INSIDE MACINTOSH

Open Transport

¢

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

& Apple Computer, Inc.

©1994-1996 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc,, registered in the
United States and other countries.
Adobe, Acrobat, Adobe Illustrator,
Adobe Photoshop, and PostScript
are trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

QuickView™ is licensed from Altura
Software, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

Docutek is a trademark of Xerox
Corporation.

FrameMaker is a registered
trademark of Frame Technology
Corporation.

NuBus is a trademark of Texas
Instruments.

UNIX is a trademark of UNIX
System Laboratories, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is

Draft. Confidential. 0 Apple Computer, Inc. 4/25/96

authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings Xvii

Preface About This Book xxi
Format of a Typical Chapter ~ xxiii
Conventions Used in This Book xxiv
Special Fonts Xxiv
Types of Notes Xxiv
The Development Environment XXV
Chapter 1 Introduction to Open Transport 1-1

Introduction to Open Transport 1-3
Basic Networking Concepts 1-4
Types of Protocols 1-6
Addressing and Data Delivery 1-8
Protocol Stacks and the OSI Model 19
About Networking With Open Transport 1-12
Open Transport Architecture 1-12
Open Transport API 1-14
Software Modules 1-15
Drivers and Hardware 1-15
Providers, Endpoints, and Mappers 1-16
Transport Independence 1-20
Endpoints and Protocol Layering 1-21
Deciding Which Protocol to Use 1-22
General Purpose or Special Purpose 1-23
Choice of Protocol Family =~ 1-23
High-Level or Low-Level Protocol 1-23
Connection-Oriented or Connectionless 1-24
Transaction-Based or Transactionless 1-25
Miscellaneous Events 1-26

Draft. Confidential. O Apple Computer, Inc. 4/30/96

iii

Chapter2 Providers 2-1

About Providers 2-3
Provider Functions 2-5
Modes of Operation ~ 2-6
Provider Events 2-7
Using Providers 2-8
Controlling a Provider’s Modes of Operation ~ 2-8
Specifying How Provider Functions Execute 2-9
Setting a Provider’s Blocking Status 2-10
Setting a Provider’s Send-Acknowledgment Status 2-10
Sending and Receiving Data 2-11
Using Notifier Functions to Handle Provider Events 2-13
Transferring a Provider’s Ownership 2-16
Closing a Provider 2-17
Providers Reference 2-17
Constants and Data Types 2-17
Event Codes 2-17
The TNetbuf Structure ~ 2-23
Functions 2-24
Opening and Closing Providers 2-24
Controlling a Provider’s Mode of Operation 2-28
Installing and Removing a Notifier Function 2-40
Sending Module-Specific Commands 2-43
Application-Defined Functions 2-45

Chapter 3 Endpoints 3-1

About Endpoints 3-5
Endpoint Types and Mode of Service 3-7
Naming Conventions for Endpoint Functions 3-8
Endpoint Options 3-10
Modes of Operation 3-11
Blocking 3-12
Acknowledging Sends ~ 3-13
Endpoint States 3-13
Transport Service Data Units 3-19
Using Endpoints 3-20

iv
Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

Opening and Binding Endpoints 3-21

Obtaining Information About Endpoints
Handling Events for Endpoints 3-24

Establishing and Terminating Connections

Establishing a Connection 3-28
Terminating a Connection 3-35
Sending and Receiving Data 3-40
Sending Noncontiguous Data 3-40
Sending Data Using Multiple Sends
Receiving Data 3-42
No-Copy Receiving 3-42
Transferring Data Efficiently 3-43

Transferring Data Between Transactionless Endpoints

3-23

3-27

3-41

Using Connectionless Transactionless Service

Using Connection-Oriented Transactionless Service
Transferring Data Between Transaction-Based Endpoints

Using Connectionless Transaction-Based Service

Using Connection-Oriented Transaction-Based Service

Endpoints Reference 3-52
Constants and Data Types 3-52

OTData Constant 3-52
OTBuffer Constant 3-53
Buffer Types Enumeration 3-53
Endpoint Service Types 3-54
Open Transport Flags 3-54
Endpoint Flags 3-55
Endpoint States 3-56
Structure Types 3-57
The TEndpointInfo Structure 3-58
The TBind Structure ~ 3-61
The OTData Structure 3-62
The No-Copy Receive Buffer Structure
Buffer Information Structure 3-65
The TUnitData Structure ~ 3-65
The TUDErr Structure ~ 3-67
The TUnitRequest Structure ~ 3-68
The TUnitReply Structure ~ 3-70
The TCall Structure ~ 3-72

Draft. Confidential. O Apple Computer, Inc. 4/30/96

3-63

3-43

3-44

3-46

3-50

The TRequest Structure ~ 3-76
The TReply Structure ~ 3-77
The TDiscon Structure ~ 3-79
Functions 3-80
Creating Endpoints 3-80
Binding and Unbinding Endpoints 3-86
Obtaining Information About an Endpoint 3-91
Allocating Structures 3-102
Checking a Buffer’s Size ~ 3-106
Doing No-Copy Receives 3-107
Functions for Connectionless Transactionless Endpoints 3-110
Functions for Connectionless Transaction-Based Endpoints 3-117
Establishing A Connection ~ 3-130
Functions for Connection-Oriented Transactionless Endpoints 3-140
Functions for Connection-Oriented Transaction-Based Endpoints 3-147
Tearing Down a Connection 3-159

Chapter4 Mappers 4-1

About Mappers 4-4
Using Mappers 4-5
Setting Modes of Operation for Mappers 4-5
Specifying Name and Address Information 4-7
Searching for Names — 4-7
Retrieving Multiple Entries From the Reply Buffer ~ 4-9
Retrieving Entries in Asynchronous Mode 4-11
Mappers Reference 4-12
Constants and Data Types 4-12
The TRegisterRequest Structure ~ 4-12
The TRegisterReply Structure ~ 4-13
The TLookupRequest Structure 4-13
The TLookupReply Structure 4-15
The TLookupBuffer Structure 4-15
Functions 4-16
Creating Mappers 4-17
Registering and Deleting Names 4-21
Looking Up Names 4-26

vi

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

Chapter5 Option Management 5-1

About Options and Option Negotiation ~ 5-4
Explicit Use of Options and Portability of Code 5-4
Types of Options 5-5
The Format of Option Information 5-8
XTI-Level Options and General Options 5-10
Using Options 5-11
Determining Which Function to Use to Negotiate Options 5-12
Negotiating Options 5-13
Negotiating Multiple Options 5-13
Initiating an Option Negotiation 5-14
Privileged or Read-Only Options 5-15
Error Conditions 5-16
Obtaining the Maximum Size of an Options Buffer ~ 5-18
Setting Option Values 5-18
Specifying Option Values 5-18
Setting Default Values 5-20
Allowing the Endpoint Provider to Select an Option Value 5-21
Retrieving Option Values 5-21
Obtaining Current and Default Values 5-21

Retrieving Values for Connection-Oriented Endpoints 5-22
Retrieving Values for Connectionless Transactionless Endpoints 5-23
Retrieving Values for Connectionless Transaction-Based Endpoints 5-23

Parsing an Options Buffer 5-24

Verifying Option Values 5-25
Option Management Reference 5-25

Constants and Data Types 5-25

XTI-Level Options 5-25

Generic Options 5-28

Status Codes ~ 5-29

Action Flags 5-30

The Linger Structure ~ 5-31

The Keepalive Structure 5-32

The TOption Structure ~ 5-33

The Option Management Structure 5-33
Functions 5-34

Determining and Changing Function Values 5-35

vii

Draft. Confidential. O Apple Computer, Inc. 4/30/96

Chapter 6

Manipulating the Format of Option Information 5-39
Finding Options 5-43

Configuration Management 6-1

Chapter 7

About Provider Configurations 6-3
About Port Information 6-5
Using the Configuration Functions 6-8
Determining Whether Open Transport Is Available ~ 6-8
Initializing Open Transport 6-9
Using Open Transport From a Client Application 6-9
Using Open Transport From a Stand-Alone Code Segment
Creating and Reusing Provider Configurations 6-10
Obtaining Port Information 6-11
Requesting a Port to Yield Ownership 6-13
Registering as an Open Transport Client 6-13
Configuration Management Reference 6-14
Constants and Data Types 6-14
The Gestalt Selector and Response Bits 6-15
Port-Related Events 6-15
The Configuration Structure 6-16
The Port Structure ~ 6-17
The Port Reference ~ 6-19
The Client List Structure ~ 6-22
The Port Close Structure ~ 6-23
Functions 6-23
Initializing and Closing Open Transport 6-24
Creating, Cloning, and Removing a Configuration Structure
Getting Information About Ports 6-32
Requesting a Port to Yield Ownership 6-42
Registering as a Client 6-44

Process Management 7-1

6-9

6-27

viii

About Task Processing in Open Transport 7-3
Using Process Management Functions 7-4

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

Chapter 8

Using System and Deferred Tasks 7-4
Entering and Leaving Interrupt Processing 7-6
Allocating and Freeing Raw Memory 7-7
Idling or Delaying Your Computer 7-7
Process Management Reference 7-8
Functions 7-8
Checking Synchronous Calls ~ 7-8
Working With System Tasks ~ 7-9
Working With Deferred Tasks 7-14
Entering and Leaving Interrupt Time 7-19
Allocating and Freeing Memory 7-21
Idling and Delaying Processing 7-23
Application-Defined Functions 7-25

TCP/IP Services 81

About the TCP/IP Protocol Family ~ 8-4
About TCP/IP Services 8-6
About the Open Transport DNR 8-9
Using TCP/IP Services 8-11
Using RawIP 8-11
Using IP Multicasting 8-12
Using the Hosts File ~ 8-12
Querying DNS Servers 8-13
Using General Open Transport Functions With TCP /IP
Obtaining Endpoint Data With TCP /1P 8-15
Using Endpoint Functions With TCP /IP 8-16
Using Mapper Functions With TCP /IP 8-20
TCP/IP Services Reference ~ 8-21
Constants and Data Types 8-21
Basic Types and Constants 8-21
Internet Address Structure 8-23
DNS Address Structure 8-24
DNS Query Information Structure 8-25

Internet Interface Information Structure 8-26
Internet Host Information Structure 8-27
Internet System Information Structure 8-28

Draft. Confidential. O Apple Computer, Inc. 4/30/96

8-14

ix

IP Multicast Address Structure 8-28
Internet Mail Exchange Structure ~ 8-29
Options 8-29
Protocol Levels 8-29
TCP Options 8-30
UDP Options 8-32
IP Options 8-32
Functions 8-37
Opening a TCP/IP Service Provider 8-37
Resolving Internet Addresses 8-42
Getting Information About an Internet Host 8-45
Retrieving DNS Query Information 8-49
Address Utilities 8-52

Chapter 9 Introduction to AppleTalk 9-1

About AppleTalk 9-4
AppleTalk Networks and Addresses 9-6
Multinodes 9-8
Handling Miscellaneous Events 9-9
Configuring AppleTalk Protocol Providers 9-9
About AppleTalk Protocols Under Open Transport 9-11
AppleTalk Addressing and the Name Binding Protocol (NBP)
The AppleTalk Service Provider 9-14
Datagram Delivery Protocol (DDP) 9-15
AppleTalk Data Stream Protocol (ADSP) 9-15
AppleTalk Transaction Protocol (ATP) 9-16
Printer Access Protocol (PAP) 9-16

Chapter 10 AppleTalk Addressing 10-1

9-13

About AppleTalk Addressing 10-4
Using AppleTalk Addressing 10-5
Specifying a DDP Address 10-5
Specifying an NBP Address 10-7
Specifying a Combined DDP-NBP Address 10-9

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

Specifying and Using a Multinode Address 10-9
Registering Your Endpoint’s Name 10-10
Looking Up Names and Addresses 10-11
Manipulating an NBP Name 10-13
AppleTalk Addressing Reference 10-14
Constants and Data Types 10-14
Basic Constants 10-14
Address Format Constants 10-15
The DDP Address Structure 10-16
The NBP Address Structure 10-17
The Combined DDP-NBP Address Structure 10-18
The Multinode Address Structure 10-19
The NBP Entity Structure 10-20
Functions 10-21

Chapter 11 AppleTalk Service Providers 11-1

About AppleTalk Service Providers 11-4
Using AppleTalk Service Providers 11-5
Obtaining AppleTalk Service Providers 11-6
Working With AppleTalk Zones 11-6
Getting the Name of Your Application’s Zone 11-7
Getting a List of Zone Names for Your
Local Network or Internet 11-8
Getting Information About Your Current AppleTalk Environment 11-9
AppleTalk Service Provider Reference 11-10
Constants and Data Types 11-10
Completion Event Constants 11-10
The AppleTalk Information Structure 11-11
Functions 11-12
Opening an AppleTalk Service Provider ~ 11-12
Obtaining Information About Zones 11-16
Obtaining Information About Your AppleTalk Environment 11-20

x1

Draft. Confidential. O Apple Computer, Inc. 4/30/96

Chapter 12 Datagram Delivery Protocol (DDP) 12-1

About DDP 12-4
Using DDP 12-5
Binding a DDP Endpoint 12-6
Using the DDP Type Field to Filter Packet Delivery 12-7
Using the Self-Send and Checksum Options 12-7
Using Echo Packets ~ 12-8
Working With Multinodes ~ 12-10
The DDP Source Address Option 12-10
Using General Open Transport Functions With DDP 12-10
OTBind 12-11
OTSndUData 12-11
OTRcvUData 12-11
DDP Reference 12-11
Options 12-11

Chapter 13 AppleTalk Data Stream Protocol (ADSP) 13-1

About ADSP 13-3
Using ADSP 13-5
Binding ADSP Endpoints 13-6
Sending and Receiving ADSP Data 13-6
The Enable EOM (End-of-Message) Option ~ 13-7
The Checksum Option ~ 13-9
Sending Expedited Data 13-9
Disconnecting 13-10
Using General Open Transport Functions With ADSP 13-10
OTBind 13-10
OTConnect 13-11
OTRcvConnect 13-11
OTListen 13-11
OTAccept 13-11
OTSnd 13-11
OTRev 13-12
OTSndDisconnect 13-12
OTRcvDisconnect 13-12
ADSP Reference 13-12

xii

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

Options 13-13

Chapter 14 AppleTalk Transaction Protocol (ATP) 14-1

About ATP 14-4
Using ATP 14-5

At-Least-Once and Exactly-Once Transactions 14-6

Sending and Receiving ATP Data 14-6
Specifying ATP Options 14-7
The Retry Count and Interval Options 14-8
The Release Timer Option ~ 14-8
Other ATP-Specific Options ~ 14-8
Using the ATP Packet Header User Bytes 14-9

Using General Open Transport Functions with ATP 14-9
OTSndURequest 14-10
OTRcvURequest 14-10
OTSndUReply 14-10
OTRcvUReply 14-10
ATP Reference 14-11
Options 14-11
Chapter 15 Printer Access Protocol (PAP) 151
About PAP 15-3
Using PAP 15-5
Binding PAP Endpoints 15-6
Specifying PAP Options 15-7
The Enable End-of-Message Option ~ 15-7
The Open Retry Option ~ 15-8
The Server Status Option ~ 15-9
Disconnecting 15-9
Using General Open Transport Functions With PAP 15-9

OTBind 15-9
OTConnect 15-10
OTRcvConnect 15-10
OTListen 15-10

Draft. Confidential. O Apple Computer, Inc. 4/30/96

xiii

Chapter 16

OTAccept 15-10
OTSnd 15-11
OTRcv 15-11
OTSndDisconnect 15-11
OTRcvDisconnect 15-11
PAP Reference 15-12
Options 15-12

Serial Endpoint Providers 16-1

Appendix A

About Serial Endpoint Providers 16-4
About Serial Communication 16-4
DTR and CTS Signals 16-6
Asynchronous and Synchronous Communication 16-7
Handshaking Methods for Flow Control ~ 16-8
Using Serial Endpoints 16-8
Opening and Closing Serial Endpoints 16-9
Sending and Receiving Data 16-9
Using Serial-Specific Commands 16-10
Using Options to Change Serial Communications Settings 16-11
Setting Flow-Control Handshaking 16-12
Obtaining Status Information About the Serial Port 16-12
Using General Open Transport Functions
With Serial Endpoints 16-14
Obtaining Endpoint Data With Serial Endpoints 16-14
Using Endpoint Functions With Serial Endpoints 16-15
Serial Endpoint Providers Reference 16-17
Constants 16-17
Options 16-19
Protocol Level 16-19
Serial Options 16-19
Serial-Specific Commands 16-23

Open Transport and XTI A-1

Xiv

Open Transport Programming Interfaces A-1

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

Appendix B

Function Names A-2
Extensions to XTI A-6
Data Structures A-7
Result Codes A-7

Result Codes B-1

Glossary GL-1

Index IN-1

Draft. Confidential. O Apple Computer, Inc. 4/30/96

XV

Xvi

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

Preface

Chapter 1

Chapter 2

Chapter 3

Figures, Tables, and Listings

About This Book xxi

Introduction to Open Transport 1-1

Table 1-1 The Open Transport protocol matrix and some Open Transport
protocols 1-7

Figure 1-1 The OSI model and Open Transport protocols 1-10

Figure 1-2 The basic architecture of Open Transport 1-13

Figure 1-3 An Open Transport Provider 1-17

Providers

Figure 2-1 The TNetbuf structure 2-12

Listing 2-1 A notifier function 2-14

Endpoints 3-1

Table 3-1 The names of functions used to transfer data 3-9

Table 3-2 Endpoint states 3-14

Figure 3-1 Possible endpoint states for a connectionless endpoint 3-15

Figure 3-2 Possible endpoint states for a connection-oriented endpoint 3-16

Table 3-3 Functions that can change an endpoint’s state 3-18

Table 3-4 Events that can change an endpoint’s state 3-19

Table 3-5 The Open Transport mode-of-service matrix and some Open
Transport protocols 3-20

Table 3-6 Endpoint functions that behave differently in synchronous and
asynchronous mode 3-25

Table 3-7 Pending asynchronous events and the synchronous functions they
can affect 3-26

Table 3-8 Pending asynchronous events and the functions that clear
them 3-27

Figure 3-3 Establishing a connection in synchronous mode 3-30

Figure 3-4 Establishing a connection in asynchronous mode 3-32

Figure 3-5 An abortive disconnect 3-35

Figure 3-6 Remote orderly disconnect 3-37

xvii

Draft. 00 Apple Computer, Inc. 4/30/96

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

xviii

Figure 3-7 A local orderly disconnect 3-39

Figure 3-8 Describing noncontiguous data 3-41

Figure 3-9 How a transaction ID is generated 3-47

Figure 3-10 Data transfer using connectionless transaction-based endpoints in
asynchronous mode 3-50

Figure 3-11 Data transfer using connection-oriented transaction-based endpoints
in asynchronous model 3-51

Mappers 4-1

Table 4-1 Completion events for asynchronous mapper functions 4-6

Figure 4-1 Format of entries in 0TLookupName reply buffer 4-8

Listing 4-1 Parsing the reply buffer for 0TLookupName 4-9

Option Management 5-1

Figure 5-1
Table 5-1

Figure 5-2
Figure 5-3
Table 5-2
Table 5-3
Listing 5-1
Listing 5-2

Listing 5-3

Negotiating an association-related option 5-6

Open Transport endpoint functions and the types of options they
accept 5-7

The format of option information 5-8

An options buffer 5-9

XTI-level options 5-10

Open Transport generic options 5-11

Constructing an options buffer manually 5-19
Constructing an options buffer using the 0TCreateOptions
function 5-20

Using the 0TCreateOptionString function to parse through a
buffer 5-24

Configuration Management 6-1

Process Management 7-1

Table 7-1

Open Transport functions you can call at interrupt time 7-6

TCP/IP Services 8-1

Figure 8-1

TCP/IP protocols and functional layers 8-4

Draft. O Apple Computer, Inc. 4/30/96

Table 8-1 The Open Transport protocol matrix and TCP/IP protocols 8-5
Figure 8-2 Internet subnet address 8-8
Table 8-2 Configuration strings for TCP/IP options 8-39

Chapter 9 Introduction to AppleTalk 9-1

Figure 9-1 AppleTalk protocol stack and the OSI model 9-5
Table 9-1 AppleTalk addressing identifiers 9-7
Table 9-2 Protocol identifiers for use in configuring AppleTalk
providers 9-10
Table 9-3 Indicating AppleTalk options in the configuration string 9-11
Table 9-4 Open Transport support for AppleTalk endpoint protocols 9-13

Chapter 10 AppleTalk Addressing 10-1

Listing 10-1 Setting up a DDP Address 10-6

Listing 10-2 Setting up an NBP address 10-9

Table 10-1 Open Transport name-registration functions 10-11
Table 10-1 Open Transport name and address functions 10-12
Table 10-2 Wildcard operators 10-13

Chapter 11 AppleTalk Service Providers 11-1

Figure 11-1 AppleTalk service providers and their underlying delivery
mechanism 11-5
Listing 11-1 Using the DoGetMyZone function synchronously 11-8

Chapter 12 Datagram Delivery Protocol (DDP) 12-1

Figure 12-1 The DDP endpoint provider’s underlying delivery
mechanism 12-5
Table 12-1 Effects of using the DDP type field 12-7

Chapter 13 AppleTalk Data Stream Protocol (ADSP) 13-1

Figure 13-1 The ADSP endpoint provider’s underlying delivery
mechanism 13-4
Listing 13-1 Setting the enable EOM option 13-8

Xix

Draft. O Apple Computer, Inc. 4/30/96

Chapter 14

Chapter 15

Chapter 16

Appendix A

Appendix B

XX

AppleTalk Transaction Protocol (ATP) 14-1

Figure 14-1
Table 14-1

The ATP endpoint provider's underlying delivery mechanism 14-5

ATP option definitions and default values 14-7

Printer Access Protocol (PAP) 151

Figure 15-1

The PAP endpoint provider’s underlying delivery mechanism 15-4

Serial Endpoint Providers 16-1

Figure 16-1

The format of serialized bits 16-5

Open Transport and XTI A-1

Table A-1
Table A-2
Table A-3
Table A-4
Table A-5

Result Codes

XTI-to-Open Transport function cross-reference A-2
Open Transport-to-XTI function cross-reference A-3
Open Transport Functions not found in XTI A-6
XTI-to-Open Transport data structure cross-reference A-7
XTI-to-Open Transport result code cross-reference A-8

B-1

Table B-1

Open Transport result codes B-1

Draft. O Apple Computer, Inc. 4/30/96

P REFACE

About This Book

This book, Inside Macintosh: Open Transport, describes the 1.1 release of the
Open Transport networking system, which is a communications architecture
that can be used to implement any number of networking and other
communications systems. This book discusses only the implementation of
Open Transport 1.1 on Apple Macintosh computers. Open Transport provides a
set of programming interfaces for applications and processes running on
Macintosh computers.

Note

All of the Open Transport 1.1 programming interfaces
described in this book are compatible with the Mac OS 8
environment. O

To get the most out of this book, read the chapters that cover general Open
Transport concepts first. If you are planning to use an AppleTalk or TCP/IP
protocol, read the protocol-specific chapters after you are familiar with Open
Transport’s architecture and general functions. The book is organized with the
more general Open Transport concepts covered in the first seven chapters, with
the more specific material in the later chapters of the book.

It is best to begin by reading the introductory chapter, “Introduction to Open
Transport,” because it introduces many terms that are used throughout the rest
of this book. This chapter also gives an overview of the Open Transport
architecture and the way it is used to implement networking protocols.

The chapter “Providers,” describes the generic Open Transport functions that
you can use with any provider. The chapters “Endpoints” and “Mappers”
introduce functions that are particular for endpoint and mapper providers. The
next three chapters, “Option Management,” “Configuration Management,”and
“Process Management” continue the general discussion of Open Tranport
concepts.

The chapter “TCP/IP Services ” and the seven AppleTalk-specific chapters
describe how to use the Open Transport implementations of AppleTalk and
TCP/IP. The last chapter, “Serial Endpoint Providers,” describes how to use
Open Transport with a serial driver.

xX1

Draft. Confidential. O Apple Computer, Inc. 4/30/96

xxii

PRETFAUCE

At the end of this book are two appendixes: “Open Transport and XTI” and
“OT Result Codes.”

= “Open Transport and XTL.” This appendix describes the correspondence
between the XTI and Open Transport client programming interfaces. Open
Transport is a superset of XTI and therefore includes functions that are not
defined in XTI This appendix focuses on how general provider functions
and endpoint functions correspond to XTI functions.

s “Result Codes.” This appendix lists the result codes returned by the Open
Transport preferred-C functions.

If you are new to programming for the Macintosh, you can read the book Inside
Macintosh:Overview for a general introduction to general concepts of Macintosh
programming. Other books in the Inside Macintosh series are helpful for specific
information about other aspects of the Macintosh Toolbox and the Macintosh
Operating System. In particular, to benefit most from this book, you should
already be familiar with the run-time environment of Macintosh applications,
as described in the two books Inside Macintosh: Processes and Inside Macintosh:
Memory.

The information in this book constitutes only a part of the body of literature
documenting the AppleTalk and TCP/IP protocol families and the XTI
standard upon which Open Transport is based.

For more information about the AppleTalk protocol family, see the book Inside
AppleTalk, second edition, which has detailed specifications for each of the
AppleTalk protocols.

For more information about the TCP/IP protocol family, see any good book on
TCP/IP. Two such books for information on TCP/IP protocol internals are TCP/
IP Illustrated, Volume 1 by W. Richard Stevens and Internetworking with TCP/IP,
Volume 1 by Douglas E. Comer.

For more information about the XTI standard, see X/Open CAE Specification
(1992): X/Open Transport Interface (XTI). The Open Transport TCP/IP software
modules are based on the UNIX Streams architecture. For more information
about Streams, see UNIX System V Release 4: Programmer’s Guide: STREAMS.

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

P REFACE

Format of a Typical Chapter

Most of the chapters in this book follow a standard structure. For example, the
chapter “Endpoints” contains these sections:

= “About Endpoints.” This section presents a general introduction to
endpoints and endpoint providers.

= “Using Endpoints.” This section provides an overview of the features
provided by Open Transport for endpoints.

= “Endpoints Reference.” This section provides a complete reference for the
endpoints and endpoint providers by describing the data types, constants,
and functions they use. Each function description also follows a standard
format, which presents the function declaration followed by a description of
each of its parameters.

The chapters that cover AppleTalk and TCP/IP protocols include a subsection
that describes the protocol-specific information for certain general Open
Transport functions. For example, the chapter “TCP/IP Services” includes the
following section:

» “Using General Open Transport Functions With TCP/IP.” This section
describes any special considerations that must be taken into account for
general endpoint and mapper Open Transport functions when using them
with the Open Transport TCP/IP implementation.

xx1iii

Draft. Confidential. O Apple Computer, Inc. 4/30/96

PRETFAUCE

Conventions Used in This Book

Inside Macintosh uses special conventions to present certain types of
information.

Special Fonts

All code listings, reserved words, and names of actual data structures, fields,
constants, parameters, and routines are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but
not essential to an understanding of the main text. (An
example appears in the chapter “Introduction to Open
Transport” on (page 1-6).) O

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears in
the chapter “Endpoints” on (page 3-87).) a

A WARNING
Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. (An example appears in the chapter
“Endpoints” on (page 3-63).) a

XX1V

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

P REFACE

The Development Environment

The Open Transport functions described in this book are available using C or
C++ language interfaces. How you access these functions depends on the
development environment you are using.

All code listings in this book are shown in ANSI C. They show ways of using
various functions and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and in many cases tested. However,
Apple Computer, Inc., does not intend for you to use these code samples in
your application.

APDA is Apple’s worldwide source for over three hundred development tools,
technical resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the quarterly
APDA Tools Catalog featuring all current versions of Apple and the most
popular third-party development tools. Ordering is easy; there are no
membership fees, and application forms are not required for most products.
APDA offers convenient payment and shipping options including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.
P.O. Box 319

Buffalo, NY 14207-0319

Telephone: 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (elsewhere in the world)

Fax: 716-871-6511

AppleLink: APDA

America Online: APDAorder

CompuServe: 76666,2405

Internet: APDA@applelink.apple.com

XXV

Draft. Confidential. O Apple Computer, Inc. 4/30/96

XXvi

PRETFAUCE

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M /S 303-2T
Cupertino, CA 95014-6299

Draft. Confidential. 0 Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

Contents

Introduction to Open Transport 1-3
Basic Networking Concepts 1-4
Types of Protocols 1-6
Addressing and Data Delivery 1-8
Protocol Stacks and the OSI Model 1-9
About Networking With Open Transport ~ 1-12
Open Transport Architecture 1-12
Open Transport API 1-14
Software Modules 1-15
Drivers and Hardware 1-15
Providers, Endpoints, and Mappers 1-16
Transport Independence 1-20
Endpoints and Protocol Layering ~ 1-21
Deciding Which Protocol to Use 1-22
General Purpose or Special Purpose 1-23
Choice of Protocol Family ~ 1-23
High-Level or Low-Level Protocol 1-23

Connection-Oriented or Connectionless 1-24
Transaction-Based or Transactionless 1-25
Miscellaneous Events 1-26
Contents

Draft. O Apple Computer, Inc. 4/30/96

1-1

CHAPTER 1

Introduction to Open Transport

This chapter provides an overview of the Open Transport networking system.
Open Transport is a communications architecture that can be used to
implement any number of networking and other communications systems.
This book discusses only the implementation of Open Transport on Apple
Macintosh computers. Open Transport provides a set of programming
interfaces for applications and processes running on Macintosh computers.

This chapter introduces some of the terminology that is used throughout the
rest of this book. Read this chapter to gain an overview of the Open Transport
architecture and the way it’s used to implement networking protocols. You
should also read this chapter for suggestions on which networking protocols to
use for various application requirements.

This chapter begins with a brief description of Open Transport and the
advantages it provides over earlier Macintosh networking architectures. Next,
“Basic Networking Concepts” defines a variety of terms used in Open
Transport and in networking in general. The section “About Networking With
Open Transport” describes the Open Transport architecture and describes some
concepts important to Open Transport: providers, transport independence, and
endpoints. Finally, the section “Deciding Which Protocol to Use” gives you
guidelines to help you decide which protocol or protocol family to use for a
given purpose.

The chapters that make up the rest of this book describe how to use the Open
Transport programming interface and the Open Transport implementations of
AppleTalk and TCP/IP.

Introduction to Open Transport

Open Transport is the networking architecture used by Apple Computer, Inc.
for Macintosh computers. Whereas AppleTalk provided a proprietary
networking system for Macintosh computers, the current Macintosh Operating
System with Open Transport provides not only AppleTalk but also the
industry-standard TCP /1P protocols and serial connections. In addition, the
Open Transport architecture allows developers to add other networking
systems to the Macintosh Operating System without altering the user’s
experience or the application programming interface (API).

Introduction to Open Transport 1-3
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

The independence of the APIs from the underlying networking or transport
technology is called transport independence and is one of the cardinal features
of Open Transport. Whereas the APIs are independent of the networking
system in use, the specific set of functions you call does depend on the nature
of the protocols. For example, you use different functions for a
connection-oriented protocol like AppleTalk Data Stream Protocol (ADSP) than
for a connectionless protocol like Datanet Delivery Protocol (DDP) or Internet
Protocol (IP). Transport independence is described in more detail in “Transport
Independence” on page 1-20.

Other important features of Open Transport are its support of multihoming
and multinodes.

Multihoming allows multiple Ethernet, token ring, FDDI, and other network
interface controller (NIC) cards to be active on a single node at the same time.
In addition to selecting the type of network connection, the user can select a
particular device to be used for the network connection.

Multinode architecture is an AppleTalk feature that allows an application to
acquire node IDs that are additional to the standard node ID that is assigned to
the system when the node joins an AppleTalk network. Multinode architecture
is provided to meet the needs of special-purpose applications that receive and
process AppleTalk packets in a custom manner instead of passing them directly
on to a higher-level AppleTalk protocol for processing. Multinode IDs allow the
system that is running your application to appear as multiple nodes on the
network. The prime example of a multinode application is Apple Remote
Access (ARA). The chapters “AppleTalk Addressing” and “Datagram Delivery
Protocol” in this book describe the use of multinodes.

Basic Networking Concepts

Although this book is intended for readers who already have some knowledge
of networking fundamentals, many people use slightly different definitions for
the same networking terms. Therefore, this section provides definitions of
networking and communications terms as used in this book; the following
section, “About Networking With Open Transport,” discusses concepts specific
to Open Transport.

A network is a system of computers and other devices (such as printers and
modems) that are connected in such a way that they can exchange data.

Basic Networking Concepts
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

A networking system consists of hardware and software. Hardware on a
network includes physical devices such as Macintosh personal computer
workstations, printers, and Macintosh computers acting as file servers, print
servers, and routers; these devices are all referred to as nodes on the network.

If the nodes are not all connected to a single physical cable, special hardware
and software devices must connect the cables in order to forward messages to
their destination addresses. A bridge is a device that connects networking
cables without examining the addresses of messages or making decisions as to
the best route for a message to take. By contrast, a router contains addressing
and routing information that lets it determine from a message’s address the
most efficient route for the message. A message can be passed from router to
router several times before being delivered to its destination.

In order for nodes to exchange data, they must use a common set of rules
defining the format of the data and the manner in which it is to be transmitted.
A protocol is a formalized set of procedural rules for the exchange of
information and for the interactions among the network’s interconnected
nodes. A network software developer implements these rules in software
modules that carry out the functions specified by the protocol.

Whereas a router can connect networks only if they use the same protocol and
address format, a gateway converts addresses and protocols to connect
dissimilar networks.

A set of networks connected by routers or gateways is called an internet. The
term Internet (note the capitalization) is often used to refer to the largest
worldwide system of networks, also called the Worldwide Internet. The basic
protocol used to implement the WorldWide Internet is called the Internet
Protocol, or IP. Because the word internet is used in several different ways, it is
important to note capitalization and context whenever you see this word.

A networking protocol commonly uses the services of another, more
fundamental protocol to achieve its ends. For example, the AppleTalk Data
Stream Protocol (ADSP) uses the Datagram Delivery Protocol (DDP) to
encapsulate the data and deliver it over an AppleTalk network. The protocol
that uses the services of an underlying protocol is said to be a client of the
lower protocol; for example, ADSP is a client of DDP. A set of protocols related
in this fashion is called a protocol stack. Protocol stacks are described in more
detail in “Protocol Stacks and the OSI Model,” beginning on page 1-9.

Basic Networking Concepts 1-5
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

Note

Although it is sometimes important to distinguish between
a protocol and the software that implements the protocol,
in most cases you can infer which is meant from the
context. Accordingly, this book usually uses the term
protocol rather than the more precise term protocol
implementation to refer to the Open Transport
implementation of a protocol. O

Types of Protocols

Networking protocols can be characterized as connectionless or connection-
oriented, and as transactionless or transaction-based.

A connectionless protocol is one in which a node that wants to communicate
with another simply sends a message without first establishing that the
receiving node is prepared to receive it. Each message sent must include
addressing information so that it can be delivered to its destination.

A connection-oriented protocol is one in which two nodes on the network that
want to communicate must go through a connection-establishment process
called a handshake. This involves the exchange of predetermined signals
between the nodes in which each end identifies itself to the other. Once a
connection is established, the communicating applications or processes on the
nodes at either end can send and receive data without having to add addresses
to the messages or repeat the handshake process. Connection-oriented
protocols provide support for sessions. A session is a logical (as opposed to
physical) connection between two entities on a network or internet. A session
must be set up at the beginning, maintained by the periodic exchange of
information, and broken down at the end. All of these services entail overhead
compared to a connectionless protocol, for which no connection setup or
breakdown is required and for which no session must be maintained.

A connection-oriented session is analogous to a telephone call. The party who
initiates the call knows whether the connection is made because someone at the
other end of the line either answers or not. As long as the connection is
maintained, neither party needs to dial the other telephone number again. A
connectionless protocol is analogous to mail. A person sends a letter expecting
it will be delivered to its destination. Although the mail usually arrives safely,
the sender doesn’t know this unless the recipient initiates a response affirming
it. Each letter sent by either party requires a complete address.

Basic Networking Concepts
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

A transactionless protocol defines how the data is to be organized and
delivered from one node to another. A connection-oriented transactionless
protocol is used to maintain a symmetrical connection; that is, one in which
both ends have equal control over the communication. Both ends can send and
receive data and initiate or terminate the session. A connectionless
transactionless protocol sends data in discrete datagrams. A datagram, also
referred to as a packet, is a small unit of data that includes a header portion
that holds the destination address (and may contain other information, such as
a checksum value), and a data portion that holds the message text. A
connection-oriented transactionless protocol can send data as a continuous
stream of data or, in some cases, as packets.

If both ends of a connection-oriented transactionless data stream session can
transmit and receive data simultaneously, the connection is referred to as full
duplex. If the two sides have to take turns transmitting and receiving, the
connection is referred to as half duplex.

A transaction-based protocol specifies the sequence and some of the content of
messages passed between nodes. When using a transaction-based protocol, the
application on one node, known as the requester, sends a request to the other
application, known as the responder, to perform a task. The responder
completes the task and returns a response that reports the outcome of the task.
Once one node has issued a request, the receiving node is constrained to
respond in a predefined way. A transaction-based connection is sometimes
referred to as an asymmetrical connection.

Table 1-1 shows where some Open Transport protocols fit in the protocol-type
matrix. A protocol of one type can be a client of a different type. For example,
the connection-oriented transaction-based AppleTalk Session Protocol (ASP) is
a client of the connectionless transaction-based AppleTalk Transaction Protocol
(ATP), which is in turn a client of the connectionless transactionless Datagram
Delivery Protocol (DDP).

Table 1-1 The Open Transport protocol matrix and some Open Transport protocols
Connectionless Connection-oriented
Transactionless PPP Serial connection
DDP ADSP
IP TCP
UDP
Transaction-based ATP ASP
Basic Networking Concepts 1-7

Draft. O Apple Computer, Inc. 4/30/96

1-8

CHAPTER 1

Introduction to Open Transport

Addressing and Data Delivery

In order to establish a network connection or to send a message using a
connectionless protocol, you must have the address of the destination. Each
protocol uses a specific type of address, which might be the same as that used
by a lower-level protocol in the protocol stack or might be unique to that
protocol. DDP and IP, for example, use addresses sufficient for node-to-node
delivery of datagrams, through routers if necessary. The protocols and
applications that are clients of DDP are assigned socket numbers. A socket is a
piece of software that serves as an addressable entity on a node. DDP is
responsible for delivering a datagram to the correct socket.

Similarly, IP delivers each datagram to a specific client protocol—such as
Transaction Control Protocol (TCP) or User Datagram Protocol (UDP)—
running on a specific node. The processes running the TCP /IP client protocols
are each assigned a port number; the client protocol is responsible for
delivering the datagram to the correct port number. Each client of IP running
on a socket maintains its own list of port numbers. Whereas AppleTalk
normally assigns socket numbers dynamically to a process when it registers
itself on the network, the TCP/IP port numbers are preassigned by convention
or by previous arrangement between users. For more information about
AppleTalk addresses, see the chapter “AppleTalk Addressing” in this book. For
more information about TCP/IP addresses, see the chapter “TCP/IP Services”
in this book.

Low-level connectionless protocols such as DDP and IP usually provide
best-effort delivery of data. Best-effort delivery means that the protocol
attempts to deliver any packets that meet certain requirements, such as
containing a valid destination address, but the protocol does not inform the
sender when it is unable to deliver the data, nor does it attempt to recover from
error conditions and data loss. Higher-level protocols, on the other hand, can
provide reliable delivery of data. Reliable delivery includes error checking and
recovery from error or loss of data.

Basic Networking Concepts
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

Protocol Stacks and the OSI Model

Most networking systems are designed as layered architectures in which
low-level protocols provide services to higher-level protocols in the same
protocol stack. Network designers relate each protocol to a reference model,
which provides guidelines as to what sort of services should be provided by a
protocol at a certain level in the hierarchy. Because these reference models
provide a framework that makes it easier to compare the services offered by
different protocols, this book shows how each protocol discussed relates to one
or more reference models. In this section, the Open Systems Interconnection
(OSI) model is described. The OSI model is a seven-layered standard that was
published by the International Standards Organization (ISO) in the 1970s. This
is the model with which the AppleTalk networking system architecture is most
closely aligned.

It is important to note that often more than one protocol is defined and
implemented to handle the requirements of a layer in different ways. In
addition, some protocols include functions that span more than one layer
specified by a model. For example, in favor of efficiency, a network protocol
developer may elect to define a single protocol that spans two or more layers of
a reference model.

Figure 1-1 shows the layers of the OSI model and how the AppleTalk and TCP/
IP protocols provided with the Open Transport system software fit into this
model. See the chapter “TCP /IP Services” in this book for a comparison of the
OSI and TCP/IP reference models.

Basic Networking Concepts 1-9
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

1-10

Figure 1-1 The OSI model and Open Transport protocols
OSl Layers Examples
Application
— AFP
Presentation Tenet, FTP
SMTP, SNMP
Session ADSP, ASP, PAP

Transport | ATP, NBP, TCP, UDP
Network | IP, DDP
Data-link

Ethernet, Token Ring, FDDI drivers and hardware 1

Physical

I:I Not provided with Open Transport

:l Provided with Open Transport

Each layer of the OSI model has a specific purpose, as follows:

= The highest layer of the OSI model is the application layer. This layer allows
for the development of application software. Software written at this layer
benefits from the services of all the underlying layers.

= The presentation layer assumes that an end-to-end path or connection
already exists across the network between the two communicating parties,

Basic Networking Concepts
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

and it is concerned with the representation of data values for transfer, or the
transfer syntax.

= The session layer serves as an interface into the transport layer, which is
below it. The session layer allows for establishing a session, which is the
process of setting up a connection over which a dialog between two
applications or processes can occur. Some of the functions that the session
layer provides for are flow control, establishment of synchronization points
for checks and recovery during file transfer, full-duplex and half-duplex
dialogs between processes, and aborts and restarts.

s The transport layer isolates some of the physical and functional aspects of a
network from the upper three layers. It provides for end-to-end
accountability, ensuring that all packets of data sent across the network are
received and in the correct order. This is the process that is referred to as
reliable delivery of data, and it involves providing a means of identifying
packet loss and supplying a retransmission mechanism. The transport layer
may also provide connection and session management services.

= The network layer specifies the network routing of data packets between
nodes and the communications between networks, which is referred to as
internetworking.

= The data-link layer and the physical layer provide for connectivity. The
communication between networked systems can be via a physical cable
made of wire or optical fiber, or it can be via infrared or microwave
transmission. In addition to these, the hardware can include a network
interface controller (NIC), if one is used. The hardware or transport media
and the device drivers for the hardware comprise the physical layer.

The physical hardware provides nodes on a network with a shared data
transmission medium called a data link. The data-link layer includes both a
protocol that specifies the physical aspects of the data link, and the
link-access protocol, which handles the logistics of sending the data packet
over the transport medium.

Basic Networking Concepts 1-11
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

About Networking With Open Transport

1-12

Networking on the Macintosh is implemented through the Open Transport
system software. The Open Transport software provides an API that gives you
access to the services of the various protocols. The functions you use depend
not on the specific protocol you want to use, but on whether the protocol is
connection-oriented or connectionless, and whether it is transaction-based or
transactionless.

This section describes the architecture of Open Transport and discusses some
basic Open Transport features and concepts.

Open Transport Architecture

The Open Transport system software consists of a set of application interface
and utility routines (known collectively as the Open Transport API), a set of
software modules that implement networking protocols and other services,
and hardware drivers. Below the hardware drivers are networking and
communications hardware: cards, cables, and built-in ports. These components
are illustrated in Figure 1-2 and discussed further in the following sections.

About Networking With Open Transport
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

Figure 1-2 The basic architecture of Open Transport
Application
Open Transport API
li g ¢
Software Software
modules modules
Software Software Software Software Software
modules modules modules modules modules
y ¢ ¢ ¢ ¢ g
Software Software
modules modules
Drivers Drivers Drivers

!

1] R

- - - -
=mzR:) [RE:iEE
Communication hardware

Data transport media

About Networking With Open Transport

Draft. O Apple Computer, Inc. 4/30/96

1-13

1-14

CHAPTER 1

Introduction to Open Transport

Open Transport API

The Open Transport API consists of two types of functions: utility functions,
which are implemented in header files and software libraries; and interface
functions, which are implemented by the underlying software modules.
Because the interface functions are executed by the software modules, the same
function might operate somewhat differently depending on the specific module
or modules that executes it. Where such dependencies exist, they are described
in the chapter describing a particular protocol.

The Open Transport API is a superset of a standard API defined by the X/Open
Company, Ltd. The X/Open APl is called the X/Open Transport Interface, or
XTI. Both XTI and Open Transport are designed to be independent of the
underlying data transport provider; for example, you use the same functions to
send a packet of data whether the packet is being transferred by DDP over an
AppleTalk network or IP over Ethernet. Whereas XTI specifies functions only
for connectionless and connection-oriented protocols, Open Transport also
includes functions for transactionless and transaction-based protocols.

The set of functions you use and the sequence of functions you call depends on
the operation you want to perform and whether the protocol you want to use is
connectionless or connection-oriented, transactionless or transaction-based.

In accordance with XTI, the Open Transport API supports protocol options. An
option is a value of interest to a specific protocol. For example, an option might
enable or disable checksums or specify the priority of a datagram. The
available options and their significance are defined by each implementation of
each protocol. Every option has a default value, and you can almost always use
the default values and not specify any options. It is important to note that,
because each option is protocol dependent, specifying a nondefault value for
an option decreases or eliminates the transport independence of your
application. Protocol options are described throughout this book with the
protocol to which they apply. Option handling is described in the chapter
“Option Management” in this book.

The XTI specification defines a number of asynchronous events that indicate
occurrences such as the arrival of data. Open Transport includes all the
standard events defined by XTI, additional asynchronous events, plus
completion events that individual functions issue when they complete
asynchronous execution. You can poll for asynchronous events, but you cannot

About Networking With Open Transport
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

poll for completion events. The preferred method for handling all Open
Transport events is to write an event-handling callback function, called a
notifier function. Open Transport event handling and notifier functions are
described in detail in the chapter “Providers” in this book.

Software Modules

The software modules shown in Figure 1-2 on page 1-13 are implemented as
Streams modules. The Streams architecture is a UNIX® standard in which
protocols (and other service providers) are implemented as software modules
that communicate between each other using messages. Open Transport
conforms to the Transport Provider Interface (TPI) and Data Link Provider
Interface (DLPI) standards, which describe the content and ordering of the
messages between modules. In a Streams environment, all modules have the
following attributes:

= They process messages asynchronously. One module can send a message to
another module and then wait for a reply without interfering with any other
system activity.

= They (that is, all the Open Transport Streams modules) share a single
address space.

= They may never block; that is, if a module can’t complete an operation, it
must return with an error rather than indefinitely holding up processing.

Note that Figure 1-2 on page 1-13 shows a very simplified version of the actual
Streams architecture. A full AppleTalk or TCP/IP protocol stack has a
half-dozen modules that are interconnected.

You can write your own Streams modules to work with Open Transport. The
Open Transport TCP/IP software modules are based on the UNIX Streams
standard. For more information about Streams, see UNIX System V Release 4:
Programmer’s Guide: STREAMS.

Drivers and Hardware

The Open Transport Streams modules communicate with hardware drivers,
which in turn control the flow of data through communications cards or
built-in ports. Normally, the user selects which card or port to use through the
Chooser. Your application can use the default port for a particular protocol or
can configure Open Transport to use a specific port.

About Networking With Open Transport 1-15
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

Open Transport supports multihoming; that is, an individual node can have
more than one hardware device (ports or cards) for a given type of transport.
For example, a single computer can have two Ethernet cards, and the user can
select which card to use.

Providers, Endpoints, and Mappers

The concept of a provider is central to an understanding of Open Transport. A
provider is a set of software modules and drivers that provides a service to
clients of Open Transport. For example, when you open an ADSP connection,
Open Transport logically links a set of AppleTalk software modules, a
communications driver, and a card or port to create what is known as an ADSP
endpoint provider. The Open Transport software modules implement the Open
Transport API, which includes functions for three types of providers:

= endpoint providers
= mapper providers
= service providers

You use an endpoint provider to send and receive information over a data link.
Figure 1-3 illustrates an ASP endpoint provider.

1-16 About Networking With Open Transport
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

Figure 1-3 An Open Transport Provider

Application

Open Transport API

@ +—— Provider

Ethernet
driver

@ —y
SoEd

—
— 5

oooao

Ethernet card

&

Ethernet cable

About Networking With Open Transport 1-17
Draft. O Apple Computer, Inc. 4/30/96

1-18

CHAPTER 1

Introduction to Open Transport

In order to use an endpoint provider, you must first configure and open an
endpoint. An endpoint consists of a set of data structures, maintained by Open
Transport, that specify the components of the endpoint provider, and the
manner in which that provider is to operate (blocking or nonblocking,
synchronous or asynchronous, and so forth). An endpoint also maintains state
information and other information that Open Transport needs in order to
operate that provider.

The Open Transport endpoint functions provide an application programming
interface (API) to endpoint providers. When you configure an Open Transport
endpoint, you specify which protocol or set of protocols the provider is to use;
the highest-level protocol you specify for the endpoint provider determines
whether the transport mechanism is connectionless or connection-oriented, and
whether it is transactionless or transaction-based. For example, if you specify
ADSP as the highest-level protocol in the endpoint provider, the transport is
connection-oriented and transactionless.

See “Endpoints and Protocol Layering” on page 1-21 for more information on
the configuration of endpoint providers.

You use a mapper provider to relate network addresses to network node
names and to register and remove node names for networks that support this
ability. To use a mapper provider, you must configure and open a mapper, a set
of data structures that store information about the mapper provider for use by
Open Transport.

Mappers implement a standard interface for dealing with addresses. In order
to receive data over a network, a process must have a network address.
Whereas an address is typically a number of significance to the network
software, it is much easier for people using the network to refer to each
addressable entity by some name. Consequently, most networks include some
naming scheme and a facility that converts between names and addresses. A
process using an AppleTalk network must register its name on the network
using the Name-Binding Protocol (NBP), which it accesses through a mapper
provider.

You use service providers to handle features unique to a specific type of Open
Transport service. There is no special term used to refer to the data structures
maintained by Open Transport for a service provider analogous to an endpoint
or mapper.

About Networking With Open Transport
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

Because the concept of zones is not common to all protocol families, the
AppleTalk service provider API includes functions that deal with AppleTalk
zones. Similarly, the TCP/IP Domain Service Resolver (DNR) provides some
services specific to the TCP/IP protocol family. The TCP/IP service provider
functions provide an interface to the DNR.

Each provider supports some subset of the standard Open Transport functions,
depending on the nature of that provider; for example, an endpoint provider
implements different functions than a mapper provider. What’s more, a
connection-oriented transactionless endpoint provider implements different
functions than a connectionless transaction-based endpoint provider.

Open Transport provides some functions that you can use to control the way a
given endpoint or mapper provider operates. For example, you can control
whether a provider executes functions synchronously or asynchronously.

When you open an endpoint, mapper, or service , the open function returns a
provider reference, analogous to the file reference you get from the File
Manager when you open a file. You must specify that provider reference
whenever you want to execute a function related to that endpoint, mapper, or
service. For example, to send data, you specify the provider reference for the
endpoint you want to use.

About Networking With Open Transport 1-19
Draft. O Apple Computer, Inc. 4/30/96

1-20

CHAPTER 1

Introduction to Open Transport

C++ note

The C++ API for Open Transport includes a class called
TProvider that is the superclass for all provider-related
member functions. Endpoint functions are in class
TEndpoint, mapper functions are in class TMapper, and
service provider functions are in classes corresponding to
specific protocol stacks. For example, the classes
TAppleTalkServices and TInternetServices contain
AppleTalk-specific and TCP /IP-specific member functions.

In object-oriented programming parlance, endpoints,
mappers, and the data structures maintained by Open
Transport for service providers are all objects. An
endpoint, for example, is an object instantiating the class
TEndpoint. An endpoint contains all the data that Open
Transport needs to link together software modules,
drivers, and hardware for a specific endpoint provider. All
of the Open Transport API functions except the functions
that open providers and some utility functions are
included in the class definitions of the various classes of
providers.

You can call public member functions of the TProvider
class for provider objects of any type: these functions are
the general provider functions. Public member functions
defined in a subclass of the TProvider class (for example,
TEndpoint) can be called only for providers belonging to
that subclass—in this example, only from the TEndpoint
subclass. These functions are the type-specific provider
functions. Note that, like endpoints and mappers, each
kind of service (for AppleTalk, TCP/IP, and so on) derives
directly from the TProvider class; there is no common class
of services. O

Transport Independence

In contrast to earlier application programming interfaces (APIs) for AppleTalk,
in which each protocol had a separate and unique set of routines, Open
Transport provides a single set of functions that you can use with any protocol
or protocol family. The type of endpoint you open (connectionless or
connection-oriented, and transactionless or transaction-based) determines

About Networking With Open Transport
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

which functions you call to send and receive data, independent of the specific
protocol or protocol family you use.

For example, if you open a connectionless, transactionless endpoint, you use
the 0TSndUData function to send data. You use this function whether you are
using DDP, IP, or UDP. If you open a connection-oriented, transactionless
endpoint, on the other hand, you first establish a connection using the
0TConnect and 0TRcvConnect functions, and then use the 0TSnd function to send
data. You use these same functions whether you are using TCP, ADSP, or any
other Open Transport connection-oriented, transactionless protocol.

You can customize most Open Transport protocols by the specification of
option values. Because options are both protocol dependent and
implementation dependent, the use of any option values other than the
defaults makes your code less transport independent and less portable. Unless
you have a compelling reason to change an option value, don’t specify any
options. You can almost always use the default values provided by Open
Transport.

Although transport independence means that you can use the same API
regardless of the protocol or communcations hardware you want to use, it does
not free you from all knowledge of the transport type. When you open an
endpoint, you must specify the highest-level protocol in the endpoint provider,
and you must call the functions appropriate to the type of that protocol. For
example, although your application can use the same set of functions to send
data through either an ADSP or a TCP connection (that is, functions for a
connection-based transactionless protocol), you must specify which of these
protocols you want to use use when you open the endpoint. Furthermore, to
send data using ASP, you must use a different set of functions—for a
connection-oriented transaction-based protocol.

Endpoints and Protocol Layering

When you configure an Open Transport endpoint, you specify the highest-level
protocol to be used by that endpoint provider. Optionally, you can specify
other protocols and ports to be included in the endpoint provider. For example,
if you specify only ADSP, Open Transport uses the default underlying protocol
for ADSP, which is DDP, over the default AppleTalk port. However, you can
specify that ADSP is to use a specific Ethernet card as the port. The endpoint
provider consists of the software modules, drivers, and card or internal port
that are linked together to provide the service. The services provided by an
endpoint provider are an aggregate of the services performed by all the

About Networking With Open Transport 1-21
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

software modules and hardware pieces that make up the provider. For
example, if you specify ADSP to run over DDP through an Ethernet card, you
get a session opened and maintained by ADSP, with data encapsulated in DDP
packets, converted into digital electronic impulses by the Ethernet card, and
transmitted to a DDP address over an Ethernet cable.

Because the type of endpoint you open depends only on the highest-level
protocol in the endpoint provider, protocol layering does not affect the
transport independence of Open Transport. That is, you use the same functions
to open and maintain a connection and to send messages whether you are
using ADSP over DDP through Ethernet, or TCP over IP through token ring.

Deciding Which Protocol to Use

1-22

Each of the networking protocols available with Open Transport implements a
different set of services. This section provides a brief discussion of the uses of
each of the protocols included with the Open Transport system software on the
Macintosh computer. If you have Open Transport software modules provided
by other vendors than Apple Computer, Inc., you should refer to the
documentation that came with that software to determine its use.

If you have made provision for the user to select the protocol to be used for
communication, you do not need the information in this section. On the other
hand, if you are writing an application to perform a specific function, such as to
act as a data server, then your choice of protocol or protocols to use depends
primarily on your application’s needs. In that case, before you open an
endpoint, you must make several decisions:

= General purpose or special purpose

» Choice of protocol family

» High-level or low-level protocol

= Connection-oriented or connectionless
» Transaction-based or transactionless

This section discusses each of these choices in turn.

Deciding Which Protocol to Use
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

General Purpose or Special Purpose

Your choice of protocol is very simple if there is only one protocol that
performs the function you are interested in. For example, if you want to send a
print job directly to an AppleTalk printer, you must use the ter Access Protocol
(PAP); there is no other choice. On the other hand, if you want to transfer data
of a general nature, there are many protocols that can do the job. The following
sections describe the factors you can take into consideration to choose among
those protocols.

Choice of Protocol Family

There are two sets of protocols, or protocol families, included with the Open
Transport system software: AppleTalk and TCP/IP. In addition, other
developers can provide protocols and protocol families compatible with Open
Transport. You must decide which protocol family to use for a specific purpose.
For information on the use of other protocols, see the documentation that came
with the software.

