

MM(5) MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff -mm [options] [files]

nroff -em [options] [files]

mmt [options] [files]

troff -mm [options] [files]

troff -em [options] [files]

DESCRIPTION

FILES

This package provides a formatting capability for a very wide
variety of documents. It is the standard package used by the BTL
typing pools and documentation centers. The manner in which a
document is typed in and edited is essentially independent of
whether the document is to be eventually formatted at a terminal
or is to be phototypeset. See the references below for further
details.

The -mm option causes nroff and troff to use the non-compacted
version of the macro package) while the -em option results in the
use of the compacted version) thus speeding up the process of
loading the macro package.

/usr/lib/tmac/tmac.m pointer to the non-compacted
version of the package

/usr/lib/macros/mm[nt] non-compacted version of the
package

/usr/lib/macros/cmp.[nt].[dt].m compacted version of the pack­
age

/usr/lib/macros/ucmp.[nt].m initializers for the compacted
version of the package

SEE ALSO
mm(l)) nroff(1).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

- 1 -

MODEMCAP (5) (AT&T UNIX PC Only) MODEMCAP (5)

NAME
modemcap - modem capability data base

SYNOPSIS
jusr jlibjuucpjmodemcap

DESCRWTION
Modemcap is a data base describing modems, in the same manner
as termcap describes terminals. Modems described in the modem­
cap data base and connected to an RS-232 port can then be
passed commands by standard dial(3) routines.

Modems named in modemcap are identified in the L-devices file,
which is maintained by the Administration software, as follows:

ACU ttyOOO name speed

ACU defines the modem to uucp, ttyOOO is the device used,
name is the name given to the modem in the modemcap entry,
and speed is the baud rate used by the modem.

See termcap(5) for a description of the format used for modemcap
entries.

Commands

FILES

Where termcap defines terminal capabilities, modemcap defines
modem commands. The available commands are described in the
table below. See termcap(5) for an explanation of the command
types and syntax.

Name Type Description

a[a-z,O-9]
b[a-z,O-9]
c[a-z,O-9]

d[a-z,O-9]
eh
es
m[a-z,O-9]
n[a-z,O-9]
pa
ph

pp
ps
pt
pw
s[a-z,O-9]
t[a-z,O-9]
w[a-z,O-9]

str
str
str

num
str
char
num
num
char
str

str
char
str
char
str
str
char

Abort EQUAL with string as error
Abort NOT_EQUAL with string as error
Compare string to previous results of (w'
(not including terminator)
Delay num seconds
End of phone string
primary Command start character
Skip num instructions EQUAL
Skip num instructions NOT_EQUAL
Pause character (replaces [-])
Send (srt,phone#,eh). If not defined, then
no string sent
Controls modem for pulse dialing
Primary command start character
Controls modem for tone dialing
Wait character (replaces [w=])
Send (ps,str,es) if ps and es are defined
Send str
Read characters until get character
specified (nulls are ignored)

jusr jlibjuucpjmodemcap

jusr jlibjuucpjL-devices

file containing modem descrip­
tions
logical device identification file

- 1 -

MODEMCAP (5) (AT&T UNIX PC Only) MODEMCAP (5)

SEE ALSO
termcap(5), dial(3), uucp(1).

- 2 -

MPTX(S) MPTX(S)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroft' -mptx [options 1 [files 1

DESCRIPTION

FILES

This package provides a definition for the .xx macro used for for­
matting a permuted index as produced by ptx(l). This package
does not provide any other formatting capabilities such as headers
and footers. If these or other capabilities are required, the mptx
macro package may be used in conjunction with the MM macro
package. In this case, the -mptx option must be invoked after
the -mm call. For example:

nroff -cm -mptx file
or

mm -mptx file

/usr/lib/tmac/tmac.ptx pointer to the non-compacted version
of the package

/usr /lib/macros/ptx non-compacted version of the package

SEE ALSO
mm(l), nrofI(l), ptx(l), mm(5).

