndUData function.

SPECIAL CONSIDERATIONS

The XTI_SLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal send buffer before they are sent. If the endpoint you are using supports
this option, you can negotiate a value using the OTOptionManagement function.
Because you use the OTOptionManagement function to set this option, it affects all
subsequent sends.

VALID STATES

T_IDLE

SEE ALSO

To read the data, the endpoint to which the data is sent uses the OTRcvUData
function, (page 3-115).

Blocking Nonblocking

Synchronous The function returns when
the provider lifts flow-
control restrictions.

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

Asynchronous The function returns
immediately

The function returns
immediately

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

C H A P T E R 3

Endpoints

Endpoints Reference 3-113
Draft.  Apple Computer, Inc. 4/30/96

You use the TUnitData structure (page 3-65) to specify the data to be sent and its
destination.

You use the OTData structure (page 3-62) to transfer noncontiguous data.

You use the OTOptionManagement function, described in the reference section of
the chapter “Option Management” in this book to negotiate a value for the
XTI_SNDLOWAT option.

You use the OTRcvUDErr function (described next) to retrieve information about
the cause of a T_UDERR event.

For information on how to use this function with a TCP/IP protocol, see
page 8-18 in the TCP/IP chapter.

For information on how to use this function with the AppleTalk DDP protocol,
see page 12-11 in the DDP chapter.

You use the OTLook function (page 3-95) to retrieve pending asynchronous
events for an endpoint.

OTRcvUDErr 3

Clears an error condition indicated by a T_UDERR event and returns the reason
for the error.

C INTERFACE

OSStatus OTRcvUDErr(EndpointRef ref, TUDErr* uderr);

C++ INTERFACE

OSStatus TEndpoint::RcvUDErr(TUDErr* uderr);

PARAMETERS

ref The endpoint reference of the endpoint that has attempted to
send the data.

C H A P T E R 3

Endpoints

3-114 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

uderr A pointer to a TUDErr structure (page 3-67) that specifies the
reason for the error.

DESCRIPTION

You use the OTRcvUDErr function if you have called the OTSndUData function and
the endpoint provider has issued the T_UDERR event to indicate that the send
operation did not succeed. This usually happens when the endpoint provider
cannot determine immediately that you have specified a bad address or option
value. For example, assume that you are using AppleTalk and you specify an
NBP address. If Open Transport cannot resolve the address, it sends a T_UDERR
event to your notifier function. To clear the error condition and determine the
cause of the failure, you must call the OTRcvUDErr function.

If the size of the option or error data returned exceeds the size of the allocated
buffers, the OTRcvUDErr function returns with the result kOTBufferOverflowErr,
but the error indication is cleared anyway.

If you do not need to identify the cause of the failure, you can set the uderr
pointer to nil. In this case, the OTRcvUDErr function clears the error indication
without reporting any information to you. It is important, nevertheless, that
you actually call the OTRcvUDErr function to clear the error condition. If you
don’t call this function, the endpoint remains in an invalid state for doing other
send operations, and the endpoint provider is unable to deallocate memory
reserved for internal buffers associated with the send operation.

VALID STATES

T_IDLE

SEE ALSO

Open Transport uses the TUDErr structure (page 3-67) to return information
about why the OTSndUData function (page 3-111) failed.

C H A P T E R 3

Endpoints

Endpoints Reference 3-115
Draft.  Apple Computer, Inc. 4/30/96

OTRcvUData 3

Reads data sent by a client using a connectionless transactionless protocol.

C INTERFACE

OSStatus OTRcvUData(EndpointRef ref, TUnitData* udata,
OTFlags* flag);

C++ INTERFACE

OSStatus TEndpoint::RcvUData(TUnitData* udata, OTFlags* flag);

PARAMETERS

ref The endpoint reference of the endpoint receiving the data.

udata A pointer to a TUnitData structure (page 3-65) that, on return,
contains information about the data that has been received. See
the description of the TUnitData structure for how to set this
parameter when doing a no-copy receive.

flags A pointer to an unsigned long variable whose bit setting, on
return, indicates whether you need to retrieve more data. A
value of T_MORE specifies that there is more data; a value of 0
specifies that there is no more data.

DESCRIPTION

When the OTRcvUData function returns, it passes a pointer to a TUnitData
structure containing information about the data read and a pointer to a flags
variable that is set to indicate whether there is more data to be retrieved. If the
buffer pointed to by the udata->udata.buf field is not large enough to hold the
current data unit, the endpoint provider fills the buffer and sets the flags
parameter to T_MORE to indicate that you must call the OTRcvUData function
again to receive additional data. Subsequent calls to the OTRcvUData function
return 0 for the length of the address and option buffers until you receive the
full data unit. The last unit to be received does not have the T_MORE flag set.

C H A P T E R 3

Endpoints

3-116 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

If the endpoint is in asynchronous mode or is not blocking and data is not
available, the OTRcvUData function fails with the kOTNoDataErr result. The
endpoint provider uses the T_DATA event to notify the endpoint when data
becomes available. You can use a notifier function or the OTLook function to
retrieve the event. Once you get the T_DATA event, you should continue calling
the OTRcvUData function until it returns the kOTNoDataErr result.

It is possible that the provider generates an erroneous T_DATA event. This is
the case when the provider calls your notifier, passing T_DATA for the code
parameter; but when you execute the OTRcvUData function, it returns with a
kOTNoDataErr result. If this happens, you should continue normal processing
and assume that the next T_DATA event is genuine.

SPECIAL CONSIDERATIONS

The XTI_RCVLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal receive buffer before the endpoint provider generates a T_DATA event. If
the endpoint you are using supports this option, you can negotiate a value
using the OTOptionManagement function. Because you use the
OTOptionManagement function to set this option, it affects all subsequent sends.

VALID STATES

T_IDLE

SEE ALSO

You can use the OTLook function (page 3-95) to retrieve pending asynchronous
events for this endpoint.

For a description of the OTOptionManagement function, see the chapter “Option
Management” in this book.

For information on how to use this function with the AppleTalk DDP protocol,
see page 12-11 in the DDP chapter.

You use the TUnitData structure (page 3-65) to specify the size and location of
buffers that contain information about the data that has been received.

C H A P T E R 3

Endpoints

Endpoints Reference 3-117
Draft.  Apple Computer, Inc. 4/30/96

Functions for Connectionless Transaction-Based Endpoints 3

You can use a connectionless transaction-based endpoint to transfer data after
the endpoint is bound and while it is in the T_IDLE state. Connectionless
transaction-based service used by protocols such as ATP is described at greater
length in the section “Using Connectionless Transaction-Based Service,”
beginning on page 3-48.

This section describes the routines used to send and retrieve requests and
replies: OTSndURequest, OTRcvURequest, OTSndUReply, and OTRcvUReply. This
section also describes the OTCancelURequest function, which you use to cancel
an outgoing request, and the OTCancelUReply function, which you use to cancel
an incoming request.

OTSndURequest 3

Initiates a connectionless transaction by sending a request to the responder.

C INTERFACE

OSStatus OTSndURequest(EndpointRef ref, TUnitRequest* req,
int reqFlags);

C++ INTERFACE

OSStatus TEndpoint::SndURequest(TUnitRequest* req, int reqFlags);

PARAMETERS

ref The endpoint reference of the endpoint making the request.

req A pointer to a TUnitRequest structure (page 3-68) that specifies
the address of the responder, the request data, and the ID of this
transaction.

C H A P T E R 3

Endpoints

3-118 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

reqFlags A bitmapped long specifying whether delivery is guaranteed
for both the requester and the responder (T_ACKNOWLEDGED) and
whether you are sending the request data using additional calls
to the OTSndURequest function (T_MORE). Use the bitAND operator
to set both values.

DESCRIPTION

You use the OTSndURequest function to initiate a transaction. When the
responder replies to your request, you use the OTRcvUReply function to read the
reply. By default, the endpoint provider guarantees delivery for you, but not
for the responder. That is, you will always find out whether your request was
received, but the responder only receives acknowledgment that you received
the reply if you have set the T_ACKNOWLEDGED flag in the reqFlags parameter
when you send the request. Not all protocols honor this flag.

If the responder is an Open Transport endpoint, its provider generates a
T_REPLYCOMPLETE event when you have read the reply. This happens whether or
not the T_ACKNOWLEDGED flag is set, but if it is set, this guarantees that the reply
was delivered. If you don’t set this flag, the responder’s call to the OTSndUReply
function returns right away, and the responding endpoint receives no
additional information as to whether the reply was received and the data
was read.

Setting the T_MORE flag tells the endpoint provider that you are using several
calls to the OTSndURequest function to send the request data. Note that even
though you are using several calls, the request data, all put together, must still
not exceed the value specified for the etsdu field in the endpoint’s
TEndpointInfo structure.

If the endpoint is in blocking mode and flow-control restrictions prevent the
endpoint provider from accepting the OTSndURequest function, the provider
waits to send the request until flow-control restrictions are lifted.

If the endpoint is in nonblocking mode and flow-control restrictions prevent
the endpoint provider from accepting the OTSndURequest function, the function
returns the kOTFLowErr result. When flow-control restrictions are lifted, the
endpoint provider issues a T_GODATA event, which you can retrieve by polling
the endpoint using the OTLook function or using a notifier function. When you
get this event, you can retry sending the request.

C H A P T E R 3

Endpoints

Endpoints Reference 3-119
Draft.  Apple Computer, Inc. 4/30/96

The following table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the OTSndURequest function.

VALID STATES

T_IDLE

SEE ALSO

To determine the maximum size of the request data, you must call the
OTGetEndpointInfo function (page 3-92) and examine the etsdu field of the
TEndpointInfo structure that it returns.

You use the TUnitRequest structure (page 3-68) to specify the address of the
responder, the request data, and the ID of this transaction.

You use the OTData structure (page 3-62) to transfer noncontiguous data.

To read the reply to an outgoing request, you must use the OTRcvUReply
function (page 3-125).

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

You can poll for the T_GODATA event by calling the OTLook function (page 3-95).

Blocking Nonblocking

Synchronous The function returns
when the provider lifts
flow-control restrictions
and the request has been
sent to the protocol.

The function returns if
flow-control restrictions are
in effect or the request data
has been sent to the protocol.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

Asynchronous The function returns
immediately

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

C H A P T E R 3

Endpoints

3-120 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

OTRcvURequest 3

Reads a request sent by a client using a connectionless transaction-based
protocol.

C INTERFACE

OSStatus OTRcvURequest(EndpointRef ref, TUnitRequest* req,
OTFlags* flags);

C++ INTERFACE

OSStatus TEndpoint::RcvURequest(TUnitRequest* req, OTFlags* flags);

PARAMETERS

ref The endpoint reference of the endpoint accepting the request.

req A pointer to a TUnitRequest structure (page 3-68) that contains
information about the request being received. See the
description of the TUnitRequest structure for how to set this
parameter when doing a no-copy receive.

flags A long bitmapped field set by the endpoint provider that
specifies whether the request is acknowledged (T_ACKNOWLEDGED)
and whether there is more request data coming (T_MORE) or
(T_PARTIALDATA). A value of T_MORE indicates that the buffer you
have allocated is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply. It is possible that all flags are set.

DESCRIPTION

You use the OTRcvURequest function to read an incoming request. When the
function returns, it fills in the TUnitRequest structure (referenced by the req
parameter) with the address of the sender, the request data, and any
association-related options pertaining to this request.

C H A P T E R 3

Endpoints

Endpoints Reference 3-121
Draft.  Apple Computer, Inc. 4/30/96

If the endpoint is in synchronous mode and is blocking, the OTRcvURequest
function waits for a request to arrive. If the endpoint is in asynchronous mode
or is not blocking, the OTRcvURequest function retrieves the next pending
unread request or returns the kOTNoDataErr result if there are no pending
requests.

If the endpoint is in asynchronous mode, the endpoint provider generates a
T_REQUEST event when a request arrives. You can poll the endpoint using the
OTLook function or use a notifier function to retrieve this event.

If the T_MORE bit is set in the flags parameter, this means your buffer is not large
enough to hold the entire request. You must call the OTRcvURequest function
again to retrieve more request data. Open Transport ignores the addr and opt
fields of the req parameter for subsequent calls to the OTRcvURequest function.
The T_MORE flag is not set for the last request packet to let you know that this is
the last packet.

If the T_PARTIALDATA bit is set in the flags parameter, this means that the data
you are about to read with the OTRcvURequest function does not constitute the
entire request and that you must call the function again to read more of or the
rest of the request.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the request and that your buffer
is too small to contain even this chunk. In this case, you must call the function
again until the T_MORE flag is clear. The T_PARTIALDATA bit is set only on the first
call to the function.

If you are communicating with multiple requesters and the OTRcvURequest
function returns with the T_PARTIALDATA flag set, it is possible that your next call
to the OTRcvURequest function might not read the rest of the request because the
next data unit coming in belongs to a different request. One way to handle this
situation is to use the next call to the OTRcvURequest function to determine the
sequence number of the incoming request (by setting req->udata.len to 0) and
then, having determined which request data is coming in, read the data into
the appropriate buffer.

The provider sets the T_ACKNOWLEDGED flag if the requester has set this flag when
calling the OTSndURequest function. When this flag is set and you call the
OTSndUReply function, Open Transport guarantees that your reply is
acknowledged by the requester. This flag is set only on the first call to the
OTRcvURequest function for any given transaction.

C H A P T E R 3

Endpoints

3-122 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

VALID STATES

T_IDLE

SEE ALSO

To determine the maximum size of the request data, you must call the
OTGetEndpointInfo function (page 3-92) and examine the etsdu field of the
TEndpointInfo structure (page 3-58) that it returns.

You use the TUnitRequest structure (page 3-68) to store information about the
request being received.

You can poll for the T_REQUEST event by calling the OTLook function (page 3-95).

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

To respond to a request, you use the OTSndUReply function (described next).

OTSndUReply 3

Replies to a request sent by a client using a connectionless transaction-
based protocol.

C INTERFACE

OSStatus OTSndUReply(EndpointRef ref, TUnitReply* reply,
OTFlags flags);

C++ INTERFACE

OSStatus TEndpoint::SndUReply(TUnitReply* reply, OTFlags flags);

PARAMETERS

ref The endpoint reference of the endpoint sending the reply.

C H A P T E R 3

Endpoints

Endpoints Reference 3-123
Draft.  Apple Computer, Inc. 4/30/96

reply A pointer to a TUnitReply structure (page 3-70) that specifies the
ID of this transaction and the reply data.

reqFlags A bitmapped long, which you can set to T_MORE to indicate that
you are sending more reply data with a subsequent call to the
OTSndUReply function.

DESCRIPTION

You use the OTSndUReply function to send a reply. The TUnitReply structure that
you pass in the reply parameter specifies the address of the requester, the reply
data, and any options you want to specify for this reply. If you do not specify
the requester’s address, the endpoint provider uses the transaction ID value
stored in the sequence field of the reply parameter to match the reply against a
pending request and knows in this way where to send the request.

If requests are acknowledged and the provider is not able to send the reply, the
function returns with the kETimedOutErr result. If requests are not
acknowledged, the function returns immediately, and you have no way of
knowing whether the reply was received and read.

If requests are not acknowledged, the provider generates a T_REPLYCOMPLETE
event for asynchronous responders even if the requester has not acknowledged
receipt of the reply. Thus, the only way for you to know whether this event
actually means that the reply was received, is to examine the reqFlags field of
the req parameter for the OTRcvURequest function. If the T_ACKNOWLEDGED flag is
set, then the T_REPLYCOMPLETE event indicates that your reply was received. The
cookie parameter passed to the notifier to indicate completion is set to the
reply parameter.

C H A P T E R 3

Endpoints

3-124 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

The following table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the OTSndUReply function.

COMPLETION EVENT CODES

VALID STATES

T_IDLE

Blocking Nonblocking

Synchronous The function returns
when the provider lifts
flow-control restrictions
and the reply has been
acknowledged or timed
out (if the matching
request was an
acknowledged request).

For unacknowledged
requests, the function
returns immediately; for
acknowledged requests,
it returns when the reply
has been acknowledged
or time out.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

Asynchronous The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the
code parameter when
the reply is acknow-
ledged or timed out.

The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the code
parameter when the reply is
acknowledged or timed out.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

T_REPLYCOMPLETE 0x20000004 The OTSndUReply function has
completed. The cookie parameter of
the notifier function points to the reply
parameter.

C H A P T E R 3

Endpoints

Endpoints Reference 3-125
Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

To determine the maximum size of the reply data, you must call the
OTGetEndpointInfo function (page 3-92) and examine the tsdu field of the
TEndpointInfo structure that it returns.

You use the TUnitReply structure (page 3-70) to specify the ID of this
transaction and the reply data.

You use the OTData structure (page 3-62) to describe noncontiguous data.

You use the OTCancelUReply function (page 3-129) to cancel an incoming request.

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

You examine the reqFlags field of the req parameter for the OTRcvURequest
function (page 3-120) to determine whether the T_REPLYCOMPLETE event means
that the reply was actually received.

OTRcvUReply 3

Reads a reply to a request sent by a client using a connectionless transaction-
based protocol.

C INTERFACE

OSStatus OTRcvUReply(EndpointRef ref, TUnitReply* reply,
OTFlags* flagPtr);

C++ INTERFACE

OSStatus TEndpoint::RcvUReply(TUnitReply* reply, OTFlags* flags);

PARAMETERS

ref The endpoint reference of the endpoint accepting the reply.

C H A P T E R 3

Endpoints

3-126 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

reply A pointer to a TUnitReply structure (page 3-70) that contains
information about the reply data and the ID of the transaction.
See the description of the TUnitReply structure for how to set
this parameter when doing a no-copy receive.

flagPtr A pointer to a bitmapped long that is filled in by the endpoint
provider to indicate whether there is more reply data to be
read, in which case you must call the OTRcvUReply function
again. A value of T_MORE indicates that the buffer pointed to
by udata.buf is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply. It is possible that both flags are set.

DESCRIPTION

You use the OTRcvUReply function to read the reply to a request that you have
issued using the OTSndURequest function. The reply parameter points to buffers
in which the function stores the reply, the address of the responder, any options
connected with this transaction, and the transaction ID for this transaction.

If the endpoint is in asynchronous mode, the provider generates a T_REPLY
event to let you know that reply data has arrived. If it should happen that the
reply data is sent using multiple calls to the sending function, Open Transport
does not generate additional T_REPLY events. To guard against this possibility,
your notifier function should call the OTRcvUReply function until it returns the
kOTNoDataErr result.

If a transaction has timed out awaiting reply data, the OTRcvUReply function
returns a kETIMEDOUTErr result; the sequence field of the reply parameter
specifies which request has timed out.

If you have issued multiple requests, it is not possible to know ahead of time
how incoming replies match your requests. You must be prepared to receive a
reply to any outstanding request. One way to manage this situation is to call
the OTRcvUReply function with the reply->udata.maxlen field set to 0. The rest of
the information returned by the function on this first call lets you know the
sequence number of the reply as well as the flagPtr setting. Once you
determine the matching request and the appropriate reply buffer, you can call
the OTRcvUReply function a second time to read the actual reply data. On the
second and subsequent reads, Open Transport sets the reply->opt.len field to
0. It is guaranteed that once a reply has been partially read, subsequent calls to
OTRcvUReply read from that same reply until all the data has been read.

C H A P T E R 3

Endpoints

Endpoints Reference 3-127
Draft.  Apple Computer, Inc. 4/30/96

If the T_MORE bit is set in the flags parameter, this means your buffer is not large
enough to hold the entire reply. You must call the OTRcvURequest function again
to retrieve more request data. Open Transport ignores the addr and opt fields of
the reply parameter for subsequent calls to the function. The T_MORE flag is not
set for the last reply packet to let you know that this is the last packet.

If the T_PARTIALDATA bit is set in the flags parameter, this means that the data
you are about to read with the OTRcvUReply function does not constitute the
entire reply and that you must call the function again to read more of or the
rest of the reply.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the reply and that your buffer is
too small to contain even this chunk. In this case, you must call the function
again until the T_MORE flag is clear. The T_PARTIALDATA bit is set only on the first
call to the function.

If you are communicating with multiple responders and if the OTRcvUReply
function returns with the T_PARTIALDATA flag set, it is possible that your next call
to the function might not read the rest of the reply because the next data unit
coming in belongs to a different reply. One way to handle this situation is to
use the next call to the OTRcvReply function to determine the sequence number
of the incoming reply (by setting req->udata.maxlen to 0) and then, having
determined which reply data is coming in, read the data into the appropriate
buffer.

VALID STATES

T_IDLE

SEE ALSO

You use the OTSndURequest function (page 3-117) to send a request.

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

You use the TUnitReply structure (page 3-70) to store information about the
reply data and the ID of the transaction.

C H A P T E R 3

Endpoints

3-128 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

OTCancelURequest 3

Cancels a request that was made using the OTSndURequest function.

C INTERFACE

OSStatus OTCancelURequest(EndpointRef ref, OTSequence seq);

C++ INTERFACE

OSStatus Tendpoint::CancelURequest(OTSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being cancelled.

seq A long, specifying the transaction ID of the request you want to
cancel. This is the same value as the one you specified for the
sequence field of the req parameter when you called the
OTSndURequest function.

If you specify 0 for this parameter, Open Transport cancels all
outstanding requests. If you specify an invalid sequence
number, Open Transport does not do anything.

DESCRIPTION

The OTCancelURequest function cancels the outgoing request whose transaction
ID is specified by the seq parameter.

When you call the OTSndURequest function, the provider allocates memory for
internal buffers for the transaction. Calling the OTCancelURequest function tells
the endpoint provider that you are no longer interested in the transaction and
that it can free up any memory or internal buffers associated with the
transaction request identified by the seq parameter.

If the function completes successfully, it returns the kOTNoErr result; it does not
return any other kind of acknowledgment. It is your responsibility to

C H A P T E R 3

Endpoints

Endpoints Reference 3-129
Draft.  Apple Computer, Inc. 4/30/96

deallocate memory that you have reserved for the address, options, and data
buffers associated with the cancelled OTSndURequest function.

Use the OTCancelURequest function to cancel an outgoing request; use
OTCancelUReply to cancel an incoming request.

VALID STATES

T_IDLE

SEE ALSO

You use the OTSndURequest function (page 3-117) to send a request.

You use the OTCancelUReply function (described next) to cancel an
incoming request.

OTCancelUReply 3

Cancels a request that you have read using the OTRcvURequest function.

C INTERFACE

OSStatus OTCancelUReply(EndpointRef ref, OTSequence seq);

C++ INTERFACE

OSStatus TEndpoint::CancelUReply(OTSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being canceled.

C H A P T E R 3

Endpoints

3-130 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

seq A long, specifying the transaction ID of the request being
cancelled. Specify the same value as that value is passed in the
req parameter to the OTRcvURequest function that you used to
read this request.

If you specify 0 for this parameter, Open Transport cancels all
outstanding incoming requests. If you specify an invalid
sequence number, Open Transport does not do anything.

DESCRIPTION

The OTCancelUReply function cancels the request whose transaction ID is
specified by the seq parameter.

When you call the OTRcvURequest function, the endpoint provider allocates
memory for internal buffers and assigns a sequence value to identify this
transaction. Calling the OTCancelUReply function tells the provider that you are
no longer interested in the transaction and that it can free up the memory and
the sequence number associated with the cancelled transaction.

If the function completes successfully, it returns the kOTNoErr result; it does not
return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the cancelled OTRcvURequest function.

Use the OTCancelUReply function to cancel an incoming request; use the
OTCancelURequest function to cancel an outgoing request.

VALID STATES

T_IDLE

SEE ALSO

You use the OTRcvURequest function (page 3-120) to read an incoming request.

You use the OTCancelURequest (page 3-128), to cancel an outgoing request.

Establishing A Connection 3

To use a connection-oriented endpoint, you must use the OTBind function to
specify the number of outstanding connections that the listening endpoint

C H A P T E R 3

Endpoints

Endpoints Reference 3-131
Draft.  Apple Computer, Inc. 4/30/96

supports. Then you must use the functions described in this section to establish
the connection. The endpoint initiating the connection uses the OTConnect and
OTRcvConnect functions; the endpoint accepting the connection uses the
OTListen and OTAccept functions. You use the same functions to establish a
connection for both transactionless and transaction-based endpoints.

Once you have established a connection, you can send and receive data. How
you do this depends on whether you are using transactionless or
transaction-based service. After you are done transferring data and no longer
need to stay connected, you must explicitly tear down the connection by using
the functions described in the section “Tearing Down a Connection” on
page 3-159.

OTConnect 3

Requests a connection to a remote peer.

C INTERFACE

OSStatus OTConnect(EndpointRef ref, TCall* sndCall, TCall* rcvCall);

C++ INTERFACE

OSStatus TEndpoint::Connect(TCall* sndCall, TCall* rcvCall);

PARAMETERS

ref The endpoint reference of the endpoint initiating the connection.

sndCall A pointer to a TCall structure (page 3-72) that specifies the
address of the remote peer, any data transmitted when
establishing a connection, and any options for this connection.

rcvCall A pointer to a TCall structure (page 3-72) that specifies the
address of the peer that has accepted the connection, the value
of options proposed using the sndCall parameter, and any data
transmitted by the peer accepting the connection.

C H A P T E R 3

Endpoints

3-132 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

This parameter is only meaningful for synchronous calls to the
OTConnect function.

DESCRIPTION

If the endpoint is in synchronous mode, the OTConnect function returns after the
connection is established and fills in the fields of the TCall structure (referenced
by the rcvCall parameter) with the actual values associated with this
connection. These might be different from the values you specified using the
sndCall parameter.

If the OTConnect function returns with the kOTLookErr result, this might be either
because of a pending T_LISTEN or T_DISCONNECT event. That is, either a
connection request from another endpoint has interrupted execution of the
function, or the remote endpoint has rejected the connection. If you don’t have
a notifier installed, you can call the OTLook function to identify the event that
caused the kOTLookErr result. If the event is T_LISTEN, you must accept or reject
the incoming request and then continue processing the OTConnect function by
calling OTRcvConnect. If the event is T_DISCONNECT, you must call the
OTRcvDisconnect function to clear the error condition—that is, to deallocate
memory and place the endpoint in the correct state.

If the endpoint is in asynchronous mode, the OTConnect function returns before
the connection is established with a kOTNoDataErr result to indicate that the
connection is in progress. When the connection is established, the endpoint
provider calls your notifier, passing T_CONNECT for the code parameter. In
response, you must call the OTRcvConnect function to read the connection
parameters that would have been returned using the rcvCall parameter if the
endpoint were in synchronous mode.

It is possible that the remote address returned in the addr field of the rcvCall
parameter is not the same as the address you requested using the
sndCall->addr field. This happens when the connection is accepted for a
different endpoint than the one receiving the connection request.

If the OTConnect function returns a result other than kOTNoDataErr, then the
connection attempt has not been initiated and no events will be received.

SPECIAL CONSIDERATIONS

Not all endpoints support the sending of data with a connection request.
Examine the connect field of the TEndpointInfo structure for the endpoint to

C H A P T E R 3

Endpoints

Endpoints Reference 3-133
Draft.  Apple Computer, Inc. 4/30/96

determine if the endpoint supports the sending of data and to determine the
maximum size of the data.

VALID STATES

T_IDLE

SEE ALSO

You can use the OTLook function (page 3-95) to retrieve a pending
asynchronous event.

You use a TCall structure (page 3-72) to specify the address of the remote peer,
any data transmitted when establishing a connection, and any options for the
connection.

You use the OTRcvDisconnect function (page 3-161) to acknowledge that your
request for a connection has been rejected.

For information on how to use this function with a TCP/IP protocol, see
page 8-17 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-10 in the PAP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

OTRcvConnect 3

Reads the status of an outstanding or completed asynchronous call to the
OTConnect function.

C INTERFACE

OSStatus OTRcvConnect(EndpointRef ref, Tcall* call);

C H A P T E R 3

Endpoints

3-134 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACE

OSStatus TEndpoint::RcvConnect(TCall* call);

PARAMETERS

ref The endpoint reference of the endpoint initiating the connection.

call A pointer to a TCall structure (page 3-72) that contains
information about the newly established connection. When the
OTRcvConnect function returns, it fills in this structure. You can
set this parameter to nil, in which case no information is
returned to you.

DESCRIPTION

You call the OTRcvConnect function to determine the status of a previously
issued OTConnect call. If you want to retrieve information about the connection,
you must allocate buffers for the addr field and, if required, the opt and udata
fields before you make the call.

If the endpoint is synchronous and blocking, the OTRcvConnect function waits
for the connection to be accepted or rejected. If the connection is accepted, the
function returns with a kOTNoError result. If the connection is rejected, the
function returns with a kOTLookErr result. In this case, you should call the
OTLook function to verify that a T_DISCONNECT event is the reason for the
kOTLookErr, and then you should call the OTRcvDisconnect function to clear
the event.

If the endpoint is asynchronous or nonblocking, the OTRcvConnect function
returns with the kOTNoDataErr result if the connection has not yet been
established.

VALID STATES

T_OUTCON

SEE ALSO

You use the OTConnect function (page 3-131) to request a connection request.

C H A P T E R 3

Endpoints

Endpoints Reference 3-135
Draft.  Apple Computer, Inc. 4/30/96

You use the TCall structure (page 3-72) to store information about the newly
established connection.

You use the OTLook function (page 3-95) to retrieve pending asynchronous
events.

You use the OTRcvDisconnect function (page 3-161) to acknowledge that your
request for a connection has been rejected.

For information on how to use this function with a TCP/IP protocol, see
page 8-17 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-10 in the PAP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

OTListen 3

Listens for an incoming connection request.

C INTERFACE

OSStatus OTListen(EndpointRef ref, TCall* call);

C++ INTERFACE

OSStatus TEndpoint::Listen(TCall* call);

PARAMETERS

ref The endpoint reference of the endpoint listening for the
connection request.

C H A P T E R 3

Endpoints

3-136 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

call A pointer to a TCall structure (page 3-72) that contains
information about the address of the peer requesting the
connection, option information, data associated with the
connection request, and the connection ID for this connection.

DESCRIPTION

You use the OTListen function to listen for incoming connection requests. On
return, the function fills in the TCall structure referenced by the call parameter
with information about the connection request. After retrieving the connection
request using the OTListen function, you can reject the request using the
OTSndDisconnect function, or you can accept the request using the OTAccept
function.

If the endpoint is in synchronous mode and is blocking, the OTListen function
returns when a connection request has arrived. If the endpoint is in
asynchronous mode or is not blocking, the OTListen function returns any
pending connection requests or returns the kOTNoDataErr result if there are
no pending connection requests. You can also call the OTListen function from
within a notifier function in response to the T_LISTEN event. In this case, the
function returns a result immediately.

SPECIAL CONSIDERATIONS

Not all endpoints support the sending of data with a connection request.
Examine the connect field of the TendpointInfo structure for the endpoint to
determine if the endpoint supports the sending of data and to determine the
maximum size of the data.

To ensure portability, do not explicitly bind the endpoint to which you are
passing off a connection if its address is to be the same as that of the endpoint
listening for connection requests.

VALID STATES

T_IDLE, T_INCON

SEE ALSO

You use the OTAccept function (described next) to read an incoming connection
request that you have retrieved using the OTListen function.

C H A P T E R 3

Endpoints

Endpoints Reference 3-137
Draft.  Apple Computer, Inc. 4/30/96

You use the TCall structure (page 3-72) to store information about the address
of the peer requesting the connection, option information, data associated with
the connection request, and the connection ID for this connection.

You use the OTSndDisconnect function (page 3-159) to reject a connection
request.

You specify the maximum number of outstanding connections for an endpoint
when you bind the endpoint using the OTBind function (page 3-87).

For information on how to use this function with a TCP/IP protocol, see
page 8-18 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-10 in the PAP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

OTAccept 3

Accepts an incoming connection request.

C INTERFACE

OSStatus OTAccept(EndpointRef ref, EndpointRef resRef, TCall* call);

C++ INTERFACE

OSStatus TEndpoint::Accept(EndpointRef resRef, TCall* call);

PARAMETERS

ref The endpoint reference of the listening endpoint.

resRef The endpoint reference of the endpoint accepting the
connection.

C H A P T E R 3

Endpoints

3-138 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

call A pointer to a TCall structure (page 3-72) that contains
information about the address of the peer requesting the
connection, option information, data associated with
the connection request, and the connection ID for this
connection.

DESCRIPTION

You use the OTAccept function to accept a request that you retrieved using the
OTListen function. You can accept a connection on either the same or on a
different endpoint than the one listening for connection request.

■ If you accept the connection on the same endpoint (the values of the ref and
resRef parameters are the same), there must be no other outstanding
connection requests on that endpoint. Otherwise, the call to OTAccept fails
and returns the kOTIndOutErr result.

■ If you accept the connection on a different endpoint (the values of the ref
and resRef parameters are different), you are not required to bind the
endpoint accepting the request first. If the endpoint is not bound, the
provider binds it to the same address as that of the endpoint receiving the
connection request. If you want to bind it explicitly to that address, you
must set the reqAddr->qlen field to 0 and the endpoint must be in the T_IDLE
state before calling the OTAccept function. If you want to bind it to a different
address, there are no restrictions on the value of the eqAddr->qlen field.

If you do not wish to accept the request, you must call the OTSndDisconnect
function.

If the endpoint is in asynchronous mode, the OTAccept function returns
immediately with a kOTNoError result, indicating that processing has begun and
that the client will be notified when it is complete.

When processing is finished and the connection is opened, the provider for the
endpoint specified by the ref parameter, calls that endpoint’s notifier, passing
T_ACCEPTCOMPLETE for the code parameter and kInvalidEndpointRef for the
cookie parameter. The provider for the endpoint specified by the resRef
parameter, calls that endpoint’s notifier, passing T_PASSCON for the code
parameter and ref for the cookie parameter. If you have accepted the
connection on the same endpoint (ref and resRef are the same), the provider
issues the T_ACCEPTCOMPLETE event first, and then the T_PASSCON event.

C H A P T E R 3

Endpoints

Endpoints Reference 3-139
Draft.  Apple Computer, Inc. 4/30/96

If you have not installed a notifier, you can poll the endpoint accepting the
connection for a change of state to T_DATAXFER; the change of state happens
when the connection is opened.

SPECIAL CONSIDERATIONS

In asynchronous mode, it is possible for the endpoint to issue the
T_ACCEPTCOMPLETE event before the OTAccept function returns the
kOTNoError result.

Not all endpoints support the sending of data with a connection request.
Examine the connect field of the TEndpointInfo structure for the endpoint to
determine if the endpoint supports the sending of data and the maximum size
of the data.

The OTAccept function fails with the kOTLookErr error if there are indications
(T_DISCONNECT or T_LISTEN) waiting to be received. This is because

Calling the OTAccept function on an endpoint that was bound with a qlen
greater than 1 can result in a kOTLookErr being returned because another
T_LISTEN event has arrived. Unfortunately, XTI specifies that the accept request
cannot be acted on until the OTListen function has been called to receive this
new connection request. This effectively means that you need to keep an array
of outstanding connection requests. If you are acting on T_LISTEN events in
your notifier, then you need to be able to handle having as many outstanding
connection requests as you indicate in the qlen field, issuing an accept request,
and getting a T_LISTENCOMPLETE event before the T_ACCEPTCOMPLETE event returns
to you.

COMPLETION EVENT CODES

VALID STATES

Endpoint specified by the ref parameter: T_INCON

Endpoint specified by the resRef parameter: T_IDLE or T_UNBND

T_ACCEPTCOMPLETE 0x20000003 The OTAccept function has completed.
The cookie parameter of the notifier
function contains the endpoint
reference of the endpoint to which the
connection has been passed.

C H A P T E R 3

Endpoints

3-140 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

You use the OTListen function (page 3-135) to read a connection request before
calling the OTAccept function to accept the request.

You use the TCall structure (page 3-72) to store information about the address
of the peer requesting the connection, option information, data associated with
the connection request, and the connection ID for this connection.

You use the OTBind function (page 3-87) to bind the endpoint accepting the
request explicitly and to specify the number of connection requests that can be
outstanding for the endpoint.

You use the OTSndDisconnect function (page 3-159) to reject an incoming
connection request.

For information on how to use this function with a TCP/IP protocol, see
page 8-18 in the TCP/IP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

Functions for Connection-Oriented Transactionless Endpoints 3

To use connection-oriented transactionless endpoints, you must first establish a
connection, as described in the previous section, and then use the OTSnd and
OTRcv functions described in this section to transfer data.

The OTSnd and OTRcv functions do not use a special data structure to describe
the data being transferred. Rather, the buf parameter is used to point to the
buffer holding the data and the nbytes parameter is used to specify the size of
the data being sent. Because the endpoints are already connected, it is not
necessary to specify a destination address. Equally, options are defined when
the connection is established; therefore, it is not necessary to specify options
when sending data.

OTSnd 3

Sends data to a remote peer.

C H A P T E R 3

Endpoints

Endpoints Reference 3-141
Draft.  Apple Computer, Inc. 4/30/96

C INTERFACE

OTResult OTSnd(EndpointRef ref, void* buf, size_t nbytes,
OTFlags flags);

C++ INTERFACE

OTResult TEndpoint::Snd(void* buf, size_t nbytes, OTFlags flags);

PARAMETERS

ref The endpoint reference of the endpoint sending data.

buf A pointer to the data being sent. If you are sending data that is
not stored contiguously, this is a pointer to an OTData structure
that describes the first data fragment.

nbytes A long specifying the number of bytes being sent. If you are
sending data that is not stored contiguously, you must set this
field to the kNetbufDataIsOTData constant.

flags A long bitmapped variable specifying whether the data to be
sent is expedited (T_EXPEDITED) and whether more data remains
to be sent (T_MORE). To set both fields, use the bitAND operator.

DESCRIPTION

You use the OTSnd function to send data to a remote peer. Before you use this
function, you must establish a connection with the peer.

If the OTSnd function succeeds, it returns an integer (OSStatus) specifying the
number of bytes that were actually sent. If it fails, it returns a negative integer
corresponding to a result code that indicates the reason for the failure.

You specify the data to be sent by passing a pointer to the data (buf) and by
specifying the size of the data (nbytes). The maximum size of the data you can
send is specified by the tsdu field of the TEndpointInfo structure for the
endpoint.

Some protocols use expedited data for control or attention messages. To
determine whether the endpoint supports this service, examine the etsdu field
of the TEndpointInfo structure. A positive integer for the etsdu field indicates

C H A P T E R 3

Endpoints

3-142 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

the maximum size in bytes of expedited data that you can send. To send
expedited data, you must set the T_EXPEDITED bit of the flags parameter.

If you want to break up the data sent into smaller logical units, you can set the
T_MORE bit of the flags parameter to indicate that you are using additional calls
to the OTSnd function to send more data that belongs to the same logical unit.
To indicate that the last data unit is being sent, you must specify 0 for nbytes
and turn off the T_MORE flag. This is the only circumstance under which it is
permitted to send a zero-length data unit. If the endpoint does not support
the sending of zero-length data, the OTSnd function fails with the
kOTBadDataErr result.

If the endpoint is in blocking mode, the OTSnd function returns after it actually
sends the data. If flow-control restrictions prevent its sending the data, it retries
the operation until it is able to send it. If the endpoint is in nonblocking mode,
the OTSnd function returns with the kOTFlowErr result if flow-control restrictions
prevent the data from being sent. When the endpoint provider is able to send
the data, it returns a T_GODATA event to let you know that it is possible to
send data.

If the endpoint is in non-blocking or asynchronous mode, it is possible that
only part of the data is actually accepted by the transport provider. In this case,
the OTSnd function returns a value that is less than the value of the nbytes
parameter, or the error kOTFlowErr if no bytes at all were sent. After this error
occurs, a T_GODATA event will be issued when the flow control restrictions are
lifted. This error is not returned if the endpoint is in blocking mode.

If an asynchronous event, such as a disconnect, occurs and interrupts the OTSnd
function, OTSnd returns with the kOTLookErr result.

The following table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the OTSnd function.

Blocking Nonblocking

Synchronous The function returns when
the provider lifts
flow-control restrictions.

The function returns
immediately.

C H A P T E R 3

Endpoints

Endpoints Reference 3-143
Draft.  Apple Computer, Inc. 4/30/96

SPECIAL CONSIDERATIONS

The XTI_SNDLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal send buffer before they are sent. If the endpoint you are using supports
this option, you can negotiate a value using the OTOptionManagement function.
Because you use the OTOptionManagement function to set this option, it affects all
subsequent sends.

VALID STATES

T_DATAXFER, T_INREL

SEE ALSO

For information about transferring data, see “Using Connection-Oriented
Transactionless Service,” beginning on page 3-44.

You can examine the TEndpointInfo structure (page 3-58) to find out what kind
of data you can send and its maximum size.

You use the OTData structure (page 3-62) to transfer noncontiguous data.

For information on how to use this function with a TCP/IP protocol, see
page 8-18 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-11 in the PAP chapter.

For additional information about the OTOptionManagement function, see the
chapter “Option Management” in this book.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

Asynchronous The function returns
immediately.

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

Blocking Nonblocking

C H A P T E R 3

Endpoints

3-144 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

OTRcv 3

Reads data sent using a connection-oriented transactionless protocol.

C INTERFACE

OTResult OTRcv(EndpointRef ref, void* buf, size_t nbytes,
OTFlags* flags);

C++ INTERFACE

OTResult TEndpoint::Rcv(void* buf, size_t nbytes, OTFlags* flags);

PARAMETERS

ref The endpoint reference of the endpoint receiving data.

buf A pointer to a memory location where the incoming data is to
be copied. You must allocate this buffer before you call the
function. If you are doing a no-copy receive, this field is a
pointer to an OTBuffer pointer.

nbytes A long specifying the size of the buffer in bytes. If you are
doing a no-copy receive, you must set this field to the
kNetbufDataIsOTBufferStar constant.

flags A long bitmapped variable specifying, on return, whether the
data being sent is expedited (T_EXPEDITED) and whether more
data remains to be received (T_MORE).

DESCRIPTION

You call the OTRcv function to read data sent by the peer to which you are
connected. If the OTRcv function succeeds, it returns an integer (OTStatus)
specifying the number of bytes received. The function places the data read into
the buffer referenced by the buf parameter. If the function fails, it returns a
negative integer corresponding to a result code that indicates the reason for the
failure. You can call this function to receive either normal or expedited data. If
the data is expedited, the T_EXPEDITED flag is set in the flags parameter.

C H A P T E R 3

Endpoints

Endpoints Reference 3-145
Draft.  Apple Computer, Inc. 4/30/96

If T_MORE is set in the flags parameter when the function returns, this means
that the buffer you allocated is too small to contain the data to be read and that
you must call the OTRcv function again. If you have read x bytes with the first
call, the next call to the OTRcv function begins to read at the (x + 1) byte. Of
course, if you need it, you must copy the data in the buffer to another location
before calling the function again. Each call to this function that returns with the
T_MORE flag set means that you must call the function again to get more data.
When you have read all the data, the OTRcv function returns with the T_MORE
flag not set. If the endpoint does not support the concept of a TSDU, the T_MORE
flag is not meaningful and should be ignored. To determine whether the
endpoint supports TSDUs, examine the tsdu field of the TEndpointInfo
structure. A value of T_INVALID means that the endpoint does not support it.

Some protocols allow you to send zero-length data to signal the end of a logical
unit. In this case, if you request more than 0 bytes when calling the OTRcv
function, the function returns 0 bytes only to signal the end of a TSDU.

If the OTRcv function returns and the T_EXPEDITED bit is set in the flags
parameter, this means that you are about to read expedited data. If the number
of bytes of expedited data exceeds the number of bytes you specified in the
reqCount parameter, both the T_EXPEDITED and the T_MORE bits are set. You must
call the OTRcv function until the T_MORE flag is not set to retrieve the rest of the
expedited data.

If you are calling the OTRcv function repeatedly to read normal data and a call
to the function returns T_EXPEDITED in the flags parameter, the next call to the
OTRcv function that returns without the T_EXPEDITED flag set returns normal
data at the place it was interrupted. It is your responsibility to remember where
that was and to continue processing normal data. You can determine how
much normal data you read by maintaining a running total of the number of
bytes returned in the OTStatus result.

If the endpoint is in asynchronous mode or is not blocking, the function returns
with the kOTNoDataErr result if no data is available. If you have installed a
notifier, the endpoint provider calls your notifier and passes T_DATA or T_EXDATA
for the code parameter when there is data available. If you have not installed a
notifier, you may poll for these events using the OTLook function. Once you
receive a T_DATA or T_EXDATA event, you should continue in a loop, calling the
OTRcv function until it returns with the kOTNoDataErr result.

If the endpoint is in synchronous mode and is blocking, the endpoint waits for
data if none is currently available. You should avoid calling the OTRcv function
this way because it might cause processing to hang if no data is available. If

C H A P T E R 3

Endpoints

3-146 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

you are doing other operations in synchronous mode, you should put the
endpoint in nonblocking mode before calling the OTRcv function.

SPECIAL CONSIDERATIONS

You should be prepared for a T_DATA event and then a kOTNoDataErr error when
you call the OTRcv function. This seems unusual, but it can occur if you are
calling OTRcv in the foreground when a T_DATA event comes in.

Whenever the OTRcv function returns a kOTLookErr error, it is very important
that you call the OTLook function. If you are in a flow-control situation on the
send side, and a T_GODATA or T_GOEXDATA event occurs that you do not clear in
your notifier (by calling OTLook or by actually sending some data), then you
will hang waiting. Until the T_GODATA or T_GOEXDATA are cleared, Open Transport
cannot send you another T_DATA event (or any other event other than a
T_DISCONNECT, for that matter).

The XTI_RCVLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal receive buffer before the endpoint provider generates a T_DATA event. If
the endpoint you are using supports this option, you can negotiate a value
using the OTOptionManagement function. Because you use the
OTOptionManagement function to set this option, it affects all subsequent sends.

VALID STATES

T_DATAXFER, T_OUTREL

SEE ALSO

You use the OTLook function (page 3-95) to poll for the T_DATA or T_EXDATA events.

You use the OTIsNonBlocking function, described in the reference section of the
chapter “Providers” in this book, to determine the current operational mode of
the endpoint. It is recommended that the endpoint be in nonblocking mode
before you call the OTRcv function.

For information on how to use this function with a TCP/IP protocol, see
page 8-19 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-12 in the ADSP chapter and page 15-11 in the PAP chapter.

C H A P T E R 3

Endpoints

Endpoints Reference 3-147
Draft.  Apple Computer, Inc. 4/30/96

You use the OTOptionManagement function, described in the chapter “Option
Management” in this book, to negotiate the XTI_RCVLOWAT option.

Functions for Connection-Oriented Transaction-Based Endpoints 3

After you establish a connection, you can transfer data using connection-
oriented transaction-based endpoints by calling the OTSndRequest function to
send a request, the OTRcvRequest function to read a request, the OTSndReply
function to reply to the request, and the OTRcvReply function to read the reply.
This section also describes the OTCancelRequest function, which you use to
cancel an outgoing request, and the OTCancelReply function, which you use
to cancel an incoming request.

Connection-oriented transaction-based service used by protocols such as ADSP
is described at greater length in the section “Using Connection-Oriented
Transaction-Based Service,” beginning on page 3-50. This section describes the
functions used to send and retrieve requests and replies.

OTSndRequest 3

Sends a request to a connection-oriented transaction-based responder.

C INTERFACE

OSStatus OTSndRequest(EndpointRef ref, TRequest* req,
OTFlags reqFlags);

C++ INTERFACE

OSStatus TEndpoint::SndRequest(TRequest* req, OTFlags reqFlags);

PARAMETERS

ref The endpoint reference of the endpoint making the request.

C H A P T E R 3

Endpoints

3-148 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

req A pointer to a TRequest structure (page 3-76) that contains
information about the request, options for this request, and the
transaction ID of the request.

reqFlags A bitmapped long specifying whether you are sending request
data using additional calls to this function (T_MORE) and whether
you plan to acknowledge replies (T_ACKNOWLEGED). Use the
bitAND operator to set both bits.

DESCRIPTION

You use the OTSndRequest function to initiate a transaction. When the
responding peer replies to your request, you use the OTRcvReply function to
read the reply.

By default, delivery is guaranteed for you, but not for the responder. That is,
you will always find out whether your request was received, but the responder
only receives acknowledgment that you received the reply if you set the
T_ACKNOWLEDGED bit in the reqFlags parameter when you send the request.

If the responder is an Open Transport endpoint, its provider generates a
T_REPLYCOMPLETE event when you have read the reply. This happens whether or
not the T_ACKNOWLEDGED bit is set; but if it is set, this guarantees that the reply
was delivered. If you don’t set this flag, the responder’s call to the OTSndReply
function returns right away, and the responding endpoint receives no
additional information as to whether the reply was received and the data
was read.

Setting the T_MORE bit tells the endpoint provider that you are using several
calls to the OTSndRequest function to send the request data. Note that even
though you are using several calls, the request data, put all together, must still
not exceed the value specified for the etsdu field in the endpoint’s
TEndpointInfo structure.

If the endpoint is in blocking mode and flow-control restrictions prevent the
endpoint provider from accepting the OTSndRequest function, Open Transport
retries the operation until flow-control restrictions are lifted.

If the endpoint is in nonblocking mode and flow-control restrictions prevent
the endpoint provider from accepting the OTSndRequest function, Open
Transport returns the kOTFlowErr result. When flow-control restrictions are
lifted, the provider issues a T_GODATA event, which you can retrieve using your
notifier function or by polling the endpoint using the OTLook function. When
you get this event, you can try sending the request again.

C H A P T E R 3

Endpoints

Endpoints Reference 3-149
Draft.  Apple Computer, Inc. 4/30/96

The next table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the OTSndRequest function.

VALID STATES

T_DATAXFER, T_INREL

SEE ALSO

You use the OTRcvReply function (page 3-154) to read the reply to your request.

You use the TRequest structure (page 3-76) to specify information about the
request, options for this request, and the transaction ID of the request.

The maximum size of a request is defined by the etsdu field of the
TEndpointInfo structure (page 3-58).

You use the OTLook function (page 3-95) to retrieve pending asynchronous
events.

You use the OTData structure (page 3-62) to describe noncontiguous data.

OTRcvRequest 3

You use the OTRcvRequest function to read a request from a connection-oriented
transaction-based requester.

Blocking Nonblocking

Synchronous The function returns when
the provider lifts flow-
control restrictions and the
request has been sent to the
protocol.

The function returns if
flow-control restrictions
are in effect or the request
data has been sent to the
protocol.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

Asynchronous The function returns
immediately.

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

C H A P T E R 3

Endpoints

3-150 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

C INTERFACE

OSStatus OTRcvRequest(EndpointRef ref, TRequest* req,
OTFlags* reqFlags);

C++ INTERFACE

OSStatus TEndpoint::RcvRequest(TRequest* req, OTFlags* flags);

PPARAMETERS

ref The endpoint reference of the endpoint reading the request.

req A pointer to a TRequest structure (page 3-76) that contains
information, on return, about the incoming request. See the
description of the TRequest structure for how to set this
parameter when doing a no-copy receive.

reqFlags A bitmapped long specifying, on return, whether there is more
request data coming (T_MORE) and whether the provider is going
to acknowledge replies (T_ACKNOWLEDGED).

DESCRIPTION

You use the OTRcvRequest function to read an incoming request. After reading
the request, you can use the OTSndReply function to reply to that request or the
OTCancelRequest function to reject the request.

When the OTRcvRequest function returns, the req->data.buf field points to the
request data and the req->sequence field specifies a transaction ID for this
transaction. You must use this same sequence value when calling the
OTSndReply function to reply to this request or the OTCancelRequest function to
reject it.

If you have allocated a buffer that is too small to hold the request data, the
provider sets the T_MORE bit in the reqFlags field to indicate that there is more
request data to be read. You must call the OTRcvRequest function until the
T_MORE flag is cleared in order to retrieve the rest of the request data. The
req->opt field contains returns no information for these additional calls.

If the endpoint is in synchronous mode and is blocking, the OTRcvRequest
function returns only when a request arrives. If the endpoint is asynchronous

C H A P T E R 3

Endpoints

Endpoints Reference 3-151
Draft.  Apple Computer, Inc. 4/30/96

or is not blocking, the OTRcvRequest function returns either the next unread
request or the kOTNoDataErr result if there are no pending requests.

If flow-control restrictions prevent the provider from accepting the data when
you call the OTRcvRequest function, the function returns the kOTFlowErr result.
The provider issues the T_GODATA event when flow-control restrictions are lifted.

When a request arrives, the provider generates a T_REQUEST event. You can poll
for this event using the OTLook function or call the function for as long as the
kOTNoDataErr result is returned. If you have a notifier installed for this
endpoint, the event is sent to the notifier.

VALID STATES

T_DATAXFER, T_OUTREL

SEE ALSO

You use the OTSndReply function (described next) to reply to a request that you
have read using the OTRcvRequest function.

You can use the OTLook function to poll for T_REQUEST events (page 3-95).

OTSndReply 3

You use the OTSndReply function to reply to a connection-oriented transaction-
based request.

C INTERFACE

OSStatus OTSndReply(EndpointRef ref, TReply* reply,
OTFlags* replyFlags);

C++ INTERFACE

OSStatus TEndpoint::SndReply(TReply* reply, OTFlags flags);

C H A P T E R 3

Endpoints

3-152 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The endpoint reference of the endpoint reading the request.

reply A pointer to a TReply structure (page 3-77) that specifies the
reply data being sent, the transaction ID for this transaction,
and any options you want to set.

replyFlags A bitmapped long specifying whether the rest of the reply is
being sent with a subsequent call to this function (T_MORE) or
whether this is the complete reply (T_MORE not set).

DESCRIPTION

You use the OTSndReply function to reply to a request you have read using the
OTRcvRequest function. The reply parameter contains the reply to be sent, and
the replyFlags parameter specifies whether you are sending the entire reply
with this send (T_MORE bit clear) or sending just part of the reply (T_MORE bit set).
If you are using multiple sends to send the reply, you must set the T_MORE bit on
each but the last send. The total size of the data you send using multiple sends
must not exceed the value of the tsdu field of the TEndpointInfo structure for
this endpoint.

If the endpoint is in blocking mode, the OTSndReply function returns after it has
sent the reply. If the endpoint is in nonblocking mode, the OTSndReply function
returns the kOTFlowErr result if the endpoint provider is unable to send the
reply because of flow-control restrictions. The provider issues the T_GODATA
event when these restrictions are lifted. You can use the OTLook function to poll
for this event, or you can use your notifier to handle it.

If the endpoint is in asynchronous mode, the provider calls your notifier when
the OTSndReply function completes. The code parameter of the notifier function
contains the T_REPLYCOMPLETE event, the cookie parameter contains the reply
parameter passed with the OTSndReply function, and the result parameter
contains the function result.

C H A P T E R 3

Endpoints

Endpoints Reference 3-153
Draft.  Apple Computer, Inc. 4/30/96

The next table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the OTSndReply function.

VALID STATES

T_DATAXFER, T_OUTREL

COMPLETION EVENTS

SEE ALSO

You use the OTRcvRequest function (page 3-149) to read an incoming request
before calling the OTSndReply function to reply to the request.

You use the TReply structure (page 3-77) to specify the reply data being sent, the
transaction ID for this transaction, and any options you want to set.

Blocking Nonblocking

Synchronous The function returns
when the provider lifts
flow-control restrictions
and the reply has been
successfully sent or timed
out.

The function returns if flow-
control restrictions are in
effect or when the reply has
been successfully sent or
timed out.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

Asynchronous The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the
code parameter when the
reply is successfully sent
or timed out.

The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the
code parameter when the
reply is successfully sent or
timed out.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

T_REPLYCOMPLETE 0x20000004 The OTSndReply function has completed.
The cookie parameter of the notifier
function points to the reply parameter.

C H A P T E R 3

Endpoints

3-154 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

The peer endpoint calls the OTRcvReply function (page 3-154) to acknowledge
receiving the reply you send using the OTSndReply function.

You use the OTData structure (page 3-62) to transfer noncontiguous data.

OTRcvReply 3

Reads a transaction reply sent by a connection-oriented responder.

C INTERFACE

OSStatus OTRcvReply(EndpointRef ref, TReply* reply,
OTFlags* replyFlags);

C++ INTERFACE

OSStatus TEndpoint::RcvReply(TReply* reply, OTFlags* flags);

PARAMETERS

ref The endpoint reference of the endpoint reading the reply.

reply A pointer to a TReply structure (page 3-77) that specifies the size
and location of buffers into which the function, on return, stores
data, option information, and the ID of the transaction. See the
description of the TReply structure for how to set this parameter
when doing a no-copy receive.

replyFlags A long bitmapped field specifying T_MORE or T_PARTIALDATA. A
value of T_MORE indicates that the buffer pointed to by
reply->data.buf is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply and that the next data unit might
belong to a different transaction.

C H A P T E R 3

Endpoints

Endpoints Reference 3-155
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

You use the OTRcvReply function to read the reply to a request that you sent
using the OTSndRequest function.

If the endpoint is in asynchronous mode, the endpoint provider issues the
T_REPLY event to let you know that incoming reply data is available. After you
retrieve this event (using the OTLook function or your notifier function,) you
must call the OTRcvReply function repeatedly to read the reply data until it
returns kOTNoDataErr. The endpoint provider does not generate additional
T_REPLY events until you have read the complete reply.

If a transaction has timed out awaiting reply data, the OTRcvReply function
returns a kETIMEDOUTErr result; the sequence field of the reply parameter
specifies which request has timed out.

If you have issued multiple requests, it is not possible to know ahead of time
how incoming replies match your requests. You must be prepared to receive a
reply to any outstanding request. One way to manage this situation is to call
the OTRcvReply function with the reply->udata.maxlen field set to 0. The rest of
the information returned by the function on this first call lets you know the
sequence number of the reply as well as the replyFlags setting. Once you
determine the matching request and the appropriate reply buffer, you can call
the OTRcvReply function a second time to read the actual reply data. On the
second and subsequent reads, Open Transport sets the reply->opt.len field to
0. It is guaranteed that once a reply has been partially read, subsequent calls to
OTRcvReply read from that same reply until all the data has been read.

If the T_MORE bit is set in the flags parameter, this means your buffer is not large
enough to hold the entire reply. You must call the OTRcvRequest function again
to retrieve more request data. Open Transport ignores the addr and opt fields of
the reply parameter for subsequent calls to the function. The T_MORE flag is not
set for the last reply packet to let you know that this is the last packet.

If the T_PARTIALDATA bit is set in the flags parameter, this means that the data
you are about to read with the OTRcvReply function does not constitute the
entire reply and that you must call the function again to read more of or the
rest of the reply.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the reply and that your buffer is
too small to contain even this chunk. In this case, you must call the function
again until the T_MORE flag is clear. The T_PARTIALDATA bit is set only on the first
call to the function.

If you are communicating with multiple responders and if the OTRcvUReply
function returns with the T_PARTIALDATA flag set, it is possible that your next call
to the function might not read the rest of the reply because the next data unit
coming in belongs to a different reply. One way to handle this situation is to
use the next call to the OTRcvReply function to determine the sequence number
of the incoming reply (by setting req->udata.maxlen to 0) and then, having
determined which reply data is coming in, read the data into the appropriate
buffer.

VALID STATES

T_IDLE

SEE ALSO

The request to which you are receiving a reply is defined by a previous call to
the OTSndRequest function (page 3-147).

You use the TReply structure (page 3-77) to specify the size and location of
buffers into which the function, on return, stores data, option information, and
the ID of the transaction.

You use the OTLook function (page 3-95) to poll for asynchronous events.

OTCancelRequest 3

Cancels an outstanding request as defined by a call to the OTSndRequest
function.

C INTERFACE

OSStatus OTCancelRequest(EndpointRef ref, OTSequence seq);

C++ INTERFACE

OSStatus Tendpoint::CancelRequest(OTSequence seq);

C H A P T E R 3

Endpoints

Endpoints Reference 3-157
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being cancelled.

seq A long, specifying the transaction ID of the request being
canceled. You must specify the same value that you used for
the sequence field of the req parameter you passed to the
OTSndRequest function. If you specify 0 for this parameter, the
provider cancels all outstanding requests. If you specify an
invalid sequence number, the provider does not do anything.

DESCRIPTION

When you make a call to the OTSndRequest function, the endpoint provider
allocates memory for internal buffers for this transaction. If you are no longer
interested in the transaction, you must tell the endpoint provider by calling the
OTCancelRequest function. Explicitly canceling a request allows the provider to
free up the memory associated with a transaction request.

If the function completes successfully, it returns the kOTNoErr result; it does
not return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the canceled function.

Use OTCancelRequest to cancel an outgoing request; use OTCancelReply to cancel
an incoming request.

VALID STATES

T_IDLE

SEE ALSO

You use the OTSndRequest function (page 3-147) to send a request.

You use the OTCancelReply function (described next) to cancel an incoming
request.

C H A P T E R 3

Endpoints

3-158 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

OTCancelReply 3

Cancels an outstanding call to the OTRcvRequest function.

C INTERFACE

OSStatus OTCancelReply(EndpointRef ref, OTSequence seq);

C++ INTERFACE

OSStatus TEndpoint::CancelReply(OTSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being canceled.

seq A long, specifying the transaction ID of the request being
canceled. You must specify the same value that was passed to
you in the seq field of the req parameter to the OTRcvRequest
function. If you specify 0 for this parameter, the provider
cancels all outstanding incoming requests. If you specify an
invalid sequence number, the provider does not do anything.

DESCRIPTION

When you make a call to the OTRcvRequest function, the provider allocates
memory for internal buffers and assigns a sequence value to identify this
transaction. If you are no longer interested in a transaction, you must explicitly
cancel the transaction by calling the OTCancelReply function. Calling this
function allows the provider to free up the memory it has reserved and to reuse
the sequence number associated with the canceled transaction.

If the function completes successfully, it returns the kOTNoErr result; it does not
return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the cancelled OTRcvRequest function.

C H A P T E R 3

Endpoints

Endpoints Reference 3-159
Draft.  Apple Computer, Inc. 4/30/96

Use the OTCancelReply function to cancel an incoming request; use the
OTCancelRequest function to cancel an outgoing request.

VALID STATES

T_IDLE

SEE ALSO

You use the OTSndRequest function (page 3-147) to send a request.

You use the OTCancelRequest function (page 3-156) to cancel an outgoing
request.

Tearing Down a Connection 3

You use the functions described in this section to tear down a connection.
Depending on the circumstances, you might use the OTSndDisconnect function
to initiate an abortive disconnect or the OTSndOrderlyDisconnect function to
initiate an orderly disconnect. If you are responding to a disconnection request,
you call the OTRcvDisconnect function to acknowledge an abortive disconnect
or the OTRcvOrderlyDisconnect function to acknowledge an orderly disconnect.
You can also use the OTSndDisconnect function to reject an incoming connection
request.

OTSndDisconnect 3

Tears down an open connection (abortive disconnect) or rejects an incoming
connection request.

C INTERFACE

OSStatus OTSndDisconnect(EndpointRef ref, TCall* call);

C H A P T E R 3

Endpoints

3-160 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACE

OSStatus TEndpoint::SndDisconnect(TCall* call);

PARAMETERS

ref The endpoint reference for the endpoint tearing down the
connection or rejecting the connection request.

call A pointer to a TCall structure (page 3-72) that specifies the
connection to be torn down or rejected and specifies data sent
with the disconnection request if the endpoint supports sending
such data.

DESCRIPTION

There are two functions that you can use to tear down a connection:
OTSndDisconnect for an abortive disconnect, or OTSndOrderlyDisconnect for an
orderly disconnect. It is recommended that you use the OTSndOrderlyDisconnect
function for tearing down a connection whenever possible and that you use the
OTSndDisconnect function only for rejecting incoming connection requests.

If the endpoint is in asynchronous mode, the OTSndDisconnect function returns
immediately with a result of kOTNoError to indicate that the disconnection
process has begun and that your notifier function will be called when the
process completes.

When the connection has been broken, the provider issues a
T_DISCONNECTCOMPLETE event. If you have installed a notifier function, Open
Transport calls your notifier and passes this event in the code parameter. The
cookie parameter contains the call parameter. If you have not installed a
notifier function, you cannot determine when this function completes.

C H A P T E R 3

Endpoints

Endpoints Reference 3-161
Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

VALID STATES

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL (and T_INCON, when two or more
incoming connection requests are outstanding)

SEE ALSO

To acknowledge an abortive disconnect, you call the OTRcvDisconnect function
(described next).

You use the TCall structure (page 3-72) to describe the connection being torn
down or rejected.

You use the OTListen function (page 3-135) to listen for a disconnection request.

You can examine the discon field of the TEndpointInfo structure (page 3-58) for
the endpoint to determine whether the endpoint supports sending data during
the disconnection and to find out the maximum size of such data.

For information on how to use this function with a TCP/IP protocol, see
page 8-19 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-12 in the ADSP chapter and page 15-11 in the PAP chapter.

For information on abortive and orderly disconnects, see “Terminating a
Connection,” beginning on page 3-35.

OTRcvDisconnect 3

Identifies the cause of a connection break or of a connection rejection,
acknowledges and clears the corresponding disconnection event.

T_DISCONNECTCOMPLETE 0x20000005 The OTSndDisconnect function has
completed. The cookie parameter
contains the call parameter.

C H A P T E R 3

Endpoints

3-162 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

C INTERFACE

OSStatus OTRcvDisconnect(EndpointRef ref, TDiscon* discon);

C++ INTERFACE

OSStatus TEndpoint::RcvDisconnect(TDiscon* discon);

PARAMETERS

ref The endpoint reference of the endpoint receiving the
disconnection request.

discon A pointer to a TDiscon structure that specifies any user data,
a reason for the disconnection, and a connection request
sequence number.

DESCRIPTION

Calling the OTRcvDisconnect function clears the corresponding disconnection
event and retrieves any user data sent with the disconnection.

If you do not care about data returned with the disconnection and do not need
to know the reason for the disconnection nor the sequence ID, you may specify
a nil pointer for the discon parameter. In this case, the provider discards any
user data associated with the disconnection.

The OTRcvDisconnect function behaves in the same way for all modes of
operation. If there is no disconnection request pending, the function returns
with the kOTNoDisconnectErr result. If there is a disconnection request pending,
the function returns either the kOTNoError or kOTBufferOverflowErr result. In the
latter instance, you need to check the discon field of the TEndpointInfo structure
for your endpoint and make sure that the buffer referenced by the udata.buf
field is at least as big as the value specified for the discon field.

VALID STATES

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON (when there is more than one
pending disconnection request)

C H A P T E R 3

Endpoints

Endpoints Reference 3-163
Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

To send an abortive disconnect, you call the OTSndDisconnect function
(page 3-159).

You use the TDiscon structure (page 3-79) to specify that provides user data, a
reason for the disconnection, and a connection request sequence number.

For information on how to use this function with a TCP/IP protocol, see
page 8-19 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-12 in the ADSP chapter and page 15-11 in the PAP chapter.

For information on abortive and orderly disconnects, see “Terminating a
Connection,” beginning on page 3-35.

You examine the discon field of the TEndpointInfo structure (page 3-58) to find
out whether your endpoint supports sending data with the disconnection
request and to determine the maximum size of such data.

OTSndOrderlyDisconnect 3

Initiates or completes an orderly disconnection.

C INTERFACE

OSStatus OTSndOrderlyDisconnect(EndpointRef ref);

C++ INTERFACE

OSStatus TEndpoint::SndOrderlyDisconnect();

PARAMETERS

ref The endpoint reference of the endpoint initiating the orderly
disconnect.

C H A P T E R 3

Endpoints

3-164 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

You call the OTSndOrderlyDisconnect function to initiate an orderly release of a
connection and to indicate to the peer endpoint that you have no more data to
send. After calling this function, you must not send any more data over the
connection. However, you can still continue to receive data if the peer endpoint
has not yet called the OTSndOrderlyDisconnect function.

This function is a service that is not supported by all protocols. If it is
supported, the servtype field of the TEndpointInfo structure has the value
T_COTS_ORD or T_TRANS_ORD.

The OTSndOrderlyDisconnect function behaves exactly the same in all modes
of operation.

VALID STATES

T_DATAXFER, T_INREL

SEE ALSO

To send an abortive disconnect or to reject a connection request, you call the
OTSndDisconnect function (page 3-159).

For information on abortive and orderly disconnects, see “Terminating a
Connection,” beginning on page 3-35.

You examine the TEndpointInfo structure (page 3-58) to determine whether the
endpoint supports orderly release.

OTRcvOrderlyDisconnect 3

Acknowledges a request for an orderly disconnect.

C INTERFACE

OSStatus OTRcvOrderlyDisconnect(EndpointREf ref);

C H A P T E R 3

Endpoints

Endpoints Reference 3-165
Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACE

OSStatus TEndpoint::RcvOrderlyDisconnect();

PARAMETERS

ref The endpoint reference of the endpoint acknowledging receipt
of the disconnect request.

DESCRIPTION

The OTRcvOrderlyDisconnect function is a service that is not supported by all
protocols. If it is, the servtype field of the TEndpointInfo structure has the value
T_COTS_ORD or T_TRANS_ORD for the endpoint.

After using the OTRcvOrderlyDisconnect function to acknowledge receipt of a
disconnection request, there will not be any more data to receive. Calls to the
OTRcv function (for a transactionless connection) or to the OTRcvRequest function
(for a transaction-based connection) after acknowledging a disconnection
request fail with the kOTOutStateErr result. If the endpoint supports a remote
orderly disconnect, you can still send data over the connection if you have not
yet called the OTSndOrderlyDisconnect function.

The OTRcvOrderlyDisconnect function behaves in the same way in all modes of
operation. If there is no disconnection request pending, the function returns
with the kOTNoReleaseErr result. It there is a disconnection request pending, the
function returns either the kOTNoError or kOTBufferOverflowErr result. In the
latter instance, you need to check the discon field of the TEndpointInfo structure
for your endpoint and make sure that the buffer referenced by the udata.buf
field is at least as big as the value specified for the discon field.

VALID STATES

T_DATAXFER, T_OUTREL

SEE ALSO

You use the OTSndOrderlyDisconnect function (page 3-163) to send an orderly
disconnect.

C H A P T E R 3

Endpoints

3-166 Endpoints Reference

Draft.  Apple Computer, Inc. 4/30/96

For information on abortive and orderly disconnects see “Terminating a
Connection,” beginning on page 3-35.

You examine the TEndpointInfo structure (page 3-58) to determine whether the
endpoint supports orderly release.

C H A P T E R 4

Contents 4-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Mappers

About Mappers 4-4
Using Mappers 4-5

Setting Modes of Operation for Mappers 4-5
Specifying Name and Address Information 4-7
Searching for Names 4-7

Retrieving Multiple Entries From the Reply Buffer 4-9
Retrieving Entries in Asynchronous Mode 4-11

Mappers Reference 4-12
Constants and Data Types 4-12

The TRegisterRequest Structure 4-12
The TRegisterReply Structure 4-13
The TLookupRequest Structure 4-13
The TLookupReply Structure 4-15
The TLookupBuffer Structure 4-15

Functions 4-16
Creating Mappers 4-17

OTAsyncOpenMapper 4-17
OTOpenMapper 4-19

Registering and Deleting Names 4-21
OTRegisterName 4-22
OTDeleteName 4-23
OTDeleteNameByID 4-25

Looking Up Names 4-26
OTLookupName 4-26

C H A P T E R 4

4-3
Draft.  Apple Computer, Inc. 4/30/96

Mappers 4

This chapter describes mappers, the type of Open Transport provider that lets
your application map entity names to protocol addresses. You can use mapper
functions to register a name, to look up a name or name pattern, or to remove
a registered name. Which functions are supported depends on the name-
registration protocol underlying the mapper provider you create. For more
detailed information about how mapper functions are implemented for
the protocol you are interested in, consult the documentation provided for
that protocol.

You do not have to open a mapper provider if you are interested only in
registering a name or looking up an address corresponding to a name.

■ If the protocol you are using allows you to bind an endpoint by name and
you do so, the name is automatically registered on the network. This is a
more efficient way to register a name on the network than to create a
mapper to do it.

■ If you want to obtain the address that corresponds to an entity name, you
can use the endpoint function OTResolveAddress. Using this function also
saves you the trouble of opening a mapper. However, you cannot use this
function to look up a name pattern; that is, the name you look up cannot
include a wildcard character.

If you are using an endpoint that cannot be bound by name, if you want to look
up a name pattern, or if you want to use other mapper functions, you need to
read this chapter and learn how to create a mapper provider.

This chapter begins with a general description of mapper providers and
continues with a more detailed discussion of how you use mappers
asynchronously and how you use the mapper to look up names. The functions
used to register names and delete names are discussed in the section “Mappers
Reference,” beginning on page 4-12.

Mapper providers, like all Open Transport providers, can operate
synchronously or asynchronously, can block, and can acknowledge sends. For
general information about Open Transport providers, see the chapter
“Providers” earlier in this book.

C H A P T E R 4

Mappers

4-4 About Mappers

Draft.  Apple Computer, Inc. 4/30/96

About Mappers 4

A mapper is a communications path between your application and a mapper
provider, which is a protocol that allows you to map a name to a network
address, if the underlying protocol allows it, and to register that name-address
pair so that it becomes visible to all other entities on a network. When you
create a mapper, you instantiate a data structure that contains information
about the mapper provider’s mode of operation, information about the
mapper’s state, and pointers to mapper functions. These functions are your
application’s interface to the underlying name-registration protocol. Which
functions you use depends on the name-registration protocol you select when
you create a mapper. For example, if you select the AppleTalk Name-Binding
Protocol (NBP), which supports dynamic name and address registration, you
can use all the mapper functions described in this chapter: you can register a
name, look up a name, and remove a registered name. If you select the TCP/IP
protocol family, which uses the domain name resolver (DNR), this choice does
not support dynamic name and address registration, and you can only look up
a name that has been registered using other means.

When you create a mapper, you specify which protocol is to provide the
name-registration service. You also have the option of specifying the layers of
protocols underlying that service; these layers provide basic data-transfer
services. For example, AppleTalk’s NBP protocol relies on the more basic
Datagram Delivery Protocol (DDP) to transfer data as required for name
registration and name lookup. You do not have to specify these underlying
data-transfer protocols. When you select the name-registration protocol you are
interested in, a default configuration is provided. For more information about
the default configuration for your protocol, please consult the documentation
furnished for that protocol. Of course, as with any Open Transport provider,
you do have the choice of specifying the underlying protocols, all the way
down to the hardware link. For more information, see the chapter
“Configuration Management” in this book.

When you create a mapper, you obtain a mapper reference. A mapper
reference, like an endpoint reference, identifies the instance of the provider you
have created. You must pass this reference as a parameter to all other mapper
functions. You can open multiple mappers. For example, if you are writing a
network administration application, you might want to create a mapper for
each protocol used over the network. If you do open multiple mappers, the

C H A P T E R 4

Mappers

Using Mappers 4-5
Draft.  Apple Computer, Inc. 4/30/96

mapper reference tells Open Transport which mapper is invoked for any one
function call.

Like endpoint providers, mapper providers also have a state attribute, which
helps Open Transport manage these providers. Unlike endpoints, however,
mappers do not provide functions that allow you to determine their state.
A mapper can be either in an uninitialized (T_UNINIT) state if it was closed by
the system, or in the idle (T_IDLE) state after it has been opened.

Using Mappers 4

This section begins by describing how the general provider functions that
govern a provider’s mode of operation apply to mapper providers. It goes on
to discuss information you need to know in order to use mapper functions:
how you format names and addresses specified in parameters to mapper
functions and how you handle processing when calling mapper functions
asynchronously. This section concludes with a discussion of different
techniques you can use when using the mapper to search for a name pattern.

Setting Modes of Operation for Mappers 4

Like all Open Transport providers, mappers can use different modes of
operation. A mapper can execute synchronously or asynchronously. You set the
mapper’s default mode of execution by using the appropriate function to open
it; for example, you can open a mapper that executes asynchronously by calling
the OTAsyncOpenMapper function to create the mapper. After opening the
mapper, you can change its mode of execution by calling the OTSetSynchronous
or OTSetAsynchronous functions. To determine how mapper functions execute,
you call the OTIsSynchronous function. A mapper uses one asynchronous event
and four completion events. Table 4-1 lists the event codes that the mapper
provider can pass to your application and explains the meaning of the cookie
parameter to the notifier for each function. For more detailed information, see
the descriptions of the mapper functions beginning on page 4-19.

C H A P T E R 4

Mappers

4-6 Using Mappers

Draft.  Apple Computer, Inc. 4/30/96

The only way to cancel an asynchronous mapper function is to call the
OTCloseProvider function, passing the mapper reference for which the function
was executed. The OTCloseProvider function is described in the chapter
“Providers” in this book.

By default, mappers do not block and do not acknowledge sends. You can
change a mapper’s blocking status by using the OTSetBlocking function. You
can change a mapper’s send-acknowledgment status by using the OTAckSends
function. These functions are described in the chapter “Providers” in this book.
Mapper providers are not affected by their send-acknowledgment status.
However, a mapper provider’s blocking status might affect the behavior of
mapper functions. For example, if a mapper is blocking, heavy network traffic
might cause mapper functions to wait before sending or receiving data. If a
mapper is nonblocking and you are doing a lot of name lookups, the
OTLookupName function might return with the kOTFlowErr result. In this case, you
can try executing the function later.

Table 4-1 Completion events for asynchronous mapper functions

Completion code Meaning

T_OPENCOMPLETE The OTAsyncOpenMapper function has completed. The
cookie parameter contains the mapper reference.

T_REGNAMECOMPLETE The OTRegisterName function has completed. The
cookie parameter contains the reply parameter, unless
it was NULL, in which case it contains the request
parameter.

T_DELNAMECOMPLETE The OTDeleteName or the OTDeleteNameByID functions
have completed. For the OTDeleteName function, the
cookie parameter holds a pointer to the name
parameter. For the OTDeleteNameByID function, the
cookie parameter contains the id parameter.

T_LKUPNAMERESULT The OTLookupName function has returned a name, but it
has not yet completed because there are more names
to retrieve.

T_LKUPNAMECOMPLETE The OTLookupName function has completed. The cookie
parameter contains the reply parameter.

C H A P T E R 4

Mappers

Using Mappers 4-7
Draft.  Apple Computer, Inc. 4/30/96

Specifying Name and Address Information 4

Several mapper functions require that you specify a name or address. This
might be a name to register or to look up. Specifying a name or address means
that you have to create a buffer that contains the information and then create a
TNetbuf structure that specifies the size and location of this buffer. The format
that you use to store a name or an address is specific to the name-registration
protocol that underlies the mapper and is exactly the same as the name and
address formats that you can use to bind an endpoint. For information about
name and address formats, please consult the documentation provided for the
protocol you are using.

If the protocol supports it, you can specify a name pattern rather than a name
when calling the OTLookupName function. Different protocols might use different
wildcard characters to define name patterns. Please consult the documentation
provided for your protocol to determine valid wildcard characters and how
you use these to specify name patterns.

Searching for Names 4

You use the OTLookupName function to search for a registered name or for a list of
names if your protocol supports name pattern matching. You use the req
parameter to the function to specify the name or name pattern to search for.
When the function returns, it uses the reply parameter to pass back the
matching name or names.

The req parameter is a pointer to a TLookupRequest structure containing the
name or name pattern to be found and additional information that the mapper
can use in conducting the search. You use the maxcnt field to specify the
number of names you expect to be returned. If you are looking for a specific
name, set this field to 1. If you are looking for a name pattern, you can use this
field to indicate the number of matches you expect the OTLookupName function to
return. You use the timeout field to specify the amount of time (in milliseconds)
available for this search. If a match is not found within the specified time, the
function returns with the kOTNoDataErr. If you do not specify a value for the
maxcnt field, or if the number you specify is larger than the number of names
that match the given pattern, the mapper provider uses the value given in the
timeout field to determine when to stop the search.

C H A P T E R 4

Mappers

4-8 Using Mappers

Draft.  Apple Computer, Inc. 4/30/96

The reply parameter is a pointer to a TLookupReply structure that contains two
fields. The names field describes the size and location of the buffer in which the
replies are placed when the function returns; the rspcount field specifies the
number of matching entries found. Figure 4-1 shows how the contents of a
reply buffer containing two entries are stored.

Figure 4-1 Format of entries in OTLookupName reply buffer

The first 2 bytes of each entry specifies the length of the address; the second 2
bytes specifies the length of the name. The address is stored next and then the
name, padded to a quad-word boundary. Given a pointer to the reply buffer

Bytes

4

2

2

Length of address

Length of name

Address

Name

First

entry

4

Variable

length

Variable

length

2

2

Length of address

Length of name

Address

Name

Second

entry

C H A P T E R 4

Mappers

Using Mappers 4-9
Draft.  Apple Computer, Inc. 4/30/96

(replyBufPtr), you can obtain the length of the address (alen) and the length of
the name (nlen), and then you can compute the length of an entry in the reply
buffer as follows:

bufPtr = (short*)replyBufPtr
alen = ((UInt16*)bufPtr)[0];
nlen = ((UInt16*)bufPtr)[1];
len = alen + nlen + 4 /* length of first entry */

Because the entry is aligned on a quad-word boundary, you must account for
this padding to determine where the next entry begins. For example, the
following formula computes the beginning of the next entry:

bufPtr = bufPtr + (len + 3L) & ~3L);

The next section “Retrieving Multiple Entries From the Reply Buffer,” presents
a small code sample that shows how to parse the reply buffer.

Retrieving Multiple Entries From the Reply Buffer 4

Listing 4-1 shows the sample routine DoParseOTLookup, which retrieves
name-address entries from the reply buffer filled in by the OTLookupName
function. The buffer being parsed in the sample listing contains name-address
entries for AppleTalk endpoints.

