
Rochester Institute of Technology Rochester Institute of Technology

RIT Scholar Works RIT Scholar Works

Theses

1988

Performance analysis of text-oriented printing using PostScript Performance analysis of text-oriented printing using PostScript

Thomas Kowalczyk

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Recommended Citation
Kowalczyk, Thomas, "Performance analysis of text-oriented printing using PostScript" (1988). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact
ritscholarworks@rit.edu.

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/48?utm_source=scholarworks.rit.edu%2Ftheses%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Rochester Institute ofTechnology
School of Computer Science and Technology

Perfonnance Analysis of

Text-Oriented Printing

Using POSTSCRIPT®

by
Thomas L. Kowalczyk

A thesis, submitted to
The Faculty of the School of Computer Science and Technology,

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

Approved by:
Guy Johnson

Professor and Chairman of
Applied Computer Studies

instructor
Dr. Vishwas G. Abhyankar

Frank R.Hubbell
instructor

October 10, 1988

Thesis Title:

Performance Analysis of
Text-Oriented Printing

Using POSTSCRIPT®

I, Thomas L. Kowalczyk, hereby grant permission to the Wallace Memorial
Libra.ry, of R.I.T., to reproduce my thesis in whole or in part under the following
conditions:

1. I am contacted each time a reproduction is made. I can be reached at the
fol1mving address:

82 Brush Hollow Road
Rochester, New York 14626

Phone # (716) 225-8569

2. Any reproduction will not be for commercial use or profit.

Date: October 10,1988

i

Pennission Statement

Apple, Appletalk, LaserWriter, andMacintosh are

registered trademarks ofApple Computer, Inc.

Fluent Laser Fonts and Galileo Roman are

trademarks of CasadyWare Inc.

Helvetica, Palatino, and Times are registered

trademarks ofLinotype Co.

ITC Avant Garde, ITC Bookman, ITC Garamond,
ITC ZapfChancery, and ITC ZapfDingbats are

registered trademarks of International Typeface

Corporation

POSTSCRIPT is a registered trademark ofAdobe

Systems Incorporated.

Interpress in a registered trademark ofXerox Corp.

u

Trademarks

Abstract

POSTSCRIPT is a page description language which is used to transmit printing
information from a host computer (i.e. AppleMacintosh) to a printer (i.e. Apple
LaserWriter Plus). It has the ability to describe pages consisting of text, vector

graphics, and scanned bit-map images. Printing text is the area of concentration for
this thesis. Specifically several variables that affect the printing speed of a common
POSTSCRIPT printer, the Apple LaserWriter Plus, are looked at when printing text
in a variety of fonts, sizes, and orientations. The variables that affect printer
performance include:

- use of outline vs. bit-map fonts;

- the outline font rasterization process;

- the use ofpre-cached bit-map fonts;

- background outline font rasterization;

-

arbitrary scaling and rotation;

-

downloading host-resident fonts;

- Adobe and Third Party host-resident downloadable fonts vs. printer-resident fonts;

- Appletalk vs. RS-232 communications interfaces;

-

use of the POSTSCRIPT show, ashow, andwidthshow instructions;

-

targeting the POSTSCRIPT instructions at a particular engine resolution;

- print engine overhead

A sequence ofPOSTSCRIPT files were transmitted to the Apple LaserWriter Plus

printer. The experiments were carefully constructed to exercize each of the variables

listed above. Performancemeasurements were carefully recorded and analyzed.

Where applicable, improvements were proposed to improve printer performance.

in

Abstract

Tfl!?lP ofContents
Page

Permission Statement
'

Trademarks n

Abstract '

Table of Contents iv

1. Introduction 1

1.1. Background 1

1.2
"PDL"

Defined 1

1.3 History of Interpress and POSTSCRIPT 2

1.4 A Comparison ofOutline vs. Bitmap Fonts 4

1 .5 Text, VectorGraphics, and Bitmap Images 8

1.5.1 Text 8

1.5.2 Bitmap Images 9

1.5.3 VectorGraphics 10

2. Problem Description 13

2.1 Variables thatAffectPerformance 14

problem description and expected results

2.1.1 Font Formats: Outlines vs. Bitmaps 14

2.1.1.1 Outline Font Rasterization and Caching 15

2. 1 . 1 .2 Pre-CachedBit-Maps 15

2.1.1.3 BackgroundOutline Font Rasterization 16

2. 1 . 1 .4 Effect of Scaling and Rotation 17

2. 1 . 1 .5 Variations ofFont Style 19

iv

Table ofContents (continued)
Page

2.1.2 Downloaded Fonts 20

2.1.2.1 DownloadedBitmaps vs. 21

Printer Resident (Cached) Bitmaps

2.1.2.2 Adobe Downloaded Outlines vs. 22

Printer Resident (Internal) Outlines

2. 1 .2.3 Adobe Downloaded Outlines vs. 23

Third PartyDownloadedOutlines

2.1.2.4 Appletalkvs.RS-232 25

2.1.3 Methods ofPrinting Strings 26

2.1.4 Resolution
"Targeting"

vs. Total 27

Resolution Independence

2.1.5 Effect ofVaried Page Complexity on POSTSCRIPT 28

Processing Time

2. 1 .5. 1 Effect on the Inter-Page TimeDelay 28

Program sec

2.1.5.2 Effect on the Compilation and Rasterization 29

ofText Pages

2.2 Performance Measurement and Calculation 30

2.2.1 Communications 31

2.2.2 Interpretation (Compilation) and Rasterization 35

2.2.3 Print Engine Paper Ejection 44

2.3 Programming Tasks 45

2.3.1 Extraction ofFontWidths from 45

Apple LaserWriter Plus

2.3.2 Batch Composition Program 47

2.3.3 Downloadable POSTSCRIPT Bitmap Font Program 49

2.3.4 InstallingDownloadable POSTSCRIPT Outline Fonts 54

2.4 Assumed RIPArchitectural Model 55

v

Table ofContents

Tahlp ofContents (continued)
Page

3. Analysis ofExperimental Results 59

3.1 Font Formats: Outlines vs. Bitmaps 59

3.1.1 Red Time Outline Font Rasterization and Caching 59

3. 1 . 1 .A Experimental Results

3.1.LB Analysis

3.1. l.C Proposed Improvements

3.1.2 Pre-Cached Bit-Maps 65

3. 1 .2.A Experimental Results

3.1.2.B Analysis

3. 1 .2.C Proposed Improvements

3.1.3 Background Outline Font Rasterization 67

3 . 1 . 3 .A Experimental Results

3.1.3.B Analysis

3.1.3.C Proposed Improvements

3.1.4 Effect of Scaling and Rotation 71

3. 1 .4.A Experimental Results

3.1.4.B Analysis

3.1 .4.C Proposed Improvements

3.1.5 Variations ofFont Style 78

3.1.5.A Experimental Results
3.1.5.B Analysis

3. 1 .5.C Proposed Improvements

3.2 Downloaded Fonts 81

3.2.1 Downloaded Bitmaps vs. PrinterResident 81

(Cached) Bitmaps

3 .2. 1 .A Experimental Results
3.2.LB Analysis

3.2. 1 .C Proposed Improvements

3.2.2 AdobeDownloaded Outlines vs. 86
PrinterResident (Internal) Outlines

3.2.2.A Experimental Results
3.2.2.B Analysis

3.2.2.C Proposed Improvements

vi

Table ofContents

Table ofContents (continued)
Page

3.2.3 Adobe Downloaded Outlines vs. 91

Third Party Downloaded Outlines

3.2.3.A Experimental Results

3.2.3.B Analysis

3.2.3.C Proposed Improvements

3.2.4 Appletalk vs. RS-232 97

3.2.4.A Experimental Results

3.2.4.B Analysis

3.2.4.C Proposed Improvements

3.3 Methods ofPrinting Strings 102

3.3.A Experimental Results

3.3.B Analysis

3.3.C Proposed Improvements

3.4 Resolution
"Targeting"

vs. Total Resolution Independence 111

3.4.A Experimental Results

3.4.B Analysis

3.4.C Proposed Improvements

3.5 Effect ofVaried Page Complexity on POSTSCRIPT 115

Processing Time

3.5. 1 Effect on the Inter-Page Time Delay Program sec 115

3 . 8 . 1.A Experimental Results

3.8.LB Analysis

3.8. l.C Proposed Improvements

3.5.2 Effect on the Compilation and Rasterization 118

ofText Pages

3.8.2.A Experimental Results

3.8.2.B Analysis

3.8.2.C Proposed Improvements

4. Conclusions 123

4.1 Scan Converting Outline Fonts vs. Caching Bitmap Fonts 123

4.2 Scan Converting Font Outlines with "Quality
Hints"

Applied 124

4.3 Font Style Complexity 124

4.4 Downloading Fonts 125

4.5 Methods ofPrinting Strings 125

4.6 Resolution Targeting 126

vii

Table ofContents

TflhiP ofContents (continued)
Page

4.7 Printer InducedDelays

127
5. Glossary

6. References

133
7. Bibliography

1. Equipment and Software Tools

1 . 1 POSTSCRIPT Evaluation Equipment Configuration

2. Support Programs

2.1 PostScript FontWidths

2.1.1 Font Extraction Program

2. 1 .2 Printed FontWidth Tables from the Apple Laser Writer Plus

2. 1 .3 Times-Roman FontWidth Table (ASCH File)

2.2 Generation ofPOSTSCRIPT Text Pages

2.2. 1 Batch Composition Pseudo-Code

2.2.2 Input Data
"Content"

File

2.2.3 InputMarkup
"Style"

File

2.2.4 Text PostScript File

2.2.5 Printed Text andTiming Pages from the Apple LaserWriter Plus

viu

Table ofContents

1. Introduction

1.1 Background

An electrtonic publishing system is made up of three main parts: the front-end, the RIP, and the
print engine. Figure 1.1 is a block diagram of a typical electronic publishing system.

External

n form i rinn fe- Front

End

Page

Description

Language^ RIP

Bit-Map
Print

EngineInput
W Engine

w'

Control

Electronic Publishing System Block Diagram

figure 1.1

The front-end provides interfaces to the user and to other computer systems. The user interface

handles input of text, graphics, and bit-map (scanned) images, and provides the merging and
page layout of these pieces in either a batch or interactive (WYSIWYG) mode. The computer
interface provides a communications interface with other information input systems (ie. word

processors, illustration stations). This information is filtered by the front-end to yield the
internal page format of the electronic publishing system. Ultimately, the output of the front-end

is the "page description
language"

(PDL) file which is sent to the "raster image
processor"

(RIP). The PDL file describes the marks on the printed page.

The Raster Image Processor (RIP) inputs a PDL file for a page or a set of pages generated by
the front-end. The RIP then generates the corresponding bit-map image(s) and sends it to the
print engine, usually in a raster form. The print engine prints the bit-map page.

The Page Description Language (PDL) is the interface between the "soft
image"

world of the

front-end and the
"hard-copy"

world of the RIP and the print engine. One particular PDL is

quickly becoming an industry defacto standard: POSTSCRIPT.

1.2
"PDL"

Defined

PDL stands for Page Description Language. The term PDL applies to the set of printing
commands that describe the printing of text and usually vector graphics on a printed page. The

location on a page is specified and a
"mark"

is placed at that location. Thatmark can be a dot, a

character, a string of characters, a line segment, a curve segment, or a bit-map. The PDL has

no knowledge of a "line of
text"

or a "carriage return". Subsequently, conventional tine printers

are not considered to use PDL's. Detennining where the line of text begins and ends is die

responsibility of the front end application. A typical sequence ofPDL (pseudo)code to print out

a simple string of text goes as follows:

Move cursor to the (x,y) coordinate of the page.

Select a font, size, and orientation; make it the
"current"

font

Print the string "abc"; letters are automatically advanced using proportional spacing.

Some of the more recent PDL's, like POSTSCRIPT, offer fully scalable and rotatable outline
fonts. The older PDL's, like imPRESS, provide a limited number of discrete font sizes and the

four quadrant orientations. The PDL is the "assembly
language"

of electronic printing.

1

Section 1.1 Introduction

1.3 History ofTnternress find PostSPRTPT (1)

Figure 1.3 shows how Interpress and
POSTSCRIPT began. Bob Sproull first

developed a printing language called
"PRESS"

while at Xerox. Independently JohnWarnock

developed his own graphics/printing language. After coming
to Xerox JohnWarnock put

together a similar printing language he called
JaM. A third concurrent activity atXerox Palo

Alto Research Center (PARC) was the "Cedar
Graphics"

graphics research program.

"Research
Interpress"

was based on all three of these activities.

Xerox allowed some of theirwork to become public. Xerox permitted publication of a paper

based on the work conducted in the "Cedar
Graphics"

research program. It was written by
JohnWarnock andDougWyatt and was called "A Device Independent Graphics Imaging
Model forUse with Raster Devices". Secondly, Xerox allowed Leo Guibas, a Stanford

professor, to use some of the
Interpress

-related research work as course material for a

course at Stanford. John Warnock used the public information disclosed byXerox in addition

to die work that he did prior to coming toXerox as a basis for starting
his own company,

Adobe Systems, Inc., and continued the development of a language which he called

POSTSCRIPT. The Apple LaserWriterwas the first commercial product to use

POSTSCRIPT. The definition of POSTSCRIPT is public. Adobe's product is their

implementation of POSTSCRIPT, which they will port to a hardware RIP that either Adobe

or Adobe's customer designs.

On the Interpress side, a subset ofResearch Interpress was chosen which became the

Xerox internal standard language that was called the "Interpress '82 Electronic Publishing
Standard". Printing instructions were added to Interpress '82 to become anotherXerox

internal version of Interpress, version 2.0. Xerox made version 2.1 public in April of

1984. In 1986, Xerox released Interpress version 3.0 which contained three sets. The

"Commercial
Set"

handles basic text and trivial graphics; the "Publication
Set"

adds bit-map
fonts, vector graphics, and bit-map printing; the "Professional Graphics

Set"

provides high

functionality, like scaled and rotated outiine fonts and bit-map image processing. The
Publication

Set"

is amedium functionality language similar to "imPress", a language developed
and sold by Imagen Corp. The "Professional Graphics

Set"

is a high functionality page
description language similar to POSTSCRIPT.

Much of this information was taken from reference #1.

(Reference listmay befound in section 6.)

Section 1.1 - Introduction

1976: While at Evans
&*

Sutherland, JohnWarnock

works on graphics algorithm

research for flight simulators

Bob Sproull develops

PRESS at Xerox

Late 70's- earlv 8Q's

Xerox PARC "Research
Interpress"

headed by Chuck Geschke

JohnWarnock develops

.Jtbe JaM graphics print

ing language

"Cedar
Graphics"

graphics research

program

PRESS implemented

and used inside

Xerox

Leo Guibas conduct^

Interpress research

at Stanford

July 1982

John Warnock

F& DougWyatt Publish
'

"A Device Independent

Graphics ImagingModelJ
forUse with Raster

Devices"

January 1982

Xerox Internal Standard

"Interpress '82 Electronic
a

.Publishing

Standard"

Add
"printing"

instructions to

Research Interpress &

Interpress '82

JohnWarnock

and

ChuckGeschke

start Adobe Sys.

Internal to Xerox:

Interpress 2.0

1985:

First POSTSCRIPT

Product

Apple LaserWriter

1986:

Apple Laser

Writer Plus

others include

QMS,Mergenthaler,

Data Products, ...

jr April 1984 >w

/ Public: Interpress \

1 Electronic Printing J
V Standard J

\Vali/

Commercial

-?Set

1986 ^N.
/ Interpress 3.0 \ Publication

I released to
r~

"?"Set

V public J

AnnouncedXerox^^7++^ Prof. Graph.

printers to support / "-?Set

Interpress include J*

4045, 4050, 9700, & 8700

History of Interpress and POSTSCRIPT

figure 1.3

Section 1.3 - Introduction

1.4 A Comparison ofOutHfif YS KiHnan Fonts

Before POSTSCRIPT was introducedmost printers could only
use bitmap fonts. One of the

key capabilities ofPOSTSCRIPT that certainly set Adobe Systems,
Inc. ahead of the

competition was the extensive use of outline fonts. This is
in addition to the less used bitmap

font functionality. Outline fonts have many advantages
over bitmaps. Four of the more

important advantages are outlined below.

1. Resolution Independence
.

Since a font outline is not tied to a specific resolution output device, the same
outline can

easily be used to drive any resolution
output device.

For bitmap fonts, entirely different bitmaps are required
for printers with different

resolutions. For example, a 300 dpi font will be 75 % size when printed on a 400 dpi

printer, or 150 % size on a 200 dpi printer.

2. Device Independence

Different printers have different processes that lay blackmarks on a page. In some cases

even if two printers of the same resolution print the exact same bitmap (font) data, the output

can appear significantly different. In the case of
electrophotographic printers a tight (laser or

LED) exposes an area of electrophotosensitive material. The process is set up
such that the

exposed area either picks up toner, in a "write
black"

system, or does not pick up toner, in a

"write
white"

system If the same bitmap is printed on two printers with different polarity
processes the print producedwith "write

white"

tends to be lighter than the print produced

with "write black". Inconsistencies across printers can be compensated for in the outline

font rendering algorithm, so that the same basic outline can be used to print
on different

process printers.

In contrast, to make bitmap fonts look the same on printers with very different processes,
different font bitmaps are needed.

3. Better selection of high quality rotated and scaled fonts

A single font outline can be scaled to any size and rotated to any angle. In addition it can be
"obliqued"

or tilted or reflected in either or both axes. In short, any outline font can be

transformed in a way that can be described by any linear transformation.

By comparison bitmap fonts are applicable for only one size and orientation (and resolution
and process). A 12 point font contains an entirely different set of bitmaps than a 10 point

font of the same font style. The next section (4) discusses what this means relative to font
storage space. Anothermethod of printing bitmaps is to use one or several bitmaps and

scale from the nearest bitmap font available. Although this method saves storage space and
communications download time the quality of the font is severely degraded.

4. More memory space efficient.

An outline font is specified at one size, typically on a 1,000 by 1,000 unit grid for

POSTSCRIPT. The outline description for each character of the font is specified relative to
discrete points on this grid. These outlines are made up of straight line segments and bezier
curve segments. Characters in this font are then fully scalable and rotatable for any size,
resolution, and orientation. An outline font takes approximately 30 KBytes ofmemory

'

space. For example the size of the Adobe POSTSCRIPT Stone Serif downloadable font is
34,260 bytes (*) when stored on the hostMac U computer. Once the font is downloaded it
is packed inside the AppleLaserWriterPlus in a slightlymore compactmanner and
occupies 28 KBytes ofRAM **.

*
measuredwith the Get Info utility of the AppleMacintosh Finder

**
measuredwith the Printer FontDirectory function of the FontDownloader program

4

Section 1.4 - Introduction

By contrast a bitmap font only describes a typeface rendered at a single size, resolution, and
orientation. If a 10 point and a 12 point font are needed (say at a given resolution and
orientation) then two different files must be created and stored for the best quality. One size

can be scaled from the other (see #3 above), but this yields very poor results.

The size of a bitmap font varies as the size of the font and the resolution varies. For
example take a 12 point font with 96 printable characters at a 300 dot per inch resolution.

The largest possible bounding box of a 12 point font is 12 points wide by 12 point high.

This can be calculated to be 50 dots:

12 points * 300 dots per inch = 50 dotsiz points

72 points per inch

So the 12 point by 12 point box when translated into dots is a 50 dot by 50 dot character

bounding box. This represents 2500 dots, each ofwhich can be represented by one bit,
assuming the dot is bitonal (i.e. Black orWhite). 2500 bits can be stored as 313 bytes per

character. On average the characters only occupy about one third of this space, so it takes

approximately 104 bytes to store each character's bitmap alone. For 96 characters this rums
out to be about 10 Kbytes to store the bitmaps of a full 96 character set Additional font

information which can take several KBytes also needs to be included along with the

character bitmaps. An example of this kind of information is the charactermetrics of a font

(i.e. width, height, kerning info). If this information takes 4KBytes, then the hypothetical
font described above will need 14 KBytes to store a single size of one font. There are other

factors which influence the size of bitmap fonts. Depending on the combination of the size
and resolution of a bitmap font, the effect of scaling a font will have varied results. Three

(size-resolution)
"regions"

are looked at inmore detail below:

Low (Size-Resolution)
"Region"

This region can be active under three conditions:

1. small tomedium point sizes are selected (e.g. 10, 12, 14);

2. (screen) resolutions of approximately 75 dots per inch are used;

3. themethod of storing the bitmaps uses
"Byte"

or
"Word"

padding.

At these size-resolution combinations the average characters all fit within one byte (of

width). The 12 point bounding box is approximately 12 dots by 12 dots at this

resolution. If the width of the average character is one halfof this, the character is 6

dots wide. With "byte
padding"

the bitmap of this character would be stored as a
column of bytes with the rightmost two bits of each byte padded with zeroes. Using the
same assumptions a 10 point font would have an average characterwidth of

approximately 5 dots; at 14 point, 7 dots. In this region, as fonts are scaled the size of

storage needed scales linearly, not geometrically. This is because only the height of the

font changes (more rows) but the width does not (most characters fit in the one byte).

Note that even though the bitmaps scale linearly in this region, the space required to
store the constant metric information often outweighs the amount of storage space

needed for the variable bitmap data.

No specific example is provided to demonstrate this effect

5

Section 1.4 - Introduction

Medium (Size-Resolution)
"Region"

This region can be active under either of the following
two conditions:

1. No byte padding (i.e. one
character's bitmap runs into the next);

or

2. Byte padding is used with

- small to medium point sizes (e.g. 10, 12, 14);

- (printer) resolutions of approximately 300 dots
per inch.

In the first case, if no byte padding is used both the
width and height change as the font

size changes. The size therefore scales quadratically (as the square).

In the second case, if the size-resolution combination is large
enough so the overhead

incurred with byte padding becomes negligible then, once again,
the font size scales

quadratically. As discussed earlier in this section the 12 point bounding box is 50 dots

by 50 dots at this resolution, so the average character is about 25 dots
wide. With this

size-resolution combination amuch smaller percentage of the information is byte

padding, so as the size of a font increases the space needed to store it increases in two

directions. The formula that better explains this phenomena is:

y = x
2
+ b

Note that the space required to store the constant metric information, specified as b

above, is quite substantial.

Macintosh bitmap fonts are stored in memory with each character butting up to the
next character all having a constant height Byte padding is not used. To show that the

(variable) bitmap portion of the screen font scales geometrically with font size, the 12
point and 24 point Times Roman screen fonts were examined using ResEDIT (a

Macintosh resource editor).

Point Size Total Size* Bitmap Font
Size** Metrics, etc.**

12 7,570 bytes 1,752 bytes 5,818 bytes

24 12,730 bytes 6,912 bytes 5,818 bytes

* Measured with the Font/DAMover utility program.
** Measured with ResEDIT.

Macintosh Times Roman Screen Font

Figure 1.4.1

b = 5,818

x = (point size / 12)
* V 1,752 = 41.9/or the TimesRoman screenfont

It is clearly shown in the figure 1.4.1 that the Bitmap Font Size scales quadratically with
the point size. The size of the bitmap portion of the 24 point font is almost exactly four
times that of the 12 point font (within 1.4% error due to rounding). See references 29
and 30 formore information on theMacintosh sreen font formats.

Section 1.4 - Introduction

High (Size-Resolution)
"Region"

As the (size * resolution) product gets much larger the basic effect on the bitmap storage
needed continues to be rise exponentially with the size of the font. However, when the
bitmaps get much larger, they are generally compressed. A typical compression scheme

is one called "run-length encoding". The simple one dimensional version of this
compression scheme simply stores the number ofwhite and black pixel runs for each
scan line of font bitmap data. More sophisticated schemes allow compression in two

dimensions. The obvious advantage to using data compression is that is reduces the
amount of data storage space needed. The disadvantage is thatmore time (and or

hardware assist) is needed to process the data on both ends: compression and

de-compression.

"Compressed characters consume much less space .. than full pixel arrays (by factors of
up to 40), but require more computation to reconstitute when you need them.

Reconstituting a compressed character is still substantially faster than re-executing the
original character

description."

In the Apple LaserWriter IIntx bitmaps of fonts that

are larger than 20 points in size are stored in compressed format (all Ref. 2)

7

Section 1.4 - Introduction

1.5 Text. Vector Graphics, and Bifman Images

The POSTSCRIPT page description language has instructions that allows the user to draw text,

vector graphics, and (scanned) bitmap images on a page. This thesis concentrates on text and
does not address the vector graphics and bitmap imaging areas in any detail. However, many
real-life applications, like electronic publishing, regularly include these types of images.

POSTSCRIPT is very rich in vector graphics and bit-map imaging functions. It would be

misleading to not even mention them in a paper such as this one. Therefore, to present amore

complete picture ofPOSTSCRIPT, all three will be discussed briefly here.

1.5.1 Text

Text is generally the simplest most efficient andmost used
"mark"

that is put on the

page. Once a font is defined with a string like /Times-Roman findfont 12

scalefont setfont most of the POSTSCRIPT program consists of the actual strings

of characters. In simple line printers the only overhead is the carriage return
- line feed

characters delimiting lines of text. This can be two ACSII characters per each 100

character (or so) line of text or 2 % overhead. With POSTSCRIPT the overhead can

vary widely, due to POSTSCRIPT's diverse functionality. But, for a simple line printer

emulation, the overhead of textual POSTSCRIPT can bemade with a few simple

assumptions:

1. a single positioning command, like 72 720 moveto, will be used per line of text;

2. the strings of text will be encapsulated in parentheses, and followed by the show
command;

(this is a string of text) show

3. 100 characters per average line;

4. the number of tines are sufficiently large such that the overhead incurred by the
instructions selecting the font can be ignored;

5. additionally one carriage return - line feed pair per line is used

With these assumptions there are 22 characters per 100 characters ofoutput text or 22%
overhead. A very dense page of text containing 4,000 characters, can be described by
approximately 4,900 characters ofPOSTSCRIPT code.

Since POSTSCRIPT is a full programming language, a simple program that emulates
the carnage return - line feed function can be defined in the beginning of the file and
accessed by calling that function with a single character (i.e. the name of the function)
after each string of text is specified. Using this method the overhead can approach 3 %
ignoring imnalization overhead, and assuming one matching pair of parentheses
one character (c, below) which calls the carriage return - line feed function:

initialization includes:
-

specifying the font
-

defining the c (carriage return - line feed) procedure*
-

positioning the first line of text

(first string ofcharacters)c(second string ofcharacters)c(third string ofchar)

Generally, as the complexity of the text increases, though, so does the overhead of
describing that text Muchmore is said about te"xt throughout titis^thesis

8

Section 1.5 - Introduction

1.5.2 Bitmap Images

On the other end of the spectrum of efficiency and speed are bitmap images. If the entire
page were defined by a bitmap image thatmatches the resolution of the Apple Laser
Writer Plus print engine (300 dots per inch), it would take over 8 Mbits or 1 MByte of

binary data. That's 90,000 bits per square inch! The overhead ofPOSTSCRIPT for

images is much more severe than for text A single binary byte of image data is
described by two ASCII characters that specify two hexadecimal numbers. So 1 MByte

of binary data is described by 2 MBytes ofASCII-encoded hex in POSTSCRIPT, or
100% overhead. Fortunately one does not necessarily need to specify that much data to
fill the entire page with a bitmap image. This is because POSTSCRIPT:

- is resolution independent The input image does not have tomatch the output 300 dpi

resolution. The POSTSCRIPT image operator automatically adjusts the input to

outputmapping for printers with two different resolutions (say 300 dpi and 600 dpi).
The input can be presented to the RIP in any resolution.

- allows scaling of all images (whether they are text, graphics, or bitmaps). An image

scanned from a 1 inch by 1 inch image can be scaled to any size on the output. In fact

any linear transformation can be specified which can:

scale in x and y by the same amount (1 inch by 1 inch scales to 7 inches by 7

inches);

-

anamorphically scale in x and y (1 inch by 1 inch scales to 3 inches by 7

inches);

-

"tilt"

the image (rectangular image becomes an image fitting a parallelogram);

- rotate the image.

Images can also be scanned as
"contone"

images (i.e. more than 1 bit per pixel; typically
8 bits per pixel formonochrome). Since the output image cannot print grey dots

matching the grey areas of input image, amapping of grey values to black and white

printable dots must be made. This mapping is called screening . Variables that can be

set with POSTSCRIPT are:

- frequency
*
of the screen. This is the number of "halftone dots", or "super-pixels",

are printed per inch on the printer. Each of these halftone dots represent a grey value

(or set of grey values) from the input contone image.

- angle
*
of the screen. This specifies the number of degrees by which the halftone

screen is to be rotated with respect to the device coordinate system.

- spot function *
of the halftone dot. This specifies how the halftone dot is to be

"grown"

as the input grey area changes fromwhite (no black pixels turned on) to black

(all black pixels turned on). Specifically, a procedure is specified which describes the

order in which pixels within a halftone cell are whitened to produce any desired shade

of grey, (setscreen, reference 3)

- input to output transfer function. A procedure can be specifiedwhich maps the input

grey values to the printer grey values,
which is a fraction of all pixels that are to be

whitened, (settransfer, reference 4)

Section 1.5 - Introduction

The two greatest performance botdenecks when dealing with images with

POSTSCRIPT are:

1. accessing the image. Images tend to be large. If a
communications line is used, it

simply takes a long time to download the image. POSTSCRIPT's method of

encoding the image with ASCII-encoded hex, described on the previous page, slows

down this process by a factor of two. For example a 256 KByte binary image, which
when encoded this way becomes 512 KBytes, takes almost 9 minutes to download

using a conventional RS-232 serial interface line running at 9600 baud. Even when

the image is resident inside the RIP, say on a disk, once again due to the size of the

image it still takes a relatively long time to retrieve the image from disk, and to use the
disk as a backup scratch pad when processing the image.

This bottleneck can be diminished by using faster communications interfaces, faster
disks, and more RAM. O course, along with these RIP enhancements usually comes

a higher cost.

2. processing the image. The previous page summarizes the image processing functions
that can be applied to bitmap images. As in all ofPOSTSCRIPT, the functions
vary from very simple to very complex. Applying a particular image processing
algorithm to an image takes an amount of time that is loosely proportional to the
"complexity"

of the image processing function selected and, you guessed it the size
of the image.*ev

This bottleneck can be reduce by: ,

- once again, more RAM and/or faster disc;
- faster general purpose CPU;
- computer architecture that better suits the image processing algorithms that are

commonly used. This can include special purpose hardware.

1.5.3 Vector Graphics

Somewhere in between text and bitmap images lies vector graphics in speed and
efficiency. A single straight tine that traverses the height and width of a page can be
described in just a few POSTSCRIPT instructions:

J mveto % set cursor to lower left comer ofpage
612 792 Iineto % draw line to upper right comer, coordinates are in
stroke %

"points"

or 1/72 inch

Now the Raster Image Processor needs to fill all of the pixels in page memory that
correspond to the pixels thatmake up the black line. Other settings that effect the
rendering of (connected) lines are:

- width of the line, setable with the setlinewidth operator;

JOin' WWCh Can bC mlter' IOUnd' OT bCVel; Settable *** Ae setlinejoin

"

^^^^^ " Pn>jeCted Square; ***** *** **

10

Section 1.5 - Introduction

Instead of the simple sequence of instructions shown above, a path consisting ofmany
shorter lines segments, all connected together, which define the same resultant line

could also be specified in POSTSCRIPT. Even though the same exact bits are turned

one, this problem is significantly more difficult for at least two reasons:

1. more POSTSCRIPT code needs to be read and interpreted;

2. each small line segment needs not only to be drawn, but connected to the next line

segment in such amanner to make it appear as one continuous line.

Other graphical shapes can be specified:

- circualar arc segments (arc, arcn, reference 5) ;

- Bezier cubic spline segments (curveto, reference 6) ;

in addition to stroking (drawing) a line or curved segment, an area that is described

by a sequence of these segments can be filledwith black or some halftone pattern

corresponding to the selected grey value.

(stroke, strokepath, reference 7 ; fill, ref. 8 ; eofill, ref. 9 ; setgray, ref. 10)

In addition to drawing or filling the paths that are defined, these same paths can be used
to specify a clipping boundary through which other text, vector graphics, or bitmap
images are clipped before being rendered in pagememory and subsequently on the
printed page, (clip, reference 11)

Once again POSTSCRIPT gives the user almost limitless flexibillity for printing vector

graphics. Both the amount ofPOSTSCRIPT code as well as the rendering compexity

can vary widely. I have no doubt that similar papers to this one could be written with

concentration on performance aspects of vector graphics or bitmap imaging instead of
text Hopefully, this brief section has provided the reader with some appreciation for

the number andmagnitude of issues when dealing with POSTSCRIPT vector graphics

and bitmap images.

