Rochester Institute of Technology

RIT Scholar Works

Theses

1988

Performance analysis of text-oriented printing using PostScript

Thomas Kowalczyk

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation
Kowalczyk, Thomas, "Performance analysis of text-oriented printing using PostScript" (1988). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact
ritscholarworks@rit.edu.

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/48?utm_source=scholarworks.rit.edu%2Ftheses%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Rochester Institute of Technology
School of Computer Science and Technology

Performance Analysis of
Text-Oriented Printing
Using POSTSCRIPT,

by
Thomas L. Kowalczyk

A thesis, submitted to
The Faculty of the School of Computer Science and Technology,
in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

Approved by: Guy Johnson

Professor and Chairman of
Applied Computer Studies

Dr. Vishwas G. Abhyankar
instructor

Frank R.Hubbell
instructor

October 10, 1988

Thesis Title:
Performance Analysis of
Text-Oriented Printing
Using POSTSCRIPT,,

I, Thomas L. Kowalczyk, hereby grant permission to the Wallace Memorial
Library, of R.LT., to reproduce my thesis in whole or in part under the following
conditions:

1. Tam contacted each time a reproduction is made. Ican be reached at the
following address:

82 Brush Hollow Road
Rochester, New York 14626

Phone # (716) 225-8569

2. Any reproduction will not be for commercial use or profit.

Date: October 10, 1988

Permission Statement

Apple, Appletalk, LaserWriter, and Macintosh are
registered trademarks of Apple Computer, Inc.

Fluent Laser Fonts and Galileo Roman are
trademarks of CasadyWare Inc.

Helvetica, Palatino, and Times are registered
trademarks of Linotype Co.

ITC Avant Garde, ITC Bookman, ITC Garamond,
ITC Zapf Chancery, and ITC Zapf Dingbats are
registered trademarks of International Typeface
Corporation

POSTSCRIPT is a registered trademark of Adobe
Systems Incorporated.

Interpress in a registered trademark of Xerox Corp.

Trademarks

Abstract

POSTSCRIPT® is a page description language which is used to transmit printing
information from a host computer (i.e. Apple Macintosh) to a printer (i.e. Apple
LaserWriter Plus). It has the ability to describe pages consisting of text, vector
graphics, and scanned bit-map images. Printing text is the area of concentration for
this thesis. Specifically several variables that affect the printing speed of a common
POSTSCRIPT® printer, the Apple LaserWriter Plus, are looked at when printing text

in a variety of fonts, sizes, and orientations. The variables that affect printer
performance include:

- use of outline vs. bit-map fonts;

- the outline font rasterization process;

- the use of pre-cached bit-map fonts;

- background outline font rasterization;

- arbitrary scaling and rotation;

- downloading host-resident fonts;

- Adobe and Third Party host-resident downloadable fonts vs. printer-resident fonts;
- Appletalk vs. RS-232 communications interfaces;

- use of the POSTSCRIPT® show, ashow, and widthshow instructions;

- targeting the POSTSCRIPT® instructions at a particular engine resolution;
- print engine overhead.

A sequence of POSTSCRIPT® files were transmitted to the Apple LaserWriter Plus
printer. The experiments were carefully constructed to exercize each of the variables
listed above. Performance measurements were carefully recorded and analyzed.
Where applicable, improvements were proposed to improve printer performance.

Abstract

Permission Statement

Trademarks

Abstract

Table of Contents

Introduction

1.1. Background

1.2 "PDL" Defined

1.3 History of Interpress® and POSTSCRIPT®

1.4 A Comparison of Outline vs. Bitmap Fonts

1.5 Text, Vector Graphics, and Bitmap Images

15.1

Text

1.5.2 Bitmap Images

1.5.3 Vector Graphics

Problem Description

2.1 Variables that Affect Performance

2.1.1

problem description and expected results

Font Formats: QOutlines vs. Bitmaps

2.1.1.1 Outline Font Rasterization and Caching
2.1.1.2 Pre-Cached Bit-Maps

2.1.1.3 Background Outline Font Rasterization
2.1.14 Effect of Scaling and Rotation

2.1.1.5 Variations of Font Style

iv

Page

iv

[S P

O 0 X

10

13
14

14
15
15
16
17
19

Table of Contents (continued)

Page
2.1.2 Downloaded Fonts 20
2.1.2.1 Downloaded Bitmaps vs. 21
Printer Resident (Cached) Bitmaps
2.1.2.2 Adobe Downloaded Outlines vs. 22
Printer Resident (Internal) Outlines
2.1.2.3 Adobe Downloaded Outlines vs. 23
Third Party Downloaded Outlines
2.12.4 Appletalk vs. RS-232 25
2.1.3 Methods of Printing Strings 26
2.1.4 Resolution "Targeting" vs. Total 27
Resolution Independence
2.1.5 Effect of Varied Page Complexity on POSTSCRIPT® 28
Processing Time
2.1.5.1 Effect on the Inter-Page Time Delay 28
Program sec
2.1.5.2 Effect on the Compilation and Rasterization 29
of Text Pages
2.2 Performance Measurement and Calculation 30
2.2.1 Communications 31
2.2.2 Interpretation (Compilation) and Rasterization 35
2.2.3 Print Engine Paper Ejection 44
2.3 Programming Tasks 45
2.3.1 Extraction of Font Widths from 45
Apple Laser Writer Plus®
2.3.2 Batch Composition Program 47

2.3.3 Downloadable POSTSCRIPT® Bitmap Font Program 49
2.3.4 Installing Downloadable POSTSCRIPT® Outline Fonts 54
2.4 Assumed RIP Architectural Model 55

\
Table of Contents

Table of Contents (continued)
Page

3. Analysis of Experimental Results 59

3.1 Font Formats: Outlines vs. Bitmaps 59

3.1.1 Real Time Outline Font Rasterization and Caching 59

3.1.1.A Experimental Results
3.1.1.B Analysis
3.1.1.C Proposed Improvements
3.1.2 Pre-Cached Bit-Maps 65

3.1.2.A Experimental Results
3.1.2.B Analysis
3.1.2.C Proposed Improvements

3.1.3 Background Outline Font Rasterization 67

3.1.3.A Experimental Results
3.1.3.B Analysis
3.1.3.C Proposed Improvements

3.1.4 Effect of Scaling and Rotation 71

3.1.4.A Experimental Results
3.1.4B Analysis
3.1.4.C Proposed Improvements

3.1.5 Variations of Font Style 78

3.1.5.A Experimental Results
3.1.5.B Analysis
3.1.5.C Proposed Improvements

3.2 Downloaded Fonts 81

3.2.1 Downloaded Bitmaps vs. Printer Resident 81
(Cached) Bitmaps

3.2.1.A Experimental Results
3.2.1.B Analysis
3.2.1.C Proposed Improvements

3.2.2 Adobe Downloaded Outlines vs. 86
Printer Resident (Internal) Outlines

3.2.2.A Experimental Results
3.2.2B Analysis
3.2.2.C Proposed Improvements

vi

Table of Contents

Table of Contents (continued)

3.2.3 Adobe Downloaded Outlines vs.
Third Party Downloaded Outlines

3.2.3.A Experimental Results
3.2.3.B Analysis
3.2.3.C Proposed Improvements
3.2.4 Appletalk vs. RS-232
3.2.4.A Experimental Results
3.24.B Analysis
3.2.4.C Proposed Improvements
3.3 Methods of Printing Strings
3.3.A Experimental Results
3.3.B Analysis
3.3.C Proposed Improvements
3.4 Resolution "Targeting" vs. Total Resolution Independence
3.4.A Experimental Results

3.4.B Analysis
3.4.C Proposed Improvements

3.5 Effect of Varied Page Complexity on POSTSCRIPT®
Processing Time

3.5.1 Effect on the Inter-Page Time Delay Program sec
3.8.1.A Experimental Results
3.8.1.B Analysis
3.8.1.C Proposed Improvements

3.5.2 Effect on the Compilation and Rasterization
of Text Pages

3.8.2.A Experimental Results

3.8.2.B Analysis

3.8.2.C Proposed Improvements

4. Conclusions
4.1 Scan Converting Outline Fonts vs. Caching Bitmap Fonts
4.2 Scan Converting Font Outlines with "Quality Hints" Applied
4.3 Font Style Complexity
4.4 Downloading Fonts
4.5 Methods of Printing Strings
4.6 Resolution Targeting
vii
Table of Contents

Page

91

97

102

111

115

115

118

123
123
124
124
125
125
126

Table of Contents (continued)

Page

4.7 Printer Induced Delays 126

5. Glossary 127
6. References 131
7. Bibliography 133

Appendices

1. Equipment and Software Tools

1.1 POSTSCRIPT® Evaluation Equipment Configuration

2. Support Programs

2.1 POSTSCRIPT® Font Widths
2.1.1 Font Extraction Program
2.1.2 Printed Font Width Tables from the Apple Laser Writer Plus ®
2.1.3 Times-Roman Font Width Table (ASCII File)

2.2 Generation of POSTSCRIPT® Text Pages
2.2.1 Batch Composition Pseudo-Code
2.2.2 Input Data "Content" File
2.2.3 Input Markup "Style" File
2.2.4 Text POSTSCRIPT® File

2.2.5 Printed Text and Timing Pages from the Apple Laser Writer Plus ®

viii
Table of Contents

1. Introduction

1.1 Background

An electrtonic publishing system is made up of three main parts: the front-end, the RIP, and the
print engine. Figure 1.1 is a block diagram of a typical electronic publishing system.

Page
Description Bit-Ma;
External F P .
: ront Language + Print
Information =——{» _E.E_’ RIP —En——" ’
In(;)ut on End Igllt?gl Engine

Electronic Publishing System Block Diagram
figure 1.1

The front-end provides interfaces to the user and to other computer systems. The user interface
handles input of text, graphics, and bit-map (scanned) images, and provides the merging and
page layout of these pieces in either a batch or interactive (WYSIWYG) mode. The computer
interface provides a communications interface with other information input systems (ie. word
processors, illustration stations). This information is filtered by the front-end to yield the
internal page format of the electronic publishing system. Ultimately, the output of the front-end
is the "page description language" (PDL) file which is sent to the "raster image processor"
(RIP). The PDL file describes the marks on the printed page.

The Raster Image Processor (RIP) inputs a PDL file for a page or a set of pages generated by
the front-end. The RIP then generates the corresponding bit-map image(s) and sends it to the
print engine, usually in a raster form. The print engine prints the bit-map page.

The Page Description Language (PDL) is the interface between the "soft image" world of the
front-end and the"hard-copy" world of the RIP and the print engine. One particular PDL is

quickly becoming an industry defacto standard: POSTSCRIPT®.

1.2 "PDL" Defined

PDL stands for Page Description Language. The term PDL applies to the set of printing
commands that describe the printing of text and usually vector graphics on a printed page. The
location on a page is specified and a "mark" is placed at that location. That mark can be a dot, a
character, a string of characters, a line segment, a curve segment, or a bit-map. The PDL has
no knowledge of a "line of text" or a "carriage return”. Subsequently, conventional line printers
are not considered to use PDL's. Determining where the line of text begins and ends is the
responsibility of the front end application. A typical sequence of PDL (pseudo)code to print out
a simple string of text goes as follows:

Move cursor to the (X,y) coordinate of the page.
Select a font, size, and orientation; make it the “current" font.

Print the string "abc"; letters are automatically advanced using proportional spacing.

Some of the more recent PDL's, like POSTSCRIPT®, offer fully scalable and rotatable outline
fonts. The older PDL's, like imPRESS, provide a limited number of discrete font sizes and the
four quadrant orientations. The PDL is the "assembly language" of electronic printing.

1

Section 1.1 - Introduction

1.3 History of Interpress® and POSTSCRIPT® (1)

Figure 1.3 shows how Interpress® and POSTSCRIPT® began. Bob Sproull first

dc%/cloped a printing languaigc called "PRESS" while at Xerox. Independently, John Warnock
developed his own graphics/printing language. After coming to Xerox John Warnock put
together a similar printing language he called JaM. A third concurrent activity at Xerox Palo
Alto Research Center (PARC) was the "Cedar Graphics" graphics research program.
"Research Interpress” was based on all three of these activities.

Xerox allowed some of their work to become public. Xerox permitted publication of a paper
based on the work conducted in the "Cedar Graphics" research program. It was written by
John Warnock and Doug Wyatt and was called “A Device Independent Graphics Imaging
Modz! for Use with Raster Devices". Secondly, Xerox allowed Leo Guibas, a Stanford
professor, o use some of the Interpress® -related research work as course material fora
course ar Stanford. John Warnock used the public information disclosed by Xerox in addition
to the work that he did prior to coming to Xerox as a basis for starting his own company,
Adobe Systems, Inc., and continued the development of a language which he called
POSTSCRIPT®. The Apple Laser Writer was the first commercial product to use
POSTSCRIPT®. The definition of POSTSCRIPT® is public. Adobe's product is their
implementation of POSTSCRIPT®, which they will port to a hardware RIP that either Adobe
or Adobe's customer designs.

On the Interpress® side, a subset of Research Interpress was chosen which became the
Xerox internal standard language that was called the "Interpress '82™ Electronic Publishing
Standard”. Printing instructions were added to Interpress ‘82 to become another Xerox
internal version of Interpress®, version 2.0. Xerox made version 2.1 public in April of
1984. In 1986, Xerox released Interpress® version 3.0 which contained three sets. The
"Commercial Set" handles basic text and trivial graphics; the "Publication Set" adds bit-map
fonts, vector graphics, and bit-map printing; the "Professional Graphics Set" provides high
functionality, like scaled and rotated outline fonts and bit-map image processing. The
Publication Set" is a medium functionality language similar to "imPress", a language developed
and sold by Imagen Corp. The "Professional Graphics Set" is a high functionality page
description language similar to POSTSCRIPT®.

Much of this information was taken from reference #1.
(Reference list may be found in section 6.)

2

Section 1.1 - Introduction

1976: While at Evans &
Sutherland, John Warmnock
works on graphics algorithm
esearch for flight simulator;

1978

- early 80'

Xerox PARC "Research Interpress"
headed by Chuck Geschke

John Warnock develops
JIhe JaM graphics print-
ing language

"Cedar Graphics"

graphics research
/ program

Leo Guibas conductsy
Interpress research
at Stanford

July 1982
John Warnock
& Doug Wyatt Publish
"A Device Independent

Graphics Imaging Model
for Use with Raster

John Warnock
and

Chuck Geschke

start Adobe Sys.

1985:

First POSTSCRIPT
Product

Apple Laser Writer

1986:
Apple Laser
Writer Plus

others include
QMS, Mergenthaler,
Data Products, ...

January 1982

Announced Xerox
printers to suppo
Interpress include
4045, 4050, 9700, & 8700

Bob Sproull develops
PRESS at Xerox

PRESS implemented
and used inside
Xerox

Xerox Internal Standard
"Interpress ‘82 Electronic
Publishing Standard”

Internal to Xerox:
Interpress 2.0

Public: Interpress
Electronic Printing

April 1984

Standard
Ver. 2.1

1986
Interpress 3.0
released to
public

Add "printing”
instructions to
Research Interpress &
Interpress '82

History of Interpress and POSTSCRIPT®

figure 1.3

3

Section 1.3 - Introduction

Commercial

—» Set

Publication
Set

Prof. Graph.

P Set

4 rison li itm

Before POSTSCRIPT® was introduced most printers could only use bitmap fonts. One of the
key capabilities of POSTSCRIPT® that certainly set Adobe Systems, Inc. ahead of the
competition was the extensive use of outline fonts. This is in addition to the less used bitmap
font functionality. Outline fonts have many advantages over bitmaps. Four of the more
important advantages are outlined below.

1. Resolution Independence .]))
Since a font outline is not tied to a specific resolution output device, the same outline can

easily be used to drive any resolution output device.

For bitmap fonts, entirely different bitmaps are required for printers ‘with different
resolutions. For example, a 300 dpi font will be 75 % size when printed on a 400 dpi
printer, or 150 % size on a 200 dpi printer.

2. Device Independence
Different printers have different processes that lay black marks on a page. In some cases
even if two printers of the same resolution print the exact same bitmap (font) data, the output
can appear significantly different. In the case of electrophotographic printers a light (laser or
LED) exposes an area of electrophotosensitive material. The process is set up such that the
exposed area either picks up toner, in a "write black" system, or does not pick up toner, in a
"write white" system. If the same bitmap is printed on two printers with different polarity
processes the print produced with "write white" tends to be lighter than the print produced
with "write black". Inconsistencies across printers can be compensated for in the outline
font rendering algorithm, so that the same basic outline can be used to print on different
process printers.

In contrast, to make bitmap fonts look the same on printers with very different processes,
different font bitmaps are needed.

3. Better selection of high quality rotated and scaled fonts
A single font outline can be scaled to any size and rotated to any angle. In addition it can be
"obliqued" or tilted or reflected in either or both axes. In short, any outline font can be
transformed in a way that can be described by any linear transformation.

By comparison bitmap fonts are applicable for only one size and orientation (and resolution
and process). A 12 point font contains an entirely different set of bitmaps than a 10 point
font of the same font style. The next section (4) discusses what this means relative to font
storage space. Another method of printing bitmaps is to use one or several bitmaps and
scale from the nearest bitmap font available. Although this method saves storage space and
communications download time the quality of the font is severely degraded.

4. More memory space efficient.
An outline font is specified at one size, typically on a 1,000 by 1,000 unit grid for
POSTSCRIPT®. The outline description for each character of the font is specified relative to
discrete points on this grid. These outlines are made up of straight line segments and bezier
curve segments. Characters in this font are then fully scalable and rotatable for any size,
resolution, and orientation. An outline font takes approximately 30 KBytes of memory
space. For example the size of the Adobe POSTSCRIPT® Stone Serif downloadable font is
34,260 bytes (*) when stored on the host Mac II computer. Once the font is downloaded it
is packed inside the Apple LaserWriter Plus® in a slightly more compact manner and
occupies 28 KBytes of RAM **

* measured with the Get Info utility of the Apple Macintosh® Finder
** measured with the Printer Font Directory function of the Font Downloader program

4

Section 1.4 - Introduction

By contrast a bitmap font only describes a typeface rendered at a single size, resolution, and
orientation. If a 10 point and a 12 point font are needed (say at a given resolution and
orientation) then two different files must be created and stored for the best quality. One size
can be scaled from the other (see #3 above), but this yields very poor results.

The size of a bitmap font varies as the size of the font and the resolution varies. For
example take a 12 point font with 96 printable characters at a 300 dot per inch resolution.
The largest possible bounding box of a 12 point font is 12 points wide by 12 point high.
This can be calculated to be 50 dots:

12 points * 300 dots perinch = 50 dots
72 points per inch

So the 12 point by 12 point box when translated into dots is a 50 dot by 50 dot character
bounding box. This represents 2500 dots, each of which can be represented by one bit,
assuming the dot is bitonal (i.e. Black or White). 2500 bits can be stored as 313 bytes per
character. On average the characters only occupy about one third of this space, so it takes
approximately 104 bytes to store each character's bitmap alone. For 96 characters this turns
out to be about 10 Kbytes to store the bitmaps of a full 96 character set. Additional font
informarion which can take several KBytes also needs to be included along with the
character bitmaps. An example of this kind of information is the character metrics of a font
(1.e. width, height, kerning info). If this information takes 4 KBytes, then the hypothetical
font described above will need 14 KBytes to store a single size of one font. There are other
factors which influence the size of bitmap fonts. Depending on the combination of the size
and resolution of a bitmap font, the effect of scaling a font will have varied results. Three
(size-resolution) "regions" are looked at in more detail below:

Low (Size-Resolution) "Region"
This region can be active under three conditions:
1. small to medium point sizes are selected (e.g. 10, 12, 14);
2. (screen) resolutions of approximately 75 dots per inch are used;
3. the method of storing the bitmaps uses "Byte" or "Word" padding.

At these size-resolution combinations the average characters all fit within one byte (of
width). The 12 point bounding box is approximately 12 dots by 12 dots at this
resolution. If the width of the average character is one half of this, the character is 6
dots wide. With "byte padding” the bitmap of this character would be stored as a
column of bytes with the rightmost two bits of each byte padded with zeroes. Using the
same assumptions a 10 point font would have an average character width of
approximately 5 dots; at 14 point, 7 dots. In this region, as fonts are scaled the size of
storage needed scales linearly, not geometrically. This is because only the height of the
font changes (more rows) but the width does not (most characters fit in the one byte).

Note that even though the bitmaps scale linearly in this region, the space required to
store the constant metric information often outweighs the amount of storage space
needed for the variable bitmap data.

No specific example is provided to demonstrate this effect.

5

Section 1.4 - Introduction

Medium (Size-Resolution) "Region”
This region can be active under either of the following two conditions:
1. No byte padding (i.e. one character's bitmap runs into the next);
or
2. Byte padding is used with
- small to medium point sizes (e.g. 10, 12, 14);
- (printer) resolutions of approximately 300 dots per inch.

Tn the first case, if no byte padding is used both the width and height change as the font
size changes. The size therefore scales quadratically (as the square).

Tn the second case, if the size-resolution combination is large enough so thg: overhead
incurred with byte padding becomes negligible then, once again, the font size scales
quadratcally. As discussed earlier in this section the 12 point bounding box is 50 dots
by 50 dots at this resolution, so the average character is about 25 dots wide. With this
size-resolution combination a much smaller percentage of the information is byte
padding, so 2s the size of a font increases the space needed to store it increases in two
directions. The formula that better explains this phenomena is:

¥y=%x24+b

Note that the space required to store the constant metric information, specified as b
above, is quite substantial.

Macintosh® bitmap fonts are stored in memory with each character butting up to the
next character all having a constant height. Byte padding is not used. To show that the
(variable) bitmap portion of the screen font scales geometrically with font size, the 12
point and 24 point Times Roman® screen fonts were examined using ResEDIT (a
Macintosh® resource editor).

Point Size Total Size* Bitmap Font Size** Metrics. etc.**
12 7,570 bytes 1,752 bytes 5,818 bytes
24 12,730 bytes 6,912 bytes 5,818 bytes

* Measured with the Font/DA Mover utility program.
** Measured with ResEDIT.

Macintosh® Times Roman® Screen Font

Figure 1.4.1
b=15,818

x = (point size / 12) *N 1,752 = 41.9 for the Times Roman® screen font

Itis clearly shown in the figure 1.4.1 that the Bitmap Font Size scales quadratically with
the point size. The size of the bitmap portion of the 24 point font is almost exactly four
times that of the 12 point font (within 1.4% error due to rounding). See references 29
and 30 for more information on the Macintosh® sreen font formats.

6

Section 1.4 - Introduction

High (Size-Resolution) "Region"

As the (size * resolution) product gets much larger the basic effect on the bitmap storage
needed continues to be rise exponentially with the size of the font. However, when the
bitmaps get much larger, they are generally compressed. A typical compression scheme
is one called "run-length encoding”. The simple one dimensional version of this
compression scheme simply stores the number of white and black pixel runs for each
scan line of font bitmap data. More sophisticated schemes allow compression in two
dimensions. The obvious advantage to using data compression is that is reduces the
amount of data storage space needed. The disadvantage is that more time (and or

hardware assist) is needed to process the data on both ends: compression and
de-compression.

"Compressed characters consume much less space .. than full pixel arrays (by factors of
up to 40), but require more computation to reconstitute when you need them.
Reconstituting a compressed character is still substantially faster than re-executing the
original character description." In the Apple LaserWriter IINTX® bitmaps of fonts that
are larger than 20 points in size are stored in compressed format. (all Ref. 2)

7

Section 1.4 - Introduction

LS Text, Vector Graphics, and Bitmap Images

The POSTSCRIPT® page description language has instructions that allows the user to draw text,
vector graphics, andp(s%eanned) gitmap irrglﬁgcs on a page. This thesis concentrates on text and
does not address the vector graphics and bitmap imaging areas in any detail. However, many
real-life applications, like electronic publishing, regularly 1{xcluc!c these types of images.
POSTSCRIPT® is very rich in vector graphics and bit-map imaging functions. It would be
misleading to not even mention them in a paper such as this one. Therefore, to present a more

complete picture of POSTSCRIPT®, all three will be discussed briefly here.
1.5.1 Text

Text is generally the simplest, most efficient, and most used "mark" that is put on the
page. Once a font is defined with a string like /Times-Roman findfont 12 .
scalefont setfont most of the POSTSCRIPT® program consists of the actual strings

of characters. In simple line printers the only overhead is the carriage return - line feed
characters delimiting lines of text. This can be two ACSII characters per each 100
character (or so) line of text, or 2 % overhead. With POSTSCRIPT® the overhead can
vary widely, due to POSTSCRIPT®'s diverse functionality. But, for a simple line printer
emulation, the overhead of textual POSTSCRIPT® can be made with a few simple
assumptions:

1. a single positioning command, like 72 720 moveto, will be used per line of text;

2. the strings of text will be encapsulated in parentheses, and followed by the show
command;
(this is a string of text) show

3. 100 characters per average line;

4. the number of lines are sufficiently large such that the overhead incurred by the
instructions selecting the font can be ignored,;

5. additionally one carriage return - line feed pair per line is used.

With these assumptions there are 22 characters per 100 characters of output text, or 22%
overhead. A very dense page of text, containing 4,000 characters, can be described by
approximately 4,900 characters of POSTSCRIPT® code.

Since POSTSCRIPT® is a full programming language, a simple program that emulates
the carriage return - line feed function can be defined in the beginning of the file and
accessed by calling that function with a single character (i.e. the name of the function)
after each string of text is specified. Using this method the overhead can approach 3 %,
ignoring initialization overhead, and assuming one matching pair of parentheses and

one character (¢, below) which calls the carriage return - line feed function:
initialization includes:

- specifying the font;

- defining the ¢ (carriage return - line feed) procedure;

- positioning the first line of text.

(first string of characters)e(second string of characters)e(third string of char)

Generally, as the complexity of the text increases, though, so does th h
describing that text. Much more is said about text througghout this m:sios‘.,er cadof

8

Section 1.5 - Introduction

1.5.2 Bitmap Images

On the other end of the spectrum of efficiency and speed are bitmap images. If the entire
page were defined by a bitmap image that matches the resolution of the Apple Laser
Writer Plus print engine (300 dots per inch), it would take over 8 Mbits or 1 MByte of
binary data. That's 90,000 bits per square inch! The overhead of POSTSCRIPT® for
images is much more severe than for text. A single binary byte of image data is
described by two ASCII characters that specify two hexadecimal numbers. So 1 MByte
of binary data is described by 2 MBytes of ASCII-encoded hex in POSTSCRIPT®, or
100% overhead. Fortunately one does not necessarily need to specify that much data to
fill the entire page with a bitmap image. This is because POSTSCRIPT®:

- is resolution independent. The input image does not have to match the output 300 dpi
resolution. The POSTSCRIPT® image operator automatically adjusts the input to
output mapping for printers with two different resolutions (say 300 dpi and 600 dpi).
The input can be presented to the RIP in any resolution.

- allows scaling of all images (whether they are text, graphics, or bitmaps). An image
scanned from a 1 inch by 1 inch image can be scaled to any size on the output. In fact
any linear transformation can be specified which can:

- scale in x and y by the same amount (1 inch by 1 inch scales to 7 inches by 7
inches);

- anamorphically scale in x and y (1 inch by 1 inch scales to 3 inches by 7
inches);

- "tilt" the image (rectangular image becomes an image fitting a parallelogram);
- rotate the image.

Images can also be scanned as "contone" images (i.e. more than 1 bit per pixel; typically
8 bits per pixel for monochrome). Since the output image cannot print grey dots
matching the grey areas of input image, a mapping of grey values to black and white
printable dots must be made. This mapping is called screening . Variables that can be
set with POSTSCRIPT® are:

- frequency * of the screen. This is the number of "halftone dots", or "super-pixels”,
are printed per inch on the printer. Each of these halftone dots represent a grey value
(or set of grey values) from the input contone image.

- angle * of the screen. This specifies the number of degrees by which the halftone
screen is to be rotated with respect to the device coordinate system.

- spot function * of the halftone dot. This specifies how the halftone dot is to be
"grown" as the input grey area changes from white (no black pixels turned on) to black
(all black pixels turned on). Specifically, a procedure is specified which describes the
order in which pixels within a halftone cell are whitened to produce any desired shade
of grey. (setscreen, reference 3)

- input to output transfer function. A procedure can be specified which maps the input
grey values to the printer grey values, which is a fraction of all pixels that are to be
whitened. (settransfer, reference 4)

9

Section 1.5 - Introduction

The two greatest performance bottlenecks when dealing with images with
POSTSCRIPT® are:

1. accessing the image. Images tend to be large. Ifa communicatlo'ns line is used, it
simply takes a long time to download the image. POSTSCRIPT®'s method of
encoding the image with ASCII-encoded hex, described on the previous page, slovys
down this process by a factor of two. For example a 256 KByte binary image, which
when encoded this way becomes 512 KBytes, takes almost 9 minutes to download
using a conventional RS-232 serial interface line running at 9600 baud. Even when
the image is resident inside the RIP, say on a disk, once again due to the size of the
image it still takes a relatively long time to retrieve the image from disk, and to use the
disk as a backup scratch pad when processing the image.

This bottleneck can be diminished by using faster communications interfaces, faster
disks, and more RAM. O course, along with these RIP enhancements usually comes
a higher cost.

2. processing the image. The previous page summarizes the image processing functions
that can be applied to bitmap images. As in all of POSTSCRIPT®, the functions
vary from very simple to very complex. Applying a particular image processing
algorithm to an image takes an amount of time that is loosely proportional tothe
"complexity” of the image processing function selected and, you guessed it, the size
of the image.

This bottleneck can be reduce by: .

- once again, more RAM and/or faster disc;

- faster general purpose CPU;

- computer architecture that better suits the image processing algorithms that are
commonly used. This can include special purpose hardware.

1.5.3 Vector Graphics

Somewhere in between text and bitmap images lies vector graphics in speed and
efficiency. A single straight line that traverses the height and width of a page can be
described in just a few POSTSCRIPT® instructions:

0 0 moveto % set cursor to lower left corner of page
612 792 lineto % draw line to upper right corner; coordinates are in
stroke % "points" or 1/72 inch

Now the Raster Image Processor needs to fill all of the pixels in page memory that
correspond to the pixels that make up the black line. Other settings that effect the
rendering of (connected) lines are:

- width of the line, setable with the setlinewidth operator;

- type of line join, which can be miter, round, or bevel; settable with the setlinejoin
operator;

- type of line cap, which can be butt, round, or projected square; settable with the
setlinecap operator.

10

Section 1.5 - Introduction

Instead of the simple sequence of instructions shown above, a path consisting of many
shorter lines segments, all connected together, which define the same resultant line
could also be specified in POSTSCRIPT®. Even though the same exact bits are turned
one, this problem is significantly more difficult for at least two reasons:

1. more POSTSCRIPT® code needs to be read and interpreted;

2. each small line segment needs not only to be drawn, but connected to the next line
segment in such a manner to make it appear as one continuous line.

Other graphical shapes can be specified:
- circualar arc segments (arc, arcn, reference 5) ;
- Bezier cubic spline segments (curveto, reference 6) ;

in addition to stroking (drawing) a line or curved segment, an area that is described
by a sequence of these segments can be filled with black or some halftone pattern
corresponding to the selected grey value.

(stroke, strokepath, reference 7 ; fill, ref. 8 ; eofill, ref. 9 ; setgray, ref. 10)

In addition to drawing or filling the paths that are defined, these same paths can be used
to specify a clipping boundary through which other text, vector graphics, or bitmap
images are clipped before being rendered in page memory and subsequently on the
printed page. (clip, reference 11)

Once again POSTSCRIPT® gives the user almost limitless flexibillity for printing vector
graphics. Both the amount of POSTSCRIPT® code as well as the rendering compexity
can vary widely. I have no doubt that similar papers to this one could be written with
concentration on performance aspects of vector graphics or bitmap imaging instead of
text. Hopefully, this brief section has provided the reader with some appreciation for
the number and magnitude of issues when dealing with POSTSCRIPT® vector graphics
and bitmap images.