Listing 4-1 Parsing the reply buffer for OTLookupName

void DoParseOTLookup(Ptr returnBufferPtr, long numFound)
{

char nameString[100];
DDPAddress ddpAddress;
char* bp;
long index;

index = 0;
bp = (char*) returnBufferPtr;
while(index < numFound)
{

UInt16 len; /* entry length */
UInt16 alen; /* adress length */

C H A P T E R 4

Mappers

4-10 Using Mappers

Draft.  Apple Computer, Inc. 4/30/96

UInt16 nlen; /* name length */

alen = ((UInt16*) bp)[0];
nlen = ((UInt16*) bp)[1];
len = alen + nlen + 4;

BlockMove((Ptr)(bp + 4), (Ptr)&ddpAddress,
 sizeof(DDPAddress));

BlockMove((Ptr)(bp + alen + 4), (Ptr)nameString, nlen);
nameString[nlen] = '\0';

/* Print, display, or store the address
 and name in ddpAddress and nameString. */

/* point to next tuple */
bp = bp + ((len + 3L) & ~3L);
index++;

}
}

The DoParseOTLookup function takes two parameters, a pointer to the buffer
containing the data returned by the OTLookupName function and a value
specifying the number of entries in the buffer. Both these values are returned
in the reply parameter to the OTLookupName function. The DoParseOTLookup
function uses a while loop to move through the buffer entry by entry. For
each entry,

■ it determines the length of the address by looking at the first 2 bytes of the
entry and determines the length of the name by looking at the next 2 bytes of
the entry

■ it sets len to the length of the entire entry by adding 4 bytes (the room taken
up by addrLen and nameLen) to the length of the address and the length of the
name

■ it moves the DDP address, which it finds 4 bytes into the entry, into the
ddpAddress variable; and it moves the NBP name, which starts at (bp + alen
+ 4) into the nameString variable.

Because the NBP name is neither a Pascal nor a C string (it does not begin
with a length byte and it does not end with a null character), the function
then adds a null character to the name stored in the nameString variable to

C H A P T E R 4

Mappers

Using Mappers 4-11
Draft.  Apple Computer, Inc. 4/30/96

make it a C string. This makes it easier for the program to manipulate
the string.

At this point in the program, you can print or display or store the values of the
ddpAddress and nameString variables. The statement

bp = bp + ((len + 3L) & ~3L);

is used to point to the next entry.

If you execute the OTLookupName function asynchronously, you can also use
method described in the next section, “Retrieving Entries in Asynchronous
Mode,” to retrieve address-name information.

Retrieving Entries in Asynchronous Mode 4

If you call the OTLookupName function asynchronously, you can use an alternate
method for retrieving matching entries. In asynchronous mode, this function
returns two event codes: it returns the T_LKUPNAMERESULT code each time it
stores a name in the reply buffer, and it returns the T_LKUPNAMECOMPLETE code
when it has stored the last name in the reply buffer—that is, when the function
as a whole completes execution. You can ignore the T_LKUPNAMERESULT event,
allocate a large reply buffer, and use the method described in the previous
section, “Retrieving Multiple Entries From the Reply Buffer,” to parse through
the buffer. Alternately, each time the T_LKUPNAMERESULT event is passed to your
notification function, you can do the following:

1. Copy the name and address information from the reply buffer to some other
location.

2. From inside the notifier function, set the reply->names.len field or the
reply->rspcount field to 0.

When you set either of these fields to 0, Open Transport automatically sets
the other field to 0. It’s important, however, that you reset these values from
within the notifier or the results might be unpredictable.

3. Repeat the first two steps until the event passed to your notifier function is
T_LKUPNAMECOMPLETE.

This method saves you the trouble of guessing how large a reply buffer to
allocate. It might also save you some memory if you are expecting many
matches to be returned and are interested in only some of them.

C H A P T E R 4

Mappers

4-12 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

Mappers Reference 4

This section describes the data types and functions that you use with mappers.
You can also use general provider data types and functions with mappers.
General structures and functions are described in the reference section of the
chapter “Providers” earlier in this book.

Constants and Data Types 4

This section describes the data types used by mapper functions.

The TRegisterRequest Structure 4

You use the TRegisterRequest structure to specify the entity name you want to
register using the OTRegisterName function (page 4-22) and, optionally, to
specify its address.

The TRegisterRequest structure is defined by the TRegisterRequest data type.

struct TRegisterRequest
{ TNetbuf name;

TNetbuf addr;
};
typedef struct TRegisterRequest TRegisterRequest;

Field descriptions

name A TNetbuf structure that specifies the location and size of a
buffer containing the entity name you want to register. You
must allocate a buffer that contains the name, set the
name.buf field to point to that buffer, and set the name.len
field to the length of the name.

addr A TNetbuf structure that specifies the location and size of a
buffer containing the address associated with the entity
whose name you want to register. You must allocate a
buffer that contains the address, set the addr.buf field to
point to that buffer, and set the addr.len field to the length

C H A P T E R 4

Mappers

Mappers Reference 4-13
Draft.  Apple Computer, Inc. 4/30/96

of the address. The actual address with which the entity is
associated is returned in the addr field of the
TRegisterReply structure.
You can set the addr.len field to 0, in which case the
underlying protocol, finds an appropriate address to
associate with the newly registered entity name.

The TRegisterReply Structure 4

You use the TRegisterReply structure to store information returned by the
OTRegisterName function (page 4-22).

The TRegisterReply structure is defined by the TRegisterReply data type.

struct TRegisterReply
{ TNetbuf addr;

OTNameID nameid;
};
typedef struct TRegisterReply TRegisterReply;

Field descriptions

addr A TNetbuf structure that you allocate to hold the location
and size of a buffer containing the actual address of the
entity whose name you have just registered. This
information is passed back to you when the
OTRegisterName function returns. You must allocate a
buffer, set the addr.buf field to point to it, and set the
addr.maxlen field to the maximum size the address could
take up.

nameid A unique identifier passed to you when the OTRegisterName
function returns. You can use this identifier when you call
the OTDeleteNameByID function to delete the name.

The TLookupRequest Structure 4

You use the TLookupRequest structure to specify the registered entity name to be
looked up by the OTLookupName function (page 4-26) and to set additional values
that the mapper provider uses to circumscribe the search.

The TLookupRequest structure is defined by the TLookupRequest data type.

C H A P T E R 4

Mappers

4-14 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

struct TLookupRequest
{ TNetbuf name; /* name to search for */

TNetbuf addr; /* address bound to named endpoint */
UInt32 maxcnt; /* how many matches are expected */
OTTimeouttimeout; /* how long to continue search */

};
typedef struct TLookupRequest TLookupRequest;

Field descriptions

name A TNetbuf structure specifying the location and size of a
buffer that contains the name to be looked up. You must
allocate a buffer that contains the name, set the name.buf
field to point to it, and set the name.len field to the length
of the name.

addr A TNetbuf structure describing the address of the node
where you expect the names are stored. You should
normally supply 0 for addr.len. This causes a protocol
family like TCP/IP to use the address of the name server
selected in the control panel as the destination of its search.
For a protocol family like AppleTalk, in which every node
has access to name and address information, this
parameter is meaningless.
Specifying an address has meaning for those protocols that
use a dedicated server or other device to store name
information. In such a case, the name specified would
override the protocol’s default address. To specify an
address, you would need to allocate a buffer containing
the address, set the addr.buf field to point to it, and set the
addr.len field to the length of the address. Consult the
documentation supplied with your protocol to determine
whether you can or should specify an address.

maxcnt A long specifying the number of names you expect to be
returned. Some protocols allow the use of wildcard
characters in specifying a name. As a result, the
OTLookupName function might find multiple names
matching the specified name pattern. If you expect a
specific number of replies for a particular name, you
should specify this number to obtain faster execution.
There is no default value for this field.

C H A P T E R 4

Mappers

Mappers Reference 4-15
Draft.  Apple Computer, Inc. 4/30/96

timeout A long specifying the amount of time, in milliseconds, that
should elapse before Open Transport gives up searching
for a name. The default value is 0.

The TLookupReply Structure 4

You use the TLookupReply structure to store information passed back to you by
the OTLookupName function (page 4-26). The information includes both a pointer
to a buffer that contains registered entity names matching the criterion
specified with the TLookupRequest structure and the number of names found.

The TLookupReply structure is defined by the TLookupReply data type.

struct TLookupReply
{ TNetbuf names;

UInt32 rspcount;
};
typedef struct TLookupReply TLookupReply;

Field descriptions

names A TNetbuf structure that specifies the size and location of a
buffer into which the OTLookupName function, on return,
places the names it has found. You must allocate a buffer
in which the replies are stored when the function returns;
you must set the names.buf field to point to it; and you
must set the names.maxlen field to the maximum size of the
buffer.

rspcount A long specifying the number of names found.

The TLookupBuffer Structure 4

A mapper provider uses the TLookupBuffer structure to be able to parse
through the buffer passed back in the reply parameter to the OTLookupName
function (page 4-26). When you allocate a buffer in which the OTLookupName
function places the names it has found, you must cast it as a TLookupBuffer
structure. You must make sure that the buffer you allocate is large enough to
contain all the names returned by the OTLookupName function, plus up to 3 bytes
of padding for each name, plus an additional 8 bytes for each name returned.
Figure 4-1 on page 4-8 shows the structure of the reply buffer.

C H A P T E R 4

Mappers

4-16 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

The TLookupBuffer structure is defined by the TLookupBuffer data type.

struct TLookupBuffer
{ UInt16 fAddressLength;

UInt16 fNameLength;
UInt8 fAddressBuffer[1];

};

Field descriptions

fAddressLength Specifies the size of the address specified by the
fAddressBuffer field.

fNameLength Specifies the size of the name that is stored in the buffer
following the fAddressBuffer field.

fAddressBuffer Specifies the address to which the entity whose name
follows (in the buffer) is bound.

Functions 4

This section describes mapper functions, provider functions that you use only
with mappers to manage the mapping of entity names to endpoint addresses
for a network. These functions fall into three categories: functions you use to
create a mapper, functions you use to register a name or delete a registered
name, and functions you use to search for a name or to validate a
name-address pair.

As with other provider functions, you can execute mapper functions
synchronously or asynchronously. Note, however, that Open Transport
provides no function to cancel outstanding asynchronous mapper functions.
The only way to cancel such functions is to close the mapper by calling the
OTCloseProvider function, described in the chapter “Providers” earlier in this
book.

You can also use general provider functions with mappers. You use these
functions to change a function’s mode of operation (for example, to blocking).
General provider functions are described in the reference section of the chapter
“Providers.”

C H A P T E R 4

Mappers

Mappers Reference 4-17
Draft.  Apple Computer, Inc. 4/30/96

Creating Mappers 4

Before you can call mapper functions to register a name or search for a name,
you must create a mapper provider by calling the OTAsyncOpenMapper or
OTOpenMapper functions. When you finish using a mapper, call the
OTCloseProvider function to close and delete the mapper provider.

OTAsyncOpenMapper 4

Creates a mapper and installs a notifier function for the mapper provider. The
OTAsyncOpenMapper function is asynchronous and creates a mapper that
operates asynchronously by default.

C INTERFACE

OSErr OTAsyncOpenMapper (OTConfiguration* config, OTOpenFlags oflag,
OTNotifyProcPtr proc, void* contextPtr);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to an endpoint configuration structure that specifies
the mapper’s characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration function.
The OTAsyncOpenMapper function deletes the configuration
structure after creating the mapper or attempting to create it.

oflag Reserved; must be set to 0.

proc A pointer to a notifier function for this mapper. If you do not
provide a notifier function, your application cannot receive
Open Transport events, including the event advising you that
the mapper has been created.

C H A P T E R 4

Mappers

4-18 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

contextPtr A context pointer for your use. The mapper provider passes
this pointer value when calling the notifier function you specify
in the proc parameter. You might use the contextPtr parameter,
for example, to pass to your notifier function information about
your application’s current context.

DESCRIPTION

The OTAsyncOpenMapper function opens a mapper having the configuration
specified by the config parameter. For additional information see the chapter
“Configuration Management” and the documentation provided for the
name-binding protocol you are using. The OTAsyncOpenMapper function runs
asynchronously, returning a result code as soon as the function has been
queued for execution.

The OTAsyncOpenMapper function attempts to create a mapper, and then calls the
notifier function that you specified in the proc parameter, passing
T_OPENCOMPLETE for the code parameter, a result code in the result parameter,
and the mapper reference for the newly created mapper in the cookie
parameter.

A mapper created by the OTAsyncOpenMapper function operates in asynchronous
mode, unless you change the mapper’s mode of execution by calling the
OTSetSynchronous function. When a mapper is in asynchronous mode, all
provider functions that use the mapper execute asynchronously.

By default, a newly created mapper does not block and does not acknowledge
sends. To change the mapper’s default mode of operation, you can call the
OTSetBlocking function and the OTIsAckingSends function.

You can open multiple mappers using identical or different configurations,
although if you use identical configurations, you must read the “Special
Considerations” section. The different mappers can be distinguished by the
mapper reference. You can set the contextPtr parameter to point to the mapper
reference or to a structure containing the mapper reference; this allows your
notifier function to determine to which mapper a completion event belongs.

SPECIAL CONSIDERATIONS

The OTAsyncOpenMapper function destroys the configuration value returned by
the OTCreateConfiguration function. You cannot use the same configuration to
open multiple mappers. To obtain a valid copy of the configuration for use

C H A P T E R 4

Mappers

Mappers Reference 4-19
Draft.  Apple Computer, Inc. 4/30/96

when opening another mapper, you must call the OTCloneConfiguration
function.

COMPLETION EVENT CODES

SEE ALSO

To open a mapper in synchronous mode, use the OTOpenMapper function
(page 4-19).

To close and delete a mapper use the OTCloseProvider function, described in
the chapter “Providers” in this book.

For more information about a mapper’s mode of operations, see the section
“Setting Modes of Operation for Mappers” on page 4-5.

The OTCreateConfiguration function used to create the configuration structure
that defines the protocols underlying the mapper is discussed in the chapter
“Configuration Management” in this book.

The OTSetAsynchronous function, the OTSetBlocking function, the
OTIsAckingSends function, and the notifier function are described in the chapter
“Providers” in this book.

OTOpenMapper 4

Creates a mapper provider and returns a mapper reference. This function is
synchronous and creates a mapper that operates synchronously.

C INTERFACE

MapperRef OTOpenMapper(OTConfiguration* config, OTOpenFlags oflag,
OSErr* err)

T_OPENCOMPLETE 0x20000007 The OTAsyncOpenMapper function has
completed. The cookie parameter of the
notifier function points to the mapper
reference for the new mapper.

C H A P T E R 4

Mappers

4-20 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to a configuration structure that specifies the
mapper’s characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration function.
The OTOpenMapper function deletes the configuration structure
when creating the mapper or attempting to create it.

oflag Reserved; must be set to 0.

err A pointer to the result code for this function.

DESCRIPTION

The OTOpenMapper function opens a mapper having the configuration specified
by the config parameter. For additional information see the chapter
“Configuration Management” and the documentation provided for the
name-binding protocol you are using. The function returns a mapper reference,
by which you refer to the created mapper when calling mapper functions. If the
OTOpenMapper function fails, its return value is NULL.

A mapper created by the OTOpenMapper function operates in synchronous mode,
unless you change the mapper’s mode of execution by calling the
OTSetAsynchronous function. When a mapper is in synchronous mode, all
mapper provider functions execute synchronously.

By default, a newly created mapper does not block and does not acknowledge
sends. To change the mapper’s default mode of operation, you can call the
OTSetBlocking function and the OTIsAckingSends function.

You can open multiple mappers using identical or different configurations,
although if you use identical configurations, you must read the “Special
Considerations” section, next. The different mappers can be distinguished by
the mapper reference.

C H A P T E R 4

Mappers

Mappers Reference 4-21
Draft.  Apple Computer, Inc. 4/30/96

SPECIAL CONSIDERATIONS

Because the OTOpenMapper function executes synchronously, your application
should not call this function at interrupt time.

The OTOpenMapper function destroys the configuration structure returned by the
OTCreateConfiguration function. If you want to use the same configuration to
open additional mappers, you must obtain a valid copy of the configuration
structure by calling the OTCloneConfiguration function.

SEE ALSO

The OTCreateConfiguration function used to create the configuration structure
that defines the protocols underlying the mapper is discussed in the chapter
“Configuration Management” in this book.

To create a mapper asynchronously, call the OTAsyncOpenMapper function
(page 4-17).

To close and delete a mapper, call the OTCloseProvider function, described in
the chapter “Providers” in this book.

For additional information about a mapper’s mode of operations, see “Setting
Modes of Operation for Mappers” on page 4-5.

The OTSetAsynchronous function, the OTSetBlocking function, and the
OTIsAckingSends function are described in the chapter “Providers” in this book.

Registering and Deleting Names 4

You use the mapper functions described in this section to register a name on
the network and to delete a name from the network.

C H A P T E R 4

Mappers

4-22 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

OTRegisterName 4

Registers an entity name on the network.

C INTERFACE

OSErr OTRegisterName (MapperRef ref, TRegisterRequest* request,
TRegisterReply* reply);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

ref A mapper reference.

request A pointer to a TRegisterRequest structure (page 4-12) that
specifies the entity name you want to register and the endpoint
address.

reply A pointer to a TRegisterReply structure (page 4-13) that
specifies the address and ID of the endpoint whose name is
being registered.

DESCRIPTION

If the name-registration protocol defined using the config parameter to the
OTOpenMapper or OTAsyncOpenMapper function supports dynamic name and
address registration, you can use the OTRegisterName function to make a name
visible on the network to other network devices.

Some protocol implementations under Open Transport allow a client to specify
a name rather than an address when binding the endpoint using the OTBind
function. Binding an endpoint by name causes the protocol to automatically
register the name on the network if the protocol supports dynamic name
registration. This is the simpler technique for registering a name and is
preferred over creating a mapper provider and then using the OTRegisterName
function to register the name.

C H A P T E R 4

Mappers

Mappers Reference 4-23
Draft.  Apple Computer, Inc. 4/30/96

The format for the requested name and address is specific to the protocol used.
Please consult the documentation for the protocol you are using for format
information.

COMPLETION EVENT CODES

SEE ALSO

You use the OTLookupName function (page 4-26), to search for a registered name
or to confirm that a name has been registered.

You use the OTDeleteName function (described next) or the OTDeleteNameByID
function (page 4-25) to remove a previously registered name.

You use the OTOpenMapper function (page 4-19) or OTAsyncOpenMapper function
(page 4-17) to create a mapper.

The OTBind function is described in the chapter “Endpoints” in this book.

For information on how to use this function with a TCP/IP protocol, see
page 8-20 in the TCP/IP chapter.

Notifier functions are described in the chapter “Providers” in this book.

OTDeleteName 4

Removes a previously registered entity name.

C INTERFACE

OSErr OTDeleteName (MapperRef ref, TNetbuf* name);

C++ INTERFACES

TMapper::DeleteName(TNetbuf* name);

T_REGNAMECOMPLETE 0x2000000D The OTRegisterName function has
completed. The cookie parameter of
the notifier function points to the reply
parameter.

C H A P T E R 4

Mappers

4-24 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The mapper reference of the mapper you are using to delete
the name.

name A TNetbuf structure describing the name to be removed. You
must allocate a buffer that contains the name, set the name.buf
field to point to the buffer, and set the name.len field to the
length of the name.

DESCRIPTION

If the name-registration protocol defined using the config parameter to the
OTOpenMapper or OTAsyncOpenMapper function supports dynamic name and
address registration, you can use the OTDeleteName function to delete a
registered name.

COMPLETION EVENT CODES

SEE ALSO

The OTRegisterName function you used to register the name returns an ID value
for the registered name in its reply parameter. You might find it more
convenient to use the OTDeleteNameByID function (described next) to delete a
name using this ID value than to use the OTDeleteName function.

For information on how to use this function with a TCP/IP protocol, see
page 8-20 in the TCP/IP chapter.

You use the OTOpenMapper function (page 4-19) or OTAsyncOpenMapper function
(page 4-17) to create a mapper.

T_DELNAMECOMPLETE 0x2000000E The OTDeleteName function has
completed. The cookie parameter of
the notifier function points to the name
parameter.

C H A P T E R 4

Mappers

Mappers Reference 4-25
Draft.  Apple Computer, Inc. 4/30/96

OTDeleteNameByID 4

Removes a previously registered name as specified by its name ID.

C INTERFACE

OSErr OTDeleteNameByID (MapperRef ref, OTNameID id);

C++ INTERFACES

TMapper::DeleteName(OTNameID id);

PARAMETERS

ref A mapper reference.

id The name ID, a long specifying a number that identifies the
registered name.

DESCRIPTION

If the name-registration protocol defined using the config parameter to the
OTOpenMapper or OTAsyncOpenMapper function supports dynamic name and
address registration, you can use the OTDeleteNameByID function to delete a
registered name.

If the mapper is in asynchronous mode, the OTDeleteNameByID function returns
immediately. When the function completes execution, the mapper provider
calls the notifier function, passing T_DELNAMECOMPLETE for the code parameter,
and a pointer to the id parameter in the cookie parameter.

SEE ALSO

The name ID that you delete using the OTDeleteNameByID function is returned in
the reply parameter to the OTRegisterName function (page 4-22).

You use the OTOpenMapper function (page 4-19) or OTAsyncOpenMapper function
(page 4-17) to create a mapper.

C H A P T E R 4

Mappers

4-26 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

Looking Up Names 4

You use the OTlookUpName function to look up an entity name, to search for all
names matching a specified pattern, or to confirm that a name is registered.

OTLookupName 4

Finds and returns all addresses that correspond to a particular name or name
pattern, or confirms that a name is registered.

C INTERFACE

OSErr OTLookupName (MapperRef ref, TLookupRequest* req,
TLookupReply* reply);

C++ INTERFACES

OSErr TMapper::LookupName(TLookupRequest* req,
TLookupReply* reply);

PARAMETERS

ref A mapper reference.

req A TLookupRequest structure (page 4-13) that specifies the name
to be looked up as well as some additional values that the
mapper provider can use to circumscribe the search.

reply A TLookupReply structure (page 4-15) that specifies the size and
location of a buffer containing the names found, and the
number of names found.

DESCRIPTION

You can use the OTLookupName function to find out whether a name is registered
and what address is associated with that name. You use the req parameter to
supply the information needed for the search: what name should be looked up

C H A P T E R 4

Mappers

Mappers Reference 4-27
Draft.  Apple Computer, Inc. 4/30/96

and, optionally, what node contains that information, how many matches you
expect to find, and how long the search should continue before the function
returns. On return, the reply parameter contains the names field that points to
the buffer where the matching entries are stored and the rspcount field that
specifies the number of matching entries.

For each registered name found, the OTLookupName function stores the following
information in the buffer referenced by the names field of the reply parameter:

unsigned short addrLen; /* length of address that follows*/
unsigned short nameLen; /* length of name that follows */
unsigned char addr[]; /* address */
unsigned char name[]; /* name, padded to quad-word boundary*/

If you are searching for names using a name pattern and you expect that more
than one name will be returned to you, you need to parse the reply buffer to
extract the matching names.

If you call the OTLookupName function asynchronously, the mapper provider calls
your notifier function passing one of two completion codes for the code
parameter (T_LKUPNAMERESULT or T_LKUPNAMECOMPLETE) and passing the reply
parameter in the cookie parameter. The mapper provider passes the
T_LKUPNAMERESULT code each time it stores a name in the reply buffer, and it
passes the T_LKUPNAMECOMPLETE code when it is done. When you receive this
event, examine the rspcount field to determine whether there is a last name to
retrieve from the reply buffer. The use of both codes is a feature that gives you
a choice about how to process multiple names when searching for names
matching a pattern.

■ If you decide to allocate a buffer that is large enough to contain all the names
returned, you can ignore the T_LKUPNAMERESULT code and call a function that
parses the buffer once the OTLookupName function has completed—that is,
once the provider calls your notifier function using the T_LKUPNAMECOMPLETE
event.

■ If you want to save memory or if you don’t know how large a buffer to
allocate, you can use the following method to process the names returned.
Each time that the T_LKUPNAMERESULT event is passed, you must do something
with the reply from the reply buffer. You can copy it somewhere, or you can
delete it if it isn’t a name you’re interested in. Then, from inside your notifier
you must set the reply->names.len field or the reply->rspcount field back to
0 (thus allowing the mapper provider to overwrite the original name). This
tells the mapper provider that you are ready to receive another name.

C H A P T E R 4

Mappers

4-28 Mappers Reference

Draft.  Apple Computer, Inc. 4/30/96

Accordingly, when the mapper provider has inserted another name into
your reply buffer, it calls your notifier passing the T_LKUPNAMERESULT code,
and you can process the new entry as you have processed the first entry.
This method also saves you the trouble of having to parse through the buffer
to extract name and address information.

The cookie parameter to the notifier contains the reply parameter.

The format of the names and protocol addresses are specific to the underlying
protocol. Consult the documentation supplied for your protocol for more
information.

COMPLETION EVENT CODES

SEE ALSO

You use the OTDeleteName function (page 4-23) or the OTDeleteNameByID
function, (page 4-25) to delete a registered name.

A sample program that parses the reply buffer to extract matching names is
shown in the section “Searching for Names,” beginning on page 4-7.

For information on how to use this function with a TCP/IP protocol, see
page 8-20 in the TCP/IP chapter.

Notifier functions are described in the chapter “Providers” in this book.

T_LKUPNAMECOMPLETE 0x2000000F The OTLookupName function has
completed. The cookie parameter of
the notifier function points to the
reply parameter.

C H A P T E R 5

Contents 5-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 Option Management

About Options and Option Negotiation 5-4
Explicit Use of Options and Portability of Code 5-4
Types of Options 5-5
The Format of Option Information 5-8
XTI-Level Options and General Options 5-10

Using Options 5-11
Determining Which Function to Use to Negotiate Options 5-12
Negotiating Options 5-13

Negotiating Multiple Options 5-13
Initiating an Option Negotiation 5-14
Privileged or Read-Only Options 5-15
Error Conditions 5-16

Obtaining the Maximum Size of an Options Buffer 5-18
Setting Option Values 5-18

Specifying Option Values 5-18
Setting Default Values 5-20
Allowing the Endpoint Provider to Select an Option Value 5-21

Retrieving Option Values 5-21
Obtaining Current and Default Values 5-21
Retrieving Values for Connection-Oriented Endpoints 5-22
Retrieving Values for Connectionless Transactionless Endpoints 5-23
Retrieving Values for Connectionless Transaction-Based Endpoints 5-23
Parsing an Options Buffer 5-24

Verifying Option Values 5-25
Option Management Reference 5-25

Constants and Data Types 5-25
XTI-Level Options 5-25

C H A P T E R 5

5-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

Generic Options 5-28
Status Codes 5-29
Action Flags 5-30
The Linger Structure 5-31
The Keepalive Structure 5-32
The TOption Structure 5-33
The Option Management Structure 5-33

Functions 5-34
Determining and Changing Function Values 5-35

OTOptionManagement 5-35
Manipulating the Format of Option Information 5-39

OTCreateOptions 5-39
OTCreateOptionString 5-42

Finding Options 5-43
OTFindOption 5-43
OTNextOption 5-44

C H A P T E R 5

5-3
Draft.  Apple Computer, Inc. 4/30/96

Option Management 5

This chapter explains the use of options, values associated with an endpoint
provider, which you can change to fine-tune or customize the data-transfer
service offered by the endpoint. In general, the use of options decreases
portability and makes transport independence much more difficult, if not
impossible, to achieve. Therefore, it is important to note that default option
values are provided for every type of endpoint and that you can write
applications that never need to specify any options. You need to read this
chapter if

■ you need to use services that must be specified using options

For example, you are using a transaction-based endpoint and need to be able
to send expedited data in order to forward an attention message.

■ it is critical to your application that you fine-tune the data-transfer services
offered by a protocol and you can only do this by using options

For example, you need to manipulate the size of internal send and receive
buffers to eliminate data backlog or buffer overflow problems.

■ you need to create a debugging version of the application through the use of
options

This chapter describes general options that can be specified by any protocol
that supports them, explains the rules followed in the negotiation process, and
explains how you construct an options buffer and how you get and set option
values. It also describes functions that you can use

■ to construct buffers containing option information

■ to locate options in these buffers

■ to parse buffers containing option information

To understand this chapter, you should be familiar with endpoint providers
and the endpoint functions used to transfer data. These topics are discussed in
the “Endpoints” chapter in this book. For specific information about the
options that are supported for a protocol implementation, you need to consult
the documentation provided for that protocol.

C H A P T E R 5

Option Management

5-4 About Options and Option Negotiation

Draft.  Apple Computer, Inc. 4/30/96

About Options and Option Negotiation 5

For every endpoint, Open Transport maintains an options buffer. When you
create an endpoint provider, Open Transport fills this buffer with a default
value for each option supported for the endpoint. Option values have meaning
for and are defined by the protocol to which they apply. Typically, Open
Transport uses endpoint options to control aspects of the endpoint’s operation.
For example, if a protocol guarantees reliable delivery of data, the protocol
might define an option that specifies the number of times a send operation is
retried before the send fails and an error message is generated. Protocol
implementations provide default values for options to ensure maximum
portability for your application across protocol families and system platforms.

In writing a networking application, you can use an endpoint provider’s
default option values or you can replace these with other values to control the
behavior of an endpoint. Option negotiation describes the process that results
when you decide to replace default values with option values that you choose.
A successful negotiation results in your obtaining exactly the option values you
requested, a partly successful negotiation results in your getting different
values for the options you requested, and a failed negotiation results in your
not being able to change existing values at all.

Depending on the option you want to modify, a negotiation might involve a
client and its endpoint provider, or it might involve both a local and remote
client and their endpoint providers. In either case, it’s important to keep in
mind that the process is a negotiation—that is, before you can change the
characteristics of an endpoint or change the way in which it transfers data or
establishes a connection, an agreement has to be reached. If you cannot reach
this agreement, the operation you are attempting to complete could fail. In this
case, you might have to find a way of implementing the service you need, other
than through the use of options.

Explicit Use of Options and Portability of Code 5

The goal of the Open Transport architecture is to enable networking
applications to migrate across protocol families and system platforms with
little or no change to code. However, the price of transport independence or,
ideally, transport transparency is that an application must be ready to forego

C H A P T E R 5

Option Management

About Options and Option Negotiation 5-5
Draft.  Apple Computer, Inc. 4/30/96

features that are unique to a specific protocol in order to work equally well
with protocols offering a similar type of service, such as connection-oriented
transactionless service or connectionless transaction-based service. Because
options are often coupled with a particular protocol or protocol family, making
explicit use of options degrades portability across protocol families. Similarly,
different system platforms might offer different option support for the same
protocols due to different implementations. Thus, making use of options can
also endanger portability across different system platforms.

Note, however, that protocols are not necessarily interchangeable and that you
might very reasonably want to take advantage of a protocol feature that is only
available through the use of options. If this is the case, you need to become
familiar with the material presented in the following sections, which describe
the Open Transport rules for option management and negotiation. These rules
have been defined to allow as much flexibility as possible so that even once an
application chooses to make explicit use of options, it is still possible to
negotiate a compromise that is acceptable to all involved parties. In this sense,
the most important thing to understand about most options is that each value
is not fixed but always negotiated relative to the context within which the
endpoint provider operates. For this purpose, context might include the
protocol implementation, the state of the endpoint, and current option values.

Types of Options 5

Options can be association-related, privileged, read-only, or absolute.

Association-related options are specified in relation to a particular connection,
data transmission, or transaction; such options include information that is
destined for the remote client. The client initiating the connection or
transaction, or sending the datagram, initially defines the value of an
association-related option; but the endpoint providers and the remote client
can also negotiate this value (almost always to a less-desirable value).
Figure 5-1 illustrates the extreme case, in which each agent involved in the
process of establishing a connection renegotiates an association-related option
proposed by the active peer. When the client application calls the OTConnect
function, it specifies some value x for an option. The endpoint provider,
Endpoint1, lowers this value before passing it to the remote endpoint,
Endpoint2. The remote endpoint lowers the value further before notifying its
client of the incoming connection. When the OTListen function returns, it
specifies the option value X–2. The remote client decides to accept the
connection using the OTAccept function but also to lower it further to X–3.

C H A P T E R 5

Option Management

5-6 About Options and Option Negotiation

Draft.  Apple Computer, Inc. 4/30/96

When the client that initiated the connection receives the remote client’s
response via the OTRcvConnect function, it can examine the option values to
determine the final negotiated value for the option it requested. (By way of
example, Figure 5-1 shows that the negotiated value is lowered at each stage of
the negotiation. Depending on the option being negotiated, however, a higher
value could result from the degradation resulting from a negotiation.)

Figure 5-1 Negotiating an association-related option

By contrast, options that are non-association–related are negotiated solely
between a client application and an endpoint provider. Such options do not
contain information that involve the remote client. For example, the client
application can specify an option that permits debugging or that increases the
size of an internal receive buffer. Table 5-1 shows which Open Transport
functions can accept association-related options and which can accept both
types of options for input and output parameters that you can use to specify
options.

OTConnect OTRcvConnect

Endpoint1

OTListen OTAccept

Endpoint2

Endpoint1 Client

Opt = X Opt = X–3 Opt = X–3Opt = X–2

Endpoint2 Client

Opt = X–1 Opt = X–1 Opt = X–3

C H A P T E R 5

Option Management

About Options and Option Negotiation 5-7
Draft.  Apple Computer, Inc. 4/30/96

Privileged options are options or option values that you can only set or change
if you are a privileged client. The fact that an option is privileged affects the
outcome of option negotiation if a nonprivileged client attempts to set such an
option. In some cases, nonprivileged clients can read the value of a privileged
option.

Read-only options, as the name implies, are options whose values you can
read but not change. For example, a protocol implementation might determine
that a client cannot change the maximum length of a transport data unit;
nevertheless, it would be important that the client be able to find out what
the maximum length is in order to set up sufficiently large buffers for
incoming data.

Whether an option is read-only depends on the status of the client and on the
state of the endpoint. Depending on the implementation, an option might be

■ read-only for all clients or just for nonprivileged clients

■ negotiable in some endpoint states and read-only in other states

For example, for TCP/IP endpoints, the ISO quality-of-service options are
negotiable when the endpoint is in the T_IDLE and T_INCON states, and
read-only in all other states except T_UNINIT.

Table 5-1 Open Transport endpoint functions and the types of options they accept

Function Input parameter Output parameter

OTListen Not applicable Association-related

OTRcvUData Not applicable Association-related

OTRcvURequest Not applicable Association-related

OTRcvConnect Not applicable Both

OTRcvUDErr Not applicable Both

OTAccept Both Not applicable

OTSndUData Both Not applicable

OTSndURequest Both Not applicable

OTConnect Both Not applicable

OTOptionManagement Both Not applicable

C H A P T E R 5

Option Management

5-8 About Options and Option Negotiation

Draft.  Apple Computer, Inc. 4/30/96

Options that are absolute requirements are options that a protocol must
implement. This means that a protocol can neither ignore such an option nor
negotiate it to a lower value. (Options that are not absolute requirements can be
negotiated to a lower value, in which case the negotiation is deemed to be
partly successful.) If the proposed option is an absolute requirement and the
negotiated value is not the same as the proposed value, the negotiation fails,
and any attempt to establish a connection or to send data also fails.

The Format of Option Information 5

An option has a name and a value, it is defined for a specific protocol, and it
takes up a certain amount of room in memory. The TOption structure used to
define an option contains fields for each of these characteristics. As Figure 5-2
shows, an option is described by an option header and a value.

Figure 5-2 The format of option information

4Length

4Level

4Name

4Status

Variable

length

Value

Option

header

BytesTOption structure

C H A P T E R 5

Option Management

About Options and Option Negotiation 5-9
Draft.  Apple Computer, Inc. 4/30/96

The option header is the same for all options. It contains four fields that specify:

■ The length of the entire structure. The length includes the length of
the option header and the length of the value field; it does not include
added padding.

■ The protocol (level) for which the option applies. It is possible to set an
option for any protocol that is part of an endpoint provider’s configuration.
For example, if you open an AppleTalk Transaction Protocol (ATP) endpoint,
it is possible to set an option at the Datagram Delivery Protocol (DDP) level
by specifying DDP for the level field.

■ The name of the option. Each protocol implementation defines the names of
options it supports.

■ The status of the option. The endpoint provider fills in this field to indicate
the outcome of the option negotiation.

The length and format of data in the value field depend on the option
being defined.

You store option information for an endpoint in a buffer containing one or
more TOption structures. A TNetbuf structure describes the buffer. Figure 5-3
shows a TNetbuf structure, MyOptBuf, that describes an options buffer containing
three options. The field MyOptBuf.buf points to the buffer; the field MyOptBuf.len
specifies the actual length of the buffer.

Figure 5-3 An options buffer

0 32 64 96 128

First option Third optionSecond option

Alignment bytes Alignment bytes

MyOptBuf.buf

MyOptBuf

MyOptBuf.len

MyOptBuf.maxlen

C H A P T E R 5

Option Management

5-10 About Options and Option Negotiation

Draft.  Apple Computer, Inc. 4/30/96

You can concatenate several TOption structures in a buffer, as shown in
Figure 5-3, provided you observe the following rules:

■ TOption structures must be quad-word aligned within the buffer.

■ If you are using the OTOptionManagement function to set or verify option
values, all options in the buffer must be for the same protocol. That is, the
value of the level field must be the same. When used with any other
function, the options buffer can contain options set for different protocols.

XTI-Level Options and General Options 5

In addition to options defined for specific protocols, Open Transport defines
options called XTI-level options that are not specific to a particular endpoint.
Some of these options are absolute requirements, which means that whatever
protocol you are using must support these options. You need to consult the
documentation for your protocol to determine the meaning of the option for
your endpoint and for additional information about default values and ranges
or valid values supported for the option. Table 5-2 provides a brief summary of
XTI-level options. For more detailed information about these options, see
“XTI-Level Options” on page 5-25.

Table 5-2 XTI-level options

Option name Description

XTI_DEBUG Enables debugging

XTI_LINGER Specifies a linger period which delays the execution of the
OTCloseProvider function

XTI_RCVBUF Specifies the size of your endpoint’s internal receive buffer

XTI_RCVLOWAT Specifies the minimum number of bytes that can accumulate
in the endpoint’s internal receive buffer before your
application receives a T_DATA event signalling the arrival
of data

XTI_SNDBUF Specifies the size of your endpoint’s internal send buffer

XTI_SNDLOWAT Specifies the minimum number of bytes that can accumulate
in the endpoint’s internal send buffer before the provider
actually sends the data

C H A P T E R 5

Option Management

Using Options 5-11
Draft.  Apple Computer, Inc. 4/30/96

In addition to the XTI-level options, Open Transport defines the set of generic
options listed in Table 5-3. None of these options are absolute requirements.
This means that if an Open Transport protocol supports the functionality of one
of these options, it should use this option to do it. For additional information
about generic options, see “Generic Options” on page 5-28.

Using Options 5

This section describes the rules for option negotiation and how negotiation is
affected by the function you use to set options. It also explains how you use
endpoint functions to set and retrieve option values and how you use Open
Transport utility functions to construct an options buffer and parse through an
options buffer.

Table 5-3 Open Transport generic options

Option name Description

OPT_CHECKSUM Specifies whether packets have checksums calculated
on receipt

OPT_RETRYCNT Specifies the number of times a function can attempt
packet delivery

OPT_INTERVAL Specifies the amount of time to wait between attempts
to deliver a packet or request

OPT_ENABLEEOM Specifies whether the T_MORE flag for the OTSnd function
can be used to signal the end of a logical unit

OPT_SELFSEND Specifies whether self-sending is enabled for broadcast
messages.

OPT_SERVERSTATUS Specifies the status string that is used to answer a
SendStatus request from a client.

OPT_KEEPALIVE Specifies the amount of time a connection should be
maintained in the absence of data transfer

C H A P T E R 5

Option Management

5-12 Using Options

Draft.  Apple Computer, Inc. 4/30/96

If your application needs to negotiate option values, you must read the sections
“Determining Which Function to Use to Negotiate Options,” “Negotiating
Options,” and “Obtaining the Maximum Size of an Options Buffer.” After
reading these sections, you can read whichever of the remaining sections
describes the task you need to accomplish.

Determining Which Function to Use to Negotiate Options 5

You can negotiate options using the OTOptionManagement function or using any
one of the endpoint functions used to transfer data or establish a connection.
The following bulleted list summarizes the major differences between using
the OTOptionManagement function or using other endpoint functions to set an
option value.

■ Options specified using the OTOptionManagement function affect all functions
called by an endpoint. Options specified using individual endpoint
functions affect only the connection, transaction, or datagram for which they
are set. For example, you can call the OTOptionManagement function to turn
the checksum option on; you could override that value by calling the
OTSndUData function and turning the checksum option off for the duration of
that function call. The next time you call the OTSndUData function, the default
value, set with the OTOptionManagement function would apply, so the
checksum option would be off.

■ The OTOptionManagement function is the only way that you can obtain default
option values or check for current values of all options supported by an
endpoint.

■ When attempting to set multiple options, if an option is illegal or rejected,
the OTOptionManagement function still returns successfully, indicating for each
option in the buffer whether it has been successfully negotiated. In the same
circumstances, any other function returns an error, and even though some of
the options might have been successfully negotiated, you have no way of
knowing which were and which were not.

■ If you are using the OTOptionManagement function to set or verify option
values, all options in the buffer must be for the same protocol. If you use any
other function to negotiate options or to check their value, the buffer can
contain options set for different protocols.

■ If association-related options contain information that is transmitted across
the network or if they affect the transmission itself, they take effect when
Open Transport establishes the connection, sends the transaction, or

C H A P T E R 5

Option Management

Using Options 5-13
Draft.  Apple Computer, Inc. 4/30/96

transmits the datagram. If you use the OTOptionManagement function to
change such an option, the endpoint provider checks whether the option is
supported and negotiates a value according to its current knowledge. Then
it writes the negotiated value to the endpoint’s internal options buffer.
However, more negotiations might take place when the connection is
established or the transaction or datagram is sent. This can result in a
degradation of the option value or even in a negotiation failure. If the
negotiation succeeds, the newly negotiated values are written to the internal
options buffer.

Negotiating Options 5

This section describes the rules governing option negotiation and the error
conditions that might occur during this process. Unless stated otherwise, these
rules apply to all functions that allow you to specify option values.

A basic rule to keep in mind is that options change only as the result of
successful negotiations or partly successful negotiations. If you use any
function except the OTOptionManagement function, the changes last for the
duration of that function invocation. Option values are not changed by a
change in the state of an endpoint. Once you change an option value
permanently, there is no function that you can call to restore an option to its
previous value, unless that previous value is the default value.

Negotiating Multiple Options 5

You can use one function to negotiate several options by placing the options
in the options buffer passed to the function. If one of the options is ignored
or rejected for any reason, the outcome depends on the function you use to
set options.

■ If you use the OTOptionManagement function, the function returns the result of
negotiating each option in the status field of each option. The failure of one
or more options does not cause the function to fail.

■ The OTConnect, OTAccept, OTSndUdata, or OTSndURequest functions might
succeed or fail, depending on the implementation and on the error
condition. Options that are not supported are generally ignored; they do not
cause a function to fail or a connection to abort. However, if the endpoint
provider is unable to negotiate options that are absolute requirements or
options that are read-only, these functions will fail.

C H A P T E R 5

Option Management

5-14 Using Options

Draft.  Apple Computer, Inc. 4/30/96

If option negotiation causes one of these functions to fail, it is possible that
some options were successfully negotiated before the failure. However, it is
not possible to determine which of the options caused the failure.

If you specify the same option more than once, the endpoint provider does not
check for duplicate occurrences of the same option. It simply processes the
options one after another. However, the endpoint provider might negotiate
options in any order; therefore, it is not safe to make any assumptions that a
later occurrence of an option will override an earlier occurrence.

Initiating an Option Negotiation 5

You initiate an option negotiation by calling the OTOptionManagement function
with the flag T_NEGOTIATE set or by calling the OTConnect, OTSndUData, or
OTSndURequest function and specifying an options buffer length that is greater
than 0. You can specify values for some or all of the options supported by an
endpoint. The endpoint provider takes values for options that you do not
specify explicitly in the options buffer, from the endpoint’s internal options
buffer. This buffer contains the endpoint’s current option values; these could be
default values, values that you specified when you configured the provider, or
values resulting from a previous negotiation.

If the endpoint supports an option, the possible outcome of option negotiation
depends on whether the option is an absolute requirement, as described in the
next two sections. If the endpoint does not support the option, the
OTOptionManagement function reports T_NOTSUPPORT in the status field. The
OTConnect, OTSndUData, or OTSndURequest functions ignore the option.

Options That Are Absolute Requirements 5

If the option is an absolute requirement, the result of the negotiation depends
on whether the negotiated value is the same as the requested value. If it is, the
status field in the TOption structure describing the option is set to T_SUCCESS
when the function returns. If the negotiated value is not the same as the
requested value, the result depends on the function used to negotiate
the option:

■ The OTOptionManagement function returns successfully, but the returned
option has its status field set to T_FAILURE.

■ A call to the OTConnect function fails. If the call is synchronous, the function
returns with the kOTLookErr result. If the call is asynchronous, the endpoint

C H A P T E R 5

Option Management

Using Options 5-15
Draft.  Apple Computer, Inc. 4/30/96

provider issues a T_DISCONNECT event to let you know that the connection has
been rejected.

■ The OTSndUData function fails with the kOTLookErr result; or if it returns
successfully, the endpoint provider issues a T_UDERR event to indicate that the
datagram was not sent.

Options That Are not Absolute Requirements 5

If the requested option is not an absolute requirement, the result of the
negotiation depends on whether the negotiated value is the same as the
requested value. If it is, the endpoint provider sets the status field of the
TOption structure describing the option to T_SUCCESS. If the negotiated value is
different than the proposed value, the endpoint provider sets the status field of
the TOption structure describing the options to T_PARTSUCCESS.

Conflicting Option Values 5

It is possible that a requested option value conflicts with the value of another
option that is proposed with the same call to the function or that is currently
effective. The endpoint provider might not detect these conflicts immediately,
and later they might lead to unpredictable results. If the endpoint provider
detects conflicts at negotiation time, the conflicts are resolved according to the
rules stated above.

An endpoint provider usually detects conflicts at the time it establishes a
connection or sends a datagram. Consequently, if you use the
OTOptionManagement function to set options, you might not become aware
that there is a problem due to conflicting options until the options are
actually exercised during connection establishment or data transmission.

Privileged or Read-Only Options 5

A protocol implementation can define options to be privileged or read only.
These two categories are not necessarily separate. A privileged option might be
inaccessible or read-only for nonprivileged clients. An option might be
read-only for all clients or solely for nonprivileged clients. Here are two general
guidelines to keep in mind:

■ A client must be privileged to be able to change a privileged option.

In the Macintosh implementation of Open Transport, there are no
privileged options.

C H A P T E R 5

Option Management

5-16 Using Options

Draft.  Apple Computer, Inc. 4/30/96

■ A client cannot usually change the value of a read-only option.

An option might be read-only in some endpoint states but not in others. For
example, the ISO quality-of-service options are negotiable in the T_IDLE and
T_INCON states, and read-only in all other states except T_UNINIT. Consult the
documentation provided for the protocol you are using to determine
whether an endpoint’s state affects the status of read-only options.

If you request negotiation of a privileged option using the OTOptionManagement
function, the function returns successfully with the status field of the
privileged option set to T_NOTSUPPORT. If you use the OTConnect, OTAccept,
OTSndUData, or OTSndURequest functions, the option is ignored—that is, the
function result is not affected by the fact that the options are not supported.

If you request negotiation of a read-only option using the OTOptionManagement
function, the function returns with the status field of the read-only option set
to T_READONLY. If you use any other function to change a read-only option, the
results vary with the function used:

■ The OTAccept or OTConnect functions fail with the kOTAccessErr result, or the
connection establishment aborts and the endpoint provider issues a
T_DISCONNECT event. If the connection aborts, a synchronous call to OTConnect
fails with the KOTLookErr result. Timing and the protocol implementation
determine whether the OTAccept function succeeds or fails with the
kOTLookErr result.

■ The OTSndUData function might return the kOTLookErr result or return
successfully, but the endpoint provider issues a T_UDERR event to indicate
that it did not send the datagram.

Error Conditions 5

Option negotiation might be affected if you try to negotiate an illegal option, a
privileged or read-only option, an unsupported option, or an option for an
unsupported protocol (level). The results of attempting to negotiate privileged
or read-only options are described in “Privileged or Read-Only Options” on
page 5-15. This section explains the outcome of negotiating illegal options and
describes other problems that might arise during option negotiation.

An option is illegal in these cases:

■ It is the last option in an options buffer, and the length specified in the
TOption.len field exceeds the remaining size of the options buffer. (The
length of the option includes the option header as well as the option value.

C H A P T E R 5

Option Management

Using Options 5-17
Draft.  Apple Computer, Inc. 4/30/96

See Figure 5-2 on page 5-8 for information about the format of option
information in an options buffer.)

■ The option value does not fall within the range of legal values for the option.
The range of option values that are valid for a protocol implementation are
given in the documentation provided for the protocol.

If you specify an illegal option, the following error conditions result depending
on the function you used:

■ The OTOptionManagement function returns with the kOTBadOptionErr result.

■ Either the OTAccept or OTConnect function fails with a kOTBadOptionErr result,
or the connection establishment aborts, depending upon the implementation
and the time the illegal option is detected. If the connection aborts, the
endpoint provider issues a T_DISCONNECT event. If OTConnect is executing
synchronously, it fails with the kOTLookErr result. The OTAccept function
either succeeds, or fails with the kOTLookErr result, depending on the
implementation.

■ The OTSndUData function fails with the kOTBadOptionErr result, or it returns
successfully, but the endpoint provider issues a T_UDERR event to indicate
that it did not sent the datagram.

If the options buffer you pass to a function contains multiple options and one
of them is illegal, the function fails as described. However, if you used the
OTOptionManagement function to set options, it is possible that some or all of the
legal options in the buffer were successfully negotiated. You can check the
current status for the endpoint by calling the OTOptionManagement function with
the T_CURRENT flag set.

The OTOptionManagement function fails with the kOTBadOptionErr result if you
specify an unknown value for the option protocol level. Using any other
function to specify an unknown option level does not cause the function to fail,
but results in the option being ignored.

Specifying an option name that is unknown or unsupported by the endpoint
does not cause a function to fail. The OTOptionManagement function returns
T_NOTSUPPORT in the status field for the option; the other endpoint functions
ignore the unknown options.

C H A P T E R 5

Option Management

5-18 Using Options

Draft.  Apple Computer, Inc. 4/30/96

Obtaining the Maximum Size of an Options Buffer 5

Different types of endpoints support different numbers of options. For
example, an ATP endpoint might support more options than a DDP endpoint
and might need a larger buffer to hold the options. When you call the
OTOptionManagement function to change option values, the function returns in
the ret parameter a pointer to the buffer containing the negotiated option
values. You must have allocated the buffer used to store these options before
calling the function. Likewise, when you call the OTListen, OTRcvUData,
OTRcvURequest or OTRcvConnect functions, you can allocate a buffer in which
current option values are to be placed when these functions return. In either
case, you must specify the size of the buffer, and the buffer must be large
enough to hold all of the endpoint’s options. Otherwise, the function fails with
a kOTBufferOverflow result. You can obtain the maximum size of a buffer used
to store options for your endpoint by examining the options field of the
TEndpointInfo structure for the endpoint. You can get a pointer to this structure
when you open the endpoint, when you bind the endpoint, or when you call
the OTGetEndpointInfo function.

Setting Option Values 5

You can use the OTOptionManagement, OTAccept, OTSndUData, OTSndURequest, and
OTConnect functions to set option values. Setting option values results in a
negotiation process between you (the client application) and the endpoint
provider or, in the case of association-related options, between local and remote
clients and their endpoint providers. The section “Initiating an Option
Negotiation” on page 5-14 describes the rules that govern an option negotiation
that you have initiated using the OTOptionManagement, OTConnect, OTSndUData, or
OTSndURequest functions. The section “Retrieving Values for
Connection-Oriented Endpoints,” beginning on page 5-22 describes the
negotiation rules that hold when you use the OTOptionManagement or OTAccept
functions to respond to a negotiation. This section describes ways in which you
can build the options buffer used to specify the options you want to change.

Specifying Option Values 5

No matter which function you use to set option values, you must allocate a
buffer that contains the option value or values you want to change. The options
in this buffer are described by TOption structures; the format of this structure is
illustrated in Figure 5-2 on page 5-8. You can concatenate several structures in
the buffer, as shown by Figure 5-3 on page 5-9, so long as each structure begins

C H A P T E R 5

Option Management

Using Options 5-19
Draft.  Apple Computer, Inc. 4/30/96

on a long-word boundary. The buffer itself is described by a TNetbuf structure
that specifies the location of the buffer and its size.

You can create a buffer that contains the option values you want to set in one of
two ways: manually or by using the OTCreateOptions function. If you construct
the buffer manually, you must do the following:

1. Allocate the buffer.

2. Create a TOption structure for each option you want to change.

3. Initialize each field of the TOption structure except for the status field.

4. Place the TOption structures in the buffer, making sure that each begins on a
long-word boundary. This enables Open Transport to parse the buffer.

5. Append a null character to the end of the buffer. This enables Open
Transport to tell that it has reached the end of the buffer.

To have Open Transport create a buffer for you, you must call the
OTCreateOptions function and pass it a string containing one or more option
values. This method saves time and trouble, but you can only use it if all the
options in the buffer are for the same level and that level is the same as the
top-level protocol for the endpoint provider. That is to say, you could not use
this method to construct a buffer that contains DDP-level options for an ATP
endpoint. In addition, this method is only guaranteed to work if you are
building an options buffer for the OTOptionManagement function.

Listing 5-1 shows how you construct an options buffer manually. The listing
creates and initializes two TOption structures, ddpOpt and atpOpt. It allocates a
buffer large enough to contain the TOption structures and then places those
structures in the buffer. Note that the structures are quad-word aligned and
that a null character is appended to the end of the buffer.

Listing 5-1 Constructing an options buffer manually

TOption *ddpOpt, *atpOpt;
unsigned char optionBuffer[41];

ddpOpt = (TOption*)&optionBuffer[0];
ddpOpt->len = 20;
ddpOpt->level = ATK_DDP;
ddpOpt->name = OPT_CHECKSUM;
ddpOpt->status = 0;

C H A P T E R 5

Option Management

5-20 Using Options

Draft.  Apple Computer, Inc. 4/30/96

ddpOpt->value[0] = 1; /* turn checksumming on */

atpOpt = (TOption*)&optionBuffer[20]
atpOpt->len = 20;
atpOpt->level = ATK_ATP;
atpOpt->name = OPT_RELTIMER;
atpOpt->status = 0;
atpOpt->value[0] = 2; /* purge transaction list every 2 minutes */

optionBuffer[40] = 0;/* add null character to end of buffer */

Listing 5-2 shows how you construct an options buffer by using the
OTCreateOptions function. The code initializes a string array, myStr, to hold
option values. It then creates a TOptMgmt structure, which would later be passed
to the OTOptionManagement function to request the option values specified in the
string. Finally, it calls the OTCreateOptions function to create the options buffer.
The OTCreateOptions function creates the TOption structures and places them in
the buffer, making sure that the structures are properly aligned.

Listing 5-2 Constructing an options buffer using the OTCreateOptions function

char* myStr = "BaudRate = 9650 DataBits = 8 Parity = 0
StopBits = 10";

UInt8 buffer[512];
TOptMgmt cmd;
cmd.opt.len = 0;
cmd.opt.maxlen = sizeof(buffer);
cmd.opt.buf = buffer;
cmd.flags = T_NEGOTIATE
err = OTCreateOptions("SerialA", &myStr, &cmd.opt)

In this case, the initial value of cmd.opt.len, which is 0, tells the
OTCreateOptions function at what offset it should begin to append option
information in the buffer. When the function returns, this field specifies the
actual length of the buffer.

Setting Default Values 5

To set all of an endpoint’s options to their default values, call the
OTOptionManagement function, specifying T_NEGOTIATE for the flags field and

C H A P T E R 5

Option Management

Using Options 5-21
Draft.  Apple Computer, Inc. 4/30/96

allocating a buffer containing only one option named T_ALLOPT. Doing this
saves you the trouble of constructing a TOption structure for every option the
endpoint supports. However, there is no guarantee that the provider can honor
your request simply because you request default values. Therefore, you must
allocate a buffer that is large enough to hold the option values returned in the
ret parameter.

Allowing the Endpoint Provider to Select an Option Value 5

You can specify that an endpoint provider selects an appropriate option value
by setting the endpoint’s value field to the constant T_UNSPEC. This is especially
useful in complex options such as ISO throughput where the option value has
an internal structure.

Retrieving Option Values 5

This section describes how you can retrieve information about options,
including obtaining current and default option values for an endpoint and
obtaining current option values related to a connection, transaction, or
datagram.

When retrieving option values, you must allocate a buffer that is large enough
to contain the options when the function returns. The section “Obtaining the
Maximum Size of an Options Buffer” on page 5-18 explains how you do this.

Obtaining Current and Default Values 5

To obtain some of an endpoint’s default or current option values, you call the
OTOptionManagement function. You specify T_DEFAULT or T_CURRENT for the flags
field of the req parameter, and you use the option.buf field to specify the
option names in which you are interested. When the function returns, it places
TOption structures, describing the default or current option values, in the buffer
referenced by the opt.buf field of the ret parameter.

If you are interested in obtaining all of an endpoint’s default or current values,
you can use the following methods:

■ To obtain an endpoint’s default values, call the OTOptionManagement function,
specifying T_DEFAULT for the flags field and T_ALLOPT for the
option name.

C H A P T E R 5

Option Management

5-22 Using Options

Draft.  Apple Computer, Inc. 4/30/96

■ To obtain an endpoint’s current option values, call the OTOptionManagement
function, specifying T_CURRENT for the flags field and T_ALLOPT for the option
name.

Using T_ALLOPT for the option name allows you to construct an input buffer that
contains only one option. Remember, however, that you must allocate an
output buffer that is large enough to hold all of an endpoint’s option values
when the function returns.

Retrieving Values for Connection-Oriented Endpoints 5

When you are establishing a connection, it is possible to negotiate association-
related option values at every point in the connection process, as illustrated in
Figure 5-1 on page 5-6. Both the active and passive peers might want to retrieve
option values during this process.

The passive peer might want to know the proposed option values under
negotiation. It can retrieve these by calling the OTListen function. After
examining the option values returned by the OTListen function, the passive
peer can negotiate option values by specifying the desired option values
with the OTAccept call used to accept the connection. Using this method,
the passive peer can examine the requested option values before proposing
alternate values.

The passive peer can also negotiate alternate values by using the
OTOptionManagement function to preset option values for the endpoint accepting
the connection. This sets the current option values for the endpoint so that
when the passive peer calls the OTAccept function, these are the option values
that are negotiated with the requested values.

The passive peer can try to negotiate option values that are higher than the
proposed values. The outcome depends on the protocol. If the protocol rejects
the new option values, the connection fails, and the endpoint provider issues a
T_DISCONNECT event. Depending on timing and the implementation, the
OTAccept function either succeeds or fails with the kOTLookErr result.

The association-related options retrieved by the passive peer are related to the
incoming connection, identified by a sequence number, and are not related to
the listening endpoint. Option values currently effective for the listening
endpoint might affect the values retrieved by the OTListen function because the
endpoint is involved in the negotiation process, but these values are not the
same as the option values related to the connection request. That is to say,
calling the OTOptionManagement function to retrieve the option values that were

C H A P T E R 5

Option Management

Using Options 5-23
Draft.  Apple Computer, Inc. 4/30/96

currently effective for the listening endpoint is likely to yield a different set of
values than you would find by examining the values of options passed in the
call parameter to the OTListen function.

When you establish the connection—that is, when a synchronous call to the
OTConnect function returns or when the active peer calls the OTRcvConnect
function— all final negotiated values effective for the connection are returned
in the buffer passed in the rcvCall or call parameter, respectively. These option
values include all association-related options that were received with the
connection response and the negotiated values of those non-association-
related options that had been specified on input. Options specified on input to
the OTConnect call that are not supported or that refer to an unknown protocol
are ignored and not returned by the OTConnect or OTRcvConnect function when it
returns.

Retrieving Values for Connectionless Transactionless Endpoints 5

You can retrieve association-related options set for connectionless
transactionless endpoints by examining the buffer passed in the udata
parameter to the OTRcvUData function. These options relate to the incoming
datagram, not to the endpoint receiving it. For example, the IEEE 802.2
protocol uses option values to specify whether a datagram is a multicast or
broadcast packet.

Because the options you retrieve are related to the datagram and not to the
listening endpoint, their number and values can change with every
transmission.

Because you are receiving information—that is, you are simply reading the
contents of the options buffer—you can ignore the status field for these
options.

Retrieving Values for Connectionless Transaction-Based Endpoints 5

You can retrieve association-related options set for connectionless transaction-
based endpoints by examining the buffer passed in the req parameter to the
OTRcvURequest function. These options relate to the current transaction, not to
the endpoint receiving the request. Consequently, options and their values can
change with each transaction.

Because you are receiving information—that is, you are simply reading
the contents of the options buffer—you can ignore the status field for
these options.

C H A P T E R 5

Option Management

5-24 Using Options

Draft.  Apple Computer, Inc. 4/30/96

Parsing an Options Buffer 5

If you use the OTOptionManagement function to set, verify, or retrieve values, the
function returns in the ret parameter a pointer to a buffer containing option
information. You can use the OTCreateOptionString function to parse this buffer
and create a string that lists all options and their current values.

The code fragment shown in Listing 5-3 calls the OTOptionManagement function
to retrieve the option values currently effective for an endpoint. On return, the
OTOptionManagement function stores these in the cmd structure. Next, the code
calls the OTCreateOptionString function. The first input parameter, "SerialA",
specifies the name of the protocol. The next input parameter, opts, is a pointer
to the buffer containing the option values returned by the OTOptionManagement
function. The expression cmd.opt.buf + cmd.opt.len, which provides the next
input parameter, specifies the length of the buffer. Using this information, the
OTCreateOptionString function returns a string containing each option name
and its respective value. The final parameter to the OTCreateOptionString
function specifies the length of the string.

Listing 5-3 Using the OTCreateOptionString function to parse through a buffer

TOptMgmt cmd;
UINt8 myBuffer[512];
char myString[256]

cmd.opt.len = sizeof(TOption);
cmd.opt.maxlen = sizeof(myBuffer);
cmd.opt.buf = myBuffer;
((TOption*) buffer)->len = sizeof(TOption);
((TOption*) buffer)->level = COM_SERIAL;
((TOption*) buffer)->name = T_ALLOPT;
((TOption*) buffer)->status = 0;
cmd.flags = T_CURRENT;

OTOptionManagement(theEndpt, &cmd, &cmd);

TOption* opts = (TOption*)cmd.opt.buf;
err = OTCreateOptionString("SerialA", &opts,

cmd.opt.buf + cmd.opt.len, string, sizeof(string));
printf("Options = \"%s\"", string);

C H A P T E R 5

Option Management

Option Management Reference 5-25
Draft.  Apple Computer, Inc. 4/30/96

Note
The OTCreateOptionString function is supplied solely as a
debugging aid. You should not include the function in a
production version of your application because there is no
provision made for localizing string information. ◆

Verifying Option Values 5

In addition to obtaining default or current values and negotiating new values,
you can use the OTOptionManagement function to verify whether an endpoint
supports one or more options. To do this, you construct a buffer containing
TOption structures describing the options you are interested in and pass this
buffer in the req parameter to the OTOptionManagement function, specifying
T_CHECK for the action flag. When the function returns, you can examine the
status field of the TOption structures for the options passed back to you in the
ret parameter to determine whether the specified options are supported.

Option Management Reference 5

This section describes the data types and functions that you use to manage
options for endpoint providers and to manipulate option information.

Constants and Data Types 5

This section describes constants and data types that you use to set and
verify options.

XTI-Level Options 5

Open Transport defines XTI-level options. These options are not association-
related; they are negotiated between the client and its endpoint provider. If the
protocol you are using supports these options, you can negotiate them while
the endpoint is in any state. The protocol level for all of these options is
XTI_GENERIC. The constant names used to specify XTI-level options are given by
the following enumeration:

C H A P T E R 5

Option Management

5-26 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

enum
{

XTI_DEBUG = (OTXTIName)0x0001,
XTI_LINGER = (OTXTIName)0x0080,
XTI_RCVBUF = (OTXTIName)0x1002,
XTI_RCVLOWAT = (OTXTIName)0x1004,
XTI_SNDBUF = (OTXTIName)0x1001,
XTI_SNDLOWAT = (OTXTIName)0x1003,
XTI_PROTOTYPE = (OTXTIName)0x1005

};

Constant Descriptions

XTI_DEBUG A constant specifying whether debugging is enabled.
Debugging is disabled if the option is specified with no
value. This option is an absolute requirement.

XTI_LINGER A value defined by a linger structure (page 5-31) that
specifies whether the option is turned on (T_YES) or off
(T_NO) and specifies a linger period in seconds. This option
is an absolute requirement.
You use this option to extend the execution of the
OTCloseProvider function for some specified amount of
time. The delay allows data still queued in the endpoint’s
internal send buffer to be sent before the endpoint
provider is closed. If you call the OTCloseProvider function
and the send buffer is not empty, the endpoint provider
attempts to send the remaining data during the linger
period, before closing. Open Transport discards any data
remaining in the send buffer after the linger period has
elapsed.
Consult the documentation for your protocol to determine
the valid range of values for the linger period.

XTI_RCVBUF A positive number specifying the size of the endpoint’s
internal buffer allocated for receiving data. You can
increase the size of this buffer for high-volume connections
or decrease the buffer to limit the possible backlog of
incoming data.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the buffer size.

C H A P T E R 5

Option Management

Option Management Reference 5-27
Draft.  Apple Computer, Inc. 4/30/96

XTI_RCVLOWAT A positive number specifying the low-water mark for the
receive buffer— that is, the minimum number of bytes that
must accumulate in the endpoint’s internal receive buffer
before you are advised that data has arrived via a T_DATA
event. Choosing a value that is too low might result in
your application’s getting an excessive number of T_DATA
events and doing unnecessary reads. Choosing a value that
is too high might result in buffer overflow and loss of data.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the low-water mark.

XTI_SNDBUF A positive number specifying the size of the endpoint’s
internal buffer allocated for sending data. Specifying a
value that is too low might result in Open Transport doing
more sends than necessary and wasting processor time;
specifying a value that is too high might cause flow control
problems.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the buffer size.

XTI_SNDLOWAT A positive number specifying the low-water mark for the
send buffer— that is, the minimum number of bytes that
must accumulate in the endpoint’s internal send buffer
before Open Transport actually sends the data. Choosing a
value that is too low might result in Open Transport’s
doing too many sends and wasting processor time.
Choosing a value that is too high might result in flow
control problems. A value that is slightly lower than
the largest packet size defined for the endpoint is a
good choice.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the low-water mark.

XTI_PROTOTYPE The number of the protocol to be used by a RawIP
endpoint. For additional information, see the chapter
“TCP/IP Services” in this book.

C H A P T E R 5

Option Management

5-28 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

Generic Options 5

Open Transport defines generic options, and you can use them with any
protocol that understands them. The protocol level for each of these options is
the same as the name of the protocol that supports them. The constant names
used to specify generic options are given by the following enumeration:

enum
{

OPT_CHECKSUM = (OTXTIName)0x0600,
OPT_RETRYCNT = (OTXTIName)0x0601,
OPT_INTERVAL = (OTXTIName)0x0602,
OPT_ENABLEEOM = (OTXTIName)0x0603,
OPT_SELFSEND = (OTXTIName)0x0604,
OPT_SERVERSTATUS = (OTXTIName)0x0605,
OPT_KEEPALIVE = (OTXTIName)0x0008

};

Constant descriptions

OPT_CHECKSUM A constant specifying whether checksums are performed.
Specify 1 to turn the option on and 0 to turn it off. If you
turn it on, a checksum is calculated when a packet is sent
and recalculated when the packet is received. If the
checksum values match, the client receiving the packet can
be fairly certain that data has not been corrupted or lost
during transmission. If the checksum values don’t match,
the function used to receive the packet returns an error.
This option is usually implemented by the lowest-level
protocol, although you might be allowed to set it at a
higher level. For example, if you use an ATP endpoint, you
can set checksumming at the ATP level, even though it is
implemented by the underlying DDP protocol.
This option is both association-related and not association-
related.

OPT_RETRYCNT A positive integer specifying the number of times a
function can attempt packet delivery before returning with
an error. This option is usually implemented by connection-
oriented endpoints or connectionless transaction-based
endpoints to enable reliable delivery of data. Such
protocols normally set a default value for this option.

C H A P T E R 5

Option Management

Option Management Reference 5-29
Draft.  Apple Computer, Inc. 4/30/96

This option is both association-related and not association-
related.

OPT_INTERVAL A positive integer specifying the interval of time that
should elapse between attempts to deliver a packet. The
number of attempts is defined by the OPT_RETRYCNT option.
This option is both association-related and not association-
related.

OPT_ENABLEEOM A constant specifying end-of-message capability. If you set
this option, you enable the use of the T_MORE flag with the
OTSnd function to mark the end of a logical unit. This
option has meaning only for connection-oriented protocols.
This option is not association-related.

OPT_SELFSEND A constant allowing you to send broadcast packets to
yourself.

OPT_SERVERSTATUS A string that sets the server’s status. The string’s length
must be between 0–255 bytes. The maximum length is
protocol dependent. This option is used to set the status
string that the server returns in response to a client’s
SendStatus call and is remembered internally on a
per-socket basis.

OPT_KEEPALIVE A keepalive structure (page 5-32) that specifies whether
the option is turned on (T_YES) or off (T_NO) and specifies
the timeout period in minutes.
Connection-oriented protocols can use this option to check
that the connection is maintained. If a connection is
established but there is no data being transferred, you can
specify a time limit within which Open Transport checks to
see that the remote end of the connection is still alive. If it
is not, Open Transport tears down the connection.
This option is association-related.

Status Codes 5

Open Transport uses status codes to return information about the success of an
option negotiation. For individual options, Open Transport returns a status
code in the status field of the TOption structure (page 5-33) describing the
option. For groups of options negotiated by a single call to the
OTOptionManagement function, the function also returns a status code that

C H A P T E R 5

Option Management

5-30 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

specifies the single worst result of the negotiation in the flags field of the ret
parameter.

The constant names that are used to specify information about the outcome of
option negotiation are given by the following enumeration:

enum
{

T_SUCCESS = 0x020,
T_FAILURE = 0x040,
T_PARTSUCCESS = 0x100,
T_READONLY = 0x200,
T_NOTSUPPORT = 0x400

};

Constant descriptions

T_SUCCESS The requested value was negotiated.
T_FAILURE The negotiation failed.
T_PARTSUCCESS A lower requested value was negotiated.
T_READONLY The option was read-only.
T_NOTSUPPORT The endpoint does not support the requested value.
In addition to the status codes given by the status codes enumeration, an
option can also have the value T_UNSPEC in the status field. This indicates that
the option does not have a fully specified value at this time. An endpoint
provider might return this status code if it cannot currently access the option
value. This might happen if the endpoint is in the state T_UNBND in systems
where the protocol stack resides on a separate host.

Action Flags 5

The req parameter to the OTOptionManagement function contains a flags field
that you set to specify what action the function should take. The constant
names that you can specify for this field are given by the following
enumeration:

enum
{

T_NEGOTIATE = 0x004,
T_CHECK = 0x008,

C H A P T E R 5

Option Management

Option Management Reference 5-31
Draft.  Apple Computer, Inc. 4/30/96

T_DEFAULT = 0x010,
T_CURRENT = 0x080

};

Constant descriptions

T_NEGOTIATE Negotiate the option values specified in the opt.buf field of
the req parameter.
The overall result of the negotiation is specified by the
flags field of the ret parameter. A buffer containing
specific negotiated values for each option is referenced by
the opt.buf field of the ret parameter.

T_CHECK Verify whether the endpoint supports the options
referenced by the opt.buf field of the req parameter.
The overall result of the verification is specified by the
flags field of the ret parameter. Specific verification
results are returned in the opt.buf field of the ret
parameter.

T_DEFAULT Retrieve the default value for those options in the buffer
referenced by the req->opt.buf field. To retrieve default
values for all the options supported by an endpoint,
include just the option T_ALLOPT in the options buffer.
Option values are returned in the opt.buf field of the ret
parameter.

T_CURRENT Retrieve the current value for those options that the
endpoint supports and that are specified in the buffer
referenced by the req->opt.buf field. To retrieve current
values for all the options that an endpoint supports,
include just the option T_ALLOPT in the options buffer.
Option values are returned in the opt.buf field of the ret
parameter.

The Linger Structure 5

The linger structure specifies the value of the XTI_LINGER option, described in
“XTI-Level Options” (page 5-25).

The linger structure is defined by the t_linger data type.

C H A P T E R 5

Option Management

5-32 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

struct t_linger
{
long l_onoff; /* option on/off */
long l_linger; /* linger time */
};

Field descriptions
l_onoff A constant specifying whether the option is turned on

(T_ON) or off (T_OFF).

l_linger An integer specifying the linger time, the amount of time
in seconds that Open Transport should wait to allow data
in an endpoint’s internal buffer to be sent before the
OTCloseProvider function closes the endpoint.
To request the default value for this option, set the
l_linger field to T_UNSPEC.

The Keepalive Structure 5

The keepalive structure specifies the value of the OPT_KEEPALIVE option,
described in “Generic Options” (page 5-28).

The keepalive structure is defined by the t_kpalive data type.

struct t_kpalive
{

long kp_onoff; /* option on/off */
long kp_timeout; /* timeout in minutes */

};

Field descriptions
kp_onoff A constant specifying whether the option is turned on (

T_ON) or off (T_OFF).

kp_timeout A positive integer specifying for how many minutes
Open Transport can maintain a connection in the absence
of traffic.

C H A P T E R 5

Option Management

Option Management Reference 5-33
Draft.  Apple Computer, Inc. 4/30/96

The TOption Structure 5

The TOption structure stores information about a single option in a buffer. All
functions that you use to change or verify option values use a buffer containing
TOption structures to store option information. For each option in the buffer, the
TOption structure specifies the total length occupied by the option information,
the protocol level of the option, the option name, the success or failure of a
negotiated value, and the value of the option.

You use the TOption structure with the OPT_NEXTHDR macro, the
OTCreateOptionString function, the OTNextOption function, and the
OTFindOption function.

The TOption structure is defined by the TOption data type.

struct TOption
{

UInt32 len; /* total length of option */
OTXTILevel level; /* protocol affected */
OTXTIName name; /* option name */
UInt32 status; /* status value */
UInt32 value[1]; /* data goes here */

};

Field descriptions
len The size (in bytes) of the option information.

level The protocol for which the option is defined.
name The name of the option.
status A status code specifying whether the negotiation has

succeeded or failed. Possible values are given by the status
codes enumeration, (page 5-29).

value The option value. To have the endpoint select an
appropriate value, you can specify the constant T_UNSPEC.

The Option Management Structure 5

The option management structure is used for the req and ret parameters of the
OTOptionManagement function. The req parameter is used to verify or negotiate
option values. The ret parameter returns information about an endpoint’s
default, current, or negotiated values.

C H A P T E R 5

Option Management

5-34 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

The option management structure is defined by the TOptMgmt data type.

struct TOptMgmt
{ TNetbuf opt;

OTFlags flags;
};

Field descriptions
opt A TNetbuf structure describing the buffer containing option

information. The opt.maxlen field specifies the maximum
size of the buffer. The opt.len field specifies the actual size
of the buffer, and the opt.buf field contains the address of
the buffer.

On input—as part of the req parameter, the buffer contains
TOption structures describing the options to be negotiated
or verified or contains the names of options whose default
or current values you are interested in. You must allocate
this buffer, place in it the structures describing the options
of interest, and set the opt.len field to the size of the buffer.
On output—as part of the ret parameter, the buffer
contains the actual values of the options you described in
the req parameter. You must allocate a buffer to hold the
option information when the function returns and set the
opt.maxlen field to the maximum length of this buffer.
When the function returns, the opt.len field is set to the
actual length of the buffer.

flags For the req parameter, the flags field indicates the action
to be taken as defined by the action flags enumeration
(page 5-30). For the ret parameter, the flags field indicates
the overall success or failure of the operation performed by
the OTOptionManagement function, as defined by the status
codes enumeration (page 5-29).

Functions 5

This section describes the functions that you can use to determine an
endpoint’s current and default options or to change them. This section also
describes utility functions that you use to manipulate the format of option

C H A P T E R 5

Option Management

Option Management Reference 5-35
Draft.  Apple Computer, Inc. 4/30/96

information and utility functions that you use to find option information in
a buffer.

Determining and Changing Function Values 5

This section describes the OTOptionManagement function, which you use to
obtain information about an endpoint’s default or current option values and to
change these values if needed.

OTOptionManagement 5

Determines an endpoint’s current or default option values or changes
these values.

C INTERFACE

OSErr OTOptionManagement(EndpointRef ref, TOptMgmt* req,
TOptMgmt* ret);

C++ INTERFACES

OSErr TEndpoint::OptionManagement(TOptMgmt* req, TOptMgmt* ret);

PARAMETERS

ref The endpoint reference of the endpoint for which you are
checking or setting option values.

req A pointer to an option management structure (page 5-33),
which describes the action to be taken by the function and the
options affected.

ret A pointer to an option management structure (page 5-33),
which describes the options that were changed or returned by
the function and how successful the negotiation process was.

C H A P T E R 5

Option Management

5-36 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

To use the OTOptionManagement function, you must have opened an endpoint
using the OTOpenEndpoint or OTAsyncOpenEndpoint functions.

You use the OTOptionManagement function to negotiate, retrieve, or verify an
endpoint’s protocol options. If the endpoint is in asynchronous mode and you
have not installed a notifier function, it is not possible to determine when the
function completes.

The action taken by the OTOptionManagement function is determined by the
setting of the req->flags field. The following bulleted items describe the
different operations that you can perform and the flag settings that you use to
specify these operations.

■ To negotiate values for the endpoint, you must call the OTOptionManagement
function, specifying T_NEGOTIATE for the req->flags field. The endpoint
provider evaluates the requested options, negotiates the values, and returns
the resulting values in the option management structure pointed to by the
ret->opt.buf field. The status field of each returned option is set to a
constant that indicates the result of the negotiation. These constants are
described by the status codes enumeration (page 5-29).

For any protocol specified, you can negotiate for the default values of all
options supported by the endpoint by specifying the value T_ALLOPT for the
name field of the TOption structure. This might be useful if you want to
change current settings or if negotiations for other values have failed. The
success of the negotiations depends partly on the state of the endpoint—that
is, simply because these are default values does not guarantee a completely
successful negotiation. When the function returns, the resulting values are
returned, option by option, in the buffer pointed to by the ret->opt.buf field.

■ To retrieve an endpoint’s default option values, call the OTOptionManagement
function, specifying T_DEFAULT for the req->flags field. You must also specify
the name of the option (but not its value) in the TOption structure that you
create for each of the options you are interested in.

When the function returns, it passes the default values for the options back
to you in the buffer pointed to by the ret->opt.buf field. For each option, the
status field contains T_NOTSUPPORT if the protocol does not support the
option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
The overall result of the request is returned in the ret->flags field. The
meaning of this result is described by the status codes enumeration
(page 5-29).

C H A P T E R 5

Option Management

Option Management Reference 5-37
Draft.  Apple Computer, Inc. 4/30/96

When getting an endpoint’s default option values, you can specify T_ALLOPT
for the option name. This returns all supported options for the specified
level with their default values. In this case, you must set the opt.maxlen field
to the maximum size required to hold an endpoint’s option information. The
info.opt field of the TEndpointInfo structure specifies the maximum size of a
buffer used to hold option information for an endpoint.

■ To retrieve an endpoint’s current option values, call the OTOptionManagement
function, specifying T_CURRENT for the req->flags field. For each option in the
buffer referenced by the req->opt.buf field, specify the name of the option
you are interested in. The function ignores any option values
you specify.

When the function returns, it passes the current values for the options back
to you in the buffer referenced by the ret->opt.buf field. For each option, the
status field contains T_NOTSUPPORT if the protocol does not support the
option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
The overall result of the request is returned in the ret->flags field. The
meaning of this result is described by the status codes enumeration
(page 5-29).
When retrieving an endpoint’s current option values, you can specify
T_ALLOPT for the option name. The function returns all supported options for
the specified protocol, with their current values. In this case, you must set
the opt.maxlen field to the maximum size required to hold an endpoint’s
option information. The info.opt field of the TEndpointInfo structure
specifies the maximum size of a buffer used to hold option information for
an endpoint.

■ To check whether an endpoint provider supports certain options or option
values, you must call the OTOptionManagement function, specifying T_CHECK
for the req->flags field. Checking options or their values does not change
the current settings of an endpoint’s options.

n To check whether an option is supported, set the name field of the TOption
structure to the option name, but do not specify an option value. When
the function returns, the status field for the corresponding TOption
structure in the buffer pointed to by the ret->opt.buf field is set to
T_SUCCESS if the option is supported, T_NOTSUPPORT if it is not supported or
needs additional client privileges, and T_READONLY if it is read-only.

n To check whether an option value is supported, set the name field of the
TOption structure to the option name, and set the value field to the value
you want to check. When the function returns, the status field for the

C H A P T E R 5

Option Management

5-38 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

corresponding TOption structure in the buffer pointed to by the
ret->opt.buf field is set as it would be if you had specified the
T_NEGOTIATE flag. The overall result of the option checks is returned in the
ret->flags field, which contains the single worst result of the option
checks. The meaning of this result is described by the status codes
enumeration (page 5-29).

SPECIAL CONSIDERATIONS

While an option management call is outstanding, any other functions that are
called for the same endpoint return with a kOTStateChangeErr result.

If the endpoint is in asynchronous mode, the provider might issue the
T_OPTIONMGMTCOMPLETE event before the function returns the first time.