11

Section 1.5 - Introduction

12

Section 1.5 - Introduction

2. Problem Description

There are many different ways of describing a page of text in POSTSCRIPT. How one describes a

page can significantly influence the overall performance of the printing system. The variables to be

investigated, along with the expected outcome of the experiments, are described in sections 2.1.1
through 2.1.8 . The expected results are based on assumptions of the RIP architectural model

described in section 2.4. Sections 2.1.1 through 2.1.5 match with sections 3.1 through 3.5. The
latter sections deal with the specific experimental procedures used, the results that are produced,
analysis of these results, and proposals, if any, on what changes could be made to improve

performance.

For each variable in question, a set of benchmark pages are generated to demonstrate the

significance of the variable. Many of the benchmark pages are included in sections 3.1 through
3.5. Due to space constraints, benchmark pages that are similar to ones included, but different in

some small way, are described, but not included as inserts.

Section 3.2 specifies themethods used in calculating andmeasuring times taken for the different

phases of the RIPing process, namely communications and the combined compilation and
rasterization time. The programs written to support the experiments performed for this thesis are

explained in section 3.3 with backup information provided in Appendix 2.

Once again, section 3 records the experimentallymeasured times, analyzes these times, and

suggests improvements to the RIP architecture and/or to the POSTSCRIPT language itself that

might yield better performance.

Section 4 presents overall conclusions using all of the information in section 3 to comment on the

general trends that were observed.

13

Section 2 - Problem Description

2.1 Variables that Affect Performance

There aremany differentways that a
POSTSCRIPT printer can be instructed in how to print

text on a page. Some variables which affect system performance are listedm the following
sections.

2. 1 . 1 . Font Formats : Outline vs. Bit-Maps

ProblemDescription

Rasterizing a font outline takes muchmore time than copying
(BLT- Block Logical

Transfer) a font already in bitmap form to the page buffermemory. There is a tendency
to use only a small number ofdifferent fonts (at a certain size

and orientation) in any

given written work. In fact it is considered "good
style"

to limit the number of fonts and

sizes to just a few within any document. Furthermore, when using any given font, most

of the time the writer uses characters of the alphabet that have been used before. For

example if the letter
"a"

is used 20 times on a single page in the same font it needs only

to be rendered once and is repeated 19 times. In this case the leter
"a"

is repeated 95%

of the time. Repeat use of fonts and of characters within a font are the two primary

reasons why all POSTSCRIPT printers to date have a font cache which stores the scan

converted fonts for later use in the faster bitmap form. "Printing a character that is

already in the font cache is typically a thousand times faster than scan converting it from

the character description in die
font"

(reference 12) . The time consuming process of

outline font rasterization can be done at various times, influencing the printer's
performance. This section looks at three of these particular times:

1. inside a POSTSCRIPT program, when a new non-cached character is

specified to be printed;

2. once at the
"factory"

where the bit-maps are permanently stored in non-volatile

memory, typically some type ofROM;

3. during idle time. When the RIP is not busy generating pages it can perform the time

corisuming font outline rasterization task.

These three are looked at inmore detail in sections 2.1.1.1 through 2.1.1.3,
respectively. The corresponding experimental procedures, results, and analysis can be
found in sections 3.1.1 through 3.1.3.

Section 2.1.1.4 and its complement section 3.1.4 deal with the performance effects of

scaling and rotating outline fonts. Since detailed performance measurements will be
done in section 3.1.4, the print job for this experiment contains no repeat characters.
This is the only way to isolate the scan conversion process from the bit BLTing (moving
bit-maps) from bit-map cache. More on this in section 3. 1.4.

14

Section 2.1.1 - Problem Description

2. 1 . 1 . 1 Real Time Outline Font Rasterization and Caching

During the course of a typical POSTSCRIPT file, fonts resident in outline form are

specified to be scaled, (possibly) rotated, and printed. When this occurs the first

print using these fonts tends to be slow due to the time consuming task of in-line (or

real time) scan conversion of the outline fonts into the faster bit-map form.

Expected Results

The first page after a power up sequence printing a font that has not been stored in

bit-map form is expected to be slow. Once this first page has been printed, all of the

fonts on that page will have been stored in the RTP's bit-map font cache.
Subsequent pages are expected to print at a much faster rate, assuming the printer is

kept powered-up.

2. 1 . 1 .2 Pre-Cached Bit-Maps

If the time consuming process ofoutline font rasterization is done before the font is

requested in the POSTSCRIPT program, substantial performance gains can be

realized. This section deals with the case where the outline font rasterization is done

once "at the
factory"

and the resultant bit-maps of a select few fonts are stored in

non-volatile bit-map fontmemory, such as EPROM in the case of the Apple
Laser-Writer Plus.

Expected Results

Pages that print fonts that have been pre-scan converted and permanendy stored in

ROM are expected to yield equivalent performance whether the page is the first one

after power up or not. The time consuming outline scan conversion has been done

once, at the factory. The REP need not be bogged down with this task.

15

Section 2.1.1.1 Problem Description

2. 1 . 1 .3 BackgroundOutline Rasterization

While a page printer is in the powering-up state, the user is typically forced to wait

up to several minutes before
the first page can be printed. In laser orLED

electrophotographic printers much of this delay is due to the time it takes for the

fuser heating element to rise up to its required
temperature. During a portion of this

time the RIP usually goes through an
initialization and diagnostic checking phase.

Once this is done, the RIPmust wait until the print engine is ready to accept a print

job from the RIP. This is one example of idle time . Another example of idle

time is the time in between jobs. If the time consuming process ofoutline font

rasterization is done before the font is requested in the POSTSCRIPT program, say

during this idle time, substantial performance gains can be realized.

Expected Results

Several fonts in the Apple LaserWriterPlus are scan converted from there original

outline form to bit-map form and stored in the REP's font cache memory during idle

time. The POSTSCRIPT Language Reference Manual lists several fonts and sizes

at a zero degree rotation (i.e. portrait orientation) that are automatically scan

converted during idle time (reference 13) . They include all of the alphanumerics
and common punctuation of the 10 and 14 point Times-Roman andHelvetica

fonts, and also the lower case letters of the 10, 12, and 14 point Times-Bold and

Helvetica-Bold fonts. In addition, an extension to the POSTSCRIPT page

description language has been specified for the Apple LaserWriterPlus to allow

the POSTSCRIPT programmer to specify which fonts he or she would like to be

scan converted during the printer's idle time. The setidlefonts operator allows

the selection ofone of thirteen fonts with a different x and y point size selectable in

tenths of a point increments, and an angle selectable in increments of five degrees
(reference 26) .

Print times for pages that use the 10 pointHelvetica and the 14 point

Times-Roman fonts will be looked at The POSTSCRIPT files containing
references to these fonts will be sent at varying times after the power-up sequence is
begun. This will be done by simply tirrning the printer off and then back on. It is
expected that if a job using an idle time scan converted font is sent immediately to the
printer following a power up sequence, it will take longer than if some time is waited
before this is done. The experiments are reported in section 3. 1.3.

16

Section 2.1.1.3 - Problem Description

2. 1 . 1 .4 Effect of Scaling and Rotation

Section 2.1.1.4 and its complement section 3.1.4 deal with the performance effects

of scaling and rotating outline fonts. Page 91 of the POSTSCRIPT Language

ReferenceManual states the the "built-in POSTSCRIPT (outline) fonts are usually
defined in terms of a 1000 unit character coordinate system, and their initial

FontMatrix is [0.001 0 0 0.001 0 0]. When a font is modified by the
scalefont or makefont operator, the new matrix is concatenated with the

FontMatrix to yield a transformed
font."

In other words the FontMatrix maps a

font in the 1000 unit space to a one unit space scaling the x and y font units by
1/1000 with the following matrix:

0.001 0 0

0 0.001 0

0 0 1

This matrix scales both x and y coordinates by 1/1000. See the definition ofCTM

in the Glossary (section 5) formore information on the variables of a given matrix.

Since the default unit in POSTSCRIPT is the point, this means that if any given font

is not scaled by some means, it will print out at a 1 point size. Therefore all usable

fonts that are scan converted from outline are initially scaled. The time consuming
matrix multiplication step must always be done. The second part of the scan

conversion process involves the rasterization, or rendering, of the transformed

(scaled, etc.) font outline.

Note that, in addition to the concatination of the FontMatrix with the transform

matrices generated by the scalefont andmakefont operators, the fonts are also
affected by the Current Transformation Matrix or the CTM. Other general

POSTSCRIPT operators thatmodify the CTM are the translate, rotate, and

scale operators. So, there are several ways to scale and rotate fonts. As already
mentioned, executing the scalefont andmakefont operators can scale fonts.

In addition, the POSTSCRIPT scale operator, which affects the CTM, also applies

to fonts. Fonts can be rotated in two ways: by specifying the correctmatrix
variables using the makefont operator; or by executing the rotate command. Note
that themakefont operator provides the user with a much more powerful tool than

just the scaling and rotating functions. Since the user specifies amatrix, any linear

transformation can be specified. This is how fonts are obliqued (ie. tilted) for

example.

There is one more funtion that should bementioned: that is, applying
"intelligence"

to the outlines. It is commonly known that Adobe Systems, Inc., the implementors

ofPOSTSCRIPT in the Apple LaserWriterPlus, applies proprietary
"hints"

to

their font outlines when rendering them. This is done to yield better looking
characters at the 300 dot per inch resolution of the Apple LaserWriterPlus. This

procedure is certainly done at the 0 degree (portrait) orientation and is probably done

at other quadrant orientations
- 90 degrees (landscape), 180 degrees, and 270

degrees. The performance impact of this factor is not known.

This section compares the performance of scaling and rotating a printer resident

POSTSCRIPT outline font versus the same font that has already been scan

converted and stored in the RTP's bit-map font cache memory. The font that has

been selected for these experiments is the Times-Roman font two point sizes will

be 1 1 points and 22 points; three angles of rotation will be 0, 70 and 90 degrees.

17

Section 2.1.1.4 - Problem Description

A^Tcusstdabove, there are two steps
in rendering an outline font:

- applying the scaling and
rotation to the current FontMatrix. This needs to be

done for any scale factor
or rotation angle. Somemultiplies are easier,

however, and should execute
faster. Of the three angles specified, 0 and 90

degrees should be faster than 70 degrees. _

- scan converting the
transformed outline. In going from an 11 to a 22 point

font twice the number of scan lines need
to be accessed; four times the

number of pixels need to be written to.

Scaling Outline Fonts:

If c?jt converting the transformed
outline font is the domimant factor, the 22 point

font should take two to four times longer than the 1 1 point font If however

applying the transformation to the
font outline is the dominant factor, then the

performance should be closer to equal (i.e. independent ofpoint size). Not

knowingwhich of these is dominant, the
expectation relative to font size variation is

as follows:

As the, size of the font increases, the time needed to render that font is expected

to increase at a rate in between one and the square of the size difference. In the

of 1 1 and 22 point size fonts, the 1 1 point font is expected to perform from

1 to 4 times faster than the 22 point font Note that the effect of incorporating
font

"intelligence"

into this was not considered.

Font Outline Scan Conversion vs. Pre-Cached Bit-Map Fonts:

Rendering an outline font is expected to take much longer than pulling the same font

already in bit-map form, from die font cache. "Printing a character that is already in

the font cache is typically a thousand times faster than scan converting it from the

character description in die
font"

(reference 12) Based on this information it is

expected that themeasured performance ofpre-cached fonts should be

approximately 1000 times faster than the measured performance ofoutline fonts.

The overhead of a base (i.e. blank) page must be considered in this analysis. See
section 3.2.4 formore details on this experiment.

RotatingOutline Fonts:

As for the effect of angle on performance, it is expected that 0 degrees will yield the

best performance because of two reasons:
- it is assumed that the POSTSCRIPT interpretor is probably optimized for this

highly used case;
- at 0 degrees, the cos and sin values yield 1 and 0 respectively. Assuming this

information is used to descrease the number of calculations, an increase in
performance should be realized

The performance of the 90 degree rotated case should follow with the 70 degree
rotation case yielding the poorest performance. On the other hand the 70 degree
rotation case could instead, vied the fastest results if font intelligence step turned out
to be a dominant (and slow) process.

18

Section 2.1.1.4 - Problem Descrip^on

2. 1 . 1 .5 Variations ofFont Style

On page 20 of the Fluent LaserFonts User's Guide it states that "complex fonts

... will take longer to print because of the intricate curves and shapes". Three

printer-resident fonts with different levels of
"complexity"

will be used:

1 . Helvetica was chosen for its simple style. There are no serifs and

many of the characters, like H, A, and V use straight line segments

exclusively. This information can be stored in a very compact outline

form and is expected to scan convert faster than the two other, more

complex fonts described in 2 and 3 below. The text of this paragraph

is set in Helvetica at 12 point.

2. TimesRoman was chosen for its medium complexity style. On the one hand

Times Roman is a complex font since it has serifs on many of the characters,

like "i", "m", and "T". On the other hand many outline segments of the

characters of the Times Roman font are made up of straight line segments

orthoganal to the device coordinate system. The page that uses the Times

Roman font is expected to yield better performance than the same page using
the simplerHelvetica font shown in (1) above, but worse performance than the

more complex ZapfChanceryMedium Italic font show in (3) below. The text
of this paragraph is set in Times Roman at 12 point

3. ZapfChancerywas chosenfor its comple^style. 'Whereas thefonts shown in (1)

and (2) above usedmany straight One segments, the ZapfChanceryMedium Italic

font uses many more curvedsegments, which are inherently more compe%. The

performance ofaprintedpage usingMsfont is expected toyield the worst

performance when compared to (1) and (2). The text of thisparagraph is set inZapf
ChanceryMedium Italic at 12 point.

Note that when
"performance"

is mentioned above, only the scan conversion

process is intended to be used as a comparison. Once the font is in the bitmap font
cache all three fonts are expected to perform equally well. If there is a small

difference in speed when printing from the font cache, the font that is the smallest

(i.e. ZapfChancery) should be the fastest, with the font that is the largest (i.e.

Helvetica) should be the slowest This is because the time to BitBLT a font

character from the bitmap font cache is assumed to be directiy proportional to the
size that character occupies in memory. Note that although each of the fonts shown

in (1), (2) and (3) are set at 12 points, they each appear to be a different size.

Expected Results

The following relative scan conversion rates are expected:
- Helvetica: fastest due to the simple style;

,

- TimesRoman: intermediate;
- ZapfChancery: slowest due to the complex font style.

Once the font has been scan converted and placed into the bitmap font cache, all
fonts are expected to print equally fast.

19

Section 2.1.1.5 - Problem Description

2. 1 .2. Resident vs. Downloaded Fonts

Problem Description

Fonts can be either resident in the printer (i.e. RIP) or be downloaded from the host

computer (host-resident). Furthermore, fonts can be in either bit-map or outline format
This section concentrates on observation of the performance differences between

downloadable vs. printer-resident fonts. To simplify the task and to get more

meaningful results outlines are comparedwith outlines, and bit-maps with bit-maps.

Downloading fonts can significandy impact system performance. The key parameter
that effects performance is communication time (i.e. time to download the font). For

outline fonts this may be about 30 KBytes per typeface at any size. For bit-map fonts
the amount ofdata varies with the size of the font (see section 1.4). A full bit-map
representing each character at each size is needed

Fonts can be in one of the following formats:

Bit-map fonts

A. Downloadable bit-map fonts;

B. Printer-resident bit-map fonts.

Adobe Bezier outline fonts

C. Resident in the Apple LaserWriterPlus printer (RIP and print engine combination);

D. Host-resident, downloadable fonts in Adobe encodedBezier format

Third party oudine fonts

E. Downloadable fonts in Bezier format described with generic POSTSCRIPT
instructions;

All five of these formats are used to print simple text and are compared on a performance
basis in this secnon.

*

Three comparisons are made:

A vs. B Resident vs. downloaded bit-map fonts.
See sections 2. 1 .2. 1 and 3.2. 1 .

C vs. D Resident vs downloadedAdobe outline fonts
See sections 2.1.2.2 and 3.2.2.

D vs. E Adobe vs. third party downloaded outline fonts
See sections 2.1.2.3 and 3.2.3.

20

Section 2.1.2 - Problem Description

2.1.2.1 Downloaded Bitmaps vs. Printer Resident (Cached) Bitmaps

Two bitmap fonts are used for this experiment:

A. Downloadable bit-map font
A hand-coded POSTSCRIPT bitmap font similar to the one described in
section 2.3.3 is downloaded to the Apple Laser Writer Plus. For this

experiment only ten 12-point characters were defined at 300 dots per inch.

These ten characters are then printed. The download time as well as the

printing times are both measured

B. Printer-resident bitmap font
The Apple LaserWriter Plus has several pre-scan converted printer-resident

bit-map fonts (reference 14). The 12 pointHelvetica font is selected for

this experiment The time to print the same ten character string is measured

and. compared to the time taken with the downloadable bitmap font of (A).

Expected Results

The total time to print the downloadable font includes not only printing the ten

character string but, even more significantly, also includes the time to download the

bitmap font itself. A 12 point font is assumed at a printer resolution of 300 dots per

inch. If a full character setwere specified complete with upper and lower case

letters, then the average size of a single character bitmap would be approximately
170 bytes, which is 50% of the 50 pixel by 50 pixel character bounding box (see
section 1.4). Since the ten characters chosen for this experiment are all lower case

letters it is assumed that, on average, the size of these ten character bitmaps are 25%

smaller than the average bitmap across the entire character set. This brings the 170
bytes average per all characters down to 127 bytes average per lower case character.

Therefore, the size of the combined bitmaps of the ten characters is 1,270 bytes.

Since POSTSCRIPT describes all bitmaps with ASCII encoded hex, the bitmap data
is expanded by a factor of two (i.e. a hex value of

"A7"

is coded as two sequential

ASCII characters:
"A"

and "7". When this is taken into account the ASCII encoded

bitmaps for the ten lower case characters take up 2,540 bytes. Examining the

POSTSCRIPT bitmap font shown in section 2.3.3, it appears that the font overhead

excluding the fontmetrics is about 1 Kbyte. Themetrics information overhead is

about 40 bytes per character or 400 bytes per the ten character set The anticipated

dowloaded font size is:

2,540 bytes: bitmaps for ten characters

400 bytes: metric information for ten characters

+ 1.000 bytes: additional font overhead

3,940 bytes: expected size of ten character bitmap font

If the RS-232 serial communications interface is used at 9600 baud, then the

expected download time for the 3,940 byte bitmap font is 4. 10 seconds. For this
experiment Appletalk is used instead ofRS-232, so a faster download time is

expected. Note that the raw data transmission speed ofAppletalk is 220 Kbits/sec,
although the actual throughput is a fraction of this mainly due to protocol overhead.

See sections 2.1.2.4 and 3.2.4 formore information on this topic.

Once the bitmap font is downloaded it is expected that the downloaded fontwill
perform as well as the printer-resident bitmap font. The overall time to print the
downloadable fontwill be significandy longer due to the font download time.

21

Section 2.1.2.1 - Problem Description

2. 1.2.2 Adobe DownloadedOutlines vs. Printer
Resident (Internal) Outlines

Problem Description
,

,. ,
. . - , .

The Apple LaserWriter Plus printer has 35 resident outline fonts (see
section 2.4 for

a list of resident fonts). In addition, a user can
purchase additional fonts for use

withMacintosh application programs. These fonts are supplied
onMacintosh

compatible micro-floppy discs and include
several (usually four: regular, italic,

bold, and bold italic) styles of a single font family.
One printer outline font and

several (about five different sizes) bitmap screen fonts is provided per
each style.

The bitmap screen fonts are used by application
programs to provide the desired

WYSIWYG effect. The printer outline font needs to be downloaded to the printer

before the application program can send the POSTSCRIPT program to the printer

that references that particular font This can be done either explicitly, with a

program which downloads the outline printer font or implicitly, by the application

program needing the font In the latter case the
application interrogates the printer to

determine in the font is already loaded into the printer.
If it is, the print program is

simply downloaded. If it is not loaded, then the font is
downloaded right before the

print program.

Section 3.2.2 compares a particular printer resident font Times-Roman to another

Adobe outline font, the downloadable Stone Serif font They are compared on the

basis of scan conversion speed, BitBLT from cache to page buffer speed, and

download time.

Expected Results

Whether the font originates from the host or an from an internal RIP font data

structure (i.e. in ROM), the task of generating a bit-map from outline is essentially
the same in either case, especially if both fonts were supplied by the same font
vendor who, in this case, is Adobe Systems, Inc. So, the task of scan converting
the outlines and the subsequent task ofmoving the cached bitmaps to the page buffer

in the two cases are expected to yield similar results.

The font styles of the downloaded Adobe font called Stone Serif, was chosen to be
similar in complexity to Times-Roman, the internal font it is being compared to.
This was done tominimize the effect that varying the complexity of a font style has

on performance. Section 2.1.1.5 and its complement, section 3.1.5 deal with this
subject in detail.

The one areawhere a large difference in system performance is expected is in the
area of font download time. Resident fonts are held in ROM so there is no
download time. Downloaded outline fonts are approximately 30 to 40 KBytes in
size. If an RS-232 serial interface were used running at 9600 baud the download
time would be about 35 seconds. Since Appletalk is used this time should be less,
but still significant

22

Section 2.1.2.2 - Problem Description

2.1.2.3 AdobeDownloaded Outlines vs. Third Party Downloadable Outlines

Problem Description

As mentioned in the previous section a user can purchase downloadable fonts for

use withMacintosh application programs. These fonts are supplied onMacintosh

compatible micro-floppy discs and include several (usually four: regular, italic,
bold, and bold italic) styles of a single font family. One printer oudine font and
several (about five different sizes) bitmap screen fonts is provided per each style.
The bitmap screen fonts are used by application programs to provide the desired
WYSIWYG effect. The printer outline font needs to be downloaded to the printer

before the application program can send the POSTSCRIPT program to the printer

that references that particular font This can be done either expticidy, with a

program which downloads the outline printer font or implicidy, by the application
program needing the font In the latter case the application program interrogates the

printer to determine if the font is already loaded into the printer. If it is, the print
program is simply downloaded If the font is not loaded then it is downloaded right

before the print program.

Downloadable fonts can be purchased from Adobe, the creators ofPOSTSCRIPT

and POSTSCRIPT fonts. They can also be purchased from other third party

vendors. There are several differences:

1 . Adobe fonts are encrypted

Third party fonts direcdy follow the convention set in the POSTSCRIPT

Language ReferenceManual with no encryption (reference 15).

2. Adobe fonts have "intelligence". That is, there is a proprietary Adobe algorithm

which reads the encrypted oudine font with "intelligence
hints"

and scan

converts the oudine producing a high quality font at the 300 dpi printer

resolution.

Third party font outlines are treated as generic graphic shapes when scaled

They do not have any "intelligence". The quality produced on a 300 dpi device
is noticeably poorer at typical sizes (i.e. 10 or 12 point). Compare figures

3.2.3.A. 1 & 2 (no intelligence) to figures 3.1.1.A.1 & 2 (with intelligence).

3. Adobe fonts generally originate from well known font houses like Linotype and

ITC and are aimed at providing virtually all printing and publishing needs.

Third party fonts generally are new designs with an unconventional artistic flare.

Note, however, that the third party font selected for this experiment, the

CasadyWare Galileo Roman font was chosen for its similarity (in style and

complexity) to the Adobe Stone Serif font

4. Adobe fonts are typicallymore expensive, costing in the $100 to $300. As an

example the list price of the Adobe Stone Serif font used in this section was

$275.

Third party fonts are typically less expensive, costing in the $50 range. As an

example the list price of the CasadyWare GalileoRoman font used in this

section was $45.

23

Section 2.1.2.3 - Problem Description

Section 3.2.3 compares a two downloaded fonts, the
Adobe Stone Serif and the

CasadyWare Galileo
Roman font. They are compared on the basis

of scan

conversion speed, BitBLT from cache to page buffer speed and download time.

Expected Results
, ,

The task of scan converting the Adobe
"intelligent"

outline is inherendymore

difficult than scan converting a
non-intelligent outline (i.e. treating characters tike

graphic shapes). Both tasks need to convert the outlines
into bitmaps but the Adobe

conversion has one more step, the step that incorporates
the intelligence. This

implies that the Adobe downloaded font (with intelligence) should
scan convert

slower than the CasadyWare downloaded font (without intelligence).

Once the bitmap has been generated from outline and stored in the font cache the task

ofprinting the bitmaps is essentially the same
in either case. So, the task ofmoving

die cached bitmaps to the page buffer in the two cases are expected to yield similar

results.

Both the Stone Serif andGalileo
Roman fonts are downloadable POSTSCRIPT

outline fonts. It is assumed that their sizes are similar and subsequentiy their

download times should also be similar.

The font styles of the downloaded Adobe font called Stone Serif, was chosen to be

similar in complexity to CasadyWare Galileo
Roman font it is being compared to.

This was done to rninimize the effect that varying the complexity of a font style has

on performance. Section 2.1.1.5 and its complement, section 3.1.5 deal with this

subject in detail.

Probably the largest factor is the one that is least predictable. That is the variability
introduced when comparing two different font vendors. Even if the original outlines

were exacdy the same, how these outlines are converted into a POSTSCRIPT

programmay have significant effects on how fast they scan convert

24

Section 2.1.2.3 - Problem Description

2. 1 .2.4 Appletalk vs. RS-232 Comparison

Both the Appletalk and RS-232 communications interfaces were used throughout

this paper. RS-232 was usedmore extensively due to the greater control this

interface allows:

-

ability to capture the real-time conversations between the host computer and the

printerwith a protocol analyzer,

- the predictable overhead (i.e. one start bit and one stop bit);

- the point to point nature of the interface.

Appletalk, on the other hand was used primarily to allow the download ofAdobe

and third party (CasadyWare) downloadable fonts. Sections 2.1.2.1-3 and their

complementary sections 3.2.1-3 used Appletalk. It is more difficult to separate out

the protocol overhead and interference from other computer systems sharing the

Appletalk network. Nevertheless, Appletalk is looked at in this section and section

3.2.4 and compared with RS-232. The printing times are examined as well as the

communications download throughput

Expected Results

The printing times are expected to be the same. The communications interface

should not influence the time that a page prints once it is downloaded

The raw data rate of the RS-232 communications interface is 9600 bits / second. It

is shown in section 2.2.1 that the communications overhead is two bits per eight bit

character (i.e. the start and stop bits). Therefore it is expected that the efficiency of

the RS-232 interface will be 80% of the rated bit rate of9600, or 7,680 bits per

second.

The raw data ofAppletalk is 230.4 KBits per second. It is expected that the

effective throughput speed will be much less than the raw data rate, but howmuch is

not easily predictable. It is expected though, that larger files will transfer at a

slower effective data rate than small files, due to the packet size limitations of

Appletalk. Again how significant this factor is, is not predictable.

25

Section 2.1.2.4 - Problem Description

2.1.3. Methods ofPrinting Strings

Strings of characters can be placed on a given page
in a number ofways Each method

outlined in this section will be timed and printed in
section 3.3. All of the fonts used

will be in resident outline format

The followingmethods are described in
general terms. The exact experimental

procedure used is described in section 3.3.

A. Simple unjustified text (i.e. "ragged right")

x ymoveto string starts at specified (x,y) point

(string of characters) show character string is proportionally

spaced

B. Justified texi widi the front end application providing the extra incremental spacing

to be applied between adjacent characters, using the ashow command.

x ymoveto string starts at specified (x,y) point

xinc 0 (string of characters) ashow characters are spaced proportionally

withxinc added to relative x

increment to every character, note

that
"0"

is the y increment

C. Justified text with the front end application providing the extra incremental spacing

to be applied between adjacent words, using thewidthshow command

x y moveto string starts at specified (x,y) point

xinc 0 32 (string of characters) widthshow characters are spaced

proportionally with xinc added to

relative x increment to every
characterwith an ASCII value of
"32"

(i.e. a space); note that
"0"

is

the y increment

D. Justified text with a downloaded POSTSCRIPT program that calculates the excess

space and distributes it between all adjacent characters within the line. The routine to

justify a string of text is repeatedly called once per line. This routine provides the
following functions:

- calculates the width of line of text

- calculates the extra space needed to fill the line;

- calculates the incremental space thatmust be added to each character to achieve
proper justification (note: number ofcharacters in line is passed to this
procedure);

- prints the line of text using the ashow command equally distributing the extra
space in between adjacent characters within the string.

26

Section 2.1.3 - Problem Description

E. This method is the same as that used in (D) on the previous page except the
dowloaded justification program has one additional feature: it calculates the number

of characters in the string.

F. This method is the same as that used in (E) above except the dowloaded justification
program also handles the carriage return - line feed functions.

Expected Results

Each case uses more capabilities of the POSTSCRIPT page description language. It is

expected that as cases A through F are timed and printed, the times will progressively
get larger (i.e. page printing times get slower), indicating that the simpler any program
is, the faster it executes.

2. 1 .4. Resolution
"Targeting"

vs. Total Resolution Independence

POSTSCRIPT is a resolution independent language. Its default coordinate system is

the point which Adobe defines to be exactiy 1/72 of one inch. If one knows the actual

resolution of the printer to be R dots per inch, then the Current TransformationMatrix

(CTM) can be set up to scale all coordinate references by R / 72. Then if only integer
references are made, these references will map direcdy to the engine pixels. In other

words, the CTM whichmaps user coordinates (now in R units per inch) to device

coordinates (in R pixels per inch) is the unity matrix. If the POSTSCRIPT software

has the intelligence to recognize this situation, a possible performance increase can be

achieved The "ragged
right"

(case A) page described in the previous section will be

printed and compared to a similar page with all of the coordinates given in integers

representing pixels. The following POSTSCRIPT commands will be issued:

72 300 div dup scale change CTM to unitymatrix

xnl vnl (string of text) show

xnl vn2 (string of text) show

xnl vnm (string of text) show

Note that only if the actual print engine resolution is 300 dpi, and if the POSTSCRIPT

imaging software is
"smart"

enough to recognize this case, can the potential performance

gain be realized If the print engine resolution were, say 400 dpi, the CTM would not

be the unity matrix and the outputwould be generated looking the same. That is why
this is termed resolution

"targeting"

rather than resolution "dependence".

Expected Results

The case that uses an integer coordinate system that corresponds to the print engine

resolution should execute faster, it is not known how much faster.

27

Section 2.1.4 - Problem Description

2. 1 .5 Effect ofVaried Page Complexity on POSTSCRIPT Processing
Time

2. 1.5. 1 Effect on the Inter-Page Time Delay Program sec

The sec program, shown below, is a delay program which takes as its input an

integer and a token (i.e. variable). It has been empirically
designed to execute in n

seconds, where n is the integer passed to it. The final def command loads the

measured sec execution time into the variable
"passed"

to to the sec routine.

/sec % one second delay under no load

{ usertime /T exch def % keep track of time actually taken

1228 { % loop that executes in 1 second under a

373.737 737.373 mul pop % "no
load"

condition

}repeat

} repeat

usertime T sub def

}def

/W7 7 sec %
"W7"

is the variable which will contain

% the measured execution time of sec

%
"7"

is the target number of seconds

Expected Results

It is reasonable to expect a program to execute in a constant amount of time

independent of the operations that are executed outside this program. This would

normally be the expected results. However, during the course of running other
experiments itwas observed that themeasured time to execute sec varied as the

contents, complexity, and position of text on the printed page varied Unless this

phenomenon were not blindly stumbled upon, there would be no reason to suspect
this to occur. Section 3.5.1 looks into this strange behavior and attempts to explain

why it happens.

28

Section 2.1.5.1 - Problem Description

2. 1 .5 .2 Effect on the Compilation and Rasterization ofText Pages

The sec program, described in the previous section, is used to induce delays in

between the printing of consecutive pages. In this experiment the target delays are

0, 1, 2, 3, 5, 8, 12, and 16 seconds in duration. The nine pages printed are all the

same page that is individually interpreted (or compiled) and rasterized each time.
Figure 2.1.5.2.1 shows how these delays are interleavedwith the task ofprinting
these nine pages.

1 second

delay

2 second

delay

3 second

delay

/ Print \

y
Page j

/ Print \
V Page }

1 Print \
^

Page /

fr second

1 delay

^i

8 second
+

delay ?

12 second

^

I Print

v Page

V-

>
16 second delay

Sequencing of Printing Pages

Figure 2.1.5.2.1

Expected Results

As written in the previous section, it is reasonable to expect a program to execute in

a constant amount of time independent of the operations that are executed outside

this program. The last section dealt with the delay program sec. This section deals

with the program that times and prints a page of text. In either case, this would

normally be the expected results. However, during the course of running other

experiments itwas observed that themeasured time to execute the printing of the

pages varied as the delay time between pages varied. Once again, unless this
phenomenon were not blindly stumbled upon, there would be no reason to suspect

this to occur. Section 3.5.2 looks into this strange behavior and attempts to explain

why it happens.

