

UNIX™ System V - Release 2.0
Programmer Reference Manual
DEC™ Processors

April 1984
307-113, Issue 2

UNIX is a trademark of AT&T Bell Laboratories

DEC is a trademark of Digital Equipment Corporation

~-
'-".

Copyright@ 1984 AT&T Technologies
All Rights Reserved
Printed in U.S.A.

DEC, PDP, UNIBUS. and MASSBUS are trademarks of Digital Equipment
Corporation.

HP is a trademark of Hewlett-Packard, Inc.

DIABLO is a trademark of Xerox Corporation.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Versatec is a registered trademark of Versatec Corporation.

TELETYPE is a trademark of AT&T Teletype Corporation.

3B and DOCUMENTER'S WORKBENCH are trademarks of AT&T
Technologies.

UNIX is a trademark of AT&T Bell Laboratories.

This manual was set on an AUTOLOGIC, Inc.
APS-5 phototypesetter driven by the TROFF
formatter operating under the UNIX system.

- 2 -

,"'" ~

r··..·'
!." •• _"

,J

INTRODUCTION

This manual describes the programming features of the UN IX system. It provides nei­
ther a general overview of the UNIX system nor details of the implementation of the
system.

Not all commands, features, and facilities described in this manual are available in
every UNIX system. The entries not applicable for a particular hardware line will have
an appropriate caveat stamped in the center of the mast of an entry. Also, programs or
facilities being phased out will be marked as uObsolescent" on the top of the entry.
When in doubt, consult your system's administrator.

This manual is divided into four sections, some containing inter-filed sub-classes:

2. System Calls.
3. Subroutines:

3C. C and Assembler Library Routines
3S. Standard I/O Library Routines
3M. Mathematical Library Routines
3X. Miscellaneous Routines
3F. FORTRAN Library Routines

4. File Formats.
5. Miscellaneous Facilities.

Section 2 (System Calls) describes the entries into the UNIX system kernel. including
the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories llib and lusr/lib. See intro (3) for
descriptions of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for exam­
ple, the format of the output of the link editor is given in a.out (4). Excluded are files
used by only one command (for example, the assembler's intermediate files). In gen­
eral, the C language struct declarations corresponding to these formats can be found in
the directories lusr/include and lusr/include/sys.

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are descrip­
tions of character sets, macro packages, etc.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section
are alphabetized, with the exception of the introductory entry that begins each section
(also section 3 is in alphabetical order by suffixes). Some entries may describe several
routines, commands, etc. In such cases, the entry appears only once, alphabetized
under its Umajor" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefty statcs its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 2 (System Calls):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutablc argument prototypes and program
names found elsewhere in the manual <they are underlined in the typed ver­
sion of the entries).

Square brackets (I around an argument prototype indicate that the argument
is optional. When an argument prototype is given as "name" or "file", it
always refers to a file name.

- 3 -

Introduction

Ellipses ... are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin­
ning with a minus -, plus +. or equal sign - is often taken to be some sort of
flag argument, even if it appears in a position where a file name could appear.
Therefore, it is unwise to have files whose names begin with -. +. or -.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally. the
suggested fix is also described.

A table of contents precedes Section 2. On each index line, the title of the entry to
which that line refers is followed by the appropriate section number in parentheses.
This is important because there is considerable duplication of names among the sec­
tions, arising principally from commands that exist only to exercise a particular system
call.

On most systems, all entries are available on-line via the man (I) command (see Sec­
tion 1 of the UNIX System User Reference Manual).

- 4 -

~'
\.

TABLE OF CONTENTS

2. System Calls

intro. • • • introduction to system calls and error numbers
access • • • • . • • • • • . • determine accessibility of a file
acct •••.......•..••..• enable or disable process accounting
alarm ••..•.••.••.••..••..•. set a process alarm clock
brk . • . . . • . • • . • • • . . • • . change data segment space allocation
chdir. • • . • . . • . • • . • . . . • . change working directory
chmod ..••• • . • • • . . • • . . change mode of file
chown • . . • • change owner and group of a file
chroot • . . change root directory
close. • . . • • • • . . • close a file descriptor
creat • . • • • • • • • • . • • . • create a new file or rewrite an existing one
dup . • . . . • • • . • . . . duplicate an open file descriptor
exec . • . . • . . . • • • • • • execute a file
exit. • • . . terminate process
fcntl • • . • . . • . • . • . file control
fork • • . • • • • . • • • . . • . . . • . . • . . • . create a new process
getpid ••.•..... •• get process, process group, and parent process IDs
getuid get real user, effective user, real group, and effective group IDs
ioctl . • . . • • • . . • • • . • . . . • • . . • • . control device
kill . . • . . • • send a signal to a process or a group of processes
link . . . • • . • • • • • • link to a file
Iseek • • . . • • . • • . • move read/write file pointer
maus . . . • . • • • • • multiple-access-user-space (shared memory) operations
mknod . . make a directory, or a special or ordinary file
mount. . • • . • . . • mount a file system
msgctl•..•..••..•• message control operations
msgget . • • . . • • • . . . • . • . . • . get message queue
msgop • • . • • • • • • • . . • • . . . • • . . • • . . message operations
nice . . . • • . . . • . • . . . • change priority of a process
open • . • . . • . . . • . . • • . . . • open for reading or writing
pause . • • • . • • • • . suspend process until signal
pipe • • • . . • . . • • . • . . . • create an interprocess channel
plock •.•.•...•......•• lock process, text, or data in memory
profil • . . • • . . . • • . . • . . . • • • execution time profile
ptrace ••..••.......•.•..•...••... process trace
read • . • • • • . . • • read from file
semctl •••...••••.••..•.•.. semaphore control operations
semget•....••..•.......•. get set of semaphores
semop • • . . • • • . • • •• semaphore operations
setpgrp • • . . . • • . • • . '. . • . . . • set process group ID
setuid •....•..••..••..••..••. set user and group IDs
shmctl ••..•.•...••.••... shared memory control operations
shmget. • get shared memory segment
shmop • . • • • • • shared memory operations
signal . . . • • . • . . • . • . . . specify what to do upon receipt of a signal
stat .•.•.•..•.•••.•...•......••• get file status
stime • • . • . . . • • • • • . . • . . set time
sync. • • . . . • • • . • . • . • • • . • • . . • • . . update super-block
time • • . . . • • . • • . • • get time
times .•.......•........ get process and child process times
ulimit . . • • . • • . • get and set user limits
umask • • • set and get file creation mask
umount • • • . . • • . . . • • unmount a file system
uname • • • • • • . . • • • • . •• get name of current UNIX system

- 1 -

Table of Contents

• • • • • • • • . • • . . • • • • . . • remove directory entry
• • • . • • . . • • • • . get file system statistics

• • . set file access and modification times
. wait for child process to stop or terminate

• • • • . • • . • • . • . . • write on a file

unlink
ustat
utime
wait •.
write.

3. Subroutines

intro • . • . . • • . • • . • • • introduction to subroutines and libraries
a641 • • • • • • convert between long integer and base-64 ASCII string
abort • • • • • • • • • • • . • • • generate an lOT fault
abort • • • • • • • • • • • . • • . • . • • . • . terminate Fortran program
abs • • • • . . • . • • • • • return integer absolute value
abs. . . • • • . . • • • • • • . . • . • . . . • • • Fortran absolute value
acos . . . • . . Fortran arccosine intrinsic function
aimag . . • • • • • . • Fortran imaginary part of complex argument
aint • ..• • • . . Fortran integer part intrinsic function
asin • • • • . . • . Fortran arcsine intrinsic function
assert . . . • • • . . . • . . • . • • • . . . verify program assertion
atan . . . • Fortran arctangent intrinsic function
atan2 ..••..•.••••.•••• Fortran arctangent intrinsic function
bessel .•••.•••••••.••••...•••••• Bessel functions
bool. • • . • • • . • . . • Fortran bitwise boolean functions
bsearch •••.•.••.•..••...•.. binary search a sorted table
clock • . . . • • • . • • . • • • report CPU time used
conjg . • • • • Fortran complex ,conjugate intrinsic function
conv •. • • • • • • . • • • • • • • • • • • . • • . • translate characters
cos. . . • • • • • • • • . . . • Fortran cosine intrinsic function
cosh . . . • • • . . . • • • • • . Fortran hyperbolic cosine intrinsic function
crypt. • • • •• . • • • • generate DES encryption
ctermid • • • • • . . • . . . generate file name for terminal
ctime • . . . • • • convert date and time to string
ctype. • • • . • • . • • • . • . • • • • . . • • • • • • classify characters
curses. • . • • • . . . CRT screen handling and optimization package
cuserid . . • • • . . • • • . • . • . • . get character login name of the user
dial • • • • • • establish an out-going terminal line connection
dim •..••.••••.••.•.•. positive difference intrinsic functions
dprod . • • • • . . • • . . • • . • double precision product intrinsic function
drand48 • • • • • • • • generate uniformly distributed pseudo-random numbers
ecvt ••• . • . • . . . • • . . • . • convert floating-point number to string
end ..••...•••....•••.•.• •• last locations in program
erf .•.•..•.•• .•. error function and complementary error function
exp • • • . • • • • • • • • . • • • . • Fortran exponential intrinsic function
exp • . . •• exponential, logarithm, power, square root functions
fclose. . • • • • • . . • . • • • . . close or flush a stream
ferror. . . • • • . • . . • . • • • • • . . . stream status inquiries
floor. • . • • • . . • • • • • floor, ceiling, remainder, absolute value functions
fopen •..•••...••••...••....••••. open a stream
fread • • • • • • . . • • • • • . • • • • • • • . . • • binary input/output
frexp • • . . • . • • . • manipulate parts of floating-point numbers
fseek •.....••••..•.•.•• reposition a file pointer in a stream
ftw . . . • • • . • walk a file tree
ftype . • • . . . • • • • . • • . • . • . . • explicit Fortran type conversion
gamma • • • • • . . . • • • . • • • • • • . • • • . . log gamma function
getarg . . . • . . • • • • • . . . • • return Fortran command-line argument
getc • . • . • . • • • • get character or word from a stream
getcwd • . • . • • • • . . get path-name of current working directory
getenv . • • . . • . . • • • • • .. return value for environment name

- 2 -

~\

r,

Table of Contents

getenv •••.......••••... return Fortran environment variable
getgrent • • . • • . • • . • . • • . • . • • get group file entry
getlogin ••...••.•.•••..•••••.•...• get login name
getopt .•.•..........•• get option letter from argument vector
getpass • • . • • • • • . • • • read a password
getpw .••........•••.......•.• get name from UID
getpwent . . • . . . • • • . . . • • • . • • • • • . get password file entry
gets. . • . . • . • •. • get a string from a stream
getut • • • • . . . • . • • . . . • • • access utmp file entry
hsearch . . • • • • • . • manage hash search tables
hypot ••.......•....•.•.•.. Euclidean distance function
iargc . • • • • . • • . . • iargc
index • . . . • • • • • • return location of Fortran substring
13tol • convert between 3-byte integers and long integers
Idahread .•.•.... read the archive header of a member of an archive file
Idclose . • • • . . • • • • . close a common object file
Idfhread . • • read the file header of a common object file
Idgetname . • •• retrieve symbol name for common object file symbol table entry
Idlread manipulate line number entries of a common object file function
Idlseek ..••• seek to line number entries of a section of a common object file
Idohseek seek to the optional file header of a common object file
Idopen. • • • • • • • . • • open a common object file for reading
Idrseek •••..• seek to relocation entries of a section of a common object file
Idshread . • . . . read an indexed/named section header of a common object file
Idsseek • . • . • . . • seek to an indexed/named section of a common object file
Idtbindex . . • compute the index of a symbol table entry of a common object file
Idtbread ...••. read an indexed symbol table entry of a common object file
Idtbseek .•....••... seek to the symbol table of a common object file
len • • • • • • return length of Fortran string
log. • . • . • . • • • • Fortran natural logarithm intrinsic function
log I0 • . . • • . • . • • • . • . Fortran common logarithm intrinsic function
logname • • • . . . return login name of user
Isearch • • . • linear search and update
malloc • . . . • . • . . • . • main memory allocator
malloc • • • • • . . • . . fast main memory allocator
matherr • • • . • • • . . • error-handling function
max • • . • . . . • . • . • Fortran maximum-value functions
mclock • • . . • • • return Fortran time accounting
memory••.....•.•...... memory operations
min. . • • • . • . • Fortran minimum-value functions
mktemp. • . • • . • • make a unique file name
mod. . . • • . • • • Fortran remaindering intrinsic functions
monitor • . • • • • . • . • . • • . prepare execution profile
nlist . . • . . • • • • . • • • . • • . . • get entries from name list
perror. • • • • • . system error messages
plot . • . • • .. • graphics interface subroutines
popen • • • . . • • . initiate pipe to/from a process
printf • . . . • • . . print formatted output
putc . • . •. .•.•. . • . put character or word on a stream
putenv • • change or add value to environment
putpwent . • • • . • • • • . . . • • . write password file entry
puts • . . . • • • . . • . • • • • . put a string on a stream
qsort •.... • • . •..•...•.• quicker sort
rand •••...•....••...... simple random-number generator
rand •.••••••••.•••.••••••• random number generator
regcmp • • • • . . • • • • • . . . • • compile and execute regular expression
round • • • • . . • . . • • • • • . • • • • Fortran nearest integer functions

- 3 -

Table of Contents

scanf • . . . • convert formatted input
setbuf • . . assign buffering to a stream
setjmp • ••••••••• • • . • • • . . non-local goto
sign .. •. . Fortran transfer-of-sign intrinsic function
signal • . • . specify Fortran action on receipt of a system signal
sin. . . • • • • • Fortran sine intrinsic function
sinh • . Fortran hyperbolic sine intrinsic function
sinh • ••.. hyperbolic functions
sleep . • • • • • • •. . • . • . . • suspend execution for interval
sputl . . • • • • . . access long integer data in a machine-independent fashion.
sqrt . . . • • • • . . • • • • • • • • • Fortran square root intrinsic function
ssignal . • • • • • • • • • • • • software signals
stdio .•...•.•.•.•.••• standard buffered input/output package
stdipc ••••••••••••. standard interprocess communication package
strcmp . . • • • • • • • • . • . • string comparision intrinsic functions
string • • • . • • • . • • • • . • . . • • • . . • • • • • string operations
strtod •• • • • • • • . • • • • • . convert string to double-precision number
strtol . . . • • • • . • • • . • • . • convert string to integer
swab • • • • • • • • • swap bytes
system • • • • • • • issue a shell command from Fortran
system . . • • . . • • . • • . • • . • issue a shell command
tan • • • . • Fortran tangent intrinsic function
tanh ••....••••.••. Fortran hyperbolic tangent intrinsic function
tmpfile . • • . . . • . • . . • • create a temporary file
tmpnam • • • create a name for a temporary file
trig • • • . . . • • • . • • • • trigonometric functions
tsearch • manage binary search trees
ttyname . . • • • • . . • • • • • • • . • . . . • . find name of a terminal
ttyslot•••••• find the slot in the utmp file of the current user
ungetc .•••••. • push character back into input stream
vprintf.. .•••• • • • print formatted output of a varargs argument list
vprintf. • . • print formatted output of a varargs argument list

4. File Formats

intro • . . • . • . • introduction to file formats
a.out . • • . • • • • • . • • • . • . common assembler and link editor output
a.out.pdp . • . • . . . • . PDP-II assembler and link editor output
acct ••.•••..•...•.•.•.. per-process accounting file format
ar . • • • • • • • • • . . • . . common archive file format
ar.pdp • • • • • • • • • • • . . archive file format
checklist. • • . list of file systems processed by fsck
core • • • . • . . • format of core image file
cpio . . . • • • • . • • . . • . . • . format of cpio archive
dir . . • . • • • • • • • • format of directories
errfile. . . • • • • • • . • . . . error-log file format
filehdr • • • • . • • • • • • file header for common object files
fs .•••. •••• • • • • • . format of system volume
fspec • • . . • . . • •• • • • • • . • • format specification in text files
gettydefs • . • • • • speed and terminal settings used by getty
gps •••••.....•• graphical primitive string. format of graphical files
group • • . • . • • • . • . • • • • • • • • group file
inittab • • • . • . • • . • . • script for the init process
inode • • • • . • • . • . • • . • format of an i-node
issue • • • • . • • . . issue identification file
Idfcn • . . • •••• common object file access routines
Iinenum ••••• . line number entries in a common object file
master.dec . • • . master device information table

- 4 -

r.

