

Kernel Processing

The following continues the example of Chapter 4, describing STREAMS
kernel operations and associates them, where relevant, with Chapter 4 user
level system calls in the example. As a result of initializing operations and
pushing a module, the Stream for port one has the following configuration:

write 1

STREAM

HEAD

CANONPROC
module

CHARPROC
module

raw TTY
device driver

Figure 5-3: Operational Stream for Example

1 read

As shown in Figure 5-3, the upstream QUEUE is also referred to as the
read QUEUE, reflecting the message flow in response to a read system call.
Correspondingly, downstream is referred to as the write QUEUE. Read side
processing is discussed first.

KERNEL LEVEL FUNCTIONS 5-7

Kernel Processing

Read Side Processing
In our example, read side processing consists of driver processing, CHAR

PROC processing, and CANONPROC processing.

Driver Processing
In the example, the user process has blocked on the getmsg(2) system call

while waiting for a message to reach the Stream head, and the device driver
independently waits for input of a character from the port hardware or for a
message from upstream. Upon receipt of an input character interrupt from the
port, the driver places the associated character in an M_DATA message, allo
cated previously. Then, the driver sends the message to the CHARPROC
module by calling CHARPROC's upstream put procedure. On return from
CHARPROC, the driver calls the allocb utility routine to get another message
for the next character.

CHARPROC

CHARPROC has both put and service procedures on its read side. In the
example, the other QUEUEs in the modules also have put and service pro
cedures:

5-8 STREAMS PRIMER

CANONPROC
Module

CHARPROC
Module

Kernel Processing

write read

..

V
(service)

(service)

"
(put)