AppleTalk is the proprietary networking technology of Apple Computer, Inc.
Every Macintosh computer that has ever been made includes AppleTalk
hardware and system software. If your application needs to communicate with
other Macintosh computers, AppleTalk is a natural choice. Note that the other
computers need not be running Open Transport; the nodes must be running
the same protocol, but need not be using the same implementation of the
protocol.

TCP/1IP, on the other hand, is the standard protocol family used by the
Worldwide Internet and by many networks owned by businesses and other
organizations. Many networking applications running on Macintosh
computers that are not using Open Transport cannot communicate over TCP/
IP networks. However, if you wish to communicate with the Worldwide
Internet without going through a gateway, or if you want to connect to a
network that uses TCP/IP protocols, choose one of the Open Transport TCP /IP
protocols.

High-Level or Low-Level Protocol

Figure 1-1 on page 1-10 shows the protocols provided by Apple Computer, Inc.
with Open Transport and where they fit in the OSI model. The UDP protocol,
which is part of the TCP/IP protocol family, is a connectionless transactionless

Deciding Which Protocol to Use 1-23
Draft. O Apple Computer, Inc. 4/30/96

1-24

CHAPTER 1

Introduction to Open Transport

protocol that provides a minimal amount of error detection in the form of a
checksum calculation. If UDP finds that the checksum calculated at any point
in the routing process does not match the one calculated when the packet was
sent (and stored in the message header), it discards the packet without
informing either the sender or receiver of the event.

The other high-level protocols shown in Figure 1-1 provide error checking and
error recovery services, including checking for correct packet sequence and
retransmission of lost or damaged packets.

If you use a high-level protocol that provides for reliable delivery of data and
error recovery, you need not implement these services yourself. On the other
hand, these protocols generate somewhat more network traffic than the
lower-level protocols, including handshake and control signals, signals to
maintain sessions, and retransmitted packets.

The network-layer protocols IP and DDP provide best-effort delivery between
nodes on a network. They are connectionless protocols and do not correct for
corruption of data, packet loss, or incorrect packet sequencing. They generate
the least possible amount of network traffic for the data they transmit. These
protocols are appropriate for applications that do not require highly accurate
data transmission and for applications that provide their own error recovery. If
you want to implement your own protocol stack using an AppleTalk or TCP/IP
internet, these are the protocols to use.

Connection-Oriented or Connectionless

Connection-oriented protocols ensure reliable delivery of data and do not
require you to repeat the recipient’s address or repeat the connection process
for the duration of the session. Once you have established a connection, the
protocol maintains the connection, informing you if it has closed for any
reason. Because of the reliability of connection-oriented protocols, they are a
good choice whenever you have a lot of data to exchange over a limited period
of time. However, in order to maintain the connection, these protocols
sometimes send control signals, which result in increased network traffic.

Open Transport AppleTalk offers three connection-oriented protocols: ADSP,
ASP, and PAP. ADSP is a full-duplex transactionless protocol, well suited to the
transfer of large amounts of data. ADSP also includes features that let you
authenticate the identity of the party at the other end of the connection and
send encrypted data, which is then decrypted at the other end. The
authentication and encryption features of ADSP are referred to as AppleTalk
Secure Data Stream Protocol (ASDSP).

Deciding Which Protocol to Use
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

ASP is a transaction-based protocol, best used to implement workstation
applications that require an asymmetrical dialog with a server. ASP provides
for the setting up, maintaining, and closing down of a session between a
workstation and a server. ASP is a client of ATP.

PAP is a transactionless session-layer protocol and a client of ATP. It is intended
primarily for communication with Apple Computer’s printer products.

Open Transport TCP/IP provides one connection-oriented protocol, TCP,
which is a transactionless protocol. TCP, like ADSPF, provides highly reliable
data delivery suitable for the transfer of large amounts of data.

Transaction-Based or Transactionless

A transaction-based protocol is well suited to many server-client interactions
where the client requests services and there are a limited number of ways in
which the server can respond. File servers and printers are examples of servers
that can use these protocols.

Open Transport AppleTalk includes two transaction-based protocols, ATP
and ASP. ATP is connectionless, and ASP is connection-oriented. ASP is a client
of ATP.

An ATP transaction request must fit in a single packet; however, the response
can contain up to eight packets. ATP transactions are an efficient means of
transporting small amounts of data across the network. ATP provides a reliable
loss-free transport service.

You should use ATP

= if you want to send a small amount of data

= if your application requires delivery of all packets

= if your application can tolerate a minor degree of performance degradation

= if you do not want to incur the overhead and more extensive performance
degradation involved in maintaining a session

A workstation application that requires a state-dependent service should use
ADSP or ASP instead of ATP. State dependence means that the response to a
request is dependent on a previous request. For example, before a workstation
application connected to a file server can read a file, it must have first issued a
request to open the file. When a dialog is state dependent, all requests must be
delivered in order and duplicate packets must not be sent; ADSP and ASP
provide for this.

Deciding Which Protocol to Use 1-25
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 1

Introduction to Open Transport

An ATP transaction-based request, such as a workstation application
requesting a server to return the time of day, is independent of other requests
and not state dependent.

The Open Transport system software provide by Apple Computer, Inc. does
not include any transaction-based protocols for the TCP/IP protocol family.

Miscellaneous Events

1-26

Open Transport AppleTalk maintains a service called the miscellaneous events
service that you can use to ensure that your application is not adversely affected
when an AppleTalk transition occurs. An example of an AppleTalk transition is
an AppleTalk router coming online or a zone name changing. When one of
these events occurs, Open Transport sends a message to the notifier functions
of all endpoints that have registered for reception of miscellaneous events.

Your application can register itself to receive miscellaneous events by using the
0TIoct1 function, as described in the chapter “Providers” in this book.

Miscellaneous Events
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

Contents

About Providers 2-3

Provider Functions 2-5
Modes of Operation 2-6
Provider Events 2-7

Using Providers 2-8
Controlling a Provider’s Modes of Operation ~ 2-8
Specifying How Provider Functions Execute 2-9
Setting a Provider’s Blocking Status 2-10
Setting a Provider’s Send-Acknowledgment Status 2-10
Sending and Receiving Data 2-11
Using Notifier Functions to Handle Provider Events 2-13
Transferring a Provider’s Ownership 2-16
Closing a Provider ~ 2-17
Providers Reference 2-17
Constants and Data Types 2-17
Event Codes 2-17
The TNetbuf Structure ~ 2-23
Functions 2-24
Opening and Closing Providers 2-24
O0TTransferProviderOwnership 2-25
0TWhoAmI 2-26
0TCloseProvider 2-27
Controlling a Provider’s Mode of Operation ~ 2-28
0TSetSynchronous 2-29
0TSetAsynchronous 2-30
0TIsSynchronous 2-31
0TCancelSynchronousCalls 2-32

Contents 2-1
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

0TSetBlocking 2-33
0TSetNonBlocking 2-34
OTIsNonBlocking 2-35
OTAckSends 2-36
0TDontAckSends 2-38
0TIsAckingSends 2-39

Installing and Removing a Notifier Function
OTInstallNotifier 2-40
OTRemoveNotifier 2-42

Sending Module-Specific Commands 2-43
0TIoct] 2-43

Application-Defined Functions 2-45

MyNotifierCallbackFunction 2-45

Contents
Draft. O Apple Computer, Inc. 4/30/96

2-40

CHAPTER 2

Providers

This chapter describes providers, software entities that offer data-oriented
services, and introduces the main types of providers. It also discusses the use of
general provider functions, which you can use with any provider regardless of
its type. You use these functions to

= open and close providers

= set a provider’s mode of operation

= cancel synchronous processing

= issue a command directly to a Streams module underlying a provider

Later chapters in this book describe each type of provider in detail. Although
the functions you use to open providers are general provider functions, they
are included in the chapter describing individual providers. This chapter
describes only the function you use to close a provider because you use the
same function for all types of providers.

Before you read this chapter, you should read the chapter “Introduction to
Open Transport” in this book. After reading this chapter, you can either read
the chapter describing the provider whose services you are interested in. In
order to use the functions described in this chapter, you must first use the
0TInitOpenTransport function to initialize Open Transport. This function is
described in the chapter “Configuration Management” in this book.

About Providers

A provider is a layered set of protocols, implemented by Streams modules, that
provides some kind of data-oriented service. That service might be
implementing a networking protocol, encrypting data, filtering data, and so on.
When you configure a provider, you can layer the modules that implement the
provider to create an arbitrarily complex service for client applications. For
example, you can place an encryption module above the AppleTalk Data
Stream Protocol (ADSP) module, which is placed above an EtherTalk module.
This combination would provide a networking stream of data that was secure
from snooping on the network.

About Providers 2-3
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

Open Transport defines three main kinds of providers:
= endpoint providers

= mapper providers

= service providers

An endpoint provider offers a service that creates connections and moves data
from one logical address to another. A mapper provider offers services that
you use to associate, or “map,” network entity names with network addresses.
A service provider lets you perform tasks that are specific to a particular
protocol, such as AppleTalk or TCP/IP. There is one type of service provider
for each protocol family that Open Transport supports.

In the normal course of events you do not communicate directly with the
Streams modules that make up a provider. For example, to use the services of
an endpoint provider, you must open an endpoint and use the functions
defined in the Open Transport application programming interface (API) for
endpoints. The Open Transport API shields your application from the details of
the provider implementation, allowing your application to run with little or no
change, even when the implementation of the provider is changed, updated, or
moved from one platform to another.

To use the services offered by a provider, you must initialize Open Transport
and then call the function that opens the provider. When that function returns,
it passes back to you a reference to the provider you have just created. A
provider reference is like a file handle or a driver reference number. It
associates a function called from your application with a specific provider that
must implement the function; you pass the provider reference as a parameter
to all provider functions. The data type of a provider reference depends on the
type of the provider (endpoint reference, mapper reference, AppleTalk service
reference, and so on).

You can open one provider or many. For example, a server application might
open many providers and use them concurrently. The number of providers you
can create is limited mainly by the availability of system resources, such as
memory. The memory used to create a provider comes partly from your
application heap (approximately 8 bytes) but mostly from the system heap. If
you allocate data structures while using a provider, the memory for the data
structures is allocated entirely from your application heap.

About Providers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

C++ Note

Providers are objects, and each main type of provider is a class.
Specifically, endpoints, mappers, and the service providers are
all subclasses of the TProvider class. Each type of object has a
defined C++ interface. O

Provider Functions

Functions that manipulate providers are known as provider functions. Some
provider functions can manipulate providers of any type. These are called
general provider functions and they are documented in the reference section
of this chapter. You use general provider functions to

= getor set a provider’s default mode of operation, which determines
whether provider functions execute synchronously or asynchronously,
whether a provider can wait to send or receive data, and whether functions
that send data acknowledge having sent the data.

= install and remove a notifier callback function, which the provider uses to
pass information to your application

= send a module-specific command, which allows you to communicate
directly with the Streams modules that make up your provider

= close a provider

In addition to the general provider functions, each type of provider has
type-specific provider functions; these functions work with only that particular
type of provider. For example, endpoint functions work only with endpoint
providers, and mapper functions work only with mapper providers. Each kind
of service provider (for AppleTalk, TCP/IP, and so on) has its own type-specific
provider functions. There are no type-specific provider functions that work
with more than one type of service provider.

Provider functions that accept a provider reference of type ProviderRef are
general: they accept any other type of provider reference as well. But functions
that require a type of provider reference other than ProviderRref (for example,
EndpointRef) are type-specific: they accept only that type of provider reference.

About Providers 2-5
Draft. O Apple Computer, Inc. 4/30/96

2-6

CHAPTER 2

Providers

C++ Note

You can call public member functions of the TProvider
class from any provider: these functions are the general
provider functions. Public member functions defined in a
subclass of the TProvider class (for example, TEndpoint) can
be called only from providers belonging to that subclass
(in this example, only from the TEndpoint subclass): these
are the type-specific provider functions. Note that, like
endpoints and mappers, each kind of service provider (for
AppleTalk, TCP/IP, and so on) derives directly from the
TProvider class; there is no common class of service
providers. O

You cannot call most provider functions or other Open Transport functions at
interrupt time. You cannot include these functions in any interrupt routine
from an external device, VBL task, Time Manager task, or Deferred Task
Manager task. You can only call these functions at system task time (primary
interrupt level) or at deferred task time (secondary interrupt level) scheduled
by the Open Transport function 0TScheduleDeferredTask. For more information
and a list of those functions you can call from an interrupt, see the chapter
“Process Management” in this book.

Modes of Operation

For each provider, you can use general provider functions to specify
» how provider functions execute

In synchronous mode, provider functions return only when they complete
execution. In asynchronous mode, they return as soon as they are queued
for execution. Applications running under an operating system that does not
use threads, can avoid awkward delays and generally improve performance
by calling functions asynchronously.

» the provider’s blocking status

A provider’s blocking status affects how functions that send and receive
data behave when they must wait to complete an operation. If a provider is
blocking, it waits for as long as it takes to send or receive data. If a provider
is nonblocking, the provider attempts to send or receive data and, if it
cannot do so immediately, it returns with a result indicating why it could not
complete the operation.

About Providers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

s the provider’s send-acknowledgment status

A provider’s send-acknowledgment status determines whether endpoint
functions that send data make an internal copy of the data before sending it
and whether they advise the provider when the data has actually been sent.
Open Transport ignores the send-acknowledgment status for mapper,
AppleTalk Services, and TCP/IP providers.

For more information about how you use general provider functions to control
a provider’s mode of operation, see the section “Controlling a Provider’s
Modes of Operation” on page 2-8.

Provider Events

Open Transport defines two kinds of events called provider events. These
events are unique to the Open Transport architecture and not events in the
usual Macintosh sense: they are not processed by the Event Manager, and they
have no associated event record. Rather, Open Transport uses provider events
to inform your application that something has occurred which demands your
immediate attention or to signal the fact that a function executing in
asynchronous mode has completed. The first kind of event is called an
asynchronous event; the second kind of event is called a completion event. In
this book, the term event refers to a provider event, except where noted
otherwise.

A provider uses asynchronous events to notify your application that data has
arrived or that a request for a connection or disconnection is pending. Most
asynchronous events defined for Open Transport have equivalents in the X/
Open Transport Interface (XTI), from which the Open Transport interface
derives. XTI does not define completion events. As just mentioned, a provider
uses completion events to notify your application that an asynchronous
function has finished executing. Some functions are inherently synchronous
and have no corresponding completion event. For example, if an endpoint
provider is in asynchronous mode and you execute the 0TGetEndpointState
function, the function returns information about the state of the endpoint
immediately. The description of a function indicates whether the function
behaves differently in asynchronous mode.

A provider event is identified by a provider event code. These are listed and
described in the event codes enumeration beginning on page 2-17. All provider
event codes begin with the prefix T_, as in T_DATA. Provider event codes for
completion events end in the suffix COMPLETE, as in T_BINDCOMPLETE. Codes for
asynchronous events have no uniform suffix.

About Providers 2-7
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

In general, to receive notice of provider events, you must provide a notifier
function and install it for the provider. A notifier function is a function that
you write and that the provider can call when an event occurs. When the
provider calls this function, it uses the function’s parameters to pass back
information about the event that occurred, and if this is a completion event, it
also passes back additional information about the result of the function that
completed and a pointer to any other information passed back by the function.
The section “Using Notifier Functions to Handle Provider Events,” beginning
on page 2-13 provides additional information about notifier functions and the
issues involved in asynchronous processing. You can also refer to
“Application-Defined Functions,” beginning on page 2-45 for a description of
the notifier function.

Using Providers

2-8

This section explains how you obtain and change a provider’s mode of
operation, it introduces the TNetBuf structure, which is universally used in
Open Transport to transfer data, it provides more detailed discussion of
asynchronous processing and the use of notifier functions, and it explains how
you close a provider.

In addition to the functions used to set a provider’s mode of operation and to
close a provider, general provider functions include the 0TIoct1 function,
which you can use to communicate directly with a Streams module
implementing a networking protocol. For more information, see the description
of the function in the reference section to this chapter.

Controlling a Provider's Modes of Operation

A provider’s mode of operation determines how provider functions execute
and determines the behavior of provider functions that send and receive data.
You can control a provider’s mode of operation by calling general provider
functions to specify whether provider functions execute synchronously or
asynchronously, whether provider functions can block, and whether they can
acknowledge sends. The following three sections provide additional
information about how you can obtain a provider’s current mode of operation
and how you can change it.

Using Providers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

Specifying How Provider Functions Execute

For each provider, you can control whether provider functions run
synchronously or asynchronously. When you open a provider, you set its
default mode of execution. For example, when you open an endpoint provider,
you can use either the function 0TOpenEndpoint or 0TAsyncOpenEndpoint. If you
open an endpoint provider using the 0TAsyncOpenEndpoint function, Open
Transport creates the provider and sets the default execution mode for all the
provider’s functions to asynchronous.

A provider’s default mode of execution remains in effect until you change it by
calling either the 0TSetSynchronous function or the 0TSetAsynchronous function.
The new mode remains in effect until you change the mode again. A provider’s
mode of execution affects only that provider. If you use two or more providers,
they need not operate in the same mode.

In general, you should use providers in asynchronous mode. Although you can
call all of a provider’s functions synchronously, doing so generally results in a
poor user experience because the user’s system can do nothing else while a
function is executing. This is especially likely to happen when heavy network
traffic prevents a function that is sending or receiving data from completing.
However, asynchronous processing does require some additional work: you
must make sure that memory you have allocated for a function’s output
parameters is persistent and you must use some sort of mechanism to
determine when the function has actually completed. These issues are taken up
in the section “Using Notifier Functions to Handle Provider Events,” beginning
on page 2-13.

If you plan to call provider functions in synchronous mode, you should avoid
doing so when you don’t know how long it might take for a function to
complete or when the function is being called from a function that executes at
interrupt time.

The return behavior of certain provider functions is controlled not only by a
provider’s mode of execution but also by the provider’s blocking status,
described in the following section. Changing a provider’s mode of execution
does not change its blocking status.

Using Providers 2-9
Draft. O Apple Computer, Inc. 4/30/96

2-10

CHAPTER 2

Providers

Setting a Provider's Blocking Status

A newly created provider does not block, regardless of which Open Transport
function created it. After a provider is created, you can change its blocking
status as often as you like. A provider’s blocking status affects only that
provider.

= You use the 0TSetBlocking function to set a provider’s mode of operation
to blocking.

= You use the 0TSetNonBlocking function to set a provider’s mode of operation
to nonblocking.

= You use the 0TIsNonBlocking function to determine whether a
provider blocks.

If a provider is nonblocking, provider functions that cannot complete send or
receive operations return an error indicating why the operation could not
complete. The result returned might be

» KEAGAINErr or kEWOULDBLOCKErr, indicating that the function would have to be
queued before it could execute

= kOTNoDataErr, indicating that data has not yet arrived

= kOTFlowErr, indicating that network traffic is too heavy to allow immediate
execution

In all these cases, you should call the function again.

Setting a Provider's Send-Acknowledgment Status

You can control the behavior of provider functions that send data by specifying
that a provider acknowledge sends. For now, you can only specify that
endpoint providers acknowledge sends.

By default, providers do not acknowledge sends. This means that when you
use a function that sends data, the provider copies the data into an internal
buffer and then sends the data. Once the provider has copied the data into its
own buffer, it releases the buffer you have allocated for the data. As soon as the
function returns, you can change the contents of your buffer—even if the
provider has not yet sent the data it copied.

If you use the 0TAckSends function to specify that the endpoint provider
acknowledge sends and you call a function that sends data, the endpoint
provider does not copy data from your buffer before sending it. Instead it reads

Using Providers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

data directly from your buffer while sending. For this reason, you must not
change the contents of your buffer until the endpoint provider is no longer
using it. Sometimes, particularly if the endpoint is in blocking mode, a send
operation can be delayed. The provider lets you know that it has finished using
the buffer by calling your notifier function and passing T_MEMORYRELEASED for
the code parameter, a pointer to the buffer that was sent in the cookie
parameter, and the size of the buffer in the result parameter.

Only endpoint provider functions are affected by your calling the 0TAckSends
and 0TDontAckSends functions. For additional information, see the discussion of
an endpoint’s mode of operation in the chapter “Endpoints” in this book.

Sending and Receiving Data

Most provider functions that transfer data pass a parameter of type TNetbuf
that specifies the size and location of user data. Such data is usually an address,
option information, or actual data that you want to transfer. You can think of
the TNetbuf structure as Open Transport’s universal bucket, used to hold and
pass on different kinds of information. Figure 2-1 shows how the TNetbuf
structure refers to data in memory.

Using Providers 2-11
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

Figure 2-1 The TNetbuf structure

Session ZIP | PAP ADSP

Transport | ATP | NBP
]]
Network DDP
i)
Data-link Standard link-access Streams modules
g 3 48
Physical LocalTalk Ethernet Token ring FDDI

The structure is composed of three fields: the buf field, the 1en field, and the
maxlen field. The buf field contains the beginning address of the data; the Ten
field specifies the size of the data; and the max1en field specifies the maximum
size the data could take up. How you use this structure depends on whether
the structure specifies an input or output parameter:

= If you are sending information (the structure is used to specify an input
parameter), you must allocate a buffer and initialize it to contain the data
you want to send. Then you must set the buf field to point to the buffer and
set the Ten field to specify the size of the data.

= If you are receiving information (the structure is used to specify an output
parameter), you must allocate a buffer into which the function can place the
information when it returns. Then you must set the buf field to point to the
buffer and set the max1en field to specify the maximum size of the data that
could be placed in the buffer. When the function returns, it sets the 1en field
to the actual size of the data.

If you are using an endpoint provider, Open Transport also allows you to send
noncontiguous data. If you need to do this, you use an 0TData structure to

2-12 Using Providers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

specify the size and location of the data. For more information, see the chapter
“Endpoints” in this book.

If you want to do a no-copy receive (that is, to receive data without doing the
usual extra buffer copying involved in receiving data), you use a special
0TBuffer structure that specifies the size and location of the data. For more
information, see the chapter “Endpoints” in this book.

Using Notifier Functions to Handle Provider Events

When provider functions execute asynchronously, you can continue processing
without having to wait for a function to complete execution. In some cases, you
might need to know when the function has finished executing, either because
further processing depends on the results of that operation or because you
need to use memory you have allocated for that function. In order to meet this
need, the Open Transport architecture defines completion events, which are
generated by a provider when an asynchronous function completes execution.
To pass the event to your application as well as other information about the
function that has completed, the provider calls a notifier function, that you
have written and installed for that provider. The provider uses the notifier’s
parameters to pass the following information back to your application:

= an event code identifying the function that has completed
s the function result
= a pointer to additional information that the function is returning

This parameter is called the cookie parameter. For example, when you call a
function that assigns an address to an endpoint, you can request a particular
address. When the function returns, it passes back the address that is
actually assigned to the endpoint. If you call the function asynchronously,
this information is referenced by the cookie parameter.

= a context pointer for your use
You define this pointer when you install the notifier function. When the
provider calls the notifier, it passes this pointer back to you.

If you open a provider in asynchronous mode, you install a notifier function by
passing a pointer to it in one of the parameters to the function used to open the
provider. If you open a provider in synchronous mode, you must call the
0TInstallNotifier function to install the notifier. To remove a notifier, call the
0TRemoveNotifier function. If you want to change notifiers, you must call the

Using Providers 2-13
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

0TRemoveNotifier function to remove the old notifier, and then call the
0TInstallNotifier function to install the new notifier.

You are responsible for the contents of a notifier function. Typically, such a
function tests to see whether the function that just completed has returned an
error. If it has not, it uses a switch statement to transfer control to different
subroutines, depending on the event code passed to the notifier. Listing 2-1
shows the skeleton of a notifier function used to handle events for an endpoint
that is being used to accept connection requests. As you can see, the notifier
does not need to handle every completion event, just those that you expect to
happen and that have meaning for the provider you are opening. For a more
detailed discussion of this code fragment, see the section describing
connection-oriented endpoints in the chapter “Endpoints” in this book.

You can use a notifier function to handle asynchronous events as well as
completion events. A provider uses asynchronous events to inform your
application that data has arrived or that a connection or disconnection request
is pending. Endpoint providers have the option of using an endpoint provider
function to poll for these events, but all other providers must use the notifier
function to respond to asynchronous events. The method used is the same as
for completion events. You must include case statements in the notifier that are
pertinent to the asynchronous events you expect to receive.

Listing 2-1 A notifier function

2-14

pascal void MyConnectorEventHandler(EndpointRef *1istenEP,
OTEventCode event, OTResult result, void* cookie)

{

// set the global error result, only if result is negative
if (result < 0)
gOTErr = result;
else
gOTErr = kOTNoError;

switch (event)
{
case T_OPENCOMPLETE:
// set flag that the listener endpoint has
// completed processing
gAsyncProcessActive = false;

Using Providers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

if (result == kOTNoError)
gListenConnectEP = (EndpointRef)cookie;
break;

case T_BINDCOMPLETE:
break;

case T_LISTEN:

// don't expect to get a connect request on this endpoint
break;

case T_ACCEPTCOMPLETE:
break;

case T_ORDREL:

case T_DISCONNECT:

case T_DISCONNECTCOMPLETE:

// decrement our use counter here
gListenT_LISTENcnt--;
break;

case T_RESET:
break;

default:
break;

The provider calls your notifier function at deferred task time or at system task
time. This means that the routines called from your notifier

= must be reentrant

= cannot move memory

= can’t depend on validity of handles to unlocked blocks

= should not perform time-consuming tasks

= should not be synchronous

= cannot call Open Transport functions in synchronous mode

The only exception to these rules occurs when you are responding to the event
kOTProviderWillClose. See the event codes enumeration beginning on page 2-17
for additional information.

Using Providers 2-15

Draft. O Apple Computer, Inc. 4/30/96

2-16

CHAPTER 2

Providers

If you execute provider functions asynchronously, you must also take special
care about the duration of the function’s variables. A function that is executed
asynchronously returns immediately, and the stack frame of the function that
called it might be torn down before you have had a chance to retrieve the
information returned in the parameters to the asynchronous function (using
the notifier function’s cookie parameter). If these parameters are local variables
in the calling function, the information passed back by the asynchronous
function is lost. To avoid this situation, you need to write the function that calls
the asynchronous function in such a way that the memory pointed to by

its parameters is not overwritten. For example, you could make these

variables global.

Transferring a Provider’'s Ownership

Open Transport keeps track of the owner of each provider, and when a client
dies or quits without closing all of its outstanding providers, Open Transport
attempts to close them on behalf of the client. Every shared library, code
resource, or program that creates an endpoint, or uses one of the endpoint
functions that allocate memory on behalf of the client, is a client of Open
Transport. For ASLM shared libraries and applications, Open Transport can
clean up after the library or application easily. For CFM shared libraries,
however, the client must call C1oseOpenTransport before terminating (this can be
done by making CloseOpenTransport the termination procedure for the CFM
library).

Although it’s not a frequent occurrence, there may be times when it is not
convenient for you to lose access to a provider. For example, if you are still
using a provider created by a shared library when that shared library is
unloaded or you are still using a provider reference passed by another
application when that application quits, you will find yourself using invalid
references unexpectedly.

In cases where you do not want Open Transport to close a given provider, you
can define yourself as its new owner with the 0TTransferProviderOwnership
function (page 2-25). You need to obtain the previous owner’s client ID before
the client terminates, and then pass it to Open Transport along with the
provider reference for the provider. Open Transport allocates a new provider
reference and returns the new reference to you. The old provider reference is
then obsolete and should not be used.

Using Providers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

Closing a Provider

There are two instances in which you need to close a provider:
= when you are through using the services offered by a provider

You do this by calling the 0TCToseProvider function and passing the provider
reference of the provider you wish to close.

= inresponse toa kOTProviderWillClose event

Closing a provider deletes all memory reserved for it in the system heap,
deletes its resources, and cancels any provider functions that are currently
executing. If the provider is in asynchronous mode, it is your responsibility
to make sure that all outstanding functions have completed before you close
the provider.

If you must close the provider in response to a k0TProviderWil1Close event,
note that Open Transport issues this event only at system task time. This means
that you can set the endpoint to synchronous mode (from within the notifier
function) and call functions synchronously to do whatever clean up is
necessary before you return from the notifier.

Providers Reference

This section describes general provider data types and functions, which you
can use with providers of any type.

Constants and Data Types

Event Codes

This section describes the constants and data types that you can use with
general provider functions.

Your application can include a notifier function that the provider calls to
inform you that an asynchronous function has completed or that an
asynchronous event has occurred. The provider passes an event code for the
function’s code parameter. The event code specifies the name of the

Providers Reference 2-17
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

asynchronous function that has completed or the name of an asynchronous
event that has occurred. The provider can also pass information using the
result and cookie parameters to the notifier function. Normally, if the provider
calls your notifier because an asynchronous function has completed, the result
parameter contains the result code for the function and the cookie parameter
contains additional information whose meaning varies with the function called.
For example, if you call the 0TAsyncOpenEndpoint function, the cookie parameter
would contain the endpoint reference for the endpoint provider you just
opened.

Most of the codes specified by the event codes enumeration are used by
endpoint providers and relate to the use of endpoint functions. You might need
to read the “Endpoints” chapter in this book to make sense of the following
constant name descriptions.

The constant names that the provider can use for the event code are given by
the following enumeration:

enum {
T_LISTEN (0TEventCode)0x0001,
T_CONNECT (0TEventCode)0x0002,
T_DATA (0TEventCode)0x0004,
T_EXDATA (0TEventCode)0x0008,
T_DISCONNECT (0TEventCode)0x0010,
T_ERROR (0TEventCode)0x0020,
T_UDERR (0TEventCode)0x0040,
T_ORDREL (0TEventCode)0x0080,
T_GODATA (0TEventCode)0x0100,
T_GOEXDATA (0TEventCode)0x0200,
T_REQUEST (0TEventCode)0x0400,
T_REPLY (0TEventCode)0x0800,
T_PASSCON (0TEventCode)0x1000,
T_RESET (0TEventCode)0x2000,
T_BINDCOMPLETE = (0TEventCode)0x20000001,
T_UNBINDCOMPLETE = (0TEventCode)0x20000002,
T_ACCEPTCOMPLETE = (0TEventCode)0x20000003,
T_REPLYCOMPLETE = (0TEventCode)0x20000004,
T_DISCONNECTCOMPLETE = (0TEventCode)0x20000005,
T_OPTMGMTCOMPLETE = (0TEventCode)0x20000006,
T_OPENCOMPLETE = (0TEventCode)0x20000007,
T_GETPROTADDRCOMPLETE = (0TEventCode)0x20000008,
T_RESOLVEADDRCOMPLETE = (0TEventCode)0x20000009,
2-18 Providers Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

T_GETINFOCOMPLETE
T_SYNCCOMPLETE
T_MEMORYRELEASED
T_REGNAMECOMPLETE
T_DELNAMECOMPLETE
T_LKUPNAMECOMPLETE
T_LKUPNAMERESULT
kOTProviderIsDisconnected
kOTProviderIsReconnected

(0TEventCode
(0TEventCode
(0TEventCode
(0TEventCode
(0TEventCode
(0TEventCode
(0TEventCode

0x2000000A,
0x20000008B,
0x2000000C,
0x2000000D,
0x2000000E,
0x2000000F,
0x20000010,
(OTEventCode)0x23000001,
(OTEventCode)0x23000002.

)
)
)
)
)
)
)
)
)
)
)
)

kOTProviderWillClose = (0TEventCode)0x24000001,
kOTProviderIsClosed = (0TEventCode)0x24000002,
kOTConfigurationChanged = (0OTEventCode)0x26000001,

Vs

Constant descriptions

T_LISTEN

T_CONNECT

T_DATA

T_EXDATA

T_DISCONNECT

Providers Reference

A connection request has arrived. Call the 0TListen
function to read the request.

The passive peer has accepted a connection that you
requested using the 0TConnect function. Call the
0TRcvConnect function to retrieve any data or option
information that the passive peer has specified when
accepting the function or to retrieve the address to which
you are actually connected. The cookie parameter to the
notifier function is the sndCa11 parameter that you
specified when calling the 0TConnect function.

Normal data has arrived. Depending on the mode of
service you are using, you can call the 0TRcvUData function
or the 0TRcv function to read it. Continue reading data
until the function returns with the k0TNoDataErr result; you
do not get another indication that data has arrived until
you have read the entire unit.

Expedited data has arrived. Use the 0TRcv function to read
it. Continue reading data by calling the 0TRcv function
until the function returns with the k0TNoDataErr result; you
do not get another indication that data has arrived until
you have read the entire unit.

A connection has been torn down or rejected. Use the
0TRcvDisconnect function to clear the event.

2-19

Draft. O Apple Computer, Inc. 4/30/96

2-20

CHAPTER 2

Providers

T_UDERR

T_ORDREL

T_GODATA

T_GOEXDATA

T_REQUEST

T_REPLY

T_PASSCON

T_RESET

Providers Reference

If the event is used to signify that a connection has been
terminated, the cookie parameter to the notifier is NULL.

If the event indicates a rejected connection request, the
cookie parameter to the notification routine is the same as
the sndCal1 parameter that you passed to the 0TConnect
function.

The provider was not able to send the data you specified
using the 0TSndUData function even though the function
returned successfully. You must call the 0TRcvUDErr
function to clear this event and determine why the
function failed.

The remote client has called the 0TSnd0OrderlyDisconnect
function to initiate an orderly disconnect. You must call the
0TRcvOrderlyDisconnect function to acknowledge receiving
the event and to retrieve any data that might have been
sent with the disconnection request.

Flow-control restrictions have been lifted. You can now
send normal data.

Flow-control restrictions have been lifted. You can now
send expedited data.

A request has arrived. Depending on the mode of service
you are using, you can call the OTRcvRequest function or
the OTRcvURequest function to receive it. You must
continue to call the function until it returns with the
kOTNoDataErr result.

A response to a request has arrived. Depending on the
mode of service you are using, you can call the 0TRcvReply
function or 0TRcvUReply function to receive it. You must
continue to call the function until it returns with the
kOTNoDataErr result.

When the 0TAccept function completes, the endpoint
provider passes this event to the endpoint receiving the
connection (whether that endpoint is the same as or
different from the endpoint that calls the 0TAccept
function.) The cookie parameter contains the endpoint
reference of the endpoint that called the 0TAccept function.

A connection-oriented endpoint has received a reset from
the remote end and has flushed all unread and unsent

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

data. This only occurs for some types of endpoints, and
generally leaves the endpoint in an unknown state.

T_BINDCOMPLETE The 0T81ind function has completed. The cookie parameter
contains the retAddr parameter of the bind call.

T_UNBINDCOMPLETE The 0TUnbind function has completed. The cookie
parameter is meaningless.

T_ACCEPTCOMPLETE The 0TAccept function has completed. The cookie
parameter contains the endpoint reference of the endpoint
to which you passed off the connection.

T_REPLYCOMPLETE The 0TSndUReply or 0TSndReply functions have completed.
The cookie parameter contains the sequence number of the
request retrieved with the 0TRcvURequest or 0TRcvRequest
function.

T_DISCONNECTCOMPLETE
The 0TSndDisconnect function has completed. The cookie
parameter contains the call parameter of the
0TSndDisconnect function.

T_OPTMGMTCOMPLETE The 0TOptionManagement function has completed. The
cookie parameter contains the ret parameter that you have
passed to the function.

T_OPENCOMPLETE An asynchronous call to open a provider has completed.
The cookie parameter contains the provider reference.

T_GETPROTADDRCOMPLETE
The 0TGetProtAddress function has completed. The cookie
parameter contains the peerAddr parameter that you
passed to the 0TGetProtocolAddress function. If you passed
NULL for that parameter, the cookie parameter contains the
address passed in the boundAddr parameter.

T_RESOLVEADDRCOMPLETE
The 0TResolveAddress function has completed. The cookie
parameter contains the retAddr parameter of the
0TResolveAddress function.

T_GETINFOCOMPLETE The 0TGetEndpointInfo function has completed. The cookie
parameter contains the info parameter of the
0TGetEndpointInfo function.

T_SYNCCOMPLETE The 0TSync function has completed. The cookie parameter
is meaningless.

Providers Reference 2-21
Draft. O Apple Computer, Inc. 4/30/96

2-22

CHAPTER 2

Providers

T_MEMORYRELEASED

T_REGNAMECOMPLETE

T_DELNAMECOMPLETE

T_LKUPNAMECOMPLETE

T_LKUPNAMERESULT

You are using an asynchronous endpoint that
acknowledges sends and an 0TSnd or 0TSndUData function
has completed and is done using the buffers containing the
data you are sending. If you have called the 0TSnd function,
the cookie parameter contains the buf parameter. If you
have called the 0TSndUData function, the cookie parameter
contains the udata parameter. The result parameter
contains the number of bytes that were sent. This might be
less than the number you meant to send due to
flow-control or memory restrictions.

The 0TRegisterName function has completed. The cookie
parameter contains the name parameter of the
0TRegisterName function.

The 0TDeleteName function or the 0TDeleteNameByID
function has completed. The cookie parameter contains the
name parameter or the id parameter of the function,
respectively.

The 0TLookupName function has completed. The cookie
parameter contains the reply parameter of the
0TLookUpName function.

An 0TLookupName function has found a name and is
returning it, but the lookup is not yet complete. The cookie
parameter contains the reply parameter passed to the
OTLookupName function.

kOTProviderIsDisconnected

Providers Reference

Your provider was bound with g1en parameter value
greater than 0 and it has been disconnected (is no longer
listening). You receive this event after a port has accepted a
request to temporarily yield ownership of a port to another
provider, which causes this provider to be disconnected
from the port in question. This currently only happens
with serial ports, but could also happen with other
connection-oriented drivers that have characteristics
similar to serial ports. You get a kOTProviderIsReconnected
message when the port reverts back to this provider’s
ownership again.

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

kOTProviderIsReconnected
Your provider has been reconnected, that is, the cause for
its disconnection has been relieved.

kOTProviderWillClose
When you return from the notifier function, Open
Transport will close the provider whose reference is
contained in the cookie parameter. The result parameter
contains a code specifying the reason why the provider
had to close. For example, the user decided to switch links
using the control panel.

You can only get this event at system task time.
Consequently, you are allowed to set the endpoint to
synchronous mode (from within the notifier function) and
call functions synchronously before you return from the
notifier, at which point, the provider is closed. At this
point, any calls other than 0TCloseProvider will fail with a
kOTOutStateErr.

kOTProviderIsClosed
The provider has closed. The reason for being closed can
be found in the 0TResult value passed to your notifier. The
reasons typically are kOTPortHasDiedErr,
kOTPortWasEjectedErr, or kOTPortLostConnectionErr. At
this point, any calls other than 0TCToseProvider will fail
with a kOTOutStateErr.

The TNetbuf Structure

You use a TNetbuf structure to specify the location and size of a buffer that
contains an address, option information, or user data. Provider functions use
TNetbuf structures both as input parameters and output parameters. If you are
using a TNetbuf structure as an input parameter, you use it to specify the
location and size of a buffer containing information you want to send. If you
are using a TNetbuf structure as an output parameter, you use it to specify the
location and the maximum size of the buffer used to hold information when
the function returns.

Providers Reference 2-23
Draft. O Apple Computer, Inc. 4/30/96

Functions

CHAPTER 2

Providers

The TNetbuf structure is defined by the TNetbuf data type.

struct TNetbuf {

UInt32 maxlen;
UInt32 len;
UInt8* buf;

by

Field descriptions

maxlen The size (in bytes) of the buffer to which the buf field
points. You must set the max1en field before passing a
TNetbuf structure to a provider function as an output
parameter. Open Transport ignores this field if you pass
the TNetbuf structure as an input parameter.

Ten The actual length (in bytes) of the information in the buffer
to which the buf field points. If you are using the TNetbuf
structure as an input parameter, you must set this field.

If you pass the TNetbuf structure as an output parameter,
on return, the provider function sets this field to the
number of bytes the function has actually placed in the
buffer referenced by the buf field.

buf A pointer to a buffer. You must make sure that the buf field
points to a valid buffer and that the buffer is large enough
to store the information for which it is intended.

This section describes general provider functions. Before you can use these
functions, you must initialize the Open Transport software by calling the
InitOpenTransport function, which is described in the chapter “Configuration
Management” in this book.

Opening and Closing Providers

2-24

To create and open a provider, you use a type-specific provider function—for
example, the 0TOpenEndpoint or 0TAsyncOpenEndpoint function creates and
opens an endpoint. These functions are included in the chapters describing
individual providers. When you finish using a provider of any type, always
call the 0TCloseProvider function to close and delete the provider.

Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

OTTransferProviderOwnership

Transfers a provider’s ownership to a new client.

C INTERFACE

ProviderRef OTTransferProviderOwnership(
ProviderRef ref,
0TClient prevOwner,
0SStatus* errPtr);

C++ INTERFACE

ProviderRef TProvider::0TTransferProviderOwnership(
0TClient prevOwner,
0SStatus* errPtr);

PARAMETERS
ref The provider reference for the provider to be transferred.
prevOwner The client ID of the previous owner.
errPtr A pointer to a result code.

DESCRIPTION

The 0TTransferProviderOwnership function transfers the ownership of the
provider indicated by the ref parameter to the current Open Transport client.
The previous owner must provide the owner-to-be with its client ID, obtained
by using the 0TWhoAn! function; this is then used by the owner-to-be in the
prevOwner parameter. Open Transport allocates a new provider reference and
returns the new reference as the function result. The old provider reference is
then obsolete and should not be used.

SPECIAL CONSIDERATIONS

When installing a notifier into a provider, Open Transport assumes that the
0TNotifyProcPtr pointer is in the same architecture as the call is being made.

Providers Reference 2-25
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

After transferring ownership, remove any already installed notifiers and install
your own, unless your architecture is such that a cross-architecture notifier is
what you want.

A WARNING
As long as the client that created the provider remains
loaded and is in the same architecture (that is, the
PowerPC as opposed to the 68000-family Macintosh CPU
environments) as the client using the provider, no damage
is done by not making this call. However, if the provider
was created under a different architecture than the current
client using the provider, attempting to close the provider
causes a crash. If you do not use the
0TTransferProviderOwnership function, it is vital that the
provider be closed under the same architecture that
opened the provider. a

SEE ALSO
To get a client ID, call the 0TWhoAm! function (page 2-26).
OTWhoAmlI
Returns the current client’s client ID.
C INTERFACE
0SClient OTWhoAmI(void);
C++ INTERFACE
None. C++ applications use the C interface to this function.
DESCRIPTION
The 0TWhoAmI function returns the current client’s client ID. This function is
used by the current owner of a provider that is to be transferred to a new
2-26 Providers Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

owner. The current client provides this ID to the new owner for use as the
0TTransferProviderOwnership function’s prevOwner parameter.

SEE ALSO
To transfer ownership, use the 0TTransferProviderOwnership function
(page 2-25).
OTCloseProvider
Closes a provider of any type—endpoint, mapper, or service provider.
C INTERFACE

0SStatus 0TCloseProvider(ProviderRef ref);

C++ INTERFACE

0SStatus TProvider::Close()

PARAMETERS

ref The provider reference of the provider to be closed and deleted.

DESCRIPTION

The 0TC1oseProvider function closes the provider that you specify in the ref
parameter. Closing the provider deletes all memory reserved for it in the
system heap, deletes its resources, and cancels any provider functions that are
currently executing.

Open Transport does not guarantee that all outstanding functions have
completed before it closes the provider. It is ultimately your responsibility to
make sure that all provider functions that you care about have finished
executing, before you close and delete a provider.

Providers Reference 2-27
Draft. O Apple Computer, Inc. 4/30/96

SEE ALSO

CHAPTER 2

Providers

WARNING

You need to be sure that are no outstanding
T_MEMORY_RELEASED events for a provider before you close
the provider. Otherwise, Open Transport attempts to
deliver the event to a provider that no longer exists, with
unpredictable results, such as crashing the system. a

To create and open an endpoint, call the 0TOpenEndpoint function or the
0TAsyncOpenEndpoint function, both described in the chapter “Endpoints” in
this book.

To create and open a mapper, call the 0TOpenMapper function or the
0TAsyncOpenMapper function, both described in the chapter “Mappers” in
this book.

To create and open a AppleTalk service provider, call the
0TOpenAppleTalkServices function or the 0TAsyncOpenAppleTalkServices
function, both described in the chapter “AppleTalk Services” in this book.

To create and open a TCP/IP service provider, call the 0TOpenInternetServices
function or the 0TAsyncOpenInternetServices function, both described in the
chapter “TCP/IP Services” in this book.

Controlling a Provider’s Mode of Operation

2-28

A provider’s mode of operation determines whether the provider runs
synchronously or asynchronously, whether the provider blocks, and whether
the provider acknowledges sends.

By default, providers created synchronously operate in synchronous mode;
providers created asynchronously operate in asynchronous mode. You can use
the 0TSetSynchronous or 0TSetAsynchronous function to specify how provider
functions should execute. You can use the 0TCanMakeSyncCall function to find
out whether Open Transport permits synchronous calls at a given moment. You
can find out a provider’s current mode of execution by calling the
0TIsSynchronous function. If synchronous functions are in progress on a
provider, you can cancel all of them by calling the 0TCancelSynchronousCalls
function.

A provider’s blocking status governs how provider functions proceed when
they cannot read or write data without waiting. If a provider blocks, it waits

Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

until it is able to read or write data, which might require that it wait
indefinitely. If a provider does not block, the function used to read or write
data returns an error, specifying why it could not complete the operation. You
can set a provider’s blocking status by calling the 0TSetBlocking or
0TSetNonBlocking function. You can find out a provider’s current blocking
status by calling the 0TIsNonBlocking function. By default, providers do not
block. For more information about blocking, see the section “Setting a
Provider’s Blocking Status,” beginning on page 2-10.

You can use the 0TAckSends or 0TDontAckSends function to specify whether a
provider acknowledges sends. This determines how a provider handles data
that you send and whether it informs you when it has sent the data. To
determine whether a provider acknowledges sends, you call the
0TIsAckingSends function. By default, providers do not acknowledge sends.
Mapper and individual service providers like AppleTalk and TCP/IP ignore
the setting of this attribute. However, the behavior of endpoint functions that
send data is affected by the endpoint provider’s acknowledgment status.

OTSetSynchronous

Sets a provider’s mode of execution to synchronous.

C INTERFACE

0SStatus 0TSetSynchronous(ProviderRef ref);

C++ INTERFACE

0SStatus TProvider::SetSynchronous();

PARAMETERS
ref The provider reference of the provider whose mode of
execution you want to set.
Providers Reference 2-29

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

DESCRIPTION
The 0TSetSynchronous function causes all provider functions to run
synchronously when using the provider that you specify.
Changing a provider’s mode of execution does not affect its notifier function, if
any is installed for this provider; the notifier function remains installed.
SEE ALSO
Modes of execution and notifier functions are described in “Specifying How
Provider Functions Execute” on page 2-9.
To set a provider to asynchronous mode, call the 0TSetAsynchronous function,
described next. To find out a provider’s mode of execution, call the
0TIsSynchronous function (page 2-31).
OTSetAsynchronous
Sets a provider’s mode of execution to asynchronous.
C INTERFACE
0SStatus 0TSetAsynchronous(ProviderRef ref);
C++ INTERFACE
0SStatus TProvider::SetAsynchronous();
PARAMETERS
ref The provider reference of the provider whose mode of
execution you want to set.
DESCRIPTION
The 0TSetAsynchronous function causes all functions for the provider specified
in the ref parameter to run asynchronously. You must install a notifier function
2-30 Providers Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

for the provider if it needs to receive completion events. You can install a
notifier function either before or after calling the 0TSetAsynchronous function.

Changing a provider’s mode of execution does not affect its notifier function, if
any; the notifier function remains installed.

SEE ALSO

Provider events are described in “Provider Events” on page 2-7.

Modes of operation and notifier functions are described in “Specifying How
Provider Functions Execute” on page 2-9.

To set a provider to asynchronous mode, call the 0TSetAsynchronous function
(page 2-30). To find out a provider’s mode of execution, call the
0TIsSynchronous function (page 2-31).

OTIsSynchronous

Returns a provider’s current mode of execution.

C INTERFACE

Boolean 0TIsSynchronous(ProviderRef ref);

C++ INTERFACE

Boolean TProvider::IsSynchronous();

PARAMETERS

ref The provider reference for the provider whose mode of
execution you want to obtain.

Providers Reference 2-31
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

DESCRIPTION

The 0TIsSynchronous function returns true if a provider is in synchronous
mode or returns false if the provider is in asynchronous mode.

SEE ALSO

To set a provider to synchronous mode, call the 0TSetSynchronous function
(page 2-29). To set a provider to asynchronous mode, call the
0TSetAsynchronous function (page 2-30).

OTCancelSynchronousCalls

Cancels any currently executing synchronous function for a specified provider.

C INTERFACE
0SStatus 0TCancelSynchronousCalls(ProviderRef ref);
C++ INTERFACE
void TProvider::CancelSynchronousCalls(0SStatus err);
PARAMETERS
ref The provider reference for the provider whose synchronous
function you want to cancel.
DESCRIPTION
The 0TCancelSynchronousCalls function cancels any currently executing
synchronous function for the provider that you specify. The provider need not
be in synchronous mode when you call this function.
Typically, you would call the 0TCancelSynchronousCalls function at interrupt
time by installing a Time Manager task that executes after a given amount of
2-32 Providers Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

time has passed. You could do this to prevent a synchronous function from
hanging the system.

IMPORTANT

The 0TCancelSynchronousCalls function may cause a
provider to be unusable. Typically, once this call is made,
the only thing you can do with the provider is close it. For
example, calling the 0TCancelSynchronousCalls function on
a connection-oriented endpoint might break its connection
and render the endpoint unusable. a

SEE ALSO

To set a provider to synchronous mode, call the 0TSetSynchronous function
(page 2-29). To find out a provider’s current mode of execution, call the
0TIsSynchronous function (page 2-31).

Time Manager tasks are described in the Time Manager chapter of Inside
Macintosh: Processes.

OTSetBlocking

Allows a provider to wait or block until it is able to send or receive data.

C INTERFACE

0SStatus 0TSetBlocking(ProviderRef ref);

C++ INTERFACE

0SStatus TProvider::SetBlocking();

PARAMETERS

ref The provider reference of the provider that is to block.

Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

2-33

DESCRIPTION

SEE ALSO

CHAPTER 2

Providers

The 0TSetBlocking function causes provider functions that send or receive data
to wait if current conditions prevent them from completing an operation. By
default, a provider is in nonblocking mode, in which case, if a provider
function were unable to complete sending or receiving data, it would return
immediately with a result that would tell you why the operation was unable to
complete.

If a provider is in blocking mode and you call the 0TCloseProvider function

to close the provider, Open Transport gives each Streams module up to

15 seconds to process outgoing commands. It is recommended that you call the
0TSetNonBlocking function before you call the 0TCloseProvider function.

Blocking is described in “Setting a Provider’s Blocking Status” on page 2-10.

To set a provider’s blocking status to nonblocking, call the 0TSetNonBlocking
function (page 2-34). To find out a provider’s blocking status, call the
0TIsNonBlocking function (page 2-35).

Blocking attributes affect endpoint providers more than other providers. For
more information see the discussion about modes of operation in the chapter
“Endpoints” in this book.

OTSetNonBlocking

C INTERFACE

C++ INTERFACE

2-34

Does not allow a provider to wait if it cannot currently complete a function that
sends or receives data.

0SStatus 0TSetNonBlocking(ProviderRef ref);

0SStatus TProvider::SetNonBlocking();

Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

PARAMETERS

ref The provider reference of the provider whose blocking mode is
being set.

DESCRIPTION

The 0TSetNonBlocking function causes provider functions to return a result code
immediately, instead of waiting for a function that sends or receives data to
complete. When you open a provider, its mode of operation is set to
nonblocking by default.

If a provider is in nonblocking mode and you call the 0TC1oseProvider function,
the provider flushes all outgoing commands in the stream and immediately
close the provider. Conversely, in blocking mode, the provider would give each
Streams module up to 15 seconds to flush outgoing commands. It is
recommended that you call the 0TSetNonblocking function before you call the
0TCloseProvider function.

SEE ALSO
Blocking is described in “Setting a Provider’s Blocking Status” on page 2-10.
To set a provider’s blocking status to blocking, call the 0TSetBlocking function,
(page 2-33). To find out a provider’s blocking status, call the 0TIsNonBlocking
function (page 2-35).
Blocking attributes affect endpoint providers more than other providers. For
more information, see the discussion about modes of operation in the chapter
“Endpoints” in this book.

OTIsNonBlocking
Returns a provider’s current blocking status.

C INTERFACE

Boolean 0TIsNonBlocking(ProviderRef ref);

Providers Reference 2-35
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

C++ INTERFACE

Boolean TProvider::IsNonBlocking();

PARAMETERS

ref The provider reference of the provider whose blocking status
is sought.

DESCRIPTION

The 0TIsNonBlocking function returns true if the provider’s current blocking
status is nonblocking or returns false if it is blocking.

SEE ALSO
Blocking is described in “Setting a Provider’s Blocking Status” on page 2-10.
To set a provider’s blocking status to blocking, call the 0TSetB1ocking function

(page 2-33). To set a provider’s blocking status to nonblocking, call the
0TSetNonBlocking function (page 2-34).

Blocking attributes affect endpoint providers more than other providers. For
more information see the discussion about modes of operation in the chapter
“Endpoints” in this book.

OTAckSends

Specifies that a provider make an internal copy of data being sent and that it
notify you when it has finished sending data.

C INTERFACE

0SStatus OTAckSends(ProviderRef ref);

2-36 Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

C++ INTERFACE

PARAMETERS

DESCRIPTION

CHAPTER 2

Providers

0SStatus TProvider::AckSends();

ref The provider reference of the provider that is sending data.

By default, providers make an internal copy of data before sending it and they
do not acknowledge sends. If you use the 0TAckSends function to specify that
the provider acknowledge sends and you call a function that sends data, the
provider does not copy the data before sending it. Instead, it reads data directly
from your buffer while sending. For this reason, you must not change the
contents of your buffer until the provider is no longer using it. The provider
lets you know that it has finished using the buffer by calling your notifier
function and passing T_MEMORYRELEASED event code for the code parameter, a
pointer to the buffer that was sent in the cookie parameter, and the size of the
buffer in the result parameter.

If you have not installed a notifier function for the provider, this function
returns the k0TAccessErr result.

If a send is currently outstanding on the provider, from a call to the 0TSnd,
0TSndUData, 0TSndUReply, 0TSndURequest, 0TSndReply, or 0TSndrequest function,
the 0TAckSends function returns a kOTChangeStatet rr message.

WARNING

You need to be sure that are no outstanding
T_MEMORY_RELEASED events for a provider before you close
the provider. Otherwise, Open Transport attempts to
deliver the event to a provider that no longer exists, with
unpredictable results, such as crashing the system. a

SPECIAL CONSIDERATIONS

Do not wait for a T_MEMORYRELEASED event from a previous send operation to
trigger more sends. When a T_MEMORYRELEASED event occurs depends on how
the underlying provider is implemented. It may hold on to memory until the

Providers Reference 2-37
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

next send occurs, or have some other functionality which causes it to delay
releasing memory.

SEE ALSO

To request that the provider copy the data before sending it, use the
0TDontAckSends function, described in the next section.

To find out a provider’s current send-acknowledgment status, call the
0TIsAckingSends function (page 2-39).

For additional information, see “Setting a Provider’s Send-Acknowledgment
Status” on page 2-10.

The send-acknowledgment status of a provider is ignored by mapper
providers, AppleTalk providers, and TCP/IP providers. For information about
how endpoint providers are affected, see the discussion of an endpoint’s mode
of operation in the chapter “Endpoints” in this book.

OTDontAckSends

Specifies that a provider copy data before sending it.

C INTERFACE

0SStatus OTDontAckSends(ProviderRef ref);

C++ INTERFACE

0SStatus TProvider::DontAckSends();

PARAMETERS

ref The provider reference of the provider that is sending data.

2-38 Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

DESCRIPTION

By default, providers do not acknowledge sends. You need to call the
0TDontAckSends function only if you have used the 0TAckSends function to turn
on send-acknowledgment for a provider.

If a send is currently outstanding on the provider, from a call to the 0TSnd,
0TSndUData, 0TSndUReply, 0TSndURequest, 0TSndReply, or 0TSndrequest function,
the 0TDontAckSends function returns a k0TChangeStateErr message.

SEE ALSO

To prevent buffer copying and request completion events for provider
functions that send data, call the 0TAckSends function, described on page 2-36.

To find out whether a provider is acknowledging sends, call the
0TIsAckingSends function (page 2-39).

For additional information, see “Setting a Provider’s Send-Acknowledgment
Status” on page 2-10.

OTIsAckingSends

Determines whether a provider is acknowledging sends.

C INTERFACE

Boolean 0TIsAckingSends(ProviderRef ref);

C++ INTERFACE

Boolean TProvider::IsAckingSends();

PARAMETERS

ref The provider reference of the provider sending data.

Providers Reference 2-39
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

SEE ALSO

CHAPTER 2

Providers

The 0TIsAckingSends function returns true if the provider acknowledges sends
and false if it does not.

