
s Product Engineering Special Projects

To: Jaguar Hardware ERS Distribution
From: Toby Farrand
Date: 13November1989
Re: Review of Jaguar Harcl,ware ERS

Because we are limiting the number of ERS copies that are going outside the group, we would
like to make sure you, or a person from your group reads and gives us feedback on the document.

- If you cannot or do not wish to participate in the review process, then please let us know so that
we can pass your copy on to someone who can give us. the feedback we need to make the Jaguar
machine the best possible machine. The time to change anything in the Jaguar hardware design
is now. It is imperative that any feedback you have on the proposed design be given as soon as
possible. In the next month, the Jaguar team will be holding a series of design reviews to try to
encourage your feedback on the hardware :e,RS. Because of the complexity of the Jaguar design,
the design reviews will not be able to go into great detail on the design. These will mostly be
used as forums to encourage discussion of any controversial points in the de~ign. Written
comments and feedback directly to individ\,lals on the Jaguar team ate quite welcome.

In short, by giving you a hardware ERS, we are asking you to participate in a meaningful way in
the success of the Jaguar machine. We expect that this will require a non-uivial amount of your
time. We appreciate and wish to be responsive to your feedback.

CONFIDENTIAL Apple Computer Inc., Special Projects 1

Apple Forward

External Reference Specification
S~:M~ial Projects

.·.::::;:~!~~!;!~!~:::~:~:~:::~:~:~;::
.. ;:- :::/)!~~~~~1;~~ ::·::::::~\:·::\t~r:

•.... -:·:::>:·:·
:-:.:::·:=::·····

:::::::::::::::::::::::::;.;:;:;:;:;:;:;::::

• . 0:M$,~i:IPAA

.:::::::;:::·:::········

"Develop a new family of machines that will extend the markets
already pioneered by the Macintosh."

We will do this by developing a revolutionary baseline for personal computing
that will spark the imaginations of developers and customers. Jaguar will be the
most exciting personal computer you can buy for the desktop~

A tall order..... how will we do it?

Jaguar is maniacally focused on the user. Though the computer is very powerful.
it will seem extremely personal. The technologies embodied in the architecture are
there primarily because they can be used to contribute to the user's experience.

From the users perspective, Jaguar will certainly do all things accomplished by
personal computers today, only faster. In addition, his/her interaction with the
system will be different in three new ways:

Inte~rated l\1edia
Jaguar is as fluent with digital video and audio as Macintosh is with bit-mapped
graphics. All video and audio capabilities are fully integrated into both the system
hardware and software. The system is not only capable of editing and playing
back integrated media, it can synthesize it as well. In hardware, this means Jaguar
can draw 2D and 3D images at animation rates. In software, the graphics
primitives are provided, as well as tools to generate scenes and control movement.
These capabilit!~ mean that Jaguars will be supgp ~imulation and visualizatio.n.
engines. ..:·='''''''/"" .. :::=:===::=::=:'='=':' .. : ::::=. ,,,,,,,,,,,,,.,

:f~~~~f \ ::::::::: :=(t~f))ff ····:::·
·.·.·.;.;::::::::;::;:;:;:;:: ... ·. .·:;;;:;:;::;=:::::-:·:.:····:·:·· ::::::::::::::::::::::/:::::::

Dia:itd'.t,l.iiisl~nt .:::?''.''':=:':::"' .. ''.:. ..: ·: :: ... =':···
Jaguar ·wni,:r,~aatnentally change the way .YQ~(Work, with computers to a .. ~n.er.: .

;:::\;:;:;:;:;.:.;.;:;.;:::::::.·:·:·:-:- ::::::;:::::;::::::·

high-end models are being planned to at least the block level to assure we do
achieve a scalable family.

Every Jaguar in the family will be capable of supporting the previously mentioned
functionality. This means all Jaguars have at a minimum: lots of Mips and
MFlops, digital signal processing, integral phone and ISDN connections, sound
in/out, and video decompression hardware. The attached Hardware ERS
describes in detail the first implementation of these and other capabilities.

The Jaguar Software ERS will be published approximately May 1. Other sections
to be also completed include: monitors, packaging, and power supply.

Once again, thank you for your interest and time.

Apple] aguar Hardware ERS

External Reference Specification
S.J2,,~f=ial Projects

Jaguar Monitor ERS
Jaguar Power SUpply ERS
Jaguar Product Design ERS

In addition to the base machine, several expansion cards are anticipated to be available at product
introduction. These will be described in additional ERSs. Several cards have been discussed:

jaguar Video Capture (and Compression?) card
jaguar Network cards

Apple CONFIDEN11AL jaguar / lardware HRS 7(,b/e of Contents

Table of Contents

the Jagl

Jaguar Hardware Introduction .. JH0-1
Real Time Animtion/Simulation ... JH 0-1
Connectivity .. JH 0-1
Integrated Media .. JH0-2
Raising the Base ... JH 0-2

New Concepts in Jaguar ... JH 0-3
Intelligent I/O .. JH0-3
Window DMA (Graphics Streams) ... JH0-3
Video Decompression ... JH0-4

Jagl Hardware Overview ... JH0-5
CPU(s) ... JH0-6
I/O Subsystem ... JH 0-6

Low Cost Hard Disk (LCHD) .. JH0-6
High Capacity Floppy : ... JH0-6
SCSl .. JH0-6

TOC-1

jaguar l lardware ERS Table of Contents Apple CONFl!Jl:'N71!1l

EtherNet. ... JH0-6
LocalTalk/ Asynchronous Serial .. JHO-7
ISDN ... JH0-7
Analog Phone ... JH0-7
Sound Support ... JH0-7
ADB .. JH0-7
Desktop Interconnect. .. JH0-7

Main Memory ... -.. JH0-7
System Interconnect. .. JH0-8
Frame Buffer ... , ... JH0-8
Video Back End .. JH0-8
E&W ... JH0-8
BLT (Bus Like Thing) .. JH0-8
Video Decompression ... JH 0-9

Expansion Options ... JH0-9
High Capacity Hard Disc ... JH0-9
Magneto Optic (MO) Drive .. JH0-9
Digital Audio Tape (DAT) Drive .. JH0-9
Video Input Card .. JH0-9
Real Time Compression ... JH0-10
Network Support ... : JH0-10

Jaguar CPU (CPU)

This chapter introduces some of the important concepts which are
contained within the processor (Motorola MC88110) used for Jaguar.

Introduction .. : .. CPU-1
The Motorola 88110 (XJS)" .. CPU-1

Multiple Independent Function Units ... CPU-1
Dual-Instruction Issue : : .. CPU-1
General Register File (GRF) .. CPU-2
Extended Register File (XRF) ... CPU-2
Control Register File (CRF) .. CPU-2
Fast Floating Point. .. CPU-2
Graphics Instructions ... CPU-2
On-chip Caches ... CPU-3
Cache Coherency Protocol. ... CPU-3
Branch Target Cache .. CPU-3
Address Translation Hardware ... CPU-4
Block Address Translation .. CPU-4
Interrupts ... CPU-4

XJS Bus Interface ... CPU-5
64-bit Data Path .. CPU-5
Address Pipelining ... CPU-5

Cache Coherency ... : ... CPU-5

TOC-2

1tpple CONFff)EN17AL }af!.uar I lardware l:RS Tah/e of ContenL~

Memory (MEM)

This chapter describes the Main Memory, Frame Buffer and System
Controller for Jag 1.

Introduction ... MEM-1
System Memory ... MEM-1

Parity ... MEM-2
Frame Buffer ... MEM-3

~i;\ill:::::::::_:_:_:_:_:_:_:_::.::::::::·:::::::::::~111:::::::::::::::::::::.::_::_:_:_:_:_:_:_:_;4;1!~~~
Hardware I mp1ementation •«=•«•=••=•=•=••=•=•=••:•• ·=·,.,.,,.,,.,,·=·=•=<•,;MEM 7

~~~•::::::::::·:·::·:·:·:·::·:·:·:::::::::::1~~~111::·:::::::::::::::·::·:·::1~'111!~::~ 
::;::::;::::::::: ::::::: ·:-::::;::::: -::;::::·::·· :;::;:::::: ·:::::::::::::::·:::::.:.: .. ·,·.:.' ... :,:_i:::_.','.:?" :::::::>:\::::::;:;::;:::;:·:·::::: 

./;fr· \{\ i!t!r~r:?~r ·.·.·.·.·.··===········ · 
~~/m}~:~~ij~~~t~~::=====::::::::; :=:=:-= ·= -::: ==== ==:::::=:=== ==:=:=:::: :: r~~~~~~~~~~i:~:~:~:~:~:~::::::::::=:= 
:;:::;:::;:::::::·:::·:;:;.;:;:;:;:;:;:;:·:· 

Jaguar Gi@!IR!lps Overvi,@~ (Jelill~i!JJ:J:: t> !!ij:j:; o=,·· 

~:c~:~::!~:i;bl~:~~!~liif .. -.1_••-.:· .• _ •. w_:_._'_f_.,_.,_:=c·i0=~ll1;,~:.~-; .• :t~~ 
:::::·:::::-:.:.; <·: :;:::;::::::::::::::::::::::::: :·>>:·:·:·:·:-:.:·:;:;:::::: ;:;:;:;:::::-:::;:;:;:;:::::::;: ::::::: :;:;:::::::::::::::;:::;:;:::::::::::::::;:::::::··:<·>"•'•'•''''. 

True color and gray scale ...................................................................................................... JG0-5 
Monitor ............................................................................................................................. JG0-7 
Video back end .................................................................................................................. JG0-7 
Frame buffer ...................................................................................................................... JG0-8 
\X'i!son ............................................................................................................................... J G0-8 
Processor and graphics instructions ...................................................................................... JG0-9 
Video Decompression ......................................................................................................... JG0-11 
Typical graphics scenario ..................................................................................................... JG0-12 

Video Back End (VBE) 

This· chapter deals with the output side of the Frame Buffer and how 
data gets processed for both RGB and Video (NTSC/PAL) monitors. 

Introduction ....................................................................................................................... VBE-1 
Frame Buffer Organization ................................................................................................... VBE-3 

TOC-3 



jaguar //ardware ERS Table of Contents Apple CONFIDENTIAL 

Frame Buffer Addressing ........................................................................................... VBE-3 
Convolution Address Translation ............................................................................... VBE-4 

ELMER ............................................................................................................................... VBE-7 
Introduction ........................................................................................................... VBE-7 
Frame Buffer Interface ............................................................................................. VBE-9 
Convolution ............................................................................................................ VBE-9 

Input Buffering and Reordering ..................................................................... VBE-10 
Loading Video Mask .......................... ~ ......................................................... VBE-10 

CURSOR ................................................................................................................. VBE-11 
Overview .................................................................................................... VBE-11 
Cursor Region Control. .............................................................. _. ................... VBE-12 
Cursor Refresh ............................................................................................. VBE-12 

MPU Interface ......................................................................................................... VBE-13 
Video Timing Generation .......................................................................................... VBE-14 
Vertical Line Interrupts ............................................................................................. VBE-15 
Video RAM Address Generation and Serial Port Control ................................................ VBE-15 
CLUT/DAC Interface ................................................................................................ VBE-16 
Monitor Sense Lines ................................................................................................. VBE-17 
Control I Status Registers .......................................................................................... VBE-18 
Pinout. ................................................................................................................... VBE-20 

Video Output. ..................................................................................................................... VBE-21 
NTSC/P AL Video Output. ......................................................................................... VBE-22 
Component RGB Output. .......................................................................................... VBE-22 

Clock Generation ......................................................................................... VBE-23 

Video Decompression (VDC) 

This chapter deals with the hardware which will support real-time 
decompression of video data. 

Scope ................................................................................................................................. VOC-1 
Definitions ......................................................................................................................... VOC-1 

·The problem ........................................................................................................................ VOC-1 
Goals .................................................................................................................................. VOC-3 
Architecture ........................................................................................................................ VOC-4 
DCT unit ............................................................................................................................. VOC-7 
Block update unit. ............................................................................................................... VOC-10 
DCT and Block update unit instruction sequencers .................................................................. VOC-11 
RGB conversion unit ............................................................................................................ VOC-12 
Implementation .................................................................................................................. VOC-14 
Sound compression .............................................................................................................. VOC-18 
Issues ................................................................................................................................. VOC-18 
Software interface specifications .......................................................................................... VOC-19 

TOC-4 



Apple CONFIDEN77Al }ap,uar J lardware f:'RS Table of Contents 

Expansion and Wilson (E&W) 

This chapter deals with the Window DMA architecture and 
implementation for Jagl. 

Introduction ............................................................. ,. ........................................................ E&W-1 
What is Wilson? ............................................ ~ .......................................................... .E&W-1 
Clarification of Terms ............................................................................................. .E&W-2 
The Wilson IX>cuntents ............................................................................................. E&W-2 

Wilson High Level Software .................................................................................................. .E&W-23 
Real Time ................................................................................................................ E&W-23 
Graceful Degradation ............................................................................................... E&W-24 
Allocation of CPU Cycles and Bandwidth ................................................................... E&W-24 
A View Of Software .................................................................................................. E&W-25 

Animation Toolbox ...................................................................................... E&W-25 
Video Toolbox ............................................................................................ E&W-26 
Too!Box Core .............................................................................................. E&W-26 
Window, Layer, and View Manager ................................................................. E&W-27 
Event Server ................................................................................................ E&W-27 
CPU Cycle Manager ....................................................................................... E&W-27 
Scheduler .................................................................................................... E& W-27 
Bandwidth Manager (BWM) .......................................................................... E&W-28 
Wilson Manager ........................................................................................... E&W-29 
CPU Cycles & Their Relationship To BandWidth .............................................. E&W-30 
Tear Free Updates ........................................................................................ E&W-30 
Micro Bandwidth Manager (MBWM) .............................................................. E&W-32 

TOC-5 



jaguar I lardware ERS Table of Contents Apple CONFIDEN'/7AL 

Wilson Manager Software Interface ............................................................................ E&W-33 
Wilson Low Level Software .................................................................................................... E&W-43 
Wilson Hardware Implementation ......................................................................................... E&W-47 

Hardware Operation Summary .................................................................................. E&W-48 
Hardware Interface .................................................................................................. E&W-48 

Pinout ........................................................................................................ E&W-48 
Pin Descriptions ......................................................................................... .E&W-50 

Implementation Description ......................... : ........................................................... E&W-53 
Implementation Details ............................................................................................ E&W-54 

BLT Interface .............................................................................................. E&W-54 
XJS Bus Interface ......................................................................................... E&W-55 
Register File ................................................................................................ E&W-56 
Wilson ........................................................................................................ E&W-56 

RectRegion Source Resource (RRSR) .................................................. E&W-57 
RectRegion Destination Resource (RRDR) .......................................... E&W-61 
Pixel Munger .................................................................................... E&W-62 
Blender ........................................................................................... E&W-63 
Sequencer Block .............................................................................. E&W-64 

Arbitration .............................................................................................................. E&W-65 
Video BackEnd ....................................................................................................... E&W-65 
Error Handling ......................................................................................................... E&W-66 
Power Consumption ................................................................................................. E&W-67 
Gate Count ............................................................................................................. E&W-67 
Reset. ..................................................................................................................... E&W-67 
Interrupts ............................................................................................................... E&W-67 
Power Down (Sleep Mode) ........................................................................................ E&W-69 
Memory Map ........................................................................................................... E&W-69 

Programmers Model ............................................................................................................. E&W-71 
Programmer's Model. ................................................................................................ E&W-71 

Virtual Memory ............................................................................................ E&W-71 
Queuing Model. ........................................................................................... E&W-72 
Dynamic Queue Extension ............................................................................ E&W-73 
Stopping a Channel ...................................................................................... E&W-74 

Examples ............................................................................................................................ E&W-75 
Example Wilson Data Flows ....................................................................................... E&W-75 
Inexpensive (Low Quality) Live Video Example ........................................................... E&W-78 

·Quality Live Video Support Example .......................................................................... E&W-80 
Single Back Buffered Animation ................................................................................ E&W-82 
Recording & Displaying Sequential Frames .................................................................. E&W-85 

Issues ................................................................................................................................. E& W-87 
Issues ..................................................................................................................... E&W-87 

Bus Like Thing (BLT) 

This chapter deals with the expansion bus of Jaguar. 

Introduction ....................................................................................................................... BLT-1 
Concepts and Facilities ........................................................................................................ BLT-3 

TOC-6 



Apple CONFIDENTIAL jaguar J lardware ERS Table of Contents 

Important Terms ..................................................................................................... BLT-4 
BLT Architecture ..................................................................................................... BLT-6 
Card Interface ......................................................................................................... BL T-8 
Streams .................................................................................................................. BLT-10 

Card Interface .................................................................................................................... .BLT-11 
Basics ................................................................................................................... .BLT-11 
Signals ................................................................ ; ................................................... BLT-12 

Data Control .................................... ;~ ......................................................... BLT-13 
Header Control. ........................................................................................... BLT-17 
Packet Status ............................................................................................. .BLT-21 

pa&~;i;;;;:~~:~:.:~.:.:.::.:.:.:;-_::.:;.;.:;•::::::::;;;:.::.:;;.:.:;.:.::L::~;:~•ml 
Connector ................................................................................................... BLT-54 

Live Insertion .......................................................................................................... BLT-54 
Software Interface ............................................................................................................... BLT-57 

Firmware ................................................................................................................. BLT-57 
Format Block .............................................................................................. BLT-57 
Routines .................................................................................................... .BLT-59 
BLT Support Routines .................................................................................. BLT-59 

Initialization .................................................................................. .BLT-59 
Card Disable .................................................................................... BLT-60 
Error Handling ................................................................................. BLT-60 

Wilson .................................................................................................................... BLT-61 
BLT Hardware Implementation ............................................................................................. BLT-63 
Issues ................................................................................................................................. .BLT-65 

TOC-7 



jaguar Hardware ERS Table of Contents Apple CONFJ[)J:N77AL 

1/0 Subsystem (1/0) 

This chapter introduces the concepts and implementation of the I/0 
subsystem for Jaguar. 

Introduction ............................................................. ~ ...................................................... .. .II0-1 
What is VO? ........................................................................................................... .II0-1 

What is NOT VO? ............................................................................ : .......... .110-2 
Atomic Unit of Transfer ........................................................................................... .110-2 
Devices of Interest ................................................................................................. .110-2 
Jaguar IIO Subsystem .............................................................................................. .II0-3 
Architectural Overview ............................................................................................ .II0-3 
Asynchronous Input ................................................................................................. 110-4 
Jagl Implementation .............................................................................................. .II0-4 

Mazda, the Chip ......................................................................................... . II0-5 
Inside Mazda ......................................................................................................... .110-5 

Wankel, the VO Engine ............................................................................... .II0-6 
VO Modules (IOMs) ................................................................................... .IIO-7 

Miscellaneous Mazda Support .................................................................................. .IIO-7 
Sample Rate Conversion .............................................................................. .II0-8 
Booting Support ........................................................................................ .II0-8 
Reduced Power Control. .............................................................................. .110-8 
Interrupts .................................................................................................. .110-8 

Issues .................................................................................................................... .II0-8 
IIO Architecture ................................................................................................................. .II0-9 

Terminology ........................................................................................................... .110-9 
Channel Programs .................................................................................................... .110-10 

Channel Program Organization ...................................................................... II0-10 
Channel Command Definition ....................................................................... .110-10 
Channel Program Pointers ............................................................................ .110-13 
Channel Program Examples ........................................................................... .110-13 

Ethernet Transmit. ........................................................................... V0-13 
Ethernet Receive ............................................................................ .II0-14 

Aborting Channel Programs .......................................................................... .II 0-15 
Asynchronous Events ................................................................................. .. .II0-15 

Interrupts .............................................................................................................. .110-16 
Programming Model, and Multiprocessor Considerations ............................... .. .II0-17 
External Interrupts ...................................................................................... .II 0-19 

Mazda 1/0 Controller .......................................................................................................... .II0-21 
Wankel Processor ................................................................................................... .110-22 

Architecture ............................................................................................... .II0-22 
Instruction Set ........................................................................................... .110-24 

ALU Operations ............................................................................... II0-24 
Loads and Stores .... : ....................................................................... .110-25 
Branches ........................................................................................ .II0-26 
Jumps ............................................................................................ .II0-26 
Other Instructions .......................................................................... .110-27 

Description of Operation ............................................................................ .II 0-28 

TOC-8 



Apple CONFIDEN77AL jaguar //ardware ERS Table of Contents 

Program Counter ............................................................................. .l/0-28 
Wankel Stack ................................................................................. .1/0-29 
Task Link File ................................................................................. .1/0-30 

TaskO ........................................................................................................ .l/0-30 
Initialization .................................................................................. .I/0-30 
Adding a Task to Wankel. ................................................................ .1/0-31 
Removing a Task from Wankel .......................................................... I/0-32 

Wankel Interfaces ............................. ~ ..... ~ ..................................................... I/0-33 

/;j ~:rrr 

····•:::·•••:i•:•••··· 
_::: ... · 

:;:·:·:::'.;::<::::::::: 

••111•1111•:1111•: 
;::::::::::::::}::;:: 
:::::::::::;:;f:::::; 
:::: :::::::::~:~:::::::: 

U!/@!!~;~!}~i 

~~))~@~ ?} 

CC File ........................................................................................... .1/0-33 
Individual task code ........................................................... .1/0-34 

·.:::::: 

.·.·.·. ·. •. · ... -.;:: ::~~~~;:;: ;:·: .;:: .. ·: :·. · ... · .. 
. ·.·.·:·:-;.:.:·:.:-:-:-:-:-:.:·:·:·:-:.:«.;.:-:.;.;. r@t/1~DMAi\iftte to a device .......... n~~lti~r~tji~i~:~:(~fl .............. I ••• ~ •••••••••••••• k!~i~~~f[l~~i~]!JiJJj; 0-4 3 
Generic I/O Modules ............................................................................................... .1/0-43 

Wankel Interface ........................................................................................ .1/0-44 
BIU Interface ............................................................................................. .1/0-45 
I/0 Device Interface ................................................................................... .1/0-46 

Mass Storage ...................................................................................................................... .I/0-47 
INTRODUCTION .................................................................................................... .1/0-47 
CONCEPTS AND FACIUTIES ................................................................................... .1/0-48 

Architectural Components and their Attributes ............................................... .1/0-48 
Virtual Memory System Storage .................................................................... .I/0-49 

Hardware Component Descriptions ................................................... I/0-49 
Host Interface Registers ...................................................... .1/0-50 

Floppy Disk Drive Specifications: ................................................................ .I/0-55 
Embedded Winchester Disk Drive Specifications ........................................... .1/0-56 
DATA TRANSFER CONTROL FLOW EXAMPLES .............................................. .1/0-59 
Example Data Transfer Using Low Level Controller: .......................................... .1/0-59 
SCSI Interface: ........................................................................................... .1/0-61 
SCSI Signals ................................................................................................ .I/0-62 

TOC-9 



jaguar Hardware ERS Table of Contents Apple CONFll)f:'NHAL 

Host (Mazda) Interface to SCSI Controller: ........................................ l/0-62 
SCSI Bus (Peripheral Interface): ........................................................ l/0-62 
SCSI Read Command Example: .......................................................... I/0-63 
Methods: ....................................................................................... .I/0-64 

Network/Telecom .............................................................................................................. .I/0-67 
Introduction .......................................................................................................... .I/0-67 
RALPH: The Real-time Analog PHone ........................................................................ I/0-69 

ralph Operational Overview ................. ' ......................................................... I/0-70 
ralph standby mode .................................................................................... .I/0-75 
ralph hardware ............................................................................................ .I/0-75 

Data Access Arrangement (DAA) ........................................................ I/0-77 
Analog Interface System .................................................................. .I/0-78 
Automatic . Gain Control. .................................................................. .I/0-80 

ralph modem pseudo-devices ....................................................................... .1/0-80 
Programmatic Interface .............................................................................. .1/0-81 

ralph configuration profile structure .................................................. .1/0-83 
Functions ....................................................................................... .1/0-84 

spam: The Signal Processing Access Manager .............................................................. .I/0-90 
spam buffer management ............................................................................ .1/0-90 
spam channel control program ...................................................................... .1/0-91 

ISDN Basic Rate Interface subsystem ........................................................................ I/0-91 
Overview .............................................................................. ,, ................... .I/0-91 
Implementation ......................................................................................... .I/0-93 
IDC Pin nomenclature .................................................................................. .1/0-94 
Wankel mux/DMA services pin nomenclature .................................................. .1/0-95 
sec pin nomenclature .................................................................................. .I/0-95 
IDC serial bus ............................................................................................. .1/0-96 
ISDN Standby Power ................................................................................... .1/0-97 
brian operation .......................................................................................... .1/0-98 

Network ................................................................................................................ .I/0-99 
Introduction .................................... .' ......................................................... .I/0-99 
FriendlyNet Interface ................................................................................... 1/0-100 
Asynchronous Interface ............................................................................... .l/0-102 
Programmatic Interface .............................................................................. .1/0-104 
LocalTalk Interface ..................................................................................... .1/0-108 
PBX I sync modem interface ........................................................................ .l/0-108 

Network/Telecom clocks ........................................................................................ .I/0-108 
Sound facilities .................................................................................................................. .1/0-109 

1/0 Section ............................................................................................................ .1/0-109 
Hardware ................................................................................................... .l/0-109 

Output. ......................................................................................... .l/0-109 
Input ............................................................................................. .1/0-110 
ITT UAC 3000 Stereo CODEC ............................................................ .1/0-111 

Features ............................................................................. .I/0-112 
Pinout. .............................................................................. .I/0-112 
Serial Interface ................................................................... .I/0-113 

Software .................................................................................................... .I/0-115 
Introduction .................................................................................. .l/0-115 
I/O Section Channel Control Word Definition .................................... .l/0-116 

TOC-10 



Apple CONFIDENTIAL jaguar //ardware ERS Table of Contents 

Sample Rate Converter (SRC) ................................................................................... .1/0-121 
· Introduction .............................................................................................. .1/0-121 

Dataflow ................................................................................................... .1/0-122 
Features ..................................................................................................... .1/0-123 
Software .................................................................................................... .1/0-124 
Hardware ................................................................................................... l/0-128 

Timing ........................................................................................... .1/0-130 
With Interpolation Enabled .................................................. 1/0-130 
With Interpolation Disabled ................................................ .1/0-131 

Hardware Architecture .................................................................... .I/ 0-13 2 

··'4~ 111 ~£~~~e~:441L::::::::::::::::::::::::::::::jif JI~ m 
.·: ·:::===~~~t\\~\\\\\~~\\i\\lr~t~~ 

Miscellaneous 

Frame aU.tte( V:thical Line Courittr ............... mmm:;:~wL ............... ~m ................. ;_mrn;M1/0-143 

Low-speed Bus ....................................................................................................... .1/0-154 
Issues ................................................................................................................................ .1/0-157 

Mazda ................................................................................................................... .1/0-157 
Net/Telecom .......................................................................................................... .1/0-158 
Mass Storage .......................................................................................................... .1/0-158 

I/0-References ................................................................................................................... .I/0-159 

System Issues (SYS) 

This chapter deals with several topics which cut across multiple 
subsystems within the Jagl. 

Introduction ....................................................................................................................... SYS-1 
System Startup (Booting) ..................................................................................................... SYS-1 
Jagl Coherency Model. ......................................................................................................... SYS-2 
Interrupt System ................................................................................................................. .SYS-3 

TOC-11 



jaguar I lardware !:RS Table of Contents Apple CONF!f)f:'N11AL 

Non-Maskable Interrupts (NMI) ................................................................................ SYS-4 
Bus Errors ........................................................................................................................... SYS-4 
Power Control ..................................................................................................................... SYS-5 

Manufacturing Issues (MFG) 

This chapter deals with new manufacturing issues introduced by the 
Jaguar implementation strategy. 

Introduction ....................................................................................................................... MFG-1 
Process ............................................................................................................................... MFG-2 

Packaging and Interconnect ..................................................................................... MFG-2 
System Configurations ............................................................................................. MFG-4 

Materials ............................................................................................................................. MFG-5 
Component Strategy ................................................................................................ MFG-5 
Vendor Strategy ....................................................................................................... MFG-5 
Product Design Issues .............................................................................................. MFG-6 

Design for Testability ........................................................................................................... MFG-7 
Introduction ........................................................................................................... MFG-7 
TAP Architecture for Internal and External Test ........................................................... MFG-8 
Work Remaining ...................................................................................................... MFG-10 

ASIC Test Plan ..................................................................................................................... MFG-11 
Board Level Test Plan ........................................................................................................... MFG-11 

TOC-12 



Apple Jaguar Hardware Overview 

Apple CONFIDENTIAL 



jaguar Hardware Overview 11pple CONFmEN'/1AL 

Contents 

Jaguar Hardware Introduction ................................................ ; ............................................. JH0-1 
Real Time Animation/Simulation .............................................................................. JH 0-1 
Connectivity .......................................................................................................... JH 0-1 
Integrated Media .................................................................................................... JH0-2 
Raising the Base ..................................................................................................... JH 0-2 

New Concepts inJaguar ....................................................................................................... JH0-3 
Intelligent 1/0 ........................................................................................................ JH0-3 
Window DMA (Graphics Streams) ............................................................................. JH0-3 
Video Decompression ............................................................................................. JH 0-4 

Jagl Hardware Overview ..................................................................................................... JH0-5 
CPU(s) ..................................... : ............................................................................. JH0-6 
I/0 Subsystem ....................................................................................................... JH0-6 

Low Cost Hard Disk (LCHD) ........................................................................ JH0-6 
High Capacity Floppy ................................................................................. JH 0-6 · 
SCSI .......................................................................................................... JH0-6 
EtherNet .................................................................................................... JH 0-6 
LocalTalk/ Asynchronous Serial ...................................................................... JH0-7 
ISDN ......................................................................................................... JH0-7 
Analog Phone ............................................................................................. JH 0-7 
Sound Support ........................................................................................... JH0-7 
ADB .............................................................................................. , ............ JH0-7 
Desktop Interconnect. ................................................................................ JH0-7 

Main Memory ......................................................................................................... JH0-7 
System Interconnect. .............................................................................................. JH0-8 
Frame Buffer .......................................................................................................... JH0-8 
Video Back End ..................................................................................................... JH0-8 
E&W ..................................................................................................................... JH0-8 
BLT (Bus Like Thing) .............................................................................................. JH0-8 
Video Decompression ............................................................................................. JH 0-9 

Expansion Options ............................................................................................................. JH0-9 
High Capacity Hard Disc ......................................................................................... JH0-9 
Magneto Optic (MO) Drive ...................................................................................... JH0-9 
Digital Audio Tape (DAT) Drive ................................................................................ JH0-9 
Video Input Card .................................................................................................... JH0-9 
Real Time Compression ........................................................................................... JH0-10 
Network Support .................................................................................................... JH0-10 



Apple CONFIDEN71Al }L'guar I /ardware OverotLw 

Jaguar Hardware Introduction 
The purpose of this chapter is to set the stage for the reader as to what jaguar Hardware is all about 
and what makes it different from existing personal computers. Following chapters will present each 
of the functional blocks (introduced here) in great detail. 

Ultimately, a separate "Jaguar Family Architecture" document will be produced. In the mean time, 
this Hardware ERS will attempt to serve both as an introduction to the family in addition to its 
stated purpose of desctjOOig the first member of that family~,,,,,Jttorder to make the distinction,,,,,,,,,,,,, 

Real 

time", in direct response to the user's input. · 

New graphics and load /store instructions in the processor and the high-bandwidth system 
interconnect and memory designs of the Jaguar yield the performance necessary to do "real time" 3D 
animation. The result of all of this attention to performance makes the Jaguar a machine which is as 
adept in a 3D world as the Mac has been in 2D. 

Connectivity 

The most obvious implement with which a person interacts on a daily basis is the telephone. Yet, no 
direct access is available to today's personal computer user. Jaguar changes this by making the 
telephone an integral part of the user's computer world. By providing direct support for telephone 
connectivity (for both analog and ISDN phone systems), Jaguar enables new classes of applications. 

Besides giving the basic connectivity (i.e. getting the signals into the box), the Jaguar's performance 
allows the CPU to perform tasks which have traditionally required specialized circuitry (e.g., a 

JH0-1 



jaguar Hardware OVeroiew Apple CONFIDEN'l7AL 

modem)or special processors (e.g., DSPs). The base system is capable of performing complete 
modem functions by using the general purpose CPU. For example, Jaguar can do all the processing 
necessary to become a FAX modem, without specialized hardware. This flexibility allows adding new 
services (e.g., supporting a new modem protocol) by a simple software module. 

Integrated Media 

Another class of data which has yet to be effectively tapped by existing personal computers is the 
growing world of video .. Jaguar introduces video as an inherent data type which can be captured, 
compressed, manipulated, stored and displayed. For example, instead of pasting a static graphics 
object into a documen~ a video object would be used. The video would play back as the document 
was later displayed. 

In addition to video, Jaguar also enhances the utility of audio data. In addition to just playback, 
Jaguar also includes hardware to capture audio data; even the voice input coming in over the 
telephone provides a source of audio. The hardware also includes Sample Rate Conversion hardware 
to ease the task of integrating multiple sources of sound, not all of which were sampled at the same 
rate. 

Note that the performance level of Jaguar's 30 graphics allows computer generated animation to oe 
yet another medium which can be integrated with the live video and sound. 

Raising the Base 

While adding features to directly support the above, it should be apparent that the Jaguar is also a 
superior system for existing applicationsj its base level of performance will be unmatched. Thus, the 
Jaguar family also enables applications which require the much higher level performance base of the 
Jaguar family. 

JH0-2 



Apple CONFIDEN11AL jaguar I lardware Overoitw 

New Concepts in Jaguar 
The Jaguar has been designed with several new features which may be unfamiliar to the Macintosh 
world. These concepts are discussed briefly here to set the stage for more complete discussions in 
the various chapters of this ERS. 

By off-loading the CPU(s) from managing VO at a very low level, the Jaguar greatly increases the 
efficiency of multi-threaded systems, such as Pink. 

Window OMA (Graphics Streams) 

Jaguar includes hardware designed to support block transfers of graphics data between maim 
memory and the frame buffer. This directly supports the concept of "back buffering" which is part 
of the Pink (more specifically, Albert) model for graphics. 

At the simplest level, it would seem that all that is required is to be able to move blocks of data from 
one place to another; i.e., a simple DMA. However, transferring "windows" from one place to 
another is not a simple DMA operation. DMA normally deals with a contiguous stream of data from 
one place (or device) to another. Windows are not contiguous areas! Little details like "row bytes", 
etc. make normal DMA's fairly useless (or, at leas~ very cumbersome) for window transfers. In 

JH0-3 



jaguar Hardware Overview Apple CONFIDEN11AL 

addition, there are some simple transformations which could be done on the data (e.g., clip masking) 
which do not fit the simple DMA model, but which offer large improvements in perfonnance if they 
could be done in hardware. 

For this reason, Jaguars "Window DMA" adds semantics to the fetching and storing of data which is 
aware of the "windowness" of the sources and destinations of transfers. Such transfers are viewed as 
consisting of three logically distinct pieces: the sourcing of data (which may involve "windowing"), 
the transfer of the data (which is always viewed as a stream of data) and the sinking of the data 
(again, possibly by windowing). 

In addition to simple transfers, Jaguar's Window DMA system allows several transfonnations of these 
graphics data streams. At the abstract level, a "data flow" model is presented. Data can be 
processed by "piping" source streams of data into transformation blocks. The output of these 
blocks is just another stream, which can proceed to other blocks until, ultimately, the resulting stream 
is placed into a destination (window). 

A simple example of how this mechanism comes in handy in Jaguar would be the display of "frame 
grabbed" video, sourced by an expansion card, being displayed into a window in the frame buffer. 
The frame grab card merely needs to produce a stream of data. That is, it does not need to know 
anything about the ultimate destination (e.g., the window location, row bytes, etc.); it simply 
produces a stream of data (sequence of pixels, with no associated addressing). The window DMA 
services will place this stream into the frame buffer, under control of a mask stream. 

Video Decompression 

In many potential uses of Jaguar, "video" is an important data type. While the display of live video in 
a window is useful, it is only a small piece of the media integration. Video data must be able to be 
stored and edited so that it can be incorporated into documents as easily as graphics is today. 
However, raw video data is huge!! Without some form of compression, the resources of mass storage 
and networking would be severely overtaxed. 

Fortunately, several video compression standards are emerging which offer a tremendous reduction in 
the resources required to store video data. These standards allow, for example, realistic video tele­
conferencing with transmission bandwidth requirements which are within reason for current LANs 
and/or ISDN; or, for video sequences to be played back from a hard disc (or, MO drive) in real-time. 

Jaguar will include hardware support for these standards. This is very important for any system which 
claims to provide integrated media. The Jagl will have hardware designed for real-time 
decompression ; the same hardware can also be used for non-real-time compression. Real-time 
compression (especially from a "live" video source) will be supported by add in cards on BLT. For 
details, s~e the section on Video Decompression. 

JH0-4 



Apple CONFIDEN71AL jaguar I Jardware Overview 

Jag1 Hardware Overview 
In the following sections, we will introduce the major hardware components of the Jagl system. 
Since each section is described in great detail in the remainder of this ERS, the descriptions 
contained here are minimal. The intent is to give the reader a basic undeistanding of the parts and 
how they fit together. 

The System Block .. AilSAm , which is a highly abstracted ""'""'"'''"' 
functional b!99~l:!ji9::•:::?ssociated data paths be~reen 

~~~~f~y:mmw111.1~1:11 single 
~j/{ ·.·.·.•:•.·.·.•.·.·.·.·.·.·.·. ----::: t@::::::r .. ,,,,,,,, __

'''''''':.•:.::.•:.:: •.•,,• .. •.• .. :•.CPU1 ... :.::::::::::
CPUO > :•:::::

Video
Decompression BLT

hardware, shows the --...,,,,,,",.,.,.,.,
that each block

Frame Buffert--~ RGB
Backend Video

System Block Diagram

The following overview of the hardware is organized to correspond to the above diagram.

JH0-5

jaguar Hardware Overview Apple CONFIDENTIAL

CPU(s)

The main processor for the Jaguar is a new version of the Motorola 88000 family which has been
enhanced (with input from Jaguars team) in several areas over the existing implementation. This
processor (which will be the MC88110) will be referred to7as XJS in the ERS. The CPU chapter contains
more infonnation about the XJS features. -

110 Subsystem

Since there are many components involved in the I/O Subsystem, the System Block Diagram does not
go into any detail of this block.; this section merely introduces the major I/0 devices which form the
subsystem See the I/0 Subsystem chapter for a more detailed diagram of the 1/0 devices and how
they interconnect.

The I/O Subsystem of Jagl is composed of many elements. While they are described as if they are
totally independent, some of these elements may share hardware and/or software. The following
devices and/or connectivity is provided in the base Jagl.

Low Cost Hard Disk (LCHD)

Jagl will have an on-board 80 MB hard disc. This disk is primarily designed to be used as the Opus
Residence and swapping disc for Pink's virtual memory system.

High Capacity Floppy

The floppy disc for Jagl will support all floppy fonnats; this includes all of Apple's plus industry
standard (i.e., IBM). In the Apple format, the disc capacity will be up to 5 MB.

SCSI

In addition to the standard LCHD, additional discs (and other devices) can be added via the
traditional SCSI route. The SCSI support for Jagl, however, will include synchronous transfers to give
Jagl a higher throughput for SCSI transfers. This, along with the intelligence of Wankel, will result in a
disc system which has remarkably higher perfonnance than current systems.

Ether Net

Every Jaguar will include an EtherNet port. The external connection scheme (Apple's "FriendlyNet"
standard) allows any of the standard EtherNet interconnects to be used (Thick, Thin and Twisted
Pair). Because of the intelligent 1/0 engine and OMA, this EtherNet interface is high performance
without requiring significant CPU resources.

JH0-6

Apple CONFIDENTIAL jaguar J/ardware Overview

LocalTalk/ Asynchronous Serial

While EtherNet provides high-bandwidth LAN support, Jagl will provide a LocalTalk port, which can
double as a nonnal serial port. Since the LLAP layer is supported directly by Wankel, LocalTalk does
not interfere with CPU activity.

ISDN

Jaguar is designed to standardly support the evolving world of ISON. As with the other
communications conneqjqns, most of the low-level protocoJJµµpling will be performed by W.grrk~l.

.. ·:·:·:·:·:.:.;·:·:· .·.··:·:;:·······...-.·. -::::=:;:=:;:;:;::::::;:·
.· ·. :=:::~~~r~~~it:~:~:~:~:~ .·=.· :.:).t.:: .. :.:::t)::::

.-.•.•.•.•,•.•:•:-:-:·:.:·:·:·:·:-:·:.:-:.

sound s~/iil!l!~li ;::.·:·t i!i··!i!t:·::::::J::':·::: ,,, ii/i iiii'ii·i·i

:1nc~~ ~~-=u:p~~~f.r.~·=•··~::•1~,
telephone rates yWJ..~ ~irate CODEC. &l ,, = ,, ,: • ,,, ,,,;.,' O'\::{< ·. . /· ·: :: = , : , = • ,. .• : J >

~:(t:}:;::::::::::::::;;::::;:;:::: ::{ :::::::::::;:: :·:;:: :::::::::::::: :::::::::::; :;:;::::::;:;:::::::::;:;:-:·:·:··· ·.·.·.·.·.·.·:;:·.·····.· ·.·.·.·.·.·.·.·.·.·.·.-... · ... ;.·.',·.·.· .. .
;.;:;.;.: <·:-::::;:::::::;:;::::::::::· :;:;:::::::;::::::;::;:::::·:·:·: :;::::::;:::::::::::::::~)~~\::;:;:;:::::::·:·:-:···· ·-:.-·:· ·:·:-:·:·:-:-:-;.:-:-:-:·:·:-:-:·:-:.:-:·:->:·:·:-:·:"·:·:···:--.·.-.·

ADB

!;!~!~i~i;i~~~i~i!ii::· :~~:;::: :: :
:·:·:=:·:=:-:·:·:·:::::::::::::::::::::::

When a Jaguar implementation is physically partitioned into two "boxes", connectivity for the I/0
with which the user interacts most directly (e.g., Sound in/out, ADB) must be placed on the
"desktop". In such implementations, Jaguar will provide a high-speed communications path between
the "main" box and the "desktop". This interconnect will be fast enough to support all of the sound
and ADB traffic.

Main Memory

The Main Memory of Jagl is composed of two banks of 128-bit wide DRAM. The base
configuration, with just 1 bank populated, will be 8 MB (with a possibility of a 4 MB configuration,
depending upon DRAM configurations), which can be extended with an additional bank of DRAM
SIMMs. Using 16 Mb parts, the Jagl can grow to a 128 MB machine.

Optional parity checking on Main Memory is supported. Parity is done on a byte basis, thus
requiring an additional 16 bits of DRAM. When parity checking is enabled, data path chips within

JH0-7

jaguar Hardware Overview Apple CONFlDEN11AL

the System Interconnect will generate parity on writes and check parity on reads.

System Interconnect

The System Interconnect provides a common path for data between the several masters (CPU(s),
Mazda, E&W) and the two logical banks of memory. It provides sufficient buffering and control to
allow several memory transactions to be in progress at one time. For example, while memory is busy
performing a read from CPUO, a write transaction can be acted upon from CPUl.

Frame Buffer

The Frame Buffer is composed of a 96-bit wide, 1.5 MB VRAM bank. This provides sufficient
memory (and bandwidth) to support the standard jaguar monitors. The random access ports of the
VRAMs are connected to the System Interconnect; the serial ports connect to the Video Back End.
No parity option is provided for the Frame Buffer.

Video Back End

The serial ports of the Frame Buffer's VRAMs connect to the Video Back End sub-section. This block
provides gamma correction, video convolution, etc. with output ports for both RGB and video
(NTSC, PAL).

E&W

E&W is the chip which encapsulates two different, although related, functions. One part of E&W
(the W, for the Wilson) implements support for graphics and/or video streams ("Window DMA").
The second function (the E, for Expansion) provides the basic data and control paths for accesses
between the processors (CPUs and Mazda) and BLT slots; note that this also includes access
between BLT slots and the memories.

BLT (Bus Like Thing)

The BLT sub-system provides a high-bandwidth (- 300 MB/s) pathway for expansion cards. This high
bandwidth is necessary for real time manipulation of data streams at video rates. Organized as a
packet-switched cross-bar, BLT allows multiple transactions to proceed in parallel. While providing
this performance, the interface presented to the card designer is simple. Thus, a simple card can be
implemented with minimal hardware.

Note that while all possible interactions are supported (e.g., Reads and Writes from the CPUs), I3LT
and E&W are optimized to provide high-bandwidth transfers from BLT slots to memory. For
example, the maximum bandwidth is provided for data transfers from a video Frame Grab card to the
Frame Buffer.

JH0-8

Apple CONFIDEN11AL jaguar I /ardware OvervilW

Video Decompression

This block performs the computations and data movement to support several different compression
standards. It connects onto the BLT side of E&W and functions as a "virtual slot" with respect to
data transfer requests to the System Interconnect.

Expansion Options
.. ::::::f~:; :::::::;::::::::::::::::

:!1.p;..:u::~~::~r~.~~~;15
f}}f)i)~~~)l~~\itl~f .. ::~\;/=· ~i))::; :::::::::::::=:::·::·:·. .·. ·=·=·:·· ·-:.:-.-:·.<·:<·>:-:-:.:·:-:-:-:-:·:·

Magneto ,:·:11!!1 (MO) Drive :::::::::::!::::,.:;:;:;:;=,.:::! llilll ii

~:c~ty~i~;~~~~~o~e~a~- Th~ drive would provicf!li&

Digital Audio Tape (DAT) Drive

Several DAT drives are already available for use as data (i.e., non-audio) storage. These devices allow
Gigabytes of storage on a small, cheap medium.

Video Input Card

The base Jaguar does not provide direct video input. The model is that video will come from
"servers", the network or mass storage (e.g., MO-drive). For users who need a source of live video, a
BLT expansion card will provide this service.

JH0-9

jaguar Hardware Overview Apple CONflDI'.'N!Vlf,

Real Time Compression

The Video Decompression hardware in the base Jaguar can support non-real-time compression of
video and/or audio data, To allow complete symmetric compression (e.g., for authoring), a BLT
expansion card will be provided. Since the video source may often consist of "live" video, a single
card which combines Video Input with Compression would make sense.

Network Support

While the base Jaguar includes ISDN, LocalTalk and EtherNet, some users may require additional
network (e.g., TokenRing) access. The simplicity of the BLT card interface should make the
"porting" of network cards to the Jaguar a fairly simple and straightforward process.

JH0-10

Apple CONFIDEN77AL }a/.iuar cPU

•• Apple . Jaguar CPU

Apple CONFIDENTIAL

jaguar CPU (X}S) Apple CONF!l)f:'N77i11.

Contents

Introduction ... CPU-1

The Motorola 88110 (X]S) ... CPU-1

Multiple Independent Function Units ... CPU-1

Dual-Instruction Issue .. CPU-1

General Register File (GRF) .. CPU-2

Extended Register File (XRF) ... CPU-2

Control Register File (CRF) .. CPU-2

Fast Floating Point. .. CPU-2

Graphics Instructions ... CPU-2

On-chip Caches ... CPU-3

Cache Coherency Protocol. ... CPU-3

Bfc!nch Target Cache .. CPU-3

Address Translation Hardware ... CPU-4

Block Address Translation .. CPU-4

Interrupts ... CPU-4

XJS Bus Interface ... CPU-5

64-bit Data Path .. CPU-5

Address Pipelining" ~ CPU-5

Cache Coherency ... CPU-5

CPU-2

Apple CONFIDEN77AL jaguar CPU

Introduction

This chapter discusses the main features of the jaguar processors (XJS). This chapter is not meant to
be a complete processor description; it deals primarily with those features which with the reader
should be familiar to understand some of the other jagl design chapters.

Multiple

Dual-Instruction Issue

The primary advantage of the multiple units is that several instructions can be processed in parallel.
Depending upon the availability of data (and the state of the functional units required), 2
instructions can be issued during every clock. While data dependencies will reduce the throughput
somewhat, the average execution rate is expected to be close to 2 instructions per clock for
optimized code; this means that the peak execution rate approaches 100 Mips (assuming a 50 MHz
clock).

Unlike some other processors, the programmer does not have follow any special coding rules to
"force" the processor to perform this optimization. The hardware will always anempt to issue two
instructions per clock! Of course, utilizing this feature to the utmost will require that the compilers
be careful in their instruction generation. However, since no special encodings are required, logically
correct code will always run.

CPU-1

jaguar CPU (XjS) Apple c'01VFl/Ji:NI7AL

General Register File (GRF)

As in the original 88K model, there is a general purpose register set of 32 32-bit registers which are used
for integer and graphics operations, addressing, bit-field operations, etc. (While the XJS has a
separate register set for Floating Point operands, the older style of 88K floating point instructions
(which utilize the general register file) are still supported for compatibility.)

Extended Register File (XRF)

A second register set (32 x 80 bits) is provided for floating point computations. Besides adding the
necessary width to support full Double Extended floating point formats, the additional registers free
up the integer registers for use by pointers, indices, etc. which allow more overlap of floating point
and integer operations in highly optimized code.

This extra register set is especially suited for some of our graphics transformation processing, where
the transformation matrix values can reside entirely in the register set while still providing scratchpad
space for the actual computations.

Control Register File (CRF)

The GRF and XRF are accessible by user code. Another (mostly) only accessible by system code is
used to present and/or maintain processor state. Of these, 5 are allocated for use by the operating
system; they are not used by the hardware. The most important use for such a register is to maintain
any "processor unique" data (e.g., its "id" and its system stack pointer).

Fast Floating Point

The Floating Point units of the XJS have been re-designed and optimized over those of the originaal
88K. The Floating Point ADD and MUL units are capable of producing their results in 3 docks. Since
each unit is able to initiate a new operation every clock, the peak floating point rate (at 50 MHz) is
100 MFLOPs (i.e., both a FADO and FMUL being issued each clock)!

The XRF provides the large register set necessary to fully utilize these pipelined, parallel functional
units; it also provides the storage for the full IEEE extended data type.

Note: While use of the GRF for Floating Point has been maintained for compatiblity, Jaguar's Floating
Point computations will use the XRF!

Graphics Instructions

A set of instructions is provided which allows operations on several pixels simultaneously, thus greatly
improving the graphics bandwidth for algorithms which can rake advantage of them. The graphics
instructions can manipulate multiple pixels contained in a 64-bit unit in parallel. The graphics unit

CPU-2

Apple CONFIDENTIAL }ap,uar CPU

enhancement makes many rendering algorithms much faster than possible using normal instructions
on individual pixels.

Note that since the graphics instructions are supported by independent units, they are subject to the
same 2 instruction issue speedup as normal integer operations.

On-chip Caches

Two 8 KB caches (3?~P~ lines x 128 sets x 2-way associatiyiW~:are contained on-chip, one ~ffiJor

~=~!~~i,~~~~··~;~~ is w~:id n~~~afi;~~i'h~lil~l'r limited (depending upoq,-~7-...

~~::~~l-~l~~=r~;:~·:~P!·~~: ~~::~~%~·es
task context sw~~l'~,:~;mpared to virtual cachy,~,"? ;::::.: ·::fl':::

£:~~~11-~:T~~i!~ar:!~~~~l'.llh.
····.·.·.·.·.·.···.;.·.·.··.··· ··;:.:-:-;. .·.·.·.·.·.·.·.·.·.·.•.•.·.·.·-:···:-·.·.

:::::~::::::::: ·-:-:-:-:-:-:-;.:.:-:-:-:.:-:-:.:-:-:-:.: .. .

~~a.~;ft·~~~•¥;t~~•~
read backs) to be required for the duration of a programs execution. All of the stack traffic would be
entirely on chip!

Cache Coherency Protocol

However, in order to effectively use CopyBack caches in a multi-processor environment, the CPUs
must implement a coherency protocol which guarantees that all processors see consistent, correct
copies of data, some of which may be present in the various caches. How the XJS implements this is
discussed in more detail in the Cache Coherency section of this chapter.

Branch Target Cache

In a pipelined processor (like XJS), branches occurring in code can appreciably affect performance
because the processor is stalled while waiting for the new instructions to be fetched. In order to
alleviate this bottleneck, the XJS includes a Branch Target Cache (BTC).

CPU-3

jc1guar CPU (XjS) AfJJ1/e CONFlf)t'N'/7A/,

The purpose of the BTC is to allow fetching of instructions at the target of the branch while the
normal instruction sequencer is fetching the sequential instructions. The XJS's BTC contains 32 fully­
associative entries which are able to store 2 instructions each. The BTC is accessed by the address of
a branch instruction. By the time that the decision is known, both the sequential and target
instructions are ready; the condition simply chooses the appropriate set.

After the correct path has been determined, the normal 1nstruction sequencing will obtain the correct
"follow on" instructions beyond those chosen by the BTC (or, normal sequence).

Address Translation Hardware

The XJS supports a demand paged virtual memory system (like Opus) by providing hardware
translation from virtual to physical addresses. The model provides a two-level address space with 4
KB page size.

A 32 entry translation cache is provided for each of the instruction and data paths. These translation
caches are fully associative and provide very high hit rates, thus minimizing the memory bandwidth
required for fetching page table entries.

If a virtual address is not found in the translation caches, the XJS will execute an entirely hardware·
managed "table walk". The resulting page table entry will then replace the least recently used
translation cache entry.

In order to support shared pages efficiently, the table walk mechanism provides for "indirect" page
table entries. That is, the normally final entry in a page table can actually contain the address of the
real page table entry. The operating system can then maintain only one page table for shared data
structures, instead of manipulating each sharer's page table when the state of a shared page changes
(e.g., it gets swapped out).

Block Address Translation

For some parts of the address space (e.g., frame buffer or I/O), it becomes cumbersome to partition
the area into pages. The XJS provides 8 Block Address Translation Cache entries for each of the
instruction and data units. Entries in the BATCs can map areas up to 4 MB.

Interrupts

The XJS has only two interrupt input pins. One of these (INT*) is used for normal interrupts
processing. The hardware includes disable control to prevent nested interrupts until the system has
saved enough state to allow them. This INT* line is the one which is controlled by Mazda as part of
the interrupt system.

Another input (NMI*) is primarily designed for debugging. This. Non-Maskable Interrupt is always
allowed to interrupt the processor, even when the state of the processor is not recoverable! The
primary intention of this interrupt is to allow analysis of "system hangs", where the system may be
non-interruptable (i.e., via INT-).

CPU-Ii

Apple CONFIDEN77Al }aP,uar CPU

XJS Bus Interface

Because of its speed, the XJS requires a high-bandwidth memory interface with which to keep it
"fed". Several features have been supplied in the XJS bus protocol which can allow an implementation

(e.g., jagl) t~,~~,~~~!!!!us/memory bandwidth. {:::::;::< ! =:=<'

64-bit> :a:@.t:l_:,, .. f'ath :e ::::::::fl Ji: t, r

~~E-~~~~~~l:~!,~l~~:i~~~~J~i~~
Address ::e~@plining

:·:·:·:·:·:·:·:·:·:···:·r:::::::::::::

=~:L•:E~~;;~:;;B~;~~.:~~~m;l11::
S~i~~~;~J;!!i1~~~~1f,1111

.·.·.·.·.·=·-·.·.·.··.<<<·:-:-:-:·:-:;:-:-:-: ·:::···:·.· ··.;:;:;:::::::::::··-·

By adding somewhat more complex logic external to the XJS, a complete "split transaction" protocol
can be implemented. That is, the request for a transaction (which uses the Address bus) can logically
be separated from that transaction's response (which requires the Data bus).

The protocol allows multiple Data busses to be used in a system, as long as a single Address bus is used
(for cache coherency reasons, as described below). jag1 plans to use this split response mechanism,
with multiple Data busses to effect the maximum utilization of memory bandwidth between the
various bus masters in the system (XJSs, Mazda and E&W).

Cache Coherency

As mentioned in the XJS description above, the XJS implements a cache coherency protocol for
maintaining coherency between XJS caches and memory. The operating system has control over
those areas of the address space which it desires to be kept coherent. It does so by means of a

CPU-5

}aP,uar CPU (X}S) 1lpplc c'OiVFff)EV17Al.

"Global" bit in the page table entries. Only Global data is maintained using the cache coherency
mechanism which works as follows:

All X]Ss must be connected to a single Address Bus. \'<'henever a Global request is made (via the
Address bus), all X]Ss will "snoop11 their data caches to ascertain if they have a modified copy of the
requested cache line. If one does (and, it will be the only one if everyone is playing by the rules), it
signals the requestor, which will then back off the bus and try again later.

In the mean time, the processor which snoop "hit" will write its modified cache line back to memory
and mark the line as clean within its cache.

When the original requester retries the access, it will get the correct, updated memory image.

Whenever an XJS does a read of a cache line as part of a write, it uses a special function code which
means "read with intent to modify". This code is used by all processors to invalidate any copy of
that line which it may have in its cache (assuming that its copy is not "dirty", which performs as
above) .

When an XJS attempts to dirty a clean line in its cache, it will make a bus transaction using a special
function code which means "invalidate". This will cause all other XJSs to invalidate any local copy
which they may have.

This protocol guarantees that their is at most one modified version of a cache line among any number
of X]Ss. Any access by other X]Ss to that line will force a memory update and a subsequent read.

The System Controller follows a set of rules which guarantees that this coherency mechanism works,
even with the split transactions and multiple data busses.

Software Note: Careful attention to task (thread) migration issues should be made. Indiscriminant
use of coherency (e.g., threads accessing common data running in multiple CPUs) can have serious
performance impacts on system resources.

CPU-6

Apple Jaguar Memory

E~irnal Reference SQelification

Apple CONFIDENTIAL

jaguar Memory ERS Apple CONFIDHffl7Al

Contents

Introduction ... "MEM-1

System Memry ... MEM-1
Parity .. MEM-2

Fraflle Buffer .. : .. MEM-3

Memory map .. .MEM-3

Data pathMEM-4

System Controller .. .MEM-5

Hardware ImplementationMEM-7

System Controller ... MEM-7

Datapath .. MEM-16

System Clock .. MEM-18

Apple CONFIDEN17AL jaguar Memory ERS

Section 1

Introduction

the hardware.

System Memory

The system memory consists of either one or two banks of 128 bit wide DRAM with an optional 16
bits of parity. The memory appears to software as 64 bit wide memory, but is irriplemented as 128 bit
wide banks in order to increase the bandwidth. Each SIMM used for memory is 36 bits wide,
consisting of 32 bits of data plus 4 bits of optional byte parity, and uses 72 pins. Fast page mode 80
ns access DRAM parts are used on the SIMMs. The four SIMM types supported are:

• 1 Mbyte data using either two 256KX16 or eight 256KX4 DRAMs and 128 Kbyte of parity
using four 256KX1 DRAMs.

• 2 Mbyte data and 256 Kbyte parity using four 512KX8 DRAMs and four 512KX1 DRAMs

• 4 Mbyte data and 512 Kbyte parity using eight 1MX4 DRAMs and four lMXl DRAMs

MEM-1

jaguar Memory ERS Apple CONFIDEN71AL

• 16 Mbyte data and 2 Mbyte parity using eight 4MX4 DRAMs and four 4MX1 DRAMs

The memory configurations possible using the four SIMM types are:

Nurnberof 1 NliiriOer of 2 Numoeror4· Nulllber of 16 Total amount of
MByte SIMMS in MByte SIMMs in MByte SIMMs i~ MByte SIMMs in system memory in
system system system - system megabytes
4 4

8 or4 8

4 4 12

8 oi4. 16

4 4 20

4 4 24

8 32

4 64

4 4 b8

4 4 72

4 4 80

8 128

The memory bandwidth will depend on the processor clock speed. The table below summarizes the
bandwidth for cache line reach and writes:

Memory type an operation Bandwi or 50 MHz

DRAM Read 128 MB sec 15MBsec

DRAM Write 1 MB sec 1 MB sec

Parity

Parity is generated on a byte basis for all writes to the DRAM, and will only detect errors, not correct
them. To eliminate any performance penalty for using parity, the parity is generated for the write

MEM-2

Apple CONFIDEN71AL jaguar Memory ERS

data as it passes through the Datapath ASICs that are between the DRAM and the rest of the system.
For reads, parity is generated for the data as it passes through the Datapath, but is also compared
with the parity value read from the parity DRAM. If the two do not match, and parity checking is
enabled, then a transaction error is returned to the master requestor. Parity errors can be forced to
allow the parity circuit to be tested. Parity can be disabled to reduce the cost of the system by
eliminating the need for parity DRAM on the SIMMs.

Frame Buffer

different display modes.

The frame buff er bandwidth for cache line reads and writes depends on the processor speed, and is
summarized below:

Memory type and operation Bandwidth-for 40 MHz Bandwidtfil'or 50 MHz

VRAM Read 98 MB/sec 107 MB/sec

VRAM Write 107 MB/sec 114 MB/sec

Memory map

The memory map for the Jaguar architecture is:

MEM-3

jaguar Memory ERS

Address

OxOOOOOOOO

Apple CONFJDEN11AL

2 Gbytes
DRAM

Add~

v Ox80000000 VRAM 64 Mbytes

Ox84000000 J/O
Ox80000000 Slot 0 256 Mbytes

Ox90000000

OxAOOOOOOO

Slot 1

"" Slot 2

Ox88000000 WDMA

OxBCOOOOOO Utility space

OxBOOOOOOO Slot3

OxCOOOOOOO Slot4

OxDOOOOOOO Slot 5

OxEOOOOOOO Slot6

Oxf 0000000 Slot 7

Slot 0 to 7 refer to expansion card slots on BLT, however slot 0 is reserved for system space and for
local card space. Utility space is used to provide each card with a fixed address to read its slot ID
from. Both DRAM and VRAM are aliased throughout their address spaces. Refer to the J/0 subsystem
and the graphics subsystem chapters for further decoding of the I/O and WDMA address blocks.

Data path

Having a silicon Datapath in Jagl allows us to easily perform the following functions:

1) Allow frame buffer accesses to happen simultaneously with DRAM accesses.

2) Generate and check parity on-the-fly for the DRAM.

3) Reconfigure the VRAM for the different screen modes and depths.

4) Reduce system capacitance

5) Allow the 1/0 ASIC to use only a 32 bit databus

6) Perform read and write buffering

MEM-4

Apple CONFIDEN71AL jaguar Memory J:'RS

Ideally each master and slave device would have its own data bus into the Datapath to allow
simultaneous use of all resources. However, due to pin limitations and complexity issues, the
Datapath masters are divided between two master busses going into the Datapath. Since the
expansion port and the window DMA engine both require a significant part of the bandwidth, they
are placed on their own bus, while the 88110s and the 1/0 ASIC share the other bus. This allows the
processors to be running out of DRAM, while the window DMA engine writes a video window to the
VRAM. Both buses use the 88110 split transaction bus protocol for master transactions, and the I/0
and WDMA ASIC additionally support slave transactions. The read and write buffering in the
Datapath allows the mas~rs to transmit and receive data out of arbitration order. However, to
ensure cache cohere110tlth minimal hardware, operationsJ!YlM>e in order to each slave
Additionally, th~,,,~~:~l!]~tptocol requires all transaction tqjjjij!jj:pj,~ormed in order to each

DRAM

96 bit Slave
data bus

Video
Decamp.

Since the I/O ASIC uses only a 32 bit data bus, the Datapath ASICs in the system convert all 1/0
master operations from 32 bit to 64 bit.

System Controller

The System Controller ASIC oversees aU master and slave transactions feeding into and out of the
Datapath, as well as transfers between the 1/0 system and the CPUs. Cache coherency for the CPU
caches is maintained at all times using the 88110 snoop protocol.

The System Controller queues up to 4 requests. If a write is requested, and the write buffer for the
requested slave device is available, then the data bus is granted to that master, the write data is
immediately placed into the buffer, and the master gets an acknowledge. When the slave device
requested is free, the data is written to the device from the buffer. For reads, when the slave device
requested is free, the data bus is granted to the requestor, and the data from the slave is passes to the
master.

MEM-5

jaguar Memory ERS Apple CONFIDEN11AL

There are two contraints that the System Controller enforces. To easily support cache coherency, all
transactions to a slave device must be performed in order of address arbitration. To follow the 88110
protocol, all transactions for each master must be done in order. Internally the System Controller will
keep a queue for each constraint, and coordinate them. The System Controller can perform
operations out of order as long as the two contraints are met.

When the system is powered up, parity will be disabled, and there will be 4K bytes of DRAM available.

MEM-6

Apple CONFIDEN71AL jaguar Memory ERS

Section 2

Hardware Implementation

I I

The SC supports the interface specified in the XJS Bus Specification, operating as a slave on
this bus. Requests come from the 2 CPUs, Mazda, and Wilson. Mazda and Wilson can also act as
slaves. In this case the SC coordinates the data transfers between these slaves and their masters. In all
cases the SC will acknowledge the address and control the data transfer using special protocols
defined in this document. All resources can have a total of 4 requests queued for them in the System
Scoreboard before stalling the address bus. For the VRAM and DRAM, four corresponding addresses
are saved. All writes are acknowledged as soon as the data is stored in the write buffer contained in
the DataPath Chip. Resource management and data ordering is maintained by a scoreboard on the
SC. Data ordering is maintained such that requests to any slave will complete in order of being issued
across all masters. Also, requests by each master will complete in the order they were issued. The only
exception is when accessing Wilson as a slave. In this case, reads are performed in order and writes are
performed in order, but Wilson may chose to violate order between reads and writes. The following is
a block diagram of the SC:

MEM-7

jaguar Memory ERS

DRAM
Control

VRAM
Control

IOBus

Status
Registers

Data Path Chip

Data Path
Control

..

System ScoreBoard

DRAM
State Machine Buffer

VRAM 4Deep
State Machine Address

Buffer

Video Backend Chip

System Controller Block Diagram

Apple CONFIDEN11AL

Address Bus
State Machine

Data Bus
State Machine

The XJSs and Mazda will access the SC as a slave as in the XJS Bus Specification. Mazda will
only use the most significant 32 bits of the Data Bus (63:32). This means for Mazda a one beat
transaction transfers 32 bits and a four beat transaction transfers 128 bits. The SC will use the address
and transfer size information to determine the correct word alignment for the 32 bit access and cause
the DPC to correct it to 64 bit alignment. In addition, Mazda will provide an interface to allow the
access to the SC Status Registers. This interface will use an 8 bit data bus, 10Bus(7:0), a 5 bit address
bus, 10Add(4:0), a write signal, IOWrite, and a chip select, IOSCSel, to access the SC Status
Registers using protocol specified in the 10 ERS. Since the address bus is byte addressed, registers
which are multiple bytes require multiple accesses. The following registers are implemented.

Address

00-02
03-05
06-08
09-0B
OD
OE
OF

Register

Screen Address Register 17 :0
Cursor Address Register 17 :0
Screen Row Bytes 17 :0
Cursor Row Bytes 17:0
Video refresh count 3:0
Low Power Control 7 :0
Diagnostic Register 7:0

MEM-8

ARB BUS

CONTROLJ
ADD BUS

Apple CONFIDENTIAL }up,uar Memory /:'RS

10-13 Error Address Register 31 :0
14 Error Type Register 7 :0
15 DRAM Type Register 7:0

These registers will be described in more detail later.

When Mazda is a slave, the SC uses the control lines SlvReqM' (Slave Request Mazda), and
SlvAckM' (Slave Acknowledge Mazda), to coordinate data transfers. Since the SC acknowledges all
addresses, the scoreboar4.Jor Mazda slave transactions must~,Jµnctionally equivalent to the<pg(:'!)n

~~~:~~~.;~i,liliici:~~x~~:~:fti~~~~~~'=ll1~~~~a~~ ~~k~di~~~1•. 
A diagrarffpf::if~l,-[iiNlread is shown below. .,·.','.:,=_:.i_=,='_::_:_,:_.::_='.=. ·:i·i:.: .. rii= = ,:,, :.[[:,_.:-,[ 

:;::::;::::::::::::::::::::::::::::::::):~ :::::::: .-:=~.:.i_)i}f ~~:;:;::: ·:·:·:·:·:·:·:·:·:·: 
.·:·.·.·.·.·. =·:·:-:-=·=:::::::::::=:::: ··=== =·=·=·=<·=::::=:=:::::=:=:=::::-:=-=-= ·>=·=·:·::=<·= ::::::::(r:::: 

:::;::,,:_···=.,:-:-::::::: Mazcl:al!:_!:_!_i~.:.•.::::111e Mode Rla1:11:1 ll/i~/!li 
~-~~-~~-~~-~-~-~_;_~;_{_f.· ~-=~.=~~=.=.'-~;_;,:_~~.r: .:::>::: . . . . ....... ::;::=:=====::;:;:;:; ::::=:::::::· ~=}~:r{ ;.·.·.·.·.·.·.· .·,·:·.·:-:·· ::::: ;-;.;-:-:-:::::·::;::::::::·:<· ... :.:·:-::::;::<·:-:.···> 
:=:=:r/:::::::=:::::::::::::·:·:.:·:" ::::::::::::· :·:·.-=-=·>:·:·:·:·: ...... ·.·'.·.· .. :·.·= t?r ........................... . 

.. ! ~ , l!!!'Y ( ;,·_,i,i_,·,:_,:,:_,i,i, •. t_:_:_·:,_!_:,:.J.1:._,,.,• .• ;·,,: .•. ,1,· .• ,

1
_,;_, .• ,·.i,i_,i_'·:,· .• ,:_,: 

1 •• ~ii@l; 
••=< ( .. '\/ .·.·.·.·.·. ... J ::• l_I_•l_•l_!_ll_!_: :_•! .. •.•;._·.=_•._1_,_••.• __ :_-•_ .. •_;_ .. •_:_••.••1_•-.• 

o.•.••.a.•··•=.=•.·•.a.• ... • •. • •. r-.: .. 1.•1.::_: '--""'"--.·.'.·' .. =·· ... =,·.='.~ ..... •.· .. =· .. ·'·.· .. =• .. =·.·· .. =··•,.:.=.·.:~,{' I >lit-:! : _,·,··.·,=.:•_.=,'·.=·.·_,=·_,._==_,.•,:.•_,_:r!~ I . I\ ::: •"]''" V I ti t i 

! >!11Jlf !I ! !,!futl!%W ·.·'.·'· .. =·_.=: __ ,•_.=•.=·· .. =•_,• .... '• .. =[· .. =····'ll••_.=··.=·· .. =: .. =· .. =•·.=···,:.•·,:.•_.' •. :.:':,.,i.•_i_::_.=·.·=·=·=·· .. =: .. =:·_.':•:_.:•_.=:_.=:_.= .. =·: __ ,i_.=_.' •. =:··_.':_,•.·_.=1_.=•.=1.•_.=·1 __ ,·~-··.':.=i::,•.• .. :i·=·=·=···''<:_• __ ,•,=,_:,•._,=,··._,• .. •_,•_.=·.=··•'.: ,=·=·: -:•,._,•,•.=··:·=···.=··'·=··'··:•.=•.=:=···.=·=···.=:··: .. : •. = •. : •. = •. =~--·.··.······=)·=·.=·.,·_,•.·.=·.=··' .=·_,:_=_:• .• :.:: .. = •. :._.=:_,•_.=: __ ,._,=.·_.=· ii =·=· . ' . ii l, .. , ... , ... ·.· XJSD(6~l:_•~-········2····::.:.~.i=.i=.i.i.ii.•i.ii.ll :: •t::.:1:::: IN . ~ I :.:< I -: 
::;:: :::::::::::>::::::>::·:=:::::: 1_::,_•:,_::_•'.:_••i_•:_l!_1:_ll.1_':_:1•.:.•·.·:·.?' .. ·:::· ,.,:;.,.,.,.::: .. · .. ::: ::::.............. : ·•···•••••• ·=····.'._:,_:._•:_•• •. =.=···'·= ... •· • .., ) :• : ] 

SlvRiJl~lli.~t.::;,;.olo •. -~~~i ;i;i;.;o;.;•.;i;.;.;.;.•:::=·~~·•11lf ( !1 ; I 1~l*l~f 11 -----. 
\if\ ....... :~t():::::: . . . . .............. . . . , .... ,,,,,,,,,,,.,. r rr:1r:r 1 :] ·u1 

Slv~l~I~=::,;;,;,:,;,;' ii"""'i.••-.:1·-.•.== ... =.=.=.=.··.· .. -..... __._ _ _...__..__..,·.·.·;,;,;o;;,;.••,:'_·,.:_ •• , •• _;~,,:_: .• _·,:;,::,.•, •. '._::1N_•.•.=,;,:_: .. 2'_• .... : .. •.:_.••_.!I_. . I _ __.. _ _..._,;;,;,;,;_,,,,,:::=~>='='===~·=·····=··-~·.·.·. ----
< •:?) >t ········ ww:;w··· [\.L__V' t I =_··=·=·=_===· ...... =r_=====·=·_ .. , ... ·._·.·.·.·._· .__ _ _.__ ........ _.,,,,,,,_,,,,,,,,_,,.,., ..... r,,,_,,,,,,,,_,, -----\' 1 _ __..._•·_::::_<_>,,...r_: _ _.__ __ 

TA* I I l\__I I 

In this case data is being read from Mazda by an XJS. The same protocol works for other 
masters. When the data bus is free, the SC asserts SlvReqM'. This tells Mazda that it is free to drive 
read data onto the bus. When Mazda drives data it asserts SlvAckM' to indicate valid data and 
release of the internal address buffer associated with that request. Mazda must hold the read data 
until SlvReqM' is sampled inactive, at which point Mazda must tum off its drivers. The SC will 
deassert SlvReqM* one cycle before asserting TA'. 

In the case of a write, data is written to Mazda by an XJS or another master. For a write, the 
SC asserts SlvReqM* to indicate that valid write data is on the bus. Mazda asserts SlvAckM' to 
indicate completion of data transfer and release of the internal address buffer associated with that 
request. The SC then drives TA' to complete the cycle. A diagram for a write is shown below. 

MEM-9 



jaguar Memory ERS Apple CONHDEN11AL 

Mazda Slave Mode Write 

DBG* ' ~ 
I 
ii 

DBB* 
I 

~ 
I 
ii 

I 
~ ~ XJSD(63:32) ~ 

SlvReqM* ' 1\ 
I 
,/ 

SlvAckM* 
I I 
1\_/ 

TA* 
I ' 

I 
I ,\ ,/ 

Wilson shares the address bus with the XJSs and the IO but has a separate data bus to the 
DPC. Wilson acts as a Bus Master according to the XJS Bus Specification, with the exception of using 
byte enable lines as described in the E & W ERS. Wilson also acts as a bus slave. When Wilson is acting 
as a bus slave, the SC is responsible for acknowledging addresses and coordinating data transfers 
through the DPC. To accomplish this the SC and Wilson use the additional handshake lines : 

SlvWSel• 

SlvWWR• 

SlvWRR• 

SlvWfN 

SlvWAR• 

Slave Wilson Select 
. . 

Slave Wilson Write Ready 

Slave Wilson Read Ready 

Slave Wilson Transfer Acknowledge 

Slave Wilson Address Ready 

The SC scoreboard for Wilson requests will be functionally equivalent to the one in Wilson. 
Both will know which the next read is and which the next write is. Wilson will acknowledge data 
transfers independent of the state of its internal address buffers. Therefore, Wilson will assert 
SlvWAR* to indicate there is an address buffer available. The SC uses SlvW AR• to enable address 
acknowledge for addresses in the Wilson address space. For a read, Wilson indicates that read data is 
available by activating the SlvWRR• line. When the data path is ready, the SC will assert SlvWSel•. This 
tells Wilson to drive read data. Wilson then drives data and SlvWfA• to indicate valid data. When the 
read transfer is complete, the SC deasserts SlvWSel. A diagram for a read is shown below. 

MEM-10 



Apple CONFIDENTIAL jaguar Memory /!RS 

Wilson Slave Mode Read 

I 

'\ If I ______ _,_, . I I SlvWRR* 

SlvWSel* '\ I I I/ 
I I -----------....--_,I 

WD(63 :Ot,,,,,t.""'''tm.......,..~!::!:::1!i.o.i.!'j:j·:1~1~: ___..__ __ ----IC 

I 
I 

::::::::::::::::::::::: 

ptt'f'U~ 

SlvWSel* 

WD(63:0) 

SlvWTA* 

I 
I I I 

I"------' ~-----~I/ I 

~----..--... 

:·:::::::·:·:·:·:::·:::·:::·:::::: 

The SC provides an interface to the Video Backend Chip (Elmer). Elmer, contains the Video 
timing generation circuits. Elmer is responsible for initiating transfer cycles. After Elmer initiates a 

MEM-11 



jaguar Memory ERS Apple CONFIDENTIAL 

transfer cycle, the SC will peiform midline transfers to stay a half scan line ahead of the shift clocks 
until a new transfer is requested. To initiate a transfer cycle, Elmer issues a Transfer Cycle Start, 
XFERSTRr, along with a Transfer Cycle Opcode, OPCODE(3:0). Transfer Cycle Acknowledge, 
XFERACK*, is a dual function signal controlled by XFERSTRT*. XFERACK* is nonnally an input to the 
SC, but becomes an output when XFERSfRT* is asserted. Therefore, when Elmer asserts XFERSTRT*, 
it must wait two cycles for XFERACK• to become valid. E!mer then samples XFERACK*. When the SC 
completes the specified transfer cycle, it will assert XFERACK•, and wait for Elmer to deassert 
XFERSTRT*. The SC XFERACK• will then become an input and Elmer may initiate another transfer. To 
generate the Screen address for the transfer cycle the SC provides the Screen address generator shown 
in diagram 2.1 which executes the opcodes in table 2.1. To perform the midline transfers, the SC must 
count shift clocks. ShiftClock/2 is sent to the SC as a second function of XFERACK*. When 
XFERSTRT* is deasserted, the bidirectional pin XFERACK• will be tristated in the SC, so that 
ShiftClock/2 can be driven by Elmer two internal clocks later. A timing diagram for these signals is 
shown below. 

XFERSTRT* I I 
1\ if (Elmer) 
I : : : : : ~ OPCODE(3:0) ~ (Elmer) 

~ I z I 'z 'z ~ XFERACK* 
Shift Clock / 2 I (Elmer) I I I I 

z' 'z ~ 
I I I 
~ XFERACK* ~ (SC) I I I 

I I I 

Refresh for the VRAMs will be done using CAS before RAS refresh cycles. A software 
. programmable number of these will be done as an atomic transaction with each transfer cycle which 
peiforms a screen address transfer. There is also a special opcode to allow Elmer to initiate a refresh 
only operation. This is provided to allow Elmer to initiate refresh cycles during vertical blank. 

MEM-12 

z' 
I 



Apple CONFIDENnAL 

Video 
Status 

Registers 

Screen Address Reg SAR 

Cursor Address Reg CAR 

Screen R-~=i;~1=·1111 
curs(#:~A'6Ji.:llRI 

'-17~----ii'''~:::::::~:::::::;:::::::;:;:;:::::;:;:::;:: 

Transfer 
0 code 
0 
1 
2 
3 
4 
s 

8 
9 
10 
11 
12 . 
13 
14 
15 

jaguar Memory HRS 

Transfer Screen Address Register 

VRAM Address 

TCAR+CRB 
TSAR+SRB 
TSAR 
TCAR+CRB 
TCAR TCAR+CRB 
SAR+SRB/2 TCAR 
CAR+CRB/2 TCAR+CRB/2 
REFRESH ONLY 

TABLE 2.1 

Diagram 2.1 shows the hardware mechanism for generating transfer cycle addresses. There are 
four, 18 bit registers, the Screen Address Register, the Cursor address register, the Screen Row Bytes 
Register and the Cursor Row Bytes Register. These are manipulated according to table 2.1 to produce 
transfer cycle addresses for Bank 0 and Bank 1 of VRAM. 

MEM-13 



jaguar Memory ERS Apple CONFJ[)EN71AL 

The SC provides control lines for the two data path chips. A block diagram for the data path 
chip is shown in the DPC section. Queues are associated with each of the four possible destinations 
for each transaction. 21 control lines are used to control the DPC . Each queue has 5 control lines 
associated with it except the VRAM queue which has a bits per pixel BPP bit. There is also a parity 
error bit. For the VRAMS and the DRAMS the control bits are defined as follows: 

1 Queue Output Enable 
1 Queue Advance Enable 
1 Queue Load Enable 
1 Load Source Select 
1 Load Hi/Lo Select 
1 24 BPP mode (VRAM queue only). 

For the CPU queue and the E & W queue the 5 bits are defined as follows: 

1 Queue Output Enable Hi 
1 Queue Output Enable Lo 
1 Queue Advance Enable 
2 Queue Load Select - these bits are encoded 

0 - Load from input 0 
1 - Load from input 1 
2 - Load from input 2 
3- No Load 

The SC is designed to control two 128 bit banks of DRAM and one 96164 bit bank of VRAM. 
Each DRAM bank can contain from 4 to 64 megabytes, configured with 1, 4, or 16 megabit DRAM 
devices, while the VRAM bank is fixed at 1.5 megabytes. Optional parity checking is supported. 
Software will enable parity checking by a bit in the SC control registers if all SIMMs installed support 
parity. In the case of a parity error, the SC will signal the requesting master using the Transfer Error 
line. The address of the last error detected will be logged in Error Address Register. 

The SC performs the following operations to VRAM: read, write, page mode read, page mode 
write, shift register reload, split shift register reload, refresh, and block write. The SC will support 100 
nsec VRAMs. The cycles will be optimized to run at either 40MHz or SOMHz. The frequency can be 
selected by a bit in the VRAM Type register. There are three kinds of system accesses supported, 8 
bits per pixel, 24 bits per pixel, and 24 bits per pixel with address translation. The address translation 
is a 7 /8 reduction used for convolution mode video as described in the Frame buffer ERS. To 
distinguish the type of accesses, VRAM is mapped into three address spaces. These address spaces 
are defined below: 

MEM-14 



Apple CONF/DEN17AL jaguar Memory ERS 

Address Space Jo a ress to ta 

VRAM Space Ox83FFFFFF Ox8000 0000 

8 BPP Ox807F FFFF Ox8000 0000 8 MBytes 

2 BPP Ox80FFFFFF Ox8080 0000 8 Mbytes 

8MByte 

MEM-15 



jaguar Memory ERS Apple CONF/Dl:'N17AL 

Data path 

The DataPath Chip (DPC), provides the point to point interconnect for the systems data 
paths. There is no control logic or control state on the DPC. All control lines are driven by the SC. The 
DPC contains four data queues; the CPU Queue, the DRAM Queue, the VRAM Queue and the E & W 
Queue. These queues are associated with the destination of data they contain. The DPC is byte 
sliced. DPCl is defined as containing XJS Bus bytes 1,3,5,7. DPCO is defined as containing XJS Bus 
bytes 0,2,4,6. Parity is generated and checked for data as it passes through the DPC. Error signals are 
sent to the SC for reporting to requesting master. The DRAM Bus data has a two to one 
correspondence with the data on the XJS Bus. Even double words appear on DRAM Bus(127:64). Odd 
double words appear on DRAM Bus(63:0). For the VRAMs there is a different mapping for 8 BPP 
accesses and 24 BPP accesses. In 8 BPP mode 8 pixels are written at a time and in 24 BPP mode 4 
pixels are written at a time. This is diagrammed below. The top three line show how data appears to 
the processor. The next two lines show the DPC byte slicing. The next two lines show how data in 
8BPP appears to the DPC and how it is reorganized into the queue. 24 BPP data maintains its original 
format as shown on the next line. The next line shows the physical interconnect between the 128 bit 
VRAM Bus and the 96 bits of VRAM. Note that in DPCO, four bytes are unconnected. The final three 
lines simply show the pixel format at the VRAM serial port 

1 - Data Viewed at Processor 
Half Cache Line 

127: 119: 111: 103: 95:88 87:80 79:72 71:64 63:56 55:48 47:40 39:32 31:24 23:16 
120 112 104 96 

15:8 

WordO Word 1 Word2 Word3 

8 BPP Processor Format 

PO P1 P2 P3 P4 PS PS P7 PS pg P10 P11 P12 P13 P14 

24 BPP Processor Format 

I x I RO I GO I BO I x R1 G1 B1 x R2 G2 B2 x R3 G3 

DataPath Chip Byte Slicing 

7:0 

P15 

B3 

DPCO DPC1 DPCO DPC1 DPCO DPC1 DPCO DPC1 DPCO DPC1 DPCO DPC1 DPCO DPC1 DPCO DPC1 

MEM-16 



Apple CONFIDEN11AL jaguar Memory BRS 

2 - Data Viewed By Datapath Chip Slice 
DataPath Chip o DataPath Chip 1 

DPCO DPC1 

S BPP Data in each slice 

PO P2 P4 P6 PS P10 P12 P14 . P1 P3 PS P7 pg P11 P13 P1S 

S BPP Data in each ~l~f~organized 
.·:·::::::::::::::;:::::::::: 

X P1S 

X P7 

24 BPP Data in •::11~ 
x 

••• 
x x PS pg x x P10 P11 x x P12 P13 x x P14 P15 

x x PO P1 x x P2 P3 x x P4 PS x x P6 P7 

24 BPP VRAM Serial Port Fonnat 

I x IRojGJjaoj x I R1 I G1 I 81 I x R2 G2 82 I x R3 G3 83 

Below is a block diagram of the DPC. 

MEM-17 



jaguar Afemory ERS 

DRAM 

128 Bits+ 
16 Parity 
(Optional) 

VRAM 

128 Bits 
96 Bits 
used 

The datapath is TBD. 

System Clock 

Apple CONFJJ)l:'N71AL 

CPUQJEUE 

DRAM QUEUE HI 

DRAM QUEUE LO 

VRAM QUEUE HI 

VRAM QUEUE LO 

E&WQUEUE 

DATAPATH CHIP BLOCK DIAGRAM 

The system clock is either 40 MHz or 50 MHz, and is distributed using a Motorola PLL clock 
distribution chip. All chips on the board will receive the system clock with a jitter of +/- 1 ns. 

MEM-18 

CPU 

64 Bits 

E&W 

64 Bits 



Apple Jaguar Graphics Overview 

Apple CONFIDENTIAL 



jaguar Graphics Overview Apple CONFJJJJ:N'/7AL 

Contents 

Scope ................................................................................................................................ JG0-1 

Definitions ........................................................................................................................ JG0-1 

Introduction: The importance of graphics on jaguar. ............................................................... JG0-2 

Goals ................................................................................................................................. JG0-2 

Components ...................................................................................................................... JG0-3 

Configurations ................................................................................................................... JG0-4 

True color and gray scale ...................................................................................................... JG0-5 

Monitor ............................................................................................................................. JGO-7 

Video back end .................................................................................................................. J GO-7 

Frame buffer ...................................................................................................................... JG0-8 

Wilson ............................................................................................................................... JG0-8 

Processor and graphics instructions ...................................................................................... JG0-9 

Video Decompression ......................................................................................................... JG0-11 

Typical graphics scenario ..................................................................................................... JG0-12 



Apple CONFIDEN71AL jaguar (iraphics Overotew 

Read this 

Scope 

D f. . t. rl'il'''''''''''''''''''''''''''''' ,,,,,,,,,,,, tt{''''''''ff:::::,:=': tnr ;;Cini IO ildcaststanda-. 
PAL 

VRAM 

CLUT 

DAC 

Back buffering 

Z buffering 

Digital to analog converter. A chip chat converts digital signals into analog 
signals that are required to drive monitors. 

A technique that allows for the instantaneous update of a window. Images are 
rendered in main memory, and then transfered at high rate to the screen so that 
the entire image is updated between successive frames. Without back 
buffering, the process of rendering would be visible on the screen, and the 
effect of animation would be lost. 

A technique for properly rendering overlapping objects when doing 3D 
rendering. The Z buffer is an array in system memory that contains a floating 
point number for each pixel in the window. 

JG0-1 



jaguar Graphics Overoiew Apple CONFIDEN71AL 

True color True color refers to the ability of the graphics subsystem to display arbitrary 
colors on the screen. True color is often called 24 bit or 32 bit color because it 
generally requires 24 bits per pixel, eight bits for each color component (red, 
green and blue), and is represented in pixel maps in a 32 bit word. The 
alternative to true color is pseudo-color. 

Pseudo-color Pseudo color is a method by which colors are represented by an index into a 
color table that contains the full 24'.:bits ·required to represent the color on the 
screen. Since the index is typically 4 or 8 bits, this techniques reduces the 
number of bits required to store the image on the screen. The disadvantage is 
that the screen can display only 16 or 256 colors simultaneously. 

Introduction: The importance of graphics on Jaguar 

Jaguar will advance personal computing by incorporating new developments in processor, memory, 
VIS! and ASIC technology to raise the base level functionality and performance available for personal 
computing by at least an order of magnitude. This increase in computing power will enable the 
development of new personal applications that are not currently possible. 

Essential to these new applications will be the ability to collect, sort, manipulate, synthesize and 
display images from a wide variety of sources. Photographic images will come from sources such as: 
FAX, high quality digitizers, still video, and recorded and live video. Synthesized images will come 
from 2D and 3D models of real and imaginary objects. Applications that perform simulation and use 
data visualization techniques will synthesize and animate 2D and 3D objects to more efficiently 
communicate with the user. Images will be scaled, enhanced, edited and otherwise modified in the 
course of their use. In addition, images will also be viewed in windows and will be mixed and overlaid 
with other images, such as pointers and menus and dialogue boxes. 

The Jaguar graphics subsystem must provide the basic functionality and performance to enable these 
kinds of applications. The graphics subsystem must significantly increase the performance of 
existing rendering operations so that existing graphics techniques can be used to improve the quality 
of the user interface. In addition, new real time 3D rendering operations must be provided to extend 
the user interface paradigms beyond the current 2D space into 3D. 

The Jaguar graphics subsystem must allow the display of full motion video images, and well as still 
images. These images must be displayed in a window with overlaid graphics. In addition, high 
resolution gray scale and color monitors that are properly corrected for high quality image and 
antialiased graphics display, must be provided. NTSC video output will be required to allow for 
storage and distribution of animated images on standard video tape formats. 

Goals 

The graphics functionality provided should be uniform across different Jaguar configurations so that 
applications can take full advantage of functionality without having to create different codes for 
different configurations. In practice, multiplicity of codes results in a combinatorial explosion of 
cases that becomes impractical to code. 

JG0-2 



Apple CONFIDEN'/1AL jaguar (;raphics Uvr.:mr.:w 

The graphics subsystem should produce high quality images. The graphics subsystem is the window 
through which the users sees the Jaguar world, and it is important that the display provide a 
comfortable low stress display of this world. For example, high resolution fonts are easier to read and 
are less stressful to the user than coarser fonts. 

The graphics subsystem should enable applications to display and synthesize images in real 
(interactive) time. Photographic images from stored or live sources should be displayed in full 
motion, and manipulated interactively. Applications should be able to synthesize and animate 
complex 2D and 3D images in real time. 

The vid~b: Gd~k ~g:d,'2Bh~f:~'ffi~ digital representatio~:·=~f !!'~'j~dls in the frame buffer intd th~ ~rialog 
signals necessary to drive the high res graphics monitor. In addition to converting the digital image 
into analog, the video back end must generate proper timing to drive monitors of different 
resolutions, and to drive TV video signals in NTSC and PAL format. The video back end is usually 
where gamma correction is performed to maintain rroper color balance and saturation of displayed 
images. 

Frame buffer memory maintains a digital representation of the image that is displayed on the 
monitor. The Jaguar frame buffer consists of 1.5Mbytes of dual ported VRAM. This frame buffer is 
large enough to drive the standard I6"Jaguar monitors. 

System memory is used for many purposes related to graphics. System memory is used for back 
buffering of pixel maps in order to obtain clean image updates. In this technique, an image is 
rendered into system memory, and when comrleted transfered to the frame buffer. In this way, the 
image is updated to the screen in a single frame time. ln addition, to back buffers, system memory 
will maintain alpha maps, Z buffers and disrlay lists. 

JG0-3 



jaguar Graphics Overview 1lppte CONF!Dt:N'/711L 

Window DMA provides for the fast transfer of images between the frame buff er and system memory 
or devices in expansion slots. The window OMA function will provide the capability to mask out 
pixels so that images can be overlaid, such as a pointer overlaid over a live video image. Window 
OMA is the primary mechanism for transfering back buffers to the frame buffer. 

The jaguar processor incorporates special instructions to enhance the performance of graphics 
operations. Special instructions are included to perform 3D graphics and alpha compositing. 

The jaguar decompression accelerator provides real time decompression of video encoded in 
standard formats such as CCITf p•64 or in Apple custom formats. 

-
Expansion· adaptors plugged into the expansion bus allow for extending the functionality of graphics 
beyond the point that is economically reasonable in the base configuration. For example, an 
expansion frame buffer adaptor will allow the use of a 21" monitor or provide a second display head 
on a system. Other expansion adaptors will provide video compression, video input, and rendering 
acceleration. 

Configurations 

Before getting down to the details of each of the individual components, the reasons for particular 
configurations should be discussed. Display size, resolution and number of colors {gray scale 
included) are the primary factors in the configuration that affect the graphics subsystem, and these 
are the issues that will be discussed in this section. 

Because of the multimedia focus of the product, Jaguar must have a color monitor at introduction. 
Monochrome is imponant for high end publishing applications, but if we had to choose only one 
monitor, it would have to be color, not monochrome. 

Screen size is critical to the usability of a jaguar. Large size is imponant to allow for enough 
information to be placed on the screen _simultaneously to be useful to the user. On the other hand, 
larger screens also cost more, take up more physical space on the desktop, and make the machine less 
movable a single person. 

The current 13" monitor is clearly better than the 9" size of the MAC SE, but still feels small. Anyone 
that has worked with a 19" monitor will attest to the ease that it affords in being able to display a 
whole page, diagram or spreadsheet at one time. Unfortunately, the cost of such a monitor is quite 
high as well, too much to be a main stream monitor. The weight of a color 19" monitor is upwards of 
80lbs, too much for the average person to handle safely. 

We felt that there is a step in usability with the ability to display a full 8.S"xl 1.5" page of paper on the 
screen. It would desirable if this page could be displayed in both portrait and landscape 
orientations. Unfortunately, a square monitor would be about 18" diagonal, and would be almost as 
large and costly as a 19". A reasonable compromise would be a 16" rectangular format. Such a 
monitor would weigh 40-50 lbs. 

JG0-4 



Apple CONFIDENTIAL }aRuar (;raphics Overview 

Since we believe color would be primarily targeted at media manipulation applications, such as 
decompressed video and color photographic images, and since these are primarily landscape in 
format, it makes sense for the color monitor to have a landscape orientation. Similarly, since we 
expect monochrome to be targeted primarily at document preparation, and since most documents 
are taller than they are wide, it would make sense for monochrome to be in portrait orientation. 

One overwhelming response that we've gotten on monochrome is that there is a need for significantly 
higher resolution than the current 72DPI. The drive here-: is to provide a display screen quality 
approaching that of paper. This is required for publishing and paperless office applications. 
Traditionally, monochrome has been the cheap ·graphics alternative, but this view is changing. The 
three Mac monochror,oo:;@>nitors available today all sell in a.JNJ#'::the same volume (3-4K/mo)::Y!lJiWO 

True color 

Monitor size 16" portrait 16" landscape 
Refresh rate 75Hz 75Hz 
Memory configuration -870x1150 -830x630 
Total video memory lMB 1.SMB 

True color and gray scale 

The standard Mac II provides 8 bit (minimum is actually 4 bit) color and one bit monochrome 
graphics. In 8 bit color, only 256 different colors may be displayed on the screen at one time. One 
bit monochrome allows the display of only two colors: white and black. While these limited color 
palettes were sufficient for Macintosh applications that display mostly symbolic images, this limited 
color'space is inadequate for the reproduction of photographic images or for 3D synthesized images. 

JG0-5 



jaguar Graphics Overview !lppte CONFWHN/1AL 

The standard Jaguar graphics system supports 24 bit tme color and 8 bit gray scale. True color and 8 
bit gray scale allow for the display of arbitrary colors on the screen, and allow the high quality 
reproduction of photographic or 3D images. The decision to provide this level of generality, rather 
than psedo-color or less than 8 bit gray scale was a difficult one as the cost of the additional bits is 
significant. While it would be desirable to choose the lower cost alternative, 8 bit color is 
problematical in the image rich environment that Jaguar will exist. 

Photographic images or 30 synthesized images that are °composed of arbitrary colors and are true 
color by nature. Techniques such as dithering that trade spatial resolution for color resolution , and 
allow for the display of true color images in 8 bit frame buffers would degrade real time graphics 
performance and image quality. 

Even if the performance and quality of dithering were acceptable, there is the problem of allocating 
the the CLUT resource in an 8 bit system between the different applications. The difficulty here is 
that there are only 256 colors that are simultaneously displayable on the screen in an 8 bit system, and 
these must be shared among all the applications. Today, in cases when two applications require more 
than 256 colors in total, then entries in the CLUT are shared between the two applications, and the 
shared entry is set to the color required by the active application. This causes the other windows 
belonging to the other application to have it's colors changed into crazy colors, and it goes 
"technicolor". 

This technicolor artifact is acceptable today's MAC because there is really only one active 
application, and,the users attention is focused mainly on the windows belonging to that application. 
The typical Jaguar user would often have several applications running simultaneously, such as a video 
tutorial running simultaneously with a presentation graphics application. In such cases both 
applications must maintain valid colors, and this is something that cannot be guaranteed with only 8 
bit color. 

We did consider making true color an option, so that users that did not want to display images would 
not have to pay the additional cost. These users would loose the ability to display video and 
photorealistic synthesized images interactively. The primary concern here is that the interactive 
multimedia functionality of jaguar would become a specialized function, since developers would be 
tempted to code software for the lowest common denominator. We feel that the interactive video 
and photorealistic images provide a strong enhancement to the power given to the user, and we feel 

· that this ability is general purpose enough that it should be universal. 

The cost consideration is much less of an issue when the declining cost of semiconductor memories 
is taken into account. While the cost of memory is declining, the amount of frame buffer memory 
required for graphics is not increasing at a corresponding rate. The reason is that amount of frame 
buffer memory is related to monitor technology, and that technology is not advancing at a 
comparable rate. Consequently, the overall cost of frame buffer memory will decrease in current and 
future generations of jaguar. 

Because of the declining cost premium for true color and 8 bit gray scale, and because we believe that 
it is important to make use of interactive video and photorealistic images in applications and 
become a natural part of the user experience, we have decided to make these features standard in 
Jaguar. 

JG0-6 



Apple CONFIDENTIAL ja~uar (,'mphtcs Ot·i:n~ell' 

Monitor 

The previous section discussed the merits of different monitor sizes and resolutions, so that will not 
be repeated here. The remaining issues with monirors relate to gamma correction and electronic 
contrast and brightness control. 

Because Jaguar will be displaying photographic quality images, it is very important that the display 
subsystem produce consistent quality images. Contrast, brightness and gamma are the monitor 
attributes that affect this image quality. Because multiple applications will be displaying images 
simultaneously, opti~µtj,c>n of these attribures for a specjfj,£,,,f;pplication is not sufficient. BiW:~r, 
the display subsy~t~m]~B.t produce a calibrared reprodu~in~:::~p that each application caq:::mim 

The video back end converts the digital image srored in rhe frame buffer to the analog signal required 
to drive the monitor. It is comprised of a Cl.lJT/DAC (like rhe Brooktree BT458), a pixel clock 
oscillator and sync timing generation logic. 

The.Jaguar video back end will be programmable co supporr multiple screen sizes and resolutions as 
well as suppon both color and gray scale. Both the pixel clock and the sync timing will be 
programmable. Jaguar will supporr monochrome up co 100Mhz, and rrue color up to 57.Mhz, which are 
the frequencies required to support the 16" jaguar monitors. 

The back end will also be able to drive a TV or VCR with composire or S-VHS video in NTSC and PAL 
formats. When driving NTSC and PAI., the Apple proprietary convolurion digital filter will be enabled 
to reduce the flicker inherent in inrerlaced display formate;. 

Gamma correction will be performed by loading rhc lookup rabies in the RAMDAC with the 
compensating function for the gamma of rhe moniror. 

JG0-7 



jaguar Graphics Overview !lpple CONFf[)f;'N'/1AL 

The video back end consists of three VLSI chips. The ELMER gate array contains the necessary data 
paths to multiplex the 96 VRAM data outputs down to the narrower RAMDAC inputs, has circuitry to 
support convolution, and contains the sync generation circuit. The CLUT/DAC chip converts the 
digital pixel data from ELMER into the analog RGB signals required to drive the highres graphics 
monitor. The DENC (digital encoder) chip is similar to the CLUT/DAC chip, except that it generates 
the output to drive the composite and SVHS NTSC/PAL outputs. 

In addition to these three VLSI chips, a programmable phase lock loop chip is used to generate the 
the pixel clock. 

Frame buffer 

Frame buffer memory contains the digital representation of the screen display. Frame buffer memory 
is mapped into the CPU address space so that applications can render directly into it. This memory is 
composed of 12 128Kx8 VRAMs for a total frame buffer size of 1.SMbytes. This amount of memory is 
sufficient to support monitors up to the size and resolution of the standard 16ff Jaguar monitors. 

The standard 16" 72DPI color monitor displays .5Mpixels, so the l.SMbytes of frame buffer memory 
allows for 24 bits per pixel which allows true color to be displayed. 

In 8 bit gray scale mode, only lMbyte of the frame buffer RAM is usable, rather than the full 
1.5Mbytes. The reason is that the memory is that the 1.SMbytes is actually distributed in a 2Mbyte 
address space, with one byte missing every 4th byte, since this is the format that is required for true 
color. In monochrome mode, we drop an additional byte out of every 4 to get 2 usable bytes every 4, 
and these are multiplexed down to a lMbyte address space. To do otherwise would require pixel 
twisting logic that would require additional interconnection between the two memory crossbar data 
path chips, and would introduce much complexity in the addressing logic. Since the standard 16" 
lOODPI gray scale monitor, lMbyte is sufficient to drive this monitor. 

The frame buffer also has special addressing to support the convolution feature on interlaced video 
output. 

Wilson 

Because the display of interactive synthesized and digitized images is so important to the 
multimedia aspect of Jaguar, special hardware is required and has been included in Jaguar to 
facilitate the dynamic compositing of moving images from many sources onto the screen. 
Synthesized images will be rendered by the processor into system memory or by accelerators added 
to the expansion bus. Digitized images will be expanded from compressed data on disks or from 
ISDN phone lines or come directly from video digitizers on the expansion bus. These changing 
images must be composited onto one or more screens in real time with minimal artifacts. 

JG0-8 



Apple CONNDEN71!1L jap,uar Graphics Oven'iew 

The E&W (Expansion interface and Wilson) chip is the hardware that supports screen compositing on 
Jaguar. E&W supports the transfer of streams of 8, 16 and 32 bit pixels between devices, such as 
expansion adaptors, system memory or frame buffers. Transfers to memory or to the mother board 
frame buffer, map these streams into rectangular blocks by keeping track of rowbyte information 
when incrementing the memory address. In addition to transfering rectangular blocks, E&W supports 
the masking of a pixel transfer by a mask plane. This mask plane allows for overlays over dynamic 
data, such as live video, and for non rectangular or trans!ucent windows. 

E&W must operate at high speeds, and must have the ability to synchronize transfers to the frame 
buffer with the beam position. In order to animate windows and objects on the screen, the parts of 
the screen that chang~,::@lst be completely updated betwe~;O§\#'.Cessive screen refreshes. UpJ~§§:the 