11

Section 1.5 - Introduction

12

Section 1.5 - Introduction

2. Problem Description

There are many different ways of describing a page of text in POSTSCRIPT®. How one describes a
page can significantly influence the overall performance of the printing system. The variables to be
investigated, along with the expected outcome of the experiments, are described in sections 2.1.1
through 2.1.8 . The expected results are based on assumptions of the RIP architectural model
described in section 2.4. Sections 2.1.1 through 2.1.5 match with sections 3.1 through 3.5. The
latter sections deal with the specific experimental procedures used, the results that are produced,

analysis of these results, and proposals, if any, on what changes could be made to improve
performance.

For each variable in question, a set of benchmark pages are generated to demonstrate the
significance of the variable. Many of the benchmark pages are included in sections 3.1 through
3.5. Due to space constraints, benchmark pages that are similar to ones included, but different in
some small way, are described, but not included as inserts.

Section 3.2 specifies the methods used in calculating and measuring times taken for the different
phases of the RIPing process, namely communications and the combined compilation and
rasterization time. The programs written to support the experiments performed for this thesis are
explained in section 3.3 with backup information provided in Appendix 2.

Once again, section 3 records the experimentally measured times, analyzes these times, and

suggests improvements to the RIP architecture and/or to the POSTSCRIPT® language itself that
might yield better performance.

Section 4 presents overall conclusions using all of the information in section 3 to comment on the
general trends that were observed.

13

Section 2 - Problem Description

1 Variabl rfi

There are many different ways that a POSTSCRIPT® printer can be instructed in how to print
text on a page. Some variables which affect system performance are listed in the following

sections.

2.1.1. Font Formats: QOutline vs. Bit-Maps

Problem Description

Rasterizing a font outline takes much more time than copying (BLT- Block Logical
Transfer) a font already in bitmap form to the page buffer memory. There is a tendency
to use only a small number of different fonts (at a certain size and orientation) in any
given written work. In fact it is considered "good style" to limit the number of fonts and
sizes to just a few within any document. Furthermore, when using any given font, most
of the time the writer uses characters of the alphabet that have been used before. For
example if the letter "a" is used 20 times on a single page in the same font it needs only
to be rendered once and is repeated 19 times. In this case the leter "a" is repeated 95%
of the ime. Repeat use of fonts and of characters within a font are the two primary
reasons why all POSTSCRIPT® printers to date have a font cache which stores the scan
converted fonts for later use in the faster bitmap form. "Printing a character that is
already in the font cache is typically a thousand times faster than scan converting it from
the character description in the font" (reference 12) . The time consuming process of
outline font rasterization can be done at various times, influencing the printer's
performance. This section looks at three of these particular times:

1. inside a POSTSCRIPT® program, when a new non-cached character is
specified to be printed;

2. once at the "factory” where the bit-maps are permanently stored in non-volatile
memory, typically some type of ROM,;

3. duringidle ime. When the RIP is not busy generating pages it can perform the time
consuming font outline rasterization task.

These three are looked at in more detail in sections 2.1.1.1 through 2.1.1.3,

respectively. The corresponding experimental procedures, results, and analysis can be
found in sections 3.1.1 through 3.1.3.

Section 2.1.1.4 and its complement section 3.1.4 deal with the performance effects of
scaling and rotating outline fonts. Since detailed performance measurements will be
done in section 3.1.4, the print job for this experiment contains no repeat characters.
This is the only way to isolate the scan conversion process from the bit BLTing (moving
bit-maps) from bit-map cache. More on this in section 3.1.4.

14

Section 2.1.1 - Problem Description

2.1.1.1 Real Time Outline Font Rasterization and Caching

Duripg the course of a typical POSTSCRIPT® file, fonts resident in outline form are
specified to be scaled, (possibly) rotated, and printed. When this occurs the first
print _using these fonts tends to be slow due to the time consuming task of in-line (or
real time) scan conversion of the outline fonts into the faster bit-map form.

Expected Results

The first page after a power up sequence printing a font that has not been stored in
bit-map form is expected to be slow. Once this first page has been printed, all of the
fonts on that page will have been stored in the RIP's bit-map font cache.

Subsequent pages are expected to print at a much faster rate, assuming the printer is
kept powered-up.

2.1.1.2 Pre-Cached Bit-Maps

If the time consuming process of outline font rasterization is done before the font is
requested in the POSTSCRIPT® program, substantial performance gains can be
realized. This section deals with the case where the outline font rasterization is done
once "at the factory” and the resultant bit-maps of a select few fonts are stored in
non-volatile bit-map font memory, such as EPROM in the case of the Apple
Laser-Writer Plus.

Expected Results

Pages that print fonts that have been pre-scan converted and permanently stored in
ROM are expected to yield equivalent performance whether the page is the first one
after power up or not. The time consuming outline scan conversion has been done
once, at the factory. The RIP need not be bogged down with this task.

15

Section 2.1.1.1 Problem Description

2.1.1.3 Background Outline Rasterization

While a page printer is in the powering-up state, the user is typically forced to wait
up to se\gril xginutes before the first page can be printed. In laser or LED
electrophotographic printers much of this delay is due to the time it takes forthe
fuser heating element to rise up to its required temperature. During a portion of this
time the RIP usually goes through an initialization and diagnostic checking phase.
Once this is done, the RIP must wait until the print engine is ready to accept a print
job from the RIP. This is one example of idle time . Another example of idle
time is the time in between jobs. If the time consuming process of outline font
rasterization is done before the font is requested in the POSTSCRIPT® program, say
during this idle time, substantial performance gains can be realized.

Expected Results .
Several fonts in the Apple LaserWriter Plus™ are scan converted from there original

outline form to bit-map form and stored in the RIP's font cache memory during idle
time. The POSTSCRIPT® Language Reference Manual lists several fonts and sizes
at a zero degree rotation (i.e. portrait orientation) that are automatically scan
converted during idle time (reference 13) . They include all of the alphanumerics
and common punctuation of the 10 and 14 point Times-Roman® and Helvetica®
fonts, and also the lower case letters of the 10, 12, and 14 point Times-Bold® and
Helvetica-Bold® fonts. In addition, an extension to the POSTSCRIPT® page
description language has been specified for the Apple LaserWriter Plus™ to allow
the POSTSCRIPT® programmer to specify which fonts he or she would like to be
scan converted during the printer's idle time. The setidlefonts operator allows
the selection of one of thirteen fonts with a different x and y point size selectable in
tenths of a point increments, and an angle selectable in increments of five degrees
(reference 26) .

Print times for pages that use the 10 point Helvetica® and the 14 point
Times-Roman® fonts will be looked at. The POSTSCRIPT® files containing
references to these fonts will be sent at varying times after the power-up sequence is
begun. This will be done by simply turning the printer off and then back on. Itis
expected that if a job using an idle time scan converted font is sent immediately to the
printer following a power up sequence, it will take longer than if some time is waited
before this is done. The experiments are reported in section 3.1.3.

16

Section 2.1.1.3 - Problem Description

2.1.1.4 Effect of Scaling and Rotation

Section 2.1.1.4 and its complement section 3.1.4 deal with the performance effects
of scaling and rotating outline fonts. Page 91 of the POSTSCRIPT® Language
Reference Manual states the the "built-in POSTSCRIPT (outline) fonts are usually
defined in terms of a 1000 unit character coordinate system, and their initial
FontMatrix is [0.001 0 0 0.001 0 0). When a font is modified by the
scalefont or makefont operator, the new matrix is concatenated with the
FontMatrix to yield a transformed font." In other words the FontMatrix maps a
font in the 1000 unit space to a one unit space scaling the x and y font units by
1/1000 with the following matrix:

0.001 0 0
0 0.001 0
0 0 1

This matrix scales both x and y coordinates by 1/1000. See the definition of CTM
in the Glossary (section 5) for more information on the variables of a given matrix.

Since the default unit in POSTSCRIPT® is the point, this means that if any given font
is not scaled by some means, it will print out at a 1 point size. Therefore all usable
fonts that are scan converted from outline are initially scaled. The time consuming
matrix multiplication step must always be done. The second part of the scan
conversion process involves the rasterization, or rendering, of the transformed
(scaled, etc.) font outline.

Note that, in addition to the concatination of the FontMatrix with the transform
matrices generated by the scalefont and makefont operators, the fonts are also
affected by the Current Transformation Matrix or the CTM. Other general
POSTSCRIPT® operators that modify the CTM are the translate, rotate, and
scale operators. So, there are several ways to scale and rotate fonts. As already
mentioned, executing the scalefont and makefont operators can scale fonts.

In addition, the POSTSCRIPT® scale operator, which affects the CTM, also applies
to fonts. Fonts can be rotated in two ways: by specifying the correct matrix
variables using the makefont operator; or by executing the rotate command. Note
that the makefont operator provides the user with a much more powerful tool than
just the scaling and rotating functions. Since the user specifies a matrix, any linear
transformation can be specified. This is how fonts are obliqued (ie. tilted) for
example.

There is one more funtion that should be mentioned: that is, applying "intelligence"
to the outlines. It is commonly known that Adobe Systems, Inc., the implementors
of POSTSCRIPT® in the Apple LaserWriter Plus®, applies proprietary "hints" to
their font outlines when rendering them. This is done to yield better looking
characters at the 300 dot per inch resolution of the Apple LaserWriter Plus®. This
procedure is certainly done at the 0 degree (portrait) orientation and is probably done
at other quadrant orientations - 90 degrees (landscape), 180 degrees, and 270
degrees. The performance impact of this factor is not known.

This section compares the performance of scaling and rotating a printer resident

POSTSCRIPT® outline font versus the same font that has already been scan

converted and stored in the RIP's bit-map font cache memory. The font that has

been selected for these experiments is the Times-Roman® font; two point sizes will

be 11 points and 22 points; three angles of rotation will be 0, 70 and 90 degrees.
17

Section 2.1.1.4 - Problem Description

Expected Results , , ,
As discussed above, there are two steps in rendering an outline font:

- applying the scaling and rotation to the current FontMatrix. This needs to be
done for any scale factor or rotation angle. Some multiplies are easier,
however, and should execute faster. Of the three angles specified, 0 and 90
degrees should be faster than 70 degrees. .

- scan converting the transformed outline. In going from an 11 to a 22 point
font, twice the number of scan lines need to be accessed; four times the

number of pixels need to be written to.

Scaling Outline Fonts:

T scan converting the transformed outline font is the domimant factor, the 22 point
sont should take two to four times longer than the 11 point font. If however
applying the transformation to the font outline is the dominant factor, then the
performance should be closer to equal (i.e. independent of point size). Not
knowing which of these is dominant, the expectation relative to font size variation 1s
as follows:

As the size of the font increases. the time needed to render that font is expected
10 increase at a rate in between one and the square of the size difference. In the
case of 11 and 22 point size fonts, the 11 point font is expected to perform from
1 to 4 times faster than the 22 point font. Note that the effect of incorporating
font "“intelligence" into this was not considered.

Font Outline Scan Conversion vs. Pre-Cached Bit-Map Fonts:

Rendering an outline font is expected to take much longer than pulling the same font,
already in bit-map form, from the font cache. "Printing a character that is already in
the font cache is typically a thousand times faster than scan converting it from the
character description in the font." (reference 12) Based on this information it is

expected that the measured performance of pre-cached fonts should be

approximately 1000 times faster than the measured performance of outline fonts.
The overhead of a base (i.e. blank) page must be considered in this analysis. See

section 3.2.4 for more details on this experiment.
Rotating Outline Fonts:

As for the effect of angle on performance, it is expected that Q degrees will yield the
best performance because of two reasons:
- itis assumed that the POSTSCRIPT® interpretor is probably optimized for this
highly used case;
- at 0 degrees, the cos and sin values yield 1 and O respectively. Assuming this
information is used to descrease the number of calculations, an increase in
performance should be realized.

The pe rformangc qf the 90 degree rotated case should follow with the 70 de gree
rotation case y_1c1dm.g the poorest performance. On the other hand, the 70 degree
rotation case could, instead, vied the fastest results if font intelli gence step turned out
fo be a dominant (and slow) process.

18

Section 2.1.1.4 - Problem Description

2.1.1.5 Variations of Font Style

On page 20 of the Fluent Laser Fonts™ User's Guide it states that "complex fonts
.. will take longer to print because of the intricate curves and shapes”. Three
printer-resident fonts with different levels of "complexity” will be used:

1. Helvetica® was chosen for its simple style. There are no serifs and
many of the characters, like H, A, and V use straight line segments
exclusively. This information can be stored in a very compact outline
form and is expected to scan convert faster than the two other, more
complex fonts described in 2 and 3 below. The text of this paragraph
is set in Helvetica® at 12 point.

2. Times Roman® was chosen for its medium complexity style. On the one hand
Times Roman® is a complex font since it has serifs on many of the characters,
like "i", "m", and "T". On the other hand many outline segments of the
characters of the Times Roman® font are made up of straight line segments
orthoganal to the device coordinate system. The page that uses the Times
Roman® font is expected to yield better performance than the same page using
the simpler Helvetica® font shown in (1) above, but worse performance than the
more complex Zapf Chancery® Medium Italic font show in (3) below. The text
of this paragraph is set in Times Roman® at 12 point.

Zapf Chancery® was chosen for its complex style. Whereas the fonts shown in (1)
and (2) above used many straight line segments, the Zapf Chancery® Medium Italic
font uses many more curved segments, which are inherently more compex. The
performance of a printed page using this font is expected to yield the worst
performance when compared to (1) and (2). The text of this paragraph is set in Zapf
Chancery® Medium Italic at 12 point.

L

Note that when "performance” is mentioned above, only the scan conversion
process is intended to be used as a comparison. Once the font is in the bitmap font
cache all three fonts are expected to perform equally well. If there is a small
difference in speed when printing from the font cache, the font that is the smallest
(i.e. Zapf Chancery®) should be the fastest, with the font that is the largest (i.e.
Helvetica®) should be the slowest. This is because the time to BitBLT a font
character from the bitmap font cache is assumed to be directly proportional to the
size that character occupies in memory. Note that although each of the fonts shown
in (1), (2) and (3) are set at 12 points, they each appear to be a different size.

Ex Resul
The following relative scan conversion rates are expected:
- Helvetica®: fastest due to the simple style;
- - Times Roman®: intermediate;
- Zapf Chancery: slowest due to the complex font style.

Once the font has been scan converted and placed into the bitmap font cache, all
fonts are expected to print equally fast.

19

Section 2.1.1.5 - Problem Description

2.1.2. Resident vs. Downloaded Fonts

Problem Description

Fonts can be either resident in the printer (i.e. RIP) or be downloaded from the host
computer (host-resident). Furthermore, fonts can be in either bit-map or outline format.
Tlhus section concentrates on observation of the performance differences between
downloadable vs. printer-resident fonts. To simplify the task and to get more
meaningful results outlines are compared with outlines, and bit-maps with bit-maps.

Downloading fonts can significantly impact system performance. The key parameter
that effects p%:rformancc is communication time (i.e. time to doyvnload thq font). For
ocutlive fonts this may be about 30 KBytes per typeface at any size. For bit-map fonts

the amount of data varies with the size of the font (see section 1.4). A full bit-map
repressnting each character at each size is needed.

Fonts can be in one of the following formats:
Bit-map fonis

A. Downloadable bit-map fonts;

B. Printer-resident bit-map fonts.

Adobe Bezier outline fonts

C. Resident in the Apple Laser Writer Plus printer (RIP and print engine combination);
D. Host-resident, downloadable fonts in Adobe encoded Bezier format;

Third party outline fonts

E. Downloadable fonts in Bezier format described with generic POSTSCRIPT®
instructions;

All five of these formats are used to print simple text and are compared on a performance
basis in this section.

Three comparisons are made:

Avs.B Resident vs. downloaded bit-map fonts.
See sections 2.1.2.1 and 3.2.1.

Cvs.D Resident vs downloaded Adobe outline fonts.
See sections 2.1.2.2 and 3.2.2.

Dvs.E Adobe vs. third party downloaded outline fonts.
See sections 2.1.2.3 and 3.2.3.

20

Section 2.1.2 - Problem Description

2.1.2.1 Downloaded Bitmaps vs. Printer Resident (Cached) Bitmaps

Two bitmap fonts are used for this experiment:

A. Downloadable bit-map font
A hand-coded POSTSCRIPT® bitmap font similar to the one described in
section 2.3.3 is downloaded to the Apple Laser Writer Plus. For this
experiment only ten 12-point characters were defined at 300 dots per inch.
These ten characters are then printed. The download time as well as the
printing times are both measured

B. Printer-resident bitmap font.
The Apple Laser Writer Plus has several pre-scan converted printer-resident
bit-map fonts (reference 14). The 12 point Helvetica® font is selected for
this experiment. The time to print the same ten character string is measured
and compared to the time taken with the downloadable bitmap font of (A).

xpected Resul

The total time to print the downloadable font includes not only printing the ten
character string but, even more significantly, also includes the time to download the
bitmap font itself. A 12 point font is assumed at a printer resolution of 300 dots per
inch. If a full character set were specified, complete with upper and lower case
letters, then the average size of a single character bitmap would be approximately
170 bytes, which is 50% of the 50 pixel by 50 pixel character bounding box (see
section 1.4). Since the ten characters chosen for this experiment are all lower case
letters it is assumed that, on average, the size of these ten character bitmaps are 25%
smaller than the average bitmap across the entire character set. This brings the 170
bytes average per all characters down to 127 bytes average per lower case character.
Therefore, the size of the combined bitmaps of the ten characters is 1,270 bytes.
Since POSTSCRIPT® describes all bitmaps with ASCII encoded hex, the bitmap data
is expanded by a factor of two (i.e. a hex value of "A7" is coded as two sequential
ASCII characters: "A" and "7". When this is taken into account the ASCII encoded
bitmaps for the ten lower case characters take up 2,540 bytes. Examining the
POSTSCRIPT® bitmap font shown in section 2.3.3, it appears that the font overhead
excluding the font metrics is about 1 Kbyte. The metrics information overhead is
about 40 bytes per character or 400 bytes per the ten character set. The anticipated
dowloaded font size is:

2,540 Dbytes: bitmaps for ten characters
400 bytes: metric information for ten characters
+ : additional font overhea
3,940 bytes: expected size of ten character bitmap font

If the RS-232 serial communications interface is used at 9600 baud, then the
expected download time for the 3,940 byte bitmap font is 4.10 seconds. For this
experiment Appletalk is used instead of RS-232, so a faster download time is
expected. Note that the raw data transmission speed of Appletalk is 220 Kbits/sec,
although the actual throughput is a fraction of this mainly due to protocol overhead.
See sections 2.1.2.4 and 3.2.4 for more information on this topic.

Once the bitmap font is downloaded it is expected that the downloaded font will

perform as well as the printer-resident bitmap font. The overall time to print the
downloadable font will be significantly longer due to the font download time.

21

Section 2.1.2.1 - Problem Description

2122 Adobe Downloaded Outlines vs. Printer Resident (Internal) Outlines

lemn ription . .
The Apple LaserWriter Plus printer has 35 resident outline fonts (see section 2.4 for

a list of resident fonts). In addition, a user can purchase add;tlonal font§ for use
with Macintosh application programs. These fonts are supplied on Macintosh
compatible micro-floppy discs and include several (usually four: regular, italic,
bold, and bold italic) styles of a single font family. Qne printer outline font and
several (about five different sizes) bitmap screen fonts is provided per each style.
The bitmap screen fonts are used by application programs to provide the desired
WYSIWYG effect. The printer outline font needs to be downloaded to the printer
before the application program can send the POSTSCRIPT® program to the printer
that references that particular font. This can be done either qxphculy, witha
program which downloads the outline printer font, or implicitly, by the application
program needing the font. In the latter case the application interrogates the printer to
determine in the font is already loaded into the printer. If it is, the print program is
simply downloaded. If it is not loaded, then the font is downloaded right before the
print program.

Section 3.2.2 compares a particular printer resident font, Times-Roman® to another
Adobe outline font, the downloadable Stone Serif font. They are compared on the
basis of scan conversion speed, BitBLT from cache to page buffer speed, and
download time.

Expected Results
Whether the font originates from the host or an from an internal RIP font data

structure (i.e. in ROM), the task of generating a bit-map from outline is essentially
the same in either case, especially if both fonts were supplied by the same font
vendor who, in this case, is Adobe Systems, Inc. So, the task of scan converting
the outlines and the subsequent task of moving the cached bitmaps to the page buffer
in the two cases are expected to yield similar results.

The font styles of the downloaded Adobe font, called Stone Serif, was chosen to be
similar in complexity to Times-Roman®, the internal font it is being compared to.
This was done to minimize the effect that varying the complexity of a font style has
on performance. Section 2.1.1.5 and its complement, section 3.1.5 deal with this
subject in detail.

The one area where a large difference in system performance is expected is in the
area of font download time. Resident fonts are held in ROM so there is no
download time. Downloaded outline fonts are approximately 30 to 40 KBytes in
size. If an RS-232 serial interface were used running at 9600 baud, the download
time would be about 35 seconds. Since Appletalk is used this time should be less,
but still significant.

22

Section 2.1.2.2 - Problem Description

2.123 Adobe Downloaded Outlines vs. Third Party Downloadable Outlines

Problem Description

As mentioned in the previous section a user can purchase downloadable fonts for
use with Macintosh application programs. These fonts are supplied on Macintosh
compatible micro-floppy discs and include several (usually four: regular, italic,
bold, and bold italic) styles of a single font family. One printer outline font and
several (about five different sizes) bitmap screen fonts is provided per each style.
The bitmap screen fonts are used by application programs to provide the desired
WYSIWYG effect. The printer outline font needs to be downloaded to the printer
before the application program can send the POSTSCRIPT® program to the printer
that references that particular font. This can be done either explicitly, with a
program which downloads the outline printer font, or implicitly, by the application
program needing the font. In the latter case the application program interrogates the
printer to determine if the font is already loaded into the printer. If it is, the print
program is simply downloaded. If the font is not loaded, then it is downloaded right
before the print program.

Downloadable fonts can be purchased from Adobe, the creators of POSTSCRIPT®
and POSTSCRIPT® fonts. They can also be purchased from other third party
vendors. There are several differences:

1. Adobe fonts are encrypted.

Third party fonts directly follow the convention set in the POSTSCRIPT®
Language Reference Manual with no encryption (reference 15).

2. Adobe fonts have "intelligence"”. That is, there is a proprietary Adobe algorithm
which reads the encrypted outline font with "intelligence hints" and scan
converts the outline producing a high quality font at the 300 dpi printer
resolution.

Third party font outlines are treated as generic graphic shapes when scaled.
They do not have any "intelligence". The quality produced on a 300 dpi device
is noticeably poorer at typical sizes (i.e. 10 or 12 point). Compare figures
3.2.3.A.1 & 2 (no intelligence) to figures 3.1.1.A.1 & 2 (with intelligence).

3. Adobe fonts generally originate from well known font houses like Linotype and
ITC and are aimed at providing virtually all printing and publishing needs.

Third party fonts generally are new designs with an unconventional artistic flare.
Note, however, that the third party font selected for this experiment, the
CasadyWare Galileo Roman font, was chosen for its similarity (in style and
complexity) to the Adobe Stone Serif font.

4. Adobe fonts are typically more expensive, costing in the $100 to $300. As an
example the list price of the Adobe Stone Serif font used in this section was
$275.

Third party fonts are typically less expensive, costing in the $50 range. As an

example the list price of the CasadyWare Galileo Roman™ font used in this
section was $45.

23

Section 2.1.2.3 - Problem Description

Section 3.2.3 compares a two downloaded fonts, the Adobe Stone Serif and the
CasadyWare Galileo Roman™ font. They are compared on the basis of scan
conversion speed, BitBLT from cache to page buffer speed, and download time.

Expected Results o .
The task of scan converting the Adobe "intelligent” outline is inherently more

difficult than scan converting a non-intelligent outline (i.e. treating characters like
graphic shapes). Both tasks need to convert the outlines into bitmaps but the Adobe
conversion has one more step, the step that incorporates the intelligence. This
implies that the Adobe downloaded font (with intelli genge) sl}ould scan convert
slower than the CasadyWare downloaded font (without intelligence).

Once, the bitmap has been generated from outline and stored in the font cache the task
of printing the bitmaps is essentially the same in either case. So, the task of moving
the cached bitmaps to the page buffer in the two cases are expected to yield similar
results.

Both the Stone Serif and Galileo Roman™ fonts are downloadable POSTSC_RIPT@
outlire fonts. It is assumed that their sizes are similar and subsequently their
downlcad times should also be similar.

The font styles of the downloaded Adobe font, called Stone Serif, was chosen to be
similar in complexity to CasadyWare Galileo Roman™ font it is being compared to.
This was done to minimize the effect that varying the complexity of a font style has
on performance. Section 2.1.1.5 and its complement, section 3.1.5 deal with this
subject in detail.

Probably the largest factor is the one that is least predictable. That is the variability
introduced when comparing two different font vendors. Even if the original outlines

were exactly the same, how these outlines are converted into a POSTSCRIPT®
program may have significant effects on how fast they scan convert.

24

Section 2.1.2.3 - Problem Description

2.12.4 Appletalk vs. RS-232 Comparison

Both the Appletalk and RS-232 communications interfaces were used throughout
this paper. RS-232 was used more extensively due to the greater control this
interface allows:

- ability to capture the real-time conversations between the host computer and the
printer with a protocol analyzer;

- the predictable overhead (i.e. one start bit and one stop bit);
- the point to point nature of the interface.

Appletalk, on the other hand, was used primarily to allow the download of Adobe
and third party (CasadyWare) downloadable fonts. Sections 2.1.2.1-3 and their
complementary sections 3.2.1-3 used Appletalk. It is more difficult to separate out
the protocol overhead and interference from other computer systems sharing the
Appletalk network. Nevertheless, Appletalk is looked at in this section and section
3.2.4 and compared with RS-232. The printing times are examined as well as the
communications download throughput.

Ex Resul
The printing times are expected to be the same. The communications interface
should not influence the time that a page prints once it is downloaded.

The raw data rate of the RS-232 communications interface is 9600 bits / second. It
is shown in section 2.2.1 that the communications overhead is two bits per eight bit
character (i.e. the start and stop bits). Therefore it is expected that the efficiency of
the RS-232 interface will be 80% of the rated bit rate of 9600, or 7,680 bits per
second.

The raw data of Appletalk is 230.4 KBits per second. It is expected that the
effective throughput speed will be much less than the raw data rate, but how much is
not easily predictable. It is expected, though, that larger files will transfer at a
slower effective data rate than small files, due to the packet size limitations of
Appletalk. Again how significant this factor is, is not predictable.

25

Section 2.1.2.4 - Problem Description

2.1.3. Methods of Printing Strings

Strings of characters can be placed on a given page in a number of ways. Each method
ouﬂix%;doincﬂlis section will l?e timed and printed in section 3.3. All of the fonts used

will be in resident outline format.

The following methods are described in general terms. The exact experimental
procedure used is described in section 3.3.

A. Simple unjustified text (i.e. "ragged right”)

X y moveto string starts at specified (x,y) point
(string of characters) show chargc‘:iter string is proportionally
spac

B. Justified text with the front end application providing the extra incremental spacing
to be applied between adjacent characters, using the ashow command.

X y moveto string starts at specified (x,y) point

xing 0 (string of characters) ashow characters are spaced proportionally
with xinc added to relative x
increment to every character; note
that "0" is the y increment.

C. Justified text with the front end application providing the extra incremental spacing
to be applied between adjacent words, using the widthshow command.

X y moveto string starts at specified (x,y) point

xinc 0 32 (string of characters) widthshow characters are spaced
proportionally with xinc added to
relative x increment to every
character with an ASCII value of
"32" (i.e. a space); note that "0" is
the y increment.

D. Justified text with a downloaded POSTSCRIPT® program that calculates the excess
space and distributes it between all adjacent characters within the line. The routine to
Justify a string of text is repeatedly called once per line. This routine provides the
following functions:

- calculates the width of line of text;
- calculates the extra space needed to fill the line;

- calculates the incremental space that must be added to each character to achieve

proper justification (note: number of characters in line is passed to this
procedure);

- prints the line of text using the ashow command, equally distributing the extra
space in between adjacent characters within the string.

26

Section 2.1.3 - Problem Description

2.1.4.

E. This method is the same as that used in (D) on the previous page except the
dowloaded justification program has one additional feature: it calculates the number
of characters in the string.

F. This method is the same as that used in (E) above except the dowloaded justification
program also handles the carriage return - line feed functions.

Expected Results

Each case uses more capabilities of the POSTSCRIPT® page description language. It is
expected that as cases A through F are timed and printed, the times will progressively
get larger (i.e. page printing times get slower), indicating that the simpler any program
is, the faster it executes.

Resolution "Targeting" vs. Total Resolution Independence

POSTSCRIPT® is a resolution independent language. Its default coordinate system is
the point, which Adobe defines to be exactly 1/72 of one inch. If one knows the actual
resolution of the printer to be R dots per inch, then the Current Transformation Matrix
(CTM) can be set up to scale all coordinate references by R / 72. Then if only integer
references are made, these references will map directly to the engine pixels. In other
words, the CTM which maps user coordinates (now in R units per inch) to device
coordinates (in R pixels per inch) is the unity matrix. If the POSTSCRIPT® software
has the intzlligence to recognize this situation, a possible performance increase can be
achieved. The "ragged right” (case A) page described in the previous section will be
printed and compared to a similar page with all of the coordinates given in integers
representing pixels. The following POSTSCRIPT® commands will be issued:

72 300 div dup scale change CTM to unity matrix

Xn1 Yn1 (string of text) show
Xn1 Yn2 (string of text) show

Xnl .Ynm (string of text) show

Note that only if the actual print engine resolution is 300 dpi, and if the POSTSCRIPT®
imaging software is "smart"” enough to recognize this case, can the potential performance
gain be realized. If the print engine resolution were, say 400 dpi, the CTM would not
be the unity matrix and the output would be generated looking the same. That is why
this is termed resolution "targeting” rather than resolution "dependence”.

Expected Results) .
The case that uses an integer coordinate system that corresponds to the print engine
resolution should execute faster; it is not known how much faster.

27

Section 2.1.4 - Problem Description

2.1.5 Effect of Varied Page Complexity on POSTSCRIPT® Processing Time
2.1.5.1 Effect on the Inter-Page Time Delay Program sec

The sec program, shown below, is a delay program ‘which takes as its input an
integer and a token (i.e. variable). It has been empirically designed to execute in n
seconds, where n is the integer passed to it. The final def command loads the
measured sec execution time into the variable "passed"” to to the sec routine.

/sec % one second delay under no load
{ usertime /T exch def % keep track of time actually taken
1228 { % loop that executes in 1 second under a
373.737 737.373 mul pop % "no load" condition
}repeat
} repeat
usertime T sub def
} def
/W7 7 sec % "WT" is the variable which will contain

% the measured execution time of sec
% "7" is the target number of seconds

Expected Results
It is reasonable to expect a program to execute in a constant amount of time

independent of the operations that are executed outside this program. This would
normally be the expected results. However, during the course of running other
experiments it was observed that the measured time to execute sec varied as the
contents, complexity, and position of text on the printed page varied. Unless this
phenomenon were not blindly stumbled upon, there would be no reason to suspect
this to occur. Section 3.5.1 looks into this strange behavior and attempts to explain
why it happens.

28

Section 2.1.5.1 - Problem Description

2.15.2 Effect on the Compilation and Rasterization of Text Pages

The sec program, described in the previous section, is used to induce delays in
between the printing of consecutive pages. In this experiment the target delays are
0,1,2,3,5,8, 12, and 16 seconds in duration. The nine pages printed are all the
same page that is individually interpreted (or compiled) and rasterized each time.
Figure 2.1.5.2.1 shows how these delays are interleaved with the task of printing
these nine pages.