Table of Contents

mnttab. . • . . • . . . • • mounted file system table
passwd . . . • • . . . password file
plot ••.........•.••..•••...••• graphics interface
pnch • . . . • . • • . . . file format for card images
profile . . • • . . . • . . setting up an environment at login time
reloc relocation information for a common object file
sccsfilc . . . • • format of sces file
scnhdr • •. section header for a common object file
syms•.. common object file symbol table format
tcrm • . • . . • • • • • • • • . . • • • • • . format of compiled term file.
terminfo•.....••.• terminal capability data base
utmp utmp and wtmp entry formats

5. Miscellaneous Facilities

intro . . introduction to miscellany
ascii • . • • map of ASCII character set
environ • • user environment
fcntl • • file control options
math • • • math functions and constants
prof. • . . • • • profile within a function
regexp• regular cxpression compile and match routines
stat • data returned by stat system call
term•.. conventional names for terminals
types . primitive system data types
values • machine-dependent values
varargs . handle variable argument list

- 5 -

.I

PERMUTED INDEX

~ 70boot: 11170 bootstrap procedures. 70boot(S)

\ archiver. hpio: HP 2645A terminal tape file hpio(J)
300: DASI 300 and 300s terminals. 300(1)
terminals. 300: DASI 300 and 300s 300(J)

300: DASI 300 and 300s terminals. 300())
13tol: convert between 3-byte integers and longl · I3to)(3C)

comparison. diff3: 3-way differential file · diff3()
TEKTRONIX 4014 terminal. 4014: paginator for the 4014(J)

paginator for the TEKTRONIX 4014 terminal. 4014: • 4014()
of th~ DASI 450 terminal. 450: handle special functions · 450()

special functions of the DASI 450 terminal. 450: handle • 450()
procedures. 70boot: 11170 bootstrap 70OOot(S)
operations. 7500ps: VAX-I 11750 console 7500ps(S)

f77: Fortran 77 compiler. f77()
operations. 7S00ps: VAX-III7S0 console 7S00ps(S)

integer and base-64 ASCIII a64l: convert between long a6410C)
abort: generate an lOT fault. abortOC)

program. abort: terminate Fortran abort(3F)
abs: Fortran absolute value. abs(JF)

value. abs: return integer absolute absOC)
adb: absolute debugger. • adb(J)

abs: return integer absolute value. • abs(3C)
abs: Fortran absolute value. absOF)

Illoor, ceiling, remainder, absolute value functions. lloor(JM)
requests. accept: allow/prevent LP accept(IM)

of a file. touch: update access and modification times touch(l)
utime: set file access and modification times. utime(2)

accessibility of a file. access: determine . · access (2)

~
commands. graphics: access graphical and numerical graphics(IG)

machine-independentl sputl: access long integer data in a • sputl(JX)
sadp: disk access profiler. sadp(1 M)

Idfcn: common object file access routines. Idfcn(4)
copy file systems for optimal access time. dcopy: dcopy(1 M)

getutent: access utmp file entry. getulOC)
access: determine accessibility of a file. access(2)

acctdisk: overview of accounting . . acclO M)
enable or disable process accounting. acct: acct(2)

acctcon I: connecl-time accounting. acclcon (1M)
acctprc I: process accounting. acctprc(1M)

shell procedures for accounting. chargefee: • acctsh(IM)
diskusg: generate disk accounting data by user ID. diskusg(1 M)

acct: per-process accounting file format. acct(4)
search and print process accounting filC<s). acctcom: acctcom(l)

acctmerg: merge or add total accounting files. acctmerg() M)
mclock: return Fortran time accounting. mclockOF)

summary from per-process accounting records. Icommand acctcms(1 M)
fwtmp: manipulate connect accounting records. fwtmp(1 M)

runacct: run daily accounting. runacct (I M)
process accounting. acct: enable o~ disable acct(2)

file format. acct: per-process accounting acct(4)
per-process accountingl acctcms: command summary from • acctcms() M)

process accounting file(sL acctcom: search and print acctcom()
accounting. acctcon I: connect-time acctcon(l M)
accounting acctdisk: overview of • • acct(1 M)

accounting files. acctmerg: merge or add total · acctmerg(l M)
acctprc I: process accounting. acctprc(1M)

~
intrinsic function. acos: Fortran arccosine • acos(JF)

killall: kill all active processes. killall(1M)
sag: system activity graph. sag(I G)
sal: system activity report package. • sar(1 M)
sar: system activity reporter. sar()

- 1 -

Permuted Index

current SCCS file editing activity. sact: print sact(})
report process data and system activity. /time a command; timex()

interface. acu: Automatic Call Unit (ACU) acu(?)

~acu: Automatic Call Unit (ACU) interface. acu(?)
adb: absolute debugger. adb(})

acctmerg: merge or add total accounting files. acctmerg(l M)
putcnv: change or add value to environment. putenv(JC)

secs files. admin: create and administer admin(})
admin: create and administer SCCS files. admin()

of complex argument. aimag: Fortran imaginary part aimag(3F)
intrinsic function. aint: Fortran integer part aint (3F)

alarm: set a process alarm clock. alarm(2)
clock. alarm: set a process alarm alarm(2)

brk: change data segment space allocation. brk(2)
malloc: main memory allocator. mallocC3C)

malloc: fast main memory allocator. mallocC3X)
accept: allow/prevent LP requests. acccpt() M)

boolean functions. and, or, xor, not: Fortran bool C3 F)
disk packs. format: format and/or check RP06 and RMOS format()M)

sort: sort and/or merge files. sort())
send: gather files and/or submit RJE jobs; sendOC)

functions. anint: Fortran nearest integer roundC3F)
link editor output. a.out: common assembler and a.out(4)

mkboot: convert a.out file to boot image. mkboot() M)
link editor output. a.out: PDP-II assembler and a.out.pdp(4)

maintainer. ar: archive and library ar.pdp()
maintainer for portable/ ar: archive and library arC)

ar: archive file format. ar.pdp(4)
format. ar: common archive file ar(4)

language. be: arbitrary-precision arithmetic bc()
acos: Fortran arccosine intrinsic function. acosOF)

maintainer. ar: archive and library ar.pdp()
~for portable archives. ar: archive and library maintainer ad»

cpio: format of cpio archive. cpio(4)
ar: common archive file format. ad4)

ar: archive file format. ar.pdp.(4)
common format. arcv: convert archive files from PDP-II to arcv.pdp(})

Idahread: read the archive header Idahread(3X)
HP 264SA terminal tape file archiver. hpio: hpio(l)

tar: tape file archiver. tarO)
maintainer for portable archives. /archive and library ar(l)

cpio: copy file archives in and out. cpio(l)
asin: Fortran arcsine intrinsic function. asin(3F)

atan2: Fortran arctangent intrinsic function. atan2(JF)
atan: Fortran arctangent intrinsic function. atanOF)

from PDP-II to common format. arcv: convert archive files arcv.pdp(l)
imaginary part of complex argument. aimag: Fortran aimagC3F)

return Fortran command-line argument. getarg: getargC3F)
varargs: handle variable argument list. varargs(S)

formatted output of a varargs argument list. vprintf: print vprintfOS)
formatted output of a varargs argument,list. vprintf: print vprintfOX)

command. xargs: construct argument Iist(s) and execute xargs(I)
getopt: get option letter from argument vector. getopt(3C)

expr: evaluate arguments as an expression. expr())
echo: echo arguments. echo(})

be: arbitrary-precision arithmetic language. be(})
number facts. arithmetic: provide drill in arithmetic(6)

expr: evaluate arguments as an expression. exprO)
as: assembler for PDP-ll. as.pdp(})
as: common assembler. as(l)

~characters. asa: interpret ASA carriage control • asa(I)
control characters. asa: interpret ASA carriage asa(I)

ascii: map of ASCII character set. ascii(S)
set. ascii: map of ASCII character ascii(S)

·2·

Permuted Index

long integer and base-64 ASCII string. /convert between a64I(3C)
intrinsic function. asin: Fortran arcsine asinOF)

~\
help: ask for help. hclp(l)

output. a.out: common assembler and link editor a.out(4)
output. a.out: PDP-II assembler and link editor a.ouLpdp(4)

as: common assembler. as{I)
as: assembler for PDP-II. as.pdp{I)

KMC11B kasb: assembler/un-assembler for the kasb{I)
assertion. assert: verify program assert(3X)

assert: verify program assertion. assert OX)
setbuf: assign buffering to a stream. • setbuf(3S)

qasurvey: Quality Assurance Survey. qasurvey{I M)
kl: KL-Il or DL-II asynchronous interface. kl.pdp(7)

/DZ-11, DZ-II/KMC-IIB, DH-11 asynchronous multiplexers. dz(7)
intrinsic function. atan: Fortran arctangent atan(3F)
intrinsic function. atan2: Fortran arctangent atan2(3F)

interface. acu: Automatic Call Unit (ACU) acu(7)
wait: await completion of process. wait{I)

processing language. awk: pattern scanning and awk{I)
ungetc: push character back into input stream. ungetc(3S)

back: the game of backgammon. back (6)
back: the game of backgammon. back (6)

UNIX system file system backup. /daily/weekly filesave(l M)
fine: fast incremental backup. finc{I M)

frec: recover files from a backup tape. frec(l M)
print, initialize, update bad information bdblk: bdblk(l M)

banner: make posters. banner{I)
terminal capability data base. terminfo: terminfo(4)

between long integer and base-64 ASCII string. /convert a641(3C)
portions of path names. basename, dirname: deliver basenameO)

~
arithmetic language. be: arbitrary-precision be{I)

bcopy: interactive block copy. beopyO M)
update bad information bdblk: print, initialize, bdblk{IM)

bdiff: big diff. bdiff(l)
cb: C program beautifier. cbO)

jO, jl, jn, yO, yl, yn: Bessel functions. bessel(3M)
bfs: big file scanner. bfs{I)

cpset: install object files in binary directories. cpset(1 M)
fread: binary input/output. fread(3S)

bsearch: binary search a sorted table. bsearch (3C)
tsearch: manage binary search trees. tsearch (3C)

remove symbols and relocation bits. strip: strip.pdp(I)
bj: the game of black jack. bj(6)

bj: the game of black jack. bj(6)
bcopy: interactive block copy. bcopy(l M)

sum: print checksum and block count of a file. sum{I)
sync: update the super block. sync{I)

df: report number of free disk blocks. df(l M)
and, or, xor, not: Fortran boolean functions. booI(3 F)

mkboot: convert a.out file to boot image. mkboot(IM)
UNIX system startup and boot procedures. unixboot: unixboot (8)

romboot: special ROM bootstrap loaders. romboot (8)
70boot: 11170 bootstrap procedures. 70boot(8)

tapeboot: magnetic tape bootstrap program. tapeboot(S)
diskboot: disk bootstrap programs. diskboot(S)

shell scripts. brc: system initialization brc{IM)
allocation. brk: change data segment space brk(2)

modest-sized programs. bs: a compiler/interpreter for bs{I)
sorted table. bsearch: binary search a bsearch(3C)

r· stdio: standard buffered input/output package. stdio(3S)
setbuf: assign buffering to a stream. setbuf(3S)

mknod: build special file. mknod(tM)
dmc: communications link with built-in DDCMP protocol. dmc(7)

swab: swap bytes. swab(JC)

• 3 •

Permuted Index

• cc(l)
. . .. scd\)

· cRow()
• cpp(»
· cb(»

lint(l)
cxref(I)
ctrace(t)
caJ(1)
dc(l)

• caJ(1)
• calcndar(J)

cu(IC)
. • stat (S)

• acu(7)
• intro(2)
• Iink(J M)
• Ip()
• tcrminfo(4)
• pnch(4)
• asa(J)
• cat(l)

cb(J)
cdt)

· cd(l)
· cdc(I)
· floor(3M)
· cflow()
· delta ()

pipc(2)
• ungetc(3S)

cuserid (3S)
• getc(3S)

putc(3S)
• ascii(S)

asa(l)
• conv(3C)

..• ctype(3C)
tr(1)

• acctsh(t M)
• chdir(2)
• fsck(1 M)

format(J M)
checkall(1 M)

· lint(1)
pwck(1 M)

• checkalJ(1M)
• •• volcopy(J M)

checklist (4)
• sum(J)
• chess(6)
• chess(6)
• times(2)
• wait(2)

chmod(l)
chmod(2)

• chown(2)
• chown(l)
• chroot(2)
• chroot() M)

. • ctype(3C)
• uuclean (J M)
• clri(1 M)
• alarm(2)

C compiler. • •••••
C compiler for stand-alone
C flow graph.•.....
C language preprocessor.
C program beautifier.
C program checker.
C program cross-reference.
C program debugger.
cal: print calendar.
calculator. • . . • •
calendar.••.•••
calendar: reminder service.
call another UNIX system.
call. stat: •••••••.
Call Unit (ACU) interface.
calls and error numbers.
calls. link: exercise
cancel: send/cancel requests
capability data base. • • •
card images. ..••••
carriage control characters.
cat: concatenate and print
cb: C program beautifier.••
cc: C compiler. • • • . .
cd: change working directory.
cdc: change the delta
ceiling, remainder, absolute •
cflow: generate C flow graph.
(change) to an SCCS file.
channel. • • . • • • • .
character back into input .
character login name of the
character or word from a •
character or word on a stream.
character set. . .
characters. asa:
characters.
characters. • .
characters. • . •
chargefee: shell procedures
chdir: change working • •
check ••••..•••
check RP06 and RM05 disk
checkall: faster file system
checker. • ••.••
checkers.••••••
checking procedure.
checking. volcopy: •
checklist: list of file •••••
checksum and block count of a
chess. • ••.•••••
chess: the game of chess.
child process times.
child process to stop or • • •
chmod: change mode. • ••••
chmod: change mode of file.
chown: change owner and group
chown: change owner or group.
chroot: change root directory.
chroat: change root directory
classify characters.
clean-up.•••
clear i-node.
clock.

dc: desk
cal: print

cc:
programs. scc:
cflow: generate

cpp: the
cb:

lint: a
cxref: generate

ctrace:

of a file.

times: get process and
terminate. wait: wait for

for a command.
isalpha:

uuclean: uucp spool directory
clri:

alarm: set a process alarm

cu:
data returned by stat system

acu: Automatic
intro: introduction to system

link and unlink system
to an LP line printer. Ip,

terminfo: terminal
pnch: file format for
asa: interpret ASA

files.