~~~!:~i;t;,,J,l11~ils~i;~il~e~e~~~~~ (~~f a~i~~~i~~llJF sh:~~~;o~~!~~~ ~~ i:~tlxhe 
~:1eq1filoniZation with the beam" .. that updates to the 'Jll!I

E:~::~•to=,~~~~!Erlff•;t~:~:;~ff~·
buffered. Con¥mi~gpy\:•:me assumption of Jgguar and ··~\'{{·!~··~pat virtually amfiindows w!m~··pack
buffered. tt?t:··rr:': .::::· :;:ft\: '·=::;:: .·.·.w.· ·-::··:f.. :.

In addition to dl,;m~~~~g windows, E~~!~ill be useJ!ll~~i~1,i•~ior initiali~\Vindows. Aq·~~~ :
~~~~~~dc~~1lll!ll1~ ~~a~:c~~11irr~.fi··.~rjid~l~ml!l~l~t~~~~l~~=iiiti~Sl~1li•·····=••·•···• 
operate in para1~~!!!!,l:1:re CPU, leavi~~i!~~~i!i~l~·."~f!~J.~B!i•lm~H~·:me n1~~·!~11),•;=••i!•!!!i••i!ii !ii!iii!i!ii!i••!i•ii•i••1!•i!i!i!••l•i•••••i••i!•!••!!••··· 

The window nu':bifd~re also has atF256:f24:::t;\Fctum•::th~tlff;fk usefff&Ft6tdFtrirt5liti6fi bfii \ } 

;~~~~;q~~i~l~lt~l~:e r~~~~~g ~!s s~~~o~: t~e~~i!il~ll!·I~~:~ ~~ ~ef~;t~~ ~~rf~~f ~litat 
color translatjgq:~~~ffgfgied on the way into the fra~:•:mrf~t;rhis CLlIT does not hav¢µt~:§~ffie 
probletJAA:µm~@·~~9.•liur-tJ:p:me video back end wdq~~·::fi~yji ww··.·· w 

Processor and graphics instructions 

The Jaguar processor has a performance of 30-40 times the speed of a MAC IICX in integer 
benchmarks, and up to 200 times in floating point benchmarks. In addition, unlike MAC II frame 
buffers, which are limited by the performance of NuBus, the jaguar frame buffer will have 
performance equal to that of main memory. This level of raw performance will enhance the 
performance of existing graphics operations, like those implemented in Quickdraw, by at least an 
order of magnitude over IICX and even 68040 implementations. 

This increased level of performance, combined with Window OMA, will enable better operation of 
existing 2D graphics techniques. Higher quality animation will be possible, including the moving 
display of stored color images. Using processor or window DMA operations, BLT rates greater than 8 
Mpix are possible, which may allow for the smooth scrolling of windows. 

JG0-9 



jaguar Graphics Overview 

In addition to improving the performance of existing 2D operations, Jaguar needs to achieve good 
performance in a number of new graphics areas. ln order to allow extensive use of antialiasing to 
improve the quality detailed graphics, such as text and cursors, it is important that Jaguar perform 
alpha compositing efficiently. In order to allow the interactive rendering of 3D graphics images, 
Jaguar should perform interpolation of true color shaded polygons, and Z buffer compare operation 
quickly. More general pixel arithmetic, with saturation is important to allow for imaging algorithms, 
such as scaling and rotation to operate quickly. Finally, because of the importance of animation, 
high speed transfer of images from memory to frame buffer is important to allow back buffer 
techniques to be used. 

In order to increase the performance of these operations, the processor instruction set has been 
enhanced to provide special instructions for some of these operations. In some cases, special 
instructions were not cost effective because they could not provide much additional performance 
beyond the performance provided by the general purpose dual ALU architecture. Specifically, 
instructions have been added for interpolation, Z buffering and compositing. 

Pixel arithmetic instructions have been added that perform multiple adds in a single instruction. 
These instructions allow a true color alpha compositing loop to operate at approximately 10 machine 
cycles per pixel, which yields a performance of approximately 4 Mpix. As a rough idea of what this 
performance would mean (although this is not really a meaningful operation), the entire 16" screen 
could be composited with another source at a rate of 8 times per second. 

The pixel arithmetic instructions can also be used for interpolation of pixel values. In addition, a 
special Z buffer compare instruction has been added that allows for multiple Z values to be compared 
in a single cycle. These special graphics instructions, combined with the dual instruction execution 
pipe, make it is possible to render one true color (32 bit interpolations), Z buffered (using 32 bit 
floating point) pixel approximately every 8-1 O machine cycles. Estimating 20 machine cycles of 
overhead per scan line, and 100 machine cycles of setup, a "typical" 100 pixel triangle (15 scan lines 
high) would render in 1200-1400 machine cycles, or 30-35 micro seconds. This yields a performance of 
-30K triangles/second. Much of this time is taken by memory overhead. We are still tuning this 
operation, and it may be possible to achieve even greater performance. 

While not specifically part of the graphics instruction set, the floating point instructions provide 
exceptional performance for graphics operations. A 4x4 matrix multiply used for 3D transforms, can 
be performed in 21 machine cycles, which results in a performance of 2 Million transforms per second. 
Based on published work of the number of machine cycles taken by machines with similar 
architectures, we could expect the traditional display list traversal, transform, light model, and setup 
for a single 3D triangle to take approximately 600-800 machine cycles, or 15-20us. 

Combining transform and render performance estimates above, we could estimate Jaguar 
performance for the traditional 3D transform and render operation, at approximately 20K 
triangles/second. This level of performance is comparable to the level of performance available in 
todays 3D graphics workstations. 

This rough estimate follows the traditional workstation model for graphics, and is useful for 
comparing Jaguar to traditional implementations. i'Jewer architectures for graphics will represent 
surfaces directly, rather than specifying individual triangles, and may be able to reduce the 
transform/light model time. Even so, the limit will be the rendering time, which is still limited by the 
inner loop performance of 4 Mpix (10 machine cycles) for Z buffered operations. Non-Z buffered 
operations would operate faster, and could perhaps double the performance of the inner loop. 

JG0-10 



Apple C:ONFIDE'N71AL jaguar (Jruphics Overoiew 

Because the jaguar architecture uses the CPU to perform the graphics operations, and because there 
is much parallelism inherent in graphics algorithms, Jaguar graphics will be able to take advantage of 
multiple processors to increase performance. The graphics algorithms can either be divided 
functionally: using one processor for rendering, and one for transforms, or divided uniformly: using 
processors to transform and render complete triangles in parallel. 

A major difference between the jaguar CPU and traditional CPUs is the relative performance of 
floating point. In traditional machines floating point operations are usually much slower than integer 
operations, this is not the case with jaguar. The jaguar CPU can perform a floating point add and 
multiply in a single machine cycle, which is just as fast as what is possible with integer operations. In 
general, it can be argu_g;t:':that the fundamental limits of All.Ld~~jgns dictate that for equal pr~fi§,~9n, 
floating point muIYP.~!i§favill always cost less and be a littl~t:f~~t~~ than integer multiplies, wtw~fim~ger 

reasonable to rrl!@9j:':;p coordinate pregjibn in floatipgj:pij))j~))faguar. It rr@f. even ma!clj:g@jj):p 
perform some iq@MQll)ns, such as trid:gle boundariq~!H•i!lmmting poinWi!::/ :•:::•:::::[:t:::::=:•t[ 

i::,::.:':::::,::::=.::.).'·:,::::::i.:, ::::::::::::::.;,:/{: ::'::/'}'::;:)'t':'::::::::::::::::::J:::::,::,:::::,::':.::::::,,;::::::;::;::: ,,:::•:::::::::.: ....... , ·.·.·.:.·::-:• •·:•:-:::::•:::::::t·:;:,::::::,::.:::,::.,:,:=::·:.:::·::::;:::;:::;::::: 

Video Dellll·(ess ion ::· .. ·': .. ·ill~:l:l:•.llllllll:lllil=.:llll.l:,_:::j'_'·Jl··li._j·:1.··:.:_:j:·,!,l:li:l:IJ·:_.:jllli-·iiijii:::::i:·.!J·_:•,::jii ••::1:::::t::':::::=:::::::=:::t::::::;::=::::•,:•:::@:•:•::rn•••:•:•:::•••::•::::::•:•::,•,,,:••::•.•••:::::••:'• 

~~:~l•;~7~~iR1 
realiscic!H~:::~~l!i:::ma~f~~ applications. :=:::·::::::::::::::::::::::::·:::::::::: ::.:::-_:,:::-:~::::;:::::r::'. 

The manipulation and storage of video requires compression and decompression of video because 
the data rates of uncompressed video are just to great to allow for storage and transmission with 
available technology. The raw bandwidth required for NTSC video is about 40Mbytes/second, while 
compressed video requires 300 times less, or about 1 SOKbytcs/second. At 1 SOKbytes/sec, one hour 
of video can be stored in about SOOMbytes, or one optical disk. That data rate is also achievable 
over standard IANs. 

Video teleconferenceing over 64Kbit ISDN channels requires a high degree of compression to get 
moving images down to 64Kbits/second 

There will be international standards for both teleconferencing and high quality video compression. 
Currently CCITT has developed a standard for teleconferencing known as P'64. This standard has 
gained wide support and is based on DCT compression techniques. ISO is working on a standard for 
video compression known as MPEG, but this standard is still quite early in it's evolution. MPEG will 
be based on DCT techniques as well, and will also be upward compatible with P'64. 

JG0-11 



jaguar Graphics Overview Apple CONFllJEN'/7AL 

Because we expect the important standards to be P*61i and MPEG, and because the quality of OCT 
based algorithms are good for these applications, jaguar will support decompression of P*64 and 
MPEG formats, and also be generally programmable to support other formats that are OCT based. 

While it is important that Jaguar support as many of the industry standard formats as possible, in 
order to be able to import and export data to other environments, it is also important that Jaguar 
promote a single standard to be used by the typical application. 

While Jaguar will provide decompression as standard, compression will be optional. Real time 
compression is a much harder problem than decompression and will cost correspondingly more. In 
addition, real time compression is also not generally useful without a video digitizer. The cost of 
video input combined with compression is much greater than that of decompression, and would add 
much additional cost to the system. An expansion card will be provided that provides compression 
and video input. 

There are three choices here: 1) have no standard support for video compression or decompression, 
2) support only decompression, 3) support video input, compression and decompression. Jaguar has 
chosen option two. The argument here is that decompression is more important than compression, 
because it is required to view video documents, and it is most important in a network is to make all 
information in the network readable by all users. If video documents were readable only if one had a 
special card in one's system, then video documents would not be generally distributed. While 
compression is required for recording video, authoring of video material is still possible with only 
decompression if all the components have already been digitized; compression only buys the user the 
ability to digitize and record video in real time. 

The argument also says that if one wants to digitize video, one would not want to do that in one's 
office, but rather one would want to have a space allocated with proper lighting conditions, space 
and a backdrop. This resource could be used much the same way that shared printers are used today. 

The only really strong argument for providing video compression and digitizing is for video 
teleconferencing. In that case, much like a telephone, it would be desirable to have the video input 
at the users desk. On the other hand, one could also have a conference room set up for 
teleconferencing. The conference room could have controlled lighting and sound conditions that 
would solve some of the problems with desktop teleconferencing. We cannot justify the cost of 
video input an compression in every Jaguar on this application at this time. 

The problem of decompression on a personal computer in the jaguar price range is a difficult one, 
and to our knowledge, it has not been solved for OCT based algorithms. At the time of the writing of 
this ERS, not all of the problems have been solved, and there is a risk that we may not achieve all of 
our goals. 

Typical graphics scenario 

This section presents a typical graphics scenario and shows the flow through the graphics subsystems. 
The scenario shows two applications running simultaneously: a 3D graphics application and a live 
video application with data coming in over a local area network. 

JG0-12 



Apple CONFJDEN17AL jaguar c;raphics Overview 

The 3D application takes it's data from a data base on the local disk. It transforms and renders the 
object into the image buffer, and uses the intermediate Z buffer on each frame that it renders to 
perform hidden surface removal. 

The application takes the objects in the data base and alternates between the geometry and lighting 
operations and the rendering operations for each triangle. The geometry and lighting operations are 
floating point intensive and produce the coordinates of triangles that are to be rendered into the 
frame buffer. Each coordinate consists of six components: the X and Y position in screen 
coordinates, the Z value and the three color components: R, G and B. 

~=:~~~i•~~:n'6t;~i•lllli~lldlll';! 
another user. '? · =:::::}: •.••.\.••.=.•.•.:.•.•.•.•.•.•.•.•,•.•,•.•.::..••.}} ::::::::============================:.=•.:.:.:: ... '.i .. •.=•.:•:•=•=>===-= ====•=::::: •.•·•.:•.:.·:.••.•.•,•.'•. =:::.: ===•=•=•=•/='='=>=•=======>>===·=·=·=·=···=·=·········.·. 

. . .. . . .. ".. :,i:~.'.=,t,.,~·,:=,==,:=,: ,·,·,·,·,·,·,·,·,·,·.· .. ·.,·,·,·,·:·,·,·,·,;,:,~,i:~ .. : (.;/{~:}}:::;:;::::;:;:::::·;:.:.:·:- .. · ·.· ... ~j~@~ ;:;?\( :::::::::::::: >=·>:·:.:-:.;-;.:. ;.:-:; :=:~:r::::;{:~=~=~=~=rr .)}:~(=:::=::::(~~~}[ff: -=-:-;.;.;.;-:-:.:-·-·.·.· •.·.· · · · 

¥.~~:~~~·!i!~~:~~:1~~:~•~~~~2~~~~I•te 
generat~ ~:•9~~~~ ij'i,:i~~uence. :: •:'.'/'." . :. 

Once the image is completed, the decompression application requests the Animation toolbox to 
update the screen with the new image. Again the image buffer will probably have to be double 
buffered to allow the application to continue on without waiting for the buffer to be transfered. A 
typical decompression format would generate an image 360x288 pixels at a rate of 30 frames/second. 

The Animation toolbox is not shown in the picture, since it does not actually touch any of the data. 
The Animation toolbox talks to the E&W manager to schedule the requested screen updates. The 
E&W manager schedules the events and requests the Wilson Driver to perform the operation. The 
Wilson driver finally sets up E&W to perform the actual data transfer. The data is transfered to the 
frame buffer. The mask plane is used in performing the transfer to the screen to properly clip the 
window if it is partially obscured. 

Each of the updates to the screen were scheduled so that they completed between successive screen 
refreshes. This is important to insure that the frames do nor "tear" as they are updated. 

JG0-13 



jaguar Graphics Overview Apple CONFIVF.N'/7AL 

The image in the frame buffer is sent to the screen 75 times per second by the video back end. The 
frame buffer is composed of dual ported video RAMs, and the serial port goes to the video back end. 
Frame buffer data is Scanned out serially from left to right and top to bottom. The pixels are passed 
through the CLUT that has been programmed to compensate for the gamma distortion of the 
monitor. The output of the CLUT goes through DI A converters that convert the pixels to analog 
voltages that are required to drive the Jaguar graphics monitor. 

The final result is two animated images, one in a partially obscured window. The images have proper 
saturation and color balance for being properly gamma corrected. 

JG0-1/i 



Apple CONF/lJENJ1!1L 

30 graphics,,,, 

iii] 

Ethernet 

Decompression 
accelerato:~::::::::::::::::::::: 

hardwa,,~llllllllllll!l·lllll·lll·lllllll 

System 
frame buffer 

Video back 
end 

raw data 
buffers 

Decompression 
CPU code 

Gra hies monitor 

Typical graphics scenario data flow 

JG0-15 



·~ Apple® Jaguar Video Back End 

Apple CONFIDENTIAL 



Contents 

-
Introduction ....................................................................................................................... VBE-1 
Frame Buffer Organization ................................................................................................... VBE-3 

Frame Buffer Addressing ........................................................................................... VBE-3 
Convolution Address Translation ........................................... : ................................... VBE-4 

ELMER ............................................................................................................................... VBE-7 
Introduction ...................... ~ .................................................................................... VBE-7 
Frame Buffer Interface ............................................................................................. VBE-9 
Convolution ............................................................................................................ VBE-9 

Input Buffering and Reordering ..................................................................... VBE-10 
Loading Video Mask .................................................................................... VBE-10 

CURSOR ................................................................................................................. VBE-11 
Overview .................................................................................................... VBE-11 
Cursor Region Control. .................................................................................. VBE-12 
Cursor Refresh ............................................. .' ........................... : ................... VBE-12 

MPU Interface ......................................................................................................... VBE-13 
Video Timing Generation .......................................................................................... VBE-14 
Vertical Line Interrupts ............................................................................................. VBE-15 
Video RAM Address Generation and Serial Port Control ................................................ VBE-15 
CLUT/DAC Interface ................................................................................................. VBE-16 
Monitor Sense Lines ................................................................................................. VB E-17 
Control I Status Registers .......................................................................................... VBE-18 
Pinout ........................................... ; ........................................................................ VBE-20 

Video Output. ................................... : ................................................................................. VBE-21 
NTSC/PAL Video Output. ......................................................................................... VBE-22 
Component RGB Output. ........................................................................... ~ ............. VBE-22 

Clock Generation ......................................................................................... VBE-23 



Apple CONFIDEN77AL Jaguar Video Back End Elb 

Section 1 

Introduction 

This external reference specification covers the hardware support on the motherboard for the entire 
video backend. As iUµ.$$lted in the block diagram below1j~::§Wers the frame buff er organi~~*Ql;l, 

RLD 

-~-..tJi!i: .• i.l:ili.ii:l·i:!i ., •. ',·.·,·.:,:.1, •. :,:.l,:.:·;···:·2A .. :, .. :.,'.:,:.:·,: .. :·,:.:,!.'.·.: ... ·.:.'.·'·'.·.:,:.: {D} LD- : :·:~·:·:-:·:·:·:·:·:,:-:-:·:-:-: ... :-: ~t----~~ · DBLa.K : ::::·:·;:::;:::::::;:;::;:::::;:::.;:: VIDCll( B 1----=;;;;;;;i 

: : ; : CLKJCLK• 

'··········································..! l ~ ~ 111. ECL 
DB-15 

FRAME BUFFER : : : FREQUENCY 

MEMORY ;;;;;;;~;;;;;;~~~~ [ ____ _:_~~::::~---·-· ......................................................... : 
The frame buffer organization section provides a brief description of how the different pixel 
formats are mapped into the frame buffer RAM. This defines the frame buffer RAM as seen from the 
processor and the video refresh hardware. Related document is the Memory ERS. 

The interface/controller section describes the proposed functionality of the frame buffer glue chip, 
Elmer. Elmer serves three main purposes: 1) to multiplex, buffer and reorganize the four 24-bit, Video 
RAM.serial ports into a high speed CLUT/DAC interface; 2) to generate the video timing to support a 
wide range of monitors and to control the Video RAM serial ports; 3) to enhance the JAG frame buffer 
by adding functionality as possible, such as 24-bit, true-color, convolution filtering and limited 
hardware cursor support. 

VBE-1 



jaguar Video Back End ERS !ljJple CONFllJf'.'N71AL 

The video output section details the CLUT/DAC and digital video encoder (DENC) subsystems which 
convert the digital pixel data to the component RGB and encoded NTSC/PAL video outputs, 
respectively. Finally, a short section is presented on the programmable pixel clock generation and 
critical timing parameters. 

VBE-2 



Apple CONFIDEN17AL jaguar Vi<leu Back Fnd Fl\S 

Section 2 

Frame Buffer Organization 

Frame Buffer -4'9@ressing 

CONVOUJTIDN 

PixelO. I 
Line painQ.11, '113 /.1 PO,O I Pl.0 

I Pl.O l"l.0 I •·.·.·! l'O,O Pl,O f'OJ 1':.1 

........ , PO.I I Pl,l 

PiKI 2, 3 

PO,l Pl,J 

I ·····q PO.I I l"l,l 

1 · Pl,I I Pl.I 
Line pain Q.11. '113 

I I P2.0 I l"l,O 

I I Pl.I I r:u 
I Pl.l i'),2 

I Pl.l P'3.J q I POJ I r1.l 

I I PlJ I PlJ BANKO BANK I 

D Not Populaled 
I l'O.l Pl.l 

I Pl,l l'l,l 
• Convolution pixel labeling : PPIXEL. LINE 

A 64 MBy address space is allocated for the frame buffer in the system memory map. The 64 MBy 
address space is further divided into 8 MBy address spaces which are redundantly mapped into the 
VRAM for the different modes of operation: 8-bit/pixel, 24-bit/pixel and 24-bit/pixel convolved. 8-
bir/pixel convolved is not supported because of the added complexity and degradation in 
bandwidth. 

VBE-3 



Jaguar Video Back End ERS 11pple CONFllJl:N/1,\1. 

This frame buffer organization can support the following pixel formats and monitors. 

24-bit/pixel, True-Color 
NTSC 
PAL 
13" Landscape 
16" Landscape 

8-bit/pixel, Grayscale 
13" Landscape 
16" Portrait 
21" Kong 

640 x 480 Convolved, full-screen 
768 x 576 Convolved, full-screen 
640x 480 
830 x 630 (preliminary) 

640 x 480, 72 DPI 
640 x 870, 80 DPI 
1152 x 870, 72 DPI 

Convolution Address Translation 

The convolution filtering to reduce flickering on interlaced displays must be performed transparently 
to the processor. This requires an address translation in the system controller to map the processors 
address space into the convolved address space. A derivation of the convolution address translation 
is provided below for 24-bit/pixel, full-screen PAL (768 x 576) with video mask and scanline cursor 
memory. The same translation can be used for NTSC with extra memory distributed throughout the 
frame buffer. 

The software's view of the frame buffer in convolution mode is shown below. Each scanline in the 
frame buffer contains cursor information (both mask and image data), video mask information, and 
pixel information. The base address of the first scanline of pixel information is defined in the system 
controller by the Screen Address Register (SAR) and the amount of memory between scanlines, is 
screen row bytes (SRB). Both SAR and SRB must be 16-byte aligned. 

CAR SAR 
LINEO 

CAR+CRB SAR+SRB 
LINEl I:::<>• ·················•·•·••·••I 

INDEX: o.oo 0.04 0"14 0.60 o.so Ox3FP 

/"Jlt~~WrW@il·•·1••··~ LINEn !·.··••·•>···· .•1 

Mask Image Unused Video Mask 

Cursor Organi7.ation 

Software's View of the Convolved Frame Buffer 

To allow the line number and pixel offset to be easily separated in hardware SRB is set to 1024 words 
in software: 128 words of cursor and video mask data; 768 words of pixel data; and 128 words of 
unused memory to make 1024 words. To recover the extra memory on each scanline distributed 
throughout the frame buffer (required for full-screen PAL), the address translation hardware must 
scale SRB to 896 words (a multiply by 7/8 - a shift and an add). This has the effect of mapping the 
last 128 words of unused memory from the current scanline into the first 128 words of the next 
scanline. Overlapping the scanlines in this fashion doesn't create a problem because the software 
never accesses the last 128 words of each scanline address space, so the memory is not redundantly 
used by two scanlines. 

VBE-4 



:lpple CONFIDHN77Al jaguar Video ilJL:k End EHS 

The hardware's view of the frame buffer in convolution mode is shown below. Since the cursor and 
video mask information are mapped into pixel formats in the frame buffer and the address 
translation is performed to all read/write transaction to the frame buff er, all the information in the 
frame buffer is twisted into the format required for the filter. Treating everything as a pixel, 
successive scanlines are interleaved on a dual pixel basis to form line pairs and successive line pairs 
alternate between Bank 0 and Bank 1. This allows pixel information for four successive scanlines to 
clocked out of the video RAM serial ports in quick succession. 

Banko 
48 47 

Bank 1 
0 9S 

OllOO 

.·.·.·.· ······:· 
·==~tm~~:::~~(==::::: 
·.· .. ·.·.·.·.·.·.·.·.·=·:::: .•.•.;··:·:·:·:-:·:-:·: 

,,411 
Ail= !.i:iij.'=:::::::::::::::::::,"!:.:=.~.:.:.·.· 

:;:j:~:j{' ·:·: ··:::::::::::::::;:;:· 

~~;;;;g:.:::::::..::~~ .. ,· .. :,:.·,.'.·.:,i.1,:.f ·.,
1 

.. ,l.:,1 .. ,l.,l .. ,l.:,i.''·: .. ,

1 

.. ,1,,1,.'1.,1.'::1,,1:1.'1.,::1:1.1.1,1.1,1.j,l.l,l.l.l.l.ll.ll./l.l ::::::::::::::::.:::::::::::::·::::::~ :.:,:,:,:,:···· 
:::::::;:;:::::::::::;:;:::::::::~~====: 

:.:::::::::l::.::1:1::::1:::,:==:,. 

Line Pair 0/1 

n • ~ ~ tt ~ u a 1 6 

._..,_._._R~~-+--+--+-~-+--+--+-

1 
LINE o.m 

Convolution Address Translation 

VBE-5 



jaguar Video Back End ERS i1jJjJle <,'ONFl/J/:'.YI1ill. 

A[21:12] Line Number 

/ Line Pair (LP)= A[21:13] 
A[21 :OJ Alternate Line Pair (ALT _Li') = A[21: 14] 

' Alternate Line Pair Base(ALT_Li'_BASE) = A[21:14] x 7/8 
A[ll:O] Pixel Number 

DPIX = A[2:0] 
Dual Pixel Offset (DPIX_OFF) = Afl 1:3] 
Line Pair, Dual-Pixel Offset (Li' _DPIX_OFF) = (DPIX_OFF « 1) + A[12] 

Convolved Address= (ALT_Li'_BASE « 11) +(Li'_DPIX_OFF « 4) + (A[l3] « 3) + DPLX 

VBE-6 



,1pple CONFWEN17t11. Jaguar VidL'\J IL!ck Fnd Uh 

Section 3 

ELMER 

Introduction 
... :: ::\\( ·.;.·.·.·.·.·.·.·.·.·· )r 

~1~~~~P~~gf~!J·~·k~1~~~~~ ~~~~!~~iJl1f.~ii~a~~:r~~~-~Dct~1~~11f p. 

The 96-bit fram~\:;~~~;ii®terface, four 24;~ji··~~el po~~=i·;~iiii~J,~ned to int¢r~~e directl~j~~ii~ 
Video RAM seri~•fii'~4d transfer data.f:~jlhe maximuqffifllport clock{!te, 33 MHz. $1 '' 

::~:~~·:0ZIE~5i-~fl1ilfiTl1l'!Illlil 
~~;:;!b~~:~~ltl~~~~:~~ f~~~tm~}.~'~1:1•1•1rctJ1~1~-·~11,1;~~~~··•••••·•••••••·••• 
aggregate througijil~:::Q.r;Jmer is designed to support l~!•:Ml:if24-bitlpixel, true-color a;Qg4~QMHz, 
8-bitlpixel, gray$i~~¥~~p bandwidths. This is sufficien~':fq~~•i.~:•~1" true-color or 1611 , 144J~~M.}H 

I . ·>:<·>>:.:.:-:.:-:-:.:.:-:.;-:.;-:·:-:-:·:·: • • ••••.• :·:·:::.:-:· ::::::::::::::::::::;::::;::::::::::·:·: graysca e mow.mn•tttt••••t '\,,,,.,,,,,,,,,,,,,,,,,, 
.... · ... ;.· ·.· .. ·.·.· .. ,·,·.·,·.·. ·.·.·.·. :::::::;.: ~.~i.~~.~~.~~.j~.~.~.~f "f:::: 

···=·==:(\L ::::?=:?=tt._._!\!?!?~~~~~?L .. :::=::::t\~~~~~ ... :~ft:: ~)~f:::::::::::::·:::::_._?f~ .. _ ............. _ .... . 
Elmer contains a programmable video timing generator, SWATCH, which supports Apple's current and 
future monitor line. The VRAM interface block between Elmer and the system controller synchronizes 
the video timing generation with the video address generation. The interface allows Elmer to 

interrupt the system controller to initiate row transfers to the VRAM required for video refresh. 
Additionally, the Video RAM serial port control allows video mask and cursor information to be 
buffered into the device on a scanline basis during horizontal blanking. 

Elmer supports 24-bit/pixel, true-color, convolution filtering to reduce flicker in interlaced video. A 
dual set of input buffers provides an efficient true-color convolution implementation specific to 
JAG's frame buffer organii.ation. A 768 x 1-bit video mask buffer is contained on chip to control the 
convolution filter on a pixel by pixel basis. A single scanline of the video mask data is loaded into the 
buffer during horizontal blanking. The video mask indicates regions of the scanline that contain 
video data and that should not be filtered. This allows the image quality of the video data to be 
maintained by passing the video data through unfiltered, while applying the convolution filter to 
computer generated graphics. 

VBE-7 



< co 
t"?1 

I 
00 

VRAMSC 

FRAME BUFFER 
INlERPAa! 

l'Dif23:0) (A) ·(DJ 

CSYNCi• 

16 a ff.BIT !MAGI! BUPFEll 

I a 64-BIT MASIC Blll'l'Ell 

ITAG 

. < . > , •. :.'.·.· .• _.,'.·,:.,'_':,•_:,•-.••,•.·•,·•.·•.•.·'.'.·.•· : r ,, . <•··_,·<••'•' i•• -••-••.••.·•.••-•·••.<.••.•-•·.·_• .... , •. •.·,•,•-,•,•,•.'.·,•,• .... ,' ... •_•,• _•.•_•--.·_;_•.• ... :_ .. '.• .•. •_•·.' ... '.• ... -.. ,_)_.•·.'.•· .. •·.'.•.'• .... ''.•-··-•--·-•·.:·.• .. ·-·• .. •-• .. ·.·--.:.: .. ·. , .• < f • •-· r••.••.·•·.•.•.•.•.•.·.•.•.•.•·.•,-• .. •I ... -.:.::::::.::::;:::::::-=:::::::::;::::::{{}::: -

CNTRL 

CSYNCv• 
LDv• 

.._.._.._..--~CllJTJDAC 

cs• R/W Ao or1:01 OPC ll.[3:0) XFER TRT• XFERACK• 

INlERPAa! 

PDo(47:0J 

w• 

CSYNC• 
VSYNC• 
HSYNC" 
BLANK• 



Apple CONFIDHN1111L J;iguar Vidcu lbck End rn~ 

Frame Buffer Interface 

The frame buff er interface is designed to directly interface to the serial ports of the Video RAM. The 
96-bit input is logically divided into 4 24-bit pixel ports, PD[23:0]{A} - (D}. On the rising edge of the 
VRAM serial clock, VSC, pixel data is latched into the device. 

-

PDi[23,0J[AJ:J ~ 

format as shown below. Bit 23 of the pixel pon contains the least significant mask bit. 
23 15 7 0 

1-bit/pixel mask data I~ 1111 111 111 11111 I 11 11 , , , 
bit i bit i+23 

Convolution 

To reduce flicker due to graphics data on an interlaced display, Elmer implements Apple's 
Convolution filtering on 24-bit true-color pixels. The FIR filter is applied to pixels from three 
successive scanlines according to the formula 

(2 +<line n-1> + 2 •<linen>+ <linen+ 1>) I 4 
To maintain the image quality of video data, the filter is only applied to graphics data. To control 
the convolution filtering, Elmer contains a video mask which identifies each pixel as video or 
graphics data. The mask data is loaded into 768 x 1-bit video mask buffer on a scanline basis during 
horizontal blanking and turns the filtering off whenever video data is being displayed. 

VBE-9 



J:.iguar Video Back End ERS Apple CONFinl:'Nn!L 

To support convolution, rhe frame buffer is partitioned into two 64-bit wide banks. Successive 
scanlines are· interleaved on a dual pixel basis to form line pairs. Successive line pairs then alternate 
between the even and odd banks, such that line pairs 0/1, 4/5, 8/9, ... are stored in BANK 0 and line 
pairs 2/3, 6/7, 10/11, ... are stored in Bank 1. This aBows pixels from four adjacent scanlines to be 
clocked out of the video RAM serial ports in quick succession. The pixel data stream is illustrated in 
the diagram below. 

CONVOLtmON 

Pixel 0, l 
Line pain 0/1, 213 

Pixel 2.3 
Line pain 0/1, 213 [ I ~1 

j ... ii 

ro.o 

PO,l 

P2.0 

Pl.l 

Ir >I 
l,:;::;:;:,,1 

BANKO 

Pl.O 

Pl.l 

P3,0 

P3.1 

*Convolution pixel labeling: P~UNB 

Input Buffering and Reordering 

P0,2 

P0.3 

BANK I 

Ff\ I Not Populated 

Pl.2 

Pl,3 

P3,2 

P3,3 

In convolution mode, the device can only be operated in 4: 1 multiplexing mode. Pixel data is 
clocked into the device at four times the standard interlaced bandwidth. The 4 24-bit pixel ports are 
logically combined to form 2 48-bit line pair ports. Pixel ports {Al and {Bl are combined to form rhe 
EVEN line pair port and pixel ports {Cl and {D} are combined to form the ODD line pair port. Each 
line pair port latches a dual-pixel chunk of the interleaved line pairs on the rising edge of VSC. 

Elmer contains a pair of convolution input buffers to resequence the line pair data for the 
convolution filter. Each buffer contains 8 24-bit pixels, two pixel chunks from four adjacent 
scanlines. The buffers are operated in a ping-pong fashion, such that while one buffer is being loaded 
from VRAM the other is supplying data to the filter. 

Internally, the pixels in the convolution buffers are reordered in an order convenient for the filter. The 
pixel above and below the pixel being displayed are sequenced to the filter in the following order: line 
<n-1>, line <n>, line <n+ 1>. The pixel data for the fourth line is ignored. It is not shown, but the pixel 
reordering changes in an alternating fashion on a line-to-line basis, as well as on a field basis. 

Loading Video Mask 

The video mask data to control the convolution filtering is loaded into the device during horizontal 
blanking. In the simplest case, only a single scanline of video mask data is required to turn the 
filtering on or off. A problem arises when the filtering is applied across a video/graphics boundary 
because the pixel above/below a video pixel may contain graphics data and create weird edge 
effects. The solution is to apply the filtering when anyone of the three pixels being convolved 
contains graphics data. This insures that a component of the graphics data will bleed into the video 
data and reduce potential flickering. To eliminate extra video mask buffering, the video mask data 
for all three scanlines used in the filtering are combined into a composite video mask as the data is 
read in during horizontal blanking. 

Video mask data is mapped into 24-bit pixel data as indicated previously. To simplify the hardware, 
768 bits of video mask, 32 24-bit pixels, are stored at the beginning of each row in the frame buffer 
for both NTSC and PAL. This allows the video mask data for the 4 adjacent scan lines to be accessed 

VBE-10 



1lpple CONFIDEN17Al jaguar Video Back End El{S 

in quick succession. The mask data is stored just prior to the video data of each scanline such that 
only one row transfer operation is required during horizontal blanking to clock in the mask data and 
initialize the serial ports for video refresh. After the video mask data is buffered into the device, the 
serial ports will be at the beginning of the line for active video. The transfer of all four scanlines of 
mask data requires 32 serial port accesses at the standard, convolution video refresh bandwidth; it is 
completed in 32 dotclks. The mask data is buffered in the convolution input buffers and 
resequenced similar to pixel except that the final destination is the video mask buffer. 

CURSOR 

Overview :I:I:I:t::::::::r:::::::::: 

·· · · · · ·· · · · · · · · · · · ·· x · at · 1 · · pixe graysca e · · · · · · · · · · · · · · · ·· · · 

(Note: The cursor size in convolution mode is iimited to 16 x 16 because three scanlines of cursor 
information are required to properly convolve the cursor .. Also, the cursor size for some monitors may 
be limited due to available inemory in the frame buffer.) 

The cursor overlay region can be arbitrarily positioned on the screen by changing a few control 
registers (via a channel program - eek!). When the video refresh traces across the overlay area, the 
contents of the scanline buffer are merged with the standard video refresh (background image). 

As defined for the current color cursor, the display of the cursor involves a relationship between the 
mask and the image. The data pixels within the mask (bit••l) replace the background pixels. The 
data pixels outside the mask (bit••O) are displayed using an XOR with the background pixels. If 
data pixels outside of the mask are white (R=G=B•OxFFFF) the pixels are transparent an the 
background image is unchanged. If pixels outside the mask are black (R=G=B=OxOOOO), the two 
most significant bits of each component of the background pixel are complemented. This 
guarantees at least a 25% contrast between the background and complemented cursor region. All 
other values outside of the mask cause unpredictable results. 

VBE-11 



jaguar Video Back End ERS ilpple CON fl I J /:'N/1:1 L 

Cursor Region Control 

The rectangular, cursor region is defined in memory by a base address and rowbytes. The base 
address points to the beginning of the first line displayed and rowbytes is the offset between 
scanlines. Both the base address and rowbytes must be 16-byte aligned. The size of the cursor region 
on the screen is defined by two registers, height (HGHT) and width (WDTII). The height and width 
only change when the region is completely redefined. The position of the cursor hotspot, the upper­
left hand comer, is controlled by the x position (XPOS) and y position (YPOS) registers. The x and y 
position of the cursor hotspot is defined relative to the beginning of the horizontal and venical front 
porch, respectively. Both XPOS and YPOS are 12bit, signed values which allows the region to 
positioned off screen. 

HFP~ 

· t< XPOS4 WD1H -----------YPOS 
Cursor Houpot 

Cursor 
Overlay Region 

HGHT 

Display Screen 

To simplify the cursor address generation hardware required for the VRAM serial pon control, if the 
cursor region moves off the top of the screen, then the cursor base address register, CAR, in the 
system controller must be updated such that it points to the beginning of the first line displayed. 

Cursor Refresh 

The cursor region refresh process is similar to the standard video refresh except that cursor 
information is only fetched when the cursor region covers a portion of the current scanline. During 
horizontal blanking, the cursor information for the next scanline is clocked out of the VRAM serial 
ports into a scanline buffer. The address generator in the system controller provides the same 
functionality for both the cursor and video address generation. When the first line of the cursor 
region is active, the VRAM interface provides an opcode to the address generator to load the transfer 
cursor address register, TCAR, with the cursor base address, CAR. The system controller performs a 
VRAM read-transfer memory cycle to TCAR and split-read transfer cycles as required to maintain the 
shift register. The serial ports are clocked until a single scanline of cursor, as defined by the width 
register, is buffered into the device. Guidelines will be developed such that software can insure that 
there is enough time during horizontal blanking to reload the VRAM shift registers for active video 
and buffer the convolution video mask when appropriate. On successive scanlines, TCAR is 
incremented by the cursor rowbytes, CRB, to refresh the cursor region on a line-to-line basis. 

The cursor image data is stored in the extra frame buffer memory at the same pixel depth of the 
frame buffer. The 1-bit/pixel cursor mask data uses the I-bit/pixel format. The cursor mask and 
image data for each scanline must be organized sequentially in memory. For each scanline, 96-bits of 
mask data is clocked into the buffer, followed by up to 64 pixels of image data, as defined by the 

VBE-12 



Apple CONFIDEN'/7AL Jaguar Video Back End l'.l\S 

cursor width register. In 24-bit/pixel true-color and 8-bit/pixel grayscale modes, successive scanlines 
of cursor information are grouped sequentially in memory, as shown below. Each scanline of cursor 
data must be 16-byte aligned, as defined by CAR and CRB. 

SAR UNBO 

LINED 

MPU Interface 

Elmer provides a standard 8-bit MPU interface to access all internal control arid status registers. All 
registers are indirectly addressed by first loading an internal, 8-bit index register. Address bit AO is 
decoded to select the internal index register (AO•Ob) or the register space (AO=lb). To support 
block read/write by Mazda, the index register is automatically incremented after every access to the 
register space. When the index register reaches OxFFH, it will roll over to OxOOH on the next access. 

VBE-13 



Jaguar Video Back End ERS /lpple CONFll)L:'N'lt!L 

AO R/W Bus Operation 

0 0 Load Internal Index Register (Index) 

1 1 Read Register (Index) 

Increment Index Register (Index++) 

1 0 Write Register (Index) 

Increment Index Re8ister (Index++) 

The timing for the MPU interface is shown below. 

R/W,AO ~----~ 
cs• 

D[7:0] (READ) --------<58&S ............ ...._ ______ >>----
D[7:0] (WRITE) ________ }{$?$888&'$ 

Video Timing Generation 

To allow the motherboard to support a wide range of monitors, both MAC and JAG monitors, in a 
consistent fashion, a programmable video timing generator developed in SEG will be ported to Elmer 
to generate the sync and blank monitor timing. A detailed discussion of the video timing generation 
is not presented in this section, rather only a brief description of the interface between the video 
timing and address generation is presented. For a detailed description of video timing generation, 
refer to Appendix A, "Stopwatch Theory of Operations, Version 3.1". 

The video timing generator has 4 major components: horizontal timing circui~ a vertical timing 
circui~ a composite timing circui~ and a large register file to store timing parameters for all three 
timing circuits. The horizontal timing circuit can be in one of four states: the front porch, the sync 
pulse, the back porch, and active video. A pixel counter maintains a count of how many pixels have 
passed in the current horizontal state and is compared to the horizontal timing parameters to 
transition between horizontal states (front porch, sync, ... etc). Similarly, the vertical timing circuit 
can be in one of four states : the front porch, the sync pulse, the back porch and active video. A half 
line counter maintains a count of how many pixels have passed in the current vertical field state and is 
compared to the vertical timing parameters to transition between vertical states. The composite 
timing circuit is concerned with generating the proper equalization pulses and serrations, and 
compositing them with vertical and horizontal sync/blank pulses to generate CSYNC-/CBLANK­
output. SWATCH contains additional circuitry to lock on to the horizontal sync of an external signal 
and synchronize the horizontal and vertical timing circuits to compensate for pipeline delays and to 
maintain correct status information 

The current SWATCH video timing generator is flexible enough to handle existing and future 
monitors. HD1V will not be supported because the CLUT/DACs do not support a tri-level sync. An 
area of concern is the frequency of operation for a high DPI grayscale monitor. For higher frequency 
monitors, the horizontal timing circuit is clocked at a divided down dotclk and thus maintains a 
count of how many multiple pixel chunks have passed in the current horizontal state. For a 220 MHz 
Hi-DPI monitor, if the circuit can not run at 55 MHz, the transitions between horizontal states will be 
constrained to 8 pixel boundaries, but this should not be a problem. 

VBE-14 



Apple CONFIDEN77Al Jaguar Vitko !lack End EHS 

Vertical Line Interrupts 

To help Wilson avoid frame tears when transferring regions of data, Elmer provides eight venical line 
interrupts that can be programmed to occur at any vertical raster position. The 12-bit vertical line 
interrupt registers define a line count relative to vertical front porch. When any one of the 8 vertical 
line interrupt registers equals the current line count, as IJ.!3intained in the vertical timing generator, a 
vertical line interrupt signal, LNINTRP, is asserted to Mazda for n clock cycles. Mazda latches the line 
interrupt signal and passes it on to the XJS. 

To allow XJS to qui~.~btlrvice the line interrupts, Mazda II,l!m.lµis an internal line count of.JfflF':':} 

Video 

read-transfer memory cycle. After a row transfer has been initiated, it is the system controllers 
responsibility to initiate split-read transfers, as required without Elmer's knowledge, to maintain the 
serial port data. Refer to the Memory ERS for details on the register and opcode definitions. 

The 4-bit opcode encodes 6 types of operations for cursor and video refresh as defined below: 

1) INIT - XFER 
2) INC RB/2 - XFER 
3) INC RB - XFER 
4) XFER BO- XFER Bl 
5) XFER BO - INC RB - XFER B 1 
6) XFER B 1 - INC RB - XFER BO 

Initialize uansfer address registers (TAR) and perform read-transfer (R1) 
Add ROWBYTES/2 to TAR and perfonn read-transfer 
Add ROWBYIES to TAR and perfonn read-ttansfer 
Perfonn read-transfer to banks independently 
Read-uansfer Bank 0, add ROWBYTES to TAR, Read-transfer Bank I 
Read-transfer Bank l, add ROWBY1ES to TAR, Read-transfer Bank 0 

The first two operations are performed during Vertical blanking to initialize the address generators to 
the base address of the frame buffer or cursor memory. For interlaced video without convolution 
filtering, ROWBYTES/2 is added to the base address for the ODD field. During horizontal 'blanking, 
the third operation updates the address registers to the beginning of the next line. Operations 4 
through 6 are used for interlaced video with convolution. In convolution mode, the frame buffer is 

VBE-15 



jaguar Video I3ack End ERS .tppie LUNFfl)f;',\''/J.'11 

seen as two.64-bit banks which must be independently controlled. The three operations perform 
transfers to each bank separately and updates the transfer address register to the beginning of the 
next line-pair in an alternating fashion between banks. A sununary of how the operations would be 
used to control the cursor and video address generation is shown below. 

Non-Interlaced Displays: 
During VBLANK: INIT - XFER 

HBLANK: INC RB - XFER 

Interlaced Displays w/o convolution: 
During VBLANK (EVEN Field): 

(ODD Field ): 
INIT-XFER 
INIT-XFER 

HBLANK: 
INC RB/2 - XFER 

INC RB -XFER 

Interlaced Displays w/ convolution: 
During VBLANK: INIT - XFER 

HBLANK: XFER BO - XFER BI 
HBLANK: XFER BO - INC RB - XFER B 1 

*Depending on the line-pair grouping, the operations alternate for successive 
HBLANKs 

The interlocked handshake interface between Elmer and the system controller is illustrated below. 
The read-transfer cycle is initiated by supplying an opcode and asserting the XFERSTRT* signal. The 
system controller acknowledges the completion of the read-transfer cycle by asserting XFERACK* 
until the XFERSTRT* signal is deasserted. The XFERACK* signal is bi-directional and provides slow 
serial clock, divided by four, to the system controller when XFERSTRT* is deasserted. 

XFERSTR,-. 

OPCODE[3:0] 

XFERACK• 

CLUT/DAC Interface 

The CLUT/DAC interface is designed to support m transfer rates of up to 57 MHz. The interface 
can be programmed for grayscale or true-color pixel formats with 24-bits, 32-bits or 48-bits valid. 
This supports true-color video bandwidth up to 110 MHz and grayscale video bandwidth up to 220 
MHz. The 32-bit grayscale format is provided for compatibility with the 8-bit Chunky pixel format 
defined by AC/DC. (Note: The awkward byte lane positioning is to provide footprint compatibility 
between 32-bit and 48-bit CLUT/DAC interfaces). The pixel formats and output modes are illustrated 
below. 

VBE-16 



Apple CONFIDEN'nAL 

24-bit Output Mode 

·24-bit/pixel True-Color 

8-bit/pixel Grayscale 

32-bit()ytputf..1ode 

47 31 23 

47 31 23 

0 

GO BO I 
0 

Pi I Pi+l I 
47 31 23 0 

8-bit/pixel Grayscale 

48-bit Output Mode 

I Pi I I:: Itt:tl Pi+ 1 I l'i+2 I Pi+3 I 
47 31 23 0 

24-bit/pixel T~r,~olor I Rt Gt I Bl l.JW 
.... ::::::;:;::::: :::::::::::::\t.f 

···"' ::!.!iliilllllilllJJljljlllillilllli!!i!j Oumut Pixel Formats J: :·i:miii!(,i·i·:.!iJll 

GO BO I 

Monitor Sense Lines 

jaguar Video Back End EIZS 

The monitor sense lines are used to uniquely identify the type of monitor connected to the frame 
buffer. Sense[2:0] are bidirectional signals with open drain outputs and are mapped into the 
RDSENSE and WRSENSE control registers. By driving a single output low and reading the two other 
resultant signals, and repeating the process for all three signals, software can determine the monitor 
connected to the frame buffer and generate the proper video timing. The sense lines must be 
continuously monitored to insure the low frequency SYNC timing for NTSC/P AL is not connected to a 
non-interlaced monitor. 

After system reset, the sense lines come up in input mode. The current state of the sense lines can be 
determined by reading the RDSENSE status register. The sense line inputs are sampled after each 
write to the WRSENSE register. After initialization, hardware will determine if the sense lines change 
unexpectedly (the user disconnecting the monitor cable) and blank the CLlIT/DAC output and gate 

VBE-17 



Jaguar Video Back End ERS 11/JjJ/e CONFff)f:'N'/7.11. 

the syncs until the sense lines return to the initialized state or are re-initialized. This is intended to 
protect the monitors form improper timing and to minimize EMI. 

Control I Status Registers 

A rough cut at the control and status registers for Elmer is provided below. The video timing registers 
are as defined in the "Stopwatch Theory of Operations, v3.l" . 

A channel program is required to read/write any registers through Mazda. The MPU interface and 
register addressing will be defined in such a fashion so as to allow block transfers of logical groups of 
registers, ie. timing registers, interrupt registers, control and status registers. 

Stopwatch registers 
Horizontal timing control -

Horizontal front Porch 
Horizontal Sync Pulse 
Horizontal Back Porch 
Horizontal Active Pixels 
Pixels to half line 
Horizontal Pixel start number 
Horizontal Counter Load 
Horizontal Counter Stop 
Horizontal Tuning Halt 
External HSYNC Enable 
HSYNC- Active High 

Vertical timing control --
Venial front Porch 
Vertical Sync Pulse 
Vertical Back Porch 
Vertical Active lines 
Vertical Line start number 
Vertical Counter Load 
Vertical Timing Halt 
VSYNC- Active High 

Composite timing control -
Pixels to Serration 
Equalizing Pulse Enable 
Serration Enable 

Reset control 
Soft Reset 

Status Registers -
Odd field State 
Horizontal State: 

Front Porch 
Sync Pulse 
Back Porch 
Active Pixel 

Vertical State: 

vertical Line Interrupts 
Line Interrupt 1 
Line Interrupt 2 
line Interrupt 3 

Front Porch 
Sync Pulse 
Back Porch 
Active line 
Horizontal Line Count 

VBE-18 

12 bits 
12bits 
12bits 
12bits 
12bits 
12bits 
1 bit 
lbit 
lbit 
lbit 
lbit 

12 bits 
12bits 
12bits 
12bits 
12bits 
lbit 
lbit 
lbit 

12bits 
lbit 
lbit 

lbit 

lbit 

lbit 
lbit 
lbit 
lbit 

lbil 
lbit 
lbit 
lbit 
12bits 

12bits 
12bits 
12bits 



Apple CONHDEN77AL 

Llne Interrupt 4 
. Llne Interrupt 5 

Llne Interrupt 6 
Llne Interrupt 7 
Llne Interrupt 8 
Interrupt Mask 

Convolution 
Convolution Enable 
Video Mask Disable 
Convolution Buffering Disable 

VRAM interface 
2:1 MUX mode Enable 
Grayscale Pixel fqmµt Enable 

ClUf/DAC Interface ... :::··,:,,. 

~~111•~~ble 
Cursor Mtblt'Q~ffl~:.ll))Enable 

; ~~~iiill\!\l\\111::11 
cursor h¢1#iflQ.ffl' 
cursor ~~9m{~ 
Transpai~'@l@!:j!e 

Sense lines :::\:~: :~t:<:::;;;\)::\ 

Sense witfa{@dA¢tes.s (RDSENSE) 
Sense 1.iiWWr~m~ess (WRSENSE) 

VBE-19 

12bits 
12bits 
12bits 
12bits 
12bits 
8bits 

lbiI 
lbiI 
lbit 

lbit 

Jaguar ViJco !lack End ms 



J:.1.guar Video Back End ERS 

Pinout -

VRAM Interface and Control 
96 I PDi[23:0] {A}-{D} 
2 0 VRAMSC 
1 0 XFERSTRT-
1 1/0 XFERACK' 
4 0 OPCODE[3:0] 

Video Output Interface 
48 0 PDo[47:0] 
1 I VIDCLK 
1 I DBLCLK 
1 0 LD-
1 0 LDv-

Video Output Timing and Control 
3 1/0 CNTRL 
1 0 CSYNCv-

1 0 CSYNC-
1 0 VSYNC-
1 0 HSYNC-

1 I CSYNCi' 
3 1/0 SENSE[2:0] 
1 0 LNINTRP' 

MPU Interface 
8 1/0 0[7:0) 
1 I AO 
1 I R/W-
1 I cs-

Misc 
1 I RESET 
5 TBD ]TAG 

26 I Power/GND 

211 Total 

VRAM Interface 
VRAM Serial Clocks 
Serial Port Transfer Start 
Trans.fer Ack. I VSC 
Transfer Operation 

CLUT/DAC lnte1face 
Divided Down Pixel Clock 
m Pixel Clock 
CLUT/DAC Load Clock 
DENC Load Clock 

DENC Serial Port Control 
DENC Composite Sync 

CLUT/DAC Composite Sync 
CLUT/DAC Vertical Sync 
CLUT/DAC Horizontal Sync 

External Composite Sync 
Monitor Sense lines 
Vertical line Interrupt 

MPU Data Bus 
Address Select 
Read/Write 
Chip Select 

System Reset 
Boundary Test 

VBE-20 

.-1pple (,'()NF/Df:'.Yn·t/, 



Apple CONFIDEN11AL jaguar Video Back End EHS 

Section 4 

Video Output 

To meet the user demands of a multi-media machine, JAGUAR provides two sources of video output 
on the motherboard;,.,~d@gh-resolution, non-interlaced co~t RGB output; and an encqam 

SYNC'BLANKt---t--~i;iii;i;i.i;i;i!i!i!ii;iii;iii;i---------ii'if:~::~ 

PDo[47:0J i.-,..._..,..4sj;,,j'..::.'i ... ·'::.'11ii:··':.i ... :' ... ·'' ... ·':·l .. ·''' ... ··';·: .... ·'i•._ ... ':,'= ... :ii.·: .. :: .. :;·:! .... ·'~ .. 'li .. ,i ... ···': ... ··':.;:·.···'·~.'~ ... :': .. ': .. '.·: .... '':: .... '• ... ··':.,·····'' ... ··':·:····'· ... ··'i!·····':'..:: .. ::·····''· ... ··'·· .... ·'~ ... ·'·:~ ... ··':.:,···'· ... ::.':.:.;Fr .. :_:: .. ·':.::···': '/DACR :@{{{: ··'''''''''''''''''''''''''''''''''' '''''''''''''''''· ll;li:w:v. a, •:···':._,:· .. ·'::R·':·.,:·.,:.,:.':.':·.':.:·.···':.,:.'·.::'·.' .. ·': .. ·': .. ·': .. ·'!.'i,.::.• ... ': .. ·'! ... '• 

::m::::::::i:i::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::·:::::::r::[m::•: I.I)- 1----....li'f' t------'il'''''"" 

XTL 

G G 
____ __. VIDCLK B B 

DBLCLK 

TIL 

FREQUENCY 
SYNTHF.slZER 

DB-15 
CLK/CLK* 

Ea.1----....1 

The CLlIT/DAC and DENC share a common pixel data input and refresh hardware such that only one 
output is active at a time. To prevent garbage form being generated from the inactive device when 
the CLlIT/DAC is used to drive a graphics monitor, the DENC clock is gated to disable the output. 
Similarly, when the DENC is used to generate the NTSC/PAL video outpu~ BLANK* is asserted to 
blank the graphics monitor and the component RGB SYNC signals are gated. 

VBE-21 



Jaguar Video Back End ERS ilpple CONFIJ)l:'.V11..IL 

The transitiqn between the graphics and video outputs is under software control. The video timing 
generation and control registers in ELMER, and the video address generation parameters in the 
system controller, must be updated to suppon the different monitor timings. Also, Quickdraw's 
view of the frame buffer must be updated to suppon the different frame buffer format. Current 
system software does not provide this functionality under multifinder without rebooting. Local 
copies of global parameters stored off of (A5) (ie. base address, rowbytes, ... etc.) can not be 
dynamically updated and the machine must be rebooted. 

NTSC/PAL Video Output 

rhe digital encoder (DENC) chip provides a low cost, consumer quality, encoded video output 
capability. It generates component Y/C (S-VHS) and composite video encoded to NTSC and PAL 
standards. No GENLOCK support is provided. DENC supports a 24-bit digital interface compatible 
with the CLUf /DAC, requires no adjustments in manufacturing and uses minimal external 
components. 

DENC performs the entire encoding process in the digital domain before performing the digital to 
analog conversion. The 24-bit RGB data is converted to YUV data and digitally modulated into the 
NTSC/PAL format. Triple on-chip DACs (of sufficient resolution) generate the final Y/C and 
composite analog outputs. 

Third-order elliptical filters are required on the outputs for sample-hold elimination and to attenuate 
glitch impulses and aliased frequency components. The filters can be constructed with passive, 
surface mount components. Finally, the outputs are AC coupled into 75 ohm termination to eliminate 
any signal when the NTSC/PAL output is not being displayed and DENC is inactive. 

The 24-bit pixel data, PDo[23:0], and composite sync, CSYNCV-, is latched into the device on the 
rising edge of LDV-, similar to the CLUf/DAC interface. Separate load and sync signals are required 
to isolate the two output blocks. Separate load clocks are required to protect DENC during non­
interlaced modes of operation and separate CSYNCs are required to prevent the non-interlaced 
monitor from free running when the encoded output is being used. Special attention to the layout 
will be required to minimize loading on the data port. Also, setup and hold requirements will be 
defined to be compatible with AC/DC to maintain the high transfer rates required for the CLUT/DAC. 

Component RGB Output 

The component RGB output is generated by the AC842 CLUT/DAC chip, commonly referred to as 
AC/DC. AC/DC is an Apple proprietary, triple 8-bit CLUT/DAC chip which supports up to 100 MHz 
grayscale video and 64 MHz true-color video bandwidths. This is sufficient for a 21 ", 1152x870 
grayscale KONG monitor and a 16", 830x630 color landscape monitor (preliminary). AC/DC has a 32-
bit pixel bus interface capable of sustaining m transfer rates of up to 64 MHz. AC/DC supports 
numerous pixel formats of which only the 8-bit Chunky and 24-bit/pixel formats are used. 

Because gamma correction can not be performed in the CLUf prior to the convolution filter, the 
convolution circuitry in AC/DC is not used. Instead, 24-bit/pixel true-color convolution filtering is 
performed in Elmer and the triple 256x8 CLUT is used for gamma correction only. 

VBE-22 



Apple CONFl/JEN'l7AL Jagu:H Video Bark End EHS 

The output video is compatible with RS343A voltige levels with a programmable blank pedestal of 0 
or 7.5 IRE units. For grayscale over 50 MHz operation, SYNC information bypasses the CLUT/DAC 
and the output video is generated by the BLUE channel. 

A Built in Logic Block Observation (BILBO) circuit in the CLUT/DAC allows software to perform 
signature analysis of the video data immediately prior to the DACs. 

The 8-bit MPU interface is connected to Mazda to access the CUIT and internal control and status 
registers. A channel program must be generated to read/write the CUIT and registers in block mode 
fashion. To prevent frame tears, the CLUT should only be updated during vertical blanking . 

.. i;\\/f 

clock iripiifa;·ttK/CtK•~···rhe.'Cl'.ltr/DAC chip provides 3.flt dock output (max. 30 MHz), VIDCLK, 
divided down a programmable amount (1, 2, 4 or 8) from CLK/CLK'. When pixel data is latched into 
the CLUT /DAC chip at greater than 30 MHz, the differential ECL clocks inputs should be grounded 
and the internal dot clock is generated directly from the ill- input. In this case, VIDCLK is invalid 
and them clock, DBLCLK, is used to generate the video timing. 

Currently, them clock output of the Endeavor chip has a maximum clock frequency of 50 MHz, one 
half of the maximum ECL clock output of 100 MHz. This is insufficient for 24-bit/pixel PAL which 
requires a 59 MHz m clock for the convolution filter. An ECL to m converter would be required co 
use the Endeavor part. The National part can generate several m clock outputs of which the PCLK is 
rated at up to 64 MHz. Also, it contains two reference inputs to lock on to the HSYNC component of 
an external reference. This implementation requires further study because the 15 kHz horizontal loop· 
frequency is slightly below spec and generates some horizontal jitter on the output. 

VBE-23 



·~ Apple ~ Jaguar Decompression 

External Reference 
&1%! 1fllial Projects 

·:::::::::~:;;: . . : :·: . : : ... : : : :·: 
·~:~:~:~:~~~~~:~::~!~~j~~~~~~~1?~.~-~-~.'..~~.1.~.~ 
·:·:·:·:·:;:·:·:····.:. 

!.ll~lt -

Apple CONFIDENTIAL 



Apple CONFIDEN17AL jaguar /Jecompresswn /:'NS 

Contents 

Block 

Issues ................................................................................................................................. VDC-18 

Software interface specifications .......................................................................................... VDC-19 

VDC-i 



Apple CONFIDEN17AL ja~1wr /Jecompresswn /:'NS 

Read this 

Scope 

Def in it i o nsifif::]:::::t::t ... =.=·_,'·,'_,:_,:_,=·.,:::.·_,:,:,::it' ,!_.:!,:_·_,:_,:_,:_,:_,:_,!_,:,:.',~.·.:.:_:,.::··.·,'_,·_;,:._,:_::!_,'_,:_,i_,:_,·_,!,:_,!,!_,:_,'.=:_,:_,:;,:,:_:_:_:::.:, .. ::_,:,: Jf? ,·,·:,:.,:_,:_,:_,i,:_,!,i,!_=,1.i,i,',·,:_·.:,•_= ... i,i.1,1,=,i,:,!_·.:_:_•,·:_ •. :_•·.:,i_:,·,: 

ccm P•64 l!l!IJ.l=l·llmpression sr4l1t~lJ..ll~~IPmff!ilf:iiilltmn:~tari,~/~-t~::::li~~~~:::1.p: 
-:c~:~~ffi--bit--1 

MPEG :liil:i,Eililmpression standard under def:~mJillt targeted at high qualiryjj'~iiii of 

.J!ll~lll:~rges. MPEG is intended to ll!!~!:j~llrset of p•64. :!:i:::::_:J!ilJiJi:j!!J::j!i:i:!!::;: 

DCT :::m:=::::::::::::;:::::::ill=::!::l'''~'~lita~~~; ~~ :~~,,~,~~o:i~o~~~~o~~ee~s~~!ill~~j 

RGB, YUV 

transformation. 

RGB and YlN are two commonly used representations for color. RGB represents a 
color by three scalar values that represent the intensity of red, green and blue 
components of a color. YUV represents a color by three scalar values also. Y 
represents the over all intensity, while U and V represent color difference between Y 
and two of the color components. RGI3 and YUV are related by a linear transform. 

The problem 

One goal of Jaguar is to provide full motion video as a fundamental data type. \Y/e envision that 
motion video will be used in recorded as well as interactive applications. Recorded applications 
would include the annotation of documents with video sequences or the perusal of a news event in a 
video data base. Interactive applications would include teleconferencing or the editing of a personal 
video tape sequence. 

VDC-1 



jaguar Decompression ERS 1lfJple C:ONFWl:'Nf'/AL 

Unforrunately, full motion video has large bandwidth and storage requirements. For example, NTSC 
video requires about SOMbytes/second of bandwidth, which would consume 180Gbytes of storage 
for one hour. Today's networks, and mass storage alternatives for personal computing provide about 
one megabyte/sec of bandwidth, and less than one gigabyte of storage. 

Fortunately, there is much redundancy in video information, and it is possible to compress a video 
sequence in both space an time dimensions. The CCITT "P*64 11 standard is designed for video 
teleconferencing, and allows for the compression of a 30Hz 360x288 pixel image at a rate variable 
from 64Kbits/second to 2Mbits/second. The variable rate allows for the reduction of bandwidth by 
reduction of reproduction quality. 

P*64 applied to NTSC video can yield an arguably reasonable quality reproduction at a bit rate of 
1.25Mbit/second. This is a compression of 300 times the full bandwidth, and would lower the 
bandwidth requirement enough to allow compressed video to be transmitted on local area networks 
and stored on magnetic or optical mass storage. An hour of video would require SSOMbytes of 
storage, which is still not small, but is small enough to be stored on a single optical disk, or on hard 
disk. 

There are other compression standards under development as well. JPEG is a still frame compression 
standard that has been developed over the past few years, and is reasonably stable. MPEG is a high 
quality motion video standard that is under development, and is still quite early in its evolution. 
MPEG is not currently well enough defined to begin complete hardware implementation. In addition 
to MPEG and JPEG, it seems likely, that Apple would want to develop irs own format for 
compression that would better meet the needs of personal computing applications. 

It would be reasonable to expect sources of video information to come from many different sources, 
and to be encoded in all of these fonnats. With ISDN connection integral to Jaguar, P*64 encoded 
images would be transmitted through the phone networks. Higher quality recorded images encoded 
with MPEG or and Apple format would be stored on file servers, be transmitted over networks, or be 
available on optical disks. 

It would seem that there is a terrible complication in this multiplicity of formats. Fortunately, all 
these compression formats are based on a DCT (discrete cosine transform) frame differencing 
techniques, and consequently are similar in the bulk of the computation that they perform. It seems 
possible that a single general purpose computation accelerator used in conjunction with software 
could be used for all these algorithms. 

Unfortunately, because of the undefined state of MPEG, there is a risk that the hardware presented in 
this document may not be able to decode the final standard. It will be a race between our hardware 
schedule, and the evolution of MPEG. Our strategy here is to use expert advice to understand the 
range of possibilities and make the Jaguar decompression hardware programmable enough to handle 
the range. 

VDC-2 



Apple CONFIDENTIAL jaguar J)ecompresswn J:'NS 

While it would be highly desirable for all jaguars to provide the ability to both encode and decode 
video in real time, it would be acceptable to make real time encoding an optional feature. Many of 
the applications, such as document annotation, data base perusal or editing can be performed with 
only a decoder. In addition, real time encoding would only be generally useful when used in 
conjunction with a video input digitizer for capturing the output of a camera, or other live video 
source. Encoding would most likely add an additional cost beyond the cost of the decoder because 
it requires about four times more computation than decoding. This additional cost added to the 
cost of a video digitizer would be hard to justify in all Jaguars. 

In addition to the hardware architecture presented, we are looking at the alternative of working with 
other companies to deve~op a decompression chip set for Jaguar. This chip set would most likely 
have many of the aU:l.iim.¢.s of the architecture presented h¢(@J:j~n particular, another chip s~yw,gµld 
intelface ~same bus, and would share -ry for irs memory .... 

::J::r d. accelerator will perfolmompression of .. ~ 
The Jaguar decJ,llll~ accelerator must b.~:::l:~ablelJIJJll~pressing ccn.J:if~'~ ellliJ:JJJJJ!i 
video. p•64 is imP9.#.im::pecause it will be q}j,/standar4.:::rtrJ!ltI teleconfereqqrig, and nm:* 
provides a usaf:4.ij!!iii®.l.Wg for NTSC videg~{'fo order t~H!ll!tif!tompatibility~jj:µie decorri,J.1$@,~( 

features and quality better than p•64 for stored video. Because of the early state in the evolution of 
this standard, this goal may be quite difficult to achieve. 

It is a goal that the decompression accelerator cost less than $50 (manufacturing cost). Since 
decompression will be pan of every jaguar, it is essential chat the decompression accelerator burden 
the ·cost of the base system as little as possible. 

It is a goal that the decompression accelerator rely on software as much as possible. This will allow 
for programmability and minimize the cost of hardware. It is imponant that the decompression 
algorithms not use all of the CPU bandwidth so that ocher operations may be performed 
simultaneously with display of compressed video. For this reason, it is a goal that the 
decompression algorithm not use more than 50%1 of the bandwidth of a single CPU. 

VDC-3 



jaguar Decompression ERS Apple CONF!f)f:'N11AL 

Architecture 

The architecture for the decompression engine applies hardware to the computation intensive 
portions of problem, but leaves the more complex task of data formatting to software. So for 
example, a hardware engine is provided for the Huffman decoding of coefficient block data, but 
header extraction is performed in software. 

Where possible, commodity VLSI is used for generic operations, while ASICs are used for system 
interface,and more obscure and unavailable functions. The most compute intensive pan of the 
problem is the inverse DCT, and it is performed by a commodity VLSI chip. 

While the goal is to make the architecture generally programmable, there are some fixed attributes 
that cannot be avoided. In particular, the accelerator is based on DCT compression of 8x8 blocks. 
Support of other block sizes would require larger blocks of memory in both the commodity DCT VLSI 
and in the ASICs. In addition, the leading proposals for MPEG algorithms use an 8x8 block size. 
While the block size is fixed, the particular ordering of the blocks, or how the transformed blocks are 
used is totally programmable. The transformed blocks may be used to encode intensity or color 
information, they may be used in a 4-1-1 or 4-2-2 or 4-4-4 ratio, and may be used to transmit 
difference or absolute frame information. 

The architecture will be presented in the context of decoding the CCIIT p•64 standard, and it is 
assumed that the reader is familiar with this standard. Figure 1 shows the data flow for the 
decompression process of the P*64 decompression format. The diagram shows both software and 
hardware functions and indicates hardware functions by highlighting them in gray boxes. 

The raw data comes in the top, and is placed in a data buffer by the I/O subsystem. A software 
process examines the raw data and extracts coefficient run data and header information for a whole 
frame, and places the result into two separate buffers. At the highest data rate, the software process 
must decode 640K Huffman encoded symbols per second. Preliminary estimates indicate that this 
would consume about 10% of the cycles of a single 40Mhz CPU. 

The coefficient run data for an entire frame is picked up by the DCT Unit, which expands it, performs 
inverse quantization, and finally performs an inverse DCT. The resulting 8x8 blocks are then 
transfered to buffers in main memory. The maximum data rate out of the DCT unit is less than 
4.5Mbytes/second, which is only 12-25% of the bandwidth available through commodity VLSI DCT 
chips. 

While the hardware is transforming the coefficient data, a second software process analyzes the 
header information for the fra~e that is contained in the side info buffer, and generates a command 
list for the Block Update Unit. This software process must decode and analyze on the order of 12K 
macro block headers per second. 

The block update unit is a hardware unit that combines the previous frame with the transformed 
blocks to create the next frame in the sequence. It reads commands from the command list 
generated by the header analysis process. It can update a block of the current frame by copying a 
block from the transformed data or from the previous frame, or add the transformed block to the 
block of the previous frame. In addition, it can extract an off grid block from the previous frame for 
motion compensated blocks. The output of the block update unit is a completed fixed size frame in 
8x8 YUV format blocks ordered in the sequence that they would be received. 

VDC-4 



Apple CONFIDEN71AL }a,::ttar Uecompresswri !:'NS 

The block update unit must process about 72K blocks per second. Each block is 64 bytes, which 
results in a maximum data rate of 4.5Mbytes/second. In the worst case, each block requires a 
command from the command list. Since the block update operations are really more data 
movement, and not so much computation, the 4.5Mbyte/second bandwidth through the hardware is 
easily achievable. 

The frames are kept in a round robin buffer arrangement, that allows for some elasticity in the 
decompression rate. The last frame in the round robin buffer is picked up by the RGB Conversion 
Unit which converts it from YUV color space into RGB color space, and also generates a scan line 
ordered stream that is fed through a window OMA channel to its final destination. This unit may 
provide some post filteri1_1;g to remove artifacts due to the block nature of the encoding schemes, 
and may also proviq~,,fi,lring for scaling. _j:::::ijijijjjiijjjjjjjjjl .,J:!jli!j!i[[j!ij!j!ijj!j 

.I 

VDC-5 



jaguar Decompresston ERS 

Incoming data 
<240KB/sec 

(full P=30 CCITI) 

Run data buffer 

g T Run data 

1.3MB/sec 

transformed blocks 

Raw data 
buffer 

Extract 

,,1pple CONFWl:'N77111. 

Side info buffer 

Variable 
length 
decx:lde 

.header and t--•t-----~ 
side info 

<640K/sec 12K/sec 

command blk cnt 

Analyze side info 
& optimize block update 

12K/sec 

parameters 

0::0,,,,,,,,,:,:::::::::<• 570l<Wbrds/sec 
-•• 71\3K 6tockS/sec , 

Current frame 
150KB 

30/sec 

Jaguar Decompression 
Data Flow for P*64 

N-1 frame 

RC?B 
frame 
memory 

311KB 

VDC-6 

>4.SMB/sec 

N-2 (or more) frame 

9MB/sec 

Filter 
YYYYUV->RGB 

EkconversionUllit 



Apple CONFIDEN'/1AL jap,uur necompresswn /:'NS 

In general the data processed by the computational units is in the form of 64 byte blocks. Read and 
write requests to the processors memory are performed in 64 byte blocks, which allows for a 70% 
efficiency of the processors burst memory bandwidth. The final decompressed output is in the form 
of a window DMA stream that is passed through Wilson to get to the frame buffer. 

In other cases, such as motion compensation, random access is required. Serial accesses tend to be 
more efficient than random accesses, since the memories may be left in page mode between 
accesses, but even the random block accesses are reasonably efficient, since a 64 byte block allows 
the memory system to stay in page mode for four consecutive cycles. 

For operation of the pipeline as shown in figure 1, the memory bandwidth requirement is a little less 
than 50MB/sec in the .wqit case. The average requirement..i~:J~~' since not all blocks requir~4p9qon 

Random 
1.3M 
4.SM 
4.SM 
4.5-18M 
4.SM 
4.SM 

24-38M 

~~a~~~~;~~;::=1r, 
The DCT unit is capable of performing five functions: 1) Huffman decoding of run data, 2) expansion 
of run· data into 64 coefficients, 3) inverse quantization of coefficients, 4) arbitrary mapping of 
coefficient order into 8x8 blocks, and 5) forward or backward DCT. There are bypasses provided, so 
that software can perform any of these functions if desired. In the P'64 example described earlier, 
the Huffman decode is performed in software because P'64 requires that the coefficients be 
decoded in order to determine beginning of the next header. On the other hand, MPEG will probably 
provide a forward pointer to the next header, because this makes random access of frames easier. 

In the worst case P'64 could require as much as 4.SMbyce/sec output out of the DCT chip. 
Commodity parts have bandwidths of 20-40Mbyte/sec, which should provide sufficient bandwidth. 

The next figure shows the logical data flow through the DCT unit. 

The serial input scream is optionally passed through a programmable Huffman decoder. The Huffman 
decode tree is maintained in a small RAM that can be reprogrammed for different codes. While P*64 
does not require hardware suppon for Huffman decoding, it is felt that MPEG will require higher 
bandwidth, and could possibly swamp the CPU. 

VDC-7 



jaguar JJecompresston ERS 1 Ip pie c'OiV Fm l:'N'n If. 

The output of the Huffman decoder goes through the inverse quantization function that scales the 
level data to produce a 12 bit coefficient from 8 bit data. The scaling constants, g and T, are 
provided by the header decode process. The inverse quantization function is simply a multiply and 
add. 

The level data is then passed with the corresponding run length, to the run expander that expands the 
single coefficient to a sequential stream of the length indicated by the run length value. 

The resulting sequential stream must then be mapped into the 8x8 coefficient block. P*64 has a 
zigzag map that fills the 8x8 block in a zigzag pattern starting at the 0,0 point. This pattern is 
efficient, since most of the energy in coded blocks is close to the 0,0 point. As it turns out, a 4:2:2 
chroma sample ratio would benefit more by a different zigzag pattern than the pattern used in a 4:1:1 
sample ratio. For this reason, it is desirable to allow the zigzag pattern to be programmable, and to 
allow for a the selection of different tables for chroma blocks than for luminance blocks. The block 
mapper includes a loadable table that allows the zigzag pattern to be programmed. 

The block buffer is double buffered, so that one set of coefficients can be assembled, while the 
previous set is being transmitted to the DCT VLSI. The DCT VLSI is a commodity pan that performs 
an 8x8 inverse DCT. The output of the IDCT then is passed out to memory. 

There are several bypasses that allow the input to the DCT unit to bypass the Huffman decode or 
inverse quantization logic. This allows software to perform these functions should some algorithms 
require operations not supported by the hardware. 

The DCT unit reads commands from memory, and produces 64 byte blocks of expanded and 
transformed data. In some cases, the data is included in the data stream, in other cases, the data is 
pointed to by a data pointer. 

The DCTOpRunCodedBlock command indicates that the data following the Op code and length is 
run coded data that should be expanded and transformed to produce a transformed output block. 
Run coded data consists of a series of two byte events. The level field indicates the value of a 
nonzero coefficient, while the run field indicates the number of zero coefficients following the 
nonzero value. 

The DCTOpHuffmanCodedBlock command requests that the Huffman coded data pointed to by 
the command be passed through the Huffman decoder before it is passed through the run code 
expander and transformed to produce an output block. 

The DCTOpUseBlockMap modifier to the CodedB!ock commands indicates that the block map ram 
should be used to remap the order of the coefficients. The block map is a 64 by six bit RAM that 
indicates the new coordinates (u, v) of sequentially recicved input samples. The BlockMap data 
type defines the format of this table. If this modifier is not used, the standard zigzag block map is 
used. 

TheDCTOpQParms command sets the quantization parameters g and T that are to be used in the 
inverse quantization operation. 

The DCTOpHalt command tells the OCT unit to halt. 

VDC-8 



11pple CONFWENntL 

~~lrt"'11 
table 
1K? 

table 

64x6 

Instructions 

Instruction 
Processing 

OCT unit 
Logical 
data flow 

.:;:::::::;:·:·:·:···:·: 
.;:;::::::;:{{;~:~:~:: 

__ _.__...,.:=:·:.;;;;;:·:=:::::,::::::::::·:·:;: 

~~:0~1'1 

Block butt@Fl'/ 

64x8 

Inverse 
Quant 

IDCT 

Transformed Blocks to memory 
VDC-9 

)11,~uar I Jccumprcsswn /:HS 

Data 

Memory 
fetch 



jaguar Decompression ERS 11fJple e,'()NF/fif:'N'/1!1/, 

Block update unit 

The block update unit is shown in the middle highlighted block of figure 1. It merges the 
transformed blocks from the OCT unit with the previous frame to generate the next frame in the 
sequence. 

The block update unit reads a command list that is generated by the header analysis software 
process. The unit supports three basic update operations: block replacement (from either 
transformed block or previous frame) delta block update, and motion compensated update. 

The computation required for block update of non-motion compensated encodings is relatively 
small, and would probably take <20% of the CPU. Unfortunately, panning can cause almost every 
block in a frame to require motion compensation for many successive frames. This would totally 
swamp a software motion compensation algorithm. For this reason, the block update unit is a 
necessary part of the decompression accelerator. 

The block update unit is contained in an ASIC. Its function is not compute intensive, rather its 
purpose is to move data around. There is no intelligence built into the BU unit about a specific 
coding format. Rather, this kind of intelligence is built into the software that generates the 
command list for the block update unit to execute. 

The block update unit operates on 64 byte blocks. It merges inverse transformed blocks from the 
DCT unit with blocks from the reference frame to generate a new frame. There are six address 
pointers that keep track of the location of these blocks: DestPtr, DeltaPtr, RefFtr, RefXPtr, RefYPtr, 
Ret'XYPtr. DestPtr points to the location where the updated block should be placed in the current 
frame being computed. OeltaPtr points to the block from the OCT unit that will be merged with a 
block from the Reference frame. Ref?tr points to the block in the reference frame that is at the same 
position as the block in the destination frame. RefXPtr, RefYPtr and RetxYPtr point to blocks that 
are adjacent to the Reference block. These blocks are required for extracting a motion compensated 
block from the reference frame. 

There are six instructions for loading the six block address pointers. The pointers are incremented 
after they are used, so that they need not be reloaded on sequential accesses. For example, since the 
destination blocks are generated sequentially, DestPtr need be loaded only at the beginning of a 
frame. The format of these six instructions is defined by the BUPtrCommand structure type. 

There are eight basic block update commands. There are four flavors of reference frame selection, 
and to each of these four operations, the transformed Delta block C'Jn optionally be added to the 
reference data. The resulting block is written to the address pointed to by DestPtr. DestPtr and 
RefPtr are each incremented on each operation. If addition of the Delta block is specified, then 
DeltaPtr is also incremented. A count can be specified that indicates the number of sequential 
blocks to perform the specified operation on. 

The BUOpZeroRef command indicates that a value of Zero should be used for the reference block. 
This operation is useful to pass the Delta frame on unchanged. 

The BUOpUseRef command indicates that the block pointed to by RefFtr should be used as the 
reference frame. 

YDC-10 



Apple CONFWE:'N'/1JIL 

The BUOpUseRefMC command indicates th::it a motion vector compensated block should be 
extracted from the four blocks pointed to by RefPtr, RefXPtr, RdYPtr and RefXYPtr and used as the 
reference block. The motion vector can be loaded by the BUOpSetMCdeltas command. 

The BUOpUseRefMCandLoopFilter operates like the BUOpUseRefMC command except that it 
additionally applies the loop filter to the extracted block. The filtered block is then used as the 
reference frame. 

The BUOpAddDelta is a modifier to the previous opcodes that indicates that the block pointed to 
by DeltaPtr should be added to the reference frame to produce the destination frame. If this 
operation is specified, then the DeltaPtr is incremented, otherwise it is not. 

:::::= 

.. ::;::::::: ii~~~~[~i~i~~~t;~ [~~~~~~~~~~~;:~~~~~;~ 

The in~®.®9-0,i.ii~~l~:;iwrnt~gd DCTIP are byre poli~~~~:.::~it indicate the current pq§j1ijgif@f the 
instruction parse. When one half of an instruction buffer is empty, a memory request is initiated to 
refill it to the next sequential 32 bytes. The halves of the instruction buffer are direct mapped to 

memory, so a given memory address always maps to the same buffer. 

The least significant byte of each unit's control word (DCTcntl and BUcntl) maintain status bits for 
the sequencer. The IBstate bits indicate whether each half of the instruction register is full or empty. 
There are two bits, one for each half. 

The singleStep and halt bits in the control register arc used to control execution. When the halt bit is 
high, the sequencer will stop executing instructions at the completion of the current command. When 
the singleStep bit is high, the sequencer will set the halt bit high at the completion of the current 
instruction, so that only a single instruction is executed if halt is reset. In this mode, the processor 
resets the halt bit to begin execution of an instruction, and can subsequently poll the halt bit to 
determine when the instruction has completed. 

VDC-11 



jaguar Decompression HRS 11fJple CONFl/JJ:N/111L 

Because the instruction buffer is accessible to the processor, a useful immediate execution mode is 
available. This is accomplished by setting the instruction pointer to zero, writing the instruction 
packet into the first few bytes of the instruction buffer, setting the IBstate bits to indicate that the 
buffer is full, and finally setting single step mode high and halt low. The instruction will be 
immediately executed from the instruction buffer, and the sequencer will halt at it's completion. The 
processor can poll the halt bit to determine when the instruction has completed. 

Immediate execution would be desirable when using the Huffman decoder on the P*64 format. In 
P*64, the end of the block can only be determined by performing a complete Huffman decode of all 
the preceding data. Since it is necessary to find the end of a Huffman coded block to find the next 
header, the Huffman decode must be done immediately, and the resulting position of the end of 
data must be read back by the software to continue processing the next header. 

RGB conversion unit 

The description for this unit is still a little sketchy. In particular, the conversion from block to scan 
line requires a large memory of 128Kbits as it is described, and it may be more desirable to bum a 
little more system memory bandwidth than use a local memory of that size. This particular tradeoff is 
still being studied. 

The RGB conversion unit reads in an 8x8 block organized frame in YUV color space, converts it to 
scan line order, filters the YUV components, and then converts YUV color space to RGB color space. 
The result is a scan line order RBG pixel stream that passed out through a window DMA channel to its 
final destination. 

Figure 3 shows a logical data flow for the RGB conversion unit. The unit is controlled by an 
instruction stream that tells it the relative addresses of the blocks to read in. These blocks are read in 
and placed in a 16 scan line by 360 pixel buffer. Since the blocks are organized as 8 pixels by 8 scan 
lines, an entire 8 scan lines worth of blocks are needed before the topmost scan line of that group can 
be scanned out. The sixteen scan line buffer allows for overlapping the reading and outputting these 
8 scan line groups. The scan line buffer would probably be implemented with an external SRAM, since 
it would require around 128K bits of storage. 

The scan line data is read from the scan line buff er and filtered to produce a stream of scan line 
ordered YUV encoded pixels. The filtering is required to up sample the color difference components 
to the sample rate of the luminance channel. This filtering may also be useful for performing arbitrary 
scaling, but more work has to be done here before we include this functionality. The filtering is a 4x4 
kernel that is implemented as two passes of a 4x1 kernel. The computational requirement rums out 
to be about 16 MAC's per pixel, so at the 3MPIX data rate of P*64, this is a 48MAC/sec computation 
rate. 

These pixels are then put through a YUV to RGn conve11er which is a implemented as a 3x3 matrix 
transformation from YUV coordinates to RGn coordinates. At the P*61i rate of 3Mpix, this requires 
27MACs/second of computation. 

VDC-12 



Apple CONFIDEN17AL 

Commands 

I 

RGB conversion unit 
Logical data flow 

J1wwr f)ecomJ1resswn /:'NS 

Block data 
4.5Mbytes/sec 

8x8 block 
DMAand 
reorder 

II 

llllillllllllllllll: lliJlillliiilJiJll 

YUV->RGB 

27 MAC/pix 

3M pix 

VDC-13 



jaguar Decompression ERS Apple C<>NFl/Jl:'N71AI. 

Implementation 

The most logical place for the decompression hardware to connect to the system is on the Wilson to 
BLT bus. This bus allows for both random accesses and sequential Window DMA accesses. The three 
hardware acceleration units are partitioned onto two ASICS that each interface to this bus. 

-

Wilson - ... - BLT -

DCTand 

- - Block - - Update 
units 

YUV-RGB 

- . conversion -- ~ 

unit 

System Connection of 
Decqmpression Acceleration Units 

OCT _ ... -- VLSI 

Scan 
. line 

~ - memory 

The block update and DCT units are combined into one ASIC, the DCT/BU chip. The two units 
operate essentially autonomously. They each mainrain independent buffering, memoiy sequencers 
and instruction processors. The two units do share a single bus interface. There is a connection 
between units that allows for the direct forwarding of transformed blocks from the DCT unit directly 
to the BU unit. This connection is useful in some configurations because it saves the memoiy 
bandwidth required to buffer the transformed blocks. 

In addition to interfacing to the BLT bus, the DCT/BU chip is ·also connected to the commodity DCT 
VLSI chip that actually performs the computation for the inverse DCT. 

VDC-14 



:1pple CONFllJEN'ntL )11.~ uar I Jecompresswn !:HS 

The RGB conversion unit is on the second ASIC. Since I{(~ B conversion requires a significant amount 
of computation, and will require a corresponding :unount of silicon. This unit is not well defined at 
this time. At this time, it will probably require :i I 281\ bit scan line store, that would probably be 
maintained in a RAM external to the chip. 

There is still a possibility that the overall gate and pin count may be low enough that all three units 
could be put on a single ASIC, but it is to early to tell. 

-30 

The DCT unitatia·io::ijijii.~hare a similar instruction 
memory :(iiffi :ffibvi=tiirif::i~ Piff'6tmed into and out of a time multiplexed 
memory controller fetches and stores data to/from the addresses specified by a pool of memory 
pointers in 32 or 64 byte blocks. The memory controller also responsible for incrementing the 
memory address pointers. The instruction sequencer reads instructions form the instruction buffer in 
the RAM block, and sequences the data paths through the specified operations. The RAM block, 
memory pointers, and other state within the unit arc directly readable and writable by the software, 
as well as by the operation of the instruction sequencer. 

The DCT unit data paths include a Huffman decoder that decodes bit data into events. The decode 
table is maintained in a RAM that may physically be the same RAM block that is used to store data. 

The DCT unit also includes a block map function with a loadable map that allows for remapping the 
order of events. The mapped data is placed in a coefficient buffer. After all the events for a single 
block. are received, the block is sent to the commoditv DCT VLSI chip. for transformation. The 
transformed data is returned and placed in a buff er in the shared RAM block, from which it is sent 
over the BLT bus to the processors memory. 

VDC-15 



jaguar Decompression ERS 

Address 

32 

to 
Wil 
inte 

son 
rf ace 

Data - .L --, ~ 

64 

I 

DCTIP 

DCTDataPtr 

DCTBlockBase Ptr 

DCToutPtr 

DCTCntl 

DCTIB 
64 bytes 

DCTData 
64 bytes 

DCTCoef 

64 bytes 

OCT out 
64 bytes 

OCT Unit . 
Block Diagram 

I 

-~ 
• 

-.... 

1tpple CONFlf)/:Nl7:1L 

~ 

Memory 
Fetch 
Controler 

Instruction Seq 

~~ 

Huffman 

Huffman decode 
Table 

Block Map 

CPCTBlockM~ 

1 

Inverse 
Quant 

DCTT, DCTg 

.... 8 -I 1--12 -I 
1' 

to DCTVLSI 

p 

The block update unit data paths include include a motion compensation extraction function that 
extracts an arbitrarily aligned 8x8 block of pixels from a 16x16 block of pixels. The extracted block 
can be optionally filtered by a loop filter that functions as specified by the p•64 standard. The 
filtered and motion compensated block can then be added to a delta coded block, as is required for 
frame differencing, and then written to memory. 

VDC-16 



Apple CONF[[)EN11AL 

Address 

32 

Data 

64 

BUIP 

BUBlockBasePtr 

BUDeltaPtr 

BUDestPtr 

BURef{XY}Ptr 

B!J.Cntl 

64 bytes 

Block Update Unit 
Block Diagram 

Memory 
Fetch 
Controler 

Instruction Seq 

·:·:·:·:·:···=·=···":·: 

}uMuur I )ecompresswn l:'NS 

At this time the RGB conversion unit is not well enough defined to give an implementation block 
diagram. 

VDC-17 



jaguar Decompression t:RS 

Sound· compression 

Since p•64 is designed to operate on top of ISDN in conjunction with a sound channel, the standard 
does not explicitly address sound compression. If Apple were to use P'64 for storage of compressed 
video, it we would have to address the compression and storage of high quality sound in along with 
video. In this case, there are a number of software algorithms that can be used for high quality sound 
compression with nominal CPU usage. ~ 

Since MPEG is targeted at the storage of high quality video, sound must also be compressed and 
stored with the compressed image. Since the sample rate of sound is much less than that of video, 
special hardware is not required for common sound decompression algorithms. Unfortunately, .at this 
time we do not know what kind of sound compression will be standardized with MPEG, and there is a 
risk that the computational requirements for MPEG standard sound decompression could swamp the 
CPU. We will continue to track MPEG and make adjustments as necessary. 

Issues 

The architecture presented here is quite preliminary. \Y/e have not been working on the problem of 
decompression for very long, and the problems are neither completely understood or fully resolved. 
The major issues are as follows: 

The Jaguar project has not yet begun to perform simulations on the compression algorithms that we 
are targeting. While the P'64 specification is reasonably understood, many parts of the specification 
are incomplete and require expert interpretation. \Y/e must validate our understanding with real 
simulations. In addition, the performance of CCITI P*64 at low bit rates is quite poor, and can be 
greatly enhanced by pre- and post-processing that is not specified by the standard. If we are to 
operate at low bit rates, we must understand and simulate this kind of pre- and post-processing. 

The MPEG standard is just at the beginning of irs evolution. \Y/e are depending on expert vision to 
understand the range of the possible outcomes of this evolution, and we are targeting the hardware 
to handle this range. It is possible that we may not make the right choices here, and that we may not 
achieve complete MPEG compatibility. 

We are still quite early in the design process of the hardware. \Y/e are just past the phase of 
understanding the bandwidth requirements and have made a first cut in partitioning the problem. 
The next level of detail is a more accurate sizing of the computational requirements on the software, 
and the gate counts on the hardware. We are at the point now that we can make a reasonable cut at 
the gate counts on the DCT/BU chip, but we are not at the same point for the RGB conversion unit. 
The risk here will be that the silicon costs will be higher than that required to meet the $50 cost target. 

Additional wires are required on the E&W BLT interface to allow the decompression accelerator to 
share this interface with BLT. These wires arc not defined at this time. 

VDC-18 



Apple CONFIDEN'/1AI. }a~uar /Jecompresston /:"HS 

Software interface specifications 

The following C declarations are very preliminary. They are software specifications for the data 
structures and instruction sets for the decompression hardware accelerators. Some functional 
simulation code for the hardware accelerators is also included for the purpose of clarifying their 
function. This code has not been debugged, and the definitions are still in flux, so don't expect to 
start writing production code with these. 

#define byte char 

/• Data Structures foUdar Decompression Accelerator•/ J:r:ttt 

I 

char pad; 
} DCTOpHuffmanCodedBlockComman<l; 

#define DCTOpRunCodedBlock Oxl 3 

typedef struct { 
byte run; 
byte level; 
} Evenc; 

/• Run is actually 6 bit field. Spare two bits should be high order bits. •/ 

typedef struct { 
byte OpCode; 
byte length; 
Event data[); 
I DCTOpRunCodedBlockComman<l; 

#define DCTOpQParms Ox31 

VDC-19 



jaguar Decompression ERS 

typedef struct { 
byte Opcode; 
byte pad; 
int g; 
int T; 
l DCTOpQPanmCommand; 

#define DCTOpHalt 0 
#define DCTOpNop 1 

typedef struct { 
byte Opcode; 
byte pad; 
} DCTOpCntlComrnand; 

/• DCT unit software visible state •I 

struct { 

struct { 

unsigned pad : 2; 
unsigned x : 3; 
unsigned y : 3; 
} DCTBlockMap[64]; 

unsigned long reserved : 28; 
unsigned IBstate : 2; /• How full is instruction buffer?•; 
unsigned singleStep : 1; 
unsigned halt : 1; 
} DCTcntl; 

char DCTinstructionBuffer[641; 

char *DCTIP; /• Instruction pointer •I 
char *DCTBlockBasePtr; 

/•Quantization parameters•; 

.l/JfJ/e <.'<)NF//Jl:N/7:11. 

Block •ncroutPtr; 
int DCTg, DCTT; 
char flCTBitOffset; 
char •ocmaraPtr; 

/•Used for Huffman data. Only three bits are used here. •/ 
/• Coded Data pointer. Huffman data also needs BitOffset. •; 

/• DCT Unit functional simulation•/ 

void DCTUnitExecuteO 
{ 
} 

/• Block Update Unit Instruction Set•; 

/• Load one of six address registers in Block Update Unit. Addresses are Block addresses. •; 

.\'DC-20 



1lppie CONFIDEN71ilL 

#defin~ BUOpLoadDeltaPtr 
#define BUOpLoadRefFtr 
#define BUOpLoadRet'XPtr 
MC*/ 
#define BUOpLoadReMtr 
MC*/ 
#define BUOpLoadRefXYPtr 
#define BUOpLoadDestPtr 

typedef struct { 
unsigned o~ : 8; 

}<IJ!.lltlr /Jecompresswn /:RS 

Ox10 I* pointer ro transformed delta blocks */ 
Oxlli /* pointer to Reference block*/ 
Ox 15 ;• pointer to adjacent ref block in X direction for 

Ox16 /* pointer to adjacent ref block in Y direction for 

Ox17 /* pointer to diagonal ref block for MC •/ 
Ox11 /* pointer to destination address */ 

~~=~:2:.~ 

typedef struct { 
byte OpCode; 
byte pad; 
char DX; 
char DY; 
} BUSetMCCommand; 

/• Random control commands * / 

#define BUOpNop 
#define BUOpHalt 
#define BUOpSwapMCX 
#define BUOpSwapMCY 

typedef struct { 
byte OpCode; 

Ox21 

0 
OxSO /*Swap reference blocks around X axis•/ 
Ox51 /*Swap reference blocks around Y axis*/ 

VDC-21 



jaguar Decompression ERS AjJjJle CONFIJJh'N'l7AL 

byte pad; 
} BUCntlComrnand; 

/* Block Update Software visible state. */ 

Byte *BUBlockBasePtr; /*Base pointer to CPU memory that contains blocks.•/ 
char *BUIP; /*Block Update Unit Program Counter*/ 
unsigned long DeltaPtr, DestPtr, RefFtr, RefXPtr, RcfYPtr, RefXYPtr; 
Block RefBlock; /*Chip internal block buffers, 64 bytes each•/ 
Block RefXBlock; 
Block RefYBlock; 
Block RefXYBlock; 
Block DeltaBlock; 
Block LoopBlock; 

struct { 
unsigned reserved! : 8; 
unsigned 
unsigned swapX: l; /*swap X state*/ 
unsigned shiftX: 3; /•MC vector*/ 
unsigned swapY: l; /*swap Y state*/ 
unsigned shiftY : 3; /•MC vector*/ 
unsigned reserved2 : 4; 
unsigned IBstate: 2; /• how full is instruction buffer? •I 
unsigned singleStep : l; 
unsigned halt: l; /* Halt/run state */ 
} BUCntl; 

char BUinstructionBufferl64); 

/•Block Update Functional Code•/ 

#define get3bytes (((long) *BUIP++) « 16 I I ((long) *BUIP++) « 8 11 *BUIP++) 
#define BlockMemoryAddress(p) (BUBlockUascPtr + DCTBLOCKSIZE*(p)) 
Block ZeroBlock = O; 

void BlockUpdateUnitExecuteO 
{ 
char OpCode; 
int count; 

while (!BUCntl.halt) switch (OpCodc = *BUI P++) { 

case BUOpHalt: BUCntl.halt = 1; break; 
case BUOpNop: break; 

case BUOpLoadDeltaPtr: DcltaPtr = gct3bytes; break; 
case BUOpLoadRefFtr: RefFtr = get3bytcs; break; 

VDC-22 



:lpple CONFIDEN11AL 

case BUOpLoadRef'XPtr: 
-case BUOpLoadRefYPtr: 
case BUOpLoadRetxYPtr: 
case BUOpLoadDestPtr: 

case BUOpZeroRef: 

RcfXPtr ·= gct3bytcs; break; 
lkfYPtr = gct3bytcs; break; 
RctXYPtr = gct3bytes; break; 
DestPtr = gct3bytes; break; 

case BUOpZeroRef I BUOpAddDelta: 
case BUOpUseRef: 
case BUOpUseRef I BUOpAddDelta: 

for (cqµpt ~ 'BUIP++; count >O; count--) ~w_iJf_p(OpCode) { 

····::: 1v 

MoveBlock(BlockMemory Address(Ref Ptr++ ), RefBlock); 
AddBlock(RefBlock, 

break; 
} 

BlockMcmory Address(DeltaPtr++ ), 
BlockMemory Address(DestPtr++ )); 

/''Motion Compensation is not implemented yet. •; 
default: 

printWBlockUpdate: unimplemented or bad OpCode: %x.\n", OpCode); 
I 

VDC-23 



ti Apple Jagl Expansion Interface & Wilson 

Ext..~rnal Reference Sg,h,kification 

Apple CONFIDENTIAL 



Apple CONFJDEN'/1111. }ap,uar l!.xpanswn lnterj(1ce (; WiLwn l:'fiS 

Contents 

. J~l~jllJj~1i1~~1~1~~lr · 

Data Strearns ................................................................................... E&W-15 

Jagl Wilson Feature/Functionality Summary .................................................... E&W-15 
Motherboard RectRegion Destination Resource ................................. E&W-16 
Motherboard RectRegion Source Resource ......................................... E&W-16 
General Wilson Functionality ............................................................. E& W-17 
Expansion I/O Interface Features ...................................................... E&W-17 

Implementation Summary ............................................................................. E&W-18 
User Scenario ................................................................................... E&W-19 
Channels Needed For User Scenario .................................................... E&W-19 
Wilson Channel Quantities ................................................................ E&W-19 

Alpha Compositing Overview ........................................................................ E& W-20 

Wilson High Level Software ....................................................................................... E&W-23 

Real Time .................................................................................................... E&W-23 

E&W-i 



jaguar llxpansion Interface & Wilson HRS Apple {. (JN Fl I J /:'.Y'/l:l /. 

Graceful Degradation ................................................................................... E&W-24 

Allocation of CPU Cycles and Bandwidth ....................................................... E&W-24 

A View Of Software ...................................................................................... E&W-25 
Animation Toolbox .......................................................................... E&W-25 
Video Toolbox ................................................................................ E&W-26 
ToolBox Core ...................... :·; ........................................................... E&W-26 
Window, layer, and View Manager ..................................................... E&W-27 
Event Server .................................................................................... E&W-27 
CPU Cycle Manager ........ :: .................................................................. E&W-27 
Scheduler ............................................................ : ........................... E& W-27 
Bandwidth Manager (BWM) .............................................................. E&W-28 
Wilson Manager ............................................................................... E&W-29 
CPU Cycles & Their Relationship To BandWidth .................................. E&W-30 
Tear Free Updates ............................................................................ E&W-30 
Micro Bandwidth Manager (MBWM) .................................................. E&W-32 

Wilson Manager Software Interface ................................................................ E&W-33 

Wilson Low Level Software ........................................................................................ E&W-43 

Wilson Hardware Implementation ............................................................................. E&W-47 

Hardware Operation Summary ...................................................................... E&W-48 

Hardware lnterface ...................................................................................... E&W-48 
Pinout. ........................................................................................... E&W-48 
Pin Descriptions .............................................................................. E&W-50 