~ Print ~ Print ~ Print Print Print
‘Page Page Page Page / Page

o

1 second 2 second 3 second
delay delay delay

Print Print

Page Page
8 second 12 second

delay delay

Sequencing of Printing Pages
Figure 2.1.5.2.1

Expected Results
As written in the previous section, it is reasonable to expect a program to execute in

a constant amount of time independent of the operations that are executed outside
this program. The last section dealt with the delay program sec. This section deals
with the program that times and prints a page of text. In either case, this would
normally be the expected results. However, during the course of running other
experiments it was observed that the measured time to execute the printing of the
pages varied as the delay time between pages varied. Once again, unless this
phenomenon were not blindly stumbled upon, there would be no reason to suspect
this to occur. Section 3.5.2 looks into this strange behavior and attempts to explain

why it happens.

29

Section 2.1.5.2 - Problem Description

2.2 Measurement Techniques

The POSTSCRIPT® text files, generated by the Text Batch Processing Program outlined in
section 2.3.2 and appendix 2.2.1, generates a file with the format shown below. Note that
Appendix 2.2.4 contains a sample POSTSCR;PT@ file that has been generated by the Text Batch
Processing Program. References to appendix 2.2.4 are made to show the actual lines of code
that correspond to the three parts of the generated file: Header, Body, and Trailer.

Header Two lines of POSTSCRIPT® code that saves the current time in a loqal yariable and
sets up the text file that follows to be a callable procedure enabling timing
measurements to be taken.

Scc Appendix 2.2.4, page 1, (the first two lines):

/1'sd usertime def
/Page{

Body A sequence of POSTSCRIPT® instructions which selects fonts, positions the cursor
at new-line positions, and writes strings of text.

See Appendix 2.2.4, page 1 (starting with the third line) to page 2 (up to and
inclading the last show command:

/Times-Roman findfont 9.0 scalefont setfont

(efféctively transfers the copy image to the paper.) show

Traiter POSTSCRIPT® code that calls the Body a number of times, with different delays
between calls, and keeps track of the Body download time, the page rasterization
times and delay times; a trailer page with all of the timing information is also printed.

Sge App6endix 2.2.4, page 2 (starting with the first usertime instruction) to the end
of page 6:

usertime /T0 exch def % record time before showpage

sho;vpage

The POSTSCRIPT® usertime instruction is used extensively in recording times. When the
usertime instruction is executed an integer representing the current time, in milliseconds, is
placed on top of the stack. This is actually the time from power-up to the current time. To
measure the time it takes to download the Body of POSTSCRIPT® code, or to execute the Body
(generate the corresponding page bit-map), a second time is taken. The first time is subtracted
from the second time to derive elapsed time. This procedure is repeated a number of times.
These times are kept in variables until all of the pages are printed. Then a final trailer page is
printed (example shown on the second page of Appendix 2.2.5) showing the times, in
milliseconds, and graphing the page generation times relative to the programatically induced
delay times between the pages. Many different times are extracted in this way and are discussed
more fully in sections 2.2.1 and 2.2.2. Figures 2.2.1,2.2.2.1, and 2.2.2.2 illustrate how the
times are used and are based on the example text POSTSCRIPT® page shown in Appendix
2.2.4. Key instructions are extracted from the example in Appendix 2.2.4 and highlighted in
these figures to explain the method used to measure the various times.

30

Section 2.2 - Problem Description

2.2.1

Communications

Please refer to figure 2.2.1.1, Download Time Measurement , for the following
explanation. An initial time is loaded into the variable Tsd, start download time.
The Page procedure contains the sequence of commands that specify the printed text
on the page. However, the first time the POSTSCRIPT® interpreter "sees" this
sequence of instructions, previously called the Body, it does not execute them.
Later, in the Trailer portion of the POSTSCRIPT® file, the Page procedure is called
and subsequently executed. The first time through the Body simply passes through
the interpreter until it "sees" the } def sequence, which tells the interpreter that the
procedure Body, named Page, is done. Immediately following download of the
Page Body another time is loaded into the variable Ted. The download time, Tdl,

is derived by subtracting the start download time, Tsd, from the end download
time, Ted.

To verify the validity of this method the times generated in this manner were
compared to times generated by two other methods. A protocol analyzer was used
to take two measurements: the actual download time and the number of characters
that were downloaded. A Hewlette Packard 4953A Protocol Analyzer was
connected in a (passive) monitor mode in between the host computer, which emits
the POSTSCRIPT® program to the printer, and the Apple Laserwriter Plus printer
itself. The HP4953A was programmed to measure the time to download the Page
portion of four increasingly more difficult pages. The first page did not print
anything at all, but merely ejected pages. The second page printed the A through C
sections of text shown in Appendix 2.2.5 in one font style, size, and orientation.
The third page included printing of sections A through F; the fourth page, A through
I. In all cases the trailer page reporting the measured download time using the
POSTSCRIPT® usertime operator was also printed. The minimum and maximum
recorded times (from five runs) are reported in column A of the table shown in
figure 2.2.1.2.

To measure the download times with the HP5953A Protocol Analyzer the triggers
were set such that one of the protocol analyzer's internal timers was started at the
beginning of the downloaded character stream being measusred, and was stopped at
the end of this same character stream. Measurements were taken on all five runs.
The minimum and maximum times recorded with the protocol analyzer are reported
in column B of the table shown in figure 2.2.1.2. In all four cases the maximum
error is less than one percent, ranging from a maximum error of 0.02 % to 0.90 %.

The HP4953A Protocol Analyzer captures the entire character string that is
transmitted. It is temporarily stored in the protocol analyzer's internal memory
buffer and then displayed on the protocol analyzer's CRT screen. Once on the
screen, the relavant downloaded character stream is easily counted. The number of
downloaded characters for all four jobs are shown in column C of figure 2.2.1.2.
Job 1 downloaded 213 characters, ... job 4 downloaded 4,749 characters. To
calculate the download time several transmission parameters must be known: #
bits/character, # bits / second, # start bits, and # stop bits. This information was
gotten by reading and interpreting the switch settings on the serial interface board
used to drive the printer.

31

Section 2.2.1 - Performance Measurement and Calculation

-q|||" "Tsd" is the start download time

/Tsd | usertime def

[Page {
/Times-Roman findfont 9.0 scalefont setfont \

72.00 709-}0 moveto - The first time the PostScript® file is
(A. IMAGE LOQOP. The KODAK EKTAPRIN downloaded the "Page” routine is

....ol‘ film that is capable of being electrically)show not executed, so the primary factors

> that influences Tdl (download time)
are the size of the "Page" procedure

72.00 48.6¢ moveto st
d the speed of the communicati
(... transfers the copy image to the paper.)show ?.n] ¢ on

upsertime /TO exch def

showpage
} def

useriime | /Ted [exch def i Ted” is the end download time
Page
usertime Ted sub /T1B exch def
TO Ted sub /T1A exch def
Download Time (Tdl) =
Ted Tsd sub /Tdl exch def [€———————End Download Time (Ted) -
Start Download Time (Tsd)

Download Time Measurement
Figure 2.2.1.1

32 i

Section 2.2.1 Problem Description

T 177 23

JUSWIAINSEIJA SWI], PEO[UMO(] UOTIBITUNWILIO))

SPU0d3s Ly6v

% 70" "0as "2as
£ SIa10RIRYD 6YLY
86’V 9S6'Y v
% 700 4+ LYoy —P
SpU03ss 189°¢ FE "09S
e
2o SINOBIRYD pECE
989°¢ ¥89°¢ €
. SpU023s 9pI'C ‘238 ‘238
2010 SI9J0BIRYD ()90°T
124 %4 wi'e (4
% ¥1°0 4S5Vl —»
SpuOdasI[[I 7T WENTT: *09sW
e
2000 SI9)0RIRYD €1T
(444 1744 1
% 060 (444 1ce
= v Xew urw Xew urw
*SA *SA J1q dois T ‘1S 1 °pg 0096 -
31 . 1 /_:zm_mu_wu St awy, - it IOl Suf)1950,
(xew) (xeur) ‘Seswr §1 60807 # - painseduws seam ®@)d11og)sod [eudajul qof
10112 J0113 9 Y duli; peojumo()4 painsespy

D

k! |

'V

---BJE([JOUIIYIi---
‘leuy [020)043 VESGPdH Suisn painsedjy

33

Section 2.2.1 Problem Description

The MTI-850/1650B multiple terminal interface is a 16 port serial controller internal
to the Sun Microsystem 3/280 computer. Port 7 of this controller was used to
download the POSTSCRIPT® jobs for all of the experiments run for this thesis.
The communication port was set up as follows:

- baud rate = 9600 bits/second

- character length - 8 bits

- 1 start bit

- 1 stop bit

- No parity

Calculating the download time is now a simple arithmetic calculation. To
demonstrate this, job 4 is used below:

Total number of bits per transmitted character
= 1 start bit + 8 information bits + 1 stop bit

= 10 bits / transmitted character
Download time (job 4) = 4,747 char * 10 bits/char = 4.947 seconds
9600 bits / sec

The calculated times for jobs 1 through 4 are shown in column C of figure 2.2.1.2
just below the # character entries. Once again the results are excellent. In all four
cases the maximum error is less than one percent, ranging from a maximum error of
0.02 % 10 0.90 %.

34

Section 2.2.1 - Performance Measurement and Calculation

2.2.2 Interpretation (Compilation) and Rasterization

Once the Body is downloaded, it is then called and subsequently executed. There
are two parts to this task. The first is interpreting the string of ASCII bytes to
generate the POSTSCRIPT® tokens. It is assumed that these tokens are then
executed in an interpretive nature, immediately generating the raster page bit-map.
However, in some RIPs an intermediate "display list" is generated which better fits
the hardware capabilities of the RIP. The combined process of tokenizing the ASCII
string and generating this "display list" is commonly called "compilation”. This
procc§1s is much like the process that is done by a "C" or "ForTran" language
compiler.

The second part, called "rasterization", is the process of generating the raster image
from either the list of tokens, in a single interpretive manner, or from a pre-compiled
display list. Since there is no way to externally separate the interpretation or
;(;impilation step from the rasterization step, they are treated atomically throughout

§ paper.

Figure 2.2.2.1, Timing of First Printed Page , shows how the timing of the first
page is done. After the Body has been downloaded, the current time is stored in the
variable /Ted. This is the same variable that was used in measuring the Body
download time (see section 2.2.1). The Page call causes the Page procedure to be
executed. All of the commands in the Body are inside the Page procedure. They
consist of selection of fonts, positioning of new lines, and printing of strings of
text. The last POSTSCRIPT® instruction in the Page procedure is showpage,
which causes the page to be printed and the page buffer to be erased in preparation
for the next page. Two times are taken immediately before and after this showpage
instruction. The time that is of primary interest is the one following complete
execution of the Page procedure. Upon completion of this procedure, program
control returns to the instruction following the Page call. This instruction gets the
current time, using usertime, subtracts the time value that was recorded prior to the
Page call, in /Ted, and stores the difference in a new variable /T1B. /T1B now
contains the time taken to fully generate the first page as specified in the Page
procedure. A second time, stored in /T1A, is the same time as in /T1B, less the
time taken to execute the showpage operator.

35
Section 2.2.2 - Problem Description

/Tsd usertime def

r} /Page {

/Times-Roman findfont 9.0 scalefont setfont

72.00 709.20 moveto
(A. IMAGE LOOP. The KODAK EKTAPRINT
... of film that is capable of being electrically)show

7200 48.60 moveto
(... transfers the copy image to the paper.)show

uSCriime JTO | exch def -l "TO" is the end of first page time
e I marker before the "showpage”
showpage operator is executed.

} def

End Download Time "Ted" is used
gserfime } /Ted |exch def "“"“ ‘as the start time to measure the first
page execution time.

Page| Start Here

% Current time, immediatly following
] | execution of the first page procedure,
usertime Ted sub /T1B exch def [l is the end of first page time marker

(including "showpage"). "T1B" holds
the time it takes to completely execute
the first page.

TO Ted sub /T1A exch def [l "TIA” holds the time it takes to print
the first page, excluding execution of

the “"showpage" operator,

Ted Tsd sub /Tdl exch def

Timing of First Printed Page

Figure 2.2.2.1

36

Section 2.2.2 Problem Description

Figure 2.2.2.2, Timing of Pages 2 Through 9 , shows how the timing of the

following eight pages is done. First two supporting POSTSCRIPT® procedures
must be described:

Isec

/Pr

This procedure is passed a literal (eg. /W2) and an integer (eg. 2). The
integer acts as the outer loop variable. The inner loop, which multiplies two
real numbers 1,228 times, executed under a no-load condition has been
measured to yield a one second delay. The "no-load" condition was simply
the sec procedure with calls to it along with the "Trailer" page reporting
these times. No printing of text strings, other than the "Trailer" page itself,
was executed for this measurement. Also, delay times corresponding to the
integers passed to it produced the expected linear result. That is "2 sec”
yielded a two second delay, "3 sec" yielded a three second delayj, ...

The literal preceding the sec call (eg. /W2) is loaded with the actual
measured time of the induced delay.

This procedure is also passed a literal (eg. /T4) that is loaded with the time
taken to execute the Page procedure. Inside the Pr procedure times are
taken before and after Page is called. The difference of these times are
loaded into the literal.

Using the sec and Pr procedures a total of nine pages are printed in the following
manner:

Print page 1 method shown in figure 2.2.2.1

no delay
Print page 2 using Pr shown in figure 2.2.2.2

1 second delay using sec shown in figure 2.2.2.2
Print page 3

2 second delay
Print page 4

oo oo

3 second delay
Print page 5

5 second delay
Print page 6

8 second delay
Print page 7

12 second delay
Print page 8

16 second delay
Print page 9

All delays and measured page times are reported on the trailer page (see page two of
Appendix 3.2.5). Additionally, the (delay before a page, page generation) time pairs
are graphed showing the effect delays between page has on page rendering times.

37
Section 2.2.2 - Problem Description

/Page

} def

Pa;ge Calling to print first page

"'_’/{sec

usertime /T exch def
{
1228
{ This section of PostScript® has been
373.737 737.373 mul pop previously measured to take 1 second
Jrepeat to execute with no other code running.
} repeat . " .
[usertime T sub der]l The variable "W2" is loaded with
1 def the actual measured time taken in
' | this procedure. This is the current
time minus the time "T" recorded
T e when entering “sec”.
{ .
usertimlﬁ /T exch def .u"'"'"“""""'""Call to pm[anot.hel' page
Page "] =
[usertime T sub def _Jull) The varialble "T4" is loaded with
} def the actuale measured time taken to
print this page. This is the current
-||““’|c|-lnumuunuum-m|l.llll nme minus Lhe time nT Iecorded
/T2 Pr ""'--u.. when entering "Pr"
uuu"“
III"Ih.mmmmnmNo de]ay between pages land2
/W1 1 sec
/T3 Pr
| W . o -l The number "2" is passed to the "sec”
g procedure to cause a 2 second delay.

——7 T4 Pr '
cause a delay and print a page

/W16 16 sec
/T9 Pr

Timing of Pages 2 Through 9
Figure 2.2.2.2

38
Section 2.2.2 Problem Description

To test the repeatability of measurements the method just described was modified
slightly. Instead of changing the delay times from page to page, all delays were set
to be equal. Each job was executed eight times with the delay set to O for the 1st
run, 1 second for the 2nd run, 2 seconds for the 3rd run, ..., and 16 seconds for the
8th run.

During each of the eight runs per job, nine pages plus the trailer page were printed.
Print page 1

N second delay
Print page 2

N second delay
Print page 3

N second delay
Print page 4

N second delay
Print page 5

N second delay
Print page 6

N second delay
Print page 7

N second delay
Print page 8

N second delay
Print page 9

Print trailer with timing information
N = 0 (no delay instructions are executed), 1,2, 3,5, 8, 12, and 16.
The minimum and maximum times of pages 2 through 9 are shown in figure
2.2.2.5. Minimum and maximum times of all eight delays per run are also recorded
there. Three jobs were run:
Job 1 prints a blank page.
Job 2 prints a simple text page and shown in figure 2.2.2.3. The page had been
printed before this experiment was done so that all of the fonts were already

in bit-map form (see sections 2.1.2 and 3.2 for more on this).

Job 3 prints a vector graphics page and is shown in figure 2.2.2.4.

39
Section 2.2.2 - Problem Description

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that
is capable of being electrically charged, and is sensitive to direct light. The IMAGE LOOP is
driven around the IMAGE LOOP CORE in a continuous motion for as long as copy exposures

are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMéR{ OC(I;I??GER is to plac‘:icda nelgativc
charge on the IMAGE LOOP. This prepares the IMAGE or exposure and development.
The IMAGE LOOP starts moving on command from LOGIC AND CONTROL. LOGIC AND

CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE
area, where it is exposed to a reflected light copy image that is focused on the IMAGE LOOP at
precisely the right time, as determined by LOGIC AND CONTROL. The original document is
illuminated by high intensity flash lamps for a short duration, which prevents blurring of the
image as it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the areas that are not
exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP
so that the focused copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is
known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an
improperly charged segment. These segments are produced when the PRIMARY CHARGER is
turned on at the time of initial IMAGE LOOP movement and turned off during final IMAGE
LOOP movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP, it floods
the moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to prevent
unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP
area now enters the DEVELOPER STATION ASSEMBLY where positively charged KODAK
EKTAPRINT K Toner particles are attracted to the IMAGE LOOP. Development occurs as the
result of attraction of the toner particles to the electrostatic image on the IMAGE LOOP. The
toner particles are carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are
salvaged at this point by the SCAVENGER ROLLER and returned to the DEVELOPER
STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE
LOOP and thereby increases its life, the POST DEVELOPMENT ERASE LAMP is used to
lower the high level charge that was required for proper image development. This
POST-DEVELOPMENT ERASE process also helps to prevent residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet
of copy paper is advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At
precisely the right time, the copy paper is directed into contact with the IMAGE LOOP and its
developed image. This aligns the copy paper and the image on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the
TRANSFER CHARGER, which produces a negative charge on the paper surface to attract the
positive charged developer toner. This effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page outgtn.

Simple Text Page

page 40 Figure 2.2.2.3

Repeatability Experiment Results:
All of the repeatability results are shown in figure 2.2.2.5.

The measured delay times were within 2 milliseconds per run. If one assumes the

accuracy of the of the usertime command to be 1 millisecond, as the
POSTSCRIPT® Language Reference Manual indicates, the best results that can be
expected is exactly 2 milliseconds (i.e.+/- 1 millisecond). However, as figure
2.2.2.5 as well as figure 2.2.1.2 shows, all differences are even numbers (in
milliseconds). This suggests the accuracy may actually be limited to 2 milliseconds.
In any event, this experiment shows exellent repeatabillity results for the delay time
measurements. There is still one more interesting (puzzling?) point to note; that is,
how the delay times change depending on the complexity of the job. This is not the
expected result, since one would normally expect the same instructions executed on
ike same processor to take the same amount of time. This point is further explored
in sections 2.1.5 and 3.5.

The measured page times were all within 0.46 % per run, and most were much

better. The worst case is job 2 with a delay time of 16 seconds: a 28 millisecond
variation was recorded which translates to a 0.46% error. The vector graphics job
(#3) seems to yield more stable results than the text job (#2) or even the blank page
job (#1). Even though this experiment shows a small amount of variation from run
to run, the results of less than 1/2 of 1 percent indicates that this method of
measurement is adequate for timing of the experiments run for this thesis.

42
Section 2.2.2 - Problem Description

Job 1 Job 2 Job 3
lI)Tl) :; Blank page Full page - simple text vector graphic
Time min max iff*| min max Gdiff* min max it +
- Measured DELAY >

0

1| 1006 1008 - | 1714 1716 - {1712 1714 -

2 | 42006 - | 3536 3538 - | «=3536— -

3 | 3004 3006 - s156 5158 - | 4904 4906 :

5 | 5004 5006 - | 7154 7156 6904 6906

8 | 8002 8004 - <+-10154 — - €4—9904 —p -
12 | €-12000 — <-14152 — «—13900 — .
16 | 415998 — - 18148 18150 - 17900 -

: 4—-—-—-——-—- Measured PAGE VTIME : >

0 [7362 7368 .08% | 7364 7366 - | «-10124

1 | 6354 6358 .06% | 5646 5650 .07% | w— 9410 -

2 | 5356 5360 .07% [5088 5096 .16% | 8588 8592 .05%

3 | 4356 4358 | a0 476 13% | 8218 8220 i

5 | 3512 3526 .40% | 4466 4482 .36% | 8218 8220 .
8 | 4 3518—p - 6008 :'6014::' “ .io% | < 8218 -
12 | 5050 5060 .20% | 6062 6074 .20% | 8214 8218 .05%
16 | 5104 5114 20% | 6054 6082 .46% | 8214 8218 .05%

Results of Repeatability Experiment
Figure 2.2.2.5

43

* Note: if time difference is 2 msec.
or less, "% diff” is not shown

Section 2.2.2 Problem Description

2.2.3 Print Engine Paper Ejection

Once the RIP has completed generating the bit-map page, the print engine main drive
motor is turned on to start the actual page printing process. "The Canon LBP-CX
print engine page rate is 8 pages per minute. The 8.5" x 11" page is printed lengthwise.
That is the RIP writes each scan line in the 8.5" direction. The Canon LBP-CX print
engine employs a real-time serial interface to facilitate the transfer c'>'f the full page
bit-map from the RIP to the print engine. To transfer an 8.5" x 11" page ata 300 dot
per inch resolution at a rate of 8 pages per minute, the "video" data interface must
sustain a bit rate of approximately 1.1 MBits/sec. This number is calculated as follows:

Bits / page ~= (8.5 inches * 300 dots / inch) * (11 inches * 300 dots / inch)
= 8,415,000 bits / page

Ave. datarate ~= (8,415,000 bits/page) * (8 pages/minute) / (60 seconds/minute)
= 1.122 MBits / sec.

These calculated numbers are only estimates and will differ from the actual specified

data rate for following reasons:

1. The writeable scan width is not exactly 8.5 inches, nor is the page length exactly
1linches (note that European A4 paper size is supported which is 8.3" x 11.7").

2. Most RIPs do not print on the outer 0.1 inch border reducing the amount of page
bit-map storage required.

3. There are inefficiencies in the transfer of data between scan lines and between
pages.

It is assumed that the RIP has hardware to serialize a 16 bit word and transmit this
serial stream to the print engine. It is also assumed that no DMA (Direct Memory
£ccess) hardware exists in the RIP. This means the RIP CPU must transfer a word
from bit-map page memory to the parallel-to-serial converter word buffer approximately
every 14 microseconds. This number is calculated as follows:

Ave. datarate ~= 1.1 Mbits / sec (from above)

Time per word ~= (16 bits/word) / (1.1Mbits/sec)
~= 14 microseconds/word

Ata 10 MHz CPU clock rate this turns out to be 140 clock cycles or every 14
microseconds. It is assumed the transfer takes ~ 14 clock cycles or 1.4 microseconds
(estimate). A memory to memory word move takes 12 clock cycles if the source (page
bit-map) address is kept in an address register that is post-incremented (An)+, and if the
destination (memory-mapped buffer) address is kept in a second address register (An)
(reference 27). Two additional clock cycles are added assuming read and write memory
that requires a nominal one wait-state, which brings the total to 14 clock cycles. This
means that approximately 10% of the CPU is dedicated to performing the bit-map to
print engine writing function.

It is not the intent of this thesis to further evaluate the print engine specific perform.

but the RIP performance. Exact numbers to drive the grint enge f:pan onlypbe calczﬁligzl
or measured by examining the exact implementation. This is impossible due to the
fundamental rule followed throughout all of the experiments run for this thesis: only
external examination of the Apple Laser Writer Plus is allowed (ie.no

reverse-engineering).

44
Section 2.2.3 - Problem Description

It was observed that the page ejection time for a single page was approximately 15
seconds for the simplest POSTSCRIPT® page. Once the printer main drive motor

was in motion, however, subsequent pages could eject at a continuous 8 page per
minute rate. Since only 10% of the CPU time is taken up by the data transfer to the
print engine, 90% is free for communications and generation of the next page. Timing

thed igtgrzzxction of the RIP with the print engine is further investigated in sections 3.5.1
and 3.5.2.

2.3 Programming Tasks

A set of POSTSCRIPT® programs are generated to test the performance of one implementation
of POSTSCRIPT®, narmely that of the Apple Laser Writer Plus, while printing text in a variety

of ways. Several support programs and packages that aid in the generation of these test pages
are described beiow:

2.3.1

Extraction of Font Widths from Apple Laser Writer Plus

The POSTSCRIPT® program shown in appendix 2.1.1 interrogates the Apple Laser
Writer printer to extract three sets of font widths at a font size of 10 points. The
numbers extracted are real numbers, in points, representing the font width of each
printable character specified in strings "st1" and "st2". These widths are needed by the
Batch Composition Program, described in section 2.3.2 below, which implements a
simple line break algorithm.

Figure 2.3.1 shows how the POSTSCRIPT® Font-Width Interrogation Program fits into
the task of automatically generating POSTSCRIPT® text pages. The program shown in
appendix 2.1.1 requests the Times Roman™, Times Italic, and Times Bold fonts.
Similar programs were written to get the other four fonts required of the Batch
Composition Program.

Appendixt 2.1.2 shows the page of font widths printed on the Apple Laser Writer Plus
when sent the program shown in appendix 2.1.1. In order to put the font width
information into a file that the Batch Composition Program could use, a Unix file was
hand created using the "vi" editor on a Sun workstation. The format of this file,
consisting of (character,width) pairs, is shown in appendix 2.1.3.

45

Section 2.3.1 - Problem Description

Apple .
Laser Writer | PostScript®
Pl us Prlntcr

Printed
Font see
Width appendix
Tables L+ 212
Hgnd.Editting Structural
ession to see .
Create UNIX B> dix Markup Files
Font-Width File L 2.1.3 see appendix 2.2.3
, 4
PostScript® : ”_Fetch Font‘?&ﬁddfs £ » A
Header b@ b.?'}. g A
Program ?E T g9 4
2| Text Batch | ¥ v
g&| Processing |E o
) ~ B| Program 5 2 v
PostScript® SB| ' g2 v
Trailer ———{ 22| seeappendix22.1 {7 e
Program e —\ [appendix
Generate PDL File 222
"SGML-Like"
Pre-Justified
Justified Text Files
PostScript® (paragraphg
Files are delimited)
e
appendix _—
224
Add
Key to Pr ing L : Graphics
ey to ogramm” ing Languages by Hand
Ic POSTSCRIPT® -

To Printer

Logical Flow to Generate Benchmark PostScript® Pages
Figure 2.3.1

46

Section 2.3.1 Problem Description

2.3.2 Batch Composition Program

A batch composition program, written in C, generates a POSTSCRIPT® file using two
SGML-like files for input. Appendix 2.2.2 shows one type of an input file that contains
the printable text with beginning and end of paragraph markers, <p> and </p>
respectively. The second type of an input file, shown in appendix 2.2.3, contains
"structure” markup information. Each line of the "structure” file of appendix 2.2.3
corresponds to one paragraph of appendix 2.2.2. The parameters that can be set are:

Font typeface (number corresponding to a name) and font size in points;

Leading multiplier (1.0 indicates that the vertical spacing is equal to the font size);
Width of the printed justified line, in inches;

Justification method (one of 6 possible types, corresponding to section 3.3);

(x,y) Cursor position, in points, at which the first character is printed.

In the example shown in appendix 2.2.3, structure commands for nine paragraphs are
specified. There are nine lines of commands contained within the < and > symbols,
corresponding to exactly nine paragraphs in appendix 2.2.2, which are delimited by the
pair <p> and </p>. The structure commands of the first paragraph are:

F 1 9.0 Fontnumber 1 (Times Roman); 9 point

L 1.2 Leading Multiplier of 1.2 meaning the vertical spacing from line to line is
1.2 times the size of the font (9 point). For the first paragraph the
distance from the baseline of one line of text to the baseline of the line of
text directly below it is 10.8 points (1.2 * 9).

W 6.5 Width of the lines of text are limited to 6.5 inches. In other words, the
batch composition program inserts a line break after 6.5 inches of text
read in.

J1 Justification method number 1: simple ragged right utilizing the simple
POSTSCRIPT® show command. See section 5.1.3 for the mapping of
the other methods that are experimented with.

C 72.0 720.0 Starting (cursor) position at (x=72 points, y=720 points)
Since 72 points equals one inch, the point at which the printing starts is

one inch from the left edge of the page and 10 inches from the bottom
edge of the page (or one inch from the top).

47

Section 2.3.2 - Problem Description

For paragraphs 2 through 9 only font commands are issued. All of the other (non-font
related) commands shown above are still in effect until changed. Note that when the
font size changes, the vertical line spacing changes along with the size of the font even
though the leading multiplier L stays constant at 1.2. The command for:

paragraph 2 is F 111.0 == Font 1 (Times Roman); 11 point

paragraph 3 is F 113.0 = Font 1 (Times Roman); 13 point

paragraph 4is F 2 9.0 == Font 2 (Times Italic); 9 point

paragraph Sis F 2 11.0 = Font 2 (Times Italic); 11 point

paragraph 6is F 2 13.0 = Font 2 (Times Italic); 13 point

paragraph 7 is F 39.0 = Font 3 (Times Bold); 9 point

paragraph 8 is F 39.0 == Font 3 (Times Bold); 11 point

paragraph 9 is F 3 9.0 = Font 3 (Times Bold); 13 point
Appendix 2.2.1 is the pseudocode for the C program that generates the POSTSCRIPT®
file from these two SGML-like input files. This Batch Composition program calculates
how many words, along with their associated interword spaces, fit within the line width
specified in the "Markup File". In POSTSCRIPT® fonts and their widths are linearly
scaled. So the Batch Composition program uses the font widths shown in Appendix
2.1.3 and scales these widths appropriately (i.e. linearly). The POSTSCRIPT® file

generated from the input files of appendices 2.2.2 and 2.2.3 is shown in Appendix
2.2.4, with the actual Apple Laser Writer Plus printer output shown in Appendix 2.2.5.

48

Section 2.3.2 - Problem Description

2.3.3 Downloadable POSTSCRIPT® Bitmap Font Program

The program shown in figure 2.3.3.1 is a part of one that is listed in the
POSTSCRIPT® Language Tutorial and Cookbook (Reference 17). Two small
changes were made to make this example and the experiment of section 3.1.1
simpler. First, the number of characters defined was limited to ten: only ten of the
twenty-five characters (plus a special "not defined” blank character) were specified
in the encoding vector, and similarly bitmaps for the same ten characters were
defined when building the CharData dictionary. Second, the string to be printed
consisted of only one occurrence of each of the ten characters instead of five lines
(one sentence) of text. In other words, all ten characters were printed exactly once.

A user-defined font must contain the following entries:

FontMatrix transforms the character coordinate system into the user coordinate
system. In the program shown in figure 2.3.3.1 it is the unity matrix.

FontType must be the integer "3" for user defined fonts.

FontBBox specifies the (x,y) coordinates for the lower left and upper right
corners of an imaginary box that represents the smallest rectangle in which
all the characters of the font being defined would simultaneously fit,
assuming all of their origins were coincident. In the program shown in
figure 2.3.3.1 the lower left corner has the coordinate (-0.16, -0.24), and the
upper right corner has the coordinate (1.28, 1.2). Note that later in the
program the imagemaskmatrix , an input to the imagemask operator, is
set up to map a 25 pixel character (baseline to baseline) to the character
coordinate system which is one unit wide and high. Taking this into account
the coordinates shown above map into the following pixel coordinates: lower
left corner is (-4, -6); upper right corner is (32, 30). Figure 2.3.3.2 shows
this mapping graphically for the character "g" of the user defined font of

figure 2.3.3.1.

Encoding is a 256 element array which maps the array indices to character
names. In the case of printer resident fonts these names, in turn, serve as
keys in the CharStrings dictionary to reference the (proprietary) executable
character drawing programs. In the case of a user defined font, a procedure
provided by the user, which must be named BuildChar, uses the
Encoding vector to find the character name which serves as a key into the
CharData dictionary. Information in this dictionary is used by the
BuildChar procedure to render the character. More information on the
BuildChar procedure is given on the following page.