- 1 -

REGEXP(S) REGEXP(S)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT < declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile(instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;

int step(string, expbuf)
cha.r *string, *expbuf;

DESCRIPTION
This page describes general purpose regular expression matching
routines in the form of ed(l), defined in /usr/include/regexp.h.
Programs such as ed(1), sed(1), grep(l), expr(l), etc., which per­
form regular expression matching, use this source file. In this way,
only this file need be changed to maintain regular expression com­
patibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared
before the "#include <regexp.h> " statement. These macros are
used by the compile routine.

GETC() Return the value of the next character in
the regular expression pattern. Successive
calls to GETC() should return successive
characters of the regular expression.

PEEKC()

UNGETC(c)

RETURN(pointer)

Return the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned
by GETC()).

Cause the argument c to be returned by
the next call to GETC() (and PEEKC()).
No more that one character of pushback is
ever needed and this character is
guaranteed to be the last character read by
GETC(). The value of the macro
UNGETC(c) is always ignored.

This macro is used on normal exit of the
compile routine. The value of the argu­
ment pointer is a pointer to the character
after the last character of the compiled reg­
ular expression. This is useful to programs
which have memory allocation to manage.

- 1 -

REGEXP(5) REGEXP(5)

ERROR(val) This is the abnormal return from the com­
pile routine. The argument val is an error
number (see table below for meanings).
This call should never return.

ERROR
11
16
25
35

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delilniter.

41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \ { \}.
45 } expected after \.
46 First number exceeds second in \ { \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the com­
pile routine but is useful for programs that pass down different
pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input
characters or have characters in an external array can pass down a
value of ((char *) 0) for this parameter.

The next parameter expbuf is a. character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbu! is one more than the highest address where
the compiled regular expression may be placed. If the compiled
expression cannot fit in (endbu! - expbuf) bytes, a call to
ERROR(50) is made.

The parameter eo! is the character which marks the end of the
regular expression. For example, in ed(1), this character is usually
aj.
Each program that includes this file must have a #define state­
ment for INIT. This definition will be placed right after the
declaration for the function compile and the opening curly brace
({). It is used for dependent declarations and initializations. Most
often it is used to set a register variable to point to the beginning
of the regular expression so that this register variable can be used
in the declarations for GETC(), PEEKC() and UNGETC(). Other­
wise it can be used to declare external variables that might be
used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call
to step is as follows:

step(string, expbuf)

- 2 -

REGEXP(5) REGEXP(5)

The first parameter to step is a pointer to a string of characters to
be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
which was obtained by a call of the function comp£le.

The function step returns one, if the given string matches the reg­
ular expression, and zero if the expressions do not match. If there
is a match, two external character pointers are set as a side effect
to the call to step. The variable set in step is loc1. This is a
pointer to the first character that matched the regular expression.
The variable loc2, which is set by the function advance, points
the character after the last character that matches the regular
expression. Thus if the regular expression matches the entire line,
loci will point to the first character of string and loc 2 will point
to the null at the end of string.

Step uses the external variable drcf which is set by compile if the
regular expression begins with A. If this is set then step will only
try to match the regular expression to the beginning of the string.
If more than one regular expression is to be compiled before the
first is executed the value of circf should be saved for each com­
piled expression and eircf should be set to that saved value before
each call to step.

The function advance is called from step with the same argu­
ments as step. The purpose of step is to step through the string
argument and call advance until advance returns a one indicating
a match or until the end of string is reached. If one wants to con­
strain string to the beginning of the line in all cases, step need
not be called, simply call advance.

When advance encounters a * or \ { \} sequence in the regular
expression it will advance its pointer to the string to be matched
as far as possible and will recursively call itself trying to match
the rest of the string to the rest of the regular expression. As long
as there is no match, advance will back up along the string until
it finds a match or reaches the point in the string that initially
matched the * or \ { \}. It is sometimes desirable to stop this
backing up before the initial point in the string is reached. If the
external character pointer loes is equal to the point in the string
at some time during the backing up process, advance will break
out of the loop that backs up and will return zero. This is used be
ed(l) and sed(1) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like
s!y*!!g do not loop forever.

The routines ecmp and getrange are trivial and are called by the
routines previously mentioned.