COMPLETION EVENTS

SEE ALSO

Option information is formatted using the TOption structure (page 5-33). For
additional information about the format of the options buffers, see “Specifying
Option Values” (page 5-18).

For more information about the OTOpenEndpoint and OTAsyncOpenEndpoint, see
the reference section of the chapter “Endpoints” in this book.

For additional information about using the T_ALLOPT option, see “Setting
Default Values” (page 5-20) and “Obtaining Current and Default Values”
(page 5-21).

For more information about creating the buffer referenced by the req->opt.buf
field, see the description of the OTCreateOptions function, next.

For information about creating a string referenced by the ret->opt.buf field,
see the description of the OTCreateOptionString function (page 5-42).

T_OPTMGMTCOMPLETE 0x20000006 The OTOptionManagement function has
completed. The cookie parameter of
the notifier function points to the ret
parameter.

C H A P T E R 5

Option Management

Option Management Reference 5-39
Draft.  Apple Computer, Inc. 4/30/96

Manipulating the Format of Option Information 5

You use the Open Transport utility functions described in this section to
construct a buffer describing option values from a string or to create a string
from a buffer containing option values. You do not have to create an endpoint
to use Open Transport utility functions, but you do have to initialize Open
Transport as described in the chapter “Configuration Management” in
this book.

OTCreateOptions 5

Writes option information into a buffer, from a string specifying option values.

C INTERFACE

OSErr OTCreateOptions (const char* prtclName; char** strPtr,
TNetbuf* buf);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

prtclName The name of the protocol for which the option is set. For
example, for an AppleTalk endpoint this might be “atp”
or “ddp.”

strPtr A pointer to a pointer to a string containing option information.
If an error occurs in writing the option information to the
buffer, strPtr points to the position in the string where the error
occurred.

Open Transport maintains an internal database relating to
options and their values. Open Transport might not be able to
write option information to the buffer because it cannot match
a name or value you have specified with a name or value in
its database. This is either because you misspelled a name or

C H A P T E R 5

Option Management

5-40 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

specified a value that is out of range or because the option
you want to configure is not included in Open Transport’s
data base. The latter might be the case for an option that is
rarely used.

buf A pointer to a TNetbuf structure that specifies the size and
location of the buffer into which the function writes option
information. You must allocate the buffer and set the buf->opt
field to point to it.

You must set the buf->maxlen field to the value specified by the
TEndpoint.options field for this endpoint. You set buf->len to 0.
When the function returns, it sets the buf->len field to the
actual length of the option information, including padding.

The function appends option information to the buffer
beginning at the offset specified by the buf->len field. Set this
field to 0 to start at the beginning of the buffer. When the
function returns, the value of the buf->len field is updated to
reflect the new length.

DESCRIPTION

The OTCreateOptions function automates the construction of a buffer that
describes endpoint option values for a particular protocol. Given a string, a
pointer to a buffer, and the protocol for which the options are set, the function
constructs TOption structures describing each option specified and then places
these structures in the buffer referenced by the buf->opt field. After using the
OTCreateOptions function to construct the buffer, you have most of the
information needed to create the req parameter to the OTOptionManagement
function.

The string containing option values has the format:

optionName1 = value optionName2 = value optionName3 = value [....]

where value can be a numeric value, a string value, or a byte array value. The
table below describes how each value is represented.

C H A P T E R 5

Option Management

Option Management Reference 5-41
Draft.  Apple Computer, Inc. 4/30/96

Possible values for option names are given in the documentation for the
protocol you are using. Generic option names are described in “XTI-Level
Options and General Options” on page 5-10.

SEE ALSO

You use the buffer constructed by the OTCreateOptions function as part of the
req parameter to the OTOptionManagement function (page 5-35). Listing 5-2 on
page 5-20 shows how you use the OTCreateOptions function.

You use the OTCreateOptionString function, described in the next section, to
reverse the process and construct a string containing endpoint option values by
parsing a buffer containing TOption structures.

Format of values Contents

Numeric A minus sign (–) prefix for negative numbers, followed by
the digits comprising the number; for example, –6784.

A $ or 0x prefix for hexadecimal numbers, followed by the
digits comprising the number; for example, $FFFE.

String The option string, which is composed of a delimiter
character, followed by the characters comprising the
string, followed by the delimiter character. A delimiter
character is the first non blank character after the equals
sign. For example, SomeOptionName = *The String
Option*, or SomeOtherOptionName = %Another String
Option%.

Byte array A leading $ or 0x followed by a sequence of hex digits
with no intervening spaces or tabs. There must be an even
number of digits; for example, $FF12EE46.

C H A P T E R 5

Option Management

5-42 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

OTCreateOptionString 5

Creates a string from a buffer containing TOption structures.

C INTERFACE

OTCreateOptionString (const char* prtclName, TOption** optPtr,
 void* bufEnd, char* string,
 size_t stringSize);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

prtclName A constant specifying the name of the protocol for this option
or options.

optPtr A pointer to a pointer to a buffer containing one or more
TOption structures.

bufEnd A pointer to the first byte of memory past the last option.

string A pointer to a buffer where the string is to be stored. You must
allocate this buffer.

stringSize The length of the buffer where the string is to be stored. You
must specify this value.

DESCRIPTION

You can use the OTCreateOptionString function to parse through the options
buffer returned by the ret parameter to the OTOptionMangement function and
create a string specifying option values that you can display.

This function is supplied solely as a debugging aid. You should not include the
function in a production version of your application because there is no
provision made for localizing string information.

C H A P T E R 5

Option Management

Option Management Reference 5-43
Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

You obtain the buffer to be converted from the ret parameter to the
OTOptionManagement function (page 5-35). Listing 5-3 on page 5-24 shows how
you use the OTCreateOptionString function.

You can reverse the procedure and build an options buffer from a string by
using the OTCreateOptions function (page 5-39).

Finding Options 5

You use the two functions described in this section to find a specific option in
an options buffer or to find the next option in the buffer. You do not have to
create an endpoint to use these functions, but you do have to initialize Open
Transport as described in the chapter “Configuration Management” in
this book.

OTFindOption 5

Finds a specific option in an options buffer.

C INTERFACE

TOption* OTFindOption (UInt8* buffer, UInt32 buflen,
OTXTILevel level, OTXTIName name);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

buffer A pointer to the buffer containing the option to be found.

buflen The size of the buffer containing the option to be found.

level The protocol of the option to be found.

name The name of the option to be found.

C H A P T E R 5

Option Management

5-44 Option Management Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

Given a buffer such as might be returned by the OTOptionManagement function or
by any endpoint function that returns a buffer containing option information,
you can use the OTFindOption function to find a specific option in the buffer.

SEE ALSO

To parse through a buffer, option by option, use the OTNextOption function
(described next).

To convert option information in a buffer into a string, use the
OTCreateOptionString function (page 5-42).

OTNextOption 5

Locates the next TOption structure in a buffer.

C INTERFACE

OSErr OTNextOption (UInt8* buffer, UInt32 buflen,
TOption** prevOptPtr;

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

buffer A pointer to the buffer containing the option to be found.

buflen A long specifying the size of the buffer containing the option to
be found.

prevOptPtr A pointer to a pointer to the first or current TOption structure.
The first time you call the function, set this parameter to the
beginning address of the buffer containing the options to be
found. On return, this parameter references the beginning
address of the next option

C H A P T E R 5

Option Management

Option Management Reference 5-45
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTNextOption function allows you to parse through a buffer containing
TOption structures describing an endpoint’s option values. Within the buffer,
TOption structures are aligned to long-word boundaries. This function takes
into account this padding when it calculates the beginning address of the next
TOption structure and it returns that address in the prevOptPtr parameter.

The first time you call the option, set the prevOptPtr parameter to the beginning
address of the buffer. When the function returns, the prevOptPtr parameter
points to the next (second) option in the buffer. You can continue this process,
specifying the value returned for the prevOptPtr parameter by the previous
invocation of the function, each time you call the function to obtain the
beginning address of each option in the buffer.

SEE ALSO

To find a particular option in a buffer, use the OTFindOption function
(page 5-43).

C H A P T E R 6

Contents 6-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 Configuration Management

About Provider Configurations 6-3
About Port Information 6-5
Using the Configuration Functions 6-8

Determining Whether Open Transport Is Available 6-8
Initializing Open Transport 6-9

Using Open Transport From a Client Application 6-9
Using Open Transport From a Stand-Alone Code Segment 6-9

Creating and Reusing Provider Configurations 6-10
Obtaining Port Information 6-11
Requesting a Port to Yield Ownership 6-13
Registering as an Open Transport Client 6-13

Configuration Management Reference 6-14
Constants and Data Types 6-14

The Gestalt Selector and Response Bits 6-15
Port-Related Events 6-15
The Configuration Structure 6-16
The Port Structure 6-17
The Port Reference 6-19
The Client List Structure 6-22
The Port Close Structure 6-23

Functions 6-23
Initializing and Closing Open Transport 6-24

InitOpenTransport 6-24
InitOpenTransportUtilities 6-25
CloseOpenTransport 6-26

Creating, Cloning, and Removing a Configuration Structure 6-27
OTCreateConfiguration 6-27

C H A P T E R 6

6-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

OTCloneConfiguration 6-30
OTDestroyConfiguration 6-31

Getting Information About Ports 6-32
OTGetProviderPortRef 6-32
OTGetIndexedPort 6-33
OTFindPort 6-34
OTFindPortByRef 6-35
OTCreatePortRef 6-36
OTGetDeviceTypeFromPortRef 6-38
OTGetBusTypeFromPortRef 6-39
OTGetSlotFromPortRef 6-40

Requesting a Port to Yield Ownership 6-42
OTYieldPortRequest 6-42

Registering as a Client 6-44
OTRegisterAsClient 6-44
OTUnregisterAsClient 6-45

C H A P T E R 6

About Provider Configurations 6-3
Draft.  Apple Computer, Inc. 4/30/96

Configuration Management 6

This chapter describes Open Transport functions that initialize Open Transport,
configure a provider, and provide information about the ports available on
your computer.

You need to read this chapter if your application wants to use Open Transport
or open a provider because in the former case, you must initialize all or some
of Open Transport, and in the latter case, you must create a provider
configuration. In addition, if your application has the ability to switch ports,
you need to be able to obtain port information.

This chapter discusses

■ initializing all or part of Open Transport

■ configuring providers and reusing configuration structures

■ browsing available ports and getting specific port information

■ registering as an Open Transport client

■ handling yield port requests

This chapter begins by introducing the basic concepts of provider configuration
and port information, then gives the details of how to initialize Open
Transport, how to find a specific port and extract information about it, and how
to register your application as an Open Transport client.

About Provider Configurations 6

Before you can open a provider, you must first tell Open Transport how to
configure it with the protocol and options you want the provider to use. To do
this, you pass a string to a function (OTCreateConfiguration) that creates a
configuration structure (of data type OTConfiguration) describing the service
you want.

The configuration string can be the name of a single protocol, such as “adsp”,
“tcp”, or “dnr,” or it can be a full comma-separated list of protocol and port
names, with option values specified in parentheses after the name of the
protocol to which they apply. For instance,

"adsp,ddp,ltlkB"

C H A P T E R 6

Configuration Management

6-4 About Provider Configurations

Draft.  Apple Computer, Inc. 4/30/96

describes an AppleTalk Data Stream Protocol (ADSP) endpoint provider using
the Datagram Delivery Protocol (DDP) and with LocalTalk link access provided
through the default port (the LocalTalk B printer port).

Open Transport has internally defined defaults for how protocols can be
layered upon each other. If you give Open Transport a single protocol name, it
checks its defaults to determine which lower layers are missing. Thus, the
shorter string

"adsp"

also describes an identical ADSP endpoint provider. Likewise, if you skip a
protocol layer in the string, Open Transport uses its defaults to try to complete
it. For instance, the specification “tcp, enet” is incomplete because the
Transmission Control Protocol (TCP) does not have direct access to Ethernet,
and so Open Transport puts the default Internet Protocol (IP) between TCP and
Ethernet.

You can also specify an option as part of the configuration string. To do this,
you need to know which protocols use which options and how to translate the
option’s constant name, given in the header files, into a string that the
configuration functions can parse. See the TCP/IP and AppleTalk chapters for
lists of their procotol-specific options and their equivalent string values, but for
a simple example,

"adsp,ddp(Checksum=1)"

describes an ADSP endpoint provider with the DDP checksum option enabled.

If you want to identify a particular port in the configuration string, you use the
port name to do so (described in the next section). More typically, however, you
leave this value blank—for example, using only “adsp” or “adsp, ddp,” which
configures the provider with whatever port is specified in the associated
control panel.

Most protocols have a hardcoded string value that you can use to configure
providers. For example, DDP uses “ddp” and ADSP uses “adsp.” There are
also constants that identify each protocol, such as kDDPName and kADSPName. For a
complete list of the AppleTalk constant-string equivalents, see the chapter
“Introduction to AppleTalk” in this book. For a TCP/IP service provider, you
can use the constant kDefaultInternetServicesPath; there is no hardcoded
equivalent.

C H A P T E R 6

Configuration Management

About Port Information 6-5
Draft.  Apple Computer, Inc. 4/30/96

You can use the constant or the hardcoded value to create providers that do not
use options and that adhere to the default procotol layering. For example, to
configure a fairly straightforward DDP endpoint, you could use either of the
following lines of code:

OTOpenEndpoint(OTCreateConfiguration("ddp"), 0, NULL, &err)

OTOpenEndpoint(OTCreateConfiguration(kDDPName), 0, NULL, &err);

To configure more complex providers, it is easier to use the hardcoded strings.
Using the constant can be confusing, as compared in the following lines of code:

OTOpenEndpoint(OTCreateConfiguration
("adsp(EnableEOM=1),ddp,ltlkB"), 0, NULL, &err)

OTOpenEndpoint(OTCreateConfiguration
(kADSPName"(EnableEOM=1),"kDDPName",ltlkB"), 0, NULL, &err);

Note
The OTCreateConfiguration function returns a pointer to
the configuration structure it creates. You pass this pointer
as a parameter to the open-provider functions such as the
OTOpenEndpoint or OTOpenMapper functions (discussed in the
chapters “Endpoints” and Mappers” in this book). ◆

About Port Information 6

Central to Open Transport’s architecture is the concept of a port. In Open
Transport, a port is a logical entity that combines a hardware device and the
software driver that acts as an interface to it. Ethernet, serial devices, and
LocalTalk ports are examples of ports commonly used in Open Transport.

Typically, your application uses whichever port is defined in the AppleTalk or
TCP/IP control panel. If, however, your application provides special port
manipulation features, you need the additional port information data
structures, constants, and functions that Open Transport provides for browsing
among the ports available to your computer and for finding specific ports.

C H A P T E R 6

Configuration Management

6-6 About Port Information

Draft.  Apple Computer, Inc. 4/30/96

Open Transport provides a standard naming scheme for describing the ports
available to a computer. There are three ways to identify each port uniquely: its
port name, its module name, and its port reference.

The port name is a unique name that designates the port. This name identifies
the port without using any location information. For instance, "ltlkA"
identifies LocalTalk on the serial port, and "ltlkB" identifies LocalTalk on the
modem port. This name must always be used in the path string for
OTCreateConfiguration to uniquely identify a port.

The port name is typically an abbreviation of the port’s device type plus a
suffix, usually numeric, such as “enet0,” “enet1,” and “enet2.” For historic
reasons, LocalTalk and serial ports use an alphabetic suffix instead. For
example, “ltlkA” is the modem port and “ltlkB” is the printer port. The port
name is a zero-terminated string that can have a maximum length of 36 bytes:
31 bytes for the name, up to 4 bytes of extra characters (called minor numbers in
XTI specifications) that are currently not used, and a byte for the terminating
zero.

Each port on a computer also has a module name, which is the name of the
actual Streams module that implements the driver for this port. You don’t use
this name; Open Transport uses this name internally.

You can also uniquely identify a port with a port reference, which is a 32-bit
value that describes a port’s hardware characteristics: its device and bus type,
its physical slot number, and, where applicable, its multiport identifier. For
details of the possible values you can use in a port reference, see the section
“The Port Reference,” beginning on page 6-19. Open Transport allows clients to
use a device name to specify a port. In this case, Open Transport uses the first
device of that type that is registered and available. For most devices, this
means the motherboard device, if one exists; if one doesn’t, Open Transport
uses the first slotted device that was registered.

The multiport identifier is a port function parameter that distinguishes
between multiple ports when a single slot supports more than one port. This
parameter, called other, is part of the port reference structure, which is
described in the section “The Port Reference” on page 6-19.

Typically, the hardware device in a multiport slot is either a plug-in
multifunction card with multiple ports on it or a device with multiple uses, one
or more of which is a port. Examples of multifunction cards are a motherboard
with onboard Ethernet and the SerialNB card with its four ports; an example of
a multi-use device on most Macintosh computers is the SCC chip that can
handle both LocalTalk and serial communications. Typically, a multifunction

C H A P T E R 6

Configuration Management

About Port Information 6-7
Draft.  Apple Computer, Inc. 4/30/96

card has multiple ports that use different values for the other parameter and
possibly different device attributes, and a multi-use device is registered with all
attributes identical except for the device type.

There’s a special type of port, called a pseudodevice, that is a driver that
doesn’t interface to a hardware device; instead, it interfaces to other device
drivers. Pseudodevices are provided as a convenience for the Open Transport
architecture. Open Transport defines special device types for certain common
pseudodevices, such as modem, PPP, and SLIP. Because Open Transport can’t
possibly accomodate all possible pseudodevices, there is a generic device type,
designated with the constant kOTPseudoDevice, that identifies unknown or
unusual pseudodevices. Each pseudodevice must have a unique port reference.
Typically, a pseudodevice is private, and a flag indicating that the port is
private notifies applications browsing the port registry that the port is not
normally available for public use. The port registry is a registry of ports that
Open Transport creates when it scans the network for all available ports.

Every port on the computer is described in Open Transport by a port structure,
which contains its port reference, several sets of information flags, its port
name, its Streams module name, and the slot ID (for ports on a PCI bus). For
details of the port structure, see the section “The Port Structure,” beginning on
page 6-17.

The port structure includes fields that allow you to identify a port’s child port,
which allows you to identify which of several available hardware devices the
port uses. A port may have more than one child port, all of which can be active
simultaneously.

For example, in many implementations, a SLIP port is a pseudodevice that uses
a serial port as its hardware device. If more than one serial port is available, the
SLIP pseudodevice could use any of them. A SLIP port therefore always has a
serial port as its child port so that when multiple serial ports are available, you
can use the child port information to find out which serial port the SLIP port is
using. Other device types, such as fast ethernet devices, do not have child ports
because they have a one-to-one relationship with their hardware device—that
is, they have only one possible choice for the hardware device they can use.

The slot ID is a user-visible identifier used for cards on PCI bus computers. To
derive this value, Open Transport accesses information in the system registry.
The system registry, sometimes referred to as the Name Registry, is a register of
hardware and software configuration information for Power Macintosh
computers that is maintained by Mac OS. For more information about the

C H A P T E R 6

Configuration Management

6-8 Using the Configuration Functions

Draft.  Apple Computer, Inc. 4/30/96

system registry, or Name Registry, see Designing PCI Cards and Drivers for Power
Macintosh Computers.

One set of flags indicate a port’s framing capabilities—that is, the different
packet headers and trailers (data frames) permitted by the protocol on that
port. The framing flags are specific to the device type being registered. See the
appropriate documentation for the device to determine how to interpret them.

For each hardware device type, Open Transport derives a default port name
based on the port name by stripping its numeric (or alphabetic, in the case of
LocalTalk and serial ports) suffix. All ports on a computer that are the same
hardware device type result in the same default port name. Thus, Ethernet
devices default to “enet.” For all hardware device types, you can use the
default port name as part of the configuration string. If you use a default name
such as “enet,” Open Transport uses whichever port is identified as the default
port. If it can’t find that port, OpenTransport returns an error message.

In the case of LocalTalk, however, Open Transport uses a flag to define a
specific port as a port alias, or a default port, for LocalTalk ports. This port is
called “ltlk” and uses the same Streams module name as the default LocalTalk
port. Normally, the LocalTalk default port is the printer port, “ltlkB,” but if a
computer doesn’t have an “ltlkB” port, then the LocalTalk default is the
modem port, “ltlkA.” Because both the port alias and the default port have the
same Streams module name, when you use the port alias to configure the port,
Open Transport can locate the default port even if a port doesn’t use the
standard “ltlkB” default.

Using the Configuration Functions 6

This section describes how to determine whether Open Transport is
available, how to initialize all or some of Open Transport, how to
configure providers, how to obtain port information, and how to register
as an Open Transport client.

Determining Whether Open Transport Is Available 6

If you want to know if Open Transport is available on your computer, use the
Gestalt function with 'otan' as its selector. If Gestalt returns no error and its
response parameter returns with a value other than 0, Open Transport is

C H A P T E R 6

Configuration Management

Using the Configuration Functions 6-9
Draft.  Apple Computer, Inc. 4/30/96

available. To find out whether AppleTalk, TCP, or NetWare are present, you can
examine the response parameter bits. For a list of the possible bit values, see the
section “The Gestalt Selector and Response Bits” on page 6-15.

Initializing Open Transport 6

There are two Open Transport initialization functions: the InitOpenTransport
and InitOpenTransportUtilities functions. To initialize all of Open Transport,
you call the InitOpenTransport function, which loads the Open Transport
modules.

If your application performs port manipulation and does not need to open or
use any providers, you can use the InitOpenTransportUtilities function,
which initializes only those Open Transport modules that handle ports.

Neither of these two functions, however, loads the AppleTalk or TCP/IP
software modules. Open Transport automatically initializes the AppleTalk
modules whenever you first open an endpoint, mapper or AppleTalk service
provider; and it initializes TCP/IP whenever you open an endpoint or mapper
for that protocol family.

Using Open Transport From a Client Application 6

If your client is an application, you must follow these steps to initialize the
Open Transport software:

1. Include the Open Transport client header file, OpenTransport.h.

2. If you use the Apple Shared Library Manager (ASLM), call the
InitLibraryManager function.

3. Call the InitOpenTransport (or InitOpenTransportUtilities) function.

When you are no longer using Open Transport, you can choose to unload the
Open Transport software modules by using the CloseOpenTransport function. If
you used ASLM, you can then call the CleanupLibraryManager function. Both of
these functions are optional; the system automatically calls them if your
application does not call them.

Using Open Transport From a Stand-Alone Code Segment 6

If your client is a stand-alone code segment or code fragments, you must
follow these steps to initialize the Open Transport software:

C H A P T E R 6

Configuration Management

6-10 Using the Configuration Functions

Draft.  Apple Computer, Inc. 4/30/96

1. Include the Open Transport client header file, OpenTransport.h.

2. Establish an A5 world if you are running on a 68000-family Macintosh
computer. See the Apple Shared Library Manager Developer’s Guide for details
of how to do this.

3. If you use ASLM, call the InitLibraryManager function.

4. Call the InitOpenTransport (or InitOpenTransportUtilities) function.

Note
Stand-alone code segment clients that are on 68000-family
Macintosh computers have to ensure that their A5 world is
correct each time they call an Open Transport function. ◆

When you are no longer using Open Transport, you can unload the Open
Transport software modules. For stand-alone code segments, this means that
you must call the CloseOpenTransport function before you unload from
memory, and if you used ASLM, you must call the CleanupLibraryManager
function.

System software cannot unload Open Transport until the last software
module on your computer that called the InitOpenTransport or
InitOpenTransportUtilities function has also called the CloseOpenTransport
function.

Creating and Reusing Provider Configurations 6

Once Open Transport is initialized, you need to configure any providers you
want to use for transmitting and receiving data. To do this, you create a
configuration structure with the OTCreateConfiguration function using a
configuration string, as described in the section “About Provider
Configurations,” beginning on page 6-3.

You typically call the OTCreateConfiguration function inline while calling a
function that creates and opens a provider (for example, the OTOpenEndpoint
function). The function that opens providers checks whether the
OTCreateConfiguration function returned ((OTConfiguration*)-1L) or NULL, and
if so, returns an appropriate result code.

The open-provider functions take a pointer to the configuration structure as
input, but as part of their processing, they destroy the original configuration
structure. Since typically you use the OTCreateConfiguration function to create
only a single provider at a time, this works fine most of the time. Occasionally,

C H A P T E R 6

Configuration Management

Using the Configuration Functions 6-11
Draft.  Apple Computer, Inc. 4/30/96

however, you may want to reuse a configuration structure to create a second
identical provider, or you may want to reuse a configuration sent from another
application for which you do not have the configuration string.

The only way to reuse a configuration structure is to clone it with the
OTCloneConfiguration function before opening your first provider. In this way,
you can save the provider’s configuration to disk or make multiple copies of
the same configuration.

For example, you might have only a pointer to a structure, but you want to
create ten endpoints, and so you need ten structures. The moment you use the
original pointer to create an endpoint, the structure is gone. You can’t call
the OTCreateConfiguration function because you don’t have the original
configuration string; you were only passed the structure. However, if you can
create a copy of the structure, you don’t need the string; so you clone the
original structure nine times before opening the first endpoint, which results in
a total of ten identical configuration structures.

Obtaining Port Information 6

If your application manipulates ports, you may need port information to locate
a specific port or to find out how what ports are registered for your computer.
Open Transport registers all ports that are associated with your computer and
creates a port structure for each port. You can then use the various Open
Transport port functions to access these structures and get information from
them. (The port structure is described in the section “The Port Structure,”
beginning on page 6-17.)

If you want to find out the port associated with a given provider, you can use
the OTGetProviderPortRef function. If you don’t know which port structure you
want or if you want to provide a list of user-readable port names to your user,
you can use the OTGetIndexedPort function to iterate through all the ports
available on a computer, obtaining the port structure of each.

There are also two find functions you can use to find the port structure for a
specific port: If you know its port name, you can use the OTFindPort function,
or if you know its port reference, you can use the OTFindPortByRef function.

If you want to use the OTFindPortByRef function, you need a port reference.
There are several ways you can get one: Another application might have
passed it to you, another application could have put it into a port structure that
you now access by using the OTGetIndexedPort function, or you can create one.

C H A P T E R 6

Configuration Management

6-12 Using the Configuration Functions

Draft.  Apple Computer, Inc. 4/30/96

To create a port reference, you use the OTCreatePortRef function. You must
know all the port’s hardware characteristics: its device and bus type, its slot
number, and its multiport identifier (if it has one). You cannot use wildcards to
fill in any element you don’t know. Possible device and bus types are described
in “The Port Reference,” beginning on page 6-19.

Note
Note that the slot numbers for NuBus™ cards are physical;
that is, they are the slot numbers returned by the Slot
Manager and not the slots seen in various network
configuration applications. Physical slot numbers depend
on the type of card installed. For example, NuBus cards
number their slots 9 to 13, which appear in the AppleTalk
or TCP control panels as slots 1 to 5. For PCI cards,
however, the slot numbers are their logical slot IDs as
defined in the port structure. For cards in a PCI bus, it is
not possible, a priori, to create a port reference that
corresponds to a known card, so applications must iterate
through the port registry to find appropriate PCI ports. ◆

For example, if you want to find out the port name of the Ethernet port in
NuBus slot 13, you can use this line of code to create a port reference for this
port:

OTPortRef ref = OTCreatePortRef(kOTNuBus, kOTEthernetDevice, 13, 0);

If you then pass the result of this call to the OTFindPortByRef function,
OTFindPortByRef fills a buffer with the port structure that has this port reference
and returns a pointer to the buffer. You can examine the port structure’s fields
for its port name.

Open Transport has predefined variants of the OTCreatePortRef function for the
most commonly used hardware devices such as the NuBus, PCI, and PCMCIA
devices. These are found in the section describing the function OTCreatePortRef
(page 6-36).

If you want to extract information from a port reference, you have to use
specific Open Transport functions: OTGetDeviceTypeFromPortRef,
OTGetBusTypeFromPortRef, and OTGetSlotFromPortRef.

C H A P T E R 6

Configuration Management

Using the Configuration Functions 6-13
Draft.  Apple Computer, Inc. 4/30/96

Requesting a Port to Yield Ownership 6

There may be times when you need to use a particular port that is owned by
another provider. You can use the OTYieldPortRequest function to request the
owner of a port (normally, a serial port or modem) to yield the use of the port
to you. Open Transport then issues a kOTYieldPortRequest event to each
provider of any registered clients for that port for acceptance or refusal. If the
owner has not registered as a client of Open Transport, no event can be sent
and acceptance is implicit.

If the current owner wants to deny the request, it puts a negative error code
into the fDenyReason field in the port close structure indicating its reason for
refusal. The OTYieldPortRequest function then returns with this error code as its
result and with a buffer listing all the clients that have refused the request,
(normally only one).

If the OTYieldPortRequest function returns without an error, the port is
available for your use. You can then bind it with a queue length (qlen) greater
than 0 or establish a connection with it. If you don’t use the port within 10
seconds, the port automatically stops being available for your use and reverts
to its original owner.

You can force a passive client to yield by using a value of NULL in the
OTYieldPortRequest function’s buffer parameter. When the function returns
without an error, the port is available. Note that a port can only be yielded in
this manner if its current client is passively listening; it cannot be yielded if a
connection is in progress.

Providers owned by unregistered clients need to be prepared to receive
kOTProviderIsDisconnected and kOTProviderIsReconnected events when the
connection between the provider and port is unexpectedly disconnected and
reconnected due to a successful yield reques.

Registering as an Open Transport Client 6

You can use the OTRegisterAsClient function to register your application as an
Open Transport client and provide Open Transport with a notifier function for
sending messages to you. Once you are registered as a client, Open Transport
can notify you of system events, such as the port transition events that occur
when a particular port is disabled or closed and when it is reenabled. By
registering, you also provide Open Transport with a user-readable name to use
when informing the user of port transition events.

C H A P T E R 6

Configuration Management

6-14 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

This function is, however, optional. If you do not want to receive these events,
you do not have to call this function.

If you did register your name, when you finish using Open Transport, you
need to call the OTUnregisterAsClient function to remove your name as an
available client. However, the CloseOpenTransport function automatically calls
this function if you fail to do so.

Configuration Management Reference 6

This section describes the data types, constants, and functions that you need to
initialize Open Transport, configure providers, obtain port information, and
register your application as a client.

Constants and Data Types 6

This section describes the basic configuration management constants, the
Gestalt function selector and response bits, the configuration structure, the
port structure, and the port reference structure.

These constants provide length and size values for modules, provider names,
and slot IDs. These fields all end with a byte for the terminating zero. The
constant kMaxProviderNameSize permits a length of 36 bytes: 31 bytes for the
name, up to 4 bytes of extra characters (called minor numbers in Streams
specifications, and currently not used), and a byte for the zero that terminates
the string.

enum {
kMaxModuleNameLength = 31,
kMaxModuleNameSize = kMaxModuleNameLength + 1,
kMaxProviderNameLength = kMaxModuleNameLength + 4,
kMaxProviderNameSize = kMaxProviderNameLength + 1,
kMaxSlotIDLength = 7,
kMaxSlotIDSize = 8,
kMaxResourceInfoLength = 31,
kMaxResourceInfoSize = 32

};

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-15
Draft.  Apple Computer, Inc. 4/30/96

The Gestalt Selector and Response Bits 6

You can test whether Open Transport and its various parts are available by
using the Gestalt function with the 'otan' selector. The Gestalt function
returns information by setting or clearing bits in the response parameter. The
bits currently used are defined by constants, shown along with the Open
Transport selector in the following enumeration:

enum {
gestaltOpenTpt = 'otan',
gestaltOpenTptPresent = 0x00000001,
gestaltOpenTptLoaded = 0x00000002,
gestaltOpenTptAppleTalkPresent = 0x00000004,
gestaltOpenTptAppleTalkLoaded = 0x00000008,
gestaltOpenTptTCPPresent = 0x00000010,
gestaltOpenTptTCPLoaded = 0x00000020,
gestaltOpenTptIPXSPXPresent = 0x00000040,
gestaltOpenTptIPXSPXLoaded = 0x00000080

};

For more information about the Gestalt function, see Inside Macintosh:
Operating System Utilities.

Port-Related Events 6

There are several port-related events that Open Transport can send to an
application that is registered as an Open Transport client. Note that if your
application is not registered as a client, Open Transport cannot send it these
events.

enum {
kOTPortDisabled = (OTEventCode)0x25000001,
kOTPortEnabled = (OTEventCode)0x25000002,
kOTYieldPortRequest = (OTEventCode)0x25000005,
kOTNewPortRegistered = (OTEventCode)0x25000006,

};

Constant descriptions

kOTPortDisabled A port has gone off line, as when the user removes a
PCMCIA card while the computer is running. The

C H A P T E R 6

Configuration Management

6-16 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

OTResult parameter gives the specific reason, if known,
and the cookie parameter is the port reference of the port
that went off line. A port going off line also often results in
providers getting kOTProviderIsClosed events. There is no
guarantee in Open Transport as to which of these events
will be received first.

kOTPortEnabled A port that had previously been disabled is now
reenabled, as when the user reinserts a previously
removed PCMCIA card while the computer is running.
The cookie parameter is the port reference of the port that
is now enabled.

kOTYieldPortRequest
You currently are using a provider that is using a port that
some other application wants to use. The OTResult
parameter is the reason for the request (normally
kOTNoError or kOTUserRequestedErr), and the cookie
parameter is a pointer to an OTPortCloseStruct structure.

kOTNewPortRegistered
A new port has been registered with Open Transport, as
when the user inserts a new PCMCIA card. The cookie
parameter is the port reference of the new port. Your
provider receives this event the first time a new port is
enabled. Subsequently, if a port is reenabled after being
disabled, you receive the kOTPortEnabled event instead.

The Configuration Structure 6

Open Transport open-provider functions take as a parameter a pointer to a
configuration structure that specifies the configuration of a provider. For
example, the configuration structure of an endpoint specifies which protocol
modules the endpoint uses. The contents of the configuration structure are
private. To create a configuration structure and obtain a pointer to it, you call
the OTCreateConfiguration function (page 6-27).

The configuration structure is defined by the OTConfiguration data type.

struct OTConfiguration;
typedef struct OTConfiguration OTConfiguration;

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-17
Draft.  Apple Computer, Inc. 4/30/96

The Port Structure 6

Open Transport uses a port structure to describe a port’s characteristics, such as
its port name, its child ports, whether it is active or disabled, whether it is
private or sharable, and the kind of framing it can use.

The port structure is defined by the OTPortRecord data type.

struct OTPortRecord {
OTPortRef fRef;
UInt32 fPortFlags;
UInt32 fInfoFlags;
UInt32 fCapabilities;
size_t fNumChildPorts;
OTPortRef* fChildPorts;
char fPortName[kMaxProviderNameSize];
char fModuleName[kMaxModuleNameSize];
char fSlotID[kMaxSlotIDSize];
char fResourceInfo[kMaxResourceInfoSize];
char fReserved[164];

};

Field descriptions
fRef The port reference; a 32-bit value encoding the port’s

device type, bus type, slot number, and multiport
identifier. For more details, see the next section, “The Port
Reference.”

fPortFlags Flags describing the port’s status. Only 1 bit can be set at a
time. If no bits are set, the port is currently inactive—that
is, it is not in use at this time.

Flag Value Description

kOTPortIsActive 0x00000001 The port is in use.

kOTPortIsDisabled 0x00000002 The port may or may not be in use,
but no other client can use it.

kOTPortIsUnavailable 0x00000004 The port is not available for use.

C H A P T E R 6

Configuration Management

6-18 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

fInfoFlags Flags providing additional information about the port.

fCapabilities Flags indicating the type of framing capability that a port
has. If the port can handle only one type of framing, this
field is 0. For example, Ethernet framing uses the following
values:

fNumChildPorts The number of child ports associated with this port.
fChildPorts An array of the port references for the child ports

associated with this port.
fPortName A unique name for this port. The port name is a zero-

terminated string that can have a maximum length as
indicated by the constant kMaxProviderNameSize.

Flag Value Description

kOTPortIsDLPI 0x00000001 The port is a DLPI Streams
module.

kOTPortIsTPI 0x00000002 The port is a TPI Streams
module.

kOTPortCanYield 0x00000004 The port can yield when
requested.

kOTPortIsSystemRegistered 0x00004000 The port is registered in the
system registry.

kOTPortIsPrivate 0x00008000 The port is a private port.

kOTPortIsAlias 0x80000000 The port is an alias for
another port.

Flag Value Description

kOTFramingEthernet 0x01 The port can use standard
Ethernet framing.

kOTFramingEthernetIPX 0x02 The port can use IPX
Ethernet framing.

kOTFraming8023 0x04 The port can use 802.3
Ethernet framing.

kOTFraming8022 0x08 The port can use 802.2
Ethernet framing.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-19
Draft.  Apple Computer, Inc. 4/30/96

fModuleName The name of the actual Streams module that implements
the driver for this port. Open Transport uses this name
internally; you do not use this name.

fSlotID An 8-byte identifier for a port’s slot that contains a 7-byte
character string plus a zero for termination. This identifier
is typically available for PCI cards.

fResourceInfo A zero-terminated string that describes a shared library
that can handle configuration information for the device.
This field contains an identifier that allows Open Transport
to access auxiliary information about your driver (Open
Transport creates shared library IDs from this string to be
able to find these extra shared libraries). This string should
either be unique to your driver or should be set to a NULL
string.

fReserved Reserved.

The Port Reference 6

Several Open Transport port information functions take as a parameter a
pointer to a port reference, which is a 32-bit value OTPortRef) that contains a
port’s device and bus type, its slot number, and information to distinguish
among several devices on a single slot. The contents of the port reference are
private. To create a port reference and obtain a pointer to it, you call the
OTCreatePortRef function (page 6-36).

The port reference is defined by the OTPortRef data type.

typedef UInt32 OTPortRef;

You can use the OTCreatePortRef function (page 6-36) to create a port reference,
and the port reference is also a field in the port structure returned by the port
information functions: OTGetIndexedPort (page 6-33), OTFindPort (page 6-34),
and OTFindPortByRef (page 6-35). To extract information from the port
reference, you need to use the functions OTGetDeviceTypeFromPortRef
(page 6-38), OTGetBusTypeFromPortRef (page 6-39), and OTGetSlotFromPortRef
(page 6-40).

This section lists the possible values for the device type and bus type.

C H A P T E R 6

Configuration Management

6-20 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

Note
Do not arbitrarily add new device types. Please contact
Developer Support at Apple Computer, Inc. to obtain a
new, unique device type. ◆

Possible hardware device types are given in the following enumeration:

enum {
kOTNoDeviceType = 0,
kOTADEVDevice = 1,
kOTMDEVDevice = 2,
kOTLocalTalkDevice = 3,
kOTIRTalkDevice = 4,
kOTTokenRingDevice = 5,
kOTISDNDevice = 6,
kOTATMDevice = 7,
kOTSMDSDevice = 8,
kOTSerialDevice = 9,
kOTEthernetDevice = 10,
kOTSLIPDevice = 11,
kOTPPPDevice = 12,
kOTModemDevice = 13,
kOTFastEthernetDevice = 14,
kOTFDDIDevice = 15,
kOTATMLANDevice = 16,
kOTATMSNAPDevice = 17,
kOTPseudoDevice = 1023,
kOTLastDeviceIndex = 1022,
kOTLastSlotNumber = 255,
kOTLastOtherNumber = 255

};

Constant descriptions

kOTNoDeviceType The port’s device type is not specified. This value is illegal.
kOTADEVDevice The port is specified as an ADEV device, which is a

pseudodevice used by AppleTalk.
kOTMDEVDevice The port is specified as an MDEV device, which is a

pseudodevice used by TCP.
kOTLocalTalkDevice

The port is specified as a LocalTalk device.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-21
Draft.  Apple Computer, Inc. 4/30/96

kOTIRTalkDevice The port is specified as an IRTalk device.
kOTTokenRingDevice

The port is specified as a token ring device.
kOTISDNDevice The port is specified as an ISDN device.
kOTATMDevice The port is specified as an ATM device.
kOTSMDSDevice The port is specified as a SMDS device.
kOTSerialDevice The port is specified as a serial device.
kOTEthernetDevice

The port is specified as an Ethernet device.
kOTSLIPDevice The port is specified as a SLIP pseudodevice.
kOTPPPDevice The port is specified as a PPP pseudodevice.
kOTModemDevice The port is specified as a modem pseudodevice.
kOTFastEthernetDevice

The port is specified as an 100 MB Ethernet device.
kOTFDDIDevice The port is specified as a FDDI device.
kOTATMLANDevice The port is specified as an ATM pseudodevice simulating a

LAN device, using ATMLAN emulation.
kOTATMSNAPDevice The port is specified as an ATM pseudodevice simulating a

SNAP device.
kOTPseudoDevice The port is designated as a pseudodevice.
kOTLastDeviceIndex

The maximum number of different device types that a port
can support.

kOTLastSlotNumber
The highest physical slot number a port can use.

kOTLastOtherNumber
The maximum number of ports a single slot can support.

Possible bus types are given in the following enumeration:

enum{
kOTUnknownBusPort = 0,
kOTMotherboardBus = 1,
kOTNuBus = 2,
kOTPCIBus = 3,
kOTGeoPort = 4,

C H A P T E R 6

Configuration Management

6-22 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

kOTPCMCIABus = 5,
kOTLastBusIndex = 15

};

Constant descriptions

kOTUnknownBusPort
The port’s bus type is not a known type.

kOTMotherboardBus
The port is on the motherboard bus.

kOTNuBus The port is on a NuBus bus.
kOTPCIBus The port is on a PCI bus.
kOTGeoPort The port is a GeoPort device.
kOTPCMCIABus The port is on a PCMCIA bus.
kOTLastBusIndex The maximum number of different bus types that the port

can support.

The Client List Structure 6

When you issue a yield port request with the OTYieldPortRequest function, the
buffer parameter points to a client list structure that identifies the clients that
denied the request.

The client list structure is defined by the OTClientList data type.

struct OTClientList
{

size_t fNumClients;
UInt8 fBuffer[4];

};
typedef struct OTClientList OTClientList;

Field descriptions
fNumClients The number of clients in the fBuffer array, normally 1.

fBuffer An array of concatenated Pascal strings enumerating the
name of each client that rejected the request—that is, the
names under which the clients registered themselves as an
Open Transport clients.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-23
Draft.  Apple Computer, Inc. 4/30/96

The Port Close Structure 6

When you are using a port that another client wishes to use, the other client can
use the OTYieldPortRequest function to ask you to yield the port. If you are
registered as a client of Open Transport, you receive a kOTYieldPortRequest
event, whose cookie parameter is a pointer to a port close structure. You can
use this structure to deny or accept the yield request.

The port close structure is defined by the OTPortCloseStruct data type.

struct OTPortCloseStruct
{
OTPortRef fPortRef;
ProviderRef fTheProvider;
OSStatus fDenyReason;
};
typedef struct OTPortCloseStruct OTPortCloseStruct;

Field descriptions
fPortRef The port requested to be closed.

fTheProvider The provider that is currently using the port.
fDenyReason A value that you can leave untouched to accept the yield

request. To deny the request, change this value to a
negative error code corresponding to the reason for your
denial (normally you use the kOTUserRequestedErr error).

Currently, this callback is only used for serial ports, but it is applicable to any
hardware device that cannot share a port with multiple clients. If the provider
is passively listening—that is, bound with a queue length (qlen) greater than 0,
and you are willing to yield, you need do nothing. If, however, you are actively
connected and you are willing to yield the port, you must issue a synchronous
OTSndDisconnect in order to let the port go.

Functions 6

This section describes the functions you need to initialize Open Transport,
configure providers, and specify ports.

C H A P T E R 6

Configuration Management

6-24 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

Initializing and Closing Open Transport 6

Open Transport provides three functions that you can use to initialize and
close Open Transport.

InitOpenTransport 6

Initializes all of the Open Transport software modules.

C INTERFACE

OSStatus InitOpenTransport(void);

C++ INTERFACES

None. C++ applications use the C interface to this function.

DESCRIPTION

The InitOpenTransport function initializes all the Open Transport software
modules. Call this function before using other Open Transport functions. A
return value other than kOTNoError indicates that the Open Transport software
is not installed.

SPECIAL CONSIDERATIONS

If your program uses the Apple Shared Library Manager (ASLM), you must
call the InitLibraryManager function to initialize it before calling the
InitOpenTransport function.

SEE ALSO

To find out whether the Open Transport software is available, use the Gestalt
function, which is described in Inside Macintosh: Operating System Utilities and
whose returned response bits are described in the section “The Gestalt Selector
and Response Bits” (page 6-15).

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-25
Draft.  Apple Computer, Inc. 4/30/96

To initialize only the Open Transport modules that handle ports, use the
InitOpenTransportUtilities function (page 6-25).

To initialize ASLM, use the InitLibraryManager function, described in the Apple
Shared Library Manager Developer’s Guide.

For a set of steps to follow when initializing Open Transport, see the section
“Initializing Open Transport” (page 6-9).

To close the Open Transport software, use the CloseOpenTransport function
(page 6-26).

InitOpenTransportUtilities 6

Initializes only that part of the Open Transport software that handles ports.

C INTERFACE

OSStatus InitOpenTransportUtilities(void);

C++ INTERFACES

None. C++ applications use the C interface to this function.

DESCRIPTION

The InitOpenTransportUtilities function initializes only that portion of the
Open Transport software that handles ports. Call this function before using
other Open Transport functions. A return value other than kOTNoError indicates
that the Open Transport software is not installed.

SPECIAL CONSIDERATIONS

If your program uses the Apple Shared Library Manager (ASLM), you must
call the InitLibraryManager function to initialize it before calling the
InitOpenTransportUtilities function.

C H A P T E R 6

Configuration Management

6-26 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

To open and load all of the Open Transport software, use the InitOpenTransport
function (page 6-24).

To find out whether the Open Transport software is installed, use the Gestalt
function, which is described in Inside Macintosh: Operating System Utilities and
whose returned response bits are described in the section “The Gestalt Selector
and Response Bits” (page 6-15).

For a set of steps to follow when initializing Open Transport, see the section
“Initializing Open Transport” (page 6-9).

To close the Open Transport software, use the CloseOpenTransport function
(page 6-26).

CloseOpenTransport 6

Shuts down the Open Transport software when you are finished using it.

C INTERFACE

void CloseOpenTransport(void);

C++ INTERFACES

None. C++ applications use the C interface to this function.

DESCRIPTION

The CloseOpenTransport function closes the Open Transport software, which
tells Open Transport that your client has finished using it. Stand-alone code
segments must use this function before they unload from memory.

When applications finish using Open Transport, they have the option of using
this function to unload the Open Transport software modules without stopping
execution if they have other tasks to perform that do not require Open
Transport; otherwise, applications don’t need to use this function.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-27
Draft.  Apple Computer, Inc. 4/30/96

SPECIAL CONSIDERATIONS

If your client uses the Apple Shared Library Manager, you must call the
CleanupLibraryManager function before calling the CloseOpenTransport function.

System software cannot unload Open Transport until the last software
module on your computer that called the InitOpenTransport or
InitOpenTransportUtilities function has also called the CloseOpenTransport
function.

If your client is not an application, you must be sure to call the
CloseOpenTransport function before unloading from memory.

SEE ALSO

To initialize all of the Open Transport software, call the InitOpenTransport
function (page 6-24).

To initialize only the port-handling part of Open Transport, call the
InitOpenTransportUtilities function (page 6-25).

For more information about initializing Open Transport, see the section
“Initializing Open Transport” (page 6-9).

Creating, Cloning, and Removing a Configuration Structure 6

Open Transport provides some functions that you can use to create, clone, and
destroy a provider configuration structure. When you finish using a provider
of any type, always call the OTCloseProvider function to close and delete
the provider.

OTCreateConfiguration 6

Creates a structure defining a provider’s configuration.

C INTERFACE

OTConfiguration* OTCreateConfiguration(const char* path);

C H A P T E R 6

Configuration Management

6-28 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

path A pointer to a character string describing the provider.

DESCRIPTION

The OTCreateConfiguration function creates a configuration structure that
defines the software modules, hardware ports, and options that Open
Transport is to use when you call a function to open a provider. This is a
private structure, defined by the OTConfiguration data type (page 6-16). To
create one, you use the path parameter to pass the OTCreateConfiguration
function a string describing the provider service desired.

The simplest possible value of the path parameter is a single protocol module
name of the highest-level protocol you want to use; for example, “tcp.” If you
do not specify a complete communications path, the Open Transport software
uses default settings to construct the rest of the path. For example, if you
specify “adsp” for the path parameter, Open Transport defaults to using the
AppleTalk DataStream Protocol (ADSP) protocol module layered above the
Datagram Delivery Protocol (DDP) protocol module and with LocalTalk on the
default port, which is the printer port.

If you want to identify a particular port in the configuration string, you use the
port name to do so (described in the section “About Port Information,”
beginning on page 6-5). More typically, however, you leave this value blank—
for example, using a string with only “adsp” or “adsp, ddp,” which configures
the provider with whatever port is specified in the control panel.

To specify more than one protocol module, separate the module names
with commas. You can also specify values for options by putting them in
parentheses after the protocol name; for example, “adsp, ddp (Checksum=1)”
specifies that ADSP is to run on top of DDP and that the checksum option
is enabled.

If Open Transport cannot parse the list that you pass in the path parameter,
the OTCreateConfiguration function returns ((OTConfiguration*)-1L).
If there is insufficient memory to create an OTConfiguration structure, the
OTCreateConfiguration function returns NULL.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-29
Draft.  Apple Computer, Inc. 4/30/96

The OTCreateConfiguration function returns a pointer to the configuration
structure it creates. You pass this pointer as a parameter to the open-provider
functions such as the OTOpenEndpoint or OTOpenMapper functions (discussed in
the chapters “Endpoints” and Mappers” in this book).

SPECIAL CONSIDERATIONS

Functions that open providers delete the OTConfiguration structure that
they use, so you need to use the OTCloneConfiguration function to clone a
configuration structure if you want to open multiple providers with the
same configuration.

SEE ALSO

For more information about creating configuration structures, see the sections
“About Provider Configurations” (page 6-3) and “Creating and Reusing
Provider Configurations” (page 6-10).

To copy an OTConfiguration structure, call the OTCloneConfiguration function
(page 6-30).

To delete an OTConfiguration structure, call the OTDestroyConfiguration
function (page 6-31).

You can use the functions in “Obtaining Port Information” (page 6-11) to get
the names of any or all of the hardware ports on the system.

To create and open an endpoint, call the OTOpenEndpoint function or the
OTAsyncOpenEndpoint function, both described in the chapter “Endpoints” in
this book.

To create and open a mapper, call the OTOpenMapper function or the
OTAsyncOpenMapper function, both described in the chapter “Mappers”
in this book.

To create and open an AppleTalk service provider, call the
OTOpenAppleTalkServices function or the OTAsyncOpenAppleTalkServices
function, both described in the chapter “AppleTalk Services” in this book.

To create and open a TCP/IP service provider, call the OTOpenInternetServices
function or the OTAsyncOpenInternetServices function, both described in the
chapter “TCP/IP Services” in this book.

C H A P T E R 6

Configuration Management

6-30 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

OTCloneConfiguration 6

Copies an OTConfiguration structure.

C INTERFACE

OTConfiguration* OTCloneConfiguration(OTConfiguration* cfig);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

cfig A pointer to the OTConfiguration structure that you want
to copy.

DESCRIPTION

The OTCloneConfiguration function copies the OTConfiguration structure that
you specify in the cfig parameter and returns a pointer to the copy. Because the
internal format of an OTConfiguration structure is private, you must use the
OTCloneConfiguration function to obtain two identical structures. For example,
you can use this function when another application passes you a configuration
structure that you want to reuse but for which you do not have the original
configuration string. By cloning the structure, you have access to an additional
copy of the configuration even without knowing its configuration string.

SEE ALSO

For more information about creating configuration structures, see the sections
“About Provider Configurations” (page 6-3) and “Creating and Reusing
Provider Configurations” (page 6-10).

To create an OTConfiguration structure, call the OTCreateConfiguration function
(page 6-27).

To delete an OTConfiguration structure, call the OTDestroyConfiguration
function (page 6-31).

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-31
Draft.  Apple Computer, Inc. 4/30/96

OTDestroyConfiguration 6

Deletes an OTConfiguration structure.

C INTERFACE

void OTDestroyConfiguration(OTConfiguration* cfig);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

cfig A pointer to the OTConfiguration structure that you want to
delete.

DESCRIPTION

The OTDestroyConfiguration function deletes the OTConfiguration structure that
you specify in the cfig parameter and releases all associated memory.

SPECIAL CONSIDERATIONS

Functions that open providers delete the OTConfiguration structure that they
use. For this reason, most applications need not call the
OTDestroyConfiguration function. You should call the OTDestroyConfiguration
function only to delete an OTConfiguration structure not used to open a
provider.

SEE ALSO

For more information about creating configuration structures, see the sections
“About Provider Configurations” (page 6-3) and “Creating and Reusing
Provider Configurations” (page 6-10).

To create an OTConfiguration structure, call the OTCreateConfiguration function
(page 6-27).

C H A P T E R 6

Configuration Management

6-32 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

To copy an OTConfiguration structure, call the OTCloneConfiguration function
(page 6-30).

Getting Information About Ports 6

Open Transport provides several functions that obtain information about ports
available to your system.

OTGetProviderPortRef 6

Identifies the port associated with a given provider.

C INTERFACE

OTPortRef OTGetProviderPortRef(ProviderRef ref);

C++ INTERFACES

OTPortRef TProvider::GetOTPortRef();

PARAMETERS

ref The provider for which you wish to obtain the port.

DESCRIPTION

The OTGetProviderPortRef function returns the port reference for the provider
identified by the ref parameter. If the function returns 0, then either no port
was associated with this provider or there were multiple associated ports and
Open Transport did not know which to return.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-33
Draft.  Apple Computer, Inc. 4/30/96

OTGetIndexedPort 6

Iterates through the ports available on your computer.

C INTERFACE

Boolean OTGetIndexedPort(OTPortRecord* record,
size_t index);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

record A pointer to a port structure that contains information about a
specific port on your computer.

index An index number.

DESCRIPTION

The OTGetIndexedPort function returns information about the ports available on
your local system. To iterate through all the ports on your computer, call the
function repeatedly, incrementing the index parameter each time (starting with
0) until the function returns false. Each time the function returns true, it fills in
the port structure that you provide with information about a specific port. You
can use this information, for example, when specifying a provider
configuration string for the OTCreateConfiguration function.

You must allocate the port structure; the function fills this structure with
information about the port indicated by the index parameter. If the function
returns false, the contents of the structure are not significant.

SEE ALSO

For information about finding ports, see the sections “About Port Information”
(page 6-5) and “Obtaining Port Information” (page 6-11).

The port structure is described in “The Port Structure” (page 6-17).

C H A P T E R 6

Configuration Management

6-34 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

OTFindPort 6

Obtains information about a port that corresponds to a given port name.

C INTERFACE

Boolean OTFindPort (OTPortRecord* record,
const char* portName);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

record A pointer to a port structure that contains information about
the port you specified with the portName parameter.

portName The name of the port about which you want information.

DESCRIPTION

The OTFindPort function returns information about a port that corresponds to a
given port name. Each port in a system has a unique port name, which you can
obtain through a previous call or set of calls to the OTGetIndexedPort function.

You must allocate the port structure; the function fills this structure with
information about the port indicated by the portName parameter. If the function
returns false, the contents of the structure are not significant.

SEE ALSO

For information about finding ports, see the sections “About Port Information”
(page 6-5) and “Obtaining Port Information” (page 6-11).

You can use the OTGetIndexedPort function (page 6-33) to get port information
by iterating through all available ports.

The port structure is described in “The Port Structure” (page 6-17).

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-35
Draft.  Apple Computer, Inc. 4/30/96

OTFindPortByRef 6

Obtains information about a port that corresponds to its given port reference.

C INTERFACE

Boolean OTFindPortByRef(OTPortRecord* record,
OTPortRef ref);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

record A pointer to a port structure that contains information about
the port you specified with the ref parameter.

ref The port reference of the port about which you want
information.

DESCRIPTION

The OTFindPortByRef function returns information about a port identified by its
port reference. A port reference is a 32-bit value that describes a port’s
hardware characteristics: its bus and device type, its physical slot number, and,
where applicable, its multiport identifier. This identifier differentiates between
multiple hardware ports on a given slot.

You must allocate the port structure; the function fills this structure with
information about the port indicated by the ref parameter. If the function
returns false, the contents of the structure are not significant.

SEE ALSO

For information about finding ports and obtaining a port reference, see the
sections “About Port Information” (page 6-5) and “Obtaining Port
Information” (page 6-11).

You can use the OTCreatePortRef function (page 6-36) to create a port reference.

C H A P T E R 6

Configuration Management

6-36 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

The port structure is described in “The Port Structure” (page 6-17).

OTCreatePortRef 6

Creates a port reference that describes a port’s hardware characteristics.

C INTERFACE

OTPortRef OTCreatePortRef(UInt8 busType,
 UInt16 devType,
 UInt16 slot,
 UInt16 other);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

busType The type of bus to which the hardware port is connected; for
example, a NuBus or PCI bus. See “The Port Reference”
(page 6-19) for possible values for this parameter.

devType The type of hardware device connected to the port, such as
LocalTalk or Ethernet. See “The Port Reference” (page 6-19) for
possible values for this parameter.

slot The number of the physical slot containing the device.

other The port’s multiport identifier—that is, a numeric value that
distinguishes between ports when more than one hardware
port is connected to a given slot.

DESCRIPTION

The OTCreatePortRef function creates a port reference structure, which is a
32-bit value that describes a port’s hardware characteristics: its device and bus
type, its physical slot number, and, where applicable, its multiport identifie.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-37
Draft.  Apple Computer, Inc. 4/30/96

Once you have created a port reference, you can use the OTFindPortByRef
function to find a specific port with that particular set of characteristics.

To create a port reference, you use the OTCreatePortRef function. You must
know all the port’s hardware characteristics: its device and bus type, its slot
number, and its multiport identifier (if it has one). You cannot use wildcards to
fill in any element you don’t know, although you can use a device type of 0 to
allow matches on every kind of device type (following the
zero-matches-everything rule). Possible device and bus types are described in
the section “The Port Reference” (page 6-19).

To create a port reference for a pseudodevice, use 0 as the value for the
bus type, slot number, and multiport identifier, and use the constant
kOTPseudoDevice for the device type.

Open Transport has predefined variants of the OTCreatePortRef function for the
most commonly used hardware devices, such as the NuBus, PCI, and PCMCIA
devices. These three variants are listed here:

#define OTCreateNuBusPortRef(devType, slot, other)\
OTCreatePortRef(kOTNuBus, devType, slot, other)

#define OTCreatePCIPortRef(devType, slot, other)\
OTCreatePortRef(kOTPCIBus, devType, slot, other)

#define OTCreatePCMCIAPortRef(devType, slot, other)\
OTCreatePortRef(kOTPCMCIABus, devType, slot, other)

Once you have identified the port structure you want, you can access the
information in its port reference, by using the OTGetDeviceTypeFromPortRef,
OTGetBusTypeFromPortRef, and OTGetSlotFromPortRef functions.

SPECIAL CONSIDERATIONS

The slot numbers are physical; that is, they are the slot numbers returned by
the Slot Manager and not the slots seen in various network configuration
applications. Physical slot numbers depend on the type of card installed. For
example, NuBus cards number their slots 9–13, which appear in the AppleTalk
or TCP control panels as slots 1–5.

C H A P T E R 6

Configuration Management

6-38 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

For information about finding ports and obtaining a port reference, see the
sections “About Port Information” (page 6-5) and “Obtaining Port
Information” (page 6-11).

See “The Port Reference” (page 6-19) for possible values for the bus type and
device type.

To extract information from a port reference, use the
OTGetDeviceTypeFromPortRef function (page 6-38),the OTGetBusTypeFromPortRef
function (page 6-39), and the OTGetSlotFromPortRef function (page 6-40).

The port structure is described in “The Port Structure” (page 6-17).

OTGetDeviceTypeFromPortRef 6

Extracts the value of the hardware device type from a port reference.

C INTERFACE

UInt16 OTGetDeviceTypeFromPortRef(OTPortRef ref);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

ref The port reference from which you wish to extract the
device type.

DESCRIPTION

The OTGetDeviceTypeFromPortRef function extracts the device type value from a
port reference with unknown hardware values. You can obtain such a port
reference when another application passes one to you or when you use the
OTGetIndexedPort function to access a port structure into which another
application has put its own port reference.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-39
Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

For information about finding ports and obtaining a port reference, see the
sections “About Port Information” (page 6-5) and “Obtaining Port
Information” (page 6-11).

The possible return values for the OTGetDeviceTypeFromPortRef function are
listed in “The Port Reference” (page 6-19).

You can use the OTGetBusTypeFromPortRef function (page 6-39) and the
OTGetSlotFromPortRef function (page 6-40) to get the bus type and slot number
information from the port reference.

You can use the OTCreatePortRef function (page 6-36) to create a port reference.

Port references are returned by the OTGetIndexedPort function (page 6-33), the
OTFindPort function (page 6-34), and the OTFindPortByRef function (page 6-35).

The port structure is described in “The Port Structure” (page 6-17).

OTGetBusTypeFromPortRef 6

Extracts the value of the bus type from a port reference.

C INTERFACE

UInt16 OTGetBusTypeFromPortRef(OTPortRef ref);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

ref The port reference from which you wish to extract the bus type.

DESCRIPTION

The OTGetBusTypeFromPortRef function extracts the bus type value from a port
reference with unknown hardware values. You can obtain such a port reference
when another application passes one to you or when you use the
OTGetIndexedPort function to access a port structure into which another
application has put its own port reference.

SEE ALSO

For information about finding ports and obtaining a port reference, see the
sections “About Port Information” (page 6-5) and “Obtaining Port
Information” (page 6-11).

The possible return values for the OTGetBusTypeFromPortRef function are listed
in “The Port Reference” (page 6-19).

You can use the OTGetDeviceTypeFromPortRef function (page 6-38) and the
OTGetSlotFromPortRef function (page 6-40) to get device type and slot number
information from the port reference.

You can use the OTCreatePortRef function (page 6-36) to create a port reference.

Port references are returned by the OTGetIndexedPort function (page 6-33), the
OTFindPort function (page 6-34), and the OTFindPortByRef function (page 6-35).

The port structure is described in “The Port Structure” (page 6-17).

OTGetSlotFromPortRef 6

Extracts slot information from a port reference.

C INTERFACE

UInt16 OTGetSlotFromPortRef(OTPortRef ref,
UInt16* other);

C++ INTERFACES

None. C++ applications use the C interface to this function.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-41
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The port reference from which you wish to extract the
slot number.

other A pointer to a 16-bit buffer you provide into which the function
places a value that distinguishes between ports when more
than one hardware port is connected to a given slot. Specify
NULL for this parameter if you do not want the function to return
this information.

DESCRIPTION

The OTGetSlotFromPortRef function extracts slot information from a port
reference with unknown hardware values. You can obtain such a port reference
when another application passes one to you or when you use the
OTGetIndexedPort function to access a port structure into which another
application has put its own port reference.

Note that the slot numbers are physical; that is, they are the slot numbers
returned by the Slot Manager and not the slots seen in various network
configuration applications. Physical slot numbers depend on the type of card
installed. For example, NuBus cards number their slots 9–13, which appear in
the AppleTalk or TCP control panels as slots 1–5.

SEE ALSO

For information about finding ports and obtaining a port reference, see the
sections “About Port Information” (page 6-5) and “Obtaining Port
Information” (page 6-11).

You can use the OTGetDeviceTypeFromPortRef function (page 6-38) and the
OTGetBusTypeFromPortRef function (page 6-39) to get device type and bus type
information from the port reference.

You can use the OTCreatePortRef function (page 6-36) to create a port reference.

Port references are returned by the OTGetIndexedPort function (page 6-33), the
OTFindPort function (page 6-34), and the OTFindPortByRef function (page 6-35).

The port structure is described in “The Port Structure” (page 6-17) and the port
reference is described in “The Port Reference” (page 6-19).

C H A P T E R 6

Configuration Management

6-42 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

Requesting a Port to Yield Ownership 6

Open Transport allows you to request that the current owner of a port yield the
use of the port to you.

OTYieldPortRequest 6

Requests that a port be yielded.

C INTERFACE

OSStatus OTYieldPortRequest(ProviderRef provider, OTPortRef ref,
OTClientList* buffer, size_t size);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

provider The provider reference for the provider that wants to use the
port. This provider (normally an endpoint) must be open on the
requested port. You cannot use this provider while the yield
request is being processed.

ref The port reference for the port you wish to use.

buffer If the request is denied, on output this contains a pointer to a
client list structure, giving the names of all clients that rejected
the request (normally only one). You can use a value of NULL to
force the client to yield the port; this only works if the provider
is passively listening on the port. Use a value of (void*)-1L to
cancel the yield request.

size The size of the buffer, including the fNumClients field in the
client list structure.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-43
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTYieldPortRequest function requests the current owner of a port
(normally a serial port or modem) to yield ownership of it. Open Transport
sends the kOTYieldPortRequest event to each provider of any registered clients
for that port for acceptance or denial. If the owner has not registered as a client
of Open Transport, no event can be sent and acceptance is implicit.

If the function returns an error, the request could not be completed. This could
be because the current owner refused to yield, in which case the error code
provides the reason for the denial.This also could be because there is not
enough memory (kENOMEMErr), the port does not support yielding
(kOTNotSupportedErr), the provider does not use the port or the port does not
exist (kOTBadReferenceErr), or because the current client is already connected
(kENOENTErr).

Once the yield port request returns with an kOTNoError result code (or
kENOENTErr, if the provider does not currently have a client), you can attempt to
use the port. Normally you do this by binding with a queue length (qlen)
greater than 0, or by connecting. If you do not use the port or cancel the yield
request within 10 seconds, the port automatically stops being available for your
use and reverts to its original owner.

In the case of forcing the client to yield, if the function returns kOTNoError, then
the port has been yielded, and you can use it. Note that you can only force a
port to yield if its current client is passively listening; it cannot be yielded if a
connection is in progress.

SPECIAL CONSIDERATIONS

The OTYieldPortRequest function is available only to PowerPC-native clients;
there is no mixed-mode glue for the function, so you must build your
application FAT in order to use it.

SEE ALSO

To register as a client, use the OTRegisterAsClient function (page 6-44).

The client list structure is described in “The Client List Structure” (page 6-22).

C H A P T E R 6

Configuration Management

6-44 Configuration Management Reference

Draft.  Apple Computer, Inc. 4/30/96

Registering as a Client 6

Open Transport provides functions that you can use to register or unregister
your application as a client of Open Transport.

OTRegisterAsClient 6

Registers your application as a client of Open Transport and gives Open
Transport a notifier function it can use to send you events.

C INTERFACE

OSStatus OTRegisterAsClient(OTClientName name,
 OTNotifyProcPtr proc)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

name A pointer to the user-readable name you want Open Transport
to use for your application.

proc A pointer to the notifier function you want Open Transport to
use for sending events to your application.

DESCRIPTION

The OTRegisterAsClient function registers your application as an Open
Transport client. This function provides Open Transport with a pointer to your
notifier function that it can call when port transition events occur. It also
provides a user-readable name Open Transport can use when it delivers
messages about these events to the user. This function is optional; if you do not
want to receive these events, you do not have to call this function.

C H A P T E R 6

Configuration Management

Configuration Management Reference 6-45
Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

For more information about registering as a client, see the section “Registering
as an Open Transport Client,” beginning on page 6-13.

To unregister yourself as an Open Transport client, use the
OTUnregisterAsClient function (page 6-45).

OTUnregisterAsClient 6

Removes your application as a client of Open Transport.

C INTERFACE

OSStatus OTUnregisterAsClient(void)

C++ INTERFACES

None. C++ applications use the C interface to this function.

SPECIAL CONSIDERATIONS

If you do not call the OTUnregisterAsClient function, the CloseOpenTransport
function calls it for you automatically when it executes.

SEE ALSO

For more information about registering as a client, see the section “Registering
as an Open Transport Client,” beginning on page 6-13.

To register yourself as an Open Transport client, use the OTRegisterAsClient
function (page 6-44).

C H A P T E R 7

Contents 7-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 Process Management

About Task Processing in Open Transport 7-3
Using Process Management Functions 7-4

Using System and Deferred Tasks 7-4
Entering and Leaving Interrupt Processing 7-6
Allocating and Freeing Raw Memory 7-7
Idling or Delaying Your Computer 7-7

Process Management Reference 7-8
Functions 7-8

Checking Synchronous Calls 7-8
OTCanMakeSyncCall 7-8

Working With System Tasks 7-9
OTCreateSystemTask 7-9
OTScheduleSystemTask 7-10
OTCancelSystemTask 7-12
OTDestroySystemTask 7-13

Working With Deferred Tasks 7-14
OTCreateDeferredTask 7-14
OTScheduleInterruptTask 7-15
OTScheduleDeferredTask 7-17
OTDestroyDeferredTask 7-18

Entering and Leaving Interrupt Time 7-19
OTEnterInterrupt 7-19
OTLeaveInterrupt 7-20

Allocating and Freeing Memory 7-21
OTAllocMem 7-21
OTFreeMem 7-22

Idling and Delaying Processing 7-23

C H A P T E R 7

7-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

OTIdle 7-23
OTDelay 7-24

Application-Defined Functions 7-25
MyProcessCallbackFunction 7-25

C H A P T E R 7

About Task Processing in Open Transport 7-3
Draft.  Apple Computer, Inc. 4/30/96

Process Management 7

This chapter describes how you can use Open Transport functions to handle
system tasks and deferred tasks in existing System 7 code. You cannot call most
Open Transport functions at interrupt time, so you need to ensure that your
code makes such calls during system or deferred task time.

This chapter describes

■ checking whether you can make a synchronous call

■ handling system and deferred tasks

■ calling permitted Open Transport functions at interrupt time

■ idling or delaying processing on your computer

To use this chapter, you need to be familiar with System 7 system tasks,
deferred tasks, and interrupts in general. For information about system tasks,
read the information about the SystemTask function in the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials, and for information
about interrupts and deferred tasks, read the chapters “Introduction to
Processes and Tasks” and “Deferred Task Manager” in Inside Macintosh:
Processes.

This chapter begins with an introduction to Open Transport task processing.
Then it discusses System 7 system tasks and deferred tasks in more detail and
explains the process callback functions you use to create these tasks. Mac Os 8
task processing will be described in later documentation.

About Task Processing in Open Transport 7

If you are writing an application, the Open Transport system task and deferred
task functions are optional. You don’t need the system task functions because
your code executes within a normal event loop, referred to as system task time,
so you can call Open Transport functions as part of your application’s normal
processing. You don’t need the deferred task functions because when you
execute your Open Transport code asynchronously, much of the processing
takes place in the notifier functions, which can call Open Transport functions
because notifiers execute at deferred task time.

However, you may wish to use the Open Transport system task functions for
some of your application’s processing because the Open Transport functions
provide an efficient way to streamline your main event loop. For example, you

C H A P T E R 7

Process Management

7-4 Using Process Management Functions

Draft.  Apple Computer, Inc. 4/30/96

can avoid the complication of handling some of your memory allocation
during your main event loop; instead, you can schedule a system task to obtain
memory at certain times or on a periodic basis.

If you are writing code that isn’t an application (for example, a system
extension or a code resource), you probably need to use the system and
deferred task functions available in Open Transport to get processing time to
handle such tasks as allocating memory or accessing disk space.

If you currently use interrupts in your code or if you want to call Open
Transport from within an interrupt function such as a Time Manager, or
Vertical Retrace Manager function, you must use the Open Transport deferred
task functions to handle the task as a deferred task.

Open Transport provides several functions to make it easy for you to defer
your interrupt operations to deferred task time. The Open Transport deferred
task functions provide an alternative to the Deferred Task Manager DTInstall
function. Using the Open Transport higher-level deferred task functions
instead of the DTInstall function allows OpenTransport to adapt to changes in
the underlying operating system without affecting the client’s code.

Using Process Management Functions 7

Most of the functions in this chapter are concerned with system and deferred
tasks. Much of the processing for these two kinds of tasks is similar, so they are
covered in the same section. There are two functions for notifying Open
Transport that you are entering and leaving interrupt processing, and although
these are associated with using deferred tasks, they are covered in a separate
section. There is a brief section on the little-used functions for idling and
delaying your computer. Finally, there is a section on how to write an
application-defined process callback function that you can use when creating
system and deferred tasks.

Using System and Deferred Tasks 7

To use system or deferred tasks with the Open Transport functions, you use a
process callback function that defines the task you want executed at a
scheduled system or deferred task time. When you call the Open Transport
function that creates a system task with the OTCreateSystemTask function (or

C H A P T E R 7

Process Management

Using Process Management Functions 7-5
Draft.  Apple Computer, Inc. 4/30/96

creates a deferred task with the OTCreateDeferredTask function), you pass a
pointer to your process callback function so that Open Transport can call it at
the specified time. You can also pass user-defined context information at this
time. When Open Transport calls back your function, it passes back the context
data you supplied when you created the task. For the 68000-family of
Macintosh computers, Open Transport also restores the A5 world to what it
was when you created the task.

The OTCreateSystemTask and OTCreateDeferredTask functions allocate a
structure that defines the task you want executed. Upon completion, these
functions return a reference by which you subsequently refer to the task in
other system or deferred task functions.

Once you have created a task, you need to schedule it for execution. To do this,
you use the OTScheduleSystemTask, the OTScheduleDeferredTask, or the
OTScheduleInterruptTask function. You pass the task reference to the function
(the stCookie or the dtCookie parameter), and Open Transport attempts to
schedule the task. If a system task is scheduled successfully, it executes when
the SystemTask function next executes; and if a deferred task is scheduled
successfully, it executes as soon as possible after leaving the interrupt context.

However, because a system task can happen relatively slowly, enough time can
elapse between scheduling and execution to let you cancel it before it runs.
Deferred tasks happen too quickly to allow time for canceling tasks. If you use
the OTCancelSystemTask function, you notify Open Transport not to execute the
system task at the scheduled time. The reference is still valid, and you can
choose to reschedule the task by using the OTScheduleSystemTask function again
at any time.

You can also choose to reschedule a system or deferred task after it has
executed successfully. You do this by using the OTScheduleSystemTask or the
OTScheduleDeferredTask function again at any time. If you choose to reschedule
a task, you reuse the same reference to the same task. This means that exactly
the same task executes, which is useful for repetitive periodic tasks.

You can choose to destroy a task with the OTDestroySystemTask or the
OTDestroyDeferredTask function. These functions make the task reference
invalid and free any resources associated with the task. You can call these
functions whenever it is no longer necessary to schedule a task, such as when it
has been executed at its scheduled time and you have no plans to reschedule it
for later use.

C H A P T E R 7

Process Management

7-6 Using Process Management Functions

Draft.  Apple Computer, Inc. 4/30/96

You can call the OTDestroySystemTask function to destroy a system task that is
currently scheduled for execution. In this case, Open Transport cancels the
system task before proceeding with the task’s destruction.

If you try to destroy a scheduled deferred task with the OTDestroyDeferredTask
function, the kEAgainErr error can occur. This is a rare situation that can only
happen when you try to destroy the task from within an interrupt service
routine or within another deferred task.

If you want to use a task after you have destroyed it, you must start from the
beginning again by creating a new task with the OTCreateSystemTask or the
OTCreateDeferredTask functions.

Entering and Leaving Interrupt Processing 7

There are some Open Transport functions that you can call at interrupt time,
but you must be sure to notify Open Transport that you are doing so and notify
Open Transport when you are done. The permitted functions are listed in
Table 7-1.

Table 7-1 Open Transport functions you can call at interrupt time

Function Description

OTCanMakeSyncCall Checks whether a synchronous call will fail

OTAllocMem Allocates raw memory

OTFreeMem Frees the memory allocated with OTAllocMem

OTEnterInterrupt Prepares for an Open Transport function call
during interrupt time

OTLeaveInterrupt Concludes the processing of an Open Transport
function call during interrupt time

OTScheduleSystemTask Schedules a system task

OTCancelSystemTask Cancels a system task

OTScheduleDeferredTask Schedules a deferred task

OTScheduleInterruptTask Schedules a deferred task

C H A P T E R 7

Process Management

Using Process Management Functions 7-7
Draft.  Apple Computer, Inc. 4/30/96

If you are at interrupt time and you want to call an Open Transport function,
you must first call the OTEnterInterrupt function. You can then call one of the
permitted functions. When you are done with calling Open Transport functions
at interrupt time, you must call the OTLeaveInterrupt function. For example,
you could execute these code statements in this sequence:

OTEnterInterrupt();
OTScheduleDeferredTask(dtCookie);
OTLeaveInterrupt();

The exception to this set of tasks is the OTScheduleInterruptTask function. If all
you want to do is schedule a deferred task, you can use the
OTScheduleInterruptTask function, which takes care of the OTEnterInterrupt
and OTLeaveInterrupt functions for you.

▲ W A R N I N G

If you try to call an Open Transport function that is not
permitted at interrupt time or if you do not use the
OTEnterInterrupt and OTLeaveInterrupt functions, you will
either get the OTBadSyncErr result code or crash your
system, depending on the function you call. ▲

Allocating and Freeing Raw Memory 7

Open Transport provides two interrupt-safe functions to allow you to allocate
memory from the Open Transport memory pool.

You can use the OTAllocMem function to obtain raw memory. The memory is
allocated from a pool that Open Transport has created on behalf of the client
application. You need to use the OTAllocMem function to be able to access this
memory. You need to use this function if you want to allocate memory within
an interrupt. To deallocate this memory, use the OTFreeMem function with the
pointer returned by the OTAllocMem function.

Idling or Delaying Your Computer 7

There are two little-used functions for idling or delaying your computer: OTIdle
and OTDelay. The former function does not currently offer any practical use
beyond providing compatibilty with existing code that already uses an idle
function. The latter function is only included for compatibility with the UNIX

C H A P T E R 7

Process Management

7-8 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

sleep function and should not be used in your code for any other reason. Be
sure not to include in any production code in your products.

Process Management Reference 7

This section describes the Open Transport functions you need to use to handle
system tasks and deferred tasks. It also describes how to enter and leave
interrupt time, how to use an idle function, and how to use a delay function
that is equivalent to the UNIX sleep function.

Functions 7

This section describes the functions you need to use system and deferred tasks,
to enter and leave interrupt time, and to use a delay function.

Checking Synchronous Calls 7

Open Transport provides the OTCanMakeSyncCall function that allows you to
check beforehand whether you can call a synchronous function at a given
moment.

OTCanMakeSyncCall 7

Checks whether you can call a synchronous function.

C INTERFACE

Boolean OTCanMakeSyncCall()

C++ INTERFACES

None. C++ applications use the C interface to this function.

C H A P T E R 7

Process Management

Process Management Reference 7-9
Draft.  Apple Computer, Inc. 4/30/96

Working With System Tasks 7

Open Transport provides several functions that allow you to handle system
tasks in your code.

OTCreateSystemTask 7

Allows a function to be executed at the next system task time.

C INTERFACE

long OTCreateSystemTask(OTProcessProcPtr proc,
void* arg)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

proc A pointer to the process callback function you want executed at
system task time.

arg A pointer to application-defined data that Open Transport can
pass to your callback function. Pass NULL if you do not want this
data passed. If you are creating more than one of the same kind
of task, you can use different values for arg to distinguish
between the tasks.

DESCRIPTION

The OTCreateSystemTask function creates a system task that you can schedule
for execution at the next system task time. The task contains a pointer to the
process callback function specified by the proc parameter. At the next system
task time, Open Transport calls your process callback function, passing it the
arg parameter and, for the 68000-family of Macintosh computers only, restoring

C H A P T E R 7

Process Management

7-10 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

the A5 global world to what it was when you originally called
OTCreateSystemTask.

This function returns a reference that you can use to identify a task in other
system task functions. If the return value is 0, then there is not enough memory
to allocate the necessary data.

SEE ALSO

To schedule a task for execution at system task time, call the
OTScheduleSystemTask function (page 7-10).

To destroy a system task created with the OTCreateSystemTask function, call the
OTDestroySystemTask function (page 7-13).

To cancel a task scheduled for execution at system task time, call the
OTCancelSystemTask function (page 7-12).

OTScheduleSystemTask 7

Schedules a task for execution at system task time.

C INTERFACE

Boolean OTScheduleSystemTask(long stCookie)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

stCookie A reference that identifies the task to be scheduled.

C H A P T E R 7

Process Management

Process Management Reference 7-11
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTScheduleSystemTask function schedules for execution at system task time
the task associated with the stCookie parameter, which is the reference
returned by the OTCreateSystemTask function.

You can call this function at any time. If you have not yet destroyed a task, you
can use this function to reschedule the same task again once it has executed. If
you have canceled a task, you can use this function to schedule it again.

If you makes multiple calls to the OTScheduleSystemTask function before the
task is executed, additional tasks are not scheduled; only one instance of each
unique task can only be scheduled at a time.

This function returns true if it scheduled the system task successfully, false if
not. If the function returns false and the stCookie parameter has a valid value
(other than 0), then the task is already scheduled to run. If stCookie is invalid (a
value of 0), the function returns false and does nothing.

SPECIAL CONSIDERATIONS

You can call this Open Transport function at interrupt time, but you must
precede it by calling the OTEnterInterrupt function and you must follow it by
calling the OTLeaveInterrupt function.

SEE ALSO

To create a system task, call the OTCreateSystemTask function (page 7-9).

To destroy a system task created with the OTCreateSystemTask function, call the
OTDestroySystemTask function (page 7-13).

To cancel a task scheduled for execution at system task time, call the
OTCancelSystemTask function (page 7-12).

Before making this call from within an interrupt, use the OTEnterInterrupt
function (page 7-19).

After you have made this call from within an an interrupt, use the
OTLeaveInterrupt function (page 7-20).

C H A P T E R 7

Process Management

7-12 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

OTCancelSystemTask 7

Cancels a function you have scheduled to execute at system task time.