delta: make a delta
pipe: create an interprocess

stream. ungetc: push
user. cuserid: get
stream. getc: get

putc: put
ascii: map of ASCII

interpret ASA carriage control
toupper: translate

isalpha: classify
tr: translate

for accounting.
directory.

fsck: file system consistency
packs. format: format and/or

checking procedure.
lint: a C program

pwck: password/group file
checkall: faster file system

copy file systems with label
systems processed by fsck.

file. sum: print
chess: the game of

commentary of an SCCS delta.
value/ floor: floor,

- 4 -

Permuted Index

cron: clock daemon. cron(\ M)
clock: report CPU time used. c1ock(JC)

ldclose: close a common object file. Idclose (3 X)

r close: close a file descriptor. c1ose(2)
descriptor. close: close a file close(2)

fclose: close or flush a stream. fcloseOS)
c1ri: clear i-node. clriO M)
cmp: compare two files. cmp(\)

line-feeds. col: filler reverse col(I)
comb: combine SCCS deltas. combO)

comb: combine SCCS deltas. comb(l)
common to two sorted files. comm: select or reject lines commO)

nice: run a command at low priority. nicdl)
change root directory for a command. chroot: chroot(\ M)

env: set environment for command execution. envO)
uux: UNIX-to-UNIX system command execution. uux(IC)

system: issue a shell command from Fortran. systemOF)
quits. nohup: run a command immune to hangups and nohup(1)

net: execute a command on the PCl network. net(\C)
getopl: parse command options. getopt(l)

/shell, the standard/restricted command programming language. shO)
and system/ timex: time a command; report process data timex(J)

per-process/ acctcms: command summary from acctcms(J M)
system: issue a shell command. system OS)

test: condition evaluation command. test (t)
time: time a command. timeO)

argument list(s) and execute command. xargs: construct xargs(J)
getarg: return Fortran command-line argument. getargOF)

at: execute commands at a later time. atO)
access graphical and numerical commands. graphics: graphics(tG)

install: install commands. install(1 M)

r-" intra: introduction to commands intro(\)
introduction to maintenance commands intra: intro(1 M)

how to remake the system and commands. mk: mk(S)
network useful with graphical commands. stat: statistical stat(IG)

cdc: change the delta commentary of an SCCS delta. cdc(J)
ar: common archive file format. ar(4)

editor output. a.out: common assembler and link a.out(4)
as: common assembler. as(\)

archive files from PDP-II to common format. arcv: convert arcv.pdp(t)
object/archive files to common formats. /convert convert(\)

function. log I0: Fortran common logarithm intrinsic 10gIOOF)
routines. Idfcn: common object file access Idfcn(4)

reading. Idopen: open a common object file for IdopenOX)
Idclose: close a common object file. Idclose(3X)

read the file header of a common object file. Idfhread: Idfhread(3X)
seek to the symbol table of a common object file. Idtbseek: IdtbseekOX)

line number entries in a common object file. linenum: Iinenum(4)
nm: print name list of common object file. nm(J)

relocation information for a common object file. reloc: reloc(4)
scnhdr: section header for a common object file. scnhdr(4)

table format. syms: common object file symbol syms(4)
filehdr: file header for common object files. filehdr(4)

ld: link editor for common object files. Id(l)
size: print section sizes of common object files. size(l)

comm: select or reject lines common to two sorted files. comm(J)
ipcs: report inter-process communication facilities/ ipcsO)

ftok: standard interprocess communication package. stdipcOC)
pel: parallel communications link interface. pcl(7)

r built-in DDCMP protocol. dmc: communications link with dmc(7)
diff: differential file comparator. diff(1)

cmp: compare two files. • • • cmp(l)
SCCS file. sccsdiff: compare two versions of an sccsdiff(1)

functions. 1ge: string comparision intrinsic strcmpOF)

- 5 -

Permuted Index

diff30)
dircmp(l)
regcmpOX)

• regexp(5)
regcmp(l)

• ••• term(4)
• ccO)

n7(I)
• scc(I)
· vpmc.dec(1M)
• tic(1 M)
• yacc(I)

bsO)
erfOM)

· . wait(I)
• aimagOF)
• conjg(3F)
• packO)

IdtbindexOX)
· catO)
· test(J)

· • config.dc(J M)
· vcf(IM)
· config.dc<t M)
• IpadminO M)

••• conjgOF)
• conjgOF)
• fwtmp(1 M)
• dmkset (I M)
• dialOC)

vpmset(IM)
· acctcon (IM)
· fsck(\ M)

vlxO M)
• • 7500ps(S)

• 7S00ps(S)
• • math(5)
• • mkfsOM)

• xargs(I)
· Is(I)

toc(IG)
· csplit(I)
• asaO)
· ioctl(2)
• fcntl(2)
· initO M)
• dmk(7)

msgctl(2)
semctl(2)

• • shmctl(2)
fcntJ(5)
uustat(IC)
vc(I)

• lty(7)
term(5)
ftypeOF)
unitsO)

· dd(I)
• mkboot(\ M)
• arcv.pdpO)
· 13toIOC)

••• a6410C)
• convert (I)

ctime(JC)

comparison. ••••••
comparison. .•••••
compile and execute regular
compile and match routines.
compile. • •••••
compiled term file..
compiler.
compiler.
compiler for stand-alone
compiler for the virtual
compiler. . ..••••
compiler-compiler.
compiler/interpreter for
complementary error function.
completion of process.
complex argument. aimag:
complex conjugate intrinsic
compress and expand files.
compute the index of a symbol
concatenate and print files. . .
condition evaluation command.
config: configure a UNIX
configuration verification .
configure a UNIX system.
configure the LP spooling
conjg: Fortran complex
conjugate intrinsic function.
connect accounting records.
connect DMII-BA modems to
connection. dial: establish
connect/load VPM drivers
connect-time accounting.
consistency check • . •
console 110ppy interface.
console operations.
console operations.
constants.
construct a file system. •
construct argument list (s) and
contents of directory.
contents routines.
context split.
control characters. •
control device.
control. •....
control initialization.
control multiplexor.
control operations. •
control operations. . . . • • •
control operations.•
control options.
control. uustat: • •
control. •••••••••••
controlling terminal
conventional names for .
conversion. . • . . • •
conversion program. •
convert and copy a file.
convert a.out file to boot
convert archive files from
convert between 3-byte • •
convert between long integer
convert: convert . • • • •
convert date and time to • •

diff3: 3-way differential file
dircmp: directory

expression. regcmp:
regexp: regular expression

regcmp: regular expression
term: format of

cc: C
n7: Fortran 77

programs. scc: C
protocol machine. vpmc:

tic: terminfo
yacc: yet another

modest-sized programs. bs: a
erf: error function and

wait: await
Fortran imaginary part of

function. conjg: Fortran
pack:

table entry of a/ Idtbindex:
cat:
test:

system.
program. vcf: VAX-I 1/780

config:
system. Ipadmin:

conjugate intrinsic function.
conjg: Fortran complex

fwtmp: manipulate
KMCII-B dmkset:

an out-going terminal line
vpmset:

acctconl:
fsck: file system

vlx: VAX-II/7S0 LSI
7500ps: VAX-ll/750
7S00ps: VAX-II/7S0

math: math functions and
mkfs:

execute command. xargs:
Is: list

toe: graphical table of
csplit:

asa: interpret ASA carriage
ioetl:

fcnt1: file
init: process

dmk: DMII-BA modem
msgctl: message

semct1: semaphore
shmctl: shared memory

fcntl: file
uucp status inquiry and job

vc: version
interface. tty:

terminals. term:
int: explicit Fortran type

units:
dd:

image. mkboot:
PDP-II to common/ arcv:

integers and long/ 13tol:
and base-64 ASCII/ a64l:

object/archive files to/
string. ctime:

- 6 -

Permuted Index

and VAX-I 1/780 systems. fscv: convert files between PDP-II fscv.vax(1 M)
to string. ecvt: convert floating-point number ecvtOC)

scanf: convert formatted input. scanf(JS)

r' to common formats. convert: convert object/archive files convert(l)
double-precision/ strtod: convert string to strtodOC)

strtol: convert string to integer. strtol(3C)
dd: convert and copy a file. dd(l)

bcopy: interactive block copy. bcopyO M)
cpio: copy file archives in and out. cpio(t)

access time. dcopy: copy file systems for optimal dcopyO M)
checking. volcopy: copy file systems with label volcopy(1M)

cp, In, mv: copy, link or move files. cp(J)
UNIX system to UNIX system copy. uucp: uucp(IC)

UNIX-to-UNIX system file copy. uuto: public uuto(1C)
file. core: format of core image corc(4)

core: format of core image file. core(4)
mem: core memory. mcm(7)

function. cos: Fortran cosine intrinsic cos (3 F)
cosine intrinsic function. cosh: Fortran hyperbolic cosh(3F)

cos: Fortran cosine intrinsic function. cos(JF)
cosh: Fortran hyperbolic cosine intrinsic function. cosh(3F)

sum: print checksum and block count of a file. sumO)
wc: word count. wc(J)

files. cp, In, mv: copy, link or move cpO)
cpio: format of cpio archive. cpio(4)

and out. cpio: copy file archives in • cpio(J)
cpio: format of cpio archive. cpio(4)

preprocessor. cpp: the C language • • cpp(I)
binary directories. cpset: install object files in cpsct(l M)

clock: report CPU time used. c1ock(3C)
craps: the game of craps. craps(6)

~
craps: the game of craps. . • craps(6)
crash: examine system images. crash(1 M)

'- system crashes. crash: what to do when the crash.dec(g)
what to do when the system crashes. crash: crash.dec(g)

rewrite an existing one. creat: create a new file or creat(2)
file. tmpnam: create a name for a temporary tmpnam(3S)

an existing one. creat: create a new file or rewrite creat(2)
fork: create a new process. fork(2)

tmpfile: create a temporary file. tmpfile(3S)
channel. pipe: create an interprocess pipc(2)

files. admin: create and administer SCCS admin(J)
umask: set and get file creation mask. umask(2)

cron: clock daemon. cron(1 M)
crontab: user crontab file. crontaMI)

crontab: user crontab file. crontab(J)
cxref: generate C program cross-reference. cxrefU)

optimization package. curses: CRT screen handling and curses(3X)
crypt: encode/decode. crypt(l)

encryption. crypt: generate DES crypt(JC)
csplit: context split. csplit (I)

terminal. ct: spawn getty to a remote ct(JC)
for terminal. ctermid: generate file name ctermid(3S)

to string. ctime: convert date and time clime(3C)
ctrace: C program debugger. ctrace(J)
cu: call another UNIX system. cu(IC)

activity. sact: print current SCCS file editing sact()
uname: print name of current UNIX system. uname()

uname: get name of current UNIX system. uname(2)
slot in the utmp file of the current user. lfind the ttyslot(3C)r getcwd: get path-name of current working directory. getcwd(3C), ,

and optimization package. curses: CRT screen handling curses(3X)
spline: interpolate smooth curve. spline(IG)

name of the user. cuserid: get character login cuserid (3S)

- 7 -

Permuted Index

of each line of a file. cut: cut out selected fields cut (\)
each line of a file. cut: cut out selected fields of cut (I)

cross-reference. cxref: generate C program cxref(I)
cron: clock daemon. cron(1M)

~errdemon: error-logging daemon. errdemon(\ M)
terminate the error-logging daemon. errstop: crrstop(1M)

runacct: run daily accounting. runacct(\ M)
system backup. filesave: daily/weekly UNIX system file filcsavC< 1M)

300: OASI 300 and 300s terminals. 300(I)
special functions of the OASI 450 terminal. /handle 450(\)

/time a command; report process data and system activity. timcx(J)
terminfo: terminal capability data base. terminfo(4)

generate disk accounting data by user 10. diskusg: • . diskusg(1 M)
sputl: access long integer data in a machine-independent/ sputl(3X)

plock: lock process. text. or data in memory. plock(2)
prof: display profile data. prof(I)

call. stat: data returned by stat system stat(S)
brk: change data segment space allocation. brk(2)

types: primitive system data types. typcs(5)
join: relational database operator. join<J)

tput: query terminfo database. tput (\)
ctime: convert date and time to string. ctimcOC)

date: print and set the date. datc(\)
date: print and set the date. date< I)
de: desk calculator. • dc(J)

optimal access time. dcopy: copy file systems for dcopy(1 M)
dd: convert and copy a file. dd(I)

/Iink with built-in OOCMP protocol. dmc(7)
adb: absolute debugger. adb(J)

ctrace: C program debugger. ctracC< I)
fsdb: file system debugger. fsdb(J M)

sdb: symbolic debugger. sdb(I))sysdef: system definition. sysdcf(1M)
names. basename, dirname: deliver portions of path bascnamc(I)

file. tail: deliver the last part of a tail())
delta commentary of an secs delta. cdc: change the cdc<J)

file. delta: make a delta (change) to an SCCS dclta<J)
delta. cdc: change the delta commentary of an SCCS cdc<J)

rmdel: remove a delta from an sees file. rmdcl(l)
to an SCCS file. delta: make a delta <Change) delta<J)

comb: combine secs deltas. comb<J)
mesg: permit or deny messages. mesg(I)
crypt: generate DES encryption. cryptOC)

close: close a file descriptor. close (2)
dup: duplicate an open file descriptor. dup(2)

dc: desk calculator. ddl)
file. access: determine accessibility of a acccss(2)

file: determine file type. filC<l)
master: master device information table. mastcr.dcc(4)

ioetl: control device. ioctl(2)
devnm: device name. dcvnm<J M)

hpd: graphical device routines and filters. gdev(IG)
devnm: device name. devnm<J M)

blocks. df: report number of free disk df(l M)
dz: OZ-I I. OZ-II/KMC-IIB, OH- I I asynchronous/ dz(7)

terminal line connection. dial: establish an out-going dialOC)
ratfor: rational Fortran dialect. ratfor(I)

bdiff: big diff. bdiff(I)
comparator. diff: differential file diff(I)
comparison. diff3: 3·way differential file diff3(1)

~functions. dim: positive difference intrinsic . dimOF)
sdiff: side-by-side difference program. sdiff<J)

diffmk: mark differences between files. diffmk(J)
diff: differential file comparator. diff(J)

- 8 •

Permuted Index

diff3: 3-way differential file comparison. diff30)
between files. diffmk: mark differences diffmk(»

r intrinsic functions. dim: positive difference dim(3F)
dir: format of directories. dir(4)
dircmp: directory comparison. dircmp(I)

install object files in binary directories. cpset: cpset(1 M)
dir: format of directories. did4)

rm: remove files or directories. rm(»
cd: change working directory. cd(I)

chdir: change working directory. chdir(2)
chroot: change root directory. chroot(2)
uuclean: uucp spool directory clean-up. uuclean(t M)

dircmp: directory comparison. dircmp(l)
unlink: remove directory entry. unlink(2)

chroot: change root directory for a command. chroot(t M)
path-name of current working directory. getcwd: get getcwd(3C)

Is: list contents of directory. Is(I)
mkdir: make a directory. mkdid))
mvdir: move a directory. mvdir(1 M)
pwd: working directory name. pwd(»

ordinary file. mknod: make a directory, or a special or mknod(2)
path names. basename, dirname: deliver portions of basename (I)

acct: enable or disable process accounting. acct(2)
type, modes, speed, and line discipline. Iset terminal getty(1 M)

sadp: disk access profiler. sadp(1 M)
ID. diskusg: generate disk accounting data by user diskusg(IM)

df: report number of free disk blocks. dfO M)
diskboot: disk bootstrap programs. diskboot (8)