In the program shown in figure 2.3.3.1 the Encoding vector maps ASCII
Cha_racter Codes to the letters, "a"’ llb", "C", "d", "e", "f', "g", "hll, "i", a_nd
"m". All other character codes have been set up to reference the ".notdef”
character which does nothing.

49
Section 2.3.3 - Problem Description

BuildChar is a procedure provided by the user to render the desired character.

The specific BuildChar routine shown in figure 2.3.3.1 is described below

in detail.

The current font dictionary, whose name is Bitfont , and the character code is

passed to BuildChar.

/BuildChar
{ 0 begin

/char exch def
/fontdict exch def

/charname
fontdict /Encoding get
char get
def

/charinfo
fontdict /CharData get
charname get
def

/wx charinfo 0 get def
/charbbox charinfo 1 4

getinterval def

wx 0 charbbox
aload pop
setcachedevice

charinfo 5 get
charinfo 6 get

true

current dict. is temporarily stored on stack

character code and
font dictionary are stored locally

put the Encoding vector on top of the stack
access the character name
and store it in "charname"

put the CharData dict. on top of the stack
access info associated with "charname"
and store it in "charinfo"

Ist element of "charinfo" array is char width
next four elements are lower left (x,y) and
upper right (x,y) coordinates of the
individual character bounding box

need to call setcachedevice with x and y

cursor advancement values, and the
character bounding box 11,, lly, ury, and ury

width and height of bitmap image for the
imagemask command

invert the image (imagemask input)

fontdict /imagemaskmatrix get

dup 4

charinfo 7 get put
dup§

charinfo 8 get put

charinfo 9 1 getinterval
cvx

imagemask

end

} def

50

get x translate from the "charinfo" array and
add it to the imagemaskmatrix

get y translate from the "charinfo" array and
add it to the imagemaskmatrix

matrix is used as imagemask input

get the character bitmap
make it executable and use as the "proc”
for the imagemask command

make previous dictionary the current one

end of BuildChar procedure

Section 2.3.3 - Problem Description

9 dict dup begin

/FontType 3 def /FontMatrix {1 0 0 1 0 0] def /FontBBox {1.28 1.2 -0.16 -0.24) def

/Encoding 256 array def
0 1 255 {Encoding exch /.notdef put} for
Encoding

dup 97 /a put dup 98 /b put dup 99 /c put dup 100 /d put dup 101 /e put dup 102 / p

dup 103 /g put dup 104 /h put dup 105 /i put 109

/BuildChar
{0 begin
fchar exch def
ffontdict exch daf
/charname fontdict /Enccding get char get def

/charinfo fontdict /ChaiData get chamame get def

fwx charinio G get dei
/charbbox charinfo 1 4 getinterval def
wx 0 charbbox aload pop setcachedevice
charinfo 5 get charinfa 6 get true
fontdict /imagemaskmatrix get
dup 4 charinfo 7 get put
dup 5 charinic 8 get put
charinio 9 1 getintervai cvx
imagemask
end
Jdef

/BuildChar load 0 & dict put
fimagemaskmatrix [25 0 0 -25 0 0] def
/CharData 11 dict def

CharData begin
/a[.64 .04 G .56 .56 13 14 -1.5 13.5

<0F983FD870786038C018C018C018C018C018C018603870783FD80FI8>]def

/b{.64 .04 0 .56 .76 13 19 -1.5 18.5

<C000C000C000C000CO00CF80DFEOFE70E030C018C018C018C018C018C018E030F070DFEOCF80>]def

/c[.6 .04 0 .52 .56 12 14 -1.5 135

Mapping of ASCII values to

/m put ? character names. These
names then act as keys into

— the "CharStrings" dictionary

below.

<0F803FE070706030C000C000C000C000C000C000603070703FE00F80>]def

/d[.64 .04 0 56 .76 13 19 -1.5 18.5

<001800180018001800180F983FD870786038C018C018C018C018C018C018603870783FD8OFI8>]def

/e[.64 .04 0 .56 .56 13 14 -1.5 13.5

<0F803FE070706030C018C018FFF8FFF8C000C000603070703FEQ0F80>]def

/.3200.28.76 719 -0.5 18.5

<0E1E383030FEFE303030303030303030303030>]def

/964 .04 -0.16 .56 .56 13 18 -1.5 13.5

<0F983FD870786038C018C018C018C018C018C018C03870783FDBOF98601870303FFO0FCO>]def

/h[.6.040.52.76 1219 -1.5 18.5

<C000C000C000C000C000CF8ODFEOF070E030C030C030C030C030C030C030C030C030C030C030>]def

f{.2.040.12.76 219 -1.518.5

<C0C0C00000C0C0OCOCOCOCOCOCOCOCOCOCOCOCO>]def

Im{.92 .04 0 84 56 20 14 -1.513.5

<CF0780DFCFEOFOF870E07030C06030C06030C06030C06030C06030C06030C06030C06030C06030C06030>]def

/.notdef [.24 0 0 0 0 1 0 0 <>]def

end

/Uniqueld 2 def

end

/Bitfont exch definefont pop

/Bitfont findfont 40 scalefont setfont
100 100 moveto (abcdefghim) show

showpage

PostScript® Downloadable
Bitmap Font

Figure 2.3.3.1

51
Section 2.3.3 : Problem Description

"BuildChar" is passed the current font

> dictionary and the character code of the
character to be printed. It then constructs

the character from the information shown

referencing the character
descriptions themselves

Bitmaps for
ten 6-point
characters

Figure 2.3.3.2 shows one line of the CharData dictionary which was put into the
charinfo variable in the BuildChar procedure. The charinfo data for "g" is as
follows:

.64 x direction cursor advancement
(16 pixels)

(.04, -.16) lower left corner coordinate of the character bounding box
(1, -4) pixels

(.56, .56) upper right corner coordinate of the character bounding box
(14, 14) pixels

13 width of character in pixels

18 height of character in pixels

(-1.5, 13.5) x and y translation components in pixels

52

Section 2.3.3 - Problem Description

Pixel
Grid
Bounding
Box 1" 7
\
\
n y
[\
Baselng |- - . \
A 4
71 \\
wi.dth pf character
Lower Left Corner -2 pixels =13 >l) CUhppt:r Rilgght Codir:erB
of Character Bounding Box S of Character Bounding Box
is ([.04%25] , [-.16+25]) | *~ direction cursor is ([.56*25] , [.56*25])
- (1,_4) < advancement > = (14,14)
I 64*25=16 l

X height of character in pixels
— | T . 4 *
56 .56

g .64 .04 -.16 13 18 -1.5 13.5

< bit-map data >] def H/J

(x,y) translation components

Character Definition of a PostScript® Bitmap Font
Figure 2.3.3.2

53
Section 2.3.3 : Problem Description

2.3.4 Installing Downloadable POSTSCRIPT® Outline Fonts

Provided with the Adobe Stone™ Serif font disk is a program, called Font Downloader,
that establishes a connection with the Apple LaserWriter Plus via the Appletalk network
and downloads the Stone™ Serif outline fonts. This type of manual downloading
causes the downloaded font to remain in the printer until it is turned off or restarted.
Once the font has been downloaded it can be referenced by its assigned name,
StoneSerif for the Stone Serif font with the following POSTSCRIPT® instructions:

/StoneSerif findfont 12 scalefont setfont

In addition to the manual method of downloading fonts there is another one, which is
called automatic. To use the automatic method, first the screen font must be installed
with the Font/DA Mover program so that the application program can access it for
display on the screen. Font metric information is also included in the screen font file
and is needed to calculate line and character positioning. Second, the downloadable
printer fonts must be placed in the System directory. When Print is activiated through
the applicaiion program, the printer driver immediately interrogates the printer to geta
list of printer resident fonts. If the font selected with the application program is not
resident inside the printer, then the printer driver looks for the downloadable font in the
System directory. If it is found, the font is automatically downloaded. If not, a scaled
version of the corresponding screen bitmap font is downloaded instead. This causes a
very significant degradation of font image quality. After the POSTSCRIPT® file has
finished printing, the downloaded font is deleted from the printer. For this reason the
font is said to be temporary.

Only the manual download method was used for this paper. The results are reported in
sections 3.2.2 and 3.2.3.

54

Section 2.3.4 - Problem Description

2.4 Assumed RIP Architectural Model

The hardware and software models of the Apple Laser Writer Plus is presented below. The

information was extracted from the references specified (see section 6). Full bibliography
entries can be found in section 7.

RIP Hardware
- MC68000 microprocessor
+7.455 MHz (Reference 28)

-1.0 MByte of ROM (Read Only Memory) (Reference 17)
+ printer control routines

+ Adobe Systems POSTSCRIPT® page description language interpreter (version 42.2)
+ printer diagnostic routines

+ printer emulator routines

+ Appletalk routines

+ error-reporting routines

+ outline fonts (35 fonts)

+ bit-map fonts (see Pre-cached Bit-maps reference below)

- 2.0 MBytes of RAM (Random Access Memory) (Reference 28)
+ Appletalk data buffer (Ref. 28)
+ frame buffer for constructing the bitmapped page image (Ref. 28)
+ font cache buffer for caching character bitmaps (Ref. 28)

+ display list buffer for storing compiled POSTSCRIPT® (Ref. 28)
+ virtual memory - 175KBytes (Ref. 23)
+ downloadable fonts (Ref. 28)

Fonts (Reference 18)
All fonts are printed in 14 point. Resident fonts on the Apple LaserWriter and
LaserWriter® Plus include:

1 riter (original

Times ®
Roman
Bold
Italic
Bold Italic

Helvetica ®
Regular
Bold
Oblique
Bold Oblique

Courier
Regular
Bold
Oblique
Bold Oblique

Symbol
ajgazf©.AAo
55

Section 2.4 - Problem Description

] ser

New Century Schoolbook
Roman
Bald
Italic
Bold Italic

ITC Bookman ®
Light
Light Italic
Demi
Demi Italic

ITC Avant Garde ®
Book
Book Oblique
Demi
Demi Oblique

Helvetica Narrow
Regular
Bold
Oblique
Bold Oblique

Palatino ®
Roman
Bold
Italic
Bold Italic

I'TC Zapf Chancery ®
Medium Italic

ITC Zapf Dingbats ®
22k 0080

56

Section 2.4 - Problem Description

Internal resident outline fonts (Reference 19)
The Apple LaserWriter Plus stores fonts in an outline format, and rasterizes individual

characters at the desired font, style, size, and orientation when it is specified in the
POSTSCRIPT® program

Font bit-map cache (References 20, 21)
Ina PQSTSCRIPT®.printcr, the first time a character appears in a particular font, style,
point size and rotation angle, its dot image is stored in a "font cache" (a reserved portion
of the printer's memory), so that the next time it appears it doesn't need to be
re-tmaged. 160 KBytes of the total 1.5 MBytes of RAM is used for font caching.

Full page bit-map memory (References 22,23)
The Apple Laser Writer Plus bit-map memory is normally limited to an area of 8 inches

by 10.75 inches. This uses up 967,500 bytes, which is 61.5 % of the available 1.5
MBytes of RAM:

RAM required to image an 8 inch by 10.75 inch area
(8 inches * 300 dots/inch) * (10.75 * 300 dots/inch)
= 7,740,000 bits = 967,500 bytes

Percent of the total RAM available
967,500 / 1,572,864 = 61.5 %

It is possible to image a full letter-size page on the LaserWriter Plus, but the memory
must be "borrowed" from other functions, such as space for downloadable fonts. To
image the entire 8.5 inch by 11 inch area, 1,051,875 bytes of RAM is required, which is
66.9 % of the total 1.5 MBytes. This is an additional 84,375 bytes, or an additional 5.4
% of the total RAM in the system, over the smaller, and generally acceptable, 8 inch by
10.75 inch area.

RAM required to image an 8.5 inch by 11 inch area
(8.5 inches * 300 dots/inch) * (11 * 300 dots/inch)
= 8,415,000 bits = 1,051,875 bytes

Percent of the total RAM available
1,051,875 / 1,572,864 = 66.9 %

Difference of RAM used for the two imaging areas
1,051,875 - 967,500 = 84,375 bytes = 5.4%

Pre-cached Bit-maps for selected fonts and sizes (Reference 24)
Times-Roman-12 (point) , Helvetica-12 (point) , and Courier-10 (point) are the most
frequently used fonts in business communications. By having these fonts already
bit-mapped in ROM, the page can be assembled much faster than if the fonts had to be
reconstructed for each printing job.

Print Engine Specifications
Canon LBP-CX Laser Beam Printer
- laser-scanning . _
- xerographic (electrophotographic) printer
- 8 page per minute maximum page rate
- 300 dots per inch resolution

57

Section 2.4 - Problem Description

58

Section 2.4 - Problem Description

3. Analysis of Experimental Results

Font F : lin it-

3.1.1 Real Time Outline Font Rasterization and Caching

3.1.1.A.

Experimental Results

Two experiments were run according to the procedure described in section
2.2. For each of the experiments two runs of nine pages were printed: the
first run immediately followed the printer power-up sequence; the second run
followed the first run. The programmed wait times in between pages ranged
from 0 seconds (no delay) to 16 seconds. Only the times of the first page of
each run is reported in figure 3.1.1.A.3. The program which measures the
grgcz t? generate the first page is described in section 2.2 and shown in figure

Two test programs were used which resulted in the printed pages shown in
figures 3.1.1.A.1 and 3.1.1.A.2. The first program prints 96 characters of
the 11 point Times Roman® font in two lines. The page this first program
prints is shown in figure 3.1.1.A.1. The Body of code contains the
following sequence of POSTSCRIPT® instructions:

Times-Roman findfont 11 scalefont setfont
72 720 moveto

("$%& .. MNOP)show
72 720 moveto
(QRST ... yz{|}~) show

The second program, which prints the page shown in figure 3.1.1.A.2,
prints the same two lines as above, but in addition prints an additional 41
lines that contain a total of an additional 2,243 characters.

The timing measurements are shown in figure 3.1.1.A.3 in a bold typeface.
The first column of figure 3.1.1.A.3, with the heading of 96 char., is split
with two different shades of gray. The entry in the first row, labeled st
page after power-up , appearing in the light gray region is the measured time
to print the page shown in figure 3.1.1.A.1 the first time after a power-down
/ power-up sequence. This measured time of 34.860 seconds includes the
time to scan convert all of the 96 character outlines, since powering down
and powering up the printer clears the bitmap font cache. The entry in the
second row, labeled Ist page pre-cached , appearing in the dark gray region
is the measured time to print this same page for the first time of the second
run. During the first run all of the characters were scan converted and placed
into the font cache, so this second measured time of 5.154 seconds includes
only the time to move (BitBLT) all of the 96 character bitmaps from the
bitmap font cache to the page buffer.

59

Section 3.1.1 : Analysis of Experimental Results

3.1.1.B.

The second column of figure 3.1.1.A.3, with the heading 2,339 (96 +
2,243) characters , is split into a white and a gray region. The entry in the
first row, labeled Ist page after power-up , in the white region is the
measured time to print the page shown in figure 3.1.1.A.2 after a
power-down / power up sequence. This measured time of 35.746 seconds
includes the time to scan convert the initial 96 characters, printed in the first
two lines of the page, as well as the time to move (BitBLT) the remaining
2,243 characters from font cache containing the newly entered character
bitmaps. The entry in the second row, labeled /st page pre-cached ,
appearing in the gray region is the measured time to print this same page for
the first time of the second run. This second measured time of 5.946
seconds includes only the time to move all 2,339 characters from the bitmap
font cache to the page buffer.

Note that it is impossible to completely isolate the scan convesion time or the
RitBLTing time from the overall time of printing a POSTSCRIPT® page. In
an attempt to extract a major portion of the printing overhead a very simple
page was printed and timed. The job consists of a single character being
positioned and printed on the page. The character being printed was
pre-cached by running one of the programs disussed earlier. A time of
5.124 seconds was measured to print this almost blank page. The
rermaining values shown in figure 3.1.1.A.3 are calculated in the analysis
section which follows.

Analysis

Four methods were used to calculate the speed, in characters per second, that
the Apple Laser Writer Plus™ can print from the font cache:

1. Methods one and two are similar. Focus on the first row of figure
3.1.1.A.3 entitled Ist page after power-up. The entry in the first column,
34.860 seconds, is the total time taken, including overhead, to scan
convert and print 96 characters. The entry just to the right of this, in the
second column, 35.746 seconds, is the total time taken to do exactly the
same task as before, plus move an additional 2,243 characters from font
cache to the page buffer. So, the time that can be attributed specifically to
moving, or Bit BLTing, the additional 2,243 characters can be calculated
by taking the difference of these two values. This yields the value 0.886
seconds and can be found in the third column labeied BizBLT 2 243 char.

Jrom cache - calculated . Dividing the number of characters that are
moved from cache (2,243 characters) by the time needed to move them
(0.886 seconds) yields the rate at which the printer can render characters

from font cache (2,532 characters per second).

2. Now focus on the second row of figure 3.1.1.A.3 entitled 1st page
pre-cached . The entry in the first column, 5.154 seconds, is the total
time taken, including overhead, to BitBLT the 96 printable ASCII
charaqters from font cache. Similar to the case described in (1) above, the
entry in the second column, 5.946 seconds, is the time to do the same
task plus BitBLT an additional 2,243 characters. Once again, the
difference of these numbers representing the time to BitBLT 2,243
characters is calculated and placed in column three. The time to BitBLT
the 2,243 characters is 0.792 seconds. Dividing 2,243 by 0.792 yields a
BitBLT character rate of 2,832 characters per second.

60

Section 3.1.1 : Analysis of Experimental Results

3.1.1.C.

3. Methods three and four are similar. Focus on the dark gray "L" shaped
band in that highlights the 96 char. column and the BitBLT 95 char from
cache column. The time to print 95 pre-cached characters is 5.154
seconds. The overhead to print one pre-cached character is 5.124
seconds. Subtracting out this overhead yields 0.030 seconds to BitBLT

95 characters (i.e. 96 - 1). Dividing these numbers produce a character
BitBLT rate of 2,843 characters per second.

4. Now focus on the light gray "L" shaped band in that highlights the 2,339
(96 + 2,243) characters column and the BitBLT 2,338 char from cache
column. The time to print 2,339 pre-cached characters is 5.946 seconds.
Subtracting out this overhead yields 0.822 seconds to BitBLT 2,338
characters (i.e. 2,339 - 1). Dividing these numbers produce a character

BitBLT rate of 3,167 characters per second.

The calculated character BitBLT rates range from 2,532 to 3,167 characters
per second. The accuracy of method four is suspect due to the small time
value to BitBLT 95 characters from cache, 0.030 seconds. In section 2.2 it
was shown that the methods used for the experiments throughout this paper
can routinely be off, from run to run, by 0.010 second or more (see figure
2.2.2.3). With such a combined change in either the 96-character page print
time or the 1-character page print time, the character per second rate would
change from 2,375 (+ 0.010 change) to 4,750 (- 0.01. change). Therefore
the results produced with method four will not be used. Methods one, two
and three produce results within 11% of each other. Since methods two and
three produce very similar results (less than 0.4%) and since method two
produced a result between the results from methods one and three, the value
produced by method two (2,832) will be used for further evaluation.

Now focus on the outermost "L" shaped gray band that highlights the
96 char. column and the Scan Convert 96 characters row. It takes 34.860
seconds to print a 96-character page the first time after a power-down /
power-up sequence. This time includes scan converting the 96 characters.
When the overhead associated with printing an almost blank page, 5.124
seconds, is subtracted from 34.860 seconds, the difference generated,
29.736 can be specifically attributed to the scan conversion of the 96
character outlines to bitmaps. Dividing 96 characters by the time to scan
convert 96 characters yields the character per second scan conversion rate of
228 charact T nd.

In this case, printing from the font cache was 877 times faster than scan
converting the original outline. The POSTSCRIPT® Language Reference
Manual states that "printing a character that is already in the font cache is
typically a thousand times faster than scan converting it from the character

description in the font." (reference 12) 877 is rather close to the expected
value of 1,000.

Proposed Improvements
Add hardware speedup for the scan conversion.

61

Section 3.1.1 : Analysis of Experimental Results

!"#$%&’O*+,-./0123456789:;<=>_?_@ABCDEFGHIJKLMNOP
QRSTUVWXYZNA_‘I~ bcdefgmjklmnopqrstuvwxyz{l}-v

page 62

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

96 characters of 11 point Times-Roman®

Figure 3.1.1.A.1

"#8%&’(0*+,-./0123456789:;<=>?@ABCDEFGHIKLMNOP
QRSTUVWXYZN"_‘I~abedefghijklmnopgrstuvwxyz {1}~

A.IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous
loop of film that is capable of being electrically charged, and is sensitive to direct
light. The IMAGE LOORP is driven around the IMAGE LOOP CORE in a
continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to
place a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP
for exposure and development. The IMAGE LOOP starts moving on command
from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the
PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE area, where it is exposed to a reflected light copy image that is
focused on the IMAGE 1L.OOP at precisely the right time, as determined by
LOGIC AND CONTROL. The original document is illuminated by high
intensity flach lamps for a short duration, which prevents blurring of the image as
itis exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the
areas that are not expcsed. The exposure is said to discretely alter the charge
characieristics of the IMAGE LOOP so that the focused copy image is recorded
on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic
image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure
area is an improperly charged segment. These segments are produced when the
PRIMARY CHARGER is turned on at the time of initial IMAGE LOOP
movement and turned off during final IMAGE LOOP movement. As the
unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the
moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to
prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed
IMAGE LOQP arca now enters the DEVELOPER STATION ASSEMBLY
where positively charged KODAK EKTAPRINT K Toner particles are attracted
to the IMAGE LOQP. Development occurs as the result of attraction of the toner
particles to the electrostatic image on the IMAGE LOOP. The toner particles are
carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the
IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER and
returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on
the IMAGE LOOP and thereby increases its life, the POST DEVELOPMENT
ERASE LAMP is used to lower the high level charge that was required for
proper image development. This POST-DEVELOPMENT ERASE process also
helps to prevent residual image retention.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Page of 11 point Times-Roman text; all 96 printable ASCII characters are printed
at least once; 43 lines of text; 2,339 non-space characters; 427 inter-word spaces.

Figure 3.1.1.A.2 page 63

Times-Roman

BitBLT

2,243 char. char / sec
2.339 from cache
96 char. (96 + 2,243) calculated calculated
characters
1st
Stpage 0.886
after
power up
Ist page
pre-
cached
simple
1 char

pre-cachied

BiBLT
2,338 char.
from cache

BitBLT
95 char.
from cache

Scan Convert
96 characters

All times are given in seconds. Printing from cache memory is

877 times faster than scan converion:

(2,832/3.228)

Measured times are printed in BOLD.
Calculated times are printed in normal text.
RS-232 communications was used.

Times-Roman® Printing Timing

Figure 3.1.1.A.3

64
Section 3.1.1: Analysis of Experimental Results

3.12 Pre-Cached Bit-Maps

3.1.2.A.

3.1.2.B.

3.1.2.C

Experimental Results

For each run of this experiment a single page, along with its associated
tming page, was printed. The POSTSCRIPT® file specifying these two
pages were downloaded to the printer after a printer power-up sequence.
Figure 3.1.2.A.1 shows the results of the three runs, each of which prints a
full page of a single font. For the first run an 11 point Helvetica® font is
used; for thp second run a 12 point Helvetica® font is used; and for the third
run a 13 point Helvetica® font is used. All three pages were "set” at 12
point. That is the leading, or vertical spacing between lines were all the
same. This insured that the three POSTSCRIPT® files were identical except
for the variable preceding the scalefont operator.

All three runs were printed twice: once immediately following a printer
power-down / power-up sequence, and a second time immediately following
the first, keeping the printer powered up. The page used for this experiment
is identical to the text page shown in appendix 3.2.5 except that one (font &
size & orientation) is used instead of the nine used in the appendix.

Right After Second
Run Power-Up Time
1 (11 point) 20.858 seconds 6.082 seconds
2 (12 point) 6.194 seconds 6.078 seconds
3 (13 point) 21.330 seconds 6.084 seconds
Figure 3.1.2.A.1

Analysis

The 12 point Helvetica® font is one of the designated fonts that is pre-scan
converted and permanently resident in the RIP in bit-map form (Ref. 13).
The experimental results show this to be true. The page of 12 point
Helvetica® text printed in 6.194 seconds immediately following a power-up
sequence, only 0.110 seconds slower than that recorded for a second run.
By comparison, the 11 point and 13 point Helvetica® text pages took much
longer to print the first page after power up vs. the second time (about 15
seconds). Clearly this is due to the additional time needed to scan convert
these fonts during the POSTSCRIPT® page itself.

Proposed Improvements
Expand the size of the bit-map font storage ROM;
Strongly advise the user to keep the printer powered up;

Expand the non-volatile memory - possibly disk.

65

Section 3.1.2 : Analysis of Experimental Results

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is
capable of being electrically charged, and is sensitive to direct light. The IMAGE LOOP is
driven around the IMAGE LOOP CORE in a continuous motion for as long as copy exposures
are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative
charge on the IMAGE LOOP. This prepares the IMAGE LOOP for exposure and development.
The IMAGE LOOP starts moving on command from LOGIC AND CONTROL. LOGIC AND
CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE
area, where it is exnosed to a reflected light copy image that is focused on the IMAGE LOOP at
precisaly ihe right tima, as determined by LOGIC AND CONTROL. The original document is
illuminated by high intensity flash lamps for a short duration, which prevents blurring of the
image as it is exposed ori the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the areas that are not
expssed. The exposure is said to discretely alter the charge characteristics of the IMAGE
LOOF so ihal the focused copy image is recorded on the IMAGE LOOP. This IMAGE LOOP
image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure areaisan
improperly charged segment. These segments are produced when the PRIMARY CHARGER is
turned on at the fime of initial IMAGE LOOP movement and turned off during final IMAGE LOOP
movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP, it flocds the
moving MAGE LOOP base with light that desensitizes the IMAGE LOOP to prevent unwanted
development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area
now enters the DEVELOPER STATION ASSEMBLY where positively charged KODAK
EKTAFRINT K Toner particies are attracted to the IMAGE LOOP. Development occurs as the
result of attraction of the toner particles to the electrostatic image on the IMAGE LOOP. The
toner particles are carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are
salvaged at this point by the SCAVENGER ROLLER and returned to the DEVELOPER
STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE
LOOP and thereby increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower
the high level charge that was required for proper image development. This
POST-DEVELOPMENT ERASE process also helps to prevent residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet
of copy paper is advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At
precisely the right time, the copy paper is directed into contact with the IMAGE LOOP and its
developed image. This aligns the copy paper and the image on the IMAGE LOOP.

|. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER
CHARGER, which produces a negative charge on the paper surface to attract the positive
charged developer toner. This effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Full page of 11 point Helvetica®.
page 66 Figure 3.1.2.A.2

3.1.3 Background Outline Rasterization

3.1.3.A.

Experimental Results

For each run of this experiment a single page, along with its associated
timing page, was printed. The POSTSCRIPT® file specifying these two
pages were downloaded to the printer after a printer power-up sequence.
Figure 3.1.3.A shows the results for the case when a full page of exclusively
10 point Helvetica® was printed. The shaded columns show the time waited
fx:om the completion of the power up sequence (ie. the header sheet was fully
ejected) until the the POSTSCRIPT® file started to download. The white
columns show the measured printing time of the first page using the method
described in section 2.2.2. The page used for this experiment is identical to
the text page shown in figure 3.1.2.A.2. In addition to the 11 point case, 9
and 10 point Helvetica® were also used. The data shown in figure 3.1.3.A
refers to the 10 point Helvetica® case.

10 Point Helvetica Case

As shown in figure 3.2.3.A the page that was downloaded immediately
following the header page ejection (Time After 1'st paper eject = 0 seconds)
took the longest to print, 15.888 seconds. As more time was allowed to
expire after the power-up sequence was complete the printing times decrease
until, at 14 seconds, the printing time appears to reach the lower limit at
about 6.65 seconds. The printing time stays at this limit for all of the
recorded wait times above 14 seconds up to 30 seconds. Another page was
printed without powering down the printer. The second print time, for
which all characters have already been cached, took 6.052 seconds, about
one half second faster than the limit that was reached.

Two additional small experiments were run. The font specified in the
POSTSCRIPT® file was changed from 10 point Helvetica® to 9 point
Helvetica® for the first experiment and 11 point Helvetica® for the second
experiment. As in 3.2.1 both pages were "set" at the same point size, 10
point in this case, to insure that all the three POSTSCRIPT® files were
identical except for the variable preceding the scalefont operator.The
non-cached printing times were as follows:

9 point printing time 20.110 seconds.
11 point printing time 20.842 seconds.

14 Point Times-Roman Case

The experimental results for the 14 point Times-Roman did not vary as the
time delay after the first paper eject varied. Times delays ranged from 0
seconds to over one hour with exactly the same results: a print time of
26.374 seconds. As in the previous case, a second page was also printed
without powering down the printer. The second print time took 6.062
seconds.

67
Section 3.1.3 : Analysis of Experimental Results

>

16
®
e
-5}
g 12 @
= ®
E 3
£ 0000099, o o
4 Zir'ime for 2'nd print & 6.§)52 sec
(pre-cached fénts
0 //
0 2 4 6 8 10 12 14 16 20 30
Time after first paper eject (after power-up)
Time After Print Time Time After Print Time
1'st paper eject (Seconds) 1'st paper eject (Seconds)
0 15.888 11 7.516
1 14.554 12 7.526
2 13.886 13 7.220
4 12.144 4 6.646
7 9.762 15000000 6.660
9 7.634 20 6.658
10 7.516 30 6.658

Results of Background Outline Rasterization Experiment
Full Page of 10 Point Helvetica® Text

Figure 3.

1.3.A

68

Section 3.1.3 : Analysis of Experimental Results

3.1.3.B.

Analysis

Point Helveti
The 10 point Helvetica® font is one of the designated fonts that is scan
conyertegl during idle time (Reference 13). The experimental results show
the idle time span from O to 14 seconds to be the time during which all (or
most) of the 10 point Helvetica® outline fonts are scan converted. The scan
conversion was most likely already in process by the time the first page was
downloaded to the printer (ie. the Time = 0 sec. case). Itis assumed that, to
scan convert a 10 point Helvetica® page of text, it takes somewhere between
the times to scan convert a 9 point page of Helvetica® text and an 11 point
page of Helvetica® text. A simple approximation is to average the two,
which yields 20.476 seconds. This implies that the scan conversion process

bg:gatléldflpproximately 4.6 seconds before the header sheet was completely
ejected:

Ave of 9 & 11 point scan conversion times 20.476 seconds

int nversion from T= 15.888 seconds
scan conversin time before T=0 4.588 seconds

This is still a rough estimate for the following reasons:

- times to print the 9 and 11 point font pages did require the scan conversion
of all of the alphanumerics and common punctuation;

- also, these times include the POSTSCRIPT® interpretation and rendering
tasks.

The measured times decrease as the wait time increases. This is exactly the
expected results.

Note that between 10 and 12 seconds there was virtually no change in
printing time. A possible reason for this is that the remaining characters that
still needed scan conversion were scan converted after the 12 second mark.
In between 10 and 12 seconds the idle time scan converter worked on
characters not needed by the current job.

14 Point Times-Roman® Case

The experimental results indicate that no idle time scan conversion of the 14
point Times-Roman® font is done. It is possible that the information given
in the "Red Book" once applied for the Apple Laser Writer™ but not for the
Apple Laser Writer Plus™.

69
Section 3.1.3 : Analysis of Experimental Results

3.1.3.C. Proposed Improvements
Currently a font is scan converted during the RIP's idle time if:

1. it is one of the default fonts, specified by the printer manufacturer (Apple
in this case) or

2. it is explicitly specified via the setidlefonts operator by the user.

One possible addition to this scheme would be to automatically scan convert
the remainder of the character set of a font previously selected by the
POSTSCRIPT® findfont, scalefont, and setfont (and possibly a few

other) commands. If some significant number of characters have already
been used, then the remaining few characters of the same font could be idle
time scan converted. This assumes that more characters of the same font will
probably be used in subsequent printing jobs. If, however, only one or a
few characters were used, this mechanism should not be activated.