29

Section 2.1.5.2 - Problem Description

2.2Measurement Techniques

ThP PostScript text fdes generated by the TextBatch Processing
Program outlined in

SSSSS^SSSf1. generals a file with the format shown betow. Noto that
Annendix 2 2 4 contains a sample POSTSCRIPT

file that has been generated by the Text Batch

Sn?References to appendix 2.2.4 are made to show the.actual hoe. of code

that correspondto the Lhree parts of the
generated file: Header, Body, and Trailer.

Header Two lines ofPOSTSCRIPT code that saves the current time in a local
variable and

sets up the text file that
follows to be a callable procedure enabling timing

measurements to be taken.

Sec Appendix 2.2.4, page 1, (the first two lines):

/Tsd usertime def

/Page{

Body A sequence ofPOSTSCRIPT instructions which selects fonts, positions the cursor

at new-line positions, and writes strings of text.

See Appendix 2.2.4, page 1 (starting with the third line) to page 2 (up to and

including the last show command:

/Times-Roman findfont 9.0 scalefont setfont

(effectively transfers the copy image to the paper.) show

Trailer POSTSCRIPT code that calls the Body a number of times, with different delays

between calls, and keeps track of the Body download time, the page rasterization

times and delay times; a trailer pagewith all of the timing information is also printed.

See Appendix 2.2.4, page 2 (starting with the first usertime instruction) to the end

ofpage 6:

usertime /TO exch def % record time before showpage

showpage

The POSTSCRIPT usertime instruction is used extensively in recording times. When the

usertime instruction is executed an integer representing the current time, in milliseconds, is
placed on top of the stack. This is actually the time from power-up to the current time. To

measure the time it takes to download the Body ofPOSTSCRIPT code, or to execute the Body
(generate the corresponding page bit-map), a second time is taken. The first time is subtracted
from the second time to derive elapsed time. This procedure is repeated a number of times.

These times are kept in variables until all of the pages are printed. Then a final trailer page is

printed (example shown on the second page ofAppendix 2.2.5) showing the times, in
milliseconds, and graphing the page generation times relative to the programatically induced

delay times between the pages. Many different times are extracted in this way and are discussed
more fully in sections 2.2.1 and 2.2.2. Figures 2.2.1, 2.2.2.1, and 2.2.2.2 illustrate how the

times are used and are based on the example text POSTSCRIPT page shown in Appendix
2.2.4. Key instructions are extracted from the example in Appendix 2.2.4 and highlighted in
these figures to explain themethod used tomeasure the various times.

30

Section 2.2 - Problem Description

2.2.1 Communications

Please refer to figure 2.2.1.1,Download TimeMeasurement , for the following
explanation. An initial time is loaded into the variable Tsd, start download time.
The Page procedure contains the sequence of commands that specify the printed text

on the page. However, the first time the POSTSCRIPT interpreter
"sees"

this

sequence of instructions, previously called theBody, it does not execute them.

Later, in the Trailer portion of the POSTSCRIPT file, the Page procedure is called
and subsequendy executed. The first time through theBody simply passes through

the interpreter until it
"sees"

the } def sequence, which tells the interpreter that the
procedure Body, named Page, is done. Immediately following download of the
Page Body another time is loaded into the variable Ted. The download time, Tdl,
is derived by subtracting the start download time, Tsd, from the end download

time, Ted.

To verify the validity of this method the times generated in this manner were

compared to times generated by two othermethods. A protocol analyzer was used

to take twomeasurements: the actual download time and the number of characters

that were downloaded. A Hewlette Packard 4953A Protocol Analyzer was

connected in a (passive) monitor mode in between the host computer, which emits
the POSTSCRIPT program to the printer, and the Apple LaserWriter Plus printer

itself. The HP4953A was programmed to measure the time to download the Page

portion of four increasingly more difficult pages. The first page did not print

anything at all, butmerely ejected pages. The second page printed the A through C

sections of text shown in Appendix 2.2.5 in one font style, size, and orientation.

The third page included printing of sections A through F; the fourth page, A through

I. In all cases the trailer page reporting themeasured download time using the

POSTSCRIPT usertime operator was also printed. The rninimum and maximum

recorded times (from five runs) are reported in column A of the table shown in

figure 2.2.1.2.*>^

Tomeasure the download times with theHP5953A Protocol Analyzer the triggers

were set such that one of the protocol analyzer's internal timers was started at the

beginning of the downloaded character stream being measusred and was stopped at
the end of this same character stream. Measurements were taken on all five runs.

The minimum andmaximum times recorded with the protocol analyzer are reported

in column B of the table shown in figure 2.2.1.2. In all four cases the maximum

error is less than one percent, ranging from a maximum error of 0.02 % to 0.90 %.

The HP4953A Protocol Analyzer captures the entire character string that is

transmitted It is temporarily stored in the protocol analyzer's internal memory
buffer and then displayed on the protocol analyzer's CRT screen. Once on the

screen, the relavant downloaded character stream is easily counted. The number of

downloaded characters for all four jobs are shown in column C of figure 2.2.1.2.

Job 1 downloaded 213 characters, ... job 4 downloaded 4,749 characters. To

calculate the download time several transmission parameters must be known: #

bits/character, # bits / second, # start bits, and # stop bits. This information was

gotten by reading and interpreting the switch settings on the serial interface board

used to drive the printer.

31

Section 2.2.1 - PerformanceMeasurement and Calculation

/Tsd usertime def
-HI

HMimitlllMIIIIIMtltl

"Tsd"

is the start download time

/Page {

/Times-Roman findfont 9.0 scalefont setfont

72.00 709.20 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT

... of film that is capable of being electrically)show

72.00 48.00 moveto

(... transfers the copy image to the paper.)show

usertime /TO exch def

showpage

} def

>

The first time the PostScript file is

downloaded the
"Page"

routine is

not executed, so the primary factors

that influences Tdl (download time)
are the size of the

"Page"

procedure

and the speed of the communication

link.

usertime j /Ted

Page

exch def"11

usertime Ted sub /TIB exch def

TO Ted sub /T1A exch def

is the end download time

Ted Tsd sub /Tdl exch def

Download Time (Tdl) =

"EndDownload Time (Ted) -

Start Download Time (Tsd)

Download Time Measurement

Figure 2.2.1.1

32

Section 2.2.1 Problem Description

tp
I- Cfl o On * (N

On T1 o

sw

4
d d d

2 x i ^ i fe
u ea w o tt <* CN

On , 1 <

-

< P d d :'.:d

-o
S"

MM 2 x>

ea C3 -*- -.

c

<

u

o

o :

"a
i r.
-s t

1 8
1 P co

*3 HS
o g
co cs

e
O CO

E o
a o

S CO

S C

c3 o

u to

S2

c^
S

E o

U 1

Q->. 5
S3 a> ^J Q NO

CO oo

On r~-

^ w o *"* in \D r On

<N CN cs oi co co

L 1 '-W

K !r A i A

2 3 g
CM f t t

22 ! -^ to ^

1 1 1
r-

3
i S

"

CJ

is'

O TT <J oo J ^ ^

a

u

S

so

s

1

NO

CO

1

*

1
! <w C? c

y i 1 1
ei
at q ^

"g
C4

t f ?

si Ok a* tt NO oo

a'Cg g

^22
.I

OO

NO

CO

>n
On

TJ : =,
; 4> O

O

s .- Co W Oi <^

4>
s

Tf NO

o
"el- 00 >0

ri

NO

CO

ON

c

o
1-H cs CO *

-J

c

oo

(U

O rN

O

Q
c
o
i-H

+-"

Cn3

o
1I

c

o

U

orj

33

Section 2.2.1 Problem Description

TheMTT-850/1650B multiple terminal interface is a 16 port serial controller internal
to the SunMicrosystem 3/280 computer. Port 7 of this controller was used to

download the POSTSCRIPT jobs for all of the experiments run for this thesis.

The communication port was set up as follows:

- baud rate = 9600 bits/second
- character length - 8 bits
- 1 start bit
- 1 stop bit
- No parity

Calculating the download time is now a simple arithmetic calculation. To

demonstrate this, job 4 is used below:

Total number of bits per transmitted character
= 1 start bit + 8 information bits + 1 stop bit
= 10 bits / transmitted character

Download time (job 4) = 4.747 char * 10 bits/char = 4.947 seconds

9600 bits /sec

The calculated times for jobs 1 through 4 are shown in column C of figure 2.2.1.2
just below the # character entries. Once again the results are excellent. In all four
cases the maximum error is less than one percent, ranging from amaximum error of

34

Section 2.2.1 - PerformanceMeasurement and Calculation

2.2.2 Interpretation (Compilation) and Rasterization

Once the Body is downloaded, it is then called and subsequently executed There

are two parts to this task. The first is interpreting the string ofASCII bytes to
generate the POSTSCRIPT tokens. It is assumed that these tokens are then

executed in an interpretive nature, immediately generating the raster page bit-map.
However, in some RIPs an intermediate "display

list"

is generated which better fits

the hardware capabilities of the RIP. The combined process of tokenizing the ASCII

string and generating this "display
list"

is commonly called "compilation". This

process is much like the process that is done by a
"C"

or
"ForTran"

language

compiler.

The second part, called "rasterization", is the process of generating the raster image
from either die list of tokens, in a single interpretive manner, or from a pre-compiled

display list Since there is no way to externally separate the interpretation or

compilation step from the rasterization step, they are treated atomically throughout

this paper.

Figure 2.2.2.1, Timing ofFirstPrintedPage , shows how the timing of the first
page is done. After the Body has been downloaded, the current time is stored in the

variable /Ted. This is the same variable that was used in measuring theBody
download time (see section 2.2.1). The Page call causes the Page procedure to be

executed. All of the commands in theBody are inside the Page procedure. They
consist of selection of fonts, positioning ofnew lines, and printing of strings of

text The last POSTSCRIPT instruction in the Page procedure is showpage,

which causes the page to be printed and the page buffer to be erased in preparation

for the next page. Two times are taken immediately before and after this showpage
instruction. The time that is ofprimary interest is the one following complete
execution of the Page procedure. Upon completion of this procedure, program

control returns to the instruction following the Page call. This instruction gets the
current time, using usertime, subtracts the time value that was recorded prior to the

Page call, in /Ted, and stores the difference in a new variable /TIB. /TIB now

contains the time taken to fully generate the first page as specified in the Page
procedure. A second time, stored in /T1A, is the same time as in /TIB, less the

time taken to execute the showpage operator.

35

Section 2.2.2 - Problem Description

/Tsd usertime def

/Page {

/Times-Roman findfont 9.0 scalefont setfont

72.00 709.20 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT

... of film that is capable of being electrica!ly)show

72.00 48.00 moveto

(... transfers the copy image to the paper.)show

showpage

} def

/TO exch def "ill!
is the end of first page time

marker before the
"showpage"

operator is executed.

usertime /Ted

Page

exch def""!

Start Here

usertime Ted sub /TIB exch def

End Download Time
"Ted"

is used

"as the start time to measure the first

page execution time.

Current time, immediatly following
execution of the first page procedure,

is the end of first page time marker

(including "showpage").
TIB"

holds

the time it takes to completely execute

the first page.

TO Ted sub /T1A exch def
M| i" mm iMiiiiiiiiiHiiiiiiiiiiiiiiiiiii

T1A"

holds the time it takes to print

the first page, excluding execution of

the
"showpage"

operator.

Ted Tsd sub /Tdl exch def

Timing of First Printed Page

Figure 2.2.2.1

36

Section 2.22 Problem Description

Figure 2.2.2.2, Timing ofPages 2 Through 9 , shows how the timing of the

following eight pages is done. First two supporting POSTSCRIPT procedures

must be described:

/sec This procedure is passed a literal (eg. /W2) and an integer (eg. 2). The
integer acts as the outer loop variable. The inner loop, which multiplies two
real numbers 1,228 times, executed under a no-load condition has been

measured to yield a one second delay. The
"no-load"

condition was simply
the sec procedure with calls to it along with the

"Trailer"

page reporting
these times. No printing of text strings, other than the

"Trailer"

page itself,
was executed for this measurement. Also, delay times corresponding to the
integers passed to it produced the expected linear result That is "2

sec"

yielded a two second delay, "3
sec"

yielded a three second delay, ...

The literal preceding the sec call (eg. /W2) is loaded with the actual
measured time of the induced delay.

/Pr This procedure is also passed a literal (eg. IT4) that is loadedwith the time
taken to execute the Page procedure. Inside the Pr procedure times are

taken before and after Page is called. The difference of these times are

loaded into the literal.

Using the sec and Pr procedures a total of nine pages are printed in the following
manner:

Print page 1 method shown in figure 2.2.2.1

no delay
Print page 2 using Pr shown in figure 2.2.2.2

1 second delay using sec shown in figure 2.2.2.2

Print page 3

2 second delay :

Print page 4 :

3 second delay
Print page 5

5 second delay
Print page 6

8 second delay
Print page 7

12 second delay
Print page 8

16 second delay
Print page 9

All delays andmeasured page times are reported on the trailer page (see page two of

Appendix 3.2.5). Additionally, the (delay before a page, page generation) time pairs

are graphed showing the effect delays between page has on page rendering times.

37

Section 22.2 - Problem Description

/Page

{

} def

Page Calling to print first page

"/sec

{
usertime /T exch def

{

1228

373.737 737.373 mul pop

Jrepeat

} repeat .

usertime T sub def I"'"!!!

op /

> def

L

'/Pr

{

usertime /T exch def

Da CTp l||[|
lllllllllllllll IIIIMIIIIIIIHIIIIIII

j usertime T sub def |il||||

}

iiimiiiiiiiiiMiiMiiimiHHiiHii

|||l fiiiiiiiiiiiiiiiiiiiiiiiiiiiiil
""...

/T2 Pr

AVI 1 sec

/T3 Pr

"'".,

JW2 sec

r
_/T4Pr

This section ofPostScript has been

previouslymeasured to take 1 second

to execute with no other code running.

.""

The variable
"W2"

is loaded with

the actual measured time taken in

this procedure. This is the current

time minus the time
"T"

recorded

when entering "sec".

, Call to print another page

The varialble
"T4"

is loaded with

the actuale measured time taken to

print this page. This is the current

timeminus the time "T recorded

when entering
"Pr"

"'
"No delay between pages 1 and 2

"The number
"2"

is passed to the
"sec"

procedure to cause a 2 second delay.

< Code that calls the procedures to

cause a delay and print a page

/W16 16 sec

/T9 Pr

Timing of Pages 2 Through 9

Figure 2.2.2.2

38

Section 2.22 Problem Description

To test the repeatability ofmeasurements themethod just described was modified
slightly. Instead of changing the delay times from page to page, all delays were set
to be equal. Each job was executed eight times with the delay set to 0 for the 1st
run, 1 second for the 2nd run, 2 seconds for the 3rd run, ..., and 16 seconds for the

8th run.

During each of the eight runs per job, nine pages plus the trailer page were printed.

Print page 1

N second delay
Print page 2

N second delay
Print page 3

N second delay
Print page 4

N second delay
Print page 5

N second delay
Print page 6

N second delay
Print page 7

N second delay
Print page 8

N second delay
Print page 9

Print trailerwith timing information

N = 0 (no delay instructions are executed), 1, 2, 3, 5, 8, 12, and 16.

Theminimum andmaximum times ofpages 2 through 9 are shown in figure

2.2.2.5. Minimum andmaximum times of all eight delays per run are also recorded

there. Three jobs were run:

Job 1 prints a blank page.

Job 2 prints a simple text page and shown in figure 2.2.2.3. The page had been

printed before this experiment was done so that all of the fonts were already
in bit-map form (see sections 2.1.2 and 3.2 formore on this).

Job 3 prints a vector graphics page and is shown in figure 2.2.2.4.

39

Section 2.2.2 - Problem Description

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that

is capable of being electrically charged, and is
sensitive to direct light. The IMAGE LOOP is

driven around the IMAGE LOOP CORE in a continuousmotion for as long as copy exposures

are being made (see Figure 1).

B PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative

charge on the IMAGE LOOP. This prepares the IMAGE LOOP for exposure and development.

The IMAGE LOOP starts moving on command
from LOGIC AND CONTROL. LOGIC AND

CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE

area, where it is exposed to a reflected light copy image that is
focused on the IMAGE LOOP at

precisely the right time, as determined by LOGIC AND CONTROL. The original document is

illuminated by high intensity flash lamps for a short duration, which
prevents blurring of the

image as it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is

removed from the areas that are exposed to light The charge remains in the areas that are not

exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP

so that the focused copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is

known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an

improperly charged segment. These segments are produced when the PRIMARY CHARGER is

turned on at the time of initial IMAGE LOOP movement and turned off during final IMAGE

LOOP movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP, it floods

the moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to prevent

unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP

area now enters the DEVELOPER STATION ASSEMBLY where positively charged KODAK

EKTAPRINT K Toner particles are attracted to the IMAGE LOOP. Development occurs as the

result of attraction of the toner particles to the electrostatic image on the IMAGE LOOP. The

toner particles are carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are

salvaged at this point by the SCAVENGER ROLLER and returned to theDEVELOPER

STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE
LOOP and thereby increases its life, the POSTDEVELOPMENT ERASE LAMP is used to
lower the high level charge that was required for proper image development This
POST-DEVELOPMENT ERASE process also helps to prevent residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet
of copy paper is advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At

precisely the right time, the copy paper is directed into contact with the IMAGE LOOP and its
developed image. This aligns the copy paper and the image on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the
TRANSFER CHARGER, which produces a negative charge on the paper surface to attract the
positive charged developer toner. This effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output

Simple Text Page

page 40 Figure 2.2.2.3

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

Vector Graphics Page

Figure 2.2.2.4 page 41

Repeatability Experiment Results:

All of the repeatability results are shown in figure 2.2.2.5.

The measured delay times were within 2 milliseconds per run. If one assumes the

accuracy of the of the usertime command to be 1 millisecond, as the

POSTSCRIPT Language Reference Manual indicates, the best results that can be

expected is exactly 2milliseconds
(i.e.+/- 1 millisecond). However, as figure

2.2.2.5 as well as figure 2.2.1.2 shows, all differences are even numbers (in

milliseconds). This suggests the accuracy may actually be limited to 2 milliseconds.

In any event, this experiment shows exellent repeatabillity results for the delay time
measurements. There is still one more interesting (puzzling?) point to note; that is,
how the delay times change depending on the complexity of the job. This is not the
expected result since one would normally expect die same instructions executed on

the sftme processor to take the same amount of time. This point is further explored

in sections 2.1.5 and 3.5.

The measured page times were all within 0.46 % per run, and most were much

better. The worst case is job 2 with a delay time of 16 seconds: a 28 millisecond
variation was recorded which translates to a 0.46% error. The vector graphics job

(#3) seems to yield more stable results than the text job (#2) or even the blank page
job (#1). Even though this experiment shows a small amount of variation from run

to run, the results of less than 1/2 of 1 percent indicates that this method of
measurement is adequate for timing of the experiments run for this thesis.

42

Section 2.2.2 - Problem Description

Job 1
1

Job 2 Job 3 ,

Input

Delay
Time

Blankpage Fullpage - simple text vector graphic

min max % difT *
min max

%diff*
min max % diff *

Mpficnrpft T\V1 AV

0

1 1006 1008 1714 1716

"

w

1712 1714

2 -<-2006-*- 3536 3538 -#-3536-^

3 3004 3006 5156 5158 4904 4906

5 5004 5006 7154 7156 6904 6906

8 8002 8004 -4-40154 -?
- .*_9904-#*

12 -4-12000 -? -4-14152 -? -#-13900 -?

16 -#-15998 -*? - 18148 18150 - * 17900

- Measured PAGE TIM!

7364 7366

. &!:

0 7362 7368 .08%

W

-#-10124 -#?

1 6354 6358 .06% 5646 5650 .07%
^_ 9410-*-

2 5356 5360 .07% 5088 5096 .16% 8588 8592 .05%

3 4356 4358 - 4470 4476 .13% 8218 8220 ;-

5 3512 3526 .40% 4466 4482 .36% 8218 8220 -

j

8 -4- 3518? - 6008 6014 .10%
-#- 8218 -*?

12 5050 5060 .20% 6062 6074 .20% 8214 8218 .05%

16 5104 5114 .20% 6054 6082 .46% 8214 8218 .05%

Results of Repeatability Experiment

Figure 2.2.2.5
fote: if time difference is 2 msec.

rr less, "%
diff"

is not shown

43

Section 2.2.2 Problem Description

2.2.3 Print Engine Paper Ejection

Once the RIP has completed generating the bit-map page, the print engine main drive

motor is turned on to start the actual page printing process. The Canon LBP-CX

print engine page rate is 8 pages per minute. The
8.5"

x
11"

page is printed lengthwise.

That is the RIP writes each scan line in the
8.5"

direction. The Canon LBP-CX print

engine employs a real-time serial interface to facilitate the transfer of the full page

bit-map from the RIP to the print engine. To transfer an
8.5"

x 1 1
"

page at a 300 dot

per inch resolution at a rate of 8 pages perminute, the
"video"

data interfacemust

sustain a bit rate of approximately 1. 1 MBits/sec. This number is calculated as follows:

Bits /page ~= (8.5 inches * 300 dots / inch)
* (1 1 inches * 300 dots / inch)

= 8,415,000 bits /page

Ave. data rate ~= (8,415,000 bits/page)
* (8 pages/minute) / (60 seconds/minute)

= 1.122MBits/sec.

These calculated numbers are only estimates andwill differ from the actual specified

data rate for following reasons:
1 . The writeable scan width is not exacdy 8.5 inches, nor is the page length exactly

1 linches (note that European A4 paper size is supported which is
8.3"

x 1 1.7").

2. Most RIPs do not print on the outer 0. 1 inch border reducing the amount ofpage

bit-map storage required.
3. There are inefficiencies in the transfer of data between scan lines and between

pages.

It is assumed that the RIP has hardware to serialize a 16 bit word and transmit this

serial stream to the print engine. It is also assumed that noDMA (DirectMemory
Access) hardware exists in the RIP. This means the RIP CPU must transfer a word

from bit-map page memory to the parallel-to-serial converter word buffer approximately
every 14microseconds. This number is calculated as follows:

Ave. data rate ~= l.lMbits/sec (from above)

Time per word ~= (16 bits/word) / (l.lMbits/sec)
~= 14microseconds/word

At a 10MHz CPU clock rate this turns out to be 140 clock cycles or every 14
microseconds. It is assumed the transfer takes ~ 14 clock cycles or 1.4microseconds
(estimate). A memory to memory wordmove takes 12 clock cycles if the source (page

bit-map) address is kept in an address register that is post-incremented (An)+, and if the
destination (memory-mapped buffer) address is kept in a second address register (An)
(reference 27). Two additional clock cycles are added assvoming read and writememory
that requires a nominal one wait-state, which brings the total to 14 clock cycles. This
means that approximately 10% of the CPU is dedicated to performing the bit-map to
print engine writing function.

It is not the intent of this thesis to further evaluate the print engine specific performance,
but the RIP performance. Exact numbers to drive the print engine can only be calculated
or measured by examining the exact implementation. This is impossible due to the
fundamental rule followed throughout all of the experiments run for this thesis* only
external examination of the Apple LaserWriter Plus is allowed (i.e. no
reverse-eneineering).

44

Section 2.2.3 - Problem Description

Itwas observed that the page ejection time for a single page was approximately 15

seconds for the simplest POSTSCRIPT page. Once the printer main drive motor

was in motion, however, subsequent pages could eject at a continuous 8 page per
minute rate. Since only 10% of the CPU time is taken up by the data transfer to the
print engine, 90% is free for communications and generation of the next page. Timing
the interaction of the RIP with the print engine is further investigated in sections 3.5.1

and 3.5.2.

2.3 Programming Tasks

A set ofPOSTSCRIPT programs are generated to test the performance of one implementation

of POSTSCRIPT, namely that of the Apple LaserWriter Plus, while printing text in a variety
ofways. Several support programs and packages that aid in the generation of these test pages

are described below:

2.3.1 Extraction ofFontWidths from Apple LaserWriter Plus

The POSTSCRIPT program shown in appendix 2.1.1 interrogates the Apple Laser

Writer printer to extract three sets of font widths at a font size of 10 points. The

numbers extracted are real numbers, in points, representing the font width of each

printable character specified in strings
"stl"

and "st2". These widths are needed by the
Batch Composition Program, described in section 2.3.2 below, which implements a

simple line break algorithm.

Figure 2.3.1 shows how the POSTSCRIPT Font-Width Interrogation Program fits into

the task of automatically generating POSTSCRIPT text pages. The program shown in

appendix 2.1.1 requests the Times Roman, Times Italic, and Times Bold fonts.

Similar programs were written to get the other four fonts required of the Batch

Composition Program.

Appendixt 2.1.2 shows the page of font widths printed on the Apple LaserWriter Plus

when sent the program shown in appendix 2.1.1. In order to put the fontwidth

information into a file that the Batch Composition Program could use, aUnix file was

hand created using the
"vi"

editor on a Sun workstation. The format of this file,

consisting of (character,width) pairs, is shown in appendix 2.1.3.

45

Section 2.3.1 - Problem Description

Apple

Laser Writer

Plus

Printed

Font

Width

Tables

see

appendix

2.1.2

PostScript

Printer

POSTSCRIPTS

Font * Width

Interrogation

'rogram
j

see

appendix

2.1.1

Hand Editing
Session to

Create UNIX

Font-Width File

PostScript

Header

Program

PostScript

Trailer

Program

H

see

appendix

2.1.3

Structural

Markup Files

see appendix 2.2.3

Fetch FontWidths,,

2fi

Text Batch

Processing
Program

see appendix 2J2.1

Generate PDL File

Justified

PostScript^
Files

Key to ProgrammingLanguages:

POSTSCRIPT

see

appendix

2.2.2

"SGML-Like"

Pre-Justified

Text Files

(paragraphs

are delimited)

Hand Code
in

POSTSCRIPT

v Add

-^Graphics

by Hand

To Printer

Logical Row to Generate Benchmark PostScript Pages

Figure 2.3.1

46

Section 2.3.1 Problem Description

2.3.2 Batch Composition Program

A batch composition program, written in C, generates a POSTSCRIPT file using two
SGML-like files for input. Appendix 2.2.2 shows one type of an input file that contains
the printable text with beginning and end ofparagraph markers, <p> and </p>
respectively. The second type of an input file, shown in appendix 2.2.3, contains
"structure"

markup information. Each line of the
"structure"

file of appendix 2.2.3

corresponds to one paragraph of appendix 2.2.2. The parameters that can be set are:

Font typeface (number corresponding to a name) and font size in points;

Leadingmultiplier (1.0 indicates that the vertical spacing is equal to the font size);

Width of the printed justified line, in inches;

Justification method (one of 6 possible types, corresponding to section 3.3);

(x,y) Cursor position, in points, at which the first character is printed.

In the example shown in appendix 2.2.3, structure commands for nine paragraphs are
specified. There are nine tines of commands contained within the < and > symbols,

corresponding to exacdy nine paragraphs in appendix 2.2.2, which are delimited by the
pair <p> and </p>. The structure commands of the first paragraph are:

F 1 9.0 Font number 1 (Times Roman); 9 point

L 1.2 leadingMultiplier of 1.2meaning the vertical spacing from line to line is

1.2 times the size of the font (9 point). For the first paragraph the

distance from the baseline of one line of text to the baseline of the line of

text directly below it is 10.8 points (1.2 * 9).

W 6.5 Width of the lines of text are limited to 6.5 inches. In other words, the

batch composition program inserts a line break after 6.5 inches of text

read in.

J 1 Justificationmethod number 1 : simple ragged right utilizing the simple

POSTSCRIPT show command. See section 5.1.3 for the mapping of

the othermethods that are experimented with.

C 72.0 720.0 Starting (cursor) position at (x=72 points, y=720 points)
Since 72 points equals one inch, the point at which the printing starts is

one inch from the left edge of the page and 10 inches from the bottom

edge of the page (or one inch from the top).

47

Section 2.3.2 - Problem Description

For paragraphs 2 through 9 only font commands are issued.
All of the other (non-font

related) commands shown above are
still in effect until changed. Note that when the

font size changes, the vertical line spacing changes along
with the size of the font even

though the leading multiplier L stays constant at 1.2. The command for:

paragraph 2 is F 1 11.0 = Font 1 (Times Roman); 1 1 point

paragraph 3 is F 1 13.0 = Font 1 (Times Roman); 13 point

paragraph 4 is F 2 9.0 = Font 2 (Times Italic); 9 point

paragraph 5 is F 2 11.0 = Font 2 (Times Italic); 1 1 point

paragraph 6 is F 2 13.0 = Font 2 (Times Italic); 13 point

paragraph 7 is F 3 9.0 = Font 3 (Times Bold); 9 point

paragraph 8 is F 3 9.0 = Font 3 (Times Bold); 11 point

paragraph 9 is F 3 9.0 = Font 3 (Times Bold); 13 point

Appendix 2.2.1 is thepseudocode for the C program that generates the POSTSCRIPT

file from these two SGML-like input files. This Batch Composition program calculates

howmany words, along with their associated interword spaces, fit within the line width

specified in the "Markup File". In POSTSCRIPT fonts and their widths are linearly
scaled. So the Batch Composition program uses the font widths shown in Appendix

2.1.3 and scales these widths appropriately (i.e. linearly). The POSTSCRIPT file

generated from the input files of appendices 2.2.2 and 2.2.3 is shown in Appendix

2.2.4, with the actual Apple LaserWriter Plus printer output shown in Appendix 2.2.5.

48

Section 2.3.2 - Problem Description

2.3.3 Downloadable POSTSCRIPT Bitmap Font Program

The program shown in figure 2.3.3.1 is a part of one that is listed in the

POSTSCRIPT Language Tutorial and Cookbook (Reference 17). Two small

changes were made tomake this example and the experiment of section 3.1.1

simpler. First, the number of characters defined was limited to ten: only ten of the
twenty-five characters (plus a special "not

defined"

blank character) were specified

in the encoding vector, and similarly bitmaps for the same ten characters were

defined when building the CharData dictionary. Second, the string to be printed
consisted of only one occurrence of each of the ten characters instead of five lines

(one sentence) of text In otherwords, all ten characters were printed exactiy once.

A user-defined fontmust contain the following entries:

FontMatrix transforms the character coordinate system into the user coordinate

system. In the program shown in figure 2.3.3.1 it is the unitymatrix.

FontType must be the integer
"3"

for user defined fonts.

FontBBox specifies the (x,y) coordinates for the lower left and upper right
corners of an imaginary box that represents the smallest rectangle in which
all the characters of the font being definedwould simultaneously fit,
assuming all of their origins were coincident. In the program shown in

figure 2.3.3.1 the lower left comer has the coordinate (-0.16, -0.24), and the

upper right corner has the coordinate (1.28, 1.2). Note that later in the
program the imagemaskmatrix , an input to the imagemask operator, is

set up tomap a 25 pixel character (baseline to baseline) to the character

coordinate system which is one unit wide and high. Taking this into account
the coordinates shown above map into the following pixel coordinates: lower
left comer is (-4, -6); upper right comer is (32, 30). Figure 2.3.3.2 shows

this mapping graphically for the character
"g"

of the user defined font of

figure 2.3.3.1.

Encoding is a 256 element array which maps the array indices to character
names. In the case of printer resident fonts these names, in turn, serve as

keys in the CharStrings dictionary to reference the (proprietary) executable
character drawing programs. In the case of a user defined font, a procedure
provided by the user, which must be named BuildChar, uses the

Encoding vector to find the character name which serves as a key into the
CharData dictionary. Information in this dictionary is used by the
BuildChar procedure to render the character. More information on the

BuildChar procedure is given on the following page.

In the program shown in figure 2.3.3.1 the Encoding vectormaps ASCII
character codes to the letters, "a", "b", "c", "d", "e", "f, "g", "h", "i", and

"m". All other character codes have been set up to reference the ".notdef
'

characterwhich does nothing.

49

Section 2.3.3 - Problem Description

BuildChar is a procedure provided by the user to render the desired character.
The specific BuildChar routine shown in figure 2.3.3.1 is described below

in detail.

The current font dictionary, whose name is Bitfont , and the character code is

passed to BuildChar.