To specify that a provider acknowledge sends, call the 0TAckSends function
(page 2-36). To specify that a provider not acknowledge sends, call the
0TDontAckSends function (page 2-38).

For additional information, see “Setting a Provider’s Send-Acknowledgment
Status” on page 2-10.

Installing and Removing a Notifier Function

To receive notice of provider events, you must install a notifier function. If the
provider is synchronous, you do this by calling the 0TInstallNotifier function.
If the provider is asynchronous, you install the notifier by passing a pointer to
the notifier function as a parameter to the function used to open the provider.
To remove a notifier function, call the 0TRemoveNotifier function.

OTInstallNotifier

C INTERFACE

C++ INTERFACE

2-40

Installs a notifier function.

0SStatus OTInstallNotifier(ProviderRef ref, OTNotifyProcPtr proc,
void* contextPtr);

0SStatus TProvider::InstallNotifier(0TNotifyProcPtr proc,
void* contextPtr);

Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

CHAPTER 2

Providers

ref The provider reference of the provider for which you are
installing a notifier.

proc A pointer to a notifier function that you provide.

For C++ applications, the proc parameter must point to either a
C function or a static member function.

contextPtr A context pointer for your use. The provider passes this value
unchanged to your notifier function when it calls the function.

The 0TInstallNotifier function installs a notifier function for the provider that
you specify. Changing a provider’s mode of execution does not affect the
notifier function. The notifier function remains installed until you remove it
using the 0TRemoveNotifier function or until you close the provider.

Before calling the 0TInstal1Notifier function, you must open the provider for
which you want to install the notifier. If you open a provider asynchronously
(for example, with the 0TAsyncOpenEndpoint function), you must pass a pointer
to a notifier function as a parameter to the function used to open the provider.
In this case, you don’t need to call the 0TInstal1Notifier function unless you
want to install a different notifier function. If you do, you must call the
0TRemoveNotifier function before calling the 0TInstallNotifier function.

Opening a provider synchronously (for example, with the 0T0penEndpoint
function) opens the provider but does not install a notifier function for it. If you
need a notifier function for a provider opened synchronously, you must call the
0TInstallNotifier function. This notifier would not return completion events,
but would return asynchronous events advising you of the arrival of data, of
changes in flow-control restrictions, and so on.

Call the 0TInstallNotifier function only when no provider functions are
executing for the provider that you specify. Otherwise, the 0TInstallNotifier
function returns the result code kOTSt at eChangeErr.

If you try to install a notifier function for a provider that already has a notifier,
the function returns with the k0TAccessErr result.

Providers Reference 2-41
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

IMPORTANT

On 68000-based Macintosh computers, the
0TInstallNotifier function saves the current value of the
A5 register. Open Transport restores the A5 register to this
saved value when calling the notifier function you install.
If your environment stores context information in a
register other than A5, your notifier function must save
and restore the value of that register. a

SEE ALSO
Notifier functions are described in “Application-Defined Functions”
(page 2-45).
To remove an installed notifier function, call the 0TRemoveNotifier function,
described in the next section.
OTRemoveNotifier
Removes a provider’s notifier function.
C INTERFACE
void OTRemoveNotifier(ProviderRef ref);
C++ INTERFACE
0SStatus TProvider::RemoveNotifier();
PARAMETERS
ref A provider reference for the provider whose notifier function is
to be removed.
2-42 Providers Reference

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

SEE ALSO

CHAPTER 2

Providers

The 0TRemoveNotifier function removes the notifier (if any) currently installed
for the provider specified by the ref parameter.

Notifier functions are described in the section “Application-Defined Functions”
(page 2-45).

To install a notifier function, call the 0TInstallNotifier function (page 2-40).

Sending Module-Specific Commands

OTIoctl

You can define module-specific commands for an Open Transport protocol
module. Open Transport does not interpret these commands; it merely relays
them from your application to the protocol module. You can send a
module-specific command to an Open Transport protocol module by using the
0TIoct1 function.

C INTERFACE

C++ INTERFACE

Sends a module-specific command to an Open Transport protocol module.

SInt32 0TIoctl1(ProviderRef ref, UInt32 cmd, void* data);

SInt32 TProvider::Ioct1(UInt32 cmd, void* data);

Providers Reference 2-43
Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

CHAPTER 2

Providers

ref The provider reference of the provider affected by the specified
command.

cmd A routine selector for the module-specific command.

data Data to be used by the module-specific command, or a pointer

to such data. The interpretation of the data parameter is
command specific.

The 0TIoct1 function sends a module-specific command to an Open Transport
protocol module. The 0TIoct1 function runs synchronously or asynchronously,
matching the provider’s mode of execution.

If the 0TToct1 function completes synchronously without error, it returns 0 or a
positive integer. The positive integer’s meaning is command specific. If the
0TIoct1 function fails while executing synchronously, its return value is a
negative integer corresponding to an Open Transport result code.

If the 0TToct1 function runs asynchronously, it returns immediately with a
return value kOTNoError or another Open Transport result code. When the
function completes execution, Open Transport calls the notifier function you
specify, passing the event code kStreamIoct1Event and a result parameter
indicating the result of the completed 0TIoct1 function. If the value of the
result parameter is greater than 0, the corresponding result code is defined by
the command; otherwise, the value of the result parameter corresponds to an
Open Transport result code.

SPECIAL CONSIDERATIONS

SEE ALSO

2-44

Using the 0TIoct1 function makes your application module dependent; you
should not use the 0TIoct1 function if you want your application to be
transport independent.

Positive return values for the 0TIoct1 function are defined by the
Open Transport module that you are using. Refer to the documentation for that
module for information.

Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

Application-Defined Functions

To receive notice of provider events, you must write and install a notifier
function. A notifier function is the callback function that a provider uses to
communicate information back to your application for all events affecting a
particular provider. A provider in asynchronous mode must have a notifier
function to receive completion events.

Most providers must also use a notifier function to retrieve asynchronous
events. An endpoint provider can poll for asynchronous events using the
0TLook function, but a mapper provider or a service provider cannot poll for
asynchronous events; it must use a notifier function instead. In general, it is
recommended that all providers use notifier functions to handle both
asynchronous and completion events.

MyNotifierCallbackFunction

After you install a notifier function on a provider, the provider calls the notifier
function each time an Open Transport event occurs for that provider.

C INTERFACE

void MyNotifierCallbackFunction(void* contextPtr, OTEventCode code,
OTResult result, void* cookie);

C++ INTERFACE

In C++, a notifier function can be either a C function (as in the C interface) or a
member function of a class—the T0TProcNotifier class, the TOTMethodNotifier
class, or a subclass of these. The return type and parameters of a notifier
function are the same whether the notifier function is a C function or a C++
member function.

Providers Reference 2-45
Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

2-46

CHAPTER 2

Providers

contextPtr The value you specified for the contextPtr parameter when
installing this notifier function. You can use this parameter in
any way that is useful to you. If you do not need it, you can set
the pointer to nil.

code An event code indicating the event that occurred. Possible
values for event codes are given in the event code enumeration
(page 2-17).

result For completion events, the result code of the completed

provider function, identified by the code parameter. For
completion events, the meaning of the result parameter is
event specific. (For most asynchronous events, the result
parameter has no meaning and can be ignored.) For additional
information, see the description of the individual function.

cookie A pointer to data. The meaning and type of the data vary
depending on the function that has completed executing. For
additional information, see the event codes enumeration
(page 2-17).

Using a notifier function is the recommended way for your application to
handle completion and asynchronous events. After you install a notifier
function for a provider, the function is called by the provider each time an
Open Transport event occurs for that provider. For a completion event, the
provider passes the function result in the result parameter, the event code in
the code parameter, and any additional information in the cookie parameter.
For an asynchronous event, the provider usually passes the event code in the
code parameter and passes no other information.

Open Transport calls your notifier function at secondary interrupt level
(deferred task time). For this reason, your notifier function is subject to the
same rules and restrictions as are all Macintosh functions that can be called at
interrupt time; these restrictions are summarized in the section “Using Notifier
Functions to Handle Provider Events,” beginning on page 2-13.

You can install the same notifier function for two or more providers. But each
time you install the same notifier function for a different provider, you must

pass a different value in the contextPtr parameter of the function that installs
the notifier. The data structure referenced by the contextPtr parameter points

Providers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 2

Providers

must include a provider reference or some other identifier that uniquely
identifies the provider for which the notifier is called.

SPECIAL CONSIDERATIONS

SEE ALSO

The following information applies to applications written for 68000-family
machines. Before calling your notifier function, Open Transport restores the A5
register to the value it had when you installed the notifier function. Thus, if
your development environment saves your application context in the A5
register, your notifier function need not restore its A5 world. But if your
development environment saves your application context in a register other
than A5, your notifier function must save and restore that register.

To install a notifier function for an existing provider, call the 0TInstallNotifier
function (page 2-40). You can also install a provider when you open a provider
asynchronously by passing a pointer to the notifier function as a parameter to
the function used to open the provider. For additional information, see the
reference section of the chapter describing the provider of interest.

To remove a notifier function, call the 0TRemoveNotifier function (page 2-42).

For a list and description of event codes see the event codes enumeration
(page 2-17).

For an example of a notifier function, see Listing 2-1 on page 2-14.

Providers Reference 2-47
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Contents

About Endpoints 3-5
Endpoint Types and Mode of Service 3-7
Naming Conventions for Endpoint Functions 3-8
Endpoint Options 3-10
Modes of Operation 3-11
Blocking 3-12
Acknowledging Sends 3-13
Endpoint States 3-13
Transport Service Data Units 3-19
Using Endpoints 3-20
Opening and Binding Endpoints 3-21
Obtaining Information About Endpoints 3-23
Handling Events for Endpoints 3-24

Establishing and Terminating Connections 3-27
Establishing a Connection 3-28
Terminating a Connection 3-35

Sending and Receiving Data 3-40
Sending Noncontiguous Data 3-40
Sending Data Using Multiple Sends 3-41
Receiving Data 3-42
No-Copy Receiving 3-42
Transferring Data Efficiently 3-43
Transferring Data Between Transactionless Endpoints 3-43

Using Connectionless Transactionless Service 3-43
Using Connection-Oriented Transactionless Service 3-44
Transferring Data Between Transaction-Based Endpoints 3-46
Using Connectionless Transaction-Based Service 3-48
Contents

Draft. O Apple Computer, Inc. 4/30/96

3-1

CHAPTER 3

Using Connection-Oriented Transaction-Based Service 3-50
Endpoints Reference 3-52
Constants and Data Types 3-52

OTData Constant 3-52

OTBuffer Constant 3-53

Buffer Types Enumeration 3-53

Endpoint Service Types 3-54

Open Transport Flags 3-54

Endpoint Flags 3-55

Endpoint States 3-56

Structure Types 3-57

The TEndpointInfo Structure 3-58

The TBind Structure ~ 3-61

The OTData Structure ~ 3-62

The No-Copy Receive Buffer Structure ~ 3-63

Buffer Information Structure 3-65

The TUnitData Structure ~ 3-65

The TUDErr Structure ~ 3-67

The TUnitRequest Structure ~ 3-68

The TUnitReply Structure 3-70

The TCall Structure 3-72

The TRequest Structure ~ 3-76

The TReply Structure ~ 3-77

The TDiscon Structure ~ 3-79

Functions 3-80

Creating Endpoints 3-80
O0TAsyncOpenEndpoint 3-81
0TOpenEndpoint 3-84

Binding and Unbinding Endpoints 3-86
0TBind 3-87
0TUnbind 3-90

Obtaining Information About an Endpoint 3-91
0TGetEndpointInfo 3-92
O0TGetEndpointState 3-93
0TLook 3-95
0TGetProtAddress 3-96
0TResolveAddress 3-98
0TSync 3-100

Contents
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Allocating Structures 3-102
0TAlloc 3-102
0TFree 3-105

Checking a Buffer’s Size ~ 3-106
O0TCountDataBytes 3-106

Doing No-Copy Receives 3-107
OTReleaseBuffer 3-108
0TBuffer 3-108
0TReadBuffer 3-109

Functions for Connectionless Transactionless Endpoints ~ 3-110

0TSndUData 3-111
OTRcvUDErr 3-113
O0TRcvUData 3-115

Functions for Connectionless Transaction-Based Endpoints 3-117

0TSndURequest 3-117
O0TRcvURequest 3-120
0TSndURepTly 3-122
O0TRcvUReply 3-125
O0TCancelURequest 3-128
OTCancelUReply 3-129
Establishing A Connection ~ 3-130
0TConnect 3-131
O0TRcvConnect 3-133
OTListen 3-135
O0TAccept 3-137

Functions for Connection-Oriented Transactionless Endpoints
0TSnd 3-140
0TRcv 3-144

Functions for Connection-Oriented Transaction-Based Endpoints
0TSndRequest 3-147
OTRcvRequest 3-149
0TSndReply 3-151
OTRcvReply 3-154
OTCancelRequest 3-156
O0TCancelReply 3-158
Tearing Down a Connection 3-159
0TSndDisconnect 3-159
OTRcvDisconnect 3-161

Contents
Draft. O Apple Computer, Inc. 4/30/96

3-140

3-147

CHAPTER 3

0TSndOrderlyDisconnect
0TRcvOrderlyDisconnect

Contents
Draft. O Apple Computer, Inc. 4/30/96

3-163
3-164

CHAPTER 3

Endpoints

This chapter explains how your application can use endpoints to communicate
with endpoint providers, the layered set of protocol modules that provide data
transfer services. The chapter describes

= the services offered by different types of endpoint providers
= the concept of transport independence and the use of options

= how an endpoint’s mode of execution and mode of operation affect the
behavior of endpoint functions

= how you use endpoint functions to obtain information about endpoints, to
establish connections, and to transfer data

To understand this chapter, you must first read the chapters “Introduction to
Open Transport” and “Providers,” which introduce many of the concepts
discussed and further elaborated in this chapter.

This chapter offers minimal information about options, values you can specify
that link the behavior of your application to the specific configuration of an
endpoint provider. For information about options, you must read the chapter
“Option Management” in this book.

About Endpoints

An endpoint is the communications path between your application and an
endpoint provider, which is a layered set of protocols that define how data and
other information are exchanged between you and a remote client. The
endpoint consists of a set of data structures, maintained by Open Transport,
that specify the components of the endpoint provider, and the manner in which
the provider is to operate. In the process of opening an endpoint, you configure
the endpoint provider and specify the protocol or set of protocols you want to
use to transfer data and, if required, the hardware link. The chapter
“Configuration Management” in this book explains how you specify the
software and hardware support your application requires. Whether you specify
a single protocol or a layered set of protocols, the type of service provided by
the highest-level protocol defines the type of the endpoint. For example, if you
specify the AppleTalk Transaction Protocol (ATP), which offers connectionless
transaction-based service, the endpoint is a connectionless transaction-based
endpoint.

About Endpoints 3-5
Draft. O Apple Computer, Inc. 4/30/96

3-6

CHAPTER 3

Endpoints

When you open an endpoint, Open Transport creates a data structure that
contains information about the services the endpoint provider offers, the limits
on the size of data it can send and receive, the size of internal buffers used to
hold data, the current state of the endpoint, and so on. Open Transport obtains
this information from the particular protocol implementations that you specify
when you configure the endpoint provider. You can access information in some
fields of this structure by calling functions that return information about the
endpoint provider. Other fields of the structure are private and can be accessed
only by Open Transport.

Opening an endpoint also creates an endpoint reference, an number that
uniquely identifies this endpoint and that you must specify when calling any
function relating to this endpoint.

Before you can use the endpoint to transfer data, you must bind the endpoint—
that is, you must associate the endpoint with a logical address. Depending on
the protocol you use, you can specify this address as a symbolic name or as a
network address. Specific address binding rules and address formats also vary
with the protocol you use. In general, you cannot bind more than one
connectionless endpoint to an address, but you can bind several
connection-oriented endpoints to a single address.

Open Transport functions that you can use only with endpoints are called
endpoint functions. You use endpoint functions to create and bind an
endpoint, to obtain information about an endpoint, to establish and break
down connections, and to transfer data. What functions you can call for an
endpoint depends on the type of the endpoint and on its state. The behavior of
a function is determined by the endpoint’s mode of operation. In order to write
Open Transport applications that behave in a reliable and predictable manner,
it is important that you understand how these factors affect the behavior of an
endpoint provider. The rest of this section describes the different types of
endpoints, describes the effect of an endpoint’s mode of operation on the
behavior of endpoint functions, and explains how Open Transport uses
information about endpoint states to manage endpoints.

About Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Endpoint Types and Mode of Service

There are four types of endpoints, each offering a different mode of service:
= connection-oriented transactionless service

Either endpoint can initiate this type of service. It allows for the transfer of
very large amounts of data with guaranteed data delivery and a reliable data
stream.

= connection-oriented transaction-based service

Either endpoint can initiate the connection, but only the endpoint sending
the request can initiate a transaction. Using this service, you can conclude an
unlimited number of parallel transactions. This service guarantees delivery
and can detect duplicate sends.

= connectionless transactionless service

Either endpoint can initiate this type of service. Some protocols can calculate
checksums for incoming packets, but generally this service provides only
best-effort delivery and allows the transfer of relatively small amounts of
data at one time.

= connectionless transaction-based service

Only the endpoint sending a request can initiate this type of service. It
allows for the transfer of larger amounts of data, provides some error
checking, detects duplicate sends, and guarantees that response packets are
delivered in the order sent.

As you can tell from the foregoing description, in Open Transport there is no
such thing as a connectionless endpoint. It would have to be either a
connectionless transaction-based endpoint or a connectionless transactionless
endpoint. However, because there are issues that affect endpoints inasmuch as
they are connectionless and not connection-oriented or transactionless and not
transaction-based, when this chapter identifies an endpoint using only one
service name, you should assume that the endpoint can be in one of two modes
of service. Thus, the term transaction-based endpoint can refer either to a
connectionless transaction-based endpoint or to a connection-oriented
transaction-based endpoint.

About Endpoints 3-7
Draft. O Apple Computer, Inc. 4/30/96

3-8

CHAPTER 3

Endpoints

The chapter “Introduction to Open Transport” in this book defines and
describes the different services that each type of endpoint offers and explains
some of the criteria you might use for selecting a specific type. The
documentation for the protocol you are using provides information about how
a mode of service is implemented for your endpoint and the options that you
can use to fine-tune its behavior. The section “Using Endpoints” beginning on
page 3-20 describes how you use endpoint functions to implement these
services. However, before you read that section, you might find it helpful to
understand the naming conventions used for endpoint functions because these
are directly related to an endpoint’s mode of service. These conventions are
described in the next section.

Naming Conventions for Endpoint Functions

You can use endpoint functions that return information about the endpoint’s
state, address, mode of execution, or mode of operation with all endpoint
types. However, which endpoint functions you can call to transfer data
depends on the type of the endpoint. There is no single function that you can
use to send data or to receive data. For each type of endpoint you open, you
must use a send function that is specific to that type. For example, when you
send data using a connectionless transactionless endpoint, you call the
0TSndUData function; when you send data using a connection-oriented
transactionless endpoint, you call the 0TSnd function. Table 3-1 presents a
summary of the function names for functions used to transfer data. The
functions are grouped together based on the endpoint’s mode of service. Look
over this table briefly and see if you can spot the distinguishing trait for each
group of names.

About Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Table 3-1 The names of functions used to transfer data
Connectionless Connection-oriented

Transactionless 0TSndUData 0TSnd
0TRcvUData O0TRcv
OTRcvUDErr

Transaction-based 0TSndURequest 0TSndRequest
O0TRcvURequest 0TRcvRequest
0TSndURepTly 0TSndReply
OTRcvURepTly OTRcvReply
0TCancelURequest O0TCancelRequest
0TCancelUReply O0TCancelReply

The following bulleted items explain the rationale for the conventions used to
name the different groups of functions:

= Transaction-based endpoints send and receive requests and replies. If a
function name contains the string “Request” or “Reply,” you use the
function for a transaction-based endpoint; for example, 0TSndURequest or
0TSndRequest.

= Transactionless endpoints send and receive data, not requests or replies. If a
function name contains the string “Snd” or “Rcv” but does not contain
“Request” or “Reply,” you use the function for a transactionless endpoint;
for example, 0TSnd or 0TSndUData.

= Connectionless endpoints must include the destination address as a
parameter to every send operation and the source address as a parameter to
every receive operation. This is signalled by the letter “U” in the name of a
function. Thus, you call the 0TSndUData function for a connectionless
transactionless endpoint, but you call the 0TRcvURequest function for a
connectionless transaction-based endpoint.

About Endpoints 3-9
Draft. O Apple Computer, Inc. 4/30/96

3-10

CHAPTER 3

Endpoints

= Connection-oriented endpoints do not need to include addresses in send
and receive operations because establishing the connection also determines
the addresses, which do not change during a session. The names of
functions that can be called for connection-oriented endpoints are exactly
the same as for connectionless endpoints except that the “U” is omitted.
Thus, you call the 0TSnd function for a connection-oriented transactionless
endpoint and the 0TSndRequest function for a connection-oriented
transaction-based endpoint.

Of course, you can use the functions that establish and tear down connections
only with connection-oriented endpoints. These functions suggest their use in
their names: for example, 0TConnect or 0TSndDisconnect. Connection-oriented
endpoints support two kinds of disconnects: abortive disconnects and orderly
disconnects. An abortive disconnect breaks a connection immediately, even if
this were to result in loss of data; an orderly disconnect allows an endpoint to
send all data remaining in its send buffer before it breaks a connection. These
two kinds of disconnects are reflected in the names of the functions used:
0TSndDisconnect for an abortive disconnect and 0TSndOrder1yDisconnect for an
orderly disconnect.

Endpoint Options

The goal of Open Transport is to allow one type of endpoint to communicate
with the same type of endpoint (or with a remote client offering the same mode
of service) simply by having the application reconfigure the endpoint provider
s0 as to use the protocol of the remote client. Reconfiguring the endpoint
provider would require very minimal changes to the application and
consequently make your application virtually independent of the underlying
transport used to transfer data. Achieving transport independence, however,
also means being willing to forego any special advantages or features that a
protocol has to offer. If it is not possible for you to do without these features,
you can use options to take advantage of protocol-specific features. An option
is a value that you can set for an endpoint, which links the behavior of your
application to the specific protocol that you have used to configure the
endpoint provider. By using options, you can take advantage of a service that is
unique to a protocol.

About Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

In general, the use of options decreases the portability of your application.
When you open an endpoint, the endpoint provider creates a buffer containing
default option values that it chooses to ensure maximum portability across
protocol families and system platforms. It is recommended that you use these
values rather than setting different values. However, if you need to customize
transport services, you might need to specify different option values. Selecting
alternate option values begins a process called option negotiation. During this
process, option values are negotiated between an endpoint and its provider or,
if the option affects a connection or transaction, between a local and remote
endpoint and their providers. The providers must conclude this negotiation
process before you can use an endpoint to transfer data. Besides noting those
instances in which you can specify option information when calling endpoint
functions, this chapter provides no information about options. For detailed
information about options and for a description of the 0TOptionManagement
endpoint function, see the chapter “Option Management” in this book.

Modes of Operation

An endpoint provider, like other Open Transport providers, can also be
characterized by its mode of operation, which determines

= whether the functions used for that endpoint provider execute
synchronously or asynchronously.

The chapter “Providers” in this book contains a detailed discussion of the
issues involved in selecting one or another mode of execution. The section
“Handling Events for Endpoints,” beginning on page 3-24 offers additional
information about how an endpoint provider’s mode of execution
specifically affects endpoint functions.

s whether the provider blocks or waits when sending or receiving data and
» whether the provider copies data that you want to send before sending it.

The chapter “Providers” also introduces these concepts and describes the
functions you use to get and set a provider’s mode of operation. The rest of this
section contains a more detailed discussion of how blocking and
acknowledging sends specifically affect endpoint functions.

About Endpoints 3-11
Draft. O Apple Computer, Inc. 4/30/96

3-12

CHAPTER 3

Endpoints

Blocking

If an endpoint provider is blocking, functions that you use to send or receive
data do not complete until they actually write or read the amount of data that
you have specified should be written or read.

» You specify the amount of data you expect to write, by setting the 1en field
of a TNetBuf structure to the length of the data in the data buffer. If the size of
data in the data buffer is smaller than the size you specified in the 1en field,
the function will not complete. Under the same circumstances, if the
endpoint is not blocking, the function will complete.

» You specify the amount of data you expect to read, by setting the max1en
field of a TNetBuf structure. If the size of the incoming data is smaller than
the value specified in the max1en field, the function will not complete. Under
the same circumstances, if the endpoint is not blocking, the function will
complete.

If you are sending data faster than the network can handle it, this gives rise to
flow-control restrictions. If an endpoint is blocking, a send function waits until
flow-control restrictions are lifted before it executes. A send function must also
wait if an endpoint provider cannot deal with a request immediately, but must
queue the request before it is able to handle it.

If an endpoint provider is nonblocking or asynchronous and a send function
cannot complete due to flow-control restrictions, the function returns with the
kOTFlowErr result or it returns a positive integer. If the function returns the
KOTFlowErr result, this means that it has not been able to send any data; if it
returns a positive integer, this represents the amount of data it has been able to
send. When flow-control restrictions are lifted, the provider issues a T_GODATA
or T_GOEXDATA event. Upon receiving this event, you should execute the send
function again to send the remaining data.

If an endpoint provider is nonblocking or asynchronous and a send function
cannot complete because the request for function execution would have to be
queued, the function returns with the kEAGAINErr or KEWOULDBLOCKErr result.
You should try to execute the command later.

If an endpoint provider is in synchronous blocking mode and a receive

function cannot complete because the data has not arrived, the function does
not return until either data actually arrives and the size of the data is equal to
the maximum size you specified for the receive buffer, or data arrives and the

About Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

T_MORE flag is not set (there’s an EOM marker, which means that you have
retrieved all the data sent). If an endpoint provider is nonblocking and a
receive function cannot complete because data has not yet arrived, the function
returns with the k0TNoDataErr. You should try calling the function again later.

An endpoint provider is nonblocking unless you use the 0TSetBlocking
function to change its mode of operation.

Acknowledging Sends

You can also affect the behavior of functions that send data by specifying that
the endpoint provider acknowledge sends. By default, Open Transport does
not acknowledge the completion of send operations. This means that when you
call a function to send data, Open Transport copies the data from the client
buffer into a different buffer and then sends it. If you ask Open Transport to
acknowledge sends, it relies on the fact that your data buffer will remain stable
until the endpoint provider can actually send the data. After it sends the data,
the provider calls your notifier function passing T_MEMORYRELEASED for the code
parameter, a pointer to the buffer that was sent in the cookie parameter, and the
size of the buffer in the result parameter.

Endpoint States

Each endpoint has an attribute known as its endpoint state. An endpoint state
governs which endpoint functions you can call for the endpoint. For example,
if you open an endpoint but do not bind it, it is in the T_UNBND state and the
only two functions you can call for the endpoint are 0TCloseProvider or 0TBind.
The endpoint’s mode of service determines the possible states an endpoint can
be in while it is transferring data. For example, a connectionless endpoint can
only transfer data while it is in the T_IDLE state; a connection-oriented endpoint
can only transfer data while it is in the T_DATAXFER state. Table 3-2 describes
possible endpoint states for connectionless and connection-oriented endpoints
and suggests in parentheses an English equivalent for the name of each
constant.

About Endpoints 3-13
Draft. O Apple Computer, Inc. 4/30/96

3-14

CHAPTER 3

Endpoints

Table 3-2 Endpoint states

State

T_UNINIT

T_UNBND

T_IDLE

T_OUTCON

T_INCON

T_DATAXFER

T_OUTREL

T_INREL

About Endpoints

Meaning

This endpoint has been closed and destroyed or has not been
used. (Uninitialized)

This endpoint is initialized but has not yet been bound to an
address. (Unbound)

This endpoint has been bound to an address and is ready for
use. Connectionless endpoints can send or receive data;
connection-oriented endpoints can initiate or listen for a
connection. (Idle)

This connection-oriented endpoint has initiated a connection
and is waiting for the peer endpoint to accept the connection.
(Outgoing connection request)

This connection-oriented endpoint has received a connection
request but has not yet accepted or rejected the request.
(Incoming connection request)

This connection-oriented endpoint can now transfer data
because the connection has been established. (Data transfer
mode)

This connection-oriented endpoint has issued an orderly
disconnect that the peer endpoint has not acknowledged. The
endpoint can continue to read data but must not send any more
data. (Outgoing release request)

This connection-oriented endpoint has received a request for
an orderly disconnect, which it has not yet acknowledged. The
endpoint can continue to send data until it acknowledges the
disconnection request, but it must not read data. (Incoming
release request)

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Figure 3-1 shows a diagram illustrating the possible endpoint states for a
connectionless endpoint.

Figure 3-1 Possible endpoint states for a connectionless endpoint

Session ZIP | PAP ADSP

Transport | ATP | NBP
i) i)
Network DDP
i]
Data-link Standard link-access Streams modules
| |) R
Physical LocalTalk Ethernet Token ring FDDI

A connectionless endpoint can be in one of three states: T_UNINIT, T_UNBND, or
T_IDLE. Before you open the endpoint, it is in the T_UNINIT state. After you open
the endpoint but before you bind it, it is in the T_UNBND state. After you bind the
endpoint, it is in the T_IDLE state and is ready to transfer data. A connectionless
transactionless endpoint would use the 0TSndUData or 0TRcvUData functions to
transfer data; a connectionless transaction-based endpoint would use the
0TSndURequest, 0TRcvURequest, 0TSndUReply, and 0TRcvUReply functions to
transfer data. When the endpoint finishes transferring data, you must first
unbind the endpoint—that is, dissociate the endpoint from its address. At this
stage, the endpoint returns to the T_UNBND state. Then you can close the
endpoint, at which time the endpoint returns to the T_UNINIT state.

Figure 3-2 shows a state diagram illustrating the possible endpoint states for a
connection-oriented endpoint.

About Endpoints 3-15
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints
Figure 3-2 Possible endpoint states for a connection-oriented endpoint
Key:
T_UNINIT
) Active peer -
) Passive peer
OTOpenEndpointJlJl 1][[OTC1oseProv1der
T_UNBND
OTBindJlle IJII 0TUnbind
0TRcvOrderlyDisconnect
Ve > T_IDLE < D
s N
OTListen O0TConnect

OTRcvDisconnect
T_INCON 0TSndDisconnect T_OUTCON

OTAccept OTRcvConnect

T_DATAXFER

T_ORDREL event <§::12) (S::j§> 0TSndOrderlyDisconnect
/ O0TRcv 0TSnd \]

A T_INREL T_OUTREL e

3-16 About Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Like a connectionless endpoint, a connection-oriented endpoint is in the
T_UNINIT state until you open it and then, in the T_UNBND state until you bind it.
After you bind an endpoint but before you inititate a connection, an endpoint is
in the T_IDLE state.

During the connection process, the endpoint provider initiating the connection,
known as the active peer, calls the 0TConnect function to request a connection.
At this point, the active peer is in the T_0UTCON state. The endpoint provider
listening for a connection request, known as the passive peer, calls the 0TListen
function to read an incoming request. After it has read the request, the passive
peer changes to the T_INCON state. It can now either accept the connection using
the 0TAccept function or reject the connection using the 0TSndDisconnect
function. If the endpoint accepts the connection, it changes to the T_DATAXFER
state; if it rejects the connection it goes back to the T_IDLE state.

The active peer must acknowledge the response using the 0TRcvConnect
function (for a connection that has been accepted) or the 0TRcvDisconnect
function (for a connection that has been rejected). Calling the 0TRcvConnect
function establishes the connection and places the active peer in the T_DATAXFER
state. Calling the 0TSndDisconnect function rejects the connection and places the
active peer in the T_IDLE state. After they are connected, endpoints can transfer
data using simple send and receive operations or using transaction requests
and replies, depending on whether the endpoint is transactionless or
transaction-based.

When the client applications have finished transferring data, they must tear
down the connection by using an orderly disconnect process if possible. That
is, the active peer, should check to see whether the protocol supports an orderly
disconnect. If it does, the active peer initiates this process by calling the
0TSndOrderlyDisconnect function. This places the active peer in the T_OUTREL
state. It also creates a pending T_ORDREL event for the other endpoint. The
passive peer can retrieve the event using a notifier function or using the 0TLook
function. It must then acknowledge receiving the disconnection request by
calling the 0TRcvOrderlyDisconnect function. Then it must tear down its side of
the connection by also calling the 0TSnd0rder1yDisconnect function, which the
other side must also acknowledge. Disconnecting the endpoints places them in
the T_IDLE state again, and you can reconnect or close them.

Open Transport uses endpoint state information to manage endpoints.
Consequently, it is crucial that you call functions in the right sequence and that
you call functions to acknowledge receipt of data as well as of connection and
disconnection requests. Sending these acknowledgments is necessary to leave
the endpoint in an appropriate state for further processing. In your application,

About Endpoints 3-17
Draft. O Apple Computer, Inc. 4/30/96

3-18

CHAPTER 3

Endpoints

you can sometimes use the 0TGetEndpointState function to determine an
endpoint’s state, which is one more way to test for successful completion of a
function.

Table 3-3 lists the functions that can change an endpoint’s state and specifies
what the resulting state is depending on whether the function succeeds or fails.

Table 3-3 Functions that can change an endpoint’s state

State after call

State

before call Function No error If error
T_UNINIT 0TOpenEndpoint T_UNBND N/A

Any CloseProvider T_UNINIT N/A
T_UNBND 0TBind T_IDLE T_UNBND
T_IDLE 0TUnbind T_UNBND N/A
T_IDLE 0TConnect T_OUTCON T_IDLE
T_OUTCON OTRcvConnect T_DATAXFER T_IDLE
T_INCON 0TAccept T_DATAXFER T_IDLE
T_DATAXFER 0TSndDisconnect T_IDLE T _DATAXFER

0TSndOrderlyDisconnect
0TRcvDisconnect
0TRcvOrderlyDisconnect

The arrival of an asynchronous event can also change the state of an endpoint.
Table 3-4 shows the state of the endpoint before the event is received and the
state of the endpoint after the event is consumed. An event is consumed or
cleared when your application acknowledges receipt of the event. For example,
if you get a T_LISTEN event, you call the 0TListen function; after you get a
T_DISCONNECT event, you call the 0TRcvDisconnect function.

About Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Table 3-4 Events that can change an endpoint’s state
Old State Event New State
T_IDLE T_LISTEN T_INCON
T_IDLE T_CONNECT T_DATAXFER
T_IDLE T_PASSCON T_DATAXFER
T_OUTCON, T_DISCONNECT T_IDLE
T_DATAXFER

T_DATAXFER T_ORDREL T_INREL

The section “Handling Events for Endpoints” on page 3-24 lists the
asynchronous events that a provider can issue and the functions you must call
to clear these events.

Transport Service Data Units

The main purpose of endpoints is to transfer data. The terms transport service
data unit and expedited transport service unit are used to describe the size and
kind of data that a particular endpoint can handle when it is transferring data
in discrete units known as datagrams. Not all protocols use transport service
data units to transfer data.

A transport service data unit (TSDU), whether it is normal or expedited, refers
to the largest piece of data that an endpoint can transfer with boundaries and
content preserved unchanged. Different types of endpoints and different
endpoint implementations support different size TSDUs.

An expedited transport service data unit (ETSDU), refers to the largest piece
of expedited data than an endpoint can transfer. Expedited data is considered
to be urgent. An endpoint provider that can handle expedited data guarantees
that this data takes precedence over any other normal data that is being
transmitted. Not all endpoint providers can transfer expedited data. Usually,
connection-oriented and transaction-based endpoints require the use of
expedited data for control or attention messages, and therefore the
implementation of these types of endpoints often supports the transfer of
expedited data.

About Endpoints 3-19
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

When you open an endpoint, Open Transport creates an endpoint information
structure, a TEndpointInfo structure, that you can examine to find out whether
the endpoint supports normal or expedited data and the maximum size of this
data. The section “Obtaining Information About Endpoints,” beginning on
page 3-23 explains how you examine this structure to find out this information.

Using Endpoints

This section begins by explaining how you create an endpoint and associate it
with an address. Next, it introduces the functions you can use to obtain
information about endpoints and discusses some issues relating to
asynchronous processing that specifically affect endpoint providers. Then, it
explains some issues relating to data transfer that apply to all types of endpoint
providers. Finally, it describes how you can implement each mode of service.

No matter what mode of service you want to implement, you must read the
sections “Opening and Binding Endpoints,” “Obtaining Information About
Endpoints,” “Handling Events for Endpoints,” and “Sending and Receiving
Data.” After you have read these sections, you can read the section describing
the mode of service you are interested in implementing. Table 3-5 shows how
some of the Open Transport protocols fit with an endpoint’s mode of service.
For example, if you want to use ATP, you would need to read the section
“Using Connectionless Transaction-Based Service,” beginning on page 3-48. If
you want to use ADSP, you would need to read the section “Establishing and
Terminating Connections,” beginning on page 3-27 and the section “Using
Connection-Oriented Transactionless Service,” beginning on page 3-44.

Table 3-5 The Open Transport mode-of-service matrix and some Open Transport
protocols
Connectionless Connection-oriented
Transactionless DDP Serial connection
PPP ADSP
1P PAP
UDP TCP
Transaction-based ATP ASP
3-20 Using Endpoints

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Note

The sections that follow present information in such a way
as to suggest that communication is always taking place
between two Open Transport clients. This does not have to
be true. For example, an Open Transport client using a
connectionless transactionless DDP endpoint can
communicate seamlessly with a client using AppleTalk’s
DDP protocol and interface. However, because this book is
about Open Transport, we always show how
communication works between two Open Transport
clients. O

Opening and Binding Endpoints

Before you can open and bind an endpoint, you must have initialized Open
Transport and determined what the endpoint configuration is going to be.
Then, you can open and bind the endpoint. You open the endpoint with the
0TOpenEndpoint or 0TAsyncOpenEndpoint functions. Opening an endpoint with
the 0TOpenEndpoint function sets the default mode of execution to be
synchronous; opening an endpoint with the 0TAsyncOpenEndpoint function sets
the default mode of execution to be asynchronous. You can change an
endpoint’s mode of execution at any time by calling the 0TSetSynchronous or
0TSetAsynchronous function, which are described in the chapter “Providers” in
this book.

One of the parameters that you pass to the function used to open the endpoint
is a pointer to a configuration structure that Open Transport needs to define the
protocol stack providing data transport services. You can use the same
configuration for more than one endpoint; however, if you do so, you must use
the 0TCloneConfiguration function to get a valid copy of the configuration
structure. The chapter “Configuration Management,” in this book, contains
information about creating a configuration structure for an endpoint provider.

If you use the 0TAsyncOpenEndpoint function to open an endpoint, you also
specify the entry point to a notifier function that the endpoint provider can
use to call your application when an asynchronous or completion event takes
place. If you use the 0TOpenEndpoint function to open an endpoint, and you
want to handle asynchronous events using a notifier function, you must

use the 0TInstallNotifier function to install your notifier function. The
0TInstallNotifier function is described in the chapter “Providers” in

this book.

Using Endpoints 3-21
Draft. O Apple Computer, Inc. 4/30/96

3-22

CHAPTER 3

Endpoints

Opening an endpoint also sets up a private data structure used by Open
Transport to manage the endpoint provider’s operations. This data structure
contains information about

= the endpoint’s mode of operation, mode of execution, and mode of service
» the size of internal buffers used for sending data and receiving data

= the size of normal transport service data units (TSDUs) and expedited
transport service data units (ETSDUs) or, in the case of transactions, the size
of replies and requests

= the maximum size of buffers used to hold address and option information
for the endpoint

= default option values for the endpoint

Some of this information is private; the rest can be retrieved by calling
functions that return information about the endpoint. These functions are
described in the next section, “Obtaining Information About Endpoints.”

When the function you use to open the endpoint returns, it passes back to you
an endpoint reference. You must pass this reference as a parameter to any
endpoint provider function or any general provider function. For example, you
pass this reference as a parameter to the 0TBind function, which you must use
to bind an endpoint after opening it. Binding an endpoint associates the
endpoint with a logical address. Depending on the protocol you use and on
your application’s needs, you can select a specific address or you can have the
protocol choose an address for you. For information about valid address
formats, consult the documentation for your protocol. The general rule for
binding endpoints is simple: you cannot bind more than one connectionless
endpoint to a single address. You can bind more than one connection-oriented
endpoint to the same address; for additional information about this possibility,
see the section “Processing Multiple Connection Requests” on page 3-33.

No matter what mode of service you need to implement, you must know how
to obtain information about the endpoints you have opened and how to handle
asynchronous and completion events for these endpoints. These issues are
addressed in the next two sections, “Obtaining Information About Endpoints”
and “Handling Events for Endpoints.” After you read these sections, you can
proceed by reading about the mode of service you want to implement.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Obtaining Information About Endpoints

You can use endpoint functions to obtain information about an endpoint’s
mode of service, state, or address. You can also call general provider functions
to determine an endpoint’s mode of execution and mode of operation:

= To obtain information about an endpoint’s mode of execution, you call the
0TIsSynchronous function. The function returns a positive integer to indicate
that the endpoint is in synchronous mode, or 0 if it is in asynchronous mode.

= To obtain information about an endpoint’s mode of operation, you call the
0TIsNonBlocking or the 0TIsAckingSends functions.

The TEndpointInfo structure contains most of the information you need to
determine how you can use an endpoint. This structure specifies the maximum
size of the buffers you need to allocate when calling functions that return
address and option information or data, and it also contains more specific
details about the mode of service the endpoint provides. For example, if you
have opened a connection-oriented endpoint, the servtype field of the
TEndpointInfo structure specifies whether the endpoint supports orderly
release. You can obtain a pointer to this structure when you open the endpoint,
when you bind the endpoint, or when you call the 0TGetEndpointInfo function.

To obtain information about an endpoint’s state, you call the
0TGetEndpointState function. This function returns a positive integer indicating
the endpoint state or a negative integer corresponding to a result code. Table
3-2 on page 3-14 lists and describes endpoint states. If the endpoint is in
asynchronous mode and you are not using a notifier function, you might be
able to use the 0TGetEndpointState function to poll the endpoint and determine
whether a specific function has finished executing. The completion of some
functions result in an endpoint’s changing state. For additional information, see
Table 3-3 on page 3-18.

To obtain address information about an endpoint or its peer, you can use one of
the following two functions:

» 0TGetProtAddress, which returns the address to which the endpoint is
bound. If the endpoint is connection-oriented and currently connected, this
function also returns the address to which the endpoint is connected.

= 0TResolveAddress, which returns the lowest-layer protocol address that
corresponds to the name of the endpoint. If you are looking up the address
that corresponds to a single name, you can use this function rather than
having to open the mapper provider and use the mapper function
OTLookUpName.

Using Endpoints 3-23
Draft. O Apple Computer, Inc. 4/30/96

3-24

CHAPTER 3

Endpoints

For information about the address formats for the protocol you are using,
please consult the documentation supplied for the protocol. For information
about obtaining the addresses that correspond to a name pattern, see the
chapter “Mappers” in this book.

Handling Events for Endpoints

The section about modes of execution in the chapter “Providers” describes the
functions you use to determine what a provider’s mode of execution is and to
change that mode if needed. It also discusses the special problems that might
arise in asynchronous processing and recommends ways of handling these
problems.

Like other providers, endpoint providers can operate synchronously or
asynchronously. When possible, you should use endpoints in asynchronous
mode. If you do, you need to create a notifier function that the provider can call
to inform you when an asynchronous function has completed or when an
asynchronous event has arrived. Event handling for endpoints is basically the
same as that described for providers in the chapter “Providers.” One slight
difference lies in the way the endpoint provider generates T_DATA, T_EXDATA,
and T_REQUEST asynchronous events, which signal the arrival of incoming data
or of an incoming transaction request. For the sake of efficiency, the provider
notifies you just once that incoming data has arrived. To read all the data, you
must call the function that clears the event until the function returns with the
kOTNoDataErr result. For information about which functions to use to clear these
events, see Table 3-8 on page 3-27.

You do not have to issue these calls in the notification routine itself, but until
you make the consuming calls and receive a kOTNoDataErr error, another T_DATA,
T_EXDATA, or T_REQUEST event will not be issued. You should also be prepared for
being notified that data is available, but then receiving a kOTNoDataErr error
when trying to read the data.

One exception to this rule occurs when dealing with transaction protocols.
When the client gets a T_REPLY event, 0TRcvUReply is called until a kOTNoDataErr
is returned. If this is deferred from the notification function to the foreground,
the following sequence can occur: While the client is busy reading replies in the
foreground, a request arrives. This will cause a T_REQUEST event to be
generated. If the foreground client was calling 0TRcvUReply at this point in time,
a k0TLookErr will be generated rather than a k0TNoDataErr. In this case (and the
converse case for T_REQUEST events), another T_REPLY event will be generated
when a new reply arrives.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

If we look at this operationally, the transport provider has a queue of data or
commands to deliver to the client. If the queue is empty when the data or
command arrives, a notification is delivered to the client. If the queue is not
empty, then no notification is delivered to the client at the time the data or
command is queued. Instead, whenever the client reads the data or command
at the head of the queue, Open Transport peeks at the next element of the
queue, if it exists. If this next element of the queue is of the same type as what
was at the head of the queue, no event is generated. If there is a difference, a
new event is delivered to the client. This new event is typically delivered to the
client just prior to returning from the function which removed the head

element of the queue.

Not all endpoint functions are affected by an endpoint’s mode of execution.
Those functions that do behave differently when they are executed
asynchronously are listed in Table 3-6. For each function, the table lists the
corresponding completion event.

Table 3-6 Endpoint functions that behave differently in synchronous and
asynchronous mode
Function Completion event

0TOptionManagement

0TBind

0TUnbind
O0TAccept
0TSndRequest
0TSndReply
0TSndURequest
0TSndUReply
0TDisconnect
0TGetProtAddress

OTResolveAddress

Using Endpoints

T_OPTIONMANGEMENTCOMPLETE
T_BINDCOMPLETE
T_UNBINDCOMPLETE
T_ACCEPTCOMPLETE
T_REQUESTCOMPLETE
T_REPLYCOMPLETE
T_REQUESTCOMPLETE
T_REPLYCOMPLETE
T_DISCONNECTCOMPLETE
T_GETPROTADDRCOMPLETE
T_RESOLVEADDRCOMPLETE

3-25

Draft. O Apple Computer, Inc. 4/30/96

3-26

CHAPTER 3

Endpoints

For compatibility with the XTI standard, Open Transport also includes the
endpoint provider function 0TLook. You can use the 0TLook function

= to poll for asynchronous events, like incoming data or connection requests
» to determine the cause of a kOTLookErr result

Asynchronous functions can return this result. In addition, asynchronous
events that require immediate attention can cause some synchronous
functions to fail with the k0TLookErr result. In this case, you can call the
0TLook function to determine the event that caused the function to fail. Table
3-7 lists the functions that can return the result k0TLookErr when the
corresponding event is pending.

Table 3-7 Pending asynchronous events and the synchronous functions they can
affect

Function that fails Pending events

O0TAccept, OTConnect T_DISCONNECT, T_LISTEN

OTListen, OTRcvConnect, T_DISCONNECT

0TRcvOrderlyDisconnect,
0TSndOrderlyDisconnect,0TSndDisconnect

0TRcv, OTRcvRequest, OTRcvReply, T_DISCONNECT, T_ORDREL
0TSnd, 0TSndRequest, 0TSndReply

OTRcvUData, 0TSndUData T_UDERR

0TUnbind T_LISTEN, T_DATA

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Having used the 0TLook function to determine what asynchronous event
caused your function to fail, you must call one of the functions listed in
Table 3-8 to clear the event, and then you can retry the function that failed.

Table 3-8 Pending asynchronous events and the functions that clear them

Open Transport function

Pending event that clears the event
T_LISTEN OTListen

T_CONNECT O0TRcvConnect

T_DATA 0TRcv, 0TRcvUData
T_EXDATA O0TRcv

T_DISCONNECT O0TRcvDisconnect
T_UDERR OTRcvUDErr

T_ORDREL 0TRcvOrderlyDisconnect
T_GODATA 0TSnd, 0TSndUData
T_GOEXDATA 0TSnd

Establishing and Terminating Connections

To implement a connection-oriented service, you must complete the
following steps:

= establish a connection

= process any data associated with establishing the connection if this is
permitted for the endpoint

= transfer data
= terminate the connection when you are finished transferring data

The following sections explain how you establish and terminate a connection.
The functions you use to establish and terminate a connection are the same for
transactionless as for transaction-based service. The calls you use to transfer
data differ depending on which mode of service you choose—transactionless
or transaction-based. The section “Using Connection-Oriented Transactionless

Using Endpoints 3-27
Draft. O Apple Computer, Inc. 4/30/96

3-28

CHAPTER 3

Endpoints

Service” on page 3-44 explains how you transfer data once you have
established a connection. In the text that follows, active peer refers to the
endpoint initiating a connection; passive peer refers to the endpoint accepting a
connection request.

Before you can use a connection-oriented endpoint to initiate or accept a
connection, you must open and bind the endpoint. For example, if you are
using AppleTalk, you might open an ADSP endpoint, which offers
connection-oriented transactionless service. You don’t have to do anything
special to bind an endpoint that is intended to be the active peer of a
connection. However, when you bind an endpoint intended to be the passive
peer of a connection, you must specify a value for the qlen field of the regAddr
parameter for the 0T8ind function. The glen field indicates the number of
outstanding connection requests that can be queued for that endpoint. Note
that the value you specify indicates the desired value. Open Transport might
negotiate a lower value, depending upon the number of internal buffers
available. The negotiated value of outstanding connection indications is
returned to you in the qlen field of the retAddr parameter for the 0T8ind
function.

You are allowed to bind multiple connection-oriented endpoints to a single
address. However, only one of these endpoints can accept incoming connection
requests. That is, only one endpoint can specify a value for qlen that is greater
than 0. For more information, see the section “Processing Multiple Connection
Requests” on page 3-33.

Establishing a Connection

You use the following functions to establish a connection:

Active peer calls Passive peer calls Meaning
0TConnect Requests a connection to the
passive peer.
0TListen Listens for an incoming connection
request.
OTAccept Accepts the connection request

identified by the 0TListen function.
The connection can be accepted by
a different endpoint than the one
listening for incoming connection
requests.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Active peer calls Passive peer calls
0TRcvConnect

0TSndDisconnect

OTRcvDisconnect

Meaning

Reads the status of a pending or
completed asynchronous call to the
0TConnect function.

Rejects an incoming connection
request.

Identifies the cause of a rejected
connection and acknowledges the
corresponding disconnection event.

Figure 3-3 illustrates the process of establishing a connection in

synchronous mode.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

3-29

CHAPTER 3

Endpoints

Figure 3-3 Establishing a connection in synchronous mode

Active Passive

0TConnect > Notifier
T_LISTEN

!

OTListen

Yes

0TConnect ¢ 0TAccept {T————" Accepted?

returns with
kNoErr

|

Endpoint is in
T_DATAXFER state

No

N

0TConnect
returns with
kOTLookErr

0TSndDisconnect

AN

!

0TRcvDisconnect

!

Endpoint is in
T_IDLE state

3-30 Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

As Figure 3-3 shows, if the active peer is in synchronous mode, the 0TConnect
function does not return until the connection has been established or the
connection attempt has been rejected. If the passive peer has a notifier function
installed, the endpoint provider calls it, passing T_LISTEN for the code
parameter. The notifier calls the 0TListen function, which reads the connection
request. The passive peer can now either accept the connection request using
the 0TAccept function or reject the request by calling the 0TSndDisconnect
function. The connection attempt might also fail if the request is never received
and the endpoint provider times out the call to the 0TConnect function.

If the passive peer calls the 0TAccept function to accept the connection, the
0TConnect function returns with kNotrr. If the passive peer rejects the
connection by executing the 0TSndDisconnect function or the request is timed
out, the 0TConnect function returns with k0TLookErr. When the 0TConnect
function returns, the active peer must examine the result and, depending on
the outcome, either begin to transfer data if the function succeeds or call the
0TRcvDisconnect function if the function fails. The active peer must call the
0TRcvDisconnect function to restore the endpoint to a valid state for subsequent
operations. Note that even though the passive peer is in a synchronous state,
you can use a notifier function to be called in case of a T_LISTEN event.
Alternately, you could also use the 0TLook function to poll the passive endpoint
for a T_LISTEN event.

If the active peer is in asynchronous mode, the 0TConnect function returns right
away, and the active peer must rely on its notifier function to determine
whether the call succeeded. Figure 3-4 illustrates the process of establishing a
connection when the active peer is in asynchronous mode.

Using Endpoints 3-31
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

%4

Endpoints
Figure 3-4 Establishing a connection in asynchronous mode
Active Passive
T_LISTEN
OTConnect > Notifier
OTListen
Yes ///EL\\
(E;::::jAccepted?
T_CONNECT
0TAccept No

T_DISCONNECT

OTRcvDisconnecct

0TSndDisconnect

T_DISCONNECTCOMPLETE

OTRcvConnect

>
>

!

Endpoint is in
T_DATAXFER state

T_ACCEPTCOMPLETE

3-32 Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

The active peer calls the 0TConnect function, which returns right away with a
code of k0TNoError. The endpoint provider calls the passive peer’s notifier,
passing T_LISTEN for the code parameter. If the passive peer accepts the
connection, the endpoint provider calls the active peer’s notifier, passing
T_CONNECT for the code parameter.

If the passive peer rejects the connection or if the connection times out, the
endpoint provider calls the active peer’s notifier, passing T_DISCONNECT for the
code parameter. The active peer must then call either the 0TRcvConnect function
in response to a T_CONNECT event or the 0TRcvDisconnect function in response to
a T_DISCONNECT event. The endpoint provider, in turn, passes the
T_ACCEPTCOMPLETE event back to the passive peer (for a successful connection) or
the T_DISCONNECTCOMPLETE event (for a failed connection). The passive peer
requires the information provided by these two events to determine whether
the connection succeeded.

Sending User Data With Connection or Disconnection Requests

The 0TConnect function and the 0TSndDisconnect function both pass data
structures that include fields for data that you might want to send at the time
that you are setting up or tearing down a connection. However, you can only
send data when calling these two functions if the connect and discon fields of
the TEndpointInfo structure specify that the endpoint can send data with
connection or disconnection requests. The amount of data sent must not exceed
the limits specified by these two fields. To determine whether the endpoint
provider for your endpoint supports data transfer during the establishment of
a connection, you must examine the connect and discon fields of the
TEndpointInfo structure for the endpoint.

Processing Multiple Connection Requests

If you process multiple connection requests for a single endpoint, you must
make sure that the number of outstanding connection requests does not exceed
the limit defined for the listening endpoint when you bound that endpoint. An
outstanding connection request is a request that you have read using the
0TListen function but that you have neither accepted nor rejected. You must
also decide whether to accept connections on the same endpoint that is
listening for the connections or on a different endpoint.

When you bind the passive endpoint, you must specify a value greater than 0
for the glen field of the reqaddr parameter to the 0TBind function. This value
indicates the number of outstanding connections that the provider can queue

Using Endpoints 3-33
Draft. O Apple Computer, Inc. 4/30/96

3-34

CHAPTER 3

Endpoints

for this endpoint. Note that Open Transport might negotiate this number to a
lower value. If it does, the negotiated value is returned in the qlen field of the
retAddr parameter when the 0TBind function returns. As you process incoming
connection requests, you must check that the number of connections still
waiting to be processed does not exceed this negotiated value for the listening
endpoint. How you do this depends on the number of outstanding requests
and on whether you are accepting connection requests on the same endpoint as
the endpoint listening for requests or accepting them on a different endpoint.
Connection acceptance is governed by the following rules:

= You can bind more than one connection-oriented endpoint to the same
address, but you can use only one of these endpoints to listen for connection
requests.

= If you accept a connection on the same endpoint that is listening for
connection requests, you must have responded to all previous connection
requests received on the endpoint using 0TAccept or 0TSndDisconnect
functions. Otherwise, the 0TAccept function fails. If you have not responded
to all previous connection requests, you should accept the connection on a
different endpoint.

If you accept a connection on the same endpoint that received the
connection request and there are outstanding connection or disconnection
indications for that endpoint, the 0TAccept function fails.

= If you accept a connection on an endpoint that is different from the endpoint
that received the connection request, you do not have to bind the endpoint
to which you are passing off the connection. If the endpoint is not bound,
the endpoint provider automatically binds it to the address of the endpoint
that listened for the connection request.

If you choose to explicitly bind the endpoint accepting the connection to the
address of the endpoint listening for the connection, you must set the qlen
field of the reqAddr parameter to the 0TBind function to 0.