70

Section 3.1.3 : Analysis of Experimental Results

3.1.4 Effect of Scaling and Rotation
3.14.A. Experimental Results

The 96 printable ASCII characters were all printed exactly one time using the
following POSTSCRIPT® code (or variations of it):

/Times-Roman findfont 11 scalefont setfont

350 300 translate
70 rotate

0 75 moveto
("#$%8&'()*+,-./0123456789:;) show

0 50 moveto
(<=>7@ABCDEFGHIJKLMNOP) show
0 25 moveto
(QRSTUVWXYZ[*_"|~abcdefg) show
0 0 moveto

(hijklmnopqgrstuvwxyz{|}~) show

Two main variables are modified;

1. The number specifying the font point size is set to either:
11 (point), as shown above;
or 22 (point);

2. The number specifying the angle of rotation is set to either
0 (degrees), for which case the line of code is completely removed;
70 (degrees) as shown above;
or 90 (degrees).
The x and y coordinate variables that are input to the translate command
also need to be modified as the angle changes to assure that all of the text
maps inside the page boundaries (8.5 inches by 11 inches). These variables
are shown above as 350 and 300 (points).

Six different POSTSCRIPT® programs (two point sizes at three orientations)
were run two times (with and without pre-cached fonts). The choices are:

- font is Times-Roman®;

- two font sizes are 11 and 22 point;

- three orientations are 0°, 70°, and 90°.

71
Section 3.1.4: Analysis of Experimental Results

page 72

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

96 characters of 11 point Times-Roman® rotated 70 degrees

Figure 3.1.4.A.1

Two tables containing six entries each are shown in figures 3.1.4.A.2 and
3.1.4.A.3. Both tables show the measured time to print the first page of the
standard nine page sequence. Note that the page 2 through 9 times were not
relevant for this experiment since these pages automatically use pre-cached
fonts and also do not have the same startup overhead associated with them.
Figure 3.1.4.A.2 gives the measured times immediately after a power-down/
power-up sequence. This insures that nts being printed wer:
In the font cache and therefore all six of these times include the font outline
scan conversion times (i.e outline font rasterization). Figure 3.1.4.A.3 gives
the measured times for a second run, immediately following the previously
described run. This insures that all ing prin Ir

ident in the bit- n he.

Character <4——— Angle of Rotation —p
Size 0 Degrees 70 Degrees 90 Degrees
11 point 35.350 seconds 31.356 seconds 36.264 seconds
22 poir}t 40.730 seconds 37.098 seconds 41.442 seconds
First Time After Power-Up (ie. Without Pre-caching)

Figure 3.1.4.A.2
Size 0 Degrees 70 Degrees 90 Degrees
11 poiht" | 5.162 seconds 5.172 seconds 5.178 seconds
22 point 5.160 seconds 5.178 seconds 5.180 seconds

First Page Time After Previously Printed Job (ie. With Pre-caching)
Figure 3.1.4.A.3

A blank page was printed and timed. The measured time to print a single
blank page was 5.110 seconds. This blank page time is treated as an
overhead time that is inherently imbedded in the times of figures 3.1.4.A.2
and 3.1.4.A.3.

Since the measurements for the 11 point - 0 degree case were substantially
different than the measurements from a very similar page printed in section
3.1.1 an additional experiment was run. Both the translate and rotate
commands were removed. Four lines were still printed. The results are as
follows:

34.878 seconds
5.160 seconds

First time after power-up:
Pre-cached time:
73

Section 3.1.4: Analysis of Experimental Results

3.1.4.B.

Analysis

The purpose of this section is to compare the outline font rasterization
printing performance (i.e. without pre-cached fonts) to the bit-map font
printing performance (i.e. with pre-cached fonts) as the character size and
orientation changes. This expands on the experiments performed in section
3.1.1 in that two additional variables are introduced into the experiment,
namely font size and orientation.

The "Blank Page" time, of 5.110 seconds, is considered to be baseline
overhead that any POSTSCRIPT® job has in it. This is close to the "almost
blank" page time of section 3.1.1 (5.124 seconds) which printed one
pre-cached character. The overhead "Blank Page" time of 5.110 seconds is
subtracted from all of the measured times in figures 3.1.4.A.2 and 3, and
these results (differences) are recorded in figures 3.1.4.A.5 and 6,
respectively. What is left in figures 3.1.4.A.4 and 5 are the times that are
more attributable to the scan-conversion and accessing from font cache tasks.
This is not entirely true, since the POSTSCRIPT® interpreting also occurs,
but this is the lowest level that can be investigated from the outside of the
Apple Laser Writer Plus® printer.

- Character <4———— Angle of Rotation —————p

Size 0 Degrees |-~ 70 Degrees | 90 Degrees
I point | 30240scconds | 26.46seconds | 31.154 seconds
22 point | 35.62 seconds . 31.988 seconds 36.332 seconds

First Time After Power-Up (ie. Without Pre-caching)
Less Blank Page Overhead
Figure 3.1.4.A4

Character <4———— Angle of Rotation ——
Size 0 Degrees 770 Degrees 90 Degrees

11 point -~ | 0.052seconds | °0.062 seconds - 1 0.068 seconds

_ 22 point | 0050seconds | “0.068 Seconds ‘{ 0.070 seconds

First Page Time After Previously Printed Job (ie. With Pre-caching)
Less Blank Page Overhead

Figure 3.14.A.5

74
Section 3.1.4: Analysis of Experimental Results

- Scaling Outline Fonts
Figure 3.1.4.A.4 shows that it takes approximately 20 % longer to scan
convert the 22 point font when compared to the 11 point font:
- at 0°, 5.380 seconds more or 17.7 %
- at 70°, 5.742 seconds more or 21.9 %
- at 90°, 5.178 seconds more or 16.6 %

It also appears that the performance of scaling a rotated font not on a
quadrant boundary is slightly more affected by size variation than for one
that is on a quadrant boundary (i.e. about 4% for the 70° case over the other
two cases). This difference may be due to the font "intelligence" that is used
fgr the 0° and 90° cases (see Rotating Outline Fonts below). The
“intelligence" algorithm may be less size dependent and therefore did not
slow down as much as the 70° case, for which font intelligence is not used.

It was expected to take 1 to 4 times longer to scan convert the 22 point font
vs. the 11 point font. The experimental data shows it taking 1.2 times
longer. This implies that the task of applying the transform to the outline is
dominant over the rendering task.

Once the font is in the bit-map cache it seems that the time to pull the bit-map
characters out of cache and onto the page is not dependent on font size. The
numbers may be too small to see a definitive trend. See the following page
for a discussion on the accuracy of the numbers in figure 3.1.4.A.6

n lin n Conversion vs. Pre-Cached Bit-M nt
Figures 3.1.4.A.4 and 5 contain the measured times to scan convert and
print from cache, respectively, less the overhead of printing a blank page.
Figure 3.1.4.A.6 shows the ratios of the entries in figure 3.1.4.A.4 as
compared to figure 3.1.4.A.5. That is, figure 3.1.4.A.6 shows how much
faster printing from font cache is vs. printing from outlines that have yet to
be scan converted.

Character <4—— Angle of Rotation —
Size 0 Degrees 70 Degrees 90 Degrees
22 point 712 470 519

Ratio of Scan Converted Font Timing to Bit-mapped Font Timing
Figure 3.1.4.A.6

The ratios ran m 42 12, wi Ver. ing 527. Thisi ut
ne half of the ex 1 n ntially differen 1ts of
tion 3.1.1, which vielded a ratio of 877. The accuracy of these numbers
should not be taken as absolutes, but merely as a general approximation for
the following reasons:

75

Section 3.1.4: Analysis of Experimental Results

1. The times recorded in figure 3.1.4.A.5 are differences, and therefore are
subject to the potential cumulative error of two measured values, that of
the printing text from outline or cache, and that of printing the blank page.

2. The numbers shown in figure 3.1.4.A.5 are very small. Since these
numbers are are so small, small fluctuations (errors) in these values can
cause large deviations in the ratios found in figure 3.14.A.6. For
example, for the (22 point, 0° angle) case a 10 millisecond difference in
the 50 millisecond recorded value will make the 712 value range from 594
to 891.

3. As previously mentioned, these numbers are not purely attibutable to the
scan conversion or printing from font cache processes. The
POSTSCRIPT® interpretation was included in printing both types of jobs.
The larger this number is, the smaller the ratios in figure 3.1.4.A.6 tend to
be.

Comparison to Results in Section 3.1.1

The experiment that was run in section 3.1.1 is very similar to the 11 point,
0 degree case of this section. Both print 96 characters of an 11 point
Times-Roman® font in the portrait orientation (i.e. 0 degrees). There are
two small differences:

1. the translate command was used in this section but not in section 3.1.1;

2. four lines were printed in this section instead of two lines in section 3.3.1
(i.e. two additional moveto commands).

In an attempt to isolate the variable that caused the difference of BitBLT to
scan conversion ratios (877 vs. 582) the POSTSCRIPT® translate command
was taken out of the program. The four discrete moveto coordinate pairs
were changed to position the text in the middle of the page. Also, there was
no rotate command. Figure 3.1.4.A.7, below shows the results.

First page time Pre-cached fonts
with "translate"
command 35.350 seconds 5.162 seconds
:]! "t l t "
g&m;ﬁs ate 34.878 seconds 5.160 seconds
section 3.1.1 results 34.860 seconds 5.154 seconds

{w/o "translate")

Page Printing Times with and without POSTSCRIPT® "translate” command

for the 11 point, 0 degree case
Figure 3.14.A.7

76
Section 3.1.4: Analysis of Experimental Results

3.14.C.

It seems that only the first page time is effected by the presence of the
translate command. When the translate command is eliminated from the
expeniment run in this section the results are very close to the results of
section 3.1.1: 34.878 seconds vs. 34.860 seconds, respectively. The

additional 0.018 second difference may be due to the additional two moveto
commands.

One possible explanation for the larger 0.490 second discrepency

(i.e. 35.250 seconds vs. 34.860 seconds) is that the scan conversion
software may be sensitive to any modification of the current transformation
matrix (CTM). The CTM is changed by the scale, rotate, and translate
commands. Once the font is in bitmap form in the font cache, however, the
effect seems to disappear.

An even more significant factor that influenced the 877 vs. 582 discrepency
in BitBLT vs. scan conversion time ratios is the times that were used for the
"base"” page. There was a 0.014 second difference in these numbers which

becomes a 28% difference to the 0.050 second value. These values should

only be used as general guidelines for RIP performance. Any small change
in measured values reflect large ratio differences.

Rotating QOutline Fonts
The 70° rotated case yielded the best results:

*13.2 % faster than 11 point at 0° orientation;
15.7 % faster than 11 point at 90° orientation;
10.2 % faster than 22 point at 0° orientation;
12.0 % faster than 22 point at 90° orientation.

This indicates that the font "intelligence" overhead is more dominant than the
overhead incurred when rotating a font outline. The 0 and 90 degree cases
are both slower due to the font intelligence algorithm used. As expected, the
0° case is slightly faster than the 90° case, although by only about 3 %. The
font outline scan conversion algorithm evidently takes advantage of
knowledge of the 90° rotation for the performance to take such a small hit.

Proposed Improvements

A faster processor and/or math accelerator hardware could help in generating
the font bitmaps from the master font outlines. Once the font is in bitmap
form in the font cache the time to move these bitmaps onto the page is limited
by memory speeds. Using faster memory could help. Also, for larger fonts
data compression / decompression could help the potential memory speed
bottleneck.

77

Section 3.1.4: Analysis of Experimental Results

3.1

]

Variations of Font Style

3.15.A.

3.1.5.B.

Experimental Results

The experiment of 3.1.1 used the Times-Roman® font. The same
experiment was run in this section using two other fonts: Helvetica® and
Zapf Chancery ® Medium Italic. The Times-Roman printed pages are
shown in figures 3.1.1.A.1 and 3.1.1.A.2, along with the detailed measured
and calculated times in figure 3.1.1.A.3. One of the two pages of
ZapfChancery® text is shown in figure 3.1.5.A.1. The Helvetica® pages
are not shown.

All three fonts are resident in the Apple Laser Writer Plus®. Scan convert
times and BitBLT times were measured and calculated in the same manner
described in section 3.1.1. The results are shown below:

Characters per second Ratio
BitBLT from
Scan Convert cache BitBlt / Scan

Helvetica® 3.976 2,797 703

Times-Roman ® 3.228 2,832 877
Zapf Chancery®

Medivm Ttalic 2.875 2,868 998

Analysis

"Complex fonts ... will take longer to print because of the intricate curves
and shapes". (reference 25) It can be seen from the data shown above that
as the font gets "more complex" the character per second scan conversion
rate decreases. The simple Helvetica® style is 38% faster to scan convert
than the more complex Zapf Chancery® font. However, once the font has
been cached there is only a minimal effect on speed of moving the cached
bitmaps to page memory for printing. Consequently, the significant effect
that font complexity has on the cache vs. scan converting the font outlines.

Once the font has been placed in the bitmap font cache all three fonts are
yielded performance that were vey close to each other. There was a slight
difference in speed that seems to corrolate with the apparent size of the fonts:

- the font that appears to be the smallest (i.e. Zapf Chancery®) was the
fastest, printing 2,868 characters per second;

- the font that appears to be the second smallest (i.e. Times Roman®) was
“in between", printing 2,832 characters per second;

- the font that appears to be the largest (i.e. Helvetica®) was the slowest,
printing 2,797 characters per second;

78

Section 3.1.5: Analysis of Experimental Results

I'#3%0 ()*+,-./0123456789:;<=>P@ABCDEF GHIIKLMNOP
QRSTUVWXY Z|\] *_*| ~abedefghijkfmnopgrs tuvunyz(|)~

a Im_ LOOP. The mﬂximﬂk{w Iﬁfyf. LOOP is a continuous
loop of film that is capable of being electrically charged, and is sensitive to direct
light. The IMAGE LOOP is driven around the IMAGE LOOP CORE ina
continuous motion for as long as copy expasures are being made (see Figure 1),

B. PRIMARY CHARGER, The function of the PRIMARY CHARGER is to
place a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP
Jfor expasure and development. The IMAGE LOOP starts moving on command
from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the
PRIMARY CHARGER,

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE arec. where it is exposed to a reflected light copy image that is
focused on the IMAGE LOOP at precisely the right time, as determined by
LOGIC AND CONTROL. The original document is illuminated by high
intensity flash lamps for a short duration, which prevents blurring of the image as
it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the

areas that are not exposed. ‘The exposure is said to discretely alter the charge
characteristics of the IMAGE LOOP so that the focused copy image is recorded
on the IMAGE LOOP. This IMAGE LOOP image is Known as an electrostatic
image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure
area is an improperly charged segment. These segments are produced when the
PRIMARY O-&R_G‘Eﬂjs tumned on at the time of initial IMAGE LOOP
movement and turned off during final IMAGE LOOP novement. As the
unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the
moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to
prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed
IMAGE LOOP area now enters the DEVELOPER STATION ASSEMBLY
where positively charged KODAK EXTAPRINT K Toner particles are attracted
to the IMAGE LOOP. Development occurs as the result of attraction of the toner
particles to the electrostatic image on the IMAGE LOOP. The toner particles are
carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER, Any developer carrier granules (iron) left on the
IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER and
returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrastatic stress on
the IMAGE LOOP and thereby increases its life, the POST DEVELOPMENT
ERASE LAMP is used to lower the high level charge that was required for

proper image development. This POST-DEVELOPMENT ERASE process also
helps to prevent residual image retention.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Page of 11 point Zapf Chancery Medium Italic™ text; all 96 printable ASCII characters are
printed at least once; 43 lines of text; 2,339 non-space characters; 427 inter-word spaces.

Figure 3.1.5.A.1

page 79

3.1.5.C. Proposed Improvements

Same as section 3.1.1.C.

80

Section 3.1.5: Analysis of Experimental Results

3.2 Resident vs. Downloaded Fonts

In section 2.2 the measurement techniques are explained using several experiments to
demonstrate the validity of the techinques used. All experiments that were run in section 2.2, as
well as in almost all other sections in chaper 3, use the RS-232 communications interface (see
section 2.2.1 for more details). Sections 3.2.1 through 3.2.3 are the exception to this rule. In
these next three sections Appletalk is used exclusively, instead. The reason Appletalk is used
instead of RS-232 is because two (of the three) downloadable fonts were purchased and come
in a form that is set up for use with Appletalk. The "Font Downloader" software, provided

by Adobe, uses Appletalk. Once these fonts have been downloaded into the Apple Laser Writer
Plus printer via Appletalk it is impossible to change the communications mode of the printer
without powering it down. Since the downloaded fonts are stored in volatile memory (RAM),
all downloaded fonts are effectively erased when the printer is powered down. Therefore all

experiments that use a font that has been downloaded with Appletalk must also be run with
Appletalk.

In addition to downloading fonts the "Font Downloader" tool also allows a POSTSCRIPT® file
to be downloaded via Appletalk. All of the techniques described in section 2.2 are still valid
when using Appletalk, including the measurement of download times of POSTSCRIPT® fonts
and programs. The one drawback to using Appletalk is that experiments involving
measurement of download times cannot easily be translated back to the equivalent times with
RS-232. This is because of the uncertailty of the Appletalk protocol overhead and the "shared"
nature of the Appletalk network. To address the latter point to some extent the printer is
connected point-to-point with the Mac-1I providing the POSTSCRIPT® file with no other
computers or printers physically connected.

For more information on the "Font Downloader" tool and how it is used to download
POSTSCRIPT® fonts as well as POSTSCRIPT® programs refer to section 2.3.4.

3.2.1 Downloaded Bitmaps vs Printer Resident (Permanently-Cached) Bitmaps
3.2.1.A. Experimental Procedure and Results

A very simple page of text is printed and timed. The page consists of a
single string of ten characters each of which were printed exactly one time.
The string is postioned once. The POSTSCRIPT® commands that were used
are:

200 400 moveto
(abcdefghim) show

Two bitmap fonts are used:

A. A hand-coded downloadable POSTSCRIPT® bit-map font. The
program shown in section 2.3.3 is a downloadable POSTSCRIPT® font
that was largely taken from a section in the POSTSCRIPT® Language
Tutorial and Cookbook (see reference 16). Ten characters of a simple
six point font are defined in that program. Unfortunately no six point
font was available in permanent bit-map form on the Apple Laser
Writer Plus® for this comparison, but a 12 point font was available - a
factor of two larger than the six point downloadable bit-map font. For
this experiment the bit-map definitions of the ten characters were
doubled in size in both the x and the y directions. This was done by
hand editing the file. Simple pixel replication was used.

81
Section 3.2.1: Analysis of Experimental Results

In addition to modifying the bit-maps four other entries needed to be
modified:

1. the imagemaskmatrix was changed from
[2500 -25 0 0]
to
[5000-5000];
2. the width of each character, in pixels, was doubled;
3. the height of each character, in pixels, was doubled;
4. the y translation component was doubled (+0.5) .

Once the new 12 point font, named Bitfont is defined, it is callable
by the command:

/Bitfont findfont 12 scalefont setfont

The printer resident Helvetica® 12 point font. The 12 point

Helvetica® font is pre-scanned and permanently resident in ROM, in
bitmap form (reference 13). Section 3.1.2 of this thesis also discusses
the topic of printer resident bit-map fonts. To select the 12 point
bit-map font the following simple sequence of POSTSCRIT® code is
used:

/Helvetica findfont 12 scalefont setfont

The bit-map version of this font is automatically referenced. This
command precedes the pair of commads shown earlier which positions
and specifies the string to be printed (i.e. the moveto and show
commands).

The size of the bitmap font is:

2,712 bytes: character bitmaps and metric information

959 bytes: additional overhead
3,671 bytes total

The measured time to download the bitmap font was 1.044 seconds.

Nine pages were output with varied delays between page printing. The
following times were measured:

Bitfont_downlogded Helvetica resident
1st page 5.580 seconds 5.110 seconds
Min. Time 3.498 seconds 3.510 seconds

82

Section 3.2.1: Analysis of Experimental Results

abcdefghim

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

10 characters of the 12 point downloaded bitmap font

Figure 3.2.1.A.1 page 83

abcdefghim

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

10 characters of the 12 point printer resident bitmap font (Helvetica®)

page 84 Figure 3.2.1.A.2

3.2.1.B.

3.2.1.C.

Analysis

The actual size of the bitmap font was slightly smaller than anticipated: 3,671
bytes actual vs. 3,940 bytes expected. The combination of the character
bitmaps and the character metrics information was larger 2,712 bytes actual
vs. 2,940 bytes expected (2,540 bytes of bitmaps + 400 bytes of metrics).

Given the difficulty of predicting exact sizes of ten specific characters, these
results look very good.

The measured download time of 1.044 seconds, on Appletalk, is about four
times faster than the 4.10 second time predicted for slower RS-232
communications interface. This indicates that, for this particular case (file
size, Appletalk loading, etc.) the Appletalk network provided a throughput of
approximately 40 KBits / sec. This is about 20 % of its maximum speed.

Two times are recorded above:

First Time: The time taken to print the first page. It took 0.470 seconds
more to print the first page using the downloaded bitmap font vs.
printing the printer resident Helvetica® bitmap font. This does not
include font download time, but instead is a measure of the time to
move the bitmap font (i.e. a POSTSCRIPT® program defining a font) to
the font cache.

Minimum Time: Of the nine pages that were printed, this time shows
how fast the page can be printed under as close to ideal conditions as
possible. All other pages are effected by external influences (see
sections 2.1.6 and 3.6). The measured time to print the page with the
ten bitmap characters, 3.498 seconds, was only 0.34 % less than the
measured time to print the page with the ten printer-resident bitmap
characters, 3.510 seconds. This is exactly what was expected. Once a
font is in cache memory, whether it originated in the printer or was
downloaded, the time to access this font is the same.

Proposed Improvements
Use a faster communication interface;
Use a communications interface that handles binary information;

Use data compression.

85
Section 3.2.1: Analysis of Experimental Results

3.2.2 Adobe Downloaded Outlines vs. Printer Resident (Internal) Outlines

3.22.A.

3.2.2.B.

Experimental Results

The two POSTSCRIPT® test pages that were printed in section 3.1.1 are
identical to one set of test pages printed in this section. This set consists of
two programs. The first program prints 96 characters of the 11 point Times
Roman® font in two lines as described in section 3.1.1. The page this first
program prints is shown in figure 3.1.1.A.1. The second program, which
prints the page shown in figure 3.1.1.A.2, prints the same two lines as
above, but also prints an additional 41 lines that contain a tgtal of .2,243
characters. The only difference in running the experiment in section 3.1.1
and this section is the communications interface used: in section 3.1.1, the
serial RS-232 interface is used; in this section, the Appletalk local area
network is used.

In addition to the pages described above that use the Times-Roman® font,
two more pages were printed for comparison that were exactly the same
except for the font used. The two new pages use the Adobe downloaded
Stone Serif font. They are shown on the following two pages in figures
3.22.A.1and 3.2.2.A.2.

The data in figure 3.2.2.A.3 shows the experimental results when the four
pages were printed. Following the convention set forth in section 3.1.1 all
of the measured times are printed in a bold face and all of the the calculated
values are printed in a normal weight face. Furthermore, the values that
correspond to the pages that use the Stone Serif font are printed on top in the
Roman style (Roman and Roman Bold); the values that correspond to the
pages that use the Times-Roman® font are printed on the bottom in the Italic
style (Izalic and Italic Bold).

Since Appletalk and the font / program downloader programs were provided,
very little control was available to accurately time the font download time. A
stop watch was used to measure the time from the program selection (i.e.
begin execution) to the return from the program.

It took 4 seconds for the Font Downloader program, provided with the
Adobe Stone Serif font, to establish a connection with the Apple LaserWriter
Plus with an additional 26 seconds needed to download the font. The size of
the outline font was measured to be 34,260 bytes with the Get Info utility
program on the Macintosh Finder. The space this font occupies in the Apple
Laser Writer Plus is 28 KBytes, as measured by the Printer Font Directory
function of the Font Downloader program.

Analysis
The same analysis procedure that was used in section 3.1.1 is used here.

For a detailed explanation of this procedure, refer back to section 3.1.1. It
will not be repeated here.

As expected the printing perfomance of the resident and the downloaded
fonts were very close:

- scan conversion rate
3.23 characters per second for Stone Serif
3.19 characters per second for Times-Roman®

86

Section 3.2.2: Analysis of Experimental Results

3.22.C.

pnnﬁ'ﬁg'bitmaps from cache
2,776 (2,375 to 2,776) characters per second for Stone Serif
2,825 (2,371 to 2,969) characters per second for Times-Roman®

The download time of 26 seconds includes all of the Appletalk overhead
combined with the Font Downloader application program overhead.
Assuming the entire 34,260 byte Stone Serif font is actually downloaded in
this time, the overall throughput is only 10.5 KBits/sec. As predicted, font
download time is quite significant. The time to download the font via this

means is almost as long as the time taken to scan convert a full 96 character
set of the font itself.

Proposed Improvements

Optimize the program path that downloads the font. Appletalk has a burst
rate of 230.4 KBits/sec. The effective data rate of only 10.5 KBits/sec can
probably be improved by optimization.

Use a faster communications interface.

Spool downloadable fonts on a disc to reduce future needs for download.

87

Section 3.2.2: Analysis of Experimental Results

1"#$%&’ ()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOP
QRSTUVWXYZ[\]*_‘I~ bedefghijklmnopgrstuvwxyz{l}~

page 88

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

96 characters of 11 point Stone Serif

Figure 3.2.2.A.1

I"#$%&'(0*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOP
QRSTU VWXYZ[\]"_’I~abcdefghijklmnopqrstuv{~xyz{l}~

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous

loop of film that is capable of being electrically charged, and is sensitive to direct
light. The IMAGE LOOP is driven around the IMAGE LOOP CORE in a
continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to

Flace a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP

f;)r exfgs»ct;llré Zri?ndf:‘ée%\?%’fféeftigéﬁ (I:MAGE LOOP starts moving on command
om . AND CONTR

PRIMARY CHARGER. OL then turns on the

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE area, where it is exposed to a reflected light copy image that is
focused on the IMAGE LOOP at precisely the right time, as determined by
LOGIC AND CONTROL. The original document is illuminated by high
intensity flash lamps for a short duration, which prevents blurring of the image as
it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the
areas that are not exposed. The exposure is said to discretely alter the charge
characteristics of the IMAGE LOOP so that the focused copy image is recorded
on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic
image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure
area is an im roper}{ charged segment. These segments are produced when the
PRIMARY CHARGER is turned on at the time of initial IMAGJ])E LOOP
movement and turned off during final IMAGE LOOP movement. As the
unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the

moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to
prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The groperl_?' charged and exposed
IMAGE LOOP area now enters the DEVELOPER STATION ASSEMBLY

where positively charged KODAK EKTAPRINT K Toner particles are attracted

to the IMAGE LOOP. Development occurs as the result of attraction of the toner
particles to the electrostatic image on the IMAGE LOOP. The toner particles are
carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the
IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER and
returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on

the IMAGE LOOP and thereby increases its life, the POST DEVELOPMENT

ERASE LAMP is used to lower the high level charge that was required for

groper image development. This POST-DEVELOPMENT ERASE process also
elps to prevent residual image retention.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Page of 11 point Stone-Serif text; all 96 printable ASCII characters are printed
at least once; 43 lines of text; 2,339 non-space characters; 427 inter-word spaces.

Figure 3.2.2.A.2 page 89

96 char.

2,339
(96 + 2,243)
characters

BitBLT
2,243 char.
from cache

calculated

char/ sec

calculated

st page

after
pOWer up

36.33
35.26

37.188
36.206

0.858
0.946

2,614
2,371

1st page

pre-
cached

5.966

0.808
0.794

2,776

simple
1 char
pre-cached

BiBLT
2,338 char.
from cache

BitBLT
95 char.
from cache

Scan Convert
96 characters

31.212
30.130

3.23
3.19

Stone Serif times are printed in;

Roman print for calculated values;

Bold print for measured values.

Times-Roman® tim

Tint

in;

Italic print for calculated values;

Bold Italic for measured values.

Adobe Stone Serif (Downloaded Outlines)

Adobe Times-Roman® (Printer Resident)

VS.

All times are given in seconds.

Appletalk was used.

Figure 3.2.2.A.3

90

Section 3.2.2: Analysis of Experimental Results

3.2.3 Adobe Downloaded Outlines vs. 3rd party

3.23.A.

Experimental Results

As in sections 3.1.1 and 3.2.2 two sets of two pages each were printed.
Two of the four POSTSCRIPT® test pages that were printed in section 3.2.2
are used in this section with no changes. They are the two pages that use the
Adobe downloaded Stone Serif font. The first program prints 96 characters
of the 11 point Stone Serif font in two lines as described in section 3.1.1
(see figure 3.1.1.A.1). The second program prints the same two lines as
above, but also prints an additional 41 lines that contain a total of 2,243
characters. The two pages that correspond to the programs described above
are shown in figures 3.2.2.A.1 and 3.2.2.A.2.

In addition to the pages described above that use the Stone Serif font, two
more pages were printed for comparison that were exactly the same except
for the font used. The two new pages use the CasadyWare downloaded
Galileo Roman™ font. They are shown on the following two pages in
figures 3.2.3.A.1 and 3.2.3.A.2.

The data in figure 3.2.3.A.3 shows the experimental results when the four
pages described above were printed. Following the convention set forth in
section 3.1.1 all of the measured times are printed in a bold face and all of
the the calculated values are printed in a normal weight face. Furthermore,
the values that correspond to the pages that use the Stone Serif font are
printed on top in the Roman style (Roman and Roman Bold); the values
that correspond to the pages that use the Galileo Roman™ font are printed on
the bottom in the Italic style (/zalic and Italic Bold).

Since Appletalk and the font / program downloader programs were provided,
very little control was available to accurately time the font download time. A
stop watch was used to measure the time from the program selection (i.e.
begin execution) to the return from the program.

It took 4 seconds for the Font Downloader program, provided with the
Adobe Stone Serif font, to establish a connection with the Apple LaserWriter
Plus® with an additional 26 seconds needed to download the font. The size
of the Stone Serif outline font was measured to be 34,260 bytes with the Ger
Info utility program on the Macintosh Finder. The space this font occupies
in the Apple Laser Writer Plus is 28 KBytes, as measured by the Printer
Font Directory function of the Font Downloader program.

The Adobe Font Downloader program was not able to download the
CasadyWare Galileo Roman™ font. The reverse procedure also did not
work. That is, the Altsys Laser Writer Downloader program (version 1.3),
provided with the CasadyWare Galileo Roman™ font, was not able to
download the Adobe Stone Serif font. When using the Altsys program to
download the Galileo Roman™ font it took a total of about 10 seconds to
connect with the printer and download the font. This is three times faster
than downloading the Stone Serif font with the Adobe Font Downloader
program, above. The size of the Galileo Roman™ outline font was
measured to be 44,341 bytes with the Get Info utility program on the
Macintosh Finder. The space this font occupies in the Apple Laser Writer
Plus is 28 KBytes, as measured by the Printer Font Directory function of

the Adobe Font Downloader program.