RH II/RJS03-RJS04 fixed-head disk file. hs: hs.pdp(7)
rf: RFtl/RStl fixed-head disk file. rf.pdp(7)

~'
hm: RM05 moving-head disk. hm(7)

moving-head disk. IRP04/RP05/RP06 hp(7)
mIll: MLtI solid-state disk. mlll.pdp(7)

and lor check RP06 and RM05 disk packs. format: format format(l M)
rk: RK-II/RK03 or RK05 disk. rk.pdp(7)

rl: RL-II/RLOI disk. rl(7)
rm80: RM80 moving-head disk. rm80(7)

medium moving-head disk. IRP07 non-removable rp07(7)
rp: RP-II/RP03 moving-head disk. rp.pdp(7)

du: summarize disk usage. duO)
programs. diskboot: disk bootstrap diskboot (8)

general driver for moving-head disks. gd: gd(7)
accounting data by user ID. diskusg: generate disk diskusg(t M)

mount: mount and dismount file system. mountO M)
prof: display profile data. prof(l)

hypot: Euclidean distance function. hypot(3M)
drand48: generate uniformly distributed pseudo-random! drand48(3C)

kl: KL-II or DL-II asynchronous interface. kl.pdp(7)
multiplexor. dmk: DMII-BA modem control dmk(7)

dmkset: connect DMII-BA modems to KMCII-B dmkset(IM)
built-in DDCMP protocol. dmc: communications link with dmc(7)

multiplexor. dmk: DMII-BA modem control dmk(7)
to KMCII-B dmkset: connect DM II-BA modems dmkset(1 M)

whodo: who is doing what. whodo(1 M)
intrinsic function. dprod: double precision product dprodOF)

strtod: convert string to double-precision number. strtod(3C)
product intrinsic function. dprod: double precision dprodOF)

reversi: a game of dramatic reversals. reversi(6)
distributed pseudo-randoml drand48: generate uniformly drand480C)

graph: draw a graph. graphOG)
arithmetic: provide drill in number facts. arithmetic (6)

gd: general driver for moving-head disks. gd(7)
gt: general driver for tape drives. gt(7)

sxt: pseudo-device driver. sxt(7)

- 9 -

Permuted Index

trace: event-tracing driver. trace(7)
vpmset: connect/load VPM drivers vpmset{] M)

gt: general driver for tape drives. gt(7)

~
interface. du: DU-II synchronous line du.pdp(7)

du: summarize disk usage. du{I)
interface. du: DU-] I synchronous line du.pdp(7)
an object file. dump: dump selected parts of dump{l)

extract error records from dump. errdead: errdead{1 M)
od: octal dump. od{I)

object file. dump: dump selected parts of an dump{])
descriptor. dup: duplicate an open file dup(2)

descriptor. dup: duplicate an open file dup(2)
OH-II asynchronous/ dz: DZ-]), DZ-II/KMC-]]B. dz(7)

asynchronous/ dz: OZ-II. DZ-I]/KMC-IIB, DH-Il dz(7)
asynchronous/ dz: DZ-Il. OZ-ll/KMC-IIB.DH-II dz(7)

echo: echo arguments. echo{})
echo: echo arguments. echo{I)

number to string. ecvt: convert floating-point ecvt{3C)
ed. red: text editor. ed{})
edit: text editor edit{})

sacl: print current SCCS file editing activity. sact{I)
ed, red: text editor. ed{I)

edit: text editor edit{I)
ex: text editor. ex{l)

files. ld: link editor for common object Id(»
ged: graphical editor. ged{IG)

Id: link editor. Id.pdp{»
common assembler and link editor output. a.out: a.out(4)
PDP-I] assembler and link editor output. a.out: a.out.pdp(4)

sed: stream editor. sed{I)
vi: screen-oriented editor vi (1)

Language. efl: Extended Fortran efl{l))fsplit: split f77. ratfor. or efl files. fsplit(»
printers. enable: enable/disable LP enable(l)

accounting. acct: enable or disable process acct(2)
enable: enable/disable LP printers. enablc{»

crypt: encode/decode. crypt(l)
crypt: generate DES encryption. crypt(JC)

makekey: generate encryption key. makekey{I)
program. end: last locations in end{3C)

trenter: enter a trouble report. trenter(I)
nlist: get entries from name list. nlist(3C)

file. linenum: line number entries in a common object Iinenum(4)
man: print entries in this manual. man{I)

/manipulate line number entries of a file function. Idlread{3X)
Idlseek: seek to line number entries of a section of a/ Idlseek{3X)

Idrseek: seek to relocation entries of a section of a/ IdrseekOX)
utmp: utmp and wtmp entry formats. utmp(4)
getgrent: get group file entry. getgrent (3C)

getpwent: get password file entry. getpwentOC)
getutent: access utmp file entry. getutOC)

name for file symbol table entry. /retrieve symbol Idgetname(JX)
the index of a symbol table entry of a file. /compute IdtbindexOX)

read an indexed symbol table entry of a file. Idtbread: IdtbreadOX)
putpwent: write password file entry. putpwent (3C)

rje: RJ E (Remote Job Entry) to IBM. rje(S)
unlink: remove directory entry. unlink(2)

command execution. env: set environment for env{I)
environ: user environment. environ(S)

profile: setting up an environment at login time. profilc(4)
~environ: user environment. environ(S)

execution. env: set environment for command env(l)
getenv: return value for environment name. getenv(JC)

putenv: change or add value to environment. putenv(JC)

- to -

Permuted Index

getenv: return Fortran environment variable. getenv(3F)
sky: obtain ephemerides. sky(6)

complementary error function. erf: error function and erf(3M)

~.
err: error-logging interface. err(7)

from dump. errdead: extract error records crrdead(1 M)
daemon. errdemon: error-logging errdemon (I M)
format. errfile: error-log file errfile(4)

complementaryerrorl erf: error function and erf(3M)
function and complementary error function. erf: error erfOM)

perror: system error messages. perrorOC)
to system calls and error numbers. lintroduction intro(2)

errdead: extract error records from dump. errdead(1 M)
matherr: error-handling function. matherd3M)

errfile: error-log file format. errfile(4)
errdemon: error-logging daemon. errdemon (1M)

errstop: terminate the error-logging daemon. errstop() M)
err: error-logging interface. err(7)

process a report of logged errors. errpt: errpt(1 M)
spell: find spelling errors. spell()

logged errors. errpt: process a report of errpt(I M)
error-logging daemon. errstop: terminate the errstop(1 M)

terminal linel dial: establish an out-going dial(3C)
setmnt: establish mount table. setmnt() M)

hypot: Euclidean distance function. hypotOM)
expression. expr: evaluate arguments as an expr(I)

test: condition evaluation command. test ()
vpmsave: save and print VPM event traces. vpmsave(1 M)

trace: event-tracing driver. tracd?)
ex: text editor. ex(l)

crash: examine system images. crash (I M)
exeel: execute a file. exec(2)

~
network. net: execute a command on the PCl net(IC)

exeel: execute a file. cxec(2)
construct argument list(s) and execute command. xargs: xargs(J)

time. at: execute commands at a later at(J)
regcmp: compile and execute regular expression. regcmpOX)

set environment for command execution. env: env(I)
sleep: suspend execution for an interval. sleep(l)
sleep: suspend execution for interval. sleepOC)

monitor: prepare execution profile. monitorOC)
profil: execution time profile. profil (2)

UNIX-to-UNIX system command execution. uux: uux(IC)
system calls. link: exercise link and unlink link<t M)

a new file or rewrite an existing one. creat: create creat(2)
exit: terminate process. cxit(2)

power, square root functions. exp: exponential, logarithm, expOM)
intrinsic function. exp: Fortran exponential expOF)

pack: compress and expand files. pack(l)
conversion. int: explicit Fortran type ftypeOF)

function. exp: Fortran exponential intrinsic expOF)
square root functions. exp: exponential, logarithm, power, expOM)

expression. expr: evaluate arguments as an expr(J)
routines. regexp: regular expression compile and match regexp(S)

regcmp: regular expression compile. regcmp()
expr: evaluate arguments as an expression. . . . expr<t)

compile and execute regular expression. regcmp: regcmpOX)
eft: Extended Fortran language. eft(l)

dump. errdead: extract error records from errdead(l M)
n7: Fortran 77 compiler. n7(J)

~
fsplit: split n7, ratfor, or eft files. fsplit (I)

factor: factor a number. factor(l)
factor: factor a number. factodI)

data in a machine-independent fashion laccess long integer sputl(3X)
finc: fast incremental backup. finc(IM)

- 11 -

Permuted Index

• malloc(JX)
• checkall(1M)
• abort(JC)

fclose(JS)
fcntl(2)
fcnll (5)

. • • • . fcrror(3S)
• ff(l M)

utime(2)
Idfcn(4)
access (2)

• hpio(l)
tare I)
cpio(])

• pwck(l M)
• chmod(2)

chown(2)
• diff(l)

diff3(])
• fcntl(2)

fcnll (5)
uuto(IC)

• core(4)
• umask(2)
· crontab(I)

cut(])
dd(l)

· dclta(l)
c1ose(2)

• dup(2)
· file(])

dump(l)
•.•••• sact(l)

• getgrent (JC)
gctpwcnt(JC)

· gelut(JC)
· putpwcnt(JC)
• cxec(2)

. • grep(])
· Idopen(JX)
· acct(4)

ar(4)
ar.pdp(4)

• crrfilc(4)
pnch(4)

• intro(4)
• Idlread(3X)
• get (I)
· group(4)
• filchdr(4)
• Idfhread (JX)
• Idohseek(JX)
• hs.pdp(7)
• split(I)
• issue(4)

• • • Idclose(JX)
• Idfhrcad (JX)

Idlseek(JX)
Idohseek (J X)

• Idrseek(JX)
• Idshread(3X)

. . • Idsseek(JX)
• Idtbindcx (3X)
· Idtbrcad(JX)

fast main memory allocator.
faster file system checking
fault. • .•••••
fclose: close or flush a
fcntl: file control.
fcntl: file control options.
ferror: stream status • •
ff: list file names and
file access and modification
file access routines.
file. access: •
file archiver.
file archiver.
file archives in and out.
file checkers.
file. • •••••.
file. chown:
file comparator.
file comparison.
file control. ••
file control options.
file copy. uuto:
file. • ••••.•
file creation mask.
file. • •••..
file. cut: cut out selected
file. • ••••
file. delta: make
file descriptor.
file descriptor.
file: determine file type.
file. dump: dump
file editing activity.
file entry.
file entry.
file entry.
file entry.
file. • •••
file for a pallern.
file for reading.
file format.
file formal.
file format.
file formal.
file format for card images.
file formats. ••••••
file function. Imanipulate
file. • •••••••••
file. • •••••••••
file header for common object
file header of a common object
file header of a file. . .•••
file. hs: RHII/RJS03-RJS04
file into pieces.
file. . •••.••••
file. • ••.••••
file. Idfhread: read the
file. Iseek to line number •
file. Idohseek: seek to ..•••
file. Iseek to relocation .
file. Iread an indexed/named
file. Ito an indexed/named
file. Icompute the index
file. Iread an indexed

selected parts of an object
sact: print current SCCS

getgrent: get group
getpwent: get password

getutent: access utmp
putpwent: write password

execl: execute a
grep: search a

Idopen: open a common object
acct: per-process accounting

ar: common archive
ar: archive

errfile: error-log
pnch:

intro: introduction to
line number entries of a

get: get a version of an SCCS
group: group
files. filehdr:

file. Idfhread: read the
Idohseek: seek to the optional

fixed-head disk
split: split a

issue: issue identification
Idclose: close a common object
file header of a common object

entries of a section of a
the optional file header of a

entries of a section of a
section header of a
section of an object

of a symbol table entry of a
symbol table entry of a

inquiries.
statistics for a file system.

times. utime: set
Idfcn: common object

determine accessibility of a
hpio: HP 2645A terminal tape

tar: tape
cpio: copy

pwck: password/group
chmod: change mode of

change owner and group of a
diff: differential

diff3: 3-way differential
fcntl:
fcntl:

public UNIX-to-UNIX system
core: format of core image

umask: set and get
crontab: user crontab

fields of each line of a
dd: convert and copy a

a delta (change) to an SCCS
close: close a

dup: duplicate an open

malloc:
procedure. checkall:

abort: generate an lOT
stream.

- 12 -

Permuted Index

· • • IdtbseekOX)
· •• Iinenum(4)

• Iink(2)
• mknod(1 M)

mknod(2)
ctermid OS)

· mktempC3C)
• ffO M)
• newformO)

nmO)
null(7)
ttyslot OC)

• fuser(1M)
• . • creat(2)

passwd(4)
· paste(I)
• pg(l)
• fseekOS)

• • • • Iseek(2)
• . • • prs(I)

read(2)
reloc(4)

• rf.pdp(7)
rmdel(I)
bfs(I)

· sccsdiff(I)
• sccsfile(4)

• •.• scnhdr(4)
stat(2)
stripO)
fuser(lM)

• sum(J)
Idgetname(3X)

· syms(4)
• filesave(IM)
• checkall (I M)

• . • fsck(1M)
fsdb(1 M)
frO M)
fs(4)

• mkfsO M)
• mount(1 M)

mount(2)
ustat(2)
mnttab(4)
umount(2)
dcopy(1 M)
checklist (4)
YolcopyO M)
tail 0)
term(4)
tmpfileC3S)
tmpnam()S)

• mkboot(1 M)
• touch()
• ftw(3C)

file(I)
unget(»
uniq(I)

· vaHI)
writC<2}

• umask(J)
fHehdr(4)
acctcomO}

file. /seek to the symbol
file. linenum: line number
file.••••••••
file.•••..•••
file. Imake a directory,
file name for terminal.
file name. • ••.•
file names and statistics for
file. newform:
file. nm: print
file. • ••••
file of the current user.
file or file structure.
file or rewrite an existing
file.•..•••.
file paste: •....
file perusal filter for •
file pointer in a stream.
file pointer.
file. • •••••...
file. • •.•..•.
file. /relocation information
file.•.•.
file. rmdel: . . • . • •
file scanner. ••.•.
file. sccsdiff: compare
file.•••...•
file. scnhdr: section
file status.
file. strip: strip symbol and
file structure. lidentify
file. sum: print
file symbol table entry. .
file symbol table format.
file system backup. filesave:
file system checking . . .
file system consistency check
file system debugger. •.•.•
file system. ff: list file
file system: format of system
file system.
file system..•••
file system. • ••.
file system statistics.
file system table.
file system.
file systems for optimal
file systems processed by
file systems with label
file. tail:
file......
file. • .•.
file. tmpnam:
file to boot image.
file. touch: update access
file tree. • •
file type. .
file. unget:
file. uniq:
file. • •••
file. • ..
file-creation mode mask.
filehdr: file header for
file(s). acctcom: search

table of a common object
entries in a common object

link: link to a
mknod: build special

or a special or ordinary
ctermid: generate

mktemp: make a unique
a file system. IT: list

change the format of a text
name list of common object

null: the null
/find the slot in the utmp

lidentify processes using a
one. creat: create a new

passwd: password
merge same lines of several

soft-copy tcrminals. pg:
fseek: reposition a

Iseek: move read/write
prs: print an SCCS

read: read from
for a common object

rf: RFII/RS II fixed-head disk
remove a delta from an SCCS

bfs: big
two versions of an SCCS
sccsfile: format of SCCS

header for a common object
stat: get

line number information from a
processes using a file or

checksum and block count of a
/retrieve symbol name for

syms: common object
daily/weekly UNIX system

procedure. checkall: faster
fsck:
fsdb:

names and statistics for a
volume.