What these rules add up to in practical terms is that if you anticipate managing
more than one connection at a time, you should open an endpoint to listen for
connections and then open additional endpoints as needed to accept incoming
connections. The decision of whether to bind the additional endpoints to the
same address or to a different address is affected only by the availability of
endpoints to your application.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Terminating a Connection

You can terminate a connection using either an abortive or orderly disconnect.
During an abortive disconnect, the connection is torn down without the
underlying protocol taking any steps to make sure that data being transferred
has been sent and received. When the client calls the 0TSndDisconnect function,
the connection is immediately torn down, and the client cannot be sure that the
provider actually sent any locally buffered data. During an orderly disconnect,
the underlying protocol ensures at least that all outgoing data is actually sent.
Some protocols go further than this, using an over-the-wire handshake that
allows both peers to finish transferring data and agree to disconnect. The
following sections describe the steps required for abortive and orderly
disconnects.

Using an Abortive Disconnect

You use the 0TSndDisconnect and 0TRcvDisconnect functions to perform an
abortive disconnect. Figure 3-5 illustrates the process for two asynchronous
endpoints. The figure shows the active peer initiating the disconnection; in fact,
either endpoint can initiate the disconnection.

Figure 3-5 An abortive disconnect

Active Passive

T_DISCONNECT
> Notifier

T_DISCONNECTCOMPLETE
Notifier & OTRcvDisconnect

0TSndDisconnect

Using Endpoints 3-35
Draft. O Apple Computer, Inc. 4/30/96

3-36

CHAPTER 3

Endpoints

In asynchronous mode, the endpoint initiating the disconnection calls the
0TSndDisconnect function. Parameters to the function identify the endpoint and
point to a TCa11 structure that is only of interest if the endpoint provider
supports sending data with disconnection requests. To determine whether your
protocol does, you must examine the value of the discon field of the
TEndpointInfo structure for your endpoint. If you do not want to send data or if
you cannot send data to the passive peer, you can set TCal1 to a NULL pointer.

The endpoint provider receiving the disconnect request calls the passive peer’s
notifier function, passing T_DISCONNECT for the code parameter. The client must
acknowledge the disconnection event by calling the function 0TRcvDisconnect.
This function clears the event and retrieves any data sent with the event.
Parameters to the 0TRcvDisconnect function identify the endpoint sending the
disconnection and point to a TDiscon structure that is only of interest if the
endpoint provider supports sending data with disconnection requests or if the
passive peer is managing multiple connections and needs to inform the active
peer which of the connections has been closed by using the sequence field of the
TDiscon structure. Otherwise, you can set TDiscon to a NULL pointer. When the
connection has been closed, the endpoint provider calls the active peer’s
notifier, passing T_DISCONNECTCOMPLETE for the event parameter. At this time the
endpoint is once more in the T_IDLE state.

Using Orderly Disconnects

There are two kinds of orderly disconnects: remote orderly disconnects and
local orderly disconnects. The first kind, supported by TCP, provides an
over-the-wire (three-way) handshake that guarantees that all data has been
sent and that both peers have agreed to disconnect. The second kind,
supported by ADSP and most other connection-oriented transactionless
protocols, is a locally implemented orderly release mechanism ensuring that
data currently being transferred has been received by both peers before the
connection is torn down. To determine whether your protocol supports orderly
disconnects, you must examine the servtype field of the TEndpointinfo
structure for the endpoint. A value of T_COTS_ORD or T_TRANS_ORD indicates that
the endpoint supports orderly release. It is safest to assume, unless you know
for certain it to be otherwise, that the endpoint supports only local orderly
disconnects.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Figure 3-6 shows the steps required to complete a remote orderly disconnect.
The figure shows the active peer initiating the disconnection; in fact, either peer
can initiate the disconnection.

Figure 3-6 Remote orderly disconnect

Active Passive

T_ORDEREL
0TSndOrderlyDisconnect > Notifier

Receive/send
data

!

OTRcvOrderlyDisconnect

!

Send data

!

T_ORDEREL
Notifier & 0TSndOrderlyDisconnect

0TRcvOrderlyDisconnect

Receive data

Using Endpoints 3-37
Draft. O Apple Computer, Inc. 4/30/96

3-38

CHAPTER 3

Endpoints

The active peer initiates the disconnection by calling the
0TSndOrderlyDisconnect function to begin the process and to let the remote
endpoint know that the active peer will not send any more data. (Following the
call to this function, the active peer can receive data but it cannot send any
more data.) The provider calls the passive peer’s notifier function, passing
T_ORDREL for the code parameter. In response, the passive peer must read any
unread data and can send additional data. After it has finished reading the
data, it must call the 0TRcvOrderlyDisconnect function to acknowledge receipt
of the orderly release indication. After calling this function, the passive peer
must not attempt to read any more data; however, it can continue to send data.
When the passive peer is finished sending any additional data, it must call the
0TSndOrderlyDisconnect function to complete its part of the disconnection.
Following this call, it cannot send any data. The endpoint provider calls the
active peer’s notifier, passing T_0RDREL for the code parameter, and the active
peer calls the 0TRcvOrderlyDisconnect function to acknowledge receipt of the
disconnection event and to place the endpoint in the T_IDLE state if this was the
only outstanding connection.

Figure 3-7 shows the steps required to complete a local orderly disconnect.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Figure 3-7 A local orderly disconnect

Active Passive

T_ORDEREL
0TSndOrderlyDisconnect >

Recieve data

Receive data

1

OTRcvOrderlyDisconnect

J

T_ORDEREL
Notifier & 0TSndOrderlyDisconnect

0TRcvOrderlyDisconnect

As you can see, the sequence of steps is very similar to that shown in

Figure 3-6. The main difference is that the connection is broken as soon as the
active peer calls the 0TSndOrderlyDisconnect function. As a result, either peer
can continue to read any unread data, but neither peer can send data after the
initial call to the 0TSndOrder1yDisconnect function.

Using Endpoints 3-39
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Sending and Receiving Data

This section describes some of the issues that affect send and receive operations
inasmuch as these issues affect every type of endpoint. After you read this
section, you can read whichever section describes the type of data transfer you
are interested in.

Sending Noncontiguous Data

When sending data, you normally use a TNetbuf structure to specify the
location and size of the buffer containing the data to be sent. Open Transport
also allows you to send data that is not contiguous; however, you need to use a
different structure to specify the location of the data fragments in memory. This
structure is called the 0TData structure.

Figure 3-8 shows how you use 0TData structures to describe noncontiguous
data. The first structure, my0TD1, contains information about the first data
fragment: the fData field contains the starting address of the fragment, and the
fLen field contains the length of the fragment. The field fNext contains the
address of the 0TData structure, my0TD2, which specifies the size and location of
the second fragment. In turn, the structure my07D2, contains the address of the
0TData structure that specifies the location and size of the third fragment. You
must set the fNext field of the 0TData structure used to describe the last data
fragment to NULL.

3-40 Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Figure 3-8 Describing noncontiguous data

OTData structures Noncontiguous data

my0TD1

y

fNext
First fragment flen

fData

flen

y

my0TD2 Second fragment

Y

fNext

fData

y

flen

my0TD3 Third fragment

fNext

fData

flen

Sending Data Using Multiple Sends

If you are sending a data unit using multiple sends, you must do the following;:

1. Set the T_MORE bit in the flags field each time you call the function. This lets
the provider know that it has not yet read the entire data unit.

2. Clear the T_MORE bit the last time you call the function. This lets the provider
know that the data unit is complete.

Even though you are using multiple sends to send the data, the total size of the
data sent cannot exceed the value specified for the tsdu field (for normal data
or replies) or etsdu field (for expedited data or requests) of the TEndpointInfo
structure for the endpoint.

Using Endpoints 3-41
Draft. O Apple Computer, Inc. 4/30/96

3-42

CHAPTER 3

Endpoints

Sending data using multiple sends does not necessarily affect the way in which
the remote client receives the data. That is, just because you have used several
calls to a send function to send data does not mean that the remote client must
call a receiving function several times to read the data.

Receiving Data

If you are reading data and if the T_MORE bit in the flags field is set, this means
that the buffer you have allocated to hold the data is not big enough. You must
copy the data you have already received to a different buffer and then call the
receive function again to read more data until the T_MORE bit is cleared, which
indicates that you have read the entire data unit.

No-Copy Receiving

Open Transport allows you to receive data without doing the extra copying
that is normally involved in receiving data, which can save time and resources.
For example, you might have received some data that needs to be written to
disk and you have four files, each with a different buffer, that are expecting
data. Normally what you would do is store the data into a temporary buffer
while you determined which of the four files was the right destination. When
you identified the target, you'd then copy the data from the temporary buffer
into that file’s buffer.

A no-copy receive allows you to peek at the data when you receive it and write
it out immediately. Open Transport does this by giving you access to a special
no-copy receive buffer, 0TBuf fer. To take advantage of this buffer, it is
absolutely crucial that you

= don’t touch it
= release it quickly

= only release it once; don’t release it multiple times

WARNING

The no-copy receive buffer is read-only and you must
never under any circumstances attempt to write to it. if
you write to it, you can crash the system. a

You need to release the no-copy receive buffer (with the 0TReleaseBuffer
function) as soon as you are finished using it so that are not tying up system
resources required elsewhere. If you hold onto the buffer, one consequence is

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

that your Ethernet driver starts making its own copies as it receives more data,
and if it isn’t well designed, it may run out of space and lose packets.

The no-copy receive buffer is actually a linked chain of buffers, with the next
buffer pointed to by the fNext field in each buffer. You can access all of the
received data by tracing the chain of fNext pointers. For your convenience,
Open Transport provides the 0TBufferInfo structure and the utility functions,
0TReadBuffer and 0TBufferDataSize, to read through the 0TBuffer structure.

Transferring Data Efficiently

Some protocols support XTI-level options that you can use to change the size of
Open Transport’s internal send and receive buffers and to change the size of
the “low-water mark” that Open Transport uses to determine how much data
should accumulate in these buffers before it sends the data or lets the client
know that data has arrived. If your protocol supports these options, you can
reset these values to fit your application’s needs. For more information, see the
section describing XTI-level options in the chapter “Option Management” in
this book.

Transferring Data Between Transactionless Endpoints

Open Transport defines two sets of functions that you can use to send and
receive data. You use one set with connectionless service and the other with
connection-oriented service.

Using Connectionless Transactionless Service

You use connectionless transactionless service, as provided by AppleTalk’s
DDP for example, to send and receive discrete data packets. Most often
applications use higher-level protocols that depend, in turn, upon more basic
protocols that use connectionless transactionless service. For example, all of
AppleTalk’s higher-level protocols make use of DDP to send and receive data.

After opening and binding a connectionless transactionless endpoint, you can
use three functions to send and receive data:

= the 0TSndUData function to send data
= the 0TRcvUData function to receive data

s the 0TRcvUDErr function to determine why a send operation did not succeed

Using Endpoints 3-43
Draft. O Apple Computer, Inc. 4/30/96

3-44

CHAPTER 3

Endpoints

Either endpoint can send or receive data. However, the endpoint sending data
cannot determine whether the other endpoint has actually received the data.

Some endpoints are not able to determine that the specified address or options
are invalid until after the data is sent. In this case, the sender’s endpoint
provider issues the T_UDERR event. You should include code in your notifier
function that calls the 0TRcvUDErr function in response to this event to
determine what caused the send function to fail and to place the sending
endpoint in the correct state for further processing.

If the endpoint receiving data has allocated a buffer that is too small to hold the
data, the 0TRcvUData function returns with the T_MORE bit set in the f1ags
parameter. In this case, you should call the 0TRcvUData function repeatedly until
the T_MORE bit is cleared.

Using Connection-Oriented Transactionless Service

You use connection-oriented transactionless service, such as provided by ADSP,
to exchange full-duplex streams of data across a network. Connection-oriented
transactionless endpoints use the 0TSnd function to send data and the 0TRcv
function to receive data. Either endpoint can call either of these functions.
Parameters to the 0TSnd function identify the endpoint sending the data, the
buffer that holds the data, the size of the data, and a f1ags value that specifies
whether the data sent is normal or expedited and whether multiple sends are
being used to send the data. Parameters to the 0TRcv function identify the
receiving endpoint, the area in memory where the data should be copied, the
size of the data, and a f1ags value that specifies whether the client needs to call
0TRcv more than once to retrieve the data being sent.

Some endpoints support the use of expedited data, and some support the use
of separators to break the data stream into logical units. You need to examine
the endpoint’s TEndpointInfo structure to determine if the endpoint supports
either of these features:

= The etsdu field of the TEndpointInfo structure specifies whether the endpoint
supports the use of expedited data and, if so, specifies its size. For example,
ADSP supports the use of expedited data to send attention messages
between peer endpoints. In general, it is recommended that you do not use
expedited data because doing so results in code that is not transport
independent.

= The tsdu field of the TEndpointInfo structure specifies the maximum size of
normal data that the endpoint can send or receive. In those cases where the

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

endpoint supports the breaking up of the data stream into logical units, the
TSDU size specifies what the maximum size of any such unit may be.

IMPORTANT

Values for the tsdu and etsdu fields of the TEndpointInfo
structure that are returned when you open an endpoint
might change after the endpoint is connected because the
endpoint providers can negotiate different values when
establishing a connection. If the endpoint supports
variable maximum limits for TSDU and ETSDU size, you
should call the 0TGetEndpointInfo function after the
connection has been established to determine what the
current limits are. a

To send expedited data, you must set the T_EXPEDITED bit in the flags
parameter. If the receiving client is in the middle of reading normal data and
the 0TRcv function returns expedited data, the next 0TRcv that returns without
T_EXPEDITED set in the flags field resumes the sending of normal data at the
point where it was interrupted. It is the responsibility of the client to remember
where that was.

There are several ways of breaking up a data stream into logical size units.

s If the endpoint supports it, enable the use of the T_MORE flag to the 0TSnd
function. For example, using ADSP, you can do this by setting the E0M option
when you connect the endpoints. Sending data with the T_MORE bit set
informs the receiving endpoint that the TSDU is being sent using multiple
0TSnd calls. When sending the last packet, do not set the T_MORE bit. Because
these packets are guaranteed to be delivered in the order sent, the receiving
endpoint can determine when the last packet has arrived by examining
the flags.

s If the endpoint supports it, send a zero-length TSDU to indicate the end of a
TSDU. The receiving endpoint needs to test the nbytes field of the 0TSnd
function to determine if this is the last transmission. To determine whether
the endpoint supports this feature, you need to examine the f1ags field of
the TEndpointInfo structure; zero-length TSDUs are supported if the
T_SENDZERO bit is set.

s Use the data transferred with your first send to specify the name and size of
the file that you want to send. The receiving endpoint can save the size value
and decrement it by the value specified by the nbytes parameter of each

Using Endpoints 3-45
Draft. O Apple Computer, Inc. 4/30/96

3-46

CHAPTER 3

Endpoints

subsequent send until the number equals 0. This last method is the only one
that is transport-independent.

Transferring Data Between Transaction-Based Endpoints

Open Transport defines two sets of functions that you can use to conclude a
transaction. One set is defined for connectionless transactions; the other set is
defined for connection-oriented transactions. A transaction is a process during
which one endpoint, the requester, sends a request for a service. The remote
endpoint, called the responder, reads the request, performs the service, and
sends a reply. When the requester receives the reply, the transaction is complete.

You can implement applications that use transactions in the following
two ways:

= You can write a single application that handles both the requester and
responder actions of a transaction and run that application on two
networked nodes. This method allows each application to act as either the
requester or the responder. Either side can initiate a transaction, but only one
side can control the communication during a single transaction.

= You can write two applications, one implementing the requester part of a
transaction and the other implementing the responder side. This model
lends itself well to a client-server relationship, in which many nodes on a
network run the requester application (client), while one or more nodes run
the responder application (server); one server can respond to transaction
requests from several clients.

Because one endpoint can conduct multiple transactions at any one time, it is
crucial that requesters and responders be able to distinguish one transaction
from another. This is done by means of a transaction ID, a number that
uniquely identifies a transaction. Because this is not the same number for the
requester as it is for the responder, some explanation is required. Figure 3-9
shows how the transaction ID is generated by the requesting application and
the provider during the course of a transaction.

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints
Figure 3-9 How a transaction ID is generated
Requester Responder
address address
options options
data data

sequence = 1001

Send request

sequence = 5123

Read request

1001 5123
address
options
data
sequence = 1001
Read reply
1001 5123

address
options
data

sequence = 5123

Send reply

The requester initiates a transaction by sending a request. The requester passes
information about the request in a data structure that includes a seq field,
which specifies the transaction ID of the request. The requester initializes this
field to some arbitrary, unique number. Before sending the request, the
endpoint provider saves this number in an internal table and assigns another
number to the seq field, which it guarantees to be unique for the requester’s
machine. The endpoint provider also saves the new number along with the

Using Endpoints 3-47
Draft. O Apple Computer, Inc. 4/30/96

3-48

CHAPTER 3

Endpoints

requester-generated sequence number. For example, in Figure 3-9, the requester
assigns the number 1001; the endpoint provider assigns the number 5123.

When the responder receives the request, it reads the request information,
including the provider-generated sequence number, into buffers it has reserved
for the request data. When the responder sends a reply, it specifies the sequence
number it read when it received the request.

Before the requester’s endpoint provider advises the requester that the reply
has arrived, it examines the sequence number of the reply and looks in its
internal table to determine which requester-generated sequence number it
matches. It then substitutes that number for the sequence number it received
from the responder. By using this method Open Transport guarantees that
transactions are uniquely identified, and the requester is able to match
incoming replies with outgoing requests.

Using Connectionless Transaction-Based Service

You use connectionless transaction-based service, such as provided by ATP, to
enable two connectionless endpoints to complete a transaction.

The requester initiates the transaction by calling the 0TSndURequest function.
Parameters to the 0TSndURequest function specify the destination address, the
request data, any options, and a sequence number to identify this transaction.
The requester must supply a sequence number if it is sending multiple
requests, so that later on it can match replies to requests. The requester can
cancel an outgoing request by calling the 0TCancelURequest function. A
requester can implement its own timeout mechanism by installing a Time
Manager task and calling the 0TCancelURequest function after a specific amount
of time has elapsed without a response to the request.

If the responder is synchronous and blocking, the 0TRcvURequest function
returns after it has read the request. If the responder is asynchronous or not
blocking and has a notifier installed, the endpoint provider calls the notifier,
passing T_REQUEST for the code parameter. When the responder receives this
event, it must call the 0TRcvURequest function to read the request. On return,
parameters to the 0TRcvURequest function specify the address of the requester,
option values, the request data, flags information, and a sequence number to

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

identify the transaction. When the responder sends a reply to the request, it
must use the same sequence number for the reply. If the responder’s buffer is
too small to contain the request, the endpoint provider sets the T_MORE bit in the
flags parameter. The responder must call the 0TRcvURequest function until the
T_MORE bit is clear. This indicates that the entire request has been read.

Having read the request, the responder can reply to the request using the
0TSndUReply function or reject the request using the 0TCancelUReply function.
Although the requester is not advised that the responder has rejected a request,
it’s important that the responder explicitly cancel an incoming request in order
to free memory reserved by the 0TRcvURequest function.

If the requester is in synchronous blocking mode, the 0TRcvURep1ly function
waits until a reply comes in. Otherwise, if a notifier is installed, the endpoint
provider calls the notifier, passing T_REPLY for the code parameter. The notifier
must call the 0TRcvUReply function. On return, parameters to the function
specify the address of the endpoint sending the reply, specify option values,
flag values, reply data, and a sequence number that identifies the request
matching this reply. If the T_MORE bit is set in the f1ags parameter, the requester
has allocated a buffer that is too small to contain the reply data. The requester
must call the 0TRcvURep1y function until the T_MORE bit is clear; this indicates
that the complete reply has been read.

If the request is rejected or fails in some other way, the requester receives the
T_REPLY event. However, the 0TRcvURep1y function returns with the result
kETIMEDOUTErr. Otherwise, the only useful information returned by the function
is the sequence number of the request that has failed.

Figure 3-10 illustrates how connectionless transaction-based endpoints in
asynchronous mode exchange data.

Using Endpoints 3-49
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Figure 3-10 Data transfer using connectionless transaction-based endpoints in

asynchronous mode

Requester

Responder

T_REQUEST
0TSndURequest > Notifier

T_REPLY
Notifier < 0TSndUReply 0TCancelUReply

J

J

O0TRcvURequest

]
¢ U

T_REPLYCOMPLETE -
OTRcvUReply > Notifier

3-50

Using Connection-Oriented Transaction-Based Service

Connection-oriented transaction-based endpoints allow you to transfer data in
exactly the same way as connectionless transaction-based endpoints except
that, because the endpoints are connected, it is not necessary to specify an
address when using the functions to send and receive requests and replies. The
only other difference is that a connection-oriented transaction may be
interrupted by a connection or disconnection request.

The section “Using Connectionless Transaction-Based Service,” beginning on
page 3-48 describes the sequence of functions used to transfer data using a
transaction. Figure 3-11 shows the sequence of functions called during a
connection-oriented transaction; both requester and responder are in
asynchronous mode. This sequence is the same as for connectionless
transaction-based service, as shown in Figure 3-10 on page 3-50. Of course, you

Using Endpoints
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

use different functions to complete these two types of transactions: the names
of the functions shown in Figure 3-11 do not include a “U” in the function
name.

Figure 3-11 Data transfer using connection-oriented transaction-based endpoints in

asynchronous model

Requester Responder

T_REQUEST
0TSndRequest > Notifier

OTRcvRequest

]
g)

T_REPLY
Notifier & 0TSndReply O0TCancelReply
T_REPLYCOMPLETE -
OTRcvReply > Notifier

For information about how to handle disconnection requests that might occur
during a transaction, see “Using Orderly Disconnects,” beginning on page 3-36.

Using Endpoints 3-51
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Endpoints Reference

This section describes the data types and functions that you use with
endpoints. You can also use general provider data types and functions with
endpoints. General structures and functions are described in the reference
section of the chapter “Providers” in this book.

Note

Some endpoint data types and functions correspond exactly to
those in the X/Open Transport Interface (XTI), from which
Open Transport derives its application programming interface.
Appendix A lists these data types and functions. You can refer
to these data types and functions by their Open Transport
names or their corresponding XTI names. For example, you
can refer to the Open Transport function 0TBind by the XTI
name t_bind. This chapter refers to endpoint data types and
functions by their Open Transport names. O

Constants and Data Types

This section describes the constants and data types that you can use with
endpoints. The data types include general types that you can use with any type
of endpoint and specific types that you can use only with one type of endpoint.
The general types (the TEndpointInfo structure, the TBind structure, and the
0TData structure) are described first, just following the descriptions of constants.

OTData Constant

3-52

When transferring data that is noncontiguous, you need to use an 0TData buffer
instead of the TNetbuf structure. Open Transport provides a constant that you
can use when you send or receive data to indicate that the value in the TNetbuf
structure is actually a pointer to an 0TData buffer.

enum {
kNetbufDatalsOTData = (size_t)Oxfffffffel
b

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTBuffer Constant

When receiving data without making a copy, you need to point to an 0TBuffer
pointer. Open Transport provides a constant that you can use instead of the
nbytes parameter of the 0TRcv function or the udata.max1en field used with
other receive functions to indicate that you are doing this.

enum {
kNetbufDatalsOTBufferStar= (size_t)OxfffffffdU

Buffer Types Enumeration

Each of the structures described by the structure types enumeration contains
fields that point to different kinds of buffers. When you allocate memory for
such a structure using the 0TA110c function (page 3-102), you can also specify
that these buffers be allocated by specifying one or more of the constant names
given by the buffer types enumeration.

The length of the allocated bulffer is at least as large as the size returned for the
endpoint by the 0TGetEndpointInfo function (page 3-92). For each buffer
allocated, the 0TA110c function sets the max1en field to the length of the buffer,
and the Ten field to 0. To specify more than one constant name, use the bitOR
operator to combine values.

enum {
T_ADDR = 0x01,
T_OPT = 0x02,
T_UDATA = 0x04,
T_ALL = Oxffff
}s
Constant descriptions
T_ADDR The addr field of the TBind, TCal1, TUDErr, TUnitRequest, or
TUnitData structures.
T_OPT The opt field of the TOptMgmt, TCal1, TUDErr, TRequest,
TReply, TUnitRequest, TUnitReply, or TUnitData structures.
T_UDATA The udata field of the TCal1, TDiscon, TUnitData, TRequest,

TReply, TUnitRequest, or TUnitReply structures. The value

Endpoints Reference 3-53
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints
of the udata.max1en field depends upon the structure being
allocated.
T_ALL All relevant fields of the desired structure are allocated.
Endpoint Service Types

Open Transport uses the servtype field of the TEndpointInfo structure

(page 3-58) to indicate the kind of service the endpoint provides. The constant
names that Open Transport can return for this field are given by the endpoint
service enumeration:

enum {
T_COTS =1,
T_COTS_ORD =2,
T_CLTS =3,
T_TRANS =5,
T_TRANS_ORD =6,
T_TRANS_CLTS =7
b
Constant descriptions
T_COTS Connection-oriented transactionless service without
orderly release.
T_COTS_ORD Connection-oriented transactionless service with optional
orderly release.
T_CLTS Connectionless transactionless service.
T_TRANS Connection-oriented transaction-based service without
orderly release.
T_TRANS_ORD Connection-oriented transaction-based service with
optional orderly release.
T_TRANS_CLTS Connectionless transaction-based service.
Open Transport Flags

Open Transport uses the 0TF1ags enumeration to specify additional information
about data that is being transmitted. The constant names that Open Transport
can return for this field are given by the Open Transport flags enumeration.

3-54 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

typedef UInt32

enum {
T_MORE
T_EXPEDITED
T_ACKNOWLEDGED
T_PARTIALDATA
T_NORECEIPT
T_TIMEDOUT

b

OTFlags;

= 0x001,/* More data to come in message */

= 0x002,/* Data is expedited, if possible */
= 0x004,/* Acknowledge transaction */

= 0x008,/* Partial data - more coming */

= 0x010/* No event on transaction done */

= 0x020/* Reply timed out */

Constant descriptions

T_MORE

T_EXPEDITED
T_ACKNOWLEDGED

T_PARTIALDATA

T_NORECEIPT

T_TIMEDOUT

Endpoint Flags

There is more data for the current TSDU or ETSDU. The
next send or receive operation will handle additional data
for this TSDU or ETSDU.

The data is sent as expedited data if the endpoint supports
expedited data.

The transaction must be acknowledged before the send or
receive function can complete.

There is more data for the current TSDU or ETSDU. Unlike
T_MORE, T_PARTIALDATA does not guarantee that the next
send or receive operation will handle additional data for
this TSDU or ETSDU.

There is no need to send a T_REPLY_COMPLETE event to
complete the transaction. If you don’t need to know when
the transaction is actually done, you can set this flag to
improve performance.

The reply timed out. If a protocol such as ATP loses the
acknowledgement for a transaction that needs to be
acknowledged, the transaction will eventually time out.
Since the reply didn’t really fail (it just timed out), Open
Transport can send a T_REPLY_COMPLETE event to complete
the transaction and set this flag to explain what happened.

Open Transport uses the f1ags field of the TEndpointInfo structure (page 3-58)
to specify additional information about the endpoint. The constant names that

Endpoints Reference

3-55

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Open Transport can return for this field are given by the endpoint flags
enumeration:

enum {
T_SENDZERO = 0x001,
T_XPG4_1 = 0x002,
T_CAN_SUPPORT_MDATA = 0x10000000,
T_CAN_RESOLVE_ADDR = 0x40000000,
T_CAN_SUPPLY_MIB = 0x20000000
Vs
Constant descriptions
T_SENDZERO This endpoint lets you send and receive zero-length
TSDUs.
T_XPG4_1 This endpoint supports the 0TGetProtAddress function.

T_CAN_SUPPORT_MDATA
This endpoint supports M_DATA, that is, it permits sending
raw packets. This is Streams-specific and is found in the
mistreams.h header file. When you send such a packet, set
the packet’s addr.buf field to a null value and set its
addr.len field to 1. This indicates that the data portion of
the TUnitData structure already has the header information
in it.

T_CAN_RESOLVE_ADDR This endpoint supports the 0TResolveAddress function.

T_CAN_SUPPLY_MIB This endpoint can supply the Management Information
Base (MIB) data used by the Simple Network Management
Protocol (SNMP).

Endpoint States

3-56

The 0TGetEndpointState function (page 3-93) returns an integer specifying the
current state of an endpoint. Integer values and their corresponding constant
names are given by the endpoint states enumeration. For information about
endpoint states, see the section “Endpoint States” on page 3-13.

enum {
T_UNINIT =0 /* endpoint is uninitialized */
T_UNBND =1, /* endpoint is unbound */
T_IDLE =72 /* idle */

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

T_OQUTCON
T_INCON
T_DATAXFER
T_OUTREL
T_INREL

by

/* outgoing connection pending */
/* incoming connection pending */
/* data transfer */

/* outgoing orderly release */

/* incoming orderly release */

Il
~ o o B~ W

Constant descriptions

T_UNINIT
T_UNBND

T_IDLE

T_OUTCON
T_INCON
T_DATAXFER

T_OUTREL

T_INREL

Structure Types

This endpoint has been closed and destroyed.

This endpoint is initialized but has not yet been bound to
an address.

This endpoint has been bound to an address and is ready
for use: connectionless endpoints can send or receive data;
connection-oriented endpoints can initiate or listen for a
connection.

This endpoint has initiated a connection and is waiting for
the peer endpoint to accept the connection.

This endpoint has received a connection request but has
not yet accepted or rejected the request.

This connection-oriented endpoint can now transfer data
because the connection has been established.

This endpoint has issued an orderly disconnect that the
peer has not acknowledged. The endpoint can continue to
read data, but must not send any more data.

This endpoint has received a request for an orderly
disconnect, which it has not yet acknowledged. The
endpoint can continue to send data until it acknowledges
the disconnection request, but it must not read data.

The 0TA171oc function (page 3-102) allocates a data structure that you specify
using one of the constant names given by the structure types enumeration:

enum {
T_BIND
T_OPTMGMT
T_CALL
T_DIS

Endpoints Reference

(0TStructType)l,
(0TStructType)?2,
(0TStructType)3,
(0TStructType)4,

3-57

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints
T_UNITDATA = (0TStructType)5,
T_UDERROR = (0TStructType)6,
T_INFO = (0TStructType)7,
T_REPLYDATA = (0TStructType)8,
T_REQUESTDATA = (0TStructType)9,
T_UNITREQUEST = (0TStructType)10,
T_UNITREPLY = (0TStructType)ll

Constant descriptions

T_BIND Specifies the T8ind structure (page 3-61).

T_OPTMGMT Specifies the TOptMgmt structure, described in the chapter
“Option Management” in this book.

T_CALL Specifies the TCa11 structure (page 3-72).

T_DIS Specifies the TDiscon structure (page 3-161).

T_UNITDATA Specifies the TUnitData structure (page 3-65).

T_UDERROR Specifies the TUDError structure (page 3-67).

T_INFO Specifies the TEndpointInfo structure (page 3-58).

T_REPLYDATA
T_REQUESTDATA
T_UNITREQUEST
T_UNITREPLY

Specifies the TReply structure (page 3-77).
Specifies the TRequest structure (page 3-76).
Specifies the TUnitRequest structure(page 3-68).
Specifies the TUnitReply structure (page 3-70).

The TEndpointInfo Structure

The TEndpointInfo structure describes the initial characteristics of an endpoint
that you opened by calling the 0TOpenEndpoint function (page 3-92) or the
0TAsyncOpenEndpoint function (page 3-86). These functions return as a
parameter a pointer to a TEndpointInfo structure, if there is one. The
TEndpointInfo structure is optional; some endpoints might not provide one,
depending on which protocol modules they use. You can also obtain a pointer
to the TEndpointInfo structure by calling the 0TGetEndpointInfo function
(page 3-92) or the 0TBind function (page 3-87).

You use the TEndpointInfo structure to find out how large a buffer you must
allocate to send or receive information for the endpoint and what kind of
services the endpoint provides.

3-58 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

IMPORTANT

It is recommended that you do not hard-code
TEndpointInfo field values into your application when
specifying the maximum length of buffers because these
values might change. a

The TEndpointInfo structure is defined by the TEndpointInfo data type.

struct TEndpointInfo

{

SInt32 addr; /* maximum size of an address */

SInt32 options; /* maximum size of options */

SInt32 tsdu; /* normal data transmit unit size*/
SInt32 etsdu; /* expedited data transmit unit size */
SInt32 connect; /* maximum data size on connect */
SInt32 discon; /* maximum data size on disconnect */
UInt32 servtype; /* service type */

UInt32 flags; /* flags */

b

typedef struct TEndpointInfo TEndpointInfo;

Field descriptions
addr

options

tsdu

Endpoints Reference

A value greater than 0 indicates the maximum size (in
bytes) of a protocol address to which you can bind this
endpoint. A value of T_INVALID indicates that this endpoint
does not allow access to protocol addresses; it is being
used for serial communication.

A value greater than 0 indicates the maximum number of
bytes needed to store the protocol-specific options that this
endpoint supports, if any. A value of T_INVALID indicates
that this endpoint has no protocol-specific options that you
can set.

For a transactionless endpoint, a positive value indicates
the maximum number of bytes in a transport service data
unit (TSDU) for this endpoint. A value of T_INFINITE
indicates that there is no limit to the size of a TSDU. A
value of 0 indicates that the provider does not support the
concept of a TSDU. This means that you can send a data
stream with no logical boundaries preserved across a
connection. A value of T_INVALID indicates that this

3-59

Draft. O Apple Computer, Inc. 4/30/96

3-60

CHAPTER 3

Endpoints

etsdu

connect

discon

servtype

flags

Endpoints Reference

endpoint cannot transfer normal data (as opposed to
expedited data).

For a transaction-based endpoint, this field indicates the
maximum number of bytes in a response.

For a transactionless endpoint, a positive value indicates
the maximum number of bytes in an expedited transport
service data unit (ETSDU) for this endpoint. A value of
T_INFINITE indicates that there is no limit to the size of a
ETSDU. A value of 0 indicates that this endpoint does not
support the concept of an ETSDU. This means that you can
send an expedited data stream with no logical boundaries
preserved across a connection. A value of T_INVALID
indicates that this endpoint cannot transfer expedited data.

For a transaction-based endpoint, this field indicates the
maximum number of bytes in a request.

For a connection-oriented endpoint, a value greater than 0
indicates the maximum amount of data (in bytes) that you
can send with the 0TSnd function (page 3-140) or 0TAccept
function (page 3-137). A value of T_INVALID indicates that
this endpoint does not let you send data with these
functions. This field is meaningless for other types of
endpoints.

For a connection-oriented endpoint, a value greater than 0
indicates the maximum amount of data (in bytes) that you
can send using the 0TSndDisconnect function (page 3-159)
and the 0TSndOrderlyDisconnect function (page 3-163). A
value of T_INVALID indicates that this endpoint does not let
you send data with these functions. This field is
meaningless for other types of endpoints.

A constant that indicates what kind of service the endpoint
provides. Possible values are given by the endpoint service
enumeration (page 3-54).

Ait field that provides additional information about the
endpoint. Possible values are given by the endpoint flags
enumeration (page 3-55).

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

The TBind Structure

The TBind structure describes the protocol address to which an endpoint is
currently bound or connected, or specifies the protocol address to which you
wish to bind or connect the endpoint. For a connection-oriented endpoint, the
TBind structure also specifies the actual or desired number of connection
requests that can be concurrently outstanding for the endpoint.

You pass the TBind structure as a parameter to the 0T8ind function (page 3-87),
the 0TGetProtAddress function (page 3-96), and 0TResolveAddress function

(page 3-98).

The TBind structure is defined by the TBind data type.

struct TBind
{

TNetbuf addr;
0TQLen qlen;
Vs
typedef struct TBind TBind;

Field descriptions
addr

qlen

Endpoints Reference

A TNetbuf structure that contains information about an
address. The addr.max1en field specifies the maximum size
of the address, the addr.1en field specifies the actual length
of the address, and the addr.buf field points to the buffer
containing the address.

When specifying an address, you must allocate a buffer for
the address and initialize it, you must set the addr.buf field
to point to this buffer, and you must set the addr. Ten field
to the size of the address.

When requesting an address, you must allocate a buffer in
which the address is to be placed, you must set the
addr.buf field to point to this buffer, and you must set the
addr.maxlen field to the maximum size of the address that
is being returned. You determine this value by examining
the addr field of the TEndpointInfo structure for the
endpoint.

For a connection-oriented endpoint, the maximum number
of connection requests that can be concurrently
outstanding for this endpoint. For more information, see

3-61

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

the description of the 0TB1nd function (page 3-87). For
connectionless endpoints, this field has no meaning.

The OTData Structure

3-62

You use the 0TData structure to specify the location and size of noncontiguous
data. You can use this structure in place of the normal TNetbuf structure to
describe a data buffer when sending data using the 0TSndUData function

(page 3-111), the 0TSndURequest function (page 3-117), the 0TSndURep1y function
(page 3-122), the 0TSnd function (page 3-140). the 0TSndRequest function

(page 3-147), and the 0TSndRep1y function (page 3-151).

WARNING

The 0TData structure is an Apple extension to the XTI
specification. Using it might cause your program not to
work when ported to other XTI/STREAMS
environments. a

When transferring data, you normally specify a pointer to a TNetbuf structure
that specifies the location and size of the buffer containing the data. However,
you cannot use a TNetbuf structure to describe data that is noncontiguous.
Instead you must use an 0TData structure to describe each separate chunk of
data. When the function that sends the data executes, it is able to locate all
the chunks of data, given a pointer to the 0TData structure that describes the
first chunk.

Using the 0TData structure enables you to send data that is not contiguous, but
the total size of the data fragments must not exceed the maximum size of data
that the endpoint can send. The limits for normal and expedited data are
specified in the tsdu and etsdu fields of the TEndpointInfo structure for the
endpoint.

Each 0TData structure specifies the location of a data fragment, the size of the
fragment, and the location of the 0TData structure that specifies the location and
size of the next data fragment. The data information structure is defined by the
0TData type.

struct OTData {
void* fNext;
void* fData;

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

size_t flen;
b
typedef struct OTData OTData;

Field descriptions

fext A pointer to the 0TData structure that describes the next
data fragment. Specify a NULL pointer for the last data
fragment.

fData A pointer to the data fragment.

flen Along specifying the size of the fragment in bytes.

The No-Copy Receive Buffer Structure

You use the no-copy receive buffer structure to specify that you wish to receive
data without copying it. You can point to this structure when receiving data
with the 0TRcvUData function (page 3-115), the 0TRcvURequest function

(page 3-120), the 0TRcvUReply function (page 3-125), the 0TRcv function

(page 3-144), the 0TRcvRequest function (page 3-149), and the 0TRcvReply
function (page 3-154).

Note

If you are familiar with Streams mb1k_t data structures,
you can see that the no-copy receive buffer structure is just
a slight modification of the mb1k_t structure. O

You can only use this buffer for data; you cannot use it for the address or
options that may be associated with the incoming data. For example, in the
case of an incoming TUnitData structure, you can only capture the udata
portion, not the addr or opt fields.

A WARNING
Under no circumstance write to this data structure. It is
read-only. If you write to it, you can crash the system. a

The no-copy receive buffer structure is defined by the 0TBuf fer data type.

struct OTBuffer

{
void* flLink;
void* flLink2;
0TBuffer* fNext;

Endpoints Reference 3-63
Draft. O Apple Computer, Inc. 4/30/96

3-64

CHAPTER 3

Endpoints
UInt8* fData;
size_t flen;
void* fSave;
UInt8 fBand;
UInt8 fType;
UInt8 fPadl;
UInt8 fFlags;

typedef struct OTBuffer OTBuffer;

Field descriptions

fLink Reserved.
fLink?2 Reserved.
fNext A pointer to the next 0TBuffer structure in the linked

chain. By tracing the chain of fNext pointers, you can
access all of the data associated with the message.

fData A pointer to the data portion of this 0TBuffer structure.

flen The length of data pointed to by the fData field.

fSave Reserved.

fBand The band used for the data transmission. It must be a
value between 0 and 255.

fType The type of the data (normally M_DATA, M_PROTO, or
M_PCPROTO).

fPadl Reserved.

fFlags The flags associated with the data (MSGMARK, MSGDELIM).

IMPORTANT

Once you have copied the data out of the no-copy receive
buffer, you need to call the 0TReleaseBuffer function as
quickly as possible to return the buffer to Open
Transport. a

In many cases, for performance reasons, drivers pass their actual DMA buffers
when they return data. If this is the case, when you do a no-copy receive, you
are getting the actual DMA buffers from the driver. If you hold on to the buffer
for too long, you may begin to starve the driver for DMA buffers, which
adversely affects the performance of the system. It is very important that if you
are doing a no-copy receive, you hold onto the buffer for as short a time as

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

possible. If it seems necessary to hold on to the buffer for any length of time,
overall performance is better if you instead make a copy of the data and return
the buffer to the system.

Buffer Information Structure

The buffer information structure is provided for your convenience in keeping
track of where you last left off in an 0TBuf fer structure. Because the no-copy
receive buffer structure (0TBuffer) is read-only, you may need to copy the data
in sections as you progress through the no-copy receive buffer.

The buffer information structure is defined by the 0TBufferInfo data type.
struct O0TBufferInfo
OTBuffer* fBuffer;

size_t fOffset;
UInt8 fPad;

typedef struct O0TBufferInfo OTBufferInfo;

Field descriptions

fBuffer A pointer to the no-copy receive bulffer.
fOffset An offset indicating how much of the buffer to read.
fPad Reserved.

The TUnitData Structure

You use the TUnitData structure to describe the data being sent with the
0TSndUData function (page 3-111) and the data being read with the 0TRcvUData
function (page 3-115); you pass this structure as a parameter to each of these
functions.

The TUnitData structure is defined by the TunitData type.

struct TUnitData

{ TNetbuf addr;
TNetbuf opt;
Endpoints Reference 3-65

Draft. O Apple Computer, Inc. 4/30/96

3-66

CHAPTER 3

Endpoints

TNetbuf
by

udata;

typedef struct TUnitData TUnitData;

Field descriptions
addr

opt

udata

Endpoints Reference

A TNetbuf structure that contains information about an
address.

In the udata parameter to the 0TSndUData function, this field
specifies the location and size of the destination address.
You must allocate a buffer to hold the address and
initialize the addr.buf field to point to that buffer. You
must set the addr. Ten field to the length of the address.

In the udata parameter to the 0TRcvUData function, on
return, this field specifies the location and size of the
address of the endpoint that has sent the data. You must
allocate a buffer to contain the address, initialize the
addr.buf field to point to it, and set the addr.max1en field to
specify its maximum size.

A TNetbuf structure that contains information about
options.

In the udata parameter to the 0TSndUData function, this field
specifies the location and size of options. You must allocate
a buffer to hold the options and initialize the opt.buf field
to point to that buffer. You must set the opt.1en field to the
length of the options buffer. If you do not want to specify
any options, set the opt.len field to 0.

In the udata parameter to the 0TRcvUData function, on
return, this field contains any association-related options
specified by the endpoint sending data. To read these
options, you must allocate a buffer into which the provider
can place the options; you must set the opt.buf field to
point to the buffer; and you must set the opt.max1en field
to the maximum size of the buffer.

A TNetbuf structure that contains information about the
data being transferred.

In the udata parameter to the 0TSndUData function, this field
specifies the location and size of the buffer containing the
data to be sent. You must allocate a buffer for the data and
initialize the udata.buf field to point to that buffer. You

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

must set the udata.Ten field to the size of the data being
sent.

If you are sending data that is not stored contiguously, the
udata.buf field is a pointer to an 0TData structure that
describes the first data fragment. In this case, you must set
the udata.len field to the constant kNetbufDatalsOTData.

In the udata parameter to the 0TRcvUData function, this field
specifies the location and size of the buffer into which the
data being received is going to be placed when the
function returns. You must allocate a buffer for the data,
set the udata.buf field to point to it, and set the
udata.maxlen field to the maximum length of this buffer.

If you are doing a no-copy receive, the udata.buf field is a
pointer to an 0TBuffer pointer. In this case, you must set
the udata.maxlen field to the constant
kNetbufDatalsOTBufferStar.

The TUDETrr Structure

The TUDErr structure points to information that explains why the 0TSndUData
function (page 3-111) has failed. You pass this structure as a parameter to the
0TRcvUDErr function (page 3-113).

The TUDErr structure is defined by the TUDErr type.

struct TUDErr

{ TNetbuf addr;
TNetbuf opt;
SInt32 error;

}s
typedef struct TUDErr TUDErr;

Field descriptions

addr A TNetbuf structure that contains information about the
destination address of the data sent using the 0TSndUData
function. The 0TRcvUDErr function fills in this structure
when the function returns. You must allocate a buffer to
contain the address, initialize the addr.buf field to point to
it, and set the addr.max1en field to specify its maximum
size.

Endpoints Reference 3-67
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

opt A TNetbuf structure that contains information about the
options associated with the data sent using the 0TSndUData
function. The 0TRcvUDErr function fills in this structure
when the function returns. If you want to know this
information, you must allocate a buffer to contain the
option data, initialize the opt.buf field to point to it, and
initialize the opt.max1en field to specify the maximum size
of the buffer. If you are not interested in option
information, set the opt.len field to 0.

error Along that, on return, specifies a protocol-dependent error
code for the 0TSndUData function that failed.

The TUnitRequest Structure

3-68

You use the TUnitRequest structure to specify information about the data being
sent with the 0TSndURequest function (page 3-117) and the data being read with
the 0TRcvURequest function (page 3-120); you pass a pointer to this structure as
a parameter to each of these functions.

The TUnitRequest structure is defined by the TUnitRequest data type.

struct TUnitRequest

{ TNetbuf addr;
TNetbuf opt;
TNetbuf udata;
0TSequence sequence;

by
typedef struct TUnitRequest TUnitRequest;

Field descriptions

addr A TNetbuf structure that contains information about an
address.

In the req parameter to the 0TSndURequest function, this
field specifies the location and size of a buffer containing
the address of the responder. You must allocate a buffer for
the address and specify the address. You must set the
addr.buf field to point to this buffer and set the addr.1en
field to the length of the address.

In the req parameter to the 0TRcvURequest function, this
field specifies the location and size of a buffer containing

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

opt

udata

Endpoints Reference

the address of the endpoint that made the request; the field
is filled in by the 0TRcvURequest function when it returns.
You must allocate a buffer to hold address information and
set the addr.buf field to point to it. You must also set the
addr.maxlen field to the maximum size of the address.

A TNetbuf structure that contains information about the
options associated with this request.

In the req parameter to the 0TSndURequest function, this
field specifies the location and size of a buffer containing
the options you want to negotiate. You must allocate a
buffer that contains the option information and set the
opt.buf field to point to it. You must set the opt.len field to
the length of the option data or to 0 if you don’t want to
specify any options.

In the req parameter to the 0TRcvURequest function, this
field specifies the location and size of a buffer containing
the association-related options specified by the requester.
Otherwise, this buffer is empty. When the 0TRcvURequest
function returns, it places option information in this buffer.
You must allocate a buffer to contain the option
information and set the opt.buf field to point to this buffer.
You must set the opt.max1en field to the maximum size
necessary to hold option information for the endpoint.

A TNetbuf structure that contains information about the
request data.

In the req parameter to the 0TSndURequest function, this
field specifies the location and size of a buffer containing
the request data. You must allocate a buffer for the request
data, initialize the udata.buf field to point to it, and set the
udata.len field to the size of the request. The request size
must not exceed the value for the etsdu field of the
TEndpointInfo structure for the endpoint.

If you are sending data that is not stored contiguously, the
udata.buf field is a pointer to an 0TData structure that
describes the first data fragment. In this case, you must set
the udata.len field to the kNetbufDatalsOTData constant.

In the req parameter to the 0TRcvURequest function, this
field specifies the location and size of a buffer containing
the request. You must allocate a buffer into which the

3-69

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

sequence

The TUnitReply Structure

0TRcvURequest function can place the request and set the
udata.buf field to point to it. You must set the udata.maxlen
field to the maximum size of the request data.

If you are doing a no-copy receive, the udata.buf field is a
pointer to an 0TBuf fer pointer. In this case, you must set
the udata.maxlen field to the constant
kNetbufDatalsOTBufferStar.

Along that specifies the transaction ID for this transaction.

You set this field to any desired value when you send
the request.
When you read the request, this value is generated by the

endpoint provider. You need to save this value and use it
for the sequence field when sending a reply.

3-70

You use the TUnitReply structure to specify the data being sent with the
0TSndUReply function (page 3-122) and the data being read with the 0TRcvUReply
function (page 3-125). You pass a pointer to the TUnitReply structure as a
parameter to each of these functions.

The TunitReply structure is defined by the TUnitReply data type.

struct TUnitReply

{
TNetbuf
TNetbuf
TNetbuf
0TSequence

by

typedef struct

Field descriptions
addr

Endpoints Reference

addr;
opt;
udata;
sequence;

TUnitReplyTUnitReply;

A TNetbuf structure that contains information about
an address.

In the reply parameter to the 0TSndURep1y function, this
field specifies the location and size of a buffer containing
the address of the requester. You are not required to
provide this information. If you do not want to provide

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

opt

udata

Endpoints Reference

address information, set the addr.1en field to 0. To specify
an address, you must allocate a buffer for the address and
initialize it to the destination address. Then you set the
addr.buf field to point to the buffer and set the addr.1en
field to the length of the address.

In the reply parameter to the 0TRcvUReply function, this
field specifies the location and size of a buffer containing
the address of the endpoint sending the reply. You must
allocate a buffer into which the address is placed when the
function returns, and you must set the addr.buf field to
point to this buffer. You must also set the addr.max1en field
to the maximum size of the buffer.

A TNetbuf structure that contains information about the
options associated with this reply.

In the reply parameter to the 0TSndUReply function, this
field specifies the location and size of a buffer containing
the options that you set for this reply. You must set the
opt.Ten field to the length of the options or to 0 if you
don’t want to specify any options.

In the reply parameter to the 0TRcvUReply function, this
field specifies the location and size of a buffer containing
the association-related options that the responder has sent
using the 0TSndUReply function. You must allocate a buffer
to hold option information and set the reply.opt field to
point to it. When the 0TRcvURep1ly function returns, it fills
this buffer with option information. You must set the
reply.maxlen field to the maximum size necessary to hold
option information.

A TNetbuf structure that contains information about the
reply data.

In the reply parameter to the 0TSndUReply function, this
field specifies the location and size of a buffer containing
the reply data sent to the requester. You allocate a buffer
that contains the reply data, set the udata.buf field to point
to that buffer, and set the udata.len field to specify the size
of the reply. The size cannot exceed the value specified for
the tsdu field of the TEndpointInfo structure for the
endpoint.

3-71

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

sequence

The TCall Structure

If you are sending data that is not stored contiguously, the
udata.buf field is a pointer to an 0TData structure that
describes the first data fragment. In this case, you must set
the udata.len field to kNetbufDatalsOTData.

In the reply parameter to the 0TRcvUReply function, this
field specifies the location and size of a buffer into which
the function places the reply data on return. You must
allocate a buffer to hold the data, set the udata.buf field to
point to it, and set the udata.max1en field to the maximum
size of this buffer. The size must not exceed the value
specified for the tsdu field of the TEndpointInfo structure
for this endpoint.

If you are doing a no-copy receive, the udata.buf field is a
pointer to an 0TBuffer pointer. In this case, you must set
the udata.maxlen field to the constant
kNetbufDatalsOTBufferStar.

Along that specifies the transaction ID for this transaction.

When sending a reply, you set this field to the value for
this field that you read with the 0TRcvURequest function.

When receiving a reply, if you have sent out multiple
requests, you use this field to match incoming replies to
outgoing requests.

You use the TCa11 structure to specify the options and data associated with
establishing a connection. You pass a pointer to this structure as a parameter to
the 0TConnect function (page 3-131), the 0TRcvConnect function (page 3-133), the
0TListen function (page 3-135), and the 0TAccept function (page 3-137).

The TCa11 structure is defined by the TCa11 data type.

struct TCall
{
TNetbuf
TNetbuf
TNetbuf
0TSequence

3-72 Endpoints Reference

addr;
opt;
udata;
sequence;

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

typedef struct TCall TCall;

Field descriptions
addr

Endpoints Reference

A TNetbuf structure that specifies the location and size of a
buffer containing an address. If you are using the TCa11
structure to send information, you must allocate a buffer
and initialize it to contain the address, you must set the
addr.buf field to point to the buffer, and you must set the
addr.len field to the size of the address. If you are using
the TCa11 structure to receive information, you must
allocate a buffer into which the function can place the
address when it returns, you must set the addr.buf field to
point to this buffer, and you must set the addr.max1en field
to the maximum size of the address.

In the sndCal1 parameter to the 0TConnect function, you
must use this field to specify information about the
address of the remote peer.

In the rcvCall parameter to the 0TConnect function, on
return, this field contains information about the address to
which you are actually connected.

In the call parameter to the 0TRcvConnect function, on
return, this field contains information about the address to
which you are actually connected.

In the call parameter to the 0TListen function, on return,
this field contains information about the address of the
peer that requested the connection. The function returns
the address in a format that you can use in future calls to
the 0TConnect function (page 3-131), the 0TSndDisconnect
function (page 3-159), the 0TSnd0Order1yDisconnect function
(page 3-163), or the 0TAccept function (page 3-137).

In the call parameter to the 0TAccept function, you can use
this field to specify information about the address of the
peer that requested the connection. If you do not want to
specify a value, set the addr.1en field to 0.

In the call parameter to the 0TSndDisconnect function, this
field is reserved.

3-73

Draft. O Apple Computer, Inc. 4/30/96

3-74

CHAPTER 3

Endpoints

opt

udata

Endpoints Reference

A TNetbuf structure that specifies the location and size of a
buffer containing option information. If you are using the
TCall structure to send information, you must allocate a
buffer and initialize it to contain the option information,
you must set the opt.buf field to point to the buffer, and
you must set the opt.len field to the size of the option
data. Set the opt.len field to 0 if you don’t want to specify
any options. If you are using the TCa11 structure to receive
information, you must allocate a buffer into which the
function can place option data when it returns, you must
set the opt.buf field to point to this buffer, and you must
set the opt.maxlen field to the maximum size of the option
information.

In the sndCal1 parameter to the 0TConnect function, you
can use this field to specify the options you want to
negotiate.

In the rcvCall parameter to the 0TConnect function, on
return, this field specifies the options that have been
negotiated for this connection.

In the call parameter to the 0TRcvConnect function, on
return, this field specifies the options that have been
negotiated for this connection.

In the cal1 parameter to the 0TListen function, on return,
this field specifies the options that the peer has requested
for this connection.

In the cal1 parameter to the 0TAccept function, you can use
this field to specify the options that you want to use for the
connection. Specifying 0 for the opt.1en field means that
you accept the connection unconditionally.

In the cal1 parameter to the 0TSndDisconnect function, this
field is reserved.

A TNetbuf structure that specifies the location and size of a
buffer containing data associated with a connection or
disconnection request. Not all endpoints support the
sending of data while establishing or tearing down a
connection. Examine the connect or discon field of the
TEndpointInfo structure for the endpoint to determine if
the endpoint supports the sending of data and to find out
the maximum size of the data you can send.

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

sequence

Endpoints Reference

If you are using the TCal1 structure to send data, you must
allocate a buffer and initialize it to contain the data, you
must set the udata.buf field to point to the buffer, and you
must set the udata.Ten field to the size of the data. If you
are using the TCa11 structure to receive information, you
must allocate a buffer into which the function can place the
data when it returns, you must set the udata.buf field to
point to this buffer, and you must set the udata.maxlen
field to the maximum size of the data.

In the sndCal1 parameter to the 0TConnect function, you
can use this field to specify the data associated with the
connection request.

In the rcvCall parameter to the 0TConnect function, on
return, this field specifies data that has been sent by the
peer accepting the connection.

In the call parameter to the 0TListen function, on return,
this field specifies data that has been sent by the peer
accepting the connection.

In the call parameter to the 0TAccept function, you can use
this field to specify data you want to send back to the peer
that requested the connection.

In the call parameter to the 0TSndDisconnect function, this
field specifies the location and size of any data associated
with the disconnection request.

Along that is used by the 0TListen and 0TAccept functions
to specify the connection ID.

In the call parameter to the 0TListen function, on return,
this field contains the connection ID of the incoming
request.

In the cal1 parameter to the 0TAccept function, you must
use this field to specify the connection ID of the connection
request that you are accepting. This must be the same
value that was passed to you by the 0TListen function
when you received the connection request.

In the call parameter to the 0TSndDisconnect function, this
field specifies the same connection ID as was returned by
the 0TListen function when the connection request was
received. You must specify a value if you are calling the
0TSndDisconnect function to reject a connection request.

3-75

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

The TRequest Structure

This field is only meaningful if the endpoint is in the
T_INCON state.

3-76

You use the TRequest structure to specify the data being sent with the
0TSndRequest function (page 3-147) and the data being read with the
0TRcvRequest function (page 3-149). You pass a pointer to this structure as a
parameter to each of these functions.

The TRequest structure is defined by the TRequest data type.

struct TRequest
{

TNetbuf

TNetbuf

0TSequence

by

data;
opt;
sequence;

typedef struct TRequest TRequest;

Field descriptions
data

Endpoints Reference

A TNetbuf structure specifying the location and size of the
request data buffer.