Implementation Description ......................................................................... E&W-53 

Implementation Details ................................................................................ E&W-54 
BLT Interface .................................................................................. E&W-54 
XJS Bus Interface .... ." ........................................................................ E&W-55 
Register File .................................................................................... E&W-56 
Wilson ............................................................................................ E& W-56 

RectRegion Source Resource (RRSR) .............. ; ....................... E&W-57 
RectRegion Destination Resource (RRDR) .............................. E&W-61 
Pixel Munger ........................................................................ E&W-62 
Blender ............................................................................... E&W-63 
Sequencer Block .................................................................. E&W-64 

Arbitration .................................................................................................. E&W-65 

Video BackEnd ........................................................................................... E&W-65 

Error Handling ............................................................................................. E&W-66 

Power Consumption ..................................................................................... E&W-67 

Gate Count ................................................................................................. E&W-67 

E&W-ii 



Apple CONflDEN71AJ. jaguar f::,\pan.mm 111Lerjiuu 6 lViLwn !:HS 

Reset. ......................................................................................................... E&W-67 

Interrupts ................................................................................................... E&W-67 

Power Down (Sleep Mode) ............................................................................ E&W-69 

Memory Map .................................... ~ .......................................................... E&W-69 

Programmers Model ................................................................................................. E&W-71 

-4Jrfif =:::::::·::·:·:·:·:::·:-.::41::·:·:·:·:·:·::·:::::::::::::::::::·::·:·:~;; 
.· .. ,.,.,., ................................. Dynamic Queue Extension.· •·+T.++"•'"''"•·i"~•··· ............................... ·=+"•"•'"'""""".J£& W 73 

=mr:mrmt:mt:T~t · ch 1 .d:ttnm:~rJ:ttt .. ,,:mm:\tm:m::~:~:m:tt~&w-74 ......... ,., ... ,.,.,., ......... , ........ :;:) opp1ng a anne .............. , ..... , .. ,..,,. .. ""'""•"•··· ........................... ,..,.~ ..•.•.• , ..• ,..,, •.• , .• a:. 

.·.·.·.;·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: .·.·::··,·.·,•.·.·.·.·.·.·····:··· 
:·:·:·:·:·:·:::·:·:·:::·:·:·:::·:·:·:··· 

E&W-iii 



Apple CONFIDEN11AL .fap,uar J:."Cpan.mm /rzterfau.: D Wilmrz /:HS 

Section 1 

Introduction 

Wh t . ·m11:·:·:·:·:.:·:·:·:·: ? <·:·:·:·:·:·:·:·:·:·:·=·:·:·=·:·:·:·:·=· =======:=:======:::;::::::~{(~) 

a 15,,/[i:.ii:t:i:::l:::'::::ll·ll~.,.· ':'tJJtIIIt /.i·!.ii.,.iJ.,:!iiili,:: .. :::.!i:·::iii 

:oot.fetiUCP.uist~tia!:!m~f of the foreseeable ru~i~~'li.l!l~.lbe unable to move datFitrnffif.::+ates 
needed for live video input, video decompression/compression, or animation while still performing 
other tasks. Specialized hardware can be developed for these tasks which is simpler and has the 
needed capabilities. Some of this hardware has already been developed by third parties for 
Macintosh video input. 

The Wilson Architecture is an attempt to standardize hardware for moving pixel regions. 
This will guarantee that all of the hardware can communicate. Wilson does not attempc to 
standardize the implementation of the hardware. le only atcemplS to standardize the fundamental 
data formats, a minimum amount of functionalicy, and the transfer mechanisms. 

Wilson is an architecture for moving data between hardware devices. IlS primary focus is the 
movement of regions from a pixel source co a pixel destinacion. Wilson actemplS to solve some of 
the problems associated wich many different sources (video input hardware, video decompression 
hardware, main memory, and CPUs) attempting to send information to many different destinations 
(frame buffers, main memory, and video compression hardware). This is a fundamentally different 
environment than the Macintosh. The Macintosh environment only supporu a single source (che 
CPU). The source and destination devices may be built by Apple or third panies. Wilson attemplS to 
guarantee that all third pany hardware will communicate with all Apple hardware and all other third 

E&W-1 



jaguar Expansion Interface & Wilson _ERS Apple CONF!Dl:'N71AL 

party hardware. What does this mean to the user? It means he buy any lllJnufacturer's video 
hardware (be it a frame buffer, a video input card, a compression card, a video effects card, or a 
graphics accelerator) take it home, plug it in, and it works with all of the other hardware he owns. 

The Wilson Architecture provides for data movement, primarily pixel data movement. The 
data movement facilities can be utilized to support animation or other high bandwidth operations. 
The CPU is relieved of the data movement tasks and can therefore dedicate its processing power to 
generating the animation frames. 

Clarification of Terms 

The Wilson Hardware Architecture is the definition of the communications protocol used by 
the hardware. This is the definition of Wilson which a third party card developer would see. The 
Wilson Hardware Architecture is also referred to as the Wilson Architecture and simply as Wilson. The 
Wilson Software Architecture is the definition of Wilson that a toolbox or an application might see. 
This is potentially very different than the definition actually implemented in the hardware. It may 
include features which are implemented only on the motherboard and never really observed by third 
party hardware developers. The E&WC is the implementation of the Wilson Hardware Architecture 
on the motherboard of the )agl CPU. 

The Wilson Documents 

This is one of four documents which discusses Wilson. The four documents are: 

1) Wilson - Introduction (provides an overview of goals and issues) 

2) Wilson Architecture Specification (details the architecture -- to be revised) 

3) Wilson Architecture Specification Notes (parallels the Wilson Specification and provides 
some justification - to be completed) 

4) Iagl Expansion Interface & Wilson ERS (details the implementation for the first Jaguar) 

This document, the Jagl Expansion Interface & Wilson ERS. describes the first 
implementation of the Wilson Architecture. It also describes the implementation of the Expansion 
1/0 Interface for )agl. 

Jag1 Implementation of Wilson 

A system block diagram may make some of the following information more easily 
understood. This diagram will be discussed fully in the hardware section of this ERS. 

E&W-2 



Apple CONFIDEN17AL ja~uar H.xpanstcm lnter/i.1a! & WiLwn /:HS 

Video 
Backend 

System 

Memory 

Memory 
Crossbar 
(Oatapath) 

LSZ®.a.==::::::i Memory I ~".~/ 

Definition of Terms 

XJS 
Data 
Bus 

XJS 

Mazda 

Decom 
press ion 

WDBus,,,,,,,,,,,,,,,,, Expansion ...., __ .. 

Interface Exp. 
& Wilson Data 
(E&W) Bus 

Alpha Stream - A stream which contains only alpha information. 

Expansion 
Crossbar 
(BLn 

Bidirectional Device .. A device which has at least one Source Resource and one Destination 
Resource. 

Channel ·· Many different types of channels exist including Source Resource Channels, 
Destination Resource Channels, and Sequencer Channels. A Resource usually is 
capable of multiplexing its operations between a number of logical channels. Each 
of these channels has corresponding state information allowing the Resource to 
switch between them quickly. 

Clip Alpha·· Sarne as a normal alpha value (basically transparency) except that a value of zero 
also indicates that the pixel should be clipped. 

Destination Device ·• A device which includes at least one Destination Resource. 

E&W-3 

Slot 1 

Slot~ 

Slot~ 



jaguar Expansion Interface & Wilson ERS ,.1ppte CONFIOl:'N'/7AL 

Destination Resource -- Conceptual element which receives a stream of data from a Source 
Resource. Generally a Destination Resource contains information saying what it 
should do with the incoming stream. 

Destination Resource Channel (DRC) -- A Channel which acts as the destination of a stream. 

Device -- A hardware element in the Jaguar System (motherboard, expansion card, etc .... ). In 
the case of Wilson a device can either be a source of streams, a destination of 
streams, or both. 

Expansion Interface & Wilson Chip (E&:WC)-The chip inJagl which implements the Wilson 
Hardware for the motherboard, some stream processing resources, and the 
Expansion VO interface. 

Pixel Stream -· A stream which contains both pixel intensity information and alpha 
information. 

Port •• All Stream Processing Resources and Destination Resources have a Port. The port is 
the location where input data is received. 

Sequencer •• The Sequencer can execute a simple instruction stream of move operations. It 
is used to load up the contents of the Source Resource and Destination Resource 
registers and to start their operation. 

Sequencer Channel •• The sequencer can have several channels which operate independently 
using the same basic hardware. 

Source Device ·- A device which contains at least one Source Resource. 

Source Resource •• Conceptual element which sends a stream of data to a Destination 
Resource. Generally the Source Resource contains registers to describe how the 
stream is created and where it should be sent 

Source Resource Channel (SRC) - A Channel which can source a stream. Generally located in a 
Source Resource. 

Streams •• A sequence of bytes transferred from a source device to a destination device 
without any corresponding address information. 

Stream Processing Resources - A Resource which accepts streams as input, processes them, 
and sends out streams. It can generally be thought of as a data flow element. 

Stripped Pixel Stream - A stream which contains only pixel intensity information (no alpha). 

Wilson - Hardware Architecture for moving image data. This is the architecture that a third 
party hardware developer wo.uld see. 

Wilson Architecture - Same as Wilson. 

Wilson Hardware Architecture - Same as Wilson. 

E&W-4 



Apple CONFIDEN11AL jap,uar l!xpanston Interface & Wilson ERS 

-Wilson Software Architecture - Not completely defined, but most likely the software 
definition which is implemented to abstract the Wilson Hardware. This may include 
some default Stream Processing Resources (which are not pan of the Wilson 
Hardware Architecture). 

E&W-5 





Apple CONFIDEN17AL }a)!,uar J!xpan.mm Interface <:7 WiLmn /:RS 

Section 2 

Concepts and Facilities 

:iii::::::::::::::::ijjjij\ji\jjij\j\jil:::::::::::1::=::1:1:1::::::::l:J.1111.·111::.-11111:111·11:.ljljiiliii':::l:::/··:::i:i:.: 

at 60 (or less) frames per second. The Wilson Architecture is used to transfer the 
data from the video input device to the frame buffer. The input device performs 
interpolation to convert from an interlaced to a non-interlaced signal. Two forms of 
video input device are envisioned: 1) minimum buffer version (low cost, 1 or 2 scan 
line buffers worth of memory) and 2) full back buffer version (provides for tear free 
updates & frame rate conversion). A method of beam chasing to avoid frame tears 
is used in the full back buffer version. The user can drag the video window from 
monitor to monitor without restrictions. The Wilson Architecture provides for 
conversion from 8 BPP to 24 BPP or 24 BPP to 8 BPP as needed to guarantee this. 

2) Decompressed Video. A live video window is generated on the screen by a decompression 
engine. All the features of Live Video listed above are supported. Wilson can also be 
used to deliver the compressed image data to the decompression engine. 

1 Farrand, Toby, Hugh Manin, "Jag Mission," Internal Memo, Apple Computer, May 21, 1989. 

E&W-7 



jaguar Expansion Interface & Wilson ERS Apple CONFWh'N/lill, 

3) Back buffered animation. All the animation is generated by the CPU in a main memory 
back buffer. The frame is transferred to the Frame Buffer using the Wilson 
Architecture. The E&WC performs the actual data movement. Beam chasing is used 
to avoid frame tears. The back buffer and the Z-buffer in main memory are cleared 
by the E&WC. The transfers and the clears are performed in sequence with the 
application. 

4) Scrolling. The E&WC provides support for smooth scrolling of a full page. The scrolling 
can be accomplished in place or from a backbuffer. This is simply several large 
Wilson transfers performed by E&WC at the application's/toolbox's request. 

5) Dynamic Objects. Wilson can be used to assist handling dynamic objects such as windows 
and icons. Wilson can be used to support the dragging of active windows and icons. 
It is conceivable that Wilson be used for cursor support, but this is not a design goal. 
The cursor will be supported by the Video Backend (Elmer) and/or by software. 

6) Data Streams. Wilson can be used to transfer data streams to and from peripheral devices 
and local memory. These data streams are necessary for support of graphics 
accelerators and compression/decompression hardware. 

7) Compositing. The E&WC provides limited compositing capabilities for image streams. 
This is primarily intended for repetitive real time compositing (placing antialiased 
text over live video for example). The hardware might be used to accelerate general 
compositing operations. The compositing operations are not directly part of the 
Wilson Architecture but are implemented by the E&WC. They fit within the 
architecture but are not part of the architecture. 

8) Graphics Accelerators. The Wilson Architecture provides a method for 3D graphics 
accelerators or other image processing devices to process data and send it to a 
destination (frame buffer for example). 

Wilson Architecture 

The Wilson Architecture is described in detail in the Wilson Architecture Soecification 
document. The fundamental ideas are summarized here. Wilson's primary focus is the movement of 
graphic & video image data. 

There are two aspects to the Wilson Architecture: 1) Hardware Architecture and 2) Software 
Architecture. The hardware architecture applies to the motherboard's hardware and any third party 
hardware. The data types available in hardware are severely restricted to simplify the hardware. The 
data types available in software do not need to be so severely restricted. The following sections 
apply only to the Wilson Hardware Architecture. The Software Architecture is detailed in later 
sections. 

E&W-8 



Apple CONFIDEN71AL jaguar F.xpanswn Interface t7 \Fi/sun /:RS 

Multiple Sources and Destinations 

The current Macintosh hardware and software model is based on a single source of video 
information. Every pixel displayed on every monitor is placed into the frame buffer by the CPU 
(almost always by Quickdraw). This model is not acceptable when one desires to add video and 
animation to the system. The CPU cannot place every pixel of video into the framebuffer. It simply 
does not have the bandwidth. The Wilson model of the video display system attempts co provide 
for multiple sources to display information on multiple destinations in a general fashion. The sources 
may be video input, vid~p decompression, CPUs, Graphics Accelerators, or other new devices. The 
destinations are US9fiij!Iif.*1me buffers located on the exp;1.lii.ii VO or motherboard but rmw~:::~lso 

Source 
Device· 

Interconnect 

Multiple Sources and Destinations Connected Together 

Each Source contains a Source Resource which is responsible for sending data from the 
source device. Each destination device contains a Destination Resource which is responsible for 
receiving data from Source Resources. A Source Resource and a Destination Resource are required to 
communicate in the Wilson environment. This is shown below. 

E&W-9 



jaguar Expansion Interface & Wilson ERS 

Source 
Device 

Source 
Resource 

Destination 
Device 

Interconnect 

Apple CONFWt'N71!1L 

Destination 
Resource 

Source Resource and Destination Resource in their 
Respective Devices 

A Source Device may desire to send data to multiple destinations simultaneously. To do this 
it requires multiple Channels in its Source Resource. Each Source Resource Channel (SRC) functions 
independently to send data to a Destination Resource. The same is true of a Destination Device. It 
must have multiple Destination Resource Channels (DRC) if it desires to receive data from multiple 
Source Resource Channels simultaneously. A Source Resource Channel sending data to a Destination 
Resource Channel is shown below. 

Source Destination 
Device Device 

Source Destination 
Resource Resource 

channel channel 

channel channel 

channel channel 

~ z 

~ L r "" Interconnect 
\.. .J 

Source Resource and Destination Resource with Multiple 
Channels 

A device may function as both a source and destination. In this case it is simply a "device" 
which includes both a Source Resource and a Destination Resource (each which may have multiple 
channels). A good example of a device such as this is main memory. An example is shown below. In 

E&W-10 



Apple CONFIDENTIAL . )at1uar Jixpanston Interface c-; Wilson /:'NS 

this example the Source Resource Channel in the Source Device is sending data to a Destination 
Resource Channel in our Bidirectional Device. The Bidirectional Device is using its Source Resource 
Channel to send data to one of its own Destination Resource Channels. Nothing in the Wilson 
Architecture prevents this and it is very useful for operations such as bit-blits. 

Source 
Device 

Source 

~t~~~ 

Device~ 

Source 
Resource 

It is conceivable that a device might desire different interface formats. It could therefore 
define two different resources for access. This is shown below. 

E&W-11 



jaguar Expansion /r;teif ace & Wilson ERS 

Source 
Device 

Source 
Resource 

Device 

I nterctn nect 

Destination 
Resource 

Source 
Resource 
1 
channel 

Apple CONFl/Jl:Nl7AL 

Source 
Resource 
2 
channel 

channel 

channel 

A Ples1urce with Multi11le S•urce Resources 

The two Source Resources provide access to the same data but the interface formats are 
different. This same concept could be used for multiple Destination Resources on the same device. 

The Wilson Architecture attempts to guarantee that all Source Resources and all Destination 
Resources can directly communicate. It does this using Streams. Streams are explained in the next 
section. 

Streams 

The Wilson Architecture separate~ the s9urce and the destination of pixel data. The source 
and the destination communicate via byte streams. A device can either source or receive byte 
streams. A stream does not contain the address of each pixel. It is simply a sequence of bytes 
transferred from the source to the destination. Each byte transferred is labeled with the stream 
number so that the destination knows what to do with the data. A Source Resource Channel (SRC) is 
responsible for creating a byte stream and a Destination Resource Channel (DRC) is responsible for 
accepting a byte stream. 

The Source Resource Channel (SRC) is given the information describing how the stream 
should be created (location, x coordinate, y coordinate, size, width, length, format .... whatever the 
source designer feels is needed). The Destination Resource Channel (DRC) is given information 
describing how the data stream should be handled when it is received (where to put the data). The 
Source and Destination Resource Channel description information is set up by a CPU in the system. 
After the SRC and DRC are set up the CPU starts the SRC. The SRC creates the stream and sends it to 
the DRC. 

Four common formats of streams, in addition to simple byte data, are defined to facilitate 
hardware communication: 

E&W-12 



Apple CONFIDEN17!ll }aRuar F.xpanswn Interface & WiLmn t'N.S 

1) 16 Bits per Pixel (8 bits grayscale & 8 bits alpha) called k 1 6 _GRAY 

2) 32 Bits per Pixel (8/8/8 bits RGB & 8 bits alpha) called k32 RGB 

3) 32 Bits per Pixel (16 bits grayscale & 16 bits alpha) called k3 2 _GRAY 

4) 64 Bits per Pixel (16/16/16 bits RGB & 16 bits<ilpha) called k64_RGB 

RectanguJ,!l.::::.l.legions 
.·.·.·.·.·.·.·.·.·.··.·.·.··:·:·:·>"'.-"• 

·:.:-..... ·:·.·.·.·.::::·:·:·:· 

~~?~-~~t~~~~-1 
a stream in on~:@~'ffi¢!:~:!¢,gal fonnats. /,:::=,· .. /'''' · .......... ' . . . . . . . . . . . . . . . . ;:::::::::;::: f f~)t:)~ 

''M6§t:::l~~~in~dB~~:::1hdtia~ Destination Resourc@,iHi.HH~ls capable of translating s@Mti.f into 
rectangular regions. As the stream is received the DRC (in the case of a frame buffer) writes the 
stream into memory. The DRC determines where to write the incoming stream from its registers 
which were set up by the CPU. The destination performs any color space translation, row bytes 
translation, offset, or other processing to the stream in order to correctly display it (in the case of a 
frame buffer). For example if a frame buffer is displaying grayscale and it receives a k32 _RGB it is 
responsible for translating the data into grayscale format. 

Arbitrary Shapes and Clip Alpha 

So far we have only described capabilities which allow for transfers and compositing on a 
rectangular region basis. The Wilson Architecture provides support for arbitrary shapes via the alpha 
channel. All streams which are transferred include a full alpha channel. Each source mus~ include at 
least a 1 bit mask equal in size to the largest rectangular region it can source. This is needed to supply 
information in the alpha channel. The source may contain a full 8 bit or 16 bit alpha channel if it 

E&W-13 



jaguar Expansion Interface & Wilson HRS 11pplu CONFl/JhN!l:ll 

desires. The mask data or the alpha data must be placed into the alpha channel of the stream when a 
stream is sent to a DRC. The mask or alpha data is maintained by the CPU(s). 

All destinations must be capable of clipping pixels (not writing them) based on the alpha 
channel data. If the value in the alpha channel equals zero the DRC will not write the pixel. This 
relatively simple functionality provides for both overlays and arbitrary shapes. The destination's 
mode will normally be programmable (clip or no clip). 

When the alpha channel is used for clipping information as described above it is termed "Clip 
Alpha". When Clip Alpha is received by a destination resource the corresponding pixels will not be 
used if alpha equjllS zero. · , ( , 

/)<>&J '>;f {' ('.;Rr#r~ ' ' ~t) 
J_Jfer·t-v~\{ ;3<.'Tvt/f'T:_ex::J g ( 

Stream Processing Resources ~ 

Stream Processing Resources can be included in the system. These are simple devices which 
act as both a destination and a source of streams. They receive a stream, perform an operation on 
the stream, and send the new modified stream on to a destination. An example is shown below. 
Stream Processing Resources can deliver data to other Stream Processing Resources to create a chain 
of processing. 

Source Destination 
Device Device 

Source Destination 
Resource Resource 

channel channel 

channel channel 

channel channel 
I 1. 

\ I 
11 
" l 

Interconnect /J 
\ v Stream 

Processing 
Resource 

An example of Stream Processing Resource 

E&W-14 



Apple CONFIDEN77AL .faRuar lixpansion Interface (,. Wilson /:HS 

· It is possible for a Stream Processing Resource (SPR) to receive multiple streams and 
generate a single stream as its output. A simple case of a Stream Processing Resource might be a 
Blending Resource. The Blending Resource would receive two streams, perform an alpha based blend 
operation, and send the result to the destination. Note that Stream Processing Resources are 
relatively simple and contain little or no buffering. 

Just as Source Resources and Destination Resources have multiple channels Stream 
Processing Resources can have multiple channels (SPRCs). These allow simultaneous processing on 
multiple streams. 

Data .J:::::::::t' 

The Wilson Archttectunh:=however do .. m . ,.. . . . .,.,tlJtMfor:mat::df:these aliernate:,:da · ,, •. ·' · . :;:::Jllbe. ,,,are 

J a 91w:m:::::m:l:IJJ~\lilll1111\lllll:l:i&:l::::=~u re/Fun ct i 0 1\1.~IJ~l~jl 5 um ma ry !Jil.!!Ji·Jl\J:j:j:l:l:IJJ\li:J!l!\!!I 
The following functionality is planned for the jagl implementation of Wilson: The 

motherboard can act as both a source and a destination of rectangular pixel regions. It will contain a 
Source Resource and a Destination Resource. These can be used to access both main memory and on 
the on board frame buffer. They are termed the Motherboard RectRegion Source Resource (MRSR) 
and the Motherboard RectRegion Destination Resource (MRDR). The MRSR can send regions to 
other frame buffers or processors. The MRDR can receive regions from video input devices or 
processors. The MRSR can send a region to the MRDR to accomplish a bit blit or a rectangular region 
clear. 

All Wilson related functionality will be implemented in the Expansion Interface and Wilson 
Chip (E&WC). 

E&W-15 



jaguar Expansion Interface & Wilson ERS Apple CONFIIJtNl7AL 

Motherboard RectRegion Destination Resource 

• The motherboard frame buffer and system memory can act as a destination for incoming 
rectangular regions which are in any of the 4 Wilson stream formats. 

• The motherboard can conven incoming pixels to the appropriate form. If data is received 
by the motherboard in any of the 4 formats it can be converted to the 
motherboard's frame buffer depth (Y..-9/32*R + 19/32*G + 4/32*B will be used for 
conversion from color to gray scale and value replication will be used for conversion 
from gray to color). The motherboard's framebuffer may be either 24 bits RGB or 8 
bits Gray. 

• Pixels can be masked by their alpha (they are not written if alpha=O). This provides for 
arbitrarily shaped windows and overlays. This can be programmed on and off for 
each channel. 

• Pixel data can be written in 3 different forms: 1) only store intensity data, 2) only store 
alpha data, or 3) store both intensity and alpha data. These are used for frame 
buffers which lack alpha storage, for stripping an alpha channel, or for normal 
operations respectively. Note that pixel twisting is performed. 

• The motherboard will provide the ability to scatter data on page size address boundaries 
(this is needed to support virtual memory). This is accomplished using the 
Sequencer. See the Sequencer hardware section for details. 

Motherboard RectRegion Source Resource 

•The motherboard can source rectangular regions of k16_GRAY, k32_RGB, 
k 3 2 _GRAY , and k 6 4 _ R GB when stored in memory as k 1 6 _GRAY , 
k32 RGB, k32 GRAY, and k 6 4 RGB respectively (these are Single Stream 
Transfers). - -

VALID SINGLE STREAMS (combined alpha & intensity data): k 1 6 GRAY , 
k32_RGB, k32_GRAY, k64_RGB, 64bitconstant. 

•The motherboard can source regions in the kl 6 GRAY and 32 RGB formats from two 
separate streams (these are Dual Stream Transfers). The Dual Stream Transfers utilize 
intensity from one stream and alpha from a second stream to create the final stream. 
A Stream Processing Resource (the Pixel Munger) is used to accomplish this. 

Valid ALPHA: 1 bit, 8 bits, 8 bit constant, 8 bits from kl 6 GRAY, 8 bits from 
k32 RGB. 

Valid INTENSITY: 8 bits, 24 bits, 8 bits constant, 24 bits constant, 8 bit from 
k 16 _GRAY, 24 bits from k32 _RGB. 

• Constant values can be supplied for region clears & fills for both alpha & intensity. 

E&W-16 



Apple CON"1DEN17AL jap,uar i:xpanswn Interface & WiLmn l:'NS 

• The motherboard will support rate control to facilitate beam chasing and bandwidth 
allocation. 

• The motherboard will include an 8 bits per pixel to 24 bits per pixel color translator (CLUT). 
This can be used for expanding an 8 BPP image to a 24 BPP image during transfer. 
The Pixel translator will be placed in the Pixel Munger Stream Processing Resource. 

• The motherboard will provide the ability to gather data on page size address boundaries 
(this is. needed to support virtual memory). This is accomplished using the 
Seqµ~ler. See the Sequencer hardware$:®#® for details . 

. ··:·:·:···· .; :; -:·:·:·:·:· ·. .;:~::::;:;::::::;:: :·:·:: ·.;:: 

.;:;:;:~:f{~~/jf~)/i~!{ .::::::::::-··"'"·="·'.-:-::: 
.·:.:-:::·:·:·:·:·:·:-:·:·:-:·:·:·:·:·:·:-:-::::;:;:; ·'.·:·:,-:·.=·=.===.·.·.·.·.::.:·.::~·.: .. ~.~.~.i.;.~.:.;,:,:.~.~.: 

: ~:i~i~\~~~i~j~~i~~~~~~~~;\t~~r~~~~;it;:. = 

:t ::: , ,,,,,<r:nJt::::rtrn:,:: 

General !~!!!~!~·~!'1 Functionalit~:l!i· ·:.·:!:::;::':·!!,,,,:::!,· <::=: · :,:'.: 

•The 1~~~~~;e::~1t~-~~Jf~ ;~l~~lyi~ 

-:-; :::;:::::::: ::=>=====::::;::======::::===== ::::::;:;::jjj[j'.\\\(ii1i:1~ .r.1.•.11.•.• .. r.r.r.r.1• .. r.•.,•• .. I.'?> 

<::::::::;:;:;:: 

The Expansion Interface and Wilson Chip will perform bus conversion between the 
Expansion VO and the local XJS Bus. The following features will be implemented. 

• The E&WC will perform protocol conversion for normal memory mapped transactions 
between the CPU(s) and the Expansion I/O. 

• The E&WC will perfonn locked "Exchange" instructions over the Expansion I/O. 

• The E&WC will perform locked "Exchange" instructions in the local memory space when 
requested by Expansion 1/0 Masters. 

• All Read transactions performed by the E&WC are "split response" 

• The E&WC will participate in cache coherency protocols implemented by the XJS. 

• The E&WC will implement an error handling scheme that avoids dead locks and provides 
information for recovery software to utilize. 

E&W-17 



jaguar &:pansion Interface & Wilson t'RS Apple CONF/IJ!:'N'l7AL 

• The E&WC will utilize the stream protocol of BLT for stream transfers via BLT. 

Implementation Summary 

In order to perform the fundamental functibns listed above the E&WC contains five 
fundamental blocks 

1) Motherboard RectRegion Source Resource (MRSR). The MRSR can read a rectangular 
region of bytes from memory and create a stream from the data. The data stream 
can be sent to any. Destination Resource. Destination Resources can be located on 
the motherboard or on the Expansion 1/0. The MRSR can also source a constant 
valued stream. 

2) Motherboard RectRegion Destination Resource (MRDR. The MRDR receives byte streams 
from other Source Resources. It places the data into a rectangular region in memory 
(or framebuffer). The MRDR can perform translation from RGB intensity to 
grayscale intensity and grayscale intensity to RGB intensity. The MRDR can also 
perform clipping operations based on the alpha values associated with the intensity. 
The pixels are optionally not written if alpha==O. The MRDR can be programmed to 
write intensity data & alpha data, only intensity data, or only alpha data. The 
unwanted data is eliminated from the byte stream (packing and twisting are 
performed). 

3) Pixel Munger. The Pixel Munger is a Stream Processing Resource. It receives two streams 
from Source Resources. The two streams are combined to create a single output 
stream. The Pixel Munger accepts many different stream types corresponding to 
data formats which might be used by the CPU. These include: k 1 6 _GRAY , 
k32_RGB, 8 bit alpha only, 8 bit gray only, 24 bit RGB only, and 8 bit pseudo color. 
The Pixel Munger accepts two streams and creates a: single output stream. The 
output is created by taking the alpha from one input stream and the intensity from 
the other inpuc stream. The output of the Pixel Munger is always either k 1 6 _GRAY 
or k 3 2 _ RGB. The Pixel Munger will also include an 8 bit to 24 bit color translator 
(CLUT). 

4) Blender. The Blender is a Stream Processing Resource. It accepts two input streams and 
performs an alpha blend. Both streams must be either kl 6 GRAY or k32 RGB. 
The second streams pixel values are multiplied by 1-alpha of the first stream and 
added to the pixel values of the first stream. The second streams alpha is normally 
treated like the other pixel information. The Blender has a special alpha override 
mode. When this mode is enabled and the second streams alpha value=O the output 
alpha's value is forced to 0. This is used for maintaining clip alpha information while 
compositing. 

5) Sequencer. The sequencer does not accept or generate streams. It is not a Resource. It 
executes a simple instruction sequence in main memory to start and stop the 
transfer of streams. The instruction sequence is used to perform scatter and gather 
operations of data in the virtual memory environment. 

E&W-18 



Apple CONFIDEN71AL }ap,uar /!xpanston Interface 6· lVilwn /:'NS 

User Scenario 

The motherboard's Wilson Hardware will be designed to support the 4 simultaneous 
operations listed below on a single 16" monitor at 24 bits per pixel: 

below: 

1) 1/2 screen decompressed video display with antialiased text over the live video. 

2) 1/4 scre~Jl:~~k buffered animation running at l:i!:!Mli 

./fHt 

TOTAL: 8 Sequence Channels, 9 MRSR Channels, 5 MRDR Channels, 3 Pixel Munger Channels, 1 
Blender Channel. 

Note that more Pixel Munger Channels may be needed if data formats are incorrect or need 
to be changed. 

Wilson Channel Quantities 

• The E&WC will implement 8 MRDR Channels 

• The E&WC will implement 8 MRSR Channels 

• The E&WC will implement 8 Sequencer Channels for support of scatter/gather operations. 

• The E&WC will implement 4 Pixel Munger Channels for handling dual stream conversions 

• The E&WC will implement 2 Blender Channels for performing alpha blending. 

E&W-19 



jaguar Expansion Interface & Wilson t:RS Apple CONF/IJENl1AL 

Alpha Compositing Overview 

This section attempts to analyze how compositing of multiple images using a full alpha 
channel can be performed. It details some limitations when using the Blender to perform the 
multiplies. 

Assume 4 images which need to be composited, 11, 12, 13, 14. 14 is the rear most image in the 
set. Each pixel of each image has an alpha value associated with it (Al, A2, A3, and A4) and a set of 
RGB values (RGBl, RGB2, RGB3, RGB4). The rear most image (14) is the background and has 
constant alpha value of 1 (represented by 255). All images are assumed to be premultiplied (the pixel 
values never exceed alpha). RGBW and AW are temporary variables which are never actually placed 
into memory (they are streamed directly from the source to the destination). The compositing 
equations are shown below: 

Front to back compositing: 

RGBWl = RGBl + (1-All * RGB2 
AWl = Al + (1-All *A2 
RGBW2 = RGBWl + (1-AWl) * RGB3 
AW2 = AWl + (1-AWl) * A3 
RGB = RGBW2 + (l-AW2l * RGB4 
A = AW2 + (l-AW2) * A4 

Back to Front Compositing 

RGBWl = RGB3 + (l-A3l * RGB4 
AWl = A3 + (l-A3) * A4 = 1 (because A4=255) 
RGBW2 = RGB2 + (l-A2) * RGBWl 
AW2 = A2 + (l-A2l * AWl (because AW1=255) 
RGB = RGBl + (1-All * RGBW2 
A = Al + (1-All * AW2 (because AW2=255l 

The Blender performs the calculations on RGB and A. For the Back to Front case 14 and 13 
are streamed into the Blender and the Blender generates the W1 result. The Wl result is streamed 
back into the Blender along with 12. The Blender generates the W2 result. The W2 result and 11 are 
streamed into the Blender and the final result is generated. The final result is streamed to the 
destination. 

Clip information may be provided with the alpha data. If alpha includes clip information it 
is labeled as Clip Alpha. If a Clip Alpha = 0 the data should not be written to memory (it is clipped). 
If the Clip Alpha is not zero it is treated as normal alpha. Most external sources (video input device 
for example) provide clip information on the alpha channel. The clip information has been expanded 
to 8 bits (0 = no write, 255 = write). When compositing live video this information must be preserved 
in order to avoid overwriting data on the screen. When performing front to back compositing the 
video must be that last thing composited (e.g .. it is located at the back & has no transparent 
elements). A special mode is used in the blender to provide an alpha override. Alpha compositing is 
performed as normal except that if the video's alpha value is zero the result alpha is forced to zero. 
For example, if 14 was video the final composite step performed, we obtain: 

E&W-20 



Apple CONFIDEN17AL jaguar F.."CjJanswn lnlerj{Jce D Vliison /:'NS 

A = AW2 + (l-AW2) * A4 

If A4 .. 0 and alpha override is enabled the value of A will be zero. If alpha !=O compositing is 
performed normally. Additional compositing cannot be performed after the video with the Clip 
Alpha has been composited because some alphas may have been forced to zero. This basically 
implies that when doing front to back compositing one cannot antialias video edges with 
information located behind the video and one cannot have any transparent video. After the 
composite is completed all data which has an alpha!=O is written to memory. 

When compositjpg back to front the Clip Alpha concept can also be used. If the video is the 
rear most image it w@:b.i.re an associated alpha of either O gr@i)l Alpha· 255 where the pi~¢~§pould 

~*-~!~~~~~ ~~~ ~1:~~;11~e~p~:°:!~~-::i•1P~: 
ARGWBlw_: A=3 RG+B3( l •... :,,_•·_ ..• ,·, •.. ···.•,·."·:·.· .•. ':·_·_.:_._· ..... ~' .. ':···.;.'. '.':,: ... '.:,.,:_._:':··.•·.:_ .. :,:_A,,_,._.:_ •• , .. ,'.3,.·_:··.'·,···.' .. , •. :_._:,.1_:_·: ... ·_:.,·.· .• '.: * RG __ B4 1 : ::: :::'. •:::m::::::: / :: ? . ··········· :::.:_: "'""' • ,..,, or O (beca1.1i\i{ A4•iib\#i 0) :::::::::::::::;:::::::::::::::::::::::·: ~=~=~:~::::::::~:::~:~:~:;::::::::::;::: 

·::: ·.·. :::::::::{. ::::::::::;: 
. :-:-: : . : . >. . . . . . . . . . . .:~.:~,~-~ ~:. ~-~ ~ .u 
i:i?~~~ii?i~~~~; i~~ 
::;:;:::::::;:;::.:-:-····· :-:·:::;:;:;:; 

:.: :(~)f~: :-.·:-::.:;:-::;:: 
.::_:: ::;::.·.: .. ·· .. '.··.:·.,:-,:.,'·,:,•,:.',.: :;:;::::::: .. ..::}r= ::::::::::::::::::::· ......... . 
<· :-:-:·:·:·:·:·:·:. :::: :::::::{ ..• ~.~-~!.~ i?fI_(( :=::::::::= 

.. :-:·: :{:}. 
:; :: ;: ;: ;: :::::: ,'·.',•.~_-' .. •.,: ·'.,•.~_:. ·::::.·.=·.·_,.· __ :· •• 

:\:)//i 
··.-=-=:::/r :.:.: ... :.:.:.:.::::::::::;::.:::.:::::·· ....... 

:;:;:::::::::;:;:::::::::;:::::: :-:.;.;.·.:.;.-.·.;.·:::::::::;:::::::;:::::::::::;:::. :::::::::;::·:·:·:· 
······ ...................... ·.·.·.-.·.·.-.·.-:·.·.·.<·::.::::::::·:·: 

E&W-21 





Apple CONFIDEN17AL )11µ,uar J:.xpanswn lnLerface & WiLrnn !:'NS 

Section 3 

Wilson High Level Software 

Re a I TI. m''.' .•. ''.':.•'.:a.·· .. '.'..'.'.'..• .. ·.· ... •·.::.:.•.•.•.•,•:,•.,:,•.•:·,·.:,•,,,•,,,:.:.,: A?' .:,:,•,•,:,:,:,•,•> • • • , .=) ? <f>? ?•=•,•= :~ :::::::::::· ;:;::::.::.::.::.::.::.::.:::.:.::.:::: .·.·.·.· .. · .. ·.·.·.·.·.·.·.·.·.·.·.·.· 
· · · .. ·.. ''·'··' .. ~,~.:,~.~,~.~.~~:=· =r>tf:{:=:~:>::::::::: ~i~~~~i~?)i!J~l: -:·==:::::::======= rr:~=~==:~====:::: ::::::=· =·=-:-·:· 

It is m~I~&~~~ to discuss the 4:$~lbf Wilson w~l9mf!rst unders~~ding the reqy~(~~pts of 
real time and at.~~M~,§.µjp¢rficially how ~lj@y are met. "~~g!@~r· has histqr1C:ally meant ~§pgijqipg to 
an interrupt or:9m~f·•~#emal event W.~mi.n.~ . .Ji~~q,9mgqnt:9tJJrne. Ii~ g:§p<;>p§~ tjffi~·~ Qy~fl 
labeled as the ~r~~~ ·~!rrt response." ••••• •mfu·i~• f P•nq~p~~·:·i~tfu9989 ~#,treri~Y M§~fµI, 39~• ·~§{!f~·r~.::14 
fse:~e=~d1i~:.•.ct.;ua,.,:,j,:, •. ,:,·,·,•,11_r .. ,•.: .• ,•,.,a.i,.,i,•.~, •. :, •.. ;,•,:, •. :.9.l ... i.•.• .. :,=.i,i.~,!.•.·.',.re conrro1 c~~~il;~~!l~~~~!~~!!~!.::.J.:io.:i.i !t•!!~!i!~or ~~ t,·.:,•.i,F,•.:.•,•,i,c,.,:,i .•. e.i.•.i.i.P .• : ~··B~f~~ms ~msn 

b :.:=.==.==.=:.::· .. :.==.==.==.::.::.==.==.==.::.==.==.=:.::.::_· .· .. ·:-:::=:==·=·=· <-=·:·=·:t:~·=.·:.=~.~~.:;:.·;.:; .. , .. ,.:~.=~.:~.:: ~.=~.=~.=~.:~.{{ :::~{:}~=ff~;::~:;=:<= ~~~t/t )r ~~J:.~~~11r;r~~~~u :: •,•,•,•,•,•,•, :;:;:;:;:;: f~)[~~t: .·.·.·.·.·.·.·.·.·.·.·-·.·.·.·.·.·.·.·.·.·.·.·.· ... 

The Rel~!Jh~l[.iijiow in capitals) which we arefli~~i~d with is very different flijij~inple 
real time respqiji!.f :~'~@~~in operations performed by:•:fgffip!4ters have a relationship w~~p f:ility. 
Video, anim~tjpq~:~qµpg;:,µiodem operation, voice repf:qqqf.gqn, and scrolling are exa.ffip!~~ )\rhich 
must prQg®$$::W;:i·fcy;~g~~¢.W•t¢gardless of the CPU's ~p@@q(]\Vhen these media types Jt~'Pf~nted 
to the user at the proper speed the system is said to be operating in Real Time. If animation is 
synchronized to the sound it must not progress too slowly or too quickly. It has a correspondence to 
reality which must be maintained (the bird should move across the screen in 8.46 seconds). It is not 
acceptable for the animation to slow down if CPU cycles are not available. It is not acceptable for 
the live video to slow down if the bandwidth is not available. It is not acceptable for the sound to 
slow down or skip. It is, however, acceptable for the quality of any of the above to degrade in a less 
objectionable fashion which maintains Real Time synchronization. If the CPU or another system 
resource is overloaded the quality can be reduced in order to reduce the load. The quality can be 
reduced by dropping frames in video, by simplifying the rendering models in animation, or by 
reducing the processing (mixing, filtering, or sample rate conversion) in sound. 

DISCLAIMER: Animation does not always have to be Real Time. Relative to the issues here, 
however, Non-Real Time Animation is not interesting. It is not significantly different than a standard 
application. When we refer to animation in the remainder of this document Real Time animation is 
implied. 

E&W-23 



jaguar F.xpansion Interface & Wilson ERS ilpple c'ONFff)/:Nl1AL 

Graceful Degradation 

Graceful degradation is the reduction of resource utilization in a non-catastrophic manner. 
Graceful degradation can be observed in many different areas. It is crucial to a Real Time system 
because it is the only way to handle an overload and maintain a Real Time environment. 

In a Macintosh environment when the CPU becomes overloaded it simply performs tasks 
more slowly. This is a graceful form of degradation which a user can understand. It would not be 
acceptable, for example, for an application to quit and give a message such "Application X::XXX 
unexpectedly ended" if it couldn't obtain the CPU resources it really needed. Doing so would be 
stupid. In a system attempting to perform Real Time operations graceful degradation is more 
complex. It is still acceptable for non-realtime applications to degrade by slowing down. Real Time 
applications, however, must gracefully degrade in other manners. These methods are not nearly as 
automatic as the slow down caused by lack of CPU cycles. 

If graceful degradation methods are not used in a Real Time application problems which are 
not intuitive may present themselves. These include losing synchronization between video & sound, 
gaps or clicks in the sound, display of partial images, etc... Graceful degradation methods must be 
utilized for a robust Real Time system. A large number of methods exist for Real Time applications to 
gracefully degrade. These include using simpler rendering algorithms, performing less exact 
calculations, using less accurate models, using fewer sound channels, performing simpler sample rate 
conversion, dropping frames, etc ... The list is very long. These methods reduce resource utilization 
without losing the connection and synchronization to Real Time. These methods are also somewhat 
intuitive to the user; they are graceful. 

Jaguar will attempt to provide some of the basic mechanisms needed to obtain graceful 
degradation of Real Time processes. The difficult part, however, is creating a software environment 
that can handle graceful degradation. 

Allocation of CPU Cycles and BandWidth 

Bandwidth and CPU cycles must be allocated prior to execution if Jaguar is to maintain a 
"Real Time" environment. Bandwidth should be allocated and controlled for each device 
individually. Each d~vice must have a parameter which describes its maximum bandwidth capability. 
For example a bus might have a parameter of 400Mb/sec total transfer rate or a Frame Buffer might 
have a parameter of 100Mb/sec total input and output. These parameters are only estimates. 
Bandwidth and CPU Cycles cannot be allocated down to the last the cycle. This is unrealistic given 
the number of interactions in the system. The bandwidth allocation and CPU Cycle allocation, 
however, will hopefully place us within 10%1. If we can guarantee 10%> accuracy and we leave a 10% 
margin everything will work as predicted. This is not meant to imply we do not need recovery 
mechanisms. Recovery mechanisms will still be necessary for when software or applications fail to 
properly handle allocation. 

The alternative to approximate allocation is no system resource allocation. The Recovery 
Mechanism are simply invoked to handle things when they break. This is not acceptable because it 
does not provide for graceful degradation of the system while maintaining a Real Time environment. 

E&W-24 



Apple CONFIDEN71AL jap,uar b:panswn lnterj(lce c; Wilsun !'.HS 

A View Of Software 

In order to discuss how the hardware is used to solve some of the problems with performing 
Real Time operations a software model is needed. Below is a naive diagram of a possible software 
system. The diagram's only purpose is to provide a discussion mechanism. How {he final 
implementation will be partitioned is unknown at this time. I do not know exactly how this diagram 
might map into the Pink environment. Each of the blocks and their interactions are discussed in the 
following sections. The interactions diagrammed are only those which are known to apply to Wilson 
and animation/video..,iPPlications. -

·:·::::)~\j~~{~f jj{\ 
..... ·.:::::::::::: 

, .. ·::::::::: ....... ·:;::·:::.::::::::; 
.·.·=::· :~i{~f ?~@~~:::::::::~{{:~:;::::;:::::: :·:·::;:;::::::::::::::· 

0P'fy'-' 
:~f ~f~~~;~~tr~t\f~;;:~r:~; 

Win~~W,\,!~~l~W· Layer 
Man•g~ent · · 

.• .. 

Kernel 

A Simple View of a Software System 

Animation Toolbox 

The Animation Toolbox is part of the System Software Toolbox. It interacts with 
applications which perform both animation and Real Time animation. It provides services to make 
an application writer's job easier. Exactly what services the Animation Toolbox could/would provide 
will not be described here. The Animation Toolbox, however, is an animation application's interface 
to system software. It communicates with the BandWidth Manager, the Wilson Manager, and the 
CPU Cycle Manager via the Toolbox Core to obtain system resources. The relationship with these 

E&W-25 



jaguar Expansion Interface & Wilson E'RS Apple CONFWl:Nf111L 

managers is two way. The Animation Toolbox will request resources which may be granted. These 
resources may allow a high quality animation to be performed by the toolbox. If system resource 
allocations must be changed during the animation the Animation Toolbox is warned by the CPU Cycle 
Manager, the Bandwidth Manager, or the Wilson Manager of the resource removal. The Toolbox (or 
application) must acknowledge the change and act accordingly. The Animation Toolbox may 
choose to operate in a degraded mode (using less resources) or pass the information up to the 
application. 

When making requests for resources the Animation Toolbox needs to know what type of 
resources are needed. It may need information from the layer manager, the window system, the 
graphics toolbox, and the application to determine tlie needed resources. Once it knows the needed 
resources it can make requests of the Managers via the Too!Box Core. The requests to the managers 
include back off points which may. be granted by the managers if all the resources desired by the 
toolbox are not available. If a back off point is granted to the toolbox the application may have to 
be informed. If the user moves windows on his screen the requests may be modified. The ToolBox 
Core may have to cancel requests sent to the Managers based on information received from the 
WindowNiew/Layer system and make new requests. These new requests may or may not be granted. 
The application may have to be informed if resources are no longer available. 

Video Toolbox 

The Video Toolbox provides services similar to the animation toolbox for video. It makes 
requests for system resources and maintains the push/pull relationship with the CPU Cycle Manager, 
the Wilson Manager, and the Bandwidth Manager via the ToolBox Core. It too will be informed if 
resources must be removed. 

The Video Toolbox is responsible for graceful degradation as resources become less 
available. It should transparently deg~de the video quality if resources are removed (by one of the 
managers) or the resources can not be allocated. 

ToolBox Core 

The ToolBox Core is responsible for a lot of things. In this environment it is primarily 
responsible for combining a toolbox's request and information from the Window/Layer/View System 
to generate a request to Wilson. The clipping information from the Window/Layer/View System will 
potentially (most likely) impact the request. Clipping will often times greatly reduce the resources 
required. 

The ToolBox Core is also responsible for changing transfer requests when windows or such are 
moved around (clipping information changes). For example if a window is popped to the front the 
clip information will change. This might require a larger transfer to be performed from the video 
input to the frame buffer. The Too!Box Core must modify its request to the Wilson Manager 
(eliminate the old request and make a new request). The ToolBox Core may have to inform the 
original requesting toolbox (and eventually the application) if resources are not available. 

E&W-26 



Apple CONF!DEN71Al jap,uar J!."CjJtmston interface c; WiLmn /:RS 

Window, Layer, and View Manager 

The Window, Layer, View Manager controls who owns what pixels on the screen. It receives 
events to change this. If the screen allocation changes it must inform the Too!Box Core such that it 
can change the Wilson Transfer's which are occurring. 

Event Server .... ,,,,, 
.... ::::::::;:;:;: :{lt!{tt~~~ ·:~t;j(tt~~:~~~: 

Applica1 delivers events to theJl:I'°'' and view Ma,ilthe 

c Pu cyc1e\%PJ.ia:nager .J:::,J:}''. :::::::::::l:iilii:ilii!ii!':':::::i:''i: ./Mt· ::tttnttmn 

App.ks which have ,Jlme remBs register th..leds -PU 

.{~j~ft 

operations in thi:::um:::~hanges. Information on ho~\tlllii@I should be handled is aJ,Mf pB,ded 
to the CPU Cyc@tM!lilr (how the application shou14::::~;::::jjfqrmed that resources are::::l®:i.i::~g be 

remove~~:;trt:1iii1Jill.1Ji·llil·Jl=l!iii'i:jliJj:i~lll!iil·::1.1:1·Jl:::::::ttttt !Jlll·l:lllil=.:1'.·::1·:i_lllJ.ii!lllii iiilllli!ii!ii!ll!l!t!Jlliili!JIJ::11111 
Wheri resources whic:h have already been granted must be removed the CPU Cycle Manager 

must inform the application (or toolbox) before they arc removed. Exactly how this will be handled 
must be determined. 

Scheduler 

The Scheduler controls which tasks or applications obtain which portion of the CPU's cycles. 
It uses information from the CPU Cycle Manager to determine which task should execute and for how 
long. It is generally considered part of the Kernel. In the case of OPUS it may sit on top of the Kernel. 

Applications which do not have real time constraints (have not requested CPU Cycle 
Allocations) are most likely placed at the bottom of the priority queue for execution. Some 
exceptions to this, however, will most likely exist. 

E&W-27 



jaguar Expansion Interface & Wilson t:RS 11pple CONFff)f:'N'l711L 

Bandwidth Manager (BWM) 

Bandwidth allocation is performed by the Bandwidth Manager. Bandwidth is managed in a 
fashion similar to CPU cycle management. 

Bandwidth allocation works except when the CPU decides to perform some memory 
transactions. The solution to this fundamental problem relies on absolute unfair priority. The CPU 
always operates at the lowest possible priority. All bandwidth allocated transfers operate at a higher 
priority and can completely block the lower priorities. This allows· the CPU to use all excess 
bandwidth, but allows bandwidth allocation to function properly. 

The Bandwidth Manager performs operations similar-to the CPU Cycle Manager. It, however, 
allocates Bus and other Resource Bandwidth. It's allocations are extremely hardware dependent. 
The Animations Toolbox and the Video Toolbox request Bandwidth Allocation from the Bandwidth 
Manager via the Toolbox Core. The Toolbox Core requests BandWidth either directly or through the 
Wilson Manager. Most likely the request is made. through the Wilson Manager. The Toolbox Core 
describes the transfers needed to the Wilson Manager. The Wilson Manager attempts to allocate the 
Bandwidth needed via the Bandwidth Manager. It returns the result (possibly a compromise) to the 
requesting toolbox. 

Each device in the system has a Maximum bandwidth parameter, a Continuous allocated 
bandwidth parameter, and a Instantaneous allocated bandwidth parameter. The Maximum 
bandwidth parameter is hardware dependent and is fixed. The Continuous bandwidth is maintained 
by the Bandwidth Manager. The Instantaneous Bandwidth parameter is maintained by the Micro 
Bandwidth Manager. Neither of the two bandwidth parameters can ever exceed the Maximum 
bandwidth. The maximum bandwidth parameter is probably not a true maximum. An average 
maximum throughput value might be used instead. 

Before any data movement transactions can occur a request must be made with the 
Bandwidth Manager (BWM). Three classes of transactions can be requested from the BWM: 1) 
Continuous, 2) Repetitive Burst, and 3) Onetime. A Continuous transfer is one which has a relatively 
constant bandwidth and which has a fixed peak rate. It might be used for sound channels or low 
quality video. A Repetitive Burst transfer is one which operates in real time. It may have some 
. Continuous characteristics but its basic mode of transfer is large high bandwidth bursts at a fixed 
frequency. It might be used for animation or high quality video. OneTime transfers are single 
operations which are allocated, performed, and deallocated. They do not usually have any 
constraints on their execution time. 

Continuous Bandwidth Transactions: The BWM receives a request for some Continuous 
Bandwidth between two devices. It checks the total amount of bandwidth allocated to the two 
devices and any connection paths. If the Bandwidth is available at/through all the devices the BWM 
updates their Continuous allocated bandwidth parameters and returns. If the Continuous Bandwidth 
cannot be allocated because a large amount of Repetitive Burst Bandwidth is allocated the BWM 
may choose to wait until some of the burst bandwidth is deallocated. If the Continuous Bandwidth 
cannot be allocated because a large amount of Continuous Bandwidth is already allocated the BWM 
may choose to reduce another requester's bandwidth. It will send a message to the requester 
informing it of the needed reduction. The requester must send a reply in a specified minimum 
amount of time or the transfers will be terminated completely. Continuous bandwidth is deallocated 
when the BWM receives a request to de-allocate it. 

E&W-28 



Apple CONFIDENn1L jap,uar b:panswn inter/ace & WiLmrz /:'NS 

· Repetitive Burst Transactions: The 13WM receives a request for Repetitive Burst 
Bandwidth. The request specifies the source, the destination, the rate of transfer, the length of the 
transfer, and the frequency of the transfer. The BWM determines if the request is reasonable and how 
well it can be met. If the request can be met it is granted. If not the push/pull type of bargaining is 
performed between the requester and the BWM. 

OneTime Transfers: The BWM receives a request for a transfer of data. It is a one time 
transfer. If the request has no constraints (speed of transfer or such) it is granted at a specific race. 
This is probably the format of a normal bit blit operation (it can be done at any speed). Different 
reply methods can ~:]~~zed for the blit (basically synchJ-n01r asynchronous). J I 

.-,·;-:::=:::::.::::~:::::;::.;.;.;.;.·.· .·::::::::::::::::>:·:·:·:······· .::::::::::::.::.'.:.::::::;:::::::::::· . ·::::::::::::::::::: ·-··:-·-:· .·.·.·.·.··:;:·· .·.·.·.·.·.·.· ......... ·.·.·.·.·.·.· . 

. ,,,,,, u:::':t\t'=:.:::;:=::::.:::;:::: <;::::::==t=::)::: ,<?: t > 
Wilscfn ~lmll·@r 

.. -.·.-.·.:-/::: ::::::::: 

:;:: :;:;:·:·:-:. ;.;. :;:::::::::::::: 

.. :·.·.'.·'·'.·=.:,:,:=.·.'.·.·.::·,:.:.,=~,.=,.=,:.=:=,·.',·=, .. ,r ::·: ..... ~t?~f:::~::~:{ 

····:::.··.· 

ll\l~~j~)j\~]~ 

Wilson Mana&,;f_lP,f,g~Jp~J<?<Jlbox via the reply mcthi~±.'..·· 
:::::::=::: . :::::::::~::: ... :::::::::::;::/~~t.)}~:~:f\.;/:)))~\]~J}t: 

Once the hardware and resources have been located the Wilson Manager attempts to obtain 
the bandwidth needed from the BWM. If the bandwidth cannot be allocated the Wilson Manager 
uses the back off methods to obtain a compromise. The compromise information is returned to the 
requester using the reply methods. Ifa compromise cannot be obtained the Wilson Manager informs 
the requester. 

Once the Wilson Manager has obtained the bandwidth needed it begins to synchronize the 
transfers and perform those whose constraints have been met. rt works the with the Micro 
Bandwidth Manager when performing the transfers. 

The Wilson Manager is responsible for translation from virtual address space to physical 
address space. The translations are performed by the Wilson Manager and relayed to the MBWM and 
the BWM when making requests. The BWM and MI3WM must know what physical piece of hardware 
the transfer is being made to. The Wilson Manager must use physical addresses when communicating 
with the Wilson Drivers. 

E&W-29 



jaguar Expansion Interface & Wilson J:..'RS 1lpple CUNFWl:'N17AL 

Rectangular regions received by the Wilson Manager must already be clipped by the 
window/layer manager. The Window manager must update clip masks on the source. It must know 
the source of the Window's contents! 

CPU Cycles & Their Relationship To BandWidth 

The bandwidth required by the CPU is not predictable. This introduces a fundamental 
problem when attempting to allocate bandwidth in the system. Priority is used to partially solve this 
problem, but their is still a fundamental relationship between CPU cycles and Bandwidth. If a 
transfer is occurring which requires a large percentage of the available bandwidth to system memory 
which has been allocated (operating at a high priority) the CPU's performance may degrade. How 
does the CPU Cycle Manager account for this degradation? The degradation, unfortunately, is 
extremely code dependent. 

The only known solution to this problem is to use a heuristic algorithm for CPU performance 
degradation based on bandwidth allocation. 

Priority is used to reclaim some of the Bandwidth which must be allocated but may not be 
used. All transactions which are allocated are given a priority which is greater than 0. Transactions 
which operate at a priority of zero do not therefore have to be allocated. This has some important 
implications on the implementation of priority in the system. The CPU generally operates at priority 
0. It is able to reclaim almost of the unallocated bandwidth. Simple blit operations could also be 
executed at a priority of 0 if their execution speed was not important. 

Tear Free Updates 

Tear free updates of animation and video are desired in jaguar. If video is being displayed 
in a region on a monitor it is possible to generate a frame tear. A frame tear occurs when the monitor 
displays in a single frame two different video frames. If video is placed in the frame buffer without 
regard to the location of the monitor's beam tears will be generated. Tear's can be avoided by 
performing what is sometimes called "beam chasing." Frame tears can also occur when performing 
animation. In fact frame tears can even affect such simple things as the cursor. The Macintosh 
avoids tearing the cursor by only changing the cursor during the vertical blanking interval. This results 
in a high quality solid cursor which does not flicker. Vertical blank is long enough to update an object 
about the size of a cursor. If the cursor picks up a window and drags it around frame tears can be 
observed (vertical blank is not used for the window outline). 

A general solution for avoiding frame tears in animation and video is desired. A solution will 
be outlined here. Below is a diagram of a monitor screen with one window displayed. We assume the 
monitor's raster is traced from left to right and top to bonom (as one would read a page of text). 
This is true of all monitors made by Apple today (and everyone else I know of). At any moment in 
time the raster will have a Y coordinate. If we assume the contents of the window can be transferred 
to the frame buffer in a fixed maximum amount of time we can determine the "Safe Region" for 
beginning the transfer. If the raster is in the upper "Safe Region" and we begin transferring to the 
window (we assume that the transfer to the window is also top to bottom and right to left) the raster 

E&W-30 



Apple CONFIDEN71AL jaguar Expanswn interface & WiLwn !:.RS 

beam will not catch up to the transfer. No tears will be generated. If the raster is in the lower "Safe 
Region" the transfer to the window will never catch up to the raster and no tears will be generated. If 
the raster is not in the "Safe Region" the raster will cross the transfer and two different frames will be 
shown in a single monitor frame - A tear is created. 

,... I Safe Region 

Monitor I with 

1J.l,Jllll'lllllllll·lll'l·ll·llll[l·llll 

the window's location, and the monitors retrace rate. 

When placing live video onto a monitor screen the problem is further compounded by the 
input video beam's trace. The input video effectively has a raster beam which is tracing the input. It 
too will have a "Safe Regionn determined by the location of its raster, the speed of the transfer, and 
the geometry. Both rasters (frame buffer and video input) must be in their safe regions when the 
transfer is started to avoid a frame tear. 

The hardware planned for all frame buffers and all video input devices will contain several 
programmable interrupts (8 for jagl motherboard) which can be programmed to occur at any vertical 
raster position. These interrupts can be programmed to occur when the "Safe Region" is entered. 
The interrupts are used by the Wilson Manager and the Micro Bandwidth Manager to avoid frame 
tears when transferring regions of data. 

E&W-31 



jaguar Expansion Interj ace & Wilson ERS Apple CONF[J)t.iV11AL 

Micro Bandwidth Manager (MBWM) 

The Micro Bandwidth Manager allocates bandwidth in extremely small sections of time. It is 
very tightly coupled to the Bandwidth Manager, the Wilson Manager, and the Wilson Drivers. 

The BWM allocates bandwidth over long periods of time. It receives requests for 
Continuous Bandwidth or for Repetitive Burst Bandwidth. The MBWM manages bandwidth at a 
much lower level. It manages bandwidth at the single burst level rather than the repetitive burst level. 
The BWM·gives the go ahead to the toolbox or application that the request it has made is reasonable 
and that the system s.hmili1 be able to meet the needs. The MBWM schedules the transfer such the 
constraints given to the Wilson Manager are met. The Micro BandWidth Manager works with the 
Wilson Manager to obtain tear free updates. An example will clarify the operation of the three 
components: 

EXAMPLE: An application desires to place a live video window onto a screen region. It 
makes a request to the video toolbox. It requests Video data to be transferred 
from the video card to the screen at a 30 frames/sec without frame tears. It 
specifies the size of the source and the destination. It indicates that it wishes to 
synchronize to the video on a frame by frame basis. It indicates that a potential 
back off point is 15 frames/sec. The Video Toolbox interprets the request and 
makes a request of the Wilson Manager. The Wilson Manager determines the 
resources and bandwidth needed for the transfer. It makes a request of the BWM 
for the bandwidth allocation. If the bandwidth is not available it haggles with 
Bandwidth Manager to obtain a compromise. The Bandwidth manager may have to 
send messages to other tasks operating in the system informing them to begin 
operation in a degraded mode (it removes some of their resources). The Wilson 
Manager obtains the bandwidth from the BWM. It obtains Wilson Resources 
(channels) from itself or the Wilson Drivers. Once it has obtained a set of system 
resources to perform either the toolbox's request or a degraded mode of that 
request it returns the information to the toolbox. The toolbox may or may not pass 
information to the application. 

The Wilson Manager sets up the channels in the proper Wilson Drivers for the 
transfer. It sets up any interrupts it needs to determine when the "Safe Region" has 
been entered. The MBWM and the Wilson Manager now interact to perform the 
transfer of data requested. When all the constraints for the transfer have been met 
(rasters are in the "Safe Regions") and the MBWM says the bandwidth is available the 
Wilson transfer is started. The MBWM marks the Instantaneous bandwidth as 
allocated. The Wilson Manager and the MBWM use the Wilson Drivers to start the 
transfer. When the transfer is complete the bandwidth is deallocated (an interrupt is 
generated at the end of the transfer for this purpose). The Wilson Manager sends a 
message back to the application/toolbox indicating that the frame has been 
transferred. The Wilson Manager and MBWM will not transfer another frame until a 
message is received from the application/toolbox because of the constraints. The 
Wilson Manager and MBWM will not transfer another frame until all the constraints 
are met. One of the constraints is the receipt of a message from the application. 

E&W-32 



Apple CONFIDENTIAL }ap,uar H.xpansion Interface & Wilson /!RS 

·Note that the MBWM allocates and deallocates bandwidth for each burst transfer where the 
BWM allocates overall bandwidth. The MBWM manager uses information about Continuous 
bandwidth allocation from the BWM as its starting point. The MBWM must also be informed when 
ever the BWM makes any allocation changes. The MBWM and the Wilson Manager can have many 
requests outstanding which are all waiting for constraints to be met. It may be impossible to meet 
some of the constraints (a deadline for example). If this occurs the MBWM or the Wilson Manager 
would use the reply method which was requested by the toolbox/application to indicate failure . 

Software . J:::,:::::i:i:;:::·::,:::::::::: 

created (in our case the object of class TMemoryRectaPixelStream) it must be 
routed to a Stream Destination. Our Stream Destination will be an object of class 
TMemoryRectaStreamDestination because we are going back into memory. 
TMemoryRectaStreamDestination's constructor requires an input stream (in our case 
the TMemoryRectaPixelStream object we created) and parameters which describe 
the destination (address, length, width, and rowbytes). Once the two objects are 
created and connected in this fashion the Stream Destination object is "activated" 
and the Wilson Manager transfers the data. 

The Wilson Manager provides a number of classes which correspond to Source Resources. 
The Hierarchy of the stream objects is shown below. Ts t re a rn is the base class from which all 
stream types are derived. Three fundamental classes are derived from it: 1) TPixelStrearn 
2) TAlphaStrearn, and 3) TStrippedPixelStrearn. The Wilson Architecrure 
stream types all fit in the TPixelStrearn class because they all contain both pixel intensity 
information and alpha information. The TAlphaSt ream contains only alpha information. The 
TStrippedPixelStrearn contains only pixel intensity information. The non Wilson 
Architecrure stream classes are defined for handling data types which are appropriate to the 

E&W-33 



jaguar iixpansion Interface & Wilson ERS 

motherboard's main memory formats. These types are not part of the fundamental Wilson 
Architecture but are part of the Jagl implementation of Wilson. 

TConstantPixelStream 

TMemoryPixelStream 

TMemoryRectaPixelStream 

TBlenderStream 

TMungedStream 

TPixelStream 

TDecompressionStream 

TVideoStream 

T AlphaStream TConstantAlphaStream 

TMemory AlphaStream 

TMemoryRectaAlphaStream 

TStrippedPixelStream 

TConstantStrippedPixelStream 

TMemoryStrippedPixelStream 

TMemoryRectaStrippedPixelStream 

E&W-34 



Apple CONFIDENTIAL jaguar Expansion Interface & Wilson ERS 

Object Derivations From TStream Base Class 

All Streams are derived from the base class TStream. A derived class is used to describe how 
the stream is acrually created, but each TStream class is capable of "sourcing" a stream of data. For 
example a TMemoryAlphaStream describes a stream in memory which contains only alpha 
information. The headers for the TStream derived classes are described below. 

I I Valid stream ;.yf4~:\\j\which contain both alpha 
en um 

11 valid 
II 
II 
II 
II 
en um 

II 
II 
II 
II 

II type definitions used in prototypes 
typedef unsiqned lonq RowPixels; 
typedef unsiqned lonq RowDifference; 
typedef unsiqned char BitAddress; 
typedef unsiqned lonq Width; 
typedef unsigned long Length; 
.typedef void *Address; 
typedef unsigned char Priority; 
typedef unsigned char AllocationResultCode; 

II container class for groups of streams. 

information 

II TStreamCollection is a base class used to make a collection of streams. It 
II will might be used by the Wilson Manager to collect all the active streams 
II in the system. 
class TStreamCollection : public TCollectible I 

private: 
public: 

TStreamCollection(); 
virtual ~TStreamCollection(); 
} 

E&W-35 



jaguar Expansion Interj ace & Wilson ERS 

II base class for all streams -- this is an abstract class 
II all streams are derived from this class 
class TStream : public MCollectible { 

private: 
public: 

TStream(); 
virtual -TStream(); 
} 

Apple CONFILJEN71AL 

II base class for all pixel streams which include alpha and intensity info. 
II this is an abstract class. 
class TPixelStream : public TStream 

private: 
public: 

TPixelStream(); 
virtual -TPixelStream(); 
virtual PixelStream Type() O; 

) 

II base class for all pure alpha streams 
II this is an abstract class 
class TAlphaStream : public TStream { 

private: 
public: 

TAlphaStream(); 
virtual -TAlphaStream(); 
virtual AlphaStream Type() O; 

} 

II base class for all pixel streams which do not include alpha 
II this is an abstract class 
class TStrippedPixelStream : public TStream ! 

private: 
public: 

TStrippedPixelStream(); 
vi~tual -TStrippedPixelStream(); 
virtual StrippedPixelStream Type() • O; 

} 

II The TConstantPixelStream is a constant value stream of a fixed length 
II which contains both alpha and intensity information 
class TConstantPixelStream : public TPixelStream { 

private: 
public: 

TConstantPixelStream(TColor, Length}; 
virtual -TConstantPixelStream<I; 
PixelStream Type(); 

} 

class TConstantAlphaStream public TAlphaStream { 
private: 
public: 

TConstantAlphaStream(Alpha,Length); 
virtual -TConstantAlphaStream(); 
AlphaStream Type(); 

l 

class TConstantStrippedPixelStream 
private: 
public: 

public TStrippedPixelStream { 

TConstantStrippedPixelStream(TColor,Length); 
virtual -TConstantStrippedPixelStream(); 
StrippedPixelStream Type(); 

E&W-36 



Apple CONF!DEN77AL jaguar Expansion lnterf ace & Wilson HRS 

II A TMemoryPixelStream is a stream of pixels stored linearly in memory which contains 
II both alpha and intensity information. 
class TMemoryPixelStream : public TPixelStream { 

private: 
public: 

II A 
II 

TMemoryPixelStream<PixelStream, Address, :Length); 
virtual -TMemoryPixelStream(); 
PixelStream Type(); 

I 

class TMemoryRectaAlphaStream public TAlphaStream 
private: 
public: 

Width, 

TMemoryRectaAlphaStream(AlphaStream, Address, Length, Width, RowPixelsl; 
TMemoryRectaAlphaStream(Address, BitAddress, Length, 

Width, RowPixels, RowBits); 
II other constructors based on Albert Regions .... 
virtual - TMemoryRectaAlphaStream(); 
AlphaStream Type(); 

I 

class TMemoryRectaStrippedPixelStream 
private: 
public: 

public TStrippedPixelStream { 

TMemoryRectaStrippedPixelStream(StrippedPixelStream, 
Address, Length, Width, RowPixels); 

TMemoryRectaStrippedPixelStream<Address, BitAddress, Length, 
Width, RowPixels, RowBits); 

II other constructors based on Albert Regions .... 
virtual - TMemoryRectaStrippedPixelStream(); 
StrippedPixelStream Type(); 

) 

E&W-37 



jaguar H.xpansion Interface & Wilson HRS 

enum BlenderMode { kNormal 
kAlphaOverride 
l 

Apple CONFWL'N17AL 

II A TBlendedStream a full pixel stream which contains both alpha and pixel intensity 
II information. It is derived from TPixelStream. It is constructed from two 
II TPixelStreams. A blend operation is performed on the two input streams to 
II obtain the output stream. 
class TBlendedStream : public TPixelStream { 

private: 
public: 

TBlendedStream{BlenderMode, TPixelStrea·m a, TPixelStream b); 
TBlenderStream<TPixelStream); 
virtual void -TBlendedStream; 
PixelStream Type(); 
} 

II A TMungedStream is a full pixel stream which contains both alpha and pixel 
II intensity information. It is derived from TPixelStream. It is constructed from 
II two input streams. The first input stream can be either a TPixelStream or a 
II TStrippedPixelStream. The second input stream can be either a TPixelStream or a 
II TAlphaStream. The output stream is created using the Pixel value from the first 
II stream and the alpha value from the second stream. 
class TMungedStream : public TPixelStream { 

private: 
public: 

TPixelStream TMungedStream(TPixelStream al; 
TPixelStream TMungedStream<TPixelStream a, TPixelStream b); 
TPixelStream TMungedStream(TPixelStream a, TAlphaStream b); 
TPixelStream TMungedStream<TStrippedPixelStream a, TPixelStream bl; 
TPixelStream TMungedStream<TStrippedPixelStream a, TAlphaStream bl; 
virtual void -TMungedStream; 
PixelStream Type(); 
void SetClut(unsigned char); 

l 

II Need to integrate with Albert Clut Management Objects for loading CLUT ..... 

II TVideostream is used to input a live video pixel stream from a video input 
II device. Its complete definition is unknown at this time. 
class TVideoStream : public TPixelStream { . 

private: 
public: 

TVideoStream (); 
virtual -TVideoStream(); 
II unknown additions .... 
) 

II TDecompressionStream is used to source a pixel stream from a decompression. 
II device. 
class TDecompressionStream: public TStrippedPixelStream I 

private: 
public: 

TDecompressionStream(); 
virtual -TDecompressionStream(); 
II unknown additions ..... 

E&W-38 



Apple CONFIDEN71AL jap,uar Hxpanswn Interface & Wilson t:RS 

The Stream Destination object class hierarchy is shown below. The TStreamDestination Class 
is the base class for all TStreamDestinations. Thier are currently three derived classed envisioned for 
each of the three potential destinations. Stream Destinations do not include Stream Processing 
Resources. These are included in the TStream class hierarchy. 

TMemoryStreamDestination 

::····· 

I 

enum WriteMode ( kPixel 
kAlpha 
kStrippedPixel 
I 

II class for a stream destination which will go directly in to virtual memory. 
II the address is virtual. 
class TMemoryStreamDestination : public TStreamDestination ( 

private: 
public: 

TMemoryStreamDestination!TStream,ClipMode,WriteMode 
Address, Length); 

virtual -TMemoryStreamDestination(); 
) 

II class for a rectangular stream destination. 
II all addresses are virtual 
class TMemoryRectaStreamDestination : public TStreamDestination 

private: 
public: 

TMemoryRectaStreamDestination!TStream,ClipMode,WriteMode 
Address, Length, Width, RowPixels); 

E&W-39 



jaguar E.xpanston Interface & W'ilson t.'llS 

- I I other constructor methods bilsed on Al be rt Regions .... 
virtual -TMemoryStreamDestination(l; 
void AddRegion(Address, Length, Width, RowPixels); 
} 

II Object class for a video compression device 
class TCompressionStreamDestination : public TStreamDestination 

private: 
public: 

TCompressionStreamDestination(unknown ..... ) ; 
virtual -TCompressionStreamDestination(); 
II unknown addtions .... 
} 

.-lpple c,ONFllJI:N/7:1/, 

Objects of the Stream class and the Stream Destination class are connected to describe the 
data and the operation to be performed. The Stream Destination Object is used to construct a 
TSchedule object. The TSchedule object describes when the transfer should occur, what 
type of constraints apply to the transfer, what type of back off points can be utilized, what type of 
synchronizations is necessary, and what type of information should be sent back to the requester. 

The Tschedule object encapsulates all the information about a given transfer request. 

II abstract class which is base class for all schedule types. 
class !Schedule( 

private: 
public: 
TSchedule(TStream); 
virtual -!Schedule(); 
void 
void 
void 
void 

SetConstraints(TConstraintsl; 
setReplyFormat(TReplyJ; 
SetOegrade(TOegrade); 
Activate(); 

void Deactivate(); 
AllocationResultCode Allocate(); 
void Deallocate(); 

II more ..... 

//general constr, default=none 

II turns transfer on and off 

//Schedule Object with minimum constraints, a one time transfer. 
class TNormalSchedule : public TSchedule { 

private: 
public: 

TNormalSchedule<Priority, Tconstraints, Treply, !Degrade); 
virtual -TNormalSchedule(); 
void SetGlobal(BooleanJ; 
void SetPriority(Priority); 

//Schedule object for repetitive bursts 
class TRepetSchedule : public TScheaule 

private: 
public: 

TRepetSchedule(Priority, !constraints, Treply, TDegrade); 
virtual -TRepetSchedule(J; 
void SetFrequency(long cyclespersecJ; // ~requency for repetitive bursts 
void SetFrequency(float frequencyHzl; 
void SetGlobal(Boolean); 
void SetPriority(PriorityJ; 



Apple CONFIDEN77AL 

} 

//Schedule object for continuous transfers 
class TContinuousSchedule : public TSchedule{ 

private: 
public: 

)aP,uar !ixpansion Interface & Wilson !:HS 

TContinuousSchedule(Priority, Tconstraints, Treply, TDegrade); 
virtual -TContinuousSchedule(); 
void SetGlobal(Boolean); 
void SetPriority(Priority); 

// general object t;.,i;~j;®scribe the constraints Wilson Scheduler. 
I I an inherent 596:~#,#i;i.nt which is not listed 

~~ ~~:s ~;;.i~:§l~i.~i.~I ~·~ :~n:~stract base 

clas;r :;:tn;;r~tr@:~::::,:::.,.,':::,:·j: 
public: :: r:nttl\/ 

TConsti:iM'ii'~iff 
virtua.i/:@fi!faMMhaints (); 
void :~ij#.ax~hay (Chrono del) ; 

:~~~ [i!~~~~l~I~;:~ :~:~~::n~;ll; 
void :$Mfij~#i~yAbsoluteTime 
void @~#~M~$geFrom ( ... ) ; 
void 'i~fa%¥$:~gePerFrame ( .. 
I I othEiHUUn \} 

fi~if{: :;:::;:;:::::::;:;:;:;:::; 

// general ob~~i~t!i~~\ti~escribe 
II this may b~~~#@.i,, to an 

clas;r :::::; 1 .:Jlii.i ·. :·:·;:,: 
public· ········· ~i!jj :·::;::::·=·=· 

TR~ply ~:~:~·it:::·: ::·_:;_·! 

:~~~ua0:11i~iii~~~rade (TMessage mes>; 
voi.d := .: §,,~~~p;f PAR:~,.\!.Message mes> : 
#@lid: :$~1;:~P¥~1AUJ'il.':!'1essage mes); 
void SetReplyOK(TMessage mes); 
void SetReplyFrame(TMessage mes); 
II others .... 

//general object to describe degradation methods. 
II This may be changed to an abstract base class. 
class TDegrade{ 

private: 
public: 

!Degrade() ; 
virtual -TDegrade(); 

when done 
when failed 

//mes to send when resource ck 
II mes to send after each frame 

void DropFramesOk (Boolean); //its ok to drop frames 
II degradation methods ..... 

E&W-41 





Apple CONFIDEN77AL jaguar F.xpanstvn Interface & Wilson t:RS 

Section 4 

Wilson Low Level Software 

Valjd ChannelTypes Commands. and Parameter !;st formats 

ChannelType=RECT_SOURCE_CHANNEL 
Command=FULL SETUP 

short Width; 
byte BitWidth; 
short WidthCount; 
byte BitWidthCount; 
short Stride; 
byte BitStride; 
boolean Global; 
boolean Direction; 
boolean !Len; 
boolean !Pag; 
long Length; 
byte Priority; 
byte Stream; 
long Rate; 
long RateCount; 
InterruptVect •IntVect 
long DestAddress; 
byte StreamType; 

cache coherency enable 

interrupt on length =O 
interrupt on page crossing 

16.16 megabytes per second 

L..X \\-·I) 



jaguar Expansion Interface & Wilson ERS 

boolean Constant; 
double ConstantValue; 

Coammnd=SET PAGE 
long address; 

Cornmand=SET ADD 
long Address 
byte bitaddress 

Cornmand=SET WIDTH 
short Stride; 
byte BitStride; 
short Width; 
short BitWidth; 

Command=SET_LENGTH 
long length; 

Cornmand=START 
Command•STOP 
Cornmand=CLEAR_WIDTH_COUNT 
Command=FLOSH 
Command=READ ERROR 

boolean Err; 

ChannelType=RECT_DESTINATION_CHANNEL 
Cornmand=FULL SETUP 

short Width; 
short WidthCount; 
short Stride; 
boolean Direction; 
boolean ILen; 
boolean IPag; 
long Length; 
byte Priority 
byte Stream; 
boolean Global; 
InterruptVect *IntVect 
boolean StoreAlpha; 
boolean Storeintensity; 
boolean Clip 
byte StreamType; 
byte Convert; 

Cornmand=SET_PAGE 
long Address; 

Command=SET ADD 
long Address 

Command=SET WIDTH 
short Stride 

· short Width 
Cornmand=SET_LENGTH 

long length; 
Cornmand=START 
Command= STOP 
Command=CLEAR_WIDTH_COUNT 
Command=FLUSH 

ChannelType=PIXEL_MUNGER_CHANNEL 
Command=FULL SETUP 

long DestAddress; 
byte PixelPortStreamType 
byte AlphaPortStreamType 
byte OutputStreamType 
byte CLUTNumber 
boolean double; 

Command=SET CLOT 

starts channels transfer 
stops channels transfer 
sets current width to zero 

interrupt on length =O 
interrupt on page crossing 

Apple CONFIIJl:.Nl1AL 

//RGB to Y conversion & 32-64 & 16-32 conversion 

destination address 

starts channels transfer 
stops channels transfer 
sets current width to zero 



Apple CONFIDEN11AL 

byte CLUTNumber 
byte Index 
double Value 

Command2 SET FULL CLUT 
byte CLUTNumber 
long NumberOfEntries 

jaguar F-"CfJanston Interface & Wilson ERS 

double Entries[O .•. NumberOfEntries] 
Command=FLUSH 

ChannelType•BLENDER_CHANNEL 
Command•FULL SETO~ 

long OestAddti~s; 

Co·~~;de 
Ch~;:~~~-:~ER_POSITION 

long Qjf:f:intV:t~eoLine 

Ch~nelTyp~S~HANN&L 
Command•FQ!;lf:S$.Tm" 

void *'S\ialifi&iress 

Comm~~~4\lllt.\lluENCE 
v~id *:8.ufl:et:~1!ldress 
void *:aiiiifliiidAddress 

;~~ ~r••• 
command- I,N,:i.~l:t'd(ti:l't 

:::=iilli!iii~·=~ii,lllaif.Mt~ 
void *BufferUsedAddress 

Command2 INSERT_INTERRUPT 
void *BufferAddress 
void *BufferEndAddress 
void *BufferUsedAddress 
InterruptVect *IntVect 

Command=INSERT_JUMP 
void *BufferAddress 
void *BufferEndAddress 
void *BufferUsedAddress 
void* Address 

Command•SAVE_STATUS 
void *BufferAddress 
void *BufferEndAddress 
void *Buf ferUsedAddress 
void* Address 

Command=START 
Command•STOP 
Command-STATUS 

void *BufferAddress 
Boolean Waiting 
Boolean Active 

inserts 

return value of what was the last address used+l 
inserts an interrupt generation into the command lis 
address where command will be placed _ 
last address which can be used for the command 
return value of what was the last address used+l 

inserts an absolute physical jump into command list 
address where command will be placed 
last address which can be used for the command 
return value of what was the last address used+l 
physical address of jump 

address where command will be placed 
last address which can be used for the command 
return value of what was the last address used+l 
physical address of status 
star~s a channel's execution 
stops a channel's execution 

II instruction pointer 

t~\V-'I) 



jaguar Expansion Interface & Wilson ERS Apple CONF/lJHNl7AL 



Apple CONFIDENTIAL jaguar Expanston Interface (J Wilson l:'RS 

Video 
Backend 

Section 5 

Wilson Hardware Implementation 

• XJS 
Address 
Bus 

.;::::;:;:::· 

::::i!~eco~ 
::: 1:er,~~:~1~n,,,, 

Exp. 
Data 

(E& W) Bus ·1:11:1:1:11:1·1iil!::.11··1.:1111111:11 

L-..!::==t Memory Expansion 
Controller Controller 

(BLT) 

System Diagram Showing Location of Expansion Interface & 
Wilson 

The E&WC performs transfers between the BLT and the motherboard's local memory. The 
E&WC panicipates in the XJS cache coherency protocols on the XJS Address Bus. The data bus 
between the memory crossbar and E&WC, however, is a super set of a standard XJS data bus. The 
normal XJS address/data bus only supports 8 word, double word, single word, half word, and byte 
transfers. The modified data bus (the WData Bus) includes byte enables for more versatile transfers. 

Slot 

Slot 

Slot 



jaguar Expansion Interface & Wilson ERS ilpple CONFl/Jl:Nlli\L 

Hardware Operation Summary 

The XJS and Mazda may perform read and write operations to the E&WC and to the 
Expansion Crossbar (BLT). The E&WC decodes these addresses directly from the address bus. For a 
read operation the address is acknowledged and latched by E&WC. The source of the request is 
recorded by the Memory Controller. The E&WC performs the read operation via BLT or internally and 
returns the data to the Memory Crossbar. The Memory Crossbar delivers the data to the appropriate 
destination (the source of the request). For a write operation the address is latched by E&WC. The 
Memory Crossbar delivers the data to the E&WC. The E&WC then performs the write via BLT or 
internally. 

The Expansion Crossbar may perform read & write operations to the system memory. If the 
E&WC receiv~s a read operation from BLT it places the read request on the XJS Address Bus. The 
Memory Crossbar delivers the proper data on the WData Bus. The E&WC delivers the data to the 
destination via BLT. If the E&WC receives a write operation from BLT it places the write request on 
the XJS Address Bus and passes the data to the Memory Crossbar via the WData Bus. The Memory 
Crossbar delivers the data to the proper destination. 

Inside of the E&WC is the logic for performing Wilson Transfers. The E&WC may perform 
read and write operation via BLT or the Memory Crossbar to accomplish Wilson Transfers. Reads 
may be performed from the Memory Crossbar and the data written to a destination via BLT (transfer 
to an external frame buffer). Reads may be performed from the Memory Crossbar and the data 
written back to the Memory Crossbar (bit-blit). Wilson can also receive writes from BLT which it 
translates before passing them to the Memory Crossbar (a live video window for example). 

Hardware Interface 

Pinout 

WDBus Exp. Data Bus J_ -s-4.- o4' 
XJS ABus Exp.Ctl J_ 

:32' 17 , ,. XJS ABus Ctl 

14c WDBusCtl 
_L Arbitration Expansion 

10 
_L Interrupts Interface & -p 

Clock Wilson 
Reset 

_L JTAG s• 



Apple CONFIDENTIAL jaguar Expanston Interface D Wilson /:RS 

Expansion Interface & Wilson Pinout 

Groyp 
~SABus 
~SABmCtl 

FullNure 
~Bm 
Transfer Siz 
Transfer Burst 
Read/Write 
Lock,,.,.,:;::: 
TrauSli Start 

.·=====:::::::tlHE:Acknowledge 
:::::::::::tft::::1:_:1·1~1•1~ify 

::01 -=~ .t 
:.:,::Ttiifa.Fnor Adcnow~·:::·:··' .. 

-~I 
Arbitration 

Abbrev. Name #of pins Directions 
32 bidirectional 
2 bidirectional 
1 bidirectional 
1 bidirectional 
1 bidirectional 
1 bidhiaihal 
1 ind:i:i::jj:::'::·::::::' 
1 9ll'l:I:::::::= 
1 .imlllKifl 

L1iBt 
lhW • 

... ::·.:'.:.·.::,:_::~::.::::80..f" ... 
0111::::::r:: 

. . . . . . . . . . .. . . . . WUson SlaVC Wrlte Ready slVWWR• t output 

Wllson Slave Read Ready SlvWRlr 1 output 
WUsonSJaveAddress Ready SlvWAR* 1 output 

MJsceUaneom Interrupt0-1 WINT0-1 * 2 output 
Qock WOK 1 input 
Reset RESET 1 input 
JTAG4-0 JTAG4-0 5 bidirectional 

Exp. Data Bus Exp. Data Bus IOD31-0 32 bidirectional 
Exp. Data/ Addre$ Bus IOD63-32 32 bidirectional 

Exp. Ctl Twist TW1'2-0 oz output 
Size SIZ2-0 3 bidirectional 

1Transfer Retry is not needed between E&W and the Memory System when the E&W is acting as a master. The 
Memory system will never indicate a retry to the E&W. 

2 If the #of Pins=O the pins exist on the BLT interface but are not connected to the E&W. 



jaguar F,xpansion Interface & Wilson ERS 

Lock 
Data Output Enables 
Acknowledge 
Node 
Priority Select 
Priority/Stream 
Packet Type 
Header Valid 
Header Output Enable 
Done 
Skip 
Complete 
Packet Here 
Send Buffer Available 
Abort 
StreamFull 
Fmr 
Error Output 
Oock 
Interrupt Request 
SysOock 
Reset 
Delayed Error 
LowPower 

TOTAL 

Power/Gnd 

GRAND TOTAL 

Pin Descriptions 

XJSABus 

See the XJS Specification for details 

XJSABmCtl 

See the XJS Specification for details 

'WDBus 

Apple CONF/f)EN17AL 

Ir 1 bidirectional 
DOEl-O• 2 output 
ACK' 1 output 
NODE3-0 (4)1 bidirectional 
PSEL (1) bidirectional 
PRST2-0 (3) bidirectional 
17l'YPE3·0 (4) bidirectional 
HVAL• 1 bidirectional 
HOE• 1 output 
DON* 1 output 
SK- 1 output 
COM• 0 input 
PHER• 1 input 
SBA• 1 input 
AB• 0 input 
STP 1 input 
ERR' 1 input 
ERRO* 1 output 
OK 0 
IRQ* 0 
SOK 0 
RESE'r 0 
DERR• 1 input 
LPOW 0 

220 

64 

284 

WD63-0 ·• The data lines are used to transfer data to and from the Memory Crossbar. 

1 The numbers in parenthesis are not actual pins on the E&W chip. These pins are multiplexed with the VO 
Data Bus pins on the E&W. 

t:..XW·)U 



Apple CONFIDEN71AL }aMuar H:xpanswn Interface & Wil5on t:RS 

. WDBusCtl 

Transfer Acknowledge -- See the XJS Specification for details 

Transfer Error Acknowledge -- See the XJS Specification for details 

Transfer Retry -- See the XJS Specification for details 

Byte Enables - When data is transferred from the E&WC to the Memory Crossbar these lines 
indi~.~/which bytes are valid. These lin~.,.:3.r:e.,.,valid for all writes from the g~wc to 

Data Bus Busy - See the XJS Specification for details 

Data Bus Grant - See the XJS Specification for details 

Slave Select -- Asserted by the Memory Controller to indicate to the E&WC that data is valid 
for a write or that data is desired for a read. Slave Select is not asserted unless one or 
both the Slave Ready lines are asserted. If both Slave Read Ready and Slave Write 
Ready are asserted the read transaction will be performed first. 

Wilson Slave Write Ready -- Asserted by the E&WC to indicate that it can accept a write 
transaction. The Memory Controller will not attempt to send data for a write 
operation to the E&WC if this line is not asserted. 

Wilson Slave Read Ready - Asserted by the E&WC to indicate that read data is available for a 
reply. The Memory Controller should assert Slave Select to obtain the data. 

t:u:W-)l 



jaguar Expansion Interface & Wilson ERS Apple CONFIDEN77AL 

Wilson Slave Address Ready .• Asserted by the E&WC to indicate that it has an address buffer 
available for a slave transaction. The Memory Controller will not driver AACK* if the 
transaction is destined for the E&WC and this line is not asserted. 

Miscellaneous 

lnterrupt0-1 - Outputs. Driven low to interrupt one or the other XJS CPU's. These lines are 
connected to the Mazda 1/0 Chip. 

Clock - Input. Maximum 50 MHz clock input. Connected to internal phase lock loop for 
clock skew minimization. 

Reset - Input. Driven low at power up and during sleep mode. Does not clear any state 
registers. Places part into lowest power consumption mode possible. 

JTAG4-0 - Bidirectional. Defined by ASIC vendor. 

Exp. Data Bus 

See the BLT ERS for details. 

Exp. Ctl 

See the BLT ERS for details. Note that the Node3-0, Priority/Stream2-0, Priority Select, and 
Packet Type3-0 are multiplexed with the Exp. Data Bus11-0. 

t&W-)t 



Apple CONFIDEN11AL }aRuar l!xpanston interface & WiLmrz i:RS 

Implementation Description 

An overall internal block diagram of the E&WC is shown below. The thick lines represent data 
paths (nominally 64 bits). The thin lines represent address paths. 

·Register 
File 

.·:·:=:=:t~lr .. ::;f mttmr~ 

R\~ 1----------~iiimiiiiiiiiiilW.. ..... --M .. ----1 .. -----++-/•:'{:M? lt'4N·'''!i:::::ii:::::::!i:''''''11••:::M""''"'. ...... ~~rtl 
r ii ..... !llllml_ 

,}i:i:i=.::: .. -~·· 

w 11 s~l:::::::::::~:l~f rn a 1 

The XJS Bus Interface Block connects to the XJS Address Bus and the WData Bus. It 
performs both master and slave read and write operations of up to 8 words. The BLT Interface 
connects the E&WC to the Expansion Crossbar (BLT). It performs master reads and writes of up to 8 
words and slave reads and writes of up 16 words. The BLT Interface Block and the XJS Bus Interface 
Block communicate to perform standard transactions between the two environments. 

The Wilson Block contains the DMA logic for moving graphic regions. It is basically a 
complex DMA engine designed to support BLT. The Wilson Block consists of two fundamental 
halves: 1) the source half (RectRegion Source Resource), and 2) the destination half (RectRegion 
Destination Resource). The RectRegion Source Resource can read memory (via the XJS interface or 
the BLT Interface) and can write the data to either the RectRegion Destination Resource, the XJS Bus 
Interface, or the BLT Interface. The RectRegion Destination Resource is written to by the 

. RectRegion Source Resource, the XJS Bus Interface, or the BLT Interface. It may transform the data 
(change it from 24 bits per pixel to 8 bits per pixel for example) but will write the data to either the 
XJS Bus Interface or the BLT Interface. The Register File Block may be written to and or read by the 
XJS Bus Interface. It provides access to all registers contained in the E&WC. The Wilson Block may 

L..:X W-)) 



jaguar Expansion Interface & Wilson ERS Apple CONFIDl:'N71Al 

also read or write the Register File. The BLT Interface Block can access the internal registers via the 
XJS Interface Block (through and back loop). 

The Register File Block provides read and write access to internal registers on the E&WC. 
The registers are not necessarily located in the Register File Block. The Register File Block, however, 
provides read and write access to the registers. 

Implementation Details 

BLT Interface 

BLT Slave Read - Slave read operations are requested by BLT. The BLT signals a packet has 
arrived. The BLT Interface decodes the packet as a Read Packet. The address, size, priority, and 
source are latched from BLT. The BLT Read Packet is acknowledged. The address, priority, and size 
are placed on the internal BLT Address Bus. A read request is signaled to the XJS Bus Interl'ace. The 
XJS Bus Interface acknowledges the address and read request. The BLT Interface. waits for the data 
to be returned by the XJS Bus Interface. The XJS Bus Interface places the data on the data 
connection between the two Interfaces. The XJS Bus interface signals that the data is a read reply. 
The BLT Interface stores the incoming data into an 8 double word entry buffer. The BLT Interface 
sends a header to the BLT Interface and signals the start of a read reply packet. The BLT Interface 
sends the data into BLT. The BLT Interface tells BLT to send the reply packet. The read operation is 
complete. 

Two read request can be serviced at one time. The XJS Interface is responsible for obtaining 
the requested data and returning it to ~e BLT Interface Block. Note that the size may be up to 64 
bytes and that it must be tightly packed. The data may or may not be received in a single burst. 
Multiple bursts may be needed or used by the XJS Interface. The XJS Bus Interface must guarantee 
order. 

BLT Master Read -- Master read operations are requested by the XJS Bus Interface or the 
Wilson Block. Read requests can be received from two different sources. If two requests are 
received simultaneously the BLT Interface Block only acknowledges one of them. The address is 
decoded and acknowledged only if it is located on BLT. The BLT Interface Block latches the 
address, priority, size, and source of the read request. It acknowledges the address to the requester. 
The BLT Interface Block arbitrates for the BLT Bus and sends the read request packet (address, 
priority, destination node, size). It then waits for BLT to return the data. When the data is returned 
the BLT Interface clocks the data from the source and returns it to the requester via its output data 
bus. The data is returned compressed into 64 bit words. 

The BLT interface can have two outstanding read operations. It identifies the reply using 
the Node and Priority bits. Only reads of up to 4 words double words are serviced. 

BLT Slave Write - Slave write operations are requested by BLT. They may be executed to 
either the Wilson Block or the XJS Bus Interface. If the Write is not a stream write the address and 
data for the write are acknowledged. If the write is a stream write the destination is checked to see 

t& \'v-)11 



Apple CONFIDEN17Al }tlguar J!xpansion interface & Wilson /:'NS 

if it can receive a packet. If it can the address and data are acknowledged. If it cannot the write 
packet is "Skipped". Once data is acknowledged it is either forwarded to the destination or 
buffered in a local buffer. When the buffer is full further BLT writes will not be acknowledged until 
the buffer empties. The address of the write is placed on the BLT Interfaces outgoing (internal) 
address bus. Data is placed on the data bus. See the BLT section on stream support for further 
details. 

BLT Master Write - Master write operations are requested by the XJS Bus Interface or the 
Wilson Block. Requests are received on the address lines. The address is decoded by the BLT 
Interface Block. The ~4.l.%Interface acknowledges the addr~~§:df its buffer is empty. It i~i~ly 

=:.:~~:~t~-:~;:~1-
XJS Bus 

XJS Master Read - Master read operations may be requested by the Wilson Block or the BLT 
Interface. The XJS Bus Interface Block latches the address, priority, size, and source of the read 
request if the address is in the Local Memory address space. Up to 3 requests can be queued and/or 
launched onto the XJS address bus. The XJS Bus Interface Block arbitrates for the external XJS 
Address Bus. The addresses (requests) are launched on the XJS address bus. The addresses may be 
discarded after they have been sent on the XJS address bus. The Memory Crossbar eventually fetches 
the data and requests the Local Data Bus for a read reply. The data is transferred through the XJS Bus 
Interface Block and into the original requester's buffer. The XJS Bus Interface Block discards any 
unneeded data (possible obtained due to wrapped reads) and forwards any remaining data to the 
requester who is waiting. The data might be twisted by the XJS Bus Interface Block to place it onto 
the low order byte lanes. If the read size requested still has not been fulfilled the XJS Bus Interface 
Block increments the address properly and launches another read onto the address bus (it may have 
already actually done this). The XJS Bus Interface Block is responsible for making multiple XJS Bus 
transactions appear as single transactions to the requesters. If a misaligned block read operation is 
performed the XJS Bus Interface Block will perform the necessary transactions on the XJS· bus and 
compress the data into 64 bit words. Misaligned requests are supported. Data returned from the 

t...X W-)) 



jaguar Expansion Interface & Wilson HRS Apple CONF!lJEN71Al 

memory crossbar is guaranteed to maintain order. Data returned by the XJS Bus Interface Block is 
also guaranteed to maintain order. 

XJS Slave Write -- Slave write operations may be requested by devices located on the XJS 
Address Bus. The XJS Bus Interface decodes all address on the XJS Address Bus. When the address is 
in the BLT or Wilson Address Space and the XJS Bus Interface has room in its address buffers it 
latches the address. Up to 3 addresses for write operations may be buffered before the XJS address 
bus is blocked. Eventually the data for the write operations is delivered to the E&WC by the Memory 
Crossbar. The data is labeled as write data and is guaranteed to maintain order. The XJS Bus 
Interface buffers the data and attempts to send it sequentially to the destination. The address and 
data are placed on the internal address and data busses from the XJS Bus Interface. The address and 
data are acknowledged by the destination (Wilson, Register File, or BLT Interface). 

XJS Master Write - Master write operations may be requested by the Wilson Block or the 
BLT Interface. Write transactions can be received on two address and data busses. If two 
transactions are received simultaneously only one is acknowledged. The XJS Bus Interface attempts 
to stream the transactions out to the E&WC Data Bus without buffering but provides buffering in 
case the E&WC Data Bus is busy. Once the first word of a packet is acknowledged all the remaining 
words will be accepted at full speed. The XJS Bus Interface arbitrates for the external XJS Address 
Bus. The write transaction is launched on the XJS Address Bus and is acknowledged by the Memory 
Controller. The XJS Bus Interface then sends the data to the Memory Crossbar. The Memory Crossbar 
delivers the data to the proper destination based on the address. 

Register File 

The state registers on the E&WC can be read and written by both the Wilson Block and the 
XJS Bus Interface Block. The Register File Block provides access to all the internal registers which are 
visible. If two transactions are simultaneously requested only one is acknowledged. These registers 
are not generally cleared with a Reset (some of the one's indicating activity are). 

Wilson 

An internal diagram of the Wilson Block is shown in the figure below. It consists of five sub­
blocks. The sequencer performs sequencing operations of the other channels. This is used for 
performing scatter/gather operations in the virtual memory environment and for setting up and 
controlling execution queues. The RectRegion Source Resource reads memory and creates streams. 
The Pixel Munger accepts two streams and performs multiplexing and selecting operations to create a 
single output stream. The Blender accepts two streams and performs an alpha based blend operation 
to create a single output stream. The RectRegion Destination Resource translates a stream into 
memory writes and performs alpha based clip operations. The Blender and the Pixel Munger are 
Stream Processing Resources. 

t:o.:W-)U 



Apple CONFJDEN77AL 

Sequencer 

RectRegion 
Source 
Resource 

Pixel Munger 

Blender 

.i.:~iiiidffugion 
Destination 
Resource 

c 

c 

}clJ.!.ttar b .. parzsum Jnter/tlW c7 \ViLmrz /:'NS 

Read 
Replies 
& 
Writes 

Read 
Request 

Internal Diagram of Wilson Block 

RectRegion Source Resource (RRSR) 

The motherboard's RectRegion Source Resource (RSR) is the DMA read engine of the E&WC. 
It contains 8 channels capable of reading rectangular region structures from memory. Each channel 
operates independently. Data is read from memory and passed on to the Pixel Munger, Blender, 
RectRegion Destination Resource, or to an external destination. Writes which are received from 

;',IX \\ - ) 1 



jaguar Expansion lnterf ace & Wilson HRS :lpple UJNF/Of:'N71AL 

either the XJS Bus Interface or the BLT Interface are also routed through the RectRegion Source 
Resource. The write's destinations can be either the Pixel Munger, the Blender, or the RectRegion 
Destination Resource. The RectRegion Source Resource contains the following state information for 
each channel: 

Register Name Birs Descri11tive Narre Location 
SAP 20 Source Address Page Reg0[31:12] 
SA 12 Soun:e Address Regl[ll:O] 
SBA 3 SoW'Ce Bit Address Reg2[2:0] 
WID 16 Width Reg3[15:0] 
BWID 3 Bit Width Reg4[2:0] 
STR 16 Stride Reg3[31: 16] 
BSTR 3 Bit Stride Reg4[5:3] 
WIDC 16 Width Count Reg5[15:0] 
BWIDC 3 Bit Width Count Reg6[2:0] 
RAT 16 Rate Reg7[31:16] 
RATC 16 Rate Count Reg7[15:0] 
LEN 24 Length Reg8[23:0] 
DA 32 Destination address Reg9[3l:OJ 
CONY 32 Constant Value Reg10[31:0] 
D 1 Dlrection Regll[O] 
IL 1 Interrupt on length Regll[l] 
IP 1 Interrupt on Page Boundary Reg11[2] 
p 3 Priority Reg11[5:3] 
s 1 Priority/Stream Reg11[6] 
G 1 Global Reg11[7) 
PS 3 Pixe1Sl7.e Regl 1[10:8] 
c 1 Constant Regll[l l] 
IV 8 Interrupt Vector Regl 1(31 :24] 
A 1 Active Reg12[31] 
E 1 Error Reg13[31) 

J.:...X w-)O 



Apple CONF/DEN71AL 

31 24 23 16 15 

en. 

jaguar Expansion lnteiface & Wil.5on t:RS 

0 

:~:~:;:~:~rr 
~~~~?:::\~~~ 
.·.:::.:·:····