mkfs: construct a
mount: mount and dismount

mount: mount a
ustat: get

mnttab: mounted
umount: unmount a

access time. dcopy: copy
fsck. checklist: list of

checking. volcopy: copy
deliver the last part of a

term: format of compiled term
tmpfile: create a tcmporary

create a name for a temporary
mkboot: convert a.out

and modification times of a
ftw: walk a

file: determine
undo a previous get of an SCCS

report repeated lines in a
val: validate SCCS

write: write on a
umask: set

common object files.
and print process accounting

~.
\

- 13 -

Permuted Index

merge or add total accounting files. acctmerg: acctmerg(1 M)
create and administer SCCS files. admin: adminO)

send: gather files and/or submit RJE jobs. send(IC)
VAX-1117801 fscv: convert files between PDP-II and fscv.vax(1 M) .~cat: concatenate and print files. cat(I)

cmp: compare two files. cmp()
lines common to two sorted files. comm: select or reject comm(I)

cp, In, mv: copy, link or move files. cpO)
mark differences between files. diffmk: diffmkO)

file header for common object files. filehdr: filehdd4)
find: find files. find(I)

frec: recover files from a backup tape. frecO M)
format. arcv: convert archive files from PDP-II to common arcv.pdp(I)

format specification in text files. fspec: fspec(4)
split n7, ratfor, or eft files. fsplit: fsplit(l)

string, format of graphical files. /graphical primitive gps(4)
cpset: install object files in binary directories. cpset(1 M)

intro: introduction to special files. intro(7)
link editor for common object files. Id: Id(l)

rm: remove files or directories. rm(l)
pack: compress and expand files. packO)

pr: print files. prO)
section sizes of common object files. size: print sizeO)

size: print sizes of object files. size.pdp(I)
sort: sort and/or merge files. • sort0)
/convert object/archive files to common formats. convert(l)

what: identify SCCS files. what(l)
system file system backup. filesave: daily/weekly UNIX filesave(IM)
terminals. pg: file perusal filter for soft-copy 0·0 pg(l)

greek: select terminal filter. greekO)
nl: line numbering filter. nl(l)

col: filter reverse line-feeds. colO)
'~graphical device routines and filters. hpd: gdev(IG)

tplot: graphics filters. tplotOG)
finc: fast incremental backup. finc(1 M)

find: find files. find(I)
find: find files. find«()

ttyname: find name of a terminal. ttyname(JC)
object library. lorder: find ordering relation for an 10rderO)

spell: find spelling errors. spell«()
of the current user. ttyslot: find the slot in the utmp file ttyslotOC)

tee: pipe fitting. teeO)
hs: RHll/RJS03-RJS04 fixed-head disk file. hs.pdp(7)

rf: RFll/RSII fixed-head disk file. rf.pdp(7)
string. ecvt: convert ftoating-point number to ecvt(3C)

frexp: manipulate parts of ftoating-point numbers. frexp(JC)
absolute value/ ftoor: ftoor, ceiling, remainder, ftoorOM)

remainder, absolute value/ ftoor: ftoor. ceiling, ftoorOM)
vlx: VAX-I 11780 LSI console ftoppy interface. • vlx(1 M)

cftow: generate C ftow graph. cftow(J)
fclose: close or ftush a stream. fcloseOS)

fopen: open a stream. fopenOS)
fork: create a new process. fork(2)

per-process accounting file format. aeet: acct(4)
RM05 disk packs. format: format and/or check RP06 and format(IM)

ar: common archive file format. ar(4)
files from PDP-II to common format. arcv: convert archive arcv.pdp(I)

ar: archive file format. ar.pdp(4)
errfile: error-log file format. errfile(4)

pnch: file format for card images. pnch(4)
.~RP06 and RM05 disk packs. format: format and/or check formatOM)

newform: change the format of a text file. newformO)
inode: format of an i-node. inode(4)
term: format of compiled term file .. term(4)

- 14 -

Permuted Index

core(4)
cpio(4)

· dir(4)
gps(4)

• sccsfile(4)
• fs(4)
• fspec(4)
• syms(4)

convert(l)
· intro(4)
• utmp(4)

· • scanf(3S)
• • . • • vprintf(3S)

• vprintf(3X)
• printf(3S)
• n7(J)

· • abs(3F)
• • signal (3F)

.•• acos(3F)
· asin(3F)
• atan2(3F)

• • . • atan(3F)
• boot(3F)

getarg(3F)
· loglO(3F)
· conjg (3 F)

cos(3 F)
• ratforO)
• getenv (3F)
• exp(3F)

cosh(3F)
• sinh(3F)
• tanh(3F)
• aimag(3F)

• • aint(3F)
• • eflO)

• max(3F)
• min(3F)
• log (3 F)
• round (3 F)
• abort (3F)
• mod (3 F)

••.• sin(3F)
• • . • • sqrt(3F)

· len(3F)
• index(3F)
• system (3 F)

• • tan(3F)
mclock(3F)

• sign(3F)
· ftype(3F)
• fread(3S)
• frec(J M)
• df(1 M)
• frexp(3C)
· fred) M)

stripe I)
getc(3S)

• • gets(3S)
• rmdet(l)
· getopt (3C)
• errdead (I M)
• read (2)
• system(3F)

format of core image file.•
format of cpio archive. .
format of directories.
format of graphical files. • . • • • •
format of SCCS file. . . .
format of system volume.
format specification in text
format. syms: common • .
formats. convert: convert
formats. • •••
formats. • ••.••••
formatted input.
formatted output of a varargs
formatted output of a varargs
formatted output. • •
Fortran 77 compiler. . • • • •
Fortran absolute value. • • • •
Fortran action on receipt of a
Fortran arccosine intrinsic
Fortran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
Fortran boolean functions.
Fortran command-line argument.
Fortran common logarithm
Fortran complex conjugate
Fortran cosine intrinsic . .
Fortran dialect. • • • • .
Fortran environment variable.
Fortran exponential intrinsic
Fortran hyperbolic cosine •
Fortran hyperbolic sine
Fortran hyperbolic tangent
Fortran imaginary part of
Fortran integer part intrinsic
Fortran Language.
Fortran maximum-value
Fortran minimum-value
Fortran natural logarithm
Fortran nearest integer • .
Fortran program. . • • • •
Fortran remaindering intrinsic
Fortran sine intrinsic
Fortran square root intrinsic
Fortran string.
Fortran substring. • • • •
Fortran. system:
Fortran tangent intrinsic
Fortran time accounting.
Fortran transfer-of-sign
Fortran type conversion.
fread: binary input/output.
free: recover files from a
free disk blocks. • . • • •
frexp: manipulate parts of
from a backup tape. • •
from a file. /strip symbol •
from a stream.
from a stream.
from an SCCS file.
from argument vector.
from dump.
from file.
from Fortran.

backup tape.
df: report number of

floating-point numbers.
free: recover files

and line number information
getc: get character or word

gets: get a string
rmdel: remove a delta

getopt: get option letter
errdead: extract error records

read: read
system: issue a shell command

core:
cpio:

dir:
/graphical primitive string,

sccsfile:
file system:
files. fspec:

object file symbol table
object/archive files to common

intro: introduction to file
utmp: utmp and wtmp entry

scanf: convert
argument list. vprintf: print
argument list. vprintf: print

printf: print
n7:
abs:

system/ signal: specify
function. acos:
function. asin:

function. atan2:
function. atan:

and, or, xor, not:
getarg: return

intrinsic function. 10g10:
intrinsic function. conjg:

function. cos:
ratfor: rational
getenv: return
function. exp:

intrinsic function. cosh:
intrinsic function. sinh:
intrinsic function. tanh:

complex argument. aimag:
function. aint:
efl: Extended

functions. max:
functions. min:

intrinsic function. log:
functions. anint:
abort: terminate
functions. mod:

function. sin:
function. sqrt:

len: return length of
index: return location of

issue a shell command from
function. tan:

mclock: return
intrinsic function. sign:

int: explicit

- 15 -

Permuted Index

ncheck: generate names from i-numbers. ncheckOM)
nlist: get entries from name list. nlist(JC)

arcv: convert archive files from PDP-II to common format. arcv.pdp(\)
acctcms: command summary from per-process accounting/ acctcms(1 M)

getpw: get name from UID. getpw(JC)
of file systems processed by fsck. checklist: list checklist (4)

check fsck: file system consistency fsck(1 M)
PDP-II and VAX-I 1/780/ fscv: convert files between fscv.vaxO M)

fsdb: file system debugger. fsdb(1 M)
pointer in a stream. fseek: reposition a file fseek(JS)

text files. fspec: format specification in fspcc(4)
eft files. fsplit: split f77, rat for, or fsplit(\}

communication package. ftok: standard interprocess stdipc(JC)
ftw: walk a file tree. ftw(JC)

fortran arccosine intrinsic function. acos: acos(Jf)
fortran integer part intrinsic function. aint: aint(3F)

error function. erf: error function and complementary erf(JM)
fortran arcsine intrinsic function. asin: asin(Jf)

fortran arctangent intrinsic function. atan2: atan2(Jf)
fortran arctangent intrinsic function. atan: atan(JF)
complex conjugate intrinsic function. conjg: fortran • conjg(Jf)
cos: fortran cosine intrinsic function. cos(Jf)

hyperbolic cosine intrinsic function. cosh: fortran cosh (J f)
precision product intrinsic function. dprod: double dprod(Jf)
and complementary error function. erf: error function • erf(JM)

fortran exponential intrinsic function. exp: cxp(3F)
gamma: log gamma function. gamma(JM)

hypot: Euclidean distance function. hypot(JM)
line number entries of a file function. Idlread: manipulate Idlread(3X)
common logarithm intrinsic function. 10g10: fortran 10gI0(JF)

natural logarithm intrinsic function. log: Fortran 10g(JF)
mathcrr: error-handling function. matherrOM)

.~prof: profile within a function. prof(S)
transfer-of-sign intrinsic function. sign: Fortran sign(JF)

sin: Fortran sine intrinsic function. sin(3F)
hyperbolic sine intrinsic function. sinh: Fortran sinh(3f)

fortran square root intrinsic function. sqrt: sqrt OF)
tan: Fortran tangent intrinsic function. tan(JF)

hyperbolic tangent intrinsic function. tanh: Fortran tanhOF)
math: math functions and constants. mathCS)

jO, j I, jn, yO, yI, yn: Bessel functions. bessc\OM)
or, xor, not: fortran boolean functions. and, boo\(3 F)

positive difference intrinsic functions. dim: dimOF)
logarithm, power, square root functions. exp: exponential, exp(JM)

remainder, absolute value functions. /ftoor, ceiling, floor(JM)
max: Fortran maximum-value functions. maxOf)
min: Fortran minimum-value functions. minOF)

Fortran remaindering intrinsic functions. mod: mod Of)
hp: handle special functions of HP terminals. hp(t)

terminal. 450: handle special functions of the DASI 450 4500)
anint: fortran nearest integer functions. round 0 F)

sinh: hyperbolic functions. sinhOM)
string comparision intrinsic functions. Ige: strcmpOF)

sin: trigonometric functions. trigOM)
using a file or file/ fuser: identify processes fusedl M)

accounting records. fwtmp: manipulate connect fwtmp(lM)
jotto: secret word game. • jotto(6)

moo: guessing game. moo(6)
back: the game of backgammon. back (6)

bj: the game of black jack. bj(6)
.~chess: the game of chess. chess(6)

craps: the game of craps. • craps(6)
reversi: a game of dramatic reversals. reversi(6)

wump: the game of hunt-the-wumpus. wump(6)

- 16 -

Permuted Index

intro: introduction to games. intro(6)
gamma: log gamma function. • gamma(3M)

gamma: log gamma function. • gamma(3M)

r jobs. send: gather files and!or submit RJE send(IC)
moving-head disks. gd: general driver for gd(7)

ged: graphical editor. ged(tG)
maze: generate a maze. maze(6)
abort: generate an lOT fault. • abortOC)
cnow: generate C flow graph. • cnow(J)

cross-reference. cxref: generate C program • cxref(l)
crypt: generate DES encryption. cryptOC)

by user 10. diskusg: generate disk accounting data diskusg(l M)
makekey: generate encryption key. makekey(l)

terminal. ctermid: generate file name for • ctermid OS)
ncheck: generate names from i-numbers. ncheck(t M)

lexical tasks. lex: generate programs for simple lex(l)
pseudo-random! drand48: generate uniformly distributed · drand480C)

rand: simple random-number generator. rand(3C)
irand: random number generator. randOF)

gets: get a string from a stream. • • gets(3S)
get: get a version of an SCCS file. • get(l)

ulimit: get and set user limits. • • . ulimit(2)
the user. cuserid: get character login name of • cuseridOS)

stream. getc: get character or word from a getcOS)
nlist: get entries from name list. nlistOC)

umask: set and get file creation mask. umask(2)
stat: get file status. · stat(2)

ustat: get file system statistics. ustat(2)
file. get: get a version of an SCCS • get(t)

getgrent: get group file entry. • getgrent OC)
getlogin: get login name. getloginOC)
logname: get login name. logname(l)

~. msgget: get message queue. msgget(2). ,

, getpw: get name from UID. • getpw(3C)
system. uname: get name of current UNIX uname(2)

unget: undo a previous get of an SCCS file. unget(l)
argument vector. getopt: get option lettcr from gctopt(3c)

getpwent: get password file entry. getpwent(3C)
working directory. gctcwd: get path-name of current • getcwdOC)

times. times: get process and child process times(2)
and parent proccss! getpid: get process, process group, getpid(2)

scmget: get set of semaphores. • semget(2)
shmget: get shared memory segment. • shmget(2)

tty: get the name of the tcrminal. tty(t)
time: get time. .. time(2)

getuid: get user IDs • getuid(2)
command-line argument. getarg: return Fortran getargOF)

from a stream. getc: get character or word getcOS)
current working directory. getcwd: get path-name of • • getcwdOC)

environment variable. getenv: return Fortran • getenv(3 F)
environment name. getenv: return value for getenvOC)

entry. getgrent: get group file gctgrent OC)
getlogin: get login name. getlogin OC)

argument vcctor. getopt: get option letter from getopt(JC)
getopt: parse command options. getopt(l)
getpass: read a password. • getpassOC)

group, and parent process! getpid: get process, process • getpid(2)
getpw: get name from UID. • getpwOC)

entry. getpwent: get password file getpwent(3C)

~\
stream. gets: get a string from a gets(JS)

and terminal settings used by getty. gettydefs: speed • gettydefs(4)
modes, speed, and line! getty: set terminal type, getty(J M)

ct: spawn getty to a remote terminal. ct(JC)
settings used by getty. geuydefs: speed and terminal gettydefs(4)

- 17 -

Permuted Index

entry.
setjmp: non-local

string, format of graphical/
cHow: generate C ftow

graph: draw a
sag: system activity

commands. graphics: access
/network useful with

filters. hpd:
ged:

primitive string, format of
format of graphical! gps:

routines. toc:
gutil:

numerical commands.
tplot:
plot:

subroutines. plot:

paltern.
getpid: get process, process

chown: change owner or
getgrent: get

group:

setpgrp: set process
id: print user and

setuid, sctgid: set user and
newgrp: log in to a new

chown: change owner and
a signal to a process or a

update, and regenerate
drives.

hangman:
moo:

terminals. hp:
the DASI 450 terminal. 450:

varargs:
package. curses: CRT screen

nohup: run a command immune to
hsearch: manage

file. scnhdr: section
files. filehdr: file

ldahread: read the archive
file. ldfhread: read the file

seek to the optional file
read an indexed/named section

help: ask for

archiver. hpio:
of HP terminals.

moving-head disk.
handle special functions of

and filters.
file archiver.

fixed-head disk file.
tables.

interface.
wump: the game of

getuid: get user IDs
getutent: access utmp file
goto. •• ••
gps: graphical primitive
graph. •• ••
graph: draw a graph.
graph. . •
graph. . •
graphical and numerical
graphical commands.
graphical device routines and
graphical editor.
graphical files. /graphical
graphical primitive string,
graphical table of contents
graphical utilities.
graphics: access graphical and
graphics filters.
graphics interface. .
graphics interface
greek: select terminal filter.
grep: search a file for a
group, and parent process IDs.
group.
group file entry.
group file.
group: group file.
group 10.
group IDs and names.
group IDs.
group.
group of a file.
group of processes. /send
groups of programs. /maintain,
gt: general driver for tape
guess the word.
guessing game.
gutil: graphical utilities.
handle special functions of HP
handle special functions of
handle variable argument list.
handling and optimization
hangman: guess the word.
hangups and quits.
hash search tables.
header for a common object
header for common object
header •
header of a common object
header of a file. ldohseek:
header of a file. Idshread:
help: ask for help.
help. • •
hm: RM05 moving-head disk.
HP 2645A terminal tape file
hp: handle special functions
hp: RP04/RP05/RP06
HP terminals. hp: ••
hpd: graphical device routines
hpio: HP 2645A terminal tape
hs: RHll/RJS03-RJS04 ••
hsearch: manage hash search
ht: TU16/TE16 magnetic tape
hunt-the-wumpus. ..