...
~~~-, ~~~-, 

V 
(service) 

(service) 

" 
(put) 

. . .......................................... 

Figure 5-4: Module Put and Service Procedures 

When the driver calls CHARPROC's read QUEUE put procedure, the pro
cedure checks private data flags in the QUEUE. In this case, the flags indicate 
that echoing is to be performed (recall that echoing is optional and that we are 
working with port hardware which cannot automatically echo). CHARPROC 
causes the echo to be transmitted back to the terminal by first making a copy 
of the message with a STREAMS utility. Then, CHARPROC uses another utility 
to obtain the address of its own write QUEUE. Finally, the CHARPROC read 
put procedure calls its write put procedure and passes it the message copy. 
The write procedure sends the message to the driver to effect the echo and 
then returns to the read procedure. 

This part of read side processing is implemented with put procedures so 
that the entire processing sequence occurs as an extension of the driver input 
character interrupt. The CHARPROC read and write put procedures appear as 
subroutines (nested in the case of the write procedure) to the driver. This 
manner of processing is intended to produce the character echo in a minimal 
time frame. 

KERNEL LEVEL FUNCTIONS 5-9 



Kernel Processing 

After returning from echo processing, the CHARPROC read put procedure 
checks another of its private data flags and determines that parity checking 
should be performed on the input character. Parity should most reasonably 
be checked as part of echo processing. However, for this example, parity is 
checked only when the characters are sent upstream. This relaxes the timing 
in which the checking must occur; that is, it can be deferred along with the 
canonical processing. CHARPROC uses putq to schedule the (original) mes
sage for parity check processing by its read service procedure. When the 
CHARPROC read service procedure is complete, it forwards the message to the 
read put procedure of CANONPROC. Note that if parity checking were not 
required, the CHARPROC put procedure would call the CANONPROC put pro
cedure directly. 

CANONPROC 
CANONPROC performs canonical processing. As implemented, all read 

QUEUE processing is performed in its service procedure so that CANONPROC's 
put procedure simply calls putq to schedule the message for its read service 
procedure and then exits. The service procedure extracts the character from 
the message buffer and places it in the "line buffer" contained in another 
M_DATA message it is constructing. Then, the message which contained the 
single character is returned to the buffer pool. If the character received was 
not an end-of-line, CANONPROC exits. Otherwise, a complete line has been 
assembled and CANONPROC sends the message upstream to the Stream head 
which unblocks the user process from the getmsg call and passes it the con
tents of the message. 

Write Side Processing 
The write side of this Stream carries two kinds of messages from the user 

process: ioctl messages for CHARPROC and M_DATA messages to be output 
to the terminal. 

ioctl messages are sent downstream as a result of an LSTR ioctl system 
call. When CHARPROC receives an ioctl message type, it processes the mes
sage contents to modify internal QUEUE flags and then uses a utility to send 
an acknowledgment message upstream (read side) to the Stream head. The 
Stream head acts on the acknowledgment message by unblocking the user 
from the ioctl. 

5-10 STREAMS PRIMER 



Kernel Processing 

For terminal output, it is presumed that M_DATA messages, sent by write 
system calls, contain multiple characters. In general, STREAMS returns to the 
user process immediately after processing the write call so that the process 
may send additional messages. Flow control, described in the next chapter, 
will eventually block the sending process. The messages can queue on the 
write side of the driver because of character transmission timing. When a 
message is received by the driver's write put procedure, the procedure will use 
putq to place the message on its write-side service message queue if the driver 
is currently transmitting a previous message buffer. However, there is gen
erally no write QUEUE service procedure in a device driver. Driver output 
interrupt processing takes the place of scheduling and performs the service 
procedure functions, removing messages from the queue. 

Analysis 
For reasons of efficiency, a module implementation would generally avoid 

placing one character per message and using separate routines to echo and 
parity check each character, as was done in this example. Nevertheless, even 
this design yields potential benefits. Consider a case where alternate, more 
intelligent port hardware was substituted. If the hardware processed multiple 
input characters and performed the echo and parity-checking functions of 
CHARPROC, then the new driver could be implemented to present the same 
interface as CHARPROC. Other modules such as CANONPROC could continue 
to be used without modification. 

KERNEL LEVEL FUNCTIONS 5-11 





Introduction 