::::=:::='::::::·,

ttt:t:tt=::tt :·:·:·:·: ·:::r :·:·::·::·:·: ·············· .. ··,,:,:;:\:}:;))(fj('" """"

tia:_:0::c:~l::~~h•:":~R:g~~:JJ be

changed by the Channel itself. None of the registers should be changed if the Active bit is one.

The SoW'Ce Address Page is the physical page number which will be used for the source data.
The Source Address is the byte address within the page which will be used for the source data. The
RectRegion Source Resource Channel will read data from the address indicated by the Source Address
Page and the SoW'Ce Address. The Source Address is incremented for every byte read. If it rolls over
to zero the SoW'Ce Address Page is incremented. If the Interrupt on Page Boundary bit is set the
channel will generate an interrupt (and stop data movement) when the Source Address Page is
incremented. The Source Bit Address is used in conjunction with Source Address and Source Page
Address when the pixel size is one bit (generally one bit mask data) to obtain a full bit address.

The Width and the Width Count are control the width of the rectangular region being moved.
For every byte read the Width Count is decremented. When the Width Count reaches zero the sign
extended Stride is added to the Source Address and Source Address Page. The Width Count is also
reloaded from the Width register at this time. Future data will be read from the new address. The
Bit Stride, Bit Width, and Bit Width Count are used when the pixel size is one bit.

jaguar b:pansion Interface & Wilson ERS Apple CONFIDEN71AL

The Width Count Register must be loaded at the beginning of the transfer. The Width Count
is not automatically loaded at the beginning of a transfer. It is only reloaded when it reaches zero.
This allows a virtual page to be changed without affecting the region transfer.

The Rate and Rate Count are used to control the rate of the transfer. The Rate Count is
decremented at a fixed rate of 1 MHz. A packet is read whenever the Rate Count reaches zero. At
the same time the Rate value is transferred into the Rate Count. If the Rate is set to zero the channel
will operate at maximum speed.

The Length register is decremented for each byte read from memory. When the Length
register reaches zero the channel stops execution. If the Interrupt on Length bit is set the channel will
generate an interrupt when the Length reaches zero.

The Destination Address is the location where all data is written. It is never incremented or
changed by the channel.

The Constant Value register contains a 32 bit constant. A stream of a constant value can be
source by the channel if the Constant bit equals one. The value of the stream is taken from the
Constant Value register.

The Interrupt Vector is used to generate an interrupt when the channel stops execution. This
can either occur because the Length register reached zero or because a page boundary was crossed.
See the interrupt section for details.

The Direction bit controls whether the Source Address, Source Page Address, and Source Bit
Address are incremented or decremented. If the bit is set (Forward) the address is incremented for
each byte transferred. If the bit is clear (reverse) the address is decremented for each byte
transferred. When reverse is set byte lanes are swapped as necessary to create a completely
backwards pixel stream.

The Pixel Size bits controls the size of the pixels being read from memory. The following
sizes are supported: O) 1 bit, 1) 1 byte, 2) 2 bytes, 3) 3 bytes, 4) 4 bytes. If the Pixel Size=O the
Source Bit Address, Bit Width, Bit Width Count, and Bit Stride are used to obtain full bit addresses
for the region. The data is read in a bit fashion and expanded on output to a full byte. This provides
one bit masks for clipping. Bit replication is used to expand from one bit to 8 bits.

The Constant bit allows a constant to be substituted for the output stream. If Constant=!
the 32 bit value in the Constant Value register is used. This value is repeatedly sent to the destination
until the Length reaches zero.

The Priority and Global bits are used when performing read and write operations. If
Global=l all reads and writes are marked as global. All transactions are executed at the priority
indicated in the Priority register.

The Priority/Stream bit controls the operation of data sent via BLT. The data can be labeled
with a particular stream number if the stream·bit is set.

The Active bit controls the whether the channel operates or not. If Active= I the channel will
fetch data from memory. Active is set to zero when an interrupt is generated.

t.& \V-oU

Apple CONF!DEN71AL jaguar Expanswn Interface & WiLmn /:RS

The Error bit is set when an read error occurs. The channel immediately stops execution and
generates an Error Interrupt. See the error section for details. The Error bit must be cleared by a write
to the register.

RectRegion Destination Resource (RRDR)

1'.6'\V-0!

jaguar Expansion Interj ace & Wilson BRS

C1l
Register

24 23

Apple CONFIDEN'/1AL

16 15 0

RectRegion Destination Resource Channel Registers

The state parameters function the same as for the RectRegion Source Resource. Some
additional parameters have been added. The Store Alpha bit controls whether alpha information is
written into the destination memory. If Store Alpha=l alpha data is written. If Store Alpha=O alpha
information is eliminated from the data stream. Store Intensity functions in the same manner as
Store Alpha except it affect the intensity data. Clip affects the alpha clip function of the
Destination Resource. If Cllp•l pixels which have an alpha=O will not be written to memory. Pixel
Type informs the RectRegion Destination Resource of the type of pixels which are being received
(16_GRAY, 32_RGB, 32_GRAY, or 64_RGB). Convert controls the conversion between RGB and
intensity. If the Convert=! pixel data will be converted to the opposite format (RGB to Y or Y to
RGB) before being written. When convening from Y to RGB the intensity is replicated for all three
components. When converting from RGB to Y the equation Y•9/32*R + 19/32*G + 4/32*B is used.

Pixel Munger

The pixel munger is a Stream Processing Resource located on the motherboard of Jagl in the
E&WC. The pixel munger accepts one or two input data streams and generates a single output data
stream. The Pixel Munger consists primarily of multiplexers. The two streams can be of any of the
following forms:

k16 GRAY

Apple CONFIDEN71AL

kl6 PSEUDO
k32-RGB
kB ALPHA
kB-GRAY NO ALPHA
kB-PSEUDO NO ALPHA
k24 RGB NO ALPHA

jaguar F.xpanswn interface & WiLmn t.'NS

The #l input stream must contain intensity data. The #2 input stream must contain alpha
data. The output is alw.1:y§ either kl 6_ GRAY or k32 _RGB. The pixel value is extracted from the
first source stream ~A~t:l§mbined with the alpha from the .$$14.d source stream to create d.:m:WM!~put

region size doubling.

Blender

Bits
32
3
3
1
1

The Blender is a stream processing resource. The Blender accepts one or two input data
streams and generates a single output data stream. The two streams must both be either
kl 6_GRAYor k32_RGB. The Blender can perform three operations: 1) blend two streams, 2)
blend two streams with alpha override, 3) premultiply a stream.

Register Name Bits
DA 32
AO 1
PREM 1

Descriptive Na~
Destination Address
Alpha Override
Premultiply

Location
Reg0[31:0]
Regl[O]
Regl[I]

jaguar Expansion Interface & Wilson ERS 1lpple CONFWEN1711L

The Destination Address is the location where the data will be wrinen. The second streams
pixel values are multiplied by 1-alpha of the first stream and added to the pixel values of the first
stream. The second streams alpha is treated like the other pixel information unless the Alpha
OVerride=l. When Alpha OVerride=l and the second streams alpha value=O it forces the output
alpha value to 0. This is used for maintaining Clip Alpha when compositing.

When Premultiply=l the second input stream is ignored. It is not needed. Each of the pixel
values is multiplied by the stream's alpha value.

A problem exists when trying to represent an alpha value in only 8 bits (1 is represented by 255
and 0 is represented by O) and one desires to perform only 8 bit multiplies and adds. The basic
problem is that if you multiply 255'255 and truncate or round you obtain 254. 254 is not an
acceptable answer because you have reduced the range which may be obtained. The solution is to
special case alpha slightly and increase its range to 0 to 256. In increasing the range of alpha a "hole"
must be placed in the alpha range. The Blender will place this hole at alpha•255. When alpha=255 it
will be incremented to 256 before the multiply is performed.

Sequencer Block

The Sequencer is a simple block which executes instructions from main memory. The
Sequencer Block can perform only one basic operation: data movement. It can move a 32 bit word
of data from one address location to another. The sequencer block has several channels. Each
channel's state is shown below:

R~gister Name Bits Descrintive Name Location
IP 32 (28) Instruction Pointer Reg0[31:0)
p 3 Priority Reg1[2:0)
ACT 1 Active Reg2[0)
WAIT 1 Waiting Reg2[1J
ERR 1 F.rror Reg300]

The Instruction Pointer points to the address where the channel will fetch instructions. There
is only one functional Sequencer Block which is multiplexed between the sequencer channels. All
instructions are 64 bits and must be double word aligned. The Active bit controls the channels
operation. If Active•O the channel does not operate. Waiting is an indicator/state bit. When
Waiting=l the channel is waiting for an interrupt before proceeding. It will not execute the next
instruction until an interrupt is received. The Waiting bit is set when a wait instruction is executed.
The Waiting bit is cleared when an interrupt is received.

63 34 33-32 31 0

Destination Address TP Source Address or Data

Instruction Format

Apple CONFIDENTIAL }ll)!,Uar l!:xjJtmswn Interface & Wi~rnn /:RS

63 36 35-34 33-32 31 0

I Undefined I E I 00 f Source Address or Data I
Extended Instruction Format

The first wordd)f the instruction contains a desti®:tiO.n address. The lower 2 bi&;•ofoihe

Arb I.tr at 1·q;irn;;';';'••••:::::•:>:::::: ... ·.·.·.···•·:,;;;: •;;;;;:::::r . ..::::':: ·· ·· · ··;:.:;•.:;•.:;:.•;·.•;•.•;·.'.' .•.;•;•;• .•. •.,•;•·,•;•·;';•;•.;•;•.;•;·:····;··.;•;•·········•=

:::~ . :•; tt t'• rn:::::••••'•••••rtt'
:::::~;~:1~i~~~::~~~j~~~r~:i:~:~:~=~:~:~: r~~f i~1!@~rmrnrr:~:~ ;:::::====:::=:=:=: ::::::;: :;::::=:=::;:

~~~;,·~~;;~~~"~)~:r~e ~i:•r) :f~~;:p~~~~~i,j,;: 
When performing transfers at priority 1 the E&WC could block the CPU for an extended period of 
time. This is guaranteed not to occur by the E&WC due to rate control (all Wilson Sources have rate 
control). The Memory Controller is responsible for arbitration of the XJS Address Bus and the 
memory modules. 

The priority of each Source Resource Channel in the E&WC is programmable. The Channel 
operates at the programmed priority when performing reads from main memory. The Channel may 
choose to operate at a lower priority until it falls behind its transfer rate goals. 

Video BackEnd 

The Video Backend (Elmer) is also the video timing generator. It contains 8 interrupts which 
can be programmed to occur at the beginning of any video line. The interrupt line is connected to the 
1/0 Chip (Mazda). The I/O chip contains information as to how the interrupts are vectored. These 

t~..x \V-tn 



jaguar F,xpansion lnterf ace & Wilson ERS Apple cqNFWL:'N71AL 

interrupts are crucial to obtaining tear free updates. Their use is detailed in the High Level Software 
section. 

The Video Backend (Elmer) provides a register which can be read by the CPU to determine 
the current vertical position (Y coordinate) of the monitors raster beam. This register is used in 
conjunction with the programmable interrupts for tear free updates. 

Error Handling 

The E&WC implementation of Wilson includes several Channels which can transfer data. 
These channels may encounter an error when either reading data or writing data. They may also 
encounter Retry indications. Retries are handled automatically by the Bus Interfaces. Errors must be 
handled differently. 

If an E&WC Channel encounters a read error it will stop the channel and interrupt the CPU. 
The Channel which encountered the error will have its error indicator set. An E&WC Channel will never 
receive a error on a write (main memory will not generate an error & BLT indicates its errors directly to 
Mazda). Main memory also guarantees that it will not alias any addresses 

Here is a summary of the potential errors and the action taken: 

• XJS performs a write to a device on BLT which doesn't exist. BLT generates an Error* signal 
to Mazda. Mazda interrupts an XJS. 

• XJS performs a write to a device on BLT which generates an error. BLT returns a Delayed 
Error* signal to Mazda. Mazda interrupts an XJS. 

• XJS performs a read to a device on BLT which doesn't exist BLT returns a Read Error 
Packet. E&WC returns a SlvTERR' to the Memory Controller. Memory Controller 
returns a TERR• to the requesting CPU. 

• XJS performs a read to a device on BLT which generates an error. Same as above. 

• BLT performs a write to an invalid address. This cannot occur. No addresses in the 
Motherboard's address space will generate an error for a write operation. 

• BLT performs a read to an invalid address. E&WC passes the read transaction to the 
Memory Controller. The Memory Controller returns a TERR• to the E&WC. The 
E&WC returns a Read Error packet to BLT. 

• E&WC performs a write to an invalid local memory address. This cannot occur. 

• E&WC performs a write to BLT which generates an error. Mazda receives a Delayed Error* 
signal from BLT. 

i:..x w-oo 



Apple CONFIDEN17AL }a,quar H.xpanston inter/ace & Wilson hRS 

• E&WC performs a read from main memory which generates a parity error. Memory 
Controller returns a SlvTERR'to the E&WC. The E&WC halts the channel and 
interrupts an XJS. 

• E&WC performs a read from BLT which generates an error. BLT returns a Read Error 
Packet. E&WC halts the channel and interrupts a CPU . 

... :.:· 

Power Con:s:iHn pti on i:J::·::::i:::::j::·i,,::!!:i! 

'41:::~::ti: :~;•F ~d 

Gate co a[niifl~l1111t 1i~if1l =~.::.,~.:::.=:.==.,:.,'.=:.=1.,:=:.·,1.=,l.'::.::.,·.i,·.~,,.·,1.::,.=: .. :·.·,1.::.,1.,:.,;.,:.,:.,:.,f.,·.,1.,:.,i.,:.,i,:.:.~,:,:.:.:,:·.=! 
):IJlllJl:}~Stimated at 60000 used gatcl;:::i:::::::::::::::::iii!i!!i:::: 

m::::::::::::J:::::::::::::::::::::,,::::::::,::::::::::::::::::,::::=:::::::::::=t@ttm: :::::::::::=::::::::::::::::::::::::::::: 1.1.i.!:.

1

, •.. !1.1 :·:<·.·.·:·.::·.=::;:;::: 

Reset 

Reset clears all active transactions in both Bus Interfaces. Reset clears all Active bits in the 
the Channel registers and halts all channel operations. Reset clears all data buffers and associated 
pointers. 

Reset does not clear any state registers which are visible to the CPU except for the Active 
bits. 

Interrupts 

Each RectRegion Destination Resource Channel, RectRegion Source Resource Channel, and 
Sequencer Channel can be programmed to interrupt either of the 2 XJS CPUs or other devices located 
on the Expansion 1/0. The Interrupt concept is also used internally to synchronize the Sequencer 
Channels with the RectRegion Source Resource and the RectRegion Destination Resource. 

l:.X \\'·\)I 



jaguar Expansion lnterf ace & Wilson HRS Apple CONFllJl:N/1AL 

The RectRegion Destination Hesource and the HectRegion Source Resource can generate 
interrupts at· page boundaries and at the completion of a transfer. These interrupts can be used to 
restart a Sequencer channel. The Sequencer Channel can then reload the the Resource's registers and 
restart it. The Sequencer Channel enters a dormant state and waits for another interrupt after the 
Resource Channel has been restarted. 

The Expansion VO of Jaguar (BLT) defines two interrupt architectures. The first 
architecture defines an interrupt line which is connected to Mazda. Mazda can either reflect the 

. interrupt directly to one of the CPU's or translate it into a memory mapped write transaction. The 
second architecture is based on memory mapped writes. A BLT node can only receive interrupts 
through a memory mapped write. Each node has a specified space (highest possible 32 byte memory 
addresses) which are defined to be the interrupt space. If the card desires to receive interrupts it 
should decode writes to these locations. 

The Jagl motherboard implements the memory mapped architecture for interrupts in 
addition to its own internal scheme. The E&WC will decode writes to the address space from 
$8fff ffcO to $8fff ffff as interrupts. The E&WC knows about 10 potential interrupt 
destinations. These include the 2 XJS CPU's and the 8 Sequencer Channels. The interrupts are 
allocated as follows: 

Addreu Range Inter~upt Destination 
$8fff ffcO 
$8fff f feO 
$8fff f fe8 

$8ff f f fdf 
$8fff f fe7 
$8fff ffff 

Processors 
Sequencer Channels 0-7 
Reserved 

If a read error is received by a Channel an interrupt is generated to Processor 0. The channel's 
normal interrupt will not be generated. 

The following sources can interrupt the CPUs: 

• Write to memory location in the range S8fff ffcO to $8fff ffdf (32 possible 
sources). · · 
• RectRegion Source Resource Channels (8) 
• RectRegion Destination Resource Channels (8) 
• A Read Error generated by a Sequencer Channel or a Source Resource Channel 

Two interrupt status registers are available for the CPU to determine the source of the 
interrupt. These registers contain bits which are set when the interrupt occurs. They are defined 
below. 

t:I!< \\·-Ob 



Apple CONFIDEN17AL }aRuar lixpansfrm Interface & WiLmn /:'RS 

31 24 23 16 15 8 7 0 
I · I 

Memory Space Write $c0 - $df 

31 24 23 16 15 8 7 0 

11 Destination Channel~ Source Channels I ., 
Read 

s:~~sters 

The E&WC will enter a sleep mode when the Reset line is pulled low. Power consumption will 
be minimized but internal state will be maintained. All current transactions will be lost. Software 
must guarantee that all channels are in the inactive state before entering sleep mode. 

Memory Map 

The Wilson Hardware is assigned the address range of $ 8 8 o o o o o o to $ 8 ff f ff ff. 
The Expansion I/O is assigned the address range $ 9 o o o o o o O to $ff ff ff ff . Each slot 
(node) is assigned 256 megabytes for a maximum of 7 nodes. The nodes are numbered 9 through F. 
Node 9 is assigned address space $ 9 O O O O o o O to $ 9 ff f ff ff . Wilson decodes all local 
transactions on the XJS Bus which are in the Wilson Address Space or in the Expansion I/O Space. All 
transactions in the Wilson Address Space are responded to by the Wilson Hardware. All transactions 

t.CI: W ·D)I 



jaguar Expansion Interface & Wilson ERS 1lpple CONFIIJh'Nl1AL 

in the Expansion l/O Space are passed to BLT by the E&WC. The E&WC uses the 4 most significant 
bits of address to obtain the node number for BLT. 

All transactions by expansion cards to Nodes 0 through 8 are passed by BLT to the E&WC. 
The E&WC responds to some of the transactions and passes others to the XJS Address Bus. It 
responds directly to addresses in the $ 8 8 o o o o O o to $ 8 ff f ff ff . It passes addresses in 
the range $ O O O O O O O O to $ 8 7 ff ff ff to the XJS Address Bus. 

Node Identification Address: The address $ 8 c O O O O O O is defined as the Node 
Identification Address. If the E&WC receives a read from BLT in this address space it will return the 
node number of the requester as the data. This only occurs when the request is made from BLT. 

Memory Map 

$8800 0100 
$8800 0200 
$8800 0300 
$8800 8000 
$8800 9000 
$8800 aOOO 
$8800 bOOO 
$8800 coco 
$8800 dOOO 
$8800 d008 

$8c00 0000 

$8fff f fcO 

$8800 013f 
$8800 023f 
$8800 03lf 
$8800 8lff 
$8800 9lff 
$8800 alff 
$8800 blff 
$8800 clff 
$8800 d007 
$8800 d017 

S8c00 0000 

$8fff ffff 

RectRegion Destination Resource Ports 0-7 
Pixel Munger Ports 0-7 
Blender Ports 0-J 
Wilson RectRegion Source Resource Channels 0-7 
Wilson RectRegion Destination Resource Channels 0-7 
Pixel Munger Channels 0-4 
Blender Channels 0-1 
Sequencer Channels 0-7 
Interrupt source registers 0-1 
Interrupt Mask Registers 

Node indentification address 

Interrupts 

all ranges not listed above are undefined at this time. 

LU:\\'· IV 



Apple CONF/DEN17AL jaguar J!xpanswn Interface & Wilson l:'RS 71 

Section 6 

Programmers Model 

vi rtu a 1 NHt.:11:0.:ry :::11::::::1:::::::il:l:liii::i!i:i:i!il :i!i.:·:.'.·!:J'.i:·::J·:::.·I.!;':! .. : 
Anm:j~~l~~lll~liji.~~-Stiithat a region be mJgjij!if,~Jfu on location to anothif.;!i:!:!:!::th·l~ is 

translated into a request to the Wilson Manager. The Wilson Manager allocates a RectRegion Source 
Resource Channel (RRSRCl) and a RectRegion Destination Resource Channel (RRDRCl) for the 
operation. It uses a pre-allocated Sequencer Channel (SCl). Assume the source is in vinual memory 
(system memory) and is fragmented. Assume the destination is the frame buffer (basically 
con~guous). The following commands are placed in main memory by the CPU. 

Start: 

Middle: 

Mover RRSRCl .SAP 
Mover RRSRCl.SA 
Mover RRSRCl. STRWID 
Mover RRSRCl. WIDC 
Mover RRSRCl.RAT 
Move I RRSRCl.LEN 
Move I RRSRCl.DA 
Move I RRSRCl.CTL 

Move I RRSRCl. E 
Move! RRDRCl.DAP 

#$0003 4000 
#$0003 4000 
#$0040 0036 
#$0000 0036 
11$0000 0000 
#$0000 0300 
11$0444 0394 
#$0100 0406 

#$0000 0000 
#$4000 4400 

i:..X \\. -1 j 

//first page address 
//first page address 
//Width=36 & Stride•40 
//WidthCount=36 
//rate•as fast as possible 
//we will move 300 bytes 
//destination address of stream 
//set control bits 
//direction=O,interrupt length=l 
//interrupt page=l,priority=O 
//stream=O,global=O,pixelsize=4bytes 
//constant=no 
//interrupt vector points to SCl 
//clear error register 
//destination address 



72 jaguar Expansion Inteif ace & Wilson ERS 

Move I RRDRCl.DA #$4000 4400 
-Move I RRDRC 1. S TRW ID #$0080 0036 
Move I RRDRCl.WIDC #$0000 0036 
Move! RRDRCl.LEN #$0000 0300 
Move! RRDRCl.CTL #$0000 0000 
Move! RRDRCl.A #Sffff ff ff 
Move! RRSRCl.A #Sffff f fff 
Wait 
Move! RRSRCl.SA #$0004 8000 
Move I RRSRCl.A n 
Wait 
Move I RRSRCl.SA 1$0032 5000 
Move I RRSRCl.A n 
Wait 
Halt 

Apple CONFllJI!.N71AL 

//destination address 
//width=36, stride=BO 
II 
//length isn't really needed. 
//set up destination ctl register. 
//Start Destination Channel 
//Start Source Channel 
//wait for next page cross 
//second page address 

The CPU then loads the SCl .IP register with the value of "Start:n . This starts the sequencer 
executing instructions at "Start:" The sequencer loads all the registers associated with the RRSRCl. 
It loads all the registers associated with RRDRCl. It then starts both the source and destination by 
changing their Active bits to ones. The SC1 encounters the wait instruction and stops execution. It 
will not continue execution until it receives an interrupt. The RRSRCl reads the data from memory 
and sends it to the RRDRCl. RRDRCl writes the data to the f ramebuffer. When RRSRCl crosses a 
page boundary it stops execution and interrupts the SCl (its Interrupt on Page Boundary=! and its 
Interrupt Vector points to SCl). The SCl resumes executing instructions. It loads a new page address 
into the RRSRCl.SA register. It then restarts the Source Resource by loading its Active bit with a one. 
The RRSRCl reads more data from memory and sends it to RRDRCl which writes it into the 
framebuffer. The Length register of the RRSRCl eventually reaches zero and the RRSRCl stops 
execution and interrupts SCl. SCl executes the halt instruction (it could interrupt the processor at 
this point to indicate completion). I 

Queuing Model 

A Wilson Sequencer Channel can be set up as an execution queue. Operations which must be 
performed are placed into the queue. The Wilson Sequencer Channel will execute them in order and 
report their completion. An example will help clarify the operation. 

If we label the preceding example as "Transfer #1" we can demonstrate the queuing model. 
Let us assume we have another transfer similar to Transfer #1 which is called Transfer #2. If we replace 
the halt instruction (the last instruction) in Transfer #l .with all the commands needed to perform 
Transfer #2 the Sequencer will continue and execute Transfer #2 after it has completed Transfer # 1. A 
better approach would be to place an Movel instruction in between the two transfers to generate an 
interrupt to the CPU to indicate that Transfer 11 is complete. This would look like: 

Startl: Move! RRSRCl.SAP 

Move! RRDRCl.CTL 
Move! RRDRCl.A 
Move! RRSRCl.A 
Wait 
Move! RRSRCl.SA 
Move! RRSRCl.A 
Wait 
Move I . RRSRCl .SA 

#$0003 4000 

#$0000 0000 
#Sffff fff f 
#Sff ff ff ff 

#$0004 8000 
#1 

#$0032 5000 

l~C( w-, L. 

//first page address 

//set up destination ctl register. 
//Start Destination Channel 
//Start Source Channel 
//wait for next page cross 
//second page address 



Apple CONFIDEN71AL 

Move I RRSRC 1 • A #1 
Wait 
Move! INTERRUPT #$0000 0000 

Start2: Move! RRSRCl.SAP #S0003 4000 

halt 

jaguar lixpanswn Jnlerface c; Wilson t.H.S 7. 

//generate interrupt 
//first page address 

This work fine if the channel has not been started. But how do you add the second transfer 
to the queue once the Sequencer has already been started? The next section explains. 

The CPU places the instruction sequence for Transfer #2 at the end of the SCl execution 
queue (after the Halt instruction). It leaves the halt instruction intact until the complete instruction 
sequence for Transfer #2 is in place. The CPU then replaces the Halt Instruction with either the first 
instruction of Transfer #2 or a null operation instruction. The CPU must then perform a write to the 
SCl .IP register of the address of the old Halt instruction. 

This dynamic queue extension is guaranteed to work for both the case of the SCl having 
already completed Transfer #l and the case of SC1 still executing Transfer #l. If Transfer #l is still 
executing the write to SC1.IP is ignored because the Sequencer Channel is active. Eventually the 
Sequencer Channel reaches Transfer #2 and executes it. If Transfer #1 has completed and the halt 
instruction has been executed the write to SCI .IP restarts the Sequencer Channel. 

L~'\ \V - I) 



7 4 jaguar F,xpansion Interface & Wilson HRS 11pple CONFWI:NI7AL 

Stopping a Channel 

A Sequencer Channel can be stopped by writing a zero into its Active bit. This will cause it to 
complete its current instruction and then stop. Ir will not, however, cause any Source Resource 
Channels which the sequencer has started to stop their transfers of data. 

Source Resources can be stopped by writing a zero into their Active bit. This may or may not 
have catastrophic side effects. The answer is currently unknown and will be determined later during 
the implementation. 

1~1.\\\·1·1 



Apple CONFIDEN17AL }uRuar lixjJanston Interface & Wilson t.'NS 

Section 7 

Examples 

Example •il>n Data Flow"# B•I ii !i.f l~il:I 
ThIB set~!/J:;1des some of the dalj·fJ~s wl~~ll!~llJ::~ought to be j~~fJL ,., . < ,, 

::::::=::::/~;/:)~((===:= /~/~;/~\/ >:?:\/~=r~{ ~{:~:} ;;;>):\~=r~::::::::·:·:·:·· ~~~~>?:::::~:::;:::::~:=::::::·: 

2. Live Video Window directly to Frame Buffer or Memory without Clip Alpha. Same as 
above except the video device does not contain a full 1 bit clip alpha channel. The 
alpha data sent with the stream is invalid (unknown value). The E&WC on the 
motherboard receives the data and routes it to the Pixel Munger. The RectRegion 
Source Resource reads the Clip Alpha information from main memory, expands it to 
a full 8 bits, and sends it to the Pixel Munger. The Pixel Munger combines the alpha 
data with the Pixel data received from the video device. The Pixel Munger sends the 
data to the RectRegion Destination Resource. The RectRegion Destination 
Resource writes all data which has an alpha!=O to memory. 

3. Live Video Window directly to Frame Buffer with text or Graphics Overlay. Same as above 
(the clip alpha prevents writing over the text and graphics) 

4. Llve Video Window directly to Frame Buffer with Clip Alpha and Antialiased Text Overlay. 
A video device located on the Expansion 1/0 sends a stream of pixel data to the 
motherboard. The video device has a full 1 bit clip alpha channel which it expands 
to 8 bits when sending data. The E&WC receives the stream from the video device 
and routes it to the Blender. A full premultiplied overlay image with associated 

E&W-75 



jaguar Expansion Interface & Wilson ERS Apple CONFmEN'/7AL 

alpha channel exists in main memory. The memory image is the same size as the 
rectangular region which is being sent by the video device. A RectRegion Source 
Resource fetches the image from main memory and creates a stream which it routes 
to the Blender. The Blender receives the streams from the video device and the 
RectRegion Source Resource. It performs the following operation: 

RGB(resultl = RGB(memoryl + !1-ALPHA(memory)) * RGB(video) 
ALPHA<resultl = ALPHA(memoryJ + (~-ALPHA(memory)) * ALPHA!video) 

Alpha override is enabled such that if the ALPHA of the video is zero the resulting 
alpha is also zero otherwise the alpha is properly calculated. The data is routed from 
the Blender to the RectRegion Destination Resource where all pixels which have an 
alpha value greater than zero are written to memory (or frame buffer). 

5. Live Video Window directly to Frame Buffer or Memory with Antialiased Text Overlay 
without Clip Alpha. Same as above except the video device does not contain a full 1 
bit clip alpha. The alpha data sent with the video stream is invalid (unknown value). 
The E&WC on the motherboard receives the data and routes it to the Pixel Munger. 
The RectRegion Source Resource reads the Clip Alpha information from main 
memory, expands it to 8 bits, and sends it to the Pixel Munger. The Pixel Munger 
combines it with the Pixel data received from the video device. The Pixel Munger 
sends the data to the Blender. A full premultiplied overlay image with associated 
alpha channel exists in main memory. The memory image is the same size as the 
rectangular region which is being sent by the video device. The RectRegion Source 
Resource fetches the image from main memory and creates a stream which it routes 
to the Blender. The Blender receives the streams from the Pixel Munger and the 
· RectRegion Source Resource. It performs the following operation: 

RGB(result) • RGB(memory) + <1-ALPHACmemory)) * RGB<videol 
ALPHA(result) • ALPHA(memory) + !1-ALPHA(memory)) * ALPHA(videol 

Alpha override is enabled such that if the ALPHA of the video is zero the resulting 
alpha is also zero otherwise the alpha is properly calculated. The data is routed from 
the Blender to the RectRegion Destination Resource where all pixels which have an 
alpha value greater than zero are written to memory (or frame buffer). 

6. Full Front to Back Compositing with Live Video. (this probably won't work at 60 frames a 
second because of bandwidth limits). A Video devices sends the live video stream 
with a full 8 bit alpha channel to the E&WC. The E&WC routes the stream to the 
Blender. The Blender performs a premultiply operation on the live video and sends 
the video back to the input of the Blender. The RectRegion Source Resource 
fetches the image which is located behind the live video. This image contains an 
alpha channel which is all ones (255). It is the same size as the live video image and is 
basically the composite of all things behind the video. The RectRegion Source 
Resource routes this data to the blender. The blender composites the two images 
and sends the result back into the blender. The RectRegion Source Resource fetches 
the image which is located in front of the video. This image contains a true alpha 
channel. It is the same size as the live video image and is basically the composite of 
all images in front of the video. The RectRegion Source Resource routes this data 
into the blender. The Blender composites these two inputs and sends the result to 
the RectRegion Destination Resource. The RectRegion Destination Resource writes 

E&W-76 



Apple CONFIDEN11AL }ap,uar J:xpamton interface t:7 \Vtlson J:'RS 

the data to the frame buffer (memory). Note that no clipping is performed in this 
example. 

7. Memory, Frame Buffer, or Back Buffer Rectangular Clear Operation. The CPU desires to 
clear a rectangular section of memory. The CPU sets up a RectRegion Source 
Resource with a constant value. The RectRegion Resource sends the value 
repeatedly to the RectRegion Destination Resource. The RectRegion Destination 
Resource writes the values into memory. · 

8. Memory, Fra.mt Buffer, or Back Buffer Non-Recti~8':1lar Clear Operation. The CPl1.A~ires 

change the alpha value of the pixel stream. The results of the Pixel Munger are sent to 
the RectRegion Destination Resource where the pixels are written to the framebuffer 
if alpha!•O. 

11. Creating a premultiplied image. The CPU desires to create a premultiplied image from a 
standard image. The RectRegion Source Resource reads the pixel data from memory 
and routes it to the Blender. The Blender performs a premultiply operation and 
sends the result to the RectRegion Destination Resource. The RectRegion 
Destination Resource writes the data back into memory. 

12. Compositing two premultiplied images. The CPU desires to composite two back buffers 
into a single backbuffer. The RectRegion Source Resources reads the two input 
pixel maps from the source memory and sends them to the Blender. The Blender 
performs the following operation: 

RGB(resultl = RGB(memoryl) + (1-ALPHA(memoryl)) * RGB(memory2l 
ALPHA(result) = ALPHA(memoryl) + (1-ALPHA(memorylll * ALPHA(memory2) 

E&W-77 



jaguar Expamion Jnteif ace & Wilson ERS Apple CONFJJ)HN1111L 

The Blender routes the data to the RectRegion Destination Resource. The 
RectRegion Destination Resource writes the result into memory. 

Inexpensive (Low Quality) Live Video Example 

Scenario: An inexpensive video card is located on the Expansion VO. It contains at most 
two line buffers worth of storage (for interpolation & data storage). It contains a 1 bit buffer the 
size of an NfSC screen which contains "mask" data (clip alpha). The mask data is set up by the CPU 
and the video card expands each single bit into a full byte of alpha using bit replication. All data 
transmitted by the video device is 32_RGB format. 

This system is labeled as low quality because it is incapable of avoiding frame tears (it lacks 
a full backbuffer). The video data is sent directly to the Frame Buffer which is mapped in a 
physically contiguous block. The instantaneous rate of the NTSC output will be ( 4 bytes) • 
(12.27MHz *1.01) • 49.57 MB/sec. The rate will be doubled (99.14 MB/sec) if interpolation is 
performed. A line buffer is available therefore the instantaneous rate can be averaged over the 
horizontal retrace time to obtain (640/780)*99.14•81.35 MB/sec. If the data sent into the 
framebuffer is twisted it will require only (3/4) of this bandwidth or 61 MB/sec. If the displayed 
window is not the full width (640 pixels) the necessary bandwidths will be lower and can be calculated 
from the width ratio. 

When the system decides it is appropriate to place a live video window on the screen the 
following sequence of events occurs: 

• Application desires live video displayed on the screen. 

• Application specifies the desired characteristics to the Video Toolbox (size, location, 
TGraphPort, quality, frequency, etc ... ). The application may specify back off 
points. The application may request synchronization information. The application 
may specify how it would like to be informed if performance degradation must 
occur. The application must specify how a failure is handled. 

• Video Toolbox determines the details of the operation the application desires. It may 
inform the application that the operation is not possible (based on hardware 
information it has, no video input or already busy, for example). Video Toolbox 
determines the exact data movement operations needed. 

• Video Toolbox may add its own back off points, synchronization information requests, 
degradation information requests, and failure methods. 

• Video Toolbox, View System, Layer Manager, and Window Manager work to determine the 
visible region of the video. The clip alpha data in the video device is 
updated/created. This can be accomplished in one of four methods based on the 
card's implementation:l) CPU draws directly into Mask space using 1 bit per pixel 
drawing routines, 2) CPU draws directly into Mask space using 8 bits per pixel 

E&W-78 



Apple CONFIDEN77AL jaguar i:xparis1or1 Interface & Wilson 1:us 

drawing routines, 3) the CPU must call card specific ROM Routines to change the 
mask data, or 4) the CPU draws by sending a stream to the mask region. A 
PixRectRegion is created to describe the rectalinear region which must be 
transferred from the video device. 

• Video Toolbox creates a TVideoStream and TMemoryRectaStreamDestination objects to 
describe the data flow needed. ViaeO Toolbox creates a TContiuousSchedule 
object to further describe the transfer. The TSchedule object may contain 
references to TReplyO, TConstraintsO, and megradeO objects. 

····:·····:········ 

• WilsdbiMimr·=·=1 returns the status of the op¢ii'''':'''''lt6 the Video Toolbox via thedfiditated 
nw:J=t:::::::;::]:1=iiil~i:::~lt :i::\iiii;::::~l:ll::::::=::::: :·i·:·:,::::i!\::,::::·=.,::·, 
• Application or Toolbox performs an ActivateO on the TSchedule Object. 

• Wilson Manager performs device driver calls to set up the registers in the Wilson Hardware 
for the appropriate devices. The Wilson Manager performs virtual to physical 
address translation. The Videoln() device driver is called and its registers are set up 
with the appropriate values to describe the transfer. The Wilson MotherBoard driver 
is called and the registers of the RectRegion Destination Resource Channel are set up 
to describe the destination window. 

• Wilson Manager registers the transfer with the MBWM along with any of the constraints 
which are important to the MBWM. When the bandwidth is available for the transfer 
the MBWM starts the transfer. 

• Videoln Source Resource Channel waits for the appropriate data to be received on its 
input half. When the data is available it creates a stream of data which it sends to 
the motherboard's RectRegion Destination Resource Channel. The clip alpha data is 
attached to the stream by the video device. 

E&W-79 



jaguar F.xpansion Inteiface & Wilson ERS Apple CONFIDEN11AL 

• RectRegion Destination Resource Channel receives the stream and writes the data to the 
appropriate area of the framebuffer. 

• RectRegion Destination Resource Channel or the video device generates an interrupt at the 
completion of the transfer. 

• MBWM receives an interrupt when the transfer is completed. The MBWM indicates the 
transfer has completed to the Wilson Manager. If the MBWM is unable to complete 
the transfer in the specified amount of time or within other constraints it informs 
the Wilson Manager. 

• Wilson Manager performs any Reply Methods or other Constraint checks (synchronization). 

• Wilson Manager performs device driver calls to reestablish the hardware registers. Wilson 
Manager reregisters the transfer with the MBWM. This sequence is repeated until the 
TSchedule object is de-activated. 

• Video Toolbox calls the Deactivate() procedure of the TSchedule object to stop the 
video. 

• Video Toolbox calls the DeAllocateO procedure of the TSchedule object to deallocate the 
bandwidth and the Wilson Channels. 

Quality Live Video Support Example 

&enario: A video card is located on the Expansion VO. It contains a full backbuffer for the 
incoming video. The system is capable of full frame rate conversion and tear avoidance. It contains 
a 1 bit buffer the size of an NTSC screen which contains "mask" data (clip alpha). The mask data is 
set up by the CPU and the video card expands each single bit into a full byte of alpha using bit 
replication. All .data transmitted by the video device is 32_RGB format. The video input card also 
contains one or· more programmable interrupts.. The interrupts can be programmed to occur at a 
particular point during the input frame. The interrupts are controlled and received by the MBWM. 

When the system decides it is appropriate to place a live video window on the screen the 
following sequence of events occurs: 

• • • • • • • • first 8 steps same as above ... 

• Wilson Manager determines the general bandwidth needed for the operation. It uses the 
size of the transfer, the frequency, the bits per pixel information, and the general 
operation to determine the overall bandwidth. It requests the bandwidth from the 
BWM. If the BWM cannot allocated the bandwidth the Wilson Manager may request 
a back off point. The Wilson Manager calls the BWM and requests Repetitive Burst 
Bandwidth on BLT, the Wilson BLT connection, the Wilson memory connection, 
and the Frame Buffer. The Wilson Manager determines the maximum burst 
bandwidth which can be sustained between the source and destination of the video. 
This is calculated from the maximum rates sustainable by each device. The Wilson 

E&W-80 



Apple CONFIDEN71AL jaguar Expansion Interface & Wilson ERS 

Manager selects a burst bandwidth for the transfer which is less than the maximum 
burst rate and less than the available bandwidth for each device. A value is selected 
which makes the window of valid constraints for the tear free update a reasonable 
size. 

• Wilson Manager returns the status of the operation to the Video Toolbox via the indicated 
Reply method. .:: ·· · · 

• Application or Toolbox performs an ActivateO on the TSchedule Object 

transfer. 

• MBWM receives an interrupt when the transfer is completed. The MBWM indicates the 
transfer has completed to the Wilson Manager. If the MBWM is unable to complete 
;the transfer in the specified amount of time or within other constraints it informs 
: the Wilson Manager. 

• Wilson Manager performs any Reply Methods or other Constraint checks (synchronization) 
which were requested. 

• Wilson Manager performs device driver calls to reestablish the hardware registers. Wilson 
Manager reregisters the transfer with the MBWM. This sequence is repeated until the 
TSchedule object is de-activated. 

• Video Toolbox calls the DeactivateO procedure of the TSchedule object to stop the 
video. 

E&W-81 



jaguar Expansion Interface & Wilson t:RS 11ppte CONFJV!iN'/1AL 

• Video Toolbox calls the DeAllocateO procedure of the TSchedule object to deallocate the 
bandwidth and the Wilson Channels. 

Single Back Buffered Animation 

Animation is generated by the CPU in main memory. Wilson transfers the completed frame 
from the backbuffer to the frame buffer avoiding tears. Note that the backbuffer is located in 
virtual memory and is not necessarily contiguous in physical memory. 

• Application desires perform animation. 

• Application specifies the desired characteristics to the Animation Toolbox (size, location, 
TGraphPort, quality, frequency, CPU cycles needed per frame, etc ... ). The 
application may specify back off points. The application may request 
synchronization information. The application may specify how it.would like to be 
informed if performance degradation must occur. The application must specify 
how a failure is handled. Some (or all) of these characteristics may actually be 
determined by the animation toolbox. 

• Animation Toolbox determines the details of the operation the application desires. 
Animation Toolbox determines the exact data movement operations needed and 
the CPU cycles 

• Animation Toolbox may add its· own back off points, synchronization information 
requests, degradation information requests, and failure methods. 

• Animation Toolbox requests the ·cpu cycles for the animation from the CPU Cycle Manager. 
If the cycles cannot be obtained a compromise or back off position must be 
negotiated. The Scheduler guarantees the application/toolbox will receive the 
proper number of cycles (when its not "blocked"). If the scheduler fails it will 
inform the application/toolbox/Wilson Manager. 

• Animation Toolbox, View System, layer Manager, and Window Manager work to determine 
the visible region of the video. A clip alpha description is created in main memory 
A PixRectRegion is created to describe the rectalinear region which must be 
transferred from the back buffer to the screen. 

Video Toolbox creates a TVideoStream and TMemoryRectaStreamDestination objects to 
describe the data flow needed. Video Toolbox creates a TContiuousSchedule 
object to further describe the transfer. The TSchedule object may contain 
references to TReplyO, TConstraintsO, and TDegradeO objects. 

• Animation Toolbox creates TStream objects to describe the data flow needed. These are 
a TMemoryRectaStrippedPixelStream() object (for reading the back buffer), a 

E&W-82 



Apple CONFIDEN71AL jaguar J!xpanston Interface & Wilson ERS 

TMemoryRectaAlphaStream() object (for reading the clip alpha), a 
TPixelMungerStream Object (for putting alpha and back buffer together), and a 
TMemoryRectaStreamDestination() object (for writing the data to the screen). 
Animation Toolbox creates a TRepetSchedule object to further describe the 
transfer. The TSchedule object may contain references to TReplyO, TConstraintsO, 
and IDegrade() objects. The TSchedule object indicates frame by frame 
synchronization is needed. : · 

• Animation Toolbox executes an AllocateO call on the TScheduleO object. 

• Wilsqq,::M~IJger determines the channels 11•4- from the references anq·PQ;~ijters 
, . ;!;d~nWl.11 in the TScheduleO object. ,:ffiwg?$.~hRegion Source Resourg:.;,i§~ijgels, 

. ·•=••::.,.:••! •••••••••::•:·•~lllt~~~e~h:~e~e~e~~c~~~l.f=illlfl~0~a!~:ru~e aTt~~~~~lllf ,ll~;~ 
:;mµ~qijF,~ed either a back off pgl,pf ffl; =it~jffi.Pted or a failure is •~h!r~~[)~g the 
\~ij-tjqri Toolbox. ... :.:•:=. ;·:]:::· •. •;:;.::.: .. ,·.=,•.•.•.=.= .•.•. ·. / ?J.? :::: 
::;:{; .• ..... ·.;.·.· <·"=·:·:·:-:-:-:·:·:-:-:·/-: t(t/: ::::;:::::::::::::: 

• Witso9,',lll requests the Kernel J9¢k the ········,'..i.s.•,,:.•.s .. · . .:,:·.:,a.:,:=,:·,•·,a,•·.•,:·.:=,:·.:·,•.:.••.:.pages in memo,~\f . ;:i•i .)/!/·!/!/ 
:;:::::::::::::::::::::::::::::::;:;:::·;... <·.·:·: 

• Wilson Manager returns the status of the operation to the Animation Toolbox via the 
indicated Reply method. 

• Application!foolbox render first off screen frame of animation. 

• Application or Toolbox performs an ActivateO on the TSchedule Object. 

• Wilson Manager performs device driver calls to set up the registers in the Wilson Hardware 
for the appropriate devices. The Wilson Manager performs virtual to physical 
address translation. The Wilson Manager calls the motherboard's Wilson Driver to set 
up two instruction sequences in main memory for the two Sequencer Channels. The 
sequence channels work in conjunction with the RectRegion Source Resource 
Channels to perform gather operations. The instruction sequences look as follows: 

Move! RRSRCl.SAP 
Move! RRSRCl. A 
Wait 
Move! RRSRCl.SAP 

#$0003 4000 
#1 

#$0033 4000 

E&W-83 

//first page address 
II restart Win Read Chan 
II wait for next page cross 
//second page address 



jaguar Expansion Interface & Wilson fi?S Apple CONFIDENJ1AL 

.Move! RRSRCl .A H II restart Win Read Chan 
Wait 
Move! RRSRCl.SAP lt$0001 4000 //third page address 
Move! RRSRCl.A ill II restart Win Read Chan 
Wait 
Halt 

The Wilson MotherBoard driver is called and the registers of the RectRegion Destination 
Resource Channel and the Pixel Munger Channel are set up to describe the 
destination window and the incoming stream formats. 

• Wilson Manager registers the transfer with the MBWM along with any of the constraints 
which are important to the MBWM. 

• MBWM sets up any interrupts it needs for handling the constraints (tear free updates). 
When the bandwidth is available for the transfer and the constraints are met the 
MBWM starts the transfer. 

• Both RectRegion Source Resource Channels create streams of data which they send to the 
motherboard's Wilson Pixel Munger. The first stream is the pixel data. The second 
stream contains the clip alpha information. 

• The Pixel Munger attaches the clip alpha to the Pixel data and send the stream to the 
· RectRegion Destination Resource Channel. 

• RectRegion Destination Resource Channel receives the stream and writes the data to the 
appropriate area of the framebuffer. 

• RectRegion Source Resource Channel generates an interrupt to the Sequencer Channel when 
a page boundary is crossed. The Sequencer Channel loads the next page address and 
restarts the RectRegion Source Resource Channel. This operation is repeated for 
both RectRegion Source Resource Channels and Sequence Channels throughout the 
transfer. 

• RectRegion Destination Resource Channel generates an interrupt at the completion of the 
transfer. 

• MBWM receives an interrupt when the transfer is completed. The MBWM indicates the 
transfer has completed to the Wilson Manager. If the MBWM is unable to complete 
the transfer in the specified amount of time or within other constraints it informs 
the Wilson Manager. 

• Wilson Manager performs any Reply Methods or other Constraint checks (synchronization) 
which were requested. It informs the toolbox/application that the transfer has been 
completed. Wilson Manager waits for a message from the application/toolbox. 

• Toolbox/ Application render the next frame of the sequence and send a message to the 
Wilson Manager. 

• Wilson Manager performs device driver calls to reestablish the hardware registers. Wilson 
Manager reregisters the transfer with the MBWM. The Wilson Manager is able to 
reuse the Sequence Channel Instruction Sequences. 

E&W-84 



Apple CONFIDEN77AL . jaguar Exparision Interface & Wilson ERS 

• The basic operations are repeated as long as the application/toolbox desire the animation. 

• Animation Toolbox calls the DeactivateO procedure of the TSchedule object to stop the 
video. 

• Animation Toolbox calls the DeAllocateO procedure of the TSchedule object to deallocate 
the bandwidth and the Wilson Channe~ 

• Wilson Manager unlocks the memory pages. 

E&W-85 





Apple CONFIDENn1L }aP,uar i:xpansion Interface c:r W'iLwn J:'NS 

Section 8 

Issues 

Is s uf!'s'''''''<i::·11J.iji:l!\:l.\:·'_.:j.iJ\·\\::,Ji:.i::·j:· 

• Number of RectRegion Source Channels. Is eight enough? 

• The priority mechanism is relatively simple. How much effort should be made in 
optimizing it? How much can be gained by optimizing it? 

• Pins will be needed to support the decompression hardware. What will be needed? 

E&W-87 



Apple BLT- System Expansion For Jaguar 

~a1rnal Reference S.,i:ifification 

MS: 60D 

Apple CONFIDENTIAL 



Apple CONFJDEN71AL 

Contents 

Interface Modes .......................................................................................... BLT-25 
Multiplexed Modes .......................................................................... BLT-26 
Separate Modes ............................................................................... BLT-30 
Twist and Size ................................................................................. BLT-35 

Special Transactions .................................................................................... BLT-37 
Locked Operations .......................................................................... BLT-37 
Read Errors and Retries ..................................................................... BLT-38 
Slave Split Read Response ................................................................. BLT-39 · 
Priority and Promotion .................................................................... BLT-41 
Streams .......................................................................................... BLT-44 
Interrupts ....................................................................................... BLT-47 
Errors ............................................................................................. BLT-49 
Serial Bus ........................................................................................ BLT-50 

Electrical and Physical .............................................................................................. BLT-53 

BLT-i 



jaguar BLT 1lpple CONFWl:'N17AL 

Signal Specification ..................................................................................... BLT-53 
Drive .............................................................................................. BLT-53 
Timing ............................................................................................ BLT-53 
Power ............................................................................................. BLT-53 

Physical Specification .................................................................................. BLT-53 
Size .................................... ':' .......................................................... BLT-53 
Connector ............................ ~ ........................................................... BLT-54 

Live Insertion .............................................................................................. BLT-54 

Software Interface ............................................................................ : ...................... BLT-57 

Firmware ..................................................................................................... BLT-57 
Format Block .................................................................................. BLT-57 
Routines ......................................................................................... BLT-59 
BLT Support Routines ...................................................................... BLT-59 

Initialization ....................................................................... BLT-59 

Card Disable ........................................................................ BLT-60 

Error Handling ..................................................................... BLT-60 

Wilson ........................................................................................................ BLT-61 

BLT Hardware Implementation ................................................................................. BLT-63 

Issues ..................................................................................................................... BLT-65 

BLT-ii 



,1ppte CONFIDENTIAL juguar 13/J 

Section 1 

Introduction 

There are three fundamental goals for the Jaguar bus. First, it must supply sufficient 
bandwidth to enable a new graphics architecture. If the bus has enough bandwidth, graphics sources 
and destinations can be separated, which provides a clean,orthogonal, and efficient architecture. 
Sufficient is currently set at about 300 megabytes per second, for various obscure reasons. 

The second goal is architectural expandability. BLT will be around for quite a while. It must 
be able to meet the demands of small computer busses for at least 10 years. The card interface must 

1For those technically in the know, this number may seem high. It is approximately double the actual video 
data rate. The factor of two stems from a technique that avoids cross-field tears in the conversion from interlaced to non­
intcrlaced display devices ... the cost of quality. 

2There are currently some proposals to increase Nubus performance by use of special burst transactions. 1his 
is a wonderful idea but still falls shon of the needs of a media system. 

BLT-1 



jaguar BLT Apple CONFIDEN77AL 

provide all .of the features needed today as well as providing a means of reaching the features we 
foresee in the future. 

The final goal for the jaguar bus is to make it easier to use than any previous bus. The jaguar 
bus is unique in that it has a fully active backplane. This makes it possible to provide a great deal 
more functionality built into the interconnect than in a conventional backplane. 

BLT is designed many levels of card interface. :Some cards will use it as a simple 8 bit non­
multiplexed bus. Others will use it as a 400 megabyte per second streaming interconnect. These 
diverse cards can communicate with each other without any difficulty and without either knowing 
anything about the other carci. 

An important point about BLT is not all the new features it offers but the old features that it 
improves on. It is multi-master, peer-to-peer, has strict software selectable priority levels with 
fairness within them, and supports full split transactions. Any other buzz words that can be applied 
to a bus probably can be applied to BLT. 

This document is dedicated to a description of how BLT is used. It explains the card 
interface, the interrupt mechanism, firmware, and other items important to card designers. As such, 
this information is architectural to Jaguar. Once it becomes solidified it will be with the family for 
life. This implies that a great deal of care must be taken to specify the proper functionality for future 
growth. It is intended that BLT will fill the role of Nubus for Jaguar; the normal expansion system. 
Further it is a goal that jaguar will not suffer from the current new bus phenomena that is plaguing the 
Macintosh, as every new machine has yet another new bus. 

On the implementation level, Jagl will implement a four node BLT. This provides three 
expansion slots. 

The architecture is designed to expand to eight nodes, which provides seven expansion 
slots. A seven slot machine will require a fair amount of engineering over a 3 slot box; all the ASICs 
that make up BLT must be re-implemented. 

On the opposite extreme, a one slot machine is also under consideration. This would remove 
all ASICs that make up BLT and use the Wilson interface chip as the "backplane". 

All of these design centers have been considered and seem to be achievable. 

BLT-2 



Apple CONFIDEN11AL jaguar ULT 

Section 2 

-

Concepts and Facilities 

400 

synchronous 

"Polymorphic" card interface · 

Multiple simultaneous flow 
controlled data streams 

Built in write buffering 

Multiple levels of split 
transactions 

-:-.::::: 
:~:~~~r:~:):~ .... :::::::: ~=:=:· ::=·:. 

multiplexed address and data as well as 32, 16, 
and 8 bit separate address and data. 

Multiple write "streams" can be transmitted 
from any card. Destinations can chose to block 
or receive any one at any time. 

BLT contains several packets worth of write 
buffering per node. This allows write operations 
to complete in minimum time, significantly 
improving throughput. 

A card can have multiple reads outstanding 
simultaneously. They can complete either in 
submissiOIJ order or in response order depending 
on card design. 

BLT-3 



jaguar HLT ilfJfJle CONFW/:'N'/1'1L 

8 levels of strict priority BLT supports up to 8 different priority levels for 
transaction. Absolute priority is maintained so 
high priority items are always ahead of low 
priority. 

Live Insertion and Removal Cards may be inserted or removed while the 
machine is operating. 

High Performance Block 
Transfers 

The natural operating mode of BLT is to transfer 
blocks of data. Single word transactions are 
special cases, a block of 4 bytes. 

Important Terms 

This document assumes a fair amount of familiarity with digital devices. It is in no way an 
attempt to explain how a computer works. The target audience is a card designer, who is perhaps 
familiar with another bus. Even with this assumption of a knowledgeable audience, some terms need 
to be defined. A word of warning to the reader: I am not a tech writer, and not even much of an 
author, I attempt to use these terms as defined, but occasionally I slip up. Please point these areas 
out for future correction. 

Table 1-2 
Basic Definitions 

Acknowledge 

Card 

Cycle 

Dump And Run Write 

Header 

Master 

Node 

The act of asserting the acknowledge bit. This is the 
fundamental method of informing BLT that an operation has 
been accomplished 

A single board or device that is connected to BLT. Exactly what 
the name implies. Often used interchangeably with node. 

Describes the operation that must take place to handle a packet. 
Equivalent to a transfer for a write, one half of a read transfer. 

A descriptive name for a simple operation. An operation in which 
the write is completed into a local buffer before it is actually 
accomplished at its eventual destination. Heavily used by BLT. 

A set of twelve important data bits that describe a packet to 
BLT. The header is used by BLT to determine what to do with a 
packet and when. 

A device initiating a read of a write operation. A master is also 
termed the source of an opei:ation. 

A specific port on BLT. Also used interchangeably with card. 

BLT-4 



1lpple CONFIDEN77Al 

Packet 

Slave 

Tick 

Transfer 

Word 

jaguar 81.T 

The fundainemal unit of data transfer on BLT. It consists of 
three types of information. The address which informs a card 
where the access is to, da.ta which is the meat of the packet and a 
header. Packets contain from 0 to 64 bytes of data. 

A card which responds to an access from another card. A card can 
be a slave only or a master and slave card. A master and slave card 
can both conduct transaction and respond to them. 

The activity that take plaqtfJ.w;ing a single period of the d~,,,,,,, 

BLT-5 



jaguar BLT tipple CONFl/Jl:'N71AL 

BLT Architecture 

Figure 2-1 
BLT architecture diagram 

Packet Rou1 

card interfa< Bacor 

(") 
Lettuct (") 

g) data crossba 
Po> ..., 

a c. 
:r bit sliced twc ::s -- ways CD CD ..., 
:::i. -
~ 

Po> 
(") 

CD CD 

card interf a< 

The most unique aspect of BLT is its basic architecrure. Instead of connecting all the cards 
together with a bus, BLT uses an active backplane. All card communicate with a silicon switch that 
sends the bus transaction on to the appropriate destination. All the other unique features of BLT 
stem from this fundamental difference. 

The basic model of a transfer is similar to any other bus. A card puts out address and then 
data to write information. A card receiving a write receives the address and data, acknowledges 
them and does the requested transfer. The basic facilities of a bus are still there, and in almost the 
exact same form as in conventional systems. The similarity ends there. 

The best way to explain how the backplane works is to follow a typical example, a write of 
one word of data. The sending card first indicates that it is doing a send by loading a header into the 
crossbar. This header contains such vital information as priority, packet type (a read or a write etc.) 

BLT-6 



Apple CONFIDEN17AL jaguar NLT 

and destination (normally just upper bits of the address). Loading the header also has the important 
effect of configuring the backplane for the transaction. Next, the address and data are written into 
the crossbar. It is important to note that the this information is not actually sent anyplace at this 
point. It is stored in buffers internal to the backplane. This allows this data to be wrinen at any rate, 
independent of the destination. When all the data is loaded (in this case after 1 word of data), the 
crossbar is informed that the packet is complete. 

Now the crossbar routes the whole packet of data and address to the destination card. That 
card is then informed that a transfer has arrived for it. When it is ready, the card gets the address and 
then the data for the transfer. The card circuitry is responsible for doing what is appropriate with the 

data (storing it in W1,Rf::f'hatever). ,,,Jjiiiii:::i]iiiiij:i:ii ,/::;;:::::::::iiii!·:!\i 

The -~•::•lsm for how a card interfaces 1'iW'i:m~[is covered in great detaiki!]~ir;:;:;:i;for 

~~-i~f~~~-i&i~-~ 
~~~~!::ct ·=~.~~:~1~~T. of getting 7~ to.I 

The othd,tiiinlf1'§t':jhe transaction cy::ipfo destinatigp~i:\:!lfil9val of the .titket of data,;;:'f.t&IU~+T.