EXAMPLES
The following is an example of how the regular expression macros
and calls look from grep(l):

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)

- 3 -

REGEXP(5) REGEXP (5)

FILES

#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

(--sp)
return;
regerr()

compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if(step(1inebuf, expbuf))
succeed();

/usr /include/regexp.h

SEE ALSO

BUGS

ed(l), grep(l), sed(l).

The handling of cire! is kludgy.
The routine eemp is equivalent to the Standard I/0 routine
strnemp and should be replaced by that routine.
The actual code is probably easier to understand than this manual
page.

- 4 -

STAT(5) STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

FILES

The system calls stat and /stat return data whose structure IS

defined by this include file. The encoding of the field sCm ode is
defined in this file also.

/*
* Structure of the result of stat
*/

struct stat
{

};

dev_t
ino_t
ushort
short
ushort
ushort
dev_t
ofCt
time_t
time_t
time_t

#define S_IFMT
#define S_IFDIR
#define S_IFCHR
#define S_IFBLK
#define S_IFREG
#define S_IFIFO
#define S_ISUID
#define S_ISGID
#define S_ISVTX

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st~id;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

0170000 /* type of file */
0040000 / * directory * /
0020000 /* character special */
0060000 / * block special * /
0100000 /* regular */
0010000 /* fifo * /
04000 /* set user id on execution */
02000 / * set group id on execution * /
01000 /* save swapped text even after * /

1* use */
#define S_IREAD 00400 /* read permission, owner * /
#define S_IWRITE 00200 /* write permission, owner */
#define S_IEXEC 00100 /* execute/search permission, * /

/usr /include/sys/types.h
/usr /include/sys/stat.h

1* owner */

SEE ALSO
stat(2), types(5).

- 1 -

TERM (5) TERM (5)

Commands whose behavior depends on the type of terminal
should accept arguments of the form - Tterm where term is one
of the names given above; if no such argument is present, such
commands should obtain the terminal type from the environment
variable $TERM, which, in turn, should contain term.

SEE ALSO

BUGS

mm(l), nroff(l), sh(l), stty(l), tabs(l), profile(4), environ(S).

This is a small candle trying to illuminate a large, dark problem.
Programs that ought to adhere to this nomenclature do so some­
what fitfully.

- 2 -

TERM (5) TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., nroff, mm(1),
tabs(1)) and are maintained as part of the shell environment (see
sh(I), projile(4), and environ(5)) in the variable $TERM:

1520 Datamedia 1520
1620 Diablo 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640

300
series)
DASljDTCjGSI 300 and others using the HyType I
printer

300-12 same, in 12-pitch mode
300s
382
300s-12
3045
33
37
40-2
40-4
4540
3270
4000a
4014
43
450
450-12
735
745
dumb

sync

hp
lp
tn1200
tn300

DASljDTCjGSI300s
DTC 382
same, in 12-pitch mode
Datamedia 3045
TELETYPE Model 33 KSR
TELETYPE Model 37 KSR
TELETYPE Model 40/2
TELETYPE Model 40/4
TELETYPE Model 4540
IBM Model 3270
Trendata 4000a
Tektronix 4014
TELETYPE Model 43 KSR
DASI 450 (same as Diablo 1620)
same, in 12-pitch mode
Texas Instruments TI735 and TI725
Texas Instruments TI7 45
generic name for terminals that lack reverse line-feed
and other special escape sequences
generic name for synchronous TELETYPE 4540-
compatible terminals
Hewlett-Packard (same as 2645)
generic name for a line printer
General Electric TermiNet 1200
General Electric TermiNet 300

Up to 8 characters, chosen from [- a-z 0-9]' make up a basic ter­
minal name. Terminal sub-models and operational modes are dis­
tinguished by suffixes beginning with a -. Names should generally
be based on original vendors, rather than local distributors. A ter­
minal acquired from one vendor should not have more than one
distinct basic name.

- 1 -

TERMCAP(5) TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
/ etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by v£(1).
Terminals are described in termcap by giving a set of capabilities
which they have, and by describing how operations are performed.
Padding requirements and initialization sequences are included in
termcap.