C INTERFACE

Boolean OTCancelSystemTask(long stCookie)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

stCookie A reference value that identifies the task to be canceled.

DESCRIPTION

The OTCancelSystemTask function cancels a task that was scheduled with the
OTScheduleSystemTask function to run at system task time. The function returns
true if the scheduling was canceled. If the function returns false, then either
the function was not scheduled, or it is too late to cancel it. If the stCookie
parameter value is invalid (a value of 0), the function returns false and does
nothing.

SPECIAL CONSIDERATIONS

You can call this Open Transport function at interrupt time, but you must
precede it by calling the OTEnterInterrupt function and you must follow it by
calling the OTLeaveInterrupt function.

SEE ALSO

To create a system task, call the OTCreateSystemTask function (page 7-9).

To schedule a task for execution at system task time, call the
OTScheduleSystemTask function (page 7-10).

C H A P T E R 7

Process Management

Process Management Reference 7-13
Draft.  Apple Computer, Inc. 4/30/96

To destroy a system task created with the OTCreateSystemTask function, call the
OTDestroySystemTask function (page 7-13).

Before making this call from within an interrupt, use the OTEnterInterrupt
function (page 7-19).

After you have made this call from within an an interrupt, use the
OTLeaveInterrupt function (page 7-20).

OTDestroySystemTask 7

Destroys a system task created with the OTCreateSystemTask function.

C INTERFACE

OSStatus OTDestroySystemTask(long stCookie)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

stCookie A reference value that identifies the system task to be destroyed.

DESCRIPTION

The OTDestroySystemTask function makes the stCookie reference invalid and
frees any resources allocated to the task when it was created. You can call this
function when you no longer need to schedule the system task, such as when it
has already been executed at its scheduled time and you have no plans to
reschedule it for later use. If stCookie is already invalid (a value of 0), the
function returns kOTNoError and does nothing.

If you try to destroy a task that is still scheduled for execution, the
OTDestroySystemTask function cancels it first, so that it is no longer scheduled
for system task execution, and then destroys it. If the task has already been
canceled, the OTDestroySystemTask function simply destroys it.

C H A P T E R 7

Process Management

7-14 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

To create a system task, call the OTCreateSystemTask function (page 7-9).

To schedule a task for execution at system task time, call the
OTScheduleSystemTask function (page 7-10).

To cancel a task scheduled for execution at system task time, call the
OTCancelSystemTask function (page 7-12).

Working With Deferred Tasks 7

Open Transport provides several functions that allow you to handle deferred
tasks in your code.

OTCreateDeferredTask 7

Creates a deferred task that identifies a function to be executed at the next
deferred task time.

C INTERFACE

long OTCreateDeferredTask(OTProcessProcPtr proc,
void* arg)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

proc A pointer to the process callback function you want executed at
deferred task time.

arg A pointer to application-defined data that Open Transport can
pass to your callback function. Pass NULL if you do not want this
data passed. If you are creating more than one of the same kind
of task, you can use different values for arg to distinguish
between the tasks.

C H A P T E R 7

Process Management

Process Management Reference 7-15
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTCreateDeferredTask function creates a deferred task that you can
schedule for execution at the next deferred task time. The task contains a
pointer to the process callback function indicated by the proc parameter. At the
next deferred task time, Open Transport calls your process callback function,
passing it the arg parameter and, for the 68000-family ofMacintosh computers
only, restoring the A5 global world to what it was when you originally called
OTCreateDeferredTask.

This function returns a reference that you can use to identify a task in other
deferred task functions. If the return value is 0, then there is not enough
memory to allocate the necessary data.

If you want to call Open Transport from an interrupt, you can use this function
(and OTScheduleDeferredTask) instead of the standard Deferred Task Manager
function DTInstall to create a deferred task that you to call permits Open
Transport functions. This allows Open Transport to schedule deferred task
processing independently of the underlying deferred task mechanism.

SEE ALSO

To schedule a task for execution at deferred task time, call the
OTScheduleDeferredTask function (page 7-17).

To destroy a task created with the OTCreateDeferredTask function, call the
OTDestroyDeferredTask function (page 7-18).

OTScheduleInterruptTask 7

Schedules a task for execution at deferred task time.

C INTERFACE

Boolean OTScheduleInterruptTask(long dtCookie)

C++ INTERFACES

None. C++ applications use the C interface to this function.

C H A P T E R 7

Process Management

7-16 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

dtCookie A reference that identifies the task to be scheduled.

DESCRIPTION

The OTScheduleInterruptTask function schedules for execution at the next
deferred task time the task associated with the dtCookie parameter, which is the
reference returned by the OTCreateDeferredTask function. This call includes
internal calls to the EnterInterrupt and the LeaveInterrupt functions, so you do
not need to make separate calls to those functions as you do with other similar
functions.

You can call this function at any time. If you have not yet destroyed a task, you
can use this function to reschedule it multiple times.

If you make multiple calls to the OTScheduleInterruptTask function before the
task is executed, additional tasks are not scheduled; only one instance of each
unique task can be scheduled at a time.

This function returns true if it scheduled the deferred task successfully, false if
not. If it returns false and the dtCookie parameter has a valid value (other than
0), then the task is already scheduled to run. If dtCookie is invalid (a value of 0),
the function returns false and does nothing.

If you want to call Open Transport from an interrupt, you can use this function
(and the OTCreateDeferredTask function) instead of the standard Deferred Task
Manager function DTInstall to create a deferred task that permits you to call
Open Transport function calls. This allows Open Transport to adapt to changes
in the underlying operating system without affecting the client’s code.

SPECIAL CONSIDERATIONS

You can call this Open Transport function at interrupt time without calling the
OTEnterInterrupt function first and the OTLeaveInterrupt function afterwards.

SEE ALSO

To create a deferred task for execution at deferred task time, call the
OTCreateDeferredTask function (page 7-14).

To destroy a task created with the OTCreateDeferredTask function, call the
OTDestroyDeferredTask function (page 7-18).

C H A P T E R 7

Process Management

Process Management Reference 7-17
Draft.  Apple Computer, Inc. 4/30/96

OTScheduleDeferredTask 7

Schedules a task for execution at deferred task time.

C INTERFACE

Boolean OTScheduleDeferredTask(long dtCookie)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

dtCookie A reference that identifies the task to be scheduled.

DESCRIPTION

The OTScheduleDeferredTask function schedules for execution at the next
deferred task time the task associated with the dtCookie parameter, which is the
reference returned by the OTCreateDeferredTask function.

You can call this function at any time. If you have not yet destroyed a task, you
can use this function to reschedule the same task more than once.

If you makes multiple calls to the OTScheduleDeferredTask function before the
task is executed, additional tasks are not scheduled; only one instance of each
unique task can only be scheduled at a time.

This function returns true if it scheduled the deferred task successfully, false if
not. If it returns false and the dtCookie parameter has a valid value (other than
0), then the task is already scheduled to run. If dtCookie is invalid (a value of 0),
the function returns false and does nothing.

If you want to call Open Transport from an interrupt, you can use this function
(and the OTCreateDeferredTask function) instead of the standard Deferred Task
Manager function DTInstall to create a deferred task that permits you to call
Open Transport function calls. This allows Open Transport to adapt to changes
in the underlying operating system without affecting the client’s code.

C H A P T E R 7

Process Management

7-18 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

SPECIAL CONSIDERATIONS

You can call this Open Transport function at interrupt time, but you must
precede it by calling the OTEnterInterrupt function and you must follow it by
calling the OTLeaveInterrupt function.

SEE ALSO

To create a deferred task for execution at deferred task time, call the
OTCreateDeferredTask function (page 7-14).

To destroy a task created with the OTCreateDeferredTask function, call the
OTDestroyDeferredTask function (page 7-18).

Before making this call from within an interrupt, use the OTEnterInterrupt
function (page 7-19).

After you have made this call from within an an interrupt, use the
OTLeaveInterrupt function (page 7-20).

OTDestroyDeferredTask 7

Destroys a deferred task created with the OTCreateDeferredTask function.

C INTERFACE

OSStatus OTDestroyDeferredTask(long dtCookie)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

dtCookie A reference that identifies the task to be destroyed.

C H A P T E R 7

Process Management

Process Management Reference 7-19
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTDestroyDeferredTask function makes the dtCookie reference invalid and
frees any resources allocated to the task when it was created. You can call this
function at any time when you no longer need to schedule the deferred task
object. If dtCookie is invalid (a value of 0), the function returns kOTNoError and
does nothing.

If you try to destroy a deferred task that is still scheduled, the kEAgainErr
error can occur. This is a rare situation that can only happen when you try
to destroy the task from within an interrupt service routine or within
another deferred task.

SEE ALSO

To create a deferred task object for execution at deferred task time, call the
OTCreateDeferredTask function (page 7-14).

To schedule a task for execution at deferred task time, call the
OTScheduleDeferredTask function (page 7-17).

Entering and Leaving Interrupt Time 7

Open Transport provides functions that you use to inform Open Transport that
you are entering and leaving interrupt time.

OTEnterInterrupt 7

Notifies Open Transport that you are about to call an Open Transport function
from an interrupt.

C INTERFACE

void OTEnterInterrupt(void)

C++ INTERFACES

None. C++ applications use the C interface to this function.

C H A P T E R 7

Process Management

7-20 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTEnterInterrupt function informs Open Transport it is at primary
interrupt time. This allows Open Transport to more intelligently schedule
network activity. You must use this function when you are about to call one of
the few Open Transport functions permitted at interrupt time.

SPECIAL CONSIDERATIONS

On the 68000-family of Macintosh computers, you must be sure that your A5
world is set correctly before making this call (that is, having the same value it
had when you called the InitOpenTransport or the InitOpenTransportUtilities
function).

You must call the OTLeaveInterrupt function before you leave interrupt time.

SEE ALSO

Table 7-1 provides a list of functions that you can call at interrupt time
(page 7-6).

Before leaving the interrupt context, use the OTLeaveInterrupt function
(page 7-20).

For further discussion, see the section “Entering and Leaving Interrupt
Processing,” beginning on page 7-6.

OTLeaveInterrupt 7

Notifies Open Transport that you are done calling Open Transport functions
from an interrupt.

C INTERFACE

void OTLeaveInterrupt(void)

C++ INTERFACES

None. C++ applications use the C interface to this function.

C H A P T E R 7

Process Management

Process Management Reference 7-21
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTLeaveInterrupt function informs Open Transport that you are no longer
calling Open Transport from within an interrupt. You call this function after
you call the last Open Transport function you want to call from within the
interrupt, but before you return to system task time.

SPECIAL CONSIDERATIONS

Do not make this call without having already called the OTEnterInterrupt
function.

On the 68000-family of Macintosh computers, you must be sure that your A5
world is set correctly before making this call (that is, you must set it to the same
value it had when you called the InitOpenTransport or the
InitOpenTransportUtilities function).

SEE ALSO

To notify Open Transport that you are about to call an Open Transport function
from an interrupt, use the OTEnterInterrupt function (page 7-19).

For further discussion, see the section “Entering and Leaving Interrupt
Processing,” beginning on page 7-6.

Allocating and Freeing Memory 7

Open Transport provides functions to allow you to allocate memory from
the Open Transport memory pool.

OTAllocMem 7

Allocates memory from the Open Transport memory pool.

C INTERFACE

void* OTAllocMem(size_t nbytes)

C H A P T E R 7

Process Management

7-22 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbytes The amount (in bytes) of memory to allocate.

DESCRIPTION

The OTAllocMem function allocates raw memory from a pool that Open
Transport has created for a client application. This function returns a pointer to
the allocated memory that the OTFreeMem function uses when to deallocate
this memory.

SPECIAL CONSIDERATIONS

Do not make this call without having already called the OTEnterInterrupt
function.

SEE ALSO

To free the memory you allocated with this function, use the OTFreeMem function
(described next).

OTFreeMem 7

Frees memory allocated with the OTAllocMem function.

C INTERFACE

void OTFreeMem(void* arg)

C++ INTERFACES

None. C++ applications use the C interface to this function.

C H A P T E R 7

Process Management

Process Management Reference 7-23
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

arg A pointer to the memory allocated by the OTAllocMem function.
This pointer is returned by the OTAllocMem function.

SPECIAL CONSIDERATIONS

Do not make this call without having already called the OTEnterInterrupt
function.

SEE ALSO

To allocate memory from the Open Transport pool, use the OTAllocMem function
(page 7-21).

Idling and Delaying Processing 7

Open Transport provides idle and delay processing functions.

OTIdle 7

Idles your computer.

C INTERFACE

void OTIdle(void)

C++ INTERFACES

None. C++ applications use the C interface to this function.

DESCRIPTION

You can call the OTIdle function while you are waiting for asynchronous
provider operations to complete. It is not necessary for the correct operation of
Open Transport to call this function, but it provides compatibility for existing
programs that use an idling function.

C H A P T E R 7

Process Management

7-24 Process Management Reference

Draft.  Apple Computer, Inc. 4/30/96

SPECIAL CONSIDERATIONS

You cannot call the OTIdle function at primary interrupt time. This function
does not call the SystemTask, WaitNextEvent, or GetNextEvent functions.

OTDelay 7

Delays processing for a specified number of seconds. This function is only
provided for compatibility with the UNIX sleep function.

C INTERFACE

void OTDelay(UInt32 seconds)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

seconds The number of seconds to delay.

DESCRIPTION

The OTDelay function delays processing for the number of seconds specified in
the seconds parameter. While the delay is occurring, OTDelay continuously calls
the OTIdle function.

You can only call the OTDelay function from within an application at system
task time. This function is only provided for compatibility with the UNIX sleep
function to assist with portability of UNIX code.

SPECIAL CONSIDERATIONS

You should never call the OTDelay function in production code on a Macintosh
computer.

C H A P T E R 7

Process Management

Application-Defined Functions 7-25
Draft.  Apple Computer, Inc. 4/30/96

Application-Defined Functions 7

To use either the system or the deferred task functions, you need to write a
process callback function that Open Transport can call to execute your task at
the appropriate time. When you create a system or a deferred task, you provide
Open Transport with a pointer to your process callback function.

MyProcessCallbackFunction 7

Open Transport calls your process callback function when the scheduled task
associated with it occurs. You use this function to specify Open Transport
functions that you want to execute at specific system or deferred task times.

C INTERFACE

void MyProcessCallbackFunction(void* arg)

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

arg A pointer to application-defined data, typically providing
context information.

DESCRIPTION

The OTCreateSystemTask and the OTCreateDeferredTask functions return a
reference that identifies the newly created task so that you can schedule it for
execution at specified times. Among other data, the task contains a pointer to
your process callback function. When the scheduled task-execution time
occurs, Open Transport calls your process callback function and passes it the
data in the arg parameter.

C H A P T E R 7

Process Management

7-26 Application-Defined Functions

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

For more information about how to use your process callback function, see the
section “Using System and Deferred Tasks,” beginning on page 7-4.

C H A P T E R 8

Contents 8-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 8-0
Listing 8-0
Table 8-0

8 TCP/IP Services

About the TCP/IP Protocol Family 8-4
About TCP/IP Services 8-6
About the Open Transport DNR 8-9
Using TCP/IP Services 8-11

Using RawIP 8-11
Using IP Multicasting 8-12
Using the Hosts File 8-12
Querying DNS Servers 8-13
Using General Open Transport Functions With TCP/IP 8-14

Obtaining Endpoint Data With TCP/IP 8-15
Using Endpoint Functions With TCP/IP 8-16
Using Mapper Functions With TCP/IP 8-20

TCP/IP Services Reference 8-21
Constants and Data Types 8-21

Basic Types and Constants 8-21
Internet Address Structure 8-23
DNS Address Structure 8-24
DNS Query Information Structure 8-25
Internet Interface Information Structure 8-26
Internet Host Information Structure 8-27
Internet System Information Structure 8-28
IP Multicast Address Structure 8-28
Internet Mail Exchange Structure 8-29

Options 8-29
Protocol Levels 8-29
TCP Options 8-30
UDP Options 8-32

C H A P T E R 8

8-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

IP Options 8-32
Functions 8-37

Opening a TCP/IP Service Provider 8-37
OTAsyncOpenInternetServices 8-38
OTOpenInternetServices 8-40

Resolving Internet Addresses 8-42
OTInetStringToAddress 8-42
OTInetAddressToName 8-44

Getting Information About an Internet Host 8-45
OTInetSysInfo 8-46
OTInetMailExchange 8-47

Retrieving DNS Query Information 8-49
OTInetQuery 8-49

Address Utilities 8-52
OTInetGetInterfaceInfo 8-52
OTInitInetAddress 8-53
OTInitDNSAddress 8-55
OTInetStringToHost 8-56
OTInetHostToString 8-57

C H A P T E R 8

8-3
Draft.  Apple Computer, Inc. 4/30/96

TCP/IP Services 8

This chapter describes the Open Transport implementation of TCP/IP,
including the use of Open Transport endpoint and mapper functions with TCP/
IP. This chapter also describes the TCP/IP service provider, which provides an
interface to the TCP/IP Domain Name Resolver (DNR) for clients of Open
Transport. To get the most out of this chapter, you should already be familiar
with the concepts and application interfaces described in the chapters
“Introduction to Open Transport,” “Provider Manager,” “Endpoints,”
“Mappers,” “Option Management,” and “Configuration Management” in this
book. In addition, this chapter gives only a very rudimentary introduction to
the TCP/IP protocol family. You will need to familiarize yourself with the
operation and use of the various TCP/IP protocols before you can make
effective use of the Open Transport implementation of TCP/IP. The following
section, “About the TCP/IP Protocol Family,” introduces the protocol family
and gives pointers to more information.

This chapter describes TCP/IP-specific information about Open Transport
functions and gives possible values for options that you can use with the TCP/
IP protocols. You need this information only if you have a specific need to use
the TCP/IP protocols or must bind explicitly to an IP address. If you are using
Open Transport in a protocol-transparent fashion, you do not need the
information in this chapter.

In this chapter the term TCP/IP is used when the information presented applies
equally to all protocols of the TCP/IP family (such as RARP, BOOTP, DHCP, or
UDP, as well as TCP and IP). When the information is specific to one protocol,
the name of that protocol is used.

This chapter starts with a brief introduction to the TCP/IP protocol family,
followed by an introduction to the TCP/IP services provided by Open
Transport. The section “Using General Open Transport Functions With TCP/
IP,” beginning on page 8-14 describes TCP/IP-specific information relating to
functions described in the chapters “Endpoints” and “Mappers” in this book.
The reference section describes those data structures and functions available
only to users of the Open Transport TCP/IP implementation. In addition,
“Options,” beginning on page 8-29 describes the TCP/IP options you can
specify when you configure a provider.

C H A P T E R 8

TCP/IP Services

8-4 About the TCP/IP Protocol Family

Draft.  Apple Computer, Inc. 4/30/96

About the TCP/IP Protocol Family 8

The TCP/IP protocol family is a set of networking protocols in wide use
throughout the world for government and business applications. The TCP/IP
protocol family includes a basic datagram-delivery protocol, called Internet
Protocol (IP); a connectionless datagram protocol called User Datagram
Protocol (UDP) that segments data to handle larger datagrams than those
allowed by IP; and a connection-oriented data stream protocol that provides
highly reliable data delivery, called Transmission Control Protocol (TCP). In
addition to these three fundamental protocols, TCP/IP includes a wide variety
of protocols for specific uses, mostly at the application-protocol level.

Figure 8-1 shows the TCP/IP functional layers and examples of TCP/IP
protocols that run in each layer. For purposes of comparison, Figure 8-1 also
shows the OSI model functional layers. Note that reliability of data delivery
can depend on the reliability built into TCP, or can be added at the application
level by protocols using UDP. Similarly, a protocol based on UDP can
implement connection-oriented services at the application-protocol level.

Figure 8-1 TCP/IP protocols and functional layers

Application

Presentation

Session

Transport

Network

Data-link

Physical

OSI layers

Application

Transport

Internet

Network interface

and hardware

TCP/IP layers

Telnet FTP

TCP UDP

DNSSMTP TFTP SNMP

IP

Ethernet, token ring, FDDI drivers and hardware

TCP/IP examples

ARP RARP
ICMP

C H A P T E R 8

TCP/IP Services

About the TCP/IP Protocol Family 8-5
Draft.  Apple Computer, Inc. 4/30/96

As discussed in the chapter “Endpoints” in this book, the way you use Open
Transport functions to send data depends both on whether the protocol you
wish to use is connection-oriented and whether it is transaction-based. Table
8-1 shows how the TCP/IP protocols provided with Open Transport fit into
this matrix. Notice that the TCP/IP protocol family offers no transaction-based
protocols at the transport or internet layers of the TCP/IP architecture.

Open Transport provides an application interface to the IP protocol known as
RawIP, as shown in Table 8-1. For more information on this interface to the IP
protocol, see “Using RawIP” on page 8-11.

Open Transport offers interfaces to the TCP, UDP, and IP protocols, and to the
domain name resolver (DNR). Only those protocols are discussed in the rest of
this chapter. Open Transport also provides implementations of the RARP,
BOOTP, and DHCP protocols, but those protocols are used by Open Transport
for automatic configuration of a host, and they have no application interfaces.

For general information about the other protocols shown in Figure 8-1, see any
good book on TCP/IP. Two such books for information on TCP/IP protocol
internals are TCP/IP Illustrated, Volume 1 by W. Richard Stevens and
Internetworking with TCP/IP, Volume 1 by Douglas E. Comer.

The Open Transport TCP/IP software modules are based on the UNIX Streams
architecture. For more information about Streams, see UNIX System V Release 4:
Programmer’s Guide: STREAMS.

The Open Transport API is based on the XTI standard as documented in X/
Open CAE Specification (1992): X/Open Transport Interface (XTI).

Table 8-1 The Open Transport protocol matrix and TCP/IP protocols

Connectionless Connection-oriented

Transactionless RawIP
UDP

TCP

Transaction-based

C H A P T E R 8

TCP/IP Services

8-6 About TCP/IP Services

Draft.  Apple Computer, Inc. 4/30/96

The TCP/IP protocols are defined in a series of documents called Requests for
Comments (RFCs). RFCs are available over the Worldwide Internet or from the
Defense Data Network (DDN) Network Information Center (NIC) at

DDN Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Telephone: 800-365-3642

You can get information on how to obtain RFCs via e-mail by sending an e-mail
message to “rfc-info@ISI.EDU”. The message body must read “help:
ways_to_get_rfcs”.

In addition, any program that implements the file transfer protocol (FTP) can
download copies of the RFC list and the RFCs themselves from the internet
address “nic.ddn.mil.”

About TCP/IP Services 8

The TCP/IP services provided by Open Transport include implementations of
the TCP, UDP, RARP, BOOTP, DHCP, and IP protocols, an application interface
to the domain name resolver (DNR), and utility functions you can use when
creating and resolving internet addresses. You can open TCP, UDP, and RawIP
endpoints and DNR mappers using the interfaces described in the chapters
“Endpoints” and “Mappers” in this book .

A domain name resolver translates between the character-string names used
by people to identify nodes on the internet and the 32-bit internet addresses
used by the network itself. In that sense, its function is similar to AppleTalk’s
Name-Binding Protocol (NBP). Unlike AppleTalk, however, TCP/IP protocols
do not specify a way for clients to register a name on the network. Instead, the
network administrator must maintain a server that stores the character-string
names and internet addresses of the servers on the internet, or each individual
host must keep a file of such names and addresses. The Open Transport
implementation of TCP/IP includes a DNS stub name resolver; that is, a
software module that can use the services of the domain name system (DNS) to
resolve a name to an address.

C H A P T E R 8

TCP/IP Services

About TCP/IP Services 8-7
Draft.  Apple Computer, Inc. 4/30/96

The nodes on a TCP/IP internet are known as hosts. A host that is addressable
by other hosts has a host name and one or more domain names that identify
the hierarchically arranged domains, or collections of hosts, to which it
belongs. For example, the Open Transport team, part of the system software
group at Apple Computer, might have a server with a fully qualified domain
name of “otteam.ssw.apple.com.” In this case, “otteam” represents the domain
of hosts belonging to the Open Transport team, “ssw” represents the domain of
hosts belonging to the system software group (which includes the Open
Transport team plus several other teams), and so forth. A fully qualified
domain name corresponds to an internet address, also known as an IP
address, which is a 32-bit number that uniquely identifies a host on a TCP/IP
network. An internet address is commonly expressed in dotted-decimal
notation (for example, “12.13.14.15”) or hexadecimal notation (for example,
“0x0c0d0e0f”).

To use the application interface to Open Transport’s DNR, you must first open
a TCP/IP service provider. Once you have done so, you can

■ resolve a domain name to one or more associated internet addresses

■ look up the domain name associated with an internet address

■ retrieve the character strings stored by the domain name server that describe
a host’s processor and operating system

■ retrieve DNS information associated with any query class and type

■ obtain a list of mail exchanges and mail preference values for a host to which
you wish to deliver mail

A mail exchange is any host that can accept mail for another host or for a
domain. A mail exchange can be a mail server, a router, or just a host
configured to accept and pass on mail. A mail preference value is used by a
mail application to determine to which mail exchange to deliver a message
when there is more than one that can accept mail for a particular domain. The
mailer sends the mail to the mail exchange with the lowest preference value
first and tries the others in turn until the mail is delivered or until the mailer
deems the mail undeliverable.

The Open Transport TCP/IP services also include several utility functions. You
can use these functions to

■ get internet addresses and subnet masks for all the TCP/IP interfaces on the
local host

■ fill in data structures used for internet addresses

C H A P T E R 8

TCP/IP Services

8-8 About TCP/IP Services

Draft.  Apple Computer, Inc. 4/30/96

■ convert an IP address string from dotted-decimal notation or hexadecimal
notation to a 32-bit IP address

■ convert a 32-bit IP address into a character string in dotted-decimal notation

The subnet mask determines what portion of the IP address is dedicated to the
host identifier and what portion identifies the subnet. A subnet is a portion of a
network, which is in turn a portion of an internet. Figure 8-2 illustrates the
subnet portion of an address. The top portion of the figure shows an internet
address that does not include a subnet identifier. The center portion of the
figure shows an internet address that includes a subnet. Notice that the subnet
identifier is formed by using a portion of the bits reserved for the host
identifier. The bottom portion of the figure shows the subnet mask, which you
can use to determine how many bits are used for the subnet and how many are
used for the host.

Figure 8-2 Internet subnet address

Network identifier

Internet address

Network identifier

Host identifier

Subnet

identifier Host identifier

Internet address with subnet identifier

1 0 0 0 0 0 0 0 0 0 0

Subnet mask

C H A P T E R 8

TCP/IP Services

About the Open Transport DNR 8-9
Draft.  Apple Computer, Inc. 4/30/96

Note
As used in this chapter, a TCP/IP interface is the point of
attachment of a host to a TCP/IP network. In the case of a
multihomed host, the user can configure more than one
TCP/IP interface. At present, the architecture of Open
Transport TCP/IP supports multihoming, but it is not yet
possible to configure a multihomed host. Therefore, all
functions designed to return information about all the
TCP/IP interfaces on a host return information about a
single interface. ◆

About the Open Transport DNR 8

The functions described in “Resolving Internet Addresses,” beginning on
page 8-42 and “Getting Information About an Internet Host,” beginning on
page 8-45 are implemented by the Open Transport domain name resolver
(DNR). The DNR also implements the OTLookupName function (page 8-20) when
you configure a TCP/IP mapper. The DNR can be invoked by a UDP
endpoint’s call to the OTSndUData function, a TCP endpoint’s call to the
OTConnect function, or a call to the OTResolveAddress function by either type of
endpoint. This section describes how the Open Transport DNR operates.

When Open Transport loads TCP/IP, Open Transport initializes the DNR with
a prioritized list of search domains, a prioritized list of name servers to be
searched, and, if the user has a Hosts file, a list of name-to-address mappings
and a list of canonical name-to-alias mappings from the Hosts file. Hosts files
are described in “Using the Hosts File” on page 8-12.

When you request that the DNR resolve a name to an address, the DNR checks
for a period (.) at the end of the name. If it finds one, the DNR assumes the
name to be a fully qualified domain name and attempts to resolve it. If the
name contains no periods, the DNR assumes that the name is partially
qualified and begins a search in the first of the configured search domains. If
the name contains at least one period, but doesn’t have one at the end of the
name, the DNR first assumes the name is fully qualified and attempts to
resolve it as such. If that process fails, then the DNR assumes that the name is
partially qualified and starts a search as for any other partially qualified name.

C H A P T E R 8

TCP/IP Services

8-10 About the Open Transport DNR

Draft.  Apple Computer, Inc. 4/30/96

For each search domain, the DNR calls the configured name servers in the
order specified during configuration. The DNR returns the first answer it finds
and terminates the search. If there is no other way to resolve the name or if the
DNR is looking for the name that corresponds to an address, it searches the
root domain. The DNR abandons its search if it hasn’t found the name in a
predetermined amount of time.

The Open Transport DNR implements only the following DNS query types.

The Open Transport DNR does not cache negative responses or partial name
resolutions from name servers; it depends on full-service name servers to fully
resolve the name and then caches only the final resolved name.

The DNR always requests recursion (that is, it requests the name server it
contacts to contact other name servers, as required, to completely resolve a
name). However, if the name server does not perform recursion but does
provide references to additional name servers, the DNR follows up on these
references. The DNR does not save the name server references after the name
resolution is complete; instead, it starts over each time with the configured
name servers.

The DNR caches name-to-address and canonical name-to-alias mappings, but
not host information (CPU and operating-system types) or the results of mail
exchange (MX) queries.

Open Transport supports use of a Hosts file, which the DNR uses to
supplement and customize its cache. The Hosts file is located in the Preferences
folder in the System Folder. However, it is best to avoid using a Hosts file if a
name server is available, as Hosts files usually waste memory in the local cache
and degrade performance of the DNR. If you do use a Hosts file, keep it as
short as possible. For more information about the Hosts file, see “Using the
Hosts File” on page 8-12.

Type Description

A Resolve name to 32-bit IP host address.

HINFO Return type of processor (CPU) and operating system of host.

MX Return name of mail exchange for the domain.

PTR Resolve address to a fully qualified domain name.

C H A P T E R 8

TCP/IP Services

Using TCP/IP Services 8-11
Draft.  Apple Computer, Inc. 4/30/96

Using TCP/IP Services 8

This section describes how to use the Open Transport RawIP interface, how to
implement IP multicasting, and how to use a variety of Open Transport
endpoint and mapper functions with the TCP/IP protocols. TCP/IP options
are described in “Options,” beginning on page 8-29.

Using RawIP 8

The Open Transport TCP/IP software modules provide a RawIP interface to
the IP protocol. The RawIP interface is provided to facilitate the
implementation of new protocols that use IP for datagram delivery. Therefore,
in order to use a RawIP endpoint, you must specify a value for the Protocol
field in the IP datgram header. By default, RawIP fills in the Protocol field with
a 1, indicating the packet carries an ICMP message. You can specify a different
protocol type for a RawIP endpoint by using the option XTI_PROTOTYPE,
described in the chapter “Option Management” in this book. The option value
consists of a longword containing the number of the protocol to be used by the
RawIP endpoint.

All RawIP endpoints using a specific protocol receive a copy of any inbound
packets destined for that protocol. Thus, if several programs were using ICMP
on the same host, they would all receive a copy of every inbound ICMP
datagram.

The data delivered to a RawIP endpoint includes the full IP header, which is
20 bytes long if it includes no options.

▲ W A R N I N G

If you open a RawIP endpoint, you are responsible for
implementing the protocol that is a client of IP running
over that endpoint. Because an improperly implemented
protocol can cause the host to crash or cause the loss of
data on the network, you should not attempt to use RawIP
unless you are an expert network programmer. ▲

C H A P T E R 8

TCP/IP Services

8-12 Using TCP/IP Services

Draft.  Apple Computer, Inc. 4/30/96

Using IP Multicasting 8

Open Transport TCP/IP provides IP multicasting level 2, as described in RFC
1112. To join a multicast group, use the IP_ADD_MEMBERSHIP option (page 8-37),
passing in a TIPAddMulticast structure to specify the address and network
interface of the group you wish to join. For a multihomed system, you can use
the value kOTAnyInetAddress for the interface address to use the default
multicast interface.

The time-to-live value for outbound multicast data defaults to 1; you can use
the IP_MULTICAST_TTL option to set a different value. The time-to-live value is a
hop count: Each router that processes the datagram decrements the Time to
Live field and discards the datagram if the value reaches 0. Because every
router that receives a multicast packet forwards it, a high time-to-live value for
a multicast packet can cause the packet to propagate widely through the
internet. Therefore, keep this value as low as possible.

By default, Open Transport IP loops back multicast datagrams to any
member of the group on the sending machine. Pass a value of T_NO to
the IP_MULTICAST_LOOP option to turn off loopbacks.

Using the Hosts File 8

The Open Transport DNR supports use of a Hosts file, which is located in the
Preferences folder in the System Folder. The DNR parses the Hosts file when
TCP/IP is loaded and uses it to initialize its list of host addresses, aliases, and
name servers.

Note
Because the DNR downloads the information in the Hosts
file and keeps it in RAM, a large Hosts files waste memory
and degrades the performance of the DNR. Therefore, you
should avoid using a Hosts file, or if you must use one,
keep the Hosts file as small as possible. ◆

The Hosts file can include lines of data, blank lines, and comments. A comment
begins with a semicolon (;) and can be on the same line as data. The comment
extends from the semicolon to the end of the line.

C H A P T E R 8

TCP/IP Services

Using TCP/IP Services 8-13
Draft.  Apple Computer, Inc. 4/30/96

A data line in the Hosts file has either of the following two formats (the square
brackets indicate an optional element):

domain-name [time-to-live IN] type rdata

domain-name [IN time-to-live] type rdata

The elements are defined as follows:

domain-name An absolute or fully qualified domain name unless the
data type is CNAME, in which case the name can be an alias.
It need not be terminated by a period (.), but must contain
at least one period internally.

time-to-live The record’s configured lifetime, in seconds. If this field is
not present, the DNR assumes the entry has an infinite
lifetime. You can also specify –1 for the time to live to
indicate an infinite lifetime.

IN The data class; always IN indicating the internet domain.
type The type of data. This field can be A for a host address,

CNAME for the canonical name of an alias, or NS for a
name server. Other DNS types are not supported in the
Hosts file.

rdata The data. For the A data type, this field must be an address
in dotted-decimal format. For the CNAME and NS data types,
this field must be a fully qualified domain name.

Here are some sample data lines:

apple.com A 130.43.2.2 ;address of host apple.com

rivers IN CNAME rivers.apple.com ;canonical name of the host
; whose local alias is “rivers”

mit.edu. 86400 NS achilles.mit.edu ;name server for mit.edu
; domain. Entry has a 1-week
; lifetime

Querying DNS Servers 8

In addition to the explicit simplified functions that are provided for the most
commonly made queries such as name-to-address, address-to-name, system

C H A P T E R 8

TCP/IP Services

8-14 Using TCP/IP Services

Draft.  Apple Computer, Inc. 4/30/96

CPU and OS, and mail exchange queries, there is a generic query function,
OTInetQuery, that you can use for any DNS query.

The OTInetQuery function allows you to use the Domain Name Resolver (DNR)
for generic domain name service (DNS) queries. You can ask for any query type
and class, and in response, Open Transport returns as many DNSQueryInfo
structures as it can fit in the buffer you provide.

There are three types of responses: answers, authority responses, or additional
information, and there are typically several of each type. Each response has its
own DNSQueryInfo structure, with all the answers first, then all the authority
records, then all the additional information. Authority responses refer you to
DNS servers and other sources that may have helpful information for this
answer and additional responses provide address data for the servers and
sources referred to in the authority records.

If, for example, you use the OTInetQuery function to find out the IP addresses
for a name, you might get back 13 DNSQueryInfo structures in your answer
buffer: With, say, 2 IP address structures, 4 authority responses, and 7
additional information responses.

To help you parse this huge answer buffer, Open Transport provides two
optional parameters for the OTInetQuery function, argv and argvlen, that create
an array pointing to the individual responses.

Using General Open Transport Functions With TCP/IP 8

This section describes any special considerations that you must take into
account for Open Transport functions when you use them with the Open
Transport TCP/IP implementation. You should be familiar with the function
descriptions in the chapters “Endpoints” and “Mappers” in this book before
reading this section.

C H A P T E R 8

TCP/IP Services

Using TCP/IP Services 8-15
Draft.  Apple Computer, Inc. 4/30/96

Obtaining Endpoint Data With TCP/IP 8

The following values can be returned by the info parameter to the
OTOpenEndpoint, OTAsyncOpenEndpoint, and OTGetEndpointInfo functions when
used with TCP/IP protocols:

IMPORTANT

The preceding table shows only what values are possible
for each protocol. Be sure to to use the OTOpenEndpoint,
OTAsyncOpenEndpoint, or OTGetEndpointInfo function to
obtain the current values for these parameters. ▲

Parameter TCP RawIP and UDP Meaning

info->addr T_INVALID

Greater than 0

T_INVALID

Greater than 0

No access to transport protocol
addresses is provided.
Maximum size of a protocol
address.

info->options T_INVALID
Greater than 0

T_INVALID
Greater than 0

No options.
Maximum number of bytes
needed to hold protocol-
specific options.

info->tsdu 0
T_INVALID

Greater than 0

TSDUs not supported.
Transfer of normal data not
supported.
Maximum size of a TSDU.

info->etsdu T_INFINITE
T_INVALID

No limit on the size of an ETSDU.
Transfer of expedited data not
supported.

info->connect T_INVALID T_INVALID Data cannot be sent with
functions that establish
connections.

info->discon T_INVALID T_INVALID Data cannot be sent with abortive
disconnects.

info->servtyp
e

T_COTS

T_COTS_ORD

T_CLTS

Connection mode supported;
orderly disconnects not
supported.
Connection mode and orderly
disconnects supported.
Connectionless mode supported.

info->flags T_SENDZERO T_SENDZERO Zero-length TSDUs supported.

C H A P T E R 8

TCP/IP Services

8-16 Using TCP/IP Services

Draft.  Apple Computer, Inc. 4/30/96

These fields and the significance of their values are described in more detail in
the document X/Open CAE Specification: X/Open Transport Interface (XTI).

Using Endpoint Functions With TCP/IP 8

This section describes protocol-specific information about functions described
in the chapter “Endpoints” in this book. The functions are listed in the same
order that they appear in that chapter.

OTBind 8

The OTBind function associates a local protocol address with the endpoint you
specify. You must use this function for every protocol.

The addr field of the TBind structure refers to the local endpoint and so must
specifically include a port number. Use an InetAddress structure (described in
“Internet Address Structure” on page 8-23) to specify this address.

Because the architecture of Open Transport TCP/IP provides for multihoming
(although this feature has not yet been implemented), you can specify an IP
address of kOTAnyInetAddress to indicate that your application or process will
accept packets from any TCP/IP interface that the user has configured in the
TCP/IP control panel.

If you specify an address of 0 to the OTBind function, then the OTGetProtAddress
function always returns an IP address of 0. In that case, you must use the
OTInetGetInterfaceInfo function (page 8-52) to determine the IP address of a
running IP interface. However, if you pass in a valid address with a port
number of 0, the TCP/IP service provider assigns a port for you and the
OTGetProtAddress function returns the assigned port number.

You can use the OTInetGetInterfaceInfo function (page 8-52) to get the IP
addresses of all currently configured IP interfaces. Then, if you wish to receive
packets from only a single interface, you can bind the endpoint to the address
for that interface.

OTLook 8

The OTLook function checks for asynchronous events such as incoming data or
connecton requests. You can use this function with any protocol.

As soon as a segment with the TCP urgent pointer set (that is, expedited data)
enters the TCP receive buffer, TCP posts the T_EXDATA event. The T_EXDATA event

C H A P T E R 8

TCP/IP Services

Using TCP/IP Services 8-17
Draft.  Apple Computer, Inc. 4/30/96

remains posted until you have retrieved all data up to the byte pointed to by
the TCP urgent pointer.

OTGetProtAddress 8

If you bind an endpoint to an IP address of 0 in order to accept packets from
any valid TCP/IP interface, then the OTGetProtAddress function always returns
an IP address of 0. This is because in a multihomed machine, there is a separate
IP address for each interface, and there’s no way for open transport to know
which one you want. in that case, you must use the OTInetGetInterfaceInfo
function (page 8-52) to determine the IP address of a running IP interface.
On the other hand, if you bind an endpoint to a specific interface, the
OTGetProtAddress function returns the address of that interface, as expected.

OTConnect 8

The OTConnect function requests a connection to a specified remote endpoint.
You can use this function with TCP but not with UDP or IP.

The rcvcall->addr field returns the same TNetbuf structure you specify in the
sndcall->addr field.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the sndcall->udata.len field
to 0. TCP ignores any data in the sndcall->udata.buf field.

Note that TCP, not the receiving application, confirms the connection.

OTRcvConnect 8

The OTRcvConnect function reads the status of a previously issued connection
request. You can use this function with TCP, but not with UDP or IP.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the call->udata.maxlen field
to 0. TCP ignores any data in the call->udata.buf field.

On return, the call->addr field points to the fully qualified internet address of
the endpoint that accepted the connection.

C H A P T E R 8

TCP/IP Services

8-18 Using TCP/IP Services

Draft.  Apple Computer, Inc. 4/30/96

OTListen 8

The OTListen function listens for an incoming connection request. You can use
this function with TCP, but not with UDP or IP.

When the OTListen function successfully completes execution (that is, when
you receive the T_LISTEN event), the call parameter describes a connection
that has already been completed at the TCP level. You use the OTAccept
function to complete a connection at the application level. If you wish to reject
a connection, you must call the OTSndDisconnect function after the OTListen
function successfully completes execution.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the call->udata.len field to
0. TCP ignores any data in the call->udata.buf field.

OTAccept 8

The OTAccept function accepts an incoming connection request. You can use this
function with TCP, but not with UDP or IP.

Because TCP does not allow you to send any application-specific data during
the connection establishment phase, you must set the call->udata.len field to
0. TCP ignores any data in the call->udata.buf field.

If you wish to send either of the association-related options (IP_OPTIONS or
IP_TOS) with the connection confirmation, you must use the OTOptionManagement
function to set the values of these options before you receive the T_LISTEN
event. TCP has already established a connection when you receive the T_LISTEN
event, and it is too late for the OTAccept function to negotiate these options.

OTSndUData 8

The OTSndUData function sends data through a connectionless transactionless
endpoint. You can use this function with UDP and IP, but not with TCP.

The current value for the maximum size of a RawIP or UDP datagram is
returned in the info->tsdu parameter of the OTOpenEndpoint,
OTAsyncOpenEndpoint, and OTGetEndpointInfo functions.

OTSnd 8

The OTSnd function sends data through a connection-oriented transactionless
endpoint. You can use this function with TCP, but not with UDP or IP.

C H A P T E R 8

TCP/IP Services

Using TCP/IP Services 8-19
Draft.  Apple Computer, Inc. 4/30/96

TCP ignores the OTSnd function’s T_MORE flag.

If you set the T_EXPEDITED flag, you must send at least 1 byte of data. If you call
the OTSnd function with more than 1 byte specified and the T_EXPEDITED flag set,
the TCP urgent pointer points to the last byte of the buffer.

OTRcv 8

The OTRcv function receives data through a connection-oriented endpoint. You
can use this function with TCP, but not with UDP or IP.

Because TCP ignores the T_MORE flag when it is sending data and does not
transmit the flag, you should ignore the T_MORE flag when receiving normal
data. However, if a byte in the data stream is pointed to by the TCP urgent
pointer, TCP receives this byte and as many bytes as possible preceding the
marked byte with the T_EXPEDITED flag set. If your buffer is too small to receive
all of the expedited data, TCP sets the T_MORE flag as well. Note that this
situation might result in the number of bytes received as expedited data not
being equal to the number of bytes sent by the originator as expedited data.

OTSndDisconnect 8

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request. You can use this function with TCP, but not with UDP or IP.

Because TCP does not allow you to send any application-specific data during a
disconnect, you must set the call->udata.len field to 0. TCP ignores any data
in the call->udata.buf field.

OTRcvDisconnect 8

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated. You can use this
function with TCP, but not with UDP or IP.

Because TCP does not allow you to send any application-specific data during a
disconnection, you must set the discon->udata.len field to 0. TCP ignores any
data in the discon->udata.buf field.

C H A P T E R 8

TCP/IP Services

8-20 Using TCP/IP Services

Draft.  Apple Computer, Inc. 4/30/96

Using Mapper Functions With TCP/IP 8

This section describes protocol-specific information about functions described
in the chapter “Mappers” in this book. The functions are listed in the same
order that they appear in that chapter.

OTRegisterName 8

Because the TCP/IP domain name system does not include a method for
clients to register their names on the network, the Open Transport domain
name resolver (DNR) does not support the OTRegisterName function. If you
call this function for a TCP/IP mapper, it will return the kOTNotSupportedErr
result code.

OTDeleteName 8

This function is not supported by the TCP/IP domain name resolver (DNR).
If you call this function for a TCP/IP mapper, it will return the
kOTNotSupportedErr result code.

OTLookupName 8

You can use the OTLookupName function to resolve a domain name to an internet
address. Specify the name as a character string pointed to by the
request->udata.buf parameter. The name can be just a host name (otteam), a
partially qualified domain name (“otteam.ssw”), a fully qualified domain name
(“otteam.ssw.apple.com.”), or an internet address in dotted-decimal format
(“17.202.99.99”), and can optionally include the port number
(“otteam.ssw.apple.com:25” or “17.202.99.99:25”).

The function returns a pointer to the address in the reply->udata.buf
parameter. The address is in the format of an InetAddress structure (page 8-23),
which includes the address type, the port number, and the IP address in
hexadecimal format. If you don’t specify a port number, the returned
InetAddress structure contains a port number of 0. You can use this address
directly in all Open Transport functions that require an internet address, such
as OTConnect, OTSndUData, and OTBind.

The OTLookupName function returns only a single address, regardless of how
many addresses are known for a single multihomed host. To obtain a list of up
to 10 addresses for a multihomed host, use the OTStringToAddress function
(page 8-42).

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-21
Draft.  Apple Computer, Inc. 4/30/96

TCP/IP Services Reference 8

This section describes the data structures and functions provided by the TCP/
IP service provider.

Constants and Data Types 8

This section describes the data types used by the TCP/IP service interface.

Basic Types and Constants 8

The data types defined in this section are used by other structures and
functions of the Open Transport API. They are not specific to TCP/IP, but are
included here for your convenience.

typedef unsigned char UInt8;
typedef unsigned short UInt16;
typedef unsigned long UInt32;

typedef char SInt8;
typedef short SInt16;
typedef long SInt32;

typedef UInt16 InetPort;
typedef UInt32 InetHost;

You can use the protocol names kTCPName, kUDPName, and kRawIPName when
calling the OTCreateConfiguration function to configure an endpoint. You can
use the protocol name kDNRName when calling the OTCreateConfiguration
function to configure a mapper. The OTCreateConfiguration function is
described in the chapter “Configuration Management” in this book.

#define kDNRName 'dnr'
#define kTCPName 'tcp'
#define kUDPName 'udp'
#define kRawIPName 'rawip'

C H A P T E R 8

TCP/IP Services

8-22 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

You can use the constant kDefaultInternetServicesPath to create a TCP/IP
service provider. Its value is a pointer to a configuration structure, so you do
not use the OTCreateConfiguration function with this constant. Instead you use
this constant as a parameter when calling the OTAsyncOpenInternetServices and
the OTOpenInternetServices functions that create TCP/IP service providers.

#define kDefaultInternetServicesPath((OTConfiguration*)-3)

You use the AF_INET and AF_DNS values as address types when filling in address
structures (see “Internet Address Structure” on page 8-23 and “DNS Address
Structure” on page 8-24). You can use the kOTAnyInetAddress value with the
OTBind function (page 8-16).

enum {
AF_INET = 2,, /* TCP/IP address */
AF_DNS = 42 /* domain name server address */

};

You can use the kOTAnyInetAddress value with the OTBind function (page 8-16).

enum {
kOTAnyInetAddress = 0 /* wildcard */

};

enum {
kMaxHostAddrs = 10,
kMaxSysStringLen = 32,
kMaxHostNameLen = 255

};
typedef char InetDomainName[kMaxHostNameLen];

Note
The maximum valid domain-name length for fully
qualified domain names includes the trailing period (.).
Names not terminated with a period are limited to
254 bytes. ◆

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-23
Draft.  Apple Computer, Inc. 4/30/96

The following completion event codes are returned by TCP/IP service
provider functions:

enum {
T_DNRSTRINGTOADDRCOMPLETE = kPRIVATEEVENT+1,
T_DNRADDRTONAMECOMPLETE = kPRIVATEEVENT+2,
T_DNRSYSINFOCOMPLETE = kPRIVATEEVENT+3,
T_DNRMAILEXCHANGECOMPLETE = kPRIVATEEVENT+4,
T_DNRQUERYCOMPLETE = kPRIVATEEVENT+5

};

enum {
kDefaultInetInterface = -1,
kInetInterfaceInfoVersion = 2

};

enum {
kPRIVATEEVENT = (OTEventCode)0x10000000

};

The following are miscellaneous TCP/IP-related constants. Some, such as the
version number, are subject to change.

#define kInetVersion "3.0" /* MacTCP 3.0*/

#define kInetPrefix "ot:inet$"

#define SET_TOS(prec,tos) (((0x7 & (prec)) << 5) | (0x1c & (tos)))

Internet Address Structure 8

You use the internet address structure when providing a TCP or UDP address
to the Open Transport functions OTConnect, OTSndURequest, and OTBind.
You can use the OTInitInetAddress function (page 8-53) to fill in an internet
address structure. The internet address structure is defined by the InetAddress
data type.

struct InetAddress {
OTAddressType fAddressType; /* address type; always AF_INET */
InetPort fPort; /* port number */

C H A P T E R 8

TCP/IP Services

8-24 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

InetHost fHost; /* host address (network byte order) */
UInt8 fUnused[8]; /* reserved */

};

Field descriptions
fAddressType The address type. The only possible value for this field is

AF_INET, which identifies the TCP/IP protocol family.

fPort The port number.
fHost The IP address of the host in network byte order (that is,

high-order byte first) in hexadecimal notation.
fUnused Reserved.

DNS Address Structure 8

You can use the DNS (domain name system) address structure with the
OTConnect function when you are creating a TCP endpoint, with the OTSndUData
function when you are creating a UDP endpoint, or with the OTResolveAddress
function with either TCP or UDP endpoints. If you do so, the domain name
resolver (DNR) will resolve the address for you automatically. You can use the
OTInitDNSAddress function (page 8-55) to fill in a DNS address structure. The
DNS address structure is defined by the DNSAddress data type.

struct DNSAddress {
OTAddressType fAddressType; /* address type; always AF_DNS */
InetDomainName fName; /* domain name */

};

Field descriptions
fAddressType The address type. The only possible value for this field is

AF_DNS.

fName The address to be resolved by the DNR.
This address you specify can be just the host name (“otteam”), a partially
qualified domain name (“otteam.ssw”), a fully qualified domain name
(“otteam.ssw.apple.com.”), or an internet address in dotted-decimal format
(“17.202.99.99”), and can optionally include the port number
(“otteam.ssw.apple.com:25” or “17.202.99.99:25”).

Because the port number is not actually part of the domain name, it is possible
to have a domain name–port number combination that exceeds 255 bytes. If

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-25
Draft.  Apple Computer, Inc. 4/30/96

you wish to specify such a string, you must provide a structure based on the
DNS address structure that has sufficient space to contain the full string. In any
case, the domain name itself cannot exceed 255 bytes.

You can use the DNS address structure to provide an unresolved TCP address
with the OTConnect function or a UDP address with the OTSndUData function. To
do so, specify a pointer to the DNS address structure as the udata->addr.buf
parameter in your call to the OTSndUData function or as the sndCall->addr.buf
parameter in your call to the OTConnect function.

DNS Query Information Structure 8

The DNS query information structure is used by the Domain Name Resolver
(DNR) to return answers to DNS queries made using the OTInetQuery function.
The DNS query information structure is defined by the DNSQueryInfo data type.

struct DNSQueryInfo {
UInt16 qType;
UInt16 qClass;
UInt32 ttl;
InetDomainName name;
UInt16 responseType;
UInt16 resourceLen;
char resourceData[4];

};
typedef struct DNSQueryInfo DNSQueryInfo;

Field descriptions
qType The DNS query type, such as MX and PTR, for which you

wish to query.

qClass The DNS query class, such as Inet and Hesiod, for which
you wish to query.

ttl An integer indicating the resource record’s time to live (in
seconds). To reduce network overhead, keep this value as
low as possible.

name The fully qualified domain name or address for which you
are making the query. In the case of a CNAME data types, the
name can be an alias or a partially qualified domain name,
and if you use either of these, the OTInetQuery function
returns a fully qualified canonical name.

C H A P T E R 8

TCP/IP Services

8-26 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

responseType The type of response. This can be an answer (a value of 2),
an authority response (a value of 3), or additional
information (a value of 4). Answers provide the
information you are seeking (such as a resolved internet
address), authority responses refer you to DNS servers and
other sources that may have helpful information for this
answer, and additional responses provide address data for
the servers and sources referred to in the authority
responses.

resourceLen The actual length of the resource data returned.
resourceData The resource data that is returned. This is at least 4 bytes

long, and is usually longer.

Internet Interface Information Structure 8

The OTInetGetInterfaceInfo function (page 8-52) returns information about the
local host in an internet interface information structure. The internet interface
information structure is defined by the InetInterfaceInfo data type.

struct InetInterfaceInfo {
InetHost fAddress; /* host address */
InetHost fNetmask; /* subnet mask */
InetHost fBroadcastAddr; /* broadcast address */
InetHost fDefaultGatewayAddr; /* default gateway

 address */
InetHost fDNSAddr /* DNS address*/
UInt16 fVersion; /* version number */
UInt16 fHWAddrLen /* HW addr length */
UInt8* fHWAddr; /* HW address */
UInt32 fIfMTU /* Max Trans Unit */
UInt8* fReservedPtrs[2]; /* reserved */
InetDomainName fDomainName; /* host’s domain name */
UInt8 fReserved[256]; /* reserved */

};

Field descriptions
fAddress The IP address of the local host in network byte order (that

is, high-order byte first) in hexadecimal notation.

fNetMask The subnet mask of the local IP network.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-27
Draft.  Apple Computer, Inc. 4/30/96

fBroadcastAddr The broadcast address for the interface. The broadcast
address can also be calculated by performing an OR
operation on the address with the complement of the
subnet mask.

fDefaultGatewayAddr
The IP address of the default gateway. The default
gateway is a router or gateway that can forward any
packet destined outside the locally connected subnet. This
information is optional; if you don’t have a default
gateway, you need a specific route for every packet or
message sent to a subnet other than your own your
directly connected subnet.

fDNSAddr The address of a domain name server. This value can be
returned by a server or typed in by the user during
configuration of the TCP/IP interface.

fVersion The version of the OTInetGetInterfaceInfo function;
currently equal to 1.

fHWAddrLen The length (in bytes) of the hardware address.
fHWAddr A pointer to the hardware address.
fIfMTU The maximum transmission unit size permitted for this

interface’s hardware.
fReservedPtrs Reserved.
fDomainName The default domain name of the host. This name doesn’t

include the host name.
fReserved Reserved.

Internet Host Information Structure 8

The OTInetStringToAddress function (page 8-42) returns IP addresses for a host
in an internet host information structure. The internet host information
structure is defined by the InetHostInfo data type.

struct InetHostInfo {
InetDomainName name;
InetHost addrs[kMaxHostAddrs];

};

C H A P T E R 8

TCP/IP Services

8-28 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

Field descriptions
name The canonical name of the host. The canonical name is a

fully qualified domain name that is not an alias.

addrs Up to ten IP addresses associated with this host name.
Only multihomed hosts have more than one IP address.

Internet System Information Structure 8

The OTInetSysInfo function (page 8-46) returns information about a host in an
internet system information structure. The internet system information
structure is defined by the InetSysInfo data type.

struct InetSysInfo {
char cpuType[kMaxSysStringLen];
char osType[kMaxSysStringLen];

};

Field descriptions
cpuType The CPU type of the specified host. This is a displayable

character string maintained by the domain name server.

osType The operating system running on the specified host. This
is a displayable character string maintained by the domain
name server.

IP Multicast Address Structure 8

You use the IP multicast address structure with the IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP options (page 8-37) when you are adding or dropping
membership in an IP multicast address. The IP multicast address structure is
defined by the TIPAddMulticast data type.

struct TIPAddMulticast {
InetHost multicastGroupAddress;
InetHost interfaceAddress;

};

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-29
Draft.  Apple Computer, Inc. 4/30/96

Field descriptions
multicastGroupAddress

The IP address of the multicast group for which you want
to add or drop membership.

interfaceAddress The IP address of the network interface that you are using
for the multicast group.

Internet Mail Exchange Structure 8

The OTInetMailExchange function (page 8-47) returns host names and mail
preference values in an array of internet mail exchange structures. The internet
mail exchange structure is defined by the InetMailExchange data type.

struct InetMailExchange {
UInt16 preference;
InetDomainName exchange;

};

Field descriptions
preference The mail exchange preference value. The mail exchanger

with the lowest preference number is the first one to which
mail should be sent.

exchange The fully qualified domain name of a host that can accept
mail for your target host.

Options 8

This section describes the TCP, UDP, and IP options that you can use with
provider functions such as OTOptionManagement, OTConnect, OTSndUData, or
OTSndURequest.

Protocol Levels 8

The protocol level specifies the protocol to which the option applies. You
specify the protocol level in the level field of the TOption structure when you
specify an option.

C H A P T E R 8

TCP/IP Services

8-30 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

enum {
INET_IP = 0x0,
INET_TCP = 0x06,
INET_UDP = 0x11

};

TCP Options 8

You can use the options in this section with a protocol level of INET_TCP. These
TCP options are not association-related. They may be negotiated in all
endpoint states except T_UNBND and T_UNINIT. They are read-only in state
T_UNBND.

#define TCP_NODELAY 0x01 /* set TCP delay mode */
#define TCP_MAXSEG 0x02 /* read max segment size */
#define TCP__NOTIFY_THRESHOLD 0x10 /* reserved */
#define TCP_ABORT_THRESHOLD 0x11 /* reserved */
#define TCP__CONN_NOTIFY_THRESHOLD 0x12 /* reserved */
#define TCP_CONN_ABORT_THRESHOLD 0x13 /* reserved */
#define TCP_OOBINLINE 0x14 /* reserved */
#define TCP_URGENT_PTR_TYPE 0x15 /* reserved */
#define TCP_KEEPALIVE OPT_KEEPALIVE /* activate keep-alive timer */
};

Option descriptions

TCP_NODELAY Set the TCP delay mode. By default, when TCP has a full
segment’s worth of data, it sends the segment
immediately; but if it receives less than a segment’s worth
of data and has not yet received acknowledgment for the
last packet sent, it saves the data until it either receives a
full segment’s worth, it receives acknowledgment for the
last packet, or until a timeout period has expired. (In this
context, a full segment is the maximum-sized unit of data
that can be sent by TCP at one time and a packet is data that
is transmitted as a single unit.) Specify T_YES for this
option to cause all data to be sent immediately. Specify
T_NO to return TCP to the default delay mode. A request to
set this option to no delay is an absolute requirement.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-31
Draft.  Apple Computer, Inc. 4/30/96

TCP_MAXSEG Read the maximum TCP segment size. The maximum
segment size is returned as an unsigned long specifying
the number of octets. This option is read-only.

TCP_NOTIFY_THRESHOLD
Reserved.

TCP_ABORT_THRESHOLD
Reserved.

TCP_CONN_NOTIFY_THRESHOLD
Reserved.

TCP_CONN_ABORT_THRESHOLD
Reserved.

TCP_OOBINLINE Reserved.
TCP_URGENT_PTR_TYPE

Reserved.
TCP_KEEPALIVE Activate the keep-alive timer. If this option is set on, TCP

monitors idle connections and sends a keep-alive packet to
check a connection after a preset time has expired. You use
a t_kpalive structure, described later in this section, to
specify the value of this option. The default state for the
keep-alive timer is off. A request to activate or deactivate
the keep-alive timer is an absolute requirement.

The TCP_KEEPALIVE option uses a t_kpalive structure, defined as follows:

struct t_kpalive {
long kp_onoff; /* option on/off */
long kp_timeout; /* timeout in minutes */

};

Field descriptions
kp_onoff Activate or deactivate the keep-alive timer. Set this field to

T_YES to activate the timer or to T_NO to deactivate it. A
request to activate or deactivate the timer is an absolute
requirement. The default value of this field is T_NO. The
Open Transport TCP implementation does not support the
value T_YES|T_GARBAGE for this field.

kp_timeout Set the requested timeout value, in minutes. Specify a
value of T_UNSPEC to use the default value. You may specify
any positive value for this field of 120 minutes or greater.

C H A P T E R 8

TCP/IP Services

8-32 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

The timeout value is not an absolute requirement; if you
specify a value less than 120 minutes, TCP will renegotiate
a timeout of 120 minutes.

UDP Options 8

You can use the options in this section with a protocol level of INET_UDP. The
UDP_CHECKSUM option is association-related. It may be negotiated in all endpoint
states except T_UNBND and T_UNINIT. It is read-only in state T_UNBND. The
UDP_RX_ICMP option is read-only in all states.

#define UDP_CHECKSUM OPT_CHECKSUM /* calculate checksum */
#define UDP_RX_ICMP 0x2 /* read max segment size */

Option descriptions

UDP_CHECKSUM Activate or deactivate a checksum calculation. Specify
T_YES to activate the checksum calculation or T_NO to
deactivate it. The default value for this option is T_YES. If
this option is returned by the OTRcvUData function, its value
indicates whether a checksum was present in the received
datagram. UDP discards packets that do not have valid
checksums when this option is activated. UDP relies on
checksum calculations to provide reliable data delivery;
under normal circumstances, you should never deactivate
this option. A request to activate or deactivate checksums
is an absolute requirement.

UDP_RX_ICMP Determine whether the UDP Streams module has received
an ICMP message. This option returns a Boolean value.

IP Options 8

You can use the options in this section with a protocol level of INET_IP. The
IP_OPTIONS and IP_TOS options are association-related; the other IP options are
not. The IP_REUSEADDR option may be negotiated in all endpoint states except
T_UNINIT. The other options may be negotiated in all endpoint states except
T_UNBND and T_UNINIT. They are read-only in state T_UNBND. A request for any of
these options is an absolute requirement.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-33
Draft.  Apple Computer, Inc. 4/30/96

#define IP_OPTIONS 0x01 /* enable/disable options */
#define IP_TOS 0x02 /* set/get type of service */
#define IP_TTL 0x03 /* set/get time to live */
#define IP_REUSEADDR 0x04 /* bind multiple addresses to one port */
#define IP_DONTROUTE 0x10 /* bypass standard routing */
#define IP_BROADCAST 0x20 /* get permission to send broadcasts */
#define IP_HDRINCL 0x1002 /* reserved */
#define IP_RCVOPTS 0x1005 /* reserved */
#define IP_RCVDSTADDR 0x1007 /* reserved */
#define IP_MULTICAST_IF 0x1010 /* set/get IP multicast interface */
#define IP_MULTICAST_TTL 0x1011 /* set/get multicast time to live */
#define IP_MULTICAST_LOOP 0x1012 /* set/get IP multicast loopback */
#define IP_ADD_MEMBERSHIP 0x1013 /* add an IP group membership */
#define IP_DROP_MEMBERSHIP 0x1014 /* drop an IP group membership */
#define IP_BROADCAST_IF 0x1015 /* reserved */
#define IP_RCVIFADDR 0x1016 /* reserved */

Possible flag values for the IP_TOS option are as follows:

/* IP_TOS precedence levels */
enum {

T_ROUTINE = 0,
T_PRIORITY = 1,
T_IMMEDIATE = 2,
T_FLASH = 3,
T_OVERRIDEFLASH = 4,
T_CRITIC_ECP = 5,
T_INETCONTROL = 6,
T_NETCONTROL = 7

};

/* IP_TOS type of service */
enum {

T_NOTOS = 0x0,
T_LDELAY = (1<<4),
T_HITHRPT = (1<<3),
T_HIREL = (1<<2)

};

C H A P T E R 8

TCP/IP Services

8-34 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

Option descriptions

IP_OPTIONS Set the value of the Options field in the header of each
outgoing IP datagram, or receive the Options field of each
incoming IP datagram. This option is intended for use by
network debugging and control programs; most
applications do not need this option. Normally, you use
Open Transport option management functions or
configuration strings to set options. The option
management functions are described in the chapter
“Option Management” in this book, and configuration
strings are described in the chapter “Configuration
Management” in this book.
The value for this option consists of a string of octets
whose formats follow the definitions of IP options in the
current RFCs with one exception: If you specify a source
routing option, the first address in the list of gateways
must be for the first-hop gateway. Open Transport extracts
the first-hop gateway address from the option list and
adjusts the size of the list before transmitting the packet.
The Options field can contain up to 40 octets.
To disable this option, specify an option header only with
no option values. This option is enabled by default any
time you use an Open Transport option-management
function or a configuration string to set an IP option that
must be negotiated.
If you enable IP_OPTIONS, the function OTOptionManagement
with the T_CURRENT action flag set returns the list of IP
options that are currently being sent with outgoing IP
datagrams.
The functions OTConnect (in synchronous mode only),
OTListen, OTRcvConnect, and OTRcvUData return the Options
field of the received IP datagram. The OTRcvUDErr function
returns the Options field of the previously sent datagram
that caused the error.

IP_TOS Set the Type of Service field of each outgoing IP datagram,
or receive the Type of Service field of each incoming IP
datagram. Open Transport hosts and routers ignore the
Type of Service field, but you can set this value for use
with other networks if you so desire. The data for this
option is any combination of a Precedence flag and a Type

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-35
Draft.  Apple Computer, Inc. 4/30/96

of Service flag. Use the OR operator to combine the flags.
The possible values for these flags are shown at the
beginning of this section.
If you enable IP_TOS, the function OTOptionManagement with
the T_CURRENT action flag set returns the Type of Service
flags that are currently being sent with outgoing IP
datagrams.
The functions OTConnect (in synchronous mode only),
OTListen, OTRcvConnect, and OTRcvUData return the Type of
Service field of the received IP datagram. The function
OTRcvUDErr returns the Type of Service field of the
previously sent datagram that caused the error.

IP_TTL Set the Time to Live field of each outgoing IP datagram.
Specify the number of hops as an unsigned char. Each
router that processes the datagram decrements the Time to
Live field and discards the datagram if the value reaches 0.
The default value for this field is 255. Because this is not an
association-related option, there is no function that returns
the Time to Live field of an incoming datagram.

IP_REUSEADDR Allow multiple addresses with the same port number. Set
this option to T_YES to allow TCP to bind a transport
endpoint to a wildcard address (that is, an address of 0)
that includes a port number plus bind one or more
additional endpoints to distinct fully specified internet
addresses that include the same port number. If this option
is set to T_NO (the default), TCP cannot bind two or more
transport endpoints to addresses that include the same
port number.

IP_DONTROUTE Use addresses on connected subnets only. Set this option to
T_YES to cause outgoing messages to be delivered to the
local network only and not to go through any routers or
gateways. (This options sets the time-to-live value to 1.)
This option is intended for testing and development
purposes. Specify T_NO to disable this option. This option is
disabled by default.

IP_BROADCAST Request permission to send broadcast datagrams. Set this
option to T_YES to request permission to send broadcast
datagrams. Specify T_NO to disable this option. This option
is disabled by default.

C H A P T E R 8

TCP/IP Services

8-36 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

IP_HDRINCL Include the IP header with received data. Set this option to
T_YES to cause RawIP to include the IP header when you
read data. Set the option to T_NO (the default) to receive
only the data without the header. This option works with
the RawIP interface only.

IP_RCVOPTS Include IP-level options when you call the OTRcvUData
function. If you set this option to T_YES (the default), the
OTRcvUData function returns IP-level options along with the
UDP options when you are receiving UDP data. If you set
this option to T_NO, you receive only UDP options.

IP_RCVDSTADDR For multihomed systems, include with received data the
address of the interface on which a message was received.
If you specify this option to T_YES, the OTRcvUData function
includes the address of the interface. If you specify this
option to T_NO (the default), you receive only the data.

IP_MULTICAST_IF Specify the TCP/IP interface to use for outgoing multicast
IP datagrams, or retrieve the interface this option is set to.
Specify the interface as a long (for example, if the address
is “1.2.3.4”, specify the address as 0x01020304). This option
and the other multicast options can be used with UDP and
RawIP only. In the case that a host is multihomed, this
option lets you specify which network interface to use for
multicasts. Whereas only one network interface can be
used at a time for multicast transmissions, an application
can join the same multicast group address on more than
one network interface. If you joined the same multicast
address on more than one network, this option lets you
determine over which network the datagram arrived.

IP_MULTICAST_TTL Set the Time to Live field for outgoing multicast IP
datagrams, or retrieve the Time to Live field set for an
interface. Each router that processes the datagram
decrements the Time to Live field and discards the
datagram if the value reaches 0. Specify the time to live as
an unsigned char. To avoid unneccessary network traffic,
you should set this value as low as possible. The default
value is 1.

IP_MULTICAST_LOOP
Enable loopbacks for outgoing multicast IP datagrams. Set
this option to T_YES to cause an outgoing multicast

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-37
Draft.  Apple Computer, Inc. 4/30/96

datagram to be delivered to yourself; set this option to T_NO
to disable loopbacks. Loopbacks are enabled by default.

IP_ADD_MEMBERSHIP
Add a membership in an IP multicast group. You use a
TIPAddMulticast structure to specify the address and
network interface of the group you wish to join. The
TIPAddMulticast structure is described in “IP Multicast
Address Structure” on page 8-28.

IP_DROP_MEMBERSHIP
Drop membership in an IP multicast group. You use a
TIPAddMulticast structure to specify the address and
network interface of the group you wish to leave.

IP_BROADCAST_IF Reserved.
IP_RCVIFADDR Reserved.
The following IP-level options are reserved for use by Apple Computer, Inc.

#define DVMRP_INIT 0x64
#define DVMRP_DONE 0x65
#define DVMRP_ADD_VIF 0x66
#define DVMRP_DEL_VIF 0x67
#define DVMRP_ADD_LGRP 0x68
#define DVMRP_DEL_LGRP 0x69
#define DVMRP_ADD_MRT 0x6A
#define DVMRP_DEL_MRT 0x6B

Functions 8

This section describes the functions provided by the TCP/IP service provider.
In addition to these functions, you need the functions described in the chapter
“Endpoints” of this book in order to implement TCP/IP communications.

Opening a TCP/IP Service Provider 8

This section describes the two functions you can use to open the TCP/IP
service provider: OTAsyncOpenInternetServices and OTOpenInternetServices.

C H A P T E R 8

TCP/IP Services

8-38 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

OTAsyncOpenInternetServices 8

Opens the TCP/IP service provider and returns an internet services reference.
This function runs asynchronously.

C INTERFACE

OSStatus OTAsyncOpenInternetServices (OTConfiguration *cfig,
 OTOpenFlags oflag
 OTNotifyProcPtr proc
 void *contextPtr);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

cfig A pointer to a network configuration structure. Specify nil for
this parameter to have the function provide the network
configuration structure for you. You can also obtain this pointer
by using the constant kDefaultInternetServicesPath for this
parameter.

oflag Reserved. Must be set to 0.

proc A pointer to your notifier function. The TCP/IP service
provider passes the internet services reference to your notifier
function in the cookie parameter.

contextPtr A pointer for your use. The TCP/IP service provider passes this
value unchanged to your notifier function.

DESCRIPTION

You must open the TCP/IP service provider before calling any TCP/IP services
function other than the address utility functions. You must provide the internet
services reference when calling any of these non-utility functions. The
OTAsyncOpenInternetServices function also sets the mode of all other TCP/IP
service provider functions as asynchronous.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-39
Draft.  Apple Computer, Inc. 4/30/96

If you want to set an option as part of the configuration string, you should
translate the option’s constant name, given in the header files, into a string that
the configuration functions can parse. For the TCP/IP options, Table 8-2
provides the constant name used in “Options,” beginning on page 8-29 and the
value to use in the configuration string.

Table 8-2 Configuration strings for TCP/IP options

Constant name Configuration string value

IP_OPTIONS “Options”

IP_TOS “TOS”

IP_TTL “TTL”

IP_RCVDSTADDR “RcvDestAddr”

IP_RCVIFADDR “RcvIFAddr”

IP_RCVOPTS “RcvOPts”

IP_REUSEADDR “ReuseAddr”

IP_DONTROUTE “DontRoute”

IP_BROADCAST “Broadcast”

IP_HDRINCL “HdrIncl”

IP_MULTICAST_IP “MulticastIF”

IP_MULTICAST_TTL “MulticastTTL”

IP_MULTICAST_LOOP “MulticastLoop”

IP_ADD_MEMBERSHIP “AddMembership”

IP_DROP_MEMBERSHIP “DropMembership”

IP_BROADCAST_IF “BroadcastIF”

UDP_CHECKSUM “Checksum”

UDP_RX_ICMP “RxICMP”

TCP_NODELAY “NoDelay”

TCP_OOBINLINE “OOBInline”

continued

C H A P T E R 8

TCP/IP Services

8-40 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

SEE ALSO

The OTOpenInternetServices function (described next) is a synchronous version
of the TCP/IP open services function.

The network configuration structure and OTCreateConfiguration function are
described in the chapter “Configuration Management” in this book.

Use the OTCloseProvider function, described in the chapter “Endpoints” in this
book, to close a TCP/IP service provider when you are finished using it.

OTOpenInternetServices 8

Opens the TCP/IP service provider and returns an internet services reference.
This function runs synchronously.

TCB_MAXSEG “MaxSeg”

TCP_NOTIFY_THRESHOLD “NotifyThreshold”

TCP_ABORT_THRESHOLD “AbortThreshold”

TCP_CONN_NOTIFY_THRESHOLD “ConnNotifyThreshold”

TCP_CONN_ABORT_THRESHOLD “ConnAbortThreshold”

TCP_KEEPALIVE “KeepAlive”

T_OPENCOMPLETE 0x20000007 The OTAsyncOpenInternetServices
function has completed.

Table 8-2 Configuration strings for TCP/IP options (continued)

Constant name Configuration string value

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-41
Draft.  Apple Computer, Inc. 4/30/96

C INTERFACE

InetSvcRef OTOpenInternetServices (OTConfiguration *cfig,
 OTOpenFlags oflag,
 OSStatus *err);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

cfig A pointer to a network configuration structure. Specify nil for
this parameter to have the function provide the network
configuration structure for you. You can also obtain this pointer
by using the constant kDefaultInternetServicesPath for this
parameter.

oflag Reserved. Must be set to 0.

err The function result.

DESCRIPTION

You must open the TCP/IP service provider before calling any TCP/IP service
function other than the address utility functions. The return value of this
function is the internet services reference. You must provide the internet
services reference when calling any of these non-utility functions. The
OTOpenInternetServices function also sets the mode of all other TCP/IP service
functions as synchronous.

If you want to set an option as part of the configuration string, you should
translate the option’s constant name, given in the header files, into a string that
the configuration functions can parse. For the TCP/IP options, Table 8-2 on
page 8-39 provides the constant name used in “Options,” beginning on
page 8-29 and the value to used in the configuration string

SEE ALSO

The OTAsyncOpenInternetServices function (page 8-38) is an asynchronous
version of the TCP/IP open services function.

C H A P T E R 8

TCP/IP Services

8-42 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

The network configuration structure and OTCreateConfiguration function are
described in the chapter “Configuration Management” in this book.

Use the OTCloseProvider function, described in the chapter “Endpoints” in this
book, to close a TCP/IP service provider when you are finished using it.

Resolving Internet Addresses 8

This section describes the functions that provide access to the services of the
domain name resolver (DNR).

OTInetStringToAddress 8

Resolves a domain name to its equivalent internet addresses.

C INTERFACE

OSStatus OTInetStringToAddress (InetSvcRef ref,
char *name,
InetHostInfo *hinfo);

C++ INTERFACE

OSStatus TInternetServices::StringToAddress (char *name,
InetHostInfo *hinfo);

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

name A pointer to the domain name you want to resolve. This can be
a host name, a partially qualified domain name, a fully
qualified domain name, or an internet address in
dotted-decimal format.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-43
Draft.  Apple Computer, Inc. 4/30/96

hinfo A pointer to an InetHostInfo structure that you provide. When
the function completes, it places the canonical name and up to
ten associated IP addresses in this structure. If the function
finds less than ten IP addresses, it fills in the rest of the address
array with zeros.

DESCRIPTION

Because the architecture of Open Transport TCP/IP provides for multihoming,
a single host can be associated with multiple internet addresses. You can use
the OTInetStringToAddress function to return multiple addresses for
multihomed hosts.

Note
Because multihoming has not been implemented
in the initial release of Open Transport, the
OTInetStringToAddress function never returns
more than one address. ◆

If you specify an internet address in dotted-decimal format for the hinfo
parameter, the OTInetStringToAddress function places that address in the
InetHostInfo.name field instead of a canonical name.

If you call the OTInetStringToAddress function asynchronously, the TCP/IP
service provider calls your notifier function with the
T_DNRSTRINGTOADDRCOMPLETE completion event code when the function
completes. The cookie parameter to the notifier function contains the pointer
you specified in the hinfo parameter. If you had more than one simultaneous
outstanding call to the OTInetStringToAddress function, you can use this
information to determine which call has completed execution.

SPECIAL CONSIDERATIONS

If you call the OTInetStringToAddress function asynchronously, do not write to
the InetHostInfo structure until the function completes.

C H A P T E R 8

TCP/IP Services

8-44 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

SEE ALSO

The OTLookupName function (page 8-20) provides a mapper interface to the
domain name resolver (DNR) that maps a name to a single internet address.

You can use the DNSAddress structure (page 8-24) to provide a domain name
directly to the OTConnect, OTSndUData, and OTResolveAddress functions. The
OTConnect, OTSndUData, and OTResolveAddress functions are described in the
chapter “Endpoints” in this book.

Use the OTInetAddressToName function (described next) to convert an IP address
into a domain name.

The InetHostInfo structure is described in “Internet Host Information
Structure” on page 8-27.

You can use the OTInetHostToString function (page 8-57) to convert addresses
in InetHost format into character strings using dotted-decimal notation.

OTInetAddressToName 8

Determines the canonical name of the host associated with an
internet address.

C INTERFACE

OSStatus OTInetAddressToName (InetSvcRef ref,
InetHost addr,
InetDomainName name);

C++ INTERFACE

TInternetServices::AddressToName (InetHost addr,
InetDomainName name);

T_DNRSTRINGTOADDRCOMPLETE 0x10000001 The OTInetStringToAddress
function has completed.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-45
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

addr The IP address for which you want to determine the associated
domain name in either dotted-decimal notation (for example,
“12.13.14.15”) or hexadecimal notation (for example,
“0x0c0d0e0f”).

name A character array you must allocate into which the function
places the canonical name.

DESCRIPTION

If you call this function asynchronously, the TCP/IP service provider calls your
notifier function with the T_DNRADDRTONAMECOMPLETE completion event code
when the function completes. The cookie parameter to the notifier function
contains a pointer to the InetHost structure you specified in the addr parameter.
If you had more than one simultaneous outstanding call to the
OTInetAddressToName function, you can use this information to determine which
call has completed execution.

COMPLETION EVENT CODES

SEE ALSO

Use the OTInetStringToAddress function (page 8-42) to determine the addresses
associated with an IP domain name.

You can use the OTInetStringToHost function (page 8-56) to put the address in
InetHost format.

Getting Information About an Internet Host 8

This section describes the functions you can use to get information about an
internet host.

T_DNRADDRTONAMECOMPLETE 0x10000002 The OTInetAddressToName
function has completed.

C H A P T E R 8

TCP/IP Services

8-46 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

OTInetSysInfo 8

Returns details about a host’s processor and operating system.

C INTERFACE

OSStatus OTInetSysInfo (InetSvcRef ref,
char *name,
InetSysInfo *sysinfo);

C++ INTERFACE

OSStatus TInternetServices::SysInfo (char *name,
InetSysInfo *sysinfo);

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

name The name of the host about which you want information. This
can be a host name (including the local host), a partially
qualified domain name, or a fully qualified domain name.

sysinfo A pointer to an InetSysInfo structure. You must allocate this
structure. The function fills it in with the processor type and
operating-system version of the host.

DESCRIPTION

The information returned by this function is maintained by the domain name
server. If you call this function asynchronously, the TCP/IP service provider
calls your notifier function with the T_DNRSYSINFOCOMPLETE completion event
code when the function completes. The cookie parameter to the notifier
function contains a pointer to the InetSysInfo structure you specified in the
sysinfo parameter. If you had more than one simultaneous outstanding call to
the OTInetSysInfo function, you can use this information to determine which
call has completed execution.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-47
Draft.  Apple Computer, Inc. 4/30/96

SPECIAL CONSIDERATIONS

If you call this function asynchronously, do not write to the InetSysInfo
structure until the function completes.

COMPLETION EVENT CODES

SEE ALSO

The InetSysInfo structure is described in “Internet System Information
Structure” on page 8-28.

OTInetMailExchange 8

Returns mail-exchange-host names and preference information for a domain
name you specify.

C INTERFACE

OSStatus OTInetMailExchange (InetSvcRef ref,
char *name,
UInt16 *num,
InetMailExchange *mx);

C++ INTERFACE

OSStatus TInternetServices::MailExchange (char *name,
UInt16 *num,
InetMailExchange *mx);

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

T_DNRSYSINFOCOMPLETE 0x10000003 The OTInetSysInfo function has
completed.

C H A P T E R 8

TCP/IP Services

8-48 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

name A pointer to a host name, partially qualified domain name, or
fully qualified domain name for which you want mail exchange
information.

num A pointer to the number of elements in the array pointed to by
the mx parameter. When the function completes, it sets the
number pointed to by the num parameter to the actual number
of elements filled in.

mx A pointer to the first element in an array of InetMailExchange
structures. You must allocate the structures in this array.