• 18 •

• getuid(2)
• getut(3C)

setjmpOC)
gps(4)

• cftow(I)
• graph(IG)
• graph(IG)
• sag(IO)
• graphics (I G)

stat(IO)
• gdev(IG)
• gedOG)
• gps(4)
• gps(4)
· toc(IG)

gutil(IG)
graphics(IG)
tplot(IG)
plot (4)
plot(3X)
greek(I)
grep(I)
getpid(2)
chown(l)

• getgrent (3C)
group(4)
group(4)
setpgrp(2)
id(t)

• setuid(2)
newgrp(l)
chown(2)
kill (2)

• make<t)
• gt(7)
hangm~n(6)

moo(6)
• gutit<1G)

hp(t)
450(1)
varargs(5)
curses(3X)
hangman(6)
nohup(I)
hsearch(3C)
scnhdr(4)
filehdd4)
Idahread (3X)
Idfhread (3X)
Idohseek(3X)
Idshread(JX)

• help(l)
help(])
hm(7)
hpio(I)

• hp(J)
hp(7)
hp(I)
gdevOG)
hpioO)
hs.pdp(7)
hsearch OC)
ht(7)
wump(6)

Permuted Index

function. cosh: Fortran hyperbolic cosine intrinsic • cosh(3F)
sinh: hyperbolic functions. • sinhOM)

function. sinh: Fortran hyperbolic sine intrinsic · sinh(JF)

r function. tanh: Fortran hyperbolic tangent intrinsic o tanh(3F)
function. hypot: Euclidean distance o hypotOM)

iargc. iargc(JF)
rje: RJE (Remote Job Entry) to IBM. rje(S)

disk accounting data by user 10. diskusg: generate o diskusg<t M)
and names. id: print user and group IDs id(l)

setpgrp: set process group 10. o 0 setpgrp(2)
issue: issue identification file. issue(4).

file or file/ fuser: identify processes using a fuser(I M)
what: identify SCCS files. o what(I)

id: print user and group lOs and names. o id(l)
group, and parent process IDs. /get process, process · getpid(2)

getuid: get user IDs • getuid(2)
setgid: set user and group IDs. setuid, o setuid(2)

core: format of core image file. core (4)
convert a.out file to boot image. mkboot: mkboot(IM)

crash: examine system images. crash(IM)
pnch: file format for card images. pnch(4)

argument. aimag: Fortran imaginary part of complex o aimag(3F)
nohup: run a command immune to hangups and quits. nohup(I)

finc: fast incremental backup. finc(IM)
of al Idtbindex: compute the index of a symbol table entry IdtbindexOX)

Fortran substring. index: return location of index (J F)
a file. Idtbread: read an indexed symbol table entry of • Idtbread(3X)

of a file. Idshread: read an indexed/named section header Idshread (3X)
objectl Idsseek: seek to an indexed/named section of an IdsseekOX)

initialization. init: process control init(IM)
inittab: script for the init process. o iniUab(4)

~
init: process control initialization. init(IM)

brc: system initialization shell scripts. brc(IM)
information bdblk: print, initialize, update bad bdblk(IM)

process. popen: initiate pipe tolfrom a popen(JS)
process. inittab: script for the init iniUab(4)

clri: clear i-node. o • o c1ri(1 M)
inode: format of an i-node. inode(4)

inode: format of an i-node. inode(4)
scanf: convert formatted input. o. 0 ••• scanf(3S)
push character back into input stream. ungetc: ungetc(3S)

fread: binary input/output. • • • 0 fread(JS)
stdio: standard buffered input/output package. · stdioOS)

ferror: stream status inquiries.••..•. ferror(3S)
uustat: uucp status inquiry and job control. uustat(IC)

install: install commands. install(IM)
install: install commands. install(l M)

directories. cpset: install object files in binary cpset(IM)
conversion. int: explicit Fortran type ftype(3F)
abs: return integer absolute value. abs(3C)

a64l: convert between long integer and base-64 ASCIII • a641(3C)
sputl:accesslong integer data in al · sputl(3X)

anint: Fortran nearest integer functions. round (3 F)
function. aint: Fortran integer part intrinsic · aint(3F)
strtol: convert string to integer. • strtolOC)

I3tol: convert between 3-byte integers and long integers. I3tol(3C)
3-byte integers and long integers. lconvert between • I3tol(3C)

bcopy: interactive block copy. • bcopy(IM)
system. mailx: interactive message processing mailx()

~
acu: Automatic Call Unit (ACU) interface. acu(7)

du: DU-ll synchronous line interface. • du.pdp(7)
err: error-logging interface. err(7)

ht: TUl6/TE16 magnetic tape interface. ht(7)
KL-) I or DL-il asynchronous interface. kl: kl.pdp(7)

• 19 •

Permuted Index

parallel communications link interface. pel: pel (7)
plot: graphics interface. plot(4)
plot: graphics interface subroutines. plot(JX)

termio: general terminal interface. termio(7) '~tm: TM II/TU 10 magnetic tape interface. tm.pdp(7)
ts: TS II magnetic tape interface. tsl \(7)
tty: controlling terminal interface. Uy(7)

tu78: TU78 magnetic tape interface. tu78(7)
VAX-I 1/780 LSI console ftoppy interface. vlx: vlx<t M)

spline: interpolate smooth curve. spline(IG)
characters. asa: interpret ASA carriage control asa(J)
sno: SNOBOL interpreter. sno(I)
pipe: create an interprocess channel. pipC(2)

facilities/ ipcs: report inter-process communication ipes(I)
package. ftok: standard interproc~ss communication stdipe(JC)

suspend execution for an interval. sleep: sleep(J)
sleep: suspend execution for interval. sleep(JC)

acos: Fortran arccosine intrinsic function. acos(3F)
aint: Fortran integer part intrinsic function. aint(JF)

asin: Fortran arcsine intrinsic function. asin(JF)
atan2: Fortran arctangent intrinsic function. . atan2(JF)

atan: Fortran arctangent intrinsic function. atan(3F)
Fortran complex conjugate intrinsic function. conjg: conjg(3F)

cos: Fortran cosine intrinsic function. cos(3F)
Fortran hyperbolic cosine intrinsic function. cosh: cosh(3F)
double precision product intrinsic function. dprod: dprod(JF)
exp: Fortran exponential intrinsic function. exp(3F)

Fortran common logarithm intrinsic function. 10g10: 10gI0(3F)
log: Fortran natural logarithm intrinsic function. log (3 F)

sign: Fortran transfer-of-sign intrinsic function. sign(JF)
sin: Fortran sine intrinsic function. sin(3F)

sinh: Fortran hyperbolic sine intrinsic function. sinh (3 F)

~sqrt: Fortran square root intrinsic function. sqrt(3F)
tan: Fortran tangent intrinsic function. tan(3F)

Fortran hyperbolic tangent intrinsic function. tanh: tanh(3F)
dim: positive difference intrinsic functions. dim(3F)

mod: Fortran remaindering intrinsic functions. mod(3 F)
1ge: string comparision intrinsic functions. strcmp(3F)

commands intro: introduction to intro(l)
formats. intro: introduction to file intro(4)

intro: introduction to games. intro(6)
maintenance commands intro: introduction to intro(l M)

miscellany. intro: introduction to intro(S)
files. intro: introduction to special intro(7)

subroutines and libraries. intro: introduction to intro(3)
calls and error numbers. intro: introduction to system intro(2)
maintenance procedures. intro: introduction to system intro(S)

intro: introduction to commands intro()
intro: introduction to file formats. intro(4)
intro: introduction to games. intro(6)

commands intro: introduction to maintenance intro() M)
intro: introduction to miscellany. intro(S)
intro: introduction to special files. intro(7)

and libraries. intro: introduction to subroutines intro(3)
and error numbers. intro: introduction to system calls intro(2)

maintenance/ intro: introduction to system intro(S)
ncheck: generate names from i-numbers. ncheck(IM)

ioctl: control device. ioctl(2)
abort: generate an lOT fault. abort (3C)

ipcrm: remove a message queue iperm(J)

~communication facilitiesl ipcs: report inter-process ipcs()
generator. irand: random number rand (3F)

isalpha: classify characters. ctype(3C)
Fortran. system: issue a shell command from system(3F)

- 20 •

Permuted Index

system: issue a shell command. system(3S)
issue: issue identification file. issue(4)

file. issue: issue identification issue(4)

r news: print news items. news(l)
functions. jO, j I, jn, yO, y I, yn: Bessel bessel(3M)

functions. jO, jl, jn, yO, yl. yn: Bessel bessel(3M)
bj: the game of black jack. bj(6)

functions. jOt j I, jo, yO, y I, yn: Bessel • bessel (3 M)
operator. join: relational database • join(t)

jotta: secret word game. • jotto(6)
for the KMCII B kasb: assembler/un-assembler kasb(t)

makekey: generate encryption key. makekey(l)
killall: kill all active processes. killalI(1 M)

process or a group off kill: send a signal to a kill (2)
kill: terminate a process. • kiH(I)

processes. killall: kill all active killall(1 M)
asynchronous interface. kl: KL-II or OL-II • kl.pdp(7)

interface. kl: KL-II or OL·II asynchronous kl.pdp(7)
microprocessor. kmc: KMC-II B/KMS II kmc(7)

vpmtest: test KMC lines. vpmtest(1 M)
connect OM II-BA modems to KMCII-B dmkset: dmkset(t M)

assembler/un-assembler for the KMCIIB kasb: · kasb(t)
microprocessor. kmc: KMC-IIB/KMSII kmc(7)

quiz: test your knowledge. quiz(6)
integers and long integers. 13tol: convert between 3-byte 13tol(3C)

copy file systems with label checking. volcopy: volcopy(1 M)
scanning and processing language. awk: pattern awk(t)

arbitrary-precision arithmetic language. be: bc(t)
eft: Extended Fortran Language. • eft(t)

cpp: the C language preprocessor. cpp(l)
command programming language. Istandard/restricted sh(l)

~
shl: shell layer manager. shl(l)

object files. Id: link editor for common Id(l)
Id: link editor. Id.pdp(t)

header Idahread: read the archive Idahread(3X)
file. Idclose: close a common object Idclose(3X)

access routines. Idfcn: common object file Idfcn(4)
of a common object file. Idfhread: read the file header Idfhread(3X)

name for file symboltablel Idgetname: retrieve symbol Idgetname(3X)
number entries of a filel Idlread: manipulate line Idlread(JX)
entries of a section of al Idlseek: seek to line number Idlseek OX)

file header of a file. Idohseek: seek to the optional Idohseek0 X)
file for reading. Idopen: open a common object Idopen(3X)

entries of a section of al Idrseek: seek to relocation Idrseek(JX)
indexed/named section headerl Idshread: read an Idshread (J X)

indexed/named section of ani Idsseek: seek to an IdsseekOX)
of a symbol table entry of al Idtbindex: compute the index Idtbindex (3X)

symbol table entry of a file. Idtbread: read an indexed Idtbread(JX)
table of a common objectI Idtbseek: seek to the symbol Idtbseek(3X)

string. len: return length of Fortran len(3F)
len: return length of Fortran string. lenOF)

getopt: get option letter from argument vector. • getopt (3C)
simple lexical tasks. lex: generate programs for • lex(I)

generate programs for simple lexical tasks. lex: lex(t)
intrinsic functions. Ige: string comparision · strcmpOF)
to subroutines and libraries. lintroduction intro(J)

relation for an object library. lfind ordering lorder(»
ar: archive and library maintainer. · ar.pdp(t)

portablel ar: archive and library maintainer for • ar(»

~'
ulimit: get and set user limits. ulimit(2)

an out-going terminal line connection. lestablish dial(3C)
type, modes, speed, and line discipline. Iset terminal getty (I M)
du: OU- I I synchronous line interface. • du.pdp(7)

line: read one line. line(l)

- 21 -

Permuted Index

common object file. linenum: line number entries in a linenum(4)
function. Idlread: manipulate line number entries of a file Idlread OX)
section of a/ Idlseek: seek to line number entries of a IdlseekOX)

file. strip: strip symbol and line number information from a strip(])
~nl: line numbering filter. nl(l)

out selected fields of each line of a file. cut: cut cut(I)
send/cancel requests to an lP line printer. Ip, cancel: IpO)

Ip: line printer. Ip(7)
line: read one line. lineO)