The previous chapters described the basic concepts of constructing a 

Stream and utilizing the STREAMS mechanism. Additional STREAMS features 
are provided to handle characteristic problems of protocol implementation, 
such as flow control, and to assist in development. 

There are also kernel and user-level facilities that support the implementa
tion of advanced functions, such as multiplexers, and allow asynchronous 
operation of a user process and STREAMS input and output. 

OTHER FACILITIES 6-1 



Message Queue Priority 

As mentioned in the previous chapter, the STREAMS scheduler operates 
strictly FIFO so that each QUEUE's service procedure receives control in the 
order it was scheduled. When a service procedure receives control, it may 
encounter multiple messages on its message queue. This buildup can occur if 
there is a long interval between the time a message is queued by a put pro
cedure and the time that the STREAMS scheduler calls the associated service 
procedure. In this interval, there can be multiple calls to the put procedure 
causing multiple messages. The service procedure always processes all mes
sages on its message queue unless prevented by flow control (see next sec
tion). Each message must pass through all the modules connecting its origin 
and destination in the Stream. 

If service procedures were used in all QUEUES and there was no message 
priority, then the most recently scheduled message would be processed after 
all the other scheduled messages on all Streams had been processed. In cer
tain cases, message types containing urgent information (such as a break or 
alarm conditions) must pass through the Stream quickly. To accommodate 
these cases, STREAMS provides two classes of message queuing priority, ordi
nary and high. STREAMS prevents high-priority messages from being blocked 
by flow control and causes a service procedure to process them ahead of all 
ordinary priority messages on the procedure's queue. This results in the 
high-priority message transiting each module with minimal delay. 

QUEUE 

queue 
header 

Message queue 

..... i I I I I I I I I I I I 1 
...... ----' , H' h' 0 d' , , Ig, r mary ! 

," P" .,. P' . ., nonty nonty 
" , 

Head Tail 

Figure 6-1: Streams Message Priority 

6·2 STREAMS PRIMER 



Message Queue Priority 

The priority mechanism operates as shown in Figure 6-1. Message queues 
are generally not present in a QUEUE unless that QUEUE contains a service 
procedure. When a message is passed to putq to schedule the message for 
service procedure processing, putq places the message on the message queue 
in priority order. High priority messages are placed ahead of all ordinary 
priority messages, but behind any other high priority messages on the queue. 
STREAMS utilities deliver the messages to the processing service procedure 
FIFO within each priority class. The service procedure is unaware of the mes
sage priority and simply receives the next message. 

Message priority is defined by the message type; once a message is 
created, its priority cannot be changed. Certain message types come in 
equivalent high/ordinary priority pairs (for example, MJCPROTO and 
M_PROTO), so that a module or device driver can choose between the two 
priorities when sending information. 

OTHER FACILITIES 6-3 



Flow Control 

Even on a well-designed system, general system delays, malfunctions, and 
excessive message accumulation on one or more Streams can cause the mes
sage buffer pools to become depleted. Additionally, processing bursts can 
arise when a service procedure in one module has a long message queue and 
processes all its messages in one pass. STREAMS provides two independent 
mechanisms to guard its message buffer pools from being depleted and to 
minimize long processing bursts at anyone module. 

Flow control is only applied to normal priority messages (see previous section) 
and not to high priority messages. 

The first flow control mechanism is global and automatic and is related to 
the message pool priority, discussed in the "Message Storage Pool" section of 
Chapter 5. When the Stream head requests a message buffer in response to a 
putmsg or write system call, it uses the lowest level of priority. Since buffer 
availability is based on priority and buffer pool levels, the Stream head will be 
among the first modules refused a buffer when the pool becomes depleted. In 
response, the Stream head will block user output until the STREAMS buffer 
pool recovers. As a result, output has a lower priority than input. 

The second flow control mechanism is local to each Stream and advisory 
(voluntary), and limits the number of characters that can be queued for pro
cessing at any QUEUE in a Stream. This mechanism limits the buffers and 
related processing at anyone QUEUE and in anyone Stream, but does not 
consider buffer pool levels or buffer usage in other Streams. 

The advisory mechanism operates between the two nearest QUEUEs in a 
Stream containing service procedures (see diagram on next page). Messages 
are generally held on a message queue only if a service procedure is present in 