There is another performance advantage to packetization. In many transfers several
sequential words will be transferred rather than just a single one. There is no reason to transfer the
address independently for each word of data. On BLT packets are up to 64 bytes long. Cache line
transfers and DMA operations benefit most from this performance enhancement. ·There is other
overhead including initialization and routing that is reduced by lumping data together into packeL5.

BLT is designed and optimized to write data efficiently. The rest of the Jaguar is designed
to do far more writes than reads. The Wilson DMA system is fundamentally write based. It is
designed to allow cards to conduct almost nothing but writes. This system, discussed for the
motherboard in its own section, is extendable and is intended as a system wide standard for data
movement. The existence of the Wilson architecture is expected to bias the entire system toward
burst write transfers. BLT is intended as the best possible transfer medium for such an environment.

The BLT architecture is efficient and powerful for writing data. Read operation are less
favored by the architecture. There is a fundamental latency in sending data through an active
backplane. This is hidden on writes by the built in buffering. There is no way to hide it for read
operations. The address must travel through the backplane, the data must be read, and the data must

BLT-7

jaguar BLT !lppie CONFWh'Nf7t1L

be returned through the backplane. The fastest this could be accomplished is about 200 ns which is
exactly comparable to Nubus. In practice BLT will be faster because of wider data busses, a more
efficient card interface, and higher clock speeds. The fundamental point remains that BLT is not
great at read transactions.

There are other advantages to the crossbar architecture. Most significantly multiple cards
can conduct simultaneous transactions. Internal to the backplane each card is directly connected to
every other card. This means that if several transfers use different resources they can all be conducted
simultaneously. For instance, card 1 could be sending data to the motherboard at the exact same
time card 2 was sending data to card 3. In a normal bus these operations would be serialized by the
bus. In BLT each card has a separate connection to every other device, so there is no contention for
the backplane.

BLT supports eight levels of priority. The priority of every packet is set when it is created.
This priority controls when the packet will be transferred relative to all other packets destined for the
same card. If card A sends a packet at priority 2 to node C at the same time as card B sends a packet
of priority 6 to node C, the high priority packet from card B will be handled first. This priority is
absolute, so if while card C is dealing with the first packet card B sent another priority 6 packet it
too would be received before the packet from node A. If node B continuously sent high priority
packets to node C the packet from node A would never be received. Note that if card A were sending
to any other node it would complete without regard to the transaction from node B since they would
not collide.

There is a very interesting effect of priority. Consider the above node A with a low priority
packet that is not being serviced. If that node were to send a priority 7 packet to node C an
interesting event· would occur. The priority 7 packet would be the next one serviced, before the
"previous" priority 2 packet. This is called a loss of order. It is essentially required to support true
priority, since a higher priority packet should be serviced first, regardless of the originating node.
BLT only defines order within a priority level for transactions from
a single node to a single node. If node A sent to Band C, there is no telling which would
complete first. If node A sends a priority 7 packet and then one of priority 2 to node B, there is no
order defined. However if node A sent two priority 4 packets to B, they are guaranteed to be
conducted in the order sent. This order change is very different from the behavior of a conventional
bus.

Card Interface

The BLT card interface has two very important goals. First it must be capable of handling
data rates greater than 300 Megabytes per second. Second it must make a simple card cheap and
trivial to implement. These two goals are almost mutually exclusive. The first demands wide busses,
fast clock rates, and probably would not balk at requiring a gate array for implementation. The
second demands small busses, slow clock, and if it can't be done in a few PALs it will never exist. To
address these two extremes an entirely new bus interface was created for BLT. Instead of trying to
create one interface that met the diverse needs of card designers, BLT adopts a polymorphic
interface that changes shape to fit the specific demands of a card.

There are 5 fundamentally different bus interfaces for BLT. Two are aimed at gate array
implementations. These feature multiplexed address and data for pin efficiency. The first is a 64 bit

BLT-8

Apple CONFIDEN11!1L

interface. It is intended for high performance devices such as frame buffers and high speed
processors. The other multiplexed mode is 32 bits wide. It is roughly equivalent to Nubus. It is
mainly intended for gate array implementations of medium level performance. Good examples of
this sort would be 68020 or higher cards, or a video input carci.

The other three card interface modes are non-multiplexed. 8, 16 and 32 bit busses are
supported. All three have a separate 32 bit address bus. The address is automatically incremented to
keep it consistent with the current data. These interfaces will be used by the bulk of our third party
developers. They range from medium to low performance (200 MB/sec and below ... medium
performance). The control signals are simple enough that a 2 or 3 PAL interface is possible.

Bus widthj§)QQ~Y half the battle in building a simg~ifard interface .. The other P!P:PJ~m is

~~;~;~-~~;~~~-~~~~,~~
::friffirifi~f'~B#~ffdfbYte streams there are nJib.jffij~fi~ constraints. Built into ~Lt~~ is a

byte twister. This allows any byte to be brought out (or sent in) on any byte lane. This is primarily
targeted at DMA devices. It allows byte justified addresses independent of the bus width. An
example of this is a 32 bit device that is told to do a burst transfer that starts at address 3. In Nubus
this would have to be done as several transfers (including one byte twist). In BLT each byte can be
loaded on its "natural" byte lane. The backplane will handle twisting it around until it is appropriate
for the destination (which may want it twisted to someplace else).

In addition to these new features BLT features several conventional niceties. The interface
is fully synchronous to the card clock. Unlike Nubus, both source and destination can stall a transfer
at any time.

The BLT interface is as generic as possible. It cleanly supports cards whose performance is
slow for an Apple II as well as those whose bandwidth that would swamp the Cray. It demands as
little as possible from the card. It is simpler, more powerful, and cheaper than interfacing to Nubus.

BLT-9

jaguar BLT i lpple CON Fff) l:'N'l7A L

Streams

So far the only operations that have been discussed are burst reads and writes. Both are
available in a conventional interconnect although harder to use. The stream is a data transaction that
is new to backplanes. The fundamental building block is quite simple, a flow controlled write.

The entire Wilson system is built around the concept of a stream. It is simply an address-free
stream of bytes. It is used to transfer data between two data processing elements. It is a concept
that is fairly old to software folks, its most common embodiment being unix pipes. It is a context
free method of routing data. The only thing that is tricky about it is that it must have flow control.

Consider two independent sources sending data to a single destination. The destination
does the simple act of taking one byte from each and summing them, and then send the result on.
This is an operation that is almost impossible on a normal bus. What happens when source 1 is
running a little bit faster than source 2? At some point the destination is full of source 1 data and is
about to receive another byte from the same source. It cannot get rid of any of the data because it
needs data from source 2 to do that. But source 1 owns the bus, trying to send another byte of data.
Source 2 cannot send the data needed to consume data until some data is consumed, a deadlock.
This application may seem a little esoteric, but it is the exact operation required to fade between
two video sources using Wilson.

To avoid this a method of blocking must be implemented. The destination must be able to
refuse data from source 1 until it has its data from source 2. This is the fundamental operation
necessary to support a stream of data. BLT supports it cleanly and efficiently.

Internally BLT buffers all information. The packet is loaded first, then it is routed, then it is
fed to the destination. Normally the card has no choice about which packet it will receive next; the
decision is made internally based on priority. ff a card supports streams this is changed. The card
can look at the header of the packet and then refuse it. This implements the destination flow control
of writes.

Stream support also impacts the source half of a transfer. BLT normally supports a limited
sort of flow control. If all the internal buffers are full a card cannot send more data. In stream mode
this is extended. A card can determine if a specific packet has been transfered. This allows a sending
card to support multiple independent streams. For instance it could be sending one stream to the
motherboard and one to the frame buffer. Normally if the motherboard blocks the stream all the
buffers would fill and the other stream would also block. This must be avoided. Instead of blindly
loading more and more packets to be sent to the motherboard, the card checks to be sure the
previous one has been sent. If not it does not load a new one. This prevents a single stream from
stopping the entire card.

BLT-10

Apple CONFIDENTIAL jugu.ur HIJ

Section 3

..

Card Interface

Basics
li·!lilllllll·l1lllllllllll·lllllllllllli .,t::1·==:~:::w-- jlj·!lll·llll/l/lll/llllllllllllll!//111

devices must be able to deal with any size transfers. Secondly, BLT is independent of how large the
card interface bus is. A packet containing 12 bytes of data implies twelve data transaction on a 8 bit
interface and 2 (with the second a panial word) on a 64 bit interface. Both are capable of dealing
with any size packet. This is why BLT can implement multiple interface sizes.

Loading a packet is fairly straight forward. A card first loads in the address for the packet.
This address is always 32 bits wide, and is always loaded as the first tick of the transfer. The card
then loads the data for the packet. In the separate modes, the first word of data is loaded with the
address. When it has loaded all that in wants to (less then 64 bytes) it asserts the done signal. This
indicates to BLT that the packet is complete.

Note that there is no restriction about how a card loads data. It could build the packet up
one byte at a time. It could also send in 8 bytes per tick. A really bizarre card could send in a
different number of bytes each time. The BLT card interface happily converts it all into a tightly
packed packet. When the done signal is finally asserted, the packet is marked complete and is ready
to be sent.

BLT-11

jaguar BLT :lfJ/J/e <,'< JNF/J JJ:'N'/7AJ.

There is a critical piece of information missing at this point. BLT has no idea where to send
the packet, what is in the packet, or how important it is. All of this information is conrained in the
header. The header is side information that tell BLT what to do with a packet. BLT does not
interpret any information within a packet. It is entirely controlled via the header.

There are three important pieces of information in the header: node ID, priority, and packet
type. The node ID indicates where the packet is to be sent. In jaguar this is defined by the upper
four bits of the address. The priority field indicates 0to BLT how important the packet is. This
controls when the packet will be transferred. One of the unique aspects of a crossbar is that many
transfers can occur at the same time. Priority allows the external system to have some control over
which ones should go first during collisions. The final element of the header is the packet type. This
identifies whether the packet is a read, a write, or one of various special packet types. In the event
the packet is a read, the size of the block being read is encoded into this field as well.

The entire purpose of the card interface is to get packets and headers into and out of BLT.
There are dedicated lines for loading the header. These lines serve two purposes. When a device is
creating a packet these lines define the header for that packet. When a device is a slave and
receiving a packet, these lines output the packet information, telling the card what to do with the
packet.

To create a new packet, a card first passes the header to BLT. This enrails asserting the
header values on the header lines and then asserting the header valid signal. The new packet can now
be loaded as described above. When the packet has been loaded and the done signal asserted, the
card has completed the transfer. BLT takes care of getting the packet to the destination and
feeding it out to that card.

Reads are conducted in a similar fashion. A card creates a new read packet with the packet
type bits set as appropriate. It then loads the address to be read and asserts done. Now, just as for a
write, BLT rakes over and routes the packet to the destination. The header is presented to the slave,
which tells the slave that the transaction is a read. The address is also presented. The card responds
by loading the requested data into what is know as a read response packet.

A read response packet is almost identical to a normal write packet with one important
difference; because BLT knows that the data is in response to a specific read, no header needs to be
asserted. BLT automatically derives the appropriate header from the read packet. Because of the
protocol, an address is automatically loaded, but it is meaningless for a read response.

Eventually the read response packet is loaded and the done signal asserted. BLT routes this
packet back to the originating node. Here it is presented as any other packet. The header is output
to the card, but the packet type is read response. This informs the card that the packet is the
response to the read.

There are many additional complexities that can be added to a transaction. However, this
basic model is mainrained for all of them.

Signals

The card interface consists of 103 signal lines. These are broken into 4 logical groups. The
data control line are the basic lines used in moving dara. The header control lines are used to supply

BLT-12

Apple CONFIDEN77AL jaguar 131.'f'

or receive information about a packet. May of these lines are only used by cards that can perform
master operations. The packet status lines contain special information about the status of packets.
The final group of control signals are the system interface. These provide basic system functions such
as clock and reset. Figure 3.1 lists all of the signals. The rest of this sub-section is dedicated to an
explanation of these signals.

Almost all signals in BLT are synchronous. The only exceptions are the twist lines and the
signals they affect: data, size, and complete. These later signals are changed synchronously by BLT
whenever BLT induces that change. They are combinatorial only to changes in twist by the card. The
interrupt and reset lines are also asynchronous.

defmed !"~-\~;e~ ~ :'J.:1~~ ~~Jilt!~:~ ~l~:d~hey m•l¥t a
·.·.;:· · .. ·. ·:·:.:.:· :-:-:·:·:.:·:·:·:·:·:··

;~~~1~~~1t~~r~5.~i!1n~f'*~:~i!~:it~
r~~:~r~•:~!!~~.,~~~/-'lf :t?~i~:•~
BFLiTg ucarerd In3t-e1rfa:_._'_l_._r.1ce .. ·_!_i:;_•_._·._._'_· •. -:·:r'_:i:,i, •. ·.··,:_.:'··:!S.:_r:r:r.:,._i •. _,g·,!_·.·.·~·-!_l_: .. _·_'·.·.'_l_._._1_11.··:,·_• .• ,_• List !_!_'_i_,,,_i_j_ii!:li ·_,.:·.:_, •. : •. : •. ' •. :.:•-•.,•:·-~f ~~ 1_;,_:,J,.,l_ii, IJJ ii~ f J!i•Jtil~f 1ilti•· ••li'·

" -.~-~_;_~.i~.~~-~~-~-~-~-~-~-;;_~~-~!.~)). .:::;:::: :: ::::::::· : ·'.< .•. ·• •·. :· ::>.. .·:·: <· > ·.;. ;.:·:-:· :·:-•.. ·:· · • ..•.... ·. •. • .•. • · ,· .••.•.......... ·
·.·:·:·.·:·:·:·>>:·>:·:·:<::·:··.;.·.·.·.·. .i1.~i-~i.i:.: :::{:~:::~:::::~~i~: ~~~~~;~~~i~~i~~;;~:~:~~~~~~~:~);:~~;j~:~j~j~~~:~:;~~j~)~~~~:~:~:~~:~:::::::::~::;:::;:;:::::::.:::::·

.·.·.. ;.·.·.·.·.·.·.·.·.·.·.•.·.·.·.·. :.~1.~~.ii_ii.it.~~-~i.~i.:i.~i.~:.~1.~:.~~.ii.ii_i:.;~_@}i. ;:;:;:;:::::;:::::::.::: ::::;:;:;:;:::::;:::::::;:;:;::;:;:;:;:;:;: " ... " " rt. rri~\titfit :=:::::::::::::=:=:=:=:::=:===:::::::::·::::::::::::::::::::::=:=:::::::::::::::::::::::::::::::=:.;:;:··.,.:;.·.·.·.· · .·. ···· ·
·:·:·:·:.:.:-;.:.:<·>:·:·:···· ~/i\~}f.::}:::::::::::;::::·... :)~:\)\::::::;:;<:>' :-:

. .••• ..•••. :=:=:::;::;:::;:;:;:-:-:.:·"' ·.·.·.·,··.·.··.-··

o!l~lltrol Header Cont~!~!!['.!.!:·!i'ii Packet Status §~~~'m lntf

tmn ttt+nn · rrrrn Hntn
(fJ CD a E t5 co "'c: b "'co "'a. • • ••••
(fJ N (fJ c: CD~ CD co>='--
CD U5 ~

LU C> U
CD

CO CD a.LU = c: 32 Cj)'-<(:JO:J 0 "C 0 ~a> ~o ~ 0 cn - co_u.. t:::Q
"C CD ...J "C C..::J: - E LU "C co 3: 0 CfJ cn :I: a
~ z - >.~ CD §:2~co e -o ~·E ~ "C co c: (.)u"C~ w
co a~ ·;::: 0 co a.. c:

u O·- CD CD Cf) a <(·;::: a: :I: Cf) a..

Data Control

The data control signals in some sense perform all the work of BLT. All data and address
move over these pins. There are two independent output enables, one for each 32 bits of the bus. In
the modes that have separate address and data busses, the output enables allow either w be
controlled independently.

BLT-13

jaguar BLT Apple CONFIJ)EN11t1L

The. twist and size lines are something not seen in any other bus. These lines control the
internal barrel shifter in BLT. This allows transfers to be aligned to any byte boundary. The twist lines
indicate how the data will be presented, the size lines indicate how much is valid. These lines make
many common interface problems much simpler.

The acknowledge signal is the most important in all of BLT. It is the signal that indicates
when any data is being transferred. To load data, assert it on the data lines and assert the
acknowledge line. To receive data, assen the acknowledge pin. The acknowledge pin allows a card
to control when BLT transfers data. If acknowledge is held asserted, data is transferred every tick, if
it is never asserted, nothing happens.

Data<31:0> <bidir)
The lower half of the data bus is always used for data transfers. The least significant bits

possible are used for any given mode. In 16 bit mode bit <15:0> are used. In 8 bit mode bit <7:0>
are active. In 32 bit multiplexed mode these pins are not used. In 64 bit multiplexed mode these pins
contain the least significant 32 bits of data (byte lanes 3-0). In the first tick of a 64 bit multiplexed
cycle, when the upper bits contain address, these pins are ignored as outputs and zeroed as inputs.

Data<63:32>/Address<31 :O> <bidir)
The upper half of the data bus is used for two different purposes. In all modes it serves as

the address bus. In the multiplexed modes it also is the data bus. In 64 bit multiplexed mode it
contains the upper 32 bits, (byte lanes 7-4). In 32 bit multiplexed mode it contains both address and
data in tum.

One note of importance is the address bus lines up differently from the data bus to the pins.
The connections are as follows: Data32-Address0, Data33-Address16, Data34-Addressl, Data35-
Addressl7 ... Data62-Address15, Data63-Address31. This twisting is necessary to allow the
appropriate internal chip partitions for address incrementing.

Twist<2:0> <outputs)
These 3 bits specify the starting byte lane for a specific transfer. They specify the address

the least significant byte of the next word is on. Note that since BLT is big endian the address of a
byte lane is the inverse of the byte lane number. In a 64 bit interface, byte lane seven is address 0.
They are active both for output to BLT and input to BLT. They allow arbitrary byte alignment.

Most commonly the twist lines are connected to the low order address bits. This allows
efficient byte aligned burst transfers to be easily supported. Consider a 64 bit transfer to a 32 bit
card with a starting address of 2. This means that the first byte of the transfer should be placed at
bits <15:8> (big endian) on the card. By connecting the address line to the twist bits the appropriate
rotation will be accomplished. In all cases of twisting on BLT input, the size bits will be adjusted to
write as many bytes as possible without wrapping around. Thus in this case BLT will output a size of 2
for the first tick. This will have the affect of zeroing the address bus for the next and all successive
ticks.

The twist bits are particularly useful for DMA transfers. In the specific case of Wilson
window transfers the twist bits are used to twist incoming pixels into the appropriate byte lane to
align to a window.

The data bus, size bits, and complete signal are all affected by changes co the twist lines.
These changes are purely combinatorial. Care must be taken to allow time for these transitions to
propagate through. Specifications will be provided.

Any twist bits that are rendered meaningless by bus width (bit 2 in 32 bit mode, bits <2:1> in
16 bit mode, all in 8 bit mode) are ignored by BLT on card output.

BLT-14

Apple CONFIDEN17AL jap,ttar m:r

The address is never effected by the twist bits. ll always appears and is provided on the
upper half of the data bus.

Size<2:0> (bidir)
The size bits indicate how many bytes are being moved on the current tick. The size is

always based upon where the twist lines define the starting byte lane to be. Note that in some cases
the size bits can indicate a wrap around the end of the bus. For example in 64 bit mode, size equals 8,
twist equals 1, puts the eighth byte back in byte lane seven, a bus wrap. This is permined on output
to BLT but will never be generated by BLT on input. Care should be taken that wrap is really what a
card designer intends.

On input to a card BLT will always try to transfer as many bytes as possible without causing
bus wrap. Note tha~.,§~A~ the length of a packet is arbitfiWA!9 assumptions about the siz~ht9Lany

BLT-15

jaguar BLT

Figure 3-2
Byte Lane Explanation

Data line#

Byte Lane

Twist (64 Mxd)

Twist (32 sep)

Twist (16 sep)

Twist (8 sep)

Byte Lane

Twist (32 Mxd)

64
I

63-32 always contain address

7

0

3
0

6

1

2
1

48
I

5

2

1

2

4

3

0

3

32
I

3

4

0

ilpple CONFllJJ;Nl71IL

16

I
2 1

5 6

1 2

0

Figure 3-2 shows that byte lanes for the various interface mode. For all modes except 32 bit
multiplexed the byte lanes are consistent with the data line signal numbering. An 8 bit separate
interface uses pins data<7:0> for its data bus. A 32 bit separate interface uses data<31:0>. The twist
lines specify the address, not the byte lane. For an aligned transaction the twist lines are always zero.
For these modes, the same effect as the differing modes could be achieved by asserting all unused
twist lines high. This is what BLT does internally.

In 32 bit multiplexed mode, the data lines are moved to the high order 32 bits. This allows
that address lines to always remain on the same pins. The byte lane definitions also change for this
mode.

Lock* Cbidir)
The lock bit is a rather bizarre signal. When it is driven by BLT it indicates that another card

is conducting locked transactions on the local card. It is driven to BLT along with the address to lock
a remote node.

The lock bit is assened to a slave card upon the reception (acknowledge of the address or
first data word) of a locked packet. It indicates that the card should take whatever actions are
necessary to lock the local resources. At a slave the lock bit is deassened with no association to a
transfer. That is the lock bit just goes away at some point. This indicates that the locking card is
done with its transaction.

It is possible for slave to send a new packet while it is locked. In order to accomplish this it
must turn the data and address bus around. This makes the lock bit an input. This does not imply
that the slave is no longer locked. The slave must maintain the current lock state while it is sending to
BLT. The lock of this card can only be released when the lock bit is driven to one by BLT.

BLT-16

0
1. I

0

7

3

1

0

Apple CONFIDENTIAL jaguar HLT

On the master side locked transactions are fairly easy to accomplish. The first access is
simply conducted with the locked bit set. The lock bit must remain asserted for as long as the lock is
desired on the remote card. As soon as the lock bit is deasserted when not actively in a transfer, the
remote resource will be freed. If the lock bit is deassened in the midst of a transaction (loading a
packet) the entire packet will be transferred as locked and then the remote card will be unlocked.

The lock bit is a bidirectional signal. If during a remote lock the Data Oenl is asserted the
current state of the lock bit is sampled. The external resource will remain locked until the address bus
is asserted back to output with the lock bit low. ThiS means that the lock can be maintained by
simply having the lock bit asserted when Data OEnl is deasserted (watch for contention).

BLT internally flushes all buffers before conducting the locked transfer to the remote card. A
locked packet is ther~fmtconducted in order to all previOU$.4!:1JtSfers. Within the lock itselfamr~mch

BLT is capable of single tick transfers. Holding acknowledge asserted has the effect of
transferring one word every clock period. There is no rate limit to how fast acknowledges have to be
asserted, except that timeout constraints, as specified later, must be met.

Acknowledge is a purely synchronous signal. It is sampled on the rising edge of each clock
period and acted on accordingly.

Header Control

The header control section is used to define and interact with information related to a
packet which does not directly impact the data cransfer, che header. The header concrol section has
three sets of bidirectional pins: node ID, Priority/Stream, and Pckt Type. These pins are used by a
master to define important parameters for a packet. They are driven to a slave device to pass the
same information on. They are independemly loaded and controlled from the data interface.

When starting a transaction a master device may load header, address, and data all at the
same time or independently. Internal to BLT there is one pipeline register that is loaded with address

BLT-17

jaguar BLT Apple CONFl/JlN/7J1/.

or data by the acknowledge. This register is only unloaded once a valid header has been loaded. Thus
the header must be valid before the second acknowledge is asserted for a master write. Note that a
master read can be launched in one tick by asserting header, address, header valid, and done all
simultaneously. A small write can also be launched in a single tick.

The header control bits are also used to carry card configuration information during system
initialii.ation. These signals should be tied with pull up/down resistors to the value appropriate for
the card. These values are sensed during reset. This information is then used to configure the
interface as requested. Care must be taken to insure that these signals will be at their appropriate
values during this time. This usually entails ensuring that all driving devices are tri-stated during reset.
BLT guarantees this for all its signals. -

Node ID<3:0> Cbidir)
The node ID is used to identify which node a transfer is to or from. On a master operation

these bits must be driven to the number of the node a transaction is destined for. For a slave
operation these bits are driven to the node a transaction is from.

In Jaguar the destination is defined by the upper four bits of address. BLT handles the
transformation from the 16 possible combinations to the address map appropriate to the machine.
Thus it is presumed that the node ID will be driven to these bits when a header is initialized.

In a simple master card it is likely that the upper bits of address will be connected directly to
these pins. Care must be taken for slave transaction if this is done, since the value asserted on the
node ID lines is the originating node, which has no relation to the destination address (except being
guaranteed to be different). The header outputs must be disabled before the address is enabled.

Priority Select Cbidir)
This bit determines whether the packet is a member of a stream transaction or a

conventional transfer with priority. If it is high then the transaction is conventional.
Priority and streams are in some sense murually exclusive concepts. The concept of priority

allows important transfers, as defined by the source to bypass less important transfers. This is
implemented by controlling which packet is presented to the destination. Streams on the other hand
are sorted by the destination. It looks at all the streams and decides for itself which one is
"important" at this point. By their very nature streams fly in the face of priority, because higher
number streams are exactly equal in "priority" to lower number streams.

In implementation there are two fundamental differences between streams and priority. The
first is that as mentioned above streams are not sorted by number. The second is that in order to
support priority promotion is necessary.

Promotion handles the case of a node entirely full of low priority packets wanting to send a
high priority packet. Since the high priority packet cannot be put into BLT it can never arbitrate.
Therefore it is effectively arbitrating at the low priority level of the packets ahead of it. To fix this,
when this situation occurs one of the low priority packets is "promoted". It is raised in priority to
the priority of the new packet, allowing the high priority packet the attention it deserves.

Earlier it was mentioned that order was not maintained between priority levels. In the
special case of a packet being promoted it still maintains order with other packets of its old priority
level. This is accomplished by selecting the proper packet for promotion.

Streams are identified by their stream number. Obviously if a stream packet were promoted
there would be a problem since it would suddenly become a member of a different stream. This is
why streams and priority must be separated.

In arbitration, streams are considered the lowest priority. If there are any priority transfers
of any level pending for this node, a stream transfer will not be presented. See the Skip signal for how
this can be gotten around.

BLT-18

Apple CONHDEN71AL }ap,u.ar 131.T

This bit is often lumped into a term called priority/stream. In most instances this term is a
reference to four bits, the priority select bit and the priority/stream bits.

Priority/Stream<2:0> (bidir)
The priority/stream bits serve several purposes. If the priority select bit is a one then they

specify the priority of the packet. If the select bit is low then they specify the stream number.
Much like node ID, these bits are set by a master and received by a slave. The only difference

is that when priority they can change once they have been presented to a card. This will occur if a
packet is promoted while it is the current one about to be output.

Most slave cards can ignore priority. The only time this will not occur is if funher arbitration
on card is necessary. Master cards will set priority as determined by software.

Streams are h.3.-0.dled almost identically to conventjQ~: packets. These bits simplx:Jl,qine

0010

0011

0100

0111

Read Response Card Error: the card this read is from
has indicated an error in responding to the read. The card
finnware should deal with cleaning this up.

Read Response Card Timeout: The card this read is
from is not responding. The card firmware should deal with this
problem.

Read Response: used co specify a normal reply to a read
operation. Usually only seen by a master for the response to a
read. Driven to BLT during a slave split response transaction.

Write: A standard write packet.

BLT-19

jaguar BLT

1nnn

1 1 1 1

!lpple CONFff)/:'N'/1ilL

Read: A read of a specified size block of data. nnn specifies
the size as a power of two in bytes. 1000 specifies a 1 byte read.
1110 specifies a read of 64 bytes.

Not Used: This coding is not used and is reserved for future
use. _

A simple slave card does not need to decode any but the uppennost bit. On read operations
the complete line indicates when the proper amount of data has been transfered. This allows a card
to simply continue feeding data back until the complete signal is asserted.

The three low order bits are used during reset for configuration. These determine the card
interface type and size: multiplexed or no·n-multiplexed, and the size within that. The exact
definition of these bits discussed later in the initialization section.

HValid* <bidir)
The header valid signal serves two functions. When driven to BLT it initializes a packet.

When driven by BLT is defines when the packet control bits are valid.
When creating a new packet, header valid is asserted when the header data is valid. If send

buffer available is asserted, then a new packet is initialized. If there is valid data in the pipeline
register it is loaded as the first word of the packet.

When BLT drives HValid it signals that a valid header is presented on the lines. This does not
imply that the transfer associated with that packet is ready. It is simply an early signal indicating
valid header data, which is very handy for rapidly skipping through stream headers.

Header OEn' (output)
This line controls the direction of the header control signals: node ID, priority select,

priority /stream, packet type,, and header valid. If it is asserted the header is driven by BLT. If it is
deasserted BLT is receiving from the card. This bit has no effect on any current transactions. Its
direction can be changed at any time, including while a transaction is going on. This is intended to
allow a card to do some pipelining, for example selecting the next input stream while launching a
packet.

Exactly like the Data OEn signals these tri-state the outputs immediately (combinatorial),
but are used synchronously to change the direction of the bus. This provides a dead tick on all bus
direction changes to avoid bus contention.

· Done* (output)
The Done signal indicates that a packet has been completed. It is asserted by the card

during the last acknowledge. This indicates to BLT that the packet should be routed to the
destination. For slave accesses, this signal need not be driven.

The done signal can be used by a slave device to perform true split response reads. When a
read packet is presented to a node it can be dealt with in two ways. Either the data is presented
immediately or a split read is initiated. In a split read operation the read packet is artificially
disposed of before the data has been fed back. At some later time the node is responsible for
driving the appropriate data.

A split read is initiated by responding to the read packet with a done signal before any data
has been returned. It is presumed that the card has latched whatever data it needs to respond at a
later time. When the card is ready to respond to a read, it generates a read response exactly as it
would generate a write packet. It must load a header with packet type read response, node ID equal
to the read originator, and priority equal to the read packet.

The split read operation is fully discussed later in this paper. It has some dangerous aspects
that a card designer must be aware of.

BLT-20

Apple CONFIDEN11AL jap,um mr

Skip* (output)
This is the fundamental mechanism for destination control of streams. It indicates to BLT

that another packet should be presented for the card to receive.
BLT will round-robin through all streams that currently have packers waiting to be received.

It will not present any other packers from the same stream. With sufficient skips, the original packet
will be presented again. Note that order within streams will be guaranteed since skip will always
present the same packet from any given stream. _

For purposes of the skip pin, all priority transfer5 are considered part of a single stream. That
is if a priority packet is skipped no other priority packet will be presented again until all streams have
been presented. Note if a priority packet is skipped, and then the entire set of stream packers is
skipped, the origin:i.LP!!§rity packet may not be presen~¢:m1gain. If a higher priority ffi!f~~f is

received i~,~-1, will be presented ins~ad. , 11~ aiJI II"
. ·.·.·-······:·=-:/:~r::::: .. :.·····-· .:(~tr=?:::::::::::::::.;

Pa Ck et S ·:-:-:-:·+::·:-:-:-:·:-:-:-:-:-:-::: -::::::::;:::;:::/;:::::::., .. ::·:·:·:·:::::;:;:;: ··:-:::::::::::·:
~@.f:~II•: ,., · , · w.·. ::: :

~~:~~~;:fatf: l~me~~~~rt~ii:~~ri~~;t~~~•:.
only for interfaci~!!!•!LT. · '''' :::: __ -r __ .' •... '._.·'· .. ·'· .. ·'···'·.• __ ,'_ •. : __ :··_ .. 'i __ .':-_,i __ .' •... ' •... '• ill!ll•j \/ {::{{{:~:~(::;::~::{:::::: :::::;=::::))~

t~t~~ :-:-:·::

data in separate modes, address in multiplexed modes).
The packet here signal will remain asserted until an acknowledge is driven to BLT when the

complete or done bit is asserted. If there are no other pending transaction, it will be deasserted by
the next rising edge. If there are pending transaction it can remain asserted indicating the start of
anqther transaction.

Send Buff Av* (input)
This bit indicates when a buffer is available for a master device to originate a transfer. If this

bit is asserted, a device can create a new packet by asserting the header valid signal.
If this bit is not asserted it indicates that all the buffers in BLT are full. If a card still assens

the header valid signal, a promotion occurs if necessary. On the first tick that send buffer available is
asserted along with header valid a new packet is initialized.

One exception to the above rules is read response packers. In order to avoid a deadlock, all
read responses use an independent buffer. The send buffer available bit does not reflect the starus of
that buffer. If a read is presented to a card, the read response buffer is empty so a read response can
be generated.

BLT-21

jaguar BLT Apple CONF/Ut'N17AL

Stream Full* (input)
The fundamental capability of streams is that they can be blocked by the destination. In

order to avoid this totally filling the sending cards buffers it is necessary to pass this information out
to the card. The stream full bit allows that functionality.

The stream full bit combinatorially indicates if there is a packet waiting to be transfered at
the currently assened priority/stream number. If there is a packet this bit is assened. If there is not
a packet this bit is deassened. .

This allows a sending card to query BLT on the status of a stream. If there is a packet
currently waiting, the card need not send another because the stream is blocked. If there is no
packet in BLT the stream has been serviced so another packet can be loaded.

Stream full is not a control signal, it simply carries information that allows a stream protocol
to be implemented. The restrictions of send buffer available must be obeyed.

Error* (input)
The error signal indicates that the node addressed by the current write packet does not exist.

This is almost always due to an address error in software.
On a write operation the error signal is asserted the tick after header valid if a problem

exists. It remains assened until either the packet has been completed by a done signal or a valid
header is loaded. If the packet is already completed the error signal remains assened for one tick. In
any case the entire packet is tossed. Note that everything works if a new packet is staned without
completing the errored one.

A read error is handled a little differently. It seems easier for a card if a read always generates
a read response packet. For this reason a read will generate a header with an address error packet
type if a bad read is launched.

Error Out• (output)
The error out signal is used by a slave device to indicate that a packet cannot be completed

due to an error. It can be assened at any time before the packet is complete, either on a write or a
read. The response to the packet should not be completed. The packet is immediately terminated
by removal of packet here and header valid.

System Interface

These signals provide the basic elements that a card needs. Most of these signals have very
obvious functions, and exist in any bus. Some, such as delayed error and low power are a little more
esoteric.

Clock (output)
The clock signal defines the clock that the board interface runs synchronous to. All

transitions are based upon this signal
The clock will have a minimum operating frequency of 100 KHz and a maximum frequency of

60 MHz. These number will be adjusted based on reality. One possibility is to allow the clock to be
totally static during power down mode as a method of reducing power. This will work, but a constant
clock is necessary during operation.

This signal is presumed to be asynchronous to both the system clock and all other board
clocks. All signals are fully synchronized before they are passed to any other node. There is no
performance advantage to using any specific frequency.

BLT-22

Apple CONFIDENT/Al jaguar HLT

IRQ* (output)
An interrupt line connected directly to the Mazda I/0 processor. In provides a method of

simple interrupts. The exact interrupt architecture is defined in the VO section of the ERS. The
interrupt is defined to be edge sensitive. The falling edge of the signal will generate an interrupt. The
exact effect of this signal is discussed later in this paper.

This signal has no necessary relationship to any clock. It will have to meet minimum high and
low times.

Reset• (input)
A card reset line. This signal will be independent for each card to allow total board reset

independent of the r~§kPf the system. If a card is not serl§,;q,present this signal will be tri~~9J£? to
coincide with th~Jh®Jl~rtion/removal model covered irtmi.:·ppysical section. ············

Delayed En:ltt:iinliti <::':'.~:?>>
ThlS sim~findi~tes that a packet that was wrltten by this card has encountered an error

. .:·:::::::··

;~~i~~~~;:~i~i~~~!~i~~~j~jj~?i~f ~~j~

power signal is ii&ear:::::: iii)iii!i!!::::i~/i!::::}/(

to allow,~-k~ha~ ~~~~l~.,,:~~a~: :~;31i~h
allow Jaguars to remain on all the time. Appropriate power saving actions are halting processors,
stopping RAM access, turning off video, etc. The machine should appear off in this mode, with the
exception of phone, sensors, or other wake type actions. The only time a Jaguar should be turned off
is if somebody is stealing it (or moving, but that is boring).

Any card can prevent or recover from low power mode by pulling this pin high. This will
restart the entire system, spin up the disks and make all system resource available. There will be some
time lag between pulling this pin high and full system operation. There is a firmware vector defined
for informing a card that the system is fully alive.

In general, a card should not prevent the system from going into low power mode. The
motherboard should be allowed to make this decision. Of course, the card can prevent it if
necessary, for instance actively transferring information. The best approach when possible is to let
the system power down whenever it wants, but bring it back up when necessary. A Jaguar should
spend a large chunk of its life in low power mode.

Serial Data Cbidir)
This pin gives access to the serial bus. The protocol is not yet determined. The serial bus is

intended for system initialization and error recovery. Most devices will not connect to it. Jaguar
provides an address space that is decoded into serial bus transactions, so access can be gained that

BLT-23

jaguar HLT ,1ppie (,'()NFlf)f:Nf'lill.

way if desired for master only transfers. It is not required that any device connect to these pins,
although if a device wishes to do its own error handling it probably should.

The principle goal of the serial bus is to solve a system problem of configuration and error
recovery. It is made available to cards for two reasons. First, some card may need direct access to
the error recovery mechanism. Second, it can also serve as a simple card to card communication
mechanism. The value of this last is small, as BLT is quite simple to use. The bottom line is this
access is cost free, so make the system as flexible as possible.

Serial Clk (input)
This signal serves two purposes. First, it provides a guaranteed 10 Mhz clock. This will

alleviate the need of an expensive oscillator on many cards. Second, it is the data strobe for the serial
bus. The protocol of the serial bus has yet to be determined, but most involve a constant clock and a
related data line.

Initialization

There are five pins that are used for system initialization. These are piggy-backed on top of
some of the header control signals. These signals are sampled during reset before the reset line goes
high. The board must guarantee that these signals are at the appropriate levels during this time. The
sample time is such that the power supply has been stable for n milliseconds. All the signals used are
bidirectional so the additional overhead of providing this configuration information is minimal.

One way of achieving the proper configuration values is by use of lk pull up and pull down
resistors. The only additional requirement is that all drivers are disabled during reset. BLT will
guarantee that its drivers are off.

The two low order bits of priority/stream are used to configure the retry response. The
zeroth bit is known as the read retry signal, bit 1 is known as the lock retry signal. Explanation of
these signals first requires an explanation of how reads work on BLT.

In a normal read a CPU sends out the address and owns the on card bus until the data is
returned. BLT does not naturally use this model. BLT attempts to complete transfers to a card while
the card is waiting for the read data to come back. This implies that the CPU must start the read,
then give away the on card bus. BLT will conduct several transfers and at some point return a read
response. The CPU is given the bus back, and fed the data it requested. This operation is called a
split read.

If a card can do a split read, everything is great. The read retry pin should be asserted low on
power up. If a card cannot do a split read, the read retry pin should be asserted high. This indicates
that in the case of a read collision, a retry must be generated. If the card's read loses the internal
arbitration a read response retry packet is returned. Instead of generating a normal response to the
CPU, the transaction should be retried. The point of this is to allow BLT access to the card. A retry
conventionally implies an arbitration of the processor bus. BLT should win this arbitration and
conduct the necessary transactions. When it ·is done the bus is returned to the CPU which should
attempt to complete the read again.

The lock retry signal indicates the identical operation with respect to locks. I3LT normally
attempts to conduct transactions to a card that is doing a remote lock. If a card does not support

BLT-24

Apple CONFIDEN11AL jaguar BLT

this, it should assen the lock retry signal. This will cause BLT to generate a retry packet in the case of
colliding locks. Note that read retry always implies lock retry, since a card that retries on locks must
initiate a locked transaction with a read.

The low order three bits of packet type are used to define the interface mode. The
encodings are as described below. If an illegal mode is indicated BLT will not function and will
remain tri-stated. The system will not realize that the card exists. All transactions to the card will
generate address errors. ~

010

001

1 01

Interface Modes

As mentioned before, there are five different interface models for BLT. A card is free to
pick whichever one is most convenient. The mode a card is using is defined during card initialization
and cannot be changed after that.

This section goes into details on the timings of the various modes. In order to save a few
trees, all five modes are not individually drawn. An example mode from multiplexed and non­
multiplexed is used. The timings for the other modes are exactly the same as for these example
modes. The only differences being the number of significant bits in the twist and size lines.

The diagrams are simplified as much as possible. Signals that do not change are left out. For
instance, on slave writes none of the output enables are drawn. All are assumed assened. -

In all timing diagrams a type face convention is followed. If the signal is in normal type it is
driven by BLT to the card (an input) for the entire diagram. If a signal name is underlined it is driven

BLT-25

jaguar BLT Apple CONFl/JHN71AL

by the card.to BLT (an output) for the duration shown. If a signal is in italics it is driven by both
devices at some point during the diagram.

No timing information is implied by the diagrams, simply transitions based upon edges. The
exact timing for setup and clock to Q will eventually be specified.

Multiplexed Modes

There are two multiplexed interface modes. Both share identical timings, so only one will be
discussed in detail here. Because it makes the diagrams smaller, the 32 bit interface is discussed here.
The 64 bit mode differs only in that the upper bit of the twist and size lines are used.

The four fundamental operations are discussed in this section: slave read and write, and
master read and write. All will be done around a 8 byte packet to an aligned address. This hides some
of the complexities that can make diagram drawing a nightmare. A separate section discusses the
twist and size timings in detail.

Figure 3-3
32 bit Multiplexed Mode Slave Write, 64 bit Packet

Clock

HValid*

PktType

PktHr*

Addr/Data

Size

Cmplt*

::fl-!ll. .
~: : :/

I • I • I

l88t>(_____________ · __ w_n_·re_p_'a_ck_e_1 __ • ____ ~

:"-...,;,,_--:.-......:.-_/
~ :addr;

I I I I t I t I I I

~---o_'. __,,~
~4:

:" :/ . -------------·
:"----/

This is a generic multiplexed transfer. As with all slave transfers it begins with BLT assening
header valid. At that time the packet information becomes valid. For simplicity, the header output
enable is not shown, but is presumed asserted. This is only an informational signal, no action by the
card is necessary.

At some time later, a delay that will vary between BLT implementations, the packet here
signal is asserted. This indicates that the address is valid so actual data transfer can begin. In this
diagram the card begins doing single tick transfers by assening the acknowledge signal and holding it

BLT-26

Apple CONFIDEN11AL jaguar HU

low. Thus, two ticks later the 64 bits have been transferred. Note that it is possible to slow the data
transfer by simply not asserting acknowledge.

The complete signal becomes asserted on the last tick. On the next rising edge with
acknowledge asserted the cycle will be complete.

All signals in this diagram are synchronous to the rising edge of the bus dock.

Figure 3-4
32 bit Multiplexed Mq~j~lave Read, 64 bit Packet

Clock ?

HValid*

PktType

PktHr*

OEnl*

.·::::::::::::::;: :·:·:::::·:··=::-··:·

Addr!Data

Twist

Size.

Cmplt*

. .::::::::{)::::::::
::::::::::::::~:=:r::::::

• ; :.· < ;>>--i:;,;,;.;:~:~:~~;,;,;.;~~i:::::::
.....___:/

:"----/
This diagram shows a multiplexed slave read. The most interesting part of this diagram is the

change in direction on the data bus. When the packet arrives, the data bus is driven by BLT because
the output enable is asserted. The card acknowledges the address, creating the response packet.
The card then reverses the direction of the data bus. This is done by deasserting the output enable
signal. Note that BLT tri-states immediately upon deassertion of this signal. However, data cannot
be driven into BLT until the subsequent tick. This is done to guarantee a dead tick to prevent bus
contention. BLT treats the output enable as synchronous for its assertion so in the diagram when it is
asserted, data is not driven by BLT until the next tick as is shown by the data and twist lines ..

The size bits share direction with the data bus. In this example the size bits are driven by
the card. It is presumed that the card is driving the output enable zero line with the same value as the
output enable one line as suggested in the signal description.

The rest of the cycle precedes normally. The two words of data are loaded into BLT by
assertion of acknowledge. On the last tick, the complete bit is asserted, indicating that the last data

BLT-27

jaguar BLT tipple CONFl/Jl:'N11AL

is about to be loaded. This allows a simple card to avoid having to count how much data it must
return. It should simply load data until it loads a word when BLT has asserted the complete signal.

Figure 3-5
32 bit Multiplexed Mode Master Write, 64 bit Packet

Clock

HValid*

SBAv*

PktType

Pri/Strm

NodeID

Addr/Data

Twist

Done* '"--./ I ' . .
As can be easily seen from this diagram, BLT is great for writes. The entire transfer of 64 bits

takes just three ticks. The cycle begins with the card asserting header valid. This creates the new
packet with the header information as defined by the card. At the same time, the address is loaded
by asserting the acknowledge signal. The next two ticks load data because the acknowledge signal is
held asserted. Again, this could be slowed arbitrarily by the card deasserting acknowledge.

During the final acknowledge, the done signal is asserted indicating that the entire packet
has been loaded. BLT then transfers the packet and makes sure everything is handled correctly for
the slave device.

There are two interesting features of this diagram. The first is the header valid signal. The
first tick that header valid is asserted along with send buffer available a new packet is created. This
packet is the only master packet that can exist until the transfer has been completed. For this reason,
the header valid signal is ignored until the packet is completed by the done signal.

The other interesting item about this transaction is send buffer available. If the creation of
this packet consumes the last available buffer, send buffer available will transition deasserted on the
tick after header valid is sampled. If this packet does not fill the buffers, send buffer available will

BLT-28

Apple CONFIDEN77Al jaguar HLT

remain low. A packet is only created when header valid and send buffer available are both asserted
(the first by the card, the second by BLT). The promotion section which follows later discusses what
happens if header valid is asserted by the card when send buffer available is deasserted.

Figure 3-6
32 bit Multiplexed Mode Slave Read, 64 bit Packet

PktHere*

HOEn*

OEnl*

PktType

Pri./Strm

Node/D

Done*

Cmplt*

_____,,.. . ., ·/
I "--.:./ . .

4 I

:"--/"
I I

This diagram actually contains the timing for two separate ticks. The first is a master read.
This cycle begins as all master cycles with the card asserting header valid along with the necessary
header values. In this example the address for the read is asserted simultaneously: Since that is all the
data in the packet, the done signal is also asserted. This launches the read in a single tick.

Note that a master read follows the same rules as master writes with regards to the send
buffer available signal. A master read consumes a packet just as all other master transactions. This
means that it must have a buffer before it can be launched.

BLT-29

jaguar BLT 11jJpJe CONF//Jh'N'/1111.

The. other cycle diagramed here is a read response cycle. This cycle is essentially identical to
a slave read cycle. The only difference is the packet type is read response instead of write. The cycle
begins with BLT asserting header valid (note that all busses have been turned around from the launch
of the read packet). When the packet is ready the packet here signal is asserted. The card can then
receive the packet exactly as for a slave write. On the final clock tick of the response packet
complete is asserted by BLT.

The breaking of a read into these two cycles haS many effects. The most important is that it
allows the master device to launch other transfers, including reads. If a master has multiple reads
outstanding (that is, it has sent more than one read packet without receiving a read response) it must
decipher which read a response is related to. Just as for write operations, only minimal order is
defined for when a read wifl be responded to. Two reads to different nodes will often complete out
of order. Similarly for two reads of different priority levels.

The way to decipher which response is related to which is by use of the node ID and priority
bits. These bits are guaranteed to be equivalent to the ones on the original read packet. This
combined with the order defined with priority and destination is guaranteed to be sufficient
information. Not the most convenient mechanism, but for cards that can launch multiple reads the
complexity is not a great burden.

Separate Modes

There are three distinct separate configurations. As in the multiplexed modes description
only a single one is documented here. The only difference between the modes is bus width and the
size of the twist and size lines. In 8 bit mode the twist and size lines have no effect and can be
ignored.

All the timing diagrams are for a 32 bit interface, transferring a 64 bit packet to an aligned
address. The complexities introduced by the twist and size bits are discussed in a separate section.

BLT-30

1lpple CONFIDEN71AL }aP,uar HLT

Figure 3-7
32 bit Separate Mode Slave Write, 64 bit Packet

Clock

HValid*

PktType

Size

Cmplt*

Tue t¥bl~ ditt~~ ftdffiiinultiplexed when the dftf':i&~rts acknowledge. In se~imtg\:g!1ve
interfaces the address is kept consistent with ·the current data word. When the card acknowledges a
word the address is incremented by size. In this case 4 bytes are transferred on the first word, so the
next tick address is incremented by four.

The complete signal is asserted for the last word transfered just as in the multiplexed modes.
Upon acknowledge of this word the header valid and packet here line are deasserted for this transfer.
They both could remain asserted, indicating another pending transfer.

BLT-31

jaguar BLT Apple CUNF/DlNl7AL

Figure 3-8
32 bit Separate Mode Slave Read, 64 bit Packet

Clock

HValid*

PktType

PktHr*

Address

Cmplt*

---------------------~· ~ .._..,__......,. __ ..,__ __ ~I I I I t I
:reads:

~ /
~ :addr

I I I I I I I I I I t

~;o; rnx_: __ 4_: ___ ;
I I I I I I I I .I I

~--:/
:"----/

This diagram shows a standard separate slave read. It begins exactly like any other slave
cycle. The first acknowledge indicates that the first word of data is being asserted by the card. As in
the separate slave write described above the address is kept consistent with the current word being
transferred.

The complete signal performs the normal function of indicating that this is the last word to
be transferred. Upon acknowledgemen~ packet here and header valid indicate status for the next
packet.

BLT-32

:1pp/e CONF!DEN77Al jagzwr 13IJ

Figure 3-9
32 bit Separate Mode Master Write, 64 bit Packet

Clock

HValid*

SBAv*

PktType

NodeID

Address

/:~tf~~)j)~i: ::::;,::: i} .·' : / ~tf~f[jf?? ~;~;(: • ::::;j~ }~:}))~{::: •
(/::;:::::::::: ~t~i::::::::: "---.,/' '.\~:~{{ /(}ff I :::::\: ::::::;::::::::::::::::::: 1 Done*

l·~~~~i..
11 .. :f!l w: :::\;:::::::::::

:::::;:;:;:::::::t}:]}\!f. ~:\~):::::::.·.:.:.: ·.·.·.·.·. • :f]~)) :::::::::::;;:;::: •

Tfi6::~~k;~~ ;~tlt~!ffiisrer interface shows off JJ~~iJJ:~f iJiency of BLT. On the ~j~]f ~l~~' the
packet is created by assertion of the header valid signal. Simultaneously the address and the first
word of data are loaded by the assertion of acknowledge. In this single tick, 76 bits of information
are passed into BLT.

The cycle completes exactly as in the multiplexed examples. The assertion of done along
with acknowledge indicates to BLT that this is the final word being transferred.

The other signals in this diagram are consistent with the multiplexed models. The send buffer
available indicates that a new packet can be created. The header valid signal is ignored after it has
created a new packet, until the packet is completed.

An interesting point is that if the master were only transferring a single word of data, this
write .could be conducted in a single tick.

BLT-33

jaguar BLT Apple CONFff)h'N71AL

Figure 3-10
32 bit Separate Mode Master Read, 64 bit Packet

Clock

HValid*
I I I I I I I

SBAv* ~ :

PktHere*

HOEn*
:,...._ ___________________ __, ____ ...,... _________ __,. __ ~

OEnO*
~....____ _______________ /

OEnl* ~ :/
I I I I I I I

PktType
~--·-~------rea--c(_re_sp_o_n-~-,----..~

Pri/Strm ~ : ~'-__._ _ _.___.___ __ ~
Node/D ~ ·~ ~t.ID' :~

I I I t I I I I

Address -~-addt' ' <rnmt>< :addr ~------~

Data ~-~·~·1234 >®~--"--

~ • ~ _· ____ o...,.: __ -!:,>~-------
• I I I I I

~ : ~ 4:)"'---
:"--/ ~ / . . I

Done* -.~ . . .
Cmplt*

This diagram shows the two cycles that make up a master read transfer. The first cycle
launches the read packet. This is done identically to the multiplexed mode. Assenion of header
valid, acknowledge, and done simultaneously loads all the necessary information in a single tick. On a
master read launch the data is meaningless, although it is loaded. Note that the size of the requested
response packet is encoded into the read packet type.

The separate read response is also fairly simple. It is identical to a separate slave write. It
begins with the assenion of header valid. The header information is valid at this point which allows a

BLT-34

Apple CONF!DEN77AL jap,uar BLT

card to do whatever processing is required to complete the read transfer, perhaps returning the local
bus to the initiator.

Eventually the packet becomes valid. The card acknowledges the packet by asserting the
acknowledge signal for two ticks. On the last tick BLT asserts complete to indicate that the packet
will be completed.

Twist and Size

The twist and siz~ lines are one on the more unique aspects of BLT. These bits make the
interface more powerfµt~:!well as easier to use.

Clock

HValid*

PktType

Addr/Data

Sjze

Ack*

Cmplt*

oUd addr ' .
~:1
~ ·_3 ____

This diagram shows perhaps the most common usage of the twist lines, a non-aligned
transfer. In this example the address has the low order bits of 01, which the card is latching and then
driving to the twist lines.

On the first data tick the twist lines are set to 01. In response, BLT adjusts the size bits to
avoid "wrapping" the bus. Since the card is 32 bits wide, this means 3 bytes can be transferred. The
card acknowledges those three bytes as normal, marking the first as garbage.

BLT-35

jaguar BLT Apple CONFWEN17AL

At tbe conclusion of this cycle the card clears the twist lines since the address is now aligned.
BLT responds by asserting the size lines to 4, a maximum size transfer on a 32 bit bus. Note that the
data bus contains bytes four through seven of the packet. One more byte must be transferred in
order to complete the transaction.

Since the address is still aligned the card leaves the twist lines at 0. BLT synchronously
changes the size lines to 1, indicating that one byte remains to be transferred. BLT also asserts
complete to indicate that these are the last bytes in the transaction. When the card acknowledges
this word the packet is done and the transaction completed.

This sort of transfer in a multiplexed bus requires the card to latch the address for the first
tick and clear it for all subsequent accesses. In the separate modes the address lines do this exact
transition so this alignment occurs automatically if the low order bits are connected to the twist lines.

Figure 3-12
32 bit Separate Mode Slave Read, 32 bit Packet, Complete Glitch

Clock

HValid*

PktType

PktHr*

Address

Data

·~

Ack~

Cmplt*

____________________ /
---------------------·---· . 'read4' ·~
---=------~·,-----·---~--....,~ •

~ :/
~ :addr

I I I I I I I I I I I

B8888888888881X'.o x_• __ :_2 __ ~B88888888888888 _______________ __
'2

I I I I I I I I I

~--:/

This diagram shows the bus transfer for another valuable application, dynamic bus sizing.
The interface is defined at 32 bits, but some device on that bus is only 16 bits wide. In a normal bus
this would either require special software to deal with the missing bytes or special hardware to deal
with twisting the data around. In BLT the hardware is built in.

The transfer begins with the bus asserting header valid and then later packet here. The card
decodes the address and realizes that it is to a reduced bus device. Accordingly is changes the twist
(and size) lines to reflect this. The twist lines start at 0, the address asserted by BLT but are
overridden to reduce the bus size to 16 bits.

BLT-36

11pple CONFIDEN77AL jap, uar iJ/. 'f'

After the card has set up the twist and size line appropriately it conducts the transaction as
normal.· BLT transfers only two bytes per tick, aligned to the proper byte lane. Note that it also
keeps that address bus current with the transfers despite the size change.

The complete bit shows an interesting glitch. While the card is asserting size 4, BLT asserts
complete because there are only 4 bytes in the packet. However, when the card changes the size bits
to 2 complete also changes. Note how complete changes in the midst of a clock tick. It is
combinatorial with respect to the twist and size lines. It is the responsibility of the card to guarantee
that complete has settled before asserting acknowledge. This involves simply waiting the
appropriate amount of time.

Special

::::::=::::::::::::::::::::-::··

asserted. ''''6fi2e'UWi'fii5'f'franSfeThas been completed, tti=e=·='~s'te·~ is guaranteed exclusive ·access. fo a
single card. It is imponant that the master does not do any transactions to other cards while it has a
card locked as this can deadlock the bus. The lock on the remote card is maintained until the master
deasserts the lock bit. This deassertion does not have to be associated with any specific transfer, it
can just go away. If it is brought low during a packet load that packet will be transferred before the
remote card is released. The lock signal description describes the exact interaction in detail.

Depending upon the lock abort configuration, BLT handles collision in locked operation
very differently. If the lock abort signal is not asserted, BLT expects to be able to conduct local
transactions while this card is conducting a locked operation over the bus. It will even attempt to
conduct locked transactions to this device. This does not violate the atomic nature of a lock. This
simply defines that the lock is a resource lock that guarantees exclusive access to some resource, but
has no effect on any other resource. The lock of the remote card does not imply a local lock.

If the lock abort signal is asserted BLT assumes that if this card is conducting a locked
operation on a remote card the local card is also locked. This can cause some difficult collisions if
two cards attempt simultaneous locks. BLT will assen the abort signal to the card that loses the
internal arbitration. Unfortunately this arbitration can only occur once the packet is complete. If the

BLT-37

jaguar BLT 11pple CONFIDI:'N17Al

packet is a write this is after the writing device thinks it completed the transfer, so the abort signal
will not have the desired effect. To correct this, the first cycle of a locked transaction must be a
read. This guarantees that it can be correctly aborted if necessary. This restriction only applies to
devices using the lock abort protocol, which includes the Jaguar motherboard.

Read Errors and Retries

On BLT read errors are dealt with in a single manner. Any time a read causes an error, a header
is returned with a packet type that identifies why the error occured. The most common of these is a
retry. This indicates a bus collision that had to be resolved by removing one of the read operations.
This should be handled by giving BLT access to the local bus, and then attempting the read again.

The other three error response packets indicate more significant errors. These range from an
address error, in which a card does not exist, to a timeout which indicates that the card exists bus did
not respond.

All of these response packets are identical in format. They contain no data, consisting only
of a header. They otherwise appear identical to a normal response. The node ID and priority/stream
information is set to the value of the original header.

13LT-38

Apple CONFIDENntL jaguar m:r

Figure 3-13
32 bit Multiplexed Master Read, Error Response

Clock

HValid*
I I I I I I I

SBAv* ~ :

OEnl*

PktType

Pri./Strm

Node/D

Addr/Data

Size

This diagram shows a normal master read operation. However, the return is an error packer.
An error packet is presented to a card exactly like any other packet. First the header valid signal is
asserted. Sometime later the packet here signal becomes active. The address presented is the
address of the read. The packet is completed by the assertion of the acknowledge and the done
signal. The timing of this cycle is identical to the timing of the slave split read diagramed below.

Slave Split Read Response

A normal read response on BLT is fairly simple. The read arrives at the card, the card fetches
the data and puts the data into BLT. When all the data is back BLT terminates the read. This is very
convenient for simple slave cards. It is not optimal for high performance processor devices like the
Jaguar mother board.

13LT-39

jaguar BLT Apple CONFml:Nl7A L

just as BLT expects to be able to complete transfers while a card is waiting for a read, the
card can expect the same from BLT. A card can send a new packet anytime it is not actively dealing
with a packet. If a card has not acknowledged any section of a packet it may initiate a different
transfer. For instance a card may receive a read from BLT. It may look at the header and address,
decide that it doesn't want to deal with it at this time, and so reverse the header direction, create a
new packet and send it off. This is the normal level of split transactions.

Beyond this it is often useful to service more 'BLT transfers while fetching data for a BLT
read. In this case the read packet arrives, the address and data are looked at, and then done and
acknowledge are asserted simultaneously. This disposes of the read packet without passing back·
any data. This frees the BLT interface to deal with the next packet

Figure 3-14
Slave Split Read Transaction

Clock

HValid*
d11:
~I I I I I I I I

I I I I I I I I I

SBAv*

PktHere*

HOEn*

OEnl*

PktType

Pri/Strm

Node/D

Addr/Data

Size

Done*

I I I I I I I I I I I

I

:/
~..,...----i---.---....-~ ----~. _________________________ /
®(___ r_ea_d __ s ___)<rn----·-

• I I I I I I I I®< . pri/su1n xrn .
~ srcn? ~ ·~

:o~

-:@< ·4~
-----------· . . , ·/

I "---.:/"

I I

. :, ____ :/
I

:"---/
This diagram shows a complete slave split response transaction. It begins as a normal slave

read operation. Header valid is assened, followed by packet here. Now the transaction diverges

BLT-40

Apple CONFIDEN71AL

from ·a normal read. Instead of simply assening acknowledge in response to the packet, the card
assens done and acknowledge. This "completes" the read packet. BLT deasserts header valid and
address and throws away all related state, exactly as for any other completed packet. It is now the
cards responsibility to create a read response packet.

The second cycle of this diagram is the split read response cycle. This begins as any master
write with the assertion of header valid. In this special case, the send buffer available signal is
ignored because BLT guarantees that a buffer is availaole to complete this. The header asserted is
entirely defined. The packet type must be read response. The priority bits must be the same as for
the read that caused the transfer. The node ID must be the card that originated the read.

_.:(}?

:-:=::::::::::::~=~=~=~:~:~::
·:·:·:-:-:·:•,•,-... ·.·.·:·

internal processor.state;··5rncfilie·read response is now·:rwHte'O'peration. ... ·· ... · "w

Priority and Promotion

Priority on BLT is a very interesting situation. It seems to be very important as a basic
feature, but is not exactly clear how it will be used. The current model suggest that priority will be
used to cover for the inherent inaccuracies in bandwidth scheduling. This will allow a gradation of
importance between transfers that will die if they do not receive bandwidth, those that will survive,
and those that merely pick up the scraps left over. Most processing falls into the last class.

All normal transactions have a priority associated with them. This governs the order in which
they are presented to the destination device. The priority is absolute, with high priority transfers
always passing low priority transfers. High priority transfers can starve low priority transfers, never
allowing them to go. In practice this will never happen simply due to latencies internal to BLT.

Priority is defined within the header, which makes it "soft". Soft means that it can be set
independently per transaction and is not linked to the node ID or other hardware feature such as a
jumper.

BLT-41

jaguar BLT Apple CONFWl:'NntL

Priority on BLT is guaranteed to be fair within a priority level. If two devices are transferring
packets at the same priority level, they will share the available bandwidth without any favoritism.

There are two interesting items about priority: promotion and order. To implement priority
it is necessary to change the order in which transfers occur. This means that there can be no
assumptions about which transaction will complete first if different priority levels are used. If the
same priority level is used, then order is guaranteed. Note that the architecture of BLT fundamentally
prevents there being any definition of order between transaction from or two multiple cards. This is
all the responsibility of software to enforce. Locked operations make it possible for software to
implement any sort of order needed.

The other interesting item about priority is promotion. This is a technique that prevent low
priority packets from blocking high priority packets. Each node on BLT has a small number of
internal buffers. These buffers can each hold an entire packet. On a packet load, the data is placed
within one of these buffers and the header enters arbitration. Thus every packet in BLT is
simultaneously evaluated for which should be serviced next. This guarantees that the highest priority
packet is serviced first. Unfortunately, since there are a limited number of internal buffers it is
possible that the most important packet is not being serviced because it is not currently in BLT.

Promotion avoids this problem. If all of a nodes buffers are full the send buffer available bit
is deasserted. This indicates that no new packets can be created. If the header valid signal is
asserted anyway, a promotion is performed if necessary. If the priority on the incoming header is
higher than any currently stored in BLT, one of the internal packets is promoted. The packet selected
is the oldest, highest priority packet. The priority of this packet is changed to the priority of the
incoming packet This makes the external packet arbitrate correctly with all internal packets.

BLT-42

Apple CONFIDENnAL jaguar BU

Figure 3-15
Packet Promotion

Clock

HValid*

SBAv*

PktTYn~<<J'f
.·.;.:\?\if"

Pri/Strm

NodeID

Addr/Data

Done*

I I I I I I I

I I I I I I I

I I I I I I I I I

:::::::::;:;:::::::::::::;::;:::::::::;:::::

~:~~ ···~iElfJ~!~~:e~:•n~~=E~!~~~~: ~Jiit:~
asserted. No data is loaded and no packet is created. The card must reassert header valid when send
buffer available becomes asserted (it is possib-le to just hold header valid asserted, guaranteeing that
on the first tick that send buffer available is asserted a packet is created).

When send buffer available becomes asserted a normal transaction can occurs. The
promotion has absolutely no effect on any subsequent transaction. A promotion does not even have
to be followed by an actual packet.

Note that since read responses use a separate internal buffer they are never promoted. This
makes it possible to link read responses to reads via priority if multiple reads are launched. Stream
packets will also never be promoted. With proper design a card sourcing streams should track its
internal buff er carefully enough that streams will never block priority transfers.

BLT-43

jaguar BLT Apple CONF/DhN/7AL

Streams

As mentioned in the introduction, streams are used to implement flow controlled writes.
This allows data transfers to take advantage of the highest performance mode of BLT without
sacrificing the ability to conveniently block the flow of data.

There are two parts to streams, sending them and and receiving them. Sending a stream is
identical to sending any other packet. The only difference is in the values asserted on the
priority/stream control signals. Any card that can write a packet is also capable of writing a stream
simply by changing the data in the header. This functionality is fine for a device sourcing only a single
stream. If the destination. chooses to block, the packets will build up in the internal buffers.
Eventually all the buffers will be full and the card will not be able to send more data; a very effective
means of flow control.

This is fine unless a card is sourcing two or more streams. Streams are almost always used for
data dependent operations. If one stream blocks another a deadlock could result. A mechanism
must be provided for a card to monitor the progress of individual streams. The stream full bit
described in the signal section is exactly that. By asserting the stream number about to be
transferred a card can query if there is a packet already in BLT. If so the new packet is not loaded,
leaving buffers for other transfers.

BLT-44

Apple CONFIDEN71Al

Figure 3-16
Stream Status Query

Clock

HValid*

SBAv*

SFull*

Pri/Strm

NodelD

Twist

Size

Ack*

Done*

values for the stream in question on the header lines. The stream full bit is combinatorial from these
signals, so it is the cards responsibility to wait enough time to let the signal resolve. Note that this
signal is always active; it always reflects the status based on the header values currently assened.

In the first tick the card asserts the header values. The stream full bit becomes assened
indicating that the packet should not be loaded. The card changes to a new stream and again checks
the signal. This time stream full is deasserted. The card immediately creates and transfers a new
packet. The packet transfer itself is identical to a normal master read, in particular the send buff er
available signal must be monitored.

With correct use of the stream full signal up to the four simultaneous data dependent streams
can be supponed from each node. This restriction comes from the number of internal buffers
provided by BLT. This is the only place where the number of internal buffers in BLT becomes an
issue. In reality this is only an issue for the system software that manages streams. It must not assign
more cross dependent streams to a node than there are buffers within BLT. It is possible to have up
to 8 streams on a single node, the number of unique stream numbers. Care must be taken to avoid
cross dependencies; when service of one stream requires data from another.

BLT-45

jaguar BLT Apple CONFl/JEN17ill

BLT does not constrain what can be sent as a stream. It is not an error to send a read packet
as a stream. Stream packets are only special in how they react to the skip signal and that they are
never promoted. Similarly, the stream full query can be used to get status for any packet except a
read response.

The other part of streams is their reception. The basic piece of functionality needed is a way
of sifting through multiple streams to find the one that is needed. The skip bit provides . this
capability. :

Figure 3-17
Stream Skip

Clock

HValid* :/
--~----~--~--~--~--~-~. I I I

PktType

Pri/Strm

NodelD

PktHr*

Skip*

Addr/Data

Size

Cmplt*

____________________ __,~

----------------------~ ---------------------· ~ :><B888888888888
-..,...--~--"'l"'-------f, I t I

~ :/
I '--:/"

...._ _____________ /
I:
I '

I I I I I I I I I I

~--:a-ddr--

___ o; __ ~
'4' :~

I I I I I ~--~--. I I I

I ~ :/ :"--/ ________ _
This diagram shows the use of the skip signal. BLT begins by asserting header valid to

commence a slave write. The card examines the header and decides that it cannot use the packet.
The card asserts the skip bit requesting the next packet. BLT presents the new packet, beginning
another slave write. This time the card decides it needs the packet. It waits until packet here is
asserted and does a normal write operation. The skip signal can be asserted any time until the first
acknowledge has been asserted. This commits the card to servicing the packet.

The current plan is for BLT to be able to skip through headers at a rate of one per tick.
However the header valid signal is the only accurate information of whether a header is actually being
presented. While it is likely the current implementation will be able to do single tick skips, it is

BLT-46

Apple CONFIDENTIAL jaguar BLT

possible that a larger BLT will have problems. Skip only has effect if the header valid signal is
currently asserted.

The skip bit selects a new packet for consideration by BLT. The algorithm used is up in
stream number and up in source node, starting from the last stream serviced. Thus stream 4 node 2 is
followed by stream 4 node 3 followed by stream 5 node 0. The next stream presented is always the
next packet in this order (if the only packets available are from stream 4 and stream 0, they will be
presented sequentially). This algorithm is only specifiea to allow the system software to do a sane
allocation of stream numbers. As implied, streams are kept independent by stream number and node
number. This allows up to 8 streams per node, all of which can be fed to a single node. Order is
guaranteed within a SQ:C;~Ol.

interrupts.

The basic interrupt model for BLT is memory mapped. The upper 256 bytes of a cards
memory are defined to be interrupt locations. A write to one of these locations will generate an
interrupt to that card. These locations are overlaid on the card ROM in order to conserve memory
space.

Any card that directly accesses these locations must be able to write at least the the upper
sixteen locations. Thus any interrupt generated by these locations is guaranteed to be accessible by
any device in the system. The rest of the location are guaranteed not be allocated for any other
purpose and are accessible by most devices, so are still quite useful.

. This definition means that it takes 8 bits to implement a memory mapped interrupt access
device. The node ID and the four lowest bits of address muse be adjustable. Forcing the rest of the
bits asserted generates a interrupt location. It is important that 4 bits be allocated co node ID. All
current envisioned systems could be handled with three bits, but guaranteed compatibility requires
the four bits.

BLT-47

jaguar BLT .tpple CONF/lJl:N/7!1L

A card is not constrained to implement any particular number of interrupt locations. A
simple card will not have any, a moderate complexity card may implement one interrupt location.
The only constraint is that they must be mapped as a write operations in the upper 256 bytes of the
cards address space. To guarantee generic access, they should be in the upper 16 byres of space.

No specific value is written to the address. Multiple interrupts may be mapped to a single
address which makes it difficult to guarantee that a value will actually be correct. The large number of
locations is designed to alleviate this problem. Instead of relying on a value that is written, the
address accessed is used to indicate which device generated the interrupt. This makes it important
that a device that generates memory mapped interrupt be able to address at least the required 16
locations.

The interrupt architecture is simple and powerful, given that a card is a bus master. Many
cards are not bus masters. For these cards a translation mechanism is provided through the Mazda
I/O chip that maps a transition on the cards interrupt line into a memory write.

Each of the expansion cards generates an interrupt line that is received by Mazda. As for all
interrupts, the Interrupt Mask register on Mazda contains a bit for each of these interrupts that
controls whether the interrupt is to be passed on to X]S or not.

In addition, there is a provision for each of these interrupt lines to cause a memory-mapped
write to another expansion card. This allows card-to-card communication even if the initiating card
is not a bus master.

The basic idea is that hardware within Mazda is pre-conditioned so that when an interrupt
line is asserted, the hardware executes a write to an address within the "destination" card. The data
that is written is always zeros.

The mechanism used to accomplish this is a very simple Channel Program. It would consist of
the following two Channel Commands:

Loop:
Wait for interrupt, then write 0 to this address
Branch to Loop

Since it is possible for there to be an active Channel Program for each of the interrupt lines,
the Channel Command File in Mazda must have three locations reserved for the Wankel task that
controls this operation. When the task interprets the first Channel Command above, it arms a
hardware module to start looking for the appropriate interrupt line to be asserted. When it is
asserted, the hardware module sends a "write 0" request to the Bus Interface Unit. The BIU reads the
proper address from the Channel Command file and carries out the write operation. The task then
executes the branch, looping back to the first Channel Command. The task will continue to execute
the Channel Program until it is aborted by the processor.

This mechanism can best be viewed as a virtual wire. The reflection of the interrupt to a
specific ·card does not do anything with that interrupt. The card that receives the interrupt is
responsible for whatever actions are necessary to clear the interrupt line.

The latency of this virtual mapping is perhaps an issue. The fundamental latency of a Mazda
task will eventually be characterized. Because of the nature of Mazda this will be fairly accurate. Of
course, for maximum performance direct access to the memory mapped interrupts is available.

BLT-48

Apple CONFIDENTIAL

Erro.rs

This is the ugly part of any bus specification, and that is a feature we have not changed.

Errors on BLT break into two basic classes. The easy ones are those that can be detected
before the initiating device has completed its transaction. All read errors fall under this category.
BLT is also able to detect write address errors when the packet is created. These errors can be dealt
with fairly directly by software because the access that caused the error is still in progress. The normal
method for reporting these errors to a processor is via a bus error .

. The handlIµ:gmijf errors on reads seems to be ab®MP:Ptimal. The error response,p!~~t is

······:::::

possible to do full error recovery. This would be implemented if anybody could come up with a
convincing reason why it should be used. As it stands now, any delayed write error will place the card
in error mode. When a card is in error mode BLT will not complete any transactions to it. All
attempted transfers will result in the same error as the original one. If a packet times out, then all
su~sequent transfers to the device will be immediately timed out.

This protocol is fairly easy for the system to deal with. A card that sends a packet which
generates a delayed error will eventually be informed by the assertion of the delayed error signal. This
is usually linked to an interrupt on a CPU. Eventually the CPU will respond to this interrupt and realize
that it is a delayed BLT error. The CPU must use serial bus to determine which card has generated the
error.

Once this is determined, the card should either be cleared or disabled. The card can be
cleared by asserting the card reset line via the serial bus. The card must then be put through the
normal initialization procedure. Finally the card can be reenabled for transactions. This is essentially
an identical procedure as is followed for live insertion of a card.

BLT-49

jaguar BLT Apple CONflf)f:NllAL

If the card must be disabled, this can also be done over the serial bus. Simply clearing the
configuration bits makes the card invisible. This will cause all subsequent accesses to generate an
address error.

The system software implication of this protocol are discussed later in the software section.

Serial Bus

The serial bus is the mechanism for accessing state internal to BLT.. It is used for
initialization and error handling. The protocol is not defined. This means the address range is also
unknown. The registers specified in this section will be mapped into the serial bus address space
somewhere sensible. The serial bus itself is mapped into Jaguar address space. This has also not been
defined.

Like BLT the registers are perfectly symmetric. The registers for one node are defined
although four copies actually exist.

One of the interesting points on the error handling is that it is independent of who caused
the error. Any device can service any error. This third party error handling should free most cards from
worrying about delayed write errors.

The following interface control register (ICR) is used for card configuration and
initialization.

Figure 3-18
Interface Control Register (ICR)

figure 7.1 (ICR register bit placement)
· The three card configuration bits correspond to what is currently on the external

configuration pins. Similarly for the retry bits. These are only valid while the card is reset and BLT is
disabled. These bits are read only.

The BLT configuration bits configure the BLT interface. If these three bits are all ones, the
interface is disabled and all lines are tri-stated. Setting these bit to a valid configuration value puts
the BLT interface for this node into the mode. These should be set to the value returned by the
configuration bits. These bits are read/write. The retry bits are identical in that they should be set to
the value returned by the card configuration bits. They are also read/write.

The card reset bit controls the reset line to this specific card. If it is low, the card is being
reset. This bit is read/write.

BLT-SO

Apple CONFIDEN17AL jagum 1-J/.T

The error mode bits are also read/write. If the error mode bit is assened high then the card
has generated an error for some transaction destined for this node. Sening this bit to a zero removes
the card from error mode. If this bit is a one then the error type bit is also valid. If the error type bit
is a zero then a timeout was generated, if a one then a card error caused the problem. Note that these
bits only become assened for write errors. Read errors repon this information back immediately and
do not demand any internal state change.

The error status register (ESR) is used to access error information.

Figure 3-19 :::: }
Error Status Registf;!K{$$1)

.·:<:;::-:-:·Y·" U:~{f(/:f:

=~=~fCf?::===t -::::;::::.;:;:;::::::-·
.-:.;:}(.................... ·:·:·:·:

. : . : . ;. :;:::··· : :: :::::~j([~t~~~~1~liJjf f j~[:f :~~{~ ~:~:i~~

:::::::::::::::::r:~~:=~:=.':':::.',·_,·.! .. :i ... ! .. ::-•,:.,''~.'!:,~.'•,.
f/\f{jf
:·=·=·::;:.:==-=-··:-::\fr\: :-:.:; :}:::::: ·,·. t
., ,..,.:: } ::::

•rn:r,rn:• ·_i,.!.•_!.!_!_!:_!.1_!.1_!.1

'.{ ::::;:
;:::::;:;:::

set its ESR and nP®.l•WUl set its ICR.)<:.]:.it: •'•:.iif ::;::: I?•:
=-=·=·:-:.:-:-);:;:\:\ :w:::\ :::::);:;:;:::;:;:;::::.;:::::::::.-.·

Figure 3-20
Data Path Configuration Register (DPCR)

There is only one meaningful field in the datapath configuration register, interface mode.
This should be set to the same value as the BLT configuration bits in the ICR. The only reason for
these registers to exist is to inform the two datapath chips of the card mode.

BLT-51

Apple CONFIDEN71AL

Section 4

Electrical and Physical

Signal 11IJlll:~jf ication

At one point high voltage power distribution was considered. This was thrown out because
it did not provide sufficient savings to warrant the excess board complexity.

Physical Specification

Size

The goal is boards as large and as square as possible. Current personal computers seem
designed to make layout difficult. Connector space is extremely tight on Nubus, and worse on
MicroChannel, EISA, etc. Rectangular boards force extremely convoluted routing.

The optimal shape seems square, and if out of square then the long edge should be the
external connector edge.

BLT-53

jaguar BLT Apple CONFl/Jl!N71AL

As a further argument for large boards, this is one of the few significant differences between
personal computers and workstation. Current workstation have large boards that allow high
functionality designs to be easily produced. This seems to be one area where personal computer
should migrate in the direction of workstations.

The size of boards has a huge impact on designs. Small boards force either limited
functionality at high cost due to exotic packaging. In general, the larger a board can be, the cheaper
a given amount of functionality will be (with some obvious· non-linearities at the low end). PC board
area is much cheaper than dense ASICS, multilevel boards, or double slot cards.

The current target from the bus designers is around 8 inch square. Product design is lobbying
for around 8 inch by 6 inch, which is slightly less then current Nubus cards.

Connector

The connector is currently undefined. There are many available that meet the gross electrical
needs. If a through hole connector is used, the current leaning is to a 160 connector Eurocard 4 row
connector. This is a longer fatter Nubus connector. This is probably the cheapest option for a two
piece connector.

There is no current leaning toward any specific surface mount connector. Research
continues.

The connector issue could be profoundly effected by the decision on live insertion/removal.
This is a late arriving possibility so little investigation has been done into suitable connectors.

The current front runner is the Metral connector from DuPont. This is the connector
specified for use in Future Bus, so volumes should be high and prices reasonable. This connector
offer multiple level connections. It also comes in both surface mount and through hole.

Live Insertion

One of the goals of Jaguar is that the user will never turn the machine off. This is rather
difficult to achieve without a live insertion bus. The design of BLT makes live insertion and removal
quite simple.

The principle ingredient in a live insertion device is a multilevel connector. This connector
guarantees that some pins make connection before and break connection after all pins at other
levels. This allows sequencing of power and signal connection to guarantee that the card comes up in
a known state that does not conflict with the rest of the system.

The method proposed for jaguar requires three levels of connectors. The first level contains
all of the ground pins. This provides static protection by allowing excess charge to be dissipated
before the board is inserted. This is one of the most important items for safe card insertion.

BLT-54

Apple CONFIDEN71AL jaguar Hl.T

The second level consists of all power lines. All other signals are on the third level. The only
other special adaption is that the card must have a resistor to pull the board reset pin active when
ground is applied. This guarantees that when the signals are connected the entire board is in the reset
state.

The other half of live insertion is in BLT. BLT actively senses if a card is in place. If no card is
connected all signals are ui-stated including the card reset This guarantees that when the card is
inserted all BLT lines are also tri-stated. It also means that the card remains in the reset state once it
is plugged in, thanks to the resistor on the reset line. This allows the card configuration bits to be
read by BLT, which uses them to detennine that a card has been inserted.

. First, ~.:user]iforms the systemjhat a board\$,)jriti@./be disabled, Jn hardware:::~i means

BLT-55

Apple CONFIDEN77AL

Section 5

Software Interface

·.i_~-~~-~~-~!.~!:_=_~-~~-~-~-~-~=.·:_:·.'.~.=.~.=.=.=~= .. ,~.~,=.:i.=.r.'·.~.=~.=~-~~-=~-.==.·.=.~.=.== ... · .·.'·':':'·:·:':'·:'.:':'_,'·:·.,:_,,.

1

,1,:::_

1

,_:,_:,i:l'l:!:,•1,.•i_:-':

1

::,

1

:

1

:,i:i.=i:1 __ ,1:1 __ ,l.l.i_:_1·,1.1.1_: __ .1._!l .. 1.·_1,i.i,i_I.=.=.·.:.·_.:,·_:,:·.·,'.:.;;_::_·· ..

:::::::::::::::::::·:;:::::·:·:·:

F 0 rm at ,!~11111111111:1111

·=·=·:···:·:·:·:·:·::'.·:·>'.·'·"

Wheri iriltialiiing a card, the CPU will read 16 bytes from the card, from the last sixteen byte
locations of card space (sfff fffO-sfff ffft). It will then examine these for valid byte lane
combinations. In order to specify a byte address as valid, the card must assen a special value based
upon the address. For the purpose of this description, the term lane defines the low three birs of the
byte address used for accessing that byte. This corresponds to the byte lane if the card is 64 bits
wide.

The special value is the low nibble assened to byte lane and the high nibble assened to it
inverse. Thus a valid byte at the highest address would be specified as 87H(byte lane 7, 0111 in
binary, its inverse, 1000 produces 1000 0111 of 87H). This pattern is used for the highest eight bytes.
The lower eight bytes use the inverse of this pattern.

A card that asserted valid ROM data on all byte lanes would be read as the following

8 9 A B C D E F
7 6 5 4 3 2 1 0

BLT-57

jaguar BLT

7
8

6
9

5 4
A 8

This would consume 16 bytes of ROM.

3 2
C D

1
E

0
F

Apple CONF/DEN17AL

This can be contrasted to a 64 bit interface that ~esponded on only one byte lane

zz 9 zz zz zz zz zz zz
6

zz 6 zz zz zz zz zz zz
9

Where zz indicates a byte not driven by the card. This card-is responding to byte lane 6. This
encoding consumes 2 bytes of ROM.

As a final example, a 32 bit inte1face with ROM on a single byte lane, no tricks with the twist
lines

zz zz A zz zz zz E zz
5 1

zz zz 5
A

zz zz zz 1
E

zz

This encoding requires four bytes of ROM. The card is responding to byte lane 1 of the 32 bit
interface. ·

By use of this design any combination of byte lanes can be encoded. The CPU will use those
byte lanes exclusively for ROM access. The rest of the format block is encoded as is shown in the
figure 8.1.

Figure 5-1
Format Block Description (ESR)

As shown, the format is slightly different from that defined in Nubus. The features are all
similar. The rest of the structure is defined exactly as for Nubus. Consult the Nubus cards and drivers

BLT-58

Apple CONFIDEN71AL }tlguar BLT

manual for a description. All offsets are defined in ROM bytes, which is independent of the number
of byte· lanes etcetera. The motherboard will conven to the proper address before accessing a
resource.

Code within the ROM is defined to be 88K binary. No higher level language is defined. There
does not seem to be a compelling reason to do anything more sophisticated.

Routines

This section will evenrually contain a full description of the routines the system looks for in
the card ROM. Obv~gµ§iY a large amount of this will b~,,,,4.m~ned by the Pink folk. Tht;:::SH.rrent

;~-~ro~~mt~inil · ,f)

Exit Low

:w1::r:::::::::::::::,:::':::.:::::::::::::::.:::::::':-:::;::::::::::::::::lrtr1

.::@~~~~~:: m~~~lWlt~~~f)~~l~i~It~ .. ::::::::;::- ::

ll'~-~i~·
/(~~r

):::::?:·
··;:;:;:::::·

.):{:;:=

to the card and the reset line will be tristated,
resetting the card.