Entries in termcap consist of a number of ":" separated fields.
The first entry for each terminal gives the names which are known
for the terminal, separated by ((I" characters. The first name is
always 2 characters long and is used by older version 6 systems
which store the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbrevia­
tion for the terminal, and the last name given should be a long
name fully identifying the terminal. The second name should con­
tain no blanks; the last name may well contain blanks for reada­
bility.

Capabilities
(P) indicates padding may be specified.
(P*) indicates that padding may be based on the number of lines
affected.

Name Type Pad? Description

ae str (P) End alternate character set

al str (P*) Add new blank line

am bool Terminal has automatic margins

as str (P) Start alternate character set
bc str Backspace if not 'H
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column a to last column

CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display

ce str (P) Clear to end of line

ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen

cm str (P) Cursor motion

co num Number of columns in a line
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm

cv str (P) Like ch but vertical only
da bool Display may be retained above

dB num Number of millisec of bs delay needed

db bool Display may be retained below
dC num Number of millisec of cr delay needed

dc str (P*) Delete character

dF num Number of millisec of If delay needed

- 1 -

TERMCAP(6) TERMCAP(6)

dl str (P*) Delete line

dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line

dT num Number of millisec of tab delay needed

ed str End delete mode
ei str End insert mode; give "
eo str Can erase overstrikes with a blank

Ii str (P*) Hardcopy terminai page eject (deiauit AL)
he bool Hardcopy termina.l

hd str Half-line down (forward 1/2 linefeed)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1/2 linefeed)
hz str Hazeltine; can't print -'s

ic str (P) Insert character
if str Name of file containing is

im bool Insert mode (enter); give"

in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted

is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key

kd str Sent by terminal down arrow key

ke str Out of ''keypad transmit" mode
kh str Sent by home key

kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys

kr str Sent by terminal right arrow key

ks str Put terminal in "keypad transmit" mode

ku str Sent by terminal up arrow key

10-19 str Labels on "other" function keys

li num Number of lines on screen or page
II str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor
mu str Memory unlock (turn off memory lock)

nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)

nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll
os bool Terminal overstrikes
pc str Pad character (rather than nUll)
pt bool Has hardware tabs (may need to be set with is)
se str End stand out mode

sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last

te str String to end programs that use cm

- 2 -

TERMCAP(5)

ti

uc

ue
ug

ul
up

us

vb

ve
vs
xb

xn
xr
xs
xt

str

str

str
num

bool

str
str

str
str
str

bool
bool
bool

bool
bool

String to begin programs that use em

Underscore one char and move past it

End underscore mode
Number of blank chars left by us or ue

TERMCAP(5)

Terminal underlines even though it doesn't overstrike

Upline (cursor up)
Start underscore mode

Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode

Beehive (f1=escape, f2=ctri C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)

Tabs are destructive, magic so char (Teleray 1061)

Additional capabilities used by tam(3T):

Name Type Pad? Description

BE str Bold end

BO str Bold on
CI str Cursor invisible
GV str Cursor visible

DE str Dim end
DS str Dim start

EE str End every attribute

FE str Turn off SLK labels
FL str Set SLK label (printf fmt string)
KM str input key map (full pathname)
XE str Overstrike end
XS str Overstrike start

A Sample Entry
The following entry, which describes the Concept-lOO, is among
the more complex entries in the termcap file as of this writing.
(This partiCUlar Concept entry is outdated, and used as an exam­
ple only.)

C 11 c 1 001 concept 100: is= \EU\Ef\E7\E5\E8\E 1 \ENH\EK\E\200\Eo& \200: \
:al=3*\EAR:am:bs:cd= 16*\EAC:ce= 16\E~:cl=2*AL:cm= /Ea% + % + :co#80: \
: dc= 16\EAA:dl=3*\E AB:ei= \E\200\:eo:im= \EAP: in:ip= 16*:124:mi:nd= \E=: \

:se= \Ed\Ee:so= \ED\EE:a=8\ t:ul:up= \E; :vb= \Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last
character of a line, and empty fields may be included for readabil­
ity (here between the last field on a line and the first field on the
next). Capabilities in termcap are of three types: Boolean capabil­
ities which indicate that the terminal has some particular delays,
numeric capabilities, and string capabilities, which give a sequence
which can be used to perform particular terminal operations.