/BuildChar

{ 0 begin

/char exch def

/fontdict exch def

/charname

fontdict /Encoding get
char get

def

/charinfo

fontdict /CharData get

charname get

def

/wx charinfo 0 get def

/charbbox charinfo 1 4

getinterval def

wx 0 charbbox

aload pop

setcachedevice

charinfo 5 get

charinfo 6 get

true

current diet, is temporarily stored on stack

character code and

font dictionary are stored locally

put the Encoding vector on top of the stack
access the character name

and store it in
"charname"

put the CharData diet on top of the stack

access info associated with
"charname"

and store it in
"charinfo"

1st element of
"charinfo"

array is char width

next four elements are lower left (x,y) and
upper right (x,y) coordinates of the
individual character bounding box

need to call setcachedevice with x and y
cursor advancement values, and the

character bounding box llx, lly, urx, and ury

width and height of bitmap image for the
imagemask command

invert the image (imagemask input)

fontdict /imagemaskmatrix get

dup 4

charinfo 7 get put

dup 5
charinfo 8 get put

charinfo 9 1 getinterval

cvx

imagemask

end

}def

get x translate from the
"charinfo"

array and
add it to the imagemaskmatrix

get y translate from the
"charinfo"

array and
add it to the imagemaskmatrix

matrix is used as imagemask input

get the character bitmap
make it executable and use as the

"proc"

for the imagemask command

make previous dictionary the current one

end ofBuildChar procedure

50

Section 2.3.3 - Problem Description

9 diet dup begin

/FontType 3 def /FontMatrix [10 0 10 0] def /FontBBox {1.28 1.2 -0.16 -0.24] def

/Encoding 256 array def

0 1 255 {Encoding exch /.notdef put) for

dup 97 /a put dup 98 /b put dup 99 /c put dup 100 16 put dup 101 /e put dup 102 n put\MaPpin8
of ASCn v2!"es to

dup 1 03 /g put dup 1 04 ,'h put dup 1 05 /i put 109 /m put / character names. These

_f names then act as keys into

the
"CharStrings"

dictionary

referencing the character

descriptions themselves

/BuildChar

{0 begin

/char exch def

/fontdict exch def

/charname fontdict /Encoding get char get def
/charinfo fontdict /ChaiData get charname get def

/wx charinfo 0 get def

/charbbox charinfo 1 4 getinterval def

wx 0 charbbox aload pop setcachedevice

charinfo 5 get charinfo 6 get true

fontdict /imagemaskmatrix get

dup 4 charinfo 7 get put

dup 5 charinfc 8 get pu!

charinfo 9 1 getinterval cvx

imagemask

end

Jdef

/BuildChar load 0 6 diet put

/imagemaskmatrix [25 0 0 -25 0 0] def
/CharData 11 diet def

>

"BuildChar"
is passed the current font

dictionary and the character code of the

character to be printed. It then constructs

the character from the information shown

below.

CharData begin

/a[.64 .04 0 .56 .56 13 14 -1.5 13.5

<OF983FD870786038C018C018C018C018C018C018603870783FD80F98>]def

/b[.64.04 0.56 .76 13 19 -1.5 18.5

<C0O0COOOCO0OCOOOCOOOCF80DFEOFE7OEO3OC0 18C0 1 8C0 1 8C0 1 8C0 18C0 1 8E030F070DFE0CF80>]def

/c[.6 .04 0 .52 .56 12 14 -1.5 13.5

<OF803FE070706030COOOCOOOCOOOCOOOCOOOC000603070703FEOOF80>]def

/d[.64 .04 0 .56 .76 13 19 -1.5 18.5

<001 8001 8001 800 1 8001 80F983FD870786038C01 8C01 8C01 8C01 8C01 8C01 8603870783FD80F98>]def

/e[.64.04 0.56 .56 13 14 -1.5 13.5

<OF803FE070706030C018C018FFF8FFF8COOOC000603070703FEOOF80>]def

/f[.32 0 0.28.76 7 19-0.5 18.5

<0E1E383030FEFE303030303030303030303030>]def

/g[.64 .04 -0.16 .56 .56 13 18 -1.5 13.5

<0F983FD870786038C01 8C01 8C01 8C01 8C01 8C01 8C03870783FD80F98601 870303FF00FC0>]def

/h[.6 .04 0 .52 .76 12 19 -1.5 18.5

<C000C000C000C00OCOO0CF80DFE0FO7OEO30C030CO30C030C03OCO30C030CO30C03OCO30C030>]def

/i[.2.04 0.12 .76 2 19 -1.5 18.5

<C0C0C0O000COCOCOC0COCOCOCOC0COC0C0C0CO>]def

/m[.92.04 0.84 .56 20 14 -1.5 13.5

<CF0780DFCFEOFOF870E07030C06030C06030C06030C06030C06030C06030C06030C06030C06030C06030>]def

/.notdef [.24 0 0 0 010 0 o]def

/Squeid 2 def PostScript Downloadable
end

/Bitfont exch definefont pop
/Bitfont findfont 40 scalefont setfont

100 100 moveto (abedefghim) show

showpage

Bitmaps for

ten 6-point

characters

Bitmap Font

Figure 2.3.3.1

51

Section 2.3.3 : Problem Description

Figure 2.3.3.2 shows one line of the CharData dictionary which was put into the
charinfo variable in the BuildChar procedure. The charinfo data for

"g"

is as

follows:

.64 x direction cursor advancement

(16 pixels)

(.04, -.16) lower left comer coordinate of the character bounding box
(1,-4) pixels

(.56, .56) upper right comer coordinate of the character bounding box
(14, 14) pixels

13 width of character in pixels

18 height of character in pixels

(-1.5, 13.5) x and y translation components in pixels

52

Section 2.3.3 - Problem Description

Bounding
Box

Lower Left Comer

of Character Bounding Box

is ([.04*25] , [-.16*25])
= d,-4)

in pixels = 13

x - direction cursor

advancement

.64

* 25 = 16

Upper Right Comer

of Character Bounding Box
is ([.56*25] , [.56*25])

= (14,14)

f
height of character in pixels

/g [.64 .04 -.16 .56

< bit-map data >] def

.56 13 18 -1.5 13.5

(x,y) translation components

Character Definition of a PostScript Bitmap Font

Figure 2.3.3.2

53

Section 2.3.3 : Problem Description

2.3.4 Installing Downloadable POSTSCRIPT Outline Fonts

Provided with the Adobe
Stone Serif font disk is a program, called FontDownloader,

that establishes a connection with the Apple LaserWriter Plus via the Appletalk network

and downloads the
Stone Serifoutline fonts. This type ofmanual downloading

causes the downloaded font to remain in the printer until it is turned off or restarted.

Once the font has been downloaded it can be referenced by its assigned name,

StoneSerif for the Stone Serif font with the following POSTSCRIPT instructions:

/StoneSerif findfont 12 scalefont setfont

In addition to themanual method ofdownloading fonts there is another one, which is

called automatic. To use the automaticmethod, first the screen fontmust be installed

with the FontlDAMover program so that the application program can access it for

display on the screen. Fontmetric information is also included in the screen font file
and is needed to calculate line and character positioning. Second, the downloadable

printer fonts must be placed in the System directory. WhenPrint is activiated through

the application program, the printer driver immediately interrogates the printer to get a
list ofprinter resident fonts. If the font selected with the application program is not

resident inside the printer, then the printer driver looks for the downloadable font in the

System directory. If it is found, the font is automatically downloaded. If not, a scaled
version of the corresponding screen bitmap font is downloaded instead. This causes a

very significant degradation of font image quality. After the POSTSCRIPT file has

finished printing, the downloaded font is deleted from the printer. For this reason the

font is said to be temporary.

Only the manual downloadmethod was used for this paper. The results are reported in
sections 3.2.2 and 3.2.3.

54

Section 2.3.4 - Problem Description

2.4 Assumed RTP Architectural MorlPl

The hardware and software models of the Apple LaserWriter Plus is presented below. The

information was extracted from the references specified (see section 6). Full bibliography
entries can be found in section 7.

RIP Hardware

MC68000 microprocessor

+ 7.455 MHz (Reference 28)

- 1.0 MByte of ROM (Read OnlyMemory) (Reference 17)
+ printer control routines

+ Adobe Systems POSTSCRIPT page description language interpreter (version 42.2)
+ printer diagnostic routines

+ printer emulator routines

+ Appletalk routines

+ error-reporting routines

+ outline fonts (35 fonts)
+ bit-map fonts (see Pre-cached Bit-maps reference below)

- 2.0 MBvtes ofRAM (Random Access Memory) (Reference 28)
+ Appletalk data buffer (Ref 28)
+ frame buffer for constructing the bitmapped page image (Ref. 28)
+ font cache buffer for caching character bitmaps (Ref. 28)
+ display list buffer for storing compiled POSTSCRIPT (Ref. 28)
+ virtual memory

- 175KBytes (Ref. 23)
+ downloadable fonts (Ref. 28)

Fonts (Reference 18)
All fonts are printed in 14 point. Resident fonts on the Apple LaserWriter and

LaserWriter Plus include:

Annie Laser Writer (original 13 faces)

Times

Roman

Bold

Italic

Bold Italic

Helvetica

Regular

Bold

Oblique

Bold Oblique

Courier

Regular

Bold

Oblique

Bold Oblique

Symbol

55

Section 2.4 - Problem Description

Anp'f T -mrWH*pr Pl"s Additional 22 faces)

New Century Schoolbook

Roman

Bold

Italic

Boldltalic

ITC Bookman

Light

Light Italic

Demi

Demi Italic

ITC AvantGarde

Book

Book Oblique

Demi

Demi Oblique

Helvetica Narrow

Regular

Bold

Oblique

BoldOblique

Palatino

Roman

Bold

Italic

Bold Italic

ITCZapfChancery
Medium Italic

ITC ZapfDingbats

56

Section 2.4 - Problem Description

Internal resident outline fonts (Reference 19)
The Apple LaserWriterPlus stores fonts in an outline format, and rasterizes individual
characters at the desired font, style, size, and orientation when it is specified in the

POSTSCRIPT program

Font bit-map cache (References 20, 21)
In a POSTSCRIPT printer, the first time a character appears in a particular font, style,
point size and rotation angle, its dot image is stored in a "font

cache"

(a reserved portion

of the printer's memory), so that the next time it appears it doesn't need to be

re-imaged. 160 KBytes of the total 1.5 MBytes ofRAM is used for font caching.

Full page bit-map memory (References 22, 23)
The Apple LaserWriter Plus bit-mapmemory is normally limited to an area of 8 inches

by 10.75 inches. This uses up 967,500 bytes, which is 61.5 % of the available 1.5

MBytes ofRAM:

RAM required to image an 8 inch by 10.75 inch area

(8 inches * 300 dots/inch)
* (10.75 * 300 dots/inch)

= 7,740,000 bits = 967,500 bytes

Percent of the total RAM available

967,500 / 1,572,864 = 61.5 %

It is possible to image a full letter-size page on the LaserWriterPlus, but the memory
must be

"borrowed"

from other functions, such as space for downloadable fonts. To

image die entire 8.5 inch by 11 inch area, 1,051,875 bytes ofRAM is required, which is

66.9 % of the total 1.5 MBytes. This is an additional 84,375 bytes, or an additional 5.4

% of the total RAM in the system, over the smaller, and generally acceptable, 8 inch by
10.75 inch area.

RAM required to image an 8.5 inch by 11 inch area

(8.5 inches * 300 dots/inch)
* (11 * 300 dots/inch)

= 8,415,000 bits = 1,051,875 bytes

Percent of the total RAM available

1,051,875 / 1,572,864 = 66.9 %

Difference ofRAM used for the two imaging areas

1,051,875 - 967,500 = 84,375 bytes = 5.4%

Pre-cached Bit-maps for selected fonts and sizes (Reference 24)
Times-Roman-12 (point) , Helvetica-12 (point) , and Courier-10 (point) are the most

frequendy used fonts in business communications. By having these fonts already
bit-mapped in ROM, the page can be assembledmuch faster than if the fonts had to be

reconstructed for each printing job.

Print Engine Specifications

Canon LBP-CX Laser Beam Printer

- laser-scanning
- xerographic (electrophotographic) printer

- 8 page perminute maximum page rate

- 300 dots per inch resolution

57

Section 2.4 - Problem Description

58

Section 2.4 - Problem Description

3. Analysis ofExperimental Results

3.1 Font Formats; Outline vs. Bit-Maps

3. 1 . 1 Real Time Outline Font Rasterization and Caching

3. 1 . 1 .A. Experimental Results

Two experiments were run according to the procedure described in section
2.2. For each of the experiments two runs of nine pages were printed: the
first run immediately followed the printer power-up sequence; the second run
followed the first run. The programmed wait times in between pages ranged
from 0 seconds (no delay) to 16 seconds. Only the times of the first page of
each run is reported in figure 3.I.I.A.3. The program which measures the

time to generate the first page is described in section 2.2 and shown in figure

2.2.2.1

Two test programs were used which resulted in the printed pages shown in

figures 3.1.1.A.1 and 3.I.I.A.2. The first program prints 96 characters of

the 1 1 point Times Roman font in two lines. The page this first program

prints is shown in figure 3. 1.1.A.1. TheBody of code contains the

following sequence ofPOSTSCRIPT instructions:

Times-Roman findfont 1 1 scalefont setfont

72 720 moveto
(!"$%&'

... MNOP) show

72 720 moveto

(QRST ... yz{|}~) show

The second program, which prints the page shown in figure 3.1.1.A.2,
prints the same two lines as above, but in addition prints an additional 41

lines that contain a total of an additional 2,243 characters.

The timing measurements are shown in figure 3.1.1.A.3 in a bold typeface.

The first column of figure 3.1.1.A.3, with the heading of 96 char., is split
with two different shades of gray. The entry in the first row, labeled 1st

page afterpower-up , appearing in the light gray region is the measured time

to print the page shown in figure 3. 1.1.A. 1 the first time after a power-down

/ power-up sequence. This measured time of 34.860 seconds includes the

time to scan convert all of the 96 character outlines, since powering down

and powering up the printer clears the bitmap font cache. The entry in the
second row, labeled 1stpagepre-cached , appearing in the dark gray region

is the measured time to print this same page for the first time of the second

run. During the first run all of the characters were scan converted and placed
into the font cache, so this second measured time of5.154 seconds includes

only the time tomove (BitBLT) all of the 96 character bitmaps from the

bitmap font cache to the page buffer.

59

Section 3.1.1 : Analysis ofExperimentalResults

The second column of figure 3.1.1.A.3, with the heading 2,339 (96 +

2243) characters , is split into a white and a gray region. The entry in the

first row, labeled 1stpage afterpower-up ,
in the white region is the

measured time to print the page shown in figure 3.1.1.A.2 after a

power-down / power up sequence. This measured time of 35.746 seconds

includes the time to scan convert the initial 96 characters, printed in the first

two lines of the page, as well as the time tomove (BitBLT) the remaining
2,243 characters from font cache containing the newly entered character

bitmaps. The entry in the second row, labeled 1stpagepre-cached ,

appearing in the gray region is the measured time to print this same page for

the first time of the second run. This second measured time of 5.946

seconds includes only the time tomove all 2,339 characters from the bitmap
font cache to the page buffer.

Note that it is impossible to completely isolate the scan convesion time or the

BitBLTing time from the overall time ofprinting a POSTSCRIPT page. In

an attempt to extract amajor portion of the printing overhead a very simple

page was printed and timed. The job consists of a single character being
positioned and printed on the page. The character being printedwas
pre-cached by running one of the programs disussed earlier. A time of

5.124 seconds was measured to print this almost blank page. The

remaining values shown in figure 3.1.1.A.3 are calculated in the analysis

section which follows.

3.I.I.B. Analysis

Fourmethods were used to calculate the speed, in characters per second, that
the AppleLaserWriterPlus can print from the font cache:

1. Methods one and two are similar. Focus on the first row of figure
3.1.1.A.3 entided 1stpage afterpower-up. The entry in the first column,
34.860 seconds, is the total time taken, including overhead, to scan
convert and print 96 characters. The entry just to the right of this, in the
second column, 35.746 seconds, is the total time taken to do exacdy the
same task as before, plus move an additional 2,243 characters from font
cache to the page buffer. So, the time that can be attributed specifically to
moving, orBit BLTing, the additional 2,243 characters can be calculated
by taking the difference of these two values. This yields the value 0.886
seconds and can be found in the third column labeledBitBLT2243 char.
from cache -

calculated . Dividing the number ofcharacters that are
moved from cache (2,243 characters) by the time needed to move them
(0.886 seconds) yields the rate at which the printer can render characters
from font cache (2.532 characters per seconrtt

2. Now focus on the second row of figure 3.1.1.A.3 entitled 1st page
pre-cached . The entry in the first column, 5.154 seconds, is the total
time taken, including overhead, to BitBLT the 96 printable ASCII
characters from font cache. Similar to the case described in (1) above the

entry in the second column, 5.946 seconds, is the time to do the same
task plus BitBLT an additional 2,243 characters. Once again the
difference of these numbers representing the time to BitBLT 2,243
characters is calculated and placed in column three. The time to BitBLT

SSm t v f
teFS iS ?o902o^onds- DividinS 2'243 by -792 yields a

BitBLT character rate of 2.832 characters per semnH
'

60

Section 3.1.1 : Analysis ofExperimental Results

3. Methods three and four are similar. Focus on the dark gray
"L"

shaped

band in that highlights the 96 char, column and the BitBLT 95 charfrom
cache column. The time to print 95 pre-cached characters is 5.154

seconds. The overhead to print one pre-cached character is 5.124

seconds. Subtracting out this overhead yields 0.030 seconds to BitBLT
95 characters (i.e. 96-1). Dividing these numbers produce a character
BitBLT rate of 2.843 characters per second.

4. Now focus on the light gray
"L"

shaped band in that highlights the 2,339

(96 + 2^43) characters column and theBitBLT 238 charfrom cache

column. The time to print 2,339 pre-cached characters is 5.946 seconds.

Subtracting out this overhead yields 0.822 seconds to BitBLT 2,338

characters (i.e. 2,339 - 1). Dividing these numbers produce a character
BitBLT rate of 3.167 characters per second.

The calculated character BitBLT rates range from 2,532 to 3,167 characters

per second. The accuracy ofmethod four is suspect due to the small time

value to BitBLT 95 charactersfrom cache, 0.030 seconds. In section 2.2 it

was shown that the methods used for the experiments throughout this paper

can routinely be off, from run to run, by 0.010 second or more (see figure
2.2.2.3). With such a combined change in either the 96-character page print

time or the 1 -character page print time, the character per second rate would

change from 2,375 (+ 0.010 change) to 4,750
(- 0.01. change). Therefore

the results produced with method fourwill not be used. Methods one, two

and three produce results within 11% of each other. Since methods two and

three produce very similar results (less than 0.4%) and since method two

produced a result between the results frommethods one and three, the value

produced by method two (2,832) will be used for further evaluation.

Now focus on the outermost
"L"

shaped gray band that highlights the

96 char, column and the Scan Convert 96 characters row. It takes 34.860

seconds to print a 96-character page the first time after a power-down /

power-up sequence. This time includes scan converting the 96 characters.

When the overhead associated with printing an almost blank page, 5.124

seconds, is subtracted from 34.860 seconds, the difference generated,

29.736 can be specifically attributed to the scan conversion of the 96

character outlines to bitmaps. Dividing 96 characters by the time to scan

convert 96 characters yields the character per second scan conversion rate of

3.228 characters per second.

In this case, printing from the font cache was 877 times faster than scan

converting the original outline. The POSTSCRIPT Language Reference

Manual states that "printing a character that is already in the font cache is

typically a thousand times faster than scan converting it
from the character

description in the
font"

(reference 12) 877 is rather close to the expected

value of 1,000.

3. 1 . 1 .C. Proposed Improvements

Add hardware speedup for the scan conversion.

61

Section 3.1.1 : Analysis ofExperimental Results

r#$%&'0*+,--/0123456789:;<=>?@ABCDEFGHIJKLMNOP

QRSTUVWXYZNAJ
l~abcdefghijklmnopqrstuvwxyz { I j

-

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

96 characters of 11 pointTimes-Roman

page 62 Figure 3.1.1.A.1

!"#$%&'0*+,-y0123456789:;<=>?@ABCDEFGHIJKLMNOP
QRSTUVWXYZMAj|~abcdefghJjklmnopqrstuvwxyz{l}~

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous
loop of film that is capable ofbeing electrically charged, and is sensitive to direct
light. The IMAGE LOOP is driven around the IMAGE LOOP CORE in a
continuous motion for as long as copy exposures are beingmade (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to
place a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP
for exposure and development. The IMAGE LOOP startsmoving on command
from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the
PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE area, where it is exposed to a reflected light copy image that is
focused on the IMAGE LOOP at precisely the right time, as determined by
LOGIC AND CONTROL. The original document is illuminated by high
intensity fh?h lamps for a short duration, which prevents blurring of the image as
it is exposed on themoving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the
areas that are not exposed. The exposure is said to discretely alter the charge
characteristics of the IMAGE LOOP so that the focused copy image is recorded
on the IMAGE LOOP. This IMAGELOOP image is known as an electrostatic

image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure
area is an improperly charged segment. These segments are produced when the
PRIMARY CHARGER is turned on at the time of initial IMAGE LOOP

movement and turned off during final IMAGE LOOPmovement. As the

unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the

moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to

prevent unwanted development

E. DEVELOPER STATIONASSEMBLY. The properly charged and exposed

IMAGE LOOP area now enters the DEVELOPER STATION ASSEMBLY

where positively charged KODAK EKTAPRINT K Toner particles are attracted

to the IMAGE LOOP. Development occurs as the result of attraction of the toner

particles to the electrostatic image on the IMAGE LOOP. The toner particles are

carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the
IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER and

returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENTERASE LAMP. To reduce the electrostatic stress on

the IMAGE LOOP and thereby increases its life, the POST DEVELOPMENT

ERASE LAMP is used to lower the high level charge that was required for

proper image development This POST-DEVELOPMENT ERASE process also

helps to prevent residual image retention.

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

Page of 1 1 point Times-Roman text; all 96 printable ASCII characters are printed

at least once; 43 lines of text; 2,339 non-space characters; 427 inter-word spaces.

Figure 3.1.1.A.2 page 63

Times-1

96 char.

^oman

2,339

(96 + 2,243)
characters

BitBLT

2,243 char.

from cache

calculated

char /sec

calculated

1st page

after

power up

34.860 35.746 0.886 2,532

1st page

pre-

cached

5,154 5.946 0.792 2,832

simple

1 char

pie-cached

-^ ':;:ei;.i -\ a

BitBLT

2,338 char.

from cache

0.822 2,843

BitBLT

95 char.

from cache

0.030 3 167

Scan Convert

96 characters

29.736 3.228

All times are given in seconds.

Measured times are printed in BOLD.

Calculated times are printed in normal text

RS-232 communications was used.

Printing from cache memory is

877 times faster than scan converion:

(2,832/3.228)

Times-Roman Printing Timing

Figure 3.1.1.A.3

64

Section 3.1.1: Analysis ofExperimental Results

3.1.2 Pre-CachedBit-Maps

3. 1 .2.A. Experimental Results

For each run of this experiment a single page, along with its associated

timing page, was printed. The POSTSCRIPT file specifying these two
pages were downloaded to the printer after a printer power-up sequence.
Figure 3. 1.2.A. 1 shows the results of the three runs, each ofwhich prints a
full page of a single font For the first run an 1 1 pointHelvetica font is

used; for the second run a 12 pointHelvetica font is used; and for the third
run a 13 pointHelvetica font is used. All three pages were

"set"

at 12

point That is the leading, or vertical spacing between lines were all the
same. This insured that the three POSTSCRIPT files were identical except

for the variable preceding the scalefont operator.

All three runs were printed twice: once immediately following a printer
power-down / power-up sequence, and a second time immediately following
the first, keeping the printer powered up. The page used for this experiment
is identical to the text page shown in appendix 3.2.5 except that one (font &

size & orientation) is used instead of the nine used in the appendix.

Run

Right After

Power-Up

Second

Time

1 (11 point) 20.858 seconds 6.082 seconds

2 (12 point) 6. 194 seconds 6.078 seconds

3 (13 point) 21.330 seconds

Figure 3.1.2.A.1

6.084 seconds

3.I.2.B. Analysis

The 12 pointHelvetica font is one of the designated fonts that is pre-scan

converted and permanendy resident in the RTP in bit-map form (Ref. 13).

The experimental results show this to be due. The page of 12 point

Helvetica text printed in 6.194 seconds immediately following a power-up
sequence, only 0.1 10 seconds slower than that recorded for a second run.

By comparison, the 1 1 point and 13 pointHelvetica text pages tookmuch

longer to print the first page after power up vs. the second time (about 15

seconds). Clearly this is due to the additional time needed to scan convert

these fonts during the POSTSCRIPT page itself.

3. 1 .2.C. Proposed Improvements

Expand the size of the bit-map font storage ROM;

Strongly advise the user to keep the printer powered up;

Expand the non-volatile memory
-

possibly disk.

65

Section 3.1.2 : Analysis ofExperimental Results

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP
is+
a loop;of film that is

capable of being electrically charged, and is sensitive to direct light. The IMAGE LOOP is

driven around the IMAGE LOOP CORE in a continuous motion for as long as copy exposures

are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative

charge on the IMAGE LOOP. This prepares the "MAGE LOOP for exposure and development.

The IMAGE LOOP starts moving on command from
LOGIC AND CONTROL. LOGIC AND

CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE

area, where it is exposed to a reflected light copy image that is focused
on the IMAGE LOOP at

precisely Ibe right time, as determined by LOGIC AND CONTROL. The original document is

illuminated bv hioh intensity flash lamps for a short duration, which
prevents blurring of the

image as it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is

removed from the areas that are exposed to light. The charge remains in the areas that are not

exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE

LOOP so that trie focused copy image is recorded on the IMAGE LOOP. This IMAGE LOOP

image is known as an electrostatic image.

D. AUXILIARY ERASE, Just before each first, and just after each last, exposure area is an

improperly charged segment. These segments are produced when the PRIMARY CHARGER is

turned or. at the time of initial IMAGE LOOP movement and turned off during final IMAGE LOOP

movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the

moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to prevent unwanted

development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area

now enters the DEVELOPER STATION ASSEMBLY where positively charged KODAK

EKTAPRiMT K Toner particles are attracted to the IMAGE LOOP. Development occurs as the

result of attraction of the toner particles to the electrostatic image on the IMAGE LOOP. The

toner particles are carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are

salvaged at this point by the SCAVENGER ROLLER and returned to the DEVELOPER

STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE

LOOP and thereby increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower

the high level charge that was required for proper image development. This
POST-DEVELOPMENT ERASE process also helps to prevent residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet
of copy paper is advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At

precisely the right time, the copy paper is directed into contact with the IMAGE LOOP and its
developed image. This aligns the copy paper and the image on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER

CHARGER, which produces a negative charge on the paper surface to attract the positive
charged developer toner. This effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output

Full page of 1 1 pointHelvetica.

page 66 Figure 3.1.2.A.2

3. 1 .3 BackgroundOutline Rasterization

3. 1 .3.A. Experimental Results

For each run of this experiment a single page, along with its associated

timing page, was printed. The POSTSCRIPT file specifying these two
pages were downloaded to the printer after a printer power-up sequence.
Figure 3. 1.3.A shows the results for the case when a full page of exclusively
10 pointHelvetica was printed. The shaded columns show the time waited

from the completion of the power up sequence (ie. the header sheet was fully
ejected) until the the POSTSCRIPT file started to download. The white

columns show the measured printing time of the first page using themethod

described in section 2.2.2. The page used for this experiment is identical to

the text page shown in figure 3.I.2.A.2. In addition to the 1 1 point case, 9

and 10 pointHelvetica were also used. The data shown in figure 3. 1.3.A

refers to the 10 pointHelvetica case.

10 Point Helvetica Case

As shown in figure 3.2.3.A the page that was downloaded immediately
following the header page ejection (Time After l'st paper eject = 0 seconds)
took the longest to print, 15.888 seconds. As more time was allowed to

expire after the power-up sequence was complete the printing times decrease

until, at 14 seconds, the printing time appears to reach the lower limit at

about 6.65 seconds. The printing time stays at this limit for all of the

recordedwait times above 14 seconds up to 30 seconds. Another page was

printed without powering down the printer. The second print time, for

which all characters have already been cached, took 6.052 seconds, about

one half second faster than the limit that was reached.

Two additional small experiments were ran. The font specified in the

POSTSCRIPT file was changed from 10 pointHelvetica to 9 point

Helvetica for the first experiment and 1 1 pointHelvetica for the second

experiment. As in 3.2.1 both pages were
"set"

at the same point size, 10

point in this case, to insure that all the three POSTSCRIPT files were

identical except for the variable preceding the scalefont operator.The

non-cached printing times were as follows:

9 point printing time 20. 1 10 seconds.

1 1 point printing time 20.842 seconds.

14 Point Times-Roman Case

The experimental results for the 14 point Times-Roman did not vary as the

time delay after the first paper eject varied. Times delays ranged from 0

seconds to over one hourwith exactly the same results: a print time of

26.374 seconds. As in the previous case, a second page was also printed

without powering down the printer. The second print time took 6.062

seconds.

67

Section 3.1.3 : Analysis ofExperimental Results

16
m

| 12

= 8

4

0

Time for 2'nti print 1= 6.0521

(pre-cached fbnts)

sec

-//-

4 6 8 10 12 14 16 20 30

Time after first paper eject (after power-up)

Time After

1'st paper eject

Print Time

(Seconds)

Time After

l'st paper eject

Print Time

(Seconds)

0 15.888 11 7.516

1 14.554 12 7.526

2 13.886 13 7.220

4 12.144 14 6.646

7 9.762 15 6.660

9 7.634 20 6.658

10 7.516 30 6.658

Results of Background Outline Rasterization Experiment

Full Page of 10 PointHelvetica Text

Figure 3. 1.3.A

68

Section 3.1.3 : Analysis ofExperimental Results

3.I.3.B. Analysis

10 Point Helvetica Case

The 10 pointHelvetica font is one of the designated fonts that is scan
converted during idle time (Reference 13). The experimental results show
the idle time span from 0 to 14 seconds to be the time during which all (or
most) of the 10 pointHelvetica outline fonts are scan converted. The scan
conversion was most likely already in process by the time the first page was
downloaded to the printer (ie. the Time = 0 sec. case). It is assumed that, to
scan convert a 10 pointHelvetica page of text, it takes somewhere between
the times to scan convert a 9 point page ofHelvetica text and an 1 1 point

page ofHelvetica text A simple approximation is to average the two,
which yields 20.476 seconds. This implies that the scan conversion process
began approximately 4.6 seconds before the header sheet was completely
ejected:

Ave of9 & 1 1 point scan conversion times 20.476 seconds

- 10 point scan conversion from T=0 15.888 seconds

scan conversin time before T=0 4.588 seconds

This is still a rough estimate for the following reasons:

- times to print the 9 and 1 1 point font pages did require the scan conversion

of all of the alphanumerics and common punctuation;

-

also, these times include the POSTSCRIPT interpretation and rendering
tasks.

Themeasured times decrease as thewait time increases. This is exactly the

expected results.

Note that between 10 and 12 seconds there was virtually no change in

printing time. A possible reason for this is that the remaining characters that

still needed scan conversion were scan converted after the 12 secondmark

In between 10 and 12 seconds the idle time scan converterworked on

characters not needed by the current job.

14 Point Times-Roman Case

The experimental results indicate that no idle time scan conversion of the 14

pointTimes-Roman font is done. It is possible that the information given

in the "Red
Book"

once applied for the Apple Laser
Writer but not for the

Apple LaserWriterPlus.

69

Section 3.1.3 : Analysis ofExperimental Results

3. 1 .3.C. Proposed Improvements

Currently a font is scan converted during the RTP's idle time if:

1. it is one of the default fonts, specified by the printermanufacturer (Apple
in this case) or

2. it is explicitly specified via the setidlefonts operator by the user.

One possible addition to this scheme would be to automatically scan convert

the remainder of the character set of a font previously selected by the

POSTSCRIPT findfont, scalefont, and setfont (and possibly a few

other) commands. If some significant number of characters have already
been used, then the remaining few characters of the same font could be idle

time scan converted This assumes thatmore characters of the same font will

probably be used in subsequent printing jobs. If, however, only one or a
few characters were used, this mechanism should not be activated.

70

Section 3.1.3 : Analysis ofExperimental Results

3. 1 .4 Effect of Scaling and Rotation

3. 1 .4.A. Experimental Results

The 96 printable ASCII characters were all printed exactly one time using the

following POSTSCRIPT code (or variations of it):

/Times-Roman findfont 11 scalefont setfont

350 300 translate

70 rotate

0 75 moveto

(l"#$%&,()*+,-./01 23456789:;) show
0 50 moveto

(<=>?@ABCDEFGHIJKLMNOP) show
0 25 moveto

(QRSTUVWXYZ[\\]AJ|~abcdefg) show
0 0 moveto

(hijklmnopqrstuvwxyz{|}~) show

Twomain variables are modified:

1. The number specifying the font point size is set to either:

1 1 (point), as shown above;
or 22 (point);

2. The number specifying the angle of rotation is set to either

0 (degrees), forwhich case the line of code is completely removed;
70 (degrees) as shown above;
or 90 (degrees).