The card that received a write error may alSo need some error recovery mechanism. This will
likely be implemented in the interrupt routine, as that is how the motherboard is informed that it
must do third party error servicing. All of these routines are optional.

BLT Support Routines

BLT requires some additional system support beyond just loading the ROM from cards.
Software plays an integral role in initializing and configuring the interconnect

Initialization

Software is responsible for bringing cards into operation. The obvious time when this occurs
is at initial power up. The live insenion capability implies that software must also be able to bring a
card up at any time. The first operation in either event is finding cards that exist.

BLT-59

jaguar BLT tipple CONFJDJ:Nl1AL

The mechanism for finding card is very different from a conventional bus. BLT defines that a
card asserts certain lines to certain states when in the reset state. Software has access to these values
via the serial bus. A card is discovered by finding a defined pattern assened in a node that is reset.
In order to find cards that are inserted with the system running, software must occasionally (every
couple of seconds) scan all nodes for new devices.

Once a new card has been identified it must be enabled. This is done through the serial bus
as well. Software simply sets the card configuration bits in the appropriate registers and BLT is
active for that node. At this point the card has a working bus, . but is still in reset state. The last
operation the CPU does is cleari the reset bit. Again this is done via the serial bus.

This should bring the card into operation. Soqie time should be allowed to pass (this will be
specified) and then the ROM should be found. This is done by reading the upper most 128 bits of the
cards address space. Just as in Nubus, the patterns detected define how the ROM is connected. This
allows software to read the ROM without defining how a card must implement it.

From this point on the process is identical to Nubus. The test pattern is checked to verify
that the card really is there and working properly. If everything is okay, drivers can be loaded and the
cards firmware initialization completed.

If no valid information is found, then the card ROM is probably incorrect or nonexistent.
The node should NOT be disabled. The system will refuse to admit it is there, but tasks must be able
to access it. Hardware designers would shoot us if they had to have a working ROM to have any
access to their card.

The live insertion brings up an interesting point. Can an application be informed of a new
device being insened or can this be done only at application start up?

Card Disable

The card disable software provides a clean method of removing a card. The operations
necessary for the card itself are fairly simple. First the card disable routine must be called. This will
allow the card to take any required actions such as saving state. Next the card is reset by assertion of
the reset bit Finally the BLT interface is disabled by clearing the configuration bits.

The more challenging aspect of card disable is dealing with applications. Each must have
some mechanism by which a resource they are using can go away. This could range from the
application dying to something elegant like executing a software fallback for a renderer. This same
ability is necessary for error handling.

The functionality of card disable should be provided to the user through something
equivalent of a control panel that is always accessible to the user.

This is actually quite similar to the shutdown item on the Macintosh. It allows all
applications to take whatever action is necessary to prepare for this catastrophic event.

Error Handling

The error handling model in jaguar must differ from Macintosh in one important way,
elegance. At the very least, an error in hardware should only impact the tasks using that piece of

BLT-60

Apple CONFIDEN17AL

hardware. In no way should the loss of a card crash che syscem entirely. This is particularly irnponanc
given the integration of the phone with the machine. The phone should be available all the time.

The error handling model on BLT is very limited in order to simplify the system as a whole.
When a card dies, that particular node is the only one effected. All subsequent packets are errored
internally to BLT. System software must take whatever actions are appropriate for hardware. The
standard model would be to reset the card the first time it fails, and disable it the second, Better,
the user could be asked after some ridiculous number of failures. The bottom line is that the error
model defines that an error is ultimately fatal to che card.

As discussed i11Jpe card disable section, this brings,,,,qp)µt interesting problem for th~,,§ygem;

:?. ~-p~~:~~m:i~~·~:w~~~~ :~'°~.:.
Wiison

There is another aspect to the separation of source and destination. Every card added to a
system adds some set of features. A video input card allows video to be entered into the system. A
frame buffer allows graphic display. As much as possible, the capabilities a card has should be
defined by the card function, not by what has to be done to make it work. Video input and graphic
output have no fundamental connection, yet almost every card on the market that does real-time
video in has a built in frame buffer. This is done simply because the bandwidth of video is too high
for most busses. BLT solves this problem but that is only half the battle. In order to truly separate
the two halves, video input and graphic output, a protocol must be defined up front that both can
conform to. This is exactly what Wilson does. It defines the fundamental protocols that are
necessary for device independent graphic transfers. All devices that produce pixels (renderers, video
capture, decompression, etc.) conven the pixels to a defined format. All destinations (frame
buffers, memory, compression, etc.) accept that defined format.

Another idea that Wilson is based on is that write operations are much higher performance
than reads. As mentioned before, BLT is much better at wriiing than at reading. This is actually true
of almost all transfer mechanisms, from busses to networks to whatever. Wilson is based entirely on a
write model. This causes Wilson to be a distributed OMA system. A card writes its data across BLT

BLT-61

jaguar BLT llpple CONF[f)EN77AL

to a destination I. This write occurs in a fixed format. Each card implements a small piece of the
Wilson system. This makes its capabilities grow along with the system.

A further idea of the Wilson system was coherent expansion. A card can be added to the
system that adds a new "resource" to Wilson. Video in, compression, resizing, rendering, and
compositing are some graphic functions that could be added. Each of these are peers to the
functionality provided on the motherboard. They are all accessed by the same model, and all share
common formats. Wilson is not only a DMA system, buran expandable processing engine.

Further, Wilson is in no way limited to graphics. The functionality implemented on the
motherboard is almost exclusively graphics oriented, but this is simply because that is the
functionality that was needed. The Wilson system defines the interconnect mechanism, it makes no
comment on the particular data transfered. This is done by the resources being used. BLT and Wilson
could form the foundation of a world class frequency analyzer, a powerful image processor, or any
other data processor.

All of these capabilities are realized with one simple mechanism, streams. The Wilson section
discusses its use of streams. This section previously covered how BLT implements them. They exist
so that extension devices can cleanly plug into the Wilson system and increase the performance of the
entire machine.

The hardware to implement streams from cards is defined in this document. What is as yet
undefined is the mechanism for extending the Wilson software architecture to include extension
devices. This will be a long and involved development. Eventually, the Jaguar cards and drivers
manual will have a large section on how to build a card and write a ROM that is Wilson compatible. At
that point a user can plug a third party frame grabber in, and get a clipped, alpha blended, video
window on the motherboard display.

1 It should be noted that the Wilson chip on the motherboard is capable of doing read operations because
realism says some cards will not implement Wilson. This mechanism is much lower performance that writes.

BLT-62

Apple CONFIDEN17AL jaguar BLT

Section 6

..

BLT Hardware Implementation

I3LT-63

Apple CONJ;'/DEN17AL

Section 7

Issues
.... :::::

useful?
Is error recovery ne.!l~~fy or

.::::::::{:::::::::::::::::::::

ULT-65

S. Apple · Jaguar I/0 Subsystem

Apple CONFIDENTIAL

Apple CONFIDENTIAL juguar JJ() ERS

Contents

.{(~:~:~:~~~;~:~:;:~ ·==~:~:~:rr;:::·:·=

... MiStellaneeus .. adf ... Support , •. ,,...,...,, .•. ;.,,., ... ,.,.,., ...• ..I/O . 7
Sample Rate Conversion .. .1/0-8
Booting Support .. .1/0-8
Reduced Power ControlI/0-8
Interrupts .. .I/0-8

Issues .. .l/0-8

I/O Architecturel/0-9

Terminologyl/0-9

Channel Prograrns .. .1/0-10
Channel Program OrganizationI/0-10
Channel Command Definitionl/0-10
Channel Program Pointers .. .I/0-13
Channel Program Examples .. 1/0-13

Ethernet Transmit. .. .I/0-13
Ethernet Receive .. .I/0-14

1/0-i

jaguar 110 ERS Apple CONFIDt.'N71AL

Aborting Channel Programs .. .I/0-15
Asynchronous Events1/0-15

Interrupts .. .1/0-16
Programming Model, and Multiprocessor ConsiderationsI/0-17
External InterruptsI/ 0-19

Mazda I/O Controller .. ~ .. 1/0-21

Wankel ProcessorI/0-22
ArchitectureI/0-22
Instruction Set :1/0-24

ALU Operations .. .I/0-24
Loads and Stores .. .1/0-25
Branches ... I/0-26
jumps ... 1/0-26
Other Instructions ... I/0-27

Description of Operation .. .I/0-28
Program CounterI/0-28
Wankel Stack1/0-29
Task link File1/0-30

TaskO .. .I/0-30
Initialization .. .I/0-30
Adding a Task to Wankel. ... I/0-31
Removing a Task from Wankel .. I/0-32

Wankel InterfacesI/0-33
CC File1/0-33

Individual task code .. 1/0-34
Subroutine common to all tasks ... I/0-34

Bus Interface Unit1/0-35
BIU Interfaces .. .1/0-35

XJS/BIU Interaction .. .I/0-35
Wankel/BIU Interaction .. .1/0-35
DMA Channel/BIU Interaction ... 1/0-36

1/0 Control Flow1/0-36
Channel Program Execution .. .I/0-38
Bus Interface Unit (BIU) Operations1/0-39

CP pointer write to CPP file (in Mazda) by XJS1/0-39
CC read from memory due to CP pointer write to CPP file (in
Mazda) by XJS .. .l/0-39
CC read from memory due to Wankel setting a Wreq (to get the
next Channel Command) ... I/0-40
CC write to memory due to Wankel setting a Wreq (to write back
completed Channel .Command)1/0-40
Wankel read of a CC ... 1/0-41
Wankel write of a CC .. 1/0-41
DMA read from memory .. 1/0-41
DMA write to memory1/0-42
DMA read from a device .. .1/0-42

l/0-ii

Apple CONFIDENTIAL jaguar /JO ENS

DMA write to a device .. 1/0-43

Generic 1/0 Modules1/0-43
Wankel Interface .. .1/0-44
BIU Interfacel/0-45
I/O Device Interface1/0-46

Mass Storage .. :1/0-47

INTRODUCTION .. .1/0-47

.:~~~~:i~~d~ll:::·-_~·:::::.:-:--·~:~:::ii·:u,~jl~f ~~
:'<':':'::\='· -":'='=-======:=:= Host Interface Reg1s.te:rs:,,,,,,,,;,,,, ,,,,,,,,,.,,,,,,;,,=>=•=>=•=;,;,.,1/0 SO

IntrodJetitiit~]~iit .. Ji@Miili::rnm rnu;:;;:;;;;m; o-6 7
••.•. ••• • :·:··=:·:=· ;.·

::::::·:·:· :::;::::::::::::::::::::::::;:: ·.·:···:·:-·-:-:-:·:·:.·-:-:-:-:.:-;.·.·.

·1~t!ll~t~~~~c:~::::::::::::I•:::::::::::::::::: ::::::::::::: l!ill!;g:~~
ralph standby mode .. .1/0-75
ralph hardware .. .1/0-75

Data Access Arrangement (DAA) : 1/0-77
Analog Interface System ... I/0-78
Automatic Gain Control. .. .1/0-80

ralph modem pseudo-devices1/0-80
Programmatic Interface .. .I/0-81

ralph configuration profile structure .. .1/0-83
FunctionsI/0-84

spam: The Signal Processing Access Manager .. .l/0-90
spam buffer management .. .I/0-90
spam channel control program .. .I/0-91

ISDN Basic Rate Interface subsystem1/0-91
Overview .. :I/ 0-91
Implementation .. I/0-93
IDC Pin nomenclature .. .1/0-94

1/0-iii

jaguar 110 ERS 11pfJle CONFWl:'N77AL

Wankel mux/DMA services pin nomenclature .. .I/0-95
sec pin nomenclature .. .I/0-95
IDC serial busl/0-96
ISDN Standby PowerI/0-97
brian operation .. .I/0-98

Network .. ! :" ... :I/0-99
Introduction ~ ... J/ 0-99
FriendlyNet Interface .. .I/0-100
Asynchronous Interface n .. .I/0-102
Programmatic Interface .. ~1/0-104
LocalTalk Interface .. I/0-108
PBX I sync modem interface .. .1/0-108

Network/Telecom clocks .. .I/0-108

Sound facilities .. .l/0-109

I/O Section ... 1/0-109
HardwareI/0-109

Output .. :l/0-109
Input. .. 1/0-110
ITI UAC 3000 Stereo CODEC ... 1/0-111

Features1/0-112
Pinout .. I/0-112
Serial Interface .. I/ 0-113

Software .. .I/0-115
Introduction .. .I/0-115
I/O Section Channel Control Word Definition1/0-116

Sample Rate Converter (SRC) .. "1/0-121
Introduction .. .I/0-121
Dataflow1/0-122
FeaturesI/0-123
Software ... I/0-124
HardwareI/0-128

TimingI/0-130
With Interpolation Enabled .. I/0-130
With Interpolation Disabled ... 1/0-131

Hardware Architecture ... I/0-132
Sample FIFO Buffer .. .l/0-132
Coefficient Table .. I/0-132
SRC Computation Hardware .. .I/0-134

Software Simulation .. .1/0-136
A Note on Sample Rate Conversion .. 1/0-137

How interpolation (upsampling) is performedl/0-137
How decimation (downsampling) is performedl/0-138

Miscellaneous Interfaces .. .1/0-141

I/0-iv

Apple CONFIDEN11AL jaguar I/O HRS

. ROM1/0-141

CLUTI/0-141

Elmer1/0-142

Frame Buffer Vertical Line Counter:.1/0-143

System Timer .. : .. .1/0-143

Hardware

Mass Storage .. _ .. .I/0-158

I/0-ReferencesI/0-159

1/0-v

jaguar 110 ERS Apple CONFllJt'N17JtL

Jaguar 110 Subsystem

jaguar VO Subsystem Diagram

Apple CONFIDEN11AL }llguar 1/0 t:N.S

Section 1

Introduction

If one takes to an extremely low level view of a system, there may be no 1/0 directly visible. For example, if
one looks at a Mac from the CPU bus level, there is no 1/0! There are just some chips which exist in the address
space that have some funny side-effects. If software accesses these chips in exactly the right way, some
"1/0" may happen. The point of this obfuscation is to raise the reader's consciousness to the fact that the
concept of "I/0" depends to a large extent on one's perspective. It also points out that on the Mac of today,
most of what the user considers I/O is being managed mostly by software, not hardware.

With the above discussion in mind, jaguar has divided the expansion world into two different pieces. The
I/O Subsystem (i.e., Mazda and its related I/O chips) deals with discs, built-in networks, etc. BLT deals with
expansion ~ards, some of which may be performing I/O services; however, these cards are considered as a
different class, separate from the built-in lib devices.

1/0-1

jaguar 110 ERS Apple CONF/lJENHAL

What is NOT 1/0?

Within Jagl, the Video Decompression and BLT slots are not in the same category as, for example, a
SCSI disc. The 1/0 Subsystem (and,hence, this chapter) deals only with the interfaces which are
directly managed by Mazda.

Atomic Unit of Transfer

Upon examining any of the 1/0 devices, one can quickly identify a unit of transfer below which it makes no
sense to discuss. For example, in the SCSI hard disc world, a single transaction consists of the command
sequence (6-10 bytes) followed by a data transfer stream which is at least a sector. It is senseless to discuss
individual bytes of the transaction. Another example is the LocalTalk packet, whose transmission actually
consists of 3 separate HDLC frames over the wire, with an associated protocol. For the purpose of
discussion, we will call this lowest level unit the Atomic Unit of Transfer (AU'I').

Note that for some devices (e.g., the keyboard), the atomic unit of transfer may be a single byte. There are
also some devices for which it makes sense to talk about individual bytes, but which are often treated in
groups anyway. For example, even though the ASYNC serial interface deals with single byres, they may be
logically grouped when, for example, an XMODEM transfer is taking place. And, there may be devices for
which an AUT is 1 byte, but which, for efficiency reasons, may be grouped if several bytes come in within a
small time window; e.g., the case of ASYNC output, where the source of output may be a line of data which is
presented to the 1/0 system as a unit.

The point of introducing this AUT concept is that to the relatively low-level 1/0 driver, it is the AUT which
would ideally by handled by the hardware sub-system. I.e., the SCSI driver would like to present a transactior ..
request to the hardware, allow the processor to be used for other work and be informed later, with a single
interrupt, when the entire transaction is complete. The AUT is the smallest unit with which software should
(ideally) be expected to deal.

Devices of Interest

Before discussing how to manage the 1/0 devices, we should first list the devices which are potentially of
interest in the Jaguar world. Here are some of the devices of interest, along with an idea of their AUT sizes:

KeyBoard/Mouse: The keyboard and mouse have very small AUTs; as supported on ADB today, each
transfers 2 bytes per transaction.

Hard Disc: The smallest AUT is typically a disc sector; 512-1024 bytes.

MO Drive: Like the Hard Disc, the AUT is a sector.

Floppies: Again, the AUT would be a sector.

CD Quality Stereo Input: The unit here depends upon the response time required. The absolute smallest AUT
would be 16 bits. per channel, or 4 bytes.

CD Quality Stereo Output: The unit here depends upon the buffering capabilities of the DACs; assume the
same size as for input, 4 bytes.

l/0-2

Apple CONFIDEN17AL jaguar 1/0 ERS

Serial (RS-232/432): 1 byte AUT; however, many protocols (e.g., XMODEM, Kermit) would use a higher-level
AUT which would be on order of 128 bytes.

LocalTalk: The AUT here is an entire packet; this is a maximum of 600 bytes, more typically 512 +protocol.

LAN: The AUT is a packet; on the order of 500-1000 bytes.

ISDN: Since the data transfer protocol is HDLC, the AU't would like to be the HDLC packet; this is somewhat
dependent upon such things as the lower level protocols of the chip set to be used.

Analog Phone: Except.Jgr small sequences to exercise the ~.!.l....~~tablishment, etc. most of th~ .. rn~J data would

look like s~~,:~::::ii~·~~lllllliJ .. t:::::ll!lllJllllllllllllllJlillli .. j::::.1:\i!jjjljJlllllJJJJll\IJ!

initiating a Channel Program, software intervention is not required until the command sequence is finished.

Note that the term "hardware" above refers to the combination of hardware and software of an
implementation. In particular, a high-end system - like our first box - would have all of a Channel Program's
execution performed in hardware (within the 1/0 Controller chip). However, a low-end system may make
tradeoffs, even to the extreme of having all of the channel command processing being done by software.

The Channel Programs are sequences of Channel Command , which are (aligned) 8-byte "instructions" to the
"channel processor". Each command word consists of:

I Command I Flags Count

Address

The Command byte is interpreted by the channel processor (Wankel); it would typically be something like
"Read a Block", "Write Commands to Device", etc. The Flags byte is used to specify sequencing options (e.g,
DataChain). The Count and Address fields define where the associated data for the command is located.

1/0-3

jaguar 110 ERS Apple CONFIDEN77AL

Note that the address is a physical address; the system software must perform the necessary page locking,
page mapping, etc. before initiating a Channel Program.

The Ready and/or DataChain flag bits allow sequences of Channel Commands to be formed into a channel
"program". Many Channel Programs simply consist of a vector of channel command words. In order to
provide more flexibility in the organization of Channel Progr,ims, a Branch command is provided whose
Address field specifies the new start of a Channel Command sequence; this provides a "branchirig" capability
for Channel Programs. -

This "branching" capability is provided as a convenience to link separate vectors of Channel Programs into
one logical sequence. Unlike normal programming, there are no explicit conditions which can be tested, so
there is no equivalent of a conditional branch in the architecrure.

As a simple example of how Channel Programs are used, take the case of a SCSI transfer. The application will
make a call to the system asking for data (say, from a ftle). The file system , in turn, figures out where in the
file (and which device) to relevant data exists and calls the disc's Access Manager. The Access Manager locks
the relevant pages, obtains the corresponding physical addresses and creates a Channel Program. The driver
then informs the VO Controller of the desire to initiate the new Channel Program. After initiating the
operation, the XJS is completely free to continue processing, with no overhead until the controller signals that
the Channel Program is complete.

Asynchronous Input
One class of VO does not, unfortunately, fall within this simple model; namely, unsolicited and/or
asynchronous input. Examples of this are network input, keyboard and mouse events, etc. The reason that
these cause problems is that they occur at unexpected times and an arbitrary number may occur before the
CPU can get around to processing them. Unlike, for example, reads from a disc, input data from the keyboard
is not explicitly requested.

In terms of the channel program paradigm, these inputs have two sticky issues:

a) How does the controller know wh~re to put the data?
b) How does it inform the CPU of where and how much data arrived?

The solution to this class of transfer is to use Channel Programs to establish buffer areas using normal Read
commands. By setting up a sequence of such Reads, an arbitrary number of buffers can be established to
handle the worst case latency requirements (i.e., the maximum number of input events which could be
expected to arrive before the first ones are handled and the buffers reused). In addition, the Flag byte of the
each Channel Command can contain an "update" bit which will cause the final value of the Address and/or
Count fields to be updated to the original Channel Command (thus, overvvriting it) which will indicate the
length of the incoming data.

Jag1 Implementation

On the Jagl,the VO Controller chip implements all of the Channel Program processing. Instead of having this
all done by "hardware" in the sense of state machines, etc., we are proposing that the chip include a processor
which implements all of the command interpretation, results pdsting, etc. under "program" control. Hardware
resources are applied where the actions are well defined and, hence, easier to guarantee "correctness".

l/0-4

Apple CONFIDEN77AL jaguar 1/0 ERS

Mazda, the Chip

All of the 1/0 within Jagl is controlled by a single controller chip (Mazda) whose over-simplified place in the
system can be represented as in the following diagram.

Mazda XJS Bus

(110 Controller)

Ilnnashii'gdhley abs~,,,::_ .. :l=_ ... =~_ .. :=',_ ... =;·_ .. ·'i.·.= ... ·';·_ '-.' ... ';;·,_ '.= ... ·'l,·····'z:_ .. ·';·' ... ··'';,= ='_.·':,:.=_,··.' .. =-,.':_='.'i··':.'d.::.';·,' .. ·';·, ... ·';,·····'~' ... ·';:·····';:···':·:·' ·'·,_,:.'i=_ .. ::,• __ ,:·=,:·_= ... ·';;, ... ·=·'·· ... ·':···'i.·.= =;·.· ... ·':_' ... ·'l= ... =·.:.' ... ··'".····'·,.=: .. ';·.··'1._ ... ·'J·:.·,· .. :,. the ch1'p's or:::gattn:r1··:zat::::ti:::~,ot:.nt::::l:::~oo.····'',1 =·',1 ... ·'·=,! '•.~ ... ··':~ ... ··':i·····'~ ... ·':·· ... ··';: .. :!.·::_:· .. '~.: :: __ =!.,:=!.··'L_.=!.:l ... ··'· ... ··'j ... ··''.· ... ··',::! ... =': __ .:·:···_::.1 .. :·: ... ='·:,m: __ .=!':···'i,; __ :!.:_,1 .. =···' :·; ::·.j .. ··'l.····':.~ ... ·',: .. ·'i•j.····''. .. l.···'·.:!.·:·.1 ... ··'',' ... ··'',i .. ···'·,·j·····':· ... ··'[!:o:I=l:::1::0Iwm· ::gf·.::::::::::::::::::::::::t::::::;:::rn::t:::::::rn::::1:1JJJ)llj.!/JJJJ/i:IJJilj)JjJ!/)/.IJl·Jt:::;;;:fJ:

--~ ... -~.U._~_. --------~-UN·:JW·""·"-'------·
rtrt::::t:::::::=:::::::::::::::::::::::::::::::::::::·:t';:;:;:::;\}8::;~ngine :::::::::::::::::::::::::::::::::=:::::::

(Wankel)

XJS Bus OMA Bus ~ --...-..----+-----------1 OMA Central
Re_g_ister Bus J • ,~ J ~ J ~
----~~ ~.....__~ __ ..._~~---

~~ , ' ~ , ' ~~ , '
l IOM j [IOM] [IOM]

~~ J~ J~ , ,, ,,
Note that while this diagram shows how the parts logically interact, it does not necessary correspond to the
actual partitioning within the chip.

1/0-5

jaguar I/O ERS Apple CONFIDEN71AL

Mazda is composed of three types of blocks. Wankel is the processor section; it is composed of an 8-bit .
data, 16-bit instruction CPU. Details on this engine are described later. The DMA Central block comprises a
shared XJS bus interface which manages all interactions with the System Interconnect. The third type of
element are the 1/0 Modules (IOM), which contain the individual hardware logic for each specific device
interface.

Wankel, the 1/0 Engine

Wankel is probably the most ·interesting part of the chip. It consists of a simple processor with one unique
design criteria; it implements task context switching in hardware (one clock!). Thus, the code for the engine
consists of a set of tasks (at least one for each 1/0 device) which is designed to yield to other tasks whenever
the task needs to wait for something (e.g., for a read from the I/O device to complete). In general, under
11idle11 or "waiting" conditions, each task requires 3 clocks. Assuming that the engine is running at 1/2 of the
processor clock (thus yielding a 25 mip engine!), this task overhead is only 150 (120) nsec. Note: the code
must be written to sprinkle 11swtask11 instructions in order to guarantee latency requirements of the worst case
device:

The point of providing such an engine is that every device is being serviced "simultaneously". Thus, instead of
relying on the (serial) services of the XJS to drive the devices, with latencies of each device adding up, all the
devices are running at full speed at the same time, freeing up the XJS to do useful work.

In addition to managing the Channel Command processing, the Wankel also implements the actual
"commands" for those devices which require non-trivial software interactions. The messiest of these devices
is probably the SCC. The abstraction of the Channel Programs allows the system side of the world to think in
terms of LocaITalk packets. Wankel implements this abstraaion by performing aU of the Link Access
Protocol (which is incredibly messy!) itself.

Even though Wankel is very fast, it would not be able to keep up with the worst case transfers of data from all
devices simultaneously. For normal data transfers (i.e., where no special processing is required), Mazda's DMA
channels perform the actual transfer of data between the device and memory. While the DMA transfers are
going on, Wankel's sole job is to manage the chaining of Channel Programs and watching for termination
conditions from the device. Thus, the transfer rate of a device is dictated by the it and the memory system,
not the speed of Wankel.

l/0-6

Apple CONF/DEN11AL

1/0 Modules (IOMs)

The I/O Modules all have the following general organization:

Address Data

Reg Bus

./:!!=~::::?'•·
::::::::::·

.::·:··=.

Address

OMA Bus

Add res~•'•''''''''''''''''

J::~;:,:::1
,J:!!iii!il!~ili!l:!:i'!!!:!1il!:!1!i!!1i!i11i! __ .,,

f !f lf lllllllllllllf if jllll
1
1[1llllllf II

jaguar J/O ERS

Daa

~1 ~ts~fJ!l~lf!\l~:::~}c~~r ~c~~:i~e;i~r1i'l'11\~~t~~0~e ~~~~~~ ~1~~"~~~i;~ote
Engine; the DMA logic provides maximum bandwidth without any direct involvement of the I/O Engine
(after the DMA operation is started).

Device interrupts are managed by Wankel. In most of the devices, the occurrence of an 1/0 interrupt does
not signify that a whole transfer is complete, merely that the next stage must be executed. For example,
today's SCSI manager (and/or device driver) receives multiple interrupts (e.g., when a device re-connects). In
the Jaguar architecture, a CPU is interrupted only upon completion of a Channel Program (unless a Channel
Command requests an immediate update, such as for asynchronous input events).

Miscellaneous Mazda ~upport

In addition to providing support for "classical" I/O devices, Mazda also contains logic for the following:

110-7

jaguar 110 ERS Apple CONFIDEN71AL

Sample Rate Conversion

To support the processing of (primarily, audio) data stream.5 which are sampled at one rate, but whose
processing assumes a different sampling rate, some sort of Sample Rate Conversion must be performed.
While the XJS could certainly perform these calculations, separate hardware is being proposed in order to off­
load the XJS(s) from this trivial, but tedious task. Since Mazda already has the logic to fetch and/or store
streams of data (DMA), it was deemed reasonable to include· such support within Mazda, even though it is not
strictly "1/0".

Booting Support

Mazda is the only chip which has direct access to the "System ROM" (or, EEROM). During initial
power-up (or, reset), Mazda controls the first several stages of the "booting" process. (This is
covered in more detail in the System Environment chapter.)

Mazda controls the RESET lines which go to (at least) the X]Ss. Upon power-up (or, the RESET
button), the XJSs remain in reset state until Mazda is able to copy a boot image into Main Memory.
After this, Mazda will remove RESET to the X]Ss, allowing them to continue the boot process.

Reduced Power Control

Mazda will perform whatever processing necessary to cause the system to enter a reduced power
mode, where the system can quickly respond to, for example, the phone, while consuming much less
power than under normal operation.

Interrupts

Mazda contains the centralized interrupt logic for Jagl. In addition to internally generated interrupts (e.g.,
Channel Program completion), several other hardware interfaces can request interrupt services (e.g.,cards in
BLT slots). The hardware in Mazda is designed to present a single interface for Interrupt Service Routines
(IS Rs).

Issues

There are numerous issues open to discussion. Please refer to the "Issues" section at the end of this document
for a compilation of issues by subsystem.

l/0-8

Apple CONFIDEN71AL jaguar 110 ERS

Section 2

Term i n o t:.1:11.l·:::illl!j Jff' ::titlfit:t ,;:::::'!!::?'' !!ljlllll!j!J .. !i,lli!!!!!j.!J!.:!lll!!j

In olrler to im~ty of the followin8,;'"'ssi-lowing temll ilfme•J

/~~rr·
}f~:;::

device". · ·

Channel Program Pointer (CPP): a resource internal to the Mazda VO processor which contains the
address of the currently executing Channel Corrunand within a particular Channel Program.
This pointer is written by an Access Manager when initiating a Channel Program, and is
updated by Mazda as it sequences through the Channel Corrunands within the channel
program.

Wankel Task: a section of code which is executed by Mazda's "Wankel" processor. Wankel tasks
manage the physical interfaces, and interpret the channel programs which use those
interfaces. For example, a single Wankel Task manages the SCSI interface, and interprets
multiple channel programs which control the individual devices connected to the SCSI bus.

l/0-9

jaguar IIO ERS Apple UJNFml:'N11AL

Channel Programs

Channel Program Organization

An important goal of the VO subsystem is to minimize the impact of interrupt and other latencies on
system performance. Mazda's architecture aids in achieving this goal by providing facilities which
make it straightforward to organize channel programs as queues of tasks to be performed by Mazda.
By organizing the channel programs as queues, petformance is improved by overlapping Mazda's
processing of a queued task with the interrupt and processing time which is incurred on XJS when an
VO operation completes.

In situations where this queued structure provides little benefit, simple linear channel programs can
also be used.

Channel Command Definition

Shown below is the format of a Channel Command:

Address

The fields are defined as follows:

Cmnmand This field is interpreted by the Wankel task. It would typically have a meaning such as
"Write Commands to Device". Since each Wankel task sees Channel Commands only
for a specific VO channel, the decode of the Command field may be unique for each
task. Therefore, the same value in the Command field may represent a different
command to each task.

In addition co device specific commands, a command to jump (unconditionally)
within the channel program will be implemented by all Wankel Tasks. In such a Channel
Command the address field will contain the address of the next channel word to be
executed. This jump command allows a loop to be created within a Channel Program,
so that it can be organized as a queue (circular buffer) of tasks to be performed by the
device. (See channel program examples.)

The Flags field is also interpreted by the Wankel task. Typically this field will be
interpreted by the Wankel task after the Channel Command has been executed to
determine what action to take next. The following flags have been defined:

Ready This bit is used to pass ownership of a Channel Command, and the
buffer it points to between XJS, and Mazda. It is set by XJS, and
cleared by Mazda. A zero in this bit indicates ownership by XJS (i.e.
not "Ready" for processing by Mazda), a one indicates ownership by

l/0-10

Apple CONF/DEN77AL jaguar /JO ERS

Mazda. For example, during a Read operation, after an XJS Access
Manager had set up the Channel Command to point to an available input
buffer, the bit would be set to one, indicating that the buffer was
available for Mazda to write received data into. After Mazda had filled
the buffer, it would write the updated Channel Command back to
memory, with the Ready bit reset, giving ownership of the Channel
Command and buff er back to XJS.

Mazda will suspend channel program execution when it encounters a
Channel Command with the ready bit cleared. (In order to activate a
new channel program, the fi~di.MineJ Command must have th¢.::Jli~Y

-:;:;::::::·· .. ·.··'·'·;·1·.~-.:.~-.:.r=··

· · · · · · · · · ·· · · · · · · · · · ·· · · · · ·· · indicating to XJS that the End Of Packet had been reached.

Update

Interrupt

This bit indicates that the updated Channel Command should be
written back to memory after the operation completes. Typically, an
access manager will set the Update bit in all Channel Commands so that
the Ready bit can be reset by Mazda. However, if the access manager
does not want the channel program to be modified, it would would not
set the ready bit. This might be the case with a simple channel program
which generates a single interrupt, and which the access manager might
want to execute again simply by rewriting its address into the CPP
register.

Setting this flag indicates that XJS is to be interrupted upon
completion of the Channel Command. If a sequence of Channel
Command are needed to perform an operation (e.g. Write Control,

li0-11

jaguar 110 ERS

Tlmerlnt

Aborted

Apple CONFIDEN11AL

Write Data, Read Status) the Access Manager might want to set this bit
only in the last Channel Command of the sequence.

This bit indicates a special mode of operation is to be used for the
transfer. In this mode, the, updated Channel Command is written back
to memory and an interrupt is generated, if any data transfer has taken
place between ticks of an internal timer. However, the Channel
Command remains active until the Count is exhausted, or the Channel
Command is aborted. This mechanism allows the Access Manager for an
asynchronous serial port to receive interrupts at intervals greater than
every character, while guaranteeing timely response to input characters.
[This bit will probably be removed from the flags field as this is not a
terribly general operation. A Wankel task can perform this operation in
implementing a particular command code. Ed.]

When Mazda responds to a request to abort a channel program, it will
acknowledge the abort by writing the active word of the channel
program back to memory with this bit set, and interrupting XJS. This
bit will also be set by Mazda if the controlling Wankel task decides to
abort the channel program due to a serious error. (See the section on
Aborting Channel Programs.)

Count This field of the Channel Command specifies the the length of the associated data
buffer. As the transaction proceeds, an internal representation of this count is
decremented until it goes to zero, or the transaction completes by other means. If the
Update bit is set in the Flags field, the residual count will be written back to system
memory, so the Access Manager can determine how many bytes were actually read or
written to the device.

This field specifies where the associated data buffer is located in XJS memory. Note
that this is a physical address, and the Access Manager must perform the necessary
page locking, and virtual to real address translation before initiating the operation.

It is also possible for channel commands to utilize an immediate form of adressing, by
using this field to supply data for reads or writes. If the field is to be used to return
read data, the Update bit will have to be set in the Channel Command. Since the
Wankel processor has the ability to read and write the Channel Command words, this
feature is implemented simply by the actions taken by the Wankel Task in interpreting
a command code.

1/0-12

Apple CONFIDENTIAL jaguar IIO ERS

Channel Program Pointers

The channel program pointers are registers within Mazda which XJS can write to via memory-mapped
VO write operations. Whenever an Access Manager adds a Channel Command to a channel program it
should write the address of that entry to the CPP register associated with that channel program. If
the channel is currently idle it will resume execution of the channel program at the specified address.
However, if the channel is executing a Channel Command, the current CPP register will not be
overwritten - the· new Channel Command will be executed once Mazda sequences to that word.

[See "Mazda Memory M9.P" in the Hardware Implementatioµ.§~!;tion for the location of the egg
registers.] .::=:=fi:l:iiiiil.:! , ii:i!f ;: .. : f }?

, .. :/:\=::::.,:::::::::;... ..:{ ::=:)/ : : ., ... :

,,, :u:::::%:':''.ii!jjjll.!ll·::1:111::1Jllll111111!!i!!i!!!lj J·:f ;;11i::1:1;1;;;11;::11111 = :::::::::: . :r: :

Channel Examples

Ethernet

......................... ,. ·•·R •'tf tf T A
Cmd-xx 0

Cmd.xx

Cmd.xx

Cmd-Branch

RD U T A
Oxxxxx

RDUITA
Oxxxxx

RDUITA
Ox10x0

Count-xx Address-xx

Count-xx Address-xx

Count-xx Address-xx

Count-xx Channel Program Address

Shown above is an example of what an Ethernet transmit channel program might look like. The
channel program is organized as a queue. The access manager has written 6 channel words,
corresponding to 2 transmit frames, and is ready to write the next channel word at the tail of the
queue in the 7th entry. At the time of this snapshot, Mazda had completed execution of the 3
Channel Commands corresponding to the first transmit frame, and is processing the Channel
Command at the current head of the queue in the 4th location. Notice that Mazda has reset the

I/0-13

jaguar 110 ERS Apple CONFIDEN77AL

Ready bits in the Channel Commands it has completed, and has decremented the counts to zero,
indicating that the requested number of bytes have been transferred.

Ethernet Receive

Head
~ Cmcl-Receive

Cmd-Receive

Cmcl-Receive

Cmd-Receive

Cmd-Receive

Ta ~ Cmcl-Receive

Cmd·Receive

Cmd-Receive

Cmd-Receive

Cmd·Branch

RD u I T A
'_Q_ 1 1 1 0 0

RD u I T A
0 0 1 1 0 0

RD u I T A
l_Q_ ..1 ..1_ 1 l_Q_ l_Q_

RD u I T A
J)_ J)_ ..1_ ..1_ l_Q_ J)_

RD u I T A
0 0 1 1 0 0

RD u I T A
1 ..1 ..1_ 1 0 J)_

RD u I T A
1 ..1 ..1_ 1 0 0

RD u I T A
1 1 1 1 0 0

RDUITA
1 1 1 1 0 0

RDUITA
1xOOOO

Count-0 Receive Buffer Address

Count-312 Receive Buffer Address

Count-o Receive Buffer Address

Count-312 Receive Buffer Address

Count-412 Receive Buffer Address

Count-512 Receive Buffer Address

Count-512 Receive Buffer Address

Count-512 Receive Buffer Address

. . .
Count-512 Receive Buffer Address

Count-xx Channel Program Address

Shown above is an example of what an Ethernet Receive channel program might look like. Again, this
is a snapshot of the channel program parrway through the processing. Initially, the access manager
had set up each word in the channel program to indicate a read into a 512 byte buffer segment, and
had set the DataChain, and Ready flags in each of them. This figure indicates indicates the state of
the channel program after Mazda receives two 712 byte frames, and one 100 byte frame. Mazda is
ready to receive the next packet into the buffer pointed to by the Channel Command at the tail of
the queue. XJS has not yet processed and relinquished the Channel Commands at the head of the
queue.

The 712 byte frames each spanned two buffers. The first buffer has a residual count of zero, and has
the Data chain bit set. The second buffer has a residual count of 312, and has the DataChain bit
cleared, indicating that the last 200 bytes of a frame were stored in the corresponding data buffer.
The short 100 byte frame required only a single Channel Command and data buffer. In this Channel
Command the DataChain bit has been cleared by Mazda, and the residual count of 412 indicates that
a 100 byte packet was received.

In order for an access manager to get status information concerning a received Ethernet packet, it
may be necessary for the Wankel task which is managing the Ethernet interface to append a fixed
number of status bytes to the data. The access manager could then strip these off, before passing
the data on to its client process.

l/0-14

--

Apple CONFIDEN77AL jaguar /10 ENS .

While it is likely that the access manager would only wish to receive an interrupt after an entire packet
had been received, there is no way of knowing ahead of time which Channel Command would be
associated with the last segment of a frame. Therefore, the Wankel task must ignore the Interrupt
bit in the Channel Command, and either interrupt on each Channel Command completion or on
packet completions.

Aborting Channel Programs

There will be circumstances in which an Access Manager will want to abort an executing channel
program, and halt activi,cy,pf the channel (for example if a tim~gµt occurs). A mechanism to 99.,,ffiis

:;:~(~~~~~}f::::-/! .. ~?
~:\~i~~~f {~~~~'.~:: ~~~~~j~:~:~:~
::~·:::::::::······ ·.·.·.· .. : .::·:·:·:::
:::;::: ;::::::::::::·(~(')i
~/~;ff\;~: :::::::::::::;

Mazda will provide an additional channel program resource to allow 1/0 modules to report low
frequency asychronous events. This shared channel program alleviates the need for an additional
channel program to be allocated to each 1/0 module which needs to report asynchronous events.
However, the use of a shared resource incurrs additional overhead - the channel program must be
created and managed by a single XJS process (again, the "Mazda Acess Manager"), which must
communicate with the appropriate device Access Managers.

The reporting of modem signal changes (DCD, CTS, etc.) is a good example of a situation in which
this facility would be used.

In order to implement this facility, the "Mazda Access Manager" would create a channel program
structured as of a queue of "read immediate" Channel Command words. A Wankel task which wanted
to report an event would write an ID, and status information into the address field of the current
Channel Command word of this channel program, and terminate it in the normal manner. When the
Mazda Access Manager receives the interrupt corresponding tq this Channel Command, it would use
the ID byte to identify the process to which it would send a message, reporting the event.

l/0-15

jaguar 110 ERS Apple CONFIDEN77AL

[Proposed Channel Command format to be supplied ...]

Interrupts

Mazda will provide a centralized interrupt reporting facility for Jaguar. The two sources of these
interrupts are internal Channel Command completions from each executing channel program, and
external interrupt signals received from other devices on -the motherboard as well as boards in the
expansion slots. An interrupt output is generated for each of the XJS processors.

A Channel Command completion interrupt will be generated whenever a Channel Command which has
its Interrupt bit set finishes execution. This will cause an interrupt request flip-flop to be set. The
only action required of the ISR which services this interrupt is to send an IPC message which will
activate the appropriate Access Manager. Upon receiving this message, the Access Manager can scan
the Ready bits of the Channel Commands in its channel program to determine which one(s) have
completed.

External interrupts are level sensitive inputs to Mazda. The approach taken is to set an interrupt
request flip-flop when an asserting transition is detected on these lines.

The following diagram illustrates the interrupt logic. Two external interrupts (IRQlnO, IRQlnl), and
one channel completion interrupt are depicted. In fact, there will be several external interrupts, and a
large number of Channel Command completion interrupts. The following section will explain in detail
the functions performed by the interrupt logic.

l/0-16

Apple CONFIDEN71Al

IROllMllO
Regleler

Mazda Interrupt Structure

jaguar 1/0 ERS

CPUO IRQNew Reglater

~

Programming Model, and Multiprocessor Considerations

Jaguar has many sources of interrupts, including a large number from channel programs, in addition to BLT
slOts, Video "Beam Chasing", etc. Since we are also designing a 2-processor system, the question of how to
"vector" the interrupts between the processors arises.

Many concerns have to be addressed in the interrupt model for the Jaguar:

1/0-17

jaguar 110 ERS Apple CONFIDHN11AL

To which processor does a particular interrupt get directed?

If two processors can 11ger1 a given interrupt, how do we make sure that interrupt is not processed
twice?

How does the system specify which processor allocated to a given interrupt?

The following model addresses these issues.

The Programming Model

(Note that for the following discussion, we are assuming that the external interrupts remain asserted until
some software has done some explicit action (e.g., "tickling" some magic register in a device. Interrupts will
be asserted once, stay asserted and become de-asserted only when an interrupt service routine has executed
some code. This seems to be a reasonable model for the external interrupts which we are likely to see in
Jaguar.)

Mazda contains 1 register (IRQIN) which always contains the state of the external interrupts currently
pending. Values in this register are updated to reflect the "raw'' signals at the "pins" (suitably synchronized).
This register can be read at any time, by anybody. (Channel Command completion interrupts are not
represented in this register).

For each processor (n), two additional registers are observable. One of these, the IRQMASKn register is a
read/writable (real) register which holds the interrupt mask bits for the processor. Any interrupt whose
corresponding bit is clear in this register will be ignored for the purposes of initiating an interrupt for that
processor (i.e., it prevents that processor's INT- line from being asserted for that interrupt).

Another processor-unique (virtual, read-only) "register'' (IRQNEWn) is available which reflects "new''
interrupts. The bits in this register are the AND of the edge-detected interrupts and the IRQMASKn register.
Edge-detection here means that a bit is potentially set only when the corresponding bit in IRQIN goes from a
0 to a 1. When any bit in an IRQNEWn register is se~ the corresponding INT' line is asserted; i.e., INT'
(asserted) is the OR of all bits in IRQNEWn.

An interesting property of the IRQNEWn registers is that all of their bits are cleared whenever the register is
read. By virtue of the edge-detection on its inputs, any bit which was set and then cleared by a read of
IRQNEWn will remain clear until the corresponding IRQIN bit goes back to a 0 then to a 1; hence, the name
"new". The net result of these mechanisms is that an interrupt will only be generated on assertion transitions
of the interrupts; not continuously just because an interrupt line (i.e., a bit in IRQIN) stays asserted.

Ignoring for the moment a multi-processor system, the interrupt service routine simply reads its IRQNEWn
register and uses the bits to "dispatch" Interrupt Service Routines (ISRs). Assuming that no new interrupts
come in for a while, the INr line is cleared immediately upon reading the IRQNEWn register. This could allow
ISRs to be run at non-interrupt level, since INT* will not be held until all of the ISRs have done their thing (as it
is in today's Mac world). This is because the state of INT• is not predicated upon active interrupt lines, but
rather their edge-detected states.

The interrupt handler can read IRQNEWn again, just before exit, to determine if any new interrupts have come
in since its initial entry. When the IRQNEWn is clear, the interrupt handler can exit (or, initiate a dispatch),
enabling interrupts. Assuming that ISRs have a special high-priority dispatch mechanism, they would probably
be run at this time. The important point to re-state is that there is no logical problem in running the ISRs witr?
interrupts enabled since their initiating event (new interrupt seen) has been "cleared".

l/0-18

Apple CONFIDENTIAL jaguar 1/0 ERS

Now, for the case of multi-processors. There are two cases to consider. The first is where the IRQMASKn
registers have been set so that the interrupts are mutually exclusive between the CPUs; i.e., the AND of all
IRQMASKs is 0. This is really not much different than the simple case, since the same interrupt will never be
signalled to both processors.

The second case is more interesting. In this case, some (or all) interruprs can be processed by either CPU; i.e.,
their IRQMASKn registers have birs in common. In this Gisei" we would (probably) like the CPU which can
process the interrupts first to handle all the interrupts. At least, we would like interrupts which are going to be
handled by one processor to be prevented from being seen by the second CPU.

The way this is handle.g:m:~ follows: The individual IRQNE\V@m~gisters on not real. Rather, £My~re derived,

External ,,:-:·'nl@t[upts
·:.:·:-·-:.:.:.:-:::;:···=··-·.·,····

t(}!\ ;::·:·:·:-·-:.·.·.·.

As mentlbh~d:~!~g;: ~f 2H df IB~ bxpansion cards geneM~~~-i~h-lhterrupt line that is recei~d BY H
Mazda. As for all interrupts, the Interrupt Mask registers on Mazda contain a bit for each of these
interrupts that controls whether the interrupt is to be passed on to the processor or not.

In addition, there is a provision for each of these interrupt lines to cause a memory-mapped write to
ano~er expansion card. This allows card-to-card communication even if the initiating card is not a
bus master.

The basic idea is that hardware within Mazda is pre-conditioned so that when an interrupt line is
asserted, the hardware executes a write to an address within the "destination" card. The data that is
written is always O's; this eliminates the need for defining a source of the write.

The mechanism used to accomplish this is a very simple Channel Program. It would consist of the
following two Channel Commands:

Loop:

Wait for interrupt, then write O's to this address

l/0-19

jaguar 1/0 ERS Apple CONFIDl:.N11AL

Jump to Loop

Since it is possible for there to be an active Channel Program for each of the interrupt lines, the
Channel Command File in Mazda must have three locations reserved for the Wankel task that controls
this operation. When the task interprets the first Channel Command above, it arms a hardware
module to start looking for the appropriate interrupt line to be asserted. When it is asserted, the
hardware module sends a "write O's" request to the Bus Interface Unit. The BIU reads the proper
address from the Channel Command file and carries out the write operation. The task then executes
the jump, looping back to the first Channel Command. The task will continue to execute the Channel
Program until it is aborted by the processor.

The expansion card that is the destination of the write is responsible for taking whatever steps are
necessary to clear the interrupt line.

110-20

Apple CONFIDEN77AL jaguar //0 ERS

Section a

Mazda 1/0 COntroller

1/0-21

jaguar 1/0 ERS Apple CONF/Dt'N71AL

VVankel Processor
Wankel is a simple RISC processor that has been optimized for fast context switching between tasks. The
code for Wankel consists of a set of tasks (one for each,active Channel Program). Each task is responsible
for interpreting Channel Commands, initiating DMA transfers by its associated 1/0 Module, monitoring the
progress of those OMA transfers, implementing the specific protocol of its associated 1/0 device(s), and
interfacing with the Bus Interface Unit to fetch subsequent Channel Commands.

Despite the fact that there is much for a task to do, it will spend most of its time waiting: for a OMA
transfer to complete, for a Command Word to be fetched from memory, for a requested register value to be
returned, for a Channel Program that will give it something to do in the first place. When the task is truly
executing, the types of operations that it must perform are relatively simple (mostly masking and testing
along with loads and stores). Therfore, Wankel has a significant portion of its silicon dedicated to
optimizing the "waiting" part of a task, and relatively little used for the traditional CPU blocks like ALU's
and register files.

The description of Wankel that follows will start with a brief overview of its architecture. Next will be a
description of the Wankel instruction set. This will be followed by a description of operation of the
processor, with special emphasis on the memories that support the fast task switch capability. Next will be
a description of Wankel's own taskO and some of the operations that it must perform. The final sub­
section deals with Wankel's interfaces to the Bus Interface Unit and the 1/0 Modules, and will present some
Wankel code examples.

Architecture
Wankel is an 8-bit data, 16-bit instruction CPU. The Code RAM that contains all of its code is 4K entries
deep (8K bytes). A register-level block diagram of Wankel is on the following page. The names of registers
appearing on the block diagram will be used throughout this section of the ERS.

Wankel's computation unit is organized around an ALU and two accumulator-style registers, AREG and
BREG. A variety of arithmetidlogical operations may be performed using AREG and BREG as inputs or
using one of the registers with an immediate value from the instruction. Wankel has four status flags that
are updated by the result of every ALU operation.

Loads and stores are performed across the Wankel Data Bus using either AREG or BREG as
source/destination. In addition, the architecture provides a capability of directly loading a status flag,
where it is immediately available for a conditional branch instruction. Memory addresses are 10 bits on
Wankel. The architecture provides two methods of generating memory addresses; either directly from an
Address field in the instruction or by concatenating 2 bits of the Address field with the contents of one of
the registers. The architecture provides a number of combinations of the status flags for conditional

1/0-22

WANKEL BLOCK DIAGRAM

"
Ii:

I

1f FDA
AllRS

jaguar 1/0 ERS Apple CONFIDEN11AL

The architecture provides a 4-entry, 16-bit stack for each task executing on Wankel. The stack may be used
by a task for subroutine return addresses and/or register saving. In addition, the hardware uses the stack as
a place to remember the task's "return PC" when it switches context. The hardware utilizes another memory,
the Task Link File, to aid it in linking from task to task. This file is generally not visible to individual task
code, but Wankel's taskO has access to it when adding or removing tasks.

Finally there is a DMA controller associated with Wankel that works in concen with taskO in providing data
transfers to and from Wankel itself. -

Instruction Set

The Wankel instruction set is composed of the following groups: instructions that involve an ALU
operation, loads, stores, branches, jumps, and a group creatively labelled "other instructions". The last
group consists primarily of instructions that manipulate the Wankel Stack and Task Link File.

Except for one instruction (wrcod), all instructions are designed to execute in a single Wankel clock cycle
(40 ns). However, there are cenain code sequences involving Wankel Stack operations that will produce
one or two cycle pipeline delays. These code sequences are detailed in the sub-section titled Wankel Stack
later in this section.

ALU Operations

Wankel instructions involving the ALU have the following format:

I O I O I 1 I D I ALU op Immediate

The destination for the result of an ALU operation is selected by the D bit of the instruction. If the D bit is
0, the destination is AREG. If the bit is 1, the destination is BREG. The destination register is also one of
the inputs to the ALU operation.

The second input to the ALU operation (call it the source) is selected by the I bit of the instruction. If the I
bit is 0, the source is the register that is not the destination (i.e., if AREG is the destination, then BREG is
the source, and vice versa). If the I bit is 1, the 8-bit Immediate field of the instruction becomes the source
operand.

The 4-bit ALU op field of the instruction defines the operation that is to be performed on the source and
destination operands. The following table lists the instruction mnemonic and operation that occurs for
each value of the ALU op field.

0 - not used
1 arid Dest <- Dest 'aflcii Source
2 or Dest <- Dest 'or' Source
3 xor Dest<- Dest 'xor' Source
4 add Dest <- Dest + Source
5 adac Dest<- Dest+ Source+ CarryFlag
0 sub Dest<- Dest - Source

I/0-24

Apple CONFIDEN17AL . jaguar 110 ERS

7 subb Dest<-- Dest - Source - Carry Flag
8 rso Dest <-- Source - Dest
9 rsbf> Dest<-- Source - Dest - CarryFlag
A test Dest 'arlcl' Source :Ino cnange to DesQ
B cmp Dest - Source (no change to DesQ
c mov Dest <- Source
D sh! Dest <- Dest shifted left by 'Source' bits, filling with zero
E Sfifc Dest<- Dest shifted left by 'Source' bits,lTIIfng willl CarryFlag
F rot;:::::::: Dest <-- Dest rotatOOTeft by .'.~urce' bit

.·.·.·.·,·.·.·.·.·.·

::;•1~!~=-~::~~-~!~:si!;!•=~
::~~f -~et ~ve me&{~tr~iI0;iJJf It ... ····· :11t::rw @OJ i'iii1%il'

· Io. ·I 1 Io Io l:~I .·.: · .,,,,:,:'=:::'! :.·,·,·.·,·~lress .. ,;, ·:!' ·: ij ,· :rn>
The destinatio~ 1.ili.lij is selected by ttM::o: mi:::8riffilll"~lji~~Bh'. If ffi~ b:bit m'O; ffi¢, J~il~tidh is
AREG. If the DibifimU\the destination is BREG. ti:/\ \%#