Types of Capabilities
All capabilities have two letter codes. For instance, the fact that
the Concept has ((automatic margins" (i.e. an automatic return
and linefeed when the end of a line is reached) is indicated by the
capability am. Hence the description of the Concept includes am.

- 3 -

TERMCAP(5) TERMCAP(5)

Numeric capabilities are followed by the character # and then the
value. Thus co, which indicates the number of columns the termi­
nal has, gives the value 80 for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence), are given by the two character code, an = and then a
string ending at the next following:. A delay in milliseconds may
appear after the = in such a capability, and padding characters
are supplied by the editor after the remainder of the string is sent
to provide this delay. The delay can be either a integer, e.g. 20,
or an integer followed by an *, i.e. 3 *. A * indicates that the
padding required is proportional to the number of lines affected by
the operation, and the amount given is the per-affected-unit pad­
ding required. When a * is specified, it is sometimes useful to give
a delay of the form 3.5 to specify a delay per unit to tenths of
milliseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \E maps to
an ESCAPE character, AX maps to a control-x for any appropriate
x, and the sequences \n \r \t \b and \r give a newline, return,
tab backspace and formfeed. Finally, characters may be given as
three octal digits after a \, and the characters A and \ may be
given as \ A and \ \. If it is necessary to place a : in a capability it
must be escaped in octal as \072. If it is necessary to place a null
character in a string capability it must be encoded as \200. The
routines which deal with termcap use C strings, and strip the high
bits of the output very late so that a \200 comes out as \000
would.

Preparing Descriptions
We now outline how to prepare descriptions of terminals.

The most effective way to prepare a terminal description is by imi­
tating the description of a similar terminal in termcap and build­
ing up a description gradually, using partial descriptions with ex
to check that they are correct. Be aware that a very unusual ter­
minal may expose deficiencies in the ability of the termcap file to
describe it or bugs in ex. To test a new terminal description you
can set the environment variable TERMCAP to a path name of a
file containing the description you are working on and the editor
will look there rather than in /etc/termcap. TERMCAP can
also be set to the termcap entry itself to avoid reading the file
when starting up the editor. (This only works on version 7 sys­
tems.)

Basic Capabilities
The number of columns on each line for the terminal is given by
the co numeric capability. If the terminal is a CRT, then the
number of lines on the screen is given by the Ii capability. If the
terminal wraps around to the beginning of the next line when it
reaches the right margin, then it should have the am capability.
If the terminal can clear its screen, then this is given by the cl
string capability. If the terminal can backspace, then it should
have the bs capability, unless a backspace is accomplished by a
character other than "H, in which case you should give this

- 4 -

TERMCAP(5) TERMCAP(5)

character as the be string capability. If it overstrikes (rather than
clearing a position when a character is struck over) then it should
have the os capability.

A very important point here is that the local cursor motions
encoded in termcap are undefined at the left and top edges of a
CRT terminal. The editor will never attempt to backspace around
the left edge, nor will it attempt to go up locally off the top. The
editor assumes that feeding off the bottom of the screen will cause
the screen to scroll up, and the am capability tells whether the
cursor sticks at the right edge of the screen. If the terminal has
switch selectable automatic margins, the termcap file usually
assumes that this is on, i.e., am.