Isearch: linear search and update. Isearch (3C)
col: filter reverse line-feeds. coHI)

in a common object file. linenum: line number entries linenum(4)
files. comm: select or reject lines common to two sorted comm(l)

uniq: report repeated lines in a file. uniq(])
paste: merge same lines of several file paste (I)

vpmtest: test KMC lines. vpmtest(l M)
link: exercise link and unlink system calls. linkOM)

files.ld: link editor for common object Id(l)
Id: link editor. Id.pdp(l)

a.out: common assembler and link editor output. a.out(4)
a.out: PDP-II assembler and link editor output. a.out.pdp(4)

system calls. link: exercise link and unlink linkO M)
pel: parallel communications link interface. pcl(7)

link: link to a file. link(2)
pcldaemon: PCl link monitor. pcldaemon (I M)
cp, In, mv: copy, link or move files. cpO)

link: link to a file. link(2)
protocol. dmc: communications link with built-in DDCMP dmc(7)

lint: a C program checker. IintO)
Is: list contents of directory. Is(l)

for a file system. If: list file names and statistics 1f(1 M)
nlist: get entries from name list. nlist(3C) ')nm: print name list. nm.pdp(l)

nm: print name list of common object file. nmO)
by fsck. checklist: list of file systems processed checklist (4)

handle variable argument list. varargs: varargs(S)
output of a varargs argument list. /print formatted vprintf(3S)
output of a varargs argument list. /print formatted vprintfC3X)

xargs: construct argument list(s) and execute command. xargs(l)
files. cp, In, my: copy, link or move cp(I)

romboot: special ROM bootstrap loaders. romboot(S)
index: return location of Fortran substring. index(3F)

end: last locations in program. end (3C)
memory. plock: lock process, text, or data in plock (2)

intrinsic function. log: Fortran natural logarithm log(3 F)
gamma: log gamma function. gamma(3M)
newgrp: log in to a new group. newgrp(t)

logarithm intrinsic function. 10g10: Fortran common logIO(3F)
log I0: Fortran common logarithm intrinsic function. log 10(3F)

log: Fortran natural logarithm intrinsic function. log(3 F)
functions. exp: exponential, logarithm, power, square root cxp(3M)

errpt: process a report of logged errors. errpt(1 M)
getlogin: get login name. • getlogin(3C)
logname: get login name. logname(l)

cuserid: get character login name of the user. cuserid (3S)
logname: return login name of user. 10gname(3X)
passwd: change login password. • • passwd(t)

login: sign on. 10gin(l)
selling up an environment at login time. profile: profile(4)

logname: get login name. 10gname(l)

~user. logname: return login name of 10gname(3X)
string. a641: convert between long integer and base-64 ASCII a64I(3C)

sputl: access long integer data in a/ sputl(3X)
between 3-byte integers and long integers. 13tol: convert I3tol(3C)

- 22 -

Permuted Index

for an object library. lorder: find ordering relation 10rder(l)
nice: run a command at low priority. niceO)
requests to an LP linel Ip, cancel: send/cancel IpO)

r' send/cancel requests to an LP line printer. Ip, cancel: Ip(t)
Ip: line printer. Ip(7)

enable: enable/disable LP printers. enable(t)
Ipsched: start/stop the LP request scheduler Ipsched(1 M)
accept: allow/prevent LP requests. accept(t M)

Ipadmin: configure the LP spooling system. Ipadmin(1 M)
Ipstat: print LP status information. Ipstat()

spooling system. Ipadmin: configure the LP Ipadmin(t M)
request scheduler Ipsched: start/stop the LP Ipsched () M)

information. Ipstat: print LP status Ipstat(t)
directory. Is: list contents of Is(I)

update. Isearch: linear search and IsearchOC)
pointer. lseek: move read/write file Iseek(2)

vlx: VAX-Iln80 LSI console floppy interface. vlx() M)
m4: macro processor. m4(t)

vpm: Virtual Protocol Machine. vpm(7)
for the virtual protocol machine. vpmc: compiler vpmc.dcc() M)

values: machine-dependent values. values(S)
laccess long integer data in a machine-independent fashion sputlOX)

m4: macro processor. m4()
program. tapeboot: magnetic tape bootstrap tapeboot (8)

ht: TUI6/TEI6 magnetic tape interface. ht(7)
tm: TMII/TUIO magnetic tape interface. tm.pdp(7)

ts: TSII magnetic tape interface. tsl)(7)
tu78: TU78 magnetic tape interface. tu7S(7)

send mail to users or read mail. mail: mai1()
read mail. mail: send mail to users or mai)(l)
mail: send mail to users or read mail. mai)(t)

~
processing system. mailx: interactive message mailx(l)

malloc: main memory allocator. malloc(3C)
'< malloc: fast main memory allocator. mallocOX)

regenerate groups of! make: maintain, update, and makeO)
ar: archive and library maintainer. ar.pdp(t)
ar: archive and library maintainer for portablel ar(t)

intro: introduction to maintenance commands intro(1 M)
intro: introduction to system maintenance procedures. intro(S)

SCCS file. delta: make a delta (change) to an delta(l)
mkdir: make a directory. mkdir(t)

or ordinary file. mknod: make a directory, or a special mknod(2)
mktemp: make a unique file name. mktemp(3C)

regenerate groups of! make: maintain, update, and make(l)
banner: make posters. banner()

key. makekey: generate encryption makekey(l)
allocator. malloc: fast main memory mallocOX)

malloc: main memory allocator. mallocOC)
manual. man: print entries in this mane)~

tsearch: manage binary search trees. tsearch (3C)
hsearch: manage hash search tables. hsearchOC)

shl: shell layer manager. shl(t)
records. fwtmp: manipulate connect accounting fwtmp(t M)

of a file function. Idlread: manipulate line number entries IdlreadOX)
floating-pointl frexp: manipulate parts of frexpOC)

man: print entries in this manual. man(l)
ascii: map of ASCII character set. ascii(S)

files. diffmk: mark differences between diffmk(1)
umask: set file-creation mode mask. umask(l)

~.
set and get file creation mask. umask: umask(2)

table. master: master device information master.dec(4)
information table. master: master device master.dec(4)

regular expression compile and match routines. regexp: regexp(S)
math: math functions and constants. math(S)

- 23 -

Permuted Index

constants. math: math functions and math(S)
function. matherr: error-handling malhcrd3M)

multiplc-access-user-spacel rnaus: maus(2)
functions. max: Fortran maximum-value max(3F) .~max: Fortran maximum-value functions. max(3F)

maze: generate a maze. mazc(6)
maze: generate a maze. mazc(6)

accounting. mclock: return Fortran time mciockOF)
rp07: RP07 non-removable medium moving-head disk. rp07(7)

mem: core memory. mcm(7)
memccpy: memory operations. memory(3C)

malloc: main memory allocator. maJloc(3C)
maJloc: fast main memory allocator. malloc(3X)

shmctl: shared memory control operations. shmctl(2)
mem: core memory. mem(7)

/(shared memory) operations. maus(2)
memccpy: memory operations. mcmoryOC)

shmop: shared memory operations. shmop(2)
lock process, text, or data in memory. plock: plock (2)

shmget: get shared memory segment. shmget(2)
sort: sort and/or merge files. sort(J)
files. acctmerg: merge or add total accounting acctmerg(I M)

file paste: merge same lines of several paste(J)
mesg: permit or deny messages. mesg(l)

msgctl: message control operations. msgctl(2)
msgop: message operations. msgop(2)

mailx: interactive message processing system. mailx(I)
ipcrm: remove a message queue ipcrm(1)

msgget: get message queue. msggct(2)
mesg: permit or deny messages. mcsg(l)

perror: system error messages. perrod3C)
kmc: KMC-lIB/KMSII microprocessor. kmc(7))functions. min: Fortran minimum-value minOF)

min: Fortran minimum-value functions. min(3F)
and commands. mk: how to remake the system mk(S)

boot image. mkboot: convert a.out file to mkboot(IM)
mkdir: make a directory. mkdidJ)
mkfs: construct a file system. mkfs(l M)
mknod: build special file. mknod(l M)

special or ordinary file. mknod: make a directory, or a mknod(2)
name. mktemp: make a unique file mktempOC)

mill: MLlI solid-state disk. mlll.pdp(7)
mill: Ml II solid-state disk. mlll.pdp(7)
table. mnttab: mounted file system mnttab(4)

intrinsic functions. mod: Fortran remaindering modOF)
chmod: change mode. chmod(t)

umask: set file-creation mode mask. umask(l)
chmod: change mode of file. chmod(2)

dmk: OMII-BA modem control multiplexor. dmk(7)
dmksct: connect OMI I-BA modems to KMCll-B dmksct(l M)

getty: set terminal type, modes, speed, and line/ getty(t M)
bs: a compiler/interpreter for modest-sized programs. bs(J)

touch: update access and modification times of a file. touch(I)
utime: set file access and modification times. utime(2)

pcldaemon: PCl link monitor. pcldaemon (I M)
profile. monitor: prepare execution monitor(3C)
uusub: monitor uucp network. uusub(I M)

moo: guessing game. moo(6)
mount: mount a file system. mount(2)

system. mount: mount and dismount file mount(1 M)

~mount: mount a file system. mount(2)
system. mount: mount and dismount file mount(l M)

setmnt: establish mount table. setmnt(l M)
mnttab: mounted file system table. mnttab(4)

- 24 -

Permuted Index

mvdir: move a directory. mvdir(1 M)
cp, In, mv: copy. link or move files. • cp(I)

Iseek: move read/write file pointer. Iseek(2)

~
hm: RM05 moving-head disk. hm(7)

hp: RP04/RP05/RP06 moving-head disk. hp(7)
rm80: RM80 moving-head disk. rm80(7)

RP07 non-removable medium moving-head disk. rp07: rp07(7)
rp: RP-II/RP03 moving-head disk. rp.pdp(7)

gd: general driver for moving-head disks. gd(7)
operations. msgctl: message control msgctl(2)

msgget: get message queue. msgget(2)
msgop: message operations. msgop(2)

(shared memory)/ maus: multiple-access-user-space maus(2)
oH-II asynchronous multiplexers. /OZ-llIKMC-II B. . dz(7)

dmk: OMII-BA madem control multiplexor. dmk(7)
cp, In, mv: copy, link or move files. cp()

mvdir: move a directory. mvdir(IM)
function. log: Fortran natural logarithm intrinsic 10gOF)

i-numbers. ncheck: generate names from ncheckO M)
anint: Fortran nearest integer functions. round OF)
PCl network. net: execute a command on the net(IC)

execute a command on the PCl network. nel: net(IC)
commands. stat: statistical network useful with graphical • stat(JG)

uusub: monitor uucp network. uusub()M)
a text file. newform: change the format of newform(J)

newgrp: log in to a new group. newgrp()
news: print news items. newsO)

news: print news items. newsO)
process. nice: change priority of a nice(2)
priority. nice: run a command at low nice(I)

nl: line numbering filter. nlO)

~
list. nJist: get entries from name nlistOC)

nm: print name list. nm.pdp(J)
object file. nm: print name list of common nm(»

hangups and quits. nohup: run a command immune to nohup(J)
setjmp: non-local goto. setjmp(JC)

moving-head/ rp07: RP07 non-removable medium rp07(7)
null: the null file. nul1(7)

null: the null file. null(7)
nl: line numbering filter. nl(l)

graphics: access graphical and numerical commands. • graphicsOG)
Idfcn: common object file access routines. Idfcn(4)

dump selected parts of an object file. dump: • dump(J)
Idopen: open a common object file for reading. Idopen(JX)
Idclose: close a common object file. Idclosc(JX)

the file header of a common object file. Idfhread: read IdfhreadOX)
indexed/named section of an object file. /seek to an IdsseekOX)

the symbol table of a common object file. Iseek to Idtbseek(JX)
number entries in a common object file. linenum: line Iinenum(4)

nm: print name list of common object file. nmO)
information for a common object file. Irelocation reloc(4)

section header for a common object file. scnhdr: • scnhdr(4)
formal. syms: common object file symbol table syms(4)
file header for common object files. filehdr: filehdr(4)

directories. cpsel: install object files in binary cpset(IM)
Id: link editor for common object files. Id(l)

print section sizes of common object files. size: • sizeO)
size: print sizes of object files. • size.pdp(J)

find ordering relation for an object library. larder: lorder(»

~
formats. convert: convert object/archive files to common • convert()

sky: obtain ephemerides. sky(6)
ad: octal dump. od(J)

ad: octal dump. • adO)
reading. Idopen: open a common object file for IdopenOX)

- 25 -

Permuted Index

fopen: open a stream. fopen(3S)
dup: duplicate an open file descriptor. dup(2)

open: open for reading or writing. o open(2)

~
writing. open: open for reading or o open(2)

prf: operating system profiler. o prf(7)
prOd: operating system profiler. o profiler(1M)

7SOops: VAX-11/7SO console operations. o 7S0ops(S)
7S00ps: VAX-II/7S0 console operations. 7S00ps(S)

/ (shared memory) operations. maus(2)
memccpy: memory operations. memory(3C)

msgctl: message control operations. msgctl(2)
msgop: message operations. msgop(2)

semctl: semaphore control operations. o semctl(2)
semop: semaphore operations. o semop(2)

shmctl: shared memory control operations. o shmctl(2)
shmop: shared memory operations. shmop(2)

strcat: string operations. o string(3C)
join: relational database operator. o join(1)

dcopy: copy file systems for optimal access time. o dcopy(1 M)
CRT screen handling and optimization package. ~urses: o curses(3X)

vector. getopt: get option letter from argument o getopt (3C)
file. ldohseek: seek to the optional file header of a Idohseek(3X)

fcnll: file control options. fcntl(S)
stty: set the options for a terminal. o sHy(I)

getopt: parse command options. o getopt(l)
functions. and, or, xor, not: Fortran boolean bool (3 F)

object library. lorder: find ordering relation for an lorder(l)
a directory, or a special or ordinary file. mknod: make mknod(2)

dial: establish an out-going terminal line/ o dial(3C)
assembler and link editor output. a.out: common o a.out(4)
assembler and link editor output. a.out: PDP-1I a.out.pdp(4)

vprintf: print formatted output of a varargs argument/ o vprintf(3S))vprintf: print formatted output of a varargs argument/ o vprintf(3X)
printf: print formatted output. o 0 o 0 o printf(3S)

acctdisk: overview of accounting acct(1 M)
chown: change owner and group of a file. . chown(2)
chown: change owner or group. o chown(J)

files. pack: compress and expand pack(t)
handling and optimization package. curses: CRT screen curses(3X)
sa I: system activity report package. o sadl M)

standard buffered input/output package. stdio: o stdio(3S)
interprocess communication package. ftok: standard o stdipe(3C)

check RP06 and RM05 disk packs. format: format and/or format(1 M)
4014 terminal. 4014: paginator for the TEKTRONIX o 4014(1)

interface. pel: parallel communications link pel (7)
process, process group, and parent process IDs. /get getpid(2)

getopt: parse command options. o getopt(l)
passwd: change login password. o passwd(l)
passwd: password file. passwd(4)

getpwent: get password file entry. getpwent (3C)
putpwent: write password file entry. putpwent(3C)

passwd: password file. o passwd(4)
getpass: read a password. o getpass(3C)

passwd: change login password. passwd(l)
pwck: password/group file checkers. o pwck(J M)

several file paste: merge same lines of paste< I)
dirname: deliver portions of path names. basename. basename< I)

directory. getcwd: get path-name of current working 0 getcwd(3C)
grcp: search a file for a pattern. o 0 grep(I)

processing language. awk: pattern scanning and awk(l)

~signal. pause: suspend process until pause(2)
peldaemon: PCL link monitor. peldaemon (I M)

net: execute a command on the PCL network. net(JC)
link interface. pel: parallel communications pel (7)

- 26 -

Permuted Index

pcldaemon: PCl link monitor. pcldaemon (I M)
fscv: convert files between PDP-II and VAX-I 1/780 systems. fscv.vax(]M)