The x and y coordinate variables that are input to the translate command

also need to bemodified as the angle changes to assure that all of the text

maps inside the page boundaries (8.5 inches by 1 1 inches). These variables

are shown above as 350 and 300 (points).

Six different POSTSCRIPT programs (two point sizes at three orientations)

were run two times (with and without pre-cached fonts). The choices are:
- font is Times-Roman;
- two font sizes are 11 and 22 point;
- three orientations are 0, 70, and 90.

71

Section 3.1.4: Analysis ofExperimental Results

^ # / i

#
/ /

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

96 characters of 11 pointTimes-Roman rotated 70 degrees

page 72 Figure 3.1.4.A. 1

Two tables containing six entries each are shown in figures 3.1.4.A.2 and
3. 1 .4.A.3. Both tables show the measured time to print the first page of the

standard nine page sequence. Note that the page 2 through 9 times were not

relevant for this experiment since these pages automatically use pre-cached

fonts and also do not have the same startup overhead associated with them.
Figure 3.1.4.A.2 gives the measured times immediately after a power-down/
power-up sequence. This insures that none of the fonts being printed were
in the font cache and therefore all six of these times include the font outline

scan conversion times (i.e outline font rasterization). Figure 3.1.4.A.3 gives
the measured times for a second run, immediately following the previously
described run. This insures that all of the fonts being printed were already
resident in the bit-map font cache.

Character

Size

^ - A ngle of Rotation ?

70 Degrees 90 Degrees0 Degrees

11 point 35.350 seconds 31.356 seconds 36.264 seconds

22 point 40.730 seconds 37.098 seconds 41.442 seconds

First Time After Power-Up (ie. Without Pre-caching)

Figure 3.1.4.A.2

Character

Size

ngle of Rotatic

70 Degrees

>n ?

90 Degrees0 Degrees

11 point 5.162 seconds 5.172 seconds 5.178 seconds

22 point 5.160 seconds 5.178 seconds 5.180 seconds

First Page TimeAfter Previously Printed Job (ie. With Pre-caching)

Figure 3.1.4.A.3

A blank page was printed and timed. Themeasured time to print a single

blank page was 5. 110 seconds. This blank page time is treated as an

overhead time that is inherently imbedded in the times of figures 3.1.4.A.2

and3.1.4.A.3.

Since the measurements for the 1 1 point - 0 degree case were substantially

different than themeasurements from a very similar page printed in section

3.1.1 an additional experimentwas run. Both the translate and rotate

commands were removed. Four lines were still printed. The results are as

follows:

First time after power-up:

Pre-cached time:

73

34.878 seconds

5.160 seconds

Section 3.1.4: Analysis ofExperimental Results

3.I.4.B. Analysis

The purpose of this section is to compare the outline
font rasterization

printing performance (i.e.
without pre-cached fonts) to the bit-map font

printing performance (i.e.
with pre-cached fonts) as the character size and

orientation changes. This expands on the experiments
performedm section

3.1.1 in that two additional variables are introduced into the experiment,

namely font size and
orientation.

The "Blank
Page"

time, of 5.1 10 seconds, is considered to be baseline

overhead that any POSTSCRIPT job has
in it. This is close to the "almost

blank"

page time of section 3.1.1 (5.124 seconds) which printed one

pre-cached character. The overhead "Blank
Page"

time of 5. 1 10 seconds is

subtracted from all of the measured times in figures 3. 1.4.A.2 and 3, and

these results (differences) are recorded in figures 3.1.4.A.5 and 6,

respectively. What is left in figures 3.1.4.A.4 and 5 are the times that are

more attributable to the scan-conversion and accessing from font cache tasks.

This is not entirely true, since the POSTSCRIPT interpreting also occurs,

but this is the lowest level that can be investigated from the outside of the

Apple LaserWriterPlus printer.

Character

Size 0 Degrees

llgic ui ""lam

70 Degrees 90 Degrees

11 point 30.240 seconds 26.246 seconds 31.154 seconds

22 point 35.62 seconds 31.988 seconds 36.332 seconds

First Time AfterPower-Up (ie. Without Pre-caching)

Less Blank Page Overhead

Figure 3.1.4.A.4

Character

Size

ngle of Rotatio

70 Degrees

n ?

90 Degrees0 Degrees

11 point 0.052 seconds 0.062 seconds ;; 0.068 seconds

22 point 0.050 seconds 0.068 seconds 0.070 seconds

First Page Time After Previously Printed Job (ie. With Pre-caching)
Less Blank Page Overhead

Figure 3.1.4.A.5

74

Section 3.1.4: Analysis ofExperimental Results

Scaling Outline Fonts
Figure 3.1.4.A.4 shows that it takes approximately 20 % longer to scan
convert the 22 point fontwhen compared to the 1 1 point font:

- at 0, 5.380 seconds more or 17.7 %
- at 70, 5.742 seconds more or 21.9 %
- at 90, 5.178 seconds more or 16.6 %

It also appears that the performance of scaling a rotated font not on a
quadrant boundary is slightlymore affected by size variation than for one
that is on a quadrant boundary (i.e. about 4% for the

70

case over the other

two cases). This difference may be due to the font
"intelligence"

that is used
for the

0

and
90

cases (see Rotating Outline Fonts below). The
"intelligence"

algorithmmay be less size dependent and therefore did not
slow down as much as the

70

case, for which font intelligence is not used.

Itwas expected to take 1 to 4 times longer to scan convert the 22 point font
vs. the 11 point font. The experimental data shows it taking 1.2 times

longer. This implies that the task of applying the transform to the outline is

dominant over the rendering task.

Once the font is in the bit-map cache it seems that the time to pull the bit-map
characters out of cache and onto the page is not dependent on font size. The

numbers may be too small to see a definitive trend. See the following page
for a discussion on the accuracy of the numbers in figure 3.1.4.A.6

Font Outline Scan Conversion vs. Pre-Cached Bit-Map Fonts
Figures 3.1.4.A.4 and 5 contain themeasured times to scan convert and

print from cache, respectively, less the overhead ofprinting a blank page.

Figure 3.1.4.A.6 shows the ratios of the entries in figure 3.1.4.A.4 as

compared to figure 3.I.4.A.5. That is, figure 3.1.4.A.6 shows how much

faster printing from font cache is vs. printing from outlines that have yet to

be scan converted.

Character

Size

A
?

90 Degrees0 Degrees

Ilglc VI IVUldlll

70 Degrees

11 point 582 423 458

22 point 712 470 519

Ratio ofScan Converted FontTiming toBit-mapped Font Timing

Figure 3.1.4.A.6

The ratios range from 423 to 712. with the average being 527. This is ahont

one halfof the expected 1000 and substantially different than the results of

section 3.1. 1 . which yielded a ratio of 877. The accuracy of these numbers

should not be taken as absolutes, but merely as a general approximation for

the following reasons:

75

Section 3.1.4: Analysis ofExperimental Results

1 The times recorded in figure 3.1.4.A.5 are differences,
and therefore are

subject to the potential cumulative error
of twomeasured values, that of

the printing text from
outline or cache, and that ofprinting the blank page.

2. The numbers shown in figure 3.1.4.A.5 are very small. Since these

numbers are are so small, small fluctuations (errors) in these values can

cause large deviations in the ratios found in figure 3.I.4.A.6.
For

example, for the (22 point,
0

angle) case a 10millisecond difference in

the 50millisecond recorded value will make the 712 value range from 594

to 891.

3. As previously mentioned, these
numbers are not purely attibutable to the

scan conversion or printing from font cache processes. The

POSTSCRIPT interpretation was included in printing both types of jobs.

The larger this number is, the smaller the ratios in figure 3.1.4.A6 tend to

be.

Comparison to Results in Section 3.1.1

The experiment that was run in section 3.1.1 is very similar to the 1 1 point,

0 degree case of this section. Both print 96 characters of an 1 1 point

Times-Roman font in the portrait orientation (i.e. 0 degrees). There are

two small differences:

1. the translate command was used in this section but not in section 3.1.1;

2. four lines were printed in this section instead of two tines in section 3.3.1

(i.e. two additional moveto commands).

In an attempt to isolate the variable that caused the difference ofBitBLT to

scan conversion ratios (877 vs. 582) the POSTSCRIPT translate command
was taken out of the program. The four discretemoveto coordinate pairs

were changed to position the text in themiddle of the page. Also, there was
no rotate command. Figure 3.1.4.A.7, below shows the results.

First page time Pre-cached fonts

with
"translate"

command
35.350 seconds 5.162 seconds

w/o
"translate"

command
34.878 seconds 5.160 seconds

section 3.1.1 results

(w/o "translate")
34.860 seconds 5.154 seconds

Page PrintingTimes with and without POSTSCRIPT "translate"

command

for the 1 1 point, 0 degree case

Figure 3.1.4.A.7

76

Section 3.1.4: Analysis ofExperimentalResults

It seems that only the first page time is effected by the presence of the
translate command. When die translate command is eliminated from the

experiment run in this section the results are very close to the results of
section 3.1.1: 34.878 seconds vs. 34.860 seconds, respectively. The
additional 0.018 second difference may be due to the additional two moveto
commands.

One possible explanation for the larger 0.490 second discrepency
(i.e. 35.250 seconds vs. 34.860 seconds) is that the scan conversion
software may be sensitive to anymodification of the current transformation
matrix (CTM). The CTM is changed by the scale, rotate, and translate
commands. Once the font is in bitmap form in the font cache, however, the
effect seems to disappear.

An evenmore significant factor that influenced the 877 vs. 582 discrepency
in BitBLT vs. scan conversion time ratios is the times that were used for the
"base"

page. There was a 0.014 second difference in these numbers which

becomes a 28% difference to the 0.050 second value. These values should

only be used as general guidelines for RIP performance. Any small change
in measured values reflect large ratio differences.

Rotating Outline Fonts
The

70

rotated case yielded the best results:

13.2 % faster than 1 1 point at
0

orientation;

15.7 % faster than 1 1 point at
90

orientation;

10.2 % faster than 22 point at
0

orientation;

12.0 % faster than 22 point at
90

orientation.

This indicates that the font
"intelligence"

overhead is more dominant than the

overhead incurred when rotating a font outline. The 0 and 90 degree cases

are both slower due to the font intelligence algorithm used. As expected, the
0

case is slighdy faster than the
90

case, although by only about 3 %. The
font outline scan conversion algorithm evidently takes advantage of

knowledge of the
90

rotation for the performance to take such a small hit

3 . 1 .4.C. Proposed Improvements

A faster processor and/ormath accelerator hardware could help in generating
the font bitmaps from the master font outlines. Once the font is in bitmap
form in the font cache the time to move these bitmaps onto the page is limited

by memory speeds. Using faster memory could help. Also, for larger fonts

data compression / decompression could help the potentialmemory speed

bottleneck.

77

Section 3.1.4: Analysis ofExperimental Results

3. 1 .5 Variations ofFont Style

3. 1 .5.A. Experimental Results

The experiment of 3.1.1 used the Times-Roman font The same

experiment was run in this section using two other fonts: Helvetica and

ZapfChancery Medium Italic. The Times-Roman printed pages are

shown in figures 3.1.1.A.1 and 3.1.1A.2, along with the detailed measured

and calculated times in figure 3.1.1A.3. One of the two pages of

ZapfChancery text is shown in figure 3.1.5.A1. The Helvetica pages

are not shown.

All three fonts are resident in the AppleLaserWriterPlus. Scan convert

times and BitBLT times were measured and calculated in the samemanner

described in section 3.1.1. The results are shown below:

Characters

Scan Convert

per second

BitBLT from

cache

Ratio

BitBlt/Scan

Helvetica 3.976 2,797 703

Times-Roman 3.228 2,832 877

Zapf Chancery

Medium Italic
2.875 2,868 998

3.I.5.B. Analysis

"Complex fonts ... will take longer to print because of the intricate curves

and shapes", (reference 25) It can be seen from the data shown above that

as the font gets "more
complex"

the character per second scan conversion

rate decreases. The simpleHelvetica style is 38% faster to scan convert

than the more complex ZapfChancery font However, once the font has
been cached there is only aminimal effect on speed ofmoving the cached
bitmaps to pagememory for printing. Consequently, the significant effect
that font complexity has on the cache vs. scan converting the font outlines.

Once the font has been placed in the bitmap font cache all three fonts are
yielded performance that were vey close to each other. There was a slight
difference in speed that seems to corrolate with the apparent size of the fonts:

- the font that appears to be the smallest (i.e. ZapfChancery) was the
fastest, printing 2,868 characters per second;

- the font that appears to be the second smallest (i.e. Times Roman) was
"in between", printing 2,832 characters per second;

- the font that appears to be the largest (i.e. Helvetica) was the slowest,
printing 2,797 characters per second;

78

Section 3.1.5: Analysis ofExperimental Results

t'#$%&W+r./0123456789:;<=>r^BCTfcTQM3JqMWpT
Q&mi'lW^\JAJ\~a6cdcfliyl^

A. IMAGE LOOT. TheWV^EW%TW9&IMAGE LOOP is a continuous

loop ofphn. that is capable ofbeing electrically charged) andis sensitive to direct
light. The IMAGELOOT is driven around the IMAGEWOTCORE in a
continuous motionfor as long as copy exposures are being made (see figure 1).

<B. TWMWDr&&W'E% IkeJunction ofthe TRJMAS3'CHARffESJs to
place a negative charge on the IMAGE LOOT. This prepares the IMAGE LOOT
for exposure anddevelopment. The IMAGE LOOTstarts moving on command
fivmLOgiCA^D CC&tmPL. LOGICA!* C09&RPL then turns on the

T^jMA^fOiA%ffE%

C EXPOSURE. The charged IMAGELOOT continues around the CO%E to the
"EXBOSIVRE area., where it is exposed to a reflected light copy image that is
focusedon the IMAGELOOT at precisely the right time., as determinedby
LOGICA?@> COT&RpL. The originaldocument is illuminatedBy high
intensityflash Campsfor a short duration, whichprevents blurring of the image as
it is exposedon the moving IMAGELOOT. The charge on the IMAGELOOT is

removedfrom the areas that are exposed to light. The charge remains in the
areas that are not exposed. The exposure is said to discretely alter the charge
characteristics ofthe IMAGE LOOTso that thefocusedcopy image is recorded
on the IMAQELOOT. This IMAGE LOOT image is known as an electrostatic

image.

<D.AWCILIAS&EHiASE. Just before eachfirst, andjust after each last, exposure

area is an improperly chargedsegment. These segments are producedwhen the

T%jMA!RyCHA%ffE'Rjs turnedon at the time ofinitial IMAGELOOT

movement and turnedoffduringfinal IMAGELOOTmovement. As the

unwantedareas pass under theAILXILIAStfERgSE LAMT, itfloods the

moving IMAGELOOTbasewith light that desensitizes the IMAGE LOOT to

prevent unwanteddevelopment.

E. EVELOTE!XJTATIO%CASSEM2L% Theproperly chargedandexposed

IMAGELOOT area now enters the 'DE'VELOTE^^IATIOH.ASSEMBLy

wherepositively charged !KP<DAXE%TAT!RJ9&!K.ToneT particles are attracted

to the IMAGE LOOT. 'Development occurs as the result ofattraction of the toner

particles to the electrostatic image on the IMAGE LOOT. The tonerparticles are

carriedaway on the IMAGELOOTsurfacefor later transfer to a copypaper.

7. SCAVE'XgE'RJRS)LLE% Any developer carriergranules (iron) left on the

IMAGELOOT are salvagedat this point by thcSaMETfgE^RPLLEXjmd

returned to theVEVELC)TE!RjTATI09ASSEM'BLy.

Q. T0ST-E'lSELOTME9{TE%ASELAMP. To reduce the electrostatic stress on

the IMAGE LOOT and thereby increases its life, dieT0STT/EVEL0TME7&

E%ASELAMT is used to lower the high levelcharge that was requiredfor

proper image development. ThisT0ST-E'VEL0TME9&E,!XASE process also

helps toprevent residualimage retention.

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

Page of 1 1 point ZapfChanceryMedium
Italic

text; all 96 printable ASCII characters are

printed at least once; 43 lines of text; 2,339
non-space characters; 427 inter-word spaces.

Figure 3.1.5.A.1 page 79

3.1.5.C Proposed Improvements

Same as section 3.1.1.G

80

Section 3.1.5: Analysis ofExperimental Results

3.2 Resident vs. Downloaded Fonts

In section 2.2 the measurement techniques are explained using several experiments to
demonstrate the validity of the techniques used. All experiments thatwere run in section 2.2, as
well as in almost all other sections in chaper 3, use the RS-232 communications interface (see

section 2.2.1 formore details). Sections 3.2.1 through 3.2.3 are the exception to this rule. In

these next three sections Appletalk is used exclusively, instead The reason Appletalk is used

instead ofRS-232 is because two (of the three) downloadable fonts were purchased and come
in a form that is set up for use with Appletalk. The "Font

Downloader"

software, provided

by Adobe, uses Appletalk. Once these fonts have been downloaded into the Apple LaserWriter

Plus printer viaAppletalk it is impossible to change the communications mode of the printer
without powering it down. Since the downloaded fonts are stored in volatile memory (RAM),
all downloaded fonts are effectively erased when the printer is powered down. Therefore all

experiments that use a font that has been downloadedwith Appletalkmust also be run with

Appletalk.

In addition to downloading fonts the "Font
Downloader"

tool also allows a POSTSCRIPT file

to be downloaded viaAppletalk. All of the techniques described in section 2.2 are still valid

when using Appletalk, including the measurement of download times ofPOSTSCRIPT fonts

and programs. The one drawback to using Appletalk is that experiments involving
measurement of download times cannot easily be translated back to the equivalent times with

RS-232. This is because of the uncertailty of the Appletalk protocol overhead and the
"shared"

nature of the Appletalk network. To address the latter point to some extent the printer is

connected point-to-point with theMac-II providing the POSTSCRIPT file with no other

computers or printers physically connected.

Formore information on the "Font
Downloader"

tool and how it is used to download

POSTSCRIPT fonts as well as POSTSCRIPT programs refer to section 2.3.4.

3.2. 1 Downloaded Bitmaps vs Printer Resident (Permanently-Cached) Bitmaps

3.2. 1A. Experimental Procedure and Results

A very simple page of text is printed and timed. The page consists of a

single string often characters each ofwhich were printed exacdy one time.

The string is postioned once. The POSTSCRIPT commands that were used

are:

200 400 moveto

(abcdefghim) show

Two bitmap fonts are used:

A. A hand-coded downloadable POSTSCRIPT bit-map font. The

program shown in section 2.3.3 is a downloadable POSTSCRIPT font

that was largely taken from a section in the POSTSCRIPT Language

Tutorial and Cookbook (see reference 16). Ten characters of a simple

six point font are defined in that program. Unfortunately no six point

font was available in permanent bit-map form on the Apple Laser

Writer Plus for this comparison, but a 12 point fontwas available - a

factor of two larger than the six point downloadable bit-map font For

this experiment the bit-map definitions of the ten characters were

doubled in size in both the x and the y directions. This was done by
hand editing the file. Simple

pixel replication was used.

81

Section 3.2.1: Analysis ofExperimental Results

In addition tomodifying the bit-maps
four other entries needed to be

modified:

1. the imagemaskmatrixwas changed from

[25 0 0 -25 0 0]
to

[50 0 0 -50 0 0] ;

2. the width of each character, in pixels, was doubled;

3. the height of each character, in pixels, was doubled;

4. the y translation component
was doubled (+0.5) .

Once the new 12 point font, namedBitfont is defined, it is callable

by the command:

/Bitfont findfont 12 scalefont setfont

B. The printer residentHelvetica 12 point font. The 12 point

Helvetica font is pre-scanned and permanendy resident in ROM, in

bitmap form (reference 13). Section 3.1.2 of this thesis also discusses

the topic ofprinter resident bit-map fonts. To select the 12 point

bit-map font the following simple sequence ofPOSTSCRTT code is

used:

/Helvetica findfont 12 scalefont setfont

The bit-map version of this font is automatically referenced. This
command precedes the pair of commads shown earlierwhich positions

and specifies the string to be printed (i.e. themoveto and show

commands).

The size of the bitmap font is:

2,712 bytes: character bitmaps andmetric information

959 bytes: additional overhead

3,671 bytes total

The measured time to download the bitmap fontwas 1.044 seconds.

Nine pages were outputwith varied delays between page printing. The

following times were measured:

Bitfont downloaded Helvetica resident

1st page 5.580 seconds 5.110 seconds

Min. Time 3.498 seconds 3.510 seconds

82

Section 32.1: Analysis ofExperimental Results

abcdefghim

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

10 characters of the 12 point downloaded bitmap font

Figure 3.2. 1.A. 1 page 83

abcdefghim

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

10 characters of the 12 point printer resident bitmap font (Helvetica)

page 84 Figure 3.2.1.A.2

3.2. l.B. Analysis

The actual size of the bitmap font was slightly smaller than anticipated: 3,671
bytes actual vs. 3,940 bytes expected. The combination of the character
bitmaps and the charactermetrics information was larger 2,712 bytes actual
vs. 2,940 bytes expected (2,540 bytes of bitmaps + 400 bytes ofmetrics).
Given the difficulty ofpredicting exact sizes of ten specific characters, these
results look very good.

The measured download time of 1.044 seconds, on Appletalk, is about four
times faster than the 4.10 second time predicted for slower RS-232

communications interface. This indicates that, for this particular case (file

size, Appletalk loading, etc.) the Appletalk network provided a throughput of

approximately 40 KBits / sec. This is about 20 % of its maximum speed.

Two times are recorded above:

First Time: The time taken to print the first page. It took 0.470 seconds

more to print the first page using the downloaded bitmap font vs.

printing the printer residentHelvetica bitmap font. This does not
include font download time, but instead is ameasure of the time to

move the bitmap font (i.e. a POSTSCRIPT program defining a font) to
the font cache.

Minimum Time: Of the nine pages that were printed, this time shows

how fast the page can be printed under as close to ideal conditions as

possible. All other pages are effected by external influences (see
sections 2.1.6 and 3.6). The measured time to print the page with the

ten bitmap characters, 3.498 seconds, was only 0.34 % less than the

measured time to print the page with the ten printer-resident bitmap
characters, 3.510 seconds. This is exactly what was expected. Once a

font is in cache memory, whether it originated in the printer or was

downloaded, the time to access this font is the same.

3.2. l.C. Proposed Improvements

Use a faster communication interface;

Use a communications interface that handles binary information;

Use data compression.

85

Section 3.2.1: Analysis ofExperimental Results

3.2.2 AdobeDownloadedOutlines vs. PrinterResident (Internal) Outlines

3.2.2.A. Experimental Results

The two POSTSCRIPT test pages that were printed in section 3.1.1 are

identical to one set of test pages printed in this section. This set consists of

two programs. The first program prints 96 characters of the 1 1 point Times

Roman font in two lines as described in section 3. 1. 1. The page this first

program prints is shown in figure 3.1.1.A.L The second program, which

prints the page shown in figure 3.1.1A.2, prints the same two lines as

above, but also prints an additional 41 lines that
contain a total of2,243

characters. The only difference in mnning the
experiment in section 3.1.1

and this section is the communications interface used: in section 3.1.1, the

serial RS-232 interface is used; in this section, theAppletalk local area

network is used.

In addition to the pages described above that use the Times-Roman font,

twomore pages were printed for comparison thatwere exacdy the same

except for the font used. The two new pages use the Adobe downloaded

Stone Serif font They are shown on the following two pages in figures
3.2.2.A.land3.2.2.A2.

The data in figure 3.2.2A.3 shows the experimental results when the four

pages were printed. Following the convention set forth in section 3.1.1 all

of themeasured times are printed in a bold face and all of the the calculated

values are printed in a normal weight face. Furthermore, the values that

correspond to the pages that use the Stone Serif font are printed on top in the

Roman style (Roman and Roman Bold); the values that correspond to the

pages that use theTimes-Roman font are printed on the bottom in the Italic

style (Italic and ItalicBold).

Since Appletalk and the font /program downloader programs were provided,

very little control was available to accurately time the font download time. A

stop watch was used to measure the time from the program selection (i.e.

begin execution) to the return from the program.

It took 4 seconds for the FontDownloader program, providedwith the

Adobe Stone Serif font, to establish a connection with the Apple LaserWriter

Plus with an additional 26 seconds needed to download the font The size of
the outline fontwas measured to be 34,260 bytes with the Get Info utility
program on theMacintosh Finder. The space this font occupies in the Apple
LaserWriter Plus is 28 KBytes, as measured by the PrinterFontDirectory
function of the FontDownloader program.

3.2.2.B. Analysis

The same analysis procedure that was used in section 3.1.1 is used here.
For a detailed explanation of this procedure, refer back to section 3.1.1. It
will not be repeated here.

As expected the printing perfomance of the resident and the downloaded
fonts were very close:

- scan conversion rate

3.23 characters per second for Stone Serif
3.19 characters per second forTimes-Roman

86

Section 322: Analysis ofExperimental Results

pruning bitmaps from cache

2,776 (2,375 to 2,776) characters per second for Stone Serif
2,825 (2,37 1 to 2,969) characters per second forTimes-Roman

The download time of 26 seconds includes all of the Appletalk overhead

combinedwith the FontDownloader application program overhead.

Assuming the entire 34,260 byte Stone Serif font is actually downloaded in
this time, the overall throughput is only 10.5 KBits/sec. As predicted, font

download time is quite significant The time to download the font via this

means is almost as long as the time taken to scan convert a full 96 character
set of the font itself.

3.2.2.C. Proposed Improvements

Optimize the program path that downloads the font. Appletalk has a burst

rate of 230.4 KBits/sec. The effective data rate of only 10.5 KBits/sec can

probably be improved by optimization.

Use a faster communications interface.

Spool downloadable fonts on a disc to reduce future needs for download.

87

Section 3.2.2: Analysis ofExperimental Results

!"#$%&'0*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOP

QRSTUVWXYZ[\]A_'l~abcdefghijklmnopqrstuvwxyz{l}~

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output

96 characters of 1 1 point Stone Serif

page 88 Figure 3.2.2.A.1

r#$%&'0*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOP
QRSTU\^XYZ[\]VI~abcdefgWjWmnopqrsmv^{|}-

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous

^.JP^&vt0^!1? f.bein8 electrically charged, and is sensitive to direct
light. The IMAGE LOOP is driven around the IMAGE LOOP CORE in a
continuous motion for as long as copy exposures are beingmade (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to
place a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP
for exposure and development. The IMAGE LOOP starts moving on command
from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE area, where it is exposed to a reflected light copy image that is
focused on the IMAGE LOOP at precisely the right time, as determined by
LOGIC AND CONTROL. The original document is illuminated by high
intensity flash lamps for a short duration, which prevents blurring ofthe image as
it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the
areas that are not exposed. The exposure is said to discretely alter the charge
characteristics of the IMAGE LOOP so that the focused copy image is recorded
on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic

image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure
area is an improperly charged segment. These segments are produced when the
PRIMARY CHARGER is turned on at the time of initial IMAGE LOOP

movement and turned off during final IMAGE LOOPmovement. As the

unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the

moving IMAGE LOOP basewith light that desensitizes the IMAGE LOOP to

prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed

IMAGE LOOP area now enters the DEVELOPER STATION ASSEMBLY

where positively charged KODAK EKTAPRINT K Toner particles are attracted

to the IMAGE LOOP. Development occurs as the result of attraction of the toner

particles to the electrostatic image on the IMAGE LOOP. The toner particles are

carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the
IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER and

returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on

the IMAGE LOOP and thereby increases its life, the POST DEVELOPMENT

ERASE LAMP is used to lower the high level charge that was required for

proper image development. This POST-DEVELOPMENT ERASE process also

helps to prevent residual image retention.

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

Page of 1 1 point Stone-Serif text; all 96 printable ASCII characters are printed

at least once; 43 lines of text; 2,339 non-space characters;
427 inter-word spaces.

Figure 3.2.2.A.2 page 89

96 char.

2,339

(96 + 2,243)
characters

BitBLT

2,243 char.

from cache

calculated

char /sec

calculated

1st page

after

power up

36.330

35.260

37.188

36.206

0.858

0.946

2,614

2,371

1st page

pre-

cached

5.158

5.262

5.966

5.956

0.808

0.794

2,776

2,825

simple

1 char

pre-cached

* ^ 1 1 ft k-

5.130

BitBLT

2,338 char.

from cache

0.848

0.826

2,756

2,831

BitBLT

95 char.

from cache

0 040 2,375

0.032 2,969

Scan Convert

96 characters

31.212

30.130

3.23

3.19

All times are given in seconds.

Appletalk was used.

Stone Serif times are printed in:

Roman print for calculated values;

Bold print for measured values.

Times-Roman times are printed in:

Italicprintfor calculatedvalues;

Bold Italic for measured values.

Adobe Stone Serif (Downloaded Outlines)
vs.

Adobe Times-Roman (Printer Resident)

Figure 3.2.2.A.3

90

Section 32.2: Analysis of Experimental Results

3.2.3 Adobe DownloadedOutlines vs. 3rd party

3.2.3.A. Experimental Results

As in sections 3.1.1 and 3.2.2 two sets of two pages each were printed.
Two of the four POSTSCRIPT test pages that were printed in section 3.2.2
are used in this section with no changes. They are the two pages that use the
Adobe downloaded Stone Serif font. The first program prints 96 characters
of the 1 1 point Stone Serif font in two lines as described in section 3.1.1
(see figure 3.1.1.A.1). The second program prints the same two lines as

above, but also prints an additional 41 lines that contain a total of2,243
characters. The two pages that correspond to the programs described above
are shown in figures 3.2.2.A.1 and 3.2.2.A.2.

In addition to the pages described above that use the Stone Serif font two
more pages were printed for comparison that were exactly the same except

for the font used. The two new pages use the CasadyWare downloaded
GalileoRoman font. They are shown on the following two pages in
figures 3.2.3.A.1 and 3.2.3.A.2.

The data in figure 3.2.3.A.3 shows the experimental results when the four

pages described above were printed. Following the convention set forth in
section 3. 1 . 1 all of the measured times are printed in a bold face and all of

the the calculated values are printed in a normal weight face. Furthermore,
the values that correspond to the pages that use the Stone Serif font are

printed on top in the Roman style (Roman and Roman Bold); the values
that correspond to the pages that use the GalileoRoman font are printed on

the bottom in the Italic style (Italic and Italic Bold).

Since Appletalk and the font /program downloader programs were provided,

very little control was available to accurately time the font download time. A

stop watch was used tomeasure the time from the program selection (i.e.

begin execution) to the return from the program.

It took 4 seconds for the FontDownloader program, providedwith the

Adobe Stone Serif font, to establish a connection with the Apple LaserWriter

Plus with an additional 26 seconds needed to download the font The size

of the Stone Serif outline font was measured to be 34,260 bytes with the Get

Info utility program on theMacintosh Finder. The space this font occupies

in the Apple Laser Writer Plus is 28 KBytes, as measured by the Printer

FontDirectory function of the FontDownloader program.

The Adobe FontDownloader program was not able to download the

CasadyWareGalileo
Roman font. The reverse procedure also did not

work. That is, the Altsys LaserWriterDownloader program (version 1.3),
providedwith the CasadyWare Galileo

Roman
font, was not able to

download the Adobe Stone Serif font. When using the Altsys program to

download the Galileo
Roman font it took a total of about 10 seconds to

connectwith the printer and download the font This is three times faster

than downloading the Stone Serif fontwith the Adobe FontDownloader

program, above. The size of the Galileo
Roman

outline font was

measured to be 44,341 bytes with the Get Info utility program on the

Macintosh Finder. The space this font occupies in the Apple LaserWriter

Plus is 28 KBytes, as measured by the PrinterFontDirectory function of

the Adobe FontDownloader program.

91

Section 3.2.3: Analysis ofExperimental Results

!"#$%&'()*+,-70123456789:;<=>?@ABCDEFGHIIKLMNOP

QRSTUVWXYZ|\]\>abcdefgrnjldninopqrstuvwxyz{l}-

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

96 characters of 1 1 pointGalileoRoman

page 92 Figure 3.2.3.A.1

!"#$%&*()*^-70123456789::<>?ABQEFGHIJKLMNOP
QKTUWXYZN^akdefgHjTdmaopqrstuvwxyzfl}-

A. IMAGE LOOP The KODAK EKTAPRINT IMAGE LOOP is a continuous

SSS ***^^ chai*ed'* "Sn. to directlight. The IMAGE LOOP is driven around the IMAGE LOOP CORE in a
continuous mobon for as long as copy exposures are being made (see Figure 1).