In the req parameter to the 0TSndRequest function, this field
specifies the location and size of a buffer containing the
request. You must allocate a buffer for the request data, set
the data.buf field to point to it, and set the data.1en field
to the size of the request data. The size of the request
cannot exceed the value specified for the etsdu field of the
TEndpointInfo structure for the endpoint.

If you are sending data that is not stored contiguously, the
data.buf field is a pointer to an 0TData structure that
describes the first data fragment. In this case, you must set
the udata.len field to kNetbufDatalsOTData.

In the req parameter to the 0TRcvRequest function, on
return, this field specifies the location and size of a buffer
containing the incoming request. You must allocate a
buffer into which the request data is placed when the
function returns and set the data.buf field to point to it.
You must set the data.max1en field to the maximum size of

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

opt

sequence

The TReply Structure

the request data; this value cannot exceed the etsdu value
specified for the endpoint. On return, the data.len field
contains the actual length of the data sent.

If you are doing a no-copy receive, the data.buf field is a
pointer to an 0TBuffer pointer. In this case, you must set
the data.max1en field to the constant
kNetbufDatalsOTBufferStar.

A TNetbuf structure specifying the location and size of the
options buffer.

In the req parameter to the 0TSndRequest function, this field
specifies the location and size of a buffer containing the
options you want to negotiate for this request. You must
allocate a buffer that contains the option data, set the
opt.buf field to point to it, and set the opt.len field to the
size of the option data. Set the opt.len field to 0 if there are
no options.

In the req parameter to the 0TRcvRequest function, on
return, this field specifies the location and size of a buffer
containing the association-related options specified by the
requester. You must allocate a buffer into which the
endpoint provider can place the option data when the
function returns, and set the opt.buf field to point to it. Set
the opt.max1en field to the maximum size of this buffer.

Along that specifies the transaction ID of the current
transaction.
You set this field to any desired value when you send
the request.

When you read the request, this value is generated by the
endpoint provider. You need to save this value and use it
for the sequence field when sending a reply.

You use the TReply structure to specify the data being sent with the 0TSndReply
function (page 3-151) and the data being read with the 0TRcvReply function
(page 3-154). You pass this structure as a parameter to each of these functions.

The TReply structure is defined by the TReply data type.

Endpoints Reference

3-77

Draft. O Apple Computer, Inc. 4/30/96

3-78

CHAPTER 3

Endpoints

struct TReply
{
TNetbuf
TNetbuf

data;
opt;

0TSequence sequence;

by

typedef struct TReply TReply;

Field descriptions
data

opt

Endpoints Reference

A TNetbuf structure specifying the location and size of the
reply buffer.

In the reply parameter to the 0TSndReply function, this
field specifies the location and size of a buffer containing
the reply data. You must allocate and initialize a buffer that
contains the data and set the data.buf field to point to it.
You must set the data.len field to the size of the reply data.
The size of the reply must not exceed the value specified
for the tsdu field of the TEndpointInfo structure for this
endpoint.

In the reply parameter to the 0TRcvReply function, on
return, this field specifies the size and location of a buffer
into which the function places the data to be read. You
must allocate a buffer for this data, set the data.buf field to
point to it, and set the data.max1en field to the maximum
size of the buffer. This value must not exceed the value
specified for the tsdu field of the TEndpointInfo structure
for this endpoint.

If you are doing a no-copy receive, the data.buf field is a
pointer to an 0TBuffer pointer. In this case, you must set
the data.max1en field to the constant
kNetbufDatalsOTBufferStar.

A TNetbuf structure describing the size and location of an
option buffer.

In the reply parameter to the 0TSndReply function, this
field specifies the location and size of a buffer containing
the options you want to set. You must allocate a buffer for
the option values, set the opt.buf field to point to it, and
set the opt. Ten field to the length of the options or to 0 if
don’t want to specify any options.

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

In the reply parameter to the 0TRcvReply function, on
return, this field specifies the location and size of a buffer
containing the association-related options sent with the
0TSndReply function. You must allocate a buffer for the
option information, set the opt.buf field to point to it, and
set the opt.maxlen field to the maximum size of the buffer.

sequence Along that specifies the transaction ID of the current
transaction.

When sending a reply, you set this field to the value that
you read with the 0TRcvURequest function for this field.

When receiving a reply, if you have sent out multiple
requests, you use this field to match incoming replies to
outgoing requests.

The TDiscon Structure

You use the TDiscon structure to specify any user data sent with the
disconnection and retrieved by the 0TRcvDisconnect function (page 3-161). You
pass this structure as a parameter to this function.

The TDiscon structure is defined by the Thiscon data type.

struct TDiscon
{

TNetbuf udata;
0TReason reason;
0TSequence sequence;

}s
typedef struct TDiscon TDiscon;

Field descriptions

udata A TNetbuf structure that is filled in with data sent with the
0TSndDisconnect function. You must allocate a buffer in
which the data is placed when the function returns, and
you must initialize the udata.max1en field to indicate the
maximum size of the data that can be sent with the
disconnection request.

reason Along specifying an error code that identifies the reason
for the disconnection. These codes are supplied by the

Endpoints Reference 3-79
Draft. O Apple Computer, Inc. 4/30/96

Functions

CHAPTER 3

Endpoints
protocol. For additional information, consult the
documentation provided for the protocol you are using.
sequence A long specifying an outstanding connection request that

has been rejected. This field is meaningful only when you
have issued several connection requests to the same
endpoint and are awaiting the results.

This section describes endpoint functions, provider functions that you use only
with endpoints. The first four subsections—“Creating Endpoints,” “Binding
and Unbinding Endpoints,” “Obtaining Information About an Endpoint,” and
“Allocating Structures” —describe functions that you can use with any
endpoint. The remaining subsections describe functions that you can use only
with specific types of endpoints, as indicated by the subsection title; for
example, “Functions for Connectionless Transactionless Endpoints.” Endpoint
types are described in “Endpoint Types and Mode of Service” on page 3-7.

You can also use general provider functions with endpoints. General provider
functions and structures are described in the reference section of the chapter
“Providers” in this book.

Creating Endpoints

3-80

To transfer information, you need to create an endpoint and assign it an
address. To create an endpoint, you call the 0TOpenEndpoint or
0TAsyncOpenEndpoint function. You must create an endpoint before calling any
endpoint functions. After creating an endpoint, you must bind it by assigning it
a protocol address. After binding, the endpoint is ready for use. When you
finish using an endpoint, always call the function 0TCloseProvider to close and
delete the endpoint.

For more information about binding an endpoint, see “Binding and Unbinding
Endpoints,” beginning on page 3-86. For a description of the 0TCloseProvider
function, see the reference section of the chapter “Providers” in this book.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTAsyncOpenEndpoint

C INTERFACE

C++ INTERFACE

PARAMETERS

Opens an endpoint and installs a notifier callback function for the endpoint.

The 0TAsyncOpenEndpoint function is asynchronous, and creates an endpoint
that operates asynchronously.

0SStatus 0TAsyncOpenEndpoint(0TConfiguration* config,

0TOpenFlags oflag,
TEndpointInfo* info,
OTNotifyProcPtr proc,
void* contextPtr);

None. C++ applications use the C interface to this function.

config

oflag

info

proc

A pointer to an endpoint configuration structure that specifies
the endpoint’s characteristics. You obtain a value for the config
parameter by calling the 0TCreateConfiguration function.

Reserved; must be set to 0.

A pointer to a TEndpointInfo structure to be filled in by the
0TAsyncOpenEndpoint function. Specify NULL for this parameter if
you do not want the 0TAsyncOpenEndpoint function to return
endpoint information.

A pointer to a notifier callback function for this endpoint. If you
do not provide a notifier function, your application cannot
receive completion events, including the event advising you
that the endpoint has been created. Specify NULL for this
parameter if you do not want to provide a notifier function. In
this case, you can use the 0TLook function to poll for
asynchronous events (but not for completion events).

Endpoints Reference 3-81

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

3-82

CHAPTER 3

Endpoints

contextPtr A pointer for your use. The endpoint provider passes this
pointer value when calling the notifier function you specify in
the proc parameter. You might use the contextPtr parameter,
for example, to pass to your notifier function information about
your application’s current context.

The 0TAsyncOpenEndpoint function opens an endpoint having the characteristics
specified by the config parameter. The 0TAsyncOpenEndpoint function runs
asynchronously, returning a result code as soon as the function has been
queued for execution. How processing proceeds then depends on this result
code.

If the result code is any except kOTNoError, an error occurred and Open
Transport does not queue the function for execution. The 0TAsyncOpenEndpoint
function creates no endpoint and does not call the notifier function that you
specified in the proc parameter.

If the result code is kOTNoError, the 0TAsyncOpenEndpoint function attempts to
create an endpoint. Then it calls the notifier function that you specified in the
proc parameter, passing T_OPENCOMPLETE for the code parameter, a result code in
the result parameter, and the endpoint reference for the newly created
endpoint in the cookie parameter. It is recommended that you use the
0TAsyncOpenEndpoint function to install a notifier function rather than using the
0TInstallNotifier function to do it.

An endpoint created by the 0TAsyncOpenEndpoint function operates in
asynchronous mode, unless you change the endpoint’s mode of execution by
calling the 0TSetSynchronous function. When an endpoint is in asynchronous
mode, all provider functions that use the endpoint execute asynchronously.

By default, a newly created endpoint does not block and does not acknowledge
sends. To change the endpoint’s default mode of operation, you can call the
0TSetBlocking function and the 0TIsAckingSends function.

The preliminary state of an endpoint is T_UNBND, meaning that the endpoint is
not bound to a protocol address. Before using the endpoint to transfer data,
you must bind it to a protocol address by calling the 0T81nd function.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

SPECIAL CONSIDERATIONS

The 0TAsyncOpentndpoint function destroys the configuration structure
returned by the 0TCreateConfiguration function. If you want to use the same
configuration to open additional endpoints, you must obtain a valid copy of
the configuration structure by calling the 0TCloneConfiguration function before
you call the 0TAsyncOpentndpoint function.

COMPLETION EVENT CODES

SEE ALSO

T_OPENCOMPLETE 0x20000007 The 0TAsyncOpenEndpoint function has
completed. The cookie parameter of the
notifier function points to the endpoint
reference for the new endpoint.

To create an 0TConfiguration structure, use the 0TCreateConfiguration function
described in the chapter “Configuration Management” in this book.

To obtain a copy of the 0TConfiguration structure, use the
0TCloneConfiguration function described in the chapter “Configuration
Management” in this book.

When you open an endpoint, Open Transport also creates the TEndpointInfo
structure, which contains important information about the endpoint
(page 3-58).

To create an endpoint synchronously, call the 0TOpenEndpoint function
(page 3-84).

You can use the 0TLook function (page 3-95) to poll for asynchronous events.

Modes of execution are defined in the section “Modes of Operation,” beginning
on page 3-11. For information about changing an endpoint’s mode of execution,
see the chapter “Providers” in this book.

For information about notifier functions, see the chapter “Providers” in
this book.

Endpoint states are defined and listed in“Endpoint States,” beginning on
page 3-13.

To close and delete an endpoint, call the 0TCToseProvider function described in
the chapter “Providers” in this book.

Endpoints Reference 3-83
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

To bind a protocol address to an endpoint, call the 0TBind function (page 3-87).

The 0TSetAsync, 0TSetBlocking, and 0TIsAckingSends functions are described
in the chapter “Providers” in this book.

OTOpenEndpoint

Opens an endpoint. This function is synchronous, and creates an endpoint that
operates synchronously. It is strongly recommended that you use endpoints in
asynchronous mode whenever possible.

EndpointRef O0TOpenEndpoint (0TConfiguration* config,

0TOpenFlags oflag,
TEndpointInfo* info,
0SStatus* err);

None. C++ applications use the C interface to this function.

A pointer to an endpoint configuration structure that specifies
the endpoint’s characteristics. You obtain a value for the config
parameter by calling the 0TCreateConfiguration function. The
0TOpenEndpoint function deletes the configuration structure
when creating the endpoint or attempting to create it.

Reserved; must be set to 0.

A pointer to an TEndpointInfo structure to be filled in by the
0TOpenEndpoint function. Specify NULL for this parameter if you
do not want the 0TOpenEndpoint function to provide endpoint
information.

A pointer to the result code for this function.

C INTERFACE
C++ INTERFACES
PARAMETERS
config
oflag
info
err
3-84 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

CHAPTER 3

Endpoints

The 0TOpenEndpoint function opens an endpoint having the configuration
specified by the config parameter. The function returns an endpoint reference,
by which you refer to the created endpoint when calling provider functions. If
the 0TOpenEndpoint function fails, its return value is NULL.

An endpoint created by the 0TOpenEndpoint function operates in synchronous
mode, unless you change the endpoint’s mode of execution by calling the
0TSetAsynchronous function. When an endpoint is in synchronous mode, all
provider functions that use the endpoint execute synchronously.

By default, a newly created endpoint does not block and does not acknowledge
sends. To change the endpoint’s default mode of operation, you can call the
0TSetBlocking function and the 0TIsAckingSends function.

The initial state of an endpoint is T_UNBND, meaning that the endpoint is not
bound to an address. Before using the endpoint to transfer data, you must bind
it to an address by calling the 0TBind function.

SPECIAL CONSIDERATIONS

SEE ALSO

The 0T0penEndpoint function changes the contents of memory and writes
information to disk; your application should not call the 0TOpenEndpoint
function at interrupt time.

The 0T0penEndpoint function destroys the configuration structure returned by
the 0TCreateConfiguration function. If you want to use the same configuration
to open additional endpoints, you must obtain a valid copy of the
configuration structure before calling the 0TOpenEndpoint function, by calling
the 0TCloneConfiguration function.

To create an 0TConfiguration structure, use the 0TCreateConfiguration function
described in the chapter “Configuration Management” in this book.

To obtain a copy of the 0TConfiguration structure, use the
0TCloneConfiguration function described in the Chapter “Configuration
Management” in this book.

To create an endpoint that operates asynchronously, call the
0TAsyncOpenEndpoint function (page 3-81).

Endpoints Reference 3-85
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Modes of execution are defined in the section “Modes of Operation,” beginning
on page 3-11. For information about changing an endpoint’s mode of execution,
see the chapter “Providers” in this book.

When you open an endpoint, Open Transport also creates the TEndpointinfo
structure, which contains important information about the endpoint
(page 3-58).

Endpoint states are defined and listed in“Endpoint States,” beginning on
page 3-13.

To close and delete an endpoint, call the 0TCloseProvider function described in
the chapter “Providers” in this book.

To bind a protocol address to an endpoint, call the 0TBind function (page 3-87).

The 0TSetAsync, 0TSetBlocking, and 0TIsAckingSends functions are described
in the chapter “Providers” in this book.

Binding and Unbinding Endpoints

3-86

Binding an endpoint is the process of assigning an address to it. An address is
the value by which a provider’s highest-layer protocol module identifies the
endpoint. For example, in AppleTalk, the protocol address of an ADSP
endpoint is its network ID, node ID, and DDP socket number; in TCP/IP, the
protocol address of a UDP endpoint is its port number and IP address. An
endpoint must have a protocol address to transfer information.

You assign an address to an endpoint by calling the 0TBind function. After
binding, connectionless endpoints can send and receive data;
connection-oriented endpoints can send and receive connection requests. If you
use the 0TAccept function (page 3-137) to pass off a connection request to
another endpoint, it is not necessary to bind that endpoint first.

An endpoint can be bound to only one address at a time. If you no longer need
to use an endpoint or if you want to change its address, you can unbind the
endpoint using the 0TUnbind function. In this case, Open Transport dissociates
the endpoint from the address assigned to it. After the endpoint is unbound,
you can close the endpoint using the 0TC1oseProvider function, or you can bind
the endpoint to another address by using the 0TBind function. You should not
assume, after unbinding an endpoint, that you can bind the endpoint again to
its former address. Of course, you can request the previous address when
calling the 0TBind function.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

IMPORTANT

You must not close an endpoint during binding and
unbinding; closing an endpoint deallocates memory
reserved for it and the structures it uses. a

OTBind

Assigns an address to an endpoint.

C INTERFACE

0SStatus 0TBind(EndpointRef ref, TBind* regAddr, TBind* retAddr);

C++ INTERFACES

0SStatus TEndpoint::Bind(TBind* regAddr, TBind* retAddr);

PARAMETERS
ref The endpoint reference of the endpoint that you are binding.

reqAddr A pointer to a T8ind structure (page 3-61) that contains
information about the address to which you want to bind the
endpoint and the number of possible outstanding connection
requests if this is a connection-oriented endpoint.

If you specify NIL for the regAddr parameter, Open Transport
chooses a protocol address for you and requests 0 as the
endpoint’s maximum number of concurrent outstanding
connect indications.

If you want Open Transport to assign an address for you, set
the addr.1en field of the TBind structure to 0.

retAddr A pointer to a TBind structure (page 3-61) that, on return,
indicates the address to which the endpoint is actually bound
and, for connection-oriented endpoints, indicates the maximum

Endpoints Reference 3-87
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

3-88

CHAPTER 3

Endpoints

number of concurrent outstanding connect indications that this
endpoint actually allows. The TBind structure is described on
page 3-61.

You can set this parameter to ni1 if you do not care to know
what address the endpoint is bound to or what the negotiated
value of glen is.

You call the 0TBind function to request an address that an endpoint be bound
to. You can either use the reqaddr parameter to request that the endpoint be
bound to a specific address or allow the endpoint provider to assign an address
dynamically by passing ni1 for this parameter. Consult the documentation for
the top-level protocol you are using to determine whether it is preferable to
have the address assigned dynamically. The function returns the address to
which the endpoint is actually bound in the retAddr parameter. This might be
different from the address you requested, if you requested a specific address.

If you are binding a connection-oriented endpoint, you must use the
reqAddr->qlen field to specify the number of connection requests that may be
outstanding for this endpoint. The retAddr->qlen field specifies, on return, the
actual number of connection requests allowed for the endpoint. This number
might be smaller than the number you requested. Note that when the endpoint
is actually connected, the number might be further decreased by negotiations
taking place at that time.

If you call the 0TBind function asynchronously and you have not installed a
notifier function, the only way to determine when the function completes is to
poll the endpoint using the 0TGetEndpointState function. This function returns
a k0TStateChangeErr until the bind completes. When the endpoint is bound, the
state is either T_UNBND if the bind failed, or T_IDLE if it succeeded.

You can cancel an asynchronous bind that is still in progress by calling the
0TUnbind function.

You must not bind more than one connectionless endpoint to a single address.
Some connection-oriented protocols let you bind two or more endpoints to the
same address. In such instances, you must use only one of the endpoints to
listen for connection requests for that address. When binding the endpoint
listening for a connection, you must set the reqaddr->qglen field of the 0TBind
function to a value greater than or equal to 1. When binding the other
endpoints, you must set the regAddr->qlen field to 0.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

If you accept a connection for an endpoint that is also listening for connection
requests, the address of that endpoint is deemed “busy” for the duration of the
connection, and you must not bind another endpoint for listening to that same
address. This requirement prevents more than one endpoint bound to the same
address from accepting connection requests. If you have to bind another
listening endpoint to the same address, you must first use the 0TUnbind
function to unbind the first endpoint or use the 0TC1oseProvider function to
close it.

SPECIAL CONSIDERATIONS
In asynchronous mode, the endpoint provider might call your notifier function
before the function’s initial return.

An endpoint may not allow an explicit binding of more than one endpoint to
the same protocol address, although it allows more than one connection to be
accepted for the same protocol address. To ensure portability, do not bind
endpoints that are used as responding endpoints in a call to the 0TAccept
function, if the responding address is to be the same as the called address.

COMPLETION EVENT CODES

T_BINDCOMPLETE 0x20000001 The 0T8ind function has completed. The
cookie parameter passed to the notifier
function points to the retAddr parameter.

VALID STATES
All except T_UNINIT

SEE ALSO

To unbind an endpoint call the 0Tunbind function (described next).

The TBind structure (page 3-61) is used to specify the address to which the
endpoint is bound.

You use the 0TCloseProvider function, described in the chapter “Providers” in
this book, to close a provider.

For additional information about binding multiple connection-oriented
endpoints to the same address, see “Processing Multiple Connection Requests,”

Endpoints Reference 3-89
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

beginning on page 3-33, the 0TConnect function (page 3-131), and the 0TAccept
function (page 3-137).

For information on how to use this function with a TCP/IP protocol, see
page 8-16 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-10 in the ADSP chapter, page 12-11 in the DDP chapter, and page 15-9
in the PAP chapter.

OTUnbind
Dissociates an endpoint from its address or cancels an asynchronous call to the
0TBind function.

C INTERFACE
0SStatus OTUnbind(EndpointRef ref);

C++ INTERFACES
0SStatus TEndpoint::Unbind();

PARAMETERS
ref The endpoint reference of the endpoint that you are unbinding.

DESCRIPTION
If you call the 0TUnbind function asynchronously and you have not installed a
notifier function, the only way to determine that the endpoint has been
unbound is to use the 0TGetEndpointState function to poll the state of the
endpoint. The function returns the k0TStateChangetrr result when the 0TUnbind
function returns. If the function succeeds, the state of the endpoint is T_UNBND. If
it fails, its state is T_IDLE.

3-90 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

After you unbind an endpoint, you can no longer use it to send or receive
information. You can use the 0TCloseProvider function to deallocate memory
reserved for the endpoint, or you can use the 0T8ind function to associate it
with another address and then resume transferring data or establishing a
connection.

SPECIAL CONSIDERATIONS

In asynchronous mode, the endpoint provider might call your notifier function
before the function’s initial return.

VALID STATES
T_IDLE

COMPLETION EVENT CODES

T_UNBINDCOMPLETE 0x20000002 The 0TUnbind function has completed.
The cookie parameter of the endpoint’s
notifier function is not used.

SEE ALSO
To bind an endpoint, use the 0TBind function, described on page 3-87.

To obtain information about the endpoint’s state, use the 0TGetEndpointState
function, described on page 3-93.

The 0TCloseProvider function is described in the chapter “Providers” in
this book.

Obtaining Information About an Endpoint

You use the functions described in this section to obtain information about an
endpoint. The 0TGetEndpointInfo function returns information about the mode
of service provided by the endpoint and the maximum size of the buffers used
to specify address and option information and to hold data. Two functions
return information about an endpoint’s address: the 0TGetProtAddress returns
the endpoint’s address and, if the endpoint is connected, the address of its peer.
The 0TResolveAddress function returns the protocol address that corresponds to
an endpoint name. To obtain the state of the endpoint, you can call the

Endpoints Reference 3-91
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

0TGetEndpointState function. To determine whether there are any
asynchronous events pending for the endpoint, you can call the 0TLook
function. Finally, the 0TSync function is provided to accommodate existing XTI
applications that use this function.

In addition to the functions described in this section, you can use general
provider functions to determine an endpoint’s mode of execution
(0TIsSynchronous) or an endpoint’s mode of operation (0TIsAckingSends,
0TIsNonBlocking). For more information about these functions, see the reference
section of the chapter “Providers” in this book.

OTGetEndpointInfo

Obtains information about an endpoint that has been opened.

C INTERFACE
0SStatus OTGetEndpointInfo(EndpointRef ref, TEndpointInfo* info);
C++ INTERFACE
0SStatus TEndpoint::GetEndpointInfo(TEndpointInfo* info);
PARAMETERS
ref The endpoint reference of the endpoint whose characteristics
you want to determine.
info A pointer to a TEndpointInfo structure (page 3-58) that describes
the endpoint’s mode of service and the size of the buffers you
can use to specify address and option information and to hold
data.
DESCRIPTION
The 0TGetEndpointInfo function returns information about
3-92 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

= the maximum size of buffers used to specify an endpoint’s address and
option values

= the maximum size of normal and expedited data you can transfer using this
endpoint or, for transaction-based endpoints, the maximum size of requests
and replies

= the size of data you can transfer when initiating or tearing down a
connection

= the services supported by the endpoint

= any additional characteristics of this endpoint

COMPLETION EVENT CODES

T_GETINFOCOMPLETE 0x2000000A The 0TGetEndpointInfo function has
completed. The cookie parameter of
the endpoint’s notifier function
contains the info parameter.

VALID STATES
All

SEE ALSO
The 0TGetEndpointInfo function returns a TEndpointInfo structure (page 3-58).
To obtain the current state of the endpoint, use the 0TGetEndpointState function
(described next).

OTGetEndpointState
Obtains the current state of an endpoint.

C INTERFACE

0TResult OTGetEndpointState(EndpointRef ref);

Endpoints Reference 3-93
Draft. O Apple Computer, Inc. 4/30/96

C++ INTERFACE

PARAMETERS

DESCRIPTION

VALID STATES

SEE ALSO

3-94

CHAPTER 3

Endpoints

O0TResult TEndpoint::GetEndpointState();

ref The endpoint reference of the endpoint whose state you want to
determine.

The 0TGetEndpointState function returns an integer greater than or equal to 0
indicating the state of the specified endpoint. The endpoint state enumeration
describes possible endpoint states and lists their decimal value.

If the function fails, it returns a negative integer specifying the error code. You
must open an endpoint before you can determine its state.

You might need to know an endpoint’s state in order to determine whether a
function has completed or whether the endpoint is in an appropriate state for
the function that you want to call next.

This function returns endpoint state information immediately, whether the
endpoint is in synchronous or asynchronous mode.

All

For general information about the services provided by an endpoint and the
size of buffers it can use, use the 0TGetEndpointInfo function (page 3-92).

The section “Endpoint States,” beginning on page 3-13 explains how you use a
knowledge of an endpoint’s state to manage endpoints.

The endpoint state enumeration (page 3-56), describes possible endpoint states
and lists their decimal value.

Use the 0TOpentndpoint function (page 3-84) or the 0TAsyncOpenEndpoint
function (page 3-86) to open an endpoint.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

OTLook

CHAPTER 3

Endpoints

C INTERFACE

C++ INTERFACE

PARAMETERS

DESCRIPTION

Determines the current asynchronous event pending for an endpoint.

OTResult OTLook(EndpointRef ref);

0TResult TEndpoint::Look();

ref The endpoint reference of the endpoint.

You use the 0TLook function in one of two cases. First, if the endpoint is in
synchronous mode, you can call the 0TLook function to poll for incoming data
or connection requests. Second, certain asynchronous events might cause a
synchronous function to fail with the result k0TLookErr. For example, if you call
0TAccept and the endpoint gets a T_DISCONNECT event, the 0TAccept function
returns with k0TLookErr. In this case, you need to call the 0TLook function to
determine what event caused the original function to fail. Table 3-7 on

page 3-26 lists the functions that might return the k0TLookErr result and the
events that can cause these functions to fail.

The 0TLook function returns an integer value that specifies the asynchronous
event pending for the endpoint specified by the ref parameter. On error, 0TLook
returns a negative integer corresponding to a result code.

If there are multiple events pending, the 0TLook function first looks for one of
the following events: T_LISTEN, T_CONNECT, T_DISCONNECT, T_UDERR, or T_ORDREL. If
it finds more than one of these, it returns them to you in first-in, first-out order.
After processing these events, the 0TLook function looks for the T_DATA,
T_REQUEST, and T_REPLY events. If it finds more than one of these, it returns
them to you in first-in, first-out order. You cannot use the 0TLook function to
poll for completion events.

Endpoints Reference 3-95
Draft. O Apple Computer, Inc. 4/30/96

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

Unless you are operating exclusively in synchronous mode, it is recommended
that you use notifier functions to get information about pending events for an
endpoint.

All

For additional information on asynchronous processing and on handling
asynchronous and completion events, see the section “Handling Events for
Endpoints,” beginning on page 3-24 and the chapter “Providers” in this book.

Table 3-7 on page 3-26 lists the functions that might return the k0TLookErr result
and the events that can cause these functions to fail.

The reference section of the chapter “Providers” in this book lists values
returned for pending asynchronous events and describes their meanings.

For information on how to use this function with a TCP/IP protocol, see
page 8-16 in the TCP/IP chapter.

OTGetProtAddress

C INTERFACE

C++ INTERFACE

3-96

Obtains the address to which an endpoint is bound and, if the endpoint is
currently connected, obtains the address of its peer.

0SStatus OTGetProtAddress(EndpointRef ref, TBind* boundAddr,
TBind* peerAddr)

0SStatus TEndpoint::GetProtAddress(TBind* boundAddr,
TBind* peerAddr);

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

CHAPTER 3

Endpoints

ref The endpoint reference of the endpoint whose local and peer
address is sought.

boundAddr A pointer to a T8ind structure (page 3-61). The boundAddr->addr
field is a TNetBuf structure that describes the address of the
endpoint specified by the ref parameter. You must allocate a
buffer for the address information and
initialize the addr.buf field to point to that buffer. You must also
initialize the addr.max1en field to the maximum size of
the address.

If you are calling this function only to determine the address of
the peer endpoint, you can set the boundAddr parameter to NIL.

The boundAddr->qlen field is ignored.

peerAddr A pointer to a TBind structure (page 3-61). If the endpoint
specified by the ref parameter is currently connected, the
peerAddr->addr field is a TNetbuf structure that describes
the address of the endpoint’s peer. The boundAddr->qlen field
is ignored.

The 0TGetProtAddress function returns the address to which an endpoint is
bound in the boundAddr parameter and, if the endpoint is currently connected,
the address of its peer in the peerAddr parameter. Not all endpoints support this
function. A value of T_xPG4_1 in the flags field of the TEndpointInfo structure
indicates that the endpoint does support this function.

You are responsible for initializing the buffers required to hold the local and
peer addresses. The addr field of the TEndpointInfo structure specifies the
maximum amount of memory needed to store the address of an endpoint. Use
this value to set the size of the buffers.

The information returned by the 0TGetProtAddress function is affected by the
state of the endpoint specified by the ref parameter. If the endpoint is in the
T_UNBND state, the boundAddr->addr. 1en field is set to 0. If the endpoint is not in
the T_DATAXFER state, the peerAddr->addr.1en field is set to 0.

If the endpoint is in asynchronous mode and a notifier is not installed, it is not
possible to determine when the function completes.

Endpoints Reference 3-97
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

COMPLETION EVENT CODES

T_GETPROTADDRCOMPLETE 0x20000008 The 0TGetProtAddress function
has completed. The cookie
parameter of the notifier function
contains the peerAddr parameter
unless it is ni1, in which case the
cookie parameter contains the
boundAddr parameter.

VALID STATES

All
SEE ALSO
The TBind structure (page 3-61) describes the address to which an endpoint
is bound.
The f1ags field of the TEndpointInfo structure (page 3-55) indicates whether the
endpoint supports this function.
For information on how to use this function with a TCP/IP protocol, see
page 8-17 in the TCP/IP chapter.
For more information about the peer endpoint, see the description of the
0TAccept function (page 3-137).
OTResolveAddress
Returns the protocol address that corresponds to the name of an endpoint.
C INTERFACE
0SStatus OTResolveAddress(EndpointRef ref, TBind* req, TBind* ret);
C++ INTERFACE
0SStatus TEndpoint::ResolveAddress(TBind* req, TBind* ret);
3-98 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

CHAPTER 3

Endpoints

ref The endpoint reference of the endpoint whose address is sought.

req A pointer to a TBind structure (page 3-61). The req->addr.buf
field points to a buffer containing the name of the endpoint,
which must be in an appropriate format for the protocol family.
For example, for AppleTalk this must be an NBP address.

ret A pointer to a TBind structure (page 3-61). The ret->addr.buf

field points to a buffer containing the lowest-level address that
corresponds to the address pointed to by the req->addr.buf
field of the req parameter.

The 0TResolveAddress function returns the lowest-level address for your
endpoint. Not all endpoints support this function. A value of CAN_RESOLVE_ADDR
in the f1ags field of the TEndpointInfo structure indicates that the endpoint
does support this function. Using this function saves you the trouble of
opening and closing a mapper provider if the only reason you have for
opening the mapper is to look up the address corresponding to a specific
endpoint name. You would still have to open the mapper if you needed to look
up a name pattern—that is, if the name included any wildcard characters.

You are responsible for initializing the buffers described by the req and ret
parameters required to hold the addresses. To determine how large these
buffers should be, examine the addr field of the TEndpointInfo structure, which
specifies the maximum amount of memory needed to store an address for the
endpoint specified by the ref parameter.

If a notifier is not installed, it is not possible to determine when the
0TResolveAddress function completes.

Endpoints Reference 3-99
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

COMPLETION EVENT CODES

T_RESOLVEADDRCOMPLETE 0x20000009 The 0TResolveAddress function
has completed. The cookie
parameter of the notifier
function contains the result
parameter.

VALID STATES
All states are valid except T_UNINT.

SEE ALSO

For additional information about the format used to describe the address
passed in the ret parameter, please consult the documentation provided for the
protocol you are using as the lowest-level protocol.

The TBind structure (page 3-61) describes the address to which an endpoint
is bound.

The f1ags field (page 3-55) of the TEndpointInfo structure (page 3-58) indicates
whether the endpoint supports this function.

OTSync

Ensures that the endpoint provider and the client have the same information
about an endpoint’s state.

C INTERFACE

OTResult 0TSync(EndpointRef ref);

C++ INTERFACE

O0TResult TEndpoint::Sync();

3-100 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

CHAPTER 3

Endpoints

ref The endpoint reference of the endpoint whose state information
is being synchronized.

The provider’s and the client’s knowledge about an endpoint’s state might get
out of sync if the provider and the client occupy different memory spaces. The
current run-time environment does not support separate memory spaces;
therefore, this function is currently provided so that existing XTI-based
applications that make this call do not have to be modified.

If the 0TSync function succeeds, it returns an integer value of 0 or greater that
specifies the current state of the endpoint, as follows:

T_UNINIT
T_UNBND =
T_IDLE =
T_OUTCON
T_INCON
T_DATAXFER
T_OUTREL
T_INREL =

Il
~N o O Ww N e O

If the 0TSync function fails, it returns a negative integer corresponding to a
result code.

If a notifier is not installed and the endpoint is in asynchronous mode, it is not
possible to determine when the 0TSync function completes.

COMPLETION EVENT CODES

VALID STATES

T_SYNCCOMPLETE 0x2000000B The 0TSync function has completed. The
cookie parameter of the notifier function
is meaningless.

All

Endpoints Reference 3-101
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

SEE ALSO

If you are simply interested in obtaining information about the state of an
endpoint, call the 0TGetEndpointState function (page 3-93).

Allocating Structures

You use the 0TA11oc and 0TFree functions to allocate and free memory. These
functions are mainly provided for XTI compatibility. In general, you should not
use these functions to allocate and free structures on every call because this
degrades performance. For a more detailed discussion of asynchronous
processing and memory allocation, see the chapter “Providers” in this book.

OTAlloc
Allocates an XTI data structure.
C INTERFACE
void* OTAlloc (EndpointRef ref, OTStructType structType,
UInt32 fields, 0SStatus* err);
C++ INTERFACE
void* TEndpoint::Alloc(0TStructType structType, int fields,
0SStatus* err = NULL);
PARAMETERS
ref The endpoint reference of the endpoint for which the data
structure is allocated.
structType Along specifying the constant name of the structure for which
memory is to be allocated. Possible values for the structType
parameter are given by the structure types enumeration
(page 3-57).
3-102 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

CHAPTER 3

Endpoints

fields An integer specifying the structure fields for which buffers are
to be allocated.

Each structure that you can specify for structType, except for
T_INFO, contains at least one field of type TNetbuf. For each such
field, you can use the fields parameter to specify that the
buffer described by TNetbuf also be allocated. The length of the
allocated buffer is at least as large as the size returned for the
endpoint by the 0TGetEndpointInfo function. For each buffer
allocated, the 0TA110c function sets the max1en field to the length
of the buffer and sets the 1en field to 0.

You can specify one or more constant names for the fields
parameter. Possible values for constant names are given by the
buffer types enumeration (page 3-52). To specify more than one
constant name, use the bitOR operator to combine values.

The 0TA110c function allocates a data structure for use in a subsequent call. You
use the structType parameter to specify the structure to be allocated and the
fields parameter to specify the substructures to be allocated. If the 0TA110c
function succeeds, it returns a pointer to the desired structure. The 0TA110c
function is provided mainly for compatibility with XTI. Although using this
function along with the 0TFree function can save you coding work, this is at the
price of slower performance. In general, you should not allocate and free
structures on every call. Instead, you should declare structures that are to be
passed as parameters to endpoint functions just as you would any other
variables or data structures.

It is easiest to understand what the 0TA110c function does by considering what
you would have to do if you did not use it. If you declared structType
structures as normal data structures, you would have to declare the data
structure and then initialize the max1en and buf fields of every TNetbuf type
field contained by the structure. To determine the appropriate size of each
buffer, you would have to call the 0TGetEndpointInfo function. For example, if
you call the 0TGetProtAddress function to get the protocol address of an
endpoint, you must pass a parameter of type TBind. The addr.buf field of the
TBind structure points to a buffer that is large enough to hold the endpoint’s
protocol address. To determine how large the buffer has to be, you call the
0TGetEndpointInfo function; then you allocate the memory for the buffer and
initialize the addr.buf field to point to the buffer and initialize the addr.max1en

Endpoints Reference 3-103
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

field to specify how large the buffer can be. The 0TA110c function does all this
work for you. Given the previous example, if you make the call

TBind* boundAddr = OTATloc(T_BIND, T_ADDR);

the 0TA110c function allocates the TBind structure, initializes the TNetbuf field
that is used to describe the endpoint address, and allocates memory for the
buffer in which the address is to be stored. All buffers allocated are guaranteed
to be of the appropriate size for the kind of endpoint specified by the ref
parameter. You must not use the pointer returned by the 0TA110c function in
calls to any other endpoint.

If the requested structure contains TNetbuf fields and you do not specify these
fields using the fields parameter, the 0TA110oc function sets the maxlen, Ten, and
buf fields of these TNetbuf structures to 0.

SPECIAL CONSIDERATIONS

VALID STATES

SEE ALSO

3-104

If you specify T_UDATA or T_ALL for the fields parameter and the endpoint
information structure defines the tsdu or etsdu size for the endpoint to be of
infinite length, the 0TA110c function does not allocate a data buffer for the
endpoint.

All

To deallocate memory allocated with the 0TA110c function, use the 0TFree
function (described next).

You use the structure types enumeration (page 3-57) to specify the structure for
which memory is to be allocated.

You use the buffer types enumeration (page 3-52) to specify which Tnetbuf
structures should be allocated for the structure type you select.

The TBind structure (page 3-61) specifies the address of an endpoint.

The TEndpointInfo structure (page 3-58) specifies the maximum size of buffers
used to hold an endpoint’s address, options, and data.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

To allocate raw memory, use the 0TA11ocMem function, and to deallocate the
allocated raw memory, use the 0TFreeMem function, both described in the
chapter “Process Management.”

OTFree

Frees memory allocated using the 0TA110c function.

C INTERFACE

0SStatus OTFree(void* ptr, OTStructType structType);

C++ INTERFACE

0SResult TEndpoint::Free(void* ptr, OTStructType structType);

PARAMETERS
ptr A pointer to the structure to be deallocated. This is the pointer
returned by the 0TA110c function.
structType The name of the structure for which you allocated memory
using the 0TA1710c function. Possible constant names are given
by the structure types enumeration. (page 3-57)
DESCRIPTION

In order to use the 0TFree function, you must not have changed the memory
allocated by the 0TA110c function for the structure specified by the structType
parameter or for any of the buffers to which it points.

You are responsible for passing a structType parameter that exactly matches
the type of structure being freed.

The 0TFree function, along with the 0TA110c function, is provided mainly for
compatibility with XTI.

Endpoints Reference 3-105
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

VALID STATES
All

SEE ALSO
The 0TA110c function (page 3-102) allocates the memory 0TFree deallocates.

You use one of the constant names given by the structure types enumeration
(page 3-57) to specify the structure to be freed.

To allocate raw memory, use the 0TA11ocMem function, and to deallocate the
allocated raw memory, use the 0TFreeMem function, both described in the
chapter “Process Management.”

Checking a Buffer’s Size

Open Transport provides a function, 0TCountDataBytes, for checking a buffer’s
size before an endpoint handles it.

OTCountDataBytes

Returns the amount of data currently available to be handled.

C INTERFACE
OTResult OTCountDataBytes(EndpointRef ref, size_t* countPtr);
C++ INTERFACE
O0TResult TEndpoint::CountDataBytes(size_t* countPtr);
PARAMETERS
ref The endpoint reference of the endpoint to which the data has
been sent and which will be reading or otherwise using the data.
3-106 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

VALID STATES

CHAPTER 3

Endpoints

countPtr A pointer to a buffer containing the size (in bytes) of the data in
the topmost packet or stream bulffer.

If the function returns successfully, the countPtr parameter points to a buffer
containing the the number of bytes in the message buffer at the top of the
stream. How you might want to handle the data depends on which event is
outstanding. For example, if you have a T_DATA outstanding, then the buffer
indicates the data available to be read; if you have a T_DISCONNECT outstanding,
then the buffer indicates the number of bytes in the disconnect.

Additionally, what the function counts depends on the type of endpoint. If it is
packet-oriented, the function counts the number of bytes in the topmost packet;
if it's stream-oriented, the function counts the total amount of nonexpedited
data or the amount of expedited data in the topmost buffer at stream head.
That is, if nonexpedited data was received in more than one piece, the function
provides a count of the sum of the pieces, but if expedited data was received in

multiple parts, the function only provides a count of the data in the topmost
buffer.

If the buffer points at data to be read, this does not mean that this is all the data
that was sent. You might need to do additional reads to get the rest of the data.
You can call this function upon receipt of a T_DATA event to find out how much
data is currently available and to determine whether you need to allocate larger
buffers before calling a function that reads the data.

Because what this function counts depends on which event is the most current
outstanding event and other events can occur before the function can complete,
never use this count as more than a hint.

All

Doing No-Copy Receives

Open Transport provides several functions for handling no-copy receives: the
OTReleaseBuffer, 0TReadBuffer, and the 0TBufferDataSize functions.

Endpoints Reference 3-107
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTReleaseBuffer

Returns the no-copy receive buffer to the system.

C INTERFACE

void OTReleaseBuffer(0TBuffer* buf);
C++ INTERFACE

None. C++ applications use the C interface to this function.
PARAMETERS

buf A pointer to the no-copy receive buffer to be released.
DESCRIPTION

Once a no-copy receive is completed, you need to release the 0TBuf fer structure
as quickly as possible by calling this function.

VALID STATES
All

SEE ALSO
The 0TBuffer function (page 3-108) obtains the size of the no-copy receive
buffer and the 0TReadBuffer (page 3-109) function reads from this buffer.
The no-copy receive buffer structure is described by the 0TBuffer data type
(page 3-63).

OTBuffer
Obtains the size of the no-copy receive buffer.

3-108 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

C INTERFACE

size_t OTBuffer(OTBuffer* buf);

C++ INTERFACE
None. C++ applications use the C interface to this function.

PARAMETERS

buf A pointer to a no-copy receive buffer.

VALID STATES
All

SEE ALSO
The 0TReleaseBuffer function (page 3-108) obtains the size of the no-copy
receive buffer and the 0TReadBuf fer (page 3-109) function reads from this buffer.
The no-copy receive buffer structure is described by the 0TBuffer data type
(page 3-63).

OTReadBuffer
Reads the next portion of a no-copy receive buffer.

C INTERFACE

Boolean O0TReadBuffer(0TBufferInfo* info, void* buf, size_t* len);

C++ INTERFACE
None. C++ applications use the C interface to this function.

Endpoints Reference 3-109
Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

info A pointer to the buffer information structure to be read.
buf A pointer to a buffer into which to place the data.

Ten The number of bytes actually read.

This function returns true when it has read all of the bytes from the buffer
information structure pointed to by the info parameter. It returns false when
there are more bytes still to be read.

All

The 0TReleaseBuffer function (page 3-108) obtains the size of the no-copy
receive buffer and the 0TBuffer (page 3-108) function reads from this buffer.

The no-copy receive buffer structure is described by the 0TBuffer data type
(page 3-63).

Functions for Connectionless Transactionless Endpoints

3-110

You can use a connectionless transactionless endpoint to transfer data after
the endpoint is bound and while it is in the T_IDLE state. Connectionless
transactionless service used by protocols such as DDP, IP, PPP, or 802.2 is
described at greater length in the section “Using Connectionless
Transactionless Service,” beginning on page 3-43. This section describes the
functions used to send and receive data, 0TSndUData and 0TRcvUData. You use
The TUnitData structure (page 3-65) with these functions to specify the data
being transferred.

Some endpoint implementations do not detect an error in the attempt to send a
datagram until after the 0TSndUData function has returned successfully. In this
case, Open Transport uses the T_UDERR event to notify the client sending the
data. You can receive the event either by calling the 0TLook function(page 3-95)
or by including this case in your notifier function. To determine why the

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

0TSndUData function failed, you must call the 0TRcvUDErr function, which is also
described in this section. Due to the nature of connectionless transactionless
service, you are not notified if the data fails to reach its destination.

OTSndUData

Sends data using a connectionless transactionless endpoint.

C INTERFACE

0SStatus 0TSndUData(EndpointRef ref, TUnitData* udata);

C++ INTERFACE

0SStatus TEndpoint::SndUData(TUnitData* udata);

PARAMETERS
ref The endpoint reference of the endpoint sending the data.
udata A pointer to a TUnitData structure (page 3-65) that specifies the
data to be sent and its destination.
DESCRIPTION

If the endpoint is in synchronous, blocking mode, the 0TSndUData function
returns immediately. If flow-control restrictions prevent its sending the data, it
retries the operation until it is able to send it. If the endpoint is in nonblocking
mode, the 0TSndUData function returns a kOTF1owErr result if flow-control
restrictions prevent the data from being sent. When the endpoint provider is
able to send the data, it calls your notifier function, passing T_GODATA for the
code parameter. You can then call the 0TSndUData function from your notifier to
send the data. You can also retrieve this event by polling the endpoint using the
0TLook function.

Some endpoint providers are not able to detect immediately whether you
specified incorrect address or option information. In such cases, the provider

Endpoints Reference 3-111
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

calls your notifier function when it detects the error, passing the T_UDERR for the
code parameter to advise you that an error has occurred. You can determine the
cause of this event by calling the 0TRcvUDErr function and examining the value
of the uderr->error parameter. It is important that you call the 0TRcvUDErr
function even if you are not interested in examining the cause of the error.
Failing to do this leaves the endpoint in an invalid state for doing other sends
and makes the endpoint provider unable to deallocate memory reserved for
internal buffers associated with the send.

The next table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the 0TSndUData function.

Blocking Nonblocking
Synchronous The function returns when The function returns

the provider lifts flow- immediately.

control restrictions.

The kOTF1owErr result is The kOTF1owErr result

never returned. might be returned.
Asynchronous The function returns The function returns

immediately immediately

The kOTF1owErr result is The kOTF1owErr result

never returned. might be returned.

SPECIAL CONSIDERATIONS

VALID STATES

SEE ALSO

3-112

The XTI_SLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal send buffer before they are sent. If the endpoint you are using supports
this option, you can negotiate a value using the 0T0ptionManagement function.
Because you use the 0TOptionManagement function to set this option, it affects all
subsequent sends.

T_IDLE

To read the data, the endpoint to which the data is sent uses the 0TRcvUData
function, (page 3-115).

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

You use the TUnitData structure (page 3-65) to specify the data to be sent and its
destination.

You use the 0TData structure (page 3-62) to transfer noncontiguous data.

You use the 0T0ptionManagement function, described in the reference section of
the chapter “Option Management” in this book to negotiate a value for the
XTI_SNDLOWAT option.

You use the 0TRcvUDErr function (described next) to retrieve information about
the cause of a T_UDERR event.

For information on how to use this function with a TCP/IP protocol, see
page 8-18 in the TCP/IP chapter.

For information on how to use this function with the AppleTalk DDP protocol,
see page 12-11 in the DDP chapter.

You use the 0TLook function (page 3-95) to retrieve pending asynchronous
events for an endpoint.

OTRcvUDErr

Clears an error condition indicated by a T_UDERR event and returns the reason
for the error.

C INTERFACE

0SStatus OTRcvUDErr(EndpointRef ref, TUDErr* uderr);

C++ INTERFACE

0SStatus TEndpoint::RcvUDErr(TUDErr* uderr);

PARAMETERS

ref The endpoint reference of the endpoint that has attempted to
send the data.

Endpoints Reference 3-113
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

VALID STATES

SEE ALSO

3-114

CHAPTER 3

Endpoints

uderr A pointer to a TUDErr structure (page 3-67) that specifies the
reason for the error.

You use the 0TRcvUDErr function if you have called the 0TSndUData function and
the endpoint provider has issued the T_UDERR event to indicate that the send
operation did not succeed. This usually happens when the endpoint provider
cannot determine immediately that you have specified a bad address or option
value. For example, assume that you are using AppleTalk and you specify an
NBP address. If Open Transport cannot resolve the address, it sends a T_UDERR
event to your notifier function. To clear the error condition and determine the
cause of the failure, you must call the 0TRcvUDErr function.

If the size of the option or error data returned exceeds the size of the allocated
buffers, the 0TRcvUDErr function returns with the result kOTBufferOverflowErr,
but the error indication is cleared anyway.

If you do not need to identify the cause of the failure, you can set the uderr
pointer to ni1. In this case, the 0TRcvUDErr function clears the error indication
without reporting any information to you. It is important, nevertheless, that
you actually call the 0TRcvUDErr function to clear the error condition. If you
don’t call this function, the endpoint remains in an invalid state for doing other
send operations, and the endpoint provider is unable to deallocate memory
reserved for internal buffers associated with the send operation.

T_IDLE

Open Transport uses the TUDErr structure (page 3-67) to return information
about why the 0TSndUData function (page 3-111) failed.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTRcvUData

Reads data sent by a client using a connectionless transactionless protocol.

C INTERFACE

0SStatus OTRcvUData(EndpointRef ref, TUnitData* udata,
0TFlags* flag);

C++ INTERFACE

0SStatus TEndpoint::RcvUData(TUnitData* udata, OTFlags* flag);

PARAMETERS

ref The endpoint reference of the endpoint receiving the data.

udata A pointer to a TUnitData structure (page 3-65) that, on return,
contains information about the data that has been received. See
the description of the TUnitData structure for how to set this
parameter when doing a no-copy receive.

flags A pointer to an unsigned long variable whose bit setting, on
return, indicates whether you need to retrieve more data. A
value of T_MORE specifies that there is more data; a value of 0
specifies that there is no more data.

DESCRIPTION

When the 0TRcvUData function returns, it passes a pointer to a TUnitData
structure containing information about the data read and a pointer to a f1ags
variable that is set to indicate whether there is more data to be retrieved. If the
buffer pointed to by the udata->udata.buf field is not large enough to hold the
current data unit, the endpoint provider fills the buffer and sets the f1ags
parameter to T_MORE to indicate that you must call the 0TRcvUData function
again to receive additional data. Subsequent calls to the 0TRcvUData function
return 0 for the length of the address and option buffers until you receive the
full data unit. The last unit to be received does not have the T_MORE flag set.

Endpoints Reference 3-115
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

If the endpoint is in asynchronous mode or is not blocking and data is not
available, the 0TRcvUData function fails with the kOTNoDataErr result. The
endpoint provider uses the T_DATA event to notify the endpoint when data
becomes available. You can use a notifier function or the 0TLook function to
retrieve the event. Once you get the T_DATA event, you should continue calling
the 0TRcvUData function until it returns the k0TNoDataErr result.

It is possible that the provider generates an erroneous T_DATA event. This is
the case when the provider calls your notifier, passing T_DATA for the code
parameter; but when you execute the 0TRcvUData function, it returns with a
kOTNoDataErr result. If this happens, you should continue normal processing
and assume that the next T_DATA event is genuine.

SPECIAL CONSIDERATIONS

VALID STATES

SEE ALSO

3-116

The XTI_RCVLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal receive buffer before the endpoint provider generates a T_DATA event. If
the endpoint you are using supports this option, you can negotiate a value
using the 0TOptionManagement function. Because you use the
0TOptionManagement function to set this option, it affects all subsequent sends.

T_IDLE

You can use the 0TLook function (page 3-95) to retrieve pending asynchronous
events for this endpoint.

For a description of the 0TOptionManagement function, see the chapter “Option
Management” in this book.

For information on how to use this function with the AppleTalk DDP protocol,
see page 12-11 in the DDP chapter.

You use the TUnitData structure (page 3-65) to specify the size and location of
buffers that contain information about the data that has been received.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

Functions for Connectionless Transaction-Based Endpoints

You can use a connectionless transaction-based endpoint to transfer data after
the endpoint is bound and while it is in the T_IDLE state. Connectionless
transaction-based service used by protocols such as ATP is described at greater
length in the section “Using Connectionless Transaction-Based Service,”
beginning on page 3-48.

This section describes the routines used to send and retrieve requests and
replies: 0TSndURequest, 0TRcvURequest, 0TSndUReply, and 0TRcvUReply. This
section also describes the 0TCancelURequest function, which you use to cancel
an outgoing request, and the 0TCancelUReply function, which you use to cancel
an incoming request.

OTSndURequest

Initiates a connectionless transaction by sending a request to the responder.

C INTERFACE

0SStatus 0TSndURequest(EndpointRef ref, TUnitRequest* req,
int reqFlags);

C++ INTERFACE

0SStatus TEndpoint::SndURequest(TUnitRequest* req, int reqFlags);

PARAMETERS
ref The endpoint reference of the endpoint making the request.
req A pointer to a TUnitRequest structure (page 3-68) that specifies
the address of the responder, the request data, and the ID of this
transaction.
Endpoints Reference 3-117

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

reqFlags A bitmapped long specifying whether delivery is guaranteed
for both the requester and the responder (T_ACKNOWLEDGED) and
whether you are sending the request data using additional calls
to the 0TSndURequest function (T_MORE). Use the bitAND operator
to set both values.

DESCRIPTION

You use the 0TSndURequest function to initiate a transaction. When the
responder replies to your request, you use the 0TRcvURep1y function to read the
reply. By default, the endpoint provider guarantees delivery for you, but not
for the responder. That is, you will always find out whether your request was
received, but the responder only receives acknowledgment that you received
the reply if you have set the T_ACKNOWLEDGED flag in the reqFlags parameter
when you send the request. Not all protocols honor this flag.

If the responder is an Open Transport endpoint, its provider generates a
T_REPLYCOMPLETE event when you have read the reply. This happens whether or
not the T_ACKNOWLEDGED flag is set, but if it is set, this guarantees that the reply
was delivered. If you don’t set this flag, the responder’s call to the 0TSndUReply
function returns right away, and the responding endpoint receives no
additional information as to whether the reply was received and the data

was read.

Setting the T_MORE flag tells the endpoint provider that you are using several
calls to the 0TSndURequest function to send the request data. Note that even
though you are using several calls, the request data, all put together, must still
not exceed the value specified for the etsdu field in the endpoint’s
TEndpointInfo structure.

If the endpoint is in blocking mode and flow-control restrictions prevent the
endpoint provider from accepting the 0TSndURequest function, the provider
waits to send the request until flow-control restrictions are lifted.

If the endpoint is in nonblocking mode and flow-control restrictions prevent
the endpoint provider from accepting the 0TSndURequest function, the function
returns the kOTFLowErr result. When flow-control restrictions are lifted, the
endpoint provider issues a T_GODATA event, which you can retrieve by polling
the endpoint using the 0TLook function or using a notifier function. When you
get this event, you can retry sending the request.

3-118 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

The following table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the 0TSndURequest function.

Blocking Nonblocking

Synchronous The function returns The function returns if
when the provider lifts flow-control restrictions are
flow-control restrictions in effect or the request data
and the request has been has been sent to the protocol.
sent to the protocol.
The kOTF1owErr result is The kOTF1owErr result might
never returned. be returned.

Asynchronous The function returns The function returns
immediately immediately.
The k0TF1owErr result is The k0TF1owErr result might
never returned. be returned.

T_IDLE

To determine the maximum size of the request data, you must call the
0TGetEndpointInfo function (page 3-92) and examine the etsdu field of the
TEndpointInfo structure that it returns.

You use the TUnitRequest structure (page 3-68) to specify the address of the
responder, the request data, and the ID of this transaction.

You use the 0TData structure (page 3-62) to transfer noncontiguous data.

To read the reply to an outgoing request, you must use the 0TRcvUReply
function (page 3-125).

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

You can poll for the T_GODATA event by calling the 0TLook function (page 3-95).

Endpoints Reference 3-119
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTRcvURequest

Reads a request sent by a client using a connectionless transaction-based
protocol.