the associated QUEUE. 

Messages accumulate at a QUEUE when its service procedure processing 
does not keep pace with the message arrival rate, or when the procedure is 
blocked from placing its messages on the following Stream component by the 
flow control mechanism. Pushable modules contain independent upstream 
and downstream limits, which are set when a developer specifies high-water 
and low-water control values for the QUEUE. The Stream head contains a 
preset upstream limit (which can be modified by a special message sent from 
downstream) and a driver may contain a downstream limit. 

6-4 STREAMS PRIMER 



Flow Control 

Flow control operates as follows: 

1. Each time a STREAMS message-handling routine (for example, putq) 
adds or removes a message from a message queue in a QUEUE, the 
limits are checked. STREAMS calculates the total size of all message 
blocks on the message queue. 

2. The total is compared to the QUEUE high-water and low-water values. 
If the total exceeds the high-water value, an internal full indicator is 
set for the QUEUE. The operation of the service procedure in this 
QUEUE is not affected if the indicator is set, and the service procedure 
continues to be scheduled. 

3. The next part of flow control processing occurs in the nearest preced
ing QUEUE that contains a service procedure. In the diagram below, if 
D is full and C has no service procedure, then B is the nearest preced
ing QUEUE. 

Message 
Queue 

Figure 6-2: Flow Control 

Message 
Queue 

4. The service procedure in B uses. a STREAMS utility routine to see if a 
QUEUE ahead is marked full. If messages cannot be sent, the 
scheduler blocks the service procedure in B from further execution. B 
remains blocked until the low-water mark of the full QUEUE, D, is 
reached. 

5. While B is blocked, any non-priority messages that arrive at B will 
accumulate on its message queue (recall that priority messages are not 
blocked). In tum, B can reach a full state and the full condition will 
propagate back to the last module in the Stream. 

OTHER FACILITIES 6-5 



Flow Control 

6. When the service procedure processing on 0 causes the message block 
total to fall below the low-water m<1rk, the full indicator is turned off. 
Then, STREAMS automatically schedules the nearest preceding blocked 
QUEUE (B in this case), getting things moving Clgain. This automatic 
scheduling is known as back-enabling a QUEUE. 

Note that to utilize flow control, ~ developer need only call the utility that 
tests if a full condition exists ahead, plus perform some housekeeping if it 
does. Everything else is automatically handled by STREAMS. Additional flow 
control features are described in the STREAMS Program.mer's Guide .. 

($-6 STREAMS PRIMER 



Multiplexing 

STREAMS multiplexing supports the development of internetworking pro
tocols such as IP and ISO CLNS, and the processing of interleaved data streams 
such as in SNA, X.2S, and terminal window facilities. 

STREAMS multiplexers (also called pseudo-device drivers) are created in 
the kernel by interconnecting multiple Streams. Conceptually, there are two 
kinds of multiplexers that developers can build with STREAMS: upper and 
lower multiplexers. Lower multiplexers have multiple lower Streams between 
device drivers and the multiplexer, and upper multiplexers have multiple 
upper Streams between user processes and the multiplexer. 

OTHER FACILITIES 6-7 



Multiplexing 

Module 

Ethernet 
Driver 

User 
Processes 

1\1\1\ 

....... v.v.v ....... . 
Upper 

Multiplexer or 
Module 

IP 
Multiplexer 

Driver 

Module 

LAPB 
Driver 

Figure 6-3: Internet Multiplexing Stream 

802.2 
Driver 

Figure 6-3 shows an example of a lower multiplexer. This configuration 
would typically occur where internetworking functions were included in the 
system. This Stream contains two types of drivers: the Ethernet, LAPB, and 
IEEE 802.2 are hardware device drivers that terminate links to other nodes; the 
IP (Internet Protocol) is a multiplexer. 

The IP multiplexer switches messages among the various nodes (lower 
Streams) or sends them upstream to user processes in the system. In this 
example, the multiplexer expects to see an 802.2 interface downstream; for 
the Ethernet and LAPB drivers, the Net 1 and Net 2 modules provide service 
interfaces to the two non-802.2 drivers and the IP multiplexer. 

6-8 STREAMS PRIMER 



Multiplexing 

Figure 6-3 depicts the IP multiplexer as part of a larger Stream. The 
Stream, as shown in the dotted rectangle, would generally have an upper TCP 
multiplexer and additional modules. Multiplexers could also be cascaded 
below the IP driver if the device drivers were replaced by multiplexer drivers. 

PVC 
Processes 

SVC 
Processes Processes 

----------~-----

Modules Modules 

X.25 
Packet Layer Protocol 

Multiplexer Driver 

LAPB Driver 
or 

Lower Multiplexer 

Figure 6-4: X.25 Multiplexing Stream 

........ V ....... . 
: Modules 
....... ~ ....... . 
.. 

Figure 6-4 shows an upper multiplexer. In this configuration, the driver 
routes messages between the lower Stream and one of the upper Streams. 