DESCRIPTION

In order to deliver mail, a mail application must determine the fully qualified
domain name of the host to which the mail should be sent. That host might be
the final destination of the mail, a mail server, or a router. The domain name
system servers maintain mail-exchange resource records that pair domain
names with the hosts that can accept mail for that domain. Each domain name
can be paired with any number of host names; each record containing such a
pair also contains a preference number. The mailer sends the mail to the host
with the lowest preference number first and tries the others in turn until the
mail is delivered or until the mailer decides that the mail is undeliverable.

The OTInetMailExchange function returns mail-exchange-host and preference
information for the domain name you specify. You must then determine the
address of the host and how best to deliver the mail. You can specify as many
elements to the array of InetMailExchange structures as you wish.

If you call this function asynchronously, the TCP/IP service provider calls your
notifier function with the T_DNRMAILEXCHANGECOMPLETE completion event code
when the function completes. The cookie parameter to the notifier function
contains the array pointer you specified in the mx parameter. If you had more
than one simultaneous outstanding call to the OTInetMailExchange function,
you can use this information to determine which call has completed execution.

SPECIAL CONSIDERATIONS

If you call this function asynchronously, do not write to the InetMailExchange
array until the function completes.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-49
Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

SEE ALSO

The InetMailExchange structure is described in “Internet Mail Exchange
Structure” on page 8-29.

Internet mail routing and mail-exchange resource records are described in
Request for Comments 974: Mail Routing and the Domain System.

Retrieving DNS Query Information 8

This section describes the function that permits generic domain name service
(DNS) queries.

OTInetQuery 8

Returns DNS query information.

C INTERFACE

OSStatus OTInetQuery(InetSvcRef ref, char* name, UInt16 qClass,
UInt16 qType, char* buf, size_t buflen,
void** argv, size_t argvlen, OTFlags flags);

C++ INTERFACE

OSStatus TInternetServices::Query(char* name, UInt16 qClass,
UInt16 qType, char* buf, size_t buflen,
void** argv, size_t argvlen, OTFlags flags)

T_DNRMAILEXCHANGECOMPLETE 0x10000004 The OTInetMailExchange
function has completed.

C H A P T E R 8

TCP/IP Services

8-50 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

name A pointer to the fully qualified domain name or IP address for
which you are asking the query.

qClass The DNS query class, such as Inet and Hesiod, for which you
wish to query.

qType The DNS query type, such as CNAME and PTR, for which you wish
to make a query.

buf A pointer to the buffer in which to store one or more DNS
query information structures (DNSQueryInfo). Open Transport
fits as many complete structures into the buffer as it can;
incomplete structures are not returned.

buflen The size (in bytes) of the buffer.

argv A pointer to an empty pointer array that Open Transport can
use to return a set of pointers to the individual DNS query
information structures returned. This parameter is optional,
specify a null pointer if you don’t want to use this array.

argvlen The requested length of the argv buffer. On return, Open
Transport updates this with the actual number of entries in the
argv array. This parameter is optional; if you specify a null
pointer for the argv parameter, this length is not returned.

flags Reserved. Set to 0.

DESCRIPTION

The OTInetQuery function allows you to use the Domain Name Resolver (DNR)
for generic domain name service (DNS) queries. You can ask for any query type
and class, and Open Transport returns as many responses as it can fit in the
buffer you provide.

The argv and argvlen parameters are optional. If provided, Open Transport
uses the argv buffer to return pointers to the locations of individual answers
written into the answer buffer pointed to by the buf parameter. For example, if
you set argvlen to 5 and your query receives three answers, argvlen would be
changed to 3, the value of argv[0] would be a pointer to the first answer in the
answer buffer, the value of argv[1] would be a pointer to the second answer,

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-51
Draft.  Apple Computer, Inc. 4/30/96

the value of argv[2] would be a pointer to the third answer, and the rest of the
argv array would have null pointers.

If you call OTInetQuery asynchronously, Open Transport calls your notifier with
a T_DNRQUERYCOMPLETE event when the call completes. Asynchronous mode is
preferred. When using asynchronous mode, you must not touch the buf or argv
structures before the function completes.

The OTInetQuery function works with both known and unknown query classes
and types. Open Transport expands compressed answers for the Inet query
class and known query types before returning them into the answer buffer.
Answers that are resource records of unknown class and type are put into the
answer buffer unparsed because Open Transport assumes that DNS
compression is not used.

Explicit simplified functions are provided for the most commonly made
queries such as name-to-address (A), address-to-name (PTR), system CPU and
OS (HINFO), and mail exchange (MX) queries. These are the
OTInetStringToAddress, OTInetAddressToName, OTInetSysInfo, and
OTInetMailExchange functions, respectively. For several basic query types, these
functions may be easier to use. The information obtained is the same using
either type of function, although in some cases the simplified functions limit
the maximum number of answers that can be returned.

Currently, only answers of type PTR, A, and CNAME (name-to-address
translations) are cached by OpenTransport. Also, OpenTransport does not
currently use this cached information to resolve address-to-name translations
because doing so would defeat some existing server load balancing schemes in
operation today.

COMPLETION EVENT CODES

SEE ALSO

Use the OTInetStringToAddress function for a simple name-to-address query
(page 8-42), the OTInetAddressToName function for a simple address-to-name
query (page 8-44), OTInetSysInfo function for a system CPU and OS query
(page 8-46), and OTInetMailExchange function for a mail exchange query
(page 8-47).

T_DNRQUERYCOMPLETE 0x10000005 The OTInetQuery function has
completed.

C H A P T E R 8

TCP/IP Services

8-52 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

Address Utilities 8

The functions described in this section fill in address structures and manipulate
domain name strings. They do not involve calls to the domain name resolver
and cannot be executed asynchronously.

OTInetGetInterfaceInfo 8

Returns internet address information about the local host.

C INTERFACE

OSStatus OTInetGetInterfaceInfo (InetInterfaceInfo *info,
SInt32 val;

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

info A pointer to an InetInterfaceInfo structure. You must allocate
this structure. The function fills in such information as the
internet address, subnet mask, broadcast address, MTU, and
DNS address for the internet interface indicated by the index
parameter.

val An index into the local host’s array of configured IP interfaces.
Specify 0 for information about the first interface. Specify
kDefaultInetInterface to get information about the primary
interface.

DESCRIPTION

Because the architecture of Open Transport TCP/IP provides for multihoming,
in principle a given host can receive packets simultaneously through more than
one network interface. For each IP interface configured for the local host, the

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-53
Draft.  Apple Computer, Inc. 4/30/96

OTInetGetInterfaceInfo function provides the internet address and subnet
mask, a default gateway (that is, a gateway, if any exists, that can be used to
route any packet to all destinations outside the locally connected subnet), and a
domain name server, if any is known. The function also returns the version
number of the OTInetGetInterfaceInfo function and, if available, the broadcast
address for each interface. If the broadcast address is not available, you can
determine it from the internet address and subnet mask.

Note
Because multihoming has not been implemented
in the initial release of Open Transport, the
OTInetGetInterfaceInfo function never returns
information for more than one interface. ◆

SPECIAL CONSIDERATIONS

If Open Transport TCP/IP has not yet been loaded into memory, the
OTInetGetInterfaceInfo function returns no valid interfaces. Open Transport
TCP/IP is not loaded until a TCP/IP application is running unless the user has
selected “TCP always loaded” in the TCP/IP control panel.

The OTInetGetInterfaceInfo function cannot block and always runs
synchronously.

SEE ALSO

The InetInterfaceInfo structure is described in “Internet Interface Information
Structure” on page 8-26.

See “OTBind” on page 8-16 for information on binding an endpoint to all
configured IP interfaces.

OTInitInetAddress 8

Fills in an InetAddress structure with the data you provide.

C H A P T E R 8

TCP/IP Services

8-54 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

C INTERFACE

void OTInitInetAddress (InetAddress *addr,
InetPort port,
InetHost host);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

addr A pointer to an InetAddress structure that you allocate. The
function fills in this structure.

port The port number of the address.

host The IP address of the host in network byte order (that is,
high-order byte first) in hexadecimal format. This must be a
fully qualified address.

DESCRIPTION

This function fills in the fAddressType field of the InetAddress structure with
the value AF_INET. You use the InetAddress structure when providing a TCP or
UDP address to the Open Transport functions OTConnect, OTSndURequest, and
OTBind. You are not required to use the OTInitInetAddress function when
creating an InetAddress structure; this function is provided for your
convenience only.

SEE ALSO

The InetAddress structure is described in “Internet Address Structure” on
page 8-23.

You can use the OTInetStringToHost function (page 8-56) to put the address in
InetHost format.

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-55
Draft.  Apple Computer, Inc. 4/30/96

OTInitDNSAddress 8

Fills in a DNSAddress structure with the data you provide.

C INTERFACE

size_t OTInitDNSAddress (DNSAddress *addr,
char *str);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

addr A pointer to a DNSAddress structure that you allocate. The
function fills in this structure.

str A pointer to a domain name string. This string can be just a host
name (otteam), a partially qualified domain name (for example,
“otteam.ssw”), a fully qualified domain name (for example,
“otteam.ssw.apple.com.”), or an internet address in dotted-
decimal format (for example, “17.202.99.99”), and can
optionally include the port number (for example,
“otteam.ssw.apple.com:25” or “17.202.99.99:25”).

DESCRIPTION

This function fills in the fAddressType field of the DNSAddress structure with the
value AF_DNS, fills in the fName field with the address string you specify, and
returns the size of the resulting DNSAddress structure as an unsigned integer.
You can use the DNSAddress structure to provide an address when you use a
UDP or TCP endpoint. If you do so, the domain name resolver resolves the
address for you automatically.

SEE ALSO

The DNSAddress structure is described in “DNS Address Structure” on page 8-24.

C H A P T E R 8

TCP/IP Services

8-56 TCP/IP Services Reference

Draft.  Apple Computer, Inc. 4/30/96

OTInetStringToHost 8

Converts an IP address string from dotted-decimal notation or hexadecimal
notation to an InetHost data type.

C INTERFACE

OSStatus OTInetStringToHost (char *str,
InetHost *host);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

str A pointer to a character string containing an IP address in
either dotted-decimal notation (for example, “12.13.14.15”) or
hexadecimal notation (for example, “0x0c0d0e0f”).

host A pointer to the address as an InetHost data type. The function
allocates storage for this address and returns the pointer to you.

SPECIAL CONSIDERATIONS

The OTInetStringToHost function cannot block and always runs synchronously.
It does not use the services of the DNR.

SEE ALSO

The InetHost data type is defined in “Basic Types and Constants” on page 8-21.

To convert an InetHost address into dotted-decimal format, use the
OTInetHostToString function (described next).

C H A P T E R 8

TCP/IP Services

TCP/IP Services Reference 8-57
Draft.  Apple Computer, Inc. 4/30/96

OTInetHostToString 8

Converts an an address in InetHost format into a character string in
dotted-decimal notation.

C INTERFACE

void OTInetHostToString (InetHost *host,
char *str);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

host A pointer to the address as an InetHost data type.

str A pointer to a C string containing an IP address in dotted-
decimal notation (for example, “12.13.14.15”). You must allocate
storage for this string and provide the pointer to the function.

SPECIAL CONSIDERATIONS

The OTInetHostToString function cannot block and always runs synchronously.
It does not use the services of the DNR.

SEE ALSO

The InetHost data type is defined in “Basic Types and Constants” on page 8-21.

To convert a string from dotted-decimal notation or hexadecimal notation to an
InetHost data type, use the OTInetStringToHost function (page 8-56).

C H A P T E R 9

Contents 9-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 9-0
Listing 9-0
Table 9-0

9 Introduction to AppleTalk

About AppleTalk 9-4
AppleTalk Networks and Addresses 9-6
Multinodes 9-8
Handling Miscellaneous Events 9-9
Configuring AppleTalk Protocol Providers 9-9

About AppleTalk Protocols Under Open Transport 9-11
AppleTalk Addressing and the Name Binding Protocol (NBP) 9-13
The AppleTalk Service Provider 9-14
Datagram Delivery Protocol (DDP) 9-15
AppleTalk Data Stream Protocol (ADSP) 9-15
AppleTalk Transaction Protocol (ATP) 9-16
Printer Access Protocol (PAP) 9-16

C H A P T E R 9

9-3
Draft.  Apple Computer, Inc. 4/30/96

Introduction to AppleTalk 9

This chapter provides an overview of the Open Transport implementation of
AppleTalk, Apple Computer’s proprietary networking technology. AppleTalk
is a communications network system that interconnects Macintosh computer
workstations, printers, shared modems, and other computers acting as file
servers and print servers. AppleTalk allows these devices to exchange
information through communications hardware and software.

Open Transport provides networking functions that you can use to send and
receive data across a network, and you can choose to take advantage of Open
Transport’s transport-independent architecture by using these functions
without any protocol-specific options. If, however, you want to take advantage
of a particular protocol or protocol family, such as AppleTalk, you can choose
specific options that are dependent on a protocol and its implementation.

If you want to use AppleTalk, the specific set of Open Transport functions you
call depends on the nature of the specific protocol you use—whether it is
connectionless or connection-oriented, and transactionless or transaction-
based. For example, you use different functions to send and receive data with a
connection-oriented protocol like AppleTalk Data Stream Protocol (ADSP) or
Printer Access Protocol (PAP) than with a connectionless protocol like
Datagram Delivery Protocol (DDP) or AppleTalk Transaction Protocol (ATP).

Read this chapter if you want an overview of AppleTalk networks and
AppleTalk protocols. You can also read this chapter for help in deciding
which AppleTalk protocols to use for your application’s requirements.

This chapter introduces

■ AppleTalk networking in general

■ AppleTalk protocols implemented in Open Transport

■ AppleTalk service providers

■ AppleTalk mappers

This chapter and the other AppleTalk chapters in this book describe how to use
AppleTalk-specific options with the Open Transport networking functions that
are appropriate for the AppleTalk protocol you wish to use.

Because an AppleTalk network includes both hardware and software, the
information in this book constitutes only a small part of the body of literature
documenting AppleTalk. An important resource for any AppleTalk network
developer is the book Inside AppleTalk, second edition, which has detailed
specifications for each of the AppleTalk protocols.

C H A P T E R 9

Introduction to AppleTalk

9-4 About AppleTalk

Draft.  Apple Computer, Inc. 4/30/96

About AppleTalk 9

Every Macintosh computer includes AppleTalk hardware and software, so if
your application needs to communicate with other Macintosh computers, you
may want to use an AppleTalk protocol. AppleTalk includes protocols that
handle Macintosh workstation-server interaction, LaserWriter and ImageWriter
printing, data exchange through data streams or packets, and AppleTalk name
lookups across a network.

Although AppleTalk includes protocols that provide connection-oriented
services, it is considered a connectionless network because all AppleTalk data is
ultimately delivered by the Datagram Delivery Protocol (DDP), which
implements connectionless packet delivery. Connection-oriented AppleTalk
protocols that establish sessions and provide reliable delivery of data, such as
the AppleTalk Data Stream Protocol (ADSP) and the AppleTalk Transaction
Protocol (ATP), are built on top of the connectionless packet services that DDP
provides. In the AppleTalk protocol stack, each protocol in a specific layer
provides a set of functions and services to one or more protocols in a
higher-level layer.

The AppleTalk architecture is closely aligned with the industry-standard Open
Systems Interconnection (OSI) networking model. Figure 9-1 shows the
AppleTalk protocols supported by Open Transport and shows how they relate
to one another in the layers defined by the OSI model.

C H A P T E R 9

Introduction to AppleTalk

About AppleTalk 9-5
Draft.  Apple Computer, Inc. 4/30/96

Figure 9-1 AppleTalk protocol stack and the OSI model

Here are some points worth noting about how AppleTalk under Open
Transport maps to the OSI model:

■ At the session layer, the AppleTalk Data Stream Protocol (ADSP) provides its
own stream-based transport layer services that allow for full-duplex dialogs,
while the Printer Access Protocol (PAP) uses the transaction-based services
of the AppleTalk Transaction Protocol (ATP) to transport workstation
commands to servers. The Zone Information Protocol (ZIP) is also at the
session layer; a subset of its functions are available through AppleTalk
service providers.

■ At the transport layer, there are the AppleTalk Transaction Protocol (ATP)
and Name-Binding Protocol (NBP), but NBP is accessible only through
mapper providers. In addition to these two protocols, ADSP includes
functions that span both the session and the transport layers.

■ At the network layer, the Datagram Delivery Protocol (DDP) is AppleTalk’s
network delivery protocol.

ADSP

NBPATP

ZIP PAP

Standard link-access Streams modules

Ethernet

Token ring

FDDI

LocalTalk

DDP

Session

Transport

Network

Data-link

Physical

C H A P T E R 9

Introduction to AppleTalk

9-6 About AppleTalk

Draft.  Apple Computer, Inc. 4/30/96

■ At the data-link layer, various link-access protocols support the underlying
networking hardware. Open Transport provides standard Streams modules
for the LocalTalk, Ethernet, token ring, and FDDI drivers.

AppleTalk Networks and Addresses 9

An AppleTalk network can be either a nonextended network or an extended
network. Applications can use AppleTalk protocols across a single AppleTalk
network or an AppleTalk internet, which is a number of interconnected
AppleTalk networks. An AppleTalk internet can include a mix of LocalTalk,
TokenTalk, EtherTalk, and FDDITalk networks, or it can consist of multiple
networks of a single type, such as several LocalTalk networks. An AppleTalk
internet can include both nonextended and extended networks.

An AppleTalk nonextended network is one in which

■ the network has one network number assigned to it

■ the network supports only one zone

■ all nodes on the network share the same network number and zone name

■ each node on the network has a unique node ID

LocalTalk is an example of a nonextended network. Each node on a
nonextended network, such as LocalTalk, has a unique 8-bit node ID. Since
there are 256 possible combinations of 8 bits, and three IDs are not available (ID
255 is reserved for broadcast messages and ID 0 and 254 are not allowed), a
nonextended network can support up to 253 active nodes at a time.

An AppleTalk extended network is one in which

■ the network has a range of network numbers assigned to it

■ the network supports multiple zones

■ each node on the network has a unique network number-node ID
combination to identify it

Table 9-1 summarizes the identifiers that you use for AppleTalk addressing.

C H A P T E R 9

Introduction to AppleTalk

About AppleTalk 9-7
Draft.  Apple Computer, Inc. 4/30/96

Each network is assigned a network number so that an AppleTalk internet
router can determine the packet’s destination network number and forward the
packet through an internet from one router to another until the packet arrives
at its correct destination network. An extended network uses a range of
network numbers. Nodes on an extended network can have different zone
names and different network numbers within the network number range.

A node is a data-link addressable entity on an AppleTalk network; all physical
devices on an AppleTalk network are nodes. When a node first connects to an
AppleTalk network or is rebooted, AppleTalk dynamically assigns it a unique
8-bit node ID. For a node on an extended network, AppleTalk also assigns it a
16-bit network number within the range of numbers assigned to the extended
network that the device is connected to. Once a packet arrives at its destination
network, the packet is delivered to its destination node within that network,
based on the node ID.

Note that because AppleTalk assigns node IDs dynamically whenever a node
joins the network or is rebooted, a node’s address on an AppleTalk network can
change from time to time, although a computer attempts to reuse the node ID it
last used. NBP provides a mapping of logical names (like those in the Chooser)
to physical addresses in such a way that if the node ID changes, you can still
find your application. This mapping is discussed further in the chapters
“AppleTalk Addressing” and “AppleTalk Service Providers” in this book.

A zone is a logical grouping of nodes within an AppleTalk internet. The use of
zones allows a network administrator to set up departmental or other logical
sets of nodes in an internet. A single extended network can contain nodes

Table 9-1 AppleTalk addressing identifiers

Identifier Description

Network number A 16-bit number that identifies the network to which a
node is connected. An extended network is defined by a
range of network numbers.

Node ID An 8-bit number that identifies a node.

Zone name A name assigned to a logical grouping of nodes in an
AppleTalk network or internet.

Socket number An 8-bit number that identifies a socket.

DDP type An 8-bit number that identifies an endpoint’s protocol.

C H A P T E R 9

Introduction to AppleTalk

9-8 About AppleTalk

Draft.  Apple Computer, Inc. 4/30/96

belonging to any number of zones; an individual node on an extended network
can belong to only one zone. Each zone is identified by a unique zone name.

A socket is an addressable data-link entity on a network. Endpoints exchange
data with each other across an internet through sockets. Because each endpoint
has its own socket address, a node can have multiple concurrent open
connections, for example, one to a file server and one to a printer. A node can
have several sockets open at the same time, so each endpoint on an AppleTalk
network is associated with a unique 8-bit socket number.

AppleTalk sockets are divided into two groups: statically assigned sockets and
dynamically assigned sockets. Statically assigned sockets are those sockets
that are permanently reserved for a designated protocol or process. For
example, socket 4 is always reserved as the echo socket, used for echoing
packets across a network. Dynamically assigned sockets are those sockets
arbitrarily assigned by DDP if you do not specify a socket number when
binding an endpoint; DDP returns the socket number to you in the endpoint’s
address when the binding has completed.

In certain situations, you can bind multiple endpoints to a single socket. For
connectionless endpoints, each must uses a different protocol. For
connection-oriented endpoints, they can all use the same protocol, but each
must establish a connection with a different remote endpoint.

Multinodes 9

AppleTalk’s multinode architecture allows an application to acquire virtual
node IDs, called multinode IDs. These multinode IDs allow the computer
running your application to appear as multiple nodes on the network even
though it is only one physical entity. Each acquired multinode is in addition to
the standard node ID already assigned to the computer when it joined the
network as a node.The prime example of a multinode application is Apple
Remote Access (ARA).

You can use a multinode to receive broadcast packets and any AppleTalk
packets addressed to it through its multinode ID. You must then process the
packets in a custom manner. A multinode ID is not connected to the AppleTalk
protocol stack above the data-link layer, which means that an application that
uses a multinode cannot use the services of higher-level protocols such as NBP,
ATP, and ADSP, but instead must implement its own higher-level protocols if it
expects packets for such protocols.

C H A P T E R 9

Introduction to AppleTalk

About AppleTalk 9-9
Draft.  Apple Computer, Inc. 4/30/96

Handling Miscellaneous Events 9

In classic AppleTalk, you could use the AppleTalk Transition Queue (ATQ) to
inform your application of miscellaneous events that occurred unexpectedly
within AppleTalk. In Open Transport AppleTalk, this facility has been modified
to allow your endpoint to receive only a few predefined events. Any
applications that rely on the AppleTalk Transition Queue must use AppleTalk
backward compatibility to handle them in the classic AppleTalk manner.

In Open Transport AppleTalk, there are five miscellaneous events that you
can receive on your endpoint, which does not need to be bound. They are
as follows:

To receive these events, your application must use the OTIoctl function with a
provider reference value, the constant kOTGetMiscellaneousEvents as its
command, and the value of 1 as its data. For more information on the OTIoctl
function, refer to the chapter “Providers” in this book.

Configuring AppleTalk Protocol Providers 9

When you want to use a particular AppleTalk protocol, you open an endpoint
configured for that protocol. To do this, you use specific constants as part of a
configuration string that you pass to the Open Transport function for opening
endpoints. This string specifies to Open Transport how to create the correct
endpoint for you. For more information on the functions that you use to open

Miscellaneous event Value Explanation

T_ATALKROUTERDOWNEVENT 0x23010051 The router on your application’s
network is no longer available.

T_ATALKROUTERUPEVENT 0x23010052 A router has become available on your
application’s network.

T_ATALKZONENAMECHANGEDEVENT 0x23010053 The router has changed the name for
your application’s zone.

T_ATALKCONNECTIVITYCHANGEDEVENT 0x23010054 An multinode connection was
established or disconnected on your
network.

T_ATALKCABLERANGECHANGEDEVENT 0x23010055 A router has become available on your
network, and your endpoint’s address
is no longer in the correct
local-network number range.

C H A P T E R 9

Introduction to AppleTalk

9-10 About AppleTalk

Draft.  Apple Computer, Inc. 4/30/96

endpoints, mappers, and AppleTalk service providers, refer to the chapters in
this book on the specific type of provider; for more information about
configuring providers, see the chapter “Configuration Management” in this
book.

Table 9-2 lists which constants to use to configure the AppleTalk providers.
Note that these values are subject to change—they are included here only to
provide an overview of how OpenTransport configures providers. Be sure to
consult the AppleTalk header file for the current values.

There is one exception to the typical method of configuring providers.
AppleTalk service providers do not have a string equivalent value. You
configure an AppleTalk service provider with the constant
kDefaultAppleTalkServicesPath, which has a value of ((OTConfiguration*)-3).
The code for creating an AppleTalk service provider is as follows:

OTOpenEndpoint(kDefaultAppleTalkServicesPath, 0, &err)

If you want to set an option as part of the configuration string, you need to
know which protocols use which options and how to translate the option’s
constant name, given in the header files, into a string that the configuration
functions can parse. For the AppleTalk options, Table 9-3 provides the constant
name, the value used in the configuration string, and the protocols that use that
option.

Table 9-2 Protocol identifiers for use in configuring AppleTalk providers

Constant
Configuration
string value Type of provider configured

kNBPName “nbp” NBP mapper provider

kDDPName “ddp” DDP endpoint provider

kATPName “atp” ATP endpoint provider

kADSPName “adsp” ADSP endpoint provider

kPAPName “pap” PAP endpoint provider

C H A P T E R 9

Introduction to AppleTalk

About AppleTalk Protocols Under Open Transport 9-11
Draft.  Apple Computer, Inc. 4/30/96

To configure a provider with an option string, you put the string and its
assigned value in parentheses after the protocol that uses it, as in the following
lines of code:

OTOpenEndpoint(OTCreateConfiguration
("adsp,ddp(Checksum=1),ltlkB"), 0, NULL, &err)

OTOpenEndpoint(OTCreateConfiguration
(kADSPName"(EnableEOM=1)"), 0, NULL, &err);

About AppleTalk Protocols Under Open Transport 9

Each of the AppleTalk protocols implements a different set of functions and
services, and your choice of which protocol to use depends primarily on your
application’s needs. For example, if you need a connection-oriented
transactionless protocol to exchange data with another endpoint, ADSP is your
most likely choice. Open Transport supports most AppleTalk protocols and
provides protocol-specific options for various Open Transport functions. Which
functions to use with which AppleTalk protocol, and which options are
permitted for each, are discussed in this book in the specific chapter for each
AppleTalk protocol.

Table 9-3 Indicating AppleTalk options in the configuration string

Constant name
Configuration
string value Valid protocols

OPT_CHECKSUM “Checksum” DDP, ATP, ADSP, PAP

OPT_SELFSEND “SelfSend” DDP

OPT_ENABLEEOM “EnableEOM” ADSP, PAP

OPT_INTERVAL “RetryInterval” ATP

OPT_RETRYCNT “RetryCount” ATP

ATP_OPT_RELTIMER “ReleaseTimer” ATP

PAP_OPT_OPENRETRY “OpenRetry” PAP

C H A P T E R 9

Introduction to AppleTalk

9-12 About AppleTalk Protocols Under Open Transport

Draft.  Apple Computer, Inc. 4/30/96

You use most AppleTalk protocols by specifying them explicitly when opening
an endpoint. ADSP, ATP, and PAP fall into this category. Because DDP is the
network delivery protocol for AppleTalk, you can specify it explicitly or, more
often, you use it implicitly when you choose other higher-level AppleTalk
protocols.

You don’t use NBP and ZIP explicitly with endpoints: NBP-configured mapper
providers access NBP to register and delete an application’s name as a
network-visible entity and to look up other endpoint names on the network;
AppleTalk service providers use a subset of ZIP functions to provide
applications with information about zones and the current AppleTalk
environment.

Note
In order to exchange data and share resources, nodes must
be running the same protocol, but they do not all have to
be running Open Transport. For example, if one endpoint
is using ADSP to send data to an endpoint on another
computer, the other endpoint must also be running ADSP,
although it does not have to be the Open Transport ADSP
implementation. ◆

Open Transport implements two connection-oriented transactionless
AppleTalk protocols that you can use to send and receive data: ADSP, and PAP.
As discussed in the chapter “Introduction to Open Transport,” the decision of
which protocol to use is typically based on whether it maintains a connection
and uses discrete transactions or sends a stream of data.

Open Transport also implements two connectionless AppleTalk protocols that
you can use to send and receive data: ATP and DDP. ATP is a transaction-based
protocol and sends request transactions and receives replies; DDP does not
send transactions, instead it sends individual packets of data, called datagrams,
and expects no reply.

The AppleTalk protocols that Open Transport supports for endpoints are
shown in Table 9-4.

C H A P T E R 9

Introduction to AppleTalk

About AppleTalk Protocols Under Open Transport 9-13
Draft.  Apple Computer, Inc. 4/30/96

Note
The AppleTalk Session Protocol (ASP) is a
connection-oriented transaction-based protocol that sets
up and maintains sessions between workstations and
servers. Apple Computer, Inc. recommends using ADSP
instead of ASP for all new application protocol products.
Although not currently supported by Open Transport, the
next release of Open Transport will include a full
implementation of ASP. ◆

In general, applications use ADSP for symmetrical data exchange between two
peer endpoints and PAP for printing data. PAP is a client of ATP, so it takes
advantage of ATP’s reliable data delivery services. Because DDP underlies
all AppleTalk data delivery, all AppleTalk protocols ultimately use DDP for
data transport.

AppleTalk Addressing and the Name Binding Protocol (NBP) 9

Because AppleTalk assigns node IDs dynamically whenever a node joins the
network or is rebooted, a node’s address on an AppleTalk network can change
from time to time. Applications cannot assume that the physical address of an
AppleTalk endpoint is stable, and therefore a reliable mapping of user names to
physical addresses is very important for AppleTalk.

The Name-Binding Protocol (NBP) is an AppleTalk protocol that maintains
this mapping, and you can access this information through a mapper provider
configured for NBP. Because AppleTalk supports dynamic name registration,
NBP mapper providers can use the Open Transport name registration and
deletion functions as well as the other mapper functions.

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you must register its name. There are two ways of
doing this, but in either case, Open Transport uses NBP to associate the

Table 9-4 Open Transport support for AppleTalk endpoint protocols

Connectionless Connection-oriented

Transactionless DDP ADSP
PAP

Transaction-based ATP ASP (See note)

C H A P T E R 9

Introduction to AppleTalk

9-14 About AppleTalk Protocols Under Open Transport

Draft.  Apple Computer, Inc. 4/30/96

endpoint’s name with its physical address. Once your application is registered,
it is a network-visible entity that other applications can locate.

Through mapper library functions, AppleTalk applications can

■ register and delete endpoints as network-visible entities

■ look up other endpoint names, using wildcards as needed to match
partial names

■ initialize name and address structures

■ get and set endpoint name information

The chapter “Mappers” in this book describes how to use Open Transport
mapper providers and the chapter “AppleTalk Addressing” in this book
discusses how to use NBP mapper providers to identify and locate endpoints
on a network.

The AppleTalk Service Provider 9

An AppleTalk service provider is an Open Transport provider that gives
applications access to information and services that are specific to the
AppleTalk protocol stack. Applications use an AppleTalk service provider to
obtain zone names and to get information about the current AppleTalk
environment for a given machine.

The AppleTalk service provider is able to provide information about zones by
implementing a subset of the Zone Information Protocol (ZIP). AppleTalk
service provider functions allow applications to query routers for information
about

■ their own node’s zone name

■ the names of all the zones on their local network

■ the names of all the zones throughout the AppleTalk internet

ZIP is implemented primarily in AppleTalk internet routers, each of which
maintains a zone information table that maps the relationships between zone
names and network numbers for AppleTalk networks.

The chapter “AppleTalk Service Providers” in this book discusses how to use
AppleTalk service providers.

C H A P T E R 9

Introduction to AppleTalk

About AppleTalk Protocols Under Open Transport 9-15
Draft.  Apple Computer, Inc. 4/30/96

Datagram Delivery Protocol (DDP) 9

The Datagram Delivery Protocol (DDP) is a connectionless transactionless
protocol that transfers data between sockets as discrete packets, or datagrams,
with each packet carrying its destination socket address. DDP attempts to
deliver any packet with a valid address but does not inform the sender when it
cannot deliver a packet, and it cannot request the sender to retransmit lost or
damaged packets. This level of service is referred to as best-effort delivery.
DDP does not include support to ensure that all sent packets are received at the
destination or that those packets that are received are in the correct order.
Higher-level protocols that use the services of DDP provide for reliable
delivery of data. DDP uses whichever link-access protocol the user selects; that
is, DDP can send its datagrams through any type of data link and transport
media, provided the network hardware is compatible with Open Transport.

For applications such as games that do not require reliable delivery of data or
diagnostic tools that retransmit at regular intervals to estimate averages, DDP
suffices. DDP involves less overhead and provides faster performance than
higher-level protocols.

The chapter “Datagram Delivery Protocol (DDP)” in this book describes how
to use DDP under Open Transport.

AppleTalk Data Stream Protocol (ADSP) 9

The AppleTalk Data Stream Protocol (ADSP) is a connection-oriented
transactionless protocol that supports sessions over which applications can
exchange full-duplex streams of data. In addition to ensuring reliable delivery
of data, ADSP provides a peer-to-peer connection; that is, both ends of the
connection can exert equal control over the exchange of data. ADSP also
provides an application with a means of sending expedited attention messages
to pass control information between the two communicating applications
without disrupting the main flow of data.

ADSP appears to its clients to maintain an open pipeline between the two
entities at either end. Either entity can write a stream of bytes to the pipeline or
read data bytes from the pipeline. However, because ADSP, like all other
higher-level AppleTalk protocols, is a client of DDP, the data is actually sent as
packets. This allows ADSP to correct transmission errors in a way that would
not be possible for a true data stream connection. Thus, ADSP retains many of
the advantages of a transaction-based protocol while providing to its clients a
connection-oriented full-duplex data stream.

C H A P T E R 9

Introduction to AppleTalk

9-16 About AppleTalk Protocols Under Open Transport

Draft.  Apple Computer, Inc. 4/30/96

ADSP also includes features that let you authenticate the identity of the party
at the other end of the connection and send encrypted data, which is then
decrypted at the other end.

Note
The authentication and encryption features of ADSP are
referred to as the AppleTalk Secure Data Stream Protocol
(ASDSP) and are not currently supported in Open
Transport, but they will be supported in the next release of
Open Transport. ◆

The chapter “AppleTalk Data Stream Protocol (ADSP)” in this book describes
how to use ADSP under Open Transport.

AppleTalk Transaction Protocol (ATP) 9

The AppleTalk Transaction Protocol (ATP) is a connectionless transaction-
based protocol that allows two endpoints to execute request-and-response
transactions. Either ATP endpoint can request another ATP endpoint to
perform an action; the other ATP endpoint then carries out the action and
transmits a response reporting the outcome. ATP provides reliable delivery of
data by ensuring that data packets are delivered in the correct sequence and by
retransmitting any packets that are lost.

ATP is useful if your application sends small amounts of data and can tolerate
a minor degree of performance degradation. Games that are based on
request-and-response dialogs can make efficient use of ATP.

The chapter “AppleTalk Transaction Protocol (ATP)” in this book describes
how to use ATP under Open Transport.

Printer Access Protocol (PAP) 9

The Printer Access Protocol (PAP) is an asymmetrical connection-oriented
transactionless protocol that enables communication between client and server
endpoints, allowing multiple connections at both ends. PAP uses ATP packets
to transport the data once a connection is open to the server.

PAP is the protocol that ImageWriter and LaserWriter printers in the AppleTalk
environment use for direct printing—that is, when a workstation sends a print
job directly to a printer connected to the network instead of using a print

C H A P T E R 9

Introduction to AppleTalk

About AppleTalk Protocols Under Open Transport 9-17
Draft.  Apple Computer, Inc. 4/30/96

spooler. Open Transport PAP provides a single protocol implementation for all
AppleTalk printers that is integrated into the AppleTalk protocol stack.

The chapter “Printer Access Protocol (PAP)” in this book describes how to use
PAP under Open Transport.

C H A P T E R 1 0

Contents 10-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 10-0
Listing 10-0
Table 10-0

10 AppleTalk Addressing

About AppleTalk Addressing 10-4
Using AppleTalk Addressing 10-5

Specifying a DDP Address 10-5
Specifying an NBP Address 10-7
Specifying a Combined DDP-NBP Address 10-9
Specifying and Using a Multinode Address 10-9
Registering Your Endpoint’s Name 10-10
Looking Up Names and Addresses 10-11
Manipulating an NBP Name 10-13

AppleTalk Addressing Reference 10-14
Constants and Data Types 10-14
Basic Constants 10-14

Address Format Constants 10-15
The DDP Address Structure 10-16
The NBP Address Structure 10-17
The Combined DDP-NBP Address Structure 10-18
The Multinode Address Structure 10-19
The NBP Entity Structure 10-20

Functions 10-21
OTInitDDPAddress 10-21
OTInitNBPAddress 10-22
OTInitDDPNBPAddress 10-23
OTCompareDDPAddresses 10-25
OTInitNBPEntity 10-26
OTGetNBPEntityLengthAsAddress 10-27
OTSetAddressFromNBPEntity 10-28
OTSetNBPEntityFromAddress 10-29

C H A P T E R 1 0

10-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

OTSetAddressFromNBPString 10-31
OTSetNBPName 10-32
OTSetNBPType 10-33
OTSetNBPZone 10-35
OTExtractNBPName 10-36
OTExtractNBPType 10-37
OTExtractNBPZone 10-38

C H A P T E R 1 0

10-3
Draft.  Apple Computer, Inc. 4/30/96

AppleTalk Addressing 10

This chapter describes how to use the AppleTalk address formats to locate an
AppleTalk endpoint or to make your endpoint visible to other endpoints across
an Open Transport AppleTalk network. Whenever you want to communicate
across the network, you need to be able to identify your own local endpoint
and the remote endpoint with which you want to communicate. You can use a
user name, a physical socket address, or a combination of the two to identify
the endpoints. Open Transport provides a specific address format for each of
these cases and several utility functions to initialize them.

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you must register its name. There are two ways of
doing this, but in either case, Open Transport uses the Name Binding Protocol
(NBP) to associate the endpoint’s name with its physical address. Open
Transport provides several utility functions and a specialized data structure,
the NBP entity, for more convenient manipulation of NBP names.

This chapter provides information about endpoint and mapper functions that
you can use to register a name, to look up name and address information, and
to browse for all protocol addresses associated with a name or name pattern.

You should read this chapter if your application uses an AppleTalk networking
protocol and you need to

■ specify a local or remote address

■ register and delete endpoints as network-visible entities

■ look up other endpoint names, using wildcards as needed to match
partial names

■ initialize address structures

■ get and set other endpoint name information

Some of these tasks are available through endpoint and mapper functions,
which are described in the chapters “Endpoints” and “Mappers” in this book.
You should be familiar with the material in those chapters before you read
this chapter.

C H A P T E R 1 0

AppleTalk Addressing

10-4 About AppleTalk Addressing

Draft.  Apple Computer, Inc. 4/30/96

About AppleTalk Addressing 10

Because AppleTalk assigns node IDs dynamically whenever a node joins the
network or is rebooted (although AppleTalk remembers which node ID the
node last used and attempts to reclaim it), a node’s address on an AppleTalk
network can change from time to time. Applications cannot assume that the
physical address of an AppleTalk endpoint is stable, and therefore a reliable
mapping of user names to physical addresses is very important for AppleTalk.

The Name-Binding Protocol (NBP) provides a mapping of logical names (like
those in the Chooser) to physical socket addresses in such a way that if the
node ID changes, you can continue to reliably identify your application. An
endpoint’s logical name is its NBP name, also sometimes called its entity name.
You can access information about your endpoint’s logical addressing through
an NBP-configured mapper provider, which you can also use to locate other
endpoints on the network. Because AppleTalk supports dynamic name
registration, NBP mapper providers can use the Open Transport name
registration and deletion functions as well as the other mapper functions.

When you bind an AppleTalk endpoint, Open Transport associates the
endpoint with a protocol address, which can be in one of these formats:

■ The DDP address supplies the physical network address of an endpoint.

■ The NBP address supplies the user-friendly NBP name.

■ The combined DDP-NBP address combines the endpoint’s physical
network address and its NBP name.

■ The multinode address supplies the physical network address of a
multinode endpoint.

The following several sections discuss each address format in more detail.

Note
Open Transport also provides a generic name format
(indicated by the constant kOTGenericName and the
OTAddress structure). However, AppleTalk functions do not
validate addresses in this form, so there is no error
checking if it is not a valid address. ◆

C H A P T E R 1 0

AppleTalk Addressing

Using AppleTalk Addressing 10-5
Draft.  Apple Computer, Inc. 4/30/96

Using AppleTalk Addressing 10

This section explains how you use AppleTalk addressing formats to identify an
endpoint and how you use various Open Transport AppleTalk functions to

■ initialize an address

■ compare two DDP addresses

■ register the name of your endpoint

■ look up names and addresses to find a specific applicaiton or user name

■ manipulate NBP names by using NBP entity structures

■ initialize NBP entities

■ set and extract the name, type, or zone parts of an NBP name

Specifying a DDP Address 10

The primary address format is the DDP address format, which is the most
commonly used. It identifies the physical socket address for your endpoint.
Data transmission is fastest for those functions that use this address format
because no lookup or conversion is necessary for Open Transport to find the
specified physical location. Functions that use the NBP address format, for
example, have to look up the mapping of the NBP name to its physical address,
and this extra step slows down communications.

Functions such as OTBind, OTGetProtAddress, and OTResolveAddress return an
address in this format. DDP addresses use the DDP address structure (defined
by the DDPAddress data type), which includes the following fields:

Field Meaning

Address type The type of address format

Network number The endpoint’s network

Node ID The endpoint’s node

Socket number The endpoint’s socket

DDP type A DDP endpoint’s type of protocol

C H A P T E R 1 0

AppleTalk Addressing

10-6 Using AppleTalk Addressing

Draft.  Apple Computer, Inc. 4/30/96

Permissable values for these fields are given in the section “The DDP Address
Structure” on page 10-16. The DDP type field is discussed further in the
chapter “Datagram Delivery Protocol” in this book.

When you bind an AppleTalk endpoint, you typically specify a network
number of 0 and a node ID of 0, or leave both fields blank. In most cases, the
combination of the network number, the node ID, and the socket number
creates a unique identifier for any socket in the AppleTalk internet so that
AppleTalk’s delivery protocol, DDP, can deliver packets to the correct
destination.

Since the DDP type field is ignored by all protocols other than DDP, set this
field to 0 unless you plan to use the DDP protocol. For more information on
DDP types, see the chapter “Datagram Delivery Protocol (DDP)” in this book.

In using Open Transport functions to send or receive data, you use a TNetbuf
structure to point to a buffer that holds data for a specific Open Transport
function. Listing 10-1 shows how you set up the fields of a DDP address and
how you set up a TNetbuf structure for it.

Listing 10-1 Setting up a DDP Address

void DoCreateDDPAddress(TNetbuf *theNetBuf, long net, short node,
 short socket)

{
DDPAddress *ddpAddress;

/* Allocate memory for the DDPAddress structure. */
ddpAddress = (DDPAddress*) NewPtr(sizeof(DDPAddress));

/* Set up a DDPAddress structure. */
ddpAddress->fAddressType = AF_ATALK_DDP;
ddpAddress->fNetwork = net;
ddpAddress->fNode = node;
ddpAddress->fSocket = socket;
ddpAddress->fDDPType = 0;
ddpAddress->fPad = 0;

/* Set the TNetbuf to point to it. */
theNetbuf->len = sizeof(DDPAddress);
theNetbuf->maxlen = sizeof(DDPAddress);
theNetbuf->buf = (void*)ddpAddress;

}

C H A P T E R 1 0

AppleTalk Addressing

Using AppleTalk Addressing 10-7
Draft.  Apple Computer, Inc. 4/30/96

Specifying an NBP Address 10

You can use the NBP address format to identify an endpoint when you know
the user-defined name of an endpoint but not its physical address. Applications
that run on an Open Transport AppleTalk network can display these user-
friendly NBP names to users while using the DDP addresses internally to
locate and address entities. See the section “Looking Up Names and
Addresses,” beginning on page 10-11 for more information on how Open
Transport translates an NBP name into a physical address.

The NBP address format is defined by the NBP address structure, which
includes the following fields:

The values for these fields are discussed more fully in the section “The NBP
Address Structure” on page 10-17. Note that NBP addresses do not “know” the
length of the NBP name you might use. To find out its length, you must use the
OTResolveAddress or OTLookupName functions.

An NBP name consists of these three fields: name, type, and zone. The value
for each of these fields is an alphanumeric string of up to 32 characters. The
NBP name is not case sensitive. When you bind an endpoint with an NBP
address, you must specify a value for the name and type fields, but you don’t
have to specify the zone. The NBP name string is not null-terminated and is in
the form

name:type@zone

The name field typically identifies the user of the system or, in the case of a
server, the system itself. For example, you could use the name field to register a
serial number for your application and then use a mapper provider to search to
see if this matches any other NBP name. If it does, your application could
branch to some specialized code to prevent the duplicate application from
launching or to issue a warning message as part of a software protection
scheme.

The type field generally identifies the type of service that the entity provides,
for example, “Mailbox” for an electronic mailbox on a server. Applications
offering similar services can find one another and identify potential partners by

Field Meaning

Address type The type of address format

NBP name buffer A pointer to a text string giving
the endpoint’s NBP name

C H A P T E R 1 0

AppleTalk Addressing

10-8 Using AppleTalk Addressing

Draft.  Apple Computer, Inc. 4/30/96

looking up only those addresses with a specific type. You could request the
mapper provider to return the names of all of the registered entities of a certain
type, for example, all compiler servers and laser printers.

The zone field identifies the zone within the network to which the node
belongs. To indicate the current zone (or no zone, as in the case of a simple
network configuration not divided into zones), you can leave this field blank
(the preferred method) or you can specify an asterisk (*). To Open Transport,
these two methods are equivalent; thus, the strings “MyName:MBOX@*” and
“MyName:MBOX” identify the same zone. There are several functions for
getting zone information; these are described in the chapter “AppleTalk Service
Providers” in this book.

When you use an NBP structure to define an NBP address format, you copy the
string specifying the NBP name into the NBP name buffer.

You can use the backslash (\) character in an NBP name to include the colon (:),
at sign (@), and the backslash (\) characters in the name. For example, if you
wanted to use the name “My\Machine,” the type “My:Server” and the zone
“My@Zone,” you would express it in the following way:

My\\Machine:My\:Server@My\@Zone

The maximum size of the NBP name buffer is currently defined to be 105 bytes.
This permits a string whose name, type, and zone fields each contain the
maximum 32 characters, plus 2 bytes for the separator characters (: and @) and
7 bytes for escape characters—that is, combinations of backslash-colon (\:),
backslash-at sign (\@), or backslash-backslash (\\).

If you specify an NBP address structure when binding an endpoint, Open
Transport assigns a dynamic socket number to the DDP address of the
endpoint (because the NBP address cannot supply any socket number) and
registers the NBP name you specified for your application.

Listing 10-2 shows how you set up the fields of an NBP address. The
statements used to set the size of the len and maxlen fields of the TNetbuf
structure simply add the size of the two fields of the NBP address structure: the
size of the constant name plus the length of the string equals the length of data
stored in the buffer.

C H A P T E R 1 0

AppleTalk Addressing

Using AppleTalk Addressing 10-9
Draft.  Apple Computer, Inc. 4/30/96

Listing 10-2 Setting up an NBP address

void DoCreateNBPAddress(TNetbuf *theNetBuf, char* nbpName)
{

NBPAddress *nbpAddress;
short nbpSize;

/* Allocate memory for an NBP structure. */
nbpSize = sizeof(OTAddressType) + strlen(nbpName);
nbpAddress = (NBPAddress*) NewPtr(nbpSize);

/* Set up an NBPAddress structure. */
nbpAddress->fAddressType = AF_ATALK_NBP;
strcpy(nbpAddress->fNBPNameBuffer, nbpName);

/* Set the TNetbuf to point to it. */
theNetbuf->len = nbpSize;
theNetbuf->maxlen = nbpSize;
theNetbuf->buf = (void*)nbpAddress;

}

Specifying a Combined DDP-NBP Address 10

You use the the combined DDP-NBP address format when you want to bind an
endpoint with a specific NBP name to a specific socket. As the name suggests,
this format combines the DDP address and the NBP address. Its data structure
begins, as do all of the address structures, with a constant defining which
address format to use; then it includes all the standard DDP address fields and
ends with the standard NBP name buffer field. See the previous two
subsections, “Specifying a DDP Address” and “Specifying an NBP Address,”
and the section “The Combined DDP-NBP Address Structure” on page 10-18
for discussion of these fields, and also refer to Inside AppleTalk, second edition.

Specifying and Using a Multinode Address 10

You use the multinode address format for multinode applications that want to
bind several multinode endpoints to the same socket using different node IDs
for each. The multinode address format is identical to the DDP address format
except that you use a different constant to identify it. See the section

C H A P T E R 1 0

AppleTalk Addressing

10-10 Using AppleTalk Addressing

Draft.  Apple Computer, Inc. 4/30/96

“Specifying a DDP Address” on page 10-5 and the section “The Multinode
Address Structure” on page 10-19 for discussion of these fields.

The significant fields for the multinode address format are the network number
and node ID. DDP ignores the other fields. You can request specific values for
the network number and node ID when binding an endpoint although, as
usual, the address returned by the OTBind function contains the actual network
and node values that the endpoint has been bound to.

DDP delivers any packet addressed to the bound multinode address whether
or not a specific socket or DDP type is specified for the destination address of
the packet. Applications that have opened multinode endpoints must perform
their own filtering if the socket or DDP type values are important.

Registering Your Endpoint’s Name 10

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you have to register its name. There are two ways to
do this. The easiest way is for you to simply use the OTBind function to bind
your endpoint with the NBP address format or the combined DDP-NBP
address format. If you use the NBP address format, during the binding process
Open Tranport registers your endpoint’s name and dynamically assigns a
physical socket to your endpoint. If you use the combined DDP-NBP address
format, you can specify the physical socket you want to bind the endpoint to.
The OTBind function is discussed in the chapter “Endpoints” in this book.

The other way to register an endpoint’s name involves several additional steps:
You have to first bind your endpoint, open an NBP mapper provider, use the
Open Transport name-registration function, OTRegisterName, as a separate step,
and then close the NBP mapper provider. You must use this more complex
method if you want to register more than one endpoint on the same socket.

In either case, Open Transport uses NBP to associate the endpoint’s name with
its physical address. Once your endpoint is registered, it is a network-visible
entity that other applications can locate.

C H A P T E R 1 0

AppleTalk Addressing

Using AppleTalk Addressing 10-11
Draft.  Apple Computer, Inc. 4/30/96

When you register a name with the OTRegisterName function, the function
returns a unique identifier for the registered name. If you later want to delete
the name, you can use this identifier to delete it with the OTDeleteNameByID
function. This method is more convenient than the alternative OTDeleteName
function. The OTRegisterName, OTDeleteName, and OTDeleteNameByID functions
are discussed in the chapter “Endpoints” in this book. Table 10-1 provides a
summary of the Open Transport name-registration functions.

Looking Up Names and Addresses 10

To communicate with an endpoint, Open Transport needs its physical address.
There are endpoint and mapper functions you can use to obtain this address,
two of which allow you to specify the endpoint’s NBP name. In these instances,
Open Transport performs a name lookup that resolves the NBP name into a
physical name that it can use to locate the endpoint you want. Table 10-1
provides a summary of the Open Transport functions that create or return
endpoint name and address information.

Table 10-1 Open Transport name-registration functions

Function Provider Use

OTBind Endpoint Registers the specified NBP name when
you bind with the NBP address or the
combined DDP-NBP address formats

OTRegisterName Mapper Registers the specified name

OTDeleteName Mapper Removes a name that was previously
registered dynamically

OTDeleteNameByID Mapper Removes a name that was previously
registered dynamically

C H A P T E R 1 0

AppleTalk Addressing

10-12 Using AppleTalk Addressing

Draft.  Apple Computer, Inc. 4/30/96

You can improve performance in certain circumstances if you use the endpoint
OTResolveAddress function instead of the mapper OTLookUpName function.
Calling OTResolveAddress resolves the name into a physical address by using
information that is maintained in the current node whereas the OTLookUpName
function has to go out over the network to look up its information. For
example, if you are going to use an NBP address structure repeatedly to specify
a remote endpoint in a connectionless or transaction-based service, you can
speed up your processing if you first use the OTResolveAddress function to
resolve the NBP address into a DDP address and then subsequently use only
that DDP address to specify the remote endpoint. Otherwise, an NBP lookup
could occur on the network for every packet and slow down communications.

When you call the OTLookUpName function to obtain the address associated with
an NBP name, you can specify a name pattern rather than a complete name by
using wildcard operators for the variable parts of the name. Table 10-2 shows
the wildcard operators that you can use to specify a name pattern for a name
specified as a partial name.

Table 10-1 Open Transport name and address functions

Function Provider Use

OTGetProtAddress Endpoint Obtains your endpoint’s DDP address.
For connection-oriented endpoints that
are connected to another endpoint, it
also obtains the remote endpoint’s
address.

OTResolveAddress Endpoint Obtains the DDP address that
corresponds to the specified NBP name.

OTLookUpName Mapper Obtains the address for the specified
name or a list of addresses for the
specified name pattern.

You can also use this function to verify
that a specified name is still available on
the network and that it is associated
with a specified address.

OTATalkGetInfo AppleTalk
service

Obtains addressing information
about the current environment of
an AppleTalk node.

C H A P T E R 1 0

AppleTalk Addressing

Using AppleTalk Addressing 10-13
Draft.  Apple Computer, Inc. 4/30/96

Depending on how you structure the name pattern with wildcards, the
OTLookUpName function can return a list of names if more than one name
matches the specified pattern. For example, if you want to retrieve the names
and addresses of all the applications defined with a given type, such as
mailboxes, in the same zone as the one in which your process is running, you
can set the name field to the equal sign (=), set the type field to “Mailbox,” and
leave the zone field blank. The OTLookUpName function returns the NBP names
and DDP addresses of all mailboxes in that zone.

Manipulating an NBP Name 10

If you need to store or manipulate the name, type, or zone part of an NBP
name separately, you need to use an NBP entity structure, which is a data
structure that Open Transport provides for this purpose. Open Transport also
provides several utility functions to transfer data between NBP entities and
NBP names.

The NBP entity structure holds an NBP name in the form name:type@zone, with
each part containing the maximum 32 characters plus a length byte, for a total
possible length of 99 bytes. The NBP entity itself does not contain escape
characters, but the NBP entity extraction functions insert a backslash (\) in

Table 10-2 Wildcard operators

Character Meaning

= All possible values. You can use the equal sign (=) alone in the
name or type field.

≈ Any or no characters in this position. You can use the double
tilde (≈) to obtain matches for name or type fields. For example,
“pa≈l” matches “pal,” “paul,” and “paper ball.” You can use
only one double tilde in any string. If you use the double tilde
alone, it has the same meaning as the equal sign (=).

Press Option-X to type the double tilde character (≈) on a
Macintosh keyboard.

* Your local zone. You can leave this blank (preferred method)
or use the asterisk (*) to indicate the zone to which this
node belongs.

C H A P T E R 1 0

AppleTalk Addressing

10-14 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

front of any backslash, colon (:), or at sign (@) they find in an NBP name so that
mapper functions can use a correctly formatted NBP name.

You can initialize an NBP entity and then load it with the name, type, and zone
of an NBP name individually (the OTSetNBPName, OTSetNBPType, and
OTSetNBPZone functions), or you can load an NBP entity with an entire NBP
address at one time (the OTSetNBPEntityFromAddress function). Once you have
loaded an NBP entity, you can find out how much buffer space it actually uses
for the NBP name it holds (the OTGetNBPEntityLengthAsAddress function). You
can then extract each individual NBP name part one at a time (the
OTExtractNBPName, OTExtractNBPType, and OTExtractNBPZone functions), or you
can copy the entire NBP entity into an NBP address structure (the
OTSetAddressFromNBPEntity function).

AppleTalk Addressing Reference 10

This section describes the constants, data structures, and functions used with
AppleTalk protocol addresses.

Constants and Data Types 10

This section describes the constants and data types used for the address
formats that are recognized by AppleTalk endpoints: the DDP address
structure, the NBP address structure, the combined DDP-NBP address
structure, and the multinode address structure.

Basic Constants 10

You define the length of AppleTalk addresses and NBP name strings as well as
identify wildcards used in NBP names by using the constants defined here. The
NBP default zone is also defined here, although if you do not use any zone,
Open Transport automatically defaults to * for you.

The constant kNBPEntityBufferSize specifies the maximum size of the NBP
name buffer, currently defined to be 105 bytes. This permits a NBP name string
whose name, type, and zone fields each contain the maximum 32 characters,
plus 2 bytes for the separator characters (: and @) and 7 bytes for an optional

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-15
Draft.  Apple Computer, Inc. 4/30/96

pad byte and 6 escape characters, which are indicated by the backslash (\)
followed by a colon (:), at sign (@), or another backslash. (See “The NBP
Address Structure” on page 10-17 and “The Combined DDP-NBP Address
Structure” on page 10-18 for examples of its use.)

enum {
kNBPMaxNameLength = 32,
kNBPMaxTypeLength = 32,
kNBPMaxZoneLength = 32,
kNBPSlushLength = 9, /* Extra space for @,:,escape chars */
kNBPMaxEntityLength = (kNBPMaxNameLength + kNBPMaxTypeLength +

kNBPMaxZoneLength + 3),
kNBPEntityBufferSize = (kNBPMaxNameLength + kNBPMaxTypeLength +

kNBPMaxZoneLength + kNBPSlushLength),
kNBPWildCard = 0x3D, /* NBP name and type match anything '=' */
kNBPImbeddedWildCard = 0xC5, /* NBP name and type match some '≈' */
kNBPDefaultZone = 0x2A, /* NBP default zone '*' */

kZIPMaxZoneLength = kNBPMaxZoneLength,

kDDPAddressLength = 8,
kNBPAddressLength = kNBPEntityBufferSize,
kAppleTalkAddressLength = kDDPAddressLength + kNBPEntityBufferSize

};

Address Format Constants 10

You identify each AppleTalk address structure by using a specific constant to
indicate which address type you want to use. The permitted constants and
their values are listed here:

enum {
AF_ATALK_DDP = 0x0100, /* DDP address type */
AF_ATALK_DDPNBP = 0x0101, /* DDPNBP address type */
AF_ATALK_NBP = 0x0102, /* NBP address type */
AF_ATALK_MNODE = 0x0103 /* multinode address type */

};

C H A P T E R 1 0

AppleTalk Addressing

10-16 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

The DDP Address Structure 10

You use the DDP address format, specified by the DDP address structure, to
identify the physical socket address for your endpoint. The DDP address
structure is defined by the DDPAddress data type.

struct DDPAddress
{

OTAddressType fAddressType;
UInt16 fNetwork;
UInt8 fNodeID;
UInt8 fSocket;
UInt8 fDDPType;
UInt8 fPad;

};

FIELD DESCRIPTIONS

fAddressType
A number that specifies the format of the address. Use the
constant AF_ATALK_DDP.

fNetwork A 16-bit number in the range 0 to 65,534 that specifies the
network number. The network number 65,535 (all bits set to 1)
is reserved by Apple Computer, Inc. The network number 0
specifies the node’s local network.

fNodeID An 8-bit number in the range from 0 to 255 that specifies the
node ID. A node ID of 255 is accepted by all nodes, permitting
the broadcasting of packets to all nodes on the network; a node
ID of 0 specifies your own local node and is illegal other than
at bind time. For other values, refer to Inside AppleTalk,
second edition.

fSocket An 8-bit number in the range of 1 through 254 that specifies a
logical entity on your node. A socket number of 0 at bind time
instructs Open Transport to dynamically assign a socket
number; a socket number of 4 indicates the echo socket. For
other values, refer to Inside AppleTalk, second edition.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-17
Draft.  Apple Computer, Inc. 4/30/96

fDDPType A number identifying the DDP type field. Unless you are using
the DDP protocol directly, set this field to 0. For additional
information see the chapter “Datagram Delivery Protocol
(DDP)” in this book and Inside AppleTalk, second edition.

fPad Reserved. Set to 0.

The NBP Address Structure 10

You use the NBP address format, specified by the NBP address structure, to
identify the NBP name associated with your endpoint. The NBP address
structure is defined by the NBPAddress data type.

struct NBPAddress
{

OTAddressType fAddressType
UInt8 fNBPNameBuffer[kNBPEntityBufferSize];

};

FIELD DESCRIPTIONS

fAddressType
A number that specifies the format of the address. Use the
constant AF_ATALK_NBP.

fNBPNameBuffer
An 8-bit number that specifies the buffer that holds the NBP
name string. The string specifies an endpoint name in the
format name:type@zone and is not null terminated. You can
precede colons (:), at signs (@), and backslash (\) characters
with a backslash if you want to include them as part of
the name.

The constant kNBPEntityBufferSize specifies the maximum size
of the buffer, currently defined to be 105 bytes. This permits a
string whose name, type, and zone fields each contain the
maximum 32 characters, plus 2 bytes for the separator
characters (: and @) and 7 bytes for an optional pad byte and 6
escape characters, which are indicated by the backslash (\)
followed by a colon (:), at sign (@), or another backslash.

C H A P T E R 1 0

AppleTalk Addressing

10-18 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

The Combined DDP-NBP Address Structure 10

You use the combined DDP-NBP address format, specified by the combined
DDP-NBP address structure, to identify the physical socket address and the
NBP name associated with your endpoint for use when you bind an endpoint.
The combined DDP-NBP address structure is defined by the DDPNBPAddress
data type.

struct DDPNBPAddress
{

OTAddressType fAddressType;
UInt16 fNetwork;
UInt8 fNode;
UInt8 fSocket;
UInt8 fDDPType;
UInt8 fPad;
UInt8 fNBPNameBuffer[kNBPEntityBufferSize];

};

FIELD DESCRIPTIONS

fAddressType A number that specifies the format of the address. Use the
constant AF_ATALK_DDPNBP.

fNetwork A 16-bit number in the range 0 to 65,534 that specifies the
network number. The network number 65,535 (all bits set to 1)
is reserved by Apple Computer, Inc. The network number 0
specifies the node’s local network.

fNodeID An 8-bit number in the range from 0 to 255 that specifies the
node ID. A node ID of 255 is accepted by all nodes, permitting
the broadcasting of packets to all nodes on the network; a node
ID of 0 specifies your own local node and is illegal other than
at bind time. For other values, refer to Inside AppleTalk,
second edition.

fSocket An 8-bit number in the range of 1 through 254 that specifies a
logical entity on your node. A socket number of 0 at bind time
instructs Open Transport to dynamically assign a socket
number; a socket number of 4 indicates the echo socket. For
other values, refer to Inside AppleTalk, second edition.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-19
Draft.  Apple Computer, Inc. 4/30/96

fDDPType A number identifying the DDP type field. Unless you are using
the DDP protocol directly, set this field to 0. For additional
information see the chapter “Datagram Delivery Protocol
(DDP)” in this book and Inside AppleTalk, second edition.

fPad Reserved. Set to 0.

fNBPNameBuffer
An 8-bit number that specifies the buffer that holds the NBP
name string. The string specifies an endpoint name in the
format name:type@zone and is not null terminated. You can
precede colons (:), at signs (@), and backslash (\) characters
with a backslash if you want to include them as part of the
name.

The constant kNBPEntityBufferSize specifies the maximum size
of the buffer, currently defined to be 105 bytes. This permits a
string whose name, type, and zone fields each contain the
maximum 32 characters, plus 2 bytes for the separator
characters (: and @) and 7 bytes for an optional pad bytes and 6
escape characters, which are indicated by the backslash (\)
followed by a colon (:), at sign (@), or another backslash.

The Multinode Address Structure 10

You use the multinode address format, specified by the DDP address structure,
to identify the physical socket address for a multinode endpoint. The DDP
address structure is defined by the DDPAddress data type, described in the
section “The DDP Address Structure.”

struct DDPAddress
{

OTAddressType fAddressType;
UInt16 fNetwork;
UInt8 fNode;
UInt8 fSocket;
UInt8 fDDPType;
UInt8 fPad;

};

C H A P T E R 1 0

AppleTalk Addressing

10-20 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

FIELD DESCRIPTIONS

fAddressType A number that specifies the format of the address. Use the
constant AF_ATALK_MNODE.This is the only way to distinguish the
multinode format from a DDP address.

fNetwork A 16-bit number in the range 0 to 65,534 that specifies the
network number. The network number 65,535 (all bits set to 1)
is reserved by Apple Computer, Inc. The network number 0
specifies the node’s local network.

fNodeID An 8-bit number in the range from 0 to 255 that specifies the
node ID. A node ID of 255 is accepted by all nodes, permitting
the broadcasting of packets to all nodes on the network; a node
ID of 0 specifies your own local node and is illegal other than at
bind time. For other values, refer to Inside AppleTalk, second
edition.

fSocket An 8-bit number in the range of 1 through 254 that specifies a
logical entity on your node. A socket number of 0 at bind time
instructs Open Transport to dynamically assign a socket
number; a socket number of 4 indicates the echo socket. For
other values, refer to Inside AppleTalk, second edition.

fDDPType A number identifying the DDP type field. Unless you are using
the DDP protocol directly, set this field to 0. For additional
information see the chapter “Datagram Delivery Protocol
(DDP)” in this book and Inside AppleTalk, second edition.

fPad Reserved. Set to 0.

The NBP Entity Structure 10

You use an NBP entity to more conveniently manipulate NBP names because it
allows you to extract and set the NBP name’s three parts (name, type, and
zone) separately. Its use is optional under Open Transport, but it provides an
easier way to port programs written for classic AppleTalk. There are many
AppleTalk utility functions that transfer data between NBP entity structures
and NBP names.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-21
Draft.  Apple Computer, Inc. 4/30/96

The NBP entity structure is defined by the NBPEntity data type.

struct NBPEntity
{

UInt8 fEntity[kNBPMaxEntityLength];
};

FIELD DESCRIPTIONS

fEntity An 8-bit number that specifies the NBP entity you wish to use
to hold the NBP name.

The NBP entity holds an NBP name in the form name:type@zone,
and the constant kNBPMaxEntityLength specifies the maximum
size of the buffer, currently defined to be 99 bytes. This permits
an NBP name whose name, type, and zone contain the
maximum 32 characters each plus a length byte. The NBP entity
itself does not contain escape characters, but the NBP entity
extraction functions add them as necessary when converting
NBP name strings from NBP entities.

Functions 10

This section describes AppleTalk utility functions that initialize DDP and NBP
data structures, that compare DDP addresses, and that transfer data between
NBP entities and NBP names.

OTInitDDPAddress 10

Initializes a DDP address structure.

C INTERFACE

void OTInitDDPAddress(DDPAddress* address, UInt16 net,
 UInt8 node, UInt8 socket, UInt8 ddpType);

C H A P T E R 1 0

AppleTalk Addressing

10-22 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

address A pointer to the DDP address structure you wish to initialize.

net The network number you wish to specify. Set to 0 to default to
the local network.

node The node ID you wish to specify. Set to 0 to default to the
local node.

socket The socket number you wish to specify. Set to 0 to allow Open
Transport to assign a socket dynamically when you use this
address to bind an endpoint.

ddpType The DDP type you wish to specify. Set to 0 unless you are
using DDP.

SEE ALSO

The DDP address structure is described in the section “The DDP Address
Structure,” beginning on page 10-16.

To initialize an NBP address, use the OTInitNBPAddress function (page 10-22).
To initialize a combined DDPNBP address, use the OTInitDDPNBPAddress
function (page 10-23).

See the chapter “Datagram Delivery Protocol” in this book for more
information about the DDP type.

OTInitNBPAddress 10

Initializes an NBP address structure.

C INTERFACE

size_t OTInitNBPAddress(NBPAddress* address, const char* name);

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-23
Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

address A pointer to the NBP address structure you wish to initialize.

name A pointer to the NBP string you wish to use for the NBP name.

DESCRIPTION

The OTInitNBPAddress function can be used to initialize an NBP address
structure with the NBP name specified in the name parameter, which is assumed
to already be in the correct string format. The function returns the size of the
NBP address structure, which is the size of the fAddressType field plus the
length of the string in the name parameter.

SEE ALSO

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To initialize a DDP address, use the OTInitDDPAddress function (page 10-21).

To initialize a combined DDPNBP address, use the OTInitDDPNBPAddress
function (page 10-23).

OTInitDDPNBPAddress 10

Initializes a combined DDP-NBP address structure.

C INTERFACE

size_t OTInitDDPNBPAddress(DDPNBPAddress* address,
const char* name, UInt16 net, UInt8 node,
UInt8 socket, UInt8 ddpType);

C H A P T E R 1 0

AppleTalk Addressing

10-24 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

address A pointer to the combined DDP-NBP address structure you
wish to initialize.

name A pointer to the NBP string you wish to use for the NBP name.

net The network number you wish to specify. Set to 0 to default to
the local network.

node The node ID you wish to specify. Set to 0 to default to the
local node.

socket The socket number you wish to specify. Set to 0 to allow Open
Transport to assign a socket dynamically when you use this
address to bind an endpoint.

ddpType The DDP type you wish to specify. Set to 0 unless you are
using DDP.

DESCRIPTION

The OTInitDDPNBPAddress function initializes a combined DDP-NBP address
structure with the data provided in the parameters: NBP name, network
number, node ID, socket number, and DDP type. The function returns the total
size of the address structure, which is the length of the name parameter plus the
size of a DDPAddress structure.

SEE ALSO

The combined DDP-NBP address structure is described in the section “The
Combined DDP-NBP Address Structure,” beginning on page 10-18.

To initialize an NBP address, use the OTInitNBPAddress function (page 10-22).

To initialize a DDP address, use the OTInitDDPAddress function (page 10-21).

See the chapter “Datagram Delivery Protocol” in this book for more
information about the DDP type.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-25
Draft.  Apple Computer, Inc. 4/30/96

OTCompareDDPAddresses 10

Compares two DDP address structures.

C INTERFACE

Boolean OTCompareDDPAddresses(const DDPAddress* addr1,
const DDPAddress* addr2);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

addr1 A pointer to one of the DDP address structures you wish
to compare.

addr2 A pointer to the second DDP address structure you wish
to compare.

DESCRIPTION

The OTCompareDDPAddresses function compares two DDP addresses for equality
and returns true if the two addresses match. It cannot compare NBP or
combined DDP-NBP addresses; using these address types always returns
false. This function uses the zero-matches-anything AppleTalk rule when
doing the matching, which means that a value of 0 in any field results in an
acceptable match.

C H A P T E R 1 0

AppleTalk Addressing

10-26 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

OTInitNBPEntity 10

Initializes an NBP entity structure.

C INTERFACE

void OTInitNBPEntity(NBPEntity* nbpEntity);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure you wish to initialize.

DESCRIPTION

The OTInitNBPEntity function initializes an NBP entity structure, setting the
name, type and zone parts of an NBP name to empty strings.

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPType function (page 10-33), the OTSetNBPType function
(page 10-33), and the OTSetNBPZone function (page 10-35), respectively.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-27
Draft.  Apple Computer, Inc. 4/30/96

OTGetNBPEntityLengthAsAddress 10

Obtains the size of an NBP entity structure.

C INTERFACE

size_t OTGetNBPEntityLengthAsAddress(const NBPEntity* nbpEntity);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure you wish to determine the
length of.

SPECIAL CONSIDERATIONS

Use this function to determine the appropriate buffer size for an NBP entity
before using the OTSetAddressFromNBPEntity function.

DESCRIPTION

The OTGetNBPEntityLengthAsAddress function obtains the number of bytes
needed to store an NBP entity structure into an NBP or combined DDP-NBP
address structure.

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

The combined DDP-NBP entity structure is described in the section “The
Combined DDP-NBP Address Structure,” beginning on page 10-18.

C H A P T E R 1 0

AppleTalk Addressing

10-28 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

To store an NBP entity structure as an NBP address string, use the
OTSetAddressFromNBPEntity function (page 10-28).

OTSetAddressFromNBPEntity 10

Stores an NBP entity structure as an NBP address string.

C INTERFACE

size_t OTSetAddressFromNBPEntity(UInt8* nameBuf,
const NBPEntity* nbpEntity);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nameBuf A pointer to the NBP address buffer in which you wish to store
the NBP entity.

nbpEntity A pointer to the NBP entity you wish to store.

DESCRIPTION

The OTSetAddressFromNBPEntity function stores the information in the NBP
entity into the buffer specified by the nameBuf parameter in the format required
for mapper calls—that is, if you have a backslash (\), a colon (:), or an at-sign
(@) in your NBP name, this function inserts a backslash before each so that the
mapper functions can handle them correctly. This function returns the number
of bytes that were actually used in the buffer.

SPECIAL CONSIDERATIONS

Use the OTGetNBPEntityLengthAsAddress function beforehand to determine the
appropriate buffer size.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-29
Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To determine the appropriate buffer size for an NBP entity, use the
OTGetNBPEntityLengthAsAddress function (page 10-27).

To parse and store all or part of an NBP name into an NBP entity, use the
OTSetNBPEntityFromAddress function (page 10-29).

OTSetNBPEntityFromAddress 10

Parses and stores an NBP address into an NBP entity.

C INTERFACE

Boolean OTSetNBPEntityFromAddress(NBPEntity* nbpEntity,
const UInt8* addrBuf,
size_t len);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity in which you wish to store
an address.

addrBuf A pointer to the address buffer in which to store the NBP
name string.

len The number of characters to parse and store.

C H A P T E R 1 0

AppleTalk Addressing

10-30 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTSetNBPEntityFromAddress function parses an NBP address or a combined
DDP-NBP address into the NBP name’s constituent parts (name, type, and
zone) and stores the result in an NBP entity. The function ignores the DDP
address part of a combined DDP-NBP address. From the NBP entity, each of
the constituent parts of the name can be later retrieved or changed.

This function returns true if it worked successfully; it returns false if it had to
truncate any data—that is, if the address had data that was too long in one of
the fields, each of which only holds 32 characters of data. When this occurs,
Open Transport still stores the data, but in a truncated form.

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

The combined DDP-NBP entity structure is described in the section “The
Combined DDP-NBP Address Structure,” beginning on page 10-18.

To copy the contents of an NBP entity into an NBP address structure, use the
OTSetAddressFromNBPEntity function (page 10-28).

To determine the appropriate buffer size for an NBP entity, use the
OTGetNBPEntityLengthAsAddress function (page 10-27).

To store the NBP name in an NBP entity, use the OTSetNBPName function
(page 10-32); to store the NBP type, use the OTSetNBPType function (page 10-33);
and to store the NBP zone, use the OTSetNBPZone function (page 10-35).

To extract the name portion of an NBP name from an NBP entity, use the
OTExtractNBPName function (page 10-36); to extract the type portion of an NBP
name, use the OTExtractNBPType function (page 10-37); and to extract the zone
portion, use the OTExtractNBPZone function (page 10-38).

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-31
Draft.  Apple Computer, Inc. 4/30/96

OTSetAddressFromNBPString 10

Copies an NBP name string into an NBP address buffer.

C INTERFACE

size_t OTSetAddressFromNBPString(UInt8* addrBuf,
const char* nbpName, SInt32 len);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

addrBuf A pointer to the NBP address buffer in which to store the NBP
name string.

nbpName A pointer to the NBP name string you wish to copy into the
buffer.

len The number of characters to copy.

DESCRIPTION

The OTSetAddressFromNBPString function copies the string indicated by the
nbpName parameter into the buffer indicated by the addrBuf parameter. The len
parameter indicates the number of characters to copy. A value of -1 copies the
entire nbpName string. The function returns the number of bytes actually copied.

SEE ALSO

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To copy the contents of an NBP entity into an NBP address structure, use the
OTSetAddressFromNBPEntity function (page 10-28).

C H A P T E R 1 0

AppleTalk Addressing

10-32 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

OTSetNBPName 10

Stores the name part of an NBP name into an NBP entity structure.

C INTERFACE

Boolean OTSetNBPName(NBPEntity* nbpEntity, const char* name);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure in which you wish to store
an address.

name A pointer to the name portion of an NBP name string that you
wish to store.

DESCRIPTION

The OTSetNBPName function stores the NBP name specified by the name
parameter into the NBP entity structure indicated by the nbpEntity parameter,
deleting any previous name stored there. This function returns false if the name
parameter is longer than the maximum allowed for a name part of an NBP
name (32 characters).

SPECIAL CONSIDERATIONS

When you store all or part of an NBP name in an NBP entity structure, do not
include the backslash as an escape character. The NBP entity extraction
functions insert a backslash (\) in front of any backslash, colon (:), or at-sign
(@) they find in an NBP name so that mapper functions can use a correctly
formatted NBP name.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-33
Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To store the type and zone parts of an NBP name in an NBP entity structure,
use the OTSetNBPType function (page 10-33) and the OTSetNBPZone function
(page 10-35), respectively.

To extract the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTExtractNBPName function (page 10-36), the OTExtractNBPType
function (page 10-37), and the OTExtractNBPZone function (page 10-38),
respectively.

OTSetNBPType 10

Stores the type part of an NBP name in an NBP entity structure.

C INTERFACE

Boolean OTSetNBPType(NBPEntity* nbpEntity, const char* type);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure in which you wish to store
an address.

type A pointer to the type portion of an NBP name string that you
wish to store.

C H A P T E R 1 0

AppleTalk Addressing

10-34 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTSetNBPType function stores the NBP type specified by the type parameter
into the NBP entity structure indicated by the nbpEntity parameter, deleting
any previous type stored there. The type supplied must not have any escape
characters stored in it, although you do not receive any error message if you do
use such characters. This function returns false if the type parameter is longer
than the maximum allowed for type part of an NBP name (32 characters).

SPECIAL CONSIDERATIONS

When you store all or part of an NBP name in an NBP entity structure, do not
include the backslash as an escape character. The NBP entity extraction
functions insert a backslash (\) in front of any backslash, colon (:), or at-sign
(@) they find in an NBP name so that mapper functions can use a correctly
formatted NBP name.

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To store the name and zone parts of an NBP name in an NBP entity structure,
use the OTSetNBPName function (page 10-32) and the OTSetNBPZone function
(page 10-35), respectively.

To extract the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTExtractNBPName function (page 10-36), the OTExtractNBPType
function (page 10-37), and the OTExtractNBPZone function (page 10-38),
respectively.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-35
Draft.  Apple Computer, Inc. 4/30/96

OTSetNBPZone 10

Stores the zone part of an NBP name in an NBP entity structure.

C INTERFACE

Boolean OTSetNBPZone(NBPEntity* nbpEntity, const char* zone);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure in which you wish to store
an address.

zone A pointer to the zone portion of an NBP name string that you
wish to store.

DESCRIPTION

The OTSetNBPZone function stores the NBP zone specified by the zone parameter
into the NBP entity structure indicated by the nbpEntity parameter, deleting
any previous zone stored there. The zone supplied must not have any of the
NBP escape characters stored in it, although you do not receive any error
message if you do use such characters. This function returns false if the zone
parameter is longer than the maximum allowed for zone part of an NBP name
(32 characters).

SPECIAL CONSIDERATIONS

When you store all or part of an NBP name in an NBP entity structure, do not
include the backslash as an escape character. The NBP entity extraction
functions insert a backslash (\) in front of any backslash, colon (:), or at-sign
(@) they find in an NBP name so that mapper functions can use a correctly
formatted NBP name.

C H A P T E R 1 0

AppleTalk Addressing

10-36 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To store the name and type parts of an NBP name in an NBP entity structure,
use the OTSetNBPName function (page 10-32) and the OTSetNBPType function
(page 10-33), respectively.

To extract the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTExtractNBPName function (page 10-36), the OTExtractNBPType
function (page 10-37), and the OTExtractNBPZone function (page 10-38),
respectively.

OTExtractNBPName 10

Extracts the name part of an NBP name from an NBP entity structure.

C INTERFACE

void OTExtractNBPName(const NBPEntity* nbpEntity, char* name);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure from which you wish to
extract an address.

name A pointer to the string buffer in which to store the name portion
of an NBP name string that you wish to extract from the
NBP entity.

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-37
Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTExtractNBPName function extracts the name part of an NBP name from the
specified NBP entity structure and stores it into the string buffer specified by
the name parameter. This function inserts a backslash (\) in front of any
backslash, colon (:), or at-sign (@) it finds in an NBP name so that mapper
functions can use a correctly formatted NBP name.

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPName function (page 10-32), the OTSetNBPType function
(page 10-33), and the OTSetNBPZone function (page 10-35), respectively.

To extract the type and zone parts of an NBP name in an NBP entity structure,
use the OTExtractNBPType function (page 10-37) and the OTExtractNBPZone
function (page 10-38), respectively.

OTExtractNBPType 10

Extracts the type part of an NBP name from an NBP entity structure.

C INTERFACE

void OTExtractNBPType(const NBPEntity* nbpEntity, char* type);

C++ INTERFACES

None. C++ applications use the C interface to this function.

C H A P T E R 1 0

AppleTalk Addressing

10-38 AppleTalk Addressing Reference

Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

nbpEntity A pointer to the NBP entity structure from which you wish to
extract an address.

type A pointer to the string buffer in which to store the type portion
of an NBP name string that you wish to extract from the
NBP entity.

DESCRIPTION

The OTExtractNBPType function extracts the type part of an NBP name from the
specified NBP entity structure and stores it into the string buffer specified by
the type parameter. This function inserts a backslash (\) in front of any
backslash, colon (:), or at-sign (@) it finds in an NBP name so that mapper
functions can use a correctly formatted NBP name.

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPName function (page 10-32), the OTSetNBPType function
(page 10-33), and the OTSetNBPZone function (page 10-35), respectively.