91
Section 3.2.3: Analysis of Experimental Results

I"£$%& ()*+,-./0123456789:;<=>1@ABCDEFGHUKLMNOP
QRSTUVWXYZI\]".‘l'abcdefghijklmnopqrstuvwxyz{]}'

page 92

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

96 characters of 11 point Galileo Roman™

Figure 3.2.3.A.1

I"#8%&'()*+,-/01 23456789:;<=>1@ ABCDEFGHIKLMNOP
QRSTUVWXYZ[\]"_‘I-abcdefghijklmnopqrstuvwxyz{]}'

i&. lMAfoI;Il Lot(!)ll;t The thﬁAKng(eTAPR{NT IMAGE LOOP is a continuous

oop o} llim that 1s capable of being electrically charged, and is sensjti i
light. The IMAGE LOgP is driven around the I)P;IAGaEgLOO;llCOlﬁEseigs ; e fo dirct
continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY (}HARGER. The function of the PRIMARY CHARGER is to

lace a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP
or sure and development. The IMAGE LOOP starts moving on command
from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the
PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE area, where it is exposed to a reflected light copy image that is
focused on the IMAGE LOOP at precisely the right time, as J;bermined by

LOGIC AND CONTROL. The original document is illuminated by high

intensity flash lamps for a short duration, which prevents hlurring of the image as
it is exposed on the moving IMAGE LOOP. The charge on the IMAGE LOOP is
removed from the areas that are exposed to light. The charge remains in the
areas that are not exposed. The exposure is said to discrete y alter the charge
characteristics of the IMAGE LOOP so that the focused copy image is recorde

on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic

image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure
area is an im rcgwerly charged segment. These segments are produced when the
PRIMARY CHKR ER is turned on at the time of initia] IMAGE LOOP

movement and turned off during final IMAGE LOOP movement. As the
unwanted areas pass under the AUXILIARY FRASE LAMP, it floods the

moving IMAGE LOOP base with light that desensitizes the IMAGE LOOP to
prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed
IMAGE LOOP area now enters the DEVEL(;)P STATION ASSEMBL

where positively charged KODAK EKTAPRINT K Toner particles are attracted

to the IMAGE LOOP. Development occurs as the result of attraction of the toner
particles to the electrostatic image on the IMAGE LOOP. The toner particles are
carried away on the IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the
IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER and
returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on

the IMAGE LOOP and thereby increases its life, the POST DEVELOPMENT

ERASE LAMP is used to lower the high level charge that was required for

Eroper image development. This POST-DEVELOPMENT ERASE process also
elps to prevent residual image retention.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Page of 11 point Galileo Roman™ text; all 96 printable ASCII characters are printed
at least once; 43 lines of text; 2,339 non-space characters; 427 inter-word spaces.

Figure 3.2.3.A.2 page 93

BitBLT
2,243 char.
2.339 from cache

(96 + 2,243) calculated calculated
characters

char/ sec

st page

after
power up

37.188 0.858 2,614
41.346 0.818 2,742

Ist page 5.966 0.808 2,776

pre- 5.972 0.804 2,790

cached

simple
1 char
pre-cached

BitBLT
2,338 char.
from cache

BitBLT
95 char.
from cache

i v 3.23
Scan Convert ; i S
96 characters | 35.398 | 271

tone Serif tim rinted in: All tim)) ds
Roman print for calculated values; o5 are given in seconds.
Bold print for measured values. Appletalk was used.
alileo Roman™ ti rinted in;
Italic print for calculated values;
Bold Italic for measured values.
Adobe Stone Serif (Adobe Downloaded Outlines)
VS.
CasadyWare Galileo Roman (3rd Party Downloaded Outlines)

Figure 3.2.3.A.3

94
Section 3.2.3: Analysis of Experimental Results

3.2.3.B.

Analysis

The same analysis procedure that was used in section 3.1.1 is used here.

For a detailed explanation of this procedure, refer back to section 3.1.1. It
will not be repeated here.

It was expected that scan converting the Adobe Stone Serif font would be
slower than scan converting the CasadyWare Galileo Roman™ font because
the Adobe algorithm incorporates "intelligence" whereas the CasadyWare
algorithm does not. The results were exactly the opposite. Scan conversion
times are:

3.23 characters per second for Stone Serif:

2.71 characters per second for Galileo Roman™.

The two possible reasons why this discrepency exists are font style
complexity and font vendor encoding differences. Although every attempt
was made to select a font with a similar complexity to the Stone Serif font,
this judgement is very subjective. Some the performance difference may be
due to this. Secondly, the font vendor encoding difference, which is the
largest unknown in this case, is probably the biggest cause of the
performance difference. Whether Adobe downloadable fonts will
consistently outperform third party fonts cannot be predicted from this single
experiment.

Once the fonts have been downloaded and scan converted (i.e. put into the
font cache) the printing bitmaps from cache performance of the two are very
close, as expected:

2,776 (2,375 to 2,776) characters per second for Stone Serif;

2,790 (2,500 to 2,790) characters per second for Galileo Roman™.

The file size of the two downloadable fonts were expected to be close. They
were not:
34,260 bytes for the Stone Serif font;
44,341 bytes for the Galileo Roman™ font.
(This may indicate higher complexity which supports the earlier
"possible reason” for the scan conversion performance discrepancy.)

Yet the space these fonts occupy in the Apple Laser Writer font memory is
the same: 28 KBytes. Compaction may occur at the printer. Or it is
possible that not all of the Galileo Roman™ printer font is downloaded.

It was expected that the download times of the two downloadable fonts
would be very close to the same. This was the biggest surprise. Even
though the Adobe font was smaller by more than 10,000 bytes (34,260 vs.
44,341 bytes) it took three times as long to connect with the printer and
download the font (30 vs. 10 seconds). Assuming the etire files were sent to
the printer, the overall system throughput was approximately 9,000 bits/sec
to download the Stone Serif font with the Adobe Font Downloader program
vs. approximately 35,000 bits/sec to download the Galileo Roman™ font
with the Altsys Laser Writer Downloader program. From this comparison it
seems that the Altsys font download program utlizes the Appletalk network
much more efficiently than Adobe's.

In either case, the font download time is quite significant.

95

Section 3.2.3: Analysis of Experimental Results

3.2.3.C. Proposed Improvements
It seems that using the Altsys program to download the POSTSCRIPT® font
is a substantial improvement over using Adobe's download program. Still 1o
be resolved is why it does not work with Adobe fonts.
Use a faster communications interface.

Spool downloadable fonts on a disc to reduce future needs for download.

96
Section 3.2.3: Analysis of Experimental Results

3.24 Appletalk vs. RS-232 Comparison

3.24.A.

3.24B.

Experimental Results

The two POSTSCRIPT® test pages that were printed in section 3.1.1 are
identical to one set of test pages printed in section 3.2.2. The first program
prints 96 characters of the 11 point Times Roman® font in two lines as
described in section 3.1.1. The page this first program prints is shown in
figure 3.1.1.A.1. The second program, which prints the page shown in
figure 3.1.1.A.2, prints the same two lines as above, but also prints an
additional 41 lines that contain a total of 2,243 characters. The only
difference in running the experiment in section 3.1.1 and 3.2.2 is the
communications interface used: in section 3.1.1, the serial RS-232 interface
running at 9600 baud is used; in section 3.2.2, the Appletalk local area
network running at a burst rate of 230.4 Kbits/second is used. The data in
figure 3.2.4.A.1, on the following page, is a reiteration of the experimental
results reported in figures 3.1.1.A.3 (for the RS-232 data) and 3.2.2.A.3
(for the Appletalk data). The printer resident Times Roman® font is used for
both cases. Following the convention set forth in section 3.1.1 all of the
measured times are printed in a bold face and all of the the calculated values
are printed in a normal weight face. Furthermore, the values that correspond
to the RS-232 case are printed on top in the Roman style (Roman and
Roman Bold); the values that correspond to the Appletalk case are printed
on the bottom in the Italic style (Izalic and Italic Bold).

Figure 3.2.4.A.2 shows the size of the "bodies" of the two downloaded
pages, along with the measured download times of each for both RS-232
and Appletalk communication interfaces. Again, the measured values are
reported in bold with the calculated values in normal weight.

The methods used to download these jobs are described below:
RS-232 On the Sun workstation shown in Appendix 1 the UNIX command

cat file_to_be_sent > /dev/ity07

was typed which sends the file file_to_be_sent to the printer via port 7
of the 16-port multiple terminal interface.

Appletalk On the Macintosh II personal computer shown in Appendix 1 the
program FontDownloader was selected (executed). The file to be
downloaded to the printer was then selected and downloaded. This
procedure is described in more detail in section 2.3.4.

Analysis

The measured times to print the first page after a power-down / power-up
sequence is the only noticeable difference in the printing time measurements
shown in figure 3.2.4.A.1. It takes 0.400 seconds more in the 96 character
case and 0.460 seconds more in the full page case for the page to print using
Appletalk than RS-232. It appears that the Apple Laser Writer Plus™
processor is using some of its time performing Appletalk functions during
the execution time of the POSTSCRIPT® page even though, the point at
which these measurements were made, the POSTSCRIPT® page had already

been fully downloaded.

The calculated character per second printing rates are very close for both the
printing from cache case and the scan conversion case.
97

Section 3.2.4: Analysis of Experimental Results

e BitBLT
Times-Roman 2,243 char, b/
2,339 from cache char / sec
96 char. (96 + 2,243) calculated calculated
characters
Istpage | 34.860 35.746 0.886 2,532
after 35.26 36.206 0.946 2,371
power up
1st page 5.946 0.792 2,832
pre- 0.794
cached
simple
1 char
pre-cached
ButBLT
2,338 char.
from cache
BitBLT
95 char.
from cache
29.736 s
Scan Convert -
96 characters | 30.130 3.19
RS-232 tim rinted in;

Roman print for calculated values;

Bold print for measured values.

Appletalk ti

rinted in:

Italic print for calculated values;
Bold Italic for measured values.

All times are given in seconds.

Appletalk vs. RS-232 Comparison

98

Figure 3.2.4.A.1

-

Section 3.2.4: Analysis of Experimental Results

As shown in figure 3.2.4.A.2 the maximum raw data rate of Appletalk, at
23(_).4 KBits / second, far exceeds that of RS-232, at 9600 Bit£ }) second.
Usu_lg these base numbers Appletalk has a raw communications speed that is
24 times faster than the raw data rate of the RS-232 communications
interface used. However, the point to point nature of the RS-232 interface
and the low protocol overhead (i.e. 2 bits per 8 bit character), make this
interface rather efficient (80%). On the other hand, Appletalk is set up to be
a local area network and has with it several inherent overheads:

1. several layers of protocol overhead including:
- the "to" address
- the "from" address;
- the type of frame (i.e. information, acknowledgement, etc.);
- flow control information;
- error detection via a CRC check.

2. retransmission if an error occurred;

3. contention with other computers and printers sharing the Appletalk
network;

4. tll;c requirement to break up large files into packets no larger than 512
ytes.

Due to these factors Appletalk tends to be less efficient. The calculated
efficiency values, based on the measured times to download two files of
different size, are 20% and 30% for the larger and smaller files respectively.
Instead of being 24 times faster than RS-232, Appletalk is only 9 times faster
for the 96 character case and 6 times faster for the larger full page of text
case. The reason Appletalk gets less efficient as the file size increases is
listed as factor #4 above. The 4,322 byte file needs to be "chopped up" into
9 smaller sub-file and sent to the printer through 9 separate packets. The
smaller 363 byte file can easily fit in one packet and is subsequently faster.
It is not known how badly the throughput of Appletalk degrades as files
sizes get much larger.

Size of the downloaded file is a very important factor especially when
considering downloadable fonts. Font sizes of the downloaded fonts used in
this section 3.2 are as follows:

Stone Serif 34,260 bytes
Galileo Roman™ 44,341 bytes

Also note that for this experiment no other computers were active on the
Appletalk network. So the factor listed in #3 above did not even come into

play.

Still it should be noted that, although Appletalk is "less efficient” than
RS-232, it still is shown delivering between 6 and 9 tirnes the throughput of
the RS-232 interface for the experiments run in this section.

99

Section 3.2.4: Analysis of Experimental Results

2,339

96 characters (96 + 2,243)
characters
RS-232 Appletalk RS-232 Appletalk
Download 363 Characters 4_;_9322 Characters
Page 2,904 Bits 34,567 Bits
Size .
gf@ifa% 378 msec 42 msec. - 4.502 sec. 765 msec.
Time
Maximum 9600 230,400 9600 230,400
Bit Rate Bits / Sec. Bits / Sec Bits / Sec Bits / Sec
(Bits/Sec) G EReG .
Calculated 5
Bit Rate 7,683 69,143 7,678 45,186
(Bits/Sec) Bits / Sec Bits / Sec Bits/Sec Bits / Sec
%Comm | 80% 30 % 80 % 20 %
Protocol - Efficiency Efficiency Efficiency Efficiency
Efficiency EREN
% Comm. 0% 70 % 20% 80 %
Protocol Overhead Overhead Overhead Overhead
Overhead

Measured values are printed in Bold print.

Calculated values are printed in Roman print.

Appletalk vs. RS-232 Download Times
Figure 3.2.4.A.2

100

Section 3.2.4: Analysis of Experimental Results

3.24.C.

Proposed Improvements

Faster local area networks, like Ethernet at 10 MBits/seconds cpuld improve
the communications bottleneck present with large files (fonts, images, etc.).
The cost of Ethernet may still be a drawback to this improvement.

Faster dedicated point-to-point communications interfaces, like a faster
RS-232 running at 19.2 K or higher, or a Centronics parallel interface
running at more than 100 KBits / second.

An architecture that supports spooling input files as fast as the

communcations interface allows with faster rates available from the internal
disc (i.e. SCSI interface).

101

Section 3.2.4: Analysis of Experimental Results

h inti rin
3.3.A. Experimental Results

Strings of characters can be placed on a given page in 2 number of ways. Each method
outlined in this section will be used to print the pages shown in figures 3.3.A.1 through
3.3.A3.

For the following examples please note that words in bold are POSTSCRIPT® tokens;
all other variables, numbers, and words are parameters that influence the effect of the
command. Note that all pages use a the Times-Roman font set at 10 point. All times
given assume the font has already been scan converted

A. Simple unjustified text (i.e. "ragged right")

72.00 710.00 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP s a)show
72.00 700.00 moveto

(electrically charged, and is sensitive to direct light. The IMAGE LOOP...)show

72.00 280.00 moveto
(effectively transfers the copy image to the paper.)show

Note: The printed page produced with this method is shown in figure 3.3 A.1.

B. Justified text with the front end application providing the extra incremental spacing
to be applied between adjacent characters.

72.00 710.00 moveto
0.054 0(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP...) ashow

for the above line, the characters are
spaced proportionally with 0.054
points added to relative x increment
to every character; note that "0" is
the y increment.

72.00 700.00 moveto

0.044 O(electrically charged, and is sensitive to direct light. The IMAGE...)ashow

72.00 290.00 moveto

0.356 O(which produces a negative charge on the paper surface to attract...)ashow
72.00 280.00 moveto

(effectively transfers the copy image to the paper.)show

Note: The printed page produced with this method is shown in figure 3.3 A2.

102

Section 3.3 : Analysis of Experimental Results

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable of being
g:lectncal_ly charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE
in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE
LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE LOOP starts moving on
command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is
exposed to a reflected light copg image that is focused on the IMAGE LOOP at precisely the right time, as
determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on
the IMAGE LOOP is removed from the areas that are exposed to light. The charge remains in the areas that are not
exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused
copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an improperly charged
segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE
LOOP movement and turned off during final IMAGE LOOP movement. As the unwanted areas pass under the
AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE
LOORP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the
DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner particles are
attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the
electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for
later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this
point by the SCAVENGER ROLLER and retuned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and thereby
increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge that was
required for proper image development. This POST-DEVELOPMENT ERASE process also helps to prevent
residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet of copy paper is
advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper
is directed into contact with the IMAGE LOOP and its developed image. This aligns the copy paper and the image
on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This
effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Simple Unjustified Text (i.e. "ragged right")

Figure 3.3.A.1 page 103

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable of being
electrically charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE

in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE
LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE LOORP starts moving on
command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is
exposed to a reflected light copy image that is focused on the _IMAGI_:'. LOOP at precisely the right time, as
determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on
the IMAGE LOOP is removed from the areas that are exposed to light. The charge remains in the areas that are not
exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused
copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an improperly charged
segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE
LOOP movement and turned off during final IMAGE LOOP movement. As the unwanted areas pass under the
AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE
LOOP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the
DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner particles are
atiracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the
electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for
later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this
point by the SCAVENGER ROLLER and returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and thereby
increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge that was
required for proper image development. This POST-DEVELOPMENT ERASE process also helps to prevent
residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet of copy paper is
advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper
is d&rected Lgté) cchgtct with the IMAGE LOOP and its developed image. This aligns the copy paper and the image
on the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This
effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Justified text with the front end application providing the extra
incremental spacing to be applied between adjacent characters.

page 104 Figure 3.3.A.2

C. Justfied text with the front end application providing the extra incremental spacing
to be applied between adjacent words.

72.00 710.00 moveto
0.293 0 32 (A. IMAGE LOOP. The KODAK EKTAPRINT IMA...)widthshow

for the line above, the characters are
spaced proportionally with 0.293
points added to relative x increment
to every character with an ASCII
value of"'32" (i.e. a space); note that
"0" is the y increment.

72.00 700.00 moveto

0.263 0 32 (electrically charged, and is sensitive to direct light. Th...)widthshow

72.00 290.00 moveto

2.242 0 32 (which produces a negative charge on the paper surface...)widthshow
72.00 280.00 moveto

(effectively transfers the copy image to the paper.)show

Note: The printed page produced with this method is shown in figure 3.3.A.3.

105

Section 3.3 : Analysis of Experimental Results

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable of being
electrically charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE

in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE
LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE LOOP starts moving on
command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is
exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as
determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on
the IMAGE LOOP is removed from the areas that are exposed to light. The charge remains in the areas that are not
exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused
copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an improperly charged
segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE
LOOP movement and turned off during final IMAGE LOOP movement. As the unwanted areas pass under the
AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE
LOORP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the
DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner particles are
attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the
electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for
later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this
point by the SCAVENGER ROLLER and returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and thereby
increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge that was
required for proper image development. This POST-DEVELOPMENT ERASE process also helps to prevent
residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet of copy paper is
advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper
is dt}]r:c&dA ncl;tg Eo(;n(t)a}c):t with the IMAGE LOOP and its developed image. This aligns the copy paper and the image
on .

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This
effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Justified text with the front end application providing the extra
incremental spacing to be applied between adjacent words.

page 106 Figure 3.3.A.3

D. Justified text with the downloaded POSTSCRIPT® program calculating excess space

and distributing it between all adjacent characters. The number of characters in each
line is passed to the "js" routine.

/xlen 468 def width of line set at 468 points
or 6.5 inches

fis { "js" - justify string procedure name:
assumes a string to be printed is on
top of the stack

/sl exch def "s1" is a variable that is assigned the
length of the string on the stack in an
integer number of characters,
including spaces

dup stringwidth pop /sw exch def "sw" is a variable that is assigned the
width of the string on the stack in
current units; if no scale command
was issued, then the current unit is

the "point"

/s exch def “s" is the name of the string on top
of the stack

xlen sw sub the excess space is calculated

sl 1 sub div and distributed between adjacent
characters

0 s ashow "0" indicates that the incremental

character positioning is only in the x
direction; the string "s" is printed
} def

72.00 710.00 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a contin...) 99 js
characters are automatically spaced
proportionally with the extra space
evenly distributed between adjacent
characters

72.00 700.00 moveto

(electrically charged, and is sensitive to direct light. The IMAGE...)108 js

72.00 290.00 moveto _
(which produces a negative charge on the paper surface to attract...)108 js

72.00 280.00 moveto _
(effectively transfers the copy image to the paper.)show

Note: The page produced is the same as the one shown in figure 3.3.A2.

107
Section 3.3 : Analysis of Experimental Results

E. Justified text with the downloaded POSTSCRIPT® program ca}culating the excess
space and the number of characters in the string, and distributing the space between
all adjacent characters. The number of characters in each line is not passed to the
"is" routine, as in (D), but instead is calculated within "js" itself.

/xlen 468 def width of line set at 468 points
or 6.5 inches

lis { "js" - justify string procedure name:
assumes a string to be printed is on
top of the stack

dup stringwidth pop /sw exch def "sw" is a variable that is assigned the
width of the string on the stack in
current units; if no scale command
was issued, then the current unit is

the "point”

dup length /sl exch def "sl" is a variable that is assigned the
length of the string on the stack in an
integer number of characters,

including spaces

/s exch def "s" is the name of the string on top
of the stack

xlen sw sub the excess space is calculated

sl 1 sub div and distributed between adjacent
characters

0 s ashow "0" indicates that the incremental

character positioning is only in the x
} def direction; the string "s" is printed
e

72.00 710.00 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuo.....)js
72.00 700.00 moveto

(electrically charged, and is sensitive to direct light. The IMAGE)js

72.00 290.00 moveto

(which produces a negative charge on the paper surface to attract.....)js
72.00 280.00 moveto

(effectively transfers the copy image to the paper.)show

Note: The page produced is the same as the one shown in figure 3.3.A2.

108

Section 3.3 : Analysis of Experimental Results

F. In addition to the functions performed by the "js" routine in (E), the "js" routine for
this section also handles the carriage return - line feed functions.

/x 72 def
Iy 730 def starting (x,y) coordinates
/xlen 468 def width of line = 6.5 inches

/D1 {x y yneg sub dup /y exch def moveto} def single line feed
/D2 {x y yneg 2 mul sub dup /y exch def moveto} def double " "
carriage return - line feed

/js{dup stringwidth pop /sw exch def dup length /sl exch def
/s exch def xlen sw sub sl 1 sub div 0 s ashow D1}def
same as "js routine in (E) plus
line feed - carriage return

/yneg 10 def leading

D1

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continu....)js
(electrically charged, and is sensitive to direct light. The IMAGE LOOP....)js

(which produces a negative charge on the paper surface to attract the....)js
(effectively transfers the copy image to the paper.)show

The fastest measured print time (of the nine pages per run) is used for comparison:

Case Print Time
A 4.460 seconds
B 4.514 seconds
C 4.538 seconds
D 4.872 seconds
E 4.870 seconds
F 4.926 seconds
3.3.B. Analysis

As the experiments progress from case A through case F the POSTSCRIPT® RIP is
progressively handling more of the job:

A. All positioning information is supplied by the POSTSCRIPT® program; characters

are positioned according to their normal proportional spacing rules; no adjustment is
made for justification. The show command is used.

109
Section 3.3 : Analysis of Experimental Results

3.3.C

. Positioning information is still supplied by the POSTSCRIPT® program, as in (A),

but now the position of every character of each printed string is ?.djusted by an
amount that is also specified by the POSTSCRIPT® program. This is to achieve full
justification of the text. The ashow command is used.

. Once again, the positioning information is supplied by the POSTSCRIPT® program,

as in both (A) and (B). Now, instead of adjusting the position of every character, as
in (B), only the position of characters that have the ASCII qode represented by the
decimal number "32" (i.e. the "space" character) will be adjusted. The amount of
adjustment is provided by the POSTSCRIPT® program, same as in (B). This case is
more difficult than (B) in that the RIP needs to check each character aqd on}y adjust
the positioning of one particular character, namely the space character in this case.

. The positioning information is still supplied by the POSTSCRIPT® program. A

separate routine, called js, calculates the length of the string passed to it, subtracts
the calculated width from the preassigned width of the line held in xlen, divides this
number by the number of characters in the string (less one) which is also supplied to
the js program, and uses this result as a parameter for tha ashow command. Many
more calculations are executed here than in cases (A), (B), or (C).

. This case is similar to (D) except the number of characters in the string is also

calculated in the js routine using the length operator, instead of this number being
provided to js, as in (D).

Note the time to print cases (D) and (E) are nearly the same. This indicates that the
overhead to get the length of the sting to be printed using length is similar to the
overhead incurred by passing the length of the string itself.

. This case is similar to (E) except the "carriage return / line feed" function is

automated with programs D1 and D2.

It can be seen that as the complexity of the program to print text increases, the time to
print them also increases. The only apparent contradiction to this rule is explained in the
italicized print for case (E).

Proposed Improvements

Encourage the printer driver developers to write simple POSTSCRIPT® code.

110
Section 3.3 : Analysis of Experimental Results

4 l H " H " i
3.4.A. Experimental Results

Strings of characters can be placed on a given page in a number of ways. Each method

gu;li:c?’d in this section will be used to print the pages shown in figures 3.3.A.1 through

For the following examples please note that words in bold are POSTSCRIPT® tokens;
all other variables, numbers, and words are parameters that influence the effect of the
command. Note that all pages use a the Times-Roman font set at 10 point. All times
given assume the font has already been scan converted

Sirpplc unjustified text (i.e. "ragged right”) with the CTM set to device resolution, 300
units to the inch.

72 300 div dup scale

/Times-Roman findfont 3000 72 div scalefont setfont
300 3000 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a cont....)show
300 2958 moveto

(electrically charged, and is sensitive to direct light. The IMAGE LOOQP...)show
300 1250 moveto

(which produces a negative charge on the paper surface to attract the....)show
300 1208 moveto

(effectively transfers the copy image to the paper.)show

Note: The printed page produced with this method is shown in figure 3.4 A.1.

The fastest measured print time (of the nine pages per run) is used for comparison:

Case Print Time
A 4.460 seconds the point is used as the positioning unit
"target” 4.458 seconds the 300 dpi pixel is used as the positioning unit

3.4.B. Analysis

Setting up the CTM to directly map user coordinates to print engine pixels did not seem
to have an effect on speed nor appearance (compage figure 3.3.A.1 to 3.4.A.1).

3.4.C. Proposed Improvements

None.

111

Section 3.4 : Analysis of Experimental Results

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is 2 continuous loop of film that is capable of being
electrically charged, and is sensitive to direct light. The IMAGE LOOFP is driven around the IMAGE LOOP CORE

in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE
LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE LOOP starts moving on
command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is
exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as
determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on
the IMAGE LOOP is removed from the areas that are exposed to light. The charge remains in the areas that are not
exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused
copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an improperly charged
segment. These segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE
LOOP movement and tumned off during final IMAGE LOOP movement. As the unwanted areas pass under the
AUXILIARY ERASE LAMP, it floods the moving IMAGE LOOP base with light that desensitizes the IMAGE
LOOP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now enters the
DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner particles are
attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner particles to the
electrostatic image on the IMAGE LOOP. The toner particles are carried away on the IMAGE LOOP surface for
later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE LOOP are salvaged at this
point by the SCAVENGER ROLLER and returned to the DEVELOPER STATION ASSEMBLY.

G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and thereby
increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge that was
required for proper image development. This POST-DEVELOPMENT ERASE process also helps to prevent
residual image retention. '

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a sheet of copy paper is
advanced to the REGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the right time, the copy paper
is dtlhrected ugg ioong\g with the IMAGE LOOP and its developed image. This aligns the copy paper and the image
on the IMA .

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under the TRANSFER CHARGER,
which produces a negative charge on the paper surface to attract the positive charged developer toner. This
effectively transfers the copy image to the paper.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Simple Unjustified Text (i.e. "ragged right") with all
positioning coordinates given in device units (300 dpi).

page 112 Figure 3.4.A.1

ff ri i i
3.5.1 Effect on the Inter-Page Time Delay Program sec
3.5.1.A. Experimental Results

The sec program, shown below, is measured and analyzed in this section.

Isec % one second delay under no load
{ usertim{e IT exch def % keep track of time actually taken
1228 {
373.737 737.373 mul pop
}repeat
} repeat
usertime T sub def
} def

In each of the five cases the sec program is called seven times. Each time the
parameter selecting the intended time delay, in seconds, changes until all seven
are completed in the seqeunce 1, 2, 3, 5, 8, 12, and 16. These are the target
delay times shown in the figure below. As the cases progress from one though
five, the amount of work that the RIP does outside the sec delay program
increases. In case one, nothing is done other than calling the sec program and
reporting the measured times in the printed trailer page. In case two, a trivial
page routine which prints a blank page is called in between calls to the sec
routine. In cases three and four, the page routine includes the printing of a few
lines of text at the top and the bottom of the page, respectively. And in case five
a full page of text is printed. Detailed descriptions of the five cases follow.

Case 1 Experiment:

The sec program is called seven separate times. Each time it is called one of the
seven target delay times, shown above, is passed to it. The page procedure is
not part of this particular POSTSCRIPT® job and is therefore never called. Only
the trailer page with the seven measured delay times is printed. No other
showpage instruction is executed. Note that the loop count of 1228 was
heuristically generated to produce results as close as possible to the target delay
times under this "no load" condition.

/sec
sec delay program is shown above
} def
/W1 1 sec
/W2 2 sec

/W16 16 sec

print trailer page

113

Section 3.5.1 : Analysis of Experimental Results

Case 2 Experiment:

This case is similar to case one with one exception: the showpage operator is
executed inside the page procedure and timed between each pa1r_of sequential
calls to the sec delay program. This causes blank pages to be printed followed
by the trailer page containing the seven measured delay times.

/page { showpage } def
Isec
sec delay program is shown on previous page
} def
/Pr

calls and times the sec procedure;
shown in figure 2.22.2 and
page 3 of appendix 2.2 4

} def

/T2 Pr

/W1 1 sec
/T3 Pr

/W2 2 sec
/T4 Pr

/W16 16 sec
/T9 Pr

print trailer page

Case 3 Experiment: _ _
This case is similar to case two except for the operations executed in the page

procedure. Thirteen lines of left justified text plus 2 additional line spaces (to
separate 3 paragreaphs) are "printed” in page using the POSTSCRIPT® show
operator. The text is positioned at the top of the page occupying almost two
inches of the page (in the y direction). It starts at 10 inches from the bottom of
the page (or 1 inch from the top) and progressing downward to 8.1 inches from
the bottom of the page.

/page
{

72 700 moveto (string I) show
72 691 moveto (string 2) show

72 574 moveto (string 13) show
showpage
} def

The sec and Pr procedures, the calling sequence to these procedures, and
the printing of the trailer page are the same as shown in case two above.

114

Section 3.5.1 : Analysis of Experimental Results

Case 4 Experiment:

This case is identical to case three with the exception of the position of the
thirteen lines of left justified text printed in page. Here the text is positioned at
the bottom of the page instead of the top of the page as in case three. It starts at

2.8 inches from the bottom of the page and progressing downward to 0.9
inches from the bottom of the page.

/page
{

72 190 moveto (string 1) show
72 181 moveto (string 2) show

72 64 rﬁoveto (string 13) show
showpage
} def

The sec and Pr procedures, the calling sequence to these procedures,
and the printing of the trailer page are the same as shown in case two.

Case 5 Experiment:

This case is identical to case three with the exception of the number of lines
printed: 29 (with 8 additional line spaces) instead of 13 (with 2 additional line
spaces). It starts at 10 inches from the bottom of the page and progressing
downward to 5.2 inches from the bottom of the page.

/page
{

72 700 moveto (string 1) show
72 691 moveto (string 2) show

72 376 moveto (string 29) show
showpage
} def

The sec and Pr procedures, the calling sequence to these procedures,
and the printing of the trailer page are the same as shown in case two.

Target Delay

Time Casel Case 2 Case3 Case 4 Case 5
1 1.074 1.006 1.686 1.716 1.716
2 2.020 2.006 2.686 3.540 3.446
3 3.000 3.008 3.684 5.362 4.446
5 4.998 5.004 5.684 7.440 6.444
8 7.998 8.004 8.684 10.438 9.442
12 11.994 12.002 12.682 14.436 13.440
16 15.992 15.998 16.678 18.434 17.438

all times given in seconds

115

Section 3.5.1 : Analysis of Experimental Results

"sec” Inter-Page Time Delay Under Varied Conditions

_ §...Ha1f.§p.age
: of Fext
"Bottom" Load - :

i hh o feasedy i S (cased) i

... (P v, "Tﬂp"":LO&d”"““
(casé 3)

..

...

: "showpage'
: (cascs 1 and 2)

..

d
.
:seconds:—p
5 4 < 3 i HIR 15,16 I 567

"sec” Inter-Page Time Delay Under No Load Conditions

Figure 3.5.1.A.1

116
Section 3.5.1 : Analysis of Experimental Results

3.5.1.B. Analysis

Note the correlation between distance from bottom of page that characters are
placed and delay time discrepancy.