This Stream performs X.25 multiplexing to multiple independent SVC 
(Switched Virtual Circuit) and PVC (Permanent Virtual Circuit) user processes. 
Upper multiplexers are a specific application of standard STREAMS facilities 
that support multiple minor devices in a device driver. This figure also shows 

OTHER FACILITIES 6-9 



Multiplexing 

that more complex configurations can be built by having one or more multi
plexed LAPB drivers below and multiple modules above. 

Developers can choose either upper or lower multiplexing, or both, when 
designing their applications. For example, a window multiplexer would have 
a similar configuration to the X.2S configuration of Figure 6-4, with a window 
driver replacing Packet Layer, a tty driver replacing LAPB, and the child 
processes of the terminal process replacing the user processes. Although the 
X.2S and window multiplexing Streams have similar configurations, their mul
tiplexer drivers would differ significantly. The IP multiplexer of Figure 6-2 has 
a different configuration than the X.2S multiplexer and the driver would 
implement its own set of processing and routing requirements. 

In addition to upper and lower multiplexers, more complex configurations 
can be created by connecting Streams containing multiplexers to other multi
plexer drivers. With such a diversity of needs for multiplexers, it is not possi
ble to provide general purpose multiplexer drivers. Rather, STREAMS provides 
a general purpose multiplexing facility. The facility allows users to set up the 
inter-module/driver plumbing to create multiplexer c9nfigurations of generally 
unlimited interconnection. 

The connections are created from user space through specific STREAMS 
ioctl system calls. In a lower multiplexer, multiple Streams are connected 
below an application-specific, developer-implemented multiplexing driver. 
The multiplexing facility will only connect Streams to a driver. The ioctl call 
configures a multiplexer by connecting one Stream at a time below the opened 
multiplexer driver. As each Stream is connected to the driver, the connection 
setup procedure identifies the Stream to the driver. The driver will generally 
store this setup information in a private data structure for later use. 

Subsequently, when messages flow into the driver on the various con
nected Streams, the identity of the associated Stream is passed to the driver as 
part of the standard procedure call. The driver then has available the Stream 
identification, the previously stored setup information for this Stream, and any 
internal routing information contained in the message. These data are used, 
according to the application implemented, to process the incoming message 
and route the output to the appropriate outgoing Stream. 

Additionally, new Streams can be dynamically connected to a operating 
multiplexer without interfering with ongoing traffic, and existing Streams can 
be disconnected with similar ease. 

6-10 STReAMS PRIMER 



Monitoring 
STREAMS allows user processes to monitor and control Streams so that 

system resources (such as CPU cycles and process slots) can be used effec
tively. Monitoring is especially useful to user-level multiplexers, in which a 
user process can create multiple Streams and switch messages among them 
(similar to STREAMS kernel~level multiplexing, described previously). 

User processes can efficiently monitor and control multiple Streams with 
two STREAMS system calls: poll(2) and the iodl(2) LSETSIG command. 
These calls allow a user process to detect events that occur at the Stream head 
on one or more Streams, including receipt of a data or protocol message on 
the read queue and cessation of flow control. 

Synchronous monitoring is provided by use of poll alone; in this case, 
the user proce!is cannot continue processing until after the system call com
pletes. When the calls are used together, they allow asynchronous, or con
current, operation of the process and STREAMS input/output. This allows the 
user process to monitor the Stream while carrying on other activities. 

To monitor Streams with poll, a user process issues that system call and 
specifies the Streams to be monitored, the events to look for, and the amount 
of time to. wait for an event. poll will block the process until the time expires 
or until an event occlirs. If an event occurs, poll will return the type of event 
and the Stream on which the event occurred. 

Instead of waiting for an event to occur, a user process may want to moni
tor one or more Streams while processing other data. It can do so by issuing 
the ioctlLSETSIG command, specifying one or more Streams and events (as 
with pail). Unlike a poll, this ioctl does not force the user process to wait for 
the event but returns immediately and will issue a signal when an event 
occurs. The process must also request signal(2) or sigset(2) to catch the resul
tant SIGPOLL signal. 

If any selected event occurs on any of the selected Streams, STREAMS will 
cause the SIGPOLL catching function to be executed in all associated request
ing processes. However, the process(es) will not know which event occurred, 