To extract the name and zone parts of an NBP name in an NBP entity structure,
use the OTExtractNBPName function (page 10-36) and the OTExtractNBPZone
function (page 10-38), respectively.

OTExtractNBPZone 10

Extracts the zone part of an NBP name from an NBP entity structure.

C INTERFACE

void OTExtractNBPZone(const NBPEntity* nbpEntity, char* zone);

C H A P T E R 1 0

AppleTalk Addressing

AppleTalk Addressing Reference 10-39
Draft.  Apple Computer, Inc. 4/30/96

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure from which you wish to
extract an address.

type A pointer to the string buffer in which to store the type portion
of an NBP name string that you wish to extract from the NBP
entity.

DESCRIPTION

The OTExtractNBPZone function extracts the zone part of an NBP name from the
specified NBP entity structure and stores it into the string buffer specified by
the zone parameter. This function inserts a backslash (\) in front of any
backslash, colon (:), or at-sign (@) it finds in an NBP name so that mapper
functions can use a correctly formatted NBP name.

SEE ALSO

The NBP entity structure is described in the section “The NBP Entity
Structure,” beginning on page 10-20.

The NBP address structure is described in the section “The NBP Address
Structure,” beginning on page 10-17.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPName function (page 10-32), the OTSetNBPType function
(page 10-33), and the OTSetNBPZone function (page 10-35), respectively.

To extract the name and type parts of an NBP name in an NBP entity structure,
use the OTExtractNBPName function (page 10-36) and the OTExtractNBPType
function (page 10-37) , respectively.

C H A P T E R 1 1

Contents 11-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 11-0
Listing 11-0
Table 11-0

11 AppleTalk Service Providers

About AppleTalk Service Providers 11-4
Using AppleTalk Service Providers 11-5

Obtaining AppleTalk Service Providers 11-6
Working With AppleTalk Zones 11-6
Getting the Name of Your Application’s Zone 11-7
Getting a List of Zone Names for Your
Local Network or Internet 11-8
Getting Information About Your Current AppleTalk Environment 11-9

AppleTalk Service Provider Reference 11-10
Constants and Data Types 11-10

Completion Event Constants 11-10
The AppleTalk Information Structure 11-11

Functions 11-12
Opening an AppleTalk Service Provider 11-12

OTAsyncOpenAppleTalkServices 11-12
OTOpenAppleTalkServices 11-14

Obtaining Information About Zones 11-16
OTATalkGetMyZone 11-16
OTATalkGetLocalZones 11-18
OTATalkGetZoneList 11-19

Obtaining Information About Your AppleTalk Environment 11-20
OTATalkGetInfo 11-21

C H A P T E R 1 1

11-3
Draft.  Apple Computer, Inc. 4/30/96

AppleTalk Service Providers 11

The AppleTalk service provider is an Open Transport provider that gives you
access to zone and node information functions that are specific to the
AppleTalk protocol family. AppleTalk networks use zones to define logical
groups of users, and there are several Open Transport functions you can use to
determine your endpoint’s zone and the zone or zones in your endpoint’s
network. Open Transport also provides a function that can supply information
about your endpoint’s AppleTalk environment. To use these functions, you
must create a specialized Open Transport provider: an AppleTalk service
provider.

The AppleTalk service provider is able to provide information about zones by
implementing a subset of the Zone Information Protocol (ZIP), which maps
network numbers to zone names for all networks belonging to an AppleTalk
internet.

This chapter describes the AppleTalk service provider functions. You should
read this chapter if you want to obtain

■ the zone name for the node on which your application is running

■ the names of the zones for the local network to which your application’s
node is connected

■ the names of all the zones that exist throughout the AppleTalk internet to
which your local network belongs

■ information about the AppleTalk environment for a given node, including
the address of a local router

For an overview of the AppleTalk service provider and how it fits within the
AppleTalk protocol stack, read the chapter “Introduction to AppleTalk” in this
book. Zones are part of the NBP name used in the NBP address format; for
more information on this format, read the chapter “AppleTalk Addressing” in
this book. For a detailed description of the ZIP specification, see Inside
AppleTalk, second edition.

C H A P T E R 1 1

AppleTalk Service Providers

11-4 About AppleTalk Service Providers

Draft.  Apple Computer, Inc. 4/30/96

About AppleTalk Service Providers 11

The AppleTalk service provider gives applications access to information and
services that are specific to the AppleTalk protocol family. For example, you can
obtain zone names and information about the AppleTalk environment for a
given machine.

The portion of ZIP implemented by AppleTalk service provider functions can
query routers for information about a client’s own node, the names of all the
zones on the node’s local network, or the names of all the zones throughout the
AppleTalk internet. AppleTalk routers implement the full set of ZIP functions,
with each router maintaining a complete mapping of network numbers and
zone names in a zone information table that it periodically updates.

The mapping observes the following rules:

■ Every node on a network belongs to only one zone.

■ A nonextended LocalTalk network contains only one zone; all nodes in that
network belong to that zone.

■ A single zone can include nodes that belong to different networks.

■ Each AppleTalk extended network has associated with it a list of the zones
to which its nodes can belong.

Figure 11-1 shows how, in providing access to the Zone Information Protocol
(ZIP), AppleTalk service providers encompass underlying delivery protocols
and link-access Stream modules. Because some AppleTalk service provider
functions use AppleTalk Transaction Protocol (ATP) packets and some do not,
an AppleTalk service provider is considered a client of both ATP and the
Datagram Delivery Protocol (DDP).

C H A P T E R 1 1

AppleTalk Service Providers

Using AppleTalk Service Providers 11-5
Draft.  Apple Computer, Inc. 4/30/96

Figure 11-1 AppleTalk service providers and their underlying delivery mechanism

Using AppleTalk Service Providers 11

This section explains how you open an AppleTalk service provider and how
you use its functions to obtain

■ the name of the zone for your application’s node

■ the names of the zones in your local network or AppleTalk internet

■ information about your current AppleTalk environment

You can use AppleTalk service provider functions to get the name of your
node’s zone. If you are running on a node that belongs to an extended network,
you can call an AppleTalk service provider function to get a list of all the zone
names associated with that network. For example, an AppleTalk control panel
could call the OTATalkGetLocalZones function to provide the user with a list of
local zones.

You can also use AppleTalk service provider functions in conjunction with
mapper functions (described in the chapter “Mappers” in this book). For
example, you can use an AppleTalk service provider to look up zones on the

ATP

ZIP

Standard link-access Streams modules

DDP

C H A P T E R 1 1

AppleTalk Service Providers

11-6 Using AppleTalk Service Providers

Draft.  Apple Computer, Inc. 4/30/96

network, then use the mapper function OTLookUpName to look up the names in
each zone.

Obtaining AppleTalk Service Providers 11

In order to use the zone and network information functions, you must open an
AppleTalk service provider. As with other Open Transport providers, you can
open these providers synchronously or asynchronously, and in many ways,
they behave similarly to endpoint and mapper providers. For example, you
open an AppleTalk service provider by calling either the
OTOpenAppleTalkServices function or the OTAsyncOpenAppleTalkServices
function, both of which return an AppleTalk service provider reference to
identify the provider you just opened. You use this reference in AppleTalk
service provider functions just as you use an endpoint reference in most
endpoint provider functions. If you open more than one AppleTalk service
provider, the AppleTalk service provider reference lets you to distinguish one
provider from another.

If you want to open the AppleTalk service provider asynchronously, you need
to create a notifier function that Open Transport can use to send you
completion events and other function-specific information. This notifier is the
same as the one you need to use for asynchronous endpoints. If you create
more than one asynchronous AppleTalk service provider, you can only have
one call of each function awaiting completion at the same time.

When you are done using the functions provided by the AppleTalk service
provider, you must explicitly close the provider with the generic Open
Transport function, OTCloseProvider, to release the memory it uses. The
OTCloseProvider function is described in the chapter “Providers” in this book.

Working With AppleTalk Zones 11

The NBP name used in the NBP address format has three parts, one of which is
the zone name. A zone is a logical grouping of nodes within an AppleTalk
network. You do not specify the zone when you bind an endpoint; you obtain
this value from the system.

An AppleTalk zone name is stored as a Pascal string that contains a maximum
of 32 characters. When you add a length byte, you have a string that can have a
maximum of 33 bytes. You need to calculate the amount of buffer space you
need based on this maximum string size.

C H A P T E R 1 1

AppleTalk Service Providers

Using AppleTalk Service Providers 11-7
Draft.  Apple Computer, Inc. 4/30/96

The OTATalkGetMyZone function only returns one zone name, so an appropriate
buffer size would be 33 bytes. The OTATalkGetLocalZones function, however,
returns all the zone names in an extended network, which can hold up to 254
zones, so a maximum buffer size for this function would be 8382 bytes. Because
zone names often use less than 32 characters and AppleTalk service providers
don’t pad short names, 6 KB is likely to be a safe value for this buffer’s size.

A much larger buffer would be needed for the OTATalkGetZoneList function,
which returns all the zones in all the networks in your AppleTalk internet. You
can end up with up to 64 KB of data. To keep the buffer as small and efficient as
possible, you can set up a large buffer, test for the kOTBufferOverflowErr error,
and then increase the size of the buffer and reissue the call if this error is
returned.

Note that these functions, OTATalkGetMyZone, OTATalkGetLocalZones, and
OTATalkGetZoneList, return data to you using the TNetbuf structure. This means
that you have to define your buffer size in the maxlen field of the TNetbuf
structure.

For more information about using zones in NBP names and addresses, see
the chapters “Introduction to AppleTalk” and “AppleTalk Addressing” in
this book.

Getting the Name of Your Application’s Zone 11

You can get the name of your application’s zone by calling the
OTATalkGetMyZone function. If you call this function asynchronously, the event
T_GETMYZONECOMPLETE signals the completion of the function, and your notifier’s
cookie parameter points to the zone name with the zone parameter.

Listing 11-1 shows the synchronous application-defined DoGetMyZone function,
which opens an AppleTalk service provider and calls the OTATalkGetMyZone
function. Note that the length of the buffer, a TNetbuf structure, is set to 0. Open
Transport adjusts it to the actual length of the zone name when the function
returns. Note also that the function adds a NULL character to the zone name.
This is optional, but adding the NULL character turns the string into a C string
and makes it easier to handle if you have further use for this string.

Another item to note is that the listing uses the recommended configuration
string, the constant kDefaultAppleTalkServicesPath. Open Transport
recommends using this string, not the kZIPName constant.

C H A P T E R 1 1

AppleTalk Service Providers

11-8 Using AppleTalk Service Providers

Draft.  Apple Computer, Inc. 4/30/96

Listing 11-1 Using the DoGetMyZone function synchronously

OSStatus DoGetMyZone (char* zoneName)
{

OSStatus result;
ATSvcRef svcRef;
TNetbuf zoneNetbuf;

svcRef = OTOpenAppleTalkServices
(kDefaultAppleTalkServicesPath, 0, &result);

if (result == noErr)
{

zoneNetbuf.maxlen = 33;
zoneNetbuf.len = 0;
zoneNetbuf.buf = zoneName;
OTATalkGetMyZone(svcRef, &zoneNetbuf);
zoneName[zoneNetBuf.len] = '\0';
result = OTCloseProvider(svcRef);

}
return result;

}

Getting a List of Zone Names for Your
Local Network or Internet 11

If you are on an AppleTalk extended network, you can get a list of the names of
all the zones in your local network by calling the OTATalkGetLocalZones
function. If you are on a nonextended network, your network is all on the same
zone, and this function returns an asterisk (*), which is the same result as you
would get from using the OTATalkGetMyZone function.

If you call the OTATalkGetLocalZones function asynchronously, the event
T_GETLOCALZONESCOMPLETE signals the completion of the function, and your
notifier’s cookie parameter points to a list of zone names with the zones
parameter.

If you are on a network that is part of an AppleTalk internet, you can also use
the OTATalkGetZoneList function to obtain a list of all the zones in the
AppleTalk internet to which your node’s network belongs. As with the
OTATalkGetLocalZones function, if you call the OTATalkGetZoneList function
asynchronously, Open Transport sends your notifier a completion event, in this

C H A P T E R 1 1

AppleTalk Service Providers

Using AppleTalk Service Providers 11-9
Draft.  Apple Computer, Inc. 4/30/96

case the T_GETZONELISTCOMPLETE event, to signal the completion of the function,
and your notifier’s cookie parameter points to a list of zone names with the
zones parameter.

It is your responsibility to allocate a buffer that is large enough to hold the list
of zone names returned. See the section “Working With AppleTalk Zones” on
page 11-6 for more information about buffer sizes.

Getting Information About Your Current AppleTalk
Environment 11

You can use the function OTATalkGetInfo to access an AppleTalk information
structure (of type AppleTalkInfo) that contains information about the
AppleTalk environment for the node in which your application is running. This
information can be useful if you are configuring a network or checking that a
network has been configured correctly.

If your application’s network is nonextended, this function provides your
application’s DDP address and the address of the closest local router. If your
application’s network is extended, this function sets a flag indicating that it’s
an extended network and provides your application’s DDP address, the
address of the closest local router, and the current network range for the
extended network to which your node belongs.

In either case, this function can also set two other flags: one that indicates that
there is a router on the same network, and one that indicates that the network
only has one zone.

If you call this function synchronously, the AppleTalk service provider uses the
info parameter to provide information about your current network
environment. If you call this function asynchronously, the event
T_GETATALKINFOCOMPLETE signals the completion of the function, and your
notifier’s cookie parameter points to the AppleTalk environment information
with the info parameter.

If the node is multihoming—that is, if multiple network numbers and node
numbers are associated with the same node—the OTATalkGetInfo function
returns information about the node whose network number and node ID are
selected in the AppleTalk control panel.

C H A P T E R 1 1

AppleTalk Service Providers

11-10 AppleTalk Service Provider Reference

Draft.  Apple Computer, Inc. 4/30/96

AppleTalk Service Provider Reference 11

This section describes the data structures and functions that are specific to the
AppleTalk service provider.

Constants and Data Types 11

This section describes the events you can receive with the notifier function you
provide for your AppleTalk service provider. It also describes the
AppleTalkInfo data type, which is a structure used by the AppleTalk service
provider to return information about your current AppleTalk environment.

To open an AppleTalk service provider, you specify the constant
kDefaultAppleTalkServicesPath as the cfig parameter for the open provider
functions, OTAsyncOpenAppleTalkServices and OTOpenAppleTalkServices.

#define kDefaultAppleTalkServicesPath((OTConfiguration*)-3)

Completion Event Constants 11

As with Open Transport endpoint providers, when you call AppleTalk service
provider functions asynchronously, Open Transport signals the function’s
completion by calling the notifier function you installed for your provider and
sending it a completion event. The notifier function is the same as the one you
used for your endpoint providers, and Open Transport uses its parameters in
the same way.

This list gives the completion events that Open Transport returns for each of
the AppleTalk service provider functions:

Event constant Value Function completed

T_OPENCOMPLETE 0x20000007 OTAsyncOpenAppleTalkServices

T_GETMYZONECOMPLETE 0x23010001 OTATalkGetMyZone

T_GETLOCALZONESCOMPLETE 0x23010002 OTATalkGetLocalZones

T_GETZONELISTCOMPLETE 0x23010003 OTATalkGetZoneList

T_GETATALKINFOCOMPLETE 0x23010004 OTATalkGetInfo

C H A P T E R 1 1

AppleTalk Service Providers

AppleTalk Service Provider Reference 11-11
Draft.  Apple Computer, Inc. 4/30/96

The AppleTalk Information Structure 11

You use the AppleTalk information structure to obtain information about the
current AppleTalk environment for the node on which your application is
running. The AppleTalk information structure is defined by the AppleTalkInfo
data type.

struct AppleTalkInfo {
DDPAddress fOurAddress;
DDPAddress fRouterAddress;
UInt16 fCableRange[2];
UInt16 fFlags;

};

Field descriptions
fOurAddress The network number and node ID of your node.

fRouterAddress The network number and node ID of the closest router on
your network.

fCableRange A two-element array indicating the first and last network
numbers for the current extended network to which the
machine is connected. For nonextended networks, this
returns an asterisk (*).

Flags A set of flag bits that describe the network:

SEE ALSO

Use the OTATalkGetInfo function (page 11-21) to obtain the AppleTalkInfo data.

Flag Value Description

kATalkInfoIsExtended 0x0001 The current network is an
extended network.

kATalkInfoHasRouter 0x0002 There is a router on the same
network as this machine.

kATalkInfoOneZone 0x0004 This network has only one zone.

C H A P T E R 1 1

AppleTalk Service Providers

11-12 AppleTalk Service Provider Reference

Draft.  Apple Computer, Inc. 4/30/96

Functions 11

You use the AppleTalk service provider functions to obtain information about
zones and about the network to which your node is connected. Before you can
call these functions, you must open the AppleTalk service provider by calling
one of the two functions described in the next section.

Opening an AppleTalk Service Provider 11

Before you can call AppleTalk service provider functions, you must open an
AppleTalk service provider by calling the OTAsyncOpenAppleTalkServices
function or the OTOpenAppleTalkServices function.

OTAsyncOpenAppleTalkServices 11

Opens an asynchronous AppleTalk service provider.

C INTERFACE

OSStatus OTAsyncOpenAppleTalkServices(OTConfiguration* cfig,
OTOpenFlags flags,
OTNotifyProcPtr proc,
void* contextPtr);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

cfig A pointer to a configuration structure that specifies the
AppleTalk service provider’s characteristics. You can obtain this
pointer by using the constant kDefaultAppleTalkServicesPath
for this parameter. This directs Open Transport to create an
AppleTalk service provider on the default hardware port,
which is the one selected in the AppleTalk control panel.

C H A P T E R 1 1

AppleTalk Service Providers

AppleTalk Service Provider Reference 11-13
Draft.  Apple Computer, Inc. 4/30/96

flags Reserved. Set to 0.

proc A pointer to your notifier function. Open Transport returns an
AppleTalk service provider reference in your notifier’s cookie
parameter.

contextPtr A pointer for your use. The AppleTalk service provider passes
this value unchanged to your notifier function.

DESCRIPTION

The OTAsyncOpenAppleTalkServices function opens an AppleTalk service
provider and gives you a unique AppleTalk service provider reference for it.
This function sets the mode of all subsequently called AppleTalk service
provider functions as asynchronous.

If you call this function, you must provide a pointer to a notifier function that
Open Transport can call to notify you that the function has completed and to
return other information that you might need.

When the OTAsyncOpenAppleTalkServices function completes, Open Transport
calls the notifier function identified in the proc parameter. Open Transport
returns an AppleTalk service provider reference in your notifier’s cookie
parameter and returns the T_OPENCOMPLETE completion event as the event code.
The reference value identifies the AppleTalk service provider that you have
opened, and you need to supply it as a parameter when you call any AppleTalk
service provider function.

▲ W A R N I N G

The OTAsyncOpenAppleTalkServices function destroys the
configuration structure returned by the
OTCreateConfiguration function. You cannot use the same
configuration structure to open multiple AppleTalk service
providers. To obtain a valid copy of the configuration
structure to use for opening another AppleTalk service
provider, use the OTCloneConfiguration function. ▲

SPECIAL CONSIDERATIONS

When you no longer need to use AppleTalk service provider functions, you
must call the generic Open Transport function OTCloseProvider.

C H A P T E R 1 1

AppleTalk Service Providers

11-14 AppleTalk Service Provider Reference

Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

SEE ALSO

To open a provider synchronously, use the OTOpenAppleTalkServices function
(page 11-14).

You can make a subsequent synchronous request by calling the
OTSetSynchronous function, described in the chapter “Providers” in this book.

To create a copy of the configuration structure used to open an AppleTalk
service provider, use the OTCloneConfiguration function, described in the
chapter “Configuration Management” in this book.

To close the AppleTalk service provider, call the OTCloseProvider function,
described in the chapter “Providers” in this book.

OTOpenAppleTalkServices 11

Opens a synchronous AppleTalk service provider.

C INTERFACE

ATSvcRef OTOpenAppleTalkServices(OTConfiguration* cfig,
OTOpenFlags flags,
OSStatus* err);

C++ INTERFACE

None. C++ clients use the C interface to this function.

T_OPENCOMPLETE 0x20000007 The OTAsyncOpenAppleTalkServices
function has completed.

C H A P T E R 1 1

AppleTalk Service Providers

AppleTalk Service Provider Reference 11-15
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

cfig A pointer to a configuration structure that specifies the
AppleTalk service provider’s characteristics. You can obtain this
pointer by using the constant kDefaultAppleTalkServicesPath
for this parameter. This directs Open Transport to create an
AppleTalk service provider on the default hardware port,
which is the one selected in the AppleTalk control panel.

flags Reserved. Set to 0.

err A pointer to a variable of type OSStatus that holds the result
code for this function. A value of 0 (noErr) indicates successful
completion.

DESCRIPTION

The OTOpenAppleTalkServices function opens an AppleTalk service provider
and gives you a unique AppleTalk service provider reference for it. This
function also sets the mode of all subsequently called AppleTalk service
provider functions as synchronous.

Because the OTOpenAppleTalkServices function operates synchronously, it is
recommended that you use the OTAsyncOpenAppleTalkServices function instead.

▲ W A R N I N G

The OTOpenAppleTalkServices function destroys the
configuration structure returned by the
OTCreateConfiguration function. You may not use the same
configuration structure to open multiple AppleTalk service
providers. To obtain a valid copy of the configuration
structure to use for opening another AppleTalk service
provider, use the OTCloneConfiguration function. ▲

SPECIAL CONSIDERATIONS

When you no longer need to use AppleTalk service provider functions, you
must call the generic Open Transport function OTCloseProvider.

C H A P T E R 1 1

AppleTalk Service Providers

11-16 AppleTalk Service Provider Reference

Draft.  Apple Computer, Inc. 4/30/96

SEE ALSO

To open a provider asynchronously, use the OTAsyncOpenAppleTalkServices
function (page 11-12).

To create a copy of the configuration structure used to open an AppleTalk
service provider, use the OTCloneConfiguration function, described in the
chapter “Configuration Management” in this book.

To close the AppleTalk service provider, call the OTCloseProvider function,
described in the chapter “Providers” in this book.

Obtaining Information About Zones 11

You use the functions described in this section to obtain the name of one or
more zones. You can get the zone name of the node on which your application
is running, or if your application is running on a node that belongs to an
extended network, you can get the names of all zones in the node’s local
network or the names of all zones on the AppleTalk internet to which the local
network belongs.

OTATalkGetMyZone 11

Obtains the AppleTalk zone name of the node on which your application
is running.

C INTERFACE

OSStatus OTATalkGetMyZone(ATSvcRef ref, TNetbuf* zone);

C++ INTERFACE

TAppleTalkServices::GetMyZone(TNetbuf* zone)

C H A P T E R 1 1

AppleTalk Service Providers

AppleTalk Service Provider Reference 11-17
Draft.  Apple Computer, Inc. 4/30/96

PARAMETERS

ref The reference value of your AppleTalk service provider.

zone A pointer to a TNetbuf structure that you use to get your
application’s AppleTalk local zone name.

DESCRIPTION

The OTATalkGetMyZone function gets the name of your application’s AppleTalk
zone. If you call this function asynchronously, Open Transport calls your
application’s notifier with a T_GETMYZONECOMPLETE completion event to signal the
function’s completion and uses your notifier’s cookie parameter for the zone
name. More precisely, the cookie parameter points to a TNetbuf structure that in
turn points to a buffer containing the zone name, which is stored as a
Pascal-style string. The string can be up to 32 characters in length, so with the
addition of a length byte, the buffer can have a maximum size of 33 bytes.
Using a Pascal-style string for the zone name is redundant since you can
determine the length of the string from the maxlen field of the TNetbuf structure,
but the other zone-related calls use Pascal-style strings, so this call also uses
them for consistency.

COMPLETION EVENT CODES

SEE ALSO

To obtain a list of all zones in your extended network, use the
OTATalkGetLocalZones function (page 11-18).

To obtain a list of all zones on the AppleTalk internet to which your network
belongs, use the OTATalkGetZoneList function (page 11-19).

T_GETMYZONECOMPLETE 0x23010001 The OTATalkGetMyZone function has
completed.

C H A P T E R 1 1

AppleTalk Service Providers

11-18 AppleTalk Service Provider Reference

Draft.  Apple Computer, Inc. 4/30/96

OTATalkGetLocalZones 11

Obtains a list of the zones available on your network.

C INTERFACE

OSStatus OTATalkGetLocalZones(ATSvcRef ref, TNetbuf* zones);

C++ INTERFACE

TAppleTalkServices::GetLocalZones(TNetbuf* zones);

PARAMETERS

ref The reference value of your AppleTalk service provider.

zones A pointer to a TNetbuf structure that you use to get a list of the
local zone names.

DESCRIPTION

The OTATalkGetLocalZones function returns a list of the zone names in your
application’s network if it is an extended network. These are all the zones to
which your node can belong. If your application is in a nonextended network,
this function returns only one zone name, the same one returned by the
OTATalkGetMyZone function.

If you execute this function asynchronously, Open Transport calls your notifier
function with a T_GETLOCALZONESCOMPLETE completion event to signal the
function’s completion and uses your notifier’s cookie parameter for the list of
zones. The cookie parameter actually holds a pointer to a TNetbuf structure,
which points to a buffer containing a list of zone names, each of which is stored
as a Pascal-style string. Using a Pascal-style string for the zone name is
redundant since you can determine the length of the string from the maxlen
field of the TNetbuf structure, but the other zone-related calls use Pascal-style
strings, so this call also uses them for consistency.

Each string can be up to 32 characters in length, and if you add a length byte,
each can have a maximum size of 33 bytes. As there can be a maximum of 254
zones on an extended network, the maximum size of the buffer is 8382 bytes.

C H A P T E R 1 1

AppleTalk Service Providers

AppleTalk Service Provider Reference 11-19
Draft.  Apple Computer, Inc. 4/30/96

Because zone names are often less than 32 characters long and AppleTalk
service providers don’t pad short names, 6 KB bytes is likely to be a safe value
for the buffer’s size, defined by the TNetbuf->maxlen field.

COMPLETION EVENT CODES

SEE ALSO

To obtain the zone name for the node your process is running on, use the
OTATalkGetMyZone function (page 11-16).

To obtain a list of all zones on the AppleTalk internet, use the
OTATalkGetZoneList function (page 11-19).

OTATalkGetZoneList 11

Obtains a list of all the zones available on the AppleTalk internet.

C INTERFACE

OSStatus OTATalkGetZoneList(ATSvcRef ref, TNetbuf* zones);

C++ INTERFACE

TAppleTalkServices::GetZoneList(TNetbuf* zones);

PARAMETERS

ref The reference value of your AppleTalk service provider.

zones A pointer to a TNetbuf structure that you use to get a list of all
the zones on your current AppleTalk internet.

T_GETLOCALZONESCOMPLETE 0x23010002 The OTATalkGetLocalZones
function has completed.

C H A P T E R 1 1

AppleTalk Service Providers

11-20 AppleTalk Service Provider Reference

Draft.  Apple Computer, Inc. 4/30/96

DESCRIPTION

The OTATalkGetZoneList function returns a list of all the zones on the AppleTalk
internet to which your network belongs.

If you execute this function asynchronously, Open Transport calls your notifier
function with a T_GETZONELISTCOMPLETE completion event to signal the
function’s completion and uses your notifier’s cookie parameter for the list of
zones. The cookie parameter actually holds a pointer to a TNetbuf structure,
which points to a buffer containing a list of zone names, each of which is a
Pascal-style string. Using a Pascal-style string for the zone name is redundant
since you can determine the length of the string from the maxlen field of the
TNetbuf structure, but the other zone-related calls use Pascal-style strings, so
this call also uses them for consistency.

Each string can be up to 32 characters in length, and if you add a length byte,
each can have a maximum size of 33 bytes. As AppleTalk internets can have a
number of extended networks, you need to allocate a buffer (using the
TNetbuf->maxlen field) that holds as much as 64 KB of memory. To keep the
buffer size as small and efficient as possible, you can set up a large buffer, test
for the kOTBufferOverflowErr error, and then increase the size of the buffer and
reissue the call if this error is returned.

COMPLETION EVENT CODES

SEE ALSO

To obtain the zone name for the node your process is running on, use the
OTATalkGetMyZone function (page 11-16).

To obtain a list of all local zones, use the OTATalkGetLocalZones function
(page 11-18).

Obtaining Information About Your AppleTalk Environment 11

The OTATalkGetInfo function provides information about the current AppleTalk
environment for a given node. This information is very important if you
configure a network and need to determine that each machine on that network
is appropriately incorporated and that traffic on the network is flowing as
planned.

T_GETZONELISTCOMPLETE 0x23010003 The OTATalkGetZoneList function
has completed.

C H A P T E R 1 1

AppleTalk Service Providers

AppleTalk Service Provider Reference 11-21
Draft.  Apple Computer, Inc. 4/30/96

OTATalkGetInfo 11

Obtains information about the AppleTalk environment for a given node.

C INTERFACE

OSStatus OTATalkGetInfo(ATSvcRef ref, TNetbuf* info);

C++ INTERFACE

TAppleTalkServices::GetInfo(TNetbuf* info);

PPARAMETERS

ref The reference value of your AppleTalk service provider.

info A pointer to a TNetbuf structure that you use to get information
about your current AppleTalk environment.

DESCRIPTION

The OTATalkGetInfo function returns the information contained in the
AppleTalkInfo data structure that describes your current AppleTalk
environment. This includes your network number and node ID, the network
number and node ID of a local router, and the current network range for the
extended network to which the machine is connected.

If you execute this function asynchronously, Open Transport calls your notifier
with a T_GETATALKINFOCOMPLETE completion event to signal the function’s
completion and uses your notifier’s cookie parameter for the AppleTalk
information. The cookie parameter actually holds a pointer to a TNetbuf
structure, which points in turn to a buffer containing the AppleTalkInfo
structure. The maximum size of this buffer is 22 bytes.

If the machine is multihomed—that is, if multiple network numbers and node
numbers are associated with the same machine—the OTATalkGetInfo function
returns information about the node whose network number and node ID are
selected in the AppleTalk control panel.

C H A P T E R 1 1

AppleTalk Service Providers

11-22 AppleTalk Service Provider Reference

Draft.  Apple Computer, Inc. 4/30/96

COMPLETION EVENT CODES

SEE ALSO

The AppleTalkInfo data structure is described in the section “Constants and
Data Types” (page 11-10).

T_GETATALKINFOCOMPLETE 0x23010004 The OTATalkGetInfo function
has completed.

C H A P T E R 1 2

Contents 12-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 12-0
Listing 12-0
Table 12-0

12 Datagram Delivery Protocol
(DDP)

About DDP 12-4
Using DDP 12-5

Binding a DDP Endpoint 12-6
Using the DDP Type Field to Filter Packet Delivery 12-7
Using the Self-Send and Checksum Options 12-7
Using Echo Packets 12-8
Working With Multinodes 12-10
The DDP Source Address Option 12-10
Using General Open Transport Functions With DDP 12-10

OTBind 12-11
OTSndUData 12-11
OTRcvUData 12-11

DDP Reference 12-11
Options 12-11

C H A P T E R 1 2

12-3
Draft.  Apple Computer, Inc. 4/30/96

Datagram Delivery Protocol (DDP) 12

This chapter describes how Open Transport implements the Datagram
Delivery Protocol (DDP). It explains how you can use DDP to send and receive
data across an AppleTalk internet. DDP is a connectionless transactionless
service that you use to transmit data in discrete packets, each carrying its own
addressing information. DDP is well suited to applications that do not require
reliable delivery of data and that do not want to incur the additional processing
associated with setting up and breaking down a connection. Because DDP is
connectionless and does not include reliability services, it offers faster
performance than do the higher-level protocols that add these services.
Applications such as diagnostic tools that retransmit packets at regular
intervals to estimate averages or such as games that can tolerate packet loss are
good candidates for the use of DDP.

A series of DDP packets transmitted over an AppleTalk internet from one node
to another might incur some packet loss, for example, as a result of collisions. If
you do not plan on implementing recovery from packet loss in your
application, but your application requires it, you can consider using an
AppleTalk transport protocol such as the AppleTalk Data Stream Protocol
(ADSP) or the AppleTalk Transaction Protocol (ATP). These protocols protect
against packet loss and ensure reliability by using positive acknowledgment
with mechanisms for retransmitting packets.

This chapter explains how you

■ open and bind a DDP endpoint

■ send and receive data using DDP

■ set checksum options to verify that a packet has not been corrupted during
transmission

■ use echo packets to measure network performance

■ use multinodes

This chapter begins with a description of DDP and the services that it provides
under Open Transport. The section “Using Open Transport Functions With
DDP” then gives detailed information about how DDP client applications use
the endpoint functions that Open Transport provides for connectionless
transactionless protocols. For a more detailed explanation of endpoints and
their functions, read the chapter “Endpoints” in this book.

For an overview of DDP and how it fits within the AppleTalk protocol stack,
read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For more

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

12-4 About DDP

Draft.  Apple Computer, Inc. 4/30/96

information about the AppleTalk address formats, see the chapter “AppleTalk
Addressing” in this book. For a complete explanation of the DDP specification,
see Inside AppleTalk, second edition.

About DDP 12

The protocol implementations at the physical and data-link layers of the
AppleTalk protocol stack provide node-to-node delivery of data on an
AppleTalk internet. DDP is a client of the link-access Streams modules, and it
extends the node-to-node delivery service provided at the data-link layer by
delivering data to a specific socket on a node. A socket number specifies a
logical entity on a node and forms part of an AppleTalk endpoint address.

DDP is central to the process of sending and receiving data from endpoint to
endpoint across an AppleTalk internet. Regardless of which data link is being
used and which (if any) higher-level protocols are providing additional
processing, all AppleTalk data is carried in the form of DDP packets,
sometimes known as datagrams. A packet consists of a header followed by data.
DDP delivers data from one endpoint to another by forming the packet header,
which contains the destination address, and by passing the packet to the
appropriate data link. For packets obtained from the data-link layer, DDP
provides what is called a best-effort delivery service.

Figure 12-1 shows how the DDP endpoint provider encompasses its
underlying link-access Streams modules and its physical ports.

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

Using DDP 12-5
Draft.  Apple Computer, Inc. 4/30/96

Figure 12-1 The DDP endpoint provider’s underlying delivery mechanism

Using DDP 12

To explicitly use DDP, you open and bind a DDP endpoint. You can then use
that endpoint to send or receive data in discrete packets. For outgoing packets,
DDP forms the packet header and hands the packet to the appropriate data
link. For incoming packets, DDP examines the packet header and attempts to
deliver any packet to the specified endpoint as long as the packet meets the
following criteria:

■ The destination address is valid.

■ The default type of the packet matches that of the endpoint to which it
is sent.

■ The length of the packet matches the length specified in the packet header
and does not exceed the maximum for a DDP packet.

If any of these conditions is not satisfied, DDP discards the packet without
notifying either the sender or the receiver of the packet. In addition, DDP has
no provision for requesting the sender to retransmit a lost or damaged packet.

Ethernet

Token ring

FDDI

LocalTalk

Standard link-access Streams modules

DDP

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

12-6 Using DDP

Draft.  Apple Computer, Inc. 4/30/96

Binding a DDP Endpoint 12

As with any endpoint, before you can use it to send or receive data, you must
bind it to a physical address. The OTBind function takes three parameters: one
that specifies the endpoint to be bound, one that requests a specific address,
and one that returns the actual address to which Open Transport bound the
endpoint.

When binding a DDP endpoint, you can request a particular DDP address,
including a static socket address. You can also choose to only specify a DDP
type for the endpoint, in which case you set the other fields of the DDP address
structure to 0 and allow DDP to dynamically assign a socket. The chapter
“AppleTalk Addressing” describes the different address formats you can use to
specify an endpoint address.

When you bind a DDP endpoint, there are a few considerations to bear in
mind. For example, you do not have to specify the endpoint’s socket and the
DDP type, but DDP behaves differently depending on whether you specify
them or not. Highlighted here are the points to remember:

■ If you bind without specifying a socket, DDP uses a dynamically assigned
one; if you specify a socket, DDP tries to use it (a statically assigned socket).

■ If you bind without specifying a DDP type or if you use a DDP type of 0,
Open Transport sets the endpoint’s DDP type to a value of 11. This gives you
exclusive access to the socket, which means that no other endpoint can bind
to it.

■ If you bind using a specific DDP type, Open Transport sets the endpoint’s
DDP type to that value. Any other endpoint that you subsequently bind to
that socket must have a unique nonzero DDP type.

■ You cannot bind multiple ATP or DDP endpoints on the same socket,
although you can bind multiple ADSP or PAP endpoints to the same socket
because these endpoints use connection-oriented protocols.

■ If you bind with a combined DDP-NBP address, Open Transport uses the
DDP part of the address as described in the two preceding bullets. If the
bind succeeds, Open Transport registers the NBP name on the endpoint’s
socket.

■ If you bind with an NBP address only, there is no socket number in that
form of address, so DDP uses a dynamically assigned socket. If the bind
succeeds, DDP registers the endpoint’s NBP name on that socket. The
endpoint has no default DDP type, so Open Transport sets the DDP type to a
value of 11. This has the same effect as described in the earlier bullets.

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

Using DDP 12-7
Draft.  Apple Computer, Inc. 4/30/96

Using the DDP Type Field to Filter Packet Delivery 12

You can choose to filter your packet delivery service by using the DDP type
field in the endpoint’s DDP address structure. The DDP type field is ignored by
all protocols other than DDP, so you do not specify the DDP type when passing
an address to an AppleTalk endpoint for all protocol layers above DDP.

If you specify a valid nonzero DDP type value when you bind an endpoint,
Open Transport uses that value as the default DDP type for that endpoint,
using it on all packets sent from that endpoint. If you do not specify a DDP
type value or use a value of 0, Open Transport uses a DDP type value of 11 as
the default DDP type for that endpoint. If you specify a different DDP type
value for any individual packet that you send, Open Transport overrides the
endpoint’s default DDP type and uses the packet’s DDP type.

When receiving incoming packets, a specified DDP type works as a filter: you
only receive packets of that one type. If, however, you bind an endpoint
without a DDP type or with a DDP type of 0, you receive all incoming packets.

Using the DDP type field when you bind a DDP endpoint has special
significance for both sending and receiving packets, as shown in Table 12-1.

Using the Self-Send and Checksum Options 12

DDP has two options you can use to control the behavior of DDP endpoints:
the OPT_SELFSEND and the OPT_CHECKSUM options.

You can use the OPT_SELFSEND option with DDP to turn self-sending on, which
means that when you send a broadcast packet, you receive a copy of it at your

Table 12-1 Effects of using the DDP type field

Task
A nonzero DDP type
specified at bind

No DDP type or a DDP type
of 0 specified at bind

Send Open Transport uses this DDP type
for outgoing packets unless you
specify a different DDP type on a per
packet basis.

Open Transport uses a DDP type of
11 for outgoing packets unless you
specify a different DDP type on a per
packet basis.

Receive You only receive incoming packets
for this DDP type.

You receive all incoming packets.

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

12-8 Using DDP

Draft.  Apple Computer, Inc. 4/30/96

sending endpoint. To turn this on, you set this option with a value of 1. By
default this option is turned on.

When you use a DDP endpoint to send data, you can use the OPT_CHECKSUM
option to enable the calculation of checksums on outgoing packets. In this case,
when the packet is received, DDP calculates a checksum for the packet. If the
calculated checksum does not match the packet’s checksum, DDP assumes the
packet has been corrupted and discards the packet without notifying its sender
or receiver.

You can specify the OPT_CHECKSUM option on every call to OTSndUData and control
the use of checksums on a per packet basis, or you can use the
OTOptionManagement function to enable or disable checksums for all outgoing
packets. The checksum option OPT_CHECKSUM can have one of two values: T_NO,
which disables checksums, or T_YES, which enables it. By default this option is
turned off.

For more information about using options, refer to the chapter “Option
Management” in this book.

Using Echo Packets 12

You can use the AppleTalk Echo Protocol (AEP), a client of DDP, to measure the
performance of an AppleTalk network or to test for the presence of a given
node. Knowing the approximate speed at which an AppleTalk internet delivers
packets is helpful in tuning the behavior of an application that uses a
higher-level AppleTalk protocol, such as ATP and ADSP.

AEP is implemented in each node as a DDP client process referred to as the
AEP Echoer. To use the AEP Echoer, you use the OTSndUData function to send a
packet, called the echo request packet, to the target node, and you use the
OTRcvUData function to receive a packet in response, called the echo reply
packet.

AEP uses the statically assigned socket number 4, known as the echoer socket,
to listen for echo packets. Whenever the endpoint associated with this socket
receives a packet, AEP examines the packet’s DDP type. A value of 4 identifies
it as an AEP packet, and AEP then examines the first byte of the packet’s data
portion. A value of 1 identifies the packet as an echo request packet (sent out
from your endpoint), and a value of 2 identifies the packet as an echo reply
packet (returned to your endpoint from the remote node).

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

Using DDP 12-9
Draft.  Apple Computer, Inc. 4/30/96

If the packet is an echo request packet, AEP changes this first byte to a value of
2 (an echo reply packet) before calling DDP to send the packet back to the
socket from which it originated.

To test for the presence of a given node, you can iterate through a series of
addresses —sending each several packets. If a node exists, AEP sends a packet
back; if the node doesn’t exist, no packet returns. Be sure to send each node
address several packets in case one or more are lost in transmission.

To measure network performance, you need to know the round-trip time of a
packet between two nodes on an AppleTalk internet. This is dependent on such
factors as the network configuration, the number of routers and bridges that a
packet must traverse, and the amount of traffic on the network. As these
change, so does the packet transmission time. ATP protocol options let you
specify retry-count and interval numbers whose optimum values you can
better assess if you know the average round-trip time of a packet on your
application’s network.

Here are some general guidelines for using the AEP Echoer to measure
network performance:

■ Use the maximum packet size that you plan on using in your application.

■ Accept only echo reply packets from the target node. Set the DDP type field
of your endpoint to 4 to filter out all packets except for AEP packets.

■ Send more than one packet and calculate the average round-trip time.

Typically, you should receive an echo reply packet within a few milliseconds
on a LAN and within a few seconds on a WAN. If you do not get a response
after about 10 seconds, you can assume that DDP dropped or lost your echo
request packet, and you can resend the packet.
The echo reply packet contains the same data that you sent in the echo
request packet. If you send multiple packets to determine an average
turnaround time and to compensate for the possibility of lost or dropped
packets, you should include different data in the data portion of each packet.
This allows you to distinguish between replies to different request packets in
the event that either some replies are not delivered in the same order that
you sent them or that some packets are dropped.

■ Bracket the code that sends and receives echo packets with a call to the
Microseconds function. This function gives much better resolution than the
TickCount function. The Microseconds function is documented in Inside
Macintosh: Operating System Utilities.

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

12-10 Using DDP

Draft.  Apple Computer, Inc. 4/30/96

Working With Multinodes 12

If you are using DDP, you can specify a multinode address for an endpoint.
This allows you to bind endpoints to multiple node addresses on the same
physical port, which can be useful for testing. Using only one physical
machine, you can use multinode addressing to simulate multiple machines.

If a multinode client sends a broadcast or self-send packet, Open Transport
makes copies of the packet for the other multinode clients on the same machine
internally, thus reducing traffic on the network.

The significant fields for the multinode address format are the network number
and node ID. You can request specific values for these address elements when
you bind a multinode endpoint and the OTBind function returns the actual
network and node values for the address to which Open Transport bound the
endpoint. Multinode endpoints must use the DDP_OPT_SRCADDR option to specify
the source DDP address for outgoing packets on a per-packet basis.

The DDP Source Address Option 12

DDP has one DDP-specific option, DDP_OPT_SRCADDR, which sets the source
address for outgoing packets. This option is required for multinode endpoints,
such as ARA, but can also be used with other types of endpoints.

The option’s value must be a DDP address structure using the AF_ATALK_DDP
address format. The source network number, node number, and source socket
are taken from the DDP address. It is an error for these values to be illegal.

This option allows a multinode endpoint to tell Open Transport which of its
several sockets actually sent the packet. If no socket is defined, Open Transport
uses the default Socket 11.

Using General Open Transport Functions With DDP 12

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport
DDP implementation. For example, DDP only works with three of the Open
Transport send and receive functions, OTSndUData, OTRcvUData, and OTRcvUErr
because only these work with protocols that are connectionless and
transactionless. You must be familiar with the function descriptions in the
chapter “Endpoints” in this book before reading this section.

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

DDP Reference 12-11
Draft.  Apple Computer, Inc. 4/30/96

OTBind 12

The OTBind function associates a local protocol address with the endpoint you
specify with the ref parameter. You can only bind one DDP or multinode
endpoint to a single protocol address.

If you want to use the AEP Echoer, you must bind your endpoint with a socket
number of 4 and a DDP Type of 4 to indicate that the endpoint is using the AEP
implementation on the node.

OTSndUData 12

The OTSndUData function sends data through connectionless transactionless
protocols.

If you want to use the AEP Echoer, you use this function to send echo packets.
You need to set the first data byte to a value of 1 to indicate that it is an echo
request packet.

OTRcvUData 12

The OTRcvUData function receives data through connectionless transactionless
protocols.

If you want to use the AEP Echoer, you use this function to receive echo
packets. The first data byte is set to a value of 2 to indicate that it is an echo
reply packet.

DDP Reference 12

This section defines the constant you use to specify the DDP protocol for option
management functions

Options 12

In order to use any option with DDP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the DDP protocol in
the level field of the TOption structure when you specify an option.

C H A P T E R 1 2

Datagram Delivery Protocol (DDP)

12-12 DDP Reference

Draft.  Apple Computer, Inc. 4/30/96

#define ATK_DDP 'DDP '

DDP has one DDP-specific option, DDP_OPT_SRCADDR, that sets the source
address for outgoing packets.

#define DDP_OPT_SRCADDR 0x2101 /* DDP source addr override*/

A multinode endpoint must use the DDP_OPT_SRCADDR option to specify the
source address for outgoing packets on a per-packet basis. This option cannot
be used with the OptionManagement function. The option’s value must be a DDP
address structure using the AF_ATALK_DDP address format. The source network
number, node number, and source socket are taken from the DDP address. It is
an error for these values to be illegal.

This option is most often used in conjuction with a multinode endpoint, but it
can also be used on normal endpoints.

DDP also allows you to use the generic Open Transport options OPT_SELFSEND
and OPT_CHECKSUM, which are described in the chapter “Option Management” in
this book.

C H A P T E R 1 3

Contents 13-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 13-0
Listing 13-0
Table 13-0

13 AppleTalk Data Stream Protocol
(ADSP)

About ADSP 13-3
Using ADSP 13-5

Binding ADSP Endpoints 13-6
Sending and Receiving ADSP Data 13-6

The Enable EOM (End-of-Message) Option 13-7
The Checksum Option 13-9

Sending Expedited Data 13-9
Disconnecting 13-10
Using General Open Transport Functions With ADSP 13-10

OTBind 13-10
OTConnect 13-11
OTRcvConnect 13-11
OTListen 13-11
OTAccept 13-11
OTSnd 13-11
OTRcv 13-12
OTSndDisconnect 13-12
OTRcvDisconnect 13-12

ADSP Reference 13-12
Options 13-13

C H A P T E R 1 3

About ADSP 13-3
Draft.  Apple Computer, Inc. 4/30/96

AppleTalk Data Stream Protocol (ADSP) 13

This chapter describes how Open Transport implements the AppleTalk Data
Stream Protocol (ADSP). It explains how you can use ADSP to establish a
session to exchange a stream of data between two network processes or
applications in which both parties have equal control over the communication.
ADSP offers a connection-oriented transactionless service that is particularly
well suited to the transfer of large amounts of data.

You should read this chapter if you want to write an application that uses
ADSP to exchange a stream of data between two equal parties who can each
send and receive data. This chapter explains how you

■ create an endpoint that listens passively for incoming connection requests

■ send and receive data via ADSP

■ divide an ADSP data stream into discrete logical units

■ use expedited attention messages with ADSP

This chapter begins with a description of ADSP and the services that it
provides under Open Transport. The section “Using Open Transport Functions
With ADSP” then gives detailed information about how ADSP client
applications use the endpoint functions that Open Transport provides for
connection-oriented transactionless protocols. For a more detailed explanation
of endpoints and their functions, read the chapter “Endpoints” in this book.

For an overview of ADSP and how it fits within the AppleTalk protocol stack,
read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. ADSP
under Open Transport conforms to the detailed specifications in Inside
AppleTalk, second edition. See that book for further information about the
features mentioned here.

About ADSP 13

The AppleTalk Data Stream Protocol (ADSP) includes both session and
transport services and is the most commonly used of the AppleTalk transport
protocols. ADSP allows you to establish and maintain a connection between
two AppleTalk network entities and transfer data as a continuous stream. The
two clients at either end of an ADSP connection are equal and can perform the
same operations.

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

13-4 About ADSP

Draft.  Apple Computer, Inc. 4/30/96

ADSP, like all other high-level AppleTalk protocols, is a client of the Datagram
Delivery Protocol (DDP), which transmits data in packets. However, ADSP
builds a session connection on top of DDP’s packet transfer services, so you can
exchange data as a continuous stream. This allows ADSP’s client applications
to retain many of the advantages of a transaction-based protocol while
providing a full-duplex data stream. Figure 13-1 shows how the ADSP
endpoint provider encompasses its underlying delivery protocol and
link-access Streams modules.

Figure 13-1 The ADSP endpoint provider’s underlying delivery mechanism

Communication between two client applications using ADSP occurs over a
connection between two endpoints that provides reliable data delivery. When
you bind an ADSP endpoint, the binding process associates a local protocol
address with your endpoint. In ADSP, this identifies the socket address, and
ADSP uses this as part of the address for sending and receiving packets of data.
Each socket can maintain concurrent ADSP connections with several other
sockets, but there can be only one ADSP connection between any two sockets at
one time.

ADSP uses several internally maintained variables to track its progress as it
transmits a data stream across a connection. For example, ADSP associates an
internal sequence number with each byte that it sends. This allows ADSP to
determine out-of-sequence or duplicate data. ADSP uses the sequence numbers
to ensure that the other endpoint receives all of its intended data. If any data
does not arrive, ADSP can retransmit it.

ADSP

DDP

Standard link-access Streams modules

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

Using ADSP 13-5
Draft.  Apple Computer, Inc. 4/30/96

The data is available for retransmission because when an endpoint provider
sends data to a remote connection end, ADSP first stores it in a buffer, called
the send queue, and holds the data there until the remote connection end
acknowledges receipt. Likewise, when data arrives from a remote endpoint,
ADSP stores it in a receiving buffer, called the receive queue, until the local
endpoint provider acknowledges reading it.

ADSP does not transmit data from the remote connection end until there is
space available in the local receive queue. This built-in flow control keeps a
connection from being jammed with too much data.

Using ADSP 13

To use Open Transport ADSP, you first open an endpoint as an ADSP endpoint,
which causes Open Transport to allocate the memory ADSP needs for data
buffers and for storing the variables ADSP uses to maintain the connection
between endpoints. After a connection is established, ADSP manages and
controls the data flow between two endpoints throughout a session to ensure
that data is delivered and received in the order in which it was sent and that
duplicate data is not sent.

As with other connection-oriented protocols, Open Transport ADSP allows you
to create a passive endpoint that listens for incoming connection requests
rather than initiating such requests. In addition, the implementation of ADSP
under Open Transport includes some features that are specific to the two
AppleTalk connection-oriented protocols, ADSP and PAP. These are

■ an option to enable end-of-message (EOM) indicators that let you break
streams of data into logical units

■ locally implemented orderly disconnects rather than over-the-wire remote
disconnects

A feature unique to ADSP is its separate data channel for expedited data that
provides an attention-message facility that lets ADSP endpoints signal each
other outside the normal exchange of data.

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

13-6 Using ADSP

Draft.  Apple Computer, Inc. 4/30/96

Binding ADSP Endpoints 13

You have two choices when you bind an ADSP endpoint: You can create an
endpoint that can initiate connections and accept connection requests, or you
can create an endpoint that can only receive connection requests.

If the endpoint can initiate connections, you can bind it as a normal Open
Transport endpoint and use any of the three AppleTalk address formats for the
socket address: DDP, NBP, or the combined DDP-NBP format. If the bind is
successful, the endpoint is ready for use in establishing and using a connection.

The other choice when binding an ADSP endpoint is to establish it as a passive
peer that listens for incoming connection requests. The passive endpoint can
accept or deny a connection request based on criteria that you define. The use
of a passive peer is typical of a server environment in which a server, such as a
file server, is registered with a single name. Endpoints throughout the network
can contact the server’s passive peer with connection requests. The server can
accept or deny a request. It might deny a request, for example, when its
resources are exhausted.

To create a passive peer that listens, you specify a queue length greater than 0
during the binding process. The number you use determines how many
connection requests the endpoint can support. Once you bind a passive peer, it
starts listening for incoming connection requests. When a request arrives, the
endpoint retrieves certain information about the request and continues to
process it by accepting or rejecting it.

You can bind multiple ADSP endpoints to the same socket, and ADSP can
support as many connections on a socket as you have memory for, but you can
only have one passive peer that listens on a given socket.

Sending and Receiving ADSP Data 13

ADSP supports two separate data channels: one for normal data and one for
expedited data. You can send a stream of normal data that has no logical
boundaries within it that need to be preserved across the connection, or you
can use transport service data units (TSDUs) to separate the data stream into
discrete logical units when sending and receiving data across a connection. For
expedited data, you can use expedited transport service data units, or ETSDUs.

By default, ADSP does not support TSDUs. Instead, ADSP sends and receives a
continuous stream of data with no message delimiters, which means you can
exchange data with an endpoint whose protocol does not support TSDUs. If

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

Using ADSP 13-7
Draft.  Apple Computer, Inc. 4/30/96

you do not specify any ADSP-specific options, your packets are not restricted
to Open Transport ADSP endpoints, and you can provide
transport-independent data transmission.

Open Transport uses a flag in the send and receive functions to indicate
multiple sends and receives. The use of this flag, the T_MORE flag, allows you to
break up a large data stream without losing its logical boundaries at the other
end of the connection. The flag, however, indicates nothing about how the data
is packaged for transport on the lower-level protocols below the ADSP
endpoint provider.

If you do not use any options, when you receive data, you need to set the
T_MORE flag each time you call the OTRcv function. This is because, with a
continuous stream of data possible between endpoints, the receiving endpoint
is always expecting more data. When you send data, however, you do not use
the T_MORE flag.

The Enable EOM (End-of-Message) Option 13

If transport independence is not crucial for your application, you can use the
ADSP enable EOM (OPT_ENABLEEOM) option that allows infinite length TSDUs on
the normal data channel.

To send a data stream that is too long for a single TSDU, you set the T_MORE flag
on each send to indicate to the remote connection end that another packet is
coming that is part of this same message. When a packet arrives without the
T_MORE flag set, the remote end knows this is the end of the message. It is
possible for this last packet to contain no data because ADSP supports the
sending of zero-length packets. This could occur when you send a packet with
the T_MORE flag set only to discover that you have no more data to send. In this
case, ADSP still expects another packet, but you have no data to put into it. You
can send a zero-length packet to set the T_MORE flag correctly.

When you use TSDUs with ADSP, you cannot change the size of the TSDU
after you have established the connection with another endpoint. This means
that you don’t need to double-check the TSDU size after the first packet
because it will always be the same for all packets using this connection.

You can enable the EOM option for an endpoint in several ways. One way
is to define the option as part of the configuration string you use to open
the endpoint. The following line of code enables the EOM option for an
ADSP endpoint:

OTOpenEndpoint(OTCreateConfiguration("adsp(EnableEOM=1)"),0, NULL, &err);

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

13-8 Using ADSP

Draft.  Apple Computer, Inc. 4/30/96

Listing 13-1 shows you another way of setting the enable EOM option. The
sample function uses an endpoint reference, ep, to identify the endpoint for
which you are setting this option and defines a Boolean parameter for enabling
or disabling the EOM option. The first task is to define a 4 byte buffer, which is
the standard size for options. Then fields and pointers are defined, including
the option’s level, name, and length. The option’s value is set to the Boolean
enableEOM, which enables the EOM option. Before attempting to negotiate the
option, the code makes sure that the endpoint is in synchronous mode. If the
endpoint was originally asynchronous, the code restores it to an asynchronous
mode before exiting.

Listing 13-1 Setting the enable EOM option

OSStatus DoNegotiateEOMOption(EndpointRef ep, Boolean enableEOM){

UInt8 buf[kOTFourByteOptionSize]; /* define 4 byte option buffer */
TOption* opt; /* ptr makes items easier to access */
TOptMgmt req;
OSStatus err;
Boolean wasAsync = false;

opt = (TOption*)buf; /* set option ptr to buffer */
req.opt.buf = buf;
req.opt.len = sizeof(buf);
req.flags = T_NEGOTIATE; /* negotiate for EOM option */

opt->level = ATK_ADSP; /* it’s an ADSP option */
opt->name = OPT_ENABLEEOM;
opt->len = kOTFourByteOptionSize;
opt->value[0] = enableEOM; /* enable (true) or disable option */

if (!OTIsSynchronous(ep)) /* check whether ep is sync */
{
wasAsync = true; /* set flag if async */
OTSetSynchronous(ep); /* set endpoint to sync */
}

err = OTOptionManagement(ep, &req, &req);
if (wasAsync) /* restore ep state if necessary */

OTSetAsynchronous(ep);
return err;
}

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

Using ADSP 13-9
Draft.  Apple Computer, Inc. 4/30/96

The Checksum Option 13

You can use the OPT_CHECKSUM option to force ADSP to send all outgoing packets
with the checksum option enabled. By default, outgoing ADSP packets do not
use this option, which directs DDP to compute a checksum and include it in
each packet that it sends to the remote endpoint provider. Using checksums
slows communications slightly. Normally, ADSP and DDP perform enough
error checking to ensure safe delivery of all data, so set this option only if the
network is highly unreliable.

Sending Expedited Data 13

In addition to the full-duplex data stream that an ADSP session maintains,
ADSP allows either end of a connection to send an expedited attention message
to the other end without interrupting the primary flow of data. Processing
expedited data takes precedence over handling normal data, so when an
expedited data packet arrives at an endpoint, the endpoint reads this packet
before reading the next normal data packet. Both the send and receive
functions have a flag, T_EXPEDITED, that indicates when a packet has expedited
data.

ETSDUs can be up to 572 bytes long, including a 2-byte attention code at the
beginning of the user data portion. The minimum ETSDU for ADSP is 2 bytes,
so if you send less than that, the data is padded to 2 bytes before being
transmitted. If you do not use the attention code, all 572 bytes are available for
user data. If you use an attention code, you are responsible for ensuring that
the code has a value from $0000 to $EFFF and is not in the reserved range of
$F000 to $FFFF.

Note
You cannot use the OPT_ENABLEEOM option with the
expedited channel or you receive an error message. ◆

Note that not every connection-oriented transactionless protocol supports
attention messages or expedited data. Therefore, using this option
compromises the transport independence of your application.

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

13-10 Using ADSP

Draft.  Apple Computer, Inc. 4/30/96

Disconnecting 13

As with all connection-oriented Open Transport protocols, ADSP supports
abortive disconnects. In addition, ADSP supports orderly disconnects,
although it can only implement them locally.

An abortive disconnect directs the remote endpoint to abruptly tear down its
connection without making any accomodation for the data that may be in the
transmission pipeline at the time. You can define your own handshake, perhaps
using the expedited data channel, to prevent losing data during the
disconnection process.

ADSP implements orderly disconnects locally, not over the wire. This means
that immediately after you request the disconnect, ADSP sends all data
buffered at the local end and then tears down the connection, breaking
communication with the remote end. As a result, no data can be sent from
either the local or remote endpoint. The endpoints can continue to process data
already in their receive queues, but no new data can go out.

Using General Open Transport Functions With ADSP 13

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport
ADSP implementation. For example, ADSP only works with two of the Open
Transport send and receive functions, OTSnd and OTRcv, because only these work
with protocols that are connection-oriented and transactionless. You must be
familiar with the function descriptions in the chapter “Endpoints” in this book
before reading this section.

OTBind 13

The OTBind function associates a local protocol address with the endpoint
provider specified by the ref parameter.

You can bind multiple ADSP endpoints to a single protocol address, but you
can bind only one passive peer endpoint that listens on that socket.

With ADSP, as with other connection-oriented protocols, the req->qlen
parameter specifies the number of outstanding connection requests that an
endpoint can support. The endpoint can negotiate the final value of qlen if it
cannot handle the requested number of outstanding connection requests, but in
ADSP, the value of qlen cannot be negotiated to 0 from a requested value
greater than 0.

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

Using ADSP 13-11
Draft.  Apple Computer, Inc. 4/30/96

OTConnect 13

The OTConnect function requests a connection to a specified remote endpoint.

ADSP does not allow application-specific data to be included when you
establish a connection, so you need to set the sndcall->udata.len field to 0.
ADSP ignores the sndcall->udata.buf field.

OTRcvConnect 13

The OTRcvConnect function reads the status of a previously issued connection
request.

Because ADSP does not allow application-specific data to be associated with a
connection request, you need to set the call->udata.len field to 0. ADSP
ignores the call->udata.buf field.

OTListen 13

The OTListen function listens for an incoming connection request.

ADSP does not allow application-specific data to be included when you
request a connection, so you need to set the call->udata.len field to 0. ADSP
ignores the call->udata.buf field.

OTAccept 13

The OTAccept function accepts a connection request. You can accept a
connection either on the same endpoint that received the connection request or
on a different endpoint.

ADSP does not allow application-specific data to be included when you accept
a connection, so you need to set the call->udata.len field to 0. ADSP ignores
the call->udata.buf field.

OTSnd 13

The OTSnd function sends normal and expedited data through a connection-
oriented transactionless endpoint.

ADSP supports TSDUs through the OPT_ENABLEEOM option, although its use
compromises the transport independence of your application. In ADSP, TSDUs
can be of infinite length and ETSDUs can be up to 572 bytes long. Zero-length
packets are supported in ADSP.

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

13-12 ADSP Reference

Draft.  Apple Computer, Inc. 4/30/96

OTRcv 13

The OTRcv function receives normal and expedited data through a connection-
oriented transactionless endpoint.

ADSP supports TSDUs through the OPT_ENABLEEOM option, although its use
compromises the transport independence of your application. In ADSP, TSDUs
can be of infinite length and ETSDUs can be up to 572 bytes long. Zero-length
packets are supported in ADSP.

OTSndDisconnect 13

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

When you call this function with ADSP, you receive a T_ORDREL asynchronous
event rather than a T_DISCONNECT asynchronous event so that you can continue
to read in the rest of the data in your receive queue. Otherwise, with a
T_DISCONNECT event, any remaining unread data is discarded.

In an abortive disconnect, the call parameter is ignored because ADSP does
not allow application-specific data to be associated with a disconnect. You need
to set the call->udata.len field to 0. ADSP ignores the call->udata.buf field.

OTRcvDisconnect 13

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because ADSP does not allow application-specific data to be associated with a
disconnect, you need to set the discon->udata.len field to 0. ADSP ignores the
discon->udata.buf field.

ADSP Reference 13

This section defines the constant you use to specify the ADSP protocol for
option management functions and indicates the generic Open Transport
options you can use with ADSP.

C H A P T E R 1 3

AppleTalk Data Stream Protocol (ADSP)

ADSP Reference 13-13
Draft.  Apple Computer, Inc. 4/30/96

Options 13

In order to use any option with ADSP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the ADSP protocol in
the level field of the TOption structure when you specify an option.

#define ATK_ADSP 'ADSP '

ADSP also allows you to use the OPT_ENABLEEOM and the OPT_CHECKSUM options,
which are described in the chapter “Option Management” in this book.

C H A P T E R 1 4

Contents 14-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 14-0
Listing 14-0
Table 14-0

14 AppleTalk Transaction Protocol
(ATP)

About ATP 14-4
Using ATP 14-5

At-Least-Once and Exactly-Once Transactions 14-6
Sending and Receiving ATP Data 14-6
Specifying ATP Options 14-7

The Retry Count and Interval Options 14-8
The Release Timer Option 14-8
Other ATP-Specific Options 14-8

Using the ATP Packet Header User Bytes 14-9
Using General Open Transport Functions with ATP 14-9

OTSndURequest 14-10
OTRcvURequest 14-10
OTSndUReply 14-10
OTRcvUReply 14-10

ATP Reference 14-11
Options 14-11

C H A P T E R 1 4

14-3
Draft.  Apple Computer, Inc. 4/30/96

AppleTalk Transaction Protocol (ATP) 14

This chapter describes how Open Transport implements the AppleTalk
Transaction Protocol (ATP). It explains how you can use ATP to send requests
and responses between ATP endpoints, with one endpoint initiating the
request and the other responding to it. You can create an endpoint that can both
initiate or respond, or you can create one endpoint that only makes requests
and another that only makes responses. Because ATP provides a connectionless
transaction-based service, you do not incur the overhead entailed in
establishing, maintaining, and breaking a connection that is associated with
connection-oriented protocols, such as ADSP, but you can transfer only a
limited amount of data using ATP.

You should read this chapter if you want to write an application that requires
reliable delivery of data but does not require the transfer of a large amount of
data. This chapter explains how you

■ open and bind an ATP endpoint

■ get information about an ATP endpoint

■ use Open Transport functions to initiate and respond to a transaction

■ specify ATP options to control connectionless transaction-based services

This chapter begins with a description of ATP and the services that it provides
under Open Transport. The section “Using Open Transport Functions With
ATP” then gives detailed information about how ATP client applications use
the endpoint functions that Open Transport provides for connectionless
transaction-based protocols. For a more detailed explanation of endpoints and
their functions, read the chapter “Endpoints” in this book.

For an overview of ATP and how it fits within the AppleTalk protocol stack,
read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For a
complete explanation of the ATP specification, see Inside AppleTalk, second
edition.

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

14-4 About ATP

Draft.  Apple Computer, Inc. 4/30/96

About ATP 14

The AppleTalk Transaction Protocol (ATP) offers a simple, efficient means of
transferring small amounts of data across a network. Using this protocol, one
endpoint requests information from another endpoint that possesses the ability
to respond to the request. This means that ATP is well-suited to a client-server
relation like that used by the Printer Access Protocol (PAP), which uses ATP
packets to transport data to printers and allows the printer server to reply with
messages to the client workstation that is attempting to print.

ATP is based on the concept of a transaction. In a transaction, one endpoint,
called the requester, makes a request of another endpoint, called the
responder, to perform a service and return a response.

You can implement ATP client applications in the following two ways:

■ You can write a single application that handles both the requester and
responder actions of an ATP transaction and run that application on two
networked nodes. This method allows each application to act as either the
requester or the responder. However, while each side has the capacity to
initiate a transaction, only one side can control the communication during a
single transaction.

■ You can write two applications, one application that implements the
requester part of a transaction and another application that implements the
responder side. This model lends itself well to a client-server relation such as
PAP, in which many nodes on a network run the requester application
(client), while one or more nodes run the responder application (server). One
server can respond to transaction requests from various clients.

ATP is a direct client of DDP, and it adds reliable delivery of data to the
transport delivery services that DDP provides. ATP ensures that data is
delivered without error or packet loss. Figure 14-1 shows how the ATP
endpoint provider encompasses its underlying delivery protocol and
link-access Streams modules.

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

Using ATP 14-5
Draft.  Apple Computer, Inc. 4/30/96

Figure 14-1 The ATP endpoint provider’s underlying delivery mechanism

Using ATP 14

In order for two applications to use ATP, each application must have opened
and bound an ATP endpoint. The requester initiates a transaction by making a
request. When the responder receives the request, it accepts the request,
formulates a response that includes any data required by the requester, and
sends that response to the requester. When the requester receives the response,
the transaction is complete. You can define how often ATP is to retry each
request and how long it is to wait between each retry attempt by using the
retry count and interval options, described in the section “Specifying ATP
Options” on page 14-7.

ADSP

NBPATP

ZIP PAP

Standard link-access Streams modules

Ethernet

Token ring

FDDI

LocalTalk

DDP

Session

Transport

Network

Data-link

Physical

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

14-6 Using ATP

Draft.  Apple Computer, Inc. 4/30/96

At-Least-Once and Exactly-Once Transactions 14

In the course of a transmission, a request might be lost, a response might be
lost or delayed, or the responder might fail to acknowledge or accept a request.
In any of these situations, the transaction cannot complete. To complete the
transaction and assure reliable delivery of data, ATP is responsible for waiting
a predetermined amount of time and then retrying the request until it is able to
conclude the transaction. If it cannot conclude the transaction, ATP must let the
requester know that the attempt has failed. In order to perform these services,
ATP supports two types of transactions: at-least-once transactions and
exactly-once transactions.

■ An at-least-once transaction ensures that the responder receives every
request directed to it at least once, but this does not prevent the responder
from receiving a request more than once. These are also referred to as ALO
transactions.

■ An exactly-once transaction ensures that the responder receives a specific
request only once. These are also referred to as XO transactions. PAP uses this
type of ATP transaction.

By default, Open Transport ATP provides XO transaction support for a request
transaction by setting the T_ACKNOWLEDGED bit in the option flags for the
OTSndURequest function. This kind of support is appropriate in those cases
where harm could be done if a request is satisfied multiple times. For example,
if you are identifying a relative memory location that is the result of a
calculation, doing the calculation twice would move you to a different location
in memory.

In those cases where no harm is done if a request is satisfied multiple times (for
example, when the requester asks the responding node to identify itself) you
can select ALO transactions by clearing the T_ACKNOWLEDGED bit in the option
flags for the OTSndURequest function.

Sending and Receiving ATP Data 14

Typically, a requester sends a small amount of data requesting the remote
endpoint to take some action or to send back data in reply. The amount of data
that the responder can reply with can be quite large. A requester can send only
a single ATP packet of 578 bytes, but a responder can return up to eight packets
of 578 bytes each, totalling a maximum of 4624 bytes. ATP does not support
zero-length packets.

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

Using ATP 14-7
Draft.  Apple Computer, Inc. 4/30/96

To accomodate the restrictions that a particular network may place on sending
that much data at a time, ATP uses the T_MORE flag to communicate to the
awaiting requester endpoint when all of the reply data has been accumulated.
A single reply may have up to eight packets, and each packet in the reply
except for the very last has the T_MORE flag set. The reply data is held at the
receiving requester endpoint until a packet arrives that does not have the
T_MORE flag set. When this happens, ATP knows that all the reply data has
arrived, and it releases the entire reply to the awaiting requester endpoint.

Specifying ATP Options 14

You can use several options with ATP, but note that doing so compromises the
transport independence of your application. There are several ATP-specific
options and you can use the generic Open Transport options, OPT_INTERVAL and
OPT_RETRYCNT. Table 14-1 summarizes their definitions and default values. All of
these options, except ATP_OPT_TRANID, can be set both globally with the
OptionManagement function and locally by setting option flags for an individual
packet. The ATP_OPT_TRANID option can only be set globally.

Table 14-1 ATP option definitions and default values

Option Default Description

OPT_RETRYCNT 8 retries Sets the number of times ATP retries a
request before returning an error to
the client.

OPT_INTERVAL 2 seconds Sets the interval for ATP to wait
between retries.

ATP_OPT_RELTIMER 30 seconds Sets the amount of time the responder
must wait for a transaction release
packet before it purges a request entry
from its transactions list. Acceptable
values are 0 (30 seconds), 1 (1 minute), 2
(2 minutes), 3 (4 minutes), 4 (8 minutes).

ATP_OPT_REPLYCNT 8 replies Specifies the number of replies (1–8) to
expect in reply to a request.

ATP_OPT_DATALEN 578 bytes Sets maximum individual packet size.

ATP_OPT_TRANID true Requests a transaction ID.

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

14-8 Using ATP

Draft.  Apple Computer, Inc. 4/30/96

The Retry Count and Interval Options 14

After transmitting a transactions from the requester, ATP waits for the interval
of time specified by the requester’s defined OPT_INTERVAL option (default is
2 seconds). If the requester still hasn’t received a response from the responder,
it retransmits the request. It repeats this process for the number of times
defined by the requester’s OPT_RETRYCNT option (default is 8 retries). Once these
maximums have been reached without any response, ATP informs the
requester that the responder is unavailable.

The Release Timer Option 14

With ALO transactions, a responder can receive duplicate requests; with XO
transactions, ATP uses additional processing to ensure that a responder
receives a request only once. To handle XO transactions safely, the responder
maintains a transactions list of all recently received requests. When it receives a
request, the responder searches through this list to determine whether it is a
new request or a duplicate request. If the request is new, the responder inserts
it in the transactions list, time stamping the entry with its time of insertion.
If it is a duplicate request and a response has gone out, ATP automatically
retransmits the reply without the intervention of the responder application. If
it is a duplicate request and a reply has not yet been sent out, ATP discards
the request.

When a requester receives a reply from the responder, it sends a transaction
release packet to the responder to signal that the transaction has successfully
completed, and the responder can now release the transaction from its
transactions list. If this transaction release packet is lost, however, the
responder would never be able to release the transaction from its list. Because
the responder time stamped each new request when it inserted the request into
its transactions list, the responder can check the list periodically and eliminate
all requests that are older than the time defined by the ATP_OPT_RELTIMER option
(default is 30 seconds), assuming that these requests remain in the list because
the transaction release packet has been lost.

Other ATP-Specific Options 14

When a reply starts to arrive, the requester needs to know how many packets
are in a given reply so that it knows when to stop waiting for more packets.
The ATP_OPT_REPLYCNT option allows you to define a number between 0 and 8
(the default is 8 packets). You can set this globally, with the OptionManagement
function, or locally for an individual request.

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

Using ATP 14-9
Draft.  Apple Computer, Inc. 4/30/96

The ATP_OPT_DATALEN option allows you to set the maximum length of an
individual packet up to a length of 578 bytes (the default). In most cases, you
can leave this at the default. PAP servers, which use a maximum packet size of
512 bytes, can use this option to restrict the ATP packet size. You can set this
globally, with the OptionManagement function, or locally for an individual
request.

The ATP_OPT_TRANID option is a Boolean value that, when set to true, requests
Open Transport to add an option to every request that contains the ATP
transaction ID. You can only set this option globally, with the OptionManagement
function; you cannot set it locally.

Using the ATP Packet Header User Bytes 14

The first 4 bytes of the ATP packet header contain information that allows
Open Transport to identify whether an ATP packet is a request or a response, to
specify the sequential position of a response packet, and to identify the
transaction. The second 4 bytes of the header are called user bytes, and are
available for your use. Your application could use the user bytes, for example,
to create a simple header for a higher-level protocol.

ATP takes the first 4 bytes of data that the requester specifies and places them
in the user bytes portion of the outgoing request. If you do not specify at least 4
bytes of data in the request, ATP pads the user bytes with zeros.

On the responder side, ATP takes the data in the first reply packet’s user bytes
and puts them into the first 4 bytes of the reply packet’s data. ATP ignores the
user bytes in all reply packets except for the first packet.

For more information on ATP packets and their header field definitions, refer to
Inside AppleTalk, second edition.

Using General Open Transport Functions with ATP 14

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport ATP
implementation. For example, ATP only works with those Open Transport send
and receive functions that handle request-reply interactions for connectionless
transaction-based protocols. These are OTSndURequest, OTRcvURequest,
OTSndUReply, and OTRcvUReply. You must be familiar with the descriptions of
these functions in the chapter “Endpoints” in this book before reading this
section.

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

14-10 Using ATP

Draft.  Apple Computer, Inc. 4/30/96

OTSndURequest 14

A client of a connectionless transaction-based protocol such as ATP can use the
OTSndURequest function to send an ATP request packet to an ATP responder
endpoint.

To indicate XO transactions, set the T_ACKNOWLEDGED bit in the OTSndURequest
function’s reqFlags parameter. To indicate ALO transactions, clear this bit. ATP
request packets can have up to 578 bytes, and zero-length TSDUs are not
supported.

OTRcvURequest 14

A client of a connectionless transaction-based protocol such as ATP can use the
OTRcvURequest function to receive an incoming ATP request packet from an ATP
requester endpoint.

On XO transaction packets, the T_ACKNOWLEDGED bit in the OTRcvURequest
function’s reqFlags parameter is set. On ALO transactions, this bit is clear. ATP
request packets can have up to 578 bytes, and zero-length TSDUs are not
supported.

OTSndUReply 14

A client of a connectionless transaction-based protocol such as ATP can use the
OTSndUReply function to send an ATP reply packet to an ATP requester
endpoint. ATP reply packets can have up to eight packets (4624 bytes), and
zero-length TSDUs are not supported.

OTRcvUReply 14

A client of a connectionless transaction-based protocol such as ATP can use the
OTRcvUReply function to receive an incoming ATP reply packet from an ATP
requester endpoint. ATP reply packets can have up to eight packets (4624
bytes), and zero-length TSDUs are not supported.

C H A P T E R 1 4

AppleTalk Transaction Protocol (ATP)

ATP Reference 14-11
Draft.  Apple Computer, Inc. 4/30/96

ATP Reference 14

This section describes the options that are specific to ATP, defines the constant
you use to specify the ATP protocol for option management functions, and
indicates the generic Open Transport options you can use with ATP.

Options 14

There are several ATP-specific options, which are defined as the following:

#define ATP_OPT_REPLYCNT 0x2110 /* ATP Reply packet count */
#define ATP_OPT_DATALEN 0x2111 /* ATP packet data Length */
#define ATP_OPT_RELTIMER 0x2112 /* ATP release timer */
#define ATP_OPT_TRANID 0x2113 /* Requests transaction ID */

The ATP_OPT_REPLYCNT option indicates the number of reply packets in the
current ATP reply being received. The ATP_OPT_DATALEN option indicates a
maximum data packet length that differs from the ATP default of 578; only the
PAP server uses this option. The ATP_OPT_TRANID option adds the ATP
transaction ID added to every request packet.

The ATP_OPT_RELTIMER option indicates the amount of time the responder must
wait for a transaction release packet before it purges a request entry from its
transactions list. Acceptable values are 0 (30 seconds), 1 (1 minute), 2 (2
minutes), 3 (4 minutes), 4 (8 minutes).

In order to use any option with ATP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the ATP protocol in the
level field of the TOption structure when you specify an option.

#define ATK_ATP 'ATP '

ATP also allows you to use the generic Open Transport options OPT_RETRYCNT
and OPT_INTERVAL, which are described in the chapter “Option Management” in
this book.

C H A P T E R 1 5

Contents 15-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 15-0
Listing 15-0
Table 15-0

15 Printer Access Protocol (PAP)

About PAP 15-3
Using PAP 15-5

Binding PAP Endpoints 15-6
Specifying PAP Options 15-7

The Enable End-of-Message Option 15-7
The Open Retry Option 15-8
The Server Status Option 15-9

Disconnecting 15-9
Using General Open Transport Functions With PAP 15-9

OTBind 15-9
OTConnect 15-10
OTRcvConnect 15-10
OTListen 15-10
OTAccept 15-10
OTSnd 15-11
OTRcv 15-11
OTSndDisconnect 15-11
OTRcvDisconnect 15-11

PAP Reference 15-12
Options 15-12

C H A P T E R 1 5

About PAP 15-3
Draft.  Apple Computer, Inc. 4/30/96

Printer Access Protocol (PAP) 15

This chapter describes how Open Transport implements the Printer Access
Protocol (PAP). It explains how you can use PAP to set up a printer server
endpoint that awaits connection requests from active PAP endpoints. The
chapter also explains how to set up an active PAP client endpoint, how to send
data directly from it to the printer server, and how the client endpoint receives
messages back from the server. PAP offers a connection-oriented
transactionless service that is particularly well suited to creating both the client
and the server side of a client-server pair of endpoints.

You should read this chapter if you want to write an application that uses PAP
to print directly to AppleTalk printers. This chapter explains how you

■ create and use an active PAP client endpoint

■ create and use a passive PAP server endpoint

■ send and receive data with PAP

■ divide a PAP data stream into discrete logical units

■ set a PAP server to respond to a client’s SendStatus call

This chapter begins with a description of PAP and the services that it provides
under Open Transport. The section “Using Open Transport Functions With
PAP” then gives detailed information about how PAP client applications use
the endpoint functions that Open Transport provides for connection-oriented
transactionless protocols. For a more detailed explanation of endpoints and
their functions, read the chapter “Endpoints” in this book.

For an overview of PAP and how it fits within the AppleTalk protocol stack,
read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. PAP
under Open Transport conforms to the detailed specifications in Inside
AppleTalk, second edition. See that book for further information about the
features mentioned here.

About PAP 15

The Printer Access Protocol (PAP) is an asymmetrical connection-oriented
transactionless protocol that enables communication between client and server
endpoints, allowing multiple connections at both ends. PAP uses ATP packets
to transport the data once a connection is open to the server.

C H A P T E R 1 5

Printer Access Protocol (PAP)

15-4 About PAP

Draft.  Apple Computer, Inc. 4/30/96

PAP is the protocol that ImageWriter and LaserWriter printers in the AppleTalk
environment use for direct printing—that is, when a workstation sends a print
job directly to a printer connected to the network instead of using a print
spooler. Open Transport PAP provides a single protocol implementation for all
AppleTalk printers that is integrated into the AppleTalk protocol stack.

Figure 15-1 shows how a PAP endpoint provider encompasses its underlying
delivery protocol and link-access Streams modules.

Figure 15-1 The PAP endpoint provider’s underlying delivery mechanism

One of the unique features of PAP is its ability to determine which connection
request to honor when there are several requests outstanding at the same time.
At any time a PAP server endpoint can receive requests to open a connection
from different client endpoints. For example, a printer server is available on a
network to many workstations, several of which can send data to the printer at

ADSP

NBPATP

ZIP PAP

Standard link-access Streams modules

Ethernet

Token ring

FDDI

LocalTalk

DDP

Session

Transport

Network

Data-link

Physical

C H A P T E R 1 5

Printer Access Protocol (PAP)

Using PAP 15-5
Draft.  Apple Computer, Inc. 4/30/96

any time. PAP uses an arbitration scheme to allow a server to accept a
connection with the workstation that has been waiting the longest for a
connection. The scheme works this way:

1. A PAP server receives a connection request but delays granting it for a
predefined length of time (nominally 2 seconds). This default time period is
implementation specific and is defined in Inside AppleTalk, second edition.