Top (8.1 inches) ~.7 sec for all target delays of 1 sec and up
case 3

Middle (5.2 in;:hcs) ~1.4sec forall target delays of 2 sec and up
case

Bottom (.9 inc‘};) ~2.4sec forall target delays of 3 sec and up
case

The time taken to execute sec seems only to be influenced by the position of the

mark on the page that is closest to the bottom of the page. Furthermore, this
relationship 1s linear:

Assume x is the distance of the bottom-most mark on the page and
y is the time discrepency in seconds.

Using the top and bottom points of (8.1,0.7) and (0.9,2.4) the slope (m)
and y intercept (b) can be calculated to be:

m = - 0.236
b =2.613
Calculating the third point, y, with the x value equal to 5.2 yields:
y=mx +b=(-0.236)5.2+2.613=1.385~=14
Page complexity does not seem to have any effect: case 5 prints the more than
twice as much text as either cases 3 or 4, yet the sec delay program time

discrepency lies in between these two cases.

One possible explanation for this strange behavior is that immediately following
the showpage command, the POSTSCRIPT® interpreter needs to clear the page
buffer memory before the next page is allowed to use the page. The algorithm
seems to start from the top of the page and work its way down until it is
determined that no more page memory was used. In case 3 this occurs close to
the top of the page so this overhead is minimal, but in case 4 this occurs almost
at the very bottom of the page, so the overhead in great.

3.5.1.C. Proposed Improvements

If a dual page buffer were used with additional hardware to do the necessary
memory housecleaning this phenomena should disappear.

117

Section 3.5.1 : Analysis of Experimental Results

3.5.2 Effect on the Compilation and Rasterization of Text Pages

3.5.2.A. Experimental Results

Experimental cases 3 and 4, described in the previous section, are used here.
Sample output for case 3 is shown in figure 3.5.2.A.1, along with its
corresponding timing page in figure 3.5.2.A.2. Two observations will be
made:

1. The time to execute (i.e. print) the text page from case 3 will be examined as
the induced delay between subsequent pages changes.

2. How the data from (1) above changes as the position of the text changes will
also be examined. This is done by comparing the measured times of case 4,
which prints several lines to text close to the bottom of the page, to the
measured times of case 3, which prints the save text close to the top of the
page (see figure 3.5.2.A.3).

3.5.2.B. Analysis

As shown in figure 3.5.2.A.2 the time to print the very simple page of text
(with pre-cached fonts) is 5.542 seconds for the first page. With no induced
delay the second page prints in 7.322 seconds. As the induced delay times
increase in between pages the time needed to print the next three test pages
steadily decreases. With a 3.734 second delay (target delay of 3 seconds) the
measured print time is 3.898 seconds. As the delay time increases to to 5.736
seconds the measured print time stays constant. This is the point at which the
printer motor turns off (as observed by hearing). As the delay times increase
from 8 to 16 seconds the print time is again constant at a much higher print
time, ~5.45 seconds.

Possible explanations for this behavior is broken into three sections:

1. Print time decreases as interpage delay time increases. During this region
printing the previous page "gets in the way" of printing the current page.
As more time is allowed between pages, the previous page gets in the
way less and therefore the current page waits less time to access the page
buffer and therefore takes less time to render the page.

2. Constant minimum time: increasing delay time does not effect print time.
Once the point has been reached where enough time between pages is
-waited the previous page no longer interferes with the printing of the
current page, the page prints at its maximum possible speed. As long as
nothing else changes, (i.e. status of print engine, etc.) changing the
interpage delay times has no effect on the printing times.

3. Second constant time region r motor shuts off): no effect of increasi
delay time. Once the print engine motor shuts off, additional time is required
to turn it back on.
118

Section 3.5.2 : Analysis of Experimental Results

A.IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOORP is a continuous loop of film that is capable of being

electrically charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE
in a continuous motion for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on the IMAGE
LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE LOOP starts moving on
command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the EXPOSURE area, where it is
exposed to a reflected light copy image that is focused on the IMAGE LOOP at precisely the right time, as
determined by LOGIC AND CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving IMAGE LOOP. The charge on
the IMAGE LOOP is removed from the areas that are exposed to light. The charge remains in the areas that are not
exposed. The exposure is said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused
copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as an electrostatic image.

Note : The printed areas on this page excluding the region
bounded by this rectangle is the printed test page output.

Case 3 Output: Printing on Top of Page
Figure 3.5.2.A.1 page 119

Page Generation Time [in seconds]

20T
15+
10+
¢
< o © 4
1 o
< <
0 5 10 15 20
Wait Time After Previous Page [in seconds]
Download Time = 2350
Page Time 1 (A) = 434
Page Time 1 (B) = 5532
Wait Time Osec = 0 Page Time 2 = 7320
Wait Time 1 sec = 1716 Page Time 3 = 5644
Wait Time 2 sec = 2738 Page Time 4 = 4626
Wait Time 3 sec = 3736 Page Time 5 = 3894
Wait Time 5 sec = 5736 Page Time 6 = 3894
Wait Time 8 sec = 8734 Page Time 7 = 5430
Wait Time 12 sec = 12732 Page Time 8 = 5440
Wait Time 16 sec = 16728 Page Time 9 = 5484
Ave Pg Time 2-9 = 5216.5
Note: All times are specified in milliseconds.
page 120 Figure 3.5.2.A.2 Test Page

The second part of this analysis deals with comparing printing times when the
positions of the text that is placed on the page changes. Data that has been
extracted from figure 3.5.2.A.2 for case 3 and a similar timing page for case 4
(not shown) was compiled and put in graph form. The data, shown in figure
3.5.2.A.3, indicates that only variations in the delay time effect the printing
times. Region 1 ranges from 1.7 seconds to about 3.7 seconds; region 2 from
3.7 seconds to 7.4 seconds, and region 3 above 7.4 seconds

3.5.2.C. Proposed Improvements

Once again, a dual page buffer system with hardware assist would help
eliminate the extra time in region 1. Secondly, entrance into region 3 could be
delayed or eliminated if the printer were left in a "more ready” state (i.e. without
stopping the motor) when the RIP is still processing a print job. On the

negative side, more power would be taken up when the print engine itself
would be in the idle state.

121

Section 3.5.2 : Analysis of Experimental Results

.......................... T
t : - - - - - -
................. NUUTUE Sy r SO SO AP SR SO L o
. g : : . . T~
SR G eeeeeees P PR D Geenenees PP Ceeereaens S eeeneens Cevenenneat N~

. N O
fevevennns G eeneees Serienenn LT P Terernnnn Cevnennes PR Cevrenenndd

> ' -—

:

1
[0 Top of Page (case 3)
@ Bottom of Page (case 4)

Key

:
:

2 - s -—

feveennnns A U FI P P leeveenes T Ceeeeennea (3]

: - pps

..................................... D L S SURL o

: v

.1..‘1-..

.................................

— seconds —p

Wait Time Between Pages

Page Rasterization Performance Under Varied Wait Times

Figure 3.5.2.A.3

122
Section 3.5.2 : Analysis of Experimental Results

4. Conclusions

n n i nts v. i i n
Printing bitmap fonts that are in the bitmap font cache are about 500 times faster than scan
converting the corresponding outline font (see section 3.1.4). The character scan conversion or
rasterization rate 1s approximately 3 characters per second (see sections 3.1.1 and 3.1.5). Note
that this time includes the POSTSCRIPT® interpretation overhead. Because this is such a
dominant factor, several methods are used to increase the probability of a font being in bitmap
form when it is specified in a POSTSCRIPT® program:

1. a small set of fonts are stored in ROM in bitmap form (see section 3.1.3). These fonts are
specified by the manufacturer of the LaserWriter® Plus Printer, Apple® Computer Inc.

2. an area of RAM memory in the RIP is reserved to serve as a bitmap font cache (see section
2.4). When a character of an outline font is specified in a POSTSCRIPT® program, the time
consuming scan conversion program is executed only one time (see section 3.1.1). The
rendered bitmap font is stored in bitmap font cache. When the same character is
subsequently specified, it is accessed from this font cache.

3 asmall set of fonts, which are stored in outline form, are scan converted during the printer's
idle time (see section 3.1.3). The newly generated font bitmaps are stored in the bitmap font
cache. This process generates certain default fonts at pre-selected sizes and orientations that
are specified, once again, by the manufacturer of the printer which, in this case is Apple®
Computer Inc. Since much of the time of the printer is idle, this seems to be a very good
way to build up a library of bit-map fonts in cache.

4. aprocess similar to that specified in #3 above allows the user to select which outline fonts
are to be scan converted during the printer's idle time (see section 3.1.3).

5. abitmap font can be downloaded to the printer and stored in the bitmap font cache,
eliminating the scan conversion overhead. Unfortunately, the communications overhead can
similary slow performance (see section 3.2.1).

There are several potential ways to increase the performance of the POSTSCRIPT® printer:

1. "encourage" the customer (e.g. person running the application program) to make extensive
use of the pre-cached bitmap fonts described in #1 above or the idle time scan converted
fonts described in #3 above.

2. "encourage" the customer to use a small number of fonts so that once they are scan
converted by one of the means specified above they will be kept in the bitmap font cache for
future use at the higher speed.

3. "encourage" the printer driver developers to make extensive use of the user-selectable idle
time scan conversion function described in #4 above.

Note that #1 through #3 are ways to increase performance that are accessable externally to the
printer.

4. use a faster processor and/or math accelerator hardware. In the event that the selected font
has not been scan converted, the added hardware should scan convert faster than the 3

character per second rate that was observed.

5. increase the ROM size to store more bitmap fonts. This only helps if the printer
manufacturer correctly "guesses” which fonts the customer will use.

123

Section 4 - Conclusions

6. increase the amount of font cache RAM. This will delay the time at which previously placed
bitmap fonts must be cleared out of the bitmap font cache.

7. extend the bitmap font cache with disk memory. Accessing a bitmap font from disk is still
faster than scan converting an outline font.

8. make use of data compression for larger fonts (see section 1.4).

9. use a faster and/or more efficient communications interface to download the bitmap (or
outline) fonts (see sections 2.2.1 and 3.2.4).

Note that #4 through #9 are ways to increase performance that require internal changes to the
RIP that drives the print engine.

4.2 Scan Converting Font Qutlines with "Quality Hints" Applied

At a printer resolution of 300 dots per inch, "quality hints" are applied to the outline fonts
during the scan conversion process (see sections 2.1.1.4 and 3.1.4). At typical sizes ranging
from 6 to 14 point, the scan conversion algorithm uses these hints to insure that a uniform look
of the fonts are provided. For example, stems and curves of a given character are forced to be
the same dot patterns (e.g. "m"). Also similar characters are forced to have similar dot patterns
(e.g. llcll and "0", or llmll a_nd Ilnll).

The experiments reported in section 3.1.4 reveal that these intelligent hints:

1. are only applied if the orientation of the font lies on a quadrant angle (i.e. 0°, 90°, 180°, or
360°). Only the 0° and 90° cases were tested. A font that was rotated 70° did not have the
"hints" applied.

2. take additional time to apply. Figure 3.1.A.4 shows both the 0° and 90° cases taking 12 %
to 16 % longer to scan convert as compared to the 70° case. This indicates that the overhead
of applying the hints was greater than the overhead of rotating the font set to a non-quadrant
angle.

As the industry progresses to higher resolutions in the future, the issue of needing these font
quality hints will probably fade away.

4.3 Fon 1 mplexi

The performance of scan converting a font outline varies with the complexity of the font (see
section 3.1.5). The simple Helvetica® font style was measured to scan convert 38 % faster
than the more complex Zapf Chancery® font style. Performance of scan converting the Times

Roman® font was in between the simple Helvetica® and the complex Zapf Chancery® font
styles, as could be expected.

Fastest Helvetica® scan converted at a rate of 3.976 characters per second.
Medium Times Roman® scan converted at a rate of 3.228 characters per second.

Slowest Zapf Chancery® scan converted at a rate of 2.875 characters per second.

124

Section 4 - Conclusior<

4.4 Downloading Fonts
'}‘he key paramter that influences the performance of downloaded fonts is the download process
itself. The time to download a font is influenced by:

1. the size of the font;
2. the speed of the communications interface used;
3. the efficiency of the communications interface used;

4. the efficiency of the application program and communications interface driver software.

One surprising result that was found in section 3.2.3 shows point #4 above to be a very
significant factor. When the Adobe Stone Serif font was downloaded using Adobe's Font
Downloader program, it took about 30 seconds to download the 34 KByte font. When the
CasadyWare*™™ Galileo Roman font was downloaded using the Altsys Laser Writer Downloader
program, it took about 10 seconds to download the 44 KByte font. This is three times faster to
download about 30% more data. Both used the Appletalk communications interface. It was
disappointing to find that the Adobe font would not download using the Altsys program, nor
would the CasadyWare™ font download using the Adobe program. Without any more data
available, it seems that point #4 above, the efficiency of the Altsys download program vs the
Adobe download program, was the key difference.

Once the font has been downloaded, the performance of downloaded fonts were similar to the
performance of internal fonts. The performance of two different downloaded fonts were also
rather close. When the scan conversion time of the Adobe internal Times Roman® font was
compared to the Adobe downloaded Stone Serif font the times were very close: 3.19 vs. 3.23
characters per second respectively. The third party downloaded CasadyWare Galileo Roman
font scan converted at a slightly slower speed, 2.71 characters per second. This speed
difference could be attributable to many different factors, like less efficient coding of the fonts
themselves or the effect of the font style complexity variation.

h f Printi rin
Since POSTSCRIPT® is a full functionality programming language it is possible to print justified
and unjustified strings of text in a variety of different ways. Section 3.3 shows six of them.
One trend was shown. As more POSTSCRIPT® instructions had to execute per "showing" each
line of text, the time to execute these instructions increased causing the page performance to
decrease.

The way to achieve the best performance is by calculating the start positions of each line of text
in the front end composition computer and send this information down for each line within the
POSTSCRIPT® page. For justification the ashow or widthshow operators can be used,
depending on the effect that is desired (i.e. adjusting the intercharacter or interword spacing).
In the experiments, the page using ashow yielded slightly better performance than the page

using widthshow.

125

Section 4 - Conclusions

Resoluti .
On page 76 of the POSTSCRIPT® Language Reference Manual it states that if:

1. asampled image is a binary image that uses one bit per sample, and

2. the combination of the image matrix and the current transformation matrix is such that one
unit in image space corresponds to one unit in device space,

then

The produced results are precisely predicatable down to the pixel level and executes a great deal
faster than general imaging.

The above statement applies to scanned bitmap images, not to fonts. Section 3.4 tested to see if
a similar speedup could be observed if the starting positions of each line were specified in print
engine coordinates. No effect could be seen. This speedup seems to be only active for a special
case of bitmap images.

4.7 Prinfer Indu 1
Execution of POSTSCRIPT® programs on the Apple LaserWriter® Plus are influenced by
several factors:

1. the location of the lowest (smallest "y" value) mark on the page. On the Apple
LaserWriter® Plus, the page writes from top to bottom. All lines below the line which
prints the lowest mark on the page is all white. It seems that the Apple LaserWriter® Plus
RIP keeps track of this information (sometimes called a "highwater mark"). When this
point is reached the RIP can start to used the page buffer to generate the next page, while at
the same time providing a "white" signal to the print engine to finish printing the current
page. This phenomena is shown in section 3.5.1.

2. similar to #1 above, the printing of the current page holds up the generation of the next
page, since a page buffer is required to operate in. A dual page "ping-pong” buffer can
alleviate this problem at an added cost.

3. print engine control and communications interface control. Since the Apple LaserWriter®
Plus printer RIP has a single processor generating the page it must be shared to perform
non-POSTSCRIPT® functions, thereby slowing down the page generation task. Dedicated
microcontrollers could be used to handle these ancilary tasks and help improve the overall
performance. See section 3.5.2 for more on this topic.

126

Section 4 - Conclusions

Glossary

batch composition - A program that executes on a front end system that accepts, as its
input, a text file with markup commands (line width, type of justification, etc.), and
outputs a page description file ready to be output on a printer.

cache memory (also bitmap font cache) - memory (RAM) on the Apple LaserWriter ® Plus
RIP that temporarily stores bitmap fonts. Outline fonts are scan converted and placed in
cache memory. When a reference is made to print a character of a certain font that has
previously been placed in the font cache the bitmap is quickly BitBLTed from the font

c}a;che to the page buffer. This process is much faster than scan converting the outline
character.

composition - The process of integrating text, vector graphics, and bit-map images on pages
in a form that enhances the information being conveyed by the written prose. Typical
features of a composed page are justified text using multiple fonts, charts that graphically
f}l:ow a trend, and screened photographs of items being described in the written portion of
e page.

CTM (Qu_rrent Transformation Matrix) - A 3x3 matrix that describes how user
coordinate space maps into device space. Changing variables in the CTM changes
rotation, scaling, and translation. The matrix is shown below:

Sx cosd Sx sind 0
-sind Sy Sy cosd O
Tx Ty 1

d is angle of rotation in a positive direction (counterclockwise)
Sx is the scale factor in the x direction.

Sy is the scale factor in the y direction.

Ty is the translate number in the x direction.

Ty is the translate number in the y direction

device coordinate system - The cartesian coordinate system that describes the printable
dots of a particular print engine (i.e. "device"). The units of the device coordinate system
have a one to one correlation to the dots of the printer. For the Apple® LaserWriter Plus®
printer the device resolution is 300 dots per inch. The Current Transformation Matrix, or
CTM, maps the user space into device space.

dot - see printable dot

EPROM (Electrically Programmable Read Only Memory) - A type of ROM that is
programmable using a computer controlled tool that provides sequenced electrical pulses
to the EPROM. EPROMs are typically erasable by irradiating the EPROM chip with
ultraviolet light for several minutes. Because they are erasable and (re)programmable,
EPROMS are commonly reused during product development and for product code

updates.

font - A complete assortment of a given size of type, including capitals, small capitals, and
lowercase, together with figures, punctruation marks, ligatures, and the commonly used
signs and accents. The italic of a given face is considered a part of the equipment of a
font of type but is spoken of as a separate font.

127
Section 5: Glossary

font family - A group including all the styules and sizes of the characters in that font. For
example Times® is the font family that contains all sizes of all characters in the Times
Roman, Times Italic, Times Bold, and Times Bold Italic fonts.

full justification - modification of the intercharacter and/or @nten_vord spacing within a line
to position both the left and right ends of the line at certain points. This is done tofillina
complete rectangular space with solid text.

front end - A workstation with interfaces to other computers typically via a network interface,
a user interface to allow text, graphical, and scanned image input, and an interface to
printers.

H & J (Hyphenation and Justification) - The process of breaking up strings of text into
substrings that fit well within a specified line width using a specified font. A complex set
of rules are used to determine whether a line break should occur between adjacent words
or the line break should occur between words. If a word is broken up into two
sub-words, then the two sub-words are place on consecutive lines with a hyphen place
after the first sub-word.

interactive composition - A program that executes on a front end system that accepts, as its
input, keystrokes and possibly mouse clicks defining the text and style that the user wants
the page to look like, and displays a softcopy image on the computer CRT screen and
ultimately outputs a page description file ready to be output on a printer.

Interpress - A family of page description languages, invented by Xerox Corporation.

Interpress has three language sets:

1. Commercial Set includes the specification of basic text files, similar in functionality
to many line printers.

2. Publication Set specifies multiple bit-map font capability and graphics, similar in
functionality to imPress.

3. Professional Graphics Set is the high functionality PDL allowing arbitrarily
rotated and scaled font, among other high end features. It is similar in functionality to
POSTSCRIPT®.

left justification - Placement of consecutive lines so that the left edge of each line starts at
the same x coordinate. This type of justification is also called "ragged right" since the
right edges do not line up, but appear to be "ragged”.

justification - The process of positioning strings of text to get a more legible effect. See left
justification and full justification for more information.

kerning - The process of altering the spacing between two adjacent characters such that one
character engulfs _(16. gets closer to) the other. Kerning is an advanced method of
generating very high quality text. Common kerning pairs are ""VA" and "Ti".

landscape - A page orientation where the horizontal dimension is greater than the vertical
direction. On a typical 8.5" x 11" page the horizontal dimension is 11 inches with the
vertical dimension being 8.5 inches. See "portrait” for comparison.

ligature - A character combination that is made up of two or three characters that "fit" well
with each other. These characters are graphically combined and are typographically
consli)c.ierqi a single character. Common ligatures are the "fi" and the "fl" character
combinations.

outline font rasterization - see scan conversion

128

Section 5: Glossary

PDL (Page Description Language) - A file format which specifies how the RIP is to

place marks on apage. These marks can be characters in a variety of fonts, vector
graphics, and bit-map images.

pixel - see printable dot

point - A dimension that is approximately 1/72 of an inch. The point is the default unit of
POSTSCRIPT®.

portre_xit - A page oricnta_ltion where the horizontal dimension is less than the vertical
direction. On a typical 8.5" x 11" page the horizontal dimension is 8.5 inches with the

Xertical dimension being 11 inches. Most letters are typed on a portrait page. See
landscape" for comparison.

POSTSCRIPT® - A high functionality page description language, defined by Adobe
Systems, Inc. that boasts full functionality. The language itself is stack oriented and
"forth"-like, and has the ability to define callable procedures and looping constructs. It is
used in the Apple Laser Writer Plus printer, the printer used throughout this thesis. It is
similar in functionality to the Interpress Professional Graphics Set.

print engine - A device that put black or color marks onto paper at a typical resolution of 300
to 400 dots per inch. Note that at 300 dots per inch, over 1 MByte of data is needed to
"paint” a full 8.5 x 11 inch page at 1 bit/dot.

printable dot - The smallest mark on a page that a print engine can render. Size of the
printable dots, or pixels ("picture elements") are the unit measures of the "device
coordinate system".

printer - The combination of a RIP and a print engine.

process (electrophotographic) - The process used in most copiers and many page printers
in which the following steps take place to produce copied or printed pages:

1. an area of electrophotographic material is charged with a uniform static electrical charge;

2. light, provided by a flashed image, laser or LED, exposes the page area on this
charged material;

3. charge dissipates in the areas that were exposed, creating the latent image;

4. toner particles are charged such that either they will be attracted to the area that was
exposed or not exposed, depending on the polarity of the process. A mirrored image
on toner is layed onto the page area.

5. paper is charged such that the toner image is attracted to it;
6. the toner transfers to the paper;
7 the toner is fused to the paper using heat and/or pressure.

process color - The ability to produce a large number of different colors (thousands to
millions) on a printed page to closely resemble a continuous tone color picture. See spot

color for comparison.

129

Section 5: Glossary

screen - A method, called "halftone screening”, is used to render an intermediate shade of
gray, using a grouping of dots that can, individually, be either white or black. The
parameters that define a screen in POSTSCRIPT® are:

1. frequency, which specifies the number of halftone cells per inch in device space;

2. angle, which specifies the number of degrees that the haltone screen is to be rotated
with respect to the device coordinate system;

3. a procedure defining the spot function, which determines the order in which pixels
within a halftone cell are whitened to produce the desired shade of gray.

spot color - The ability to produce several (typically 2 to 4) different color to accentuate key
words or graphics for effect. See process color for comparison.

rasterization (alternatively, "rasterizing" or "scan converting" a font) - see scan conversion

RIP (Raster Image Processor) - A computer that inputs a page description language file
and generates a bit-map image to transfer to the print engine, usually in a raster form.

ROM (Read Only Memory) - Computer memory that is written into only once, at the
factory, and read many times. The data that is stored in ROM is permanent and
non-volatile. It is typically used to store program code and other static data structures (like
resident fonts).

scan conversion - The process of converting a geometric description of a shape and
generating the bitmap that corresponds to that shape. Outline fonts and graphical objects
are scan converted in RIPs that accept POSTSCRIPT®.

user coordinate system - A cartesian coordinate system, specifiable through
POSTSCRIPT®, defined by the units (per inch), the origin, and x and y incrementing
directions. The default user coordinate system of POSTSCRIPT® defines the units to be
1/72 of an inch (close to a "point"), the x incrementing direction to be "right", the y
incrementing direction to be "up”, and the origin to be the lower left hand corner of the
page.

device coordinate system - The units of the device coordinate system have a one to one
correlation to the dots of the printer. For the Apple® LaserWriter Plus® printer the device

resolution is 300 dots per inch. The Current Transformation Matrix, or CTM, maps the
user space into device space.

WYSIWYG (}Xhat-Xou-See-Is-Ehat-Xou-G_et) - The concept, in interactive
composition systems, where the image that is viewed on the CRT screen is the same
image that will be printed out on the printer.

130
Section 5: Glossary

References (se¢ section 7 for full bibliography entries)

1. A Comparison of Interpress™ and POSTSCRIPT®

2. page 109 Apple LaserWriter® Reference for LaserWriter, LaserWriter Plus,
LaserWriter IINT, and LaserWriter IINTX
3. page221 POSTSCRIPT® Language Reference Manual
4. page222 POSTSCRIPT® Language Reference Manual
5. pp.117,118 POSTSCRIPT® Language Reference Manual
6. page 140 POSTSCRIPT® Language Reference Manual
7. page 229 POSTSCRIPT® Language Reference Manual
8. page 156 POSTSCRIPT® Language Reference Manual
9. page 150 POSTSCRIPT® Language Reference Manual
10. page 216 POSTSCRIPT® Language Reference Manual
11. page 128 POSTSCRIPT® Language Reference Manual
12. page 97 POSTSCRIPT® Language Reference Manual
13. page 287 POSTSCRIPT® Language Reference Manual
14. page 288 POSTSCRIPT® Language Reference Manual

15. pp. 85-102 POSTSCRIPT® Language Reference Manual
16. pp.222-225 POSTSCRIPT® Language Tutorial and Cookbook

17. page 41 Printers Buyers Guide and Handbook Test Reports

18. page6 Apple LaserWriter® Reference for LaserWriter, LaserWriter Plus,
LaserWriter IINT, and LaserWriter IINTX

19. pp. 3,17 Apple LaserWriter® Reference for LaserWriter, LaserWriter Plus,
LaserWriter IINT, and LaserWriter JINTX

20. page 17 Apple LaserWriter® Reference for LaserWriter, LaserWriter Plus,
LaserWriter IINT, and LaserWriter IINTX

21. page 90 Laser Wars

22. page 18 Apple LaserWriter® Reference for LaserWriter, LaserWriter Plus,

LaserWriter IINT, and LaserWriter IINTX
23. pp. 87,92 Laser Wars

24. page 76 The Laser's Edge: Anatomy of a Printing Job
25. page 20 Fluent Laser Fonts™ User's Guide
131

Section 6: References

26.
27.
28.

29.
30.

pp 287, 301 POSTSCRIPT® Language Tutorial and Cookbook

page 7-5 MC68000 - 16-/32-Bit Microprocessor

page 122 Apple LaserWriter® Reference for LaserWriter, LaserWriter Plus,
LaserWriter IINT, and LaserWriter IINTX

pp- 1230 - 235 Inside Macintosh™ Volumes I, II, and IIT

pp- IV 33 -48 Inside Macintosh™ Volume IV

132

Section 6: References

Bibliography

Adobe Type Library User's Manual for the Macintosh
Version 2.0 - October, 1987
Copyright 1987
Adobe Systems Incorporated

Apple LaferWriter Reference
Apple Programmer's and Developer's Associati D
APDA #: KNBLRM P soctation (AFDA)
290 SW 43rd Street
Renton, WA. 98055
Tel. No. (206) 251-6548

Apple LaserWriter® Reference

for LaserWriter, LaserWriter Plus, LaserWriter IINT, and LaserWriter IINTX
Apple Compuier, Inc.
Addison-Wesley Publishing Company, Inc.
Copyright© 1988 by Apple Computer, Inc.

The Chicago Manual of Style
Thirteenth Edition, Revised and Expanded
The University of Chicago Press
Copyright 1982

A Comparison of Interpress™ and POSTSCRIPT®
Jerry Mendelson
April, 1985
Xerox Corporation

Font and Function - The Adobe Type Catalog Spring / 1988
Adobe Systems Incorporated
1988

Fluent Laser Fonts™ User's Guide
Robin Casady and Richard Ware
CasadyWare Inc.

Copyright 1987

Information Processing - Text and Office Systems
Standard Generalized Markup Language
ISO / DIS8879

Inside Macintosh™ Volumes I, II, and IIT
Addison-Wesley Publishing Company, Inc.
Copyright© 1985 by Apple Computer, Inc.
Sixth Printing, September 1987

Inside Macintosh™ Volume IV
Addison-Wesley Publishing Company, Inc.
Copyright© 1986 by Apple Computer, Inc.
Third Printing, April 1987

The Laser's Edge: Anatomy of a Printing Job
Danny Goodman _
MACWORLD The Macintosh™ Magazine
February, 1985
Article: The Laser's Edge - pp. 70 - 79

Anatomy of a Printing Job - pp.76

133

Section 7: Bibliography

Laser Wars
Henry Bortman]
MacUser - The Macintosh™ Resource (magazine)
October, 1987
Article: Laser Wars - pp. 84 - 94

MC68000 - 16-/32-Bit Microprocessor
Advance Information
March, 1985
Motorola Publication Number ADI814R5

Page Description Languages
Robert A. Morris
Interleaf, Inc. and the University of Massachessetts at Boston
Copyright 1985, Boole Press, Dublin
Proceedings of the ProText I Conference, Boole Press, 1985

Pocket Pal - a graphics arts production handbook
International Paper Company
Thirteenth Edition
Copyright May 1983

POSTSCRIPT® Language Program Design (aka - the Green Book)
Adobe Systems Incorporated
Addison-Wesley Publishing Company, Inc.
Glenn C. Reid
Copyright© 1988

POSTSCRIPT® Language Tutorial and Cookbook (aka - the Blue Book)
Adobe Systems Incorporated
Addison-Wesley Publishing Company, Inc.
Copyright© 1985

POSTSCRIPT® Language Reference Manual (aka - the Red Book)
Adobe Systems Incorporated
Addison-Wesley Publishing Company, Inc.
Copyright© 1985

Postscript®: Master of the Raster
Ted Nace
PC World
August, 1985
pages 256-262

Printers Buyers Guide and Handbook Test Reports
Printers Buyers Guide and Handbook
Guide #7
Copyright© 1987
Article: Apple Laser-Writer Plus - page 41

Supporting Downloadable POSTSCRIPT® Fonts
Glenn Reid

Adobe Systems Incorporated
August 14, 1987

134

Section 7: Bibliography

Sun Microsysteﬁi
Display Terminal

3 ‘ lll:l'l.l

file transfer
RS-232 :
Sun
Vid
== 1 Microsystems
3/280

HP 4953A
Protocol Analyzer

Apple Macintosh
Personal Computer

(Mac II)

Appletalk

 Apple
LaserWriter
. Plus.

Appendix 1

PostScript® Evaluation Equipment Configuration

Appendix 1 : PostScript® Evaluation Equipment Configuration

2.1 POSTSCRIPT™ Font Widths

2.1.1

2.1.2

2.1.3

PQSTSCRIPT® source code for the extraction of printer-
resident font widths from the Apple Laser Writer Plus®

Printed output on an Apple Laser Writer Plus® printer
when sent the font extraction program of 2.1.1 above.

Hand created (and edited) file containing a portion of the
information shown on 2.1.2 (specifically, the font widths
for a 10 point Time-Roman® typeface). This is one of
seven font width files used by the justification program
described in 2.2.1.

Generation of Text POSTSCRIPT™ pages

221

22.2

223

224

225

Pseudo-code for the C-language program that performs
line-breaking, justification, and generation of justified line
of text using POSTSCRIPT® in a variety of different ways.

Sample input to justification program of 2.2.1 above. Input
contains paragraphs of information meant to be printed, but
no formatting information is included here. Format is
similar to a "Content" file of SGML.

Sample input to justification program of 2.2.1 above. Input
contains the formatting information that applies to the
printable data of 2.2.2. Format is similar (in concept) to a
"Style" file of SGML.

Sample output POSTSCRIPT® file generated by the
justification program of 2.2.1 using the input files shown in

2.2.2and 2.2.3.

(One) page printed on the Laser Writer Plus® printer using
the POSTSCRIPT® file of 2.2.4. Also, included is the timing
page that is ejected after a series of pages is printed.