::::::;:::;::·-:::::::··:·~·.·. :::;::;:::::;:::: ::;:::::::::::;::::

~~~~·~~~~'Fi!~o~1:.• ~~~i~=~ ~·-~~~~ 
address is formed by coneatenating the most-significariiiw6 bfrs of the Address field with AREG. If 
AdMod equals 3, the address is formed by concatenating the most-significant two bits of the Address field 
with BREG. 

The four ALU status flags (Carry, Overflow, Negative, and Zero) are not updated by a load instruction. The 
Wankel Flag is always updated by a load instruction. When Wankel loads data from a memory-mapped 
address, that address may have a status bit associated with it. This bit acts like a ninth bit of the Wankel 
Data Bus that is clocked into the Wankel Flag. It is then available for a conditional branch on the very next 
instruction without further masking and testing. Some of the uses of this flag would be to indicate the 
validity of the data being read or to indicate the readiness of the addressed unit to receive a command. 

Store instructions on Wankel have the following format: 

Address 

The source for the store data is selected by the S bit of the instruction. If the S bit is 0, the ·source is AREG. 
If the S bit is 1, the source is BREG. 

1/0-25 



jaguar 110 ERS Apple CONFIDEN71AL 

The AdMod and Address fields have the same meaning as for load instructions. 

None of the status flags, including the Wankel Flag, are updated by a store instruction. 

Branches 

Branch instructions on Wankel have the following format: · 

11 I 0 I Branch Cond I Branch Offset 

The 10-bit Branch Offset field is sign-extended to 12 bits and then added to the PC address of the branch 
instruction to form the target address in the Wanlcel Code RAM. 

The 4-bit Branch Cond field specifies a combination of status flags to use in determining if the branch is 
taken. The following table lists the instruction mnemonic and the equation for determining branch taken 
for each possible Branch Cond value. In the table, the following letters are used to represent the five status 
flags: Carry(C), Overflow(V), Negative(N), Zero(Z), and Wankel(W). 

0 nop no operation TuncoriartionaTDrancn not tal<en) 
1 or uncoDclltionarDrancn tal<en 
2 be c 
3 one -c 
4 bo v 
5 ono -v 
0 oi7Deq z 
7 onz/bne -z 
8 oneg N 
9 opos -N 
A bw w 
B onw -w 
c Oft N•-v+-N'V 
D b[e Z+ N·-v +-N·v 
E ogt ~Z+ N•-v+-N•V) 
F oge 3"N. -v + -N • YI 

Jumps 

Jump instructions on Wankel have the following format: 

Jump Address 

I/0-26 



Apple CONFIDENTIAL jaguar /JO ERS 

If the S bit is 0, the instruction is a normal jump. If the S bit is 1, the instruction is a "jump to subroutine" 
(jsr). In either case, the Jump Address field represents the location in the Wankel Code RAM where 
execution is to continue. 

Execution of a jsr instruction consists of pushing PC+ 1 onto the Wankel stack and then jumping to jump 
Address. There is a more detailed description of Wankel stack operation later in this section. 

Other Instructions 

0 
1 
2 
3 

::.=:i=·i:.:.:)[ 

:::::.:·: 

popping the Wankel stack, loading the value that was popped into PC, and continuing execution from 
there. 

The swtsk instruction is executed by a Wankel task when it has determined that it has nothing to do. This 
occurs whenever the task must wait for some requested action to complete. Examples of this are waiting 
for a OMA transfer to complete or waiting for the next Channel Command in a Channel Program to be 
fetched. 

It may be necessary for a Wankel task to insert a swtsk instruction even when it has something to do. This 
will become necessary if the latency of a round trip around the task loop with each task executing its worst­
case stretch of code could cause some data to get dropped. More investigation is required here to 
determine that worst-case latency. 

The swtsk instruction performs the following actions: 

I/0-27 



jaguar 110 ERS Apple CONFIDEN'/1AL 

1. · Stores PC+ 1 to the Wankel Stack at the current task and stack level so it can be retrieved 
the next time the exiting task runs. Note that the following registers are not saved on a 
context switch: AREG, BREG, and the Status Flags. If the task will need any of these values 
when it next executes, it must take explicit action to save them before executing the swtsk 
(such as executing a push or storing them to the Scratchpad). 

2. Stores the current task level to the Task ,Link File (at the address of the task that called the 
exiting task) so it can be retrieved the next time the exiting task runs. 

3. Fetches the task number and stack level for the incoming task from the Task link File. 

4. Uses the information from step 3 to fetch the incoming task's Program Counter from the 
Wankel Stack and loads it into PC. Execution within the new task's environment then 
begins at that address. 

There is a more detailed description of Wankel Stack operation and Task Link File operation later in this 
section. 

The wrcod instruction is used to suspend Wankel code execution for one clock cycle while Wankel's Code 
RAM is loaded with a line of code. This instruction is executed periodically by Wankel taskO when it has 
initiated a OMA transfer from memory to the Wankel Code RAM. The wrcod instruction takes 2 cycles to 
execute. During the first cycle, the Wankel DMA Controller assumes control of the Code RAM and loads a 
line of code if it has one available. During the second cycle of the wrcod, control of the Code RAM reverts 
back to Wankel to allow normal accessing of its next instruction. 

Refer to the su!J.;section titled "Adding a Task to Wankel" later in this section for a description of the 
process of downloading Wankel code. 

Description of Operation 

The Wankel processor has only two pipeline steps: instruction fetch and execution. While it is executing 
one instruction, it is fetching the next instruction for execution from its Code RAM. This is true even when 
it is executing an instruction that changes program flow (br, jump, jsr, ret) or when it is executing an 
instruction that changes context (swtsk). 

Operation of the execution phase is straightforward and has been adequately described in the Instruction 
Set subsection. The instruction fetch phase is the more interesting pan of Wankel and the remainder of this 
subsection will describe the operation of its major blocks. 

Program Counter 

The Program Counter (PC) always contains the Code RAM address of the instruction that is currently 
executing (IR). The address of the next instruction to be executed (and thus the next value of PC) comes 
from one of five possible sources: 

1. If the current instruction is a jump or jsr, the next PC value is the jump Address field of the 
instruction (IR[l 1:0)). 

I/0-28 



Apple CONF!DEN71AL jaguar 110 ERS 

2. If the current instruction is a branch taken, the next PC value is obtained by adding PC to 
the sign-extended Branch Offset field of the instruction (IR[9:0]). 

3. If the current instruction is a ret, the ne~t PC value is obtained from the RET/POP register. 
The purpose of the RET/POP register is to accelerate the return address so a stack access is 
not necessary when a ret is executed. The following section on Wankel Stack operation 
contains ~. description of how this register gets loaded . 

. ·.·.·.; . 
. ;:/::··::::.::: 

.·.·.·.· ... ·.·.·.;.·.·.· 

been loaded with the stack entry that is currently the top of the stack. The SWfSK_PC register is valid when 
it has been loaded with the starting PC address of the next task to execute. Without these two registers, 
execution of a pop, ret, or swtsk would require a Wankel Stack access and prevent these instructions from 
executing in a single cycle. With these registers, the hardware works "behind the scenes" during the 
execution of other instructions to set up for a pop, ret, or swtsk. 

The contents of the POP/RET register are invalidated by a push, pop, jsr, ret, or swtsk instruction. The 
swtsk instruction also invalidates the contents of the SWfSK_PC register. The hardware can restore the 
validity of one of these registers every cycle provided that the instruction being executed in that cycle does 
not require access to the Wankel Stack. The result of this is that there are certain sequences of code that 
will cause a 1-cycle pipeline delay. Most of the sequences are unrealistic combinations of instructions (like 
following a jsr with an immediate ret). However, the following sequences of instructions are realistic and 
should be noted: (1) a ret followed by another ret; (2) a ret followed by a pop; (3) a pop followed by a ret. 

Normally a task would have no need for writing the Wankel Stack explicitly under program control. 
However, taskO must have this capability when adding new tasks. Explicit writes to the stack are 
accomplished through a series of memory-mapped stores: to the Stack Address Register (STKAR) to set up 
the address to be written; to the Stack Data Lower Register (STKDLR) to transfer the least-significant byte 

I/0-29 



jaguar 110 ERS Apple CONFIIJHN'/7AL 

of the data:; and finally to the stack itself (STK) accompanied by the most-significant byte of the data to 
be written. 

Task Link File 

The Task Link File contains the information necessary fo( Wankel to link to the next task when a swtsk 
instruction is executed. The size of the Task Llnk File is 32 entries by 7 bits. An entry in the file consists of 
a 5-bit NXT_TASK field and a 2-bit NXT_LVL field. NXT_TASK is the number of the next task to execute 
after the current task. NXT_LVL is the stack level that the next task was executing at the last time it ran. 

During normal task operation, the Task Link File is used only when a swtsk instruction is executed. The first 
action is to store the current task's stack level to the file. This is written at the address of the previous task 
(PRE_TASK) so that it is available the next time around the task loop when Wankel is about to switch to 
this task again. The next action on a swtsk is to clock the NXT_TASK and NXT_LVL fields into CUR_TASK 
and CUR_L VL, the registers keeping current task number and current stack level. 

Llke the Wankel Stack, taskO needs direct read and write access to the Task Link File when adding or 
removing tasks. This is accomplished by writing an address to the Task Llnk File Address Register (TI.FAR), 
followed by a read or write of the Task Link File itself (TIF). 

TaskO 
TaskO is a special task dedicated to DMA transfers and bookkeeping operations involving Wankel itself. 
Like the other tasks that execute on Wankel, it has a dedicated OMA Controller that is used for transferring 
blocks of data. Starting at initialization, taskO is always executing on Wankel, taking its tum in the task 
loop. Except for the X]S initialization process, taskO executes Channel Programs created by X]S just like 
any other Wankel task. The remainder of this subsection describes the operations performed by taskO. 

Initialization 

Mazda controls the reset lines to the XJS processors. There are 3 pins on Mazda associated with reset: an 
input .Pin SYS_RESET and two output pins XJSO_RESET and X]Sl_RESET. When a hardware reset is issued 
(SYS_RESET is asserted), Mazda immediately asserts both XJSO_RESET and XJSl_RESET. Mazda continues 
to assert both lines after SYS_RESET has been de-asserted. 

There are two flags associated with initialization in the memory map of Mazda space. The first flag is 
MEM_READY, which exists at memory address <TBD>. MEM_READY is used to control the download of 
XJS boot code. The second flag is BOOT _XJSl, which exists at memory address <TBD>. When SYS_RESET 
is asserted, Mazda clears both of these bits. When the processor issues a write to the memory-mapped 
address of one of these flags (the write data is ignored), the flag is set. Mazda's use of these flags is 
described below. 

On reset, Wankel is disabled from executing instructions. A hardware state machine downloads Wankel's 
taskO code from off-chip ROM to the Code RAM starting at address 0. Wankel's PC is initialized to 0. 

I/0-30 



Apple CONFIDEN71AL 

Initialization of the Task Llnk File consists of writing O's to location 0. This makes taskO link back to itself 
when it executes a swtsk instruction. 

After performing the above actions, the reset state machine turns control over to Wankel and it begins 
executing its taskO code. 

The first action that taskO must perform is to download1he ·XJS boot code from ROM to system memory. 
The download must be accomplished in two stages, with the first 4K bytes getting downloaded 
immediately, with the remainder to be downloaded after the processor has configured memory. The reason 
for downloading only the first 4K bytes is that, on reset, the System Controller chip can guarantee that only 
the block of memory fm:µi address 0 to address 4K-1 is avaUa.b!~, Furthermore, addresses to m~mory other 

The XJS:f~!illil!ra:;;;Hwaded from ROM is not suftlt~aiitaf a complete boot. The RQMfo&ie merely 
allows XJS to perform some diagnostic/initialization operations and then set up the appropriate Channel 
Programs to obtain the boot image from the boot device. Normally the boot device will be the hard disk, 
but software is free to define overrides to this. These overrides may be either automatic (presence of a 
disk in the floppy drive) or user-selected (stored in the Parameter RAM). 

Adding a Task to Wankel 

Wankel provides the capability to dynamically add and remove tasks without stopping Wankel instruction 
execution. This feature will become important if the total amount of Wankel code exceeds the amount of 
Code RAM that can be placed on Mazda, and it therefore becomes necessary to swap code and/or tasks. It 
should be noted, however, that this will be a slow process. Clearly more investigation is needed to 
determine the total amount of Wankel code. In any case, this feature provides software with the basic 
mechanism for initializing the Code RAM, Task link File, and Wankel Stack. 

To add a task to Wankel, XJS creates a Channel Program for Wankel's taskO to execute. This Channel 
Program would consist of the following Channel Commands: 

1/0-31 



jaguar 110 ERS Apple CONFlf)/:Nl7Al 

1, Load starting PC address for writing to Code RAM 

2. Write block of Code RAM 

3. Add task 

Each of these CC's would have the same format as CC's for the I/O Modules, with an Address and Count field 
for the transfer. 

After XJS has created the Channel Program, it notifies taskO of its existence by writing the pointer to the 
start of the Channel Program to a memory-mapped register in Mazda. The following is a description of the 
specific actions that occur on each CC. 

CC 1: Load starting PC adciress for writing to Code RAM 

TaskO decodes the first CC and issues a write to the command register in Wankel DMA Control. The 
command requests a DMA transfer from memory to the Code RAM Address Counter (labelled CRA_CTR in 
the Wankel block diagram). When DMA Control has completed the transfer, it sets a status bit that taskO 
reads and knows it may move on to the next CC. 

CC 2: Write block of Code RAM 

TaskO issues a write to the command register in Wankel DMA Control, requesting a DMA transfer from 
memory to Wankel Code RAM. DMA Control then starts reading the block of data from memory. However, 
DMA Control can not write into the Code RAM whenever it receives data from memory, since Wankel is 
executing out of the Code RAM. This is the reason for the wrcod instruction described in the Instruction 
Set section. When taskO executes a wrcod instruction, DMA Control may take over the address to the Code 
RAM for one cycle and write to it. 

CC 3: Add task 

The Address and Count fields of this CC specify a block of memory that contains the number of the task to 
be added and the Wankel PC address wh~re the. task begins execution. Wankel DMA Control reads the data 
from memory and feeds it to taskO. TaskO code then makes the appropriate memory-mapped reads and 
writes of the Task Link File necessary to place the new task in the linked list of tasks. TaskO also writes the 
appropriate Wankel Stack address with the new task's starting PC. This completes the preparation for the 
new task, and it will execute during the next pass around the task loop. 

Removing a Task from Wankel 

To remove a task from Wankel, XJS creates a Channel Program for Wankel's taskO to execute. This would 
consist of a single CC with a Command field of "Remove task", and with Address and Count fields pointing 
to a byte in memory that contains the number of the task to be removed. Wankel DMA Control reads the 
byte from memory and feeds it to taskO. TaskO code then makes the appropriate memory-mapped reads 
and writes of the Task Link File necessary to remove the indicated task from the linked list of tasks. 

l/0-32 



Apple CONFIDEN77AL jaguar I/O ERS 

Wankel Interfaces 

As described earlier, Wankel communicates with the Bus Interface Unit and all the VO Modules through 
memory-mapped loads and stores. Each unit that interfaces to the Wankel Data Bus and the Wankel 
Address Bus will have a certain number of byte-wide registers defined that Wankel may read or write 
directly. Each of these registers will have a location assigned to it within Wankel's memory-mapped address 
space. Any registers that interface directly with Wankel 'must be able to satisfy the requirement of single­
cycle loads and stores. These registers are called direct-access registers. 

There are other registers.Jhat Wankel must communicate with indirectly. Registers fall within this category 
when they are not a_p~::m: receive or transfer data in a sing!~~~¢. An example of this type a~y~gisters 
within the VC?.£Wit.:':::~:~quence of two load/store inscrµlijl·is required to read or writ,~:m~~'indirect-

<\;:;::;:::::::::::::·:·:.···· 

.) :~: 

::::::::f} ::::::::::::::: :;:: 
/tf ~ ~{:}~:f~(( 
:::::::::::::~=~~~~r~::::::::::::=:=:= 

To illustrate the interaction between a Wankel task and its associated DMA module, included here is the 
definition of the Wankel I CC File interface. Also included is the Wankel code used to obtain a CC from the 
CC File. 

A description of the operation of the CC File is given in the following section on the Bus Interface Unit. For 
the purposes of this example, we will assume that the Bus Inrerface Unit is in the process of fetching a new 
CC for the task and that the cask is currently executing a "test and switch task" loop waiting for a new CC. 
Another assumption is that this task has been assigned CC File address 35 as the location for its CC's. 

The following table lists all the memory-mapped operations associated with reading the CC File. 

Identifier R/W Action 

CCr<!Y_<n> R Enables CCrdvl8n+7: Snl onto Wankel Data Bus 
CCr~ R Enables CCbusv fl~ onto Wankel Fl~ Bus 
CCreq w Initiates CC File read at address given by Wankel Data Bus bits 5:0; sets CCbusy flag; 

clears CCrqy_ bit selected bv Wankel Data Bus bits 5:0· clears CCack fl~ 

1/0-33 



jaguar 110 ERS 

CCdata<n> R 

Apple CONFIDEN17Al. 

Enables CCdata(8n+7 : 8nl onto Wankel Data Bus; enables CCack flag onto Wankel Flag 
Bus· clears CCbus fla 

Here is a description of some of the terms used in the above table: 

CCrdy is a 64-bit register that contains a bit for each entry in the CC File. If set, the bit indicates that the 
corresponding CC File address has been loaded with a new CC. The register is divided into eight 8-bit 
registers (CCrdy0-7) that may be read directly by Wankel. 

CCbusy is a flag. that is set by the CC File control logic when Wankel requests a read from the CC File. It is 
cleared when the requested data is read by Wankel. This bit is required because the CC File is indirect­
access by Wankel, and an interlock is required to prevent one Wankel task from clobbering the request of 
another task. 

CCreq is a location that a task reads when it wants to get the starus of CCbusy and it writes to when it wants 
to initiate the read of a CC File entry. 

CCack is a flag that indicates if the CCdata register contains valid data. When a task reads CCdata, it 
receives this flag on the Wankel Flag Bus. 

CCdata is a 64-bit register that is loaded with the requested CC when it is read from the CC File. The register 
is divided into eight 8-bit registers (CCdata0-7) that may be read directly by Wankel. 

The Wankel code required to implement the fetch of a CC is shown below. The code is composed of two 
segments, a task-specific pan that must be replicated for each Wankel task and a common subroutine that 
all tasks execute. It is believed (hoped?) that much of the code for Wankel can be turned into common 
subroutines. 

Individual task code 

CCrdy _loop: 
swtsk 

Stan: 
Id a,CCrdy4 
test a,8 
bz CCrdy_loop 
mov b,35 
jsr GetCC 

Subroutine common to all tasks 

GetCC: 
Id 
bnw 
push 

CCbusy _loop: 
swtsk 
Id 

a,CCreq 
ReadCC 

a,CCbusy 

; load 8-bit register containing my CCrdy bit 
; mask off all but my bit 
; continue if CC is ready; else loop 
; BREG <- address of my CC file entry 

; common subroutine for reading CC Cmd byte 
; load Wankel Flag with CCbusy flag 
; continue if not busy; else try again 
; save BREG (address of CC file entry) 

; load Wankel Flag with CCbusy flag 

I/0-34 



Apple CONFIDEN71AL jaguar 1/0 ERS 

bw CCbusy _loop 
pop 

ReadCC: 
st b,CCreq 

CCdata_loop: 
swtsk 
ld a,CCdataO 
bnw CCdata_loop 
ret 

Bus~. Unit 

; continue if not busy; else loop 
; BREG once again has CC file address 

; start the read 

; load Cmd b~e to AREG and CCack to Wankel Flag 
; continue if data ready; else loop 
; return; task may read more bytes from CCdata 

B I U In te rf.iii,i.': .J::::rr ijjj!jj!i:jijjijjjjjjjjjijjjj!jjj!j!jj'j! /tf ttttft'HJ 

The bus op .. Mazda 1/0 chip are .~lie- main sections J,~.11 
o rations can b.idffi.tiitid b XJS Wankel orf''n of theHnditidual DMA channai'. XJS ti$.:Jt¢.Q9.¢st 

:·:;:;:;:;:;:::; 

XJS/BIU 

file in the BIU. The CPP file is an area of RAM in the BIU that maintains the addresses of all of the 
Channel Commands present in the CC file. The act of XJS writing a pointer to the CPP file causes a bit 
to be set in the "Xreq" register. This will in turn cause a request for a fetch of the CC at the pointer 
address. When the CC is fetched and written into the CC file the corresponding bit is cleared in the 
Xreq register. 

Wankel/SIU Interaction 

Wankel too can request bus activity from the BIU. This typically happens when the need arises to 
fetch the next CC in a channel program. A Wankel request to the BIU is made by setting a bit in the 
"Wreq" control register. A bit set in this register will cause the BIU to read the corresponding CP 
pointer out of the CP pointer file,· increment it by 8, fetch the new CC, write it into the CC file and 
write the incremented CP pointer back into the file. 

1/0-35 



jaguar 110 ERS Apple CONFmEN77Al 

OMA Channel/SIU Interaction 

The third source of BIU requests is from the DMA channels. When a DMA channel is active, the data 
flow consists of the movement of data between main memory and an I/O device. In order to 
moderate the difference in bandwidth between the XJS bus and the I/0 devices, data is buffered in 
an area of RAM (Channel Buffers) on Mazda. Data movement between main memory and the data 
buffers occurs 32 bits at a time, while data movement between the I/O devices and the data buffers 
occurs 16 bits at a time. Each DMA channel monitors the state of it's data buffer and issue a request 
to the BIU when: it's time to move a cache line to or from main memory. This request is made by 
setting a bit in the "Dreq" register. 

1/0 Control Flow 

This section will describe the flow of control necessary for the execution of a Channel Program. 

1) A device driver running on XJS builds a Channel Program (CP) in main memory. This program 
consists of Channel Commands (CC's). A CC may specify either a command operation or a data 
operation. 

2) XJS requests execution of the Channel Program by writing the CP pointer (32 bit physical address) 
to the CP Pointer file on Mazda. This is a memory mapped write to an area of RAM (64, 32 bit 
entries) on Mazda. Writes to this RAM also cause a bit to be set in the "Xreq" register. 

3) The Xreq register is a 64 bit register that contains one "request" bit for each of the 64 entries in the 
CP pointer file. A set bit in the Xreq register will cause the BIU to fetch a CC from main memory. The 
CC fetched is stored into the CC file. The CC file is a 64 entry by 64 bit area of RAM in Mazda. When a 
CC is written into one of the 64 entries of the CC file, the corresponding bit is set in the "CCrdy" 
register. This register is monitered by Wankel and indicates the state of each of the CC entries. 

4) Wankel "tasks" are assigned entries in the CC file. When a given DMA channel is ready to accept a 
new command, the Wankel code for that task will check the CCrdy register to see if any bits are set 
for that channel. If so Wankel will read the appropriate CC, interpret the conunand, and do the set up 
for the channel. When the DMA channel is properly configured, Wankel will issue a command to 
activate the OMA. 

5) Th~ DMA channel logic is responsible for the movement of data between main memory and the 
attached device. To achieve this it must be capable of requesting two types of service from it's data 
buffer (in the BIU). It must be able to move data between it's data buffer and the attached device 
(16 bits at a time) and it must also be able to request that the BIU move all or pan of the buffer to or 
from main memory. Upon completion of the transfer (count goes to zero) a flag will be set to 
indicate to Wankel that the transfer is complete. 

6) After starting the DMA transfer, the Wankel code for that channel will monitor that channel's status 
register. Upon seeing the completion flag, Wankel will do one of two things. If the program is 
complete, XJS will be interrupted. If no~ the next CC will be fetched. To fetch the next CC, Wankel 
sets the bit in the Wreq register (64 bit register) that corresponds to the CC that just completed. 

1/0-36 



Apple CONFIDEN17AL jaguar 1/0 ERS 

7) A set bit in the Wreq register will cause the BIU to read the corresponding address out of the CP 
pointer file, increment it by eight, and fetch the new CC. The incremented CP pointer is then written 
back into the CPP file. 

. ..... ; . 
. ·:·:·:·:·· 

I 

I/0-37 



jaguar 110 ERS 

Channel Program Execution 

Write Channel Program 
Pointer (CPP) to Mazda 
(memory mapped 
location). 

This write causes a 'Xre<t' 
bit to be set in the BIU. 

Arbitrate new Xreq and 
fetch lhe Channel 
Command (CO pointed to 
by lhe new CPP 

Set a 1CCtdy' bit 

Set up lhe OMA channel 
for lhe requsted OMA 
operation. Issue a statt 
OMA command Loop 
on channel status 

Check channel status 
and CC flags, interrupt 
XJS if necessary 

To fetch next CC, set bit 
in Wreq register 

1/0-38 

Apple CONF/DEN77AL 

DMACbannel 

Execute the OMA transfer 

Flag Wankel when 
complete 



Apple CONFIDEN71AL jaguar 1/0 ERS 

Bus Interface Unit (BIU) Operations 

The following sections describe in detail how the various BIU resources must be coordinated in order to 
preform the required BIU operations. The resources that must be controlled include RAM structures that are 
shared by various functional units of the Mazda VO controller. These RAM's include; the Channel Program 
(CP) pointer file (64 entries by 32 bits), the Channel Command (CC) file (64 entries by 64 bits), and the Data 
file (32 entries by 256 bits). The ten operations described below represent the core data movement 
functions required to inw.n>ret and execute Channel Programs . 

. ·.·.·.·.·.·.· ·.·.·.·.·.·.·-:·:·:·· ······· 

CP poi~'.~ra!t ::R) ~.~: ~:l~d: '!:;.:~:neg.red) )td ii 
1.2) B~.G~ (BG) asserted by System C~~~U~.:(~) " .. ·· ·, 

<·>>:·:-:.;-:.:-:-:-:-:-:.:-:-:::::::::·· .•. ·.•.·. ·""""··:· 

1.
3) •= J,) :"~~~;-1:d ~::i:1'1f:;.lflfR' 

1.4) .. ~r ![' ,!~ G~;},~) as. Data Bus BIJ!jfoBB) Mien 
······::•:•::::·····:•··············· ••••••••••.•••••••••••••••••••••••••••• 

1.5) 

1.6) 

1.7) 

:::::::: :::;;:::::::::!;i;i;;;i~i;;~~!:::::: . ·.• ·:::;:;:::::::::;::: :~:::::: =~=~:~: ::::~=~~::~:::~~~ ~~~~:~~~~:~: 

~~zJ,r,l#i.wv due to CP;ilier write to CPI iitil1 (in 

2.1) BIU arbitrates internal requests 

2.2) Generate address for CPP and CC file 

2.3) Read CPP 

2.4) BR asserted by Mazda (if ABB negated) 

2.5) Bus Grant (BG) asserted by SC 

2.6) Mazda waits for ABB negated then asserts ABB, negates BR, asserts TS, and writes address 

2.7)' Mazda waits for DBG asserred, DBB negated then asserts DBB, and waits for TA 

2.8) Mazda latches first 32 bits (Opcode, Flag, and Count) when SC asserts TA 

2.9) Mazda latches second 32 bits (address) when SC asserts TA 

2.10) Mazda negates DBB 

I/0-39 



jaguar 1/0 ERS Apple CONF!DEN'/1AL 

•(if pipelined transfers are supported, AACK may be asserted by SC as early as 2.7) 

CC read from memory due to Wankel setting a Wreq ( to get the 
next Channel Command) ~ 

3.1) BIU arbitrates internal requests 

3.2) Generate address for CPP and CC file 

3.3) Read CPP and add 8 to it (and latch?) 

3.4) BR asserted by Mazda (if ABB negated) 

3.5) Bus Grant (BG) asserted by SC 

3.6) Mazda waits for ABB negated then asserts ABB, negates BR, asserts TS, and writes address 

3.7)' Mazda waits for DBG asserted, DBB negated then asserts DBB and waits for TA 

3.8) Mazda latches first 32 bits (Opcode, Flag, and Count) when SC asserts TA 

3.9) Mazda latches second 32 bits (address) when SC asserts TA 

3.10) Mazda negates DBB 

•(if pipelined transfers are supported, AACK may be asserted by SC as early as 3.7) 

(somewhere between 3.3 and 3.10, the incremented CPP must be written back into the CPP file) 

CC write to memory due to Wankel setting a Wreq ( to write 
back completed Channel Command) 

4.1) BIU arbitrates internal requests 

4.2) Generate address for CPP and CC file 

4.3) Read CPP and CC (and latch?) 

4.4) BR asserted by Mazda (if ABB negated) 

4.5) Bus Grant (BG) asserted by SC 

4.6) Mazda waits for ABB negated then asserts ABB, negates BR, asserts TS, and writes address 

4.7)' Mazda waits for DBG asserted, DBB negated then asserts DBB, writes first 32 bits 
(opcode and flags), and waits for TA 

4.8) SC asserts TA 

4.9) Mazda writes second 32 bits (address) 

1/0-40 



Apple CONFIDEN17AL jaguar 1/0 ERS 

. 4.10) SC asserts TA 

4.11) Mazda negates DBB 

'(if pipelined transfers are supported, AACK may be asserted by SC as early as 4.7) 

Wankel read of a CC 

5.1) w~J.:::¢ads the ·ccreq" register (CCr/w,/@~i,ved, CCaddr(5:0). If CCbsydM~erted, 

5.2) 

5.3) 

5.4) 

5.5) 

5.6) 

Wankel 

6.3) Wankel stores the address of the CC (6 bits) and sets the CCr/w bit by writing to the CCreq 
register. A write to this register also causes CCbsy to be set, this constitutes a request to 
the BIU 

6.4) BIU arbitrates internal requests 

6.5) Generate address for CC file 

6.6) BIU writes CC into CC file, and clears the CCbsy flag 

OMA read from memory 

7.1) BIU arbitrates internal requests 

7 .2) Generate address for Data file and CC file 

7.3) . Read CC address 

I/0-41 



jaguar 1/0 ERS Apple CONflDEN'l1AL 

7.4) BR asserted by Mazda (if ABB negated) 

7.5) Bus Grant (BG) assened by SC 

7 .6) Mazda waits for ABB negated then asserts ABB, negates BR, asserts TS, and writes address 

7.7) •Mazda waits for DBG assened and DBB negated then asserts DBB and waits for TA 

7.8) Mazda latches first 1-4 bytes of data wtlen Sc asserts TA 

7.9) Mazda continues latching data (when SC asserts TA) until transfer is complete 

7.10) Mazda writes to Data file and negates DBB 

'(if pipelined transfers are supported, AACK may be asserted by SC as early as 7.7) 

(somewhere between 7.3 and 7.10, the updated CC must be written back into the CC file) 

OMA write to memory 

8.1) 

8.2) 

8.3) 

8.4) 

8.5) 

8.6) 

8.7) 

8.8) 

8.9) 

8.10) 

BIU arbitrates internal requests 

Generate address for Data file and CC file 

Read Data and CC (and latch?) 

BR asserted by Mazda (if ABB negated) 

Bus Grant (BG) asserted by SC 

Mazda waits for ABB negated then asserts ABB, negates BR, asserts TS, and writes address 

• Mazda waits for DBG assened and DBB negated then asserts DBB, writes first 1-4 bytes 
of data , and waits for TA 

SC asserts TA 

Mazda continues data transfers as in 8.7 and 8.8 until transfer is complete 

Mazda negates DBB 

•(if pipelined transfers are supponed, AACK may be assened by SC as early as 8.7) 

(somewhere between 8.3 and 8.10, the updated CC must be written back into the CC file) 

OMA read from a device 

I/0-42 



Apple CONFIDEN77AL jaguar 1/0 ERS 

· 9.1) BIU arbitrates internal requests 

9.2) Generate address for Dara file 

9.3) Read Dara from device buffer and write to Data file 

9.4) Decrement count register and increment address register (channel registers). 

OMA write! to a device 

9.4) 

Generic Jll!llJ.1.llJJJllJf od u les ,i::::l::::r 

. ' ' . 

I/0-43 



jaguar 110 ERS 

"' 0 WANKEL ADRS BUS E-< 
< H 

"' a: (!I a: 3: :s WANKEL DATA BUS I .... .... 
"' "' "' "' "' .... 10 z z 
< < "' 8 3: 3: "' z 

< 
3: 

DECODE 

CONTROL 

CTRL 

Wankel Interface 

WANKEL I BIU 
INTFC I~ ..... 

I 

I/0 DEVICE 
INTFC 

0 

"' a: 
< ::c 
Q 

Apple CONFIDHN11AL 

BUFFER ADRS BUS 

"' CCW ADRS BUS 
u 

"' <C z 
a: 0 OMA DATA BUS 

~ Q Q 

0 
"' < z 16 ::c H 

0 .... 

DATA 

Wankel communicates with the 1/0 Modules through memory-mapped load and store instructions. The 
read and write operations associated with these instructions are conducted over the Wankel Data Bus and 
the Wankel Address Bus. Each I/O Module is assigned a number of Wankel addresses for its direct-access 
registers (refer to the earlier section on "Wankel Interfaces" for a discussion of direct-access registers and 
indirect-access registers). In the generic 1/0 Module shown above, there are 6 direct-access registers: the 
Command Register, the Status Register, the Wankel Write Date Register, the Wankel Read Data Register, 
the Buffer Address Counter, and the CC Address Register. The typical usage of these registers is described 
below. Note that certain I/O Modules may require slight differences in the complement of direct-access 
registers. 

Command Register: When a task wants to issue a command to an I/O Module, it writes this register. The 
decoding of the value wrinen to the Command Register is task and I/O Module dependent. Typically the 
register would be split into a Command field and an optional Address field. The Address field could be used 
to select an indirect-access register as source or destination of any data transfer. 

Status Register: Read by a task to determine status of the I/O Module. 

Wankel Write Data Register: When a task wants to write an indirect-access register, the write data is 
written to this register first, then the Command Register is loaded with the write command and the address 
of the indirect-access register. 

Wankel Read Data Register: When a task issues a read of an indirect-access register, the data is placed in 
this register when it is available. 

I/0-44 



Apple CONFIDEN17AL jaguar VO ERS 

Buffer Address Counter: When a task initiates a OMA transfer, this counter is loaded with the starting 
address within the BIU's DMA buffer. The VO Module keeps this count updated as it supplies data to its 
OMA buffer. The count is used by the BIU to select the area of the buffer to read or write. 

CC Address RegiSter: This register is loaded by a task when it initiates a DMA transfer. The value loaded 
here is the address within the CC File used for the active CC. _The VO Module supplies this address to the 
BIU with each request to read or write memory. The BIU uses the CC Address to fetch the appropriate CC 
from the file for address incrementation and length deciementation. 

DMA Ack: Each VO Module receives its own acknowledge line from the BIU. 

The remainder of the interface consists of bussed signals that are driven by the VO Module that is granted 
an acknowledge:by the BIU. 

DMA Dir: Indicates the direction of the DMA transfer 

line Done: When set, indicates that the current request completes a cache line of data. The BIU uses this 
signal to determine if it is to fetch/dump the 1/0 Module's buffer area. 

Buffer Address Bus: 10-bit address within the BIU's OMA Buffer Memory. The VO Module is responsible 
for maintaining this pointer and passing it to the BIU with each request 

CC Address Bus: 6-bit address within the BIU's CC File. See the description of the CC Address Register in 
the previous section. 

DMA Data Bus: 16-bit bus used for the transfer of OMA data. 

1/0-45 



jaguar 110 ERS Apple CONFIDEN11AL 

1/0 Device Interface 

The interface between an VO Module and its VO device does not lend itself very well to a generic 
description. All that can be shown on the block diagram is that there is a Control interface and a Data 
interface. The Control interface may consist of several address lines or it may consist of individual chip 
enables. There should be a signal that indicates direction (read/write). The Data interface may be anything 
from a serial line to a 16-bit wide bus. _ 

I/0-46 



Apple CONFIDEN77AL 

Section 4 

Mass Storage 

........ , .. , .......................... _. 

• real time virtual memory storage requires specialized optimizations 

The design supports these principles by providing low cost high performance storage, and by 
expl~iting the flexibility of the programmable i/o controllers. 

Two ~urther points are implicit in these principles: 

jaguar f/O ERS 

1) preserving real time objects' integrity requires explicit management of mechanical and command 
latencies; this implies closer control over the incidence of mechanical latencies in mass storage i/o 
than has traditionally been employed; 

2) real time applications will require that a storage hierarchy covering a range of latencies and 
capacities be balanced by astute use of the virtual memory storage. In other words, the virtual 
memory storage is a means of balancing expensive high speed storage and inexpensive high capacity 
storage in real time situations, just as it is in traditional virtual memory systems. 

I/0-47 



jaguar 110 ERS Apple CONFJIJEN'f7AL 

Mass storage facilities are divided between those which are built into the system, and those which 
may (optionally) be added to the system. The interfaces and operating characteristics of these two 
classes of storage differ, and these differences are elaborated in the following sections. 

CONCEPTS AND FACILITIES. 

Architectural Components and their Attributes 

The basic mass storage subsystem comprises four units: two disk drives and two controllers. The disk 
drives are a 3.5" floppy disk unit and a 3.5" Winchester disk drive. Every jaguar system contains at 
least one of each of these drives. 

The first of the two controllers is an intelligent low level formatter/sequencer which directly processes 
all seeks, reads, and writes to and from the floppy disk drive and the Winchester disk drive. It does 
not support external or optionally attached mass storage devices. 

The second controller is a high level SCSI compatible protocol engine for external auxiliary storage 
and input/output devices. 

The intelligent low level controller integrates all of the functions of a conventional disk controller 
which reside between the host interface and the disk's read/write channel, including error detection 
and correction. One controller manages up to three drives (floppy or Winchester). The controller 
does not implement servo functions.The intelligent low level controller permits simplification and 
cost reduction of the electronics resident on the Winchester disk drive assembly. The facilities of 
Mazda act in conjunction with the host CPU and the low level controller to implement higher level 
data stream management and optimization functions. 

At the same time, increased flexibility in low level physical management of the drive format and 
. geometry permits the operating system to stipulate and benefit from optimii.ations, especially those 
directed at reducing mechanical latencies, which high level controllers do not typically support. This 
means that the software controlling critical real time processes which involve mass storage can take 
measures to guarantee that disk drive latencies do not unexpectedly cause disruptions in delivery of 
audio and video data, for instance. Unnecessary seeking and rotation, which occur routinely in 
conventional low cost mass storage subsystems, can degrade quality in real time processes. A 
common solution to this problem, allocation of large buffers, becomes cost ineffective when high 
throughputs are being sustained. It is more efficient to manage the mechanical latencies explicitly, 
although this requires new approaches to the design of the mass storage control functions. 

The SCSI control portion of the mass storage subsystem exploits the flexibility and speed of Mazda 
to achieve the maximum throughput contemporary high performance SCSI devices are capable of; 
some synchronous SCSI targets can transfer bursts at rates up to 6 megabytes per second. The SCSI 
controller manages the bus protocol, while Mazda governs the movement of commands and data (as 
formulated by the host CPU) between the host and the SCSI bus. 

I/0-48 



Apple CONFIDEN17AL jaguar 110 ERS 

The SCSI interface is designed to support targets implementing either SCSI-1 or SCSI-2; SCSI-1 is a 
subset of SCSI-2. In addition the interface will support software and devices which implement 
multiple initiator environments. 

Virtual Memory System Storag, 

The embedded Winc~t#.t disk drive is used by the virtual gwmgry system for swapping and,:~nd 

.. :::;::::::· 

other (physical) drives. 

The operating system may freely allow efficiency considerations to dictate adaptive reallocation and 
redistribution of file system structures and virtual storage regions between the embedded drive and 
additional storage facilities added to the system. In general no single physical format structure can 
be optimal for all possible storage hierarchies and applications requirements; the mass storage 
system is intended to be as flexible as possible in supporting optimization by the operating system. 

Hardware Component Descriptions 

The system enclosure houses one 80 megabyte Winchester disk drive and one 5 megabyte floppy disk 
drive. The Winchester drive is referred to as "embedded" because it is a non-optional and non­
removable feature of every jaguar system. The low level controller handles i/o to and from the floppy 
and the Winchester. Both the low level controller and the SCSI controller are on the main system 
board. 

1/0-49 



jaguar 110 ERS 

Hard Disk 
Drive 

BOMBy 

3.5" 

Apple CONFIDI::N11AL 

Mass Storage Interconnect - Base System 

Low level 
controller (on 
system board) 

Floppy Disk 
Drive 

5MBy 

3.5" 

0 
-

Optional 
Drive 

Hard disk 
or magneto 
- optical 
drive 

___ Other SCSI 
Devices 

SCSI controller 
(on system 
board) 

Wankel Interface (Mazda) 

low level intelligent disk drive oontroller: 

The low level controller is organized around a CPU core and sets of registers through which the core 
CPU communicates with the host (in this instance, Mazda) and with the attached peripherals (in this 
instance, the floppy disk drive and the embedded Winchester drive). The registers comprising the 
host logical interface are described next. 

Host Interface Registers 

Host Data Register: 8 bits, read/write 

Accesses controller data buffers and writable control store. 

If host status register BUSY (see below) = 0, access to micro-controller RAM is 
enabled. 

If BUSY • 1 and host status register SBA = 1, access to controller data buffers is 
enabled (controlled by internal CPU) 

Block Size Register: 8 bits, write only 

Allows host to select size in words of controller's dual data buffers, when host status register 
BUSY• 0. 

Range is 1 to 256 words; block size register=words/block-1. 

Size selected sets size for both buffers. 

1/0-50 



Apple CONFIDENTIAL jaguar /JO EN.S 

Control Strobe I Buffer Done: write only 

A write by host (only when BUSY • SBA • 1) signifies finish of data buffer accesses (in cases when 
all locations have not been accessed). 

Generates strobe, clearing SBA in host status register. (SBA is cleared automatically when all 
locations in buffer have been accessed.) 

Starts execution by internal CPU when wrinen to by host. May only be written to when 
SBA is 0. Bits 1-4 select internal CPU code pages 0-3 respectively. Bit 0 (EXEC) when set causes 

execution to commence at the first location of the selected page. This register also selects 
the code page to be wrinen to when Mazda transfers new code (with EXEC· 0). 

Host Status Register: 8 bit, read only 

bit 0 (CJD): when clear, internal CPU expects data; when set, internal CPU expects command 
parameters. 

bit 1 (1/0): when clear, host is to read buffer; when set, host is to write to buffer. 

(bit 2 is reserved) 

bit 3 (INTERRUPT pending): set when low level controller interrupt output pin is asserted. Flag is 
cleared when interrupt source has been cleared via the Clear Interrupt register. 

I/0-51 



jaguar 110 ERS Apple CONFIDEN71AL 

bit 4 (SW AP): When set, host response to SBA should be to read the data buffer, otheiwise host 
should write the data buffer. The bit is updated before or at the same time as SBA. 

bit 5 (ERROR): set when host error register is non-zero. 

bit 6 (BUSY): set when internal CPU is executing. When BUSY is set, host data register is 
connected to the data buffer; otheiwise it is connected to the control store RAM. 

bit 7 (SBA): System Buffer Available when set indicates that the buffer is available to the host for 
accesses. Bit is cleared when last buffer address is accessed. SBA may be used to set an interrupt 
latch (depends on mode register setting). 

Host Error Register: 8 bit, read only 

Contains code describing last fatal error during execution; valid only after BUSY goes to 0. 

Host Count Register: 8 bit, read only 

Any data written to this register by the internal CPU may be read by the host; it may therefore be 
used to report number of blocks remaining to be transferred. Contents stable only when internal 
CPU is not BUSY. 

Peripheral Interface Registers: 16 command, 16 status registers 

Four lines (SE~ and CA(2-0)) select a register; a command is written to a peripheral via the 
selected register by issuing a single L'TRB pulse. Status registers may be consulted while LSTRB is 
inactive by selecting the peripheral and asserting the appropriate address. Status is returned as a 
logic level on the Read Data line of the peripheral interface. 

Peripheral Command Registers: 

Command 0: resynchronizes serial communications between low level controller and peripheral; 
BUSY status at register 6 in the low level controller is set to 0. 

Command 1: Strobes the bit present on ±\VRDATA into the peripheral receive register. Also 
strobes the echoed complement on ±RDDATA into the controller receive register. 

Command 2: Issues 'Seek Next Track' command to peripheral, during multitrack operations. 

Command 3: Strobes bit present on ±RDDATA from peripheral into controller's serial receive 
register. 

Command 4: reserved. 

Command 5: Reset peripheral device. 

Command 6: Notifies peripheral device that a serial byte is present in its serial receive register. 

1/0-52 



Apple CONFIDEN71AL jaguar 110 ERS 

Command 7: reserved. 

Peripheral Status Registers (all are invoked while LSTRB is inactive): 

Starus Register 0: read channel data are multiplexed onto the ±RDDATA line when register 
address 0 is asserted while LSTRB is held inactive: When -WRTGATE is asserted, the peripheral 
takes data to be written from the ±WRDATA line. 

Status Reg!§,W, 1: serial communication integrity:J;M.Fk; complement of ±WRDAT~\)~,,, 

The low level controller interface to the host (i.e., Mazda) consists of 22 pins as follows: 

A(l-3): Host address bus; select a register in controller (AO not used) 

F./-W: Host read/write; determine data transfer direction between host and controller 

D(0-7): Host data bus; data transfer between host and controller 

-CS: Chip select; asserted to select controller for programmed i/o access by host 

-OS: Device strobe; strobe data during programmed i/o access by host 

-RESET: Host reset; assert to abort current operation and enter idle state 

-IRQ: Host level sensitive interrupt; asserted by controller to interrupt host 

-DRQ: OMA request; asserted by controller to request DMA service 

-DACK: OMA acknowledge, asserted by DMA controller to select controller data register and 
perform OMA transfer 

1/0-53 



jaguar 110 ERS Apple CONF/DEN17AL 

-DTACK: Programmed i/o device acknowledge; asserted by controller to signal that it is ready to 
terminate a programmed i/o bus cycle 

-DREADY: DMA device ready; asserted by controller during block mode DMA when it is ready to 
transfer data 

FCLK:. Clock input; CRYS: Crystal output, if used; controller clock may be provided at FCLK from 
an external oscillator; or it may be provided t>y a·c:rystal attached between FCLK and CRYS. 

This interface may be used to transfer microcontroller instruction pages· and controller parameters to 
the writable control store. The interface transmits command and status infonnation and data 
between the host and the disk drives. No external writable control store RAM is used. 

Two internal data buffers in the controller are used during data transfers between host and drives. 
The host has exclusive access to one of these, and the internal controller CPU has exclusive access to 
the other, at any one time. Each buffer has separate internal address and data paths. The internal 
CPU can swap buffer access. Host and internal CPU have independent and simultaneous access to 
their respective current buffers. 

Transfers may occur between the controller and one drive at a time. Overlapped seeks may be 
managed within the controller by polling for seek completion. Any pending operation may be 
aborted by resetting the internal CPU. 

The controller communicates with drives in either of two modes. It may issue commands to or 
obtain status infonnation from attached peripherals via serial bytes. The same lines are used for 
reading data bytes from and writing data bytes to the peripherals. 

The following 18 lines comprise the peripheral interface: 

• ±RDDATAO, 1, 2: Serial data from peripheral 

• -WRGA TE: Request to write 

• ±WRDATAO, 1, 2: Serial data to peripheral 

• -ENBLO, 1, 2: Enable peripheral 

• SEL: Floppy head select 

• CA(0-2): Peripheral control address 

• ISfRB: Perform peripheral command 

• -SERVO: Servo field (or general purpose) 

• -INDEX: Index pulse from Winchester 

• -ATTN: Error/status from peripheral 

The Winchester disk drive supports commands which may be invoked by the controller using the 
serial command interface. Commands and status are transmitted between the peripheral device and 

1/0-54 



Apple CONFIDEN71AL jaguar 110 ERS 

the coriuoller's peripheral interface registers. LSTRB and CA(0-2) select the register to be used in a 
transaction. 

The controller cannot support concurrent transfers to two peripherals. System software must 
therefore ensure that no uninterruptable transfer operation of lower priority be launched when it 
might interfere with initiating a higher priority transaction (especially to or from the virtual memory 
storage device). . .. 

The host may communicate data to or from its currently selected buffer while an unrelated i/o 
operation to a periphera!js in progress. Multiple i/o paths may thus be active simultaneously . 

.. ~.ml A\t Al1 

+5.0V ±5% 

R/W-

Motor Start -

Standby -

Typical -

MTBF: 30,000 POH 

MTTR: 30 Minutes 

Hard read errors: 1 per 10••12 bits read 

Floppy disk drive interface signals: 

CA(2-0) - Addressable latch selection 

/ENBL - Enable 

ISfRB - Line Strobe 

1/0-55 

210mA 

210mA 

::;:;::::::::::::;:;::::::::::::::;::::: 

·>:·:·:· 



jaguar 110 ERS 

RD - Read Llne 

/WRTGATE - Write Gate 

WRTDATA - Write Data 

/CSTOUT - Cassette Out 

/EJECT 

Floppy Disk Drive Controller Interface Signals: 

GD 
GD 
GD 
GD 
/EJECT 
+SV 
+12V 
+12V 
+12V 
+12V 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

CAO 
CA1 
CK2. 
LSTRB 
/WRTGATE 
SEL 
/ENBL 
RD 
WRTDATA 
/CST OUT 

Apple CONFIDEN11AL 

Embedded VJinchester Disk Drive Specifications 

The embedded Winchester disk drive is semi-permanently attached (not user removable) to the 
system housing and board. Its presence is a precondition for normal Jaguar operation (only limited 
diagnostic functions will be supported in the absence of a working embedded Winchester disk 
drive). 

The drive has a nominal formatted capacity of 80 megabytes, and conforms nominally to a 3.5" wide 
by 1" high form factor. 

Winchester disk. drive specifications (preliminary): 

Power: 

12V + 10%/-5%, 5V ±5% 

Startup -

RandomR/W-

Ready -

3.0 

Mean Maximum 

7.0W 10.0W 

3.5 

1.5 2.0 

l/0-56 



Apple CONFIDEN17AL 

Standby -

Shutdown-

Capacity: 

Sector Size -

1.2 

0.5 

512 bytes 
·-

Formatted Capacity - >• 160,000 sectors 

Disks - 2 

I/0-57 

jaguar 110 l:'RS 

1.5 

0.8 



jaguar 1/0 ERS Apple CONF/lJl:N/7AL 

Winchester Disk Drive Interface to Low Level Controller: 

G'-D 1 2 CAO 
+12 3 4 CA1 
+12 5 6 CA2 
+12 7 8 -EN-BL 

+12 9 10 -WRTGATE 
G'-D 11 12 -SERVO 
+5 13 14 -ATTN 
+5 15 16 G'V 

+RDDATA 17 18 -RDDATA 
GND 19 20 G'V 

+WRDATA 21 22 -WRDATA 
GND 23 24 -INDEX 
GND 25 26 LSTRB 

Embedded Winchester Defect Management: 

The low level controller governs the detection, correction, and remapping of hard and soft errors 
arising during Wjnchester disk i/o operations. The low level controller implements an error correction 
scheme based on a 48 bit polynomial. Error correction is performed by the internal CPU. When a 
correctable error. is detected, the low level controller will initiate loading of any code pages needed 
for carrying cut the correction algorithm. 

Spare sectors are reserved on each track. If a sector is found during formatting or subsequently to 
contain a hard defect according to the analysis algorithm, it is remapped to one of the spare 
locations, and if it had been written to, its content is corrected (if possible) and written to the new 
location. 

Eventually, or immediately if the defect lies in a time critical data path, the track may be further 
adjusted by reordering the user sector sequence to correspond to the logical sector sequence on the 
track. This could eliminate multiple superfluous rotations in the worst case. Sectors containing hard 
defects are remapped to "defective" status and are skipped over during i/o operations; they no 
longer possess logical addresses and are disregarded. 

1/0-58 



Apple CONFIDEN11AL jaguar J/O filS 

0 5 10 15 20 25 29 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 25 26 

0 

0 

0 

5 10 15 20 25 -----
9 10 11 12 13· 14 15 16 17 18 19 20 21 22 

DATA TRIBlfU!R CONTRCIL FLO\fll~ll!IMPLES='.:/ 
.. /tit· /itr: 

::::::::::::~:~:~~{= :~:(:::::·:· :· 
The writable control store is not accessible through the DMA facilicy. The internal program counter is 
automatically post incremented. The high two bits of the instruction word are stripped away. 
Loading continues until the page is exhausted. Segments may not be spanned in a single transfer 
sequence. Programs may not span segment boundaries.) 

1/0-59 

29 



jaguar 1/0 ERS 

Low level controller command execution: 

Initialization: 
Load code pages 
Select transfer mode 
Set buffer block size 

Command initiation: 
Place code page in host 
command register 

Set EXEC=-1 

N 

N 

/~-60 

y 

Apple CONF!DEN71AL 

Write command packet to 
data register 
(dear SBA) 

Y Write block of data to 
data register 
(dear SBA) 

Y Read block of data from 
data register 
(dear SBA) 



Apple CONFIDEN77AL jaguar 110 ERS 

Having initialized the internal writable control store with the page or pages of code necessary for 
carrying out the intended operations, the host initiates a command in the low level controller. When 
SBA in the host status register is O and the internal CPU is not BUSY, the host writes to the command 
register, setting bit 0 (EXEC) and the bit ( 4 - 1) selecting the code page for the operation to be 
performed. Execution commences from location 0 in the selected page. Setting EXEC also clears the 
error register and interrupt latches, and causes busy to be set in the status register. 

The internal CPU is wholly responsible for controlling the movement of commands, status and data 
between the selected peripheral and itself. Once data have been placed in the system buffer 
(assuming a read ope@@n), the host is notified by the int~ma:l:J:PU via the SWAP, SBA, anct,,,,,::::::::: 

The host has the option of preloading a buffer in the controller while a seek is underway if one of the 
drives seeking will ultimately perform a write operation. (Internal CPU actions and host operations on 
the buffer are wholly independent of one another.) If a read is known to be required first, there is no 
benefit to preloading a buffer, since both buffers are required during reads in order to maintain one 
to one interleave performance. 

Once a seek has been successfully completed, subsequent seeks may be issued relative to the current 
location as single instructions by the internal CPU. 

SCSI Interface: 

The Small Computer System Interface (SCSI) connection is via a protocol engine attached to and 
under the control of Mazda. The engine implements the low level protocol management features of 
the ANSI X3T9.2 draft proposal of 16 March 1989. The data bus interface to the host (i.e. to Mazda) 
is 8 bits wide. 

1/0-61 



jaguar 110 ERS Apple CONF/JJEN'l7Al 

The following general characteristics of the SCSI protocol and draft specification are supported 
(some of these imply one another): 

• multiple initiator operation 

• arbitration 

• disconnect and reselection 

• command queuing 

• linked commands 

• synchronous block data transfer 

• bus parity 

No feature of this implementation should prevent attaching an otherwise unsupported target device 
which correctly implements the SCSI-1 protocol, and for which a suitable driver is provided. 

SCSI Signals 

SCSI signals (on the SCSI bus side) are actively driven true (asserted). Non-OR-tied drivers may 
actively be driven false (negated). 

Host (Mazda) Interface to SCSI Controller: 

• A(3~) 

• -cs· 
• -IOR 

• -row 
• -IRQ 

• DRQ 

• -DACK 

• -RST 

• DB(7-0) 

SCSI Bus (Peripheral Interface): 

• BSY (Busy) - OR-tied only 

• SEL (Select) - OR-tied only 

l/0-62 



Apple CONF!DEN77AL jaguar 110 ERS 

• CID (Control/Data) 

• I/O (Input/Output) 

• MSG (Message) 

• REQ (Request) 

• ACK (Acknowledge) 

• ATN (Attention) 

• RST CR~O·~ OR-tied only 

• ·•<+?:~dl;~~!l~pata Bus and Parity) 

1) 

2) 

-~·~;e~llocates ~{if for~IJe read, and fof<fltus ilJEfiln to be 

lllt:l~~::~~~f ~;""ndfll8Wr block ID !!flC memor!ljj~ the 

3) 

4) 

5) 

-~~l-ftor (host) tran~~~ pointers td~~~~lfi.imand b •• data and slli~, and the 
· .• ·.s ..•. ·.cs.•·.··········.1 .•. · ... ·.o.•.· .. e.· .. v. .. ·.•· .. ".c.· e address, to.·•.· .. ·•.•·.·.:.!.M ... ·.·.·.· .. ·.~.··.i.··.na ... · ....•..•..... :.·.· .•• ·.: .• · .... i.i . .-.... •••.•· .• ·.:•.·.•· . .-.• ................................................. ·. . . . .+.·•.••.••.·•·.·•.•.·.•.·.•.•.·.········.··.•.·.•.:.·.•.·.• ... •.•.•.• ... ·.•.••.·.···.·····.•.·.•.·.•.•.•.•.·• .. •.:·.········.H.• •. t " ::::::::::::::::::::::::::::::::::::::::::::::::::::::·:·:·:·:-:· 

ml§~l!controller is 4.!~~tl'lj&i·:mm1i.ti~R~¢ rori.~·s@$Jl~j · ··••••••••• t> 

111:.~~ (~~;:~~~-y~J;fiiiiJi\f;i~!!fBfiffuller 

:::~~,:·!rillC~g~~0= fr~~l[fl~~-'eac~ ta the assemar\lli~lliby 
7) The logical unit number is passed to the target by the IDENTIFY message, and Mazda 

signifies its ability to support disconnect and reselect. 

8) The command descriptor block to which Mazda had been passed a pointer by the host CPU 
iS now transferred to the target by the SCSI controller. 

9) The target determines that it should disconnect from the SCSI bus while it seeks to the 
requested track. The target sends the messages SAVE DATA POINTER and DISCONNECT to 
the host. 

10) The current data pointer is saved by Mazda in response to the message from the target. 

11) After the DISCONNECT message is sent, the target releases BSY, freeing the SCSI bus. 

12) When it has begun reading .the data requested by the host, the target arbitrates for the bus 
and reselects the host SCSI comroller. It then sends an IDENTIFY message to indicate 
which logical unit is re-establishing connection to the host. 

13) The target transfers data to the host; Mazda directs the data to the buffer to which a 
pointer was passed at the outset of the operation. 

l/0-63 



jaguar 110 ERS Apple CONFIDENI1AL 

14) If the target detects that another seek is required in order to complete processing of the 
request (at a cylinder boundary, for example), it will repeat the disconnect and reselect 
sequences, again issuing the SA VE DATA POINTER message to Mazda so that the transfer 
may resume at the point the disconnect was initiated. 

15) When all data requested have been transferre_d, or when the command has terminated 
premarurely for some reason, starus is sent to Mazda via the SCSI controller, and the target 
issues the message COMMAND COMPLETE, and goes to the BUS FREE phase. 

16) Mazda interrupts the host with notification that the command is complete. 

Methods: 

This section discusses some ways the Jaguar mass storage facilities might be used by higher level 
system software resources. The problem of efficiently managing real time i/o streams is the main 
motivation for this preliminary overview. 

The problem of managing real time i/o on mass storage devices has two main components: first, mass 
storage devices are subject to latencies which are very large in proportion to their burst data transfer 
capability; and second, that the sustainable serial bit rate from a single mass storage transducer (even 
disregarding the latency problem) is insufficient for some classes of storage i/o (especially video, but 
also static imag~ and real time instrumentation, for instance). 

Thus Jaguars base mass storage architecrure must offer means (which the operating system and 
applications need not necessarily exploit) for constructing controlled streams in which the incidence 
of catastrophic latencies is, where possible, anticipated, and in which aggregated storage devices 
may be combined seamlessly (from the standpoint of the user and of applications). 

To enabie the hardware to aiiow the operating system to fulfill critical real time iequests in a timely 
manner, maps can be maintained containing the information necessary to formulate at any instant 
the optimal fulfillment path through the components of all outstanding requests. Such maps would 
also be of use in formulating policy for guiding graceful degradation in cases of i/o saturation. They 
also could play a role in making it easy for the operating system to synchronize multiple streams from 
independent sources. 

This process entails examining the following for each prospective transfer operation, or perhaps 
group .of operations: 

• the .duration of the operation if all of it were completed without interruption; 

• the incidence of latencies in the path of the intended operation (seeks, rotational delays, head 
switching time, command overhead, transfer time, etc.); 

• the sensitivity of the operation to segmentation during its fulfillment; 

• the criticality of preserving the temporal integrity of the operation during some or all of its 
phases. 

• the proportion of available system resources which the operations' phases would consume. 

1/0-64 



Apple CONFIDEN11AL jaguar 110 ERS 

Traditional block oriented storage hardware and i/o processes are responsive to these issues only to 
the extent that zero latency full track reads, overlapped seeking, sector interleaving and cylinder 
staggering are supported. 

The temporal relationships implied by different policies for fulfilling multiple simultaneous pending 
requests cannot in general be analyzed in traditional storage .i/o architectures. Usually low c~t SCSI 
drives today maintain on-board buffers capable of storiog one or more tracks, so that the burst 
transfer capacity of the Vo bus can be used more efficiently. However this still does not allow 
system software to predict and manage the incidence of latencies when high bandwidth sustained 
streams are created to .. QtJrom the device(s). ,,., ... ,.,.,.,.,.,.,. ,.,.,.,.,., ... ,. 

;~;i!~~ii!~~i~ii~i~:i:!;;;i;;;;~;;iiiii~ 

data transfers may elect to interpose the embedded Winchester in order to make use of this higher 
degree of control. In many real time situations it is more important that latencies be well 
characterized than that they merely be very small. 

l/0-65 





Apple CONFIDENTIAL jaguar /JO ENS 

Section s 

.... Network/Telecom 

' 
.. :.;;.;.: .. 

:.; 
.. 

; 
.. ;' .. 

: 

.. 

; 

... 

: 
... 

; 

.... :.'': .. ;.'.'': .. 

;.; 
..... 

; 

.. 

: 
.. 

; 

..... 

: 

...... 

; 

..... 

;

· .... ··:· ... ··'' ... ·'·:·'·_,'·_ .... :'._ ... ='_ ... ··''_ ... ·'' ... ··'' ... ··'·.'_ ... ··'~:' ... :' ..... :~_: __ .·':·_ .... '~_ .... '~ ... ···'j .•. ··'~_ •.•• '~.· •.• ·';.•_.': .. :~:_ ... ·'i· ... ·'1 __ ... '~ ... ···'i __ .. ·': __ ... ::.·_.:;_::=:_ ... '~:~_ .. :~_ ... ··': __ .. ·': __ .... ': ,.}~~11t~~l1ljl~~~~1~~~l'.i~ ,/::::::::::::::::::::::::::::::: 

1 n tr o:8''ti''qllll:::l~llll:l:l: 

• 

···:·:-:::::·:·:·:·:·:·:·:·: ·.·.·.=:·.·.·.·.·.·.··:·······: 
;:::::::::::::::::::::::::::::::;:::·:·: 

• . Global connectivity: Computers will be able to communicate regardless of distance or country. 
But this won't happen until ease of use approaches of a phone call. Converging networking 
technologies (eg., X.400 E-MAIL, OSI, TCP/IP) and regulatory environments (eg EEC 1992 
convergence, COS, CCITI') will help make this a reality. 

• LAN clusters: LAN networks will continue to grow in sophistication, and will form the basis of 
many corporate workplaces. High speed backbone connections (Tl, fiber, etc) will 
interconnect the LAN clusters. Routers will be play an increasingly important role in the 
interconnection of different LAN and \V./ AN technologies. Dialup LAN access will become 
commonplace as a result of telecommuting and worker mobility. 

• ISON deployment: ISON Dasie-Rate connections (2B+D) will find growing use, especially in 
small and medium sized businesses. 

• Telecom Agents:High-performance CPUs will cause voice input/output technology to mature in 
the 90's. Machines will be judged not by raw speed but by "personality": that is, friendliness 
and the potential for useful work away from the office by mobile information workers. 

I/0-67 



jaguar 110 ERS Apple CONFJJJl'N77AL 

•. PBX technolog_v will compete with LAN and ISDN services. Many larger corporate customers 
have large financial commitments to their in-house systems; long-term migration will be away 
from the PBX. 

Considering these trends, the Jaguar Net/Telecom goal is to allow our customers to freely exchange ideas 
and information, regardless of location, distance, means of communication, or proximity to machine. 

The Network!felecom subsystem is Jaguars gateway to::the world. It includes all communications facilities 
that are standard to the Jaguar; card-based communications (eg., FDDI, token ring, X.25) controllers will be 
adapted from N&C technology are not treated here. The major components of the Network/Telecom 
subsystem are: 

• RALPH: the Real-time AnaLog PHone. RALPH is the analog telephone interface which comprises 
an analog interface system (ADC, DAC, and AGC), telephone network interface circuitry (the 
Data Access Arrangement or DAA), and control software for realization of modem pseudo­
devices. 

• BRIAN: the ISDN basic rate interface, which provides Jaguar with ISDN TEl (Terminal 
Equipment 1) services on the ISDN S!f (System!ferminal) interface. 

• SPAM - the Signal Processing Access Manager: a low-level DMA buffer management task that 
controls the flow of real-time digital sampling systems inside Jaguar. 

• Apple "FriendlyNet" LAN interface which provides an Apple AUI to support the Ethernet 
variants 10 Mbps thick cable, 10 Mbps thin cable, and (subject to further study) "10 Base T" or 
10 Mbps twisted pair. 

• LocalTalk interface. 

• Asynchronous communications. 

• Limited synchronous comrnunications. 

The diagram below is a conceptual view of the Jaguar CPU's "business end". The following sections 
will describe in tum how each is implemented. 

I/0-68 



Apple CONFIDENTIAL 

telecom Friendly ~~et 
(.e..pple AUi) 

=~~:::::::::::::;:;::: :: :: :: : ::· :· :-:-· .. 

~:~:~:}~:~:::~::: :::::: ;:;:;:.; ::::::: 

RALPH!>THe 'Realltime Analog '"PROne 

jaguar 110 ERS 

asynclsync 

RALPH provides a high performance interconnect to the world's analog phone system. This interface is 
designed to suppon the following functions: 

• Telephone-quality (300-3KHz voice grade) speech input/output 

• Modem emulation under software control, including but not limited to the 300/1200/2400, 
v.27ter (2400/4800 bps), and v.29 FAX (7200/9600 bps) standards 

• Flexible DTMF encode/decode support as a foundation for voicemail and voice/data 
applications. 

1/0-69 



jaguar 110 ERS 

pre-Jaguar modem 
tchnology ... 

Apple CONFllJEN17AL 

:,,. RALPH makes it a snap! 

RALPH Operational Overview 

The diagram below shows the relationship of RALPH with Jaguar hardware and system software. 

1/0-70 



Apple CONFIDENTIAL 

Jaguar voice handset 

8 bit, BKHz 
µLaw codec 

srr interface 
line coupling 
analog ckt 

client tasks 
(Sound Mgr, 
IVD mgr etc) 

/. 
RALPH 
inbound 

mes~l!9.~~ 

. ~{:::11:1111111:1 

data access 
arrangement 

RALPH 
outbound 

jaguar 110 f:RS 

RALPH is a telecom-oriented, low-level application team that provides voice and data facilities to clients via 
its message-oriented interface. Real-time scheduling requirements are severe, as buffer underruns occuring 
while acting as a' modem pseudo-device can cause loss of synchronization. RALPH uses SPAM - the signal 
processing access manager's - to route signal buffers between the jaguar CPU and physical interface. 

RALPH operates as an access manager that monitors the te!ecom system on behalf of client application 
programc;. The lowest level RALPH-client interface uses asynchronous messaging IPC. Higher level C++ 
objects will be built on top of this foundation for direct exploitation byapplication programmers. 

RALPH maintains a queue of telecom events and passes these on to its client. These events include: 

• Ring Detect 

• DMTF sequence received 

1/0-71 



jaguar 110 ERS Apple CONFJJJEN'J7AL 

• modem pseudo-device carrier detect/drop 

• demodulated data stream 

RALPH clients access RALPH services using conventions established by the pink 1/0 Name Server and Access 
Manager. These Net!f elecom Access Manager "hides" the implementation-specific details of the 
net/telecom system from the application programmer. For example, it should be transparent to the 
application if a "real" external modem were connected te the serial port and substituted for a RALPH 
pseudo-device modem. The parent Access Manager will enforce an exclusive access policy on RALPH 
pseudo-devices; data stream distribution must be performed outside the Access Manager. 

An application programmer would riot access RALPH services directly. Instead, existing higher-level 
communications managers such as the Communications Too!Box or Integrated Voice Data Manager 
would become RALPH'S client, thus shielding the application programmer from a (very) hardware 
specific implementation. 

The Communications Too!Box and Integrated Voice Data Manager represent a procedural interface "shell'~ 
that attempts to hide implementation details from the application programmer. These concepts will form 
the basis of a Net!f elecom Access Manager. Pink has introduced the idea of an object-oriented Sound 
Manager and Sound Server. Among the objects currently proposed by the Sound Manager are a generic 
telephone line and modem. The Sound Manager objects will support voice communications, voicemail 
recording/playback, and the like. Sound Manager methods using RALPH and SPAM primitives will be created 
to support these applications. 

Let's take a specific example of how RALPH would be used in a practical situation. Suppose that the 
user has a graphics document to send cross-country. The operation could be instigated by the user 
dragging a document to some iconic destination on the desktop - or by verbal request via the 
headset This would result in the following events: 

• the document is imaged into a bitmap by Aibert, which is then presented to the Integrated 
Voice/Data manager. 

• the IVD manager consults the pink name service to obtain the destination address. This is 
passed to the fax access manager. 

• If the destination corresponds to an ISDN address, the bitmap will be translated into a group 4 
compressed bit stream. If the address corresponds to an analog phone number, then the 
biunap's translated into a group 3 compressed bit stream RALPH. 

• A group 4 fax is sent over an ISDN channel via BRIAN, the basic-rate ISDN access manager. A 
group 3 fax is sent over an analog phone channel via RALPH, emulating a V.29 modem. spam is 
used to route sample buffers between the I/O system and the BRIAN or RALPH access managers. 

The following diagram shows where RALPH and other components of the Network!f elecom subsystem fit 
into the processing hierarchy in this example: 

1/0-72 



Apple CONFIDEN17AL jaguar /JO ERS 

Albert graphics rendering 

IVD manager pink name service 

FAX access manager 

Digital, imaged bitmap Digitized voice Sound Server 

• 

• FAX bitmap encode/decode. 

• file transfer protocols 

• data compression or encryption 

These services will be provided by other access managers to be developed for the Network!felecom 
subsystem. 

The Jaguar telecom philosophy is that communications services should be interchangeable if feasible within 
the constraint of time. For example, whether the client sends a FAX over ISDN or analog phone line should 
be transparent to the user; the sole distinction being the transmission time. From the user's perspective, an 
external modem should operate identically to RALPH pseudo-device modem. 

Let's take the example of an application that wants to transmit a fax image. This entails the following 
sequence of events: 

1/0-73 



jaguar 110 ERS Apple CONF/Dt:N71AL 

• ·Application calls Integrated Voice-Data Manager to establish connection with remote station. 
Note that the ND hides the details of the remote station's characteristics: it could be an ISDN 
tenninal, external modem connected on the async port, or V.29 group 3 FAX 

• The ND configures RALPH by issuing the DoCommandO procedure. This translates into a 
message containing an ASCII-encoded string of commands that could include going offhook, 
DTMF tone generation, selection of mode~ pseudo-device to emulate. 

• RALPH asynchronously returns a message to the IVD containing status -reflecting the outcome of 
the associated request. In this case it could be "connected", "not connected", "busy", or 
"modem pseudo-device in use". 

• application can now proceed to transmit encoded image over the modem pseudo-device. 

RALPH operates in similar manner when answering the phone. In this case, however, it may not be known a 
priori whether the caller is voice or modem. There are two alternatives in this case: 

• RALPH is instructed to answer the phone assuming a specific mode of operation. This would 
mean using a predefined modem protocol (eg. FAX) or silence in the case of anticipated voice 
calls). 

• RALPH uses a pre-defined sequence of modem initiation sequences to try and establish 
communications with the (presumed) originating modem. Note that modem standards 
provide for "graceful" determination of calling modem type. 

Neither of these two alternatives permit intelligent switching between the domain of voice and data. RALPH 
would lock Jaguar into a specific communications session (voice or data) without the possibility of 
dynamic switching. It would be much better if RALPH could exercise some intelligence in "answering the 
phone". 

One method providing more flexibility would work as follows. On answering the phone, RALPH would play a 
prerecorded message that's stored on disk. RALPH would then "listen" to the line for a short period of time 
(say three seconds), expecting a response. The response could be voice energy (the caller's voice) or a 
DTMF sequence: DTMF signalling would be simplest and least ambiguous method of routing the call. At its 
simplest, any DTMF tone response could be interpreted as "caller wants to leave a voice message". More 
sophisticated users could create a more elaborate parser using the by-now familiar "tree walk" paradigm: 
"press 1 to ring user, press 2 to leave voicemail, press 3 to consult mr pink ... ". The eventual (and I believe 
achievable) goal: is to permit relatively structured, yet extremely powerful voice I/O via Jaguar's voice 
daemon. 

If Jaguar's message is received with silence, jaguar knows that the caller.is must be a modem in originate 
mode (or crank call!). In either case Jaguar will respond with a modem training sequence according to the 
pre-defined sequence mentioned above. This technique will work because the Jaguar voice message 
playback should not be "audible" to a calling modem; it's expecting the answering modem's audio 
handshake sequence which is a very structured signal. Further, the originating modem always remains silent 
until the answering modem's sequence is recognized, so even simple measure of audio energy in the voice 
channel would suffice for differentiating a human from a modem. 

The Jaguar voice daemon will provide truly useful remote access capabilities. Imagine, one's machine can 
be given a recognizable "personality" through acquired recognition skills, vocabulary, speaking (output) 
accen~ behavior ... 

I/0-74 



!J.pple CONFIDENTIAL jaguar 110 ERS 

RALPH standby mode 

RALPH doesn't exist when power's been cut. What strategies could be used to answer the phone when 
the machine's off? As mention elsewhere in the jaguar ERS, jaguar has a "soft" power-off mode: user 
perceives the quiescent machine to be "off", but in fact MAZDA and RAM are active. This feature 
permits RALPH to detect a ring indication on the phone DAA and activate the machine. Here's a 
scenario on how this would work. 

1the PBX standard ring sequence is four second.5 (1 "ring" and 3 silence). 

1/0-75 



jaguar 110 ERS Apple CONF!Dl!.N17AL 

~.:;~1J _______ .. ___ a_-bit_._-_:_.·~~ 
- bus controller ASIC Jaguar Monitor 

Jaguar motherboarc 

RALPH 
Real-time 
Analog 
PH one 

OMA 
buffer 

External PAA mody! 

MAZDA 

OMA 
buffer 

OMA 
buffer 

12-bit AID 

rx 

~~~~~ :I 
·:·:·:·:·:.:v:.:·:·:·r:·:·:..:·:·:·:·:·:·:·:·:·:·:·:·:·:..:·:•;.:'.~·

signal isolation t
coupler :::

.... ,.,,,, , ,,..,., . ..,. · .. · .. :::·,J
ring detection ::

circuitry ·

tx

p~~ea:~~:~or I
:-:·;.:.;.;.;-;.;y;.;.;.;.:·:·:·:·:·:·:-:..:·:·:·:·:·:·:·:-;.;.;.;.;.;.;-:.;-:-;.;.;.

1/0-76

Sample rate
converter IC

music
app

team .i
~===~·<-·

OMA ~
buffer :1

.~d
tx buffers

Apple CONFIDENTIAL }tlp,uar 110 t.'RS

Data Access Arrangement (DAA)

The Data Access Arrangement (DAA) module provides a standardized interface to the various international
PTT phone network interconnection standards. jaguar will use the standard DAAs from Paris that were
originally developed for the laptop modem. _

The DAA performs the following functions:

• Couples t:ru;::}aguar's composite transmir/receiy,)J,,Q,alog data paths from the coq~,~J9 the

•

. /'
small, inex ensMF'::::: .. nmktor (TBD} the otner side corf .. B.:JJfrectl to the national holmddtenice usin

The diagram above shows the guts of the DAA. The MOD signal is the unbalanced voice channel. RG is the
ring indication, which pulses on ring signal. OH is the off-hook control, which Jaguar uses to "lift the
handset". This signal is also used to pulse dial. This schematic shows a relay actuation for off-hook, but an

1the hybrid four-wire to two-wire will be based on the motherboard.

1/0-77

jaguar 110 ERS Apple CONFWl:N71AL

analog switch could be used as well. The only additional components necessary before AID conversion is
the hybrid (two low-cost op amps with simple RC network), lowpass filtering, and gain scaling; the latter
two functions are incorporated in the codec chip.

Analog Interface System

The Analog Interface System (AIS) comprises analog-to-digital and digital-to-analog convenors. The AIS is
designed to provide high quality signal translation for voice and modem applications, while minimizing the
processing requfrements for the Jaguar DSP software.

Voice and modem applications place different demands on the AIS. Voice signals are encoded as 8 KHz, 8-
bit, mu-law encoded PCM samples. The mu-law logarithmic encoding rule is designed to increase the
effective dynamic range (to almost 72 dB) and to improve the signal-to-quantization noise ratio at low
amplitudes.

However, this companding algorithm, resolution limit, and sampling rate is unsuitable for practical, high­
performance modem emulation. The ideal AIS has programmable sampling rates, with independent
sampling rates on both receive and transmit paths. Additionally, a minimum of 14-bit resolution (with
guaranteed 10-bit linearity over any 10-bit range) is required. And linear phase antialiasing filters is
extremely important.

For this reason Jaguar uses two codecs: one for the voice handset and another, higher performance device
for the analog phone connection I.

Most AIS chips have serial data buses in order to minimize package size and facilitate system
interconnection. The AIS will need serial-to-parallel and parallel-to-serial conversion services performed
external to the AIS. This can be conveniently and simply performed inside the MAZDA 1/0 chip.

Analog signals must be lowpassed2 before conversion to digitai in order to satisfy Nyquist's criteria3 and
thus avoid generating aliased signal products in the sampled data stream. This filtering process must be
performed by hardware. The filter is commonly realized by active or passive filter networks, switched­
capacitor filter chips, or oversampled converters with on-chip filtering. This last approach is preferred, as it
provides high quality filtering that can be incorporated in the converter chip. By contrast, discrete filter
networks are subject to component tolerances and drif~ occupy more real estate, and may require tuning.

The output of the digital-to-analog convenor must be lowpassed as well. This so-called "reconstruction"
filter integrates the ADC output, thus removing the "stairstep" artifacts caused by discrete-time sampling.
Again, an on-chip switched-capacitor design would be the ideal choice.

There are several possible ways to implement the AIS. The most promising ideas are:

1the voice handset codec will be incorporated into the ISDN chip if direct handset-motherboard connection is available.

2in practice a bandpass filter i.5 used to remove unwanted low-frequency components as well.

3ine highest significant input frequency must be less than one-half the system sampling rate.

I/0-78

Apple CONFIDEN11AL jaguar J/O E1<S

• Extend the 8-bit CODEC found on the AMD 79C30x ISDN chip to 14-bit linear performance,
with samples routed through that chip's microprocessor interface1.

• Use the TI TIC32040 Analog Interface Circuit: a 14-bit ADC/DAC with 10-bit guaranteed
linearity over any 10-bit range. This device has the requisite antialiasing and reconstruction
switched-capacitor filters on-chip. Sampling ra~es are software selectable at 7.2, 8, 9.6, and
others. Input/output and clocking options ~re .very flexible. This chip is available now.

• Use the Analog Device's ADSP 7801. This is a 16-bit resolution ADC/DAC. This chip also has the
required inp~t/output filters. Sampling rates are selectable from any two of 7.2, 8, and 9.6
KHz. T@f::'lrt is just entering fab and first sHj~WM~ expected in the February-~y;gfl990 time

~::lfE~i~lt:!:::albrme
AMD 79C30x od,giji:::iijput 25% of the die, anq:::!J'''not::fjijq~fl!i:in the Jaguar arcb.l.tctur~~;:::~~:::&1d be

. :::: .. :.':.':.':·:·:··
~~~tr~.r~~ :~:~:~:f)~::.:·:·.·:·:·:·:·:·:·:·: 

• 

~i~~~~~?~(i~ii~~f ~/~~r::: 

is the case for the codecs mentioned above. The following discussion refers to the TI 32040, although an 
alternative codec implementation would operate in a similar manner. The 32040 clock at 4.608 MHz is 
obtained from the telecom subsystem's master 36.864 MHz crystal, divided by eight. This clock is in turn 
subdivided internally to the chip to generate its internal 288 KHz filter clock - which is in turn divided by a 
programmable register to obtain the desired sample rates of 7.2, 8.0, and 9.6 KHz. Note that the filter 
clock rate is independent of the sample rate: this is required to maintain identical filter characteristics. 

1this option will not be pursued if the handset codec is incorporated into the chip (ref AMD 79C32x). 

2because AID and D/A conversion is done locally at the user interface. 

110-79 



jaguar 1/0 ERS 

serial --11~ 
in 

serial 
out 

serial­
parallel 

converter 

serial bus 
interface --

converter 
(14 bit, 1--1~ 
10 bit 
linear) 

AID 
convertor -(14 bit, -

10 bit 
lineatl_ 

lowpass 
filter 

bandpass 
filter 

I\ 

Apple CONFIDENTIAL 

analog 
out 

analog 
..,..._ in 

The serial bus provides a frame sync pulse which qualifies the data clock. This provides an easy interface to 
the MAZDA phone I/O module's serial-to-parallel converter. 

Automatic Gain Control 

The analog signal's amplirude before digital conversion is required for optimal AIS performance. If the 
analog signal is too low, dynamic range is lost; too high, and serious distortion results. This function is 
performed by the automatic gajn conrrol (AGC) circuit, which is partitioned between hardware and 
software. The required dynamic range is a function of the codec sensitivity and resolution. Since jaguar 
provides floating-point processing, post-conversion normalization is not required except at the symbol 
demodulation operation. 

RALPH monitors the RMS power within the spectrum of interest by scanning the post-conversion DMA 
buffers. After calculating the signal power, RALPH adjusts the programmable analog gain stage found in the 
AIS. Some codec chips have programmable anenuators with a dynamic range around 6-25 dB. The upper 
figure is the lower margin for acceptable AGC operation with telephone signals, whose received power can 
span a range of 48 dBm (eight bits @ 3dB voltage gain per bit since P • E*E/R) . 

RALPH modem pseudo-devices 

The following modem pseudo-devices are supported (emulated): 

V.21 a 300 bps, full-duplex standard using frequency-shift (FSK) modulation. This standard is 
used outside the USA, most notably in Europe. 

103 a 300 bps, full-duplex Bell standard using FSK modulation. This standard is used within the 
USA . 

V.22 a 1200 bps, full-duplex standard using phase-shift (PSK) modulation. This standard is used 
within the USA and is employed by the common contemporary "personal computer" modem 
- such as the Hayes™ or Apple Personal Modem 

110-80 



Apple CONFIDEN71AL jaguar /JO ERS 

212A Bell (American) version of V.22. Uses a slightly different (yet significant) handshake and 
requires "guard tones" to be transmitted in the answer mode. 

V.23 a 600/1200 bps full-duplex standard using phase-shift (PSK) modulation with a 75/150 bps 
back channel. This standard is used in Europe for videotext applications such as the French 
minitel. 

V.22bis a 2400 bps, full-duplex standard using Quadrature-Amplitude (QAM) modulation. This 
standard is used both in the USA and abroad. 

V.27ter a 24.99111><> bps,. half-duplex standard using;ml,r;::piodulation. This is the low,:taP 

~ati~i~S:~~I:: 
NorrnaJly, the application programmer would configure the RALPH profile directly (this could be stored in a 
localizable resource). However, a large body of software developers are accustomed to the Hayes™ "AT" 
command set. In order to provide a measure of compatibility with existing telecommunications software, 
RALPH'S modem interface will also accept the ubiquitous and proven "AT" command set. The "AT'' 
commands will be parsed and RALPH'S profile updated accordingly. Several commands may be catenated 
into a single command string. Common commands (such as dial a number) will be compiled into a macro 
library to facilitate fundamental programming. 

The data pump command set is as follows: 

AT Command line prefix ATtention. All command strings must be preceded by the Attention 
command. 

l4aoo bps V.'lf) uses the V.27terstandard 

2a sophisticated encoding technique that improves modem performance on marginal lines. 

1/0-81 



jaguar 1/0 ERS Apple CONF/Dt:NT/J1L 

Al · Repeat the previous command. 

A Set RALPH to answer mode and go offhook immediately. 

Dn Dial the number immediately following this command; n is the number to be dialled, which 
can contain the following embedded dial sub-commands: 

T Tone (DTMF) dialling 

P Pulse dialling (default) 

R Reverse mode: put modem in answer mode after dialling 

W Wait for continuous tone before dialling the next number. RALPH waits 
for a period of time defined in register 57. 

@ Wait for a quiet answer, that is, one or more rings followed by five 
seconds of silence. RALPH waits for a period of time defined in register 
57. 

pause the length of time specified by register S8 (default = 2 seconds). 
Each comma equals the pause length specified, 

Flash: place RALPH temporarily on-hook in order to get a new dial tone 

return to the command state after dialling. This command can only 
occur at the end of a dial command string. 

5 dial the stored number contained in RALPH profile structure register n. 

Hn Controls the S'Wvitchhook: n • 0 • on-hook (disconnected); n • 1 • off- hook. 

In returns RALPH ID/checksum 

On puts RALPH in Online data mode. If n = 1, the equalizer retrain sequence is initiated. 

Z causes a software reset. RALPH 's configuration profile is set to the default configuration 
profile. 

Bn Set RALPH emulation mode: 

0-103 

1 • V.21 

2 • 212A 

3 • V.22 

4 .. V.22bis 

5 • V.23 

6 • V.29 

1/0-82 



Apple CONFIDEN77AL jaguar 1/0 ERS 

7 .. V.27ter 

Mn speaker control. 0 • speaker off; 1 = speaker on when off-hook, speaker off when carrier 
detected; 2 • speaker always on. 

Qn result codes on/off: 0 • codes are sent;:.1 • codes not sent. 

Sr? read the contents of status register r. 

Sr-n Gg~i.fl to set register r to value n. 

RALPH profile 

union 

struct 

BOOL 
BOOL 
BOOL 
BOOL 
INT 
INT 
INT 

·[:. ! !ij[!iilii 
t:{t :.·.:.•.:.•.:.•.:.•.:.•.:.:::·::;·:::··==:•:=:•:=.•:=.•.=. 

r~t\ 
OCHAR !@~¥~~i~oreAnswer; 
OCHAR :::#e@~:,f#gs; 
OCHAR :•:ii!i~AA:P~~!i#:leChar; 

0s~~~:::::#~~~:t:F? : ==·==······ 
9~M~::•?l~'®t~:tt : •:::' = 
OCHAR bsChar; 
OCHAR blindWaitTime; 
OCHAR dialToneWaitTime; 
OCHAR pauseTime; 
OCHAR cdResponseTime; 
OCHAR hangupDelay; 
OCHAR dtmfDuration; 
OCHAR escCodeGuardTime; 
OCHAR RTStoCTSdelay; 

ATregs; 

struct 

/* 0 *I 
/* 0 */ 

/* '•' */ 
/* Oxl3 •/ 
/* OxlO */ 
/* OxOB */ 
I* 2 (secs) *I 
/* J'O (secs) •/ 
/* 2 (secs) for comma */ 
/* 6 (l/lOth sec) carrier detect wait*/ 
/* 14 (1/lOth sec) no carrier to hangup */ 
/* 95 (ms) DTMF tones duration/spacing */ 
/* 50 (1/50th sec) */ 
/* 1 (1/lOOth sec) */ 

OCHAR sO, sl, s2, s3, s4, sS, s6, s7, sB; 
UCHAR s9, slO, sll, sl2, s26; 

Sregs; 

regs 

1/0-83 



jaguar 110 ERS Apple CONFIDEN71Al 

Functions 

The following functions represent the beginnings of the lower-level interface to RALPH. These commands are 
passed to RALPH using asynchronous messages. 

1/0-84 



Apple CONFIDENTIAL 

SetProfile 

RalphErr SetProfile(ralphProfile}; 
ralphProfileStruct * ralphProfile; 

Description 

jaguar 1/0 ERS 

SetProfile() initializes the RALPH data pump to the operating mode specified 
by the rajppProfile structure. RALPH wiH':µpdate its operating prqfil~to 

~~i(~ii=lg~~~~~ ~~~;;~~ration da~~l!lii-~;.illlregin operation as JIB~~~]~rd by 
.·· · · -:.;- . ·.·.·. . =·:=====:::::=====· :-::r :={:;:~ · :·:::: ::::f: :::::::::::::::::\~: ·>~:~:::::::::: ·:. =.:~-;~ .. :~:.:: :.:~.~~.~~-~~.~~ 

··:::·=· •.-:·:·:·:·: .-:· :::::::;::;:: ·"=···:;:;:·:·:-·-:.:- .,.·.'_._:=.•·.'.•,•.•.•_:.•_::.··.:,::.·,::;:::::: 
··:·t········-·.·.·.·.· .. ·.·.·.·.-.·:-:-:-:- ,:): :::::::;::::: •••••••• :•:}'::: ,,,,.,.,.,., ......... . 

Argument~il\111\•\l•l!l•li!lllll!ijlll•lllll -···•••,•'•,, •. ,, .•. i.-i!•,::·•••!l•i•i::iili,.,_!!!i ,,·•••••••••••'''!l!•••!!li!•l•!!!ili!l•l!lliil•iilil•ii 

ra191iii The AALPH.~viriii!profile structy~. 1111:1 

:1 ff~JI ·'·'··'.,: ___ ,· ____ ,' ___ ,•_ ... '~_.'( ... ·'t· .. -'~; .. ·'l=_:,•., •• _l1 -~ .~· ... ·'_:•i .. ,• ... ···'_·· ..... '• ..... -'• ..... -'._ ... -'.• __ .-·'.• __ --' .•. · __ .:·'··--·'.';.· .... ·'· ... ····'· ... ···'i ... -·:· ... ···''.--···'· iii\M\¥JBI Return Va/i~.•b.•i.ii.••.•i·.••_li:.'i_ii_.il•l .,. 
WW -~-j:,•_j_[ .. ~.~-~.~:~-~-~.·-.: .. ~.r.,~.~:~·~:~ ::::::::::::::::::::::::::::::;::;;:=::::::: 
:-:-:-:-:-:-:-:-:-:-:·:·:·::;::·:·:·:······· 

:::::::::::;::::::.::::::::::;::::.;::::. 
·.·.·.·.·.·.·.·.·.·.· ... · ... :·:::-····· 

1/0-85 



jaguar 110 ERS Apple CONFIDEN71AL 

GetProfile 

Ralph Err GetProfile(ralphProfile); 
ralphProfileStruct * ralphProfile; 

Description 

GetProfile() returns the ralphProfile structure that defines the current RALPH 
operating environment. 

Arguments 

ralphProfile 

Return Value 

badCmdErr 

See Also 

The RALPH environment profile structure. 

The SetProfile() command was issued when a RALPH 
communication session was active. In this case the caller 
must terminate the RALPH channel. 

1/0-86 



Apple CONFIDEN11AL 

DoCommand 

RalphErr DoCommand(commandStr, ralphProfile); 
char * commandStr; 
ralphProfileStruct * ralphProfile; 

Description 

jaguar 110 ERS 

DoComr.ni.Pd ()directs RALPH to executeJne "AT" compatible A$,Q.Jl,, 

::;:;:::::::::::::::::::::::::::::::::;: 

I/0-87 



jaguar 110 ERS 

Send Data 

Syntax 

RalphErr SendData(dataBuffer, count, framedData); 
char* dataBuffer; 
int count; 
bool framedData; 

Arguments 

dataBuffer 
count 
framed Data 

The ASCII-encoded "Ar· command string. 
Number of bytes to be sent. 
boolean flag, indicating that dataBuffer contains ascii 
encoded data to be framed with start/stop bit(s) according 
to the current profile. 

Description 

SendData() transmits the dataBuffer over the RALPH pseudo-device modem. 
The current operation mode (originate, answer) and emulation mode 
(modem type) must be already established. 

RALPH transforms the digital data buffer into voice-channel modulation for 
transmission over the phone !ine, RALPH makes a"best effort" attempt to 
send the data to the remote consumer, but error detection and recovery is 
the responsibility of a ·higher layer protocol. 

The: framedData boolean, if set, directs RALPH to insert start- and stop-bit 
framing according to the current RALPH configuration profile. Otherwise, the 
dataBuffer is transmitted to the remote unaltered. 

SendData(} is an asynchronous call. 

Return Value 

noConnectErr The remote modem has disconnected. 

See Also 

GetStatus(} 

I/0-88 



Apple CONFIDENTIAL 

Receive Data 

Syntax 

RalphErr ReceiveData(dataBuffer, count, framedData); 
char• dataBuffer; 
int *count; 
bool frarne.dData; 

noConnectErr The remote modem has disconnected. 

See Also 

1/0-89 

jaguar 110 ERS 



jaguar 1/0 ERS Apple CONFWJ:'N77!1L 

SPAM: The Signal Processing Access Manager 

SPAM - the signal processing access manager - is a low-level task that controls the flow of digital samples 
inside Jaguar. These samples are generated by the following .sources: 

• Telephone or ISDN voice channel codec at 8 KHz 

• Telephone modem codec at 7.2 KHz or 9.6 KHz 

• Hi-fl desktop codec at 48 KHz 

• Application software at 8, 22.25, 24, or 48 KHz 

• RALPH modem pseudo-devices 

• System software (sysbeeps) at 24 KHz 

SPAM supervises the WANKEL VO control program on behalf of its clients. The two major clients of SPAM are 
RALPH and the Sound Server. SPAM is responsible for managing the multi-buffered DMA buffers (containing 
digitally-encoded analog data) that are routed between the desktop and telecom (phone line or ISDN) 
interfaces. SPAM in fact could reside as a member of RALPH'S application team, but more likely would be a 
pink interrupt service request (ISR) routine, owing to the real-time response requirements and minimal 
processing performed by SPAM. 

An efficient multi-buffered DMA structure may be best implemented as part of the RALPH application team. 
The partition between SPAM and RALPH is made to separate buffer management tasks from the "hard core" 
data-pump algorithms - hopefully giving RALPH a virtual data stream. 

SPAM buffer management 

SPAM clients must ensure that their producer/consumer processes are capable of synchronous, real­
time operation or OMA underruns will result - with possibly serious consequences. This can cause 
audio sound "glitches" or loss of synchronization in RALPH modem pseudo-devices. 

The DMA buffer size is dictated by SPAM clients. Each application will have its own design centers that 
determine the buffer size used. 

RALPH modem pseudo-devices are very sensitive to the buffer size, as this determines the scheduling 
granularity. If the buffer is too small, excessive scheduling overhead results, while excessively large buffers 
make the scheduling epoch too large, which complicates certain algorithms like initial handshaking and 
software age. 

The typical RALPH buffer size is in the vicinity of 128-1024 bytes, resulting in a DMA completion interrupt 
from SPAM every 16-128 ms (assuming an 8 KHz sample rate). Conceptually, a much larger buffer could be 
used (say 10K bytes) once handshaking has been completed. This would provide additional scheduler 
elasticity. 

l/0-90 



Apple CONF/DEN17Al jaguar /JO ERS 

SPAM channel control program 

The SPAM will use a basic WANKEL channel control program to perform multi-buffered I/O to and from 
the codec and desktop 1/0 devices. The following simple channel program shows how it might 
appear. In this picture, an interrupt has just been generated by WANKEL, alerting SPAM that transmit 
buffer two has just been transferred to the codec that interfaces the phone line to Jaguar. WANKEL 
has cleared the "ready" (R) bit in the CCW flags for CCWl, indicating that transmit buffer two is 
empty and thus ownership has returned to SPAM for fill-up. -Flag "ready" in CCWO has been set by SPAM 
as a result of a previousjpterrupt/fill-up cycle, transferring ownership back to WANKEL Since the 
transmit and receiv<;:.,,~els are in synchronous lock-step/t¢¢¢ive-channel control program :,:; . 

interrupts are §µ.qp~. /::::< . ::::•·'.·,' ,,.-,=.=,•_,•-,•,·,._._• · ,·.•,•,·,•,•,•,•.-.·-·=·=·····-••--•_•_:_••-••-• 
... :::::::::;:;: .:::::_::_::_:::_:_::.=.=.=.:.:_:: __ ::.:::}~\~~i.~): /{{: ·:·:·:.:-:·.··:·::::·:· .. ;.;:;:)\~~;}f i .· ... :·:·:·:::........ ·.·.· .. ·.·.·.·.·.·.•.· 

.c.ctz ==H c9B.ili FLAGs H8ili•=:i=•:i.i.• 

0 

1 

2 

3 

4 

5 

codec-rx 

branch 

R D U I T 
1 0 1 1 0 

RD U 

0 0 1 

R D U I T 
0 0 1 0 0 

R D U I T 
0 0 0 0 0 

count _= 
128 - 1024 

xxx 

ISDN Basic Rate Interface subsystem 

Overview 

addr = 
rx buffer 2 

addr = 
ccw 3 

BRIAN - the ISDN Basic Rate Interface - provides jaguar with integral voice and date communication 
facilities as an ISDN "Terminal Equipment 1" operating on the ISDN SIT interface. The BR! allows 

1/0-91 



jaguar 1/0 ERS Apple CONFIDEN11AL 

connection either directly to the "Network Termination 1" - in which case Jaguar acts as a TE1 on the 
"Terminal" (T) interface - or as a multidropped TE1 operating on the "System"(S) interface. 

BRIAN consists of the following components. A block diagram is shown below. 

ISONBRI 
data 

highway 

Dchamel 
protocol 

controHer 
(LAP-0) 

Serial 
PCM 

highway 
(8KHz 
Jll..aw) 

2XB 
channel: 
protocoi­
controller. 

/ 

8KHz, 48KHz 
8bit "hitr 

Jll..aw codec 
codec 

TT @® 

c SIT· c interface 

An S/f interface transceiver that connects the BRI subsystem to the four-wire, 192 KBit/sec, full duplex Str 
interface. This transceiver performs complex analog signal processing and collision detection functions. A 
coupling transformer is required to connect the srr interface chip to the four-wire line. 

A 0-channel protocol controller that provides LAP-Dl (OSI level 2) access to the BRI. This function is often 
combined with the SIT interface on a single chip. The on-chip controller performs bit-stuffing, flag 
detection, framing, and address recognition. 

Two B-channel protocol controllers for transmission of digital dat.a over the two B channels. Since standard 
X.25 is used on the B channels, the essential requirement is that the controller handle HDLC frames (such as 

11AP-O is very similar.to the well-known l.AP-B used by X.25, with the notable exception that l.AP-0 has a sixteen bit 
address field which encodes the level-3 client address. 

I/0-92 



Apple CONFIDEN77AL jaguar /JO £RS 

the SCC). However, ISDN BRI silicon also makes heavy use of serial, time-multiplexed data highways. Thus 
a choice must be made between using a pan like the SCC (using the MAZDA mux routing support), or an 
alternative chip which provides a direct interface to the serial bus. 

Voice traffic carried on a "B" channel that delivers an 8-bit, mu-law encoded PCM signal at 8,000 
samples/second. This data stream is routed to the user interface codec via special mux/demux circuitry 
inside WANKEL. Two codecs are provided at the user interface Audio signals destined for speakerphone 
(using the "hi-fi" speakers and standard microphone) are sample-rate convened and sent to the "CD 
quality" DAC by RALPH. 

·····················:••:········ Im P l@.tn.~1.•1,@~i!Q n ·:•: .. :::.:;:;/:::::::::: A]: ••••••. !. ji!.li. 

~':::,'. ~-~~f ~e~:i,:~~~1::,1•,~ an Sir transce:~l'll!nnel 

. •:~~~~~~~:1~;:~~11:i~~ :~fb~•~t 

1/0-93 



jaguar 110 ERS 

00-07 

00-07 

NIC ..... HSW 

81CLK 

' 
RTxCA 

Apple CONFIDEN71AL 

!SON Basic Rate Block Plagrar 

Wankel !SON-BR 
110 module 

AO-A3 CS/ WR/ ROI INTI 

-~ .. 
, 

Ao-A3 CSI WR/ RO/ INTI ·e 
11Processor interface " i 

!! 
.s 

AMD79C32E 2! 
ISDN data = 
controller 

serial interface MUX 

SBIN SBOUT SCLK SFS 

~ 

, , , 
SBIN SBOUT SCLK SFS 

Wankel mux/DMA service1 

B2CLK 611N B10UT B21N 

~ A 

, , 
RTxCB TxDA RXOA TxDB 

znog sec 

Note: see acco mpanying 
menclature text for pin no 

LIN1 

LIN2 

LOUT1 

LOUT~ 

XTAL2 

XTAL1 

MCLK 

B20UT 

RxDB 

SIT . ., terfa .. -

=~ c 
=~ c 
~ 12.28MHz 

i.-
~ N/C 

~ 

~ 

Wankel 
OMA Bus 

Wankel 
Register Bus 

dedicated dual HDLC controller 
for B channel data 

IDC Pin nomenclature 

• D0-07: MPI data bus (input/output). Tri-stated if chip not selected 

• A-A2: register selection address pins (input) 

• CS/: active low chip select 

• WR/: active low,specifies write transaction to IDM will take place 

• RD/: active low,specifies read transaction to IDM will take place 

• INT/: specifies that IDC needs service. Updated every 125µS 

• UNI, LIN2: S!f interface twisted pair input 

1/0-94 



Apple CONFIDEN11AL 

• LOUTl, LOlIT2: S!f interface twisted pair output 

• SBIN: serial bus input 

• SBOlIT: serial bus output 

• SFS: serial bus frame sync 

• SCLK: serial dock, 192 KHz (3x64KHz) 

• XTALl: N/C 

.. ~.~MHz ± 80 ppm clock i·n=·'.·'·.=.:·:.=·:p ... =·,· .... :· ... ·'··········' ... '···' ... :u····' ... ·'·.·' .. ,.····::·······' .. =·.·,·.· ... ···'1·'·.·,'·' .... ' ...... '~, ... ··········':': ... ········':·' ... ·········':·:············':' ... ·········''·:············'' .. = ... ····:;····:::········:· ... ::····:!·······'';·········'' .. ::·.:! .. ········''.j ... ········';·:············::.:············';·:············':·:····'! ... ····'': ... ····:!····':··' ... ·········'' ... ··········'·: ... ·········'.i,·············':: ... ·········'.:: .. ··········'.: ... ·······':.:•: ... ·······:.:j .... ········'•• ... ········'l:• ... ·····'i.··:' ... ···:!·····:' .. ·'i ... ·····':.i············'::;···········'· ... ··········'! ... ·········':.• ... ·········:!·;···········'!,.= ... ······''··:· ... ·····'1 ... :: ..... :1 ..... ·'· .... :1• ... ····:.:i: ... ·······' . v--
wanke1 111111'rA 

• 
• 
• 
• 
• 
• 
• 
• Wadke.t=B:ter Bus· internal program bus ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

''t:1r::t:::::::.:.:::·:!:,,=1==,:::;.:::::·!!:·:·:::·:=:·:·=!:=:::::::::::::mr1::·,, :::,!::::·i'i:!::!l:::1::.::.'I·,::,.::== 

sec pin nomenclature 

• RTxCA: receive clock for Bb serial data bus, sample on positive edge (input). 

• RTxCB: receive clock for Be serial data bus, sample on positive edge (input). 

• TxOA: serial transmit data stream Bd = ISON channel Bl (output) 

• TxOB: serial transmit data stream Be • ISON channel B2 (output) 

• RxDA: serial receive data stream Bd = ISON channel Bl (input) 

• RxOB: serial receive data stream Be = ISON channel B2 (input) 

1/0-95 

jaguar /JO HRS 



jaguar 110 ERS Apple CONF1Df..'N'/1AL 

IDC serial bus 

The IDe serial bus provides three independent, 64 Kbps serial data channels (called Bd-Be-Bf in AMD 
literature) that are arranged as a TDM sequence of three octets, one byte from each channel. The 
ISDN "SIT" interface's "B" channels are routed to the me bus channels Bd (ISDN Bl) and Be (ISDN 
B2)using the 79C30's internal, programmable multiplexer. The framing signal SFS marks the beginning 
of a three byte sequence of logical "B" channels Bd-Be-Bf on the SBIN (serial bus in) and SBOUT 
(serial bus out) lines. The SBOUf signal will be routed from the me to the Wankel engine for 
demultiplexing. The circuit below, provided for illustration purposes only, should accomplish this 
trick: 

E 03 

4 bit 
counter 

cir 

SCLK 

RTxCB 
(Be) 

RTxCa 
(Bet) 

Both B-channels will be routed to a dedicated SCC, operating as a dual-channel HDLC controller to support 
X.25 traffic using HDLC framing on the B-channels. B-channel data will be routed to and from the sec using 
the DMA services provided by the Wankei SCC 1/0 Moduie. 

Data from the SCC will be multiplexed onto the !DC serial bus using a circuit inside the Wankel. The simple 
circuit below should suffice: 

TxA 

SFS SBIN 

TxB ---4 

The resulting Wankel SCC clock signal is thus: 

I/0-96 



Apple CONFIDEN17AL 

ISDN 

SB-IN/OUT 

SCLK 

SFS 

Bd 

• local wall "brick" with jackl 

jaguar 1/0 ERS 

- Be Bf 

r---~~--------~·.~:·:·:·'.·:::::::::::: 

~"' 

Since the Jaguar XJS processor is required to actually run the ISDN protocol stack, the only feasible 
alternative is option (1): keep the I/O subsystem powered up, with soft-powerup for the rest of the 
system. This is exactly what is proposed for the RALPH analog phone service. Options (2) and (3) are 
probably unfeasible because this power, while perhaps adequate for the ISDN controller circuit, is 
insufficient to power the entire Jaguar: the central CPU performs ISDN protocol processing, while the 
speech VO circuits and keyboard are required for call establishment. 

In order to allow the caller co make a call with the machine powered off, we'd need co have the ISDN call 
management software run on an autonomous card with control processor such as the N&C MCP. If fitted 
with a SUC, the user could use a standard telephone sec on the desktop. 

The entire issue of power feeding is under debate within the ISDN community. A wall "brick" is available 
from vendors like AT&T char provide power co up to eight ISDN terminals on the "S/T" interface; 

lused by ATG, for example 

1/0-97 



jaguar 110 ERS Apple CONFIDENI1ilL 

however,this "brick" can only power three MCP-bascd ISDN cards. Power feeding up to the customer in the 
U.S.: the RBOC "responsibility" ends with the "U" interface termination on the central office side of the NTl 
(think of this as the ISDN "phone jack"). Note that the DC-DC converter needed to use the "SIT'' power 
doesn't come cheaply: cost is currently $52 and it measures about 3 inches on a side and 1/4" high!1 

Call answering during "soft" power-off mode would follow the scenario outlined under section "RALPH 
standby mode". WANKEL'S channel control program int~ quiescent mode handles only the smallest subset 
of the entire call processing stack that is necessary to keep the quiescent channel established. This entails 
recognizing and reflecting an "RR" (Re~eiver Ready) LAP-D frame over the "D" channel, perhaps every 10 
seconds. On reception of a non "RR" frame (presumably a connection establishment request frame or 
"SABME"), Jaguar will bring itself fully on-line in order to execute the full ISON call processing protocol 
stack, which will interpret and process the succeeding frames that lead to the establishment of an incoming 
call. 

BRIAN operation 

BRIAN provides two 64 Kbps synchronous "B" data channels and a single 16 Kbps synchronous "D" channel. 
Call control information is conveyed on the "D" channel using synchronous LAP-D framing. The "D" channel 
can be used to route packet-switched data as well. MAZDA interfaces to BRIAN using a dedicated 1/0 
module. Under program control, the WANKEL control program writes "D" channel packets through the IDC 
microprocessor interface, which is buffered through an on-chip 16-byte transmit FIFO. Similarly, WANKEL 
responds to interrupt requests from the IDC and reads "D" channel frames from the IDC's 32-byte receive 
FIF02. 

Full-duplex "B" channel data is routed to the dedicated SCC's two HDLC controllers3. The MAZDA mux 
services generate the required clocks to drive the SCC, providing the concurrent transmit and receive 
strobes. The SCC is accessed through the MAZDA SCC I/0 module - which trar...sfers data to XJS under DMA 
control. 

. An alternative implementation, which would require less software overhead inside MAZDA (if that proves to 
be an issue) would be to route the PCM voice dara to the IDC serial bus channel Bf, with serial-parallel 
conversion performed by hardware inside the MAZDA chip. 

Voice traffic is carried on a "B" channel using mu-law encoded 8-bit PCM at 8,000 samples per second. 
This data will be read directly on the IDC chip microprocessor interface bus (via an IDC internal 
register). A WANKEL IDSN control program will move the PCM data under channel program control 
between IDC chip and the DMA buffers which are accessible to Jaguar's CPU. 

SPAM is responsible for routing multi-buffered voice samples between ISON (or analog telephone via RALPH) 
and the user interface. Incoming (from BRIAN) samples are processed according to destination. Normally, 
the voice stream will be routed to the "telephone" codec found in the desktop, which drives the 

1a sub-$30, four square inch convener has been proposed. 

2the 32-byte receive fifo buffers 16oms of data at 16 Kbps. 

3x.25 is a CCITI-specified level 2-3 communications protocol on the "B" channel 

1/0-98 



Apple CONF!DEN71AL jaguar 1/0 ERS 

handset/headset interface. RALPH routes the samples as-is directly to the user-interface bus controller chip 
under DMA control. The voice samples will be played back using the "telephone" codec. Outbound samples 
are simply routed from the bus controller chip under OMA control directly to the IDC chip using a WANKEL 
ISDN channel control program. 

Note that a variant of the IDC chip which contains a "telephone" codec is available. If product design 
determines thatjaguar's design will be of integrated - th~t is, no high speed serial desktop bus· required -
then the IDC internal codec will be used and analog voice will be pumped directly between the 
handset/headset interface and IDC chi pl. 

If the hi-fi desktop ~pggrs are selected, RALPH will first cQ#.tl,l;'the·samples to linear using,;l.}t.¢)ookup, 

::c~ft~~~Mllt3b:~~~~~:rP~~~;~en~~~Qa1llf.bf.0~~~n:~i::~~~P~:Se~i.ll~~~~:ck 
=gc~:;~:~llJ.Jlt~~~;~~~1~e~~=e~eb~:,~~!ir~•;~~et~~:~t~~:~ •f lllt~i~m 
~]= •:;~~:~b~~i~lf•~e~":ll:s~1!:11~r&c, 
ADC. liJliiliJiliiilil'li'iJ:li=illl:l·jiJ ... illi )::::=:j:,:;::::== ... ::i .. ii:.'.·'::1=1:1:11,:·:',i·1·iiJJI .,·:'i:::.·il':::::::· lll,liJ:lii'!.iii''jili'iji,l·':l./:J·i' 
BRIAN software ¥:m1¢.;:gcribed in a furure,j~pcument. :g:;w~!fi!li based on th.~(:~~c TELEtj$:::~gf@ife port to 
MCP. This softvlm~::ll:IP was written in,,:~W~ operates 91.ii!i,ii:IK and is cyi!ntly used tg::l!!Q~:;the 

fil~mIBDNll<s~·wliilli~liill; 

Networ11 --.- i-.-~'11ir,0; 

The 

• Apple "FriendlyNet" LAN interface which provides an Apple AUi to support the Ethernet 
variants 10 Mbps thick cable, 10 Mbps thin cable, and (subject to further study) "10 Base 'P' or 
10 Mbps twisted pair. 

• LocalTalk interface. 

• Asynchronous communications. 

• Limited synchronous communications. 

1lhe headset/handset interface uses a st.andard RJ-14 (mini RJ-11) connect~r. 

2hardware suppon for integer-rate downsampling is under investigation. 

1/0-99 



jaguar 1/0 ERS 11/JfJle CONFIDHN11AL 

FriendlyNet Interface 

jaguar will feature generic motherboard-based support for medium-speed LAN protocols. By incorporating 
the Apple "FriendlyNer standard, the use can select among three "flavors" of Ethernet via an external 
adapoo~ . . 

The FriendlyNet I.AN adaptor brings "plug 'n' play" simplicity to Ethernet I.AN installations. Apple has 
defined the Apple Attachment Unit Interface (AAUI) that is based on the Ethernet AUL The Apple AUI is 
identical to the IEEE 802.3 standard, except that signal pairs are not shielded, and power distribution is 
designed to operate with existing Apple hardware. The difference between the two AUI standards is as 
follows: 

Apple AUi Ethernet AUi 

+12V@ 200 ma, or +5V@ 375 ma +12V@ 500 ma 

twisted pair transmit twisted pair transmit w/ground 

twistea pair receive twisted pair receive w/ground 

twisted pair collision twisted pair collision w/ ground 

grouna ground 

Provisional connector choice is a 14 position, .050" spaced ribbon contact SCSI-2 styleThe Medium 
Attachment Unit (MAU) is an external "personality module" that interraces the physical medium to the AUL 
The possible alternatives to be supported are: 

• lOBASES - original IEEE 802.3 "Ethernet" specification, using thick (RG-8) 50 Q cable. Jaguar, 
which will provide the AUI power ( + 12V @ 500 ma) specified by IEEE 802.3 , will allow a direct 
connection from AAUI to an IEEE 802:3 MAU using an AAUI-AUI cable adaptor. The MAUs are 
available from several third parties. Machines which cannot provide 12V will interface to the 
IEEE 802.3 MAU using a powered AAUl-AUI converter (under development inside N&C), which 
provides the specified power via a "wall brick" power tap. jaguar could use this same 
converter, although the passive cable adaptor would be a cheaper solution. 

• 10BASE2 - "CheaperNet", thin (RG-58) 50 Q cable. A "CheaperNet" MAU is currently under 
development in N&C labs. This will give direct attachment to thin coax via a standard BNC 
connector. 

• lOBASET - Twisted Pair CSMA/CD, twisted pair (22-26 gauge) telephone wire. A lOBASET MAU 
will be developed within N&C to interface the twisted pair medium to the AAUI. A standard 
RJ45 snap-in connector attaches the twisted pair to the 10BASET MAU. 

There is a great deal of activity in the low-end Ethernet controller market; twisted-pair interfaces and high­
integration controllers are under development by most major chip vendors. Devices such as the Intel 82506 
Twisted-Pair Ethernet MAU and 82D6 CMOS integrated Ethernet controller/encoder, National SONIC, AMD 

I/0-100 



Apple CONFIDENTIAL jaguar !10 ERS 

ILACC, and other custom, highly integrated components are under investigation. In general, the controller 
will provide a very simple, slave DMA, 8-bit bus interface to Mazda. 

As a reference, the diagram below shows a typical ethernet AUI implementation using the Intel chip set1. 

This chip is similar to the ubiquitous SEEQ 8003. The WANKEL interface uses an eight-bit data path with 64-
byte programmable fifos2. Frame transmission and reception uses DMA transfers. To transfer a frame, 
WANKEL prepares a transmit data command block in memory, specifying the preamble, source and 
destination addresses, length field, and information field. WANKEL then issues a transmit command to the 
LAN controller interface. The LAN controller then reads the transmit data command block from memory 
using the WANKEL DMJ\,,§¢.fyices. , , ·'''' 

... ; ........ , ...•... ·.·.· :;>:·>:·· ·:·:·:·:·:· 
:.:.::.::;:: .... ·.·.·.·.·.·.· -::::::::::;:;: ::::;:;:::: 

~= ~:.:~'!~e~o~~t~~r Fw.,ra,,· .. · .. _:_:·:,:A·''.'_::_,m,::_,:N,,.,,',:',::,:',:es~,:-.,.=;.,:,,,,:a_._:,:,:,i,!,DE.:•.:,i,!, .. ,~:.:,.•,·.:.,0.r,·.:,·ntt,:_,i,!_,_:,~_,:,: ~~eived using either 
·:::::::::::~:;:~=~=~=~:~:~:::::::::::::::::: 

.. :~ ::;::· ~:{}~::::-:-:;: :::::\::::::: 
.::::::::::-- :.=~-'-'·'-~·'·'·'-~.:}) ·_:;_::.'.'·'·'·'·'·'·'·'·' . 

?~i~r· 
_,. _,,, 'iil!.ll·1·11·11111111:r:::::::·: 

.: :-::::;:;:;:. . .:-:-:······· ·.·.·.·.·.·.·.·.·.·:·.·,· ·:····· :.:<<·:·:·:·:·:::::::::·:· :::::::::;::;:::: 

• .. :::·:':.:_:,_ ·.:·'.':'e2cso 1 etbe:¥:fi:§1::::9:ewa:i!!!l!!~!!!&e5 

TRMT TRMT/ RCV RCV/ CLSN CLSN/ 12V GD 

FriendlyNet AUi 

Due to the activity in the ethernet chip area, further work with vendors is needed in this area before a 
selection can be made. 

1 Intel ehternet controllers are rumoured to contain variances from IEEE802.3 specifications. 

2can be configured tx/rx as 48/16, 16/48, or 32/32 bytes. 

1/0-101 



jaguar 110 ERS Apple CONFIDEN17AL 

Asynchronous Interface 

This interface provides the standard asynchronous and Loca!Talk LAP services found on the Macintosh 
family of machines. The Jaguar implementation closely follows the Macintosh II variant for compatibility 
with existing hardware products. These interfaces are controlled by the ubiquitous SCC chip. 

In order to support both Loca!Talk and async connections on the same port, programmable balanced and 
unbalanced line transceivers are provided. The interface pinout is identical to the Macintosh 11mini-DIN11 

eight-pin connector: 

Pin Number Signal _ Description 
Name 

1 HS Ko output -handshake 
2 HS Ki input handshake or external 

clock 
3 TxD- transmit data -
4 GND signal ground 
s RxD- receive data -
6 TxD+ transmit oata + 
7 GPi general-purpose input 
8 RxD+ Receive Data + 

Since the WANKEL 1/0 controller shields the SeC from the XJS, a channel control program is required to gain 
access to generic SCC facilities. One approach is to require a special wankel 1/0 program for each "custom11 

appplication. This would yield an efficient solution, but the development time would be excessive. A 
better idea is to provide a "generic" sec VO control program for w ANKEL. The generic program provides a 
limited set of commands that allows a serial driver to read and wiite the SCC register set. Wankel would 
interrupt the driver on the sec "status change" condition. 

The diagram below shows a generic hardware implemcntationl. DMA facilities are via the W/REQ pins. 
Note that full-duplex DMA support will require the OTR/ pin to be implemented in a WANKEL register. 

1See Macintosh Family Hardware Reference for further details. 

1/0-102 



Apple CONF/DEN11AL jaguar 1/0 ERS 

Async - LocalTalk - PBX pon 

0 
0 
UJ 

! 
>--

TxDa 

/RTSa OE 

/RTxCa 

RxDb t----< 

/CTSb .......,..__-< 

/TRxCb 

/DCDb 1-----< 

/DTRb 

PD 

PCLK t-----".6864 MHz 

RTxCb 

D 

1/0-103 

II 

NB: Balanced receivers 26LS30 generic 
Programmable balanced drivers 26LS32 generic 



jaguar 110 ERS Apple CONFlDHN71AL 

Programmatic Interface 

Normally, a WANKEL control program will be provided for each application as pan of the system software 
release. For example, LocalTalk WANKEL control program would be loaded as part of the system startup 
tasks onto a port configured for Loca!Talk. Since the SCC is shielded from the programmer's address space 
by MAZDA, there must be a mechanism for "dumb'' serial drivers to interface with a virtual SCC. The 
following four routines are intended to provide a simple, admittedly inefficient access manager interface 
to a virtual SCC that would be used with the "generic" WANKEL SCC control program. Of course, developers 
could develop their own WANKEL control programs for special applications. 

SendSerial Data 

Syntax 

RalphErr SendSerialOata(char * dataBuffer, count, portlO, async); 
char* dataBuffer; 
int count; 
int portlD; 
bool async; 

Description 

SendSerialData() transmits the dataBuffer to the remote channel over the 
SCC port indicated by portlO. 

RALPH transmits the data over the seriai interface according to the cuiient 
port configuration profile. Error detection and recovery at the link level is 
the responsibility of a higher layer protocol. 

The async boolean indicates that the call will block the caller until the 
transfer has been completed. 

Return Value 

portClosed The indicated port has not been allocated to the caller. 

See Also 

1/0-101 



Apple CONFIDENTIAL jaguar 1/0 ERS 

ReceiveSerialData 

Syntax 

RalphErr ReceiveSerialData(dataBuffer, count, portlD, timeout, async); 
char* dataBuffer; 
int *count, 

Return Value 

portClosed The indicated port has not been allocated to the caller. 

See Also 

1/0-105 



jaguar 110 ERS Apple CONFIDEN77AL 

ReadSCCRegs 

Syntax 

RalphErr ReadSCeRegs(SCeRegsPtr, portlD, async) 
struct *SCCRegsPtr; 
int portlD; 
bool async; 

Description 

ReadSCCRegs() updates the passed in sec register structure to reflect the 
state of the physical sec register set on the indicated port . 

The, async boolean indicates that the call will block the caller until the 
request has been completed. 

Return Value 

portClosed The indicated port has not been allocated to the caller. 

See Also 

1/0-106 



Apple CONFIDENTIAL jaguar //0 ERS 

WriteSCCRegs 

Syntax 

RalphErr WriteSCCRegs(SCCRegsPtr, portlD, async) 
strl!Qt}~pCCRegsPtr; 

1/0-107 



jaguar 110 ERS Apple CONF/JJl:'N71AL 

LocalTalk Interface 

A LocalTalk interface (230.4 Kbps) will be standard on the machine. A WANKEL 1/0 control program 
perfonns the AppleTalk LAP services traditionally done by the CPU or PIC chip. Programmable 
balanced/unbalanced transceivers are required for combining LocalTalk and async services on the same 
port. The 261.30/26132 transceiver pair traditionally fill this·· role. 

LocalTalk LAP packets are read and written by the wankel control program without intervention from the 
user. The following commands are defined (for compatibility with existing applications: 

WriteLAP(WDSstructure) - write a Loca!Talk LAP frame onto LocalTalk medium. 

AttachPHCALAPtype. protoHandler) - attach the protoHandler to LocalTalk protocol table 
Incoming frames matching the ALAPtype will be received and passed to the caller. 

DetachPHCALAPtype, protoHandler) remove the protocol handler from the protocol table. 

PBX I sync modem interface 

SCC port A can be configured to accept an external receive/transmit clock. This feature will be used by third 
parties to provide high performance PBX interconnect boxes using synchronous protocols at bit rates 
sufficient for concurrent PCM voice and data traffic, This channel interfaces to WANKEL under hardware 
DMA control. 

Network/Telecom clocks 

The diagram beiow shows the docking requiiemenrs foi the network/te!ecom devices described in 
this document Since the Ethernet controller derives the 1 O MHz Ethernet clock by internally dividing 
the 20 MHz clock by two, there is no duty cycle restriction on the clock waveform. 

20 
MHz 

,, 
div 
3 

36.864 
MHz 

div 
8 

div 
10 

Ethernet 12.288 MHz 4.608 MHz 3.6864 MHz 
controller ISDN controller CODEC SCCs 

1/0-108 



Apple CONFIDEN17AL jaguar 110 ERS 

Section 6 

Sound faciliti"es 

Hard war e ...... :·!· ... ··'':· ..... =1 ....... ·='.······'1 .... =1•: ... ··''.•' ... ···'i.: ... ···'i .... ···'i ....... ·='.=:···'i ... ···':·:.:: ... =i.=····'1 ....... =1:·.···'1.,: .... =1 ... ·':.:i········'j ... ····'1 ... ····''.······''.·····':.: ... ····'1 ..... =:.i ... =:.·,::: .... :i·'· ... ·='.·····'1 ... ····'' ... ····''.····'·,· ... ····''.·:: ... •;.··:: .. :r ... ····'i::····'i ... ··'!•: ....... =1 ..... =:,: .... =:,: .. == .. =r ... ··':.: ==.·'·.':·.' ... :' ... ···' ... ····' ...... ·=· .... =·:' .... =·.=: .... :'.· ... ·':· .. :r ... =:.,:.,:.:.:,:l:·]:::r== : ...... =:· ... ·=' ....... =1 ...... ·='· ... ····''.······''.·····':.:· ....... =1 ...... ·='.······'1 ..... =:,: __ .. ··':.: ... ···'·.l __ .. ··';.: .... :;.:1 __ ... ··'1 __ .·':.:
1 

__ .=·.··'=·····'1_, .. ··'' .. ·····'1_, .. ··:1_ ... ···''.······'1_ ... ···'1 ... ···'1 .... ··';.:·······'1 ... ····'1_ .. :'.:;····';.=l ... :'..•i .. ·:: .. :!: .. ···'! __ .. : .. =1_ .... ·='· ... ····''.·····'1 ... ····''.·····'1 ... ···'' .=i.!l.'i:::!f' 11·1111!ll!ll!llll.lll'.ll.li·l!lil!·1:1 :::p wiilBl!l 16-bit stereo digita),t'.an:!lo&lBllr (DAC) runrunl*f'4fl • CD· 

~~~~~~P~ici,l'.l~~o b~~:::i ~J:~~it~~tal1~!1lt~~~~dte:,~1~rli~ill.li~f~gu~c. 
Three of Mazda'~.'111.IMA channels Jle synchron11111.:11om sys~I:=~ to the 11~11ill·[l[ililllll
The stereo 16-bi~i:lllii!i@.ng with proglfflm~!~=:W#:~IJf:j:g1µ~qwgco tp,:::rffi?ilmmmrnM:m:=m!l~M~:::2-bit

~~¥IE~~*~
~r.D~-f~rr';:g•;~l~~~-o~t~te~~keis th.the
A line level stereo output is supplied with a stereo subminiature phone jack, located in the rear of the
desktop. This will. allow the user to connect to a stereo or amplified speakers. Insertion of a plug into the
line level output.jack is detected by an input port on the UAC 3000. This allows the software to disable the
internal speakers when detecting the insertion of a plug into the external line level output.