2. The PAP server accumulates any additional connection requests that come in
from other endpoints during that time period.

3. At end of the time period, the PAP server obtains the accumulated wait time
from each workstation endpoint requesting a connection. The workstations
have continued to track the amount of elapsed time spent waiting for access
to the server. For example, if a workstation client has to try several times to
connect to a busy LaserWriter, the workstation continues to track the total
time since the first connection attempt and reports that amount to the
LaserWriter on every subsequent connection attempt.

4. The PAP server then grants the request of the workstation that has waited
the longest.

Using PAP 15

To use Open Transport PAP, you first open an endpoint as a PAP endpoint,
which causes Open Transport to allocate the memory PAP needs for data
buffers and for storing the variables PAP uses to maintain the connection
between endpoints. After a connection is established, PAP manages and
controls the data flow between the two endpoints throughout a session to
ensure that data is delivered and received in the order in which it was sent and
that duplicate data is not sent.

Communication between two client applications using PAP occurs over a
connection between two endpoints that provides reliable data delivery. When
you bind a PAP endpoint, the binding process associates a local protocol
address with the endpoint. In PAP, this identifies the socket address, and PAP
uses this as part of the address for sending and receiving packets of data. Each
socket can maintain concurrent PAP connections with several other sockets, but
there can be only one PAP connection between any two sockets at one time.

C H A P T E R 1 5

Printer Access Protocol (PAP)

15-6 Using PAP

Draft.  Apple Computer, Inc. 4/30/96

As with other connection-oriented protocols, Open Transport PAP allows you
to create a passive endpoint that listens for incoming connection requests
rather than initiating such requests. In addition, the implementation of PAP
under Open Transport includes some features that are specific to the two
AppleTalk connection-oriented protocols, PAP and ADSP. These are

■ an end-of-message option that lets you divide streams of data into
logical units

■ locally implemented orderly disconnects rather than over-the-wire remote
disconnects

A feature unique to PAP is the ability to arbitrate connections requests and to
retry attempts to open a connection. This allows PAP printer servers to accept
requests from the workstations that have been waiting the longest to print, and
it allows PAP workstations to keep trying to get their print request through to
the printer.

Binding PAP Endpoints 15

You have two choices when binding a PAP endpoint: You can create an
endpoint that can initiate connections and receive connection requests, or you
can create a passive endpoint that can only receive connection requests.
Typically, a passive PAP endpoint is a printer server.

If your endpoint can initiate connections, you can bind it as a normal Open
Transport endpoint and use any of the three AppleTalk address formats for the
socket address: DDP, NBP, or the combined DDP-NBP format. If the bind is
successful, the endpoint is ready for use in establishing and using a connection.

The other choice when binding a PAP endpoint is to establish it as a passive
peer that listens for incoming connection requests. The passive peer can accept
or deny a connection request based on criteria that you define. The use of a
passive peer is typical of a server environment in which a server, such as a
printer server, is registered with a single name. Endpoints throughout the
network can contact the printer server with connection requests. The server can
accept or deny a request. It might deny a request, for example, when its
resources are exhausted.

To create a passive peer that listens, you specify a queue length greater than 0
during the binding process. The number you use determines how many
connection requests the endpoint can support. Once the endpoint is bound, it
starts listening for incoming connection requests. When a request arrives, the

C H A P T E R 1 5

Printer Access Protocol (PAP)

Using PAP 15-7
Draft.  Apple Computer, Inc. 4/30/96

endpoint retrieves certain information about the request and continues to
process the connection request by accepting or rejecting it.

You can bind multiple PAP endpoints to the same socket, but you can have
only one passive peer that listens for a given socket. When a server accepts a
connection from a client workstation for processing its print request, it cannot
accept another connection request from the same workstation endpoint. As
with other connection-oriented protocols, you can only have one connection
between the same pair of endpoints.

Specifying PAP Options 15

You can send a PAP data stream that has no logical boundaries within it that
need to be preserved across the connection, or you can use transport service
data units (TSDUs) to separate the data stream into discrete logical units when
sending and receiving it across a connection.

By default, PAP does not support TSDUs. Instead, PAP sends and receives a
continuous stream of data with no message delimiters, which means you can
exchange data with an endpoint whose protocol does not support TSDUs. If
you do not specify any PAP-specific options, your packets are not restricted to
Open Transport PAP endpoints, and you can provide transport-independent
data transmission.

The Enable End-of-Message Option 15

If transport independence is not crucial for your application, you can use a
PAP-specific option that allows TSDUs. The OPT_ENABLEEOM option enables the
PAP end-of-message feature, which permits dividing data streams into smaller
logical units. Open Transport uses a flag in the send and receive functions to
indicate multiple sends and receives. The use of this flag, the T_MORE flag,
allows you to break up a large data stream without losing its logical boundaries
at the other end of the connection. The flag, however, indicates nothing about
how the data is packaged for transport on the lower-level protocols below the
PAP endpoint provider.

To send a data stream that is broken up into TSDUs, you set the T_MORE flag on
each send. This indicates to the remote connection end that there are more
packets coming that are part of this same data stream. When a packet arrives
without the T_MORE flag set, the remote end knows this is the last packet for this
stream of data. It is possible for this last packet to contain no data because PAP
supports the sending of zero-length packets. This could occur when you send a

C H A P T E R 1 5

Printer Access Protocol (PAP)

15-8 Using PAP

Draft.  Apple Computer, Inc. 4/30/96

packet with the T_MORE flag set only to discover that you have no more data to
send. In this case, PAP still expects another packet, but you have no data to put
into it. You can send a zero -length packet to set the T_MORE flag correctly.

Because printers expect an EOM indicator on the last packet, if you do not
choose to use the OPT_ENABLEEOM option, PAP takes care of that for you,
guaranteeing that the EOM indicator is set on the last packet. If, however, you
do choose to use the OPT_ENABLEEOM option, you are responsible for setting the
EOM indicator, by using the T_MORE flag on every packet but the last.

When you use TSDUs with PAP, you cannot change the size of the TSDU after
you have established the connection with another endpoint. This means that
you don’t need to double-check the TSDU size after the first packet because it
will always be the same for all packets using this connection.

The Open Retry Option 15

When a PAP endpoint provider calls the OTConnect function, which creates a
connection request, by default it does not try a second time to establish the
connection. The PAP default for this option is a value of 1, which refers to the
number of times that PAP tries to open a connection, which means that PAP
permits only the initial OTConnect request. (Given the effect of its default value,
you might find it easier to think of this option as the try open connection
option, rather than as the retry open connection option.)

Note
The default value of 1 for this option differs from the
default retry count of 5 specified in Inside AppleTalk, second
edition. In other aspects of Open Transport AppleTalk,
AppleTalk protocols adhere to the specifications detailed
in that book. ◆

To force PAP to try again to open the connection, you can use a value greater
than 1 for the PAP_OPT_OPENRETRY option. Note that if you change the value of
this option, you compromise the transport independence of your application.
Thus, if you need to retry sending the open connection packets, you must
deliberately choose to use the option and make your code transport dependent.
Workstation client applications that want to print data, for example, will
probably keep trying to get access to a printer server, retrying printer
connections until the user presses the cancel button. Once the user requests a
halt, of course, PAP stops trying to connect.

C H A P T E R 1 5

Printer Access Protocol (PAP)

Using PAP 15-9
Draft.  Apple Computer, Inc. 4/30/96

The Server Status Option 15

In a client-server interaction, a client may sometimes need to know the status
of the server. In these cases, the client can request the server’s status. This
request can occur outside a connection. If the OPT_SERVERSTATUS option has been
set, with a C string 255 bytes long, the server can return that string as the server
status.

Disconnecting 15

As with all connection-oriented Open Transport protocols, PAP supports
abortive disconnects. In addition, PAP supports orderly disconnects, although
it can only implement them locally.

An abortive disconnect directs the remote endpoint to abruptly tear down its
connection without making any accomodation for the data that may be in the
transmission pipeline at the time. You can define your own handshake to
prevent losing data during the disconnect process.

PAP implements orderly disconnects locally, not over the wire. This means that
immediately after you request the disconnect, PAP sends all data buffered at
the local end and then tears down the connection, breaking communication
with the remote end. As a result, no data can be sent from either the local or
remote endpoint. The endpoints can continue to process data already in their
receive queues, but no new data can go out.

Using General Open Transport Functions With PAP 15

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport PAP
implementation. These may mean using specific parameter values or using
specific Open Transport functions. For example, PAP only works with two of
the Open Transport sending and receiving functions, OTSnd and OTRcv, because
only these work with protocols that are connection-oriented and
transactionless. You must be familiar with the function descriptions in the
chapter “Endpoints” in this book before reading this section.

OTBind 15

The OTBind function associates a local protocol address with the endpoint
specified by the ref parameter.

C H A P T E R 1 5

Printer Access Protocol (PAP)

15-10 Using PAP

Draft.  Apple Computer, Inc. 4/30/96

You can bind multiple PAP endpoints to a single protocol address, but you can
bind only one passive endpoint that listens at that address.

With PAP, as with other connection-oriented protocols, the req->qlen
parameter specifies the number of outstanding connection requests that an
endpoint can support. The endpoint can negotiate the final value of qlen if it
cannot handle the requested number of outstanding connection requests, but in
PAP, the value of qlen cannot be negotiated to 0 from a requested value greater
than 0.

OTConnect 15

The OTConnect function request a connection to a specified remote endpoint.

PAP does not allow application-specific data to be included when you establish
a connection, so you need to set the sndcall->udata.len field to 0. PAP ignores
the sndcall->udata.buf field.

OTRcvConnect 15

The OTRcvConnect function reads the status of a previously issued connection
request.

Because PAP does not allow application-specific data to be associated with a
connection request, you need to set the call->udata.len field to 0. PAP ignores
the call->udata.buf field.

OTListen 15

The OTListen function listens for an incoming connection request.

PAP does not allow application-specific data to be included when you request a
connection, so you need to set the call->udata.len field to 0. PAP ignores any
data in the call->udata.buf field.

OTAccept 15

The OTAccept function accept a connection request either on the same endpoint
that received the connection request or on a different endpoint.

PAP does not allow application-specific data to be included when you accept a
connection, so you need to set the call->udata.len field to 0. PAP ignores the
call->udata.buf field.

C H A P T E R 1 5

Printer Access Protocol (PAP)

Using PAP 15-11
Draft.  Apple Computer, Inc. 4/30/96

OTSnd 15

The OTSnd function sends normal and expedited data through a connection-
oriented transactionless endpoint.

PAP supports TSDUs through the OPT_ENABLEEOM option, although its use
compromises the transport independence of your application. In PAP, TSDUs
sent from the client endpoint can be of infinite length, but TSDUs sent from a
server endpoint can only be up to 512 bytes long. Zero-length packets are
supported by PAP.

OTRcv 15

The OTRcv function receives normal and expedited data through a
connection-oriented transactionless endpoint.

PAP supports TSDUs through the OPT_ENABLEEOM option, although its use
compromises the transport independence of your application. In PAP, TSDUs
sent from the client endpoint can be of infinite length, but TSDUs sent from a
server endpoint can only be up to 512 bytes long. Zero-length packets are
supported by PAP.

OTSndDisconnect 15

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

In an abortive disconnect, the call parameter is ignored because PAP does not
allow application-specific data to be associated with a disconnect. You need to
set the call->udata.len field to 0. PAP ignores the call->udata.buf field.

OTRcvDisconnect 15

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because PAP does not allow application-specific data to be associated with a
disconnect, you need to set the discon->udata.len field to 0. PAP ignores in the
discon->udata.buf field.

C H A P T E R 1 5

Printer Access Protocol (PAP)

15-12 PAP Reference

Draft.  Apple Computer, Inc. 4/30/96

PAP Reference 15

This section describes the PAP_OPT_OPENRETRY option that is specific to PAP,
defines the constant you use to specify the PAP protocol for option
management functions, and indicates the generic Open Transport options that
you can use with PAP.

Options 15

This section describes the PAP-specific option that you can use with the
OTConnect provider function.

The only option that is specific to PAP is the open retry option, which is
defined as following:

#define PAP_OPT_OPENRETRY 0x2120 /* PAP open retry count */

This option forces PAP to try again to open a connection that PAP has tried
once already to establish without success.

In order to use any option with PAP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the PAP protocol in the
level field of the TOption structure when you specify an option.

#define ATK_PAP 'PAP '

With PAP, you can use the generic OPT_ENABLEEOM, OPT_CHECKSUM and
OPT_SERVERSTATUS options, which are further described in the chapter “Option
Management” in this book.

C H A P T E R 1 6

Contents 16-1
Draft.  Apple Computer, Inc. 4/30/96

Contents

Figure 16-0
Listing 16-0
Table 16-0

16 Serial Endpoint Providers

About Serial Endpoint Providers 16-4
About Serial Communication 16-4
DTR and CTS Signals 16-6
Asynchronous and Synchronous Communication 16-7
Handshaking Methods for Flow Control 16-8

Using Serial Endpoints 16-8
Opening and Closing Serial Endpoints 16-9
Sending and Receiving Data 16-9
Using Serial-Specific Commands 16-10
Using Options to Change Serial Communications Settings 16-11

Setting Flow-Control Handshaking 16-12
Obtaining Status Information About the Serial Port 16-12

Using General Open Transport Functions
With Serial Endpoints 16-14

Obtaining Endpoint Data With Serial Endpoints 16-14
Using Endpoint Functions With Serial Endpoints 16-15

Serial Endpoint Providers Reference 16-17
Constants 16-17
Options 16-19

Protocol Level 16-19
Serial Options 16-19

Serial-Specific Commands 16-23
I_SetSerialDTR 16-23
I_SetSerialBreak 16-24
I_SetSerialXOffState 16-24
I_SetSerialXOn 16-25
I_SetSerialXOff 16-25

C H A P T E R 1 6

16-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

I_SetFramingType 16-25

C H A P T E R 1 6

16-3
Draft.  Apple Computer, Inc. 4/30/96

Serial Endpoint Providers 16

This chapter describes how you can use serial endpoint providers to transfer
data between devices connected to a modem or printer port. Open Transport
supports asynchronous serial data communication between client applications
through these ports. This chapter provides information about Open Transport
functions and options that are specific to serial endpoint providers. You need
this information only if you have a specific need to use serial communication.

Serial endpoints provide low-level support for communicating with serial
devices that cannot be accessed through the Communications Toolbox or
Printing Manager; for example, a scientific instrument or a printer that does not
support QuickDraw. Before you decide to use a serial endpoint, you should
determine whether it is the appropriate solution for your communications
needs.

To get the most out of this chapter, you should already be familiar with the
concepts and application interfaces described in the chapters “Introduction to
Open Transport,” “Providers,” “Endpoints,” “Option Management,” and
“Configuration Management” in this book. For information about the
Macintosh serial port hardware, including circuit diagrams and signal
descriptions, see Guide to the Macintosh Family Hardware, second edition. The
Open Transport serial interface software modules are based on the UNIX
STREAMS standard. For more information about STREAMS, see UNIX System
V Release 4: Programmer’s Guide: STREAMS. The Open Transport API is based
on the XTI standard as documented in X/Open CAE Specification: X/Open
Transport Interface (XTI).

This chapter begins with a brief summary of key concepts in serial data
communication, then describes how you can use serial endpoint providers to

■ configure a serial port

■ send and receive data through a serial port

■ interpret serial communication status information

The section “Using General Open Transport Functions With Serial Endpoints,”
beginning on page 16-14 describes serial-specific information relating to
functions described in the “Endpoints” chapter of this book and the section
“Using Options to Change Serial Communications Settings,” beginning on
page 16-11 describes the options you can specify when you configure a serial
endpoint provider. The reference section describes those constants, options,
and OTIoctl function commands available to users of Open Transport serial
endpoint providers.

C H A P T E R 1 6

Serial Endpoint Providers

16-4 About Serial Endpoint Providers

Draft.  Apple Computer, Inc. 4/30/96

About Serial Endpoint Providers 16

Open Transport serial endpoint providers provide full-duplex low-level
support for asynchronous, interrupt-driven serial data transfers through the
modem and printer ports. Serial endpoint providers use connection-oriented
data streams. They do not support the functions that provide connectionless or
transaction-based service. Because of the point-to-point nature of serial
communications, there are a few differences between using a serial endpoint
and using other connection-oriented endpoints.

One of the key differences is that there are no addresses for serial endpoints
because serial communications is point-to-point. As such, no addressing
information is possible and all address parameters for serial endpoint functions
need to be set to zero.

The other important difference is that only one serial endpoint can own the
hardware at a given time. That is, only one serial endpoint provider can
initiate and accept a connection on a given port at a time, although there can be
several listening endpoints on a given port simultaneously.

About Serial Communication 16

Open Transport serial communication, like any data transfer between
endpoints, requires coordination between the sender and receiver; for example,
when to start the transmission and when to end it, when one particular bit or
byte ends and another begins, when the receiver’s capacity has been exceeded,
and so on. The scope of serial data transmission protocols is large and complex,
encompassing everything from electrical connections to data encoding
methods.

This section provides a brief overview of the protocol that governs the
lowest level of data transmission—how serialized bits are sent over a
single electrical line.

When a sender is connected to a receiver over an electrical connecting line, the
line is initially in an idle state, called the mark state, which has a positive
voltage level. Changing the state of the line by shifting the voltage to a negative
value creates what is called a space. Once this change has occurred, the receiver
interprets a negative voltage level as a 0 bit, and a positive voltage level as a 1
bit. These transitions are shown in Figure 16-1.

C H A P T E R 1 6

Serial Endpoint Providers

About Serial Endpoint Providers 16-5
Draft.  Apple Computer, Inc. 4/30/96

The change from the mark state to a space is known as the start bit, and this
triggers the synchronization necessary for asynchronous serial transmission.
The start bit delineates the beginning of the transmission unit defined as a
character frame. The receiver then samples the voltage level at periodic
intervals, known as the bit time, to determine whether a 0 bit or a 1 bit is
present on the line.

Figure 16-1 The format of serialized bits

The bit time is expressed in samples per second, known as the baud rate. The
baud rate must be agreed upon by sender and receiver before transmitting data
in order for a successful transfer to occur. Common values are 1200 baud and
2400 baud. In the case where one sampling interval can signal a single bit, a
baud rate of 1200 results in a transfer rate of 1200 bits per second (bps). Note
that because modern protocols can express more than one bit value within the
sampling interval, the baud rate and the transfer rate may not be identical.

Before transmission, the sender and receiver also agree on a serial data format;
that is, how many bits of data constitute a character frame and what happens
after those bits are sent. Open Transport serial endpoints support frames of 5, 6,
7, or 8 bits in length. Character frames of 7 or 8 data bits are commonly used for
transmitting ASCII characters.

After the data bits in the frame are sent, the sender can optionally transmit a
parity bit for error-checking. There are various parity schemes, which the
sender and receiver must agree upon prior to transmission. In odd parity, a bit

Mark

Space

Idle Idle

Character frame

Bit time

Parity

bit

5, 6, or 7 data bitsStart

bit

Stop

bits

C H A P T E R 1 6

Serial Endpoint Providers

16-6 About Serial Endpoint Providers

Draft.  Apple Computer, Inc. 4/30/96

is sent so that the entire frame always contains an odd number of 1 bits.
Conversely, in even parity, the parity bit results in an even number of 1 bits. No
parity means that no additional bit is sent.

To signify the end of the character frame, the sender places the line back to the
mark state for a minimum specified time interval. This interval has one of
several possible values: 1 bit time, 2 bit times, or 1-1/2 bit times. This signal is
known as the stop bit, and returns the transmission line back to the mark state.

Electrical lines are always subject to environmental perturbations known as
noise. This noise can cause errors in transmission by altering voltage levels so
that a bit is reversed, shortened, or lengthened. When this occurs, the ability of
the receiver to distinguish a character frame may be affected, resulting in a
framing error.

The break signal is a special signal that falls outside the character frame. The
break signal occurs when the line is switched from the mark state to a space
and held there for longer than a character frame. The break signal resembles an
ASCII NUL character (a string of 0-bits), but exists at a lower level than the
ASCII encoding scheme that governs the encoding of information within the
character frame.

DTR and CTS Signals 16

The electrical characteristics of a serial communications connection are
specified by various interfacing standards. The specifications of these standards
are contained in documents available from the Electronic Industries
Associations (EIA) that cover aspects of the connection, such as its electrical
signal characteristics and its interface circuits.

The principal signals used by Open Transport serial endpoint providers are the
Data Terminal Ready (DTR) and Clear To Send (CTS) signals. In Macintosh
computers, these two signals are connected to each other. These signals are
described in the following bullets. Note that in these definitions, the term data
terminal equipment (DTE) is used to describe the initiator or controller of the
serial connection, typically the computer. The term data communication
equipment (DCE) describes the device that is connected to the DTE, such as a

C H A P T E R 1 6

Serial Endpoint Providers

About Serial Endpoint Providers 16-7
Draft.  Apple Computer, Inc. 4/30/96

modem or printer. For specific information about how these signals are used in
Macintosh computers, see Guide to the Macintosh Family Hardware, second
edition.

■ The Data Terminal Ready (DTR) signal indicates that the DTE (that is, your
computer) is ready to communicate. Deasserting this signal causes the DCE
(that is, your modem or printer) to suspend transmission. The DTR signal is
the most important control line for a modem because when it is deasserted,
most modem functions cease and the modem disconnects from the
telephone line.

■ The Clear To Send (CTS) signal indicates that the DCE (your modem or
printer) is ready to send data. Since most communications between
microcomputers are full-duplex nowadays, the CTS signal is permanently
asserted.

Asynchronous and Synchronous Communication 16

Serial data transfers depend on accurate timing in order to differentiate bits in
the data stream. This timing can be handled in one of two ways:
asynchronously or synchronously. In asynchronous communication, the scope
of the timing is a single byte. In synchronous communication, the timing scope
comprises one or more blocks of bytes. The terms asynchronous and synchronous
are slightly misleading because both kinds of communication require
synchronization between the sender and receiver.

Asynchronous communication is the prevailing standard in the personal
computer industry because it is easier to implement and because it has the
unique advantage that bytes can be sent whenever they are ready, as opposed
to waiting for blocks of data to accumulate.

IMPORTANT

Do not confuse asynchronous communication with
asynchronous execution. Asynchronous communication is a
protocol for coordinating serial data transfers.
Asynchronous execution refers to the capability of a device
driver to carry out background processing. Serial
endpoints support both asynchronous communication and
asynchronous execution. ▲

C H A P T E R 1 6

Serial Endpoint Providers

16-8 Using Serial Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Open Transport serial endpoints do not support synchronous communications
protocols. However, they do support synchronous clocking supplied by an
external device.

Handshaking Methods for Flow Control 16

Because a sender and receiver can’t always process data at the same rate, some
method of negotiating when to start and stop transmission is required. Open
Transport serial endpoint providers support two methods of controlling serial
data flow, known as handshaking. One method relies on the serial port
hardware, the other is implemented in software.

Hardware handshaking uses two of the serial port signal lines to control data
transmission. When the serial endpoint provider is ready to accept data from
an external device, it asserts the Data Terminal Ready (DTR) signal on pin 1 of
the serial port, which the external device receives through its Clear To Send
(CTS) input. Likewise, the Macintosh receives the external device’s DTR signal
through the CTS input on pin 2 of the serial port. When either the Macintosh or
the external device is unable to receive data, it negates its DTR signal, and the
sender suspends transmission until the signal is asserted again.

Software handshaking uses an agreed-upon set of characters for the start and
stop signals. Open Transport serial endpoints support XON/XOFF
handshaking, which typically assigns the ASCII DC1 character (Control-Q) as
the start signal and the DC3 character (Control-S) as the stop signal, although
you can choose different characters.

Using Serial Endpoints 16

Serial endpoint providers use standard Open Transport functions for binding,
requesting and accepting connections, sending and receiving data, and
managing options. You can send and receive the desired data using the
standard Open Transport OTSnd and OTRcv functions. You can call these
functions either synchronously or asynchronously, as described in the chapter
“Endpoints” in this book.

C H A P T E R 1 6

Serial Endpoint Providers

Using Serial Endpoints 16-9
Draft.  Apple Computer, Inc. 4/30/96

In addition, Open Transport provides specialized serial-specific commands and
options that allow you to

■ set the flow-control handshaking

■ use an external timing signal for synchronous clocking

■ set or clear a break signal

■ get status information about a port and any associated transmission errors

■ define how characters with parity errors are handled

■ request burst mode operation

■ define receive timeout options

■ set the framing type

Opening and Closing Serial Endpoints 16

To open serial endpoints, you need to supply a configuration string to the
OTOpenEndpoint function by using one of the following constants:

For example, the following line of code opens a serial endpoint on serial port A:

OTOpenEndpoint(OTCreateConfiguration(kSerialPortAName));

To close a serial endpoint provider, you use the standard Open Transport
function OTCloseProvider, described in the chapter “Providers” in this book.

Sending and Receiving Data 16

As with all endpoints, you must call the OTBind function before you can use a
serial endpoint provider to send or receive data. For serial endpoint providers
that initiate outgoing data, you need to bind with a queue length (the qlen

Constant name String value Description

kSerialName "serial" Default serial port

kSerialPortAName "serialA" Serial port A

kSerialPortBName "serialB" Serial port B

kSerialPortABName "serialAB" Serial port AB

C H A P T E R 1 6

Serial Endpoint Providers

16-10 Using Serial Endpoints

Draft.  Apple Computer, Inc. 4/30/96

parameter) of 0. When you wish to start transferring data, you must call the
OTConnect function to place the endpoint in the data transfer state and allow
you to call the OTSnd and OTRcv functions. Calling the OTSndDisconnect function
releases the connection.

For serial endpoint providers that listen for incoming data, you need to bind
with a queue length of 1. You cannot bind with a queue length greater than 1.
When an incoming character is detected on the serial port, you receive a
connect indication. You can accept the indication on the current endpoint, or
you can accept it on another serial endpoint, which has a queue length of 0 or
which is not yet bound. In either case, once the accepting endpoint returns to
the T_IDLE state, the original endpoint once again listens for incoming data and
gets a connect indication if another incoming character is detected. Calling the
OTSndDisconnect function releases the connection and allows your endpoint to
continue listening on the port. Your endpoint can continue to listen until you
call the OTUnbind function.

You can create a number of serial endpoints to listen on a given serial port, but
only one can have a connection at a time. The first serial endpoint to connect
owns the hardware; other endpoints that subsequently attempt to connect
receive a kOTAddressBusyErr result code.

Using Serial-Specific Commands 16

You can control several aspects of serial communication by using the Open
Transport function OTIoctl with different serial-specific commands. The
OTIoctl function, described in the chapter “Providers” in this book, accesses
the low-level serial driver control and status functions (PBControlAsync or
PBStatusAsync). For information about Device Manager functions for opening,
closing, and communicating with device drivers, see the book Inside Macintosh:
Devices.

You can assert the DTR signal for the serial port by using a value of
kOTSerialSetDTROn with the I_SetSerialDTR command and you can negate it
with a value of kOTSerialSetDTROff. Likewise, you can use the
I_SetSerialBreak command to set or negate the break signal with values of
kOTSerialSetBreakOn and kOTSerialSetBreakOff or you can use a number
greater than 1 to indicate the number in milliseconds to assert a break signal
temporarily.

You can also use the OTIoctl function commands to set the XOFF state of the
serial port and to indicate whether the port is to send an XOFF or XON

C H A P T E R 1 6

Serial Endpoint Providers

Using Serial Endpoints 16-11
Draft.  Apple Computer, Inc. 4/30/96

character. Using a value of kOTSerialForceXOffTrue with the
I_SetSerialXOffState command sets the XOFF state of the serial port, which is
equivalent to receiving an XOFF character, and using a value of
kOTSerialForceXOffFalse with this command clears the XOFF state, which is
equivalent to receiving an XON character.

Using a value of 1 with the I_SetSerialXOn and I_SetSerialXOff commands
causes the serial port to unconditionally send an XON or XOFF character,
respectively. A value of 0 with these functions causes the character to be sent
only if the last input flow-control character sent was the opposite kind—that is,
the XOFF or XON character, respectively.

Using Options to Change Serial Communications Settings 16

Serial endpoints currently support six options. These options are defined by
the XTI-level constant COM_SERIAL, which has a value of 'SERL'.

When you open a serial endpoint, Open Transport configures the selected port
with the default settings of 19200 baud, 8 data bits per character, no parity bit, 1
stop bit, and no handshaking. You can change these settings using various
options, all of which use 4-byte unsigned integer values. There is also a serial
status option that provides current information about the serial port. Four of
the options are fairly straightforward and are described here; using the other
two options is more complicated, and their use is described in the two
subsequent sections.

■ The baud rate option sets the serial baud rate.The serial module chooses the
closest baud rate supported that matches the requested rate. Possible values
range from 300 to 57600 baud transmission rates (depending on the
hardware capability). The default value is 19200 baud.

■ The data bits option selects the number of data bits to be used. Legal values
are 5, 6, 7, and 8. The default value is 8 data bits.

■ The stop bits option selects the number of stop bits to be used. This value
corresponds to ten (10) times the actual number of stop bits. Legal values
are 10, 15, and 20, which correspond to stop bits of 1, 1.5, and 2. The default
value is 10, which is equivalent to 1 stop bit.

■ The parity option selects the parity to be used. Legal values are kOTNoParity
0), kOTOddParity(1), and kOTEvenParity(2). The default value is kOTNoParity.

■ The receive timeout option sets the number of milliseconds the receiver
should wait to receive more data before timing out.

C H A P T E R 1 6

Serial Endpoint Providers

16-12 Using Serial Endpoints

Draft.  Apple Computer, Inc. 4/30/96

■ The error character option defines how characters with parity errors are
handled—that is, if they are replaced and with which character. Open
Transport provides the define statements (and C++ inline functions),
OTSerialSetErrorCharacter and OTSerialSetErrorCharacterWithAlternate, to
help place the character bits correctly.

■ The external clock option requests an external clock. This option may not be
supported by all serial drivers.

■ The burst mode option requests that the serial driver continues looping,
reading incoming characters, rather than waiting for an interrupt for each
character. This option may not be supported by all serial drivers.

Setting Flow-Control Handshaking 16

This option selects the flow-control handshaking to be used by the serial
endpoint providers. The handshaking can be either hardware, using the DTR
and CTS signals, or software, using the XON and XOFF characters. The default
value of this option is no handshaking.

A schematic diagram of this 4-byte option value looks like this:

xxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxx
handshake bitmap XON character XOFF character

The high word is a bitmap with one or more bits set, indicating the type of
handshaking requested. The DTR signal is normally asserted when the serial
endpoint is opened and negated when it is closed. The CTS signal is normally
always asserted. If the XON and XOFF character values are 0 and if XON/OFF
handshaking was requested, Open Transport uses the default values of
Control-S for XOFF and Control-Q for XON.

Open Transport provides a define statement and a C++ inline function
(SerialHandshakeData) that you can use to create the 4-byte option value.

Obtaining Status Information About the Serial Port 16

The serial status option is a read-only option that returns status information on
the serial port. It is a 4-byte unsigned integer containing a bitmap that can
provide the following information about errors or changes in status that may
have occured:

C H A P T E R 1 6

Serial Endpoint Providers

Using Serial Endpoints 16-13
Draft.  Apple Computer, Inc. 4/30/96

■ A hardware overrun has occurred due to an overflow of the hardware
input buffer.

■ A software overrun has occurred due to an overflow of the software
input buffer.

■ A parity error has occurred due to the serial hardware detecting an incorrect
parity bit.

■ A framing error has occurred due to the serial hardware detecting a stop
bit error.

■ A break has occurred on the line, and the break signal has been asserted.

■ The endpoint provider has sent an XOFF character, which initiates
flow control.

■ The endpoint provider has negated the DTR signal, which initiates
flow control.

■ The endpoint provider has negated the CTS signal, which initiates
flow control.

■ The endpoint provider has received an XOFF character, and so all output is
on hold.

■ The endpoint provider has initiated a break that is still in progress.

Data received from the serial port passes through a hardware buffer and then
into a software buffer managed by the input driver for the port. Each input
driver’s buffer can initially hold up to 64 characters, but you can specify a
larger buffer with standard Open Transport functions. This is normally not
necessary because Open Transport provides additional buffering as part of its
processing.

Because the serial hardware in some Macintosh computers relies on processor
interrupts during I/O operations, overrun errors are possible if interrupts are
disabled while data is being received at the serial port. To prevent such errors,
the Disk Driver and other system software components are designed to store
any data received by the modem port while they have interrupts disabled and
then pass this data to the port’s input driver. Because the system software only
monitors the modem port, the printer port is not recommended for two-way
communication at data rates above 300 baud.

Overrun, parity, and framing errors are usually handled by requesting that the
sender retransmit the affected data. Break errors are typically initiated by the
client application, which handles them as appropriate.

C H A P T E R 1 6

Serial Endpoint Providers

16-14 Using Serial Endpoints

Draft.  Apple Computer, Inc. 4/30/96

Using General Open Transport Functions
With Serial Endpoints 16

This section describes any special considerations that you must take into
account for Open Transport functions when you use them with serial endpoint
providers. You should be familiar with the function descriptions in the chapter
“Endpoints” in this book before reading this section.

Obtaining Endpoint Data With Serial Endpoints 16

This section describes the possible values you can get for endpoint information
when using a serial endpoint.

OTOpenEndpoint, OTAsyncOpenEndpoint, and OTGetEndpointInfo 16

The following values can be returned by the info parameter to the
OTOpenEndpoint, OTAsyncOpenEndpoint, and OTGetEndpointInfo functions when
used with serial endpoint providers:

IMPORTANT

The values shown in the preceding table are subject to
change. Be sure to to use the OTOpenEndpoint,
OTAsyncOpenEndpoint, or OTGetEndpointInfo function to
obtain the current values for these parameters. ▲

Parameter Serial Meaning

info->addr 0 Addresses are not used.

info->options Greater than 0 Maximum number of bytes needed to
hold protocol-specific options.

info->tsdu T_INVALID TSDUs are not supported.

info->etsdu T_INVALID Transfer of expedited data is not
supported.

info->connect T_INVALID Data cannot be sent with functions
that establish connections.

info->discon T_INVALID Data cannot be sent with abortive
disconnects.

info->servtype T_COTS Orderly disconnects are not supported.

info->flags - No flags are set.

C H A P T E R 1 6

Serial Endpoint Providers

Using Serial Endpoints 16-15
Draft.  Apple Computer, Inc. 4/30/96

These fields and the significance of their values are described in more detail in
the document X/Open CAE Specification: X/Open Transport Interface (XTI).

Using Endpoint Functions With Serial Endpoints 16

This section describes serial-specific information about functions described in
the chapter “Endpoints” in this book.

OTBind 16

The OTBind function associates a serial port with the endpoint you specify.
Because serial communication is point-to-point over a hardware connection,
you cannot specify an address. Therefore, you must specify 0 as the length of
the address in the reqaddr->TBind.addr.len parameter. You can bind multiple
serial endpoints to listen at a single port.

With serial endpoints, the req->qlen parameter, which specifies the number of
outstanding connection requests that an endpoint can support, can only have a
value of 0 or 1. To listen, a serial endpoint provider must have a queue length
value of 1; to accept connections, the endpoint can have a value of 0 or 1. A
value greater than 1 results in a error code.

OTConnect 16

The OTConnect function requests a connection to a specified remote endpoint.

Because serial endpoint providers do not allow you to send any application-
specific data during the connection establishment phase, you must set the
sndcall->udata.len field to 0. Serial endpoints ignore any data in the
sndcall->udata.buf field.

OTListen 16

The OTListen function listens for an incoming connection request.

Serial endpoints do not allow application-specific data to be included when
you request a connection, so you need to set the call->udata.len field to 0.
Serial endpoints ignore the call->udata.buf field.

C H A P T E R 1 6

Serial Endpoint Providers

16-16 Using Serial Endpoints

Draft.  Apple Computer, Inc. 4/30/96

OTAccept 16

The OTAccept function accepts a connection request. You can accept a
connection either on the same endpoint that received the connection request or
on a different endpoint.

Serial endpoints do not allow application-specific data to be included when
you accept a connection, so you need to set the call->udata.len field to 0.
Serial endpoints ignore the call->udata.buf field.

OTSnd 16

The OTSnd function sends data through a connection-oriented transactionless
endpoint. Serial endpoints do not support TSDUs.

OTRcv 16

The OTRcv function receives data through a connection-oriented transactionless
endpoint. Serial endpoints do not support TSDUs.

OTSndDisconnect 16

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

In an abortive disconnect, the call parameter is ignored because serial
endpoints do not allow application-specific data to be associated with a
disconnect. You need to set the call->udata.len field to 0. Serial endpoints
ignore the call->udata.buf field.

OTRcvDisconnect 16

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because serial endpoints do not allow application-specific data to be associated
with a disconnect, you need to set the discon->udata.len field to 0. Serial
endpoints ignore the discon->udata.buf field.

C H A P T E R 1 6

Serial Endpoint Providers

Serial Endpoint Providers Reference 16-17
Draft.  Apple Computer, Inc. 4/30/96

Serial Endpoint Providers Reference 16

This section describes the constants, options, and serial-specific commands
used by Open Transport serial endpoint providers.

Constants 16

This section describes the constants used by serial endpoints. You can use the
constant names kSerialName, kSerialPortAName, kSerialPortBName, and
kSerialABName when calling the OTCreateConfiguration function to configure a
serial endpoint. This function is described in the chapter “Configuration
Management” in this book.

#define kSerialName 'serial' /* Default serial port */
#define kSerialPortAName 'serialA' /* Serial port A */
#define kSerialPortBName 'serialB' /* Serial port B*/
#define kSerialPortABName 'serialAB' /* Serial port AB*/

You use the values in the next enumeration to define the type of framing your
serial port is using. These values are used in the fCapabilities field in the
OTPortRecord structure, described in the chapter “Configuration Management”
in this book.

enum{
kOTSerialFramingAsync = 0x01, /* Supports asynchronous serial framing */
kOTSerialFramingHDLC = 0x02, /* Supports serial HDLC framing */
kOTSerialFramingSDLC = 0x04, /* Supports serial SDLC framing */
kOTSerialFramingAsyncPackets = 0x08, /* Supports async packet serial mode */}

The OTIoctl commands use many constants:

kOTSerialSetDTROn = 1 /* Turn the DTR signal on */
kOTSerialSetDTROff = 0 /* Turn the DTR signal off */

kOTSerialSetBreakOn = 0xfffffff /* Turn the break signal on */
kOTSerialSetBreakOff = 0 /* Turn the break signal off */

C H A P T E R 1 6

Serial Endpoint Providers

16-18 Serial Endpoint Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

kOTSerialForceXOffTrue = 1 /* Unconditional set XOFF state */
kOTSerialForceXOffFalse = 0 /* Unconditional clear XOFF state */

kOTSerialSendXOnAlways = 1 /* Always send XON character */
kOTSerialSendXOnIfXOffTrue = 0 /* Send XON char only if XOFF state */

kOTSerialSendXOffAlways = 1 /* Always send XOFF character */
kOTSerialSendXOffIfXOnTrue = 0 /* Send XOFF char only if XON state */

This define statement, which is identical to the C++ inline function Open
Transport provides for this task, creates the 4-byte option value you use for the
SERIAL_OPT_HANDSHAKE option:

#define SerialHandshakeData(type, onChar, offChar)\
((((UInt32)type) << 16) | (((UInt32)onChar) << 8) | offChar)

These define statements, which are similar to the C++ inline functions Open
Transport provides for these tasks, set the correct placement for the characters
you use with the SERIAL_OPT_ERRORCHARACTER option:

#define OTSerialSetErrorCharacter(rep) \
((rep) & 0xff)

#define OTSerialSetErrorCharacterWithAlternate(rep, alternate) \
((((rep) & 0xff) | (((alternate) & 0xff) << 8)) | 0x80000000L)

This enumeration lists the default values for serial endpoint providers:

enum{
kOTSerialDefaultBaudRate = 19200, /* 19200 baud rate */
kOTSerialDefaultDataBits = 8, /* 8 data bits */
kOTSerialDefaultStopBits = 10, /* 1 stop bit */
kOTSerialDefaultParity = kOTSerialNoParity, /* no parity */
kOTSerialDefaultHandshake = 0, /* no handshaking */
kOTSerialDefaultOnChar = ('Q' & ~0x40), /* XON = Control-Q */
kOTSerialDefaultOffChar = ('S' & ~0x40), /* XOFF = Control-S */
kOTSerialDefaultSndBufSize = 128, /* send buffer = 128 characters */
kOTSerialDefaultRcvBufSize = 128, /* recv buffer = 128 characters */
kOTSerialDefaultSndLoWat = 96, /* send low-water mark */

C H A P T E R 1 6

Serial Endpoint Providers

Serial Endpoint Providers Reference 16-19
Draft.  Apple Computer, Inc. 4/30/96

kOTSerialDefaultRcvLoWat = 1 /* recv low-water mark */
kOTSerialDefaultRcvTimeout = 10 /* recv timeout, in seconds*/

};

Options 16

This section describes the serial-specific options that you can use with provider
functions such as OTOptionManagement and OTConnect.

Protocol Level 16

You use this XTI constant when calling the OTOptionManagement function to
establish the protocol type for an option you are using. You specify this value
in the level field of the TOption stucture. This function and structure are
described in the chapter “Option Management” in this book.

enum {
COM_SERIAL = = 'SERL'

};

Serial Options 16

You can use these options with a protocol level of COM_SERIAL. The
SERIAL_OPT_STATUS option is read only; none of these are association-related
options.

enum {
SERIAL_OPT_BAUDRATE 0x0100,
SERIAL_OPT_DATABITS 0x0101,
SERIAL_OPT_STOPBITS 0x0102,
SERIAL_OPT_PARITY 0x0103,
SERIAL_OPT_STATUS 0x0104,
SERIAL_OPT_HANDSHAKE 0x0105,
SERIAL_OPT_RCVTIMEOUT 0x0106,
SERIAL_OPT_ERRORCHARACTER 0x0107,
SERIAL_OPT_EXTCLOCK 0x0108,
SERIAL_OPT_BURSTMODE 0x0109

};

C H A P T E R 1 6

Serial Endpoint Providers

16-20 Serial Endpoint Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

Option descriptions

SERIAL_OPT_BAUDRATE
Sets the baud rate. Values can be 300 to 56700. (The default
is 19200.)

SERIAL_OPT_DATABITS
Sets the data bits. Values can be 5, 6, 7, and 8. (The default
is 8.)

SERIAL_OPT_STOPBITS
Sets the stop bits. Values can be 10, 15, or 20. These reflect a
number that is 10 times the bit time value: 1, 1.5, and 2.
(The default is 10.)

SERIAL_OPT_PARITY Sets the parity. (The default is no parity.)

SERIAL_OPT_STATUS Returns the current status in this read-only option. One or
more bits can be set.

Parity Value Description

kOTSerialNoParity 0 No parity.
kOTSerialOddParity 1 Odd parity.
kOTSerialEvenParity 2 Even parity.

Status Value Description

kOTSerialSwOverRunErr 0x01 Software overrun.

kOTSerialBreakOn 0x08 A break on the line.

kOTSerialParityErr 0x10 Parity error.

kOTSerialOverrunErr 0x20 Hardware overrun.

kOTSerialFramingErr 0x40 Framing error.

kOTSerialXOffSent 0x0010000 The XOFF character has
been sent.

kOTSerialDTRNegated 0x0020000 The DTR signal is negated.

kOTSerialCTLHold 0x0040000 The CTS signal is negated,
causing a hold.

kOTSerialXOffHold 0x0080000 The XOFF character has been
received, causing a hold.

kOTSerialOutputBreakOn 0x1000000 A break has been initiated.

C H A P T E R 1 6

Serial Endpoint Providers

Serial Endpoint Providers Reference 16-21
Draft.  Apple Computer, Inc. 4/30/96

SERIAL_OPT_HANDSHAKE
Sets the handshake to be used by the serial line. (The
default is no handshake.) The high word of the integer is a
bitmap with 1 or more of the following bits set:

The third byte in the option is the XON character. and the
lowest byte is the XOFF character. If these two values are 0
and if XON/XOFF handshaking was requested, Open
Transport uses the default values of Control-Q for XON
and Control-S for XOFF.

SERIAL_OPT_RCVTIMEOUT
Sets the number of milliseconds the receiver should wait
before delivering less than the RcvLoWat number of
incoming serial characters. If RcvLoWat is 0, then the value
is the number of milliseconds of quiet time (no characters
being received) that must elapse before characters are
delivered to the client. In all cases, this option is advisory
and serial drivers are free to deliver data whenever they
deem it convenient. For instance, many serial drivers
deliver data whenever 64 bytes have been received
because 64 bytes is the smallest STREAMS buffer size. Be
sure to look at the return value of the option to determine

Handshake Value Description

kOTSerialXOnOffInputHandshake 1 XON/XOFF set for input.

kOTSerialXOnOffOutputHandshake 2 XON/XOFF set for output.

kOTSerialCTSInputHandshake 4 CTS set on input.

kOTSerialDTROutputHandshake 8 DTR set on output.

C H A P T E R 1 6

Serial Endpoint Providers

16-22 Serial Endpoint Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

what it was negotiated to. Here are some examples of its
use:

SERIAL_OPT_ERRORCHARACTER
Sets how characters with parity errors are handled. A 0
value disables their replacement. A single character value
in the low byte designates the replacement character.
When characters are received with a parity error, they are
replaced by this specified character. If a valid incoming
character matches the replacement character, then the
received character’s most-significant-bit is cleared. For this
situation, an alternate replacement character may be
specified in bits 8 through 15 of the 32-bit value, with 0xff
being placed in bits 16 through 23. You can use the macros
OTSrlSetPEChar and OTSrlSetPECharWithAlternate to get
the bit placement correct. In this case, whenever a valid
character is received that matches the first replacement
character, it is replaced with this alternate character (which
may be 0).

SERIAL_OPT_EXTCLOCK
Requests an external clock. A 0-value turns off external
clocking (the default). Any other value is a requested
divisor for the external clock. Although Open Transport
serial endpoint providers do not support synchronous
communications protocols, you can use this option to
select an external timing signal for synchronous clocking
between the sender and receiver. Be aware that not all
serial implementations support an external clock and that
not all requested divisors will be supported if such an
implementation does support an external clock.

RcvTimeout RcvLoWat Action

0 0 Data is delivered immediately after it
arrives

x 0 Data is delivered after x milliseconds of
no incoming characters on the line.

x y Data is delivered after y characters are
received, or x milliseconds after the first
character is received, whichever comes
first.

C H A P T E R 1 6

Serial Endpoint Providers

Serial Endpoint Providers Reference 16-23
Draft.  Apple Computer, Inc. 4/30/96

SERIAL_OPT_BURSTMODE
Requests burst mode operation. A value of 0 turns off
burst mode (the default) and a 1 requests burst mode to be
turned on. In burst mode, the serial driver continues
looping, reading incoming characters, rather than waiting
for an interrupt for each character. This option may not be
supported by all serial drivers.

▲ W A R N I N G

Note that burst mode may adversely impact performance
of the Macintosh system, since interrupts may be held off
for long periods of time. ▲

Serial-Specific Commands 16

Serial endpoints support several serial-specific commands that use the OTIoctl
function, which is described in the chapter “Providers” in this book. This
function accesses the equivalent low-level serial driver control or status
function (PBControlAsync or PBStatusAsync). The csCode value for each routine
is listed in each command’s description. For information about Device
Manager functions for opening, closing, and communicating with device
drivers, see the book Inside Macintosh: Devices.

I_SetSerialDTR 16

This command sets the DTR signal on the serial port. Use the constant
kOTSerialSetDTROff to turn the DTR signal off, and kOTSerialSetDTROn to turn
the DTR signal on. The following line of code turns DTR on:

OTIoctl(theSerialEndpoint, I_SetSerialDTR, kOTSerialSetDTROn);

Asserting the DTR signal is equivalent to using a serial driver control call with
a csCode value of 1,7 and negating the DTR signal is equivalent to using a
csCode value of 18.

C H A P T E R 1 6

Serial Endpoint Providers

16-24 Serial Endpoint Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

I_SetSerialBreak 16

This command controls a break signal on the serial connection. It is a 4-byte
unsigned integer. Its value is kOTSerialSetBreakOff to unconditionally turn the
break signal off, kOTSerialSetBreakOn to unconditionally turn the break signal
on, and any other value to turn the break signal on for a specified number of
milliseconds. The following line of code turns the break on:

OTIoctl(theSerialEndpoint, I_SetSerialBreak, kOTSerialSetBreakOn);

Asserting a break signal is equivalent to using a serial driver control call with a
csCode value of 12, and deasserting the break signal is equivalent to using a
csCode value of 11.

Note
Note that, contrary to some readers’ expectations, the on
value is 0 and the off value is 1. ◆

I_SetSerialXOffState 16

This command sets the XOFF state of the serial port. Setting XOFF is equivalent
to receiving an XOFF character, and clearing XOFF is equivalent to receiving an
XON character. A value of kOTSerialForceXOffFalse unconditionally clears the
XOFF state, while a value of kOTSerialForceXOffTrue unconditionally sets it.
The following line of code unconditionally sets the XOFF state:

OTIoctl(theSerialEndpoint, I_SetSerialXOffState, kOTSerialForceXOffTrue);

Setting the XOFF state is equivalent to using a serial driver control call with a
csCode value of 21, and clearing the XOFF state is equivalent to using a csCode
value of 22.

C H A P T E R 1 6

Serial Endpoint Providers

Serial Endpoint Providers Reference 16-25
Draft.  Apple Computer, Inc. 4/30/96

I_SetSerialXOn 16

This command causes the serial port to send an XON character. A value of
kOTSerialSendXOnIfXOffTrue causes it to be sent only if the endpoint is in the
XOFF state (that is, if the last input flow-control character sent was XOFF),
while a value of kOTSerialSendXOnAlways unconditionally sends the character.
The following line of code unconditionally sends an XON character:

OTIoctl(theSerialEndpoint, I_SetSerialXOn, kOTSerialSendXOnAlways);

Sending the XON character unconditionally is equivalent to using a serial
driver control call with a csCode value of 24, and sending the XON character
when an endpoint is in an XOFF state is equivalent to using a csCode value
of 23.

I_SetSerialXOff 16

This command causes the serial port to send an XOFF character. A value of
kOTSerialSendXOffIfXOnTrue causes it to be sent only if the endpoint is in the
XON state (that is, if the last input flow control character sent was XON), while
a value of kOTSerialSendXOffAlways unconditionally sends the character. The
following line of code unconditionally sends an XOFF character:

OTIoctl(theSerialEndpoint, I_SetSerialXOff, kOTSerialSendXOffAlways);

Sending the XOFF character unconditionally is equivalent to using a serial
driver control call with a csCode value of 26, and sending the XOFF character
when an endpoint is in an XON state is equivalent to using a csCode value
of 25.

I_SetFramingType 16

This command sets the framing type for a serial port. Currently, serial ports can
support four different framing types, as enumerated in the fCapabilities field
of the OTPortRecord. These are kOTSerialFramingAsync, kOTSerialFramingHDLC,

C H A P T E R 1 6

Serial Endpoint Providers

16-26 Serial Endpoint Providers Reference

Draft.  Apple Computer, Inc. 4/30/96

kOTSerialFramingSDLC, and kOTSerialFramingAsyncPackets. The normal mode of
operation is kOTSerialFramingAsync. You can change the mode of operation to
the asynchronous packet framing type by making this OTIoctl command:

OTIoctl(theSerialEndpoint, I_OTSetFramingType, kOTSerialFramingAsyncPackets);

If you select the kOTSerialFramingAsyncPackets type, the underlying serial
provider assumes that each individual message that arrives is a separate
packet, and should be sent as such. It also means that the underlying provider
ensures that if data is flushed, all data will be flushed except any packet that is
being processed at the time of the flush. This behavior is important to
technologies like Apple Remote Access (ARA) or Point-to-Point Protocol (PPP)
implementations, which use the serial port for delivery of discrete packets,
because

■ stopping a packet in the middle of a transfer causes a performance
degradation while the upper protocols expend effort to resynchronize

■ both protocols want to ensure that if they have to flush the queue of waiting
messages that all waiting messages are flushed, even if they are queued up
in the protocol module.

Draft.  Apple Computer, Inc. 4/10/96

Appendixes

Draft. Preliminary, Confidential. © Apple Computer, Inc. 4/10/96

Open Transport Programming Interfaces A-1
Draft.  Apple Computer, Inc. 4/30/96

A P P E N D I X A

Open Transport and XTI A

This appendix describes the correspondence between the XTI and Open
Transport client programming interfaces. Open Transport is a superset of XTI
and therefore includes functions that are not defined in XTI. The XTI interface
is not the preferred interface to use in Open Transport applications; however, if
you are porting an existing XTI application, the XTI interface provides the
simplest migration path.

This appendix describes

■ how XTI functions correspond to Open Transport functions and vice versa

■ how XTI data structures correspond to Open Transport data structures

■ how XTI error codes correspond to Open Transport result codes

The Open Transport interface currently defines functions and data structures
for four different kinds of providers. This appendix focuses on how general
provider functions and endpoint functions correspond to XTI functions.
Because mapper provider functions and service provider functions are an
extension to XTI, they are not included in this appendix.

You should read this appendix if you need a simple summary of the differences
between the XTI and Open Transport interfaces or if you plan to convert an
application using an XTI interface to the preferred C interface.

Open Transport Programming Interfaces A

The Open Transport library includes three related client programming
interfaces: XTI-style, preferred C, and preferred C++. The XTI-style interface
includes the C-language XTI functions, plus some Open Transport extensions.
XTI is not the preferred interface for the Macintosh because it handles errors
through the use of a global variable. Nevertheless, an XTI interface is provided
to ease porting of existing XTI client applications.

Figure A-0
Listing A-0
Table A-0

A P P E N D I X A

Open Transport and XTI

A-2 Function Names

Draft.  Apple Computer, Inc. 4/30/96

IMPORTANT

The preferred-C interface of Open Transport is based on
XTI but is not identical with it. As a result, some elements
have no XTI counterparts, and those that have
counterparts are not necessarily identical with them. For
definitive information about XTI, refer to the X/Open
Transport Interface specification. ▲

Function Names A

Table A-1 shows the correspondence between XTI functions and Open
Transport functions.

Table A-1 XTI-to-Open Transport function cross-reference

XTI function Open Transport function

t_accept OTAccept

t_alloc OTAlloc

t_bind OTBind

t_close OTCloseProvider

t_connect OTConnect

t_error —

t_free OTFree

t_getprotaddr OTGetProtAddress

t_getinfo OTGetEndpointInfo

t_getstate OTGetEndpointState

t_listen OTListen

t_look OTLook

t_open OTOpenEndpoint

t_optmgmt OTOptionManagement

continued

A P P E N D I X A

Open Transport and XTI

Function Names A-3
Draft.  Apple Computer, Inc. 4/30/96

Table A-2 describes shows the correspondence between Open Transport
functions and XTI functions.

t_rcv OTRcv

t_rcvconnect OTRcvConnect

t_rcvdis OTRcvDisconnect

t_rcvrel OTRcvOrderlyDisconnect

t_rcvudata OTRcvUData

t_rcvuderr OTRcvUDErr

t_snd OTSnd

t_snddis OTSndDisconnect

t_sndrel OTSndOrderlyDisconnect

t_sndudata OTSndUData

t_strerror —

t_sync OTSync

t_unbind OTUnbind

Table A-2 Open Transport-to-XTI function cross-reference

Open Transport function XTI function

OTAccept t_accept

OTAckSends —

OTAlloc t_alloc

OTBind t_bind

OTCloseProvider t_close

OTConnect t_connect

continued

Table A-1 XTI-to-Open Transport function cross-reference (continued)

XTI function Open Transport function

A P P E N D I X A

Open Transport and XTI

A-4 Function Names

Draft.  Apple Computer, Inc. 4/30/96

OTDontAckSends —

OTFree t_free

OTGetEndpointInfo t_getinfo

OTGetProtAddress t_getprotaddr

OTGetNotifier —

OTGetEndpointState t_getstate

OTInstallNotifier —

OTIsNonBlocking —

OTIsSynchronous —

OTListen t_listen

OTLook t_look

OTOpenEndpoint t_open

OTOptionManagement t_optmgmt

OTRcv t_rcv

OTRcvConnect t_rcvconnect

OTRcvDisconnect t_rcvdis

OTRcvOrderlyDisconnect t_rcvrel

OTRcvRequest —

OTRcvUData t_rcvudata

OTRcvUDErr t_rcvuderr

OTRcvURequest —

OTRemoveNotifier —

OTResolveAddress —

OTSetAsynchronous —

OTSetBlocking —

continued

Table A-2 Open Transport-to-XTI function cross-reference (continued)

Open Transport function XTI function

A P P E N D I X A

Open Transport and XTI

Function Names A-5
Draft.  Apple Computer, Inc. 4/30/96

OTSetNonBlocking —

OTSetSynchronous —

OTSnd t_snd

OTSndDisconnect t_snddis

OTSndOrderlyDisconnect t_sndrel

OTSndReply —

OTSndRequest —

OTSndUData t_sndudata

OTSndUReply —

OTSndURequest —

OTSync t_sync

OTUnbind t_unbind

Table A-2 Open Transport-to-XTI function cross-reference (continued)

Open Transport function XTI function

A P P E N D I X A

Open Transport and XTI

A-6 Extensions to XTI

Draft.  Apple Computer, Inc. 4/30/96

Extensions to XTI A

Table A-3 lists the Open Transport endpoint and general provider functions
that are not part of XTI. Although this document refers to these functions
by their Open Transport preferred-C names, you can also call these functions
by the XTI-style names listed in the table.

Table A-3 Open Transport Functions not found in XTI

Open Transport
preferred-C name XTI-style name

OTAckSends —

OTDontAckSends —

OTGetProtAddress t_getprotaddr

OTInstallNotifier t_installnotifier

OTIsNonBlocking t_isnonblocking

OTIsSynchronous t_issynchronous

OTRcvRequest t_rcvrequest

OTRcvURequest t_rcvurequest

OTRemoveNotifier t_removenotifier

OTResolveAddress t_resolveaddr

OTSetAsynchronous t_asynchronous

OTSetSynchronous t_synchronous

OTSndReply t_sndreply

OTSndRequest t_sndrequest

OTSndUReply t_sndureply

OTSndURequest t_sndurequest

A P P E N D I X A

Open Transport and XTI

Data Structures A-7
Draft.  Apple Computer, Inc. 4/30/96

Data Structures A

Many of the Open Transport functions take pointers to data structures as
parameters. Table A-4 shows the standard XTI data structure names and the
corresponding preferred-C interface structure names.

Result Codes A

When an XTI-style function fails, it returns –1 to indicate an error has occurred,
and the error is stored in the global variable t_errno. If the value of the error is
TSYSERR, then the actual error can be found in the global variable errno. The XTI
error numbers are small positive integers with defined constants for each; for
example, TBADADDR or TFLOW.

When an Open Transport preferred-C function fails, the error code is returned
as the result of the function. Open Transport does not use global variables to

Table A-4 XTI-to-Open Transport data structure cross-reference

XTI name Open Transport name

int fd EndpointRef

t_info TEndpointInfo

t_netbuf TNetbuf

t_bind TBind

t_discon TDiscon

t_call TCall

t_unitdata TUnitData

t_uderr TUDErr

t_optmgmt TOptMgmt

A P P E N D I X A

Open Transport and XTI

A-8 Result Codes

Draft.  Apple Computer, Inc. 4/30/96

store error results and, to remain consistent with the Macintosh Toolbox, it
specifies all errors as negative numbers. Open Transport result codes have
names like kOTBadAddressErr and kOTFlowErr. There is a corresponding
Open Transport result code for every XTI result code, as shown in Table A-5.
For an explanation of Open Transport result codes, see Appendix B in
this book.

Table A-5 XTI-to-Open Transport result code cross-reference

XTI result code Open Transport result code

TACCES kOTAccessErr

TADDRBUSY kOTAddressBusyErr

TBADADDR kOTBadAddressErr

TBADDATA kOTBadDataErr

TBADF kOTBadReferenceErr

TBADFLAG kOTBadFlagErr

TBADNAME kOTBadNameErr

TBADOPT kOTBadOptionErr

TBADQLEN kOTBadQLenErr

TBADSEQ kOTBadSequenceErr

TBADSYNC kOTBadSyncErr

TBUFOVFLW kOTBufferOverflowErr

TCANCELED kOTCanceledErr

TFLOW kOTFlowErr

TINDOUT kOTIndOutErr

TLOOK kOTLookErr

TNOADDR kOTNoAddressErr

TNODATA kOTNoDataErr

TNODIS kOTNoDisconnectErr

TNOREL kOTNoReleaseErr

continued

A P P E N D I X A

Open Transport and XTI

Result Codes A-9
Draft.  Apple Computer, Inc. 4/30/96

TNOSTRUCTYPE kOTStructureTypeErr

TNOTSUPPORT kOTNotSupportedErr

TNOUDERR kOTNoUDErrErr

TOUTSTATE kOTOutStateErr

TPROTO —

TPROVMISMATCH kOTProviderMismatchErr

TQFULL kOTQFullErr

TRESADDR kOTResAddressErr

TRESQLEN kOTResQLenErr

TSTATECHNG kOTStateChangeErr

TSYSERR -

Table A-5 XTI-to-Open Transport result code cross-reference (continued)

XTI result code Open Transport result code

B-1
Draft.  Apple Computer, Inc. 4/30/96

A P P E N D I X B

Result Codes B

This appendix lists the result codes that Open Transport preferred-C functions
return, as shown in Table B-1. For information about XTI result codes, refer to
the X/Open Transport Interface specification.

Table B-1 Open Transport result codes

Result code Value Meaning

kOTNoError 0000 The function completed execution without error.

kOTBadAddressErr –3150 The specified protocol address was in an incorrect
format or contained illegal information. For TCP/IP
this means that the address does not exist in the
specified domain.

kOTBadOptionErr –3151 The specified protocol options were in an incorrect
format or contained illegal information.

kOTAccessErr –3152 You do not have permission to negotiate the
specified address or options.

kOTBadReferenceErr –3153 The specified endpoint reference does not refer to a
valid endpoint.

kOTNoAddressErr –3154 You failed to supply an address, or the endpoint
could not allocate an address.

kOTOutStateErr –3155 The endpoint was not in an appropriate state when
you called this function.

kOTBadSequenceErr –3156 You specified an invalid sequence number or a NULL
pointer for the call parameter when rejecting a
connection request.

continued

Figure B-0
Listing B-0
Table B-0

A P P E N D I X B

Result Codes

B-2
Draft.  Apple Computer, Inc. 4/30/96

kOTLookErr –3158 An asynchronous event has occurred. If the event
has occurred for an endpoint, you can use the
OTLook function to find out what event it was or you
can use the notifier function if your notifier handles
asynchronous events. If the event has occurred for a
provider other than an endpoint, the notifier
function installed for that provider must handle the
asynchronous event .

kOTBadDataErr –3159 The amount of client data you specified was not
within the bounds allowed by the endpoint.

kOTBufferOverflowErr –3160 The buffer you allocated to store information when
this function returns is not sufficiently large to store
the incoming data.

kOTFlowErr –3161 The endpoint is in asynchronous mode, but the
flow-control mechanism prevents the endpoint from
accepting or sending any data at this time.

kOTNoDataErr –3162 For an endpoint or mapper, this result is returned
when the endpoint is in nonblocking mode, but no
data is currently available.

For a mapper, this result is returned by the
OTLookupName function when no names are found.

TCP/IP functions return this result when no data is
available, a lookup times out, or a name exists but
addresses do not.

kOTNoDisconnectErr –3163 No disconnection indication is available.

kOTNoUDErrErr –3164 No unit data error indication currently exists on
this endpoint.

kOTBadFlagErr –3165 You specified an invalid flag value.

kOTNoReleaseErr –3166 No orderly release indication currently exists on
this endpoint.

kOTNotSupportedErr –3167 This action is not supported by this endpoint.

continued

Table B-1 Open Transport result codes

Result code Value Meaning

A P P E N D I X B

Result Codes

B-3
Draft.  Apple Computer, Inc. 4/30/96

kOTStateChangeErr –3168 The endpoint is undergoing a transient state change.
This error is returned when you call a function
while an endpoint is in the process of changing
states. You should wait for an event indicating the
endpoint has finished changing state and call the
function again. (Note that the equivalent
state-change error code, TSTATECHNG, is not described
in the 1992 X/Open XTI specification.) The provider
also returns this error if you attempt to call an
“incompatible” function while another operation is
still ongoing; for example if you call the function
OTSndUData while a call to the OTOptionManagement
function is still outstanding.

kOTStructureTypeErr –3169 You specified an unsupported structure type for the
structType parameter of the OTAlloc function. This
error is also returned when the structType structure
you specify is inconsistent with the endpoint type.

kOTBadNameErr –3170 You specified an invalid endpoint name. This error
is returned by the TCP/IP domain name resolver
(DNR) if you specify a bad host name.

kOTBadQLenErr –3171 You are using this endpoint to listen for connection
requests, but when you bound the endpoint, you
specified 0 for the qlen field. If you want to use an
endpoint to listen for connection requests, the value
of the qlen field must be greater than 0.

kOTAddressBusyErr –3172 As a return value for a call to the OTBind function,
this error code indicates one of the following
conditions: 1) no dynamic addresses are available
for protocols or configuration methods that allow
dynamic addressing, 2) you are attempting to bind
two connectionless endpoints to the same address,
or 3) you are attempting to bind two or more
connection-oriented endpoints to the same address
and more than one of these endpoints has a qlen
field greater than 0.

continued

Table B-1 Open Transport result codes

Result code Value Meaning

A P P E N D I X B

Result Codes

B-4
Draft.  Apple Computer, Inc. 4/30/96

kOTIndOutErr –3173 There are outstanding connection indications on the
endpoint, and you are accepting a connection for
this endpoint. When accepting a connection for an
endpoint that is listening for connection requests,
you must have responded to all outstanding
requests either by rejecting them with the
OTSndDisconnect function or by accepting them with
the OTAccept function.

kOTProviderMismatchErr –3174 The endpoint that is to accept the connection is not
the same kind of endpoint as the endpoint listening
for the connection. The listening and accepting
endpoints must be the same kind: either connection-
oriented transaction-based or connection-oriented
transactionless.

kOTResQLenErr –3175 When this endpoint was bound, the qlen field was
set to a value greater than 0. But to accept a
connection on an alternate endpoint that is bound to
the same address, such as this one, the endpoint
must be bound with a qlen parameter equal to 0.

kOTResAddressErr –3176 The address to which this endpoint is bound differs
from that of the endpoint that received the
connection request; thus, this endpoint cannot
accept this connection request.

kOTQFullErr –3177 The maximum number of outstanding indications,
as specified by the value of the qlen field you used
when you bound the endpoint, has been reached for
the endpoint.

kOTProtocolErr –3178 An unspecified protocol error occurred.

kOTBadSyncErr –3179 You called the OTSync function at non-System
Task time.

kOTCanceledErr –3180 A provider function never finished executing
because the provider was closed or because the
function was synchronous and synchronous
functions were cancelled.

continued

Table B-1 Open Transport result codes

Result code Value Meaning

A P P E N D I X B

Result Codes

B-5
Draft.  Apple Computer, Inc. 4/30/96

kOTNotFoundErr –3201 Requested information does not exist.

kENOENTErr –3201 This error literally means no such file or directory. In
XTI (and Open Transport), a function returns this
result when you try to open an endpoint or mapper
that does not exist in the system.

kENIOErr –3204 An I/O error occurred.

kENXIOErr –3205 No such device or address.

kEAGAINErr –3210 The provider cannot perform this operation at this
time. Try again later.

kENOMEMErr –3211 Open Transport cannot allocate enough memory to
meet your request.

kOTOutOfMemoryErr –3211 Open Transport has run out of internal memory.
This might happen, for example, if you are doing a
lot of asynchronous sends and not acknowledging
sends, which means that Open Transport has to
copy the data being sent into its own internal buffers.

kEBUSYErr –3215 The device you are trying to access is busy and
could not complete your request.

kOTDuplicateFoundErr –3216 You are attempting to register a port or other entity
that already exists.

kEINVALErr –3221 The specified address had an invalid size.

kEWOULDBLOCKErr –3234 In order to complete the requested operation, the
endpoint provider would have to block, and the
endpoint is in nonblocking mode.

kETIMEDOUTErr –3259 The requested operation timed out.

kENOSRErr –3271 Open Transport cannot allocate enough system
resources (usually stream messages) to meet
your request.

Table B-1 Open Transport result codes

Result code Value Meaning

GL-1
Draft.  Apple Computer, Inc. 4/30/96

Glossary

abortive disconnect A type of
disconnection that breaks a connection
without the knowledge of the remote peer.
An abortive disconnect can result in loss of
data. See also orderly disconnect.

absolute requirement A type of option
that a protocol implementation can
neither ignore nor negotiate to a partly
successful value.

active peer An endpoint provider that
initiates connection requests. The use of
an active peer is typical of a client-server
environment in which an endpoint, the
active peer, attempts to establish a
connection with a passive peer, such as a
file server, that listens for connection
requests. See also passive peer.

address type An AppleTalk address
attribute that identifies the type of address
format used for an AppleTalk endpoint.

ADSP AppleTalk Data Stream Protocol.

AEP Echoer A DDP client process that
implements the AppleTalk Echo Protocol
(AEP).

at-least-once transaction A type of
transaction that ensures that an ATP
responder receives every request directed to
it at least once. These transactions are also
referred to as ALO transactions. See also
exactly-once transactions.

AppleTalk Echo Protocol (AEP) An
AppleTalk protocol that is a client of DDP.
This protocol can measure the performance
of an AppleTalk network and test for the
presence of a given node.

AppleTalk internet A number of
interconnected AppleTalk networks. An
AppleTalk internet can include a mix of
LocalTalk, TokenTalk, EtherTalk, and
FDDITalk networks, or it can consist of
multiple networks of a single type, such as
several LocalTalk networks. An AppleTalk
internet can include both nonextended and
extended networks. See also internet.
Compare with Worldwide Internet.

AppleTalk Session Protocol (ASP) A
connection-oriented transaction-based
AppleTalk protocol that sets up and
maintains sessions between workstations
and servers.

AppleTalk service provider An Open
Transport provider that gives applications
access to information and services that are
specific to the AppleTalk protocol stack.
Applications use an AppleTalk service
provider to obtain zone names and to get
information about the current AppleTalk
environment for a given machine.

AppleTalk Data Stream Protocol
(ADSP) A connection-oriented
transactionless AppleTalk protocol that
supports sessions over which applications
can exchange full-duplex streams of data. In

G L O S S A R Y

GL-2
Draft.  Apple Computer, Inc. 4/30/96

addition to ensuring reliable delivery of
data, ADSP provides a peer-to-peer
connection. ADSP also provides an
application with a means of sending
expedited attention messages.

AppleTalk Secure Data Stream Protocol
(ASDSP) The authentication and
encryption features of ADSP.

AppleTalk Transaction Protocol (ATP) A
connectionless transaction-based AppleTalk
protocol that allows two endpoints to
execute request-and-response transactions.
Either ATP endpoint can request another
ATP endpoint to perform an action; the
other ATP endpoint then carries out the
action and transmits a response reporting
the outcome.

AppleTalk Transition Queue (ATQ) In
classic AppleTalk, the AppleTalk Transition
Queue (ATQ) informs an applications each
time certain network-related events occur,
such as opening or closing an AppleTalk
driver. Any applications that rely on the
ATQ must use AppleTalk backward
compatibility to handle them in the classic
AppleTalk manner. See also miscellaneous
events.

application layer The highest layer of the
OSI model. This layer allows for the
development of application software.
Software written at this layer benefits from
the services of all the underlying layers.

ASDSP AppleTalk Secure Data Stream
Protocol.

association-related options Options that
are tied to a particular connection,
transaction, or data transmission; some of

the information they contain is destined for
the remote client. Compare with
non-association-related options.

asymmetrical connection A networking
connection in which both ends do not have
equal control over the communication. A
transaction-based connection is an
asymmetrical connection. Compare with
symmetrical connection.

asynchronous communication A way of
coordinating serial data transfers that is the
prevailing standard in the personal
computer industry. This method uses a
timing scope of a single byte to differentiate
bits in the data stream.

asynchronous event An event used to
notify your application that something
requires immediate attention. For example,
expedited data has arrived or a
disconnection request is pending. See also
provider event, notifier function.

asynchronous mode A mode of operation
in which provider functions return as soon
as they are queued for execution. When the
function actually finishes executing, the
provider issues a completion event.
Compare with synchronous mode.

ATP AppleTalk Transaction Protocol.

baud rate The rate in samples per second
at which a serial receiver samples a line’s
voltage level.

best-effort delivery A message-delivery
paradigm in which the networking protocol
attempts to deliver any packets that meet
certain requirements, such as containing a
valid destination address, but the protocol
does not inform the sender when it is

G L O S S A R Y

GL-3
Draft.  Apple Computer, Inc. 4/30/96

unable to deliver the data, nor does it
attempt to recover from error conditions
and data loss. Compare with reliable
delivery.

binding The process of associating an
endpoint with a logical address before the
endpoint can be used to transfer
data.Depending on the protocol you use,
you can specify this address as a symbolic
name or as a network address. Specific
address binding rules and address formats
also vary with the protocol you use.

bit time The periodic interval at which a
serial receiver samples a line’s voltage level.

blocking A mode of operation in which a
provider must wait for some action to
complete before continuing operation when
sending or receiving data. If a provider is
blocking, any function used to send or
receive data does not return until it has
actually completed the operation, even if it
has to wait indefinitely.

blocking status A provider’s state that
determines whether it is blocking. See also
blocking, nonblocking.

break signal A special signal that falls
outside the character frame. The break
signal occurs when the line is switched
from the mark state to a space and held
there for longer than a character frame.

bridge A device that connects networking
cables without examining the addresses of
messages or making decisions as to the best
route for a message to take. Compare with
router, gateway.

canonical name A fully qualified domain
name that is not an alias.

character frame The unit of serial
communication transmission. Character
frames of 7 or 8 data bits are commonly
used for transmitting ASCII characters.

child port An attribute of a port that
identifies which of multiple available ports
a pseudodevice uses as its transmission
hardware. A port may have more than one
child port, all of which can be active
simultaneously.

classic AppleTalk The implementation of
AppleTalk available before Open Transport.

Clear To Send (CTS) signal A signal that
indicates that the modem or printer is ready
to send data. Since most communications
between microcomputers are full-duplex
nowadays, the CTS signal is permanently
asserted.

client A protocol that uses the services of
an underlying protocol. For example, ADSP
is a client of DDP.

combined DDP-NBP address format An
AppleTalk address format that combines an
endpoint’s physical address and its NBP
name. See also DDP address format, NBP
address format.

completion event A provider event used
to notify your application that an
asynchronous function has completed
execution. See also provider event, notifier
function.

connection An association between two
endpoints that permits the establishment
and maintenance of an exclusive dialogue
between the endpoints.

G L O S S A R Y

GL-4
Draft.  Apple Computer, Inc. 4/30/96

connectionless protocol A networking
protocol in which a node that wants to
communicate with another simply sends a
message without first establishing that the
receiving node is prepared to receive it.
Each message sent must include addressing
information so that it can be delivered to its
destination. Compare with connection-
oriented protocol.

connection-oriented protocol A
networking protocol in which two nodes on
the network that want to communicate first
establish a connection. Once a connection is
established, the communicating
applications or processes on the nodes at
either end can send and receive data
without having to add addresses to the
messages or repeat the handshake process.
Compare with connectionless protocol. See
also connection, handshake, session.

datagram A small unit of data that
includes a header portion that holds the
destination address (and may contain other
information, such as a checksum value),
and a data portion that holds the message
text. Same as packet.

Datagram Delivery Protocol (DDP) A
connectionless transactionless AppleTalk
protocol that transfers data between sockets
as discrete datagrams, each carrying its
destination socket address. DDP provides
best-effort delivery of data.

data-link layer The layer of the OSI
model that, together with the physical layer,
provides for connectivity. The data-link
layer contains the software that
communicates directly with the physical
network devices and provides for switching
between physical devices.

DDP Datagram Delivery Protocol.

DDP address format An AppleTalk
address format that indicates the physical
address of an endpoint. See also combined
DDP-NBP address.

DDP type The type of protocol. This is
used by DDP endpoints to filter incoming
and outgoing data.

Data Terminal Reedy (DTR) signal A
signal indicates that the computer is ready
to communicate. Deasserting this signal
causes the modem or printer to suspend
transmission.

default port The port that Open Transport
uses when a specific port is not indicated.
For example, the LocalTalk default port is
the printer port, “ltlkB.

domain A collection of hosts on a TCP/IP
internet. Domains are hierarchically
arranged and each can be identified by its
domain name or its IP address.

domain name A character-string name
that can be used to identify a TCP/IP
domain. See also fully qualified domain
name.

domain name resolver A process running
on a TCP/IP network that translates
between the character-string names used by
people to identify nodes on the internet and
the 32-bit internet addresses used by the
network itself.

dynamically assigned socket An
AppleTalk socket arbitrarily assigned by
DDP if you do not specify a socket number
when binding an endpoint. Compare
statically assigned socket.

G L O S S A R Y

GL-5
Draft.  Apple Computer, Inc. 4/30/96

echo request packet A packet sent by the
AEP Echoer to the target node.

echo reply packet The packet sent in
response to an echo request packet sent by
the AEP Echoer.

echoer socket The statically assigned
socket (socket number 4) that AEP uses to
listen for echo packets.

endpoint The communications path
between your application and an endpoint
provider. An endpoint consists of a set of
data structures that are maintained by Open
Transport and that specify the components
of the endpoint provider, the provider’s
state, and the provider’s mode of operation.

endpoint function An Open Transport
function that you can use only with
endpoints. Endpoint functions create and
bind endpoints, obtain information about
endpoints, establish and break down
connections, and transfer data. The
behavior of an endpoint function is
determined by the endpoint’s mode of
operation.

endpoint provider An Open Transport
provider that sends and receives
information over a data link. See also
endpoint, mapper provider, service
provider.

endpoint reference A number that Open
Transport returns to you when you open an
endpoint. This number identifies the
instance of the endpoint provider that you
have created.

endpoint state An endpoint attribute that
governs which endpoint functions you can
call for the endpoint. For example, a

connectionless endpoint can only transfer
data while it is in the T_IDLE state; a
connection-oriented endpoint can only
transfer data while it is in the T_DATAXFER
state.

ETSDU See expedited transport service
data unit.

event See provider event.

exactly-once transaction An ATP
transaction that ensures that the responder
receives a specific request only once. These
are also referred to as XO transactions.

expedited transport service data unit
(ETSDU) A unit of expedited data that
you can use to deliver urgent data. An
ETSDU is the largest piece of expedited
data that an endpoint can transfer with
boundaries and content preserved.
Different types of endpoints permit
different size ETSDUs. See also transport
service data unit (TSDU).

extended network An AppleTalk
network that has a range of network
numbers assigned to it and that supports
multiple zones. Each node on the network
has a unique network number-node ID
combination to identify it.

full duplex A networking connection in
which both ends can transmit and receive
data simultaneously. Compare with half
duplex.

fully qualified domain name A domain
name that corresponds to an internet
address.

G L O S S A R Y

GL-6
Draft.  Apple Computer, Inc. 4/30/96

gateway A device that connects
networking cables and that converts
addresses and protocols to connect
dissimilar networks. Compare with bridge,
router.

general provider function A function
that you can use to manipulate any type of
provider. For example, you can call the
OTCloseProvider function to close any type
of provider. See also provider function.

half duplex A networking connection in
which the two ends have to take turns
transmitting and receiving. Compare with
full duplex.

handshake A connection-establishment
process involving the exchange of
predetermined signals between nodes in
which each end identifies itself to the other.
See also connection-oriented protocol,
session.

header The portion of a datagram that
holds the destination address and may
contain other information, such as a
checksum value.

host A node on a TCP/IP internet. A host
that is addressable by other hosts has a host
name and one or more domain names.

internet A set of networks connected by
routers or gateways.

Internet See Worldwide Internet.

internet address A 32-bit number that
uniquely identifies a host on a TCP/IP
network. An internet address is commonly
expressed in dotted-decimal notation (for
example, “12.13.14.15”) or hexadecimal
notation (for example, “0x0c0d0e0f”). Also
called IP address.

Internet Protocol (IP) A basic
datagram-delivery protocol; part of the
TCP/IP protocol family.

IP Internet Protocol.

IP address An internet address.

mail exchange Any TCP/IP host that can
accept mail for another host or for a
domain. A mail exchange can be a mail
server, a router, or just a host configured to
accept and pass on mail.

mail preference value A number used by
a mail application to determine to which
mail exchange to deliver a message when
there is more than one that can accept mail
for a particular domain. The mailer sends
the mail to the mail exchange with the
lowest preference value first and tries the
others in turn until the mail is delivered or
until the mailer deems the mail
undeliverable.

mapper The communications path
between your application and a mapper
provider. A mapper consists of a set of data
structures, maintained by Open Transport,
that specify the components of the mapper
provider, the provider’s state, and the
provider’s mode of operation.

mapper provider An Open Transport
provider that relates network addresses to
network node names and can be used to
register and remove node names for
networks that support this ability. See also
endpoint provider, mapper, service
provider.