nor on what Stream the event occurred. A process that issues the LSETSIG 
can get more detailed information by issuing a poll after it detects the event. 

()tHER FACILITIES 6-11 



Error and Trace Logging 

STREAMS includes error and trace loggers useful for debugging and 
administering modules and drivers. 

Any module or driver in any Stream can call the STREAMS logging func
tion strlog. described in log(7). When called, strlog will send formatted text 
to the error logger strerr(lM), the trace logger strace(lM), or both. The call 
parameters for strlog include the module/driver identification, a severity level, 
and the formatted text describing the condition causing the call. The call also 
identifies the process (strerr and/or strace) to receive the resultant output 
message. 

6-12 STREAMS PRIMER 



Error 
Log File 

Strerr 

I module ~--

Trace 
Log File 

Strace 

Trace 
Messages 

Log 
Software 

Driver 

Figure 6-5: Error and Trace Logging 

Error and Trace Logging 

User User 

--B 

strerr is intended to operate as a daemon process initiated at system 
startup. A call to strlog requesting an error to be logged causes an MJROTO 
message to be sent to strerr, which formats the contents and places them in a 
daily file. The utility strclean(lM) is provided to periodically purge aged, 
unreferenced daily log files. 

OTHER FACILITIES 6-13 



Error and Trace Logging 

A call to strlog requesting trace information to be logged causes a similar 
M-PROTO message to be sent to strace(lM), which places it in a user desig~ 
nated file. strace is intended to be initiated by a user, The user can designate 
the modules/drivers and severity level of the messages to be accepted for log
ging by strace. 

A user process can subfuit its own MJROTO messages to the log driver 
for inclusion in the logger Of its choice through putmsg(2). The messages 
must be in the same format required by th~ logging processes and Will be 
switched to the logger(s) requested in the message. 

The output to the log files is formatted, ASCII text. The files can be pro
cessed by standard system commands such as grep(l) or ed(l), or by 
developer-provided routines. 

6-14 STREAMS PRIMER 



Introduction 
This chapter compares operational features of character I/O device drivers 

with STREAMS drivers and modules. It is intended for experienced developers 
of UNIX system character device drivers. Details are provided in the STREAMS 

Programmer's Guide. 

Environment 
No user environment is generally available to STREAMS module pro

cedures and drivers. The exception is the module and driver open and close 
routines, both of which have access to the ll-area of the calling process and 
can sleep. Otherwise, a STREAMS driver, module put procedure, and module 
service procedure has no user context and can neither sleep nor access any 
ll-area. 

Multiple Streams can use a copy of the same module (that is, the same 
fmodsw), each containing the same processing procedures. This means that 
module code is reentrant, so care must be exercised when using global data in 
a module. Put and service procedures are always passed the address of the 
QUEUE (for example, in Figure 2-5 Au calls Bu's put procedure with Bu as a 
parameter). The processing procedure establishes its environment solely from 
the QUEUE contents, typically the private data (for example, state information). 

Drivers 
At the interface to hardware devices, character I/O drivers have interrupt 

entry points; at the system interface, those same drivers generally have direct 
entry points (routines) to process open, close, read, write, and ioctl system 
calls. 

STREAMS device drivers have similar interrupt entry points at the 
hardware device interface and have direct entry points only for open and 
close system calls. These entry points are accessed via STREAMS, and the call 
formats differ from character device drivers. The put procedure is a driver's 
third entry point, but it is a message (not system) interface. The Stream head 
translates write and ioctl calls into messages and sends them downstream to 
be processed by the driver's write QUEUE put procedure. read is seen directly 
only by the Stream head, which contains the functions required to process 
system calls. A driver does not know about system interfaces other than open 

DRIVER DESIGN COMPARISONS 7-1 



Introduction 

and dose, but it can detect absence of a read indirectly if flow control pro
pagates from the Stream head to the driver and affects the driver's ability to 
send messages upstream. 

For input processing, when the driver is ready to send data or other infor
mation to a user process, it does not wake up the process. It prepares a mes
sage and sends it to the read QUEUE of the appropriate (minor device) Stream. 
The driver's open routine generally stores the QUEUE address corresponding 
to this Stream. 

For output processing, the driver receives messages in place of a write 
call. If the message cannot be sent immediately to the hardware, it may be 
stored on the driver's write message queue. Subsequent output interrupts can 