These capabilities suffice to describe hardcopy and «glass-tty" ter­
minals. Thus the Model 33 Teletype is described as:

t3133Itty33:co#72:os

while the Lear Siegler ADM-3 is described as:

clladm31311si adm3:am:bs:cl=AZ:li#24:co#80

Cursor Addressing
Cursor addressing in the terminal is described by a em string
capability, with prz"ntf(3S)-like escapes (%x) in it. These substi­
tute to encodings of the current line or column position, while
other characters are passed through unchanged. If the em string
is thought of as being a function, then its arguments are the line
and then the column to which motion is desired, and the %
encodings have the following meanings:

%d as in printf, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x adds x to value, then %
% >xy if value > x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16
%D Reverse coding (x-2

Consider the HP2645, which, to get to row 3 and column 12, needs
to be sent \E&aI2e03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row
and column are printed as two digits. Thus its em capability is
em=6\E&%r%2e%2Y. The Microterm ACT-IV needs the
current row and column sent preceded by a AT, with the row and
column simply encoded in binary, em=,A'T%.%. Terminals
which use % need to be able to backspace the cursor (bs or be),
and to move the cursor up one line on the screen (up, introduced

- 5 -

TERMCAP(5) TERMCAP(5)

below). This is necessary because it is not always safe to transmit
\t, \n D and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus cm=\E=%+ %+ .

Cursor Motions
If the terminal can move the cursor one position to the right, leav­
ing the character at the current position unchanged, then this
sequence should be given as nd (non-oPRt.ructive space). If it can
move the cursor up a line on the screen in the same column; this
should be given as up. If the terminal has no cursor addressing
capability, but can home the cursor (to very upper left corner of
screen) then this can be given as ho; similarly a fast way of get­
ting to the lower left hand corner can be given as II; this may
involve going up with up from the home position, but the editor
will never do this itself (unless II does) because it makes no
assumption about the effect of moving up from the home position.

Area Clears
If the terminal can clear from the current position to the end of
the line, leaving the cursor where it is, this should be given as ceo
If the terminal can clear from the current position to the end of
the display, then this should be given as cd. The editor only uses
cd from the first column of a line.

Insert/Delete Line
If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the
first position of a line. The cursor must then apppa.r on the newly
blank line. If the terminal can delete the line which the cursor is
on, then this should be given as dl; this is done only from the first
position on the line to be deleted. If the terminal can scroll the
screen backwards, then this can be given as sb, but just al
suffices. If the terminal can retain display memory above then the
da capability should be given; if display memory can be retained
below then db should be given. These let the editor understand
that deleting a line on the screen may bring down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using termcap.
The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end
of the line rigidly. Other terminals, such as the Concept 100 and
the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete
only to an untyped blank on the screen which is either eliminated,
or expanded to two untyped blanks. You can find out which kind
of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type "abc def" using local cursor
motions (not spaces) between the "abc" and the "def." Then posi­
tion the cursor before the "apc" and put the terminal in insert
mode. If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your terminal does
not distinguish between blanks and untyped positions. If the

- 6-

TERMCAP(5) TERMCAP(5)

"abcll shifts over to the "def)) which then move together around
the end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capability
in, which stands for "insert null.)) If you terminal does something
different and unusual then you may have to modify the editor to
get it to use the insert mode your terminal defines. We have seen
no terminals which have an insert mode not falling into one of
these two classes.

The editor can handle both terminals which have an insert mode,
and terminals which send a simple sequence to open a blank posi­
tion on the current line. Give as im the sequence to get into
insert mode, or give it an empty value if your terminal uses a
sequence to insert a blank position. Give as ei the sequence to
leave insert mode (give this, with an empty value also if you gave
im so). Now give as ie any sequence needed to be sent just before
sending the character to be inserted. Most terminals with a true
insert mode will not give ie; terminals which send a sequence to
open a screen position should give it here. (Insert mode is prefer­
able to the sequence to open a position on the screen if your ter­
minal has both). If post-insert padding is needed, give this as a
number of milliseconds in ip (a string option). Any other
sequence which may need to be sent after an insert of a single
character may also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode, you can give the capability mi to speed up inserting in this
case. Omitting mi will affect only speed. Some terminals (not­
ably Datamedials) must not have mi because of the way their
insert mode works.

Finally, you can specify delete mode by giving dm and ed to
enter and exit delete mode, and de to delete a single character
while in delete mode.

Highlighting, Underlining, and Visible Bells
If your terminal has sequences to enter and exit standout mode
these can be given as so and se respectively. If there are several
flavors of standout mode (such as inverse video, blinking, or
underlining-half bright is not usually an acceptable "standout))
mode unless the terminal is in inverse video mode constantly), the
preferred mode is inverse video by itself. If the code to change
into or out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray 1061 do, this is accept­
able, and although it may confuse some programs slightly, it canlt
be helped.