G L O S S A R Y

GL-7
Draft.  Apple Computer, Inc. 4/30/96

mapper reference A number that Open
Transport returns to you when you open a
mapper. This number identifies the instance
of the mapper provider that you have
created.

mark state An idle state in which a serial
communications line has a positive voltage.

miscellaneous event A network-related
event that may affect the operation of an
Open Transport provider. In particular,
these apply to AppleTalk endpoints and can
include such events as opening or closing
an AppleTalk driver. See also AppleTalk
Transition Queue (ATQ).

mode of operation An endpoint attributes
that determines whether provider functions
execute synchronously or asynchronously,
whether functions can wait to send or
receive data, and whether your application
is notified when a function has sent data.

module name A port structure field that
gives the name of the actual Streams
module that implements the driver for a
given port. Open Transport uses this name
internally.

multihoming The situation in which a
single host or node is connected to two or
more networks or network interface cards
(NICs) at the same time.

multinode An node ID that an application
can acquire that is in addition to the
standard node ID that is assigned when the
node joins an AppleTalk network.

multinode address format An AppleTalk
address format that indicates the physical
address of a multinode endpoint.

multinode architecture An AppleTalk
feature that allows an application to acquire
node IDs that are additional to the standard
node ID that is assigned to the system when
the node joins an AppleTalk network.

multinode ID An identifier that allows
the computer running your application to
appear as multiple nodes on the network
even though it is only one physical entity.
Each acquired multinode is in addition to
the standard node ID already assigned to
the computer when it joined the network as
a node.The prime example of a multinode
application is Apple Remote Access (ARA).

multiport identifier A port function
parameter that distinguishes between
multiple ports when a single slot supports
more than one port. Typically, the hardware
device in a multiport slot is either a plug-in
multifunction card with multiple ports on it
or a device with multiple uses, one or more
of which is a port.

Name-Binding Protocol (NBP) An
AppleTalk protocol that maintains a
mapping of logical names (like those in the
Chooser) to physical socket addresses in
such a way that if the node ID changes, you
can continue to reliably identify your
application.

NBP Name Binding Protocol.

name That part of an NBP name that
typically identifies the user of the system or,
in the case of a server, the system itself.

NBP address format An AppleTalk
address format that indicates the endpoint’s
NBP name.

G L O S S A R Y

GL-8
Draft.  Apple Computer, Inc. 4/30/96

NBP entity structure A structure that
Open Transport provides for convenient
manipulation of NBP names. The NBP
entity structure itself does not contain
escape characters, but the NBP entity
extraction functions insert a backslash (\) in
front of any backslash, colon (:), or at sign
(@) they find in an NBP name so that
mapper functions can use a correctly
formatted NBP name.

NBP mapper provider An Open
Transport mapper provider that is
configured as an NBP mapper.

NBP name An endpoint’s logical name,
sometimes called its entity name, used in the
NBP address format. The NBP name
consists of three fields: name, type, and
zone. See also name, type, zone.

network A system of computers and other
devices (such as printers and modems) that
are connected in such a way that they can
exchange data.

network layer The layer of the OSI model
immediately above the data-link layer. The
network layer specifies the network routing
of data packets between nodes and the
communications between networks, which
is referred to as internetworking.

node An addressable physical device
connected to a network. See also node ID.

node ID An 8-bit number that identifies
a node.

noise Environmental perturbations that
can affect an electrical line. Noise can cause
errors in transmission by altering voltage
levels so that a bit is reversed, shortened, or
lengthened.

non-association–related options Options
that are negotiated between the client and
its endpoint provider. Such options contain
no information for the remote client. See
also Compare with association-related
options.

nonblocking A mode of operation in
which a provider cannot wait when sending
or receiving data. If a provider is
nonblocking, any provider function used to
send or receive data returns with an error
result if it cannot complete the operation
immediately. Compare with blocking.

nonextended network An AppleTalk
network that has one network number
assigned to it and that supports only one
zone. On nonextended networks, all nodes
share the same network number and zone
name, and each node has a unique node ID.
Compare with extended network.

notifier function A callback function that
handles Open Transport provider events.
See also provider event.

option A value you can set for an
endpoint that is of interest to a specific
protocol. For example, an option might
enable or disable checksums or specify the
priority of a datagram. The available
options and their significance are defined
by each implementation of each protocol.
Every option has a default value.

option negotiation The process of trying
to replace one or more default option values
with other values. A negotiation might
involve of a client and its endpoint
provider, or both a local and remote client
and their endpoint providers. A successful
negotiation results in obtaining exactly the

G L O S S A R Y

GL-9
Draft.  Apple Computer, Inc. 4/30/96

option values requested, a partly successful
negotiation results in getting different
values for the options requested, and a
failed negotiation results in not being able
to change existing values at all. See also
absolute requirement.

orderly disconnect Breaking a connection
with the knowledge and cooperation of the
remote peer. This method of disconnection
prevents loss of data. Orderly disconnects
can be either remote (over-the-wire)
disconnects or local disconnects. See also
abortive disconnect.

OSI model A standard reference model
for network architectures. The OSI (Open
Standards Interconnection) model describes
a seven-layer structure for networking
protocols. See also application layer,
presentation layer, session layer, transport
layer, network layer, datalink layer,
physical layer.

packet A small unit of data that includes
a header portion that holds the destination
address (and may contain other
information, such as a checksum value),
and a data portion that holds the message
text. Same as datagram.

PAP Printer Access Protocol.

passive peer An endpoint provider that
listens for incoming connection requests.
The use of a passive peer is typical of a
server environment in which a server, such
as a file server, uses an endpoint to listen for
connection requests from multiple remote
endpoints. Endpoints throughout the
network can contact the server’s passive
endpoint with connection requests. See also
active peer.

peer-to-peer connection See symmetrical
connection.

physical layer The layer of the OSI model
that provides for physical connectivity. The
communication between networked
systems can be via a physical cable made of
wire or optical fiber, or it can be via infrared
or microwave transmission. In addition to
these, the hardware can include a network
interface controller (NIC), if one is used.
The physical layer includes the network
hardware and the drivers that control
the hardware.

port A logical entity that combines a
hardware device and the software driver
that acts as an interface to it. Ethernet, serial
devices, and LocalTalk ports are examples
of ports commonly used in Open Transport.
See also child port, default port, multiport
identifier, pseudodevice.

port alias A port structure flag that
identifies the default port for LocalTalk. The
port alias is a port name of “ltlk.” Because it
has the same Streams module name as the
default LocalTalk port, if you use the port
alias in the configuration string, Open
Transport can locate the default port even in
those cases where a computer doesn’t use
the standard default of “ltlkB.” See also
default port.

port name A unique name that
designates the port. It is typically an
abbreviation of the port’s device type plus a
suffix, usually numeric, such as “enet0,”
“enet1,” and “enet2.” For historic reasons,
LocalTalk and serial ports use an alphabetic
suffix instead.

G L O S S A R Y

GL-10
Draft.  Apple Computer, Inc. 4/30/96

port reference A 32-bit value that
uniquely describes a port’s hardware
characteristics: its device and bus type, its
physical slot number, and, where
applicable, its multiport identifier.

port registry An Open Transport registry
of available ports.

port structure A structure that uniquely
identifies each port on a system. A port
structure contains each port’s port
reference, several sets of information flags,
its port name, its Streams module name,
and the slot ID (for ports on a PCI bus).

presentation layer The layer of the OSI
model immediately below the application
layer. Protocols in this layer assume that an
end-to-end path or connection already
exists across the network between the two
communicating parties. Protocols in this
layer are concerned with the representation
of data values for transfer, or the transfer
syntax.

Printer Access Protocol (PAP) An
asymmetrical connection-oriented
transactionless AppleTalk protocol that
enables communication between client and
server endpoints, allowing multiple
connections at both ends. In particular,
PAP is used for direct printing to
AppleTalk printers.

privileged options Options whose value
can be changed only by privileged clients,
although it is sometimes possible for
nonprivileged clients to read the value of a
privileged option.

protocol option See option.

protocol stack A set of protocols related in
a hierarchical fashion, where the
higher-level protocols are clients of the
lower-level protocols.

provider A layered set of Streams
modules and drivers that provides a service
to clients of Open Transport. See also
endpoint provider, mapper provider,
service provider.

provider event An event Open Transport
uses to notify your application that
something has occurred that demands
immediate attention or that an
asynchronous function has completed
execution. See also asynchronous event and
completion event.

provider function A function that you can
call to manipulate a specific type of
provider. For example, you call the
OTOpenEndpoint function to open an
endpoint provider. See also general
provider function.

provider reference A value that is
returned to you when you open a provider
and that you must pass back when you call
a provider function. The data type of the
provider reference depends on the type of
the provider.

pseudodevice A special type of port that
is a driver that doesn’t interface to a
hardware device; instead, it interfaces to
other device drivers. A pseudodevice uses a
special device type, designated with the
constant kOTPseudoDevice, and each must
have a unique port reference. See also
child port.

RawIP An application interface to the
IP protocol.

G L O S S A R Y

GL-11
Draft.  Apple Computer, Inc. 4/30/96

read-only options Options whose value
you can read but not change.

receive queue A receiving buffer used to
store incoming data until the local endpoint
provider acknowledges reading it.

reliable delivery A message-delivery
paradigm in which the networking protocol
includes error checking and recovery from
error or loss of data. Compare with
best-effort delivery.

requester An endpoint that as part of a
transaction sends a request for a service.
The responder endpoint reads the request,
performs the service, and sends a reply.
When the requester receives the reply, the
transaction is complete.

responder An endpoint that as part of a
transaction reads a requester endpoint’s
request, performs the service, and sends
a reply.

router A device that connects networking
cables and that contains addressing and
routing information that lets it determine
from a message’s address the most efficient
route for the message. A message can be
passed from router to router several times
before being delivered to its destination.
Compare with bridge, gateway.

send-acknowledgment status A
provider’s attribute that determines
whether endpoint providers that send data
make an internal copy of the data before
sending it and whether they notify your
application when they have sent the data.

send queue A buffer used to store
outgoing data until the remote endpoint
provider acknowledges receiving it.

service provider An Open Transport
provider that handles features unique to a
specific type of Open Transport service. For
example, to get information about
AppleTalk zones, you must open an
AppleTalk service provider. See also
endpoint provider, mapper provider.

session A logical (as opposed to physical)
connection between two entities on a
network or internet. A session must be set
up at the beginning, maintained by the
periodic exchange of information, and
broken down at the end. See also
connection-oriented protocol.

session layer The layer of the OSI model
that serves as an interface to the transport
layer, which is below it. The session layer
allows for establishing a session, which is
the process of setting up a connection over
which a dialog between two applications or
processes can occur. Some of the functions
that the session layer provides for are flow
control, establishment of synchronization
points for checks and recovery during file
transfer, full-duplex and half-duplex
dialogs between processes, and aborts
and restarts.

socket A piece of software that serves as
an addressable entity on a node. Endpoints
exchange data with each other across an
AppleTalk internet through sockets.

socket number An 8-bit number that
identifies an AppleTalk socket. Each
endpoint on an AppleTalk network is
associated with a unique 8-bit socket
number.

G L O S S A R Y

GL-12
Draft.  Apple Computer, Inc. 4/30/96

space The state into which a serial line is
placed when its voltage is shifted to a
negative value.

start bit A signal that delineates a serial
line’s change from the mark state to a space.
The start bit triggers the synchronization
necessary for asynchronous communication.

state dependence A condition of a
networking protocol or connection in which
the response to a request is dependent on a
previous request. For example, before a
workstation application connected to a file
server can read a file, it must have first
issued a request to open the file.

statically assigned socket An AppleTalk
socket that is permanently reserved for a
designated protocol or process. For
example, socket 4 is always reserved as the
echo socket, used for echoing packets across
a network. Compare dynamically assigned
socket.

stop bit A signal that delineates the end of
the character frame and places the serial
line back into a positive voltage mark state
for a minimum specified time interval. This
interval has one of several possible values:
1, 1.5, and 2 stop bits.

Streams module A module that conforms
to the Streams architecture. The Streams
architecture is a UNIX® standard in which
protocols and other service providers are
implemented as software modules that
communicate between each other using
messages. Open Transport software
modules are implemented as Streams
modules.

subnet A portion of a network, which is
in turn a portion of an internet.

subnet mask A number that can be used
to determine what portion of an IP address
is dedicated to the host identifier and what
portion identifies the subnet.

symmetrical connection A networking
connection in which both ends have equal
control over the communication. Both ends
can send and receive data and initiate or
terminate the session. Compare with
asymmetrical connection.

synchronous mode A mode of operation
in which provider functions do not return
until they have finished executing. See also
asynchronous mode.

system registry A register of hardware
and software configuration information for
Power Macintosh computers. The system
registry is sometimes referred to as the
Name Registry.

TCP Transmission Control Protocol.

TCP/IP protocol family A set of
networking protocols in wide use
throughout the world for government and
business applications. The TCP/IP protocol
family includes TCP, UDP, and IP, among
other protocols.

TCP/IP service provider An Open
Transport provider that provides an
interface to the TCP/IP Domain Name
Resolver (DNR) for clients of Open
Transport.

transaction A process during which one
endpoint, the requester, sends a request for a
service. The remote endpoint, called the
responder, reads the request, performs the

G L O S S A R Y

GL-13
Draft.  Apple Computer, Inc. 4/30/96

service, and sends a reply. When the
requester receives the reply, the transaction
is complete.

transaction-based protocol A networking
protocol that specifies the sequence and
some of the content of messages passed
between nodes. Compare with
transactionless protocol.

transaction ID A number that uniquely
identifies a transaction.

transactionless protocol A networking
protocol that defines how the data is to be
organized and delivered from one node to
another but does not specify the sequence
or content of messages. Compare with
transaction-based protocol.

Transmission Control Protocol (TCP) A
connection-oriented data stream protocol
that provides highly reliable data delivery;
part of the TCP/IP protocol family.

transport independence The
independence of networking APIs from the
underlying networking or transport
technology.

transport layer The layer of the OSI
model that isolates some of the physical and
functional aspects of a network from the
upper three layers. It provides for
end-to-end accountability, ensuring that all
packets of data sent across the network are
received and in the correct order. This
process involves providing a means of
identifying packet loss and supplying a
retransmission mechanism. The transport
layer may also provide connection and
session management services.

transport service data unit (TSDU) A unit
of data that allows an endpoint to separate
a data stream into discrete logical units
when sending and receiving data across a
connection. A TSDU is the largest piece of
data that an endpoint can transfer with
boundaries and content preserved.
Different types of endpoints and different
endpoint implementations support different
size TSDUs. See also expedited transport
service data unit (ETSDU).

type That part of an NBP name that
generally identifies the type of service that
the entity provides, for example, “Mailbox”
for an electronic mailbox on a server.

UDP User Datagram Protocol.

User Datagram Protocol (UDP) A
connectionless datagram protocol that
segments data to handle larger datagrams
than those allowed by IP; part of the TCP/
IP protocol family.

Worldwide Internet The largest
worldwide system of networks.

ZIP Zone Information Protocol.

zone A logical grouping of nodes in an
AppleTalk network or internet or that part
of an NBP name that identifies the zone
within the network to which the node
belongs.

Zone Information Protocol (ZIP) An
AppleTalk protocol that maps network
numbers to zone names for all networks
belonging to an AppleTalk internet.

IN-1
Draft.  Apple Computer, Inc. 4/30/96

Index

A

A5 world 6-10, 7-5
abortive disconnects

ADSP and 13-10
defined 3-10
PAP and 15-9, 15-11
TCP and 8-19

absolute requirements 5-8
action flags enumeration 5-30
active peers 3-17, 3-28 to 3-33
addressing 1-8
address registration 4-4
ADSP. See AppleTalk Data Stream Protocol
AEP Echoer

defined 12-8
guidelines for using 12-9
socket for 12-8

AF_ATALK_DDP constant 10-15
AF_ATALK_DDPNBP constant 10-15
AF_ATALK_MNODE constant 10-15
AF_ATALK_NBP constant 10-15
AF_DNS constant 8-22
AF_INET constant 8-22
allocating memory 3-102, 7-7
ALO transactions. See at-least-once transactions
Apple Shared Library Manager. See ASLM
AppleTalk 9-3 to 9-17

configuring, constants for 9-10 to 9-11
initializing 6-9
network system architecture 9-4
protocols 9-10, 9-11 to 9-17

AppleTalk addressing 9-13 to 9-14, 10-3 to 10-39
addressing identifiers 9-6
constants and data types for 10-14 to 10-21
functions for 10-21 to 10-39
NBP and 9-13 to 9-14

AppleTalk Data Stream Protocol (ADSP) 9-5,
9-15, 13-3 to 13-12

binding endpoints 13-6
data channels 13-6
disconnecting 13-10
options 13-7 to 13-9
passive peers 13-6
queue length, specifying 13-6, 13-10
receive queue 13-5
reliable data delivery and 13-4
sending expedited data
send queue 13-5
transferring data 13-6 to 13-9
using endpoint functions with 13-10 to 13-12

AppleTalk Echo Protocol (AEP) 12-8
AppleTalk environment, obtaining information

about 11-9
AppleTalk information structure 11-11
AppleTalkInfo type 11-9, 11-11
AppleTalk internet 9-6
AppleTalk networks, measuring performance

of 12-8
AppleTalk network system architecture 9-4
AppleTalk Secure Data Stream Protocol

(ASDSP) 9-16
AppleTalk service provider reference 11-6
AppleTalk service providers 9-5, 11-3 to 11-22

constants and data types for 11-10 to 11-11
defined 9-14
functions for 11-12 to 11-22
obtaining 11-6
using 11-5 to 11-9

AppleTalk Session Protocol (ASP) 9-13
AppleTalk Transaction Protocol (ATP) 9-5, 9-16,

14-3 to 14-11
AppleTalk service providers and 11-4
options 14-7 to 14-9, 14-11
reliable delivery of data and 14-6
transactions 14-6
transferring data 14-6
user bytes in packet header 14-9

I N D E X

IN-2
Draft.  Apple Computer, Inc. 4/30/96

using endpoint functions with 14-9 to 14-11
AppleTalk Transition Queue (ATQ) 9-9
AppleTalk transitions 1-26
AppleTalk zones

buffers for 11-6 to 11-7
defined 11-6
obtaining for an application 11-7 to 11-8
obtaining for a network 11-8
obtaining for an internet 11-8
obtaining names of 11-6 to 11-9

application layer 1-10
ASDSP 9-16
ASLM 6-9, 6-10
ASP. See AppleTalk Session Protocol 9-13
association-related options 5-5 to 5-6
asymmetrical connection 1-7
asynchronous communication 16-7
asynchronous events 2-14

ADSP and 13-12
defined 2-7
functions that can clear 3-27
functions that can fail because of 3-27
polling for 3-26, 3-95

asynchronous mode 2-6
asynchronous processing 3-24

notifier functions 2-8, 2-45 to 2-47
ATK_ADSP constant 13-13
ATK_ATP constant 14-11
ATK_DDP constant 12-12
ATK_PAP constant 15-12
at-least-once transactions 14-6
ATP_OPT_DATALEN constant 14-7, 14-11
ATP_OPT_RELTIMER constant 9-11, 14-7, 14-11
ATP_OPT_REPLYCNT constant 14-7, 14-11
ATP_OPT_TRANID constant 14-7, 14-11
ATP packets 11-4, 14-9
ATP. See AppleTalk Transaction Protocol
ATQ. See AppleTalk Transition Queue
attention codes 13-9
attention messages. See expedited data

B

baud rate 16-5, 16-11, 16-20
best-effort delivery of data 1-8, 9-15, 12-4
binding

defined 3-6
binding endpoints

ADSP and 13-6
DDP and 12-6
establishing a connection and 3-28, 3-33
name registration and 4-3
PAP and 15-6 to 15-7
rules for 3-34

bit time, in serial communication 16-5
blocking 2-6, 3-12
blocking providers 2-10
blocking status 2-6
break signal 16-6, 16-24
bridges 1-5
broadcast interface option 8-37
broadcast permission option 8-35
buffer information structure 3-43, 3-65
buffer types enumeration 3-53
burst mode option 16-12, 16-23
bus types, list of 6-21

C

canceling system tasks 7-5
canonical name 8-28
character frame 16-5
checksum option 12-8, 13-9, 13-13
child ports 6-7
CleanupLibraryManager function 6-9, 6-10
Clear To Send (CTS) signal 16-6, 16-8
client, of a protocol 1-5
client list structure 6-13, 6-22
CloseOpenTransport function 2-16, 6-9, 6-10,

6-26
closing providers 2-17
combined DDP-NBP addresses 10-4, 10-9
combined DDP-NBP address structure 10-18
completion events 2-7, 2-14

I N D E X

IN-3
Draft.  Apple Computer, Inc. 4/30/96

COM_SERIAL constant 16-19
configuration management 6-3 to 6-45

constants and data types for 6-14 to 6-22
functions for 6-23 to 6-45

configuration strings
AppleTalk protocols, constants for 9-10
defined 6-3
options, constants for 9-11
serial endpoints, constants for 16-9

configuration structure 6-16
connectionless protocol 1-24
connectionless protocols 1-6
connectionless transaction-based service

mode of service 3-7
options for 5-23
using 3-48 to 3-50

connectionless transactionless service
mode of service 3-7
options for 5-23
using 3-43 to 3-44

connection-oriented protocol 1-24
connection-oriented protocols 1-6
connection-oriented service

connection requests 3-18
disconnection requests 3-18
establishing 3-28 to 3-34
multiple connection requests 3-33
options for 5-22
protocols for 1-6
terminating 3-35 to 3-39
transferring data 3-33

connection-oriented transaction-based service
mode of service 3-7
using 3-50 to 3-51

connection-oriented transactionless service
mode of service 3-7
using 3-44 to 3-46

connection requests
acknowledging 3-18
multiple 3-33
sending user data with 3-33

connections. See connection-oriented service
context pointer 2-13
creating deferred tasks 7-5
creating system tasks 7-4

CTS. See Clear To Send signal

D

data
acknowledging sends of 3-13
buffers for transferring 2-11
expedited. See ETSDUs
receiving 3-42 to ??, 3-43
transferring ADSP data 13-6 to 13-9
transferring ATP data 14-6
transferring between transaction-based

endpoints 3-46 to 3-51
transferring between transactionless

endpoints 3-43 to 3-46
transferring efficiently 3-43
transferring noncontiguous 3-40, 3-62
transferring normal 2-12
transferring with serial endpoints 16-9
using multiple sends 3-41

data bits 16-5, 16-11, 16-20
data communication equipment (DCE) 16-6
data delivery 1-8

best-effort 1-8
reliable 1-8, 1-11

Datagram Delivery Protocol (DDP) 9-15, 12-3 to
12-12

AppleTalk service providers and 11-4
introduced 9-5
options for 12-11

datagrams 1-7, 9-12
datagrams. See DDP packets
data link 1-11
data-link layer 1-11
Data Link Provider Interface standard 1-15
data stream

breaking into logical units 3-44 to 3-46
data terminal equipment (DTE) 16-6
Data Terminal Ready (DTR) signal 16-6, 16-8,

16-10, 16-23
DDP addresses 10-5 to 10-6
DDP address structure 10-5, 10-16
DDPAddress type 10-5, 10-16, 10-19

I N D E X

IN-4
Draft.  Apple Computer, Inc. 4/30/96

DDP endpoints
binding 12-6
options used with 12-7

DDPNBPAddress type 10-18
DDP_OPT_SRCADDR constant 12-10, 12-12
DDP packets 9-12, 12-4
DDP. See Datagram Delivery Protocol
DDP source address option 12-10, 12-12
DDP type

DDP endpoints and 12-6
for echo packets 12-8
effects of using 12-7
specifying a DDP address 10-6
using 12-7

deferred tasks
creating 7-5
destroying 7-5
processing 7-3 to 7-4
scheduling 7-5

delay mode option 8-30
destroying system and deferred tasks 7-5
device types, list of 6-20
disconnecting 13-10, 15-9
disconnection requests

acknowledging 3-18
sending user data with 3-33

DLPI standard 1-15
DNR. See domain name resolver
DNS address structure 8-24
DNSAddress type 8-24
DNS query information structure 8-14, 8-25
DNSQueryInfo type 8-14, 8-25
DNS query response types 8-14, 8-26
DNS. See domain name system
DoGetMyZone function 11-7
domain name resolver (DNR)

defined 8-6
functions for 8-42 to 8-49
Hosts file 8-10, 8-12
operation of 8-9 to 8-10
OTLookup function and 8-20
query types 8-10

domain names
defined 8-7
fully qualified 8-7

getting mail-exchange host names 8-47
resolving 8-20, 8-42 to 8-49

domain name system (DNS) 8-6
domain name system address structure 8-24
domains 8-7
don’t route option 8-35
DTInstall function 7-4
DTR. See Data Terminal Ready signal
duplex 1-7
DVMRP_ADD_LGRP constant 8-37
DVMRP_ADD_MRT constant 8-37
DVMRP_ADD_VIF constant 8-37
DVMRP_DEL_LGRP constant 8-37
DVMRP_DEL_MRT constant 8-37
DVMRP_DEL_VIF constant 8-37
DVMRP_DONE constant 8-37
DVMRP_INIT constant 8-37
dynamically assigned sockets 9-8

E

echoer socket 12-8
echo packets 12-8 to 12-9
echo reply packets 12-8
echo request packets 12-8
enable EOM option 13-7 to 13-8, 13-9, 13-11,

13-12, 13-13, 15-7
endpoint data

for TCP/IP 8-15
endpoint flags enumeration 3-56
endpoint functions

asynchronous events, to clear 3-27
defined 3-6
mode of operation, affected by 3-27
naming conventions for 3-9
types of options used by 5-7

endpoint providers 1-16
acknowledging sends 3-13
in blocking mode 3-12
creating 3-21
defined 3-5
in nonblocking mode 3-12
modes of operation. See modes of operation

I N D E X

IN-5
Draft.  Apple Computer, Inc. 4/30/96

endpoint reference 3-6
endpoints 1-18, 3-5 to 3-166

address of 3-96
binding 3-6, 3-21 to 3-22, 3-86
binding rules for 3-34
configuration 1-21
connectionless transaction-based 3-7
connectionless transactionless 3-7
connection-oriented transaction-based 3-7
connection-oriented transactionless 3-7
constants and data types for 3-52 to 3-80
defined 3-5
functions 3-6, 3-9
functions for 3-80 to 3-166
getting information about 3-23 to 3-24, 3-92
handling events for 3-24 to 3-27
name registration for 4-3
opening 3-21 to 3-22
options. See options
reference 3-6
resolving name of 3-98
states 3-13 to 3-19, 3-93
types of 3-7
using 3-20 to 3-51

endpoint service enumeration 3-54
endpoint states 3-13 to 3-19

for connectionless endpoints 3-15
for connection-oriented endpoints 3-15
defined 3-13
events that can change 3-18
functions that can change 3-18
getting information about 3-56, 3-93
list of 3-13, 3-56
synchronizing information about 3-100

endpoint states enumeration 3-56
entities. See endpoints
entity name. See NBP name
EOM (end-of-message) option. See

OPT_ENABLEEOM constant
error character option 16-12
escape characters, in NBP names 10-8, 10-13
ETSDUs

ADSP and 13-6, 13-11, 13-12
defined 3-19
getting information about 3-22, 3-60

TCP and 8-19
transferring data with 3-44 to 3-45

exactly-once transactions 14-6
expedited data

TCP and 8-19
expedited data. See ETSDUs
expedited transport service data units. See

ETSDUs
extended network 9-6
external clock option 16-12, 16-22

F

flow control. See handshaking
framing capabilities 6-8, 16-17
full duplex 1-7
fully qualified domain name 8-7

G

gateways 1-5
general provider functions 2-5, 2-24 to 2-44
generic name format 10-4
generic options enumeration 5-28
Gestalt function

determining Open Transport availability 6-8
response bits 6-15
selectors 6-8, 6-15

H

half duplex 1-7
handshake 1-6
handshaking 16-8, 16-12, 16-21
hardware, communications 1-11
header, packet 1-7
hosts

defined 8-7
getting information about 8-46
host name 8-7, 8-44

I N D E X

IN-6
Draft.  Apple Computer, Inc. 4/30/96

Hosts file 8-10, 8-12

I

InetAddress type 8-23
InetHostInfo type 8-27
InetInterfaceInfo type 8-26
INET_IP constant 8-30
InetMailExchange type 8-29
InetSysInfo type 8-28
INET_TCP constant 8-30
INET_UDP constant 8-30
initializing

AppleTalk 6-9
Open Transport 6-9 to 6-10
TCP/IP services 6-9

InitOpenTransport function 6-9, 6-24
InitOpenTransportUtilities function 6-9, 6-25
internet 1-5
internet addresses

defined 8-7
finding 8-13, 8-42, 8-49
finding host name for 8-44
getting from domain name 8-20
utility functions for 8-52 to 8-57

internet address structure 8-23
internet host information structure 8-27
internet hosts

getting information about 8-46
internet interface information structure 8-26
internet mail exchange structure 8-29
Internet Protocol (IP) 8-4

See also RawIP
internet system information structure 8-28
internetworking 1-11
interrupt processing

calling functions in 2-6, 7-6 to 7-7
IP_ADD_MEMBERSHIP constant 8-37
IP addresses. See internet addresses
IP_BROADCAST constant 8-35
IP_BROADCAST_IF constant 8-37
IP_DONTROUTE constant 8-35
IP_DROP_MEMBERSHIP constant 8-37

IP_HDRINCL constant 8-36
IP multicast address structure 8-28
IP_MULTICAST_IF constant 8-36
IP multicasting 8-12, 8-28
IP_MULTICAST_LOOP constant 8-36
IP_MULTICAST_TTL constant 8-36
IP_OPTIONS constant 8-34
IP_RCVDSTADDR constant 8-36
IP_RCVIFADDR constant 8-37
IP_RCVOPTS constant 8-36
IP_REUSEADDR constant 8-35
IP. See Internet Protocol
IP_TOS constant 8-34
IP_TTL constant 8-35
I_SetFramingType function 16-25
I_SetSerialBreak function 16-10, 16-24
I_SetSerialDTR function 16-10, 16-23
I_SetSerialXOff function 16-11, 16-25
I_SetSerialXOffState function 16-11, 16-24
I_SetSerialXOn function 16-11, 16-25

K

kADSPName

 constant 9-10

kAppleTalkAddressLength

 constant 10-15

kATalkInfoHasRouter

 constant 11-11

kATalkInfoIsExtended

 constant 11-11

kATalkInfoOneZone

 constant 11-11

kATPName

 constant 9-10

kDDPAddressLength

 constant 10-15

kDDPName

 constant 9-10

kDefaultAppleTalkServicesPath

constant 11-7, 11-10

kDefaultInetInterface

 constant 8-23

kDefaultInternetServicesPath

 constant 8-22

kDNRName

 constant 8-21

kEAGAINErr

 result code 2-10, 3-12, B-5

kEBUSYErr

 result code B-5

kEINVALErr

 result code B-5

kENIOErr

 result code B-5

kENOENTErr

 result code B-5

kENOMEMErr

 result code B-5

kENOMEMErr

 type B-5

I N D E X

IN-7

Draft.



 Apple Computer, Inc. 4/30/96

kENOSRErr

 result code B-5

kENXIOErr

 result code B-5

kETIMEDOUTErr

 result code 3-49, B-5

kEWOULDBLOCKErr

 result code 2-10, 3-12, B-5

kInetInterfaceInfoVersion

 constant 8-23

kInetVersion

 constant 8-23

kMaxHostAddrs

 constant 8-22

kMaxHostNameLen

 constant 8-22

kMaxSysStringLen

 constant 8-22

kNBPAddressLength

 constant 10-15

kNBPDefaultZone

 constant 10-15

kNBPEntityBufferSize

 constant 10-15

kNBPImbeddedWildCard

 constant 10-15

kNBPMaxEntityLength

 constant 10-15

kNBPMaxNameLength

 constant 10-15

kNBPMaxTypeLength

 constant 10-15

kNBPMaxZoneLength

 constant 10-15

kNBPName

 constant 9-10

kNBPSlushLength

 constant 10-15

kNBPWildCard

 constant 10-15

kNetbufDataIsOTBufferStar

 constant 3-53

kNetbufDataIsOTData

 constant 3-52

kOTAccessErr

 result code B-1

kOTAddressBusyErr

 result code B-3

kOTADEVDevice

 constant 6-20

kOTAnyInetAddress

 constant 8-22

kOTATMDevice

 constant 6-21

kOTATMLANDevice

 constant 6-21

kOTATMSNAPDevice

 constant 6-21

kOTBadAddressErr

 result code B-1

kOTBadDataErr

 result code B-2

kOTBadFlagErr

 result code B-2

kOTBadNameErr

 result code B-3

kOTBadOptionErr

 result code B-1

kOTBadQLenErr

 result code B-3

kOTBadReferenceErr

 result code B-1

kOTBadSequenceErr

 result code B-1

kOTBadSyncErr

 result code B-4

kOTBufferOverflowErr

 result code B-2

kOTCanceledErr

 result code B-4

kOTCTSInputHandshake

 constant 16-21

kOTDTROutputHandshake

 constant 16-21

kOTDuplicateFoundErr

 result code B-5

kOTEthernetDevice

 constant 6-21

kOTEvenParity

 constant 16-20

kOTFastEthernetDevice

 constant 6-21

kOTFDDIDevice

 constant 6-21

kOTFlowErr

 result code 2-10, 3-12, B-2

kOTFraming8022

 constant 6-18

kOTFraming8023

 constant 6-18

kOTFramingAsync

 constant 16-17

kOTFramingEthernet

 constant 6-18

kOTFramingEthernetIPX

 constant 6-18

kOTFramingHDLC

 constant 16-17

kOTFramingSDLC

 constant 16-17

kOTGeoPort

 constant 6-22

kOTGetMiscellaneousEvents

 constant 9-9

kOTIndOutErr

 result code B-4

kOTIRTalkDevice

 constant 6-21

kOTISDNDevice

 constant 6-21

kOTLastBusIndex

 constant 6-22

kOTLastDeviceIndex constant 6-21
kOTLastOtherNumber constant 6-21
kOTLastSlotNumber constant 6-21
kOTLocalTalkDevice constant 6-20
kOTLookErr result code 3-26, B-2
kOTMDEVDevice constant 6-20
kOTModemDevice constant 6-21
kOTMotherboardBus constant 6-22
kOTNewPortRegistered constant 6-16
kOTNoAddressErr result code B-1
kOTNoDataErr result code 2-10, 3-13, 3-24, 4-7,

B-2
kOTNoDeviceType constant 6-20
kOTNoDisconnectErr result code B-2
kOTNoError result code B-1
kOTNoParity constant 16-20
kOTNoReleaseErr result code B-2
kOTNotFoundErr result code B-5
kOTNotSupportedErr result code B-2
kOTNoUDErrErr result code B-2
kOTNuBus constant 6-22
kOTOddParity constant 16-20
kOTOutOfMemoryErr result code B-5
kOTOutStateErr result code B-1
kOTPCIBus constant 6-22
kOTPCMCIABus constant 6-22
kOTPortCanYield constant 6-18
kOTPortDisabled constant 6-15
kOTPortEnabled constant 6-16

I N D E X

IN-8
Draft.  Apple Computer, Inc. 4/30/96

kOTPortIsActive constant 6-17
kOTPortIsAlias constant 6-18
kOTPortIsDisabled constant 6-17
kOTPortIsDLPI constant 6-18
kOTPortIsPrivate constant 6-18
kOTPortIsSystemRegistered constant 6-18
kOTPortIsTPI constant 6-18
kOTPortIsUnavailable constant 6-17
kOTPPPDevice constant 6-21
kOTProtocolErr result code B-4
kOTProviderIsClosed constant 2-23, 6-16
kOTProviderIsDisconnected constant 2-22, 6-13
kOTProviderIsReconnected constant 2-23, 6-13
kOTProviderMismatchErr result code B-4
kOTProviderWillClose constant 2-15, 2-23
kOTPseudoDevice constant 6-21
kOTQFullErr result code B-4
kOTResAddressErr result code B-4
kOTResQLenErr result code B-4
kOTSerialBreakOn constant 16-20
kOTSerialCTLHold constant 16-20
kOTSerialDefaultBaudRate constant 16-18
kOTSerialDefaultDataBits constant 16-18
kOTSerialDefaultHandshake constant 16-18
kOTSerialDefaultOffChar constant 16-18
kOTSerialDefaultOnChar constant 16-18
kOTSerialDefaultParity constant 16-18
kOTSerialDefaultRcvBufSize constant 16-18
kOTSerialDefaultRcvLoWat constant 16-19
kOTSerialDefaultRcvTimeout constant 16-19
kOTSerialDefaultSndBufSize constant 16-18
kOTSerialDefaultSndLoWat constant 16-18
kOTSerialDefaultStopBits constant 16-18
kOTSerialDevice constant 6-21
kOTSerialDTRNegated constant 16-20
kOTSerialForceXOffFalse constant 16-18
kOTSerialForceXOffTrue constant 16-18
kOTSerialFramingErr constant 16-20
kOTSerialOutputBreakOn constant 16-20
kOTSerialOverrunErr constant 16-20
kOTSerialParityErr constant 16-20
kOTSerialSendXOffAlways constant 16-18
kOTSerialSendXOffIfXOnTrue constant 16-18
kOTSerialSendXOnAlways constant 16-18
kOTSerialSendXOnIfXOffTrue constant 16-18

kOTSerialSetBreakOff constant 16-17
kOTSerialSetBreakOn constant 16-17
kOTSerialSetDTROff constant 16-17
kOTSerialSetDTROn constant 16-17
kOTSerialSwOverRunErr constant 16-20
kOTSerialXOffHold constant 16-20
kOTSerialXOffSent constant 16-20
kOTSLIPDevice constant 6-21
kOTSMDSDevice constant 6-21
kOTStateChangeErr result code B-3
kOTStructureTypeErr result code B-3
kOTTokenRingDevice constant 6-21
kOTUnknownBusPort constant 6-22
kOTXOnOffInputHandshake constant 16-21
kOTXOnOffOutputHandshake constant 16-21
kOTYieldPortRequest constant 6-13, 6-16, 6-23,

6-43
kPAPName constant 9-10
kPRIVATEEVENT constant 8-23
kRawIPName constant 8-21
kSerialName constant 16-17
kSerialPortABName constant 16-17
kSerialPortAName constant 16-17
kSerialPortBName constant 16-17
kTCPName constant 8-21
kTInternetServicesID constant 8-23
kUDPName constant 8-21
kZIPMaxZoneLength constant 10-15

L

layered networking architecture 1-9
link-access protocols 1-11, 9-6
listener. See passive peers
LocalTalk 9-6

M

mail exchange 8-7
mail-exchange host names 8-47
mail preference value 8-7

I N D E X

IN-9
Draft.  Apple Computer, Inc. 4/30/96

mapper functions
AppleTalk service provider functions and 11-5

mapper providers 1-18
blocking status 4-6
creating 4-4
defined 4-3
dynamic name resolution 4-4
modes of operation 4-5
NBP and 9-13
need for 4-3
send-acknowledgment status 4-6

mapper reference 4-5
mappers 4-3 to 4-28

constants and data types for 4-12 to 4-16
defined 1-18, 4-4
event codes for 4-5
functions for 4-16 to 4-28
mapper reference 4-5
opening 4-4
searching for names 4-7
states of 4-5
using 4-5 to 4-11

mapper states 4-5
mark state, in serial communication 16-4
mblk_t structure 3-63
M_DATA flag 3-56
measuring AppleTalk network performance 12-8
memory, allocating 3-102, 7-7
MIB 3-56
Microseconds function 12-9
minor numbers 6-6, 6-14
miscellaneous events 1-26, 9-9
mode of service

functions used for different 3-9
getting information about 3-54
Open Transport protocols, and 3-20
types of 3-7

modes of operation
asynchronous mode 2-6
blocking 2-6, 2-10, 3-12
changing 2-9 to 2-11
defined 2-5
for endpoint providers 3-11
for mapper providers 4-5
nonblocking 2-6, 3-12

send-acknowledgment status 2-7, 2-10
synchronous mode 2-6

module names 6-6
multicast 8-28

add membership option 8-37
defined 8-12
drop membership option 8-37
interface option 8-36
loopback option 8-36
Time To Live field option 8-36

multifunction cards 6-6
multihoming 1-4
multihoming environment, getting information

about 11-9
multinode addresses 10-4, 10-9
multinode address structure 10-19
multinode architecture 1-4, 9-8
multinode ID 9-8
multinodes 9-8, 12-10
multiple address option 8-35
multiport identifier 6-6
multi-use devices 6-7
MyNotifierCallbackFunction function 2-45
MyProcessCallbackFunction function 7-25

N

Name-Binding Protocol (NBP) 9-5, 9-13, 10-4
name registration 4-4, 4-25

AppleTalk and NBP 10-10 to 10-11
NBP addresses 10-4, 10-7 to 10-9
NBP address structure 10-17
NBPAddress type 10-17
NBP entities 10-13
NBP entity structure 10-20
NBPEntity type 10-21
NBP names

components 10-7
defined 10-4
looking up 10-11 to 10-13
manipulating 10-13 to 10-14
name 10-7
registering 10-10 to 10-11

I N D E X

IN-10
Draft.  Apple Computer, Inc. 4/30/96

type 10-7
utility functions for 10-13
zone 10-7

network 1-4
network layer 1-11
network number 9-7
no-copy receive buffer structure 3-42, 3-63
no-copy receiving 3-42 to 3-43
node ID 9-7
nodes 1-5, 9-7
noise, in serial communication 16-6
non-association–related options 5-6
nonblocking 2-6
nonblocking providers 2-10, 3-12
nonextended network 9-6
notifier functions 1-15, 11-6

defined 2-8, 2-45 to 2-47
example of 2-14
installing 2-14
limitations 2-15
removing 2-14

O

open retry option 15-8
Open Systems Interconnection model. See OSI

model
Open Transport

allocating memory from 7-7
architecture 1-12
determining availability 6-8
initializing 2-4, 6-9 to 6-10
interrupt processing and 2-6, 7-6 to 7-7
provider functions 2-5
registering as a client of 6-13
result codes B-1 to B-5
using from client applications 6-9
using from stand-alone code segments 6-9
XTI data structures and A-7
XTI extensions and A-6
XTI functions and A-2 to A-5
XTI result codes A-7 to A-9

Open Transport flags enumeration 3-54

OPT_CHECKSUM constant 5-28, 9-11, 12-8, 12-12,
13-9, 13-13, 15-12

OPT_ENABLEEOM constant 5-29, 9-11, 13-7 to 13-8,
13-9, 13-11, 13-12, 13-13, 15-7, 15-11, 15-12

OPT_INTERVAL constant 5-29, 9-11, 14-7, 14-11
option management

action flags for 5-30
option negotiation

default values for 5-36
defined 3-11, 5-4
error conditions 5-16
initiating 5-14
multiple options, for 5-13
outcome of 5-30
rules governing 5-13

options 1-14, 5-3 to 5-45
absolute requirements 5-8, 5-14
action flags for 5-30
ADSP 13-7 to 13-9

checksum 13-9
enable EOM 13-7 to 13-8, 13-9, 13-11, 13-12,

13-13
association-related 5-5 to 5-6, 5-12
ATP 14-7 to 14-9

data length 14-11
release timer 14-11
reply packet count 14-11
transaction ID 14-11

buffer for storing 5-9, 5-18
code portability and 5-4
conflicting values for 5-15
constants and data types for 5-25 to 5-34
constructing buffer for 5-19 to 5-20, 5-40
current values for 5-21, 5-37
DDP

checksum 12-7
self send 12-7
source address 12-10, 12-12

default values 5-4, 5-21, 5-36
defined 3-10
functions for 5-34 to 5-45
generic, list of 5-11, 5-28 to 5-29
illegal 5-17
internal buffer 5-4
IP 8-32 to 8-37

I N D E X

IN-11
Draft.  Apple Computer, Inc. 4/30/96

add multicast membership 8-37
broadcast interface 8-37
broadcast permission 8-35
configuration strings for 8-39
don’t route option 8-35
drop multicast membership 8-37
multicast interface 8-36
multicast loopback 8-36
multicast Time to Live field 8-36
multiple addresses 8-35
Options field option 8-34
protocol level for 8-29
Time to Live field option 8-35

list of constants for 9-11
need for 5-3
negotiating 5-4, 5-13
non-association–related 5-5, 5-6
option negotiation 3-11
PAP

enable EOM 15-7, 15-11
open retry 15-8
server status 15-9

privileged 5-7, 5-15
read-only 5-7, 5-15
serial endpoints

baud rate 16-11
burst mode 16-12
data bits 16-11
error character 16-12
external clock 16-12
handshaking 16-12
parity 16-11
receive timeout 16-11
serial status 16-12
stop bits 16-11

structure describing 5-8, 5-33
TCP 8-30 to 8-32

configuration strings for 8-39
delay mode 8-30
protocol level for 8-29
segment size 8-31

TOption type 5-18
transport independence and 5-5
types of 5-5
UDP 8-32

configuration strings for 8-39
protocol level for 8-29

using 5-11 to 5-25
values, chosen by provider 5-21
values, retrieving 5-21 to 5-25
values, specifying 5-19 to 5-20
verifying values of 5-25, 5-37
XTI-level, list of 5-10, 5-25 to 5-27

options buffer
constructing 5-9 to 5-10, 5-19 to 5-20, 5-40
parsing 5-24

Options field option 8-34
OPT_KEEPALIVE constant 5-29, 5-32
OPT_NEXTHDR macro 5-33
OPT_RETRYCNT constant 5-28, 9-11, 14-7, 14-11
OPT_SELFSEND constant 5-29, 9-11, 12-7, 12-12
OPT_SERVERSTATUS constant 5-29, 15-9, 15-12
orderly disconnects

ADSP and 13-10
defined 3-10
local 3-36 to 3-39
PAP and 15-9
remote 3-36 to 3-39

OSI model
AppleTalk protocol stack and 9-4
defined 1-9
TCP/IP and 8-4
TCP/IP functional layers and 8-4

OTAccept function 3-28 to 3-34, 3-137
ADSP and 13-11
PAP and 15-10
serial endpoints and 16-16
TCP/IP and 8-18

OTAckSends function 2-10, 2-36, 4-6
OTAlloc function 3-102
OTAllocMem function 7-6, 7-21
OTAsyncOpenAppleTalkServices function 11-6,

11-12
OTAsyncOpenEndpoint function 3-21, 3-81, 16-14

TCP/IP and 8-15
OTAsyncOpenInternetServices function 8-38
OTAsyncOpenMapper function 4-17
OTATalkGetInfo function 11-9, 11-21
OTATalkGetLocalZones function 11-8, 11-18
OTATalkGetMyZone function 11-7, 11-16

I N D E X

IN-12
Draft.  Apple Computer, Inc. 4/30/96

OTATalkGetZoneList function 11-8, 11-19
OTBind function 3-22, 3-87

ADSP and 13-10
DDP and 12-11
multinodes and 10-10, 12-10
PAP and 15-9
registering endpoint names 10-10
serial endpoints and 16-15
specifying a DDP address 10-5
TCP/IP and 8-16

OTBufferDataSize function 3-43
OTBufferInfo type 3-43, 3-65
OTBuffer type 3-42, 3-63
OTCancelReply function 3-158
OTCancelRequest function 3-156
OTCancelSynchronousCalls function 2-32
OTCancelSystemTask function 7-5, 7-6, 7-12
OTCancelUReply function 3-49, 3-129
OTCancelURequest function 3-48, 3-128
OTCanMakeSyncCall function 7-6, 7-8
OTClientList type 6-22
OTCloneConfiguration function 6-11, 6-30
OTCloseProvider function 2-17, 2-26, 11-6
OTCompareDDPAddresses function 10-25
OTConfiguration type 6-10, 6-16, 6-28
OTConnect function 3-28 to 3-34, 3-131

ADSP and 13-11
PAP and 15-10
serial endpoints and 16-15
TCP/IP and 8-17

OTCountDataBytes function 3-106
OTCreateConfiguration function 6-5, 6-10, 6-27
OTCreateDeferredTask function 7-5, 7-14
OTCreateOptions function 5-20, 5-39
OTCreateOptionString function 5-42
OTCreatePortRef function 6-12, 6-36
OTCreateSystemTask function 7-4, 7-9
OTData type 3-40, 3-62
OTDelay function 7-7, 7-24
OTDeleteName function 4-23

TCP/IP and 8-20
and AppleTalk addressing 10-11

OTDeleteNameByID function 4-25
and AppleTalk addressing 10-11

OTDestroyConfiguration function 6-31

OTDestroyDeferredTask function 7-5, 7-18
OTDestroySystemTask function 7-5, 7-13
OTDontAckSends function 2-11, 2-38
OTEnterInterrupt function 7-6, 7-19
OTExtractNBPName function 10-36
OTExtractNBPType function 10-37
OTExtractNBPZone function 10-38
OTFindOption function 5-43
OTFindPort function 6-11, 6-34
OTFindPortByRef function 6-11, 6-35
OTFlags constant 3-55
OTFree function 3-105
OTFreeMem function 7-6, 7-22
OTGetBusTypeFromPortRef function 6-39
OTGetDeviceTypeFromPortRef function 6-38
OTGetEndpointInfo function 3-23, 3-92, 16-14

TCP/IP and 8-15
OTGetEndpointState function 3-23, 3-93
OTGetIndexedPort function 6-11, 6-33
OTGetNBPEntityLengthAsAddress

function 10-27
OTGetProtAddress function 3-23, 3-56, 3-96

specifying a DDP address 10-5
TCP/IP and 8-17

OTGetProviderPortRef function 6-11, 6-32
OTGetSlotFromPortRef function 6-40
OTIdle function 7-7, 7-23
OTInetAddressToName function 8-44
OTInetGetInterfaceInfo function 8-52
OTInetHostToString function 8-57
OTInetMailExchange function 8-47
OTInetQuery function 8-14, 8-49
OTInetStringToAddress function 8-42
OTInetStringToHost function 8-56
OTInetSysInfo function 8-46
OTInitDDPAddress function 10-21
OTInitDDPNBPAddress function 10-23
OTInitDNSAddress function 8-55
OTInitInetAddress function 8-54
OTInitNBPAddress function 10-22
OTInitNBPEntity function 10-26
OTInstallNotifier function 2-13, 2-40
OTIoctl function 2-43, 9-9
OTIsAckingSends function 2-39, 3-23
OTIsNonBlocking function 2-10, 2-35, 3-23

I N D E X

IN-13
Draft.  Apple Computer, Inc. 4/30/96

OTIsSynchronous function 2-31, 3-23
OTLeaveInterrupt function 7-6, 7-20
OTListen function 3-28 to 3-34, 3-135

ADSP and 13-11
PAP and 15-10
serial endpoints and 16-15
TCP/IP and 8-18

OTLook function 3-26, 3-95
TCP/IP and 8-16

OTLookupName function 4-26, 11-6
name lookups and 4-6, 4-7
retrieving entries returned by 4-9, 4-11
TCP/IP and 8-20

OTNextOption function 5-44
OTOpenAppleTalkServices function 11-6, 11-14
OTOpenEndpoint function 3-21, 3-84, 16-14

TCP/IP and 8-15
OTOpenInternetServices function 8-41
OTOpenMapper function 4-19
OTOptionManagement function 5-12, 5-35
OTPortCloseStruct type 6-23
OTPortRecord type 6-17
OTPortRef type 6-19
OTRcv function 3-44 to 3-46, 3-144

ADSP and 13-12
PAP and 15-11
serial endpoints and 16-16
TCP/IP and 8-19

OTRcvConnect function 3-29 to 3-34, 3-133
ADSP and 13-11
PAP and 15-10
TCP/IP and 8-17

OTRcvDisconnect function 3-29 to 3-34, 3-162
abortive disconnect and 3-35 to 3-36
ADSP and 13-12
PAP and 15-11
serial endpoints and 16-16
TCP/IP and 8-19

OTRcvOrderlyDisconnect function 3-36 to 3-39,
3-164

OTRcvReply function 3-154
OTRcvRequest function 3-150
OTRcvUData function 3-43, 3-115

DDP and 12-11
OTRcvUDErr function 3-43, 3-113

OTRcvUReply function 3-49, 3-125
ATP and 14-10

OTRcvURequest function 3-120
ATP and 14-10

OTReadBuffer function 3-43, 3-109
OTRegisterAsClient function 6-13, 6-44
OTRegisterName function 4-22

and AppleTalk addressing 10-11
TCP/IP and 8-20

OTReleaseBuffer function 3-42, 3-108
OTRemoveNotifier function 2-13, 2-42
OTResolveAddress function 3-23, 3-56, 3-98

specifying a DDP address 10-5
OTScheduleDeferredTask function 7-5, 7-6, 7-17
OTScheduleInterruptTask function 7-5, 7-6,

7-15
OTScheduleSystemTask function 7-5, 7-6, 7-10
OTSerialSetErrorCharacter constant 16-12
OTSerialSetErrorCharacterWithAlternate

constant 16-12
OTSetAddressFromNBPEntity function 10-28
OTSetAddressFromNBPString function 10-31
OTSetAsynchronous function 2-9, 2-30
OTSetBlocking function 2-10, 2-33, 3-13
OTSetNBPEntityFromAddress function 10-29
OTSetNBPName function 10-32
OTSetNBPType function 10-33
OTSetNBPZone function 10-35
OTSetNonBlocking function 2-10, 2-34
OTSetSynchronous function 2-9, 2-29
OTSnd function 3-44 to 3-46, 3-141

ADSP and 13-11
PAP and 15-11
serial endpoints and 16-16
TCP/IP and 8-18

OTSndDisconnect function 3-29 to 3-34, 3-159,
6-23

abortive disconnect and 3-35 to 3-36
ADSP and 13-12
PAP and 15-11
serial endpoints and 16-16
TCP/IP and 8-19

OTSndOrderlyDisconnect function 3-36 to 3-39,
3-163

OTSndReply function 3-151

I N D E X

IN-14
Draft.  Apple Computer, Inc. 4/30/96

OTSndRequest function 3-147
OTSndUData function 3-43, 3-111

DDP and 12-8, 12-11
TCP/IP and 8-18

OTSndUReply function 3-122
ATP and 14-10

OTSndURequest function 3-117
ATP and 14-10

OTSync function 3-100
OTTransferProviderOwnership function 2-16,

2-25
OTUnbind function 3-90
OTUnregisterAsClient function 6-14, 6-45
OTYieldPortRequest function 6-13, 6-42

P

packets 1-7
PAP

options
enable EOM 15-11
open retry 15-8
server status 15-9

PAP_OPT_OPENRETRY constant 9-11, 15-8, 15-12
PAP. See Printer Access Protocol
parity 16-5, 16-11, 16-20
passive peers

ADSP and 13-6
and yielding ports 6-13, 6-42
PAP and 15-6
using 3-17, 3-28 to 3-33

PCI cards 6-12
PCMCIA cards 6-16
physical layer 1-11
port alias 6-8
port close structure 6-13, 6-23
port names

default 6-8
defined 6-6

port reference
defined 6-6, 6-19
obtaining 6-11
predefined variants 6-12, 6-37

port registry 6-7
port-related events 6-15 to 6-16, ?? to 6-16
ports

alias 6-8
child 6-7
defined 6-5
events for 6-15, 6-16
iterating through 6-11
LocalTalk default 6-8
naming 6-6
obtaining information 6-11 to 6-12
yielding 6-13, 6-42, 6-43

port structure 6-7, 6-17
port transition events 6-13
presentation layer 1-10
Printer Access Protocol (PAP) 9-5, 9-16, 15-3 to

15-11
binding endpoints 15-6 to 15-7
connection arbitration scheme 15-5
disconnecting 15-9
options 15-7 to 15-8, 15-12
passive peers 15-6
queue length, specifying 15-6, 15-10
reliable data delivery and 15-5
using endpoint functions with 15-9 to 15-11

privileged options 5-7, 5-15
process callback functions 7-4, 7-25
process management 7-3 to 7-26

functions for 7-8 to 7-26
using functions for 7-4 to 7-8

protocols
connection-oriented or connectionless 1-24
deciding which to use 1-22
defined 1-5
families 1-23
high-level or low-level 1-23
layering 1-21
options 1-14
transaction-based or transactionless 1-25
types 1-6

protocol stacks
AppleTalk 9-4
defined 1-5
OSI model and 1-9
TCP/IP 8-4

I N D E X

IN-15
Draft.  Apple Computer, Inc. 4/30/96

provider configurations
cloning 6-10
creating 6-3, 6-10 to 6-11
identifiers for AppleTalk protocols 9-10 to 9-11

provider event codes, list of 2-18 to 2-23
provider events

asynchronous 2-7, 2-14
codes for 2-7, 2-18 to 2-23
completion 2-7, 2-14
defined 2-7
naming conventions for 2-7
notifier functions 2-8

provider reference 2-5
providers 1-16, 2-3 to 2-47

AppleTalk 9-10 to 9-11
blocking 2-6
blocking providers 2-10
changing mode of execution 2-9
closing 2-17
constants and data types for 2-17 to 2-24
defined 2-3
events. See provider events
functions for 2-5, 2-24 to 2-47
general provider functions 2-4, 2-5, 2-24 to 2-44
modes of operation 2-6
nonblocking 2-6
nonblocking providers 2-10
opening multiple 2-4
send-acknowledgment status 2-7, 2-10
setting blocking status 2-10
transferring data 2-11
transferring ownership of 2-16
types of 2-4
using 2-8 to 2-17

pseudodevices 6-7

Q

qlen parameter 13-10, 15-10, 16-15
Query function 8-49
 querying DNS servers 8-13 to ??
querying DNS servers 8-13 to 8-14
query responses 8-14

R

RawIP 8-5, 8-11
raw packets 3-56
read-only options 5-7, 5-15
receive queue 13-5
receive timeout option 16-11, 16-21
reliable delivery of data 1-8, 1-11
requesters 14-4
Requests for Comments (RFCs) 8-6
rescheduling a system or deferred task 7-5
responders 14-4
restoring the A5 world 7-5
result codes B-1 to B-5
reuse address option 8-35
RFCs. See Requests for Comments
routers 1-5

S

scheduling system and deferred tasks 7-5
segment size option 8-31
self-send option 12-7
send- acknowledgment status

endpoint functions affected by 2-29
send-acknowledgment status 2-7, 2-10
send queue 13-5
serial communication

asynchronous 16-7
baud rate 16-5
defined 16-4 to 16-6
errors 16-12
flow control methods 16-8
RS-422 interface 16-6
signals used 16-6
synchronous 16-7

serial endpoints 16-3 to 16-26
configuration strings for 16-9
constants for 16-17 to 16-19
default settings for 16-18
opening and closing 16-9
options for 16-11 to 16-12, 16-19 to 16-23
queue length, specifying 16-15

I N D E X

IN-16
Draft.  Apple Computer, Inc. 4/30/96

serial-specific commands for 16-10, 16-23 to
16-26

using 16-8 to 16-16
using general Open Transport functions

with 16-14 to 16-16
SerialHandshakeData constant 16-12, 16-18
SERIAL_OPT_BAUDRATE constant 16-20
SERIAL_OPT_BURSTMODE constant 16-23
SERIAL_OPT_DATABITS constant 16-20
SERIAL_OPT_ERRORCHARACTER constant 16-22
SERIAL_OPT_EXTCLOCK constant 16-22
SERIAL_OPT_HANDSHAKE constant 16-21
SERIAL_OPT_PARITY constant 16-20
SERIAL_OPT_RCVTIMEOUT constant 16-21
SERIAL_OPT_STATUS constant 16-20
SERIAL_OPT_STOPBITS constant 16-20
serial status option 16-12, 16-20
server status option 15-9
service providers 1-18
session 1-6
session layer 1-11
sleep function (UNIX) 7-7, 7-24
slot numbers, physical 6-12
SNMP 3-56
socket number 9-8
sockets 1-8, 9-8
software modules, Open Transport 1-15
space, in serial communication 16-4
start bit, in serial communication 16-5
state dependence 1-25
statically assigned sockets 9-8
status codes enumeration 5-30
stop bits 16-6, 16-11, 16-20
Streams modules 1-15

communicating with 2-4
defining commands for 2-43

structure types enumeration 3-57
subnet 8-8
subnet mask 8-8
symmetrical connection 1-7
synchronous communication 16-7
synchronous mode 2-6
synchronous processing 3-24

canceling 2-32
limitations of 2-9

SystemTask function 7-3
system tasks

canceling 7-5
creating 7-4
destroying 7-5
processing 7-3 to 7-4
scheduling 7-5

system task time 7-3

T

T_ACCEPTCOMPLETE constant 2-21
T_ACKNOWLEDGED constant 3-55, 14-6, 14-10
T_ADDR constant 3-53
T_ALL constant 3-54
T_ALLOPT constant 5-21, 5-31
task processing 7-3 to 7-26
T_ATALKCABLERANGECHANGEDEVENT constant 9-9
T_ATALKCONNECTIVITYCHANGEDEVENT

constant 9-9
T_ATALKROUTERDOWNEVENT constant 9-9
T_ATALKROUTERUPEVENT constant 9-9
T_ATALKZONENAMECHANGEDEVENT constant 9-9
T_BIND constant 3-57
TBind type 3-61
T_CALL constant 3-58
TCall type 3-36, 3-72
T_CAN_RESOLVE_ADDR constant 3-56
T_CAN_SUPPLY_MIB constant 3-56
T_CAN_SUPPORT_MDATA constant 3-56
T_CHECK constant 5-31
T_CLTS constant 3-54
T_CONNECT constant 2-19
T_COTS constant 3-54
T_COTS_ORD constant 3-54
TCP_ABORT_THRESHOLD constant 8-31
TCP_CONN_ABORT_THRESHOLD constant 8-31
TCP_CONN_NOTIFY_THRESHOLD constant 8-31
TCP/IP interface 8-9
TCP/IP protocol family

additional information about 8-5
and OSI model 8-4
defined 8-4

I N D E X

IN-17
Draft.  Apple Computer, Inc. 4/30/96

functional layers of 8-4
TCP/IP service providers

opening asynchronously 8-38
opening synchronously 8-40

TCP/IP services 8-3 to 8-57
constants and data types 8-21 to 8-29
domain name resolver (DNR) 8-5, 8-9 to 8-10
functions for 8-37 to 8-57
initializing 6-9
options for 8-29 to 8-37
using 8-11 to 8-20

TCP_KEEPALIVE constant 8-31
TCP_MAXSEG constant 8-31
TCP_NODELAY constant 8-30
TCP_NOTIFY_THRESHOLD constant 8-31
TCP_OOBINLINE constant 8-31
TCP. See Transmission Control Protocol
TCP_URGENT_PTR_TYPE constant 8-31
T_CRITIC_ECP constant 8-33
T_CURRENT constant 5-22, 5-31
T_DATA constant 2-19, 3-24
T_DATAXFER constant 3-14, 3-57
T_DEFAULT constant 5-21, 5-31
T_DELNAMECOMPLETE constant 2-22, 4-6
T_DISCONNECTCOMPLETE constant 2-21
T_DISCONNECT constant 2-20, 13-12
T_DIS constant 3-58
TDiscon type 3-36, 3-79
T_DNRADDRTONAMECOMPLETE constant 8-23, 8-45
T_DNRMAILEXCHANGECOMPLETE constant 8-23, 8-49
T_DNRQUERYCOMPLETE constant 8-23, 8-51
T_DNRSTRINGTOADDRCOMPLETE constant 8-23, 8-44
T_DNRSYSINFOCOMPLETE constant 8-23, 8-47
TEndpointInfo type 3-23, 3-44, 3-59
T_EXDATA constant 2-19, 3-24
T_EXPEDITED constant 3-45, 3-55, 13-9
T_FAILURE constant 5-30
T_FLASH constant 8-33
T_GETATALKINFOCOMPLETE constant 11-9, 11-10,

11-22
T_GETINFOCOMPLETE constant 2-21
T_GETLOCALZONESCOMPLETE constant 11-8, 11-10,

11-19
T_GETMYZONECOMPLETE constant 11-7, 11-10, 11-17
T_GETPROTADDRCOMPLETE constant 2-21

T_GETZONELISTCOMPLETE constant 11-9, 11-10,
11-20

T_GODATA constant 2-20, 3-12
T_GOEXDATA constant 2-20, 3-12
T_HIREL constant 8-33
T_HITHRPT constant 8-33
TickCount function 12-9
T_IDLE constant 3-14, 3-57
Time to Live field option 8-12, 8-35
T_IMMEDIATE constant 8-33
T_INCON constant 3-14, 3-57
T_INETCONTROL constant 8-33
T_INFO constant 3-58
T_INREL constant 3-14, 3-57
TIPAddMulticast type 8-28
t_kpalive type 5-32, 8-31
T_LDELAY constant 8-33
t_linger type 5-31
T_LISTEN constant 2-19
T_LKUPNAMECOMPLETE constant 2-22, 4-6, 4-11
T_LKUPNAMERESULT constant 2-22, 4-6, 4-11
TLookupBuffer type 4-16
TLookupReply type 4-15
TLookupRequest type 4-13
T_MEMORYRELEASED constant 2-11, 2-22, 3-13
T_MORE constant 3-41, 3-42, 3-55, 13-7, 14-7, 15-7
T_NEGOTIATE constant 5-31
TNetBuf type 3-12
TNetbuf type 2-11, 2-24, 10-6
T_NETCONTROL constant 8-33
T_NORECEIPT constant 3-55
T_NOTOS constant 8-33
T_NOTSUPPORT constant 5-30
T_OPENCOMPLETE constant 2-21, 4-6, 11-10, 11-14
T_OPT constant 3-53
TOption type 5-8, 5-33
T_OPTMGMTCOMPLETE constant 2-21
T_OPTMGMT constant 3-57
TOptMgmt type 5-34
T_ORDREL constant 2-20, 13-12
T_OUTCON constant 3-14, 3-57
T_OUTREL constant 3-14, 3-57
T_OVERRIDEFLASH constant 8-33
T_PARTIALDATA constant 3-55
T_PARTSUCCESS constant 5-30

I N D E X

IN-18
Draft.  Apple Computer, Inc. 4/30/96

T_PASSCON constant 2-20
TPI standard 1-15
T_PRIORITY constant 8-33
transaction

defined 3-46
transaction ID 3-46 to 3-48

transaction-based protocol 1-25
transaction-based protocols 1-7
transaction-based service

using 3-46 to 3-48
transactionless protocol 1-7, 1-25
transactions

ATP and 14-4
transferring data. See data
transferring provider ownership 2-16
Transmission Control Protocol (TCP) 8-4
transport independence 1-4, 1-20, 5-5
transport layer 1-11
Transport Provider Interface standard 1-15
transport service data units. See TSDUs
T_READONLY constant 5-30
TRegisterReply type 4-13
TRegisterRequest type 4-12
T_REGNAMECOMPLETE constant 2-22, 4-6
T_REPLYCOMPLETE constant 2-21
T_REPLY constant 2-20
T_REPLYDATA constant 3-58
TReply type 3-77
T_REQUEST constant 2-20, 3-24
T_REQUESTDATA constant 3-58
TRequest type 3-76
T_RESET constant 2-21
T_RESOLVEADDRCOMPLETE constant 2-21
T_ROUTINE constant 8-33
TSDUs

ADSP and 13-6, 13-7, 13-11, 13-12
defined 3-19
getting information about 3-22, 3-60
PAP and 15-7
transferring data with 3-44 to 3-46
zero-length 3-45, 3-56

T_SENDZERO constant 3-45, 3-56
T_SUCCESS constant 5-30
T_SYNCCOMPLETE constant 2-21
T_TIMEDOUT constant 3-55

T_TRANS_CLTS constant 3-54
T_TRANS constant 3-54
T_TRANS_ORD constant 3-54
T_UDATA constant 3-53
T_UDERR constant 2-20, 3-44
T_UDERROR constant 3-58
TUDErr type 3-67
T_UNBINDCOMPLETE constant 2-21
T_UNBND constant 3-14, 3-57
T_UNINIT constant 3-14, 3-57
T_UNITDATA constant 3-58
TUnitData type 3-65
T_UNITREPLY constant 3-58
TUnitReply type 3-70
T_UNITREQUEST constant 3-58
TUnitRequest type 3-68
T_UNSPEC constant 5-21, 5-32, 5-33
T_UNSPEC option value 5-30
T_XPG4_1 constant 3-56

U

UDP_CHECKSUM constant 8-32
UDP_RX_ICMP constant 8-32
UDP. See User Datagram Protocol
UNIX sleep function 7-7, 7-24
user bytes in ATP packet header 14-9
User Datagram Protocol (UDP) 8-4

W

Worldwide Internet 1-5

X

XOFF state 16-10, 16-24
XON/XOFF characters

defined 16-8
handshaking and 16-12, 16-21
sending 16-10, 16-25

XON/XOFF handshaking 16-8, 16-12, 16-21
XO transactions. See exactly-once

transactions 14-6
XTI data structures A-7
XTI_DEBUG constant 5-26
XTI extensions A-6
XTI functions A-2 to A-5
XTI_GENERIC constant 5-25
XTI-level options 3-43
XTI_LINGER constant 5-26, 5-31
XTI options enumeration 5-25
XTI_PROTOTYPE constant 5-27
XTI_RCVBUF constant 5-26
XTI_RCVLOWAT constant 5-27
XTI result codes A-7 to A-9
XTI_SNDBUF constant 5-27
XTI_SNDLOWAT constant 5-27
XTI standard 3-26

Y

yielding a port 6-13, 6-42 to 6-43

Z

zero-length packets 13-7, 15-7
Zone Information Protocol (ZIP) 9-5, 9-14, 11-3
zone information table 11-4
zones 9-7

. See also AppleTalk zones

T H E A P P L E P U B L I S H I N G S Y S T E M

Draft.  Apple Computer, Inc. 4/15/96

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobe Illustrator™ and
Adobe Photoshop™.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Sanborn Hodgkins, Joanna Bujes, Paul
Black

LEAD WRITER
Paul Black

DEVELOPMENTAL EDITORS
George Truett, Sanborn Hodgkins

ILLUSTRATOR
Bruce Lee

PRODUCTION EDITOR
Gerri Gray

PROJECT MANAGER
Trish Eastman

Special thanks to Don Coolidge, Marcus
Jordan, Rich Kubota, Eric Ockholm, Mike
Quinn, Lauren Sherman, Steve Ussery,
Tony Wingo

Acknowledgments to Jose Carreon,
Michel Guittet, Garry Hornbuckle, Jeri
Sonnenberg, and the entire Open
Transport engineering team.

	Open Transport
	Contents
	Figures, Tables, and Listings
	About This Book
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	The Development Environment

	Introduction to Open Transport
	Introduction to Open Transport
	Basic Networking Concepts
	Types of Protocols
	Addressing and Data Delivery
	Protocol Stacks and the OSI Model

	About Networking With Open Transport
	Open Transport Architecture
	Open Transport API
	Software Modules
	Drivers and Hardware
	Providers, Endpoints, and Mappers
	Transport Independence
	Endpoints and Protocol Layering

	Deciding Which Protocol to Use
	General Purpose or Special Purpose
	Choice of Protocol Family
	High-Level or Low-Level Protocol
	Connection-Oriented or Connectionless
	Transaction-Based or Transactionless

	Miscellaneous Events

	Providers
	About Providers
	Provider Functions
	Modes of Operation
	Provider Events

	Using Providers
	Controlling a Provider’s Modes of Operation
	Specifying How Provider Functions Execute
	Setting a Provider’s Blocking Status
	Setting a Provider’s Send-Acknowledgment Status

	Sending and Receiving Data
	Using Notifier Functions to Handle Provider Events...
	Transferring a Provider’s Ownership
	Closing a Provider
	Providers Reference
	Constants and Data Types
	Event Codes
	The TNetbuf Structure

	Functions
	Opening and Closing Providers
	Controlling a Provider’s Mode of Operation
	Installing and Removing a Notifier Function
	Sending Module-Specific Commands

	Application-Defined Functions

	Endpoints
	About Endpoints
	Endpoint Types and Mode of Service
	Naming Conventions for Endpoint Functions
	Endpoint Options
	Modes of Operation
	Blocking
	Acknowledging Sends

	Endpoint States
	Transport Service Data Units

	Using Endpoints
	Opening and Binding Endpoints
	Obtaining Information About Endpoints
	Handling Events for Endpoints
	Establishing and Terminating Connections
	Establishing a Connection
	Terminating a Connection

	Sending and Receiving Data
	Sending Noncontiguous Data
	Sending Data Using Multiple Sends
	Receiving Data
	No-Copy Receiving
	Transferring Data Efficiently

	Transferring Data Between Transactionless Endpoint...
	Using Connectionless Transactionless Service
	Using Connection-Oriented Transactionless Service

	Transferring Data Between Transaction-Based Endpoi...
	Using Connectionless Transaction-Based Service
	Using Connection-Oriented Transaction-Based Servic...

	Endpoints Reference
	Constants and Data Types
	OTData Constant
	OTBuffer Constant
	Buffer Types Enumeration
	Endpoint Service Types
	Open Transport Flags
	Endpoint Flags
	Endpoint States
	Structure Types
	The TEndpointInfo Structure
	The TBind Structure
	The OTData Structure
	The No-Copy Receive Buffer Structure
	Buffer Information Structure
	The TUnitData Structure
	The TUDErr Structure
	The TUnitRequest Structure
	The TUnitReply Structure
	The TCall Structure
	The TRequest Structure
	The TReply Structure
	The TDiscon Structure

	Functions
	Creating Endpoints
	Binding and Unbinding Endpoints
	Obtaining Information About an Endpoint
	Allocating Structures
	Checking a Buffer’s Size
	Doing No-Copy Receives
	Functions for Connectionless Transactionless Endpo...
	Functions for Connectionless Transaction-Based End...
	Establishing A Connection
	Functions for Connection-Oriented Transactionless ...
	Functions for Connection-Oriented Transaction-Base...
	Tearing Down a Connection

	Mappers
	About Mappers
	Using Mappers
	Setting Modes of Operation for Mappers
	Specifying Name and Address Information
	Searching for Names
	Retrieving Multiple Entries From the Reply Buffer
	Retrieving Entries in Asynchronous Mode

	Mappers Reference
	Constants and Data Types
	The TRegisterRequest Structure
	The TRegisterReply Structure
	The TLookupRequest Structure
	The TLookupReply Structure
	The TLookupBuffer Structure

	Functions
	Creating Mappers
	Registering and Deleting Names
	Looking Up Names

	Option Management
	About Options and Option Negotiation
	Explicit Use of Options and Portability of Code
	Types of Options
	The Format of Option Information
	XTI-Level Options and General Options

	Using Options
	Determining Which Function to Use to Negotiate Opt...
	Negotiating Options
	Negotiating Multiple Options
	Initiating an Option Negotiation
	Privileged or Read-Only Options
	Error Conditions

	Obtaining the Maximum Size of an Options Buffer
	Setting Option Values
	Specifying Option Values
	Setting Default Values
	Allowing the Endpoint Provider to Select an Option...

	Retrieving Option Values
	Obtaining Current and Default Values
	Retrieving Values for Connection-Oriented Endpoint...
	Retrieving Values for Connectionless Transactionle...
	Retrieving Values for Connectionless Transaction-B...
	Parsing an Options Buffer

	Verifying Option Values

	Option Management Reference
	Constants and Data Types
	XTI-Level Options
	Generic Options
	Status Codes
	Action Flags
	The Linger Structure
	The Keepalive Structure
	The TOption Structure
	The Option Management Structure

	Functions
	Determining and Changing Function Values
	Manipulating the Format of Option Information
	Finding Options

	Configuration Management
	About Provider Configurations
	About Port Information
	Using the Configuration Functions
	Determining Whether Open Transport Is Available
	Initializing Open Transport
	Using Open Transport From a Client Application
	Using Open Transport From a Stand-Alone Code Segme...

	Creating and Reusing Provider Configurations
	Obtaining Port Information
	Requesting a Port to Yield Ownership
	Registering as an Open Transport Client

	Configuration Management Reference
	Constants and Data Types
	The Gestalt Selector and Response Bits
	Port-Related Events
	The Configuration Structure
	The Port Structure
	The Port Reference
	The Client List Structure
	The Port Close Structure

	Functions
	Initializing and Closing Open�Transport
	Creating, Cloning, and Removing a Configuration St...
	Getting Information About Ports
	Requesting a Port to Yield Ownership
	Registering as a Client

	Process Management
	About Task Processing in Open Transport
	Using Process Management Functions
	Using System and Deferred Tasks
	Entering and Leaving Interrupt Processing
	Allocating and Freeing Raw Memory
	Idling or Delaying Your Computer

	Process Management Reference
	Functions
	Checking Synchronous Calls
	Working With System Tasks
	Working With Deferred Tasks
	Entering and Leaving Interrupt Time
	Allocating and Freeing Memory
	Idling and Delaying Processing

	Application-Defined Functions

	TCP/IP Services
	About the TCP/IP Protocol Family
	About TCP/IP Services
	About the Open Transport DNR
	Using TCP/IP Services
	Using RawIP
	Using IP Multicasting
	Using the Hosts File
	Querying DNS Servers
	Using General Open Transport Functions With TCP/IP...
	Obtaining Endpoint Data With TCP/IP
	Using Endpoint Functions With TCP/IP
	Using Mapper Functions With TCP/IP

	TCP/IP Services Reference
	Constants and Data Types
	Basic Types and Constants
	Internet Address Structure
	DNS Address Structure
	DNS Query Information Structure
	Internet Interface Information Structure
	Internet Host Information Structure
	Internet System Information Structure
	IP Multicast Address Structure
	Internet Mail Exchange Structure

	Options
	Protocol Levels
	TCP Options
	UDP Options
	IP Options

	Functions
	Opening a TCP/IP Service Provider
	Resolving Internet Addresses
	Getting Information About an Internet Host
	Retrieving DNS Query Information
	Address Utilities

	Introduction to AppleTalk
	About AppleTalk
	AppleTalk Networks and Addresses
	Multinodes
	Handling Miscellaneous Events
	Configuring AppleTalk Protocol Providers

	About AppleTalk Protocols Under Open Transport
	AppleTalk Addressing and the Name Binding Protocol...
	The AppleTalk Service Provider
	Datagram Delivery Protocol (DDP)
	AppleTalk Data Stream Protocol (ADSP)
	AppleTalk Transaction Protocol (ATP)
	Printer Access Protocol (PAP)

	AppleTalk Addressing
	About AppleTalk Addressing
	Using AppleTalk Addressing
	Specifying a DDP Address
	Specifying an NBP Address
	Specifying a Combined DDP-NBP Address
	Specifying and Using a Multinode Address
	Registering Your Endpoint’s Name
	Looking Up Names and Addresses
	Manipulating an NBP Name

	AppleTalk Addressing Reference
	Constants and Data Types
	Basic Constants
	Address Format Constants
	The DDP Address Structure
	The NBP Address Structure
	The Combined DDP-NBP Address Structure
	The Multinode Address Structure
	The NBP Entity Structure

	Functions

	AppleTalk Service Providers
	About AppleTalk Service Providers
	Using AppleTalk Service Providers
	Obtaining AppleTalk Service Providers
	Working With AppleTalk Zones
	Getting the Name of Your Application’s Zone
	Getting a List of Zone Names for Your Local Networ...
	Getting Information About Your Current AppleTalk E...

	AppleTalk Service Provider Reference
	Constants and Data Types
	Completion Event Constants
	The AppleTalk Information Structure

	Functions
	Opening an AppleTalk Service Provider
	Obtaining Information About Zones
	Obtaining Information About Your AppleTalk Environ...

	Datagram Delivery Protocol (DDP)
	About DDP
	Using DDP
	Binding a DDP Endpoint
	Using the DDP Type Field to Filter Packet Delivery...
	Using the Self-Send and Checksum Options
	Using Echo Packets
	Working With Multinodes
	The DDP Source Address Option
	Using General Open Transport Functions With DDP
	OTBind
	OTSndUData
	OTRcvUData

	DDP Reference
	Options

	AppleTalk Data Stream Protocol (ADSP)
	About ADSP
	Using ADSP
	Binding ADSP Endpoints
	Sending and Receiving ADSP Data
	The Enable EOM (End-of-Message) Option
	The Checksum Option

	Sending Expedited Data
	Disconnecting
	Using General Open Transport Functions With ADSP
	OTBind
	OTConnect
	OTRcvConnect
	OTListen
	OTAccept
	OTSnd
	OTRcv
	OTSndDisconnect
	OTRcvDisconnect

	ADSP Reference
	Options

	AppleTalk Transaction Protocol (ATP)
	About ATP
	Using ATP
	At-Least-Once and Exactly-Once Transactions
	Sending and Receiving ATP Data
	Specifying ATP Options
	The Retry Count and Interval Options
	The Release Timer Option
	Other ATP-Specific Options

	Using the ATP Packet Header User Bytes
	Using General Open Transport Functions with ATP
	OTSndURequest
	OTRcvURequest
	OTSndUReply
	OTRcvUReply

	ATP Reference
	Options

	Printer Access Protocol (PAP)
	About PAP
	Using PAP
	Binding PAP Endpoints
	Specifying PAP Options
	The Enable End-of-Message Option
	The Open Retry Option
	The Server Status Option

	Disconnecting
	Using General Open Transport Functions With PAP
	OTBind
	OTConnect
	OTRcvConnect
	OTListen
	OTAccept
	OTSnd
	OTRcv
	OTSndDisconnect
	OTRcvDisconnect

	PAP Reference
	Options

	Serial Endpoint Providers
	About Serial Endpoint Providers
	About Serial Communication
	DTR and CTS Signals
	Asynchronous and Synchronous Communication
	Handshaking Methods for Flow Control

	Using Serial Endpoints
	Opening and Closing Serial Endpoints
	Sending and Receiving Data
	Using Serial-Specific Commands
	Using Options to Change Serial Communications Sett...
	Setting Flow-Control Handshaking
	Obtaining Status Information About the Serial Port...

	Using General Open Transport Functions With Serial...
	Obtaining Endpoint Data With Serial Endpoints
	Using Endpoint Functions With Serial Endpoints

	Serial Endpoint Providers Reference
	Constants
	Options
	Protocol Level
	Serial Options

	Serial-Specific Commands

	Open Transport and XTI
	Open Transport Programming Interfaces
	Function Names
	Extensions to XTI
	Data Structures
	Result Codes

	Result Codes
	Glossary
	Index