B PRIMARY CHARGER. The function of the PRIMARY CHARGER is to
place a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP
for exposure and devebpment The IMAGE LOOP *JLm?, f j

from SGIC AND CONTROL. LMK
^^^K^ta"^

PRIMARY CHARGER.
" on tne

CEXPOSIRE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE ^a-^re

J is exposed to a reflected light copy image that is
SAm?S *%? * **&* the **S- ^ determined byLOGIC AND CONTROL. Tbe original document is illuminated by high
intensity flash lamps for a short duration, which prevents blurringof the image as
it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the
areas that are not exposed The exposure is said to discretely alter the charge
characteristics of the IMAGE LOOP so that the focused copy image is recorded
on the IMAGE LOOP. This MAGE LOOP image is known afanXrosUfc
image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure

,!?v JSPESESty charged seS^ent These segments are produced when the
PRIMARY CHARGER is turned on at the time of initial IMAGE LOOP
movement and turned off during final MAGE LOOP movement. As the
unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the
moving MAGE LOOP base with light that desensitizes the MAGE LOOP to
prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed
MAGE LOOP area now enters the DEVELOPER STATION ASSEMBLY
where positively charged KODAK EKTAPRINT K Toner particles are attracted
to the IMAGE LOOP. Development occurs as the result of attraction of the toner
particles to the electrostatic image on the MAGE LOOP. The toner particles are
carried away on the MAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the
MAGE LOOP are salvaged at thispoint by the SCAVENGER ROLLER and
returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on
the IMAGE LOOP and thereby increases its life, the POST DEVELOPMENT
ERASE LAMP is used to lower the high level charge that was required for
proper image development. This POST-DEVELOPMENT ERASE process also
helps to prevent residual image retention.

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

Page of 1 1 pointGalileoRoman text; all 96 printable ASCII characters are printed

at least once; 43 lines of text; 2,339 non-space characters; 427 inter-word spaces.

Figure 3.2.3.A.2 page 93

96 char.
2,339

(96 + 2,243)
characters

BitBLT

2,243 char.

from cache

calculated

char / sec

calculated

1st page

after

power up

36.330

40.528

37.188

41.346

0.858

0.818

2,614

2,742

1st page

pre-

cached

5.158

5.168

5.966

5.972

0.808

0.804

2,776

2,790

simple

1 char

pre-cached
5.130

BitBLT

2,338 char.

from cache

0.848 2,756

0.842 2,776

BitBLT

95 char.

from cache

0.040

0.038

-2,375

2,500

Scan Convert

96 characters

31.212

35.398

3.23

2.71

All times are given in seconds.

Appletalkwas used.

Stone Serif times are printed in:

Roman print for calculated values;

Bold print for measured values.

GalileoRoman times are printed in:

Italicprintfor calculated values;

Bold Italic for measured values.

Adobe Stone Serif (Adobe Downloaded Outlines)
vs.

CasadyWare Galileo Roman (3rd Party Downloaded Outlines)

Figure 3.2.3.A.3

94

Section 3.2.3: Analysis ofExperimental Results

3.2.3.B. Analysis

The same analysis procedure that was used in section 3.1.1 is used here.
For a detailed explanation of this procedure, refer back to section 3.1.1. It
will not be repeated here.

Itwas expected that scan converting the Adobe Stone Serif font would be
slower than scan converting the CasadyWareGalileoRoman font because
the Adobe algorithm incorporates

"inteUigence"

whereas the CasadyWare

algorithm does not The results were exacdy the opposite. Scan conversion

times are:

3.23 characters per second for Stone Serif;
2.71 characters per second for GalileoRoman.

The two possible reasons why this discrepency exists are font style

complexity and font vendor encoding differences. Although every attempt

was made to select a font with a similar complexity to the Stone Serif font,
this judgement is very subjective. Some the performance difference may be

due to this. Secondly, the font vendor encoding difference, which is the
largest unknown in this case, is probably the biggest cause of the

performance difference. Whether Adobe downloadable fonts will

consistendy outperform third party fonts cannot be predicted from this single

experiment

Once the fonts have been downloaded and scan converted (i.e. put into the

font cache) the printing bitmaps from cache performance of the two are very

close, as expected:

2,776 (2,375 to 2,776) characters per second for Stone Serif;
2,790 (2,500 to 2,790) characters per second for Galileo Roman.

The file size of the two downloadable fonts were expected to be close. They
were not:

34,260 bytes for the Stone Serif font;
44,341 bytes for the Galileo

Roman font.

(Thismay indicate higher complexity which supports the earlier

"possible
reason"

for the scan conversionperformance discrepancy.)

Yet the space these fonts occupy in the Apple LaserWriter fontmemory is

the same: 28 KBytes. Compaction may occur at the printer. Or it is

possible that not all of the Galileo
Roman

printer font is downloaded.

It was expected that the download times of the two downloadable fonts

would be very close to the same. This was the
biggest surprise. Even

though the Adobe font was smaller bymore than 10,000 bytes (34,260 vs.

44,341 bytes) it took three times as long to connectwith the printer and

download the font (30 vs. 10 seconds). Assuming the etire files were sent to

the printer, the overall system
throughput was approximately 9,000 bits/sec

to download the Stone Serif fontwith the Adobe FontDownloader program

vs. approximately 35,000 bits/sec to
download the Galileo

Roman font

with the AltsysLaser WriterDownloader program. From this comparison it

seems that the Altsys font download program utlizes the Appletalk network

much more efficiendy than Adobe's.

In either case, the font download time is
quite significant

95

Section 3.2.3: Analysis ofExperimental Results

3.2.3.C. Proposed Improvements

It seems that using the Altsys program to download the POSTSCRIPT font
is a substantial improvement over using Adobe's download program. Still to
be resolved is why it does not workwith Adobe fonts.

Use a faster communications interface.

Spool downloadable fonts on a disc to reduce future needs for download.

96

Section 3.2.3: Analysis ofExperimental Results

3.2.4 Appletalk vs. RS-232 Comparison

3.2.4.A. Experimental Results

The two POSTSCRIPT test pages that were printed in section 3.1.1 are
identical to one set of test pages printed in section 3.2.2. The first program
prints 96 characters of the 1 1 point Times Roman font in two lines as
described in section 3.1.1. The page this first program prints is shown in

figure 3. 1.1.A. 1. The second program, which prints the page shown in
figure 3.1.1.A.2, prints the same two lines as above, but also prints an
additional 41 lines that contain a total of 2,243 characters. The only
difference in running the experiment in section 3.1. 1 and 3.2.2 is the
communications interface used: in section 3.1.1, the serial RS-232 interface

running at 9600 baud is used; in section 3.2.2, the Appletalk local area
network running at a burst rate of 230.4 Kbits/second is used. The data in
figure 3.2.4.A.1, on the following page, is a reiteration of the experimental
results reported in figures 3.1.1.A.3 (for the RS-232 data) and 3.2.2.A.3
(for the Appletalk data). The printer resident Times Roman font is used for

both cases. Following the convention set forth in section 3.1.1 all of the
measured times are printed in a bold face and all of the the calculated values

are printed in a normal weight face. Furthermore, the values that correspond
to the RS-232 case are printed on top in the Roman style (Roman and

Roman Bold); the values that correspond to the Appletalk case are printed
on the bottom in the Italic style (Italic and ItalicBold).

Figure 3.2.4.A.2 shows the size of the
"bodies"

of the two downloaded

pages, along with the measured download times of each for both RS-232

andAppletalk communication interfaces. Again, die measured values are

reported in bold with die calculated values in normal weight

Themethods used to download these jobs are described below:

RS-232 On the Sun workstation shown in Appendix 1 the UNIX command

cat file_to_be_sent > /dev/tty07

was typed which sends the fftefiletobesent to the printer via port 7

of the 16-portmultiple terminal interface.

Appletalk On the Macintosh II personal computer shown in Appendix 1 the

program FontDownloader was selected (executed). The file to be

downloaded to the printerwas then selected and downloaded. This

procedure is described in more detail in section 2.3.4.

3.2.4.B. Analysis

The measured times to print the first page after a power-down / power-up

sequence is the only noticeable difference
in the printing timemeasurements

shown in figure 3.2.4A.1. It takes 0.400 seconds more in the 96 character

case and 0.460 seconds more in the full page case for the page to print using

Appletalk than RS-232. It appears that the Apple LaserWriterPlus

processor is using some of its time performing
Appletalk functions during

the execution time of the POSTSCRIPT page even though, the point at

which these measurements weremade, the POSTSCRIPT page had already

been fully downloaded.

The calculated character per second printing rates are very close
for both the

printing from cache case and the scan conversion case.

Section 3.2.4: Analysis ofExperimental Results

Times-I

96 char.

loman

2,339

(96 + 2,243)
characters

BitBLT

2,243 char.

from cache

calculated

char /sec

calculated

1 st page

after

power up

34.860

35,260

35.746

36.206

0.886

0.946

2,532

2,371

1st page

pre-

cached

5.154

5.162

5.946

5.956

0.792

0.794

2,832

2,825

simple

1 char

pre-cached

^ CI 1 A fc-

5A 30

BitBLT

2,338 char.

from cache

0.822 2,843

0.526"

2,831

BitBLT

95 char.

from cache

0.030

0.032

3,167

2$69

Scan Convert

96 characters

29.736

30.130

3,23

3.19

RS-232 times are printed in:

Roman print for calculated values;

Bold print for measured values.

Appletalk times are printed in:

Italicprintfor calculatedvalues;

Bold Italic for measured values.

All times are given in seconds.

Appletalk vs. RS-232 Comparison

Figure 3.2.4.A. 1

98

Section 32.4: Analysis ofExperimental Results

As shown in figure 3.2.4.A.2 the maximum raw data rate ofAppletalk, at
230.4 KBits / second, far exceeds that ofRS-232, at 9600 Bits / second.
Using these base numbers Appletalk has a raw communications speed that is
24 times faster than the raw data rate of the RS-232 communications
interface used. However, the point to point nature of the RS-232 interface
and the low protocol overhead (i.e. 2 bits per 8 bit character), make this
interface rather efficient (80%). On the other hand, Appletalk is set up to be
a local area network and has with it several inherent overheads:

1. several layers ofprotocol overhead including:
- the

"to"

address

- the
"from"

address;
- the type of frame (i.e. information, acknowledgement, etc.);
- flow control information;
- error detection via a CRC check

2. retransmission if an error occurred;

3. contentionwith other computers and printers sharing the Appletalk

network;

4. the requirement to break up large files into packets no larger than 512

bytes.

Due to these factors Appletalk tends to be less efficient The calculated

efficiency values, based on the measured times to download two files of

different size, are 20% and 30% for the larger and smaller files respectively.

Instead of being 24 times faster than RS-232, Appletalk is only 9 times faster
for the 96 character case and 6 times faster for the larger full page of text

case. The reason Appletalk gets less efficient as the file size increases is

listed as factor #4 above. The 4,322 byte file needs to be "chopped
up"

into

9 smaller sub-file and sent to the printer through 9 separate packets. The

smaller 363 byte file can easily fit in one packet and is subsequendy faster.

It is not known how badly the throughput ofAppletalk degrades as files

sizes getmuch larger.

Size of the downloaded file is a very important factor especiallywhen

considering downloadable fonts. Font sizes of the downloaded fonts used in

this section 3.2 are as follows:

Stone Serif 34,260 bytes

Galileo
Roman 44,341 bytes

Also note that for this experiment no other computers were active on the

Appletalk network So the factor listed in #3 above did not even come into

play.

Still it should be noted that althoughAppletalk is "less
efficient"

than

RS-232, it still is shown delivering between 6 and 9 times the throughput of

the RS-232 interface for the experiments run in this section.

99

Section 3.2.4: Analysis ofExperimental Results

Download

Page

Size

Measured

Download

Time

Maximum

Bit Rate

(Bits/Sec)

Calculated

Bit Rate

(Bits/Sec)

96 characters

RS-232 Appletalk

363 Characters

2,904 Bits

378 msec

9600

Bits / Sec.

7,683

Bits / Sec

'V

42 msec.

230,400

Bits / Sec

69,143

Bits / Sec

2,339

(96 + 2,243)
characters

RS-232

R,322

*-|_ 34,

Appletalk

Characters

567 Bits

4.502 sec.

9600

Bits / Sec

7,678

Bits /Sec

h
765 msec.

230,400

Bits / Sec

45,186

Bits / Sec

% Comm

Protocol

Efficiency

80%

Efficiency

30%

Efficiency

80%

Efficiency

20%

Efficiency

% Comm.

Protocol

Overhead

20%

Overhead

70%

Overhead

20%

Overhead

80%

Overhead

Measured values are printed in Bold print.

Calculated values are printed in Roman print

Appletalk vs. RS-232 Download Times

Figure 3.2.4.A.2

100

Section 3.2.4: Analysis ofExperimental Results

3.2.4.C. Proposed Improvements

Faster local area networks, like Ethernet at 10MBits/seconds could improve

the communications bottleneck present with large files (fonts, images, etc.).
The cost ofEthernetmay still be a drawback to this improvement.

Faster dedicated point-to-point communications interfaces, like a faster
RS-232 running at 19.2 K or higher, or a Centronics parallel interface

running atmore than 100 KBits / second.

An architecture that supports spooling input files as fast as the

communcations interface allows with faster rates available from the internal

disc (i.e. SCSI interface).

101

Section 3.2.4: Analysis ofExperimental Results

3.3 Methods nfPrinting Strings

3.3.A. Experimental Results

Strings of characters can be placed on a given page in a number ofways. Eachmethod

outlined in this section will be used to print the pages shown in figures 3.3.A. 1 through

3.3.A.3.

For the following examples please note that words in bold are POSTSCRIPT tokens;

all other variables, numbers, and words are parameters that influence the effect of the

command. Note that all pages use a the Times-Roman font set at 10 point All times

given assume the font has already been scan converted

A. Simple unjustified text (i.e. "ragged right")

72.00 710.00 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a)show

72,00 700.00 moveto

(electrically charged, and is sensitive to direct light The IMAGE LOOP...)show

72.00 280.00 moveto

(effectively transfers the copy image to the paper.)show

Note: Theprintedpage producedwith thismethod is shown infigure 3.3A.1.

B . Justified text with the front end application providing the extra incremental spacing
to be applied between adjacent characters.

72.00 710.00 moveto

0.054 0(A. IMAGE LOOP. The KODAKEKTAPRINT IMAGE LOOP...) ashow

for the above line, the characters are

spaced proportionally with 0.054

points added to relative x increment

to every character, note that
"0"

is

the y increment

72.00 700.00moveto

0.044 0(electrically charged, and is sensitive to direct light The TMAGE...)ashow

72.00 290.00moveto

0.356 0(which produces a negative charge on the paper surface to attract..)ashow
72.00 280.00moveto

(effectively transfers the copy image to the paper.)show

Note: Theprintedpage producedwith thismethod is shown infigure 3.3A2.

102

Section 3.3 : Analysis ofExperimental Results

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable ofbeing
electrically charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE
in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE
LOOP. This prepares the IMAGE LOOP for exposure and development The IMAGE LOOP starts moving on
command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is
exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as
determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on

the IMAGE LOOP is removed from the areas that are exposed to light. The charge remains in the areas that are not
exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused

copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first and just after each last, exposure area is an improperly charged
segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE

LOOPmovement and turned off during final IMAGE LOOPmovement. As the unwanted areas pass under the
AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE

LOOP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the

DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner particles are

attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the
electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for

later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this

point by the SCAVENGERROLLER and returned to the DEVELOPER STATIONASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and thereby
increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge that was

required for proper image development. This POST-DEVELOPMENTERASE process also helps to prevent

residual image retention.

H. REGISTRATION.While the developed electrostatic imagemoves around the CORE, a sheet of copy paper is

advanced to theREGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper

is directed into contactwith the IMAGE LOOP and its developed image. This aligns the copy paper and the image

on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This

effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

Simple Unjustified Text (i.e. "ragged right")

Figure 3.3.A.1 page 103

A. IMAGE LOOP. TheKODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capaWe ofbeing

electrically charged, and is sensitive to direct light The
IMAGE LOOP is driven around the IMAGE LOOP CORE

in a continuous motion for as long as copy exposures are beingmade (see Figure
1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE

LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE LOOP starts moving on

command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is

exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as

determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a

short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on

the IMAGE LOOP is removed from the areas that are exposed to light The charge remains in the areas that are not

exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused

copy image is recorded on the IMAGELOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first and just after each last exposure area is an improperly charged

segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE

LOOP movement and turned off during final IMAGE LOOP movement. As the unwanted areas pass under the

AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE

LOOP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the

DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINTK Toner particles are

attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the

electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for

later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this

point by the SCAVENGER ROLLER and returned to theDEVELOPER STATIONASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and thereby
increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge that was

required for proper image development. This POST-DEVELOPMENT ERASE process also helps to prevent
residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet of copy paper is
advanced to theREGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper

is directed into contact with the IMAGE LOOP and its developed image. This aligns the copy paper and the image
on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This

effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output

Justified text with the front end application providing the extra
incremental spacing to be applied between adjacent characters.

page 104 Figure 3.3.A.2

C. Justified text with the front end application providing the extra incremental spacing
to be applied between adjacent words.

72.00 710.00moveto

0.293 0 32 (A. IMAGE LOOP. The KODAK EKTAPRINT IMA...)widthshow

for the line above, the characters are

spaced proportionally with 0.293

points added to relative x increment

to every characterwith an ASCII

value of
"32"

(i.e. a space); note that
"0"

is the y increment

72.00 700.00moveto

0.263 0 32 (electrically charged, and is sensitive to direct light. Th...)widthshow

72.00 290.00moveto

2.242 0 32 (which produces a negative charge on the paper surface...)widthshow

72.00 280.00moveto

(effectively transfers the copy image to the paper.)show

Note: The printedpage producedwith thismethod is shown infigure 3.3A.3.

105

Section 3.3 : Analysis ofExperimental Results

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable ofbeing

electrically charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE

in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE

LOOP. This prepares the IMAGE LOOP for exposure and development The IMAGE LOOP starts moving on

command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is

exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as
determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on

the IMAGE LOOP is removed from the areas that are exposed to light The charge remains in the areas that are not

exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused

copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an improperly charged
segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE

LOOP movement and turned off during final IMAGE LOOP movement. As the unwanted areas pass under the

AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE

LOOP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the

DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner particles are

attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the

electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for

later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this
point by the SCAVENGER ROLLER and returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and thereby
increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge that was

required for proper image development This POST-DEVELOPMENT ERASE process also helps to prevent

residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet of copy paper is
advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper
is directed into contact with the IMAGE LOOP and its developed image. This aligns the copy paper and the image
on the IMAGE LOOP.

^ 5

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This

effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output

Justified text with the front end application providing the extra
incremental spacing to be applied between adjacent words.

Page 106 Figure 3.3.A.3

D. Justified textwith the downloaded POSTSCRIPT program calculating excess space
and distributing it between all adjacent characters. The number of characters in each
line is passed to the

"js"

routine.

/xlen 468 def

/js{

/si exch def

dup stringwidth pop /sw exch def

/s exch def

xlen sw sub

si 1 sub div

0 s ashow

}def

width of line set at 468 points

or 6.5 inches

"js"
-

justify string procedure name:
assumes a string to be printed is on

top of the stack

"si"

is a variable that is assigned the

length of the string on the stack in an

integer number of characters,

including spaces

"sw"

is a variable that is assigned the

width of the string on the stack in

current units; if no scale command

was issued, then the current unit is
the

"point"

"s"

is the name of the string on top
of the stack

the excess space is calculated

and distributed between adjacent

characters

"0"

indicates that the incremental

character positioning is only in the x

direction; the string
"s"

is printed

72.00 710.00 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a contin...) 99 js

characters are automatically spaced

proportionally with the extra space

evenly distributed between adjacent

characters

72.00 700.00 moveto

(electrically charged, and is sensitive to direct light The IMAGE...)108 js

72.00 290.00moveto

(which produces a negative charge on the paper surface to attract..)108 js

72.00 280.00moveto

(effectively transfers the copy image to the paper.)show

Note: Thepageproduced is the same as the one shown infigure 3.3A2.

107

Section 3.3 : Analysis ofExperimental Results

E. Justified text with the downloaded POSTSCRIPT program calculating the excess

space and the number of characters in the string, and distributing the space between

all adjacent characters. The number of characters in each line is not passed to the
"js"

routine, as in (D), but instead is calculated within
"js"

itself.

/xlen 468 def

/js{

dup stringwidth pop /sw exch def

dup length /si exch def

/s exch def

xlen sw sub

si 1 sub div

0 s ashow

}def

width of line set at 468 points

or 6.5 inches

"js"
- justify string procedure name:

assumes a string to be printed is on

top of the stack

"sw"

is a variable that is assigned the

width of the string on the stack in

current units; if no scale command

was issued, then the current unit is

the
"point"

"si"

is a variable that is assigned the

length of the string on the stack in an

integer number of characters,

including spaces

"s"

is the name of the string on top
of the stack

the excess space is calculated

and distributed between adjacent

characters

"0"

indicates that the incremental

character positioning is only in the x

direction; the string
"s"

is printed

72.00 710.00 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuo)js

72.00 700.00 moveto

(electrically charged, and is sensitive to direct light. The IMAGE)js

72.00 290.00moveto

(which produces a negative charge on the paper surface to attract)js
72.00 280.00 moveto

(effectively transfers the copy image to the paper.)show

Note: The pageproduced is the same as the one shown infigure 3.3A2.

108

Section 3.3 : Analysis ofExperimental Results

F. In addition to the functions performed by the
"js"

routine in (E), the
"js"

routine for
this section also handles the carriage return - line feed functions.

/x 72 def

/y 730 def starting (x,y) coordinates

/xlen 468 def width of line = 6.5 inches

/D 1 {x y yneg sub dup /y exch defmoveto} def single line feed
/D2 {x y yneg 2 mul sub dup /y exch defmoveto} def double

" "

carriage return - line feed

/js{dup stringwidth pop /sw exch def dup length /si exch def
/s exch def xlen sw sub si 1 sub div 0 s ashowDl}def

same as "js routine in (E) plus
line feed - carriage return

/yneg 10 def leading

Dl

(A. IMAGE LOOP. The KODAKEKTAPRINT IMAGE LOOP is a continu....)js

(electrically charged, and is sensitive to direct light The IMAGE LOOP....)js

(which produces a negative charge on the paper surface to attract the....)js

(effectively transfers the copy image to the paper.)show

The fastestmeasured print time (of the nine pages per run) is used for comparison:

Case Print Time

A 4.460 seconds

B 4.514 seconds

C 4.538 seconds

D 4.872 seconds

E 4.870 seconds

F 4.926 seconds

3.3.B. Analysis

As the experiments progress from case A through case F the POSTSCRIPT RIP is

progressively handling more of the job:

A. All positioning information is supplied by the POSTSCRIPT program; characters

are positioned according to their normal
proportional spacing rules; no adjustment is

made for justification. The show command is used.

109

Section 3.3 : Analysis ofExperimental Results

B. Positioning information is still supplied by the POSTSCRIPT program, as in (A),
but now the position ofevery character of each printed string is adjusted by an

amount that is also specified by the POSTSCRIPT program. This is to achieve full

justification of the text. The ashow command is used.

C. Once again, the positioning information is supplied by the POSTSCRIPT program,

as in both (A) and (B). Now, instead of adjusting the position of every character, as

in (B), only the position of characters that have the ASCII code represented by the
decimal number

"32"

(i.e. the
"space"

character) will be adjusted. The amount of

adjustment is provided by the POSTSCRIPT program, same as in (B). This case is
more difficult than (B) in that the RIP needs to check each character and only adjust

the positioning of one particular character, namely the space character in this case.

D. The positioning information is still supplied by the POSTSCRIPT program. A
separate routine, called js, calculates the length of the string passed to it, subtracts

the calculated width from the preassigned width of the line held in xlen, divides this

number by the number of characters in the string (less one) which is also supplied to
the js program, and uses this result as a parameter for tha ashow command. Many
more calculations are executed here than in cases (A), (B), or (C).

E. This case is similar to (D) except the number of characters in the string is also
calculated in the js routine using the length operator, instead of this number being
provided to js, as in (D).

Note tlie time toprint cases (D) and (E) are nearly the same. This indicates that the
overhead to get the length of the sting to beprinted using length is similar to the

overhead incurred bypassing the length of the string itself.

F. This case is similar to (E) except the "carriage return / line
feed"

function is

automated with programs Dl and D2.

It can be seen that as the complexity of the program to print text increases, the time to
print them also increases. The only apparent contradiction to this rule is explained in the
italicized print for case (E).

3.3.C. Proposed Improvements

Encourage the printer driver developers to write simple POSTSCRIPT code.

110

Section 3.3 : Analysis ofExperimental Results

3,4 Resolution "Targeting" vs. Total Evolution TnrippPnrW>

3.4.A. Experimental Results

Strings of characters can be placed on a given page in a number ofways. Each method
oudined in this section will be used to print the pages shown in figures 3.3.A.1 through

For the following examples please note that words in bold are POSTSCRIPT tokens;
all other variables, numbers, and words are parameters that influence the effect of the

command. Note that all pages use a the Times-Roman font set at 10 point All times
given assume the font has already been scan converted

Simple unjustified text (i.e. "ragged right") with the CTM set to device resolution, 300

units to the inch.

72 300 div dup scale
/Times-Roman findfont 3000 72 div scalefont setfont
300 3000moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a cont....)show

300 2958 moveto

(electrically charged, and is sensitive to direct light. The IMAGE LOOP...)show

300 1250moveto

(which produces a negative charge on the paper surface to attract the....)show

300 1208 moveto

(effectively transfers the copy image to the paper.)show

Note: Theprintedpage producedwith this method is shown infigure 3.4A.1.

The fastestmeasured print time (of the nine pages per run) is used for comparison:

Case Print Time

A 4.460 seconds the point is used as the positioning unit

"target"

4.458 seconds the 300 dpi pixel is used as the positioning unit

3.4.B. Analysis

Setting up the CTM to direcdy map user coordinates to print engine pixels did not seem

to have an effect on speed nor appearance (compage figure 3.3.A. 1 to 3.4.A.1).

3.4.C. Proposed Improvements

None.

Ill

Section 3.4 : Analysis ofExperimental Results

A. IMAGE LOOP The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable ofbeing

electrically charged, and is sensitive to direct
tight. The IMAGE LOOP is driven around the IMAGE LOOPCORE

in a continuous motion for as long as copy exposures are being made (see Figure 1).

B PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE

LOOP This prepares the IMAGE LOOP for exposure and development The IMAGE LOOP starts moving on

command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is

exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as

determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a

short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on

the IMAGE LOOP is removed from the areas that are exposed to light The charge remains in the areas that are not

exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused

copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first and just after each last exposure area is an improperly charged

segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE

LOOPmovement and turned off during final IMAGE LOOPmovement As the unwanted areas pass under the

AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE

LOOP to prevent unwanted development

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the

DEVELOPER STATION ASSEMBLY where positively chargedKODAK EKTAPRINT K Toner particles are

attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the

electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for

later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this

point by the SCAVENGER ROLLER and returned to theDEVELOPER STATIONASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGELOOP and thereby
increases its life, the POST DEVELOPMENTERASE LAMP is used to lower the high level charge thatwas

required for proper image development. This POST-DEVELOPMENT ERASE process also helps to prevent

residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet of copy paper is

advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper

is directed into contact with the IMAGE LOOP and its developed image. This aligns the copy paper and the image

on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This

effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region

bounded by this rectangle is the printed test page output

Simple Unjustified Text (i.e. "ragged right") with all

positioning coordinates given in device units (300 dpi).

page 112 Figure 3.4.A.1

3,5 Effect ofVaried Page Complexity on PostScript Processing Time

3.5. 1 Effect on the Inter-Page Time Delay Program sec

3.5.1.A. Experimental Results

The sec program, shown below, is measured and analyzed in this section.

/sec % one second delay under no load

{ usertime /T exch def % keep track of time actually taken

1228 {
373.737 737.373 mul pop
}repeat

} repeat
usertime T sub def

}def

In each of the five cases the sec program is called seven times. Each time the

parameter selecting the intended time delay, in seconds, changes until all seven

are completed in the seqeunce 1, 2, 3, 5, 8, 12, and 16. These are the target

delay times shown in the figure below. As the cases progress from one though

five, the amount ofwork that the RIP does outside the sec delay program
increases. In case one, nothing is done other than calling the sec program and

reporting the measured times in the printed trailer page. In case two, a trivial

page routine which prints a blank page is called in between calls to the sec

routine. In cases three and four, the page routine includes the printing of a few

lines of text at the top and the bottom of the page, respectively. And in case five

a full page of text is printed. Detailed descriptions of the five cases follow.

Case 1 Experiment:

The sec program is called seven separate times. Each time it is called one of the

seven target delay times, shown above, is passed to it. The page procedure is

not part of this particular POSTSCRIPT job and is therefore never called. Only
the trailer page with the sevenmeasured delay times is printed. No other
showpage instruction is executed. Note that the loop count of 1228 was

heuristically generated to produce results as close as possible to the target delay
times under this "no

load"

condition.

/sec

{
sec delay program is shown above

}def

AVI 1 sec

AV2 2 sec

AV16 16 sec

print trailerpage

113

Section 3.5.1 : Analysis ofExperimental Results

Case 2 Experiment:

This case is similar to case one with one exception: the showpage operator is

executed inside the page procedure and timed between each pair of sequential

calls to the sec delay program. This causes blank pages to be printed followed

by the trailer page containing the seven measured delay
times.

/page { showpage } def

/sec

{
sec delayprogram is shown onpreviouspage

}def

/Pr

{
calls and times the secprocedure;

shown infigure 2.22.2 and

page 3 ofappendix 22.4

}def

/T2Pr

/Wl 1 sec

/T3Pr

/YV2 2 sec

/T4Pr

/W16 16 sec

AT9Pr

print trailerpage

Case 3 Experiment:

This case is similar to case two except for the operations executed in the page

procedure. Thirteen lines of left justified text plus 2 additional line spaces (to

separate 3 paragreaphs) are
"printed"

in page using the POSTSCRIPT show

operator. The text is positioned at the top of the page occupying almost two
inches of the page (in the y direction). It starts at 10 inches from the bottom of

the page (or 1 inch from the top) and progressing downward to 8.1 inches from

the bottom of the page.

/page

{
72 700 moveto (string 1) show
72 691 moveto (string 2) show

}def

72 574 moveto (string 13)show

showpage

The sec andPrprocedures, the calling sequence to theseprocedures, and
theprinting ofthe trailerpage are the same as shown in case two above.

114

Section 3.5.1 : Analysis ofExperimental Results

Case 4 Experiment:

This case is identical to case three with the exception of the position of the
thirteen lines of left justified text printed in page. Here the text is positioned at
the bottom of the page instead of the top of the page as in case three. It starts at
2.8 inches from the bottom of the page and progressing downward to 0.9
inches from the bottom of the page.

/page

{

72 190 moveto (string 1) show
72 181 moveto (string 2) show

72 64 moveto (string 13) show
showpage

}def

The sec andPrprocedures, the calling sequence to theseprocedures,
and the printing of the trailerpage are the same as shown in case two.

Case 5 Experiment:

This case is identical to case three with the exception of the number of lines

printed: 29 (with 8 additional line spaces) instead of 13 (with 2 additional line

spaces). It starts at 10 inches from the bottom of the page and progressing

downward to 5.2 inches from the bottom of the page.

/page

{
72 700moveto (string 1) show

72 691 moveto (string 2)show

}def

72 376moveto (string 29)show

showpage

The sec andPrprocedures, the calling sequence to theseprocedures,

and theprinting of the trailerpage are the same as shown in case two.

TargetDelav

Time Casel Case 2 Case 3 Case 4 Case 5

1 1.074 1.006 1.686 1.716 1.716

2 2.020 2.006 2.686 3.540 3.446

3 3.000 3.008 3.684 5.362 4.446

5 4.998 5.004 5.684 7.440 6.444

8 7.998 8.004 8.684 10.438 9.442

12 11.994 12.002 12.682 14.436 13.440

16 15.992 15.998 16.678 18.434 17.438

all times given in seconds

115

Section 3.5.1 : Analysis ofExperimental Results

18 .

-a

c
o

U

n

>

j

C

J2

Q

CD

W)
cd

Oh
I

\-

<D

C

o
CD

Half^Page-

ofText

(case 5)

||rr-*11Top-Load-

(case 3)

No Load :

iand
:

j "showpage'!

| (cases 1 and 2)

seconds^ j

"2"""T"""6 "8 i'6 12 14 16 i.8 20
"sec"

Inter-Page Time Delay UnderNo Load Conditions

Figure 3.5.1.A. 1

116

Section 3.5.1 : Analysis ofExperimental Results

3.5. l.B. Analysis

Note the correlation between distance from bottom ofpage that characters are
placed and delay time discrepancy.