Codes to begin underlining and end underlining can be given as us
and ue respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such
as the Microterm Mime, this can be given as ue. (If the underline
code does not move the cursor to the right, give the code followed
by a nondestructive space).

- 7 -

TERMCAP(5) TERMCAP(5)

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement) then this can be given as vb; it
must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be
given as vs and ve, sent at the start and end of these modes
respectively. These can be used to change, e.g., from a underline
to a block cursor and back.

If the terminal needs to be in a special mode when running a pro­
gram that addret)::>e::; Lhe cursor, the codes to enter and exit this
mode can be given as ti and teo This arises, for example, from
terminals like the Concept with more than one page of memory.
If the terminal has only memory relative cursor addressing and
not screen relative cursor addressing, a one-screen-sized window
must be fixed into the terminal for cursor addressing to work
properly.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when the keys
are pressed, this information can be given. Note that it is not
possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted lIP 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as
ks and ke. Otherwise, the keypad is assumed to always transmit.
The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kl, kr, ku, kd, and kh
respectively. If there are function keys such as fa, fl, ... , f9, the
codes they send can be given as kO, kl, ... , kg. If these keys
have labels other than the default fa through f9, the labels can be
given as 10, II, ... , 19. If there are other keys that transmit the
same code as the terminal expects for the corresponding function,
such as clear screen, the termcap two-letter codes can be given in
the ko capability; for example, :ko=ci,lI,sf,sb:, which says that
the terminal has clear, home down, scroll down, and scroll up keys
that transmit the same thing as the ci, II, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals
which have single character arrow keys. It is obsolete but still in
use in version 2 of v£, which must be run on some minicomputers
due to memory limitations. This field is redundant with kl, kr,
ku, kd, and kh. It consists of groups of two characters. In each
group, the first character is what an arrow key sends, the second
character is the corresponding v£ command. These commands are
h for kl, j for kd, k for ku, l for kr, and H for kh. For exam­
ple, the Mime would be :rna=AKrZkAXl: indicating arrow keys
left ("H), down ("K), up ("Z), and right eX). (There is no home
key on the Mime.)

Miscellaneous
If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

- 8 -

TERMCAP(5) TERMCAP(5)

If tabs on the terminal require padding, or if the terminal uses a
character other than '1 to tab, then this can be given as tao

Hazeltine terminals, which don't allow - characters to be printed,
should indicate hz. Datamedia terminals, which echo carriage
return-linefeed for carriage return and then ignore a following
linefeed, should indicate nco Early Concept terminals, which
ignore a linefeed immediately after an am wrap, should indicate
xn. If an erase-eol is required to get rid of standout (instead of
merely writing on top of it), xs should be given. Teleray termi­
nals, where tabs turn all characters moved over to blanks, should
indicate xt. Other specific terminal problems may be corrected by
adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the termi­
nal, and if, the name of a file containing long initialization strings.
These strings are expected to properly clear and then set the tabs
on the terminal, if the terminal has settable tabs. If both are
given, is will be printed before if. This is useful where if is
/usr/lib/tabset/std, but is clears the tabs first.

Similar Terminals
If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability
tc can be given with the name of the similar terminal. This capa­
bility must be last and the combined length of the two entries
must not exceed 1024 characters. Since terml£b routines search
the entry from left to right, and since the tc capability is replaced
by the corresponding entry, the capabilities given at the left over­
ride the ones in the similar terminal. A capability can be can­
celled with xx@ where xx is the capability. For example, the
entry

hnI2621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and
hence does not turn on the function key labels when in visual
mode. This is useful for different modes for a terminal, or for
different user preferences.

TAM Capabilities
The additional capabilities provided for use with tam(3T) are all
caps to distinguish them from the standard capabilities. EE tells
TAM that the terminal uses ANSI-style character attributes, i.e.,
the strings that turn attributes on are cumulative and there is one
string, EE, that turns all attributes off. If the EE capability is
included in the termcap entry, none of the other attribute end
strings, BE, XE, and DE, need be defined.