C INTERFACE
0SStatus OTRcvURequest(EndpointRef ref, TUnitRequest* req,
OTFlags* flags);
C++ INTERFACE
0SStatus TEndpoint::RcvURequest(TUnitRequest* req, OTFlags* flags);
PARAMETERS
ref The endpoint reference of the endpoint accepting the request.
req A pointer to a TUnitRequest structure (page 3-68) that contains
information about the request being received. See the
description of the TUnitRequest structure for how to set this
parameter when doing a no-copy receive.
flags Along bitmapped field set by the endpoint provider that
specifies whether the request is acknowledged (T_ACKNOWLEDGED)
and whether there is more request data coming (T_MORE) or
(T_PARTIALDATA). A value of T_MORE indicates that the buffer you
have allocated is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply. It is possible that all flags are set.
DESCRIPTION
You use the 0TRcvURequest function to read an incoming request. When the
function returns, it fills in the TUnitRequest structure (referenced by the req
parameter) with the address of the sender, the request data, and any
association-related options pertaining to this request.
3-120 Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

If the endpoint is in synchronous mode and is blocking, the 0TRcvURequest
function waits for a request to arrive. If the endpoint is in asynchronous mode
or is not blocking, the 0TRcvURequest function retrieves the next pending
unread request or returns the k0TNoDataErr result if there are no pending
requests.

If the endpoint is in asynchronous mode, the endpoint provider generates a
T_REQUEST event when a request arrives. You can poll the endpoint using the
0TLook function or use a notifier function to retrieve this event.

If the T_MORE bit is set in the f1ags parameter, this means your buffer is not large
enough to hold the entire request. You must call the 0TRcvURequest function
again to retrieve more request data. Open Transport ignores the addr and opt
fields of the req parameter for subsequent calls to the 0TRcvURequest function.
The T_MORE flag is not set for the last request packet to let you know that this is
the last packet.

If the T_PARTIALDATA bitis setin the f1ags parameter, this means that the data
you are about to read with the 0TRcvURequest function does not constitute the
entire request and that you must call the function again to read more of or the
rest of the request.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the request and that your buffer
is too small to contain even this chunk. In this case, you must call the function
again until the T_MORE flag is clear. The T_PARTIALDATA bit is set only on the first
call to the function.

If you are communicating with multiple requesters and the 0TRcvURequest
function returns with the T_PARTIALDATA flag set, it is possible that your next call
to the 0TRcvURequest function might not read the rest of the request because the
next data unit coming in belongs to a different request. One way to handle this
situation is to use the next call to the 0TRcvURequest function to determine the
sequence number of the incoming request (by setting req->udata.len to 0) and
then, having determined which request data is coming in, read the data into
the appropriate bulffer.

The provider sets the T_ACKNOWLEDGED flag if the requester has set this flag when
calling the 0TSndURequest function. When this flag is set and you call the
0TSndUReply function, Open Transport guarantees that your reply is
acknowledged by the requester. This flag is set only on the first call to the
0TRcvURequest function for any given transaction.

Endpoints Reference 3-121
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

VALID STATES
T_IDLE

SEE ALSO

To determine the maximum size of the request data, you must call the
0TGetEndpointInfo function (page 3-92) and examine the etsdu field of the
TEndpointInfo structure (page 3-58) that it returns.

You use the TUnitRequest structure (page 3-68) to store information about the
request being received.

You can poll for the T_REQUEST event by calling the 0TLook function (page 3-95).

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

To respond to a request, you use the 0TSndURep1y function (described next).

OTSndUReply

Replies to a request sent by a client using a connectionless transaction-
based protocol.

C INTERFACE

0SStatus 0TSndUReply(EndpointRef ref, TUnitReply* reply,
0TFlags flags);

C++ INTERFACE

0SStatus TEndpoint::SndUReply(TUnitReply* reply, OTFlags flags);

PARAMETERS

ref The endpoint reference of the endpoint sending the reply.

3-122 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

CHAPTER 3

Endpoints

reply A pointer to a TUnitReply structure (page 3-70) that specifies the
ID of this transaction and the reply data.

reqflags A bitmapped long, which you can set to T_MORE to indicate that

you are sending more reply data with a subsequent call to the
0TSndUReply function.

You use the 0TSndUReply function to send a reply. The TUnitReply structure that
you pass in the reply parameter specifies the address of the requester, the reply
data, and any options you want to specify for this reply. If you do not specify
the requester’s address, the endpoint provider uses the transaction ID value
stored in the sequence field of the reply parameter to match the reply against a
pending request and knows in this way where to send the request.

If requests are acknowledged and the provider is not able to send the reply, the
function returns with the kETimedOutErr result. If requests are not
acknowledged, the function returns immediately, and you have no way of
knowing whether the reply was received and read.

If requests are not acknowledged, the provider generates a T_REPLYCOMPLETE
event for asynchronous responders even if the requester has not acknowledged
receipt of the reply. Thus, the only way for you to know whether this event
actually means that the reply was received, is to examine the reqrlags field of
the req parameter for the 0TRcvURequest function. If the T_ACKNOWLEDGED flag is
set, then the T_REPLYCOMPLETE event indicates that your reply was received. The
cookie parameter passed to the notifier to indicate completion is set to the
reply parameter.

Endpoints Reference 3-123
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

The following table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the 0TSndURep1y function.

Synchronous

Asynchronous

COMPLETION EVENT CODES
T_REPLYCOMPLETE

VALID STATES
T_IDLE

3-124

Endpoints Reference

Blocking

The function returns
when the provider lifts
flow-control restrictions
and the reply has been
acknowledged or timed
out (if the matching
request was an
acknowledged request).

The kOTFlowErr result is
never returned.

The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the
code parameter when
the reply is acknow-
ledged or timed out.

The kOTF1owErr result is
never returned.

0x20000004

Nonblocking

For unacknowledged
requests, the function
returns immediately; for
acknowledged requests,
it returns when the reply
has been acknowledged
or time out.

The k0TF1owErr result might
be returned.

The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the code
parameter when the reply is
acknowledged or timed out.

The k0TF1owErr result might
be returned.

The 0TSndURep1y function has

completed. The cookie parameter of
the notifier function points to the reply
parameter.

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

SEE ALSO

To determine the maximum size of the reply data, you must call the
0TGetEndpointInfo function (page 3-92) and examine the tsdu field of the
TEndpointInfo structure that it returns.

You use the TUnitReply structure (page 3-70) to specify the ID of this
transaction and the reply data.

You use the 0TData structure (page 3-62) to describe noncontiguous data.
You use the 0TCancelUReply function (page 3-129) to cancel an incoming request.

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

You examine the reqFlags field of the req parameter for the 0TRcvURequest
function (page 3-120) to determine whether the T_REPLYCOMPLETE event means
that the reply was actually received.

OTRcvUReply

Reads a reply to a request sent by a client using a connectionless transaction-
based protocol.

C INTERFACE

0SStatus OTRcvUReply(EndpointRef ref, TUnitReply* reply,
OTFTags* flagPtr);

C++ INTERFACE

0SStatus TEndpoint::RcvUReply(TUnitReply* reply, OTFlags* flags);

PARAMETERS

ref The endpoint reference of the endpoint accepting the reply.

Endpoints Reference 3-125
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

3-126

CHAPTER 3

Endpoints

reply A pointer to a TUnitReply structure (page 3-70) that contains
information about the reply data and the ID of the transaction.
See the description of the TunitReply structure for how to set
this parameter when doing a no-copy receive.

flagPtr A pointer to a bitmapped long that is filled in by the endpoint

provider to indicate whether there is more reply data to be
read, in which case you must call the 0TRcvUReply function
again. A value of T_MORE indicates that the buffer pointed to
by udata.buf is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply. It is possible that both flags are set.

You use the 0TRcvUReply function to read the reply to a request that you have
issued using the 0TSndURequest function. The reply parameter points to buffers
in which the function stores the reply, the address of the responder, any options
connected with this transaction, and the transaction ID for this transaction.

If the endpoint is in asynchronous mode, the provider generates a T_REPLY
event to let you know that reply data has arrived. If it should happen that the
reply data is sent using multiple calls to the sending function, Open Transport
does not generate additional T_REPLY events. To guard against this possibility,
your notifier function should call the 0TRcvURep1ly function until it returns the
kOTNoDataErr result.

If a transaction has timed out awaiting reply data, the 0TRcvUReply function
returns a kETIMEDOUTErr result; the sequence field of the reply parameter
specifies which request has timed out.

If you have issued multiple requests, it is not possible to know ahead of time
how incoming replies match your requests. You must be prepared to receive a
reply to any outstanding request. One way to manage this situation is to call
the 0TRcvUReply function with the reply->udata.maxlen field set to 0. The rest of
the information returned by the function on this first call lets you know the
sequence number of the reply as well as the flagPtr setting. Once you
determine the matching request and the appropriate reply buffer, you can call
the 0TRcvUReply function a second time to read the actual reply data. On the
second and subsequent reads, Open Transport sets the reply->opt.len field to
0. It is guaranteed that once a reply has been partially read, subsequent calls to
0TRcvUReply read from that same reply until all the data has been read.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

If the T_MORE bit is set in the f1ags parameter, this means your buffer is not large
enough to hold the entire reply. You must call the 0TRcvURequest function again
to retrieve more request data. Open Transport ignores the addr and opt fields of
the reply parameter for subsequent calls to the function. The T_MORE flag is not
set for the last reply packet to let you know that this is the last packet.

If the T_PARTIALDATA bitis setin the f1ags parameter, this means that the data
you are about to read with the 0TRcvUReply function does not constitute the
entire reply and that you must call the function again to read more of or the
rest of the reply.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the reply and that your buffer is
too small to contain even this chunk. In this case, you must call the function
again until the T_MORE flag is clear. The T_PARTIALDATA bit is set only on the first
call to the function.

If you are communicating with multiple responders and if the 0TRcvUReply
function returns with the T_PARTIALDATA flag set, it is possible that your next call
to the function might not read the rest of the reply because the next data unit
coming in belongs to a different reply. One way to handle this situation is to
use the next call to the 0TRcvReply function to determine the sequence number
of the incoming reply (by setting req->udata.maxlen to 0) and then, having
determined which reply data is coming in, read the data into the appropriate
buffer.

T_IDLE

You use the 0TSndURequest function (page 3-117) to send a request.

For information on how to use this function with the AppleTalk ATP protocol,
see page 14-10 in the ATP chapter.

You use the TUnitReply structure (page 3-70) to store information about the
reply data and the ID of the transaction.

Endpoints Reference 3-127
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTCancelURequest

Cancels a request that was made using the 0TSndURequest function.

C INTERFACE

0SStatus 0TCancelURequest(EndpointRef ref, 0TSequence seq);

C++ INTERFACE

0SStatus Tendpoint::CancelURequest(0TSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being cancelled.

seq Along, specifying the transaction ID of the request you want to
cancel. This is the same value as the one you specified for the
sequence field of the req parameter when you called the
0TSndURequest function.

If you specify 0 for this parameter, Open Transport cancels all
outstanding requests. If you specify an invalid sequence
number, Open Transport does not do anything.

DESCRIPTION

The 0TCancelURequest function cancels the outgoing request whose transaction
ID is specified by the seq parameter.

When you call the 0TSndURequest function, the provider allocates memory for
internal buffers for the transaction. Calling the 0TCancelURequest function tells
the endpoint provider that you are no longer interested in the transaction and
that it can free up any memory or internal buffers associated with the
transaction request identified by the seq parameter.

If the function completes successfully, it returns the kOTNoErr result; it does not
return any other kind of acknowledgment. It is your responsibility to

3-128 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

deallocate memory that you have reserved for the address, options, and data
buffers associated with the cancelled 0TSndURequest function.

Use the 0TCancelURequest function to cancel an outgoing request; use
0TCancelUReply to cancel an incoming request.

VALID STATES
T_IDLE

SEE ALSO
You use the 0TSndURequest function (page 3-117) to send a request.
You use the 0TCancelUReply function (described next) to cancel an
incoming request.
OTCancelUReply
Cancels a request that you have read using the 0TRcvURequest function.
C INTERFACE

0SStatus 0TCancelUReply(EndpointRef ref, 0TSequence seq);

C++ INTERFACE

0SStatus TEndpoint::CancelUReply(0TSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being canceled.

Endpoints Reference 3-129
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

seq Along, specifying the transaction ID of the request being
cancelled. Specify the same value as that value is passed in the
req parameter to the 0TRcvURequest function that you used to
read this request.

If you specify 0 for this parameter, Open Transport cancels all
outstanding incoming requests. If you specify an invalid
sequence number, Open Transport does not do anything.

The 0TCancelUReply function cancels the request whose transaction ID is
specified by the seq parameter.

When you call the 0TRcvURequest function, the endpoint provider allocates
memory for internal buffers and assigns a sequence value to identify this
transaction. Calling the 0TCancelURep1y function tells the provider that you are
no longer interested in the transaction and that it can free up the memory and
the sequence number associated with the cancelled transaction.

If the function completes successfully, it returns the kOTNoErr result; it does not
return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the cancelled 0TRcvURequest function.

Use the 0TCancelUReply function to cancel an incoming request; use the
0TCancelURequest function to cancel an outgoing request.

T_IDLE

You use the 0TRcvURequest function (page 3-120) to read an incoming request.

You use the 0TCancelURequest (page 3-128), to cancel an outgoing request.

Establishing A Connection

3-130

To use a connection-oriented endpoint, you must use the 0TBind function to
specify the number of outstanding connections that the listening endpoint

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

supports. Then you must use the functions described in this section to establish
the connection. The endpoint initiating the connection uses the 0TConnect and
0TRcvConnect functions; the endpoint accepting the connection uses the
0TListen and 0TAccept functions. You use the same functions to establish a
connection for both transactionless and transaction-based endpoints.

Once you have established a connection, you can send and receive data. How
you do this depends on whether you are using transactionless or
transaction-based service. After you are done transferring data and no longer
need to stay connected, you must explicitly tear down the connection by using
the functions described in the section “Tearing Down a Connection” on

page 3-159.

OTConnect

Requests a connection to a remote peer.

C INTERFACE

0SStatus OTConnect(EndpointRef ref, TCall* sndCall, TCall* rcvCall);

C++ INTERFACE

0SStatus TEndpoint::Connect(TCall* sndCall, TCall* rcvCall);

PARAMETERS
ref The endpoint reference of the endpoint initiating the connection.

sndCall A pointer to a TCal1 structure (page 3-72) that specifies the
address of the remote peer, any data transmitted when
establishing a connection, and any options for this connection.

rcvCall A pointer to a TCa11 structure (page 3-72) that specifies the
address of the peer that has accepted the connection, the value
of options proposed using the sndCa11 parameter, and any data
transmitted by the peer accepting the connection.

Endpoints Reference 3-131
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

CHAPTER 3

Endpoints

This parameter is only meaningful for synchronous calls to the
0TConnect function.

If the endpoint is in synchronous mode, the 0TConnect function returns after the
connection is established and fills in the fields of the TCa11 structure (referenced
by the rcvCall parameter) with the actual values associated with this
connection. These might be different from the values you specified using the
sndCall parameter.

If the 0TConnect function returns with the k0TLookErr result, this might be either
because of a pending T_LISTEN or T_DISCONNECT event. That is, either a
connection request from another endpoint has interrupted execution of the
function, or the remote endpoint has rejected the connection. If you don’t have
a notifier installed, you can call the 0TLook function to identify the event that
caused the kOTLookErr result. If the event is T_LISTEN, you must accept or reject
the incoming request and then continue processing the 0TConnect function by
calling 0TRcvConnect. If the event is T_DISCONNECT, you must call the
0TRcvDisconnect function to clear the error condition—that is, to deallocate
memory and place the endpoint in the correct state.

If the endpoint is in asynchronous mode, the 0TConnect function returns before
the connection is established with a k0TNoDataErr result to indicate that the
connection is in progress. When the connection is established, the endpoint
provider calls your notifier, passing T_CONNECT for the code parameter. In
response, you must call the 0TRcvConnect function to read the connection
parameters that would have been returned using the rcvCall parameter if the
endpoint were in synchronous mode.

It is possible that the remote address returned in the addr field of the rcvCall
parameter is not the same as the address you requested using the
sndCall->addr field. This happens when the connection is accepted for a
different endpoint than the one receiving the connection request.

If the 0TConnect function returns a result other than k0TNoDataErr, then the
connection attempt has not been initiated and no events will be received.

SPECIAL CONSIDERATIONS

3-132

Not all endpoints support the sending of data with a connection request.
Examine the connect field of the TEndpointInfo structure for the endpoint to

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

determine if the endpoint supports the sending of data and to determine the
maximum size of the data.

VALID STATES
T_IDLE

SEE ALSO

You can use the 0TLook function (page 3-95) to retrieve a pending
asynchronous event.

You use a TCal1 structure (page 3-72) to specify the address of the remote peer,
any data transmitted when establishing a connection, and any options for the
connection.

You use the 0TRcvDisconnect function (page 3-161) to acknowledge that your
request for a connection has been rejected.

For information on how to use this function with a TCP/IP protocol, see
page 8-17 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-10 in the PAP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

OTRcvConnect

Reads the status of an outstanding or completed asynchronous call to the
0TConnect function.

C INTERFACE

0SStatus OTRcvConnect(EndpointRef ref, Tcall* call);

Endpoints Reference 3-133
Draft. O Apple Computer, Inc. 4/30/96

C++ INTERFACE

PARAMETERS

DESCRIPTION

VALID STATES

SEE ALSO

3-134

CHAPTER 3

Endpoints

0SStatus TEndpoint::RcvConnect(TCall* call);

ref The endpoint reference of the endpoint initiating the connection.

call A pointer to a TCa11 structure (page 3-72) that contains
information about the newly established connection. When the
0TRcvConnect function returns, it fills in this structure. You can
set this parameter to nil, in which case no information is
returned to you.

You call the 0TRcvConnect function to determine the status of a previously
issued 0TConnect call. If you want to retrieve information about the connection,
you must allocate buffers for the addr field and, if required, the opt and udata
fields before you make the call.

If the endpoint is synchronous and blocking, the 0TRcvConnect function waits
for the connection to be accepted or rejected. If the connection is accepted, the
function returns with a k0TNoError result. If the connection is rejected, the
function returns with a k0TLookErr result. In this case, you should call the
0TLook function to verify that a T_DISCONNECT event is the reason for the
k0TLookErr, and then you should call the 0TRcvDisconnect function to clear
the event.

If the endpoint is asynchronous or nonblocking, the 0TRcvConnect function
returns with the k0TNoDatatrr result if the connection has not yet been
established.

T_OUTCON

You use the 0TConnect function (page 3-131) to request a connection request.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

You use the TCal1 structure (page 3-72) to store information about the newly
established connection.

You use the 0TLook function (page 3-95) to retrieve pending asynchronous
events.

You use the 0TRcvDisconnect function (page 3-161) to acknowledge that your
request for a connection has been rejected.

For information on how to use this function with a TCP/IP protocol, see
page 8-17 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-10 in the PAP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

OTListen

Listens for an incoming connection request.

C INTERFACE

0SStatus OTListen(EndpointRef ref, TCall* call);

C++ INTERFACE

0SStatus TEndpoint::Listen(TCall* call);

PARAMETERS
ref The endpoint reference of the endpoint listening for the
connection request.
Endpoints Reference 3-135

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

CHAPTER 3

Endpoints

call A pointer to a TCa11 structure (page 3-72) that contains
information about the address of the peer requesting the
connection, option information, data associated with the
connection request, and the connection ID for this connection.

You use the 0TListen function to listen for incoming connection requests. On
return, the function fills in the TCa11 structure referenced by the cal1 parameter
with information about the connection request. After retrieving the connection
request using the 0TListen function, you can reject the request using the
0TSndDisconnect function, or you can accept the request using the 0TAccept
function.

If the endpoint is in synchronous mode and is blocking, the 0TListen function
returns when a connection request has arrived. If the endpoint is in
asynchronous mode or is not blocking, the 0TListen function returns any
pending connection requests or returns the k0TNoDataErr result if there are

no pending connection requests. You can also call the 0TListen function from
within a notifier function in response to the T_LISTEN event. In this case, the
function returns a result immediately.

SPECIAL CONSIDERATIONS

VALID STATES

SEE ALSO

3-136

Not all endpoints support the sending of data with a connection request.
Examine the connect field of the TendpointInfo structure for the endpoint to
determine if the endpoint supports the sending of data and to determine the
maximum size of the data.

To ensure portability, do not explicitly bind the endpoint to which you are
passing off a connection if its address is to be the same as that of the endpoint
listening for connection requests.

T_IDLE, T_INCON

You use the 0TAccept function (described next) to read an incoming connection
request that you have retrieved using the 0TListen function.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

OTAccept

CHAPTER 3

Endpoints

You use the TCal1 structure (page 3-72) to store information about the address
of the peer requesting the connection, option information, data associated with
the connection request, and the connection ID for this connection.

You use the 0TSndDisconnect function (page 3-159) to reject a connection
request.

You specify the maximum number of outstanding connections for an endpoint
when you bind the endpoint using the 0TBind function (page 3-87).

For information on how to use this function with a TCP/IP protocol, see
page 8-18 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-10 in the PAP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

C INTERFACE

C++ INTERFACE

PARAMETERS

Accepts an incoming connection request.

0SStatus OTAccept(EndpointRef ref, EndpointRef resRef, TCall* call);

0SStatus TEndpoint::Accept(EndpointRef resRef, TCall* call);

ref The endpoint reference of the listening endpoint.

resRef The endpoint reference of the endpoint accepting the
connection.

Endpoints Reference 3-137

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

3-138

CHAPTER 3

Endpoints

call A pointer to a TCa11 structure (page 3-72) that contains
information about the address of the peer requesting the
connection, option information, data associated with
the connection request, and the connection ID for this
connection.

You use the 0TAccept function to accept a request that you retrieved using the
0TListen function. You can accept a connection on either the same or on a
different endpoint than the one listening for connection request.

» If you accept the connection on the same endpoint (the values of the ref and
resRef parameters are the same), there must be no other outstanding
connection requests on that endpoint. Otherwise, the call to 0TAccept fails
and returns the k0TIndOutErr result.

» If you accept the connection on a different endpoint (the values of the ref
and resRef parameters are different), you are not required to bind the
endpoint accepting the request first. If the endpoint is not bound, the
provider binds it to the same address as that of the endpoint receiving the
connection request. If you want to bind it explicitly to that address, you
must set the reqAddr->qlen field to 0 and the endpoint must be in the T_IDLE
state before calling the 0TAccept function. If you want to bind it to a different
address, there are no restrictions on the value of the eqAddr->qlen field.

If you do not wish to accept the request, you must call the 0TSndDisconnect
function.

If the endpoint is in asynchronous mode, the 0TAccept function returns
immediately with a kOTNoError result, indicating that processing has begun and
that the client will be notified when it is complete.

When processing is finished and the connection is opened, the provider for the
endpoint specified by the ref parameter, calls that endpoint’s notifier, passing
T_ACCEPTCOMPLETE for the code parameter and kInvalidEndpointRef for the
cookie parameter. The provider for the endpoint specified by the resRef
parameter, calls that endpoint’s notifier, passing T_PASSCON for the code
parameter and ref for the cookie parameter. If you have accepted the
connection on the same endpoint (ref and resRef are the same), the provider
issues the T_ACCEPTCOMPLETE event first, and then the T_PASSCON event.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

If you have not installed a notifier, you can poll the endpoint accepting the
connection for a change of state to T_DATAXFER; the change of state happens
when the connection is opened.

SPECIAL CONSIDERATIONS

In asynchronous mode, it is possible for the endpoint to issue the
T_ACCEPTCOMPLETE event before the 0TAccept function returns the
kOTNoError result.

Not all endpoints support the sending of data with a connection request.
Examine the connect field of the TEndpointInfo structure for the endpoint to
determine if the endpoint supports the sending of data and the maximum size
of the data.

The 0TAccept function fails with the k0TLookErr error if there are indications
(T_DISCONNECT or T_LISTEN) waiting to be received. This is because

Calling the 0TAccept function on an endpoint that was bound with a qlen
greater than 1 can result in a k0TLookErr being returned because another
T_LISTEN event has arrived. Unfortunately, XTI specifies that the accept request
cannot be acted on until the 0TListen function has been called to receive this
new connection request. This effectively means that you need to keep an array
of outstanding connection requests. If you are acting on T_LISTEN events in
your notifier, then you need to be able to handle having as many outstanding
connection requests as you indicate in the q1en field, issuing an accept request,
and getting a T_LISTENCOMPLETE event before the T_ACCEPTCOMPLETE event returns
to you.

COMPLETION EVENT CODES

VALID STATES

T_ACCEPTCOMPLETE 0x20000003 The 0TAccept function has completed.
The cookie parameter of the notifier
function contains the endpoint
reference of the endpoint to which the
connection has been passed.

Endpoint specified by the ref parameter: T_INCON

Endpoint specified by the resRef parameter: T_IDLE or T_UNBND

Endpoints Reference 3-139
Draft. O Apple Computer, Inc. 4/30/96

SEE ALSO

CHAPTER 3

Endpoints

You use the 0TListen function (page 3-135) to read a connection request before
calling the 0TAccept function to accept the request.

You use the TCal1 structure (page 3-72) to store information about the address
of the peer requesting the connection, option information, data associated with
the connection request, and the connection ID for this connection.

You use the 0TBind function (page 3-87) to bind the endpoint accepting the
request explicitly and to specify the number of connection requests that can be
outstanding for the endpoint.

You use the 0TSndDisconnect function (page 3-159) to reject an incoming
connection request.

For information on how to use this function with a TCP/IP protocol, see
page 8-18 in the TCP/IP chapter.

You examine the connect field of the TEndpointInfo structure (page 3-58) to
determine whether your endpoint supports the sending of data with a
connection request.

Functions for Connection-Oriented Transactionless Endpoints

OTSnd

To use connection-oriented transactionless endpoints, you must first establish a
connection, as described in the previous section, and then use the 0TSnd and
0TRev functions described in this section to transfer data.

The 0Tsnd and 0TRcv functions do not use a special data structure to describe
the data being transferred. Rather, the buf parameter is used to point to the
buffer holding the data and the nbytes parameter is used to specify the size of
the data being sent. Because the endpoints are already connected, it is not
necessary to specify a destination address. Equally, options are defined when
the connection is established; therefore, it is not necessary to specify options
when sending data.

3-140

Sends data to a remote peer.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

C INTERFACE

C++ INTERFACE

PARAMETERS

DESCRIPTION

CHAPTER 3

Endpoints

0TResult 0TSnd(EndpointRef ref, void* buf, size_t nbytes,
0TFlags flags);

OTResult TEndpoint::Snd(void* buf, size_t nbytes, O0TFlags flags);

ref The endpoint reference of the endpoint sending data.

buf A pointer to the data being sent. If you are sending data that is
not stored contiguously, this is a pointer to an 0TData structure
that describes the first data fragment.

nbytes Along specifying the number of bytes being sent. If you are
sending data that is not stored contiguously, you must set this
field to the kNetbufDatalsOTData constant.

flags Along bitmapped variable specifying whether the data to be
sent is expedited (T_EXPEDITED) and whether more data remains
to be sent (T_MORE). To set both fields, use the bitAND operator.

You use the 0TSnd function to send data to a remote peer. Before you use this
function, you must establish a connection with the peer.

If the 0TSnd function succeeds, it returns an integer (0SStatus) specifying the
number of bytes that were actually sent. If it fails, it returns a negative integer
corresponding to a result code that indicates the reason for the failure.

You specify the data to be sent by passing a pointer to the data (buf) and by
specifying the size of the data (nbytes). The maximum size of the data you can
send is specified by the tsdu field of the TEndpointInfo structure for the
endpoint.

Some protocols use expedited data for control or attention messages. To
determine whether the endpoint supports this service, examine the etsdu field
of the TEndpointInfo structure. A positive integer for the etsdu field indicates

Endpoints Reference 3-141
Draft. O Apple Computer, Inc. 4/30/96

3-142

CHAPTER 3

Endpoints

the maximum size in bytes of expedited data that you can send. To send
expedited data, you must set the T_EXPEDITED bit of the f1ags parameter.

If you want to break up the data sent into smaller logical units, you can set the
T_MORE bit of the flags parameter to indicate that you are using additional calls
to the 0TSnd function to send more data that belongs to the same logical unit.
To indicate that the last data unit is being sent, you must specify 0 for nbytes
and turn off the T_MORE flag. This is the only circumstance under which it is
permitted to send a zero-length data unit. If the endpoint does not support
the sending of zero-length data, the 0TSnd function fails with the
kOTBadDataErr result.

If the endpoint is in blocking mode, the 0TSnd function returns after it actually
sends the data. If flow-control restrictions prevent its sending the data, it retries
the operation until it is able to send it. If the endpoint is in nonblocking mode,
the 0TSnd function returns with the k0TF1owErr result if flow-control restrictions
prevent the data from being sent. When the endpoint provider is able to send
the data, it returns a T_GODATA event to let you know that it is possible to

send data.

If the endpoint is in non-blocking or asynchronous mode, it is possible that
only part of the data is actually accepted by the transport provider. In this case,
the 0TSnd function returns a value that is less than the value of the nbytes
parameter, or the error kOTFTowErr if no bytes at all were sent. After this error
occurs, a T_GODATA event will be issued when the flow control restrictions are
lifted. This error is not returned if the endpoint is in blocking mode.

If an asynchronous event, such as a disconnect, occurs and interrupts the 0TSnd
function, 0TSnd returns with the k0TLookErr result.

The following table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the 0TSnd function.

Blocking Nonblocking
Synchronous The function returns when The function returns
the provider lifts immediately.

flow-control restrictions.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints
Blocking Nonblocking
The kOTF1owErr result is The kOTFlowErr result
never returned. might be returned.
Asynchronous The function returns The function returns
immediately. immediately.
The kOTF1owErr result is The kOTF1owErr result
never returned. might be returned.

SPECIAL CONSIDERATIONS

VALID STATES

SEE ALSO

The XTI_SNDLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal send buffer before they are sent. If the endpoint you are using supports
this option, you can negotiate a value using the 0T0OptionManagement function.
Because you use the 0T0ptionManagement function to set this option, it affects all
subsequent sends.

T_DATAXFER, T_INREL

For information about transferring data, see “Using Connection-Oriented
Transactionless Service,” beginning on page 3-44.

You can examine the TEndpointInfo structure (page 3-58) to find out what kind
of data you can send and its maximum size.

You use the 0TData structure (page 3-62) to transfer noncontiguous data.

For information on how to use this function with a TCP /IP protocol, see
page 8-18 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-11 in the ADSP chapter and page 15-11 in the PAP chapter.

For additional information about the 0TOptionManagement function, see the
chapter “Option Management” in this book.

Endpoints Reference 3-143
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTRcv

Reads data sent using a connection-oriented transactionless protocol.

C INTERFACE

OTResult OTRcv(EndpointRef ref, void* buf, size_t nbytes,
0TFlags* flags);

C++ INTERFACE

OTResult TEndpoint::Rcv(void* buf, size_t nbytes, OTFlags* flags);

PARAMETERS
ref The endpoint reference of the endpoint receiving data.

buf A pointer to a memory location where the incoming data is to
be copied. You must allocate this buffer before you call the
function. If you are doing a no-copy receive, this field is a
pointer to an 0TBuffer pointer.

nbytes Along specifying the size of the buffer in bytes. If you are
doing a no-copy receive, you must set this field to the
kNetbufDatalsOTBufferStar constant.

flags Along bitmapped variable specifying, on return, whether the
data being sent is expedited (T_EXPEDITED) and whether more
data remains to be received (T_MORE).

DESCRIPTION

You call the 0TRcv function to read data sent by the peer to which you are
connected. If the 0TRcv function succeeds, it returns an integer (0TStatus)
specifying the number of bytes received. The function places the data read into
the buffer referenced by the buf parameter. If the function fails, it returns a
negative integer corresponding to a result code that indicates the reason for the
failure. You can call this function to receive either normal or expedited data. If
the data is expedited, the T_EXPEDITED flag is set in the f1ags parameter.

3-144 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

If T_MORE is set in the f1ags parameter when the function returns, this means
that the buffer you allocated is too small to contain the data to be read and that
you must call the 0TRcv function again. If you have read x bytes with the first
call, the next call to the 0TRcv function begins to read at the (x + 1) byte. Of
course, if you need it, you must copy the data in the buffer to another location
before calling the function again. Each call to this function that returns with the
T_MORE flag set means that you must call the function again to get more data.
When you have read all the data, the 0TRcv function returns with the T_MORE
flag not set. If the endpoint does not support the concept of a TSDU, the T_MORE
flag is not meaningful and should be ignored. To determine whether the
endpoint supports TSDUs, examine the tsdu field of the TEndpointInfo
structure. A value of T_INVALID means that the endpoint does not support it.

Some protocols allow you to send zero-length data to signal the end of a logical
unit. In this case, if you request more than 0 bytes when calling the 0TRcv
function, the function returns 0 bytes only to signal the end of a TSDU.

If the 0TRcv function returns and the T_EXPEDITED bit is set in the f1ags
parameter, this means that you are about to read expedited data. If the number
of bytes of expedited data exceeds the number of bytes you specified in the
reqCount parameter, both the T_EXPEDITED and the T_MORE bits are set. You must
call the 0TRcv function until the T_MORE flag is not set to retrieve the rest of the
expedited data.

If you are calling the 0TRcv function repeatedly to read normal data and a call
to the function returns T_EXPEDITED in the f1ags parameter, the next call to the
0TRcv function that returns without the T_EXPEDITED flag set returns normal
data at the place it was interrupted. It is your responsibility to remember where
that was and to continue processing normal data. You can determine how
much normal data you read by maintaining a running total of the number of
bytes returned in the 0TStatus result.

If the endpoint is in asynchronous mode or is not blocking, the function returns
with the k0TNoDataErr result if no data is available. If you have installed a
notifier, the endpoint provider calls your notifier and passes T_DATA or T_EXDATA
for the code parameter when there is data available. If you have not installed a
notifier, you may poll for these events using the 0TLook function. Once you
receive a T_DATA or T_EXDATA event, you should continue in a loop, calling the
0TRcv function until it returns with the k0TNoDataErr result.

If the endpoint is in synchronous mode and is blocking, the endpoint waits for
data if none is currently available. You should avoid calling the 0TRcv function
this way because it might cause processing to hang if no data is available. If

Endpoints Reference 3-145
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

you are doing other operations in synchronous mode, you should put the
endpoint in nonblocking mode before calling the 0TRcv function.

SPECIAL CONSIDERATIONS

VALID STATES

SEE ALSO

3-146

You should be prepared for a T_DATA event and then a kOTNoDataErr error when
you call the 0TRcv function. This seems unusual, but it can occur if you are
calling 0TRcv in the foreground when a T_DATA event comes in.

Whenever the 0TRcv function returns a kOTLookErr error, it is very important
that you call the 0TLook function. If you are in a flow-control situation on the
send side, and a T_GODATA or T_GOEXDATA event occurs that you do not clear in
your notifier (by calling 0TLook or by actually sending some data), then you
will hang waiting. Until the T_GODATA or T_GOEXDATA are cleared, Open Transport
cannot send you another T_DATA event (or any other event other than a
T_DISCONNECT, for that matter).

The XTI_RCVLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpoint’s
internal receive buffer before the endpoint provider generates a T_DATA event. If
the endpoint you are using supports this option, you can negotiate a value
using the 0TOptionManagement function. Because you use the
0TOptionManagement function to set this option, it affects all subsequent sends.

T_DATAXFER, T_OUTREL

You use the 0TLook function (page 3-95) to poll for the T_DATA or T_EXDATA events.

You use the 0TIsNonBlocking function, described in the reference section of the
chapter “Providers” in this book, to determine the current operational mode of
the endpoint. It is recommended that the endpoint be in nonblocking mode
before you call the 0TRcv function.

For information on how to use this function with a TCP/IP protocol, see
page 8-19 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-12 in the ADSP chapter and page 15-11 in the PAP chapter.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

You use the 0T0OptionManagement function, described in the chapter “Option
Management” in this book, to negotiate the XTI_RCVLOWAT option.

Functions for Connection-Oriented Transaction-Based Endpoints

After you establish a connection, you can transfer data using connection-
oriented transaction-based endpoints by calling the 0TSndRequest function to
send a request, the 0TRcvRequest function to read a request, the 0TSndReply
function to reply to the request, and the 0TRcvReply function to read the reply.
This section also describes the 0TCancelRequest function, which you use to
cancel an outgoing request, and the 0TCancelReply function, which you use
to cancel an incoming request.

Connection-oriented transaction-based service used by protocols such as ADSP
is described at greater length in the section “Using Connection-Oriented
Transaction-Based Service,” beginning on page 3-50. This section describes the
functions used to send and retrieve requests and replies.

OTSndRequest

Sends a request to a connection-oriented transaction-based responder.

C INTERFACE

0SStatus 0TSndRequest(EndpointRef ref, TRequest* req,
0TFlags reqFlags);

C++ INTERFACE

0SStatus TEndpoint::SndRequest(TRequest* req, OTFlags reqFlags);

PARAMETERS

ref The endpoint reference of the endpoint making the request.

Endpoints Reference 3-147
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

req A pointer to a TRequest structure (page 3-76) that contains
information about the request, options for this request, and the
transaction ID of the request.

reqFlags A bitmapped long specifying whether you are sending request

data using additional calls to this function (T_MORE) and whether
you plan to acknowledge replies (T_ACKNOWLEGED). Use the
bitAND operator to set both bits.

DESCRIPTION

You use the 0TSndRequest function to initiate a transaction. When the
responding peer replies to your request, you use the 0TRcvReply function to
read the reply.

By default, delivery is guaranteed for you, but not for the responder. That is,
you will always find out whether your request was received, but the responder
only receives acknowledgment that you received the reply if you set the
T_ACKNOWLEDGED bit in the reqFlags parameter when you send the request.

If the responder is an Open Transport endpoint, its provider generates a
T_REPLYCOMPLETE event when you have read the reply. This happens whether or
not the T_ACKNOWLEDGED bit is set; but if it is set, this guarantees that the reply
was delivered. If you don’t set this flag, the responder’s call to the 0TSndReply
function returns right away, and the responding endpoint receives no
additional information as to whether the reply was received and the data

was read.

Setting the T_MORE bit tells the endpoint provider that you are using several
calls to the 0TSndRequest function to send the request data. Note that even
though you are using several calls, the request data, put all together, must still
not exceed the value specified for the etsdu field in the endpoint’s
TEndpointInfo structure.

If the endpoint is in blocking mode and flow-control restrictions prevent the
endpoint provider from accepting the 0TSndRequest function, Open Transport
retries the operation until flow-control restrictions are lifted.

If the endpoint is in nonblocking mode and flow-control restrictions prevent
the endpoint provider from accepting the 0TSndRequest function, Open
Transport returns the kOTF1owErr result. When flow-control restrictions are
lifted, the provider issues a T_GODATA event, which you can retrieve using your
notifier function or by polling the endpoint using the 0TLook function. When
you get this event, you can try sending the request again.

3-148 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

The next table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the 0TSndRequest function.

Blocking Nonblocking
Synchronous The function returns when The function returns if
the provider lifts flow- flow-control restrictions
control restrictions and the are in effect or the request
request has been sent to the data has been sent to the
protocol. protocol.
The kOTF1owErr result is The kOTF1owErr result
never returned. might be returned.
Asynchronous The function returns The function returns
immediately. immediately.
The kOTF1owErr result is The kOTF1owErr result
never returned. might be returned.

T_DATAXFER, T_INREL

You use the 0TRcvReply function (page 3-154) to read the reply to your request.

You use the TRequest structure (page 3-76) to specify information about the
request, options for this request, and the transaction ID of the request.

The maximum size of a request is defined by the etsdu field of the
TEndpointInfo structure (page 3-58).

You use the 0TLook function (page 3-95) to retrieve pending asynchronous
events.

You use the 0TData structure (page 3-62) to describe noncontiguous data.

OTRcvRequest

You use the 0TRcvRequest function to read a request from a connection-oriented
transaction-based requester.

Endpoints Reference 3-149
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

C INTERFACE

0SStatus OTRcvRequest(EndpointRef ref, TRequest* req,
0TFlags* reqFlags);

C++ INTERFACE

0SStatus TEndpoint::RcvRequest(TRequest* req, OTFlags* flags);

PPARAMETERS
ref The endpoint reference of the endpoint reading the request.

req A pointer to a TRequest structure (page 3-76) that contains
information, on return, about the incoming request. See the
description of the TRequest structure for how to set this
parameter when doing a no-copy receive.

reqFlags Abitmapped long specifying, on return, whether there is more
request data coming (T_MORE) and whether the provider is going
to acknowledge replies (T_ACKNOWLEDGED).

DESCRIPTION

You use the 0TRcvRequest function to read an incoming request. After reading
the request, you can use the 0TSndReply function to reply to that request or the
0TCancelRequest function to reject the request.

When the 0TRcvRequest function returns, the req->data.buf field points to the
request data and the req->sequence field specifies a transaction ID for this
transaction. You must use this same sequence value when calling the
0TSndReply function to reply to this request or the 0TCancelRequest function to
reject it.

If you have allocated a buffer that is too small to hold the request data, the
provider sets the T_MORE bit in the reqFlags field to indicate that there is more
request data to be read. You must call the 0TRcvRequest function until the
T_MORE flag is cleared in order to retrieve the rest of the request data. The
req->opt field contains returns no information for these additional calls.

If the endpoint is in synchronous mode and is blocking, the 0TRcvRequest
function returns only when a request arrives. If the endpoint is asynchronous

3-150 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

or is not blocking, the 0TRcvRequest function returns either the next unread
request or the k0TNoDataErr result if there are no pending requests.

If flow-control restrictions prevent the provider from accepting the data when
you call the 0TRcvRequest function, the function returns the kOTF1owErr result.
The provider issues the T_G0DATA event when flow-control restrictions are lifted.

When a request arrives, the provider generates a T_REQUEST event. You can poll
for this event using the 0TLook function or call the function for as long as the
kOTNoDataErr result is returned. If you have a notifier installed for this
endpoint, the event is sent to the notifier.

VALID STATES
T_DATAXFER, T_OUTREL

SEE ALSO
You use the 0TSndRep1ly function (described next) to reply to a request that you
have read using the 0TRcvRequest function.
You can use the 0TLook function to poll for T_REQUEST events (page 3-95).
OTSndReply
You use the 0TSndRep1ly function to reply to a connection-oriented transaction-
based request.
C INTERFACE

0SStatus 0TSndReply(EndpointRef ref, TReply* reply,
0TFlags* replyFlags);

C++ INTERFACE

0SStatus TEndpoint::SndReply(TReply* reply, O0TFlags flags);

Endpoints Reference 3-151
Draft. O Apple Computer, Inc. 4/30/96

PARAMETERS

DESCRIPTION

3-152

CHAPTER 3

Endpoints
ref The endpoint reference of the endpoint reading the request.
reply A pointer to a TReply structure (page 3-77) that specifies the

reply data being sent, the transaction ID for this transaction,
and any options you want to set.

replyFlags Abitmapped long specifying whether the rest of the reply is
being sent with a subsequent call to this function (T_MORE) or
whether this is the complete reply (T_MORE not set).

You use the 0TSndRep1y function to reply to a request you have read using the
0TRcvRequest function. The reply parameter contains the reply to be sent, and
the replyFlags parameter specifies whether you are sending the entire reply
with this send (T_MORE bit clear) or sending just part of the reply (T_MORE bit set).
If you are using multiple sends to send the reply, you must set the T_MORE bit on
each but the last send. The total size of the data you send using multiple sends
must not exceed the value of the tsdu field of the TEndpointInfo structure for
this endpoint.

If the endpoint is in blocking mode, the 0TSndRep1y function returns after it has
sent the reply. If the endpoint is in nonblocking mode, the 0TSndRep1y function
returns the kOTF1owErr result if the endpoint provider is unable to send the
reply because of flow-control restrictions. The provider issues the T_GODATA
event when these restrictions are lifted. You can use the 0TLook function to poll
for this event, or you can use your notifier to handle it.

If the endpoint is in asynchronous mode, the provider calls your notifier when
the 0TSndRep1ly function completes. The code parameter of the notifier function
contains the T_REPLYCOMPLETE event, the cookie parameter contains the reply
parameter passed with the 0TSndRep1y function, and the result parameter
contains the function result.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

VALID STATES

CHAPTER 3

Endpoints

The next table shows how the endpoint’s mode of execution and blocking
status affects the behavior of the 0TSndRep1y function.

Synchronous

Asynchronous

Blocking

The function returns
when the provider lifts
flow-control restrictions
and the reply has been
successfully sent or timed
out.

The kOTF1owErr result is
never returned.

The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the
code parameter when the
reply is successfully sent
or timed out.

The kOTF1owErr result is
never returned.

T_DATAXFER, T_OUTREL

COMPLETION EVENTS

SEE ALSO

T_REPLYCOMPLETE

0x20000004

Nonblocking

The function returns if flow-
control restrictions are in
effect or when the reply has
been successfully sent or
timed out.

The k0TF1owErr result might
be returned.

The function returns
immediately.

The provider calls your
notifier, passing
T_REPLYCOMPLETE for the
code parameter when the
reply is successfully sent or
timed out.

The k0TF1owErr result might
be returned.

The 0TSndReply function has completed.

The cookie parameter of the notifier
function points to the reply parameter.

You use the 0TRcvRequest function (page 3-149) to read an incoming request
before calling the 0TSndReply function to reply to the request.

You use the TReply structure (page 3-77) to specify the reply data being sent, the
transaction ID for this transaction, and any options you want to set.

Endpoints Reference

Draft. O Apple Computer, Inc. 4/30/96

3-153

CHAPTER 3

Endpoints

The peer endpoint calls the 0TRcvReply function (page 3-154) to acknowledge
receiving the reply you send using the 0TSndRep1y function.

You use the 0TData structure (page 3-62) to transfer noncontiguous data.

OTRcvReply

Reads a transaction reply sent by a connection-oriented responder.

C INTERFACE

0SStatus OTRcvReply(EndpointRef ref, TReply* reply,
OTFlags* replyFlags);

C++ INTERFACE

0SStatus TEndpoint::RcvReply(TReply* reply, OTFlags* flags);

PARAMETERS
ref The endpoint reference of the endpoint reading the reply.

reply A pointer to a TReply structure (page 3-77) that specifies the size
and location of buffers into which the function, on return, stores
data, option information, and the ID of the transaction. See the
description of the TReply structure for how to set this parameter
when doing a no-copy receive.

replyFlags Along bitmapped field specifying T_MORE or T_PARTIALDATA. A
value of T_MORE indicates that the buffer pointed to by
reply->data.buf is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply and that the next data unit might
belong to a different transaction.

3-154 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

CHAPTER 3

Endpoints

You use the 0TRcvReply function to read the reply to a request that you sent
using the 0TSndRequest function.

If the endpoint is in asynchronous mode, the endpoint provider issues the
T_REPLY event to let you know that incoming reply data is available. After you
retrieve this event (using the 0TLook function or your notifier function,) you
must call the 0TRcvReply function repeatedly to read the reply data until it
returns k0TNoDataErr. The endpoint provider does not generate additional
T_REPLY events until you have read the complete reply.

If a transaction has timed out awaiting reply data, the 0TRcvReply function
returns a kETIMEDOUTErr result; the sequence field of the reply parameter
specifies which request has timed out.

If you have issued multiple requests, it is not possible to know ahead of time
how incoming replies match your requests. You must be prepared to receive a
reply to any outstanding request. One way to manage this situation is to call
the 0TRcvReply function with the reply->udata.maxlen field set to 0. The rest of
the information returned by the function on this first call lets you know the
sequence number of the reply as well as the replyFlags setting. Once you
determine the matching request and the appropriate reply buffer, you can call
the 0TRcvReply function a second time to read the actual reply data. On the
second and subsequent reads, Open Transport sets the reply->opt.len field to
0. It is guaranteed that once a reply has been partially read, subsequent calls to
0TRcvReply read from that same reply until all the data has been read.

If the T_MORE bit is set in the f1ags parameter, this means your buffer is not large
enough to hold the entire reply. You must call the 0TRcvRequest function again
to retrieve more request data. Open Transport ignores the addr and opt fields of
the reply parameter for subsequent calls to the function. The T_MORE flag is not
set for the last reply packet to let you know that this is the last packet.

If the T_PARTIALDATA bitis set in the f1ags parameter, this means that the data
you are about to read with the 0TRcvReply function does not constitute the
entire reply and that you must call the function again to read more of or the
rest of the reply.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the reply and that your buffer is
too small to contain even this chunk. In this case, you must call the function
again until the T_MORE flag is clear. The T_PARTIALDATAbit is set only on the first
call to the function.

Endpoints Reference 3-155
Draft. O Apple Computer, Inc. 4/30/96

VALID STATES

SEE ALSO

If you are communicating with multiple responders and if the 0TRcvUReply
function returns with the T_PARTIALDATA flag set, it is possible that your next call
to the function might not read the rest of the reply because the next data unit
coming in belongs to a different reply. One way to handle this situation is to
use the next call to the 0TRcvReply function to determine the sequence number
of the incoming reply (by setting req->udata.maxlen to 0) and then, having
determined which reply data is coming in, read the data into the appropriate
buffer.

T_IDLE

The request to which you are receiving a reply is defined by a previous call to
the 0TSndRequest function (page 3-147).

You use the TReply structure (page 3-77) to specify the size and location of
buffers into which the function, on return, stores data, option information, and
the ID of the transaction.

You use the 0TLook function (page 3-95) to poll for asynchronous events.

OTCancelRequest

C INTERFACE

C++ INTERFACE

Cancels an outstanding request as defined by a call to the 0TSndRequest
function.

0SStatus 0TCancelRequest(EndpointRef ref, 0TSequence seq);

0SStatus Tendpoint::CancelRequest(0TSequence seq);

PARAMETERS

DESCRIPTION

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

ref The endpoint reference of the endpoint that has sent the request
being cancelled.

seq Along, specifying the transaction ID of the request being

canceled. You must specify the same value that you used for
the sequence field of the req parameter you passed to the
0TSndRequest function. If you specify 0 for this parameter, the
provider cancels all outstanding requests. If you specify an
invalid sequence number, the provider does not do anything.

When you make a call to the 0TSndRequest function, the endpoint provider
allocates memory for internal buffers for this transaction. If you are no longer
interested in the transaction, you must tell the endpoint provider by calling the
0TCancelRequest function. Explicitly canceling a request allows the provider to
free up the memory associated with a transaction request.

If the function completes successfully, it returns the k0TNoErr result; it does
not return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the canceled function.

Use 0TCancelRequest to cancel an outgoing request; use 0TCancelReply to cancel
an incoming request.

T_IDLE

You use the 0TSndRequest function (page 3-147) to send a request.

You use the 0TCancelReply function (described next) to cancel an incoming
request.

Endpoints Reference 3-157
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

OTCancelReply

Cancels an outstanding call to the 0TRcvRequest function.

C INTERFACE

0SStatus 0TCancelReply(EndpointRef ref, 0TSequence seq);

C++ INTERFACE

0SStatus TEndpoint::CancelReply(0TSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being canceled.

seq Along, specifying the transaction ID of the request being
canceled. You must specify the same value that was passed to
you in the seq field of the req parameter to the 0TRcvRequest
function. If you specify 0 for this parameter, the provider
cancels all outstanding incoming requests. If you specify an
invalid sequence number, the provider does not do anything.

DESCRIPTION

When you make a call to the 0TRcvRequest function, the provider allocates
memory for internal buffers and assigns a sequence value to identify this
transaction. If you are no longer interested in a transaction, you must explicitly
cancel the transaction by calling the 0TCancelReply function. Calling this
function allows the provider to free up the memory it has reserved and to reuse
the sequence number associated with the canceled transaction.

If the function completes successfully, it returns the kOTNoErr result; it does not
return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the cancelled 0TRcvRequest function.

3-158 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

Use the 0TCancelReply function to cancel an incoming request; use the
0TCancelRequest function to cancel an outgoing request.

T_IDLE

You use the 0TSndRequest function (page 3-147) to send a request.

You use the 0TCancelRequest function (page 3-156) to cancel an outgoing
request.

Tearing Down a Connection

You use the functions described in this section to tear down a connection.
Depending on the circumstances, you might use the 0TSndDisconnect function
to initiate an abortive disconnect or the 0TSnd0rderlyDisconnect function to
initiate an orderly disconnect. If you are responding to a disconnection request,
you call the 0TRcvDisconnect function to acknowledge an abortive disconnect
or the 0TRcvOrderlyDisconnect function to acknowledge an orderly disconnect.
You can also use the 0TSndDisconnect function to reject an incoming connection
request.

OTSndDisconnect

C INTERFACE

Tears down an open connection (abortive disconnect) or rejects an incoming
connection request.

0SStatus 0TSndDisconnect(EndpointRef ref, TCall* call);

Endpoints Reference 3-159
Draft. O Apple Computer, Inc. 4/30/96

C++ INTERFACE

PARAMETERS

DESCRIPTION

3-160

CHAPTER 3

Endpoints

0SStatus TEndpoint::SndDisconnect(TCall* call);

ref The endpoint reference for the endpoint tearing down the
connection or rejecting the connection request.

call A pointer to a TCa11 structure (page 3-72) that specifies the
connection to be torn down or rejected and specifies data sent
with the disconnection request if the endpoint supports sending
such data.

There are two functions that you can use to tear down a connection:
0TSndDisconnect for an abortive disconnect, or 0TSndOrderlyDisconnect for an
orderly disconnect. It is recommended that you use the 0TSnd0Order1yDisconnect
function for tearing down a connection whenever possible and that you use the
0TSndDisconnect function only for rejecting incoming connection requests.

If the endpoint is in asynchronous mode, the 0TSndDisconnect function returns
immediately with a result of k0TNoError to indicate that the disconnection
process has begun and that your notifier function will be called when the
process completes.

When the connection has been broken, the provider issues a
T_DISCONNECTCOMPLETE event. If you have installed a notifier function, Open
Transport calls your notifier and passes this event in the code parameter. The
cookie parameter contains the call parameter. If you have not installed a
notifier function, you cannot determine when this function completes.

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

COMPLETION EVENT CODES

VALID STATES

SEE ALSO

T_DISCONNECTCOMPLETE 0x20000005 The 0TSndDisconnect function has
completed. The cookie parameter
contains the call parameter.

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL (and T_INCON, when two or more
incoming connection requests are outstanding)

To acknowledge an abortive disconnect, you call the 0TRcvDisconnect function
(described next).

You use the TCal1 structure (page 3-72) to describe the connection being torn
down or rejected.

You use the 0TListen function (page 3-135) to listen for a disconnection request.

You can examine the discon field of the TEndpointInfo structure (page 3-58) for
the endpoint to determine whether the endpoint supports sending data during
the disconnection and to find out the maximum size of such data.

For information on how to use this function with a TCP/IP protocol, see
page 8-19 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-12 in the ADSP chapter and page 15-11 in the PAP chapter.

For information on abortive and orderly disconnects, see “Terminating a
Connection,” beginning on page 3-35.

OTRcvDisconnect

Identifies the cause of a connection break or of a connection rejection,
acknowledges and clears the corresponding disconnection event.

Endpoints Reference 3-161
Draft. O Apple Computer, Inc. 4/30/96

C INTERFACE

C++ INTERFACE

PARAMETERS

DESCRIPTION

VALID STATES

3-162

CHAPTER 3

Endpoints

0SStatus OTRcvDisconnect(EndpointRef ref, TDiscon* discon);

0SStatus TEndpoint::RcvDisconnect(TDiscon* discon);

ref The endpoint reference of the endpoint receiving the
disconnection request.

discon A pointer to a TDiscon structure that specifies any user data,
a reason for the disconnection, and a connection request
sequence number.

Calling the 0TRcvDisconnect function clears the corresponding disconnection
event and retrieves any user data sent with the disconnection.

If you do not care about data returned with the disconnection and do not need
to know the reason for the disconnection nor the sequence ID, you may specify
anil pointer for the discon parameter. In this case, the provider discards any
user data associated with the disconnection.

The 0TRcvDisconnect function behaves in the same way for all modes of
operation. If there is no disconnection request pending, the function returns
with the k0TNoDisconnectErr result. If there is a disconnection request pending,
the function returns either the kOTNoError or k0TBufferOverflowErr result. In the
latter instance, you need to check the discon field of the TEndpointInfo structure
for your endpoint and make sure that the buffer referenced by the udata.buf
field is at least as big as the value specified for the discon field.

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON (when there is more than one
pending disconnection request)

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

SEE ALSO
To send an abortive disconnect, you call the 0TSndDisconnect function
(page 3-159).
You use the TDiscon structure (page 3-79) to specify that provides user data, a
reason for the disconnection, and a connection request sequence number.

For information on how to use this function with a TCP /IP protocol, see
page 8-19 in the TCP/IP chapter.

For information on how to use this function with AppleTalk protocols, see
page 13-12 in the ADSP chapter and page 15-11 in the PAP chapter.

For information on abortive and orderly disconnects, see “Terminating a
Connection,” beginning on page 3-35.

You examine the discon field of the TEndpointInfo structure (page 3-58) to find
out whether your endpoint supports sending data with the disconnection
request and to determine the maximum size of such data.

OTSndOrderlyDisconnect

Initiates or completes an orderly disconnection.

C INTERFACE

0SStatus 0TSndOrderlyDisconnect(EndpointRef ref);

C++ INTERFACE

0SStatus TEndpoint::SndOrderlyDisconnect();

PARAMETERS
ref The endpoint reference of the endpoint initiating the orderly
disconnect.
Endpoints Reference 3-163

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

You call the 0TSnd0rder1yDisconnect function to initiate an orderly release of a
connection and to indicate to the peer endpoint that you have no more data to
send. After calling this function, you must not send any more data over the
connection. However, you can still continue to receive data if the peer endpoint
has not yet called the 0TSndOrderlyDisconnect function.