Top (8. 1 inches) ~

.7 sec for all target delays of 1 sec and up
case 3

Middle (5.2 inches) ~ 1 .4 sec for all target delays of 2 sec and up
case5

Bottom (.9 inch) -2.4 sec for all target delays of 3 sec and up
case 4

The time taken to execute sec seems only to be influenced by the position of the
mark on the page that is closest to the bottom of the page. Furthermore, this

relationship is linear:

Assume x is the distance of the bottom-mostmark on the page and

y is the time discrepency in seconds.

Using the top and bottom points of (8.1,0.7) and (0.9,2.4) the slope (m)
and y intercept (b) can be calculated to be:

m = - 0.236

b = 2.613

Calculating the third point, y, with the x value equal to 5.2 yields:

y = mx + b
= (-0.236) 5.2 + 2.613 = 1.385 ~= 1.4

Page complexity does not seem to have any effect: case 5 prints themore than

twice as much text as either cases 3 or 4, yet the sec delay program time

discrepency lies in between these two cases.

One possible explanation for this strange behavior is that immediately following
the showpage command, the POSTSCRIPT interpreter needs to clear the page

buffermemory before the next page is allowed to use the page. The algorithm

seems to start from the top of the page and work its way down until it is

determined that nomore pagememory was used. In case 3 this occurs close to

the top of the page so this overhead is minimal, but in case 4 this occurs almost

at the very bottom of the page, so the overhead in great.

3.5.1.G Proposed Improvements

If a dual page bufferwere used with additional hardware to do the necessary

memory housecleaning this phenomena
should disappear.

117

Section 3.5.1 : Analysis ofExperimental Results

3.5.2 Effect on the Compilation and Rasterization ofText Pages

3.5.2.A. Experimental Results

Experimental cases 3 and 4, described in the previous section, are used here.

Sample output for case 3 is shown in figure 3.5.2.A.1, along with its

corresponding timing page in figure 3.5.2.A.2. Two observations will be

made:

1. The time to execute (i.e. print) the text page from case 3 will be examined as

the induced delay between subsequent pages changes.

2. How the data from (1) above changes as the position of the text changes will

also be examined. This is done by comparing themeasured times of case 4,
which prints several lines to text close to the bottom of the page, to the

measured times of case 3, which prints the save text close to the top of the

page (see figure 3.5.2.A.3).

3.5.2.B. Analysis

As shown in figure 3.5.2.A.2 the time to print the very simple page of text

(with pre-cached fonts) is 5.542 seconds for the first page. With no induced

delay the second page prints in 7.322 seconds. As the induced delay times
increase in between pages the time needed to print the next three test pages

steadily decreases. With a 3.734 second delay (target delay of 3 seconds) the
measured print time is 3.898 seconds. As the delay time increases to to 5.736
seconds themeasured print time stays constant This is the point at which the

printer motor turns off (as observed by hearing). As the delay times increase
from 8 to 16 seconds the print time is again constant at a much higher print

time, -5.45 seconds.

Possible explanations for this behavior is broken into three sections:

1. Print time decreases as interpage delay time increases. During this region

printing the previous page "gets in the
way"

ofprinting the current page.

As more time is allowed between pages, the previous page gets in the

way less and therefore the current page waits less time to access the page

buffer and therefore takes less time to render the page.

2. Constantminimum time: increasing delay time does not effect print time.
Once the point has been reached where enough time between pages is

waited the previous page no longer interferes with the printing of the
current page, the page prints at its maximum possible speed. As long as
nothing else changes, (i.e. status ofprint engine, etc.) changing the
interpage delay times has no effect on the printing times.

3. Second constant time region (aftermotor shuts off): no effect of increasing
delay time. Once the print engine motor shuts off, additional time is required

to turn it back on.

118

Section 3.5.2 : Analysis ofExperimentalResults

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable ofbeing
electrically charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE

in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE

LOOP. This prepares the IMAGE LOOP for exposure and development The IMAGE LOOP starts moving on

command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is

exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as

determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a

short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on

the IMAGE LOOP is removed from the areas that are exposed to light. The charge remains in the areas that are not

exposed. The exposure Is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused

copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

Note The printed areas on this page excluding
the region

bounded by this rectangle is
the printed test page output

Case 3 Output: Printing on Top of Page

Figure 3.5.2.A.1 PaSe 119

1/3

C

o
o
u

20t

15-

10+

c
o

c
o

o
ID

to

5 -

0 + -fc

5 10 15

Wait Time After Previous Page [in seconds]

20

Download Time = 2350

Page Time 1 (A) = 434

Page Time 1 (B) = 5532

Wait Time 0 sec =0 Page Time 2 = 7320

Wait Time 1 sec = 1716 Page Time 3 = 5644

Wait Time 2 sec = 2738 Page Time 4 = 4626

Wait Time 3 sec = 3736 Page Time 5 = 3894

Wait Time 5 sec = 5736 Page Time 6 = 3894

Wait Time 8 sec = 8734 Page Time 7 = 5430

Wait Time 12 sec = 12732 Page Time 8 = 5440

Wait Time 16 sec = 16728 Page Time 9 = 5484

Ave Pg Time 2-9 = 5216.5

Note: All times are specified in milliseconds.

page 120 Figure 3.5.2.A.2 Test Page

The second part of this analysis deals with comparing printing times when the

positions of the text that is placed on the page changes. Data that has been

extracted from figure 3.5.2.A.2 for case 3 and a similar timing page for case 4

(not shown) was compiled and put in graph form. The data, shown in figure

3.5.2.A.3, indicates that only variations in the delay time effect the printing
times. Region 1 ranges from 1.7 seconds to about 3.7 seconds; region 2 from

3.7 seconds to 7.4 seconds, and region 3 above 7.4 seconds

3.5.2.C. Proposed Improvements

Once again, a dual page buffer system with hardware assist would help
eliminate the extra time in region 1. Secondly, entrance into region 3 could be

delayed or eliminated if the printer were left in a "more
ready"

state (i.e. without

stopping the motor) when the RIP is still processing a print job. On the

negative side, more power would be taken up when the print engine itself

would be in the idle state.

121

Section 3.5.2 : Analysis of
Experimental Results

j ? -; I \ :

j ;-

j 4 ?
'

; j j

\ \

\ I]

|

i i 4 ?

; ;

; | E]

|

i j ^
>w :

; ; N51

i |

i | i\\ \
: :

:

: i W \
; i

sA
I j * \

VO

I
seconds

CO

Oi

CO

CO

IT)

"<t

CO

CM

M

CO

CM

Page Rasterization Performance Under VariedWait Times

Figure 3.5.2.A.3

*

& S3
a o
B3

*''

?? !>

^ s>

&> cu
>*
^

M

<=*< S
o o

h m

D ?

8
C5

co

|
1/3

bfl

r^

8
CD

I
Lf) PQ

<u

122

Section 3.5.2 : Analysis ofExperimental Results

4. Conclusions

4.1 Scan Converting Outline Fonts vs. Caching Rjtman Fonts
Printing bitmap fonts that are in the bitmap font cache are about 500 times faster than scan
converting the corresponding outline font (see section 3.1.4). The character scan conversion or
rastenzation rate is approximately 3 characters per second (see sections 3.1.1 and 3 1 5) Note
that this time includes the POSTSCRIPT interpretation overhead. Because this is such a
dominant factor, severalmethods are used to increase the probability of a font being in bitmap
form when it is specified in a POSTSCRIPT program:

1. a small set of fonts are stored in ROM in bitmap form (see section 3.1.3). These fonts are
specified by themanufacturer of the LaserWriter Plus Printer, Apple Computer Inc.

2. an area ofRAMmemory in the RIP is reserved to serve as a bitmap font cache (see section
2.4). When a character of an outline font is specified in a POSTSCRIPT program, the time

consuming scan conversion program is executed only one time (see section 3.1.1). The
rendered bitmap font is stored in bitmap font cache. When the same character is

subsequendy specified, it is accessed from this font cache.

3 a small set of fonts, which are stored in outline form, are scan converted during the printer's
idle time (see section 3.1.3). The newly generated font bitmaps are stored in the bitmap font
cache. This process generates certain default fonts at pre-selected sizes and orientations that
are specified, once again, by themanufacturer of the printer which, in this case is Apple
Computer Inc. Sincemuch of the time of the printer is idle, this seems to be a very good

way to build up a library of bit-map fonts in cache.

4. a process similar to that specified in #3 above allows the user to selectwhich outline fonts

are to be scan converted during the printer's idle time (see section 3.1.3).

5. a bitmap font can be downloaded to the printer and stored in the bitmap font cache,
eliminating the scan conversion overhead. Unfortunately, the communications overhead can

similary slow performance (see section 3.2.1).

There are several potential ways to increase the performance of the POSTSCRIPT printer:

1.
"encourage"

the customer (e.g. person running the application program) to make extensive

use of the pre-cached bitmap fonts described in #1 above or the idle time scan converted
fonts described in #3 above.

2.
"encourage"

the customer to use a small number of fonts so that once they are scan

converted by one of the means specified above they will be kept in the bitmap font cache for

future use at the higher speed.

3.
"encourage"

the printer driver developers tomake extensive use of the user-selectable idle

time scan conversion function described in #4 above.

Note that #1 through #3 are ways to increaseperformance that are accessable externally to the

printer.

4. use a faster processor and/or math accelerator hardware. In the event that the selected font

has not been scan converted, the added hardware should scan convert faster than the 3

character per second rate thatwas observed.

5. increase the ROM size to storemore bitmap fonts. This only helps if the printer

manufacturer correcdy
"guesses"

which fonts the customerwill use.

123

Section 4 - Conclusions

6. increase the amount of font cache RAM. This will delay the time at which previously placed

bitmap fonts must be cleared out of the bitmap font
cache.

7. extend the bitmap font cache with diskmemory. Accessing a bitmap
font from disk is still

faster than scan converting an outline font.

8. make use ofdata compression for larger fonts (see section 1 .4).

9. use a faster and/ormore efficient communications interface to download the bitmap (or

outline) fonts (see sections 2.2.1 and
3.2.4).

Note that #4 through #9 are ways to increaseperformance that require internal
changes to the

RIP that drives theprint engine.

4.2 Scan Converting Font Outlines with "Quality
Hints"

Applied

At a printer resolution of 300 dots per inch, "quality
hints"

are applied to the outline fonts

during the scan conversion process (see sections 2.1.1.4 and
3.1.4). At typical sizes ranging

from 6 to 14 point, the scan conversion algorithm uses these hints to insure that a uniform look

of the fonts are provided. For example, stems and curves of a given character are forced to be

the same dot patterns (e.g. "m"). Also similar characters are forced to have similar dot patterns

(e.g.
"c"

and "o", or
"m"

and "n").

The experiments reported in section 3.1.4 reveal that these intelligent hints:

1. are only applied if the orientation of the font lies on a quadrant angle
(i.e. 0, 90, 180, or

360). Only the
0

and
90

cases were tested. A font thatwas rotated
70

did not have the
"hints"

applied

2. take additional time to apply. Figure 3. 1 .A.4 shows both the
0

and
90

cases taking 12 %

to 16 % longer to scan convert as compared to the
70

case. This indicates that the overhead

of applying the hints was greater than the overhead of rotating the font set to a non-quadrant

angle.

As the industry progresses to higher resolutions in the future, the issue ofneeding these font

quality hints will probably fade away.

4.3 Font Style Complexity
The performance of scan converting a font outline varies with the complexity of the font (see

section 3.1.5). The simpleHelvetica font style was measured to scan convert 38 % faster

than the more complex ZapfChancery font style. Performance of scan converting the Times

Roman fontwas in between the simpleHelvetica and the complex ZapfChancery font

styles, as could be expected.

Fastest Helvetica scan converted at a rate of 3.976 characters per second.

Medium Times Roman scan converted at a rate of 3.228 characters per second.

Slowest ZapfChancery scan convertedat a rate of2.875charactersper second.

V2A

Section 4 - Conclusion':

4.4 Downloading Fonts

The key paramter that influences the performance ofdownloaded fonts is the download process
itself. The time to download a font is influenced by:

1 . the size of the font;

2. the speed of the communications interface used;

3. the efficiency of the communications interface used;

4. the efficiency of the application program and communications interface driver software.

One surprising result that was found in section 3.2.3 shows point #4 above to be a very
significant factor. When the Adobe Stone Serif font was downloaded using Adobe's Font
Downloader program, it took about 30 seconds to download the 34 KByte font. When the
CasadyWare Galileo Roman font was downloaded using the AltsysLaser WriterDownloader

program, it took about 10 seconds to download the 44 KByte font. This is three times faster to

download about 30% more data. Both used the Appletalk communications interface. It was

disappointing to find that the Adobe font would not download using the Altsys program, nor
would the

CasadyWare font download using the Adobe program. Without any more data

available, it seems that point #4 above, the efficiency of the Altsys download program vs the

Adobe download program, was the key difference.

Once the font has been downloaded, the performance ofdownloaded fonts were similar to the

performance of internal fonts. The performance of two different downloaded fonts were also

rather close. When the scan conversion time of the Adobe internal Times Roman font was

compared to the Adobe downloaded Stone Serif font the times were very close: 3.19 vs. 3.23

characters per second respectively. The third party downloaded CasadyWare Galileo Roman

font scan converted at a slightly slower speed, 2.71 characters per second. This speed

difference could be attributable tomany different factors, like less efficient coding of the fonts

themselves or the effect of the font style complexity variation.

4.5 Methods ofPrinting Strings

Since POSTSCRIPT is a full functionality programming language it is possible to print justified

and unjustified strings of text in a variety of different ways. Section 3.3 shows six of them.

One trend was shown. As more POSTSCRIPT instructions had to execute per
"showing"

each

line of text, the time to execute these instructions increased causing the
page performance to

decrease.

The way to achieve the best
performance is by calculating the start positions of each line of text

in the front end composition computer and send this information down for each line within the

POSTSCRIPT page. For justification the ashow orwidthshow operators can be used,

depending on the effect that is desired (i.e. adjusting
the intercharacter or interword spacing).

In the experiments, the page using ashow yielded slighdy better performance than the page

usingwidthshow.

125

Section 4 - Conclusions

4,6 Resolution Targeting ,.
...

On page 76 of the POSTSCRIPT Language ReferenceManual it states that it:

1 . a sampled image is a binary image that uses one bit per sample,
and

2. the combination of the imagematrix and the current
transformation matrix is such that one

unit in image space corresponds to one unit in device space,

then

The produced results are precisely predicatable down to
the pixel level and executes a great deal

faster than general imaging.

The above statement applies to scanned bitmap images, not to fonts. Section 3.4 tested to
see if

a similar speedup could be observed if the starting
positions of each line were specified in print

engine coordinates. No effect could be seen. This speedup seems to be only active
for a special

case of bitmap images.

4.7 Printer Indiiced Delays

Execution ofPOSTSCRIPT programs on the AppleLaserWriter Plus are influenced by
several factors:

1 . the location of the lowest (smallest
"y"

value) mark on the page. On the Apple

LaserWriter Plus, the page writes from top to bottom. All lines below the line which

prints the lowestmark on the page is all white. It seems that the Apple LaserWriter Plus

RIP keeps track of this information (sometimes called a "highwatermark"). When this

point is reached the RIP can start to used the page buffer to generate the next page, while at

the same time providing a
"white"

signal to the print engine to finish printing the current

page. This phenomena is shown in section 3.5.1.

2. similar to #1 above, the printing of the current page holds up the generation of the next

page, since a page buffer is required to operate in. A dual page
"ping-pong"

buffer can

alleviate this problem at an added cost.

3. print engine control and communications interface control. Since the AppleLaserWriter

Plus printer RIP has a single processor generating the page itmust be shared to perform

non-POSTSCRTPT functions, thereby slowing down the page generation task. Dedicated
microcontrollers could be used to handle these ancilary tasks and help improve the overall
performance. See section 3.5.2 formore on this topic.

126

Section 4 - Conclusions

5. Glossary

batch composition - A program that executes on a front end system that accepts, as its
input, a text file with markup commands (line width, type ofjustification, etc.), and
outputs a page description file ready to be output on a printer.

cache memory (also bitmap font cache) -

memory (RAM) on the Apple LaserWriter Plus
RIP that temporarily stores bitmap fonts. Outline fonts are scan converted and placed in
cache memory. When a reference is made to print a character of a certain font that has

previously been placed in the font cache the bitmap is quickly BitBLTed from the font
cache to the page buffer. This process is much faster than scan converting the outline
character.

composition The process of integrating text, vector graphics, and bit-map images on pages
in a form tiiat enhances the information being conveyed by the written prose. Typical
features of a composed page are justified text usingmultiple fonts, charts that graphically
show a trend, and screened photographs of items being described in the written portion of
the page.

CTM (Current TransformationMatrix) - A 3x3 matrix that describes how user

coordinate space maps into device space. Changing variables in the CTM changes

rotation, scaling, and translation. The matrix is shown below:

Sx cos 3 Sx sin 9 0

- sin 9 Sy Sy cos d 0

Tx Ty 1

d is angle of rotation in a positive direction (counterclockwise)

Sx is the scale factor in the x direction.

Sy is the scale factor in the y direction.

Tx is the translate number in the x direction.

Ty is the translate number in the y direction

device coordinate system - The cartesian coordinate system that describes the printable

dots of a particular print engine (i.e. "device"). The units of the device coordinate system

have a one to one correlation to die dots of the printer. For theApple LaserWriter Plus

printer the device resolution is 300 dots per inch. The Current TransformationMatrix, or

CTM, maps the user space into device space.

dot - see printable dot

EPROM (Electrically Programmable Read OnlyMemory) - A type ofROM that is

programmable using a computer controlled tool that provides sequenced electrical pulses

to the EPROM. EPROMs are typically erasable by irradiating the EPROM chip with

ultraviolet light for several minutes. Because they are erasable and (re)programmable,
EPROMS are commonly reused during product development and for product code

updates.

font - A complete assortment of a given size of type, including capitals, small capitals, and

lowercase, together with figures, punctruation marks, ligatures, and the commonly used

signs and accents. The italic of a given face is considered a part of the equipment of a

font of type but is spoken of as a separate font.

127

Section 5: Glossary

font family - A group including all the
styules and sizes of the

.character*|in ^font^For

exampleTimes is the font family that contains
all sizes of aU characters m the limes

Roman, Times Italic, Times Bold, and
Times Bold Italic fonts.

full justification - modification of the intercharacter
and/or mterword spacing,

wkhin atine

to position both the left and right ends of the
hue at certain pomts. This is done to

till in a

complete rectangular space with solid
text

front end - A workstation with interfaces to other
computers typically via ^orkinterface,

a user interface to allow text, graphical, and
scanned image input, and an

interface to

printers.

H & J (Hyphenation aM Justification) - The process of breaking up strings of text into

substrings that fitwell within a specified line width using
a specified font A complex set

SSfSc used to determine whether a line break should
occur between adjacentwords

or the line break should occur between words. If a
word is broken up into two

sub-words, then the two sub-words
are place on consecutive

lines with a hyphen place

after the first sub-word.

interactive composition - A program that executes on a front end system that accepts, as its

input, keystrokes and possibly mouse clicks defining
the text and style that the user wants

the page to look like, and displays a softcopy image on the
computer CRT screen and

ultimately outputs a page
description file ready to be output on a

printer.

Interpress - A family ofpage description languages,
invented by Xerox Corporation.

Interpress has three language sets:
..,..* v

1. Commercial Set includes the specification of basic text files, similar
m functionality

to many line printers. ...

2. Publication Set specifies multiple bit-map font capability and graphics, similar
in

functionality to imPress.

3. Professional Graphics Set is the high functionality PDL allowing arbitrarily

rotated and scaled font, among other high end features. It is similar in functionality
to

PostScript.

left justification - Placement of consecutive lines so that the left edge of each line starts at

the same x coordinate. This type ofjustification is also called "ragged
right"

since the

right edges do not line up, but appear to be "ragged".

justification - The process of positioning strings of text to get amore legible effect. See
left

justification andfull justification formore information.

kerning
- The process of altering the spacing between two adjacent characters such that one

character engulfs (ie. gets closer to) the other. Kerning is an advancedmethod of

generating very high quality text Common kerning pairs are
""VA"

and "Ti".

landscape - A page orientation where the horizontal dimension is greater than the vertical

direction. On a typical
8.5"

x
11"

page the horizontal dimension is 1 1 inches with the

vertical dimension being 8.5 inches. See
"portrait"

for comparison.

ligature - A character combination that is made up of two or three characters that
"fit"

well

with each other. These characters are graphically combined and are typographically
considered a single character. Common ligatures are the

"fi"

and the
"fl"

character

combinations.

outline font rasterization - see scan conversion

128

Section 5: Glossary

PDL <age Description Language) - A file format which specifies how the RIP is to
place marks on a page. These marks can be characters in a variety of fonts, vector
graphics, and bit-map images.

pixel - seeprintable dot

point - A dimension that is approximately 1/72 of an inch. The point is the default unit of
POSTSCRIPT.

portrait - A page orientation where the horizontal dimension is less than the vertical
direction. On a typical

8.5"

x
11"

page the horizontal dimension is 8.5 inches with the
vertical dimension being 1 1 inches. Most letters are typed on a portrait page. See
"landscape"

for comparison.

POSTSCRIPT - A high functionality page description language, defined by Adobe
Systems, Inc. that boasts full functionality. The language itself is stack oriented and
"forth"-like, and has the ability to define callable procedures and looping constructs. It is
used in the Apple Laser Writer Plus printer, the printer used throughout this thesis. It is
similar in functionality to the Interpress Professional Graphics Set.

print engine - A device that put black or colormarks onto paper at a typical resolution of 300
to 400 dots per inch. Note that at 300 dots per inch, over 1 MByte of data is needed to
"paint"

a full 8.5 x 1 1 inch page at 1 bit/dot

printable dot The smallest mark on a page that a print engine can render. Size of the

printable dots, or pixels ("picture elements") are the unitmeasures of the "device
coordinate system".

printer - The combination of a RIP and a print engine.

process (electrophotographic) - The process used in most copiers andmany page printers

in which the following steps take place to produce copied or printed pages:

1. an area ofelectrophotographic material is chargedwith a uniform static electrical charge;

2. light, provided by a flashed image, laser or LED, exposes the page area on this
chargedmaterial;

3. charge dissipates in the areas that were exposed, creating the latent image;

4. toner particles are charged such that either they will be attracted to the area thatwas

exposed or not exposed, depending on the polarity of the process. A mirrored image

on toner is layed onto the page area.

5. paper is charged such that the toner image is attracted to it;

6. the toner transfers to the paper;

7 the toner is fused to the paper using heat and/or pressure.

process color - The ability to produce a large
number of different colors (thousands to

millions) on a printed page to closely resemble a
continuous tone color picture. See spot

color for comparison.

129

Section 5: Glossary

screen - A method, called "halftone screening", is used to
render an intermediate shade of

gray, using a grouping of dots that can, individually,
be eitherwhite or black. The

parameters that define a screen in POSTSCRIPT are:

1. frequency, which specifies the number of halftone cells per inch in
device space;

2. angle, which specifies the number ofdegrees that the
haltone screen is to be rotated

with respect to the device coordinate system;

3. a procedure defining the spot function, which determines the
order in which pixels

within a halftone cell are whitened to produce the desired shade of gray.

spot color - The ability to produce several (typically 2 to 4) different color to accentuate key
words or graphics for effect. Seeprocess color for comparison.

rasterization (alternatively,
"rasterizing"

or "scan
converting"

a font) - see scan conversion

RIP (Raster Image Erocessor) - A computer that inputs a page description language file

and generates a bit-map image to transfer to the print engine, usually in a raster form.

ROM (Read OnlyMemory) - Computermemory that is written into only once, at the

factor}', and readmany times. The data that is stored in ROM is permanent and
non-volatile. It is typically used to store program code and other static data structures (like

resident fonts).

scan conversion - The process of converting a geometric description of a shape and

generating the bitmap that corresponds to that shape. Outline fonts and graphical objects
are scan converted in RTPs that accept POSTSCRIPT.

user coordinate system - A cartesian coordinate system, specifiable through

POSTSCRIPT, defined by the units (per inch), the origin, and x and y incrementing
directions. The default user coordinate system ofPOSTSCRIPT defines the units to be

1/72 of an inch (close to a "point"), the x incrementing direction to be "right", the y
incrementing direction to be "up", and the origin to be the lower left hand comer of the
page.

device coordinate system - The units of the device coordinate system have a one to one
correlation to the dots of the printer. For theApple LaserWriterPlus printer the device
resolution is 300 dots per inch. The Current TransformationMatrix, or CTM, maps the
user space into device space.

WYSIWYG (W.hat-Y.ou-ee-Is-W.hat-Y.ou-fiet) - The concept, in interactive
composition systems, where the image that is viewed on the CRT screen is the same
image that will be printed out on the printer.

130

Section 5: Glossary

References (see section 7 for full bibliography entries)

1 . A Comparison of Interpress and POSTSCRIPT

2. page 109 AppleLaserWriter Reference for LaserWriter, LaserWriter Plus,
LaserWriter IInt, and LaserWriterUntx

3. page 221 POSTSCRIPT Language ReferenceManual

4. page 222 POSTSCRIPT Language ReferenceManual

5. pp. 1 17, 1 18 POSTSCRIPT Language ReferenceManual

6. page 140 POSTSCRIPT Language ReferenceManual

7. page 229 POSTSCRIPT Language ReferenceManual

8. page 156 POSTSCRIPT Language ReferenceManual

9. page 150 POSTSCRIPT Language Reference Manual

10. page 216 POSTSCRIPT Language ReferenceManual

1 1 . page 128 POSTSCRIPT Language ReferenceManual

12. page 97 POSTSCRIPT Language ReferenceManual

13. page 287 POSTSCRIPT Language Reference Manual

14. page 288 POSTSCRIPT Language Reference Manual

15. pp. 85 - 102 POSTSCRIPT Language Reference Manual

16. pp. 222-225 POSTSCRIPT Language Tutorial and Cookbook

17. page 41 Printers Buyers Guide andHandbook Test Reports

18. page 6 AppleLaserWriter Reference forLaserWriter, LaserWriter Plus,

LaserWriter IInt, and LaserWriter Entx

19. pp. 3,17 AppleLaserWriter Reference forLaserWriter, LaserWriter Plus,

LaserWriter IInt, and LaserWriterUntx

20. page 17 AppleLaserWriter Reference for LaserWriter, LaserWriterPlus,

LaserWriter UNT, and LaserWriterUntx

21. page 90 LaserWars

22. page 18 AppleLaserWriter Reference for LaserWriter, LaserWriter Plus,

LaserWriter IInt, and LaserWriter IIntx

23. pp. 87,92 LaserWars

24. page 76 The Laser's Edge: Anatomy of a Printing Job

25. page 20 Fluent Laser
Fonts User's Guide

131

Section 6: References

26. pp 287, 301 POSTSCRIPT Language Tutorial and Cookbook

27. page 7-5 MC68000- 16-/32-BitMicroprocessor

28. page 122 Apple LaserWriter Reference forLaserWriter, LaserWriter Plus,
LaserWriter UNT, and LaserWriterUntx

29. pp. 1 230 - 235 InsideMacintosh Volumes I, H, and DT

30. pp. IV 33 - 48 InsideMacintosh Volume IV

132

Section 6: References

7. Bibliography

Adobe Type Library User'sManual for theMacintosh

Version 2.0 - October, 1987
Copyright 1987

Adobe Systems Incorporated

Apple LaserWriter Reference

Apple Programmer's andDeveloper's Association (APDA)
APDA #: KNBLRM

290 SW 43rd Street

Renton,WA. 98055

Tel. No. (206)251-6548

AppleLaserWriter Reference

for LaserWriter, LaserWriter Plus, LaserWriter IInt, and LaserWriterUntx

Apple Computer, Inc.
Addison-Wesley Publishing Company, Inc.
Copyright 1988 by Apple Computer, Inc.

The ChicagoManual of Style

Thirteenth Edition, Revised and Expanded

The University of Chicago Press
Copyright 1982

A Comparison of
Interpress

and POSTSCRIPT

JerryMendelson

April, 1985

Xerox Corporation

Font and Function - The Adobe Type Catalog Spring / 1988

Adobe Systems Incorporated

1988

Fluent Laser
Fonts User's Guide

Robin Casady and RichardWare

CasadyWare Inc.

Copyright 1987

Information Processing
- Text and Office Systems

StandardGeneralizedMarkup Language

ISO /DIS8879

Inside
Macintosh Volumes I, n, andm

Addison-Wesley Publishing Company,
Inc.

Copyright 1985 by Apple Computer,
Inc.

Sixth Printing, September 1987

Inside
Macintosh Volume IV

Addison-Wesley Publishing Company,
Inc.

Copyright 1986 by Apple Computer,
Inc.

ThirdPrinting,April 1987

The Laser's Edge: Anatomy of a Printing
Job

Danny Goodman

MACWORLD The
MacintoshMagazine

February, 1985

Article: The Laser's Edge
- pp. 70 - 79

Anatomy of a Printing Job
- pp.76

133

Section 7: Bibliography

LaserWars

Henry Bortman
MacUser - The

Macintosh Resource (magazine)

October, 1987

Article: Laser Wars - pp. 84 - 94

MC68000- 16-/32-BitMicroprocessor

Advance Information

March, 1985

Motorola Publication Number ADI814R5

PageDescription Languages

Robert A.Morris

Interleaf, Inc. and the University ofMassachessetts at Boston

Copyright 1985, Boole Press, Dublin

Proceedings of the ProText n Conference, Boole Press, 1985

Pocket Pal - a graphics arts production handbook

International Paper Company
Thirteenth Edition

CopyrightMay 1983

POSTSCRIPT Language Program Design (aka - the Green Book)
Adobe Systems Incorporated

Addison-Wesley Publishing Company, Inc.
Glenn C. Reid

Copyright 1988

POSTSCRIPT Language Tutorial and Cookbook (aka - the Blue Book)
Adobe Systems Incorporated

Addison-Wesley Publishing Company, Inc.
Copyright 1985

POSTSCRIPT Language ReferenceManual (aka - the Red Book)
Adobe Systems Incorporated

Addison-Wesley Publishing Company, Inc.
Copyright 1985

Postscript: Master of the Raster

Ted Nace

PCWorld

August, 1985

pages 256-262

Printers Buyers Guide andHandbook Test Reports

Printers Buyers Guide andHandbook

Guide #7

Copyright 1987

Article: Apple Laser-Writer Plus - page 41

Supporting Downloadable POSTSCRIPT Fonts
Glenn Reid

Adobe Systems Incorporated

August 14, 1987

134

Section 7: Bibliography

I
aaoHni __

JBSS8SB8g
WiTfflnrVWffl

Sun Microsystem

Display Terminal

Basaaa

transfer

Apple Macintosh

Personal Computer

(Mac H)

RS-232

Video

Sun

Microsystems

3/280

Appletalk

RS-232

^4888888888888^

HP 4953A

Protocol Analyzer X
Apple

LaserWriter

Plus

PostScript Evaluation Equipment Configuration

Appendix 1

Appendix 1 : PostScript Evaluation Equipment Configuration

2.1 POSTSCRIPT FontWidths

2.1.1 POSTSCRIPT source code for the extraction of printer-

resident font widths from the Apple Laser Writer Plus

2.1.2 Printed output on an Apple LaserWriterPlus printer

when sent the font extraction program of 2.1.1 above.

2.1.3 Hand created (and edited) file containing a portion of the

information shown on 2.1.2 (specifically, the font widths
for a 10 point Time-Roman typeface). This is one of

seven font width files used by the justification program
described in 2.2.1.

2.2 Generation of Text POSTSCRIPT pages

2.2. 1 Pseudo-code for the C-language program that performs

line-breaking, justification, and generation of justified line

of text using POSTSCRIPT in a variety of different ways.

2.2.2 Sample input to justification program of 2.2. 1 above. Input

contains paragraphs of informationmeant to be printed, but

no formatting information is included here. Format is
similar to a

"Content"

file ofSGML.

2.2.3 Sample input to justification program of 2.2.1 above. Input

contains the formatting information that applies to the

printable data of 2.2.2. Format is similar (in concept) to a
"Style"

file of SGML.

2.2.4 Sample output POSTSCRIPT file generated by the

justification program of 2.2.1 using the input files shown in

2.2.2 and 2.2.3.

2.2.5 (One) page printed on the LaserWriterPlus printer using

the POSTSCRIPT file of 2.2.4. Also, included is the timing

page that is ejected after a series of pages is printed.