remove messages from this queue. 

Drivers and modules can pass signals, error codes, and return values to 
processes via message types provided for that purpose. 

Modules 
As described above, modules have user context available only during the 

execution of their open and close routines. Otherwise, the QUEUEs forming 
the module are not associated with the user process at the end of the Stream, 
nor with any other process. Because of this, QUEUE procedures must not 
sleep when they cannot proceed; instead, they must explicitly return control to 
the system. The system saves no state information for the QUEUE. The 
QUEUE must store this information internally if it is to proceed from the same 
point on a later entry. 

When a module or driver that requires private working storage (for exam
ple, for state information) is pushed, the open routine must obtain the storage 
from external sources. STREAMS copies the module template from fmodsw 
for the LPUSH, so only fixed data can be contained in the module template. 
STREAMS has no automatic mechanism to allocate working storage to a 
module when it is opened. The sources for the storage typically include a 
module-specific kernel array, installed when the system is configured, or the 
STREAMS buffer pool. When using an array as a module storage pool, the 
maximum number of copies of the module that can exist at anyone time must 
be determined. For drivers, this is typically determined from the physical dev
ices connected, such as the number of ports on a multiplexer. However, cer
tain types of modules may not be associated with a particular external physi
cal limit. For example, the CANONICAL module shown in Figure 2-4 could 
be used on different types of Streams. 

7-2 STREAMS PRIMER 



Glossary 

downstream 

driver 

message 

message queue 

message type 

module 

multiplexer 

The direction from Stream head to driver. 

The end of the Stream closest to an external interface. 
The principal functions of the driver are handling any 
associated device, and transforming data and informa
tion between the external interface and Stream. It can 
also be a pseudo-driver, not directly associated with a 
device, which performs functions internal to a Stream, 
such as a multiplexer or log driver. 

One or more linked blocks of data or information, 
with associated STREAMS control structures containing 
a message type. Messages are the only means of 
transferring data and communicating within a Stream. 

A linked list of messages connected to a QUEUE. 

A defined set of values identifying the contents of a 
message. 

Software that performs functions on messages as they 
flow between Stream head and driver. A module is 
the STREAMS counterpart to the commands in a Shell 
pipeline except that a module contains a pair of func
tions which allow independent bidirectional (down
stream and upstream) data flow and processing. 

A mechanism for connecting multiple Streams to a 
multiplexing driver. The mechanism supports the 
processing of interleaved data Streams and the pro
cessing of internetworking protocols. The multiplex
ing driver routes messages among the connected 
Streams. The other end of a Stream connected to a 
multiplexing driver is typically connected to a device 
driver. 

pushable module A module between the Stream head and driver. A 
driver is a non-pushable module and a Stream head 
includes a non-pushable module. 

GLOSSARY G-1 



Glossary 

QUEUE 

read queue 

Stream 

Stream head 

STREAMS 

upstream 

write queue 

The set of structures that forms a module. A module 
is composed of two QUEUEs, a read (upstream) QUEUE 
and a write (downstream) QUEUE. 

The message queue in a module or driver containing 
messages moving upstream. Associated with input 
from a driver. 

The kernel aggregate created by connecting STREAMS 
components, resulting from an application of the 
STREAMS mechanism. The primary components are a 
Stream head, a driver and zero or more pushable 
modules between the Stream head and driver. A 
Stream forms a full duplex processing and data 
transfer path in the kernel, between a user process 
and a driver. A Stream is analogous to a Shell pipe
line except that data flow and processing are bidirec
tional. 

The end of the Stream closest to the user process. 
The Stream head provides the interface between the 
Stream and the user process. The principal functions 
of the Stream head are processing STREAMS-related 
system calls, and bidirectional transfer of data and 
information between a user process and messages in 
STREAMS' kernel space. 

A kernel mechanism that supports development of 
network services and data communication drivers. It 
defines interface standards for character input/output 
within the kernel, and between the kernel and user 
level. The STREAMS mechanism comprises integral 
functions, utility routines, kernel facilities and a set of 
structures. 

The direction from driver to Stream head. 

The message queue in a module or driver containing 
messages moving downstream. Associated with out
put from a user process. 

G·2 STREAMS PRIMER 



NOTES 



NOTES 