This function is a service that is not supported by all protocols. If it is
supported, the servtype field of the TEndpointInfo structure has the value
T_COTS_ORD or T_TRANS_ORD.

The 0TSndOrderlyDisconnect function behaves exactly the same in all modes
of operation.

T_DATAXFER, T_INREL

To send an abortive disconnect or to reject a connection request, you call the
0TSndDisconnect function (page 3-159).

For information on abortive and orderly disconnects, see “Terminating a
Connection,” beginning on page 3-35.

You examine the TEndpointInfo structure (page 3-58) to determine whether the
endpoint supports orderly release.

OTRcvOrderlyDisconnect

C INTERFACE

3-164

Acknowledges a request for an orderly disconnect.

0SStatus OTRcvOrderlyDisconnect(EndpointREf ref);

Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

C++ INTERFACE

PARAMETERS

DESCRIPTION

VALID STATES

SEE ALSO

CHAPTER 3

Endpoints

0SStatus TEndpoint::RcvOrderlyDisconnect();

ref The endpoint reference of the endpoint acknowledging receipt
of the disconnect request.

The 0TRcvOrderlyDisconnect function is a service that is not supported by all
protocols. If it is, the servtype field of the TEndpointInfo structure has the value
T_COTS_ORD or T_TRANS_ORD for the endpoint.

After using the 0TRcvOrderlyDisconnect function to acknowledge receipt of a
disconnection request, there will not be any more data to receive. Calls to the
0TRecv function (for a transactionless connection) or to the 0TRcvRequest function
(for a transaction-based connection) after acknowledging a disconnection
request fail with the k0TOutStateErr result. If the endpoint supports a remote
orderly disconnect, you can still send data over the connection if you have not
yet called the 0TSndOrder1yDisconnect function.

The 0TRcvOrderlyDisconnect function behaves in the same way in all modes of
operation. If there is no disconnection request pending, the function returns
with the k0TNoReleaseErr result. It there is a disconnection request pending, the
function returns either the kOTNoError or kOTBufferOverflowErr result. In the
latter instance, you need to check the discon field of the TEndpointInfo structure
for your endpoint and make sure that the buffer referenced by the udata.buf
field is at least as big as the value specified for the discon field.

T_DATAXFER, T_OUTREL

You use the 0TSndOrderlyDisconnect function (page 3-163) to send an orderly
disconnect.

Endpoints Reference 3-165
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 3

Endpoints

For information on abortive and orderly disconnects see “Terminating a
Connection,” beginning on page 3-35.

You examine the TEndpointInfo structure (page 3-58) to determine whether the
endpoint supports orderly release.

3-166 Endpoints Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

Contents

About Mappers 4-4
Using Mappers 4-5
Setting Modes of Operation for Mappers 4-5
Specifying Name and Address Information 4-7
Searching for Names 4-7
Retrieving Multiple Entries From the Reply Buffer
Retrieving Entries in Asynchronous Mode 4-11
Mappers Reference 4-12
Constants and Data Types 4-12
The TRegisterRequest Structure 4-12
The TRegisterReply Structure ~ 4-13
The TLookupRequest Structure 4-13
The TLookupReply Structure 4-15
The TLookupBuffer Structure 4-15
Functions 4-16
Creating Mappers 4-17
0TAsyncOpenMapper 4-17
0TOpenMapper 4-19
Registering and Deleting Names 4-21
0TRegisterName 4-22
OTDeleteName 4-23
O0TDeleteNameByID 4-25
Looking Up Names 4-26
OTLookupName 4-26

Contents
Draft. O Apple Computer, Inc. 4/30/96

4-1

CHAPTER 4

Mappers

This chapter describes mappers, the type of Open Transport provider that lets
your application map entity names to protocol addresses. You can use mapper
functions to register a name, to look up a name or name pattern, or to remove
a registered name. Which functions are supported depends on the name-
registration protocol underlying the mapper provider you create. For more
detailed information about how mapper functions are implemented for

the protocol you are interested in, consult the documentation provided for
that protocol.

You do not have to open a mapper provider if you are interested only in
registering a name or looking up an address corresponding to a name.

= If the protocol you are using allows you to bind an endpoint by name and
you do so, the name is automatically registered on the network. This is a
more efficient way to register a name on the network than to create a
mapper to do it.

= If you want to obtain the address that corresponds to an entity name, you
can use the endpoint function 0TResolveAddress. Using this function also
saves you the trouble of opening a mapper. However, you cannot use this
function to look up a name pattern; that is, the name you look up cannot
include a wildcard character.

If you are using an endpoint that cannot be bound by name, if you want to look
up a name pattern, or if you want to use other mapper functions, you need to
read this chapter and learn how to create a mapper provider.

This chapter begins with a general description of mapper providers and
continues with a more detailed discussion of how you use mappers
asynchronously and how you use the mapper to look up names. The functions
used to register names and delete names are discussed in the section “Mappers
Reference,” beginning on page 4-12.

Mapper providers, like all Open Transport providers, can operate
synchronously or asynchronously, can block, and can acknowledge sends. For
general information about Open Transport providers, see the chapter
“Providers” earlier in this book.

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

About Mappers

A mapper is a communications path between your application and a mapper
provider, which is a protocol that allows you to map a name to a network
address, if the underlying protocol allows it, and to register that name-address
pair so that it becomes visible to all other entities on a network. When you
create a mapper, you instantiate a data structure that contains information
about the mapper provider’s mode of operation, information about the
mapper’s state, and pointers to mapper functions. These functions are your
application’s interface to the underlying name-registration protocol. Which
functions you use depends on the name-registration protocol you select when
you create a mapper. For example, if you select the AppleTalk Name-Binding
Protocol (NBP), which supports dynamic name and address registration, you
can use all the mapper functions described in this chapter: you can register a
name, look up a name, and remove a registered name. If you select the TCP /IP
protocol family, which uses the domain name resolver (DNR), this choice does
not support dynamic name and address registration, and you can only look up
a name that has been registered using other means.

When you create a mapper, you specify which protocol is to provide the
name-registration service. You also have the option of specifying the layers of
protocols underlying that service; these layers provide basic data-transfer
services. For example, AppleTalk’s NBP protocol relies on the more basic
Datagram Delivery Protocol (DDP) to transfer data as required for name
registration and name lookup. You do not have to specify these underlying
data-transfer protocols. When you select the name-registration protocol you are
interested in, a default configuration is provided. For more information about
the default configuration for your protocol, please consult the documentation
furnished for that protocol. Of course, as with any Open Transport provider,
you do have the choice of specifying the underlying protocols, all the way
down to the hardware link. For more information, see the chapter
“Configuration Management” in this book.

When you create a mapper, you obtain a mapper reference. A mapper
reference, like an endpoint reference, identifies the instance of the provider you
have created. You must pass this reference as a parameter to all other mapper
functions. You can open multiple mappers. For example, if you are writing a
network administration application, you might want to create a mapper for
each protocol used over the network. If you do open multiple mappers, the

About Mappers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

mapper reference tells Open Transport which mapper is invoked for any one
function call.

Like endpoint providers, mapper providers also have a state attribute, which
helps Open Transport manage these providers. Unlike endpoints, however,
mappers do not provide functions that allow you to determine their state.

A mapper can be either in an uninitialized (T_UNINIT) state if it was closed by
the system, or in the idle (T_IDLE) state after it has been opened.

Using Mappers

This section begins by describing how the general provider functions that
govern a provider’s mode of operation apply to mapper providers. It goes on
to discuss information you need to know in order to use mapper functions:
how you format names and addresses specified in parameters to mapper
functions and how you handle processing when calling mapper functions
asynchronously. This section concludes with a discussion of different
techniques you can use when using the mapper to search for a name pattern.

Setting Modes of Operation for Mappers

Like all Open Transport providers, mappers can use different modes of
operation. A mapper can execute synchronously or asynchronously. You set the
mapper’s default mode of execution by using the appropriate function to open
it; for example, you can open a mapper that executes asynchronously by calling
the 0TAsyncOpenMapper function to create the mapper. After opening the
mapper, you can change its mode of execution by calling the 0TSetSynchronous
or 0TSetAsynchronous functions. To determine how mapper functions execute,
you call the 0TIsSynchronous function. A mapper uses one asynchronous event
and four completion events. Table 4-1 lists the event codes that the mapper
provider can pass to your application and explains the meaning of the cookie
parameter to the notifier for each function. For more detailed information, see
the descriptions of the mapper functions beginning on page 4-19.

Using Mappers 4-5
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

Table 4-1 Completion events for asynchronous mapper functions

Completion code Meaning

T_OPENCOMPLETE The 0TAsyncOpenMapper function has completed. The
cookie parameter contains the mapper reference.

T_REGNAMECOMPLETE The 0TRegisterName function has completed. The
cookie parameter contains the reply parameter, unless
it was NULL, in which case it contains the request
parameter.

T_DELNAMECOMPLETE The 0TDeleteName or the 0TDeleteNameBy 1D functions
have completed. For the 0TDeleteName function, the
cookie parameter holds a pointer to the name
parameter. For the 0TDeleteNameBy 1D function, the
cookie parameter contains the id parameter.

T_LKUPNAMERESULT The 0TLookupName function has returned a name, but it
has not yet completed because there are more names
to retrieve.

T_LKUPNAMECOMPLETE The 0TLookupName function has completed. The cookie

parameter contains the reply parameter.

The only way to cancel an asynchronous mapper function is to call the
0TCloseProvider function, passing the mapper reference for which the function
was executed. The 0TC1oseProvider function is described in the chapter
“Providers” in this book.

By default, mappers do not block and do not acknowledge sends. You can
change a mapper’s blocking status by using the 0TSetBlocking function. You
can change a mapper’s send-acknowledgment status by using the 0TAckSends
function. These functions are described in the chapter “Providers” in this book.
Mapper providers are not affected by their send-acknowledgment status.
However, a mapper provider’s blocking status might affect the behavior of
mapper functions. For example, if a mapper is blocking, heavy network traffic
might cause mapper functions to wait before sending or receiving data. If a
mapper is nonblocking and you are doing a lot of name lookups, the
0TLookupName function might return with the k0TF1owErr result. In this case, you
can try executing the function later.

Using Mappers
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

Specifying Name and Address Information

Several mapper functions require that you specify a name or address. This
might be a name to register or to look up. Specifying a name or address means
that you have to create a buffer that contains the information and then create a
TNetbuf structure that specifies the size and location of this buffer. The format
that you use to store a name or an address is specific to the name-registration
protocol that underlies the mapper and is exactly the same as the name and
address formats that you can use to bind an endpoint. For information about
name and address formats, please consult the documentation provided for the
protocol you are using.

If the protocol supports it, you can specify a name pattern rather than a name
when calling the 0TLookupName function. Different protocols might use different
wildcard characters to define name patterns. Please consult the documentation
provided for your protocol to determine valid wildcard characters and how
you use these to specify name patterns.

Searching for Names

You use the 0TLookupName function to search for a registered name or for a list of
names if your protocol supports name pattern matching. You use the req
parameter to the function to specify the name or name pattern to search for.
When the function returns, it uses the reply parameter to pass back the
matching name or names.

The req parameter is a pointer to a TLookupRequest structure containing the
name or name pattern to be found and additional information that the mapper
can use in conducting the search. You use the maxcnt field to specify the
number of names you expect to be returned. If you are looking for a specific
name, set this field to 1. If you are looking for a name pattern, you can use this
field to indicate the number of matches you expect the 0TLookupName function to
return. You use the timeout field to specify the amount of time (in milliseconds)
available for this search. If a match is not found within the specified time, the
function returns with the k0TNoDataErr. If you do not specify a value for the
maxcnt field, or if the number you specify is larger than the number of names
that match the given pattern, the mapper provider uses the value given in the
timeout field to determine when to stop the search.

Using Mappers 4-7
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER

Mappers

The reply pa

4

rameter is a pointer to a TLookupReply structure that contains two

fields. The names field describes the size and location of the buffer in which the
replies are placed when the function returns; the rspcount field specifies the
number of matching entries found. Figure 4-1 shows how the contents of a
reply buffer containing two entries are stored.

Figure 4-1 Format of entries in 0TLookupName reply buffer
Bytes
—
Length of address 2
Length of name 2
) Address 4
First _ |
entry
Name Variable
length
—
Length of address 2
Length of name 2
Address 4
Second |
entry
Name Variable
length
—

The first 2 bytes of each entry specifies the length of the address; the second 2
bytes specifies the length of the name. The address is stored next and then the
name, padded to a quad-word boundary. Given a pointer to the reply buffer

Using Mappers

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

(replyBufPtr), you can obtain the length of the address (alen) and the length of
the name (n1en), and then you can compute the length of an entry in the reply
bulffer as follows:

bufPtr = (short*)replyBufPtr

alen = ((UIntl6*)bufPtr)[0];

nlen = ((UIntl6*)bufPtr)[1];

len = alen + nlen + 4 /* Tength of first entry */
Because the entry is aligned on a quad-word boundary, you must account for
this padding to determine where the next entry begins. For example, the
following formula computes the beginning of the next entry:

bufPtr = bufPtr + (len + 3L) & ~3L);

The next section “Retrieving Multiple Entries From the Reply Buffer,” presents
a small code sample that shows how to parse the reply buffer.

Retrieving Multiple Entries From the Reply Buffer

Listing 4-1 shows the sample routine DoParse0TLookup, which retrieves
name-address entries from the reply buffer filled in by the 0TLookupName
function. The buffer being parsed in the sample listing contains name-address
entries for AppleTalk endpoints.

Listing 4-1 Parsing the reply buffer for 0TLookupName

void DoParseQTLookup(Ptr returnBufferPtr, long numFound)
{

char nameString[100];

DDPAddress ddpAddress;

char* bp;

long index;

index = 0;

bp = (char*) returnBufferPtr;
while(index < numFound)

{

UIntl6 Tlen; /* entry length */
UIntl6 alen; /* adress length */
Using Mappers 4-9

Draft. O Apple Computer, Inc. 4/30/96

4-10

CHAPTER 4

Mappers

UIntlé nlen; /* name length */

alen = ((UIntl6*) bp)[07;
nlen = ((UIntl6*) bp)[1];
lTen = alen + nlen + 4;

BlockMove((Ptr)(bp + 4), (Ptr)&ddpAddress,

sizeof (DDPAddress));
BlockMove((Ptr)(bp + alen + 4), (Ptr)nameString, nlen);
nameStringlnlen] = '"\0";

/* Print, display, or store the address
and name in ddpAddress and nameString. */

/* point to next tuple */
bp = bp + ((len + 3L) & ~3L);
index++;

The DoParse0TLookup function takes two parameters, a pointer to the buffer
containing the data returned by the 0TLookupName function and a value
specifying the number of entries in the buffer. Both these values are returned
in the reply parameter to the 0TLookupName function. The DoParse0TLookup
function uses a while loop to move through the buffer entry by entry. For
each entry,

= it determines the length of the address by looking at the first 2 bytes of the
entry and determines the length of the name by looking at the next 2 bytes of
the entry

= it sets Ten to the length of the entire entry by adding 4 bytes (the room taken
up by addrLen and nameLen) to the length of the address and the length of the

name

= it moves the DDP address, which it finds 4 bytes into the entry, into the
ddpAddress variable; and it moves the NBP name, which starts at (bp + alen
+ 4)into the nameString variable.

Because the NBP name is neither a Pascal nor a C string (it does not begin
with a length byte and it does not end with a null character), the function
then adds a null character to the name stored in the nameString variable to

Using Mappers

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

make it a C string. This makes it easier for the program to manipulate
the string.

At this point in the program, you can print or display or store the values of the
ddpAddress and nameString variables. The statement

bp = bp + ((len + 3L) & ~3L);
is used to point to the next entry.

If you execute the 0TLookupName function asynchronously, you can also use
method described in the next section, “Retrieving Entries in Asynchronous
Mode,” to retrieve address-name information.

Retrieving Entries in Asynchronous Mode

If you call the 0TLookupName function asynchronously, you can use an alternate
method for retrieving matching entries. In asynchronous mode, this function
returns two event codes: it returns the T_LKUPNAMERESULT code each time it
stores a name in the reply buffer, and it returns the T_LKUPNAMECOMPLETE code
when it has stored the last name in the reply buffer—that is, when the function
as a whole completes execution. You can ignore the T_LKUPNAMERESULT event,
allocate a large reply buffer, and use the method described in the previous
section, “Retrieving Multiple Entries From the Reply Buffer,” to parse through
the buffer. Alternately, each time the T_LKUPNAMERESULT event is passed to your
notification function, you can do the following:

1. Copy the name and address information from the reply buffer to some other
location.

2. From inside the notifier function, set the reply->names. len field or the
reply->rspcount field to 0.

When you set either of these fields to 0, Open Transport automatically sets
the other field to 0. It's important, however, that you reset these values from
within the notifier or the results might be unpredictable.

3. Repeat the first two steps until the event passed to your notifier function is
T_LKUPNAMECOMPLETE.

This method saves you the trouble of guessing how large a reply buffer to
allocate. It might also save you some memory if you are expecting many
matches to be returned and are interested in only some of them.

Using Mappers 4-11
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

Mappers Reference

This section describes the data types and functions that you use with mappers.
You can also use general provider data types and functions with mappers.
General structures and functions are described in the reference section of the
chapter “Providers” earlier in this book.

Constants and Data Types

This section describes the data types used by mapper functions.

The TRegisterRequest Structure

4-12

You use the TRegisterRequest structure to specify the entity name you want to
register using the 0TRegisterName function (page 4-22) and, optionally, to
specify its address.

The TRegisterRequest structure is defined by the TRegisterRequest data type.

struct TRegisterRequest
{ TNetbuf name;
TNetbuf addr;
by
typedef struct TRegisterRequest TRegisterRequest;

Field descriptions

name A TNetbuf structure that specifies the location and size of a
buffer containing the entity name you want to register. You
must allocate a buffer that contains the name, set the
name.buf field to point to that buffer, and set the name.1en
field to the length of the name.

addr A Thetbuf structure that specifies the location and size of a
buffer containing the address associated with the entity
whose name you want to register. You must allocate a
buffer that contains the address, set the addr.buf field to
point to that buffer, and set the addr.1en field to the length

Mappers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

of the address. The actual address with which the entity is
associated is returned in the addr field of the
TRegisterReply structure.

You can set the addr.1en field to 0, in which case the
underlying protocol, finds an appropriate address to
associate with the newly registered entity name.

The TRegisterReply Structure

You use the TRegister Reply structure to store information returned by the
0TRegisterName function (page 4-22).

The TRegisterReply structure is defined by the TRegisterReply data type.

struct TRegisterReply
{ TNetbuf addr;
0TNamelID nameid;
Vs
typedef struct TRegisterReply TRegisterReply;

Field descriptions

addr A TNetbuf structure that you allocate to hold the location
and size of a buffer containing the actual address of the
entity whose name you have just registered. This
information is passed back to you when the
0TRegisterName function returns. You must allocate a
buffer, set the addr.buf field to point to it, and set the
addr.maxlen field to the maximum size the address could
take up.

nameid A unique identifier passed to you when the 0TRegisterName
function returns. You can use this identifier when you call
the 0TDeleteNameByID function to delete the name.

The TLookupRequest Structure

You use the TLookupRequest structure to specify the registered entity name to be
looked up by the 0TLookupName function (page 4-26) and to set additional values
that the mapper provider uses to circumscribe the search.

The TLookupRequest structure is defined by the TLookupRequest data type.

Mappers Reference 4-13
Draft. O Apple Computer, Inc. 4/30/96

4-14

CHAPTER 4

Mappers

struct TLookupRequest

{ TNetbuf name; /* name to search for */
TNetbuf addr; /* address bound to named endpoint */
UInt32 maxcnt; /* how many matches are expected */
0TTimeouttimeout; /* how long to continue search */

by

typedef struct TLookupRequest TLookupRequest;

Field descriptions

name

addr

maxcnt

Mappers Reference

A TNetbuf structure specifying the location and size of a
buffer that contains the name to be looked up. You must
allocate a buffer that contains the name, set the name.buf
field to point to it, and set the name. 1en field to the length
of the name.

A TNetbuf structure describing the address of the node
where you expect the names are stored. You should
normally supply 0 for addr.1en. This causes a protocol
family like TCP/IP to use the address of the name server
selected in the control panel as the destination of its search.
For a protocol family like AppleTalk, in which every node
has access to name and address information, this
parameter is meaningless.

Specifying an address has meaning for those protocols that
use a dedicated server or other device to store name
information. In such a case, the name specified would
override the protocol’s default address. To specify an
address, you would need to allocate a buffer containing
the address, set the addr.buf field to point to it, and set the
addr.7len field to the length of the address. Consult the
documentation supplied with your protocol to determine
whether you can or should specify an address.

Along specifying the number of names you expect to be
returned. Some protocols allow the use of wildcard
characters in specifying a name. As a result, the
0TLookupName function might find multiple names
matching the specified name pattern. If you expect a
specific number of replies for a particular name, you
should specify this number to obtain faster execution.
There is no default value for this field.

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

timeout A long specifying the amount of time, in milliseconds, that
should elapse before Open Transport gives up searching
for a name. The default value is 0.

The TLookupReply Structure

You use the TLookupReply structure to store information passed back to you by
the 0TLookupName function (page 4-26). The information includes both a pointer
to a buffer that contains registered entity names matching the criterion
specified with the TLookupRequest structure and the number of names found.

The TLookupReply structure is defined by the TLookupReply data type.

struct TLookupReply
{ TNetbuf names;
UInt32 rspcount;
b
typedef struct TLookupReply TLookupReply;

Field descriptions

names A TNetbuf structure that specifies the size and location of a
buffer into which the 0TLookupName function, on return,
places the names it has found. You must allocate a buffer
in which the replies are stored when the function returns;
you must set the names.buf field to point to it; and you

must set the names.max1en field to the maximum size of the
buffer.

rspcount Along specifying the number of names found.

The TLookupBuffer Structure

A mapper provider uses the TLookupBuffer structure to be able to parse
through the buffer passed back in the reply parameter to the 0TLookupName
function (page 4-26). When you allocate a buffer in which the 0TLookupName
function places the names it has found, you must cast it as a TLookupBuffer
structure. You must make sure that the buffer you allocate is large enough to
contain all the names returned by the 0TLookupName function, plus up to 3 bytes
of padding for each name, plus an additional 8 bytes for each name returned.
Figure 4-1 on page 4-8 shows the structure of the reply buffer.

Mappers Reference 4-15
Draft. O Apple Computer, Inc. 4/30/96

Functions

CHAPTER 4

Mappers

The TLookupBuffer structure is defined by the TLookupBuffer data type.

struct TLookupBuffer

{ UIntlé6 fAddresslength;
UIntlée fNamelength;
UInt8 fAddressBuffer[1];

Field descriptions

fAddressLength Specifies the size of the address specified by the
fAddressBuffer field.

fNameLength Specifies the size of the name that is stored in the buffer
following the fAddressBuffer field.
fAddressBuffer Specifies the address to which the entity whose name

follows (in the buffer) is bound.

4-16

This section describes mapper functions, provider functions that you use only
with mappers to manage the mapping of entity names to endpoint addresses
for a network. These functions fall into three categories: functions you use to
create a mapper, functions you use to register a name or delete a registered
name, and functions you use to search for a name or to validate a
name-address pair.

As with other provider functions, you can execute mapper functions
synchronously or asynchronously. Note, however, that Open Transport
provides no function to cancel outstanding asynchronous mapper functions.
The only way to cancel such functions is to close the mapper by calling the
0TCloseProvider function, described in the chapter “Providers” earlier in this
book.

You can also use general provider functions with mappers. You use these
functions to change a function’s mode of operation (for example, to blocking).
General provider functions are described in the reference section of the chapter
“Providers.”

Mappers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

Creating Mappers

Before you can call mapper functions to register a name or search for a name,
you must create a mapper provider by calling the 0TAsyncOpenMapper or
0TOpenMapper functions. When you finish using a mapper, call the
0TCloseProvider function to close and delete the mapper provider.

OTAsyncOpenMapper

Creates a mapper and installs a notifier function for the mapper provider. The
0TAsyncOpenMapper function is asynchronous and creates a mapper that
operates asynchronously by default.

C INTERFACE

0SErr OTAsyncOpenMapper (O0TConfiguration* config, OTOpenFlags oflag,
OTNotifyProcPtr proc, void* contextPtr);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to an endpoint configuration structure that specifies
the mapper’s characteristics. You obtain a value for the config
parameter by calling the OTCr eat eConf i gur at i on function.
The 0TAsyncOpenMapper function deletes the configuration
structure after creating the mapper or attempting to create it.

oflag Reserved; must be set to 0.

proc A pointer to a notifier function for this mapper. If you do not
provide a notifier function, your application cannot receive
Open Transport events, including the event advising you that
the mapper has been created.

Mappers Reference 4-17
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

CHAPTER 4

Mappers

contextPtr A context pointer for your use. The mapper provider passes
this pointer value when calling the notifier function you specify
in the proc parameter. You might use the contextPtr parameter,
for example, to pass to your notifier function information about
your application’s current context.

The 0TAsyncOpenMapper function opens a mapper having the configuration
specified by the config parameter. For additional information see the chapter
“Configuration Management” and the documentation provided for the
name-binding protocol you are using. The 0TAsyncOpenMapper function runs
asynchronously, returning a result code as soon as the function has been
queued for execution.

The 0TAsyncOpenMapper function attempts to create a mapper, and then calls the
notifier function that you specified in the proc parameter, passing
T_OPENCOMPLETE for the code parameter, a result code in the result parameter,
and the mapper reference for the newly created mapper in the cookie
parameter.

A mapper created by the 0TAsyncOpenMapper function operates in asynchronous
mode, unless you change the mapper’s mode of execution by calling the
0TSetSynchronous function. When a mapper is in asynchronous mode, all
provider functions that use the mapper execute asynchronously.

By default, a newly created mapper does not block and does not acknowledge
sends. To change the mapper’s default mode of operation, you can call the
0TSetBlocking function and the 0TIsAckingSends function.

You can open multiple mappers using identical or different configurations,
although if you use identical configurations, you must read the “Special
Considerations” section. The different mappers can be distinguished by the
mapper reference. You can set the contextPtr parameter to point to the mapper
reference or to a structure containing the mapper reference; this allows your
notifier function to determine to which mapper a completion event belongs.

SPECIAL CONSIDERATIONS

4-18

The 0TAsyncOpenMapper function destroys the configuration value returned by
the 0TCreateConfiguration function. You cannot use the same configuration to
open multiple mappers. To obtain a valid copy of the configuration for use

Mappers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

when opening another mapper, you must call the 0TC1oneConfiguration
function.

COMPLETION EVENT CODES

SEE ALSO

T_OPENCOMPLETE 0x20000007 The 0TAsyncOpenMapper function has
completed. The cookie parameter of the
notifier function points to the mapper
reference for the new mapper.

To open a mapper in synchronous mode, use the 0T0penMapper function
(page 4-19).

To close and delete a mapper use the 0TCloseProvider function, described in
the chapter “Providers” in this book.

For more information about a mapper’s mode of operations, see the section
“Setting Modes of Operation for Mappers” on page 4-5.

The 0TCreateConfiguration function used to create the configuration structure
that defines the protocols underlying the mapper is discussed in the chapter
“Configuration Management” in this book.

The 0TSetAsynchronous function, the 0TSetBlocking function, the
0TIsAckingSends function, and the notifier function are described in the chapter
“Providers” in this book.

OTOpenMapper

C INTERFACE

Creates a mapper provider and returns a mapper reference. This function is
synchronous and creates a mapper that operates synchronously.

MapperRef O0TOpenMapper(OTConfiguration* config, 0TOpenFlags oflag,
OSErr* err)

Mappers Reference 4-19
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

C++ INTERFACES

PARAMETERS

DESCRIPTION

4-20

None. C++ applications use the C interface to this function.

config A pointer to a configuration structure that specifies the
mapper’s characteristics. You obtain a value for the config
parameter by calling the OTCr eat eConf i gur at i on function.
The 0TOpenMapper function deletes the configuration structure
when creating the mapper or attempting to create it.

oflag Reserved; must be set to 0.

err A pointer to the result code for this function.

The 0TOpenMapper function opens a mapper having the configuration specified
by the config parameter. For additional information see the chapter
“Configuration Management” and the documentation provided for the
name-binding protocol you are using. The function returns a mapper reference,
by which you refer to the created mapper when calling mapper functions. If the
0TOpenMapper function fails, its return value is NULL.

A mapper created by the 0TOpenMapper function operates in synchronous mode,
unless you change the mapper’s mode of execution by calling the
0TSetAsynchronous function. When a mapper is in synchronous mode, all
mapper provider functions execute synchronously.

By default, a newly created mapper does not block and does not acknowledge
sends. To change the mapper’s default mode of operation, you can call the
0TSetBlocking function and the 0TIsAckingSends function.

You can open multiple mappers using identical or different configurations,
although if you use identical configurations, you must read the “Special
Considerations” section, next. The different mappers can be distinguished by
the mapper reference.

Mappers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

SPECIAL CONSIDERATIONS

Because the 0TOpenMapper function executes synchronously, your application
should not call this function at interrupt time.

The 0TOpenMapper function destroys the configuration structure returned by the
0TCreateConfiguration function. If you want to use the same configuration to
open additional mappers, you must obtain a valid copy of the configuration
structure by calling the 0TCToneConfiguration function.

SEE ALSO

The 0TCreateConfiguration function used to create the configuration structure
that defines the protocols underlying the mapper is discussed in the chapter
“Configuration Management” in this book.

To create a mapper asynchronously, call the 0TAsyncOpenMapper function
(page 4-17).

To close and delete a mapper, call the 0TCToseProvider function, described in
the chapter “Providers” in this book.

For additional information about a mapper’s mode of operations, see “Setting
Modes of Operation for Mappers” on page 4-5.

The 0TSetAsynchronous function, the 0TSetBlocking function, and the
0TIsAckingSends function are described in the chapter “Providers” in this book.

Registering and Deleting Names

You use the mapper functions described in this section to register a name on
the network and to delete a name from the network.

Mappers Reference 4-21
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

OTRegisterName

Registers an entity name on the network.

C INTERFACE

OSErr OTRegisterName (MapperRef ref, TRegisterRequest* request,
TRegisterReply* reply);

C++ INTERFACES
None. C++ applications use the C interface to this function.

PARAMETERS
ref A mapper reference.

request A pointer to a TRegisterRequest structure (page 4-12) that
specifies the entity name you want to register and the endpoint
address.

reply A pointer to a TRegisterReply structure (page 4-13) that
specifies the address and ID of the endpoint whose name is
being registered.

DESCRIPTION
If the name-registration protocol defined using the config parameter to the
0TOpenMapper or 0TAsyncOpenMapper function supports dynamic name and
address registration, you can use the 0TRegisterName function to make a name
visible on the network to other network devices.

Some protocol implementations under Open Transport allow a client to specify
a name rather than an address when binding the endpoint using the 0TBind
function. Binding an endpoint by name causes the protocol to automatically
register the name on the network if the protocol supports dynamic name
registration. This is the simpler technique for registering a name and is
preferred over creating a mapper provider and then using the 0TRegisterName
function to register the name.

4-22 Mappers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

The format for the requested name and address is specific to the protocol used.
Please consult the documentation for the protocol you are using for format
information.

COMPLETION EVENT CODES

T_REGNAMECOMPLETE 0x2000000D The 0TRegisterName function has
completed. The cookie parameter of
the notifier function points to the reply
parameter.

SEE ALSO

You use the 0TLookupName function (page 4-26), to search for a registered name
or to confirm that a name has been registered.

You use the 0TDeleteName function (described next) or the 0TDeleteNameByID
function (page 4-25) to remove a previously registered name.

You use the 0TOpenMapper function (page 4-19) or 0TAsyncOpenMapper function
(page 4-17) to create a mapper.

The 0T81ind function is described in the chapter “Endpoints” in this book.

For information on how to use this function with a TCP /IP protocol, see
page 8-20 in the TCP/IP chapter.

Notifier functions are described in the chapter “Providers” in this book.

OTDeleteName

Removes a previously registered entity name.

C INTERFACE

0SErr 0TDeleteName (MapperRef ref, TNetbuf* name);

C++ INTERFACES

TMapper::DeleteName(TNetbuf* name);

Mappers Reference 4-23
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers
PARAMETERS
ref The mapper reference of the mapper you are using to delete
the name.
name A TNetbuf structure describing the name to be removed. You
must allocate a buffer that contains the name, set the name.buf
field to point to the buffer, and set the name.len field to the
length of the name.
DESCRIPTION

If the name-registration protocol defined using the config parameter to the
0TOpenMapper or 0TAsyncOpenMapper function supports dynamic name and
address registration, you can use the 0TDeleteName function to delete a
registered name.

COMPLETION EVENT CODES

T_DELNAMECOMPLETE 0x2000000E ~ The 0TDeleteName function has
completed. The cookie parameter of
the notifier function points to the name
parameter.

SEE ALSO

The 0TRegisterName function you used to register the name returns an ID value
for the registered name in its reply parameter. You might find it more
convenient to use the 0TDeleteNameByID function (described next) to delete a
name using this ID value than to use the 0TDeleteName function.

For information on how to use this function with a TCP/IP protocol, see
page 8-20 in the TCP/IP chapter.

You use the 0TOpenMapper function (page 4-19) or 0TAsyncOpenMapper function
(page 4-17) to create a mapper.

4-24 Mappers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

OTDeleteNameByID

Removes a previously registered name as specified by its name ID.

C INTERFACE

0SErr 0TDeleteNameByID (MapperRef ref, OTNamelD id);

C++ INTERFACES

TMapper::DeleteName(OTNameID id);

PARAMETERS
ref A mapper reference.

id The name ID, a long specifying a number that identifies the
registered name.

DESCRIPTION

If the name-registration protocol defined using the config parameter to the
0TOpenMapper or 0TAsyncOpenMapper function supports dynamic name and
address registration, you can use the 0TDeleteNameByID function to delete a
registered name.

If the mapper is in asynchronous mode, the 0TDeleteNameBy 1D function returns
immediately. When the function completes execution, the mapper provider
calls the notifier function, passing T_DELNAMECOMPLETE for the code parameter,
and a pointer to the id parameter in the cookie parameter.

SEE ALSO
The name ID that you delete using the 0TDeleteNameBy 1D function is returned in
the reply parameter to the 0TRegisterName function (page 4-22).

You use the 0TOpenMapper function (page 4-19) or 0TAsyncOpenMapper function
(page 4-17) to create a mapper.

Mappers Reference 4-25
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

Looking Up Names

You use the 0T1ookUpName function to look up an entity name, to search for all
names matching a specified pattern, or to confirm that a name is registered.

OTLookupName

Finds and returns all addresses that correspond to a particular name or name
pattern, or confirms that a name is registered.

C INTERFACE
OSErr OTLookupName (MapperRef ref, TLookupRequest* req,
TLookupReply* reply);
C++ INTERFACES
O0SErr TMapper::LookupName(TLookupRequest* req,
TLookupReply* reply);
PARAMETERS
ref A mapper reference.
req A TLookupRequest structure (page 4-13) that specifies the name
to be looked up as well as some additional values that the
mapper provider can use to circumscribe the search.
reply A TLookupReply structure (page 4-15) that specifies the size and
location of a buffer containing the names found, and the
number of names found.
DESCRIPTION
You can use the 0TLookupName function to find out whether a name is registered
and what address is associated with that name. You use the req parameter to
supply the information needed for the search: what name should be looked up
4-26 Mappers Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

and, optionally, what node contains that information, how many matches you
expect to find, and how long the search should continue before the function
returns. On return, the reply parameter contains the names field that points to
the buffer where the matching entries are stored and the rspcount field that
specifies the number of matching entries.

For each registered name found, the 0TLookupName function stores the following
information in the buffer referenced by the names field of the reply parameter:

unsigned short addrlen; /* length of address that follows*/
unsigned short namelen; /* Tength of name that follows */
unsigned char addr[]; /* address */

unsigned char name[]; /* name, padded to quad-word boundary*/

If you are searching for names using a name pattern and you expect that more
than one name will be returned to you, you need to parse the reply buffer to
extract the matching names.

If you call the 0T LookupName function asynchronously, the mapper provider calls
your notifier function passing one of two completion codes for the code
parameter (T_LKUPNAMERESULT or T_LKUPNAMECOMPLETE) and passing the reply
parameter in the cookie parameter. The mapper provider passes the
T_LKUPNAMERESULT code each time it stores a name in the reply buffer, and it
passes the T_LKUPNAMECOMPLETE code when it is done. When you receive this
event, examine the rspcount field to determine whether there is a last name to
retrieve from the reply buffer. The use of both codes is a feature that gives you
a choice about how to process multiple names when searching for names
matching a pattern.

= If you decide to allocate a buffer that is large enough to contain all the names
returned, you can ignore the T_LKUPNAMERESULT code and call a function that
parses the buffer once the 0TLookupName function has completed—that is,
once the provider calls your notifier function using the T_LKUPNAMECOMPLETE
event.

= If you want to save memory or if you don’t know how large a buffer to
allocate, you can use the following method to process the names returned.
Each time that the T_LKUPNAMERESULT event is passed, you must do something
with the reply from the reply buffer. You can copy it somewhere, or you can
delete it if it isn’t a name you’re interested in. Then, from inside your notifier
you must set the reply->names.1en field or the reply->rspcount field back to
0 (thus allowing the mapper provider to overwrite the original name). This
tells the mapper provider that you are ready to receive another name.

Mappers Reference 4-27
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 4

Mappers

Accordingly, when the mapper provider has inserted another name into
your reply buffer, it calls your notifier passing the T_LKUPNAMERESULT code,
and you can process the new entry as you have processed the first entry.
This method also saves you the trouble of having to parse through the buffer
to extract name and address information.

The cookie parameter to the notifier contains the reply parameter.

The format of the names and protocol addresses are specific to the underlying
protocol. Consult the documentation supplied for your protocol for more
information.

COMPLETION EVENT CODES

SEE ALSO

4-28

T_LKUPNAMECOMPLETE 0x2000000F The 0TLookupName function has
completed. The cookie parameter of
the notifier function points to the
reply parameter.

You use the 0TDeleteName function (page 4-23) or the 0TDeleteNameByID
function, (page 4-25) to delete a registered name.

A sample program that parses the reply buffer to extract matching names is
shown in the section “Searching for Names,” beginning on page 4-7.

For information on how to use this function with a TCP/IP protocol, see
page 8-20 in the TCP/IP chapter.

Notifier functions are described in the chapter “Providers” in this book.

Mappers Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

Contents

About Options and Option Negotiation =~ 5-4
Explicit Use of Options and Portability of Code 5-4
Types of Options 5-5
The Format of Option Information 5-8
XTI-Level Options and General Options 5-10
Using Options 5-11
Determining Which Function to Use to Negotiate Options 5-12
Negotiating Options 5-13
Negotiating Multiple Options 5-13
Initiating an Option Negotiation 5-14
Privileged or Read-Only Options 5-15
Error Conditions 5-16
Obtaining the Maximum Size of an Options Buffer ~ 5-18
Setting Option Values 5-18
Specifying Option Values 5-18
Setting Default Values 5-20
Allowing the Endpoint Provider to Select an Option Value 5-21
Retrieving Option Values 5-21
Obtaining Current and Default Values 5-21

Retrieving Values for Connection-Oriented Endpoints 5-22
Retrieving Values for Connectionless Transactionless Endpoints 5-23
Retrieving Values for Connectionless Transaction-Based Endpoints 5-23

Parsing an Options Buffer 5-24
Verifying Option Values 5-25
Option Management Reference 5-25
Constants and Data Types 5-25
XTI-Level Options 5-25

Contents 5-1
Draft. O Apple Computer, Inc. 4/30/96

5-2

CHAPTER 5

Generic Options 5-28

Status Codes 5-29

Action Flags 5-30

The Linger Structure ~ 5-31

The Keepalive Structure 5-32

The TOption Structure ~ 5-33

The Option Management Structure 5-33

Functions 5-34

Determining and Changing Function Values 5-35
0TOptionManagement 5-35

Manipulating the Format of Option Information ~ 5-39
OTCreateOptions 5-39
OTCreateOptionString 5-42

Finding Options 5-43
0TFindOption 5-43
O0TNextOption 5-44

Contents
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

This chapter explains the use of options, values associated with an endpoint
provider, which you can change to fine-tune or customize the data-transfer
service offered by the endpoint. In general, the use of options decreases
portability and makes transport independence much more difficult, if not
impossible, to achieve. Therefore, it is important to note that default option
values are provided for every type of endpoint and that you can write
applications that never need to specify any options. You need to read this
chapter if

= you need to use services that must be specified using options

For example, you are using a transaction-based endpoint and need to be able
to send expedited data in order to forward an attention message.

= itis critical to your application that you fine-tune the data-transfer services
offered by a protocol and you can only do this by using options

For example, you need to manipulate the size of internal send and receive
buffers to eliminate data backlog or buffer overflow problems.

= you need to create a debugging version of the application through the use of
options

This chapter describes general options that can be specified by any protocol
that supports them, explains the rules followed in the negotiation process, and
explains how you construct an options buffer and how you get and set option
values. It also describes functions that you can use

= to construct buffers containing option information
= to locate options in these buffers
= to parse buffers containing option information

To understand this chapter, you should be familiar with endpoint providers
and the endpoint functions used to transfer data. These topics are discussed in
the “Endpoints” chapter in this book. For specific information about the
options that are supported for a protocol implementation, you need to consult
the documentation provided for that protocol.

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

About Options and Option Negotiation

For every endpoint, Open Transport maintains an options buffer. When you
create an endpoint provider, Open Transport fills this buffer with a default
value for each option supported for the endpoint. Option values have meaning
for and are defined by the protocol to which they apply. Typically, Open
Transport uses endpoint options to control aspects of the endpoint’s operation.
For example, if a protocol guarantees reliable delivery of data, the protocol
might define an option that specifies the number of times a send operation is
retried before the send fails and an error message is generated. Protocol
implementations provide default values for options to ensure maximum
portability for your application across protocol families and system platforms.

In writing a networking application, you can use an endpoint provider’s
default option values or you can replace these with other values to control the
behavior of an endpoint. Option negotiation describes the process that results
when you decide to replace default values with option values that you choose.
A successful negotiation results in your obtaining exactly the option values you
requested, a partly successful negotiation results in your getting different
values for the options you requested, and a failed negotiation results in your
not being able to change existing values at all.

Depending on the option you want to modify, a negotiation might involve a
client and its endpoint provider, or it might involve both a local and remote
client and their endpoint providers. In either case, it's important to keep in
mind that the process is a negotiation—that is, before you can change the
characteristics of an endpoint or change the way in which it transfers data or
establishes a connection, an agreement has to be reached. If you cannot reach
this agreement, the operation you are attempting to complete could fail. In this
case, you might have to find a way of implementing the service you need, other
than through the use of options.

Explicit Use of Options and Portability of Code

The goal of the Open Transport architecture is to enable networking
applications to migrate across protocol families and system platforms with
little or no Change to code. However, the price of transport independence or,
ideally, transport transparency is that an application must be ready to forego

About Options and Option Negotiation
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

features that are unique to a specific protocol in order to work equally well
with protocols offering a similar type of service, such as connection-oriented
transactionless service or connectionless transaction-based service. Because
options are often coupled with a particular protocol or protocol family, making
explicit use of options degrades portability across protocol families. Similarly,
different system platforms might offer different option support for the same
protocols due to different implementations. Thus, making use of options can
also endanger portability across different system platforms.

Note, however, that protocols are not necessarily interchangeable and that you
might very reasonably want to take advantage of a protocol feature that is only
available through the use of options. If this is the case, you need to become
familiar with the material presented in the following sections, which describe
the Open Transport rules for option management and negotiation. These rules
have been defined to allow as much flexibility as possible so that even once an
application chooses to make explicit use of options, it is still possible to
negotiate a compromise that is acceptable to all involved parties. In this sense,
the most important thing to understand about most options is that each value
is not fixed but always negotiated relative to the context within which the
endpoint provider operates. For this purpose, context might include the
protocol implementation, the state of the endpoint, and current option values.

Types of Options

Options can be association-related, privileged, read-only, or absolute.

Association-related options are specified in relation to a particular connection,
data transmission, or transaction; such options include information that is
destined for the remote client. The client initiating the connection or
transaction, or sending the datagram, initially defines the value of an
association-related option; but the endpoint providers and the remote client
can also negotiate this value (almost always to a less-desirable value).

Figure 5-1 illustrates the extreme case, in which each agent involved in the
process of establishing a connection renegotiates an association-related option
proposed by the active peer. When the client application calls the 0TConnect
function, it specifies some value x for an option. The endpoint provider,
Endpointl, lowers this value before passing it to the remote endpoint,
Endpoint2. The remote endpoint lowers the value further before notifying its
client of the incoming connection. When the 0TListen function returns, it
specifies the option value X-2. The remote client decides to accept the
connection using the 0TAccept function but also to lower it further to X-3.

About Options and Option Negotiation 5-5
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

When the client that initiated the connection receives the remote client’s
response via the 0TRcvConnect function, it can examine the option values to
determine the final negotiated value for the option it requested. (By way of
example, Figure 5-1 shows that the negotiated value is lowered at each stage of
the negotiation. Depending on the option being negotiated, however, a higher
value could result from the degradation resulting from a negotiation.)

Figure 5-1 Negotiating an association-related option
Endpointl Client Endpoint2 Client
0TConnect OTRcvConnect OTListen =) 0TAccept
H Opt = X H Opt = X3 Hom =X-2 Hom =X-3
Endpointl Endpoint2
U Opt = X-1 ﬁ ﬁom =%-1 Opt = X-3

-

By contrast, options that are non-association-related are negotiated solely
between a client application and an endpoint provider. Such options do not
contain information that involve the remote client. For example, the client
application can specify an option that permits debugging or that increases the
size of an internal receive buffer. Table 5-1 shows which Open Transport
functions can accept association-related options and which can accept both
types of options for input and output parameters that you can use to specify
options.

About Options and Option Negotiation
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

Table 5-1 Open Transport endpoint functions and the types of options they accept
Function Input parameter Output parameter
OTListen Not applicable Association-related
OTRcvUData Not applicable Association-related
OTRcvURequest Not applicable Association-related
OTRcvConnect Not applicable Both

OTRcvUDErr Not applicable Both

0TAccept Both Not applicable
0TSndUData Both Not applicable
0TSndURequest Both Not applicable
0TConnect Both Not applicable
0TOptionManagement Both Not applicable

Privileged options are options or option values that you can only set or change
if you are a privileged client. The fact that an option is privileged affects the
outcome of option negotiation if a nonprivileged client attempts to set such an
option. In some cases, nonprivileged clients can read the value of a privileged
option.

Read-only options, as the name implies, are options whose values you can
read but not change. For example, a protocol implementation might determine
that a client cannot change the maximum length of a transport data unit;
nevertheless, it would be important that the client be able to find out what

the maximum length is in order to set up sufficiently large buffers for
incoming data.

Whether an option is read-only depends on the status of the client and on the
state of the endpoint. Depending on the implementation, an option might be

= read-only for all clients or just for nonprivileged clients
= negotiable in some endpoint states and read-only in other states

For example, for TCP/IP endpoints, the ISO quality-of-service options are
negotiable when the endpoint is in the T_IDLE and T_INCON states, and
read-only in all other states except T_UNINIT.

About Options and Option Negotiation 5-7
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

Options that are absolute requirements are options that a protocol must
implement. This means that a protocol can neither ignore such an option nor
negotiate it to a lower value. (Options that are not absolute requirements can be
negotiated to a lower value, in which case the negotiation is deemed to be
partly successful.) If the proposed option is an absolute requirement and the
negotiated value is not the same as the proposed value, the negotiation fails,
and any attempt to establish a connection or to send data also fails.

The Format of Option Information

An option has a name and a value, it is defined for a specific protocol, and it
takes up a certain amount of room in memory. The TOption structure used to
define an option contains fields for each of these characteristics. As Figure 5-2
shows, an option is described by an option header and a value.

Figure 5-2 The format of option information
TOption structure Bytes
—
Length 4
Level 4
Option |
header
Name 4
Status 4
—
Value Variable
length

5-8 About Options and Option Negotiation
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

The option header is the same for all options. It contains four fields that specify:

The length of the entire structure. The length includes the length of
the option header and the length of the value field; it does not include
added padding.

The protocol (level) for which the option applies. It is possible to set an
option for any protocol that is part of an endpoint provider’s configuration.
For example, if you open an AppleTalk Transaction Protocol (ATP) endpoint,
it is possible to set an option at the Datagram Delivery Protocol (DDP) level
by specifying DDP for the Tevel field.

The name of the option. Each protocol implementation defines the names of
options it supports.

The status of the option. The endpoint provider fills in this field to indicate
the outcome of the option negotiation.

The length and format of data in the value field depend on the option
being defined.

You store option information for an endpoint in a buffer containing one or
more TOption structures. A TNetbuf structure describes the buffer. Figure 5-3
shows a TNetbuf structure, MyOptBuf, that describes an options buffer containing
three options. The field MyOptBuf.buf points to the buffer; the field MyOptBuf.1len
specifies the actual length of the buffer.

Figure 5-3 An options buffer

0 32 64 96 128
— | é
N | | A A |
First option Second option Third option
Alignment bytes Alignment bytes
MyOptBuf

MyOptBuf.buf

MyOptBuf.len

MyOptBuf.maxTen

About Options and Option Negotiation 5-9

Draft. O Apple Computer, Inc. 4/30/96

5-10

CHAPTER 5

Option Management

You can concatenate several TOption structures in a buffer, as shown in
Figure 5-3, provided you observe the following rules:

= TOption structures must be quad-word aligned within the buffer.

= If you are using the 0TOptionManagement function to set or verify option
values, all options in the buffer must be for the same protocol. That is, the
value of the Tevel field must be the same. When used with any other
function, the options buffer can contain options set for different protocols.

XTIl-Level Options and General Options

In addition to options defined for specific protocols, Open Transport defines
options called XTI-level options that are not specific to a particular endpoint.
Some of these options are absolute requirements, which means that whatever
protocol you are using must support these options. You need to consult the
documentation for your protocol to determine the meaning of the option for
your endpoint and for additional information about default values and ranges
or valid values supported for the option. Table 5-2 provides a brief summary of
XTI-level options. For more detailed information about these options, see
“XTI-Level Options” on page 5-25.

Table 5-2 XTI-level options

Option name Description

XTI_DEBUG Enables debugging

XTI_LINGER Specifies a linger period which delays the execution of the
0TCloseProvider function

XTI_RCVBUF Specifies the size of your endpoint’s internal receive buffer

XTI_RCVLOWAT Specifies the minimum number of bytes that can accumulate

in the endpoint’s internal receive buffer before your
application receives a T_DATA event signalling the arrival

of data
XTI_SNDBUF Specifies the size of your endpoint’s internal send buffer
XTI_SNDLOWAT Specifies the minimum number of bytes that can accumulate

in the endpoint’s internal send buffer before the provider
actually sends the data

About Options and Option Negotiation
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

In addition to the XTI-level options, Open Transport defines the set of generic
options listed in Table 5-3. None of these options are absolute requirements.
This means that if an Open Transport protocol supports the functionality of one
of these options, it should use this option to do it. For additional information
about generic options, see “Generic Options” on page 5-28.

Table 5-3 Open Transport generic options

Option name Description

OPT_CHECKSUM Specifies whether packets have checksums calculated
on receipt

OPT_RETRYCNT Specifies the number of times a function can attempt
packet delivery

OPT_INTERVAL Specifies the amount of time to wait between attempts
to deliver a packet or request

OPT_ENABLEEOM Specifies whether the T_MORE flag for the 0TSnd function
can be used to signal the end of a logical unit

OPT_SELFSEND Specifies whether self-sending is enabled for broadcast
messages.

OPT_SERVERSTATUS Specifies the status string that is used to answer a

SendStatus request from a client.

OPT_KEEPALIVE Specifies the amount of time a connection should be
maintained in the absence of data transfer

Using Options

This section describes the rules for option negotiation and how negotiation is
affected by the function you use to set options. It also explains how you use
endpoint functions to set and retrieve option values and how you use Open
Transport utility functions to construct an options buffer and parse through an
options buffer.

Using Options 5-11
Draft. O Apple Computer, Inc. 4/30/96

5-12

CHAPTER 5

Option Management

If your application needs to negotiate option values, you must read the sections
“Determining Which Function to Use to Negotiate Options,” “Negotiating
Options,” and “Obtaining the Maximum Size of an Options Buffer.” After
reading these sections, you can read whichever of the remaining sections
describes the task you need to accomplish.

Determining Which Function to Use to Negotiate Options

You can negotiate options using the 0T0ptionManagement function or using any
one of the endpoint functions used to transfer data or establish a connection.
The following bulleted list summarizes the major differences between using
the 0TOptionManagement function or using other endpoint functions to set an
option value.

= Options specified using the 0T0OptionManagement function affect all functions
called by an endpoint. Options specified using individual endpoint
functions affect only the connection, transaction, or datagram for which they
are set. For example, you can call the 0TOptionManagement function to turn
the checksum option on; you could override that value by calling the
0TSndUData function and turning the checksum option off for the duration of
that function call. The next time you call the 0TSndUData function, the default
value, set with the 0TOptionManagement function would apply, so the
checksum option would be off.

s The 0TOptionManagement function is the only way that you can obtain default
option values or check for current values of all options supported by an
endpoint.

» When attempting to set multiple options, if an option is illegal or rejected,
the 0TOptionManagement function still returns successfully, indicating for each
option in the buffer whether it has been successfully negotiated. In the same
circumstances, any other function returns an error, and even though some of
the options might have been successfully negotiated, you have no way of
knowing which were and which were not.

» If you are using the 0TOptionManagement function to set or verify option
values, all options in the buffer must be for the same protocol. If you use any
other function to negotiate options or to check their value, the buffer can
contain options set for different protocols.

» If association-related options contain information that is transmitted across
the network or if they affect the transmission itself, they take effect when
Open Transport establishes the connection, sends the transaction, or

Using Options
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

transmits the datagram. If you use the 0TOptionManagement function to
change such an option, the endpoint provider checks whether the option is
supported and negotiates a value according to its current knowledge. Then
it writes the negotiated value to the endpoint’s internal options buffer.
However, more negotiations might take place when the connection is
established or the transaction or datagram is sent. This can result in a
degradation of the option value or even in a negotiation failure. If the
negotiation succeeds, the newly negotiated values are written to the internal
options buffer.

Negotiating Options

This section describes the rules governing option negotiation and the error
conditions that might occur during this process. Unless stated otherwise, these
rules apply to all functions that allow you to specify option values.

A basic rule to keep in mind is that options change only as the result of
successful negotiations or partly successful negotiations. If you use any
function except the 0T0ptionManagement function, the changes last for the
duration of that function invocation. Option values are not changed by a
change in the state of an endpoint. Once you change an option value
permanently, there is no function that you can call to restore an option to its
previous value, unless that previous value is the default value.

Negotiating Multiple Options

You can use one function to negotiate several options by placing the options
in the options buffer passed to the function. If one of the options is ignored
or rejected for any reason, the outcome depends on the function you use to
set options.

s If you use the 0TOptionManagement function, the function returns the result of
negotiating each option in the status field of each option. The failure of one
or more options does not cause the function to fail.

s The 0TConnect, 0TAccept, 0TSndUdata, or 0TSndURequest functions might
succeed or fail, depending on the implementation and on the error
condition. Options that are not supported are generally ignored; they do not
cause a function to fail or a connection to abort. However, if the endpoint
provider is unable to negotiate options that are absolute requirements or
options that are read-only, these functions will fail.

Using Options 5-13
Draft. O Apple Computer, Inc. 4/30/96

5-14

CHAPTER 5

Option Management

If option negotiation causes one of these functions to fail, it is possible that
some options were successfully negotiated before the failure. However, it is
not possible to determine which of the options caused the failure.

If you specify the same option more than once, the endpoint provider does not
check for duplicate occurrences of the same option. It simply processes the
options one after another. However, the endpoint provider might negotiate
options in any order; therefore, it is not safe to make any assumptions that a
later occurrence of an option will override an earlier occurrence.

Initiating an Option Negotiation

You initiate an option negotiation by calling the 0T0ptionManagement function
with the flag T_NEGOTIATE set or by calling the 0TConnect, 0TSndUData, or
0TSndURequest function and specifying an options buffer length that is greater
than 0. You can specify values for some or all of the options supported by an
endpoint. The endpoint provider takes values for options that you do not
specify explicitly in the options buffer, from the endpoint’s internal options
buffer. This buffer contains the endpoint’s current option values; these could be
default values, values that you specified when you configured the provider, or
values resulting from a previous negotiation.