A terminal with sg set is treated as if it has no attributes.

On a terminal with us but not so defined, so is set to us.

TAM uses attributes to show selected and unselected windows,
and menu and form cursors. On a terminal with no attributes,
the border of a selected window is drawn with "*,, and the border
of an unselected window is drawn with ".". On a terminal with

- 9 -

TERMCAP(5) TERMCAP(5)

FILES

attributes, the attributes used to draw window borders depend on
the so, BO, and DS capabilities. If only so is defined, a selected
window border is drawn using spaces with the so attribute, and
unselected window borders are drawn with ((.". If so and BO are
defined, a selected window border is drawn using spaces with the
BO attribute, and unselected window borders are drawn using
spaces with the so attribute. If so and DS are defined, a selected
window border is drawn using spaces with the so attribute, and
unselect.ed window borders are dra m using spaces with the DS
attribute.

FE and FL are used for terminals that have hardware SLK labels,
such as the b513. FL is a print! format string requiring two argu­
ments: the key number and the label string. FE turns off the
SLK labels.

KM is the full pathname of the file TAM uses to translate key­
board input sequences into their UNIX PC equivalent. By conven­
tion these mapping files are named kmap.<term£nal-name > and
are located in /usr /lib/ua.

/etc/termcap file containing terminal descriptions

SEE ALSO

BUGS

eX(l), tset(l), vi(l), more(l), tam(3T).

Ex allows only 256 characters for string capabilities. The total
length of a single entry (excluding only escaped new lines) may not
exceed 1024.

The rna, VS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are
not supported by any program.

- 10-

TYPES (6) TYPES (6)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system
code; some data of these types are accessible to user code:

typedef struct { int r[l]; } * physadr;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[10];
typedef short dev _t;
typedef long ofCt;
typedef long paddr_t;
typedef long key _t;

The form daddr_t is used for disk addresses except in an i-node on
disk, see /8(4). Times are encoded in seconds since 00:00:00 GMT,
January 1, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation­
dependent. Offsets are measured in bytes from the beginning of a
file. The labeCt variables are used to save the processor state
while another process is running.

SEE ALSO
fs(4).

- 1 -

VARARGS(6) VARARGS (6)

NAME
varargs - handle variable argument list

SYNOPSIS
#include < varargs.h >
v a_a list

va_del

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable
argument lists to be written. Routines that have variable argu­
ment lists [such as printf(3S)] but do not use varargs are
inherently nonportable, as different machines use different
argument-passing conventions.

The va_alist is used as the parameter list in a function header.

The va_del is a declaration for va_alz"st. No semicolon should fol­
low va_del.

The va_list is a type defined for the variable used to traverse the
list.

The va_start is called to initialize pvar to the beginning of the
list.

The va_arg will return the next argument in the list pointed to
by pvar. Type is the type the argument is expected to be.
Different types can be mixed, but it is up to the routine to know
what type of argument is expected, as it cannot be determined at
runtime.

The va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end} are
possible.

EXAMPLE
This example is a possible implementation of execl(2).

#include <varargs.h>
#define MAXARGS 100

1* execl is called by * /
1* execl(file, arg1, arg2, •.• , (char*)O); * /

execl(va_alist)
va_dcl
{

va_list ap;
char *file'
char *arg's[MAXARGS];

- 1 -

VARARGS(:» VARARGS (:»

}

int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++J = va_arg(ap, char *))
!= (char *)0)

va_end(~p);
return execv(file, args);

SEE ALSO

NOTES

exec(2), printf(3S), vprintf(3S).

It is up to the calling routine to specify how many arguments
there are, since it is not always possible to determine this from the
stack frame. For example, execl is passed a zero pointer to signal
the end of the list. Pr£ntj can tell how many arguments are there
by the format.

It is non-portable to specify a second argument of char, short, or
float to va_arg, since arguments seen by the called function are
not char, short, or float. C converts char and short arguments to
z"nt and converts float arguments to double before passing them to
a function.

- 2 -