Note: Thepages that are shown in 2.2.2 through 2.2.5 are

used to generate timing data recorded in section 33 using

justification method # 1 .

Appendix 2: Support Programs

Appendix 2: Support Programs

% Written for the Masters Thesis at RIT; Thomas L. Kowalczyk

% Performance Analysis of Text Oriented Printing Using PostScript

%

% This procedure interrogates the Apple Laser Writer Plus for the font widths

% of three of its printer resident fonts. The font widths of the normal ASCII

% printable characters are extracted, and font width tables for three font

% faces are printed. A 10 point font was assumed for all three fonts.

% Default units of POSTSCRIPT is the point, which is 1/72 of an inch. The

%
"inch"

procedure allows the program to specify coordinates in inches instead.

/inch {72 mul} def

% The top of the font width columns is this distance from the bottom of the

% page. Note that in POSTSCRIPT the origin is at the lower left corner of the

% page with x increasing in value to the right and y increasing in value up,

% like a normal Cartesian coordinate system.

o

t;

/ytop 9.25 inch def

% Set up two strings of characters corresponding to the two columns of font

% width tables.

%

/stl (!"#$%&'(>*+,-./0123456789:; <=>?@ABCDEFGHIJKLMNOP) def

/st2 (QRSTUVWXYZ[\\]A_*

|~abcdefghi jklmnopqrstuvwxyz{ | }~) def

% Set up variables and position cursor before each column is printed

%

/reset__to_top
{

/n 0 def % character index into string
/y ytop def % set y cursor value to top of column position

x y moveto % position POSTSCRIPT cursor on page

} def

% Put title on the top of the page

%

/page_header

{

/Times -Roman findfont 24 scalefont setfont

2 . 5 inch ytop . 5 inch add moveto

(Font Extraction Program) show

} def

Appendix 2.1.1 Font Extraction Program

pagel of 3
Appendix 2.1.1: Support Programs

% Selecting each individual character from the string passed to this procedure,

% request its character width. Then, starting at the existing (x,y) cursor

% position, place each (character,width) pair at locations successively below

% one another (i.e. print a column) .

/print_col

{

/st exch def

1 1 49

{

st n 1 getinterval

dup /s exch def

show

x .2 inch add y

moveto

s string-width

pop

100 mul round

cvr 100 div

() cvs

show

/y y 12 sub def

x y moveto

/n n 1 add def

) for

} def

% pass string of characters to procedure

% loop from the first number to the last

% number in increments of the second number

% get the n'th character of the string

% save it in the variable
"s"

% print it at the current (x,y) position

% position cursor to print width to the right

% of the character

% get the width of the individual character

% x width and y height are returned, so get

% rid of the height, since it is of no interest

% round the font width to the nearest 1/100 of

% a point; note that the
"round"

operator yields

% an integer and
"cvr"

converts it back to real

% convert the number which represent the

% character width to a printable string of

% characters

% and print it .

% set up y to go down to the next line

% position the cursor for next pair

% increment index to reference next character

% Print two columns of font width tables ,

/print_2_col

{

reset_to_top

stl print_col

/x x . 8 inch add def

reset_to_top

st2 print_col

} def

% set up variables and position cursor

% generate and print first column of

% (char,width) pairs

% set up second columm to be to the right of

% the first one just printed

% set up variables and position cursor

% generate and print second column of

% (char,width) pairs

Appendix 2.1.1 Font Extraction Program

Appendix 2.1.1: Support Programs

page2 of 3

% Code starts to execute here. All of the above are procedures are referenced

% by the calls below.

% Print title on the page.

page_header

% Select fonts, position the x cursor position, print a column title, and print

% the (char,width) pairs for three font faces.

o

/Times -Roman findfont 10 scalefont setfont

% select the font

/x 1 inch def % set up x position for first set of columns

x ytop 15 add moveto % position

(10 point Times Roman) show % and print title

print_2_col % extract and print table

/Times-Italic findfont 10 scalefont setfont

% select the font

/x 3.25 inch def % set up x position for second set of columns

x ytop 15 add moveto % position

(10 point Times Italic) show % and print title

print_2_col % extract and print table

/Times-Bold findfont 10 scalefont setfont

% select the font

/x 5.5 inch def % set up x position for last set of columns

x ytop 15 add moveto % position

(10 point Times Bold) show % and print title

print_2_col % extract and print table

showpage % print and eject the page

Appendix 2.1.1 Font Extraction Program

page3 of 3
Appendix 2.1.1: SupportPrograms

Following Page

is the

Aeteal 0Btpnrt

from the

Apple Laser WriterPMs

Printer

Appendix 2.1.2 Printed FontWidth Tables from LaserWriter Plus

single printed page to follow

Appendix 2.1.2 : Support Programs

Font Extraction Program

10 point Times Roman 10point Times Italic 10 point Times Bold

2 5 Q 7 22 25 Q 7.22 2.5 Q 7.78

i 333 R 667 333 R 6.11 ! 333 R 7.22

"4 08 S 5.56
"

42 S 5.0
"

5.55 S 5.56

#50 T 611 #5.0 T 556 # 5.0 T 6.67

$ 50 U 7.22 $ 5.0 U 722 $ 5.0 U 7.22

% 8 33 V 7.22 % 833 V 6.11 % 10.0 V 7.22

& 7.78 W 9.44 & 7.78 W 833 & 8.33 W 10.0

'

3.33 X 7.22
'

333 X 6.11
'

3.33 X 7.22

(3.33 Y 7.22 (333 Y 556 (3.33 Y 7.22

) 3 33 Z 6.11 J 333 Z 556) 3.33 Z 6.67

* 5.0 [3.33
* 5.0 [3.89

* 5.0 [3.33

+ 5.64 \ 2.78 + 6.75 \ 2.78 + 5.7 \ 2.78

,
2.5] 3.33 , 25] 3.89 , 23] 333

- 3.33 A 4.69 - 333 A 422 - 3.33 A 5.81

. 2.5
_

5.0 . 25
_

5.0 . 2.5
_

5.0

/ 2.78
'

3.33 / 2.78
'

333 I 2.78
'

333

0 5.0 I 2.0 0 5.0 j 2.75 0 5.0 | 2.2

1 5.0 - 5.41 1 5.0 ~ 5.41 1 5.0 ~ 5.2

2 5.0 a 4.44 2 5.0 a 5.0 2 5.0 a 5.0

3 5.0 b 5.0 3 5.0 b 5.0 3 5.0 b 5.56

4 5.0 c 4.44 4 5.0 c 4.44 4 5.0 c 4.44

5 5.0 d 5.0 5 5.0 d 5.0 5 5.0 d 536

6 5.0 e 4.44 6 5.0 e 4.44 6 5.0 e 4.44

7 5.0 f 3.33 7 5.0 f 2.78 7 5.0 f 333

8 5.0 g 5.0 8 5.0 g 5.0 8 5.0 g 5.0

9 5.0 h 5.0 9 5.0 h 5.0 9 5.0 h 536

: 2.78 i 2.78 ; 333 i 2.78 : 333 i 2.78

; 2.78 j 2.78 ; 333 j 2.78 ; 333 j 333

< 5.64 k 5.0 < 6.75 k 4.44 < 5.7 k 536

= 5.64 1 2.78 = 6.75 I 2.78 - 5.7 1 2.78

> 5.64 m 7.78 > 6.75 m 722 > 5.7 m 833

? 4.44 n 5.0 ? 5.0 n 5.0 ? 5.0 n 536

@ 9.21 o 5.0 @ 92 o 5.0 @ 93 o 5.0

A 7.22 p 5.0 A 6.11 p 5.0 A 7.22 p 536

B 6.67 q 5.0 B 6.11 q 5.0 B 6.67 q 536

C 6.67 r 3.33 C 6.67 r 3.89 C 7.22 r 4.44

D 7.22 s 3.89 D 722 s 3.89 D 722 s 3.89

E 6.11 t 2.78 E 6.11 t 2.78 E 6.67 t 333

F 5.56 u 5.0 F 6.11 u 5.0 F 6.11 u 536

G 7.22 v 5.0 G 722 v 4.44 G 7.78 v 5.0

H 7.22 w 7.22 H 722 w 6.67 H 7.78 w 722

I 3.33 x 5.0 / 333 x 4.44 I 3.89 x 5.0

J 3.89 y 5.0 / 4.44 y 4.44 J 5.0 y 5.0

K 7.22 z 4.44 K 6.67 z 3.89 K 7.78 z 4.44

L 6.11 { 4.8 L 556 { 4.0 L 6.67 { 3.94

M 8.89 I 2.0 M 8.33 / 2.75 M 9.44 | 22

N 7.22 } 4.8 N 6.67 } 4.0 N 722 } 3.94

O 7.22 -5.41 O 722 ~ 5.41 O 7.78 - S2

P 5.56 2.5 P 6.11 25 P 6.11 23

s 2 .5

j 3 .33
II

4 .08

5 .0

$ 5 .0

% 8 .33

7 .78

1
3 .33

(3 .33

) 3 .33

* 5 .0

+ 5 .64

r 2 .5

- 3 .33

, 2 .5

/ 2 .78

0 5 .0

1 5 .0

2 5 .0

3 5 .0

4 5 .0

5 5 .0

6 5 .0

7 5 .0

8 5 .0

9 5 .0

: 2 .78

r 2 .78

< 5 .64

= 5 .64

> 5 .64

7 4 .44

e 9 .21

A 7 .22

B 6 .67

C 6 .67

D 7. 22

E 6.,11

F 5. 56

G 7. 22

H 7. 22

I 3. 33

J 3. 89

K 7. 22

L 6. 11

M 8. 89

N 7. 22

0 7. 22

P 5. 56

Q 7. 22

R 6. 67

S 5. 56

Appendix 2.1.3 Times-Roman Font Width Table

pagel of 2

Appendix 2.1.3: Support Programs

T 6. 11

U 7. 22

V 7. 22

W 9. 44

X 7. 22

y 7. 22

z 6. 11

[3. 33

\ 2. 78

] 3. 33

A 4. 69

-

5.

3.

0

33

a 4. 44

b 5. 0

c 4. 44

d 5..0

e 4..44

f 3. 33

g 5 ,0

h 5..0

i 2 .78

j 2 .78

k 5 .0

1 2 .78

m 7 .78

n 5 .0

o 5 .0

P 5 .0

q 5 .0

r 3 .33

s 3 .89

t 2 .78

u 5 .0

V 5 .0

w 7 .22

X 5 .0

y 5 .0

z 4 .44

{ 4 .8

t 2 .0

> 4 .8

- 5 .41

Appendix 2.1.3 Times-Roman FontWidth Table

page2 of 2

Appendix 2.1.3: Support Programs

Batch_composition mam program

Leading = 1 factor times font size for vertical spacing

Statlc_llne_wldth = 7 Inches

Justification_method = ragged right

Font = Times Roman

Font_size = 10 point

X_cursor = 1 1nch

Y_cursor = 10 Inches

{
Input filename from command line

filename.postscript postscript header file

for fonts 1 through 7

load font widths from font width files

Word_char_cnt = 0

Llne_char_cnt = 0

Old_line_width = 0

Newjlne_wldth = 0

Space_cnt = 0

lnside_word_flag = FALSE

Initialize default global static composition state

variables; these variables are also set as specified in

thefilename.structure file

Initialize dynamic composition state variables

current # ofcharacters in word

current # of characters in line (including spaces)

before currentword width is added

after spacewidth and currentwordwidth is added

spaces before currentword

Loop to get next character until done

{
Get next character

if Character Is
"normal"

then

{

lnside_word_flag = TRUE

Current_word = Current_word + Character

}

else

If lnslde_word_flag = FALSE

then

{
If Character Is a space or carriage return

then

increment Space_cnt

else

Call Get_command

}

i.e. not a "<", space, or carriage return

set flag for next time through loop

character is not
"normal"

a delimiter has been detected

more than one space or carriage return

it's a
"<"

interpret command; look at structure file if necessary

Appendix 2.2.1 Batch Composition
Pseudo-code

Appendix 2.2.1 : Support Programs

pagel of 3

else

{
lnside_word_flag = FALSE

New_llne_width -
Old_line_wldth +

Old_space_cnt
*
width of space +

width of Current_word

If New_llne_wldth < Statlc_l!ne_wldth

was inside aword

first delimiter after a word

Does the Line +Word fit on the line?

it fits, so add word to line

then

{
Line = Line + Spaces + Current_word

Llne_char_cnt = Llne_char_cnt + Space_cnt +Word_char_cnt

Total_space_cnt = Total_space_cnt + Space_cnt

Word_char_cnt = 0

Old_iine_wldth = New_line_wldth

Space_cnt = 1

If Character =
"<"

then

{
Print (Line)
Reset ail dynamic comp variables

Cali Get_command

}

else

Space_cnt = 1

}

else

{
Justified_print (Line)
if Character =

"<"

then

{
Print (Word)
Reset all dynamic comp variables

Call Get_Command

}

else

{
Line = Word

Space_cnt = 0

Reset all dynamic comp variables

}

}

}

get ready for nextword

end ofparagraphmarker

Print unjustified line

get rid of 7p>", and "beginning of
paragraph"

marker

if it exists along with
"structure"

info, for new par.

space and CR both count as a space

end of "it
fits"

PrinMrailer

)

it doesn't fit,

so print justified line

end ofparagraph marker

Print unjustified line consisting of one word

get rid of 7p>", and "beginning of
paragraph"

marker

if it exists along with
"structure"

info, for new par.

Start building new line with the word that didn't fit

end of "it doesn't
fit"

end of "first delimiter after
line"

end of loop "get next
character"

"cat"

the trailer postscript file that sets up timing
tests to the filename.postscript file

Appendix 2.2.1 Batch Composition Pseudo-code

Appendix 2.2.1 : Support Programs

page2 of 3

Get_COmmand procedure to detect beginning and end ofparagraphs
and setting of the global static composition

I

Get next character from filename.data

variables from the
"structure"

file

if Character = V

then

read next three characters from fllname.data get rid of the "p", ">", and carriage return of the

end-of-paragraph command to get the input file

to the position for reading more data

else

If Character =
*p'

get rid of the ">", and carriage return of the

{ beginning-of-paragraph command to get the input file

read next two characters from fllename.data to the position for readingmore data

Get next character from filename.structure

Loop until Character = V reset the global static composition parameters when

a beginning-of-paragraph marker is detected

{
Get command Character from filename.structure

all sttructure cmnds are read from the
"structure"

file

if Character =
'J'

Justification_method = Integer from fllename.structure

Iff

Leading = real number from fllename.structure

If'F'

{
Font = Integer from 1 to 7 from fllename.structure

Font_size = real number from fllename.structure

filename.postscript postscript font setup Instructions

}

we

{
X_cursor = real number (in points) from fllename.structure

Y_cursor = real number (In points) from fllename.structure

filename.postscript postscript cursor positioning instructions

}

WW

Static_line_wldth = real number (In Inches) from filename.structure

end of "loop until
done"

\ end of "character is a
'p' "

end ofGet_commmand routine

Appendix 2.2.1 Batch Composition Pseudo-code

Appendix 2.2.1 : Support Programs

page3 of 3

<p>
, n

A IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop

of film that is capable of being electrically charged, and is

sensitive to direct light. The IMAGE LOOP is driven around the

IMAGE LOOP CORE in a continuous motion for as long as copy exposures

are being made (see Figure 1) .

</p>

<P>

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place

a negative charge on the IMAGE LOOP- This prepares the IMAGE LOOP

for exposure and development. The IMAGE LOOP starts moving on

command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on

the PRIMARY CHARGER.

</p>

<P>

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to

the EXPOSURE area, where it is exposed to a reflected light copy

image that is focused on the IMAGE LOOP at precisely the right time,

as determined by LOGIC AND CONTROL. The original document is

illuminated by high intensity flash lamps for a short duration,

which prevents blurring of the image as it is exposed on the moving

IMAGE LOOP . The charge on the IMAGE LOOP is removed from the areas

that are exposed to light. The charge remains in the areas that are

not exposed. The exposure is said to discretely alter the charge

characteristics of the IMAGE LOOP so that the focused copy image is

recorded en the IMAGE LOOP . This IMAGE LOOP image is known as an

electrostatic image.

</p>

<P>

D. AUXILIARY ERASE. Just before each first, and just after each

last, exposure area is an improperly charged segment. These segments

are produced when the PRIMARY CHARGER is turned on at the time of

initial IMAGE LOOP movement and turned off during final IMAGE LOOP

movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP,

it floods the moving IMAGE LOOP base with light that desensitizes the

IMAGE LOOP to prevent unwanted development .

</p>

<P>

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE

LOOP area now enters the DEVELOPER STATION ASSEMBLY where positively

charged KODAK EKTAPRINT K Toner particles are attracted to the IMAGE

LOOP. Development occurs as the result of attraction of the toner

particles to the electrostatic image on the IMAGE LOOP . The toner

particles are carried away on the IMAGE LOOP surface for later

transfer to a copy paper.

</p>

<P>

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on

the IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER

and returned to the DEVELOPER STATION ASSEMBLY.

</p>

Appendix 2.2.2 Input Data
"Content"

File (All paragraphs)
pagel of 2

Appendix 2.2.2 : Support Programs

<p>

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress

on the IMAGE LOOP and thereby increases its life, the POST

DEVELOPMENT ERASE LAMP is used to lower the high level charge that

was required for proper image development. This POST-DEVELOPMENT

ERASE process also helps to prevent residual image retention.

</p>

<P>

H. REGISTRATION. While the developed electrostatic image moves

around the CORE, a sheet of copy paper is advanced to the

REGISTRATION ASSEMBLY (not shown in Figure 1) . At precisely the

right time, the copy paper is directed into contact with the IMAGE

LOOP and its developed image. This aligns the copy paper and the

image on the IMAGE LOOP .

</p>

<P>

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under

the TRANSFER CHARGER, which produces a negative charge on the paper

surface to attract the positive charged developer toner. This

effectively transfers the copy image to the paper.

</p>

Appendix 2.2.2 Input Data
"Content"

File (All paragraphs)
page2 of 2

Appendix 2.2.2: Support Programs

<F 1 9.0 L 1.2 W 6.5 J 1 C 72.0 720. 0>

<F 1 11. 0>

<F 1 13. 0>

<F 2 9.0>

<F 2 11. 0>

<F 2 13.0*

<F 3 9.0>

<F 3 11. 0>

<F 3 13. 0>

Appendix 2.2.3 InputMarkup
"Structure"

File

pagel of 1

Appendix 2.2.3 : Support Programs

/Tsd usertime def

/Page {
/Times-Roman findfont 9.0 scalefont setfont

72.00 709.20 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable of being electrically)show
72.00 698.40 moveto

(charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE in a continuous motion)show

72.00 687.60 moveto

(for as long as copy exposures are being made \(see Rgure 1\).)show
/Times-Roman findfont 1 1 .0 scalefont setfont

72.00 663.60 moveto

(B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on)show

72.00 650.40 moveto

(the IMAGE LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE)show

72.00 637.20 moveto

(LOOP starts moving on command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns)show

72.00 624.00 moveto

(on the PRIMARY CHARGER.)show

/Times-Roman findfont 13.0 scalefont setfont

72.00 595.20 moveto

(0 EXPOSURE. The charged IMAGE LOOP continues around the CORE to the)show

72.00 579.60 moveto

(EXPOSURE area, where it is exposed to a reflected light copy image that is focused on)show

72.00 564.00 moveto

(the IMAGE LOOP at precisely the right time, as determined by LOGIC AND)show

72.00 548.40 mcveto

(CONTROL The original document is illuminated by high intensity flash lamps for a)show
72.00 532.80 moveto

(short duration, which prevents blurring of the image as it is exposed on the moving)show

72.00 517.20 moveto

(IMAGE LOOP. The charge on the IMAGE LOOP is removed from the areas that are)show

72.00 501.60 moveto

(exposed to light. The charge remains in the areas that are not exposed. The exposure is)show

72.00 4S6.00 moveto

(said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused)show

72.00 470.40 moveto

(copy image is recorded on the IMAGE LOOP This IMAGE LOOP image is known as)show

72.00 454.80 moveto

(an electrostatic image.)show

/Times-Italic findfont 9.0 scalefont setfont

72.00 428.40 moveto

(D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an improperly charged segment.

These)show

72.00 417.60 moveto

(segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE LOOP movement and turned

off)show

72.00 406.80 moveto

(during final IMAGE LOOP movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the

moving)show

72.00 396.00 moveto
, _, ,

(IMAGE LOOP base with light that desensitizes the IMAGE LOOP to prevent unwanted development.)show

/Times-Italic findfont 1 1 .0 scalefont setfont

72.00 372.00 moveto
_.....,-,

(E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed
IMAGE LOOP area now)show

(enters the DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner)show

72.00 345.60 moveto
, , _ . , 4U . u

(particles are attracted to the IMAGE LOOP. Development occurs as the result of attraction
of the toner)show

72.00 332.40 moveto

Appendix 2.2.4 Text POSTSCRIPT File

page 1 of 6

Appendix 2.2.4 : Support Programs

(particles to the electrostatic image on the IMAGE LOOP. The toner particles are carried away on
the)show

72.00 319.20 moveto

(IMAGE LOOP surface for later transfer to a copy paper.)show

/Times-Italic findfont 13.0 scalefont setfont

72.00 290.40 moveto

(F. SCAVENGER ROLLER. Any developer carrier granules \(iron\) left on the
IMAGE)show

72.00 274.80 moveto

(LOOP are salvaged at this point by the SCAVENGER ROLLER and returned to the)

show

72.00 259.20 moveto

(DEVELOPER STATION ASSEMBLY.)Show

/Times-Bold findfont 9.0 scalefont setfont

72.00 232.80 moveto __

,
_ .. .

(G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP andjshow

72.00 222.00 moveto

(thereby increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge)show

72.00 21 1.20 moveto

(thatwas required for proper image development This POST-DEVELOPMENT ERASE process also helps to)show

72.00 200.40 moveto

(prevent residua! image retention.)show

/Times-Bold findfont 1 1 .0 scalefont setfont

72.00 176.40 moveto

(H. REGISTRATION. While the developed electrostatic image moves around the CORE, a)show

72.00 163.20 moveto

(sheet of copy paper is advanced to the REGISTRATION ASSEMBLY \(not shown in)show

72.00 150.0u'moveto

(Figure 1\). At precisely the right time, the copy paper is directed into contact with the)show

72.00 136.80 moveto

(IMAGE LOOP and its developed image. This aligns the copy paper and the image on)show

72.00 123.60 moveto

(the IMAGE LOOP.)show

/Times-Bold findfont 13.0 scalefont setfont

72.00 94.80 moveto

(I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass)show

72.00 79.20 moveto

(under the TRANSFER CHARGER, which produces a negative charge on)show

72.00 63.60 moveto

(the paper surface to attract the positive charged developer toner. This)show

72.00 48.00 moveto

(effectively transfers the copy image to the paper.)show

usertime /TO exch def % record time before showpage

showpage % operator is executed

}def

usertime /Ted exch def % record time at end of file download

Ted Tsd sub /Tdl exch def % calculate download time

%
*

% Procedures to time the printing of pages and generate and time the delay between pages.
% ,

*

/sec % one second delay under no load

{ % keep track of time actually taken
usertime /T exch def {
1228 {373.737 737.373 mul pop) repeat

} repeat
usertime T sub def) def

Appendix 2.2.4 Text POSTSCRIPT File

Appendix 2.2.4 : Support Programs

page 2 of 6

{
usertime IT exch def

Page

usertime T sub def

}def

% Print one page and keep time

% Calling sequences for the print (and time) pages
% and the delay (again with timing)
% .

/Print_Pages

{
/T1 usertime def

Page

usertime T1 sub /T1 B exch def

TO T1 sub /T1 A exch def

% calculate time that the first page

% took to execute

% calculate time that the first page

% took to execute, less the
"showpage"

/T2Pr

W1 1 sec

/T3Pr

/W2 2sec

/T4Pr

/W3 3 sec

/T5Pr

/W5 5sec

/T6Pr

/W8 8sec

/T7Pr

/W1212sec

/T8Pr

/W16 16 sec

/T9Pr

Jdef

% T2 gets time to print second page

%W1 gets actual delay time (1 second under no load)

% T3 gets time to print third page

%W2 gets actual delay time (2 seconds under no load)

% T4 gets time to print fourth page

% W3 gets actual delay time (3 seconds under no load)

% T5 gets time to print fifth page

% W5 gets actual delay time (5 seconds under no load)

% T6 gets time to print sixth page

%W8 gets actual delay time (8 seconds under no load)

% T7 gets time to print seventh page

% W12 gets actual delay time (1 2 seconds under no load)

% T8 gets time to print eighth page

% W16 gets actual delay time (16 seconds under no load)

% T9 gets time to print ninth page

Appendix 2.2.4 Text POSTSCRIPT File

page 3 of 6

Appendix 2.2.4 : Support Programs

% Routines to draw a simple graph relating delay time between pages

%
%-

on the x axis) to the time to print the page (on the y axis)

/Draw_Graph

{
/Times-Roman findfont 12 scalefont setfont

/x 160 def /y 280 def

/GraphXlnit125def

/GraphYlnit 350 def

/GraphUnit 0.02 def

GraphXInit GraphYlnit 400 add moveto

0 400 neg rlineto

400 0 rlineto stroke

% 20 points per second

% draw the graph axes

/GX GraphXInit 16 sub def

/GY GraphYlnit 4 sub def

GX GY moveto (0) show % put numbers in

GX GY 1 00 add moveto (5) show % on y axis

-20 0 rmoveto

gsave 90 rotate

(Page Generation Time [in seconds]) show grestore

GX GY 200 add moveto (1 0) show
GX GY 300 add moveto (15) show
GX GY 400 add moveto (20) show

/GX GraphXInit 7 sub def

/GY GraphYlnit 12 sub def

GXGY 10 sub moveto

GX 100 add GY moveto (5) show % on x axis

0-15 rmoveto (Wait Time After Previous Page [in seconds]) show

GX 200 add GY moveto (1 0) show
GX 300 add GY moveto (15) show
GX 400 add GY moveto (20) show

GraphXInit GraphYlnit moveto

100 -3.5 rmoveto

0 7 rlineto

100 0 rmoveto

0 -7 rlineto

100 0 rmoveto

0 7 rlineto

100 0 rmoveto

0 -7 rlineto stroke

GraphXInit GraphYlnit moveto

-3.5 100 rmoveto

7 0 rlineto

0 100 rmoveto

-7 0 rlineto

0100 rmoveto

7 0 rlineto

0 100 rmoveto

-70 rlineto stroke

} def

% put tick marks in

% x axis, 5

%x axis, 10

% x axis, 1 5

% x axis, 20

% put tick marks in

% y axis, 5

%y axis, 10

%y axis, 15

% y axis, 20

Appendix 2.2.4 Text POSTSCRIPT File

page4 of 6

Appendix 2.2.4 : Support Programs

{

/yy exch def
3 add yy moveto

-3 3 rlineto

-3 -3 rlineto

3 -3 rlineto

3 3 rlineto

stroke

)def

/ShowPageTime

{
x 200 add y moveto

(Page Time) show show

x 290 add y moveto

(=)show

dup /Ty exch def

() cvs show
}def

/ShowWaitTime

{
d

(Wait Time) show show (sec) show

x 90 add y moveto

(=)show

dup /Wx exch def

() cvs show

}def

/Graphlt

{
Wx GraphUnit mul GraphXInit add

Ty GraphUnit mul GraphYlnit add

Diamond

}def

% procedure to draw a point on the graph

% procedure to display time to generate page

% procedure to display actual delay time

% procedure to graph a (Delay.Page) time pt.

Appendix 2.2.4 Text POSTSCRIPT File

Appendix 2.2.4 : Support Programs

page 5 of 6

%
*

% Calls to the above routines to print the timing data.

7o

/ReportJTimes

{
Draw_Graph

xymoveto

(Download Time) show
x 100 add ymoveto

(=)show

Tdl () cvs show

/d {x y 1 5 sub dup /y exch def moveto) def

dTlA(1\(A\))ShowPageTime

dT1B(l\(B\))ShowPageTime

0 (0) ShowWaitTime T2 (2) ShowPageTime Graphlt

W1 (1) ShowWaitTime T3 (3) ShowPageTime Graphlt

W2 (2) ShowWaitTime T4 (4) ShowPageTime Graphlt

W3 (3) ShowWaitTime T5 (5) ShowPageTime Graphlt

W5 (5) ShowWaitTime T6 (6) ShowPageTime Graphlt

W8 (8) ShowWaitTime T7 (7) ShowPageTime Graphlt

W12 (12) ShowWaitTime T8 (8) ShowPageTime Graphlt

W16 (16) ShowWaitTime T9 (9) ShowPageTime Graphlt

d x 200 add y moveto

(Ave Pg Time 2-9) show
x 290 add y moveto

(=)show

T2 T3 add T4 add T5 add T6 add T7 add T8 add T9 add 8 div

() cvs show

/Times-Italic findfont 12 scalefont setfont

d d (Note: All times are specified in milliseconds.) show

} def

Print_Pages

Report_Times

showpage

Appendix 2.2.4 Text POSTSCRIPT File

page 6 of 6

Appendix 2.2.4 : SupportPrograms

Following Pages

are the

Aetoal 0etpBt

from the

Apple LaserWriter Pins

Printer

Appendix 2.2.5: Printed Text & Timing Pages from LaserWriter Plus
two printed pages to follow

Appendix 2.2.5 : Support Programs : Generation ofPostScript Text Pages

Printed Text and Timing Pages from the Apple LaserWriter Plus

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable ofbeing electrically

charged, and is sensitive to direct light The IMAGE LOOP is driven around the IMAGE LOOP CORE in a continuous motion

for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on

the IMAGE LOOP. This prepares the IMAGE LOOP for exposure and development The IMAGE

LOOP starts moving on command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns

on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the

EXPOSURE area, where it is exposed to a reflected light copy image that is focused on

the IMAGE LOOP at precisely the right time, as determined by LOGIC AND

CONTROL. The original document is illuminated by high intensity flash lamps for a

short duration, which prevents blurring of the image as it is exposed on the moving

IMAGE LOOP. The charge on the IMAGE LOOP is removed from the areas that are

exposed to light. The charge remains in the areas that are not exposed. The exposure is

said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused

copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as

an electrostatic image.

D. AUXILIARYERASE. Just before eachfirst, andjust after each last, exposure area is an improperly charged segment. These

segments are producedwhen the PRIMARYCHARGER is turned on at the time ofinitial IMAGELOOPmovement and turned off

during final IMAGELOOPmovement. As the unwanted areaspass under theAUXILIARYERASELAMP, itfloods themoving

IMAGELOOP basewith light that desensitizes the IMAGELOOP toprevent unwanted development.

E. DEVELOPER STATIONASSEMBLY. Theproperly charged and exposed IMAGE LOOP area now

enters theDEVELOPER STATIONASSEMBLYwherepositively chargedKODAKEKTAPRINTK Toner

particles are attracted to the IMAGELOOP. Development occurs as the result ofattraction of the toner

particles to the electrostatic image on the IMAGELOOP. The tonerparticles are carried away on the

IMAGELOOP surfacefor later transfer to a copypaper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE

LOOP are salvaged at thispoint by the SCAVENGER ROLLER and returned to the

DEVELOPER STATIONASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and

thereby Increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge

that was required for proper image development This POST-DEVELOPMENT ERASE process also helps to
prevent residual image retention.

H. REGISTRATION.While the developed electrostatic imagemoves around the CORE, a
sheet ofcopy paper is advanced to the REGISTRATION ASSEMBLY (not shown in

Figure 1). At precisely the right time, the copy paper is directed into contact with the
IMAGE LOOP and its developed image. This aligns the copy paper and the image on

the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass

under the TRANSFER CHARGER, which produces a negative charge on
the paper surface to attract the positive charged developer toner. This

effectively transfers the copy image to the paper.

2UT

15--

c

o

8

8 io

cs
o

c

O

M

0- 5

0 +

5 10 15

Wait Time After Previous Page [in seconds]

20

Download Time = 5396

Page Time 1 (A) = 127394

Page Time 1 (B) = 132492

Wait Time 0 sec = 0 Page Time 2 = 7364

Wait Time 1 sec = 1714 Page Time 3 = 5648

Wait Time 2 sec = 3538 Page Time 4 = 5552

Wait Time 3 sec = 5360 Page Time 5 = 4762

Wait Time 5 sec = 7500 Page Time 6 = 6158

Wait Time 8 sec = 10500 Page Time 7 = 6160

Wait Time 12 sec = 14498 Page Time 8 = 6218

Wait Time 16 sec = 18496 Page Time 9 = 6212

Ave Pg Time 2-9 = 6009.25

Note: All times are specified in milliseconds.

	Performance analysis of text-oriented printing using PostScript
	Recommended Citation