If the endpoint supports an option, the possible outcome of option negotiation
depends on whether the option is an absolute requirement, as described in the
next two sections. If the endpoint does not support the option, the
0TOptionManagement function reports T_NOTSUPPORT in the status field. The
0TConnect, 0TSndUData, or 0TSndURequest functions ignore the option.

Options That Are Absolute Requirements

If the option is an absolute requirement, the result of the negotiation depends
on whether the negotiated value is the same as the requested value. If it is, the
status field in the TOption structure describing the option is set to T_SUCCESS
when the function returns. If the negotiated value is not the same as the
requested value, the result depends on the function used to negotiate

the option:

s The 0T0ptionManagement function returns successfully, but the returned
option has its status field set to T_FAILURE.

= Acall to the 0TConnect function fails. If the call is synchronous, the function
returns with the k0TLookErr result. If the call is asynchronous, the endpoint

Using Options
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

provider issues a T_DISCONNECT event to let you know that the connection has
been rejected.

s The 0TSndUData function fails with the k0TLookErr result; or if it returns
successfully, the endpoint provider issues a T_UDERR event to indicate that the
datagram was not sent.

Options That Are not Absolute Requirements

If the requested option is not an absolute requirement, the result of the
negotiation depends on whether the negotiated value is the same as the
requested value. If it is, the endpoint provider sets the status field of the
TOption structure describing the option to T_SUCCESS. If the negotiated value is
different than the proposed value, the endpoint provider sets the status field of
the Toption structure describing the options to T_PARTSUCCESS.

Conflicting Option Values

It is possible that a requested option value conflicts with the value of another
option that is proposed with the same call to the function or that is currently
effective. The endpoint provider might not detect these conflicts immediately,
and later they might lead to unpredictable results. If the endpoint provider
detects conflicts at negotiation time, the conflicts are resolved according to the
rules stated above.

An endpoint provider usually detects conflicts at the time it establishes a
connection or sends a datagram. Consequently, if you use the
0TOptionManagement function to set options, you might not become aware
that there is a problem due to conflicting options until the options are
actually exercised during connection establishment or data transmission.

Privileged or Read-Only Options

A protocol implementation can define options to be privileged or read only.
These two categories are not necessarily separate. A privileged option might be
inaccessible or read-only for nonprivileged clients. An option might be
read-only for all clients or solely for nonprivileged clients. Here are two general
guidelines to keep in mind:

= A client must be privileged to be able to change a privileged option.

In the Macintosh implementation of Open Transport, there are no
privileged options.

Using Options 5-15
Draft. O Apple Computer, Inc. 4/30/96

5-16

CHAPTER 5

Option Management

= A client cannot usually change the value of a read-only option.

An option might be read-only in some endpoint states but not in others. For
example, the ISO quality-of-service options are negotiable in the T_IDLE and
T_INCON states, and read-only in all other states except T_UNINIT. Consult the
documentation provided for the protocol you are using to determine
whether an endpoint’s state affects the status of read-only options.

If you request negotiation of a privileged option using the 0TOptionManagement
function, the function returns successfully with the status field of the
privileged option set to T_NOTSUPPORT. If you use the 0TConnect, 0TAccept,
0TSndUData, or 0TSndURequest functions, the option is ignored—that is, the
function result is not affected by the fact that the options are not supported.

If you request negotiation of a read-only option using the 0TOptionManagement
function, the function returns with the status field of the read-only option set
to T_READONLY. If you use any other function to change a read-only option, the
results vary with the function used:

m The 0TAccept or 0TConnect functions fail with the k0TAccessErr result, or the
connection establishment aborts and the endpoint provider issues a
T_DISCONNECT event. If the connection aborts, a synchronous call to 0TConnect
fails with the K0TLookErr result. Timing and the protocol implementation
determine whether the 0TAccept function succeeds or fails with the
kOTLookErr result.

s The 0TSndUData function might return the k0TLookErr result or return
successfully, but the endpoint provider issues a T_UDERR event to indicate
that it did not send the datagram.

Error Conditions

Option negotiation might be affected if you try to negotiate an illegal option, a
privileged or read-only option, an unsupported option, or an option for an
unsupported protocol (level). The results of attempting to negotiate privileged
or read-only options are described in “Privileged or Read-Only Options” on
page 5-15. This section explains the outcome of negotiating illegal options and
describes other problems that might arise during option negotiation.

An option is illegal in these cases:

» [tis the last option in an options buffer, and the length specified in the
TOption.len field exceeds the remaining size of the options buffer. (The
length of the option includes the option header as well as the option value.

Using Options
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

See Figure 5-2 on page 5-8 for information about the format of option
information in an options buffer.)

= The option value does not fall within the range of legal values for the option.
The range of option values that are valid for a protocol implementation are
given in the documentation provided for the protocol.

If you specify an illegal option, the following error conditions result depending
on the function you used:

» The 0TOptionManagement function returns with the k0TBadOptionErr result.

» FEither the 0TAccept or 0TConnect function fails with a kOTBadOptionErr result,
or the connection establishment aborts, depending upon the implementation
and the time the illegal option is detected. If the connection aborts, the
endpoint provider issues a T_DISCONNECT event. If 0TConnect is executing
synchronously, it fails with the k0TLookErr result. The 0TAccept function
either succeeds, or fails with the k0TLookErr result, depending on the
implementation.

s The 0TSndUData function fails with the k0TBadOptionErr result, or it returns
successfully, but the endpoint provider issues a T_UDERR event to indicate
that it did not sent the datagram.

If the options buffer you pass to a function contains multiple options and one
of them is illegal, the function fails as described. However, if you used the
0TOptionManagement function to set options, it is possible that some or all of the
legal options in the buffer were successfully negotiated. You can check the
current status for the endpoint by calling the 0T0ptionManagement function with
the T_CURRENT flag set.

The 0T0ptionManagement function fails with the k0TBadOptionErr result if you
specify an unknown value for the option protocol level. Using any other
function to specify an unknown option level does not cause the function to fail,
but results in the option being ignored.

Specifying an option name that is unknown or unsupported by the endpoint
does not cause a function to fail. The 0TOptionManagement function returns
T_NOTSUPPORT in the status field for the option; the other endpoint functions
ignore the unknown options.

Using Options 5-17
Draft. O Apple Computer, Inc. 4/30/96

5-18

CHAPTER 5

Option Management

Obtaining the Maximum Size of an Options Buffer

Different types of endpoints support different numbers of options. For
example, an ATP endpoint might support more options than a DDP endpoint
and might need a larger buffer to hold the options. When you call the
0TOptionManagement function to change option values, the function returns in
the ret parameter a pointer to the buffer containing the negotiated option
values. You must have allocated the buffer used to store these options before
calling the function. Likewise, when you call the 0TListen, 0TRcvUData,
0TRcvURequest or 0TRcvConnect functions, you can allocate a buffer in which
current option values are to be placed when these functions return. In either
case, you must specify the size of the buffer, and the buffer must be large
enough to hold all of the endpoint’s options. Otherwise, the function fails with
a kOTBufferOverflow result. You can obtain the maximum size of a buffer used
to store options for your endpoint by examining the options field of the
TEndpointInfo structure for the endpoint. You can get a pointer to this structure
when you open the endpoint, when you bind the endpoint, or when you call
the 0TGetEndpointInfo function.

Setting Option Values

You can use the 0TOptionManagement, 0TAccept, 0TSndUData, 0TSndURequest, and
0TConnect functions to set option values. Setting option values results in a
negotiation process between you (the client application) and the endpoint
provider or, in the case of association-related options, between local and remote
clients and their endpoint providers. The section “Initiating an Option
Negotiation” on page 5-14 describes the rules that govern an option negotiation
that you have initiated using the 0TOptionManagement, 0TConnect, 0TSndUData, or
0TSndURequest functions. The section “Retrieving Values for
Connection-Oriented Endpoints,” beginning on page 5-22 describes the
negotiation rules that hold when you use the 0TOptionManagement or 0TAccept
functions to respond to a negotiation. This section describes ways in which you
can build the options buffer used to specify the options you want to change.

Specifying Option Values

No matter which function you use to set option values, you must allocate a
buffer that contains the option value or values you want to change. The options
in this buffer are described by T0ption structures; the format of this structure is
illustrated in Figure 5-2 on page 5-8. You can concatenate several structures in
the buffer, as shown by Figure 5-3 on page 5-9, so long as each structure begins

Using Options
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

on a long-word boundary. The buffer itself is described by a TNetbuf structure
that specifies the location of the buffer and its size.

You can create a buffer that contains the option values you want to set in one of
two ways: manually or by using the 0TCreateOptions function. If you construct
the buffer manually, you must do the following;:

1. Allocate the buffer.

2. Create a TOption structure for each option you want to change.

3. Initialize each field of the TOption structure except for the status field.
4

. Place the Toption structures in the buffer, making sure that each begins on a
long-word boundary. This enables Open Transport to parse the buffer.

5. Append a null character to the end of the buffer. This enables Open
Transport to tell that it has reached the end of the buffer.

To have Open Transport create a buffer for you, you must call the
0TCreateOptions function and pass it a string containing one or more option
values. This method saves time and trouble, but you can only use it if all the
options in the buffer are for the same level and that level is the same as the
top-level protocol for the endpoint provider. That is to say, you could not use
this method to construct a buffer that contains DDP-level options for an ATP
endpoint. In addition, this method is only guaranteed to work if you are
building an options buffer for the 0T0OptionManagement function.

Listing 5-1 shows how you construct an options buffer manually. The listing
creates and initializes two TOption structures, ddpOpt and atpOpt. It allocates a
buffer large enough to contain the TOption structures and then places those
structures in the buffer. Note that the structures are quad-word aligned and
that a null character is appended to the end of the buffer.

Listing 5-1 Constructing an options buffer manually

TOption *ddpOpt, *atpOpt;
unsigned char optionBuffer[41];

ddpOpt = (TOption*)&optionBuffer[07;
ddpOpt->Ten = 20;

ddpOpt->Tevel = ATK_DDP;
ddpOpt->name = OPT_CHECKSUM;
ddpOpt->status = 0;

Using Options 5-19
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

ddpOpt->valuel[0] = 1; /* turn checksumming on */

atpOpt = (TOption*)&optionBuffer[20]
atpOpt->len = 20;

atpOpt->level = ATK_ATP;
atpOpt->name = OPT_RELTIMER;
atpOpt->status = 0;

atpOpt->valuel[0]

Il
no

/* purge transaction 1ist every 2 minutes */

optionBuffer[40] 0;/* add null character to end of buffer */

Listing 5-2 shows how you construct an options buffer by using the
0TCreateOptions function. The code initializes a string array, myStr, to hold
option values. It then creates a TOptMgmt structure, which would later be passed
to the 0TOptionManagement function to request the option values specified in the
string. Finally, it calls the 0TCreateOptions function to create the options buffer.
The 0TCreateOptions function creates the TOption structures and places them in
the buffer, making sure that the structures are properly aligned.

Listing 5-2 Constructing an options buffer using the 0TCreateOptions function

char* myStr = "BaudRate = 9650 DataBits = 8 Parity =0
StopBits = 10";

UInt8 buffer[512];

TOptMgmt cmd;

cmd.opt.len = 0;

cmd.opt.maxlen = sizeof(buffer);

cmd.opt.buf = buffer;

cmd.flags = T_NEGOTIATE

err = O0TCreateOptions("SerialA", &myStr, &cmd.opt)

In this case, the initial value of cmd.opt.1en, which is 0, tells the
0TCreateOptions function at what offset it should begin to append option
information in the buffer. When the function returns, this field specifies the
actual length of the buffer.

Setting Default Values

To set all of an endpoint’s options to their default values, call the
0TOptionManagement function, specifying T_NEGOTIATE for the flags field and

5-20 Using Options
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

allocating a buffer containing only one option named T_ALLOPT. Doing this
saves you the trouble of constructing a TOption structure for every option the
endpoint supports. However, there is no guarantee that the provider can honor
your request simply because you request default values. Therefore, you must
allocate a buffer that is large enough to hold the option values returned in the
ret parameter.

Allowing the Endpoint Provider to Select an Option Value

You can specify that an endpoint provider selects an appropriate option value

by setting the endpoint’s value field to the constant T_UNSPEC. This is especially
useful in complex options such as ISO throughput where the option value has

an internal structure.

Retrieving Option Values

This section describes how you can retrieve information about options,
including obtaining current and default option values for an endpoint and
obtaining current option values related to a connection, transaction, or
datagram.

When retrieving option values, you must allocate a buffer that is large enough
to contain the options when the function returns. The section “Obtaining the
Maximum Size of an Options Buffer” on page 5-18 explains how you do this.

Obtaining Current and Default Values

To obtain some of an endpoint’s default or current option values, you call the
0TOptionManagement function. You specify T_DEFAULT or T_CURRENT for the flags
field of the req parameter, and you use the option.buf field to specify the
option names in which you are interested. When the function returns, it places
TOption structures, describing the default or current option values, in the buffer
referenced by the opt.buf field of the ret parameter.

If you are interested in obtaining all of an endpoint’s default or current values,
you can use the following methods:

= To obtain an endpoint’s default values, call the 0T0OptionManagement function,
specifying T_DEFAULT for the flags field and T_ALLOPT for the
option name.

Using Options 5-21
Draft. O Apple Computer, Inc. 4/30/96

5-22

CHAPTER 5

Option Management

= To obtain an endpoint’s current option values, call the 0TOptionManagement
function, specifying T_CURRENT for the flags field and T_ALLOPT for the option
name.

Using T_ALLOPT for the option name allows you to construct an input buffer that
contains only one option. Remember, however, that you must allocate an
output buffer that is large enough to hold all of an endpoint’s option values
when the function returns.

Retrieving Values for Connection-Oriented Endpoints

When you are establishing a connection, it is possible to negotiate association-
related option values at every point in the connection process, as illustrated in
Figure 5-1 on page 5-6. Both the active and passive peers might want to retrieve
option values during this process.

The passive peer might want to know the proposed option values under
negotiation. It can retrieve these by calling the 0TListen function. After
examining the option values returned by the 0TListen function, the passive
peer can negotiate option values by specifying the desired option values
with the 0TAccept call used to accept the connection. Using this method,
the passive peer can examine the requested option values before proposing
alternate values.

The passive peer can also negotiate alternate values by using the
0TOptionManagement function to preset option values for the endpoint accepting
the connection. This sets the current option values for the endpoint so that
when the passive peer calls the 0TAccept function, these are the option values
that are negotiated with the requested values.

The passive peer can try to negotiate option values that are higher than the
proposed values. The outcome depends on the protocol. If the protocol rejects
the new option values, the connection fails, and the endpoint provider issues a
T_DISCONNECT event. Depending on timing and the implementation, the
0TAccept function either succeeds or fails with the k0TLookErr result.

The association-related options retrieved by the passive peer are related to the
incoming connection, identified by a sequence number, and are not related to
the listening endpoint. Option values currently effective for the listening
endpoint might affect the values retrieved by the 0TListen function because the
endpoint is involved in the negotiation process, but these values are not the
same as the option values related to the connection request. That is to say,
calling the 0TOptionManagement function to retrieve the option values that were

Using Options
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

currently effective for the listening endpoint is likely to yield a different set of
values than you would find by examining the values of options passed in the
call parameter to the 0TListen function.

When you establish the connection—that is, when a synchronous call to the
0TConnect function returns or when the active peer calls the 0TRcvConnect
function— all final negotiated values effective for the connection are returned
in the buffer passed in the rcvCall or call parameter, respectively. These option
values include all association-related options that were received with the
connection response and the negotiated values of those non-association-
related options that had been specified on input. Options specified on input to
the 0TConnect call that are not supported or that refer to an unknown protocol
are ignored and not returned by the 0TConnect or 0TRcvConnect function when it
returns.

Retrieving Values for Connectionless Transactionless Endpoints

You can retrieve association-related options set for connectionless
transactionless endpoints by examining the buffer passed in the udata
parameter to the 0TRcvUData function. These options relate to the incoming
datagram, not to the endpoint receiving it. For example, the IEEE 802.2
protocol uses option values to specify whether a datagram is a multicast or
broadcast packet.

Because the options you retrieve are related to the datagram and not to the
listening endpoint, their number and values can change with every
transmission.

Because you are receiving information—that is, you are simply reading the
contents of the options buffer—you can ignore the status field for these
options.

Retrieving Values for Connectionless Transaction-Based Endpoints

You can retrieve association-related options set for connectionless transaction-
based endpoints by examining the buffer passed in the req parameter to the
0TRcvURequest function. These options relate to the current transaction, not to
the endpoint receiving the request. Consequently, options and their values can
change with each transaction.

Because you are receiving information—that is, you are simply reading
the contents of the options buffer—you can ignore the status field for
these options.

Using Options 5-23
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

Parsing an Options Buffer

If you use the 0TOptionManagement function to set, verify, or retrieve values, the
function returns in the ret parameter a pointer to a buffer containing option
information. You can use the 0TCreateOptionString function to parse this buffer
and create a string that lists all options and their current values.

The code fragment shown in Listing 5-3 calls the 0TOptionManagement function
to retrieve the option values currently effective for an endpoint. On return, the
0TOptionManagement function stores these in the cmd structure. Next, the code
calls the 0TCreateOptionString function. The first input parameter, "SerialA®,
specifies the name of the protocol. The next input parameter, opts, is a pointer
to the buffer containing the option values returned by the 0T0OptionManagement
function. The expression cmd.opt.buf + cmd.opt.len, which provides the next
input parameter, specifies the length of the buffer. Using this information, the
0TCreateOptionString function returns a string containing each option name
and its respective value. The final parameter to the 0TCreateOptionString
function specifies the length of the string.

Listing 5-3 Using the 0TCreateOptionString function to parse through a buffer

5-24

TOptMgmt cmd;
UINt8 myBuffer[512];
char myString[256]

cmd.opt.len = sizeof(TOption);
cmd.opt.maxlen = sizeof(myBuffer);
cmd.opt.buf = myBuffer;

((TOption*) buffer)->len = sizeof(TOption);
((TOption*) buffer)->level = COM_SERTAL;
((TOption*) buffer)->name = T_ALLOPT;
((TOption*) buffer)->status = 0;

cmd.flags = T_CURRENT;

OTOptionManagement(thekEndpt, &cmd, &cmd);

TOption* opts = (TOption*)cmd.opt.buf;
err = 0TCreateOptionString("SerialA", &opts,

cmd.opt.buf + cmd.opt.len, string, sizeof(string));
printf("Options = \"%s\"", string);

Using Options
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

Note

The 0TCreateOptionString function is supplied solely as a
debugging aid. You should not include the function in a
production version of your application because there is no
provision made for localizing string information. O

Verifying Option Values

In addition to obtaining default or current values and negotiating new values,
you can use the 0TOptionManagement function to verify whether an endpoint
supports one or more options. To do this, you construct a buffer containing
TOption structures describing the options you are interested in and pass this
buffer in the req parameter to the 0T0OptionManagement function, specifying
T_CHECK for the action flag. When the function returns, you can examine the
status field of the Toption structures for the options passed back to you in the
ret parameter to determine whether the specified options are supported.

Option Management Reference

This section describes the data types and functions that you use to manage
options for endpoint providers and to manipulate option information.

Constants and Data Types

This section describes constants and data types that you use to set and
verify options.

XTI-Level Options

Open Transport defines XTI-level options. These options are not association-
related; they are negotiated between the client and its endpoint provider. If the
protocol you are using supports these options, you can negotiate them while
the endpoint is in any state. The protocol level for all of these options is
XTI_GENERIC. The constant names used to specify XTI-level options are given by
the following enumeration:

Option Management Reference 5-25
Draft. O Apple Computer, Inc. 4/30/96

5-26

CHAPTER 5

Option Management

enum

{
XTI_DEBUG = (OTXTIName)0x0001,
XTI_LINGER = (OTXTIName)0x0080,
XTI_RCVBUF = (0TXTIName)0x1002,
XTI_RCVLOWAT = (OTXTIName)0x1004,
XTI_SNDBUF = (OTXTIName)0x1001,
XTI_SNDLOWAT = (OTXTIName)0x1003,
XTI_PROTOTYPE = (OTXTIName)0x1005

Constant Descriptions

XTI_DEBUG

XTI_LINGER

XTI_RCVBUF

A constant specifying whether debugging is enabled.
Debugging is disabled if the option is specified with no
value. This option is an absolute requirement.

A value defined by a linger structure (page 5-31) that
specifies whether the option is turned on (T_YES) or off
(T_N0) and specifies a linger period in seconds. This option
is an absolute requirement.

You use this option to extend the execution of the
0TCloseProvider function for some specified amount of
time. The delay allows data still queued in the endpoint’s
internal send buffer to be sent before the endpoint
provider is closed. If you call the 0TCloseProvider function
and the send buffer is not empty, the endpoint provider
attempts to send the remaining data during the linger
period, before closing. Open Transport discards any data
remaining in the send bulffer after the linger period has
elapsed.

Consult the documentation for your protocol to determine
the valid range of values for the linger period.

A positive number specifying the size of the endpoint’s
internal buffer allocated for receiving data. You can
increase the size of this buffer for high-volume connections
or decrease the buffer to limit the possible backlog of
incoming data.

This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the buffer size.

Option Management Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

XTI_RCVLOWAT

XTI_SNDBUF

XTI_SNDLOWAT

XTI_PROTOTYPE

A positive number specifying the low-water mark for the
receive buffer— that is, the minimum number of bytes that
must accumulate in the endpoint’s internal receive buffer
before you are advised that data has arrived via a T_DATA
event. Choosing a value that is too low might result in
your application’s getting an excessive number of T_DATA
events and doing unnecessary reads. Choosing a value that
is too high might result in buffer overflow and loss of data.

This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the low-water mark.

A positive number specifying the size of the endpoint’s
internal buffer allocated for sending data. Specifying a
value that is too low might result in Open Transport doing
more sends than necessary and wasting processor time;
specifying a value that is too high might cause flow control
problems.

This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the buffer size.

A positive number specifying the low-water mark for the
send buffer— that is, the minimum number of bytes that
must accumulate in the endpoint’s internal send buffer
before Open Transport actually sends the data. Choosing a
value that is too low might result in Open Transport’s
doing too many sends and wasting processor time.
Choosing a value that is too high might result in flow
control problems. A value that is slightly lower than

the largest packet size defined for the endpoint is a

good choice.

This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the low-water mark.

The number of the protocol to be used by a RawIP
endpoint. For additional information, see the chapter
“TCP/IP Services” in this book.

Option Management Reference 5-27

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

Generic Options

5-28

Open Transport defines generic options, and you can use them with any
protocol that understands them. The protocol level for each of these options is
the same as the name of the protocol that supports them. The constant names
used to specify generic options are given by the following enumeration:

enum

{
OPT_CHECKSUM = (OTXTIName)0x0600,
OPT_RETRYCNT = (OTXTIName)0x0601,
OPT_INTERVAL = (OTXTIName)0x0602,
OPT_ENABLEEOM = (OTXTIName)0x0603,
OPT_SELFSEND = (OTXTIName)0x0604,
OPT_SERVERSTATUS = (OTXTIName)0x0605,
OPT_KEEPALIVE = (OTXTIName)0x0008

Constant descriptions

OPT_CHECKSUM

OPT_RETRYCNT

A constant specifying whether checksums are performed.
Specify 1 to turn the option on and 0 to turn it off. If you
turn it on, a checksum is calculated when a packet is sent
and recalculated when the packet is received. If the
checksum values match, the client receiving the packet can
be fairly certain that data has not been corrupted or lost
during transmission. If the checksum values don’t match,
the function used to receive the packet returns an error.

This option is usually implemented by the lowest-level
protocol, although you might be allowed to set it at a
higher level. For example, if you use an ATP endpoint, you
can set checksumming at the ATP level, even though it is
implemented by the underlying DDP protocol.

This option is both association-related and not association-
related.

A positive integer specifying the number of times a
function can attempt packet delivery before returning with
an error. This option is usually implemented by connection-
oriented endpoints or connectionless transaction-based
endpoints to enable reliable delivery of data. Such
protocols normally set a default value for this option.

Option Management Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

This option is both association-related and not association-
related.

OPT_INTERVAL A positive integer specifying the interval of time that
should elapse between attempts to deliver a packet. The
number of attempts is defined by the OPT_RETRYCNT option.

This option is both association-related and not association-
related.

OPT_ENABLEEQM A constant specifying end-of-message capability. If you set
this option, you enable the use of the T_MORE flag with the
0TSnd function to mark the end of a logical unit. This
option has meaning only for connection-oriented protocols.

This option is not association-related.

OPT_SELFSEND A constant allowing you to send broadcast packets to
yourself.

OPT_SERVERSTATUS A string that sets the server’s status. The string’s length
must be between 0-255 bytes. The maximum length is
protocol dependent. This option is used to set the status
string that the server returns in response to a client’s
SendStatus call and is remembered internally on a
per-socket basis.

OPT_KEEPALIVE A keepalive structure (page 5-32) that specifies whether
the option is turned on (T_YES) or off (T_N0) and specifies
the timeout period in minutes.

Connection-oriented protocols can use this option to check
that the connection is maintained. If a connection is
established but there is no data being transferred, you can
specify a time limit within which Open Transport checks to
see that the remote end of the connection is still alive. If it
is not, Open Transport tears down the connection.

This option is association-related.

Status Codes

Open Transport uses status codes to return information about the success of an
option negotiation. For individual options, Open Transport returns a status
code in the status field of the TOption structure (page 5-33) describing the
option. For groups of options negotiated by a single call to the
0TOptionManagement function, the function also returns a status code that

Option Management Reference 5-29
Draft. O Apple Computer, Inc. 4/30/96

Action Flags

CHAPTER 5

Option Management

specifies the single worst result of the negotiation in the f1ags field of the ret
parameter.

The constant names that are used to specify information about the outcome of
option negotiation are given by the following enumeration:

enum
{
T_SUCCESS
T_FATLURE
T_PARTSUCCESS
T_READONLY
T_NOTSUPPORT

0x020,
0x040,
0x100,
0x200,
0x400

Constant descriptions

T_SUCCESS The requested value was negotiated.

T_FAILURE The negotiation failed.

T_PARTSUCCESS Alower requested value was negotiated.
T_READONLY The option was read-only.

T_NOTSUPPORT The endpoint does not support the requested value.

In addition to the status codes given by the status codes enumeration, an
option can also have the value T_UNSPEC in the status field. This indicates that
the option does not have a fully specified value at this time. An endpoint
provider might return this status code if it cannot currently access the option
value. This might happen if the endpoint is in the state T_UNBND in systems
where the protocol stack resides on a separate host.

5-30

The req parameter to the 0T0ptionManagement function contains a flags field
that you set to specify what action the function should take. The constant
names that you can specify for this field are given by the following
enumeration:

enum
{

T_NEGOTIATE
T_CHECK

0x004,
0x008,

Option Management Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

T_DEFAULT
T_CURRENT

0x010,
0x080

Constant descriptions

T_NEGOTIATE Negotiate the option values specified in the opt.buf field of
the req parameter.

The overall result of the negotiation is specified by the
flags field of the ret parameter. A buffer containing
specific negotiated values for each option is referenced by
the opt.buf field of the ret parameter.

T_CHECK Verify whether the endpoint supports the options
referenced by the opt.buf field of the req parameter.

The overall result of the verification is specified by the
flags field of the ret parameter. Specific verification
results are returned in the opt.buf field of the ret
parameter.

T_DEFAULT Retrieve the default value for those options in the buffer
referenced by the req->opt.buf field. To retrieve default
values for all the options supported by an endpoint,
include just the option T_ALLOPT in the options buffer.

Option values are returned in the opt.buf field of the ret
parameter.

T_CURRENT Retrieve the current value for those options that the
endpoint supports and that are specified in the buffer
referenced by the req->opt.buf field. To retrieve current
values for all the options that an endpoint supports,
include just the option T_ALLOPT in the options buffer.

Option values are returned in the opt.buf field of the ret
parameter.

The Linger Structure

The linger structure specifies the value of the XTI_LINGER option, described in
“XTI-Level Options” (page 5-25).

The linger structure is defined by the t_1inger data type.

Option Management Reference 5-31
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

struct t_Tinger
{
long 1_onoff; /* option on/off */
long 1_linger; /* linger time */
by

Field descriptions
1_onoff A constant specifying whether the option is turned on
(T_ON) or off (T_OFF).

1_linger An integer specifying the linger time, the amount of time
in seconds that Open Transport should wait to allow data
in an endpoint’s internal buffer to be sent before the
0TCloseProvider function closes the endpoint.

To request the default value for this option, set the
1_linger field to T_UNSPEC.

The Keepalive Structure

5-32

The keepalive structure specifies the value of the OPT_KEEPALIVE option,
described in “Generic Options” (page 5-28).

The keepalive structure is defined by the t_kpalive data type.

struct t_kpalive
{
long kp_onoff; /* option on/off */
long kp_timeout; /* timeout in minutes */
b

Field descriptions
kp_onoff A constant specifying whether the option is turned on (
T_ON) or off (T_OFF).

kp_timeout A positive integer specifying for how many minutes
Open Transport can maintain a connection in the absence
of traffic.

Option Management Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

The TOption Structure

The Toption structure stores information about a single option in a buffer. All
functions that you use to change or verify option values use a buffer containing
TOption structures to store option information. For each option in the buffer, the
TOption structure specifies the total length occupied by the option information,
the protocol level of the option, the option name, the success or failure of a
negotiated value, and the value of the option.

You use the T0Option structure with the 0PT_NEXTHDR macro, the
0TCreateOptionString function, the 0TNextOption function, and the
0TFindOption function.

The TOption structure is defined by the TOption data type.

struct TOption
{

UInt32 len; /* total length of option */
O0TXTILevel lTevel; /* protocol affected */
OTXTIName name; /* option name */

UInt32 status; /* status value */

UInt32 valuel[l]; /* data goes here */

Field descriptions

Ten The size (in bytes) of the option information.

Tevel The protocol for which the option is defined.

name The name of the option.

status A status code specifying whether the negotiation has

succeeded or failed. Possible values are given by the status
codes enumeration, (page 5-29).

value The option value. To have the endpoint select an
appropriate value, you can specify the constant T_UNSPEC.

The Option Management Structure

The option management structure is used for the req and ret parameters of the
0TOptionManagement function. The req parameter is used to verify or negotiate
option values. The ret parameter returns information about an endpoint’s
default, current, or negotiated values.

Option Management Reference 5-33
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

The option management structure is defined by the ToptMgmt data type.

struct TOptMgmt
{ TNetbuf opt;
0TFTags flags;

Field descriptions

opt A TNetbuf structure describing the buffer containing option
information. The opt.max1en field specifies the maximum
size of the buffer. The opt.len field specifies the actual size
of the buffer, and the opt.buf field contains the address of
the buffer.

On input—as part of the req parameter, the buffer contains
TOption structures describing the options to be negotiated
or verified or contains the names of options whose default
or current values you are interested in. You must allocate
this buffer, place in it the structures describing the options
of interest, and set the opt.1en field to the size of the buffer.

On output—as part of the ret parameter, the buffer
contains the actual values of the options you described in
the req parameter. You must allocate a buffer to hold the
option information when the function returns and set the
opt.maxlen field to the maximum length of this buffer.
When the function returns, the opt.1en field is set to the
actual length of the buffer.

flags For the req parameter, the f1ags field indicates the action
to be taken as defined by the action flags enumeration
(page 5-30). For the ret parameter, the f1ags field indicates
the overall success or failure of the operation performed by
the 0TOptionManagement function, as defined by the status
codes enumeration (page 5-29).

Functions
This section describes the functions that you can use to determine an
endpoint’s current and default options or to change them. This section also
describes utility functions that you use to manipulate the format of option
5-34 Option Management Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

information and utility functions that you use to find option information in
a buffer.

Determining and Changing Function Values

This section describes the 0TOptionManagement function, which you use to
obtain information about an endpoint’s default or current option values and to
change these values if needed.

OTOptionManagement

Determines an endpoint’s current or default option values or changes
these values.

C INTERFACE

0SErr 0TOptionManagement(EndpointRef ref, TOptMgmt* req,
TOptMgmt* ret);

C++ INTERFACES

0SErr TEndpoint::OptionManagement(TOptMgmt* req, TOptMgmt* ret);

PARAMETERS

ref The endpoint reference of the endpoint for which you are
checking or setting option values.

req A pointer to an option management structure (page 5-33),
which describes the action to be taken by the function and the
options affected.

ret A pointer to an option management structure (page 5-33),
which describes the options that were changed or returned by
the function and how successful the negotiation process was.

Option Management Reference 5-35
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

5-36

CHAPTER 5

Option Management

To use the 0TOptionManagement function, you must have opened an endpoint
using the 0TOpenEndpoint or 0TAsyncOpenEndpoint functions.

You use the 0T0ptionManagement function to negotiate, retrieve, or verify an
endpoint’s protocol options. If the endpoint is in asynchronous mode and you
have not installed a notifier function, it is not possible to determine when the
function completes.

The action taken by the 0TOptionManagement function is determined by the
setting of the req->f1ags field. The following bulleted items describe the
different operations that you can perform and the flag settings that you use to
specify these operations.

» To negotiate values for the endpoint, you must call the 0TOptionManagement
function, specifying T_NEGOTIATE for the req->f1ags field. The endpoint
provider evaluates the requested options, negotiates the values, and returns
the resulting values in the option management structure pointed to by the
ret->opt.buf field. The status field of each returned option is set to a
constant that indicates the result of the negotiation. These constants are
described by the status codes enumeration (page 5-29).

For any protocol specified, you can negotiate for the default values of all
options supported by the endpoint by specifying the value T_ALLOPT for the
name field of the TOption structure. This might be useful if you want to
change current settings or if negotiations for other values have failed. The
success of the negotiations depends partly on the state of the endpoint—that
is, simply because these are default values does not guarantee a completely
successful negotiation. When the function returns, the resulting values are
returned, option by option, in the buffer pointed to by the ret->opt.buf field.

= To retrieve an endpoint’s default option values, call the 0TOptionManagement
function, specifying T_DEFAULT for the req->flags field. You must also specify
the name of the option (but not its value) in the TOption structure that you
create for each of the options you are interested in.

When the function returns, it passes the default values for the options back
to you in the buffer pointed to by the ret->opt.buf field. For each option, the
status field contains T_NOTSUPPORT if the protocol does not support the
option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
The overall result of the request is returned in the ret->f1ags field. The
meaning of this result is described by the status codes enumeration

(page 5-29).

Option Management Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

When getting an endpoint’s default option values, you can specify T_ALLOPT
for the option name. This returns all supported options for the specified
level with their default values. In this case, you must set the opt.maxTen field
to the maximum size required to hold an endpoint’s option information. The
info.opt field of the TEndpointInfo structure specifies the maximum size of a
buffer used to hold option information for an endpoint.

= To retrieve an endpoint’s current option values, call the 0TOptionManagement
function, specifying T_CURRENT for the req->f1lags field. For each option in the
buffer referenced by the req->opt.buf field, specify the name of the option
you are interested in. The function ignores any option values
you specify.

When the function returns, it passes the current values for the options back
to you in the buffer referenced by the ret->opt.buf field. For each option, the
status field contains T_NOTSUPPORT if the protocol does not support the
option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
The overall result of the request is returned in the ret->flags field. The
meaning of this result is described by the status codes enumeration

(page 5-29).

When retrieving an endpoint’s current option values, you can specify
T_ALLOPT for the option name. The function returns all supported options for
the specified protocol, with their current values. In this case, you must set
the opt.maxlen field to the maximum size required to hold an endpoint’s
option information. The info.opt field of the TEndpointInfo structure
specifies the maximum size of a buffer used to hold option information for
an endpoint.

s To check whether an endpoint provider supports certain options or option
values, you must call the 0TOptionManagement function, specifying T_CHECK
for the req->flags field. Checking options or their values does not change
the current settings of an endpoint’s options.

o To check whether an option is supported, set the name field of the Toption
structure to the option name, but do not specify an option value. When
the function returns, the status field for the corresponding T0ption
structure in the buffer pointed to by the ret->opt.buf field is set to
T_SUCCESS if the option is supported, T_NOTSUPPORT if it is not supported or
needs additional client privileges, and T_READONLY if it is read-only.

o To check whether an option value is supported, set the name field of the
TOption structure to the option name, and set the value field to the value
you want to check. When the function returns, the status field for the

Option Management Reference 5-37
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

corresponding TOption structure in the buffer pointed to by the
ret->opt.buf field is set as it would be if you had specified the
T_NEGOTIATE flag. The overall result of the option checks is returned in the
ret->flags field, which contains the single worst result of the option
checks. The meaning of this result is described by the status codes
enumeration (page 5-29).

SPECIAL CONSIDERATIONS

While an option management call is outstanding, any other functions that are
called for the same endpoint return with a k0TStateChangeErr result.

If the endpoint is in asynchronous mode, the provider might issue the
T_OPTIONMGMTCOMPLETE event before the function returns the first time.

COMPLETION EVENTS
T_OPTMGMTCOMPLETE 0x20000006 The 0TOptionManagement function has
completed. The cookie parameter of
the notifier function points to the ret
parameter.
SEE ALSO

5-38

Option information is formatted using the TOption structure (page 5-33). For
additional information about the format of the options buffers, see “Specifying
Option Values” (page 5-18).

For more information about the 0TOpenEndpoint and 0TAsyncOpenEndpoint, see
the reference section of the chapter “Endpoints” in this book.

For additional information about using the T_ALLOPT option, see “Setting
Default Values” (page 5-20) and “Obtaining Current and Default Values”
(page 5-21).

For more information about creating the buffer referenced by the req->opt.buf
field, see the description of the 0TCreateOptions function, next.

For information about creating a string referenced by the ret->opt.buf field,
see the description of the 0TCreateOptionString function (page 5-42).

Option Management Reference
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

Manipulating the Format of Option Information

You use the Open Transport utility functions described in this section to
construct a buffer describing option values from a string or to create a string
from a buffer containing option values. You do not have to create an endpoint
to use Open Transport utility functions, but you do have to initialize Open
Transport as described in the chapter “Configuration Management” in

this book.

OTCreateOptions

Writes option information into a buffer, from a string specifying option values.

C INTERFACE

0SErr OTCreateOptions (const char* prtclName; char** strPtr,

C++ INTERFACE

TNetbuf* buf);

None. C++ applications use the C interface to this function.

PARAMETERS

prtcTName

strPtr

The name of the protocol for which the option is set. For
example, for an AppleTalk endpoint this might be “atp”
or “ddp.”

A pointer to a pointer to a string containing option information.
If an error occurs in writing the option information to the
buffer, strPtr points to the position in the string where the error
occurred.

Open Transport maintains an internal database relating to
options and their values. Open Transport might not be able to
write option information to the buffer because it cannot match
a name or value you have specified with a name or value in
its database. This is either because you misspelled a name or

Option Management Reference 5-39

Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

5-40

CHAPTER 5

Option Management

specified a value that is out of range or because the option
you want to configure is not included in Open Transport’s
data base. The latter might be the case for an option that is
rarely used.

buf A pointer to a TNetbuf structure that specifies the size and
location of the buffer into which the function writes option
information. You must allocate the buffer and set the buf->opt
field to point to it.

You must set the buf->maxTen field to the value specified by the
TEndpoint.options field for this endpoint. You set buf->Ten to 0.
When the function returns, it sets the buf->1en field to the
actual length of the option information, including padding.

The function appends option information to the buffer
beginning at the offset specified by the buf->1en field. Set this
field to O to start at the beginning of the buffer. When the
function returns, the value of the buf->1en field is updated to
reflect the new length.

The 0TCreateOptions function automates the construction of a buffer that
describes endpoint option values for a particular protocol. Given a string, a
pointer to a buffer, and the protocol for which the options are set, the function
constructs TOption structures describing each option specified and then places
these structures in the buffer referenced by the buf->opt field. After using the
0TCreateOptions function to construct the buffer, you have most of the
information needed to create the req parameter to the 0TOptionManagement
function.

The string containing option values has the format:

optionNamel = value optionName2 = value optionName3 = value [....]

where value can be a numeric value, a string value, or a byte array value. The
table below describes how each value is represented.

Option Management Reference
Draft. O Apple Computer, Inc. 4/30/96

SEE ALSO

CHAPTER 5

Option Management

Format of values

Numeric

String

Byte array

Contents

A minus sign () prefix for negative numbers, followed by
the digits comprising the number; for example, -6784.

A'$ or Ox prefix for hexadecimal numbers, followed by the
digits comprising the number; for example, $FFFE.

The option string, which is composed of a delimiter
character, followed by the characters comprising the
string, followed by the delimiter character. A delimiter
character is the first non blank character after the equals
sign. For example, SomeOptionName = *The String
Option*, or SomeOtherOptionName = % Another String
Option%.

Aleading $ or Ox followed by a sequence of hex digits
with no intervening spaces or tabs. There must be an even
number of digits; for example, $FF12EE46.

Possible values for option names are given in the documentation for the
protocol you are using. Generic option names are described in “XTI-Level
Options and General Options” on page 5-10.

You use the buffer constructed by the 0TCreateOptions function as part of the
req parameter to the 0TOptionManagement function (page 5-35). Listing 5-2 on
page 5-20 shows how you use the 0TCreate0Options function.

You use the 0TCreateOptionString function, described in the next section, to
reverse the process and construct a string containing endpoint option values by
parsing a buffer containing TOption structures.

Option Management Reference 5-41

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

OTCreateOptionString

Creates a string from a buffer containing TOption structures.

C INTERFACE
O0TCreateOptionString (const char* prtciName, TOption** optPtr,
void* bufEnd, char* string,
size_t stringSize);
C++ INTERFACE
None. C++ applications use the C interface to this function.
PARAMETERS
prtclName A constant specifying the name of the protocol for this option
or options.
optPtr A pointer to a pointer to a buffer containing one or more
TOption structures.
bufEnd A pointer to the first byte of memory past the last option.
string A pointer to a buffer where the string is to be stored. You must
allocate this buffer.
stringSize The length of the buffer where the string is to be stored. You
must specify this value.
DESCRIPTION
You can use the 0TCreateOptionString function to parse through the options
buffer returned by the ret parameter to the 0TOptionMangement function and
create a string specifying option values that you can display.
This function is supplied solely as a debugging aid. You should not include the
function in a production version of your application because there is no
provision made for localizing string information.
5-42 Option Management Reference

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

SEE ALSO

You obtain the buffer to be converted from the ret parameter to the
0TOptionManagement function (page 5-35). Listing 5-3 on page 5-24 shows how
you use the 0TCreateOptionString function.

You can reverse the procedure and build an options buffer from a string by
using the 0TCreateOptions function (page 5-39).

Finding Options

You use the two functions described in this section to find a specific option in
an options buffer or to find the next option in the buffer. You do not have to
create an endpoint to use these functions, but you do have to initialize Open
Transport as described in the chapter “Configuration Management” in

this book.

OTFindOption

Finds a specific option in an options buffer.

C INTERFACE

TOption* OTFindOption (UInt8* buffer, UInt32 buflen,
0TXTILevel level, OTXTIName name);

C++ INTERFACE
None. C++ applications use the C interface to this function.

PARAMETERS
buffer A pointer to the buffer containing the option to be found.
buflen The size of the buffer containing the option to be found.
Tevel The protocol of the option to be found.
name The name of the option to be found.
Option Management Reference 5-43

Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 5

Option Management

DESCRIPTION

Given a buffer such as might be returned by the 0T0ptionManagement function or
by any endpoint function that returns a buffer containing option information,
you can use the 0TFindOption function to find a specific option in the buffer.

SEE ALSO

To parse through a buffer, option by option, use the 0TNext0Option function
(described next).

To convert option information in a buffer into a string, use the
0TCreateOptionString function (page 5-42).

OTNextOption

Locates the next TOption structure in a buffer.

C INTERFACE

0SErr OTNextOption (UInt8* buffer, UInt32 buflen,
TOption** prevOptPtr;

C++ INTERFACE
None. C++ applications use the C interface to this function.

PARAMETERS
buffer A pointer to the buffer containing the option to be found.

buflen Along specifying the size of the buffer containing the option to
be found.

prevOptPtr A pointer to a pointer to the first or current T0ption structure.
The first time you call the function, set this parameter to the
beginning address of the buffer containing the options to be
found. On return, this parameter references the beginning
address of the next option

5-44 Option Management Reference
Draft. O Apple Computer, Inc. 4/30/96

DESCRIPTION

SEE ALSO

CHAPTER 5

Option Management

The 0TNextOption function allows you to parse through a buffer containing
TOption structures describing an endpoint’s option values. Within the buffer,
TOption structures are aligned to long-word boundaries. This function takes
into account this padding when it calculates the beginning address of the next
TOption structure and it returns that address in the prevOptPtr parameter.

The first time you call the option, set the prevOptPtr parameter to the beginning
address of the buffer. When the function returns, the prevoptPtr parameter
points to the next (second) option in the buffer. You can continue this process,
specifying the value returned for the prevOptPtr parameter by the previous
invocation of the function, each time you call the function to obtain the
beginning address of each option in the buffer.

To find a particular option in a buffer, use the 0TFindOption function
(page 5-43).

Option Management Reference 5-45
Draft. O Apple Computer, Inc. 4/30/96

CHAPTETR 6

Configuration Management

Contents

About Provider Configurations 6-3
About Port Information 6-5
Using the Configuration Functions 6-8
Determining Whether Open Transport Is Available ~ 6-8
Initializing Open Transport 6-9
Using Open Transport From a Client Application 6-9
Using Open Transport From a Stand-Alone Code Segment
Creating and Reusing Provider Configurations 6-10
Obtaining Port Information 6-11
Requesting a Port to Yield Ownership 6-13
Registering as an Open Transport Client 6-13
Configuration Management Reference 6-14
Constants and Data Types 6-14
The Gestalt Selector and Response Bits 6-15
Port-Related Events 6-15
The Configuration Structure ~ 6-16
The Port Structure ~ 6-17
The Port Reference ~ 6-19
The Client List Structure ~ 6-22
The Port Close Structure ~ 6-23
Functions 6-23
Initializing and Closing Open Transport 6-24
InitOpenTransport 6-24
InitOpenTransportUtilities 6-25
CloseOpenTransport 6-26
Creating, Cloning, and Removing a Configuration Structure
O0TCreateConfiguration 6-27

Contents
Draft. O Apple Computer, Inc. 4/30/96

6-9

6-27

6-1

CHAPTER 6

0TCloneConfiguration 6-30
OTDestroyConfiguration 6-31
Getting Information About Ports 6-32
0TGetProviderPortRef 6-32
OTGetIndexedPort 6-33
OTFindPort 6-34
OTFindPortByRef 6-35
OTCreatePortRef 6-36
O0TGetDeviceTypeFromPortRef 6-38
0TGetBusTypeFromPortRef 6-39
0TGetSlotFromPortRef 6-40
Requesting a Port to Yield Ownership
OTYieldPortRequest 6-42
Registering as a Client 6-44
OTRegisterAsClient 6-44
O0TUnregisterAsClient 6-45

Contents
Draft. O Apple Computer, Inc. 4/30/96

6-42

CHAPTER 6

Configuration Management

This chapter describes Open Transport functions that initialize Open Transport,
configure a provider, and provide information about the ports available on
your computer.

You need to read this chapter if your application wants to use Open Transport
or open a provider because in the former case, you must initialize all or some
of Open Transport, and in the latter case, you must create a provider
configuration. In addition, if your application has the ability to switch ports,
you need to be able to obtain port information.

This chapter discusses

» initializing all or part of Open Transport

= configuring providers and reusing configuration structures

= browsing available ports and getting specific port information
= registering as an Open Transport client

» handling yield port requests

This chapter begins by introducing the basic concepts of provider configuration
and port information, then gives the details of how to initialize Open
Transport, how to find a specific port and extract information about it, and how
to register your application as an Open Transport client.

About Provider Configurations

Before you can open a provider, you must first tell Open Transport how to
configure it with the protocol and options you want the provider to use. To do
this, you pass a string to a function (0TCreateConfiguration) that creates a
configuration structure (of data type 0TConfiguration) describing the service
you want.

The configuration string can be the name of a single protocol, such as “adsp”,
“tcp”, or “dnr,” or it can be a full comma-separated list of protocol and port
names, with option values specified in parentheses after the name of the
protocol to which they apply. For instance,

"adsp,ddp,1tTkB"

About Provider Configurations 6-3
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 6

Configuration Management

describes an AppleTalk Data Stream Protocol (ADSP) endpoint provider using
the Datagram Delivery Protocol (DDP) and with LocalTalk link access provided
through the default port (the LocalTalk B printer port).

Open Transport has internally defined defaults for how protocols can be
layered upon each other. If you give Open Transport a single protocol name, it
checks its defaults to determine which lower layers are missing. Thus, the
shorter string

"adsp"

also describes an identical ADSP endpoint provider. Likewise, if you skip a
protocol layer in the string, Open Transport uses its defaults to try to complete
it. For instance, the specification “tcp, enet” is incomplete because the
Transmission Control Protocol (TCP) does not have direct access to Ethernet,
and so Open Transport puts the default Internet Protocol (IP) between TCP and
Ethernet.

You can also specify an option as part of the configuration string. To do this,
you need to know which protocols use which options and how to translate the
option’s constant name, given in the header files, into a string that the
configuration functions can parse. See the TCP/IP and AppleTalk chapters for
lists of their procotol-specific options and their equivalent string values, but for
a simple example,

"adsp,ddp(Checksum=1)"

describes an ADSP endpoint provider with the DDP checksum option enabled.

If you want to identify a particular port in the configuration string, you use the
port name to do so (described in the next section). More typically, however, you
leave this value blank—for example, using only “adsp” or “adsp, ddp,” which
configures the provider with whatever port is specified in the associated
control panel.

Most protocols have a hardcoded string value that you can use to configure
providers. For example, DDP uses “ddp” and ADSP uses “adsp.” There are
also constants that identify each protocol, such as kbDPName and kADSPName. For a
complete list of the AppleTalk constant-string equivalents, see the chapter
“Introduction to AppleTalk” in this book. For a TCP/IP service provider, you
can use the constant kDefaultInternetServicesPath; there is no hardcoded
equivalent.

About Provider Configurations
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 6

Configuration Management

You can use the constant or the hardcoded value to create providers that do not
use options and that adhere to the default procotol layering. For example, to
configure a fairly straightforward DDP endpoint, you could use either of the
following lines of code:

0TOpenEndpoint(0TCreateConfiguration("ddp"), 0, NULL, &err)

0TOpenEndpoint(0TCreateConfiguration(kDDPName), 0, NULL, &err);

To configure more complex providers, it is easier to use the hardcoded strings.
Using the constant can be confusing, as compared in the following lines of code:

0TOpenEndpoint(0TCreateConfiguration
("adsp(EnableEOM=1),ddp,1t1kB"), 0, NULL, &err)

0TOpenEndpoint(0TCreateConfiguration
(kADSPName" (EnableEOM=1),"kDDPName",1t1kB"), 0, NULL, &err);

Note

The 0TCreateConfiguration function returns a pointer to
the configuration structure it creates. You pass this pointer
as a parameter to the open-provider functions such as the
0TOpenEndpoint or 0TOpenMapper functions (discussed in the
chapters “Endpoints” and Mappers” in this book). O

About Port Information

Central to Open Transport’s architecture is the concept of a port. In Open
Transport, a port is a logical entity that combines a hardware device and the
software driver that acts as an interface to it. Ethernet, serial devices, and
LocalTalk ports are examples of ports commonly used in Open Transport.

Typically, your application uses whichever port is defined in the AppleTalk or
TCP /1P control panel. If, however, your application provides special port
manipulation features, you need the additional port information data
structures, constants, and functions that Open Transport provides for browsing
among the ports available to your computer and for finding specific ports.

About Port Information 6-5
Draft. O Apple Computer, Inc. 4/30/96

6-6

CHAPTER 6

Configuration Management

Open Transport provides a standard naming scheme for describing the ports
available to a computer. There are three ways to identify each port uniquely: its
port name, its module name, and its port reference.

The port name is a unique name that designates the port. This name identifies
the port without using any location information. For instance, "1t1kA"
identifies LocalTalk on the serial port, and "1t1kB" identifies LocalTalk on the
modem port. This name must always be used in the path string for
OTCreateConfiguration to uniquely identify a port.

The port name is typically an abbreviation of the port’s device type plus a
suffix, usually numeric, such as “enet0,” “enetl,” and “enet2.” For historic
reasons, LocalTalk and serial ports use an alphabetic suffix instead. For
example, “1tIkA” is the modem port and “1tIkB” is the printer port. The port
name is a zero-terminated string that can have a maximum length of 36 bytes:
31 bytes for the name, up to 4 bytes of extra characters (called minor numbers in
XTI specifications) that are currently not used, and a byte for the terminating
Zero.

Each port on a computer also has a module name, which is the name of the
actual Streams module that implements the driver for this port. You don’t use
this name; Open Transport uses this name internally.

You can also uniquely identify a port with a port reference, which is a 32-bit
value that describes a port’s hardware characteristics: its device and bus type,
its physical slot number, and, where applicable, its multiport identifier. For
details of the possible values you can use in a port reference, see the section
“The Port Reference,” beginning on page 6-19. Open Transport allows clients to
use a device name to specify a port. In this case, Open Transport uses the first
device of that type that is registered and available. For most devices, this
means the motherboard device, if one exists; if one doesn’t, Open Transport
uses the first slotted device that was registered.

The multiport identifier is a port function parameter that distinguishes
between multiple ports when a single slot supports more than one port. This
parameter, called other, is part of the port reference structure, which is
described in the section “The Port Reference” on page 6-19.

Typically, the hardware device in a multiport slot is either a plug-in
multifunction card with multiple ports on it or a device with multiple uses, one
or more of which is a port. Examples of multifunction cards are a motherboard
with onboard Ethernet and the SerialNB card with its four ports; an example of
a multi-use device on most Macintosh computers is the SCC chip that can
handle both LocalTalk and serial communications. Typically, a multifunction

About Port Information
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 6

Configuration Management

card has multiple ports that use different values for the other parameter and
possibly different device attributes, and a multi-use device is registered with all
attributes identical except for the device type.

There’s a special type of port, called a pseudodevice, that is a driver that
doesn’t interface to a hardware device; instead, it interfaces to other device
drivers. Pseudodevices are provided as a convenience for the Open Transport
architecture. Open Transport defines special device types for certain common
pseudodevices, such as modem, PPP, and SLIP. Because Open Transport can’t
possibly accomodate all possible pseudodevices, there is a generic device type,
designated with the constant k0TPseudoDevice, that identifies unknown or
unusual pseudodevices. Each pseudodevice must have a unique port reference.
Typically, a pseudodevice is private, and a flag indicating that the port is
private notifies applications browsing the port registry that the port is not
normally available for public use. The port registry is a registry of ports that
Open Transport creates when it scans the network for all available ports.

Every port on the computer is described in Open Transport by a port structure,
which contains its port reference, several sets of information flags, its port
name, its Streams module name, and the slot ID (for ports on a PCI bus). For
details of the port structure, see the section “The Port Structure,” beginning on
page 6-17.

The port structure includes fields that allow you to identify a port’s child port,
which allows you to identify which of several available hardware devices the
port uses. A port may have more than one child port, all of which can be active
simultaneously.

For example, in many implementations, a SLIP port is a pseudodevice that uses
a serial port as its hardware device. If more than one serial port is available, the
SLIP pseudodevice could use any of them. A SLIP port therefore always has a
serial port as its child port so that when multiple serial ports are available, you
can use the child port information to find out which serial port the SLIP port is
using. Other device types, such as fast ethernet devices, do not have child ports
because they have a one-to-one relationship with their hardware device—that
is, they have only one possible choice for the hardware device they can use.

The slot ID is a user-visible identifier used for cards on PCI bus computers. To
derive this value, Open Transport accesses information in the system registry.
The system registry, sometimes referred to as the Name Registry, is a register of
hardware and software configuration information for Power Macintosh
computers that is maintained by Mac OS. For more information about the

About Port Information 6-7
Draft. O Apple Computer, Inc. 4/30/96

CHAPTER 6

Configuration Management

system registry, or Name Registry, see Designing PCI Cards and Drivers for Power
Macintosh Computers.

One set of flags indicate a port’s framing capabilities—that is, the different
packet headers and trailers (data frames) permitted by the protocol on that
port. The framing flags are specific to the device type being registered. See the
appropriate documentation for the device to determine how to interpret them.

For each hardware device type, Open Transport derives a default port name
based on the port name by stripping its numeric (or alphabetic, in the case of
LocalTalk and serial ports) suffix. All ports on a computer that are the same
hardware device type result in the same default port name. Thus, Ethernet
devices default to “enet.” For all hardware device types, you can use the
default port name as part of the configuration string. If you use a default name
such as “enet,” Open Transport uses whichever port is identified as the default
port. If it can’t find that port, OpenTransport returns an error message.

In the case of LocalTalk, however, Open Transport uses a flag to define a
specific port as a port alias, or a default port, for LocalTalk ports. This port is
called “Itlk” and uses the same Streams module name as the default LocalTalk
port. Normally, the LocalTalk default port is the printer port, “1tIkB,” but if a
computer doesn’t have an “1tIkB” port, then the LocalTalk default is the
modem port, “It