A stereo subminiature phone jack, located on the left side of the desktop, will allow the user to connect the
output to either headphones or a high quality headset. A headphone level output is achieved by sending the
DAC's signals through a gain section via a pair of low distortion Op Amps. This output is always enabled,
not forcing the user to unplug the headphones to enable the speakers, much like that of consumer stereos.

An RJ-14 phone jack, located on the left side of the desktop, will allow the user to connect the 8-bit mu-law
output to either a telephone handset or headset. The additional CODEC enables the user to maintain high­
qualiry stereo output at the same time he/she is using the telephone handset.

1/0-109

jaguar 110 ERS Apple CONF/Dh'N11AL

Input

The desktop will contain a 16-bit stereo analog-to-digital converter (ADC) running at 48 kHz enabling CD­
quality input, and an 8-bit mono mu-law DAC running at 8 kHz enabling telephone-quality input (figure 5.1).
The ADCs supply data to MAZDA or to a desktop ASIC via a serial interface defined below. Three of
Mazda's input DMA channels move Synchronous data from the ADCs to system RAM.

The stereo 16-bit ADCs along with programmable input gain (O to 22.SdB in 1.5dB steps) and multiplexed
inputs are included in the m UAC 3000. The input level and source to the 16-bit ADCs will be software
selectable by the user and applications via the programmable input gain and the multiplexed input of the
UAC 3000. This information is encoded in the serial data stream sent to the UAC 3000 over the DIN pin.

One channel of the ADC is connected to a voice quality directional microphone placed in the front of the
desktop. A microphone level input is achieved by sending the microphone's output through a 60dB gain
section via a low distortion Op Amp.

A line level stereo input is supplied with a stereo subminiature phone jack, located in the rear of the
desktop. This will allow the user to connect to a CD player, tape deck, or external pre-amped microphones.
Insertion of a plug into the input jack is detected by an input port on the UAC 3000. This allows the
software to disable the internal microphone when detecting the insertion of a plug into the external line
level input.

An RJ-14 phone jack, located on the left side of the desktop, will allow the user to connect the 8-bit mu-law
input to either a telephone handset or headset. The additional CODEC enables the user to maintain high­
quality stereo input at the same time he/she is using the telephone handset.

1/0-110

Apple CONFIDENT1AL

8-bit
mu-law
CXl:EC

figure 5.1 - Audio

ITT UAC 3000 Stereo CODEC·

Dual
Analog
4 to 1

Multiplexer

• •

jaguar 110 ERS

Stereo
Internal
Speakers

Line Level
Output Jack

Headphone
Jack

Mono
Internal

Microphone

The UAC 3000 is a stereo ADC and DAC currently being developed by ITI for Apple computer as a low cost
solution for high quality audio. The UAC 3000 has a conversion rate up to 48 kHz and a resolution of 16-bits
in and out. The UAC 3000 has a 4 wire serial interface that is currently being defined by Apple Computer.
Very few external analog components are required to suppon the UAC 3000, due to internal anti-aliasing
input filters and internal oversampling output filters.

1/0-111

jaguar 110 ERS Apple CONFIDEN71l1L

s Atten-
Mute

Analog
e uator Outputs

S Clk
r
i

Serial S S nc a
1/0 Dout I VO 1/0

Din Ports Ports c Valid data and
0
n
t Low Analog
r Pass Gain Inputs 0 Filter
I

figure x.x - UAC 3000 Block Diagram

Features

The UAC 3000 contains the following features:

• Stereo 16-bits

• Programmable gain input amplifiers
• Sigma-delta ADC

• 3rd order moving time averaging filter on the input
• . Post ADC conversion filter

• Oversampling filter/Noise shaper on the output
• Rotating current source DAC

• Programmable output attenuator

• 80dB S/N & .04% THD from ADC input to DAC output
• 4-bit Bi-directional port

• 2 position multiplexed input

• mute
• power down mode

• low cost

1 Mode Select (O •> ITI bus, 1 => Apple bus)
2 S_Sync

3 S_Clk

4 Dout

1/0-112

Apple CONFIDEN17AL

·5 Din
6 Clock
7 L_Inl

8 L_In2

9 R_lnl
:

10 R_ln2 ·-

11 L_Out

12 R_ ou,;,,,,~,,~~:f :!

,. ~
17
18

19
20

~~ ,Ji'
23

jaguar 110 ERS

The following i$'~•::wrftntly proposed 4 line serial intetflillfthis proposal will be

90
) 1-·~used to clock serial .out of the UAC3000. at 64X

the sample rate and is generated in the UAC 3000. The negative transition is for data change
and the positive edge is for data sampling.

• S_Sync: This signal is used to indicate the start of a word or a frame. The frame sync indicates
the start of the left channel data and the word sync indicates the start of the right channel data.
The: line is normally low, and goes high for one bit cell at the beginning of a word/frame
boundary (MSB, cell 1). The next cell is also one for a frame boundary, or zero for a word only
boundary. This signal is supplied to the UAC 3000.

• DIN: Serial data from the ADC's in a 2's complement format MSB first.

CeIIS Data
1-fb Left ADC data MSB first
17-20 0 (future expansion to 18 & 20-bit ADCs)
21 Expand (currently O; for furure expansion)
22 AOC valid data
23-24 Left and Right channel ADC overflow

1/0-113

jaguar 110 ERS

25-28
29-32
33-48
49-52
53-56
57-64

Error number
Revision#
Right ADC data MSB first

Apple CONFJJJl:'N17AL

0 (future expansion to 18 & 20-bit ADCs)
Input Ports
future bits (currently 0)

• DOUT: Serial data to the DAC's in a 2's complement format MSB first.

cens Data
1-16 Left DAC data MSB first
17-20 0 (future expansion to 18 & 20-bit DACs)
21 Expand (currently O; for future expansion)
22 Mute
23-24 Input Select (controls the Input MUX)
25-28 Left input gain (0 to 22.SdB in 1.5dB steps)
29-32 Left output attenuation (0 to -22.SdB in -1.5dB steps)
33-48 Right DAC data MSB first
49-52 0 (future expansion to 18 & 20-bits)
53-56 Output Ports
57-60 Right input gain (O to 22.SdB in l.5dB steps)
61-64 Right output anenuation (0 to -22.SdB in -l.5dB steps)

I/0-114

Apple CONFIDEN11AL jaguar 1/0 ERS

S_Clk

s_sync

DATA

18 20 32 ... 52 84 66

J-i + FµSy~ ! I i l i I iwo~ S~c~ h ! l ! I ! l i i i i i \ \ i l ru
x 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 I 1 h·hhtrh+rl 1 I 1 i 1 i 1 I 1 I 1 I 1 i 1 i 1 I 1 iTh .. ltl~UJJTfUT

lj\+a I l l lsalc1r11lJ/1·1 i i ! l l j!j~~ i l l ls~C1~1t ! 1Ji i i i l i I~ .
;: ; ! ; ! ~;~l; ! c: ; ; ; ; ; ,t, ;.·. ! ; ! ~Sllj~ c: ; : : ; ; ,' :

I I \ I
04ANNE1.0(l.EF1)AUOIOOATA AUXOATA "A" CHANEL1 (RIGHllAUOIOOATA AUXOATA"B"

GROUP

TIMING DETAIL

s_cu

s_syn

~n::::t•\r.s II
The audio VO section includes five DMA channels:

• Two synchronous input DMA channels supplying data to the high-quality stereo DACs.

• Two synchronous output DMA channels receiving data from the high-quality stereo ADCs.

• One DMA channel to send and receive status from the IIT 3000.

Each DMA channel is controlled by a Channel Program (CP). A CP contains a data structure which describes
a series of VO operations to be performed. A Channel Control Word (CCW) is a 64-bit word that describes
each individual VO operation (figure 5.3). After a CP is defined by the XJS, a pointer to its location is sent
to Maz~ which begins the DMA transfer (for more information on CP's refer to the Mazda VO
architecture).

1/0-115

jaguar 110 ERS Apple CONF/Dt:N71AL

110 Section Channel Control Word Definition

The following defines the CCW for the audio I/O section:

63 56 55 Fla_gsl 48 47 32 31 0

Command J RJ D u IT A Count· Address

ohs Flags
55 Ready (O=X]S;l•Mazda)
54 Data Chain
53 Update
52 Interrupt
51 Timer Int
50 Aborted

Commands
DAC Data (read) 0
ADC Data (write) 1
UAC 3000 Write Status 2
UAC 3000 Read Status 3
Jump 255

figure 5.3 - Audio I/O Section Channel Control Word Definition

• DAC Read: This command specifies the location and quantity of 16-bit linear 2's complement
audio data to be DMAed to each of the UAC 3000's DACs.

• ADC Write: This command specifies the location and quantity of 16-bit linear 2's complement
audio data to be DMAed from each of the UAC 3000's ADCs.

l/0-116

Apple CONFIDENTIAL jaguar /JO ERS

• UAC 3000 Write Status: This command specifies the location of the data to be written into
the UAC 3000's write status registers.

Shown below is the format and definition of the data pointed to by write status pointer:

Bytes 7 6 5 : 4-3 0

o I E IM l1n Select I tnput Gain L I
7 4::3.=:::;:;::;::= 0

1 I Output Attn ,,;:::j:l:j-i,~put Ports I
1 /1:r:a(::1:t:i:: o

2 I tn ut GtlEM::::i:i1)n!=:!:=j'.'!'.:!'=j:= ut Attn R I - p ,._- ··.·.-.......... _.·-···:·:·:·:·:·:·p -

:1·:::11-'_:::::::,:::::::=,:YJ

:.::::::::::::::::::=:::::::;:;:)

0 Internal Microphone
1 Line Level Input
2-3 Undefined

• Input Gain Left & Right: This 4-bit values adjusts the programmable input amplifiers,
located in the UAC 3000 at the input of each of its ADCs.

The following chan defines the gain values:

Values Gain fcfB1
0 +0.0
1 +1.5
2 +3.0
3 +4.5
4 +6.0
5 +7.5
6 +9.0

1/0-117

jaguar 110 ERS

7
8
9
10
11
12
13
14
15

+10.5
+12.0
+ 13.5
+15.0
+16.5
+18.0
+19=:5 .
+21.0
+22.5

11ppte CONFIDI:'N'/711L

• Output Attenuation Left & Right: This 4-bit values adjusts the programmable output
attenuators, located in the UAC 3000 at the output of each of its DACs.

The following chart defines the gain values:

Values Gain (dB)
0 +0.0
1 -1.5
2 -3.0
3 -4.5
4 -6.0
5 -7.5
6 -9.0
7 -10.5
8 -12.0
9 -13.5
10 -15.0
11 -16.5
12 -18.0
13 -19.5
14 -21.0
15 -22.5

• Output Ports: This value modifies the two output ports included in the UAC 3000.
The port controls an analog 4 to 1 multiplexer that selects the audio output
destination.

Values Destination
0 Internal Speakers
1 off
2 off
3 Line Level Output
4-7 Undefined

1/0-118

Apple CONFIDEN17AL jaguar I/O ERS

• UAC 3000 Read Status: This command specifies the location to dump the contents of the UAC
3000's read status register.

Shown below is the format and definition of the data pointed to by read status pointer:

·=:. ::~ :·~99.Number: Indicates the f~i™m~~t available from this Cod~'. ~qffemly read
as zero.

• Input Ports: These 4-bits arc modified by the input ports included in the UAC 3000.
The MSB 2-bits are connected to the line level input jack (bit 3) and the line level
output jack (bit 2). A bit level of one indicates that a plug is inserted into the jack.

• Future Bits: Extra bits that can be used for future features. Currently read as zero.

• J~p: The jump command causes MAZDA to update its current CPP to the location specified
by the address value and continue executing CCWs from this location.

Figure 5.6 shows an example of a Channel Program used for downloading data to each of the UAC 3000
DACs. In this example there are three 5 ms buffers. After each buffer is emptied by Mazda, an interrupt is
sent to the X]S. It is then the responsibility of the Sound Server to refill the buffer and set the ready flag
before Mazda has returned to the buffer (i,e. 10 ms).

I/0-119

jaguar 1/0 ERS l1pple CONFWI:'N71AL

63 c d mn 56 55 Fl a:is 48 47 c ount 32 31 Add ress 0

DAC Data 1 1 1 1 0 0 480 (Sms) DAC Data Pointer (1)

DAC Data 1 1 1 1 0 0 480 (Sms) DAC Data Pointer (2)

DAC Data 1 1 1 1 0 0 480{5ms) DAC Data Pointer (3)

Jump 1 0 0 0 0 0 Undefined Top of CCW Pointer

figure 5.6 - Audio Output Channel Program

Figure 5.7 shows an example of a Channel Program used for uploading data from each of the UAC 3000 ADCs.
In this example there are three 5 ms buffers. After each buffer is filled by Mazda, an interrupt is sent to the
XJS. It is then the responsibility of the sound server to empty the buffer and set the ready flag before
Mazda has returned to the buffer (i.e. 10 ms).

63 c d mn 56 55 Fl ag_s 48 47 c t oun 3 2 31 Add ress 0

ADC Data 1 1 1 1 0 0 480 (5ms) ADC Data Pointer (1)

ADC Data 1 1 1 1 0 0 480 (5ms) ADC Data Pointer (2)

ADC Data 1 1 1 1 0 0 480 (Sms) ADC Data Pointer (3)

Jump· 1 0 0 0 0 0 Undefined Top of CCW Pointer

figure 5.7 - Audio Input Channel Program

Figure 5.8 shows an example of a Channel Program for reading and writing to the internal register of the UAC
3000.

63 c d mn 56 55 Fl aQS 48 47 c ount 32 31 Add ress 0
UAC3000

1 0 1 0 0 0 3
UAC 3000 Write

Write Status Status Pointer
UAC3000

1 0 1 1 0 0 3
UAC 3000 Read

Read Status Status Pointer

Jump 1 0 0 0 0 0 Undefined Top of CCW Pointer

figure 5.8 - UAC 3000's Status Channel Program

1/0-120

Apple CONFIDEN11AL jaguar l 0 /:RS

Sample Rate Converter (SRC)

Introduction

Sample rate conversion is the process of changing the sample rate of a set of data representing a given signal
into another set of data representing the same signal at a different sample rate. In its general 'form, the
problem is to compute signal values at arbitrary tirt'1es from a set of discrete samples. The problem is
therefore one of interpolation between samples of the original data.

Conceptually, this p,r,p~~ can be thought of in three stage?] fi@t, an oversampled signal is g¢fil¢yed by

~1~11i~~~~\~~r~a~~~~\~~''*t·
signal down to mj.,ij¢~~~d output sample rate . .:::ft ,:: . !'tl l/iliii/ ::

Sample rate cod~~~I~:' required for severat::@~:~'ons: 1:::11;: :/l/,·=iiiii:j:J:iJj ;; ·.,··

. ag;~~~l~~~~•t~~~i~~:;:;a1;~~ro
• !f·~~i~~/~---~•1111111• ilien

· Tsl!.i~~~~"<~\~~;,;~;h~ hi!ih'!f!';; 110 ;;:;;;;.;~·kili) 1~111whone.

fkit~~sr;~~ ;.~0~~~~1•i::.~~I ~~i~~~~l•t~~~ at
the expense of decreasing the frequency bandwidth.

Since adequate quality multi-voice sample rate conversion requires a large percentage of the CPU
bandwidth (figure 5.8), we have included a dedicated variable order RAM to RAM sample rate convener as a
subsection of Mazda.

1/0-121

jaguar 110 ERS 11ppte CONFWl:'Nl/JlL

x 200%
J 180%-1--------------------------...
s 160%-+------------------------,. ~---

B
8

n
d
'vi

i
d
t
h

140%-+-----------------__,...,
120%+--------------~

100% ------------..
80% -+----------
60% -+-------

40% t~~~=:::;~~~==::::~===::= 20%
0%-+-----..----.-----.----.----...-----.-------.

2 4 6 8 10 12 14 16
Voices

I - 4 Poi nts ,..._ 6 Points ,.,.,., 8 Poi nts

figure 5.8 - CPU Bandwidth vs. Channels & Quality

Dataflow

Figure 5.9 shows the basic flow of data through the sample rate converter. Firs~ incoming samples are
D?\.ti\ed into a F_i\M FIFO. For every sample in the FIFO a coefficient is calculated by linear interpolating
between two adjacent locations in the coefficient RAM. An interpolated sample is calculated by summing
the products of the FIFO samples multiplied by the calculated coefficients. The interpolated sample is then
sent through a gain section to either attenuate or amplify the output signal. Finally the interpolated sample
is limited to a signed 16-bit number before being DMAcd out to RAM.

1/0-122

Apple CONFIDEN77AL

Clock

Coe ff
RAM

Features

········1111·~111r:i·······
: JJ:H~A~!~g

Output
Samples

figure 5.9 - Sample Rate Convener Block Diagram

jaguar IJO ENS

• Variable order The SRC allows us to vary the order of the FIR filter from one to sixteen points
by adjusting the numofLobes register. Variable order allows us to decrease the order of the FIR
filter to trade-off quality of individual sounds for a higher quantity of sounds. This is not a
bad trade-off considering that the decrease in quality will be hidden by the complexity of the
final output, resulting from the quantity of different sounds being played.

1/0-123

jaguar 110 ERS 11pple CONF/lJI:'N71AL

• RAM Coefficients Since the 64 word coefficient table is stored in RAM and loaded every frame,
the filter characteristics can change every frame. This allows the user to change the low pass
filter cutoff frequency in order to support variable order filters and multiple down sampling
ratios.

• Linear interpolation on/off By modifying the lerp flag the user can turn linear interpolation of
the coefficient table on or off. Linear interpolation places a zero at the output Nyquist
frequency, which effectively improves the stop-band rejection of the FIR filter. Turning off
linear interpolation approximately doubles the performance of the SRC at the expense of
decreasing the quality of the final output.

• FIR Filter By setting ptsPerLobe equal to 1, turning lerp off and ratio equal to unity, the SRC
can be turned into an nth order FIR filter (n equals the value stored in numofLobes). The
coefficients for the FIR filter are stored in the first nth locations of the RAM coefficient table.

• Gain Section The gain section can adjust the output signal level from 0 to 8 times its current
level with a step size of 1/4096.

• Speed The SRC will be able to convert a minimum of eight 48kHz voices in real-time, with
linear interpolation on and 8 points of interpolation of the input signal.

Software

To perform a sample rate conversion on a block of data, an input and output Channel Program (CP) must be
created and their respective Channel Program Pointers (CPP) must be passed to Mazda.

I/0-124

Apple CONFIDEN77AL }ap,uar 110 ENS

The following defines a Channel Control Word (CCW) for the sample rate conversion section of Mazda:

Command

its
55
54
53
52
51
50

Count

Flags
Ready (O·XJS;l•Maz a

~~iit -------
Commands

Address

§i.~i~ITre~ .1 .. =i .. ,1 .. ,1.=.•1.= .• j·.=:i .. ,i.=.

1

.. ,i .. ,

1

.,.=: .. ,

1 .. =' .. =l .. ,!.=1• .. :•.=·i

1

.:

1

.. =·:!.:! .. =!.·='.·=! .. =i.=.:1 .. = .. :.i.=.: .. ,i .. =!.·'1 .. ,! .. ,l .. =!.·'' .. =1.:1• ... =l .. ,l .. =1.=u.i2~55 Jump Jii!!!!!f' . :::::::::r ·····=·==········ ------......;;;,::::;.;;;.;::::::::;;.,.:::::::""":::::::-::::::::""":;:::;:""':::=::::"""-:::::::-:::::::-::=::::""'°::::::::;;;;.;i;::::::="":::::::""::::::::ij;i1jr;:::::::~::::::::""'::::}-:::::::-: :;·:····':·· ... =• ... ·':, .. ·,' •.. ·': ... ·'' •.. ·': ... ·': •.. ·': ... ·': ..• :··: .. :':· •.. ·':.::.': •.. ·': ... ·':· •.. :• ... ·'' •... '• ... ::·' ... ': •.. ':, .. ':· ... ·':· .. ::····': ... =: ... ::· •. ,·,· •. :·:· •. =·,· •• =·,:····': =• •.. ·'' •.. ::.' •.. ·'' •.. ·':···''.:'.,'.:·:' ..• ':.: .. ' ••.. ·': ... ': ••• ·'' •.• ·'' •. :·:·.,.:' ... ·': •... ='_ .. ·': •.. ·': ... ·': .•• ': ... ·':·.·':.·'·,:····'' ... ':···':.' ... ·':···'·.::: .. =' ..• ·':·.··': ..•• =' ... ·': ... ·': .. ::': ... ·'::····': ... ·':·.··'i· ... '1 '1 ... ':.'.: .. ': ... ·':·.··': ... -'1 ... ·': ... ·'1 ... ·'· ... ·': ... ·'' ... -': ... ':.:.: .. ':·.··'· .. ·'· ... ·'· .. ·': ... :··· .. ::'·,·_.'! ... ·'i.: .. ': ... =· ... ·'· ... '1 ... ::·· .. :·.: ... ::·· ... ·'· ... ·': .. ·': ... ·': .. ·'' ... ·': .. ·': ... ·': .. ·': .. ·':.:····'' .. :·:·.:·:: .. ·': ... ·': ... ::· ... ·': ... :;·:· ... '' ... '·.·.·,··· ... ·'· .. ·': ... ''.:··· ... ·':

:::::::::;::::::::::::1:::::::1:::::1:::::::1:::::::::::::::::::::,':::::::::;:1:::::::::1:::::::::::::::::::::::::::1:::1:1:::::

::::::::::::::::::~1,9~:::::1:::::::]I!I:I::::::::]tt:::1t ::::::r::::ItiI:::::r:: :::::::::••t::?.·i:'.:{

0

• Write Data: This command specifies the location and quantity of data to be DMAed out of
the SRC.

• Read Status: This command specifies the location that the resulting status of the sample rate
conversion should be wrinen to. This command should be used at the completion of a sample
rate conversion and be followed by an interrupt.

The following is the format of the starus word:

Bytes

0-1
15 14

I o I LobePtr

figure 5.11 - SRC Output Status Format

1/0-125

0

jaguar 110 ERS Apple CONFllJJ:'N17AL

• Download Parameters: This command initializes the internal registers in the SRC to the values
specified at the download parameter pointer. This command must be used before the start of
a sample rate conversion and must be followed by a read data command.

The following is the format and definition of the download parameters:

Bytes

0-127

15 0

Coefficients

15 14 0

128-129 _lo_l _____ R_a_tio _____ I
15 14 r

130-131 .. I L_e..,,rp.__l ___ L_o_b_e_Pt_r ___ _

15 0

132-133 _I _____ G_ai_n _____ I

15 1110 76 0

134-135 I oo lnumoflobes I ptsPerlobe I

figure 5.12 - SRC Download Parameter Format

Sample Rate Converter Parameters Definition

• Ratio: sample rate conversion ratio (15-bits) =

input sample rate • ptsPerLobe « 8
output sample rate

• numotlobes: number of points of interpolation (4-bits). NumofLobes is equal to the
number of multiplies between a sample and coefficient per output sample.
(note: 0 • 16)

• lobePtr: current pointer into the RAM coefficient table (15-bits)

7+8 bits; 1st 7 bits .. sample offset + initial coefficient table offset; last 8 bits linear
interpolation value. Initially set to

((((numofLobes/2)+ 1) • ptsPerLobe)«8)

This will allow the SRC to initialize the sample FIFO before interpolating the first output
sample.

• lerp: linear interpolation of the coefficient table on or off (1-bit)

l/0-126

Apple CONFIDENTIAL }l(~Uar /JO ENS

• gain: amplification level (16-Bits) : 1 sign bit, 3-bits of integer and 12-bits of fraction.
For example;

Gain
2
1
1/2

VaTue
Ox02000
Ox01000
Ox.00800

• pts~erLobe: points per lobe_ (7-bits)

:-:::;:;.::::::·:::::::·:::::·:·:·:·:···

Write Data 1 1 1 O O O Data Count (1) Write Data Pointer (1)

Write Data 1 1 1 0 0 0 Data Count (2) Write Data Pointer (2)

Write Data

Read Status

Jump

• • •
1 0 1 O 0 0 Data Count (n) Write Data Pointer (n)

1 O 1 1 0 0 2 Read Status Pointer (n)

1 0 0 0 0 0 Undefined Top of CCW Pointer

figure 5.13 - SRC Output DMA Channel Program

l/0-127

jaguar 110 ERS t1pple CONFIDEN71AL

The second ·step is for the XJS to create a CP (figure 5.1 It) for the input DMA controller, and send Mazda a
pointer to its location. The input CP includes a pointer to the location at which the download parameters
are stored (figure 5.12) and a data chain of the locations to find the input samples . At this point, the SRC
starts processing data and continues until it runs out of input samples, at which time Wankel will write out
the status and interrupt the XJS.

63_Cmnd 56 55 Fl; iCI~ 48 47 ...co.unt 32 31 .ft....1...1 t.S_ 0

Download 1 0 1 0 0 0 136 Download Parm Pointer

Read Data 1 1 1 0 0 0 Data Count (1) Read Data Pointer (1)

Read Data 1 1 1 0 0 0 Data Count (2) Read Data Pointer (2)

• • •
Read Data 1 0 1 0 0 0 Data Count (n) Read Data Pointer (n)

Jump 1 0 0 0 0 0 Undefined Top of CCW Pointer

figure S.14 - SRC Input DMA Channel Program

Hardware

The Mazda I/O Controller chip contains a section for performing sample rate conversions. This hardware
looks and acts like a pair of 1/0 Modules, one transferring a block of data (input samples) from memory to
the sample rate conversion (SRC) hardware and the other transferring a block of data (output samples) from
the SRC hardware to memory. Between these DMA controllers is a section of hardware that implements the
SRC algorithm. The intent is to make sample rate conversion fit into the general method of transferring
data on Mazda; driven by Channel Command Programs and Wankel tasks. The following figure is a block
diagram of the sample rate conversion interfaces.

l/0-128

Apple CONFIDEN17AL

samcles

':lMA DATA BlJS

BUS
INTERFACE.

UNIT

jaguar £10 ENS

16

ft~@i~r>:
}>~:

f)
:·.;·:-:-:::::::-:-::::!:~~~t'./f~i

:~: ::::;:;:;:;: :·:·

J:t=t::J:t:~::rn:=:~
.;::=:·====:::=======:::::::::::=:;:~~r~

Here is the flo.1111 for pelfonn::::~::JSI,: ~"=''"@"'Iii ' '
icJ:l:d9':d ~g~~ ~~~~ri~:-n°1~~c:,rr;n;~:: :•~~be
placed. ·=··nafa'.chaliifrig·'ma}T''be'\ised if the destination a·rea·frtnoi all contiguous. In addition, ilie .. output
CCP contains a Channel Command Word (CCW) for reading status at the conclusion of the transfer.

2. The Wankel task that controls the sample rate conversion output OMA controller starts executing the
CCP created in step 1. However, since the input has not started yet, there is nothing to transfer and the
OMA controller simply waits for data to start exiting the SRC hardware.

3. XJS creates a CCP for the input OMA controller and sends the pointer to Mazda. This CCP consists of a
CCW for downloading the parameter block and one or more CC\V's that specify the location in memory
where the input samples reside. Once again data chaining may be used if the data is not contiguous.

4. The Wankel task that controls the input DMA comroller starts executing the CCP created in step 3. The
parameter block that is downloaded by the first CCW is the set of starting parameters for the sample rate
conversion. After the parameter block has been downloaded, the flow of input samples starts. This in rum
triggers the output OMA controller to start writing output samples to memory. The process continues until
all the input samples have been used, at which time the output Wankel task stores the requested status,
then interrupts XJS.

1/0-129

jaguar 110 ERS Apple CONFIDEN'/7AL

Timing

With Intemolation Enabled

Lobe 1 1112(314IS16 I

Lobe 2 1112 I 3 I 4 Is I 6 I
Lobe 3 I 1 I 2 (3 I 4 Is I 6 I

Lobe 4 11'2'3141516!
Lobe 5 I 1 I 2 f 3 I 4 f 5 f 6 I

Lobe 6 I 1 12 (314 ! s I 6 l

Lobe 7 !1l2'314l5l6l
Lobe 8 l1!2'314!Sl6l

Sample N A BC D

~ 35 clock• 11.4 "' @ 40 "' pe< clock!

Sample N+l ._I ___ A __

The above figure is a timing diagram for producing an output sample with linear interpolation enabled. This
operation is divided into two major steps. First an unamplified output sample is produced. On the timing
diagram, this occurs during time A on the "Sample N" bar. The second major step is to multiply the
unamplified output sample by a Gain value co produce the final result. This occurs during Cycles B, C, and
D.

Step A is funher divided into substeps; one for every lobe or point of interpolation. The diagram above
assumes that the number of lobes is 8; this produces a total time per output sample of 35 clocks. The
equation for determining the number of clocks is (4•numofLobes+3). The processing of each lobe's
contribution to an output sample takes 6 cycles, but 2 of these cycles are overlapped with the previous
lobe. The following is a description of the 6 processing steps per lobe:

Cycle 1: As the first step in interpolating the two values from the Coefficient Memory, COEFl is subtracted
from COEF2. This is a 16-bit subtract performed in the Upper Adder. The adder used in the SRC hardware is
26 bits wide, but can be divided and used separately as a 16-bit adder (the Upper Adder) and a 10-bit adder
(the Lower Adder).

Cycle 2: The next step in interpolating the two values is to multiply the 8-bit field FRAC by the result of
cycle 1. FRAC is one of the parameters downloaded at the stan of the conversion. During this cycle, the
multiplier performs the first pan of this operation, creating the panial sum and panial carry for the adder to
finish.

Cycle 3: The final interpolation step is to add the result of the multiplication to COEFl. Because the
output of the multiplier is in partial sum and carry form, Upper Adder and Lower Adder must be 3-input
adders.

1/0-130

Apple CONFIDEN17AL jaguar 1/0 ERS

Cycle 4: Now that we have an interpolated coefficient, the next step is to multiply this value by the sample
data. This will require two passes through the multiplier to produce the final partial sum and carry results.
On this cycle, the least-significant half of the multiply occurs.

Cycle 5: The second half of the multiply takes place in this cycle. The partial sum and carry from the Cycle 4
result are fed back into this operation, producing a final partial sum and carry for the entire multiply. Note
that this cycle is overlapped with Cycle 1 of the next lobe sequence. This does not cause a resource conflict
because Cycle 1 of the lobe seq~ence uses the Upper Adder and Cycle 5 uses the multiplier and Lower Adder.

Cycle 6: The final addition for this lobe takes place in this cycle. This calls for adding the partial sum and
carry from Cycle 5 to ... me{¢ontents of the Sum Register (SUMJUttS.UMR accumulates the outpt,1:t::~Wple value
as each lobe ad~jfl[jjijjQibution to it. This cycle is overl~iBhvith Cycle 2 of the next lof:l]:B~ence.

Lobe 2 C!Ifil]

Lobe 3 IIllliJ
Lobe 4 (![[[E]

Lobe 5 [fill!)

Lobe 6 CiIT:[[J

Lobe 8 IIllliJ
sample N ______ ,, ______ ls !c_.!_.DI

Sample N+l ,_! __ A_

The above figure is a timing diagram for producing an oucput sample with linear interpolation disabled.
Note that lobe processing requires only 3 cycles (with one overlap cycle) in this case. These cycles are

1/0-131

jaguar 1/0 ERS Apple CONF/DEN'/1AL

labeled 4-6 because they correspond to those steps on the "with interpolation enabled" timing diagram.
The equation for determining the number of clocks per oucput sample with linear interpolation disabled is
(2•numoflobes+3).

Hardware Architecture

Sample FIFO Buffer
(

The Sample FIFO Buffer is a 16-word by 16-bit circular queue used for holding the input samples. The
following figure is a block diagram of this portion of the SRC hardware.

OMA DATA BUS

16 x 16b

16

SAM_BOFF

incrementing
___ ,.___ counter

4

4

CMPR

LAST SAMPLE

This hardware perfonns the following functions:

0

WR CTR decrementing
counter

4

NUM LOBES

4

+

1. When the SRC algorithm is ready for a new input sample to be "shifted" in and if the next input sample
has been acquired by the Input DMA Controller, the contents of the DATAJN register are written to the
Sample FIFO Buffer at the WR_CTR address. The WR_ CTR is then decremented by one. This operation has
the effect of shifting all entries of the FIFO forward one slot.

2. When the SRC algorithm is ready to process an oucpuc sample, RD_CTR is loaded with the value (WR_CTR
+ 1). This makes RD_CTR point to the latest entry in the FIFO. When this entry has been processed by the
SRC algorithm, RD_CTR is incremented to point co the next entry. This process continues until the value in
RD_CTR equals the modulo 16 addition of WR_<.TR and NUM_LOBES (number of lobes). When this occurs,
a signal is sent to the SRC algorithm indicating that the current FIFO entry is the final one to be processed.

Coefficient Table

The Coefficient Table is a 64-entry by 16-bit memory chat holds the coefficient values to be used for an
entire sample rate conversion. The "virtual" size of che table is actually 128 entries, but the second half is a

1/0-132

Apple CONFIDEN17AL jaguar /JO ERS

"mirror image" of the first half. Thus the contents of an address within the non-existent second half can be
found by taking the l's complement of the address and applying it to the first half.

The following figure is a block diagram of this portion of the SRC hardware.

OMA IN

16
7

enbl incr

LATCH

16

COEFl GET SAMPLE

The Coefficient Table is loaded through the DMA channel. This takes place during the "setup" Channel
Command Word that downloads all the parameters for the sample rate conversion. The COEF _INDX
register is initialized to zero, and it increments through the addresses as data is received in DMAJN.

Before starting the SRC algorithm, COEF _INDX is initialized by the download CCW to a starting value of
(((NUM_LOBES/2)+ l)•prs_PER_LOBE). This will cause the SRC algorithm to initialize the Sample Buffer
before starting to produce any output samples. I !ere is the sequence of operations performed during the
SRC algorithm by the hardware in the figure above:

1. PTS_PER_LOBE is subtracted from COEF_INDX. If the result of this operation is positive
(CarryOut=l), the result of the subtraction is loaded back into COEF_INDX and a new input sample is
shifted into the Sample Buffer (see the earlier description of operation for the Sample FIFO Buffer). Then

1/0-133

jaguar 110 ERS Apple CONFIDEN'/1J\L

this step is repeated. If the result of the subtraction is negative (CarryOut•O), COEF _INDX is not changed
and the process of producing an output sample begins with step 2.

2. The Coefficient Table entry at the address indicated by COEF _INDX is loaded into a latch (COEFl
output). If the most-significant bit of COEF _INDX is set, the address is negated before applying it to
COEF _TABLE. If linear interpolation is disabled (LERP•O), this concludes the operation of the Coefficient
Table hardware for this output sample. If linear interpolation is enabled (LERP•l), operation proceeds to
Step 3.

3. The address being applied to COEF_TABLE is incremented by one. Once again the l's complement
operation occurs if the MSB of this address is a one. The address to COEF _TABLE is held at this value
during the interpolation that follows. COEFl and COEF2 are the data values that are interpolated.

SRC Compytation Hardware

The SRC computation hardware consists of the Multiplier, the Lower Adder, the Upper Adder, several
multiplexers for selecting inputs to these computational units, and several registers for holding
computational results. The following figure is a block diagram of this portion of the SRC hardware.

1/0-134

Apple CONFIDEN17AL jap,u.ur //() /:'NS

O' O' 0 -
0

"' "' "' "' rl rl rl
~ - -rl

"' z "' 0 rl ~
[,. c...

.,; ..; w w
"' ~ 0 0 u u
0 "'
r- .,; -u
~
c...

0 0
rl rl ..

16

DMA DATA BUS

The Multiplier is capable of performing a 10-bit by 16-bit multiplication in one cycle or a 20-bit by 16-bit
multiplication in two cycles. The output of the Multiplier is not a complete product; it is only the partial
sum and partial carry for the multiplication. A full adder must be used to produce the final product. For a
two-cycle multiplication, the Multiplier has the provision for circulating the partial sum and carry from the
first cycle back into the Wallace Tree for the second cycle.

The Lower Adder is a 3-input 10-bit adder. It is separated from the Upper Adder for those cycles when the
Upper Adder is being used for an addition and the Lower Adder is being used to generate a carry into the
Multiplier.

The Upper Adder is a 3-input 16-bit adder. It may be used by it'lelf as a 16-bit adder or it may be combined
with the Lower Adder to form a 26-bit adder.

1/0-135

jaguar 110 ERS l1fJp/e CONF/f)/:NIIJIL

The Overflow Detection logic checks to sec if the final output sample exceeds a 16-bit representation. If
so, the output is forced to the maximum possible 16-bit positive or negative number, depending on the
sign.

Software Simulation

The following is a "C" source listing for the sample rate conversion algorithm to be implemented in MAZDA.

/**w***************
Sample Rate Convert Hardware Simulation

**/

#define BUF SIZE 16
#define UNDERFLOW -32768.0
#define OVERFLOW 32767.0

extern short *inputPtr, *outputPtr;

short GetSample()
{

shott a;
a = *inputPtr;
inputPtr++;
return (a);

PutSample (sample)
short sample;
{

*outputPtr sample;
outputPtr++;

Sample Rate Convert a set of data
input: Ratio => sample rate convertion ratio

output:

((input sample rate<< 8) • ptsPerLobe) I (ouput sample rate)
numofLobes => number of points of interpolation
coefPtr => pointer to the table of coefficents
lobePtr => current pointer into the coefficent table

7.8 bits; 1st 7 bits= sample offset+ initial coefficent table offset
:ast 8 bits linear interpolation value

numofSamps => number of incut samples to interpolate
lerp => linear interpolation on/off
gain=> amplification ievel 4.12
ptsPerLobe => points per· 1 obe

numofLobes:
8
6
4
2

lobePtr => current lobeptr

ptsPerLobe:
16
24
32
64

unsigned short SRC (ratio, numofLobes, lobePtr, cocfPtr, numofSamps, lerp, gain, ptsPerLobe)
unsigned char numofLobes, lerp, ptsPerLobe;
unsigned short gain, ratio, *coefPtr;
long numofSamps, lobePtr;
{

register int i, coeflndex, j;
register long sum, frac;
short yl, y2, coef;
short buf(BUF_SIZE];

1/0-136

Apple CONFIDEN71AL

Open_Converting("\pSample Rate Convert~ng ... ");

for (i=O;i<BUF_SIZE;i++) buf[ij = U;

while (numofSamps--)
{

while (lobePtr < ptsPerLobe<<81
{

coefindex = lobePtr>>8;
frac = lobePtr & OxFF;
sum 3 O;
for (i=O; i<numofLobes; i++) /• generate the coefficents */
{

if (coefindex & Ox40) j = (coefindex A Ox3F) & Ox3F;
j = coefindex;

= coefPtr[j];

((coeflndex+l) & Ox40)
j = (coefindex+l);

= coefPtr[j];

lobePtr -= ptsPerLobe<<8;
for (i=numofLobes-1; i>O; i--) /• shift the sample in the FIFO */

buf[i] = buf[i-1];
buf[O] = GetSample(); /•get the next sample*/
if ((numofSamps & Ox07f) == 0)

Change_ Converting (numofSamps);

Close_Converting();
return (lobePtr);

A Note on Sample Rate Conversion

How interpolation (upsampling) is performed

jc~guar /JU !:'NS

Suppose we want to translate a voice signal digitized at Fs = 8Khz to an equivalent spectrum sampled at 4Fs
= 32 KHz. The following diagram shows the signal spectra to be interpolated. Since the signal was sampled
in the digital domain, the spectrum is actually p<.:riodic at the original sample rate Fs = 8 KHz. The actual

1/0-137

jaguar 110 ERS Apple CONFff)L'N17!1l

sampled voice spectrum must be (according to Nyquist) band-limited to < Fs/2 = 4 KHz. The actual
spectra we're interested in, then, extends from O to Fs/2.

0 Fs/2 Fs 2Fs 3Fs 4Fs

input signal spectrum to be interpolated

In order to create the equivalent spectrum sampled at 4Fs • 32 KHz, we must remove the aliased
components at Fs, 2Fs, and 3Fs, as shown below. This is performed by a digital lowpass filter.

0 Fs/2 Fs 2Fs 3Fs 4Fs

Shaded area must be filtering for 4x interpolat~on

Once this input spectra has been filtered, the result is the original voice spectra, but this time represented
as a sequence of samples at the 4Fs • 32 KHz rate:

41
0 Fs/2 Fs . 2Fs 3Fs

after filtering and interpolation,
resulting spectrum is periodic at 4Fs

. .

4Fs

Again, this signal is periodic around the new sample rare 4Fs. Note that at the new sample rate of 4Fs = 32
KHz, we could faithfully encode signals with frequency components up to 2Fs • 16 KHz. The extra samples
are effectively redundant; no extra fidelity is obtained.

How decimation (downsampling) is performed

Suppose we have a microphone fed into a sampling system operating at Fs = 32 KHz. The spectrum looks
like this:

1/0-138

Apple CONFIDENTIAL jagUllr .f/() ERS

I

/ 1' / \
i

0 Fs/8 Fs/4 Fs/2 3Fs/4 Fs

Spectrum to be decimated (downsampled)

We wish to convert this signal into a sample stream to feed a telephone CODEC at the standard 8 KHz =

Fs/4 rate. Thus we~¥~(~ somehow discard three out of e,v@o.tf Pur original samples. .tft<H

.• .. · .. "':!!!""' --t--"'

:zi!I~ \ I· 1 \t' 1 \ L 1 ~:ififiY::
0 Fs/8 ·Fs/4 Fs/2 3Fs/4 Fs

spectrum after decimation to Fs/4

Note that, as a result of the decimation process. frequency components above Fs/8 = 4 KHz have been
removed. Also note that, if the original signal had been bandlimited to < Fs/8 HZ before being sampled at
Fs, no lowpass filtering would be required by the dccimator. \Y/e could simply take every fourth sample
from the input sample stream.

1/0-139

Apple CONFIDEN77AL jaguar l10 ERS

Section 7

Miscellaneous Interfaces

ROM

CLUT :::=:::::::::::::::::::::::::::::::::::=:::: ·:=;:;:;:;:::;:;:;:::;:;:::;:;:;:::;:;:;:~;:::;:::::;:;:;=;::=:::=:::=::::::::::::;:;:::;:;:;:::;:::;::=:::::=::::::·:.:.:::·::::. :,.,.,:.:,.;.;:::;:;:;\;:)}}:\:(:/:\{::_:._:,:_:,:_:.= .. :.:_:.= •. ·.•.:.=.:.:_:.•.:,::.·,:·.:,:_:,•= ... ':·.:.:;_::,:,, .. : :.:.::::::
· = · = ·: · = · = ·: ·: ·: ·: ·: ·: ·: · = ·= · = · = · = ·: · :-= ·:. = ·_-.'.~=~=~=~=~-~ ~---~ i.·,~-~=~-~=~-~=~-~-=.· ;_= .. = :_:,r.~,~-~-~-~,~-~,~ ;_=.r.~.~-~,~-.:,~ j_f · · · · · · · · :: :~=r~:~:=:~:::~=~=~:?~=~=~=~::::::

~r~ .. ;~~:~:~;•~:~~!~~~i:£•~
For more details on the operation of the CLUT/DAC chip, refer to the AC842 specification.

The following signals are required by the MPU port of the CLUT/DAC chip:

DT7:01 8-bit bidirectional data bus

Afl:01 2-bit address bus (input to CLUT/DAC)

R/W read/write signal(input to CLLJT/DAC)

cs• chip select signaKinput to CLUT/DACJ

The MPU port of the CLUT/DAC chip is connected to Mazda's low-speed bus. It uses all 8 data lines
of the low-speed bus. The 2-bit address pore is connected to bits 1 :0 of the address bus. The R/W
signal is connected to bit 2 of the address bus. Only the cs• signal is a direct connection from Mazda.

1/0-Hl

jaguar 110 ERS Apple CONFl/Jl:Nl7AL

The following is a list of Channel Commands to be executed by the Wankel task and I/O Module
associated with the CLUT/DAC chip:

Write Address Register

Read Address Register

Write Pixel Bus Control Register

·Read Pixel Bus Control Register

Write CLUT

Read CLUT

Write Test Registers

Read Test Registers

A typical Channel Program for loading the CLUT would consist of two Channel Command Words. The
first CCW would be a "Write Address Register'' with the data that is transferred to the chip being the
starting CLUT address. The second CCW would be a "Write CLUT" with the Length field of the CCW
determining the number of bytes that are transferred and therefore, the number of CLUT locations
that are written.

Elmer

Mazda is responsible for controlling the MPU interface to the Elmer Frame Buffer Back End
Controller. The MPU interface of Elmer allows read and write access to the chip's internal control and
status registers. For more details on the operation of Elmer, refer to the Frame Buffer Back End ERS.

The following signals are required by the MPU port of Elmer:

DT7:0T 8-bit bidirectional data bus

AO address line (input to Elmer)

R/W read/write signal(input to Elmer)

cs• chip select signal(input to Elmer)

The MPU port of Elmer is connected to Mazda's low-speed bus. It uses all 8 data lines of the low­
speed bus. The 1-bit address port is connected to bit 0 of the address bus. The R/W signal is
connected to bit 2 of the address bus. Only the cs• signal is a direct connection from Mazda.

When AO is a 0, the operation (read or write) is to Elmer's internal 8-bit Index Register. When AO is a 1,
the operation is to the internal 8-bit register selected by the Index Register. After a read or write is

1/0-112

Apple CONFJDEN'/1AL jaguar JJO ERS

performed with AO•l, the Index Register is incremented. This facilitates block reads and writes of
multiple registers.

The following is a list of Channel Commands to be executed by the Wankel task and I/O Module
associated with Elmer:

Load Index Register

Write data

Read data

/~~~::::::
::~\ .. :r

VLC_CLEAR and VLC_COUNT. These two signals concrorthe counter each 40ns cycle accoroing to the
following table:

VLC CLEAR
0
0
1

VLC COUNT
0
1
x

Action
no change
increment counter
clear counter

The counter exists as a read-only register in the pron:ssor's address space. XJS may read the value of
the counter by issuing a word read. (See Mazda Memory Map for the address of this counter.)

System Timer

Wankel provides a high resolution 32 bit count-down timer for use by the operating system. It is
clocked at a rate of approximately 1MHz (precise frequency TI3D). This timer appears as a
read/write register in the processors address space. (Sec Mazda Memory Map for the address of this

l/0-llt3

jaguar 1/0 ERS Apple CONFff)h'N'l1AL

timer.) The·timer operates as follows: System software will write an initial count to the timer which
will then begin counting down. When the count reaches zero an interrupt will be generated, but the
count will continue to decrement. When the interrupt is serviced, the system can determine the exact
amount of time which has expired since the timer was loaded by reading it's current value to see how
far it has advanced past zero.

Wankel Timer

Wankel also contains a 32 bit free-running counter whi~h is clocked at a rate of approximately 10 KHz
(precise frequency TBD). This timer can be accessed both by XJS as a register in its address space
(see Mazda Memory Map for the address), and by the internal Wankel processor. Wankel tasks can
make use of this timer for a variety of functions. A particular application which is anticpated
involves the MIDI interface. For inbound data, the Wankel task will use this timer to time-stamp the
arrival time of each byte. On outbound transfers, the transmission time of the data can be controlled
with a Channel Command which causes the channel to suspend until a time which is specified in the
address field of the command has been reached. The access manager needs to be able to read this
timer in order to determine the appropriate time value to write in the Channel Command.

It is also anticipated that this timer will be used to support a style of read operation in which an
interrupt is generated and the Channel Command is updated in memory, if some number of characters
have arrived within a given time interval. This will relieve the processor from being interrupted on the
arrival of every character, but will still guarantee timely response to input data.

Apple Desktop Bus

The keyboard and mouse devices will be supported via ADB. This interface will be implemented in
the ASIC which controls the other desk top devices.

[Note that two issues might affect this strategy: 1) If we use an Industrial Design which has one
unified box on the desk top, the ADB interface would be implemented within Mazda. 2) If we
decide to use ChefCat as our connection to the d\:!sktop, and there is a strong commitment to
implement keyboard and mouse peripherals with Chef Cat interfaces, there would be no need for ADB
at all.]

[ADB channel program definitions to be added].

Real Ti me Clock

The system requires a battery backed up real time clock for maintaining time and date while the
system is powered down. This chip should also provide a small amount of non-volatile RAM for
storing certain parameters while powered down.

The Big Ben real time clock chip is one of the alternatives being considered for this function. Big
Ben provides a 47 bit constantly running clock as well as 512 bytes of non-volatile parameter RAM.

The real time clock chip will be connected via the low-speed bus ..

[RTC channel program objects and method definitions to be added].

1/0-Hli

Apple CONFIDEN17Al }ap,uar /; () !:'RS

System Controller Registers

Mazda will provide access to the status and control registers of the System Controller (SC) ASIC. The
SC will be connected via the low-speed bus. It contains several 18 and 32 bit registers which must be
programmed with multiple transfers on the 8 bit data bus. See the Memory System ERS for details
regarding the SC registers.

[SC channel program objects and method definitions to be added].

I/0-HS

Apple CONl~DEN'l7AL

Section 9

Hardware Implementation

Map

Register

CPPO
CPPl

CPP63 .:\/
IRQUpMaskO jf /"
IRQLoMaskO./]f
IRQUpMas~J:::::f

Bit Width

Ox84000268 WnklTimer R/W

Note: Since Mazda interfaces only to the upper half of the XJS Data Bus, all memory-mapped
addresses to Mazda are multiples of 8 (even word addresses).

Mazda Pinout

Signal Name

~Transfer Signals
Data
Address

Pfnl)pe
pXXX = Active 1 ligh
n XXX = Active I.ow

Number of Pins

pD63-pD32
pA31-pAO

lnpuc/Oucput 32 pins
Input/Output 32 pins

1/0-lli 7

ja~uar //() /?.NS

jaguar 110 ERS 11f1ple CONFlf)f:'N'f7AJ,

Transfer Attribute Signals
Transfer Size pTSIZE1-0 Output 2 pins
Transfer Burst nTBST Output 1 pin
Read/Write pR/nW Input/Output 1 pin
Lock pLK Output 1 pin

Transfer Control Sigwm
Transfer Start nTS Output 1 pin
Transfer Acknowledge nTA Input 1 pin
Transfer Error Acknowledge nTEA Input 1 pin
Transfer Retry nTRTRY Input 1 pin
Address Acknowledge nAACK Input 1 pin
Mazda Slave Request nMSREQ Input 1 pin
Mazda Slave Acknowledge nMSACK Output 1 pin

Snoop C.OOtrol Sigruds
Intent to Modify nIM Output 1 pin
Memory Cycle nMC Output 1 pin
Snoop Retry nSRTRY Input 1 pin
Address Retry nARTRY Input 1 pin
Global nGBL Output 1 pin

Arbitration Sigruds
Bus Requesc nBR Output 1 pin
Bus Grant nBG Input 1 pin
Address Bus Busy nABB l nput/Output 1 pin
Data Bus Busy nDBB Input/Output 1 pin
Data Bus Grant nDBG Input 1 pin

Interrupts
Processor Interrupt nlNT0-1 Output 2 pins
Expansion Slot Interrupts nESil-3 Input 3 pins
Back End Interrupt nBEI Input 1 pin

Vertical line Comter Control
line Counter Clear nVLC_CLR Input 1 pin
line Counter Count nVLC_CNT Input 1 pin

Desktop Bus
Transmit Data Output 1 pin
Receive Data Input 1 pin

1/0-118

Apple CONFIDEN'/7t!L

Cor:itrol

Etemet Interface
Data
Control

~I Interface
Data Bus pD7-pDO

Address Bus .. ·='='''''' pA3-pAO

[~ ~[f

Input/Output 2 pins

Input/Output 8 pins
Input/Output 11 pins

Input/Output 8 pins

~::tckn. ~;K !@f

pA(0-2l'

4 pins
·1 pin
1 pin
1 pin
1 pin
1 pin
1 pin
1 pin

~:W.~-~~~s
Analog Phone Interface

Transmit Data
Receive Data
Off-hook
Ring

Low-speed Bus Interface
Address
Data

cwr Interface
CLUT Select nCLUT_CS

I npur···· ··· 1 pin

Output
Input

1 pin
1 pin
1 pin
1 pin

Output 16 pins
Input/Output 8 pins

Output . 1 pin

I/O-lli9

jaguar 110 ERS i\jJJJ/e CONFJl)l:N'l7AL

Ebner Interface
Elmer Select nElmer_CS Output 1 pin

ROM Interface
ROM Output Enable nROMOE Output 1 pin

System C:Ontroller (SC) Interface
SC Select nSC_CS Output 1 pin

ISDN Interface
IDC Chip Select IDCCS Output 1 pin
IDC Write IDCWR Output 1 pin
IDC Read IDCRD Output 1 pin
IDC Interrupt IDCINT Input 1 pin

ISDN/SCC Mux Interface
ISDN/SCC Mux Control Output 3 pins
Serial Bus In SBIN Output 1 pin
Serial Bus Out SBOUT Input 1 pin
Serial Bus Frame Sync SFS Input 1 pin
Serial Clock SCLK Input 1 pin
Bl Channel Input BlIN Input 1 pin
Bl Channel Output Bl OUT Output 1 pin
Bl Channel Tx/Rx Clock BlCLK Output 1 pin
B2 Channel Input B2IN Input 1 pin
B2 Channel Output B20UT Output 1 pin
B2 Channel Tx/Rx Clock B2CLK Output 1 pin

sea Interface
Chip Enable nCE Output 1 pin
Interrupt nlnt Input 1 pin
DMA Request A nReqA Input 1 pin
DMA Request B nReqB Input 1Pin

SCC2 Interface
Chip Enable nCE Output 1 pin
Interrupt nlnt Input 1 pin
DMA Request A nReqA Input 1 pin
DMA Request B nReqB Input 1Pin

Miscellaneous

1/0-150

Apple CONFIDENTIAL jaguar /JO ENS

System Reset nRST_IN Input 1 pin
Processor Reset nRST _XJ S0-1 Output 2 pins
Clock pCLK Input 1 pin
]TAG Pins Input 5 pins
Power, GND Pins 50 pins

TOTAL '1:79 pim

f/0-151

jaguar 1/0 ERS :1jJjJ/e (JJNF!JJ/:'.V'/1;1L

Mazda Summary

l/0-152

Apple CONFIDEN71AL

Module

Wankel
Code RAM (4Kx 16)
Scretchped RAM (256x8)
Context File (32x7)
PC File (128x16)

Channel Program Central
Channel Prog. RAM (64x96)
Date Buffer RAM (Bufs*Bx32)

XJS Bus Interface
Date
Address
Ctrl .. ,::::::/?

Sample Rate C~Av'-t.iiin
Coeffici e.ntJ~A'f:Liii'I 6

i::~~
Ethernet I nte:tr.ttl:t'tt=

sa1~}'··
Spocg:~terf11111111111:11111111:111111111111
Analog PhoneJij~itfi.fi

Lovg~~·
CLOT I ~~111~,::i::'!:l:i.!.
ROM I n~~1;1:·11i1li:!l:i:l
t1emorgJ3iJ:tlUU'.lterfece

·~1•==]:lll1·::1·:ii'li:i:·'j::::·1:tt:f=k Ctrl

2B+D Hux
SCC Interface 1

Ctrl
sec Interface 2

Ctrl
Cloct Cbi p (Big Ben)

Ctrl
Total Wankel lasts
Total Data Buffers
Total Channel Programs
Total Pover
Total I /O Bandvidtb

Memory Real Estate (gate equiv)
Logic Real Estate

Total Gates
I n1errupt Pins
JTAGP1ns
Po"Wer, Gnd Pins

Total Pins

}ap,uar l10 /:'RS

•Pins icotes Bond'w'idth Pover •Channel 6 Data •Wankel
(t1B/S) (mWatts) Pro rams Buffers lasts

32
32
21

2
2

8

5000
35000

2128
560

4685
2000
4608
9830
5000

2000
1229

11 ti8'~
8 ./ff

11)ft

J'::::

300

1000
3
8

1000
7

1000
7

300
4

58040
27300

85340
6
5

49
278

1/0-153

0.02
0.02

0.04

0.00

10.34

241
1688

103
27

226
96

222
474

62
114

19
12
96 2
59
48 1
1~ 8

48
14
19
48
33
45

48 ·"""··

~,

48
0
0

48
0

48
0
0
0

4120

2
4

4

40

2
4

4

32

2

2

2
4

4

31

jaguar 110 ERS :ljJf!le CONFJJ)f:'/'{/1;\l,

Desktop Connection (CL T)

The purpose of the desktop connection is to provide an interface becween Mazda and the 1/0 devices that
exist in the desktop box. The status of this interface is somewhat uncertain at this time, until a decision is
reached on the existence of the desktop box. The description that follows assumes that there is a desktop
box separate from the main CPU box.

As it pertains to the I/O subsystem, the desktop box is composed of the following 1/0 interfaces:

• Microphone jack and 48Khz stereo ADC
• Internal speakers, jack for external speakers, and 48Khz stereo DAC
• Handset jack and 8Khz CODEC
• Apple Desktop Bus (ADB) connection

In addition, the desktop box contains an ASIC that multiplexes/demultiplexes becween the single data
stream coming from Mazda and the multiple data stream<; of the desktop l/O devices. The desktop
connection, i.e., the interface becween Mazda and the desktop ASIC, could be either an implementation of
the P1394 serial bus (ChefCat) or a design of our own specification. Using ChefCat would allow us to leave
open the possibility of connecting removable storage devices on the desktop. On the other hand, rolling
our own interface, one that is designed only to meet the requirements of the l/O devices listed above, is
probably the approach with the least schedule risk. The Issues section at the conclusion of this ERS
contains more on the pros and cons of ChefCat.

Low-speed Bus

The general concept in Mazda's connection to external peripherals is one in which a number of "l/0
Modules" each control a dedicated port to a peripheral controller. This provides the maximum
performance, and simplifies the 1/0 Modules. I lowcver, due to pin limitations, this approach can
not be used for all of the l/0 interfaces. Therefore. a number of the external devices will be attached

. to a common address and data bus. These devices all have relatively low bandwidth requirements,
and they have fairly similar interface requirements. The additional latency introduced by the need to
arbitrate for this bus will not present a problem for these devices.

The following devices will be attached to this bus: The SCC used for LocalTalk and the generic serial
interface; the ISDN controller; the SCC used for ISDN's two B channels; the real time clock chip; the
CLUT/DAC; the system ROM; and the System Controller ASIC. The connection to the System
Controller is used to access its status and control registers.

In addition to the connection to this bus, each device will receive a dedicated chip-select signal, as
well as a number of dedicated control signals, such as DMA request, and acknowledge.

The following signals are shared by the devices attached to the low-speed bus:

Data{7:0] All of the devices use this 8 bit bidirectional data bus.

1/0-151

Apple CONFIDEN'f1AL }ilJ!,uar Ji() !:HS

Address[15:0] 16 bits of address are provided to allow connection to a large ROM. The
real time clock chip also uses 10 bits to address its parameter RAM. Most
other devices need four or less bits of address. Additionally, control lines
which are conditioned with a chip-select to the device (e.g. Read, Write)
will be connected to Mazda via unused address pins.

l/0-155

Apple CONFIDEN71Al jaguar 1!0 ERS

Section g

Mazda
·.::1:1:::1.1::,1.::1:1::1!:1:1:·:1!::··1'.1

in a Jaguar implementation? What we are assuming is that a high-speed, serial communications path is
provided. In some of the documentation, mention of ''Chef Cat" may appear. ChefCat is a serial bus being
developed by PSAP. It does provide the necessary services; however, there is some question as to its reality.
Regardless of the exact details, the current thinking is that a "ChefCat Like Thing" is needed to communicate
the sound and ADB data between the user and the box.

- Is the Wankel code RAM large enough to hold all the task code? A related issue is whether we will need to
dynamically alter the code RAM and scratchpad allocation when we add or remove tasks. A potential
compromise position is that the majority of tasks arc fixed, but that there are a few seldom used tasks that
are swapped in and out of one or two fixed-size blocks in the code RAM.

- Should the ROM that holds the Wankel taskO code and the initial processor boot code actually be EEPROM?
The disadvantage of EEPROM is that it is more expensive and it increases Mazda pin count and design
complexity. The advantage of EEPROM is that it would case development by eliminating the need to
upgrade ROM. Also we could get surface mount chips that do not need to be hand stuffed, thereby improving
reliability and perhaps overall cost.

1/0-157

jaguar 1/0 ERS

Net/Telecom

Chefcat or eguivalent bus: Placing codec/sound amplifier functions on monitor requires digital highway
and associated controllers/protocol work. If the desktop connects directly to the telecorn/sound
subsystem, these design hurdles are removed. Plus, we can use the built-in codec in the AMD ISDN
transceiver chip for the handset/headset. In any case, the handset-speakers-mikes must be in close
proximity to the user.

Ethernet controllers: Rapid developments are underway in this area and more work is needed with vendors
to verify chip performance, reliability and manufacturers' qualifications. Components under investigation
provide functionality and interface similar to the Intel 82590 or SEEQ 8003 controllers.

CODECS: Suitable functionality is available "off shelf", but very promising codec designs have been
recently proposed using sigma-delta technology. Wide price differentials amongst competing and
promised parts must be investigated.

Real-time performance: ISDN controller, modem pseudo-devices, ethernet controller, sound synthesis: all
have stringent real-time scheduling requirements. Maximum delay is:

• ISDN "B" channel: 2 ms at 64 Kbps with 32 byte FIFO. Higher level protocols can transcend
error at controller level.

• modem pseudo-devices: around 20 ms with 160 byte OMA buffers. Controller level underruns
will result in garbled transmissions.

• ethernet controller: about 38 µsecs with liH-bytc FIFO. Higher level protocols can transcend
error at controller level.

R6J.e!i: The RALPH control program running on WANKEL.depends upon a quiescent (standby) power mode in
order to detect and answer incoming phone calls with the power "of P'.

ISON: The low-level datalink control program running on WANKEL.also depends upon a quiescent (standby)
power mode in order to receive incoming calls with the power "of P'. The ISDN call management timeouts
must be studied to identify constraints.

Mass Storage

• Maintenance of real time thread integrity between host and storage.

• Synchronization of multiple stored threads.

• Minimization of latencies.

• Selection of page size and block size.

• Spooling real time threads.

• Scatter/gather optimizations.

• Stream interleaving during storage i/o.

Apple CONFIDEN17!1L }llRUar Ii() !:RS

1

2 References
3
4
5 Sound Manager, Steve Milne

6 Zilog SCC Data Book

7 79C30A, 79C32A, 1989

8 TI

9

10

1/0-159

•
,_ * . Apple ' Jaguar System Issues

Apple CONFIDENTIAL

jaguar System Issues Apple CONF/IJhNl711L

Contents

Introduction ... SYS-1

System Startup (Booting) ... SYS-1

Jagl Coherency Model. ... SYS-2

Interrupt System .. SYS-3

Non-Maskable Interrupts (NMI) .. SYS-4

Bus Errors ... SYS-4

Power Control ... SYS-5

Apple CONFIDEN71AL }aRuar System Issues

Introduction
This chapter deals with several issues which impact the system as a whole, cutting across many different
functional blocks of the design. While individual chapters may discuss their part of the whole, this chapter
ties them together.

:::::::::::::::::::::::
.. :::::::::::{;::::::=::

.. {::::::::::::::,,:::::::::::,.

:~\{ .. :;:=·-: :/~f :;:
::~::::~::~=~(:::::::

reason is that the ROMs are not as fast as the DRAM system (running in burst mode). Thus, the standard ROM
approach would be more costly and slower!

Since every Jaguar has a guaranteed mass storage device, the system image (beyond that which is copied into
DRAM from ROM) is kept on the on-board hard disc. The initial system image contains only enough code to
perform a first-stage system checkout and initiali?.ation. After this first stage boot, the rest of the run-time
system is loaded from the system disc area.

The process of "booting" occurs in the following steps:

1) At power-up (or, when the RESET button is pressed), all chips are reset.; the X]Ss
remain in the reset state.

2) Mazda exits the reset state by executing a hardware state machine which down-
loads a section of the System ROM into Wankel's code memory.

3) After this initial code is loaded, Wankel begins execution. This first-stage boot
code contains the initiali?.ations necessary to allow Mazda and the rest of the system to be

SYS-1

jaguar System Issues Apple CONFIDEN71AL

used by XJS code.

4) Wankel then copies a second-stage boot image into DRAM; this image consists of
XJS code.

5) Wankel removes the XJS RESET signals, allowing the XJS to begin execution.
Mazda/Wankel then enters a minimal VO supp6rt mode.

6) The XJS begins execution. This stage of the boot code needs to ascertain the size
and type of DRAM and initialize the System Controller with the appropriate control values.
It also needs to perfonn secondary initialization of Mazda (e.g., down-loading the
appropriate Spock image). The XJS then uses Mazda to read in the third-stage boot image
from the "default" boot device (typically, the hard disc, but could be network or floppy).

7) This third-stage boot image could contain an entire "runable" image of the OS; more
likely, it would correspond to the code which is currently being loaded by the Mac Pink
startup program. At this point, the system is as functional as the current Mac is by having a
larger, more complex ROM.

The above works for a single processor system. A minor perturbation of this handles a dual-processor
system. In that case, the "first" XJS works as above. During that first stages, the "second" XJS is held
in reset The Reset Vector of the DRAM image is set by XJSO to point to code which properly
initializes XJSl (e.g., loading one of its system registers with its "id"). XJSO then "tells" Mazda to
take XJSl out of reset. Upon exiting rese~ XJSl will now execute its processor unique code before
beginning its "normal" processing.

Obviously, this scheme can be extended to our 16 processor model... (The somewhat more
expensive system).

Jag1 Coherency Model
The XJSs provide a cache coherency mechanism which is meant to guarantee that only one copy of
modified data exists within caches and/or memory in a multi-processor XJS system. This mechanism

. works by providing "snooping" logic within the caches of the X]Ss such that any request for
(modified) data by one XJS which is currently within the cache of a second XJS will be written to
memory before the first access is allowed to complete. For this to work, all memory accesses must be
"seen" by all XJSs.

The Jagl supports this XJS coherency model by tying all (memory) bus masters onto a single Address
bus, as required by the XJS protocol. Thus, any access to Jagl memory (either Main Memory or the
Frame Buffer) will be potentially coherently managed. I say potentially, because the operating
system must identify those areas of memory (via the Global bit in page table entries) which are to
participate in the coherency protocol. Areas which do not require this mechanism (e.g., they are
guaranteed unique, or you don't care!) can be marked as non-Global; this may allow some
perfonnance enhancements within the System Controller for access to such areas.

Cards on BLT do not participate in this coherency model when they transfer data amongst

SYS-2

Apple CONFIDEN11AL jap,uar System Issues

themselves. That is, the BLT interconnect itself does not participate in this coherency. However, all
Jagl memory accesses from the BLT cards will be accessed using this coherency protocol.

To sum up, any memory area marked Global by the X]Ss and all accesses by E&W (for both Wilson
channels and BLT slots) participate in coherency. Once data is transferred to BLT, coherency is not
guaranteed!

The second register, which is used to actually generate an interrupt to the CPU(s), is an "edge-sensitive"
version of the interrupt sources. I.e., a bit will set in the second register only when the corresponding bit
changes from a 0 to a 1 in the first register. This second register is the one which is intended to be read by the
interrupt handler. Reading this register will dear all of its bits; the bits will remain dear until interrupt sources
present an "edge" again.

In the BLT slot example, after a CPU reads the second register, that slot's bit will be cleared. It will remain
clear until the slot removes the interrupt and asserts it again. This new assertion will cause an "edge" which will
then be captured in the second register. This edge-sensitivity prevents continuous interrupts from devices
which are managed by routines which do not immediately handle the source of interrupt (i.e., at interrupt
service time). This "first time only" mechanism should allow Interrupt Service Routines (ISRs) to be more
cleanly integrated into the operating system, since their immediate action is not required.

Note that if both CPU(s) are interrupted in a multi-processor system, whichever processor reads the second
register "first" will see all of the current interrupts. Assuming that no intervening interrupt gets signalled
between the reads of the first and second CPU, the normal case, the second CPU will read all zeros from the

SYS-3

jaguar System Issues Apple CONF/[)/:Nl7111.

register. Upon reading zeros, the second CPU can immediately exit its interrupt handler. Only if an interrupt
(edge) is detected between the two reads would the second CPU read a non-zero value.

Because of the edge sensitive nature of the interrupt system, some special handling may be necessary to make
sure that interrupts are not dropped. For example, if a BLT card has several sources of interrupts which must
be "multiplexed" onto the single interrupt request line, the Interrupt Service Routine (ISR) for that card must
take special care to make sure that all of its potential sources of interrupt are handled. This simply means
reading the active interrupt state register to determine if its processing has indeed removed the interrupt
request. If not, it must continue processing until the line becomes clear.

In order to support some types of "ASAP" interrupts (e.g., a BLT slot-to-slot interrupt with minimal latency), a
special mechanism has been provided within Mazda which allows a channel program to be "triggered" by the
occurrence of an interrupt. Using this feature, a BLT slot interrupt from one slot could cause a write to a
"magic" location on another. This magic location write could cause an interrupt of the processor on the
second card.

One XJS can interrupt another by writing to a such a "magic" location within Mazda's address space. This
would be used in circumstances where the "other" XJS must be alerted to some change of system state. For
example, when XJSO changes the state of a page table entry, it may be necessary to interrupt XJSl so that it
can flush its on-chip PATC to make sure that it uses the correct (updated) entry.

Non-Maskable Interrupts (NMI)

The XJS also has a Non-Maskable Interrupt pin which forces an interrupt unconditionally. This
interrupt mechanism is provided primarily for debugging, since it potentially destroys state
information which prevents a resumption of the interrupted activity.

The current plan is to treat this line as we have in the past on Macintosh. The line will be pulled up,
with an optional switch to ground it. It Will have no interface with any other components of the
system.

Bus Errors
The Jagl will be capable of generating bus error responses for Reads. The normal source of these
would be Parity errors on Main Memory or BLT Errors. For Reads, the error response can be signalled
during the corresponding bus cycle, and hence, synchronous with the bus activity.

Writes, however, cause a problem since the Write transaction has been completed as far as the
processor is concerned. This is once consequence of using the aggressive "dump-and-run" strategy
for Writes. Main Memory will not generate Parity errors for a Write, so that possible source of Bus
Errors is eliminated.

However, BLT slots can still cause an Error on a Write which "completed" as far as the XJS is
concerned. For example, a card could signal Error when the Write is initiated (to the card); or, the
BLT could detect a time-out condition.

SYS-4

Apple CONFIDEN17AL jaguar System Issues

Besides the fact that the processor has long passed the point at which the Write may have occurred,
another problem can be induced by BLT Time-Out Errors. The problem is that many subsequent
transactions may have been stacked up in the data patch and/or E&W chips. A potential for a "grid
lock" on bus traffic could exist.

In order to mitigate these problems, BLT will signal an Error on a Write by using an interrupt to
Mazda, which ultimately translates to an interrupt to XJS~ The XJS can query BLT to determine the
address of the Error. Most likely, the software would have to "crash" that offending task, since there
is no guaranteed way of determining how to recover.

In this model, Mazda is able to control the reduced power mode by explicit power down circuitry (e.g.,
control of the fan?) and by using the RESET signals .to the X]Ss to force them into a "sleep" mode. In order to
entry this sleep mode, the system must first save any relevant system state and flush the caches. It can then
safely be placed into reset mode.

When Mazda detects any reason to resume full operation, the XJSs will be taken out of reset. The reset vector
will point to system code which restores the state of the system to the point at which sleep mode was
entered.

An alternative is to have a "standby +5" power supply output which is just able to keep Mazda (and relevant
1/0 chips) alive. At "sleep" time, a DRAM image is created on hard disc which is the "wakeup" code. After
writing this image to disc, Mazda would trigger the power supply to shut off all "normal" power. Whenever an
(Mazda detected) event occurs which requires a wakeup, the power supply is turned on, Mazda downloads a
"wakeup" DRAM startup image (different from the "reset" image) from ROM. This image initializes DRAM
(quick test, parity initialization, etc.) and then reads the wakeup image from disc.

SYS-5

jaguar System Issues Apple CONFJJ)EN71AL

Note that the wakeup disc image can be configured to be "ready" to field any incoming data (e.g., answer th(
phone). Thus, the normal load time (which, hopefully is different than the Mac of today, anyway ...) is
bypassed for wakeup.

SYS-6

Apple Jaguar Manufacturing Issues

Apple CONFIDENTIAL

Apple CONFllJENnlL }aP,nwr ManufacturinP, Issues

Contents

Introduction ... MFG-1

Process '.'·#~;f lii\ii .. .
P~9~~ijg::~1 ·~bterconnect

§~~~~~\~~i~iiitions · · · · · · · · · · · · .. · · · · · · · · · · · · · · ·
:::::::::::::::::}~:~}}:: ~:f

Materials i·i';~.):iU~~rn;W, ·.·.·.·.·.·.·.·.·.·.·.·.·.·.-.·.:·:::::-···

Compot:l~11$~~t~gy
Vendor ~tlti~~···
Product~~~~li!tues

Design for Te~~~~~l.~~~[!ilL
IntroduttififiU;:;;.;,

::::;:::::::::=:::::::::::f:::

TAP ArJffitlfu~i1·f or Internal

Work R~-~~~~i!~,
ASIC Test Pl~rndii;·;:;:;:;;;;~i~~:;h,.
Board Level Test Plan ... MFG-11

MFG-1

Apple CONFIDEN77Al }ap,mar Manufacturing Issues

Section 1

Introduction

MFG-1

jaguar Manufacturing Issues Apple CONFIDENTIAL

Section 2

Process

Packaging and Interconnect

One of the key architectural features of Jaguar is its use of point to point, instead of bus oriented
interconnect topologies. In the past, point to point interconnect has been avoided because it led to high­
pincount devices and difficult signal routing. Another key departure for Jaguar is the fact that its data buses
are all 64 bits wide, some of which are interleaved to 128 bits for higher performance. Taken together these
two attributes push us toward much higher pincount packages than have characterized Apple designs of the
past.

Jaguar's designs will also be clocked much faster than in previous designs and will be based on a .8µ technolog,,
so lead inductance will become more of an issue for both speed and EMI reasons. Power dissipation will also
be an issue as most of the devices in the design are likely to dissipate over 2 watts of power.

All of these challenges point toward using TAB as our primary IC packaging technology.

Inner signal layers Thefmal via FR4

Figure 1. TAB Schematic.

MFG-2

Apple CONF!DEN17AL jap,ruar Manufacturing Issues

Figure 1 shows a typical TAB interconnect. While the details of jaguar's TAB process may vary, the key
features of this arrangement are that the die is mounted on a thermally conductive material which glues the die
to a ground pad on the PC board. This ground pad is connected to the inner ground plane of the board with
thermal vias. In this way, the entire ground plane of the board is used as a heat sink for the device.

The key attributes of TAB which are attractive to Jaguar are:

• Leads have a larger cross sectional area than wire bonds and are shorter than wire bonds leading to much
lower lead inductance (2nH for TAB vs. 5nH for wire bond), better signal quality and better power
dissipation.

• Test and bum-in strategies and die qualification. TAB devices are very difficult to bum-in because of
the lack of cheap reliable sockets, and the dangers of whisker grown at high temperatures on the tin
leads.

• Overhead and manufacturing cost as compared to a more standard process. We need to get a better
handle on exactly how much this technology will cost. We do not have reliable data yet for the capital
cost, throughput, yield and labor required for a manufacturing line using this process.

• Technology timeline, especially for 10 mil OLB process. Fremont is only just beginning to get familiar
with a 10 mil OLB process required for 284 pins in a 35mm tape format. This may require that we plan on
using 48mm tape for our highest pincount devices.

• Cost of 48mm tape vs. 3Smm. We don't have good data for the relative costs of these tape formats. If
we can't make 10 mil OLB work, then we will have to depend on 48mm tape being affordable.

MFG-3

jaguar Manufacturing Issues Apple CONF/DEN'/1A/,

• Backend yields for the semiconductor vendor and overall device cost vs. QFP. The
semiconductor vendors are not confident in their ability to perfect the back end of their process
for TAB devices. Significant yield loss here could adversely affect the economics of TAB.

Individually, each of these risk items is manageable. Taken together, they present a great challenge. The
alternative of using large numbers of ceramic pin grid arrays, or repartitioning the design to fit into Quad Flat
Pack packages is unattractive for cost, space and power reasons. Consequently, we are compelled to bet on
TAB.

System Configurations

Jaguar provides an opportunity for Apple to redefine the base capabilities to be expected in a personal
computer. This presents some unique benefits and challenges from a system assembly and packaging point of
view.

Every member of the Jaguar family will have a hard disk built-in. This means that system software can be
configured onto each disk, and the in-box materials need not include floppies. It isn't clear what this implies
from a manufacturing point of view. The Macintosh Portable currently ships with system software configured
on its hard disk, so it doesn't appear that this should present any unique problems.

Jaguar will have a way of providing a unique serial number for each machine built. This number will be stored
either on the internal hard disk or in the same EEPROM used to store the system boot code. This will allow
easier tracking of machines in the field and should provide some opportunities for service. This will require
some process during manufacturing to create and load this serial number into the machine.

Jaguar's networking and telecommunications strategy requires modules external to the machine to customize
Jaguar to the customer's Ethernet environment and to the phone requirements of whatever country the
customer is in.

As described in the VO section of the ERS, Jaguar will suppon Ethernet via the Apple Attachment Unit
Interface (AAUI) which will connect to "thin net", "thick net" and twisted pair ethernet by way of a Media
Access Unit (MAU) external to the box. We may choose to bundle the appropriate MAU with the machine to
afford easier "plug and play" for our Jaguar customers.

We will also be borrowing from the efforts on the Data Access Arrangement (DAA) developed for the
Macintosh Portable. This will allow the main Jaguar unit to have a single telecom interface that is then
customized via the DAA appropriate for the target country. Here too it is likely that we will want to bundle
the DAA with the Jaguar.

At minimum, this strategy raises significant localization issues.

MFG-4

Apple CONFIDENTIAL jagruar Manufacturing Issues

Section 3

Materials

Component,;;:,§@l!J!gy ,,:ft:::C<

Jaguars affihifil~llll~JJi~d performance goals can oQiyjiliiiiiwith state-of-the-art AS,~~·i·B·•~rd
interconnect teb·:·[h··· '.,n .. ''. '.,b.·'.:'.,t.,o.,'.:''.,J.¥ .• ' .• '.:·'.'' .• :.i.. ,,;:;::: Y ''.?::•':?:':rr:: .·: ::;::•=:: : ' : •,.•.,•·.:.•·.'•·.< .••.. '

.·:=:;::·:<· ::::;:::::·:::::::::::::::::.:.:::::::::: .:;:;:::::::. :;:::;:;::::::::::::::

All Jaguar ASIC5:;~:&JJ~s processor will use a l~.'~M:i$:~i~ii1ogy. As descri~~~bo1J&~i1 ASICS will
be packaged in ·y!glj~j!iji!;bunt TAB packages.]ijis agg~$.!1~@••~ of technology,glises selffl)~:~terials issues
ranging from q®,µf~il9P of the .8µ processj:~p qualifWIP.~i•:•gf TAB, and mag~gement •@f 9ffl:qije test and
bum-in issues T~:~l§i} Few problems ar~;?hticipateq·~n:si~lfying the .8µ f?rPcess we !m :fM.g~ting as it is
based on a lMb'Q~::µtpcess which is curn;nt1y shipp~g•~P.faplµme. There'#¢ a host of~~:~th TAB
which are beingjq4~ by the TABBigg'project whiq~·i~:f~ing on th!pasic issues +9¥9!¥¢?,with
manufacturing, .qg~ t'mrning in, and OO~ding of the 1'~·@.;iY,1#.e. Ther~,)Ve are also bem~~tjg ~ project to
evaluate TAB's P91¢r·Q.j$sipation c~~~~µ~ wim g ~1•··~~¢.l.iproc~; , •·•• .. • ,,, I •.·•.••·• :, : ? ::··:.:.:

ff~~ i:~~i~1~1~f ~:~:~~/~f :r~~i:j:~:~: :::::: ::::::::~:~=~:::;:ij::::~:;~~:;:~; ::; :· .~:;:;;;.::::'.;:~~~::~::);~;~::~~~f ~~1iif t~~~j~j~~i~~~~~]~f ~: ====: ~:~=; ~~~=~:;::~~:~= :~ :: :]:;~j~j~: :::~:~~irnj~~i]~f :::~ :~: ~~~~~:~:~:~::::::~: =::: ::

~!;JF~-~~!1!!5!:!!!!•!11
~;~ v;g =-~;.'.''ill begin to work th~ well and put in place mlji,to

. :::::/(:.:-:.:·:->:·:<<·:·:.:·:::: ??f~{\::·:·>.:-:·:···. .·.·.·.·.•.·.·,·.·.·.·.·.· ... ·.·.·.·.·.·. rrmr ::::::::: ::::::=::::==:=:::::)~=r~{:::::::::::;::::::::::·:-:·:-·.·.·.· · · · · :::::::::::::::=:=:::::::::::::::::::=-:·

Vendor Strategy

In addition to the technical issues involved with TAB are issues around supply base management and
procurement for these unique technologies. Very few vendors have the technology and capital
required to provide for our TAB needs. Furthermore, Apple is limited in its ability to work with
vendors to bring these technologies to production. Consequently, Jaguar is working with a single
vendor to perfect TAB and to provide for all of our ASIC needs.

This single vendor strategy has the advantages of letting us focus our resources on perfecting a single
process, and it allows us to simplify our ASIC design environment because one set of libraries and
tools are used for the entire machine. The disadvantages are that we are totally dependent on one
manufacturer to support us. This is further complicated by the uncertain nature of Jaguars
procurement needs. It is very difficult to predict how rapidly.Jaguar will gain acceptance in the
market because of the tradeoff our customers will have to make between getting a quantum leap in
price performance and new features, and moving to a new and unfamiliar architecture. This

MFG-5

jaguar Manufacturing Issues .;tpple CONFIDEN11AL

uncertainty translates into significant risk in terms of capacity planning for a single vendor to
manage.

To help manage these risks, the Jaguar project will be working much closer with our ASIC vendor than
Apple has typically worked in the past. The vendor will have. one or two of their employees on site at
Apple, and we are cultivating a unique relationship in which we have very detailed information on
their cost structure such that we can anticipate their business needs and take advantage of synergies

·· between the Jaguar project and the vendor's capabilities. To further protect Jaguar from the risks of
working with a single vendor, we are negotiating for the vendor to support a second source for their
ASIC process within a year of Jaguar's ship.

Jaguar is negotiating a contract with our ASIC vendor to clearly define our relationship, and make
clear what is required from the vendor in order to satisfy Jaguar's requirements.

·. While Jaguar is well along in working the vendor issues related to ASICs, much more work is needed to
manage the issues related to the PC board interconnect technology we will require. This is likely to
require a new and more intimate relationship with a small number of PC board suppliers to meet our
quality, quantity, cost and turnaround goals. Work in this area has not progressed much so far, but it

· will gain increasing importance as the project progresses.

Product Design Issues

Product design has some ambitious plans for innovative ways to cool Jaguar and make the machine
as elegant and unobtrusive as possible. This will doubtless involve new materials and processes for

. producing the Jaguar enclosure. No decisions have been made to date as to what technologies are
required, but it should be noted that significant issues will likely come up in this area.

MFG-6

Apple CONFIDENTIAL }agrnar Manufacturing Issues

Section 4

Design for Testability

Introduction

Shortened Test Development time. The architecture's consistent board level interface
should allow a post-processor that recognizes the scan chain topology to easily create serial
test programs.

Increased Board Density. The risk of increasing system board size is driving Jaguar
designers to be less silicon frugal in their ASIC designs. Because the designs are core
limited, test circuitry will take up less percentage of silicon area. Thus the board area
expensive test points can be discarded for density afforded by TAB technology.

The IEEE P 1149 .1 TAP architecture provides the necessary basis to achieve the above
objectives in each ASIC. XJS is specified for JTAG compatibility; since Pl 149.1 is a
proposal standard that should be ratified in the upcoming weeks, we must confirm that
Motorola intends to update its specifications.

MFG-7

jaguar Manufacturing Issues . · Apple CONFl/JEN77AL

' .\.

TAP Architecture for Internal and External ·Test

·The TAP architecture allows the following minimum implementation: four pin test access
port, a serially fed instruction register, a serial shift register which traverses the chip's
boundary nodes, and a single bit bypass register which allows the chip's serial scan path to

.: be .selectively avoided during board level testing. Optionally, there is a provision for
· ··including a device identification register and internal scan loops.for such internal tests as

.I,..evel Sensitive Scan Design (LSSD) or Built-In SelfTest (BIST). The TAP controls the
': ''·. 'operation of these instruction and data registers via a 16 state finite state machine known as

.:.:··the TAP controller. · ·

'~ •• o.' • ·- •

.. ~

TDI

TCK

r------------.. ..,.. __ .., Optional Device I

I ID Register 1

Ill

Q ... -= = u
ci:
Q

L- ---------,-

r-----------L-Optional Internal 1

Scan Loops I
l- --------4"1-"'

Bypass I
I
I
I
I
I

Decoding

IR controls

Logic

Instruction
Register

MUX

MUX

Select

Figure 1 TAP Architecture

MFG-8

Output
Stage

Enable

Apple CONFIDENTIAL jap,ruar Manujacturing Issues

Figure l shows a block diagram of the TAP Architecture. The TAP controller is fed by
two package pins known as TCK (Test Clock) and TMS (Test Mode Select) which drives
its state machine. A diagram showing the state transitions of the TAP controller can be
found in Figure 2. These transitions follow the logic value asserted on TMS at the rising
edge ofTCK. Notice that the state transition table has been designed in such a way as to
guarantee resetting,the machine (a return to Test Logic Reset) after five assertions of a logic
1 atTMS.

: -~

The state machine essentially perfonns three functions: instruction register scan:· data
register scan, and test execution. During instruction register scan, data which appears at
the IDI (TestData Inl,,pin during the rising edge of TGKj~ shifted into the serial:, :
instruction regis~.f.f:lfl~ bits in this instruction registc#.fal.\f~hen decoded to select ~;!Ji~~)

0

Scan
Sequence

1 0

.·:·:·:·::::::::::::::/::.~:~:

Select : 'lti? ttt

IR Scan

0

Scan
Sequence

1 0

::;:::::;:::

.:·".1:·:v
·=·:···

0

Update

To
Select DR 1

Scan

Figure 2. TAP Controller State Diagram

MFG-9

0

1

To
Run

Test/Idle

jaguar Manufacturing Issues .. Apple CONFllJHN17Al

Work Remaining

Obviously we must work in concert with the IC Vedder to assure scan cells and TAP
architecture is optimized for our purposes (i.e. fulfill timing ·expectations and board test
requirements). The TAP architecture must be rigorously adopted by all ASICs as well as
XJS. A well defined board topology is needed (with associated data paths if an internal test
is performed) to derive an optimum set of scan clutiris in order to complete board test in a
sane time frame. Then, an exhaustive set of continuity tests can be derived. A test vector
post-processor must be created or found to serialize and pad test streams. ASIC's must be
fault graded for 98+% fault coverage.

MFG-10

Apple c6NFlvEN77AL jagruar Manufacturing Issues

Sections

ASI<>T-t1st Plan

MFG-11

	00-01
	01-01
	01-02
	02-01
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-001
	08-002
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	09-000
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	10-000
	10-001
	10-002
	10-003
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	10-62
	10-63
	10-64
	10-65
	10-66
	10-67
	10-68
	10-69
	10-70
	10-71
	10-72
	10-73
	10-74
	10-75
	10-76
	10-77
	10-78
	10-79
	10-80
	10-81
	10-82
	10-83
	10-84
	10-85
	10-86
	10-87
	11-000
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	11-61
	11-62
	11-63
	11-64
	11-65
	11-66
	12-0000
	12-0001
	12-0002
	12-0003
	12-0004
	12-0006
	12-0007
	12-001
	12-002
	12-003
	12-004
	12-005
	12-006
	12-007
	12-008
	12-009
	12-010
	12-011
	12-012
	12-013
	12-014
	12-015
	12-016
	12-017
	12-018
	12-019
	12-020
	12-021
	12-022
	12-023
	12-024
	12-025
	12-026
	12-027
	12-028
	12-029
	12-030
	12-031
	12-032
	12-033
	12-034
	12-035
	12-036
	12-037
	12-038
	12-039
	12-040
	12-041
	12-042
	12-043
	12-044
	12-045
	12-046
	12-047
	12-048
	12-049
	12-050
	12-051
	12-052
	12-053
	12-054
	12-055
	12-056
	12-057
	12-058
	12-059
	12-060
	12-061
	12-062
	12-063
	12-064
	12-065
	12-066
	12-067
	12-068
	12-069
	12-070
	12-071
	12-072
	12-073
	12-074
	12-075
	12-076
	12-077
	12-078
	12-079
	12-080
	12-081
	12-082
	12-083
	12-084
	12-085
	12-086
	12-087
	12-088
	12-089
	12-090
	12-091
	12-092
	12-093
	12-094
	12-095
	12-096
	12-097
	12-098
	12-099
	12-100
	12-101
	12-102
	12-103
	12-104
	12-105
	12-106
	12-107
	12-108
	12-109
	12-110
	12-111
	12-112
	12-113
	12-114
	12-115
	12-116
	12-117
	12-118
	12-119
	12-120
	12-121
	12-122
	12-123
	12-124
	12-125
	12-126
	12-127
	12-128
	12-129
	12-130
	12-131
	12-132
	12-133
	12-134
	12-135
	12-136
	12-137
	12-138
	12-139
	12-140
	12-141
	12-142
	12-143
	12-144
	12-145
	12-146
	12-147
	12-148
	12-149
	12-150
	12-151
	12-152
	12-153
	12-154
	12-155
	12-156
	12-157
	12-158
	12-159
	12-160
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-000
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11