Note: The pages that are shown in 2.2.2 through 2.2.5 are
used to generate timing data recorded in section 3.3 using

justification method # 1.

Appendix 2: Support Programs

Appendix 2: Support Programs

% Written for the Masters Thesis at RIT; Thomas L. Kowalczyk

% Performance Analysis of Text Oriented Printing Using PostScript

%

% This procedure interrogates the Apple Laser Writer Plus for the font widths
% of three of its printer resident fonts. The font widths of the normal ASCII
% printable characters are extracted, and font width tables for three font

% faces are printed. A 10 point font was assumed for all three fonts.

% Default units of POSTSCRIPT is the point, which is 1/72 of an inch. The

% "inch" procedure allows the program to specify coordinates in inches instead,
%

/inch {72 mul} def

The top of the font width columns is this distance from the bottom of the
page. Note that in POSTSCRIPT the origin is at the lower left corner of the
page with x increasing in value to the right and y increasing in value up,
like a normal Cartesian coordinate system.

o oP

o o0

co

/ytcp 8.25 inch def

%t Set up two strings of characters corresponding to the two columns of font
% width tables.

%

/sl ('"#$%& () *+,-./0123456789: ; <=>?RABCDEFGHIJKLMNOP) def

/st2 (QRSTUVWXYZ[\\]f_‘l~abcdefghijklmnopqrstuvwxyz{l}~) def

% Set up variables and position cursor before each column is printed
%
/reset_to_top

{
/n 0 def % character index into string
/y ytop def % set y cursor value to top of column position
x y moveto % position POSTSCRIPT cursor on page
} def

% Put title on the top of the page
%
/page_header
{
/Times-Roman findfont 24 scalefont setfont
2.5 inch ytop .5 inch add moveto
(Font Extraction Program) show
} def

Appendix 2.1.1 Font Extraction Program

_ pagel of 3
Appendix 2.1.1 : Support Programs

o dP odP o

o0

/print_col
{
/st exch def
11 48

{
st n 1 getinterval
dup /s exch def
show

x .2 inch add y
moveto

s stringwidth
Pop

100 mul round
cvr 100 div

{) cvs

show
/y y 12 sub def
X y moveto
/n n 1l add def
} for

} def

Selecting each individual character from the string passed to this procedure,
request its character width.

Then, starting at the existing (x,y) cursor

dP oo oP

dP dP dP dP OP JP OO JP dP P d° O dP O° oP o° JP oP

position, place each (character,width) pair at locations successively below
one another (i.e. print a column).

pass string of characters to procedure
loop from the first number to the last
number in increments of the second number

get the n'th character of the string

save it in the variable "s"

print it at the current (x,y) position
position cursor to print width to the right
of the character

get the width of the individual character

x width and y height are returned, so get
rid of the height, since it is of no interest
round the font width to the nearest 1/100 of
a point; note that the "round" operator yields
an integer and "cvr" converts it back to real
convert the number which represent the
character width to a printable string of
characters

and print it.

set up y to go down to the next line
position the cursor for next pair

increment index to reference next character

% Print two columns of font width tables.

%

/print_2_col
{
reset_to_top
stl print_col

/x x .8 inch add def

reset_to_top
st2 print_col

} def

P dP oP dP oP dP oP oP

set up variables and position cursor
generate and print first column of
(char,width) pairs

set up second columm to be to the right of
the first one just printed

set up variables and position cursor
generate and print second column of
(char,width) pairs

Appendix 2.1.1 Font Extraction Program

page2 of 3

Appendix 2.1.1 : Support Programs

% Code starts to execute here. 2All of the above are procedures are referenced

% by the calls below.
%

% Print title on the page.
page_header

% Select fonts, position the x cursor position, print a column title, and print

% the (char,width) pairs for three font faces.

%

/Times-Roman findfont 10 scalefont setfont
% select the font

/x 1 inch def % set up x position for first set of columns
x ytop 15 add moveto % position

(10 point Times Roman) show % and print title

print_2 col % extract and print table

/Times-Italic findfont 10 scalefont setfont
% select the font

/xz 3.25 inch def % set up x position for second set of columns
x ytop 15 add moveto % position

{10 point Times Italic) show % and print title

print_2 col % extract and print table

/Times-Bold findfont 10 scalefont setfont
% select the font

/x 5.5 inch def % set up x position for last set of columns
x ytop 15 add moveto % position
(10 point Times Bold) show % and print title
print_2 col % extract and print table
showpage % print and eject the page

Appendix 2.1.1 Font Extraction Program

. page3 of 3
Appendix 2.1.1: Support Programs

Following Page
is the
Actual Qutput
from the
Apple Laser Writer Plus®

Printer

Appendix 2.1.2 Printed Font Width Tables from Laser Writer Plus®

single printed page to follow

Appendix 2.1.2 : Support Programs

Font Extraction Program

10 point Times Roman 10 point Times Italic 10 point Times Bold

25 Q 722 25 0 722 25 Q 7718
! 333 R 6.67 ! 333 R 6.11 ! 333 R 722
" 408 S 5.56 " 4.2 S 50 " 555 S 5.56
50 T 6.11 # 50 T 556 # 50 T 6.67
$ 50 U 722 $ 50 U 722 $ 50 U 722
% 8.33 vV 722 % 833 V 6.11 % 100 vV 722
& 7.78 W 9.44 & 7.78 W 833 & 833 W 10.0
> 333 X 722 * 333 X 6.1 * 333 X 722
(333 Y 722 (333 Y 556 (333 Y 722
) 333 Z 6.11) 333 Z 556) 333 Z 6.67
* 50 [333 * 50 [389 * 50 [333
+ 564 \ 278 + 6.75 \ 278 + 57 \ 278

25] 333 , 25] 389 y 2.5] 333
- 333 A 469 - 333 A 422 - 333 A 581
. 25 _ 50 . 25 _ 50 . 25 _ 50
/ 278 ¢ 333 !/ 278 ‘£ 333 !/ 278 ¢ 333
0 50 I 20 0 50 | 2.75 0 50 | 22
1 50 ~ 541 1 50 ~ 541 1 50 ~ 52
2 50 a 444 2 50 a 50 2 50 a 50
3 50 b 5.0 3 50 b 50 3 50 b 5.56
4 50 c 444 4 50 c 444 4 50 ¢ 44
5 50 d 50 5 50 d 50 5 50 d 5.56
6 50 e 444 6 50 e 4.44 6 50 e 44
7 50 f 333 7 50 f 278 7 50 f 333
8 5.0 g 50 8 50 g 50 8 50 g 50
9 50 h 5.0 9 50 h 5.0 9 50 h 556
1 278 i 278 ;333 i 278 : 333 i 278
;278 j 278 ;333 J 278 3 333 j 333
< 564 k 50 < 6.75 k 4.44 < 8.7 k 556
= 5.64 1 278 = 6.75 1 278 = 5.7 1 278
> 5.64 m 7.78 > 6.75 m 722 > 57 m 833
? 444 n 50 ? 50 n 50 ? 50 n 5.56
@ 9.21 o 50 @ 92 o 5.0 @ 93 o 50
A 722 p 50 A 6.11 p 50 A 722 p 5.56
B 667 q 50 B 611 q 50 B 6.67 q 5.6
C 667 r 333 C 667 r 389 C 722 r 444
D 722 s 3.89 D 722 s 389 D 722 s 3.89
E 6.11 t 278 E 611 t 278 E 6.67 t 333
F 556 u 5.0 F 6.11 v 50 F 6.11 u 5.56
G 722 v 50 G 722 v 444 G 778 v 5.0
H 722 w 722 H 722 w 6.67 H 7.78 w 722
I 333 x 50 I 333 x 444 I 389 x 50
J 3.89 y 50 J 444 y 444 J 50 y 50
K 722 z 444 K 6.67 z 389 K 7.78 z 4.4
L 6.11 { 438 L 556 { 4.0 L 6.67 { 394
M 8.89 I 20 M 833 /| 275 M 944 | 22
N 722] 48 N 6.67 } 4.0 N 722 } 394
0O 722 ~ 541 0 722 ~ 541 O 7.78 ~ 52
P 5.56 25 P 611 25 P 6.11 25

m

T I HNN - W
NM O OCOMMEMMMOPINMINMNOOOOOOOOOORRGOWOOSNGGGN yyagay=22

2345587333552322555555555522555497667.6.&7.7337.6.&77.&7.6:,N
CNO HNMY NV O

Mmommam e

U B~~~k +

m

~ |

W 0 <
OWANHLN

.22

NWVWANPN~Y
N1V AN WY

“VIACOANUARKMOEHRAKEASRZ0OMOM ®

Appendix 2.1.3 Times-Roman® Font Width Table

pagel of 2

Appendix 2.1.3: Support Programs

5.0

o0 < s < M «© «© 0 o & N b el
3404043007-]07700003870020048084

3.&54541552252755553325575544245
A AQUVDVIHDIS AN ESOQLTHOLIPENRIINS—~1

Appendix 2.1.3 Times-Roman® Font Width Table

page2 of 2

Appendix 2.1.3: Support Programs

Batch_composition

Leading = 1 factor times font size for vertical spacing
Static_line_width = 7 inches

Justification_method = ragged right

Font = Times Roman

Font_size = 10 point

X_cursor = 1inch

Y_cursor = 10 inches

input fllename from command line
fllename.postscript << postscript header file

for fonts 1 through 7
lcad font widihs froin font width files

Word_char_cnt=0
Line_char cnt=0

Old_line_width=0
New line_width=0

Space_cnt =0

inside_word_flag = FALSE

Loop to get next character untli done

{

Get next character
if Character Is "normal"

then
{
inside_word_flag = TRUE
Current_word = Current_word + Character

}

else
If inside_word_flag = FALSE
then
{
If Character Is a space or carriage return
then
increment Space_cnt
eilse
Cali Get_command

main program
Initialize default global static composition state

variables; these variables are also set as specified in
the filename.structure file

Initialize dynamic composition state variables

current # of characters m word
current # of characters in line (including spaces)

before current word width is added
after space width and current word width is added

spaces before current word

i.e. nota "<", space, Or carriage return

set flag for next time through loop

character is not "normal”
a delimiter has been detected

more than one space Or carriage return
itls a vi<"
interpret command; look at structure file if necessary

Appendix 2.2.1 Batch Composition Pseudo-code

pagel of 3

Appendix 2.2.1 : Support Programs

else

{

inside_word_flag = FALSE

New_line_width = Oid_line_width +
Old_space_cnt * width of space +
width of Current_word

If New_line_width < Static_line_width

then

Line = Line + Spaces + Current_word

was inside a word
first delimiter after a word

Does the Line + Word fit on the line?

it fits, so add word to line

Line_char_cnt = Line_char_cnt + Space_cnt + Word_char_cnt
Total_space_cnt = Total_space_cnt + Space_cnt

Word_char_cnt=0
Qld_iine_wldth = New_line_width
Space_cnt=1

If Character = "<"

then

{

Print (Line)

Reset all dynamic comp varlables
Cali Get_command

}

else
Space_cnt=1

}

else

{

Justified_print (Line)
if Character = "<"
then

{

Print (Word)

Reset all dynamic comp varlables
Call Get_Command

}

else
{
Line = Word
Space_cnt=0
Reset all dynamic comp varlables
}

}
}
Print_trailer

}

get ready for next word

end of paragraph marker

Print unjustified line

get rid of "/p>", and "beginning of paragraph” marker
if it exists along with "structure” info. for new par.

space and CR both count as a space

end of "it fits"

it doesn't fit,
so print justified line
end of paragraph marker

Print unjustified line consisting of one word

get rid of "/p>", and "beginning of paragraph" marker
if it exists along with "structure” info. for new par.

Start building new line with the word that didn™ fit

end of "it doesn't fit"

end of "first delimiter after line”

end of loop "get next character”

"cat” the trailer postscript file that sets up timing
tests to the filename.postscript file

Appendix 2.2.1 Batch Composition Pseudo-code

page2 of 3

Appendix 2.2.1 : Support Programs

Get_com mand procedure to detect beginning and end of paragraphs
and setting of the global static composition
variables from the "structure” file

{

Get next character from fllename.data

if Character ="'/

then
read next three characters from fllname.data getrid of the “p", ">", and carriage return of the
end-of-paragraph command to get the input file
to the position for reading more data
eise
if Character = 'p' get rid of the ">", and carriage return of the
{ beginning-of-paragraph command to get the input file
read next two characters from filename.data to the position for reading more data
Get next character from fllename.structure
Loop untii Character = >’ reset the global static composition parameters when

a beginning-of-paragraph marker is detected

{
Get command Character from fllename.structure

all sttructure cmnds are read from the “structure” file

if Character = 'J'
Justification_method = integer from fllename.structure -

L
Leading = real number from fllename.structure

it 'F'
{
Font = Integer from 1 to 7 from fllename.structure
Font_slize = real number from fllename.structure
fllename.postscript << postscript font setup Instructions

}

if'C'
{
X_cursor = real number (in points) from filename.structure
Y_cursor = real number (in points) from filename.structure
filename.postscript << postscript cursor positioning instructions

}
if'w’
Static_line_width = real number (in inches) from filename.structure
} end of "loop until done™
} end of "characterisa'p'"
} end of Get_commmand routine

Appendix 2.2.1 Batch Composition Pseudo-code
page3 of 3

Appendix 2.2.1 : Support Programs

<p>

A? IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop
of film that is capable of being electrically charged, and is
sensitive to direct light. The IMAGE LOOP is driven around the
IMAGE LOOP CORE in a continuous motion for as long as copy exposures
are being made (see Figure 1).

</p>

<p>

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place
a negative charge on the IMAGE LOOP. This prepares the IMAGE LOOP
for exposure and development. The IMAGE LOOP starts moving on
command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns on

the PRIMARY CHARGER.

</p>

<p>

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to

the EXPOSURE area, where it is exposed to a reflected light copy
image that is focused on the IMAGE LOOP at precisely the right time,
as determined by LOGIC AND CONTROL. The original document is
illuminated by high intensity flash lamps for a short duration,
which prevents blurring of the image as it is exposed on the moving
IMAGE LOOP. The charge on the IMAGE LOOP is removed from the areas
that are exposed to light. The charge remains in the areas that are
not exposed. The exposure is said to discretely alter the charge
characteristics of the IMAGE LOOP so that the focused copy image is
recorded cn the IMAGE LOOP. This IMAGE LOOP image is known as an
electrostatic image.

</p>

<p>

D. AUXILIARY ERASE. Just before each first, and Jjust after each
last, exposure area is an improperly charged segment. These segments
are produced when the PRIMARY CHARGER is turned on at the time of
initial IMAGE LOOP movement and turned off during final IMAGE LOOP
movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP,
it floods the moving IMAGE LOOP base with light that desensitizes the
IMAGE LOOP to prevent unwanted development.

</p>

<p>

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE
LOOP area now enters the DEVELOPER STATION ASSEMBLY where positively
charged KODAK EKTAPRINT K Toner particles are attracted to the IMAGE
LOOP. Development occurs as the result of attraction of the toner
particles to the electrostatic image on the IMAGE LOOP. The toner
particles are carried away on the IMAGE LOOP surface for later
transfer to a copy paper.

</p>

<p>

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on
the IMAGE LOOP are salvaged at this point by the SCAVENGER ROLLER
and returned to the DEVELOPER STATION ASSEMBLY.

</p>

Appendix 2.2.2 Input Data " Content" File (All paragraphs)
pagel of 2

Appendix 2.2.2 : Support Programs

<p>

G. POST-DEVELOPMENT ERASE LAMP, To reduce the electrostatic stress
on the IMAGE LOOP and thereby increases its life, the POST
DEVELOPMENT ERASE LAMP is used to lower the high level charge that
was required for proper image development. This POST-DEVELOPMENT
ERASE process also helps to prevent residual image retention.

</p>

<p>

H. REGISTRATION. While the developed electrostatic image moves
around the CORE, a sheet of copy paper is advanced to the
REGISTRATION ASSEMBLY (not shown in Figure 1). At precisely the
right time, the copy paper is directed into contact with the IMAGE

LOOP and its developed image. This aligns the copy paper and the
image on the IMAGE LOOP.

</p>

<p>

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass under
the TRANSFER CHARGER, which produces a negative charge on the paper
surface to attract the positive charged developer toner. This
effectively transfers the copy image to the paper.

</p>

Appendix 2.2.2 Input Data "Content" File (All paragraphs)

Aqmcmﬁx22&!:8mmmnl&ogams

page2 of 2

<F
<F
<F
<F
<F
<F
<F
<F
<F

WWWNhNNMNDNDREHEKH

9.0 L 1.2 W6.531C 72.0 720.0>

11.0>
13.0>
9.0>

11.0>
13.0¥
9.0>

11.0>
13.0>

Appendix 2.2.3 Input Markup " Structure" File

Appendix 2.2.3 : Support Programs

pagel of 1

[Tsd usertime def

/Page {

[Times-Roman findfont 9.0 scalefont setfont
72.00 709.20 moveto

(A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous | i i ing electrically)sh
72.00 698.40 moveto uous loop of film that is capable of being electrically)show

(charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE in a continuous motion)show
72.00 687.60 moveto

(for as long as copy exposures are being made \(see Figure 1\).)show
[Times-Roman findfont 11.0 scalefont setfont
72.00 663.60 moveto

(B. PRIMARY CHARGER. The function of the PRIMARY CHARGER s to place a negative ch n)sh
72.00 650.40 moveto p egative charge on)show

(the IMAGE LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE)show
72.00 637.20 moveto

(LOOP starts moving on command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns)show
72.00 624.C0 movsto

(on the PRIMARY CHARGER.)show

[Times-Roman findforit 13.0 scalefont setfont

72.00 595.20 moveto

(C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the)show

72.00 579.60 moveto

(EXPQSURE area, where it is exposed to a reflected light copy image that is focused on)show

72.00 564.00 moveto

(the IMACE LOGP at precisely the right time, as determined by LOGIC AND)show

72.00 548.40 meveto

(CONTROL. The original document is illuminated by high intensity flash lamps for a)show

72.00 532.80 moveto

(shont duratian, which prevents bluming of the image as it is exposed on the moving)show

72.00 517.20 movete

(IMAGE LOOP. The charge on the IMAGE LOCP is removed from the areas that are)show

72.00 501.60 moveto

(exposed to light. The charge remains in the areas that are not exposed. The exposure is)show

72.00 486.00 movelo

(said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused)show

72.00 470.40 moveto

(copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as)show

72.00 454.80 moveto

(an electrostatic image.)show

fTimes-ltalic findfont 9.0 scalefont setfont

72.00 428.40 moveto

(D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an im properly charged segment.
These)show

72.00 417.60 moveto

(segments are produced when the PRIMARY CHARGER is tumed on at the time of initial IMAGE LOOP movement and turned
off)show

72.00 406.80 moveto)
(during final IMAGE LOOP movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the
moving)show

72.00 396.00 moveto

(IMAGE LOOP base with light that desensitizes the IMAGE LOOP to prevent unwanted development. Jshow
[Times-ltalic findfont 11.0 scalefont setfont

72.00 372.00 moveto

(E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now)show
72.00 358.80 moveto .

(enters the DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner)show

72.00 345.60 moveto _
(particles are attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner)show

72.00 332.40 moveto

Appendix 2.2.4 Text POSTSCRIPT® File
page 1 of 6

Appendix 2.2.4 : Support Programs

(particles to the electrostatic image on the IMAGE LOOP. The toner particles are carried away on the)show
72.00 319.20 moveto

(IMAGE LOOP surface for later transfer to a copy paper. Jshow

[Times-ltalic findfont 13.0 scalefont setfont

72.00 290.40 moveto

(F. SCAVENGER ROLLER. Any developer carrier granules \(iron\) left on the IMAGE)show

72.00 274.80 moveto

(LOOP are salvaged at this point by the SCAVENGER ROLLER and retumed to the)

show

72.00 259.20 moveto

(DEVELOPER STATION ASSEMBLY. jshow

[Times-Bold findfont 9.0 scalefont setfont

72.00 232.80 moveto

(G. POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and)show
72.00 222.00 moveto _

(thereby increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge)show
72.00 211.20 moveto

(that was required for proper image development. This POST-DEVELOPMENT ERASE process also helps to)show
72.00 200.40 moveto

(prevent residual image retention.)show

[Times-Bold findfont 11.0 scalefont setfont

72.00 178.40 moveto

(H. REGISTRATION. While the developed electrostatic image moves around the CORE, a)show

72.00 163.20 moveto

(sheet of copy paper is advanced to the REGISTRATION ASSEMBLY \(not shown in)show

72.00 150.00 moveto

(Figure 1\). At precisely the right time, the copy paper is directed into contact with the)show

72.00 136.80 moveto

(IMAGE LOOP and its developed image. This aligns the copy paper and the image on)show

72.00 123.60 moveto

(the IMAGE LOOP.)show

[Times-Bold findfont 13.0 scalefont setfont

72.00 94.80 moveto

(I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass)show
72.00 79.20 moveto

(under the TRANSFER CHARGER, which produces a negative charge on)show
72.00 63.60 moveto

(the paper surface to attract the positive charged developer toner. This)show

72.00 48.00 moveto

(effectively transfers the copy image to the paper.)show

usertime /TO exch def % record time before showpage
showpage % operator is executed

} def

usertime /Ted exch def % record time at end of file download
Ted Tsd sub /Tdl exch def % calculate download time

o/ *
% Procedures to time the printing of pages and generate and time the delay between pages.
o/, *

4

Isec % one second delay under no load
% keep track of ime actually taken
usertime /T exch def {
1228 {373.737 737.373 mul pop } repeat
} repeat
usertime T sub def} def

Appendix 2.2.4 Text POSTSCRIPT® File
page2 of 6

Appendix 2.2.4 : Support Programs

usertime /T exch def
Page

usertime T sub def

} def

% Print one page and keep time

% Calling sequences for the print (and time) pages

% and the delay (again with timing)

[Print_Pages
{
[T1 usertime def

Pags
usertime T1 sub /T18B exch def

TO T1 sub /T1A exch def

2Pr
11 sec
T3 Pr
/W2 2 sec
T4 Pr
/W3 3 sec
15 Pr
/W5 5 sec
16 Pr
/W8 8 sec
T7 Pr
/W12 12 sec
T8 Pr
/W16 16 sec
19 Pr

} det

% calculate time that the first page
% took to execute

% calculate time that the first page

% took to execute, less the *showpage"

% T2 gets time to print second page

% W1 gets actual delay time (1 second under no load)

% T3 gets time to print third page

% W2 gets actual delay time (2 seconds under no load)
% T4 gets time to print fourth page

% W3 gets actual delay time (3 seconds under no load)
% T5 gets time to print fifth page

% W5 gets actual delay time (5 seconds under no load)
% T6 gets time to print sixth page

% W8 gets actual delay time (8 seconds under no load)
% T7 gets time to print seventh page

% W12 gets actual delay time (12 seconds under no load)
% T8 gets time to print eighth page

% W16 gets actual delay time (16 seconds under no load)

% T9 gets time to print ninth page

Appendix 2.2.4 Text POSTSCRIPT® File

Appendix 2.2.4 : Support Programs

page 3 of 6

o/
/0

% Routines to draw a simple graph relating delay time between pages

o/
0

% on the x axis) to the time to print the page (on the y axis)

/Draw_Graph
{

[Times-Roman findfont 12 scalefont setfont

Ix 160 def /y 280 def

/GraphXinit 125 def
/GraphY nit 350 def
/GraphUnit 0.02 def

GraphXInit GraphYnit 400
0 400 neg rlineto
400 0 rlineto stroke

/GX GraphXInit 16 sub def
/GY GraphYInit 4 sub def

GX GY moveto (0) show

% 20 points per second

add moveto % draw the graph axes

% put numbers in

GX GY 100 add moveto (5) show % ony axis

-20 0 moveto
gsave 90 rofate
(Page Generation Time

[in seconds]) show grestore

GX GY 200 add moveto (10) show
GX GY 300 add moveto (15) show
GX GY 400 add moveto (20) show

/GX GraphXInit 7 sub def
/GY GraphYInit 12 sub def

GX GY 10 sub moveto

GX 100 add GY moveto (5) show % on x axis

0 -15 rmoveto (Wait Time After Previous Page [in seconds]) show
GX 200 add GY moveto (10) show

GX 300 add GY moveto (15) show

GX 400 add GY moveto (20) show

GraphXInit GraphY Init moveto

100 -3.5 rmoveto
0 7 rlineto

100 0 rmoveto

0 -7 rineto

100 0 rmoveto

0 7 rlineto

100 0 rmoveto

0 -7 rineto stroke

GraphXInit GraphYInit moveto

-3.5 100 rmoveto
7 O rlineto

0 100 rmoveto

-7 0 flineto

0 100 rmoveto

7 O riineto

0 100 rmoveto

-7 0 rineto stroke
} def

% put tick marks in
% x axis, 5

% x axis, 10

% x axis, 15

% x axis, 20

% put tick marks in
%y axis, 5

%Yy axis, 10

%y axis, 15

%y axis, 20

Appendix 2.2.4 Text POSTSCRIPT® File

Appendix 2.2.4 : Support Programs

page4 of 6

{

lyy exch def

3 add yy moveto
-3 3 fineto

-3 -3 rlineto

3 -3 fineto

3 3rlineto
stroke

} def

/ShowPageTime

{

X 200 add y moveto
(Page Time) show show
x 290 add y moveto

(=) show

dup /Ty exch def

() cvs show

} def

/ShowWaiiTime
{
d
(Wait Time) show show (sec) show
x 90 add y moveto
(=) show
dup /Wx exch def
() cvs show
} def

IGraphit

{

Wx GraphUnit mul GraphXinit add
Ty GraphUnit mul GraphYinit add
Diamond

} def

% procedure to draw a point on the graph

% procedure to display time to generate page

% procedure to display actual delay time

% procedure to graph a (Delay,Page) time pt.

Appendix 2.2.4 Text POSTSCRIPT® File

Appendix 2.2.4 : Support Programs

page S of 6

o/ *

% Calls to the above routines to print the timing data.
%

o/ *

/Report_Times

{

Draw_Graph

X y moveto

{Download Time;j show

x 100 add y moveto

(=) show

Tdi{) cvs show

/d {x y 15 sub dup /y exch def moveto} def

d T1A {1 \(A\)) ShowPageTime

d T1B (1 \(B\)) ShowPageTime

0 (0) ShowWaitTime T2 (2) ShowPageTime Graphit
Wi (1) ShowWaitTime T3 (3) ShowPageTime Graphit
W2 (2) ShowWaitTime T4 (4) ShowPageTime Graphlt
W3 (3} ShowWaitTime T5 (5) ShowPageTime Graphlt
W5 (5) ShowWaitTime T6 (6) ShowPageTime Graphit
W8 (8) ShowWaitTime T7 (7) ShowPageTime Graphit
W12 (12) ShowWaitTime T8 (8) ShowPageTime Graphlt
W16 (16) ShowWaitTime T9 (9) ShowPageTime Graphlt
d x 200 add y moveto

(Ave Pg Time 2-9) show

x 290 add y moveto
(=) show

T2 T3 add T4 add T5 add T6 add T7 add T8 add T9 add 8 div

{) cvs show

[Times-Italic findfont 12 scalefont setfont
d d (Note: All times are specified in milliseconds.) show

} def
Print_Pages
Report_Times

showpage

Appendix 2.2.4 Text POSTSCRIPT® File

Appendix 2.2.4 : Support Programs

page 6 of 6

Following Pages
are the
Actual Qutput
from the
Apple Laser Writer Plus

Printer

Appendix 2.2.5: Printed Text & Timing Pages from Laser Writer Plus®
two printed pages to follow

i : : i ipt® Text Pages
Appendix 2.2.5 : Support Programs : Generation of PostScnp't®
Printed Text and Timing Pages from the Apple Laser Writer Plus®

A. IMAGE LOOP. The KODAK EKTAPRINT IMAGE LOOP is a continuous loop of film that is capable of being electrically
charged, and is sensitive to direct light. The IMAGE LOOP is driven around the IMAGE LOOP CORE in a continuous motion
for as long as copy exposures are being made (see Figure 1).

B. PRIMARY CHARGER. The function of the PRIMARY CHARGER is to place a negative charge on
the IMAGE LOOP. This prepares the IMAGE LOOP for exposure and development. The IMAGE
LOOP starts moving on command from LOGIC AND CONTROL. LOGIC AND CONTROL then turns
on the PRIMARY CHARGER.

C. EXPOSURE. The charged IMAGE LOOP continues around the CORE to the
EXPOSURE area, where it is exposed to a reflected light copy image that is focused on
the IMAGE LOORP at precisely the right time, as determined by LOGIC AND
CONTROL. The original document is illuminated by high intensity flash lamps for a
short duration, which prevents blurring of the image as it is exposed on the moving
IMAGE LOOP. The charge on the IMAGE LOOP is removed from the areas that are
exposed to light. The charge remains in the areas that are not exposed. The exposure is
said to discretely alter the charge characteristics of the IMAGE LOOP so that the focused
copy image is recorded on the IMAGE LOOP. This IMAGE LOOP image is known as
an electrostatic image.

D. AUXILIARY ERASE. Just before each first, and just after each last, exposure area is an improperly charged segment. These
segments are produced when the PRIMARY CHARGER is turned on at the time of initial IMAGE LOOP movement and turned off
during final IMAGE LOOP movement. As the unwanted areas pass under the AUXILIARY ERASE LAMP, it floods the moving
IMAGE LOOP base with light that desensitizes the IMAGE LOOP to prevent unwanted development.

E. DEVELOPER STATION ASSEMBLY. The properly charged and exposed IMAGE LOOP area now
enters the DEVELOPER STATION ASSEMBLY where positively charged KODAK EKTAPRINT K Toner
particles are attracted to the IMAGE LOOP. Development occurs as the result of attraction of the toner
particles to the electrostatic image on the IMAGE LOOP. The toner particles are carried away on the
IMAGE LOOP surface for later transfer to a copy paper.

F. SCAVENGER ROLLER. Any developer carrier granules (iron) left on the IMAGE
LOOP are salvaged at this point by the SCAVENGER ROLLER and returned to the
DEVELOPER STATION ASSEMBLY.

G.POST-DEVELOPMENT ERASE LAMP. To reduce the electrostatic stress on the IMAGE LOOP and
thereby increases its life, the POST DEVELOPMENT ERASE LAMP is used to lower the high level charge
that was required for proper image development. This POST-DEVELOPMENT ERASE process also helps to
prevent residual image retention.

H. REGISTRATION. While the developed electrostatic image moves around the CORE, a
sheet of copy paper is advanced to the REGISTRATION ASSEMBLY (not shown in
Figure 1). At precisely the right time, the copy paper is directed into contact with the
IMAGE LOOP and its developed image. This aligns the copy paper and the image on

the IMAGE LOOP.

I. TRANSFER CHARGER. The IMAGE LOOP and copy paper now pass
under the TRANSFER CHARGER, which produces a negative charge on
the paper surface to attract the positive charged developer toner. This
effectively transfers the copy image to the paper.

Page Generation Time [in seconds]

207
15+
10+
¢
< © < <
< o
> T °
0 } 4 } —
5 10 15 20
Wait Time After Previous Page [in seconds]
Download Time = 5396
Page Time 1 (A) = 127394
Page Time 1 (B) = 132492
Wait Time Osec = 0 Page Time 2 = 7364
Wait Time 1 sec = 1714 Page Time 3 = 5648
Wait Time 2 sec = 3538 Page Time 4 = 5552
Wait Time 3 sec = 5360 Page Time 5 = 4762
Wait Time 5 sec = 7500 Page Time 6 = 6158
Wait Time 8 sec = 10500 Page Time 7 = 6160
Wait Time 12 sec = 14498 Page Time 8 = 6218
Wait Time 16 sec = 18496 Page Time 9 = 6212

Ave Pg Time 2-9 = 6009.25

Note: All times are specified in milliseconds.

	Performance analysis of text-oriented printing using PostScript
	Recommended Citation