~
as: assembler for PDP-II. as.pdp(l)

editor output. a.out: PDP-II assembler and link a.out.pdp(4)
/convert archive files from PDP-II to common format. arcv .pdp(1)

value about processor type. pdpll, vax: provide truth machid(l)
mesg: permit or deny messages. mesg(l)

format. acct: per-process accounting file acct(4)
acctcms: command summary from per-process accounting/ acctcms(1M)

perror: system error messages. perror(3C)
terminals. pg: file perusal filter for soft-copy pg(l)

soft-copy terminals. pg: file perusal filter for pg(l)
split: split a file into pieces. split(»

channel. pipe: create an interprocess pipe(2)
tee: pipe fitting. tee(I)

popen: initiate pipe to/from a process. popen(JS)
data in memory. plock: lock process, text, or plock(2)

plot: graphics interface. plot(4)
subroutines. plot: graphics interface plot(3X)

images. pnch: file format for card pnch(4)
fseek: reposition a file pointer in a stream. fseek(3S)

Iseek: move read/write file pointer. Iseek(2)
process. popen: initiate pipe to/from a popen(JS)

and library maintainer for portable archives. /archive ar(»
basename, dirname: deliver portions of path names. basename(I)

functions. dim: positive difference intrinsic dim(JF)
banner: make posters. banner(])

exp: exponential, logarithm, power, square root functions. exp(JM)
pr: print files. pr(])

function. dprod: double precision product intrinsic dprod(JF)

('
monitor: prepare execution profile. monitor(3C)

cpp: the C language preprocessor. cpp(»
unget: undo a previous get of an SCCS file. unget(l)

profiler. prf: operating system prf(7)
profiler. prftd: operating system • . profiler(1M)

graphical/ gps: graphical primitive string, format of gps(4)
types: primitive system data types. types(S)

prs: print an SCCS file. prs(I)
date: print and set the date. date(])

cal: print calendar. cal(»
of a file. sum: print checksum and block count sum(])

editing activity. sact: print current SCCS file sact(])
man: print entries in this manual. man(»

cat: concatenate and print files. cat(])
pr: print files. pd»

varargs argument/ vprintf: print formatted output of a vprintf(JS)
varargs argument/ vprintf: print formatted output of a vprintf(JX)

printf: print formatted output. printf(JS)
information bdblk: print, initialize, update bad bdblk(IM)

Ipstat: print lP status information. Ipstat(])
nm: print name list. nm.pdp(l)

object file. nm: print name list of common nm()
system. uname: print name of current UNIX uname()

news: print news items. news(l)
file(s). acctcom: search and print process accounting acctcom(])

object files. size: print section sizes of common size(])
size: print sizes of object files. size.pdp(»

names. id: print user and group IDs and id(l)
vpmsave: save and print VPM event traces. vpmsave(] M)

~
requests to an lP line printer. /cancel: send/cancel Ip(»

Ip: line printer. Ip(7)
vpr: Versatec printer spooler. vpr(»
vp: Versatec printer. vp.pdp(7)

enable: enable/disable lP printers. enable(])

- 27 -

Permuted Index

output. printf: print formatted printfOS)
nice: run a command at low priority. nice(l)

nice: change priority of a process. nicc(2)

'~errors. errpt: process a report of logged crrpt(J M)
acct: enable or disable process accounting. acct (2)

acctprcl: process accounting. acctprc(J M)
acctcom: search and print process accounting file(s). acctcom(l)

alarm: set a process alarm clock. alarm(2)
times. times: get process and child process timcs(2)

initialization. init: process control init(1 M)
timex: time a command; report process data and system/ timex(J)

exit: terminate process. exit(2)
fork: create a new process. fork (2)

process/ getpid: get process, process group, and parent getpid(2)
setpgrp: set process group 10. sctpgrp(2)

process group, and parent process IDs. /get process, getpid(2)
inittab: script for the init process. inittab(4)

kill: terminate a process. . kill(J)
nicc: change priority of a process. nice(2)

kill: send a signal to a process or a group of/ kill (2)
popen: initiate pipe to/from a process. . popenOS)

parent process/ getpid: get process, process group, and gctpid(2)
ps: report process status. ps(l)

memory. plock: lock process, text, or data in plock (2)
times: get process and child process times. times(2)

wait: wait for child process to stop or terminate. wait(2)
ptrace: process trace. ptrace(2)

pause: suspend process until signal. pause(2)
wait: await completion of process. wait(J)

list of file systems processed by fsck. checklist: checklist (4)
to a process or a group of processes. /send a signal kill(2)

killall: kill all active processes. killall(1 M) Jstructure. fuser: identify processes using a file or file fuser(J M)
awk: pattern scanning and processing language. awk(J)

shutdown: terminate all processing. • •• shutdown (I M)
mailx: interactive message processing system. mailx(J)

m4: macro processor. m4(J)
vax: provide truth value about processor type. pdpll. machid(J)

dprod: double precision product intrinsic function. dprod(3F)
prof: display profile data. prof(l)

function. prof: profile within a prof(S)
profile. profil: execution time profil(2)

prof: display profile data. prof(l)
monitor: prepare execution profile. monitorOC)

profil: execution time profile. profil(2)
environment at login time. profile: setting up an profile(4)

prof: profile within a function. prof(S)
prf: operating system profiler. prf(7)

prfld: operating system profiler. profiled I M)
sadp: disk access profiler. sadp(l M)

standard/restricted command programming language. /the sh(l)
link with built-in DDCMP protocol. dmc: communications dmc(7)

vpm: Virtual Protocol Machine. vpm(7)
vpmc: compiler for the virtual protocol machine. vpmc.dec(1 M)

arithmetic: provide drill in number facts. arithmetic(6)
processor type. pdpll, vax: provide truth value about machid(J)

true: provide truth values. true(I)
prs: print an SCCS file. prs(J)
ps: report process status. ps(I)

sxt: pseudo-device driver. sxt(7) J/generate uniformly distributed pseudo-random numbers. drand48 (3C)
ptrace: process trace. ptrace(2)

stream. ungetc: push character back into input ungetc(3S)
a stream. putc: put character or word on putc(3S)

- 28 -

Permuted Index

putenvOC)
putpwent(JC)

• •• putsOS)
· pwck(IM)

pwd(I)
qasurvey(I M)

· • qsort(3C)
• qasurvey(1M)
• tput(I)

ipcrm(I)
• • msgget(2)

qsort(3C)
nohup(I)

· quiz(6)
rand(JC)
rand (J F)
randOC)

• fsplit(l)
• • ratfor(I)

ratfor(I)
getpassOC)
Idtbread OX)

• IdshreadOX)
• . • read (2)

• mai)())
line(I)
read (2)
Idahread OX)
Idfhread(3X)

• IdopenOX)
· open(2)

Iseek(2)
signal(2)
signalOF)
acctcms(I M)
errdead (I M)
fwtmp(IM)
frec(1 M)

• ed(I)
regcmpOX)
regcmp(l)
make(l)
regexp(S)
regexp(S)
regcmp(I)

· regcmpOX)
comm())
lordedl)
join(I)
reloc(4)

• strip.pdp())
Idrseek (3X)
reloc(4)

• floorOM)
• modOF)

mk(S)
· calendar(1)

rje(S)
ct(IC)

• rmdel(l)
ipcrm(I)

· unlink(2)
• rm(l)

strip.pdp(1)

putenv: change or add value to
putpwent: write password file
puts: put a string on a
pwck: password/group file
pwd: working directory name.
qasurvey: Quality Assurance
qsort: quicker sort.
Quality Assurance Survey.
query terminfo database.
queue • • •
queue. . • • • • •
quicker sort.
quits. nohup: run a
quiz: test your knowledge.
rand: simple random-number
random number generator.
random-number generator.
ratfor, or efl files.
rat for: rational Fortran •
rational Fortran dialect.
read a password.
read an indexed symbol table
read an indexed/named section
read from file.
read mail.
read one line. • • .
read: read from file.
read the archive header
read the file header of a
reading. ldopen:
reading or writing.
read/write file pointer. •
receipt of a signal. signal:
receipt of a system signal.
records. /command summary
records from dump.
records. fwtmp:
recover files from a backup
red: text editor. • • • • .
regcmp: compile and execute
regcmp: regular expression
regenerate groups of programs.
regexp: regular expression
regular expression compile and
regular expression compile.
regular expression.
reject lines common to two
relation for an object/
relational database operator.
reloc: relocation information
relocation bits. .•.••
relocation entries of a
relocation information for a
remainder, absolute value/
remaindering intrinsic
remake the system and • • •
reminder service. . • • • •
(Remote Job Entry) to IBM.
remote terminal.•
remove a delta from an SCCS
remove a message queue •
remove directory entry.
remove files or directories.
remove symbols and relocation

generator.
irand:

rand: simple
fsplit: split n7,

dialect.
ratfor:

getpass:
entry of a file. Idtbread:

header of a file. Idshread:
read:

mail: send mail to users or
line:

Idahread:
common object file. Idfhread:
open a common object file for

open: open for
Iseek: move

specify what to do upon
/specify Fortran action on

from per-process accounting
errdead: extract error

manipulate connect accounting
tape. frec:

ed,
regular expression.

compile.
make: maintain, update, and
compile and match routines.

match routines. regexp:
regcmp:

regcmp: compile and execute
sorted files. comm: select or

lorder: find ordering
join:

for a common object file.
strip: remove symbols and

section of a/ Idrseek: seek to
common object file. reloc:

floor: floor, ceiling,
functions. mod: Fortran
commands. mk: how to

calendar:
rje: RJE

ct: spawn getty to a
file. rmdel:

ipcrm:
unlink:

rm:
bits. strip:

Survey.

environment.
entry.

stream.
checkers.

qasurvey:
tput:

ipcrm: remove a message
msgget: get message

qsort:
command immune to hangups and

- 29 -

Permuted Index

uniq: report
clock:

communication/ ipcs:
blocks. df:

errpt: process a
sa 1: system activity

timex: time a command;
ps:

file. uniq:
rjestat: RJE status

trenter: enter a trouble
sar: system activity

stream. fseek:
Ipsched: start/stop the LP
accept: allow/prevent LP

Ip, cancel: send/cancel
symbol table/ ldgetname:

argument. getarg:
variable. getenv:

accounting. mclock:
abs:

string. len:
substring. index:

logname:
name. getenv:

stat: data
reversi: a game of dramatic

col: filter
reversals.

crea1: create a new file or
file.

file. rf:
disk file. hs:

gather files and/or submit
rje:

IBM.
rjestat:

rk: RK-ll/RK03 or
rk:

rl:
directories.

format and/or check RP06 and
hm:

rmSO:

SCCS file.
romboot: special

loaders.
chroot: change
chroot: change

logarithm, power, square
sqrt: Fortran square

hpd: graphical device
common object file access

expression compile and match
graphical table of contents

disk.
moving-head disk. hp:

format: format and/or check
moving-head disk. rp07:

medium moving-head disk.

repeated lines in a file.
report CPU time used.
report inter-process
report number of free disk
report of logged errors.
report package.
report process data and system/
report process status.
report repeated lines in a
report ••• • .
report.
reporter.
reposition a file pointer in a
request scheduler •••
requests. ••
requests to an LP line/ •
retrieve symbol name for file
return Fortran command-line
return Fortran environment
return Fortran time.
return integer absolute value.
return length of Fortran
return location of Fortran
return login name of user.
return value for environment
returned by stat system call.
reversals.
reverse line-feeds.
reversi: a game of dramatic
rewrite an existing one.
rf: RFII/RSII fixed-head disk
RFll/RSll fixed-head disk
RH Il/RJS03-RJS04 fixed-head
RJE jobs. send: • • • • • • • .
RJE (Remote Job Entry) to IBM.
rje: RJE (Remote Job Entry) to
RJE status report • • • •
rjestat: RJE status report •
rk: RK-ll/RK03 or RKOS disk.
RKOS disk.
RK-ll/RK03 or RK05 disk.
rl: RL-IIlRLO 1 disk.
RL-il/RLO I disk.
rm: remove files or
RM05 disk packs. format:
RMOS moving-head disk. •
RMSO moving-head disk. •
rmSO: RMSO moving-head disk.
rmdel: remove a delta from an
ROM bootstrap loaders.
romboot: special ROM bootstrap
root directory.
root directory for a command.
root functions. /exponential,
root intrinsic function.
routines and filters.
routines. ldfcn:
routines. regexp: regular
routines. toe: • •
rp: RP-II/RP03 moving-head
RP04/RP05/RP06
RP06 and RM05 disk packs.
RP07 non-removable medium
rp07: RP07 non-removable

- 30 -

uniq (t)
• clock(3C)

ipcs(1)
• df(1 M)

errpt(l M)
• sar(l M)
• timex(l)
• ps(t)
• uniq(1)
• rjestat(lC)
• trenter(1)
• sar(»

fseek(3S)
• Ipsched (1 M)
• accept (I M)

lp(l)
ldgetname(3X)
getarg(3F)

• getenv (3 F)
mclock(3F)
absOC)
lenOF)

· index(3F)
• logname(3X)
• getenv(3C)
• stateS)

reversi(6)
· coH»

reversi(6)
• creat(2)

rf.pdp(7)
rf.pdp(7)

• hs.pdp(7)
• send(tC)

rje(S)
rje(S)
rjestat(tC)
rjestat (1 C)
rk.pdp(7)
rk.pdp(7)
rk.pdp(7)
rl(7)
rl(7)
rm(»

• format(J M)
hm(7)
rmSO(7)
rmSO(7)
rmdel(l)

· romboot(S)
romboot(S)
chroot(2)
chroot(J M)
exp(JM)

• sqrt(3F)
• gdev((G)

Idfcn(4)
regexp(S)
toc(lG)
rp.pdp(7)

· hp(7)
format(IM)
rp07(7)
rp07(7)

Permuted Index

rp: RP-II/RP03 moving-head disk. rp.pdp(7)
nice: run a command at low priority. niceO)

~
hangups and quits. nohup: run a command immune to nohup(»

runacct: run daily accounting. runacct (I M)
runacct: run daily accounting. runacct (1 M)

package. sa1: system activity report • sar(l M)
editing activity. sact: print current SCCS file sact(l)

sadp: disk access profiler. sadp(IM)
sag: system activity graph. sag(lG)
sar: system activity reporter. • sar(l)

traces. vpmsave: save and print VPM event • vpmsave(l M)
input. scanf: convert formatted • scanf(3S)

bfs: big file scanner. bfs(l)
language. awk: pattern scanning and processing · awk(l)
stand-alone programs. sec: C compiler for · scc(l)

the delta commentary of an SCCS delta. cdc: change · cdc(»
comb: combine SCCS deltas. · comb(l)

make a delta (change) to an SCCS file. delta: · delta(l)
sact: print current SCCS file editing activity. sact (I)

get: get a version of an SCCS file. get(»
prs: print an SCCS file. prs(l)

rmdel: remove a delta from an SCCS file. rmdel(])
compare two versions of an SCCS file. sccsditT: · sccsditT(])

sccsfile: format of SCCS file. . . · sccsfile(4)
undo a previous get of an SCCS file. unget: unget(l)

val: validate SCCS file. val(l)
admin: create and administer SCCS files.• · admin(l)

what: identify SCCS files.• what(l)
of an SCCS file. sccsditT: compare two versions · sccsdiff(l)

sccsfile: format of SCCS file. sccsfile(4)

~
start/stop the LP request scheduler lpsched: lpsched(1 M)

common object file. scnhdr: section header for a · scnhdr(4)
optimizationI curses: CRT screen handling and • curses()X)

vi: screen-oriented editor vi(l)
inittab: script for the init process. inittab(4)

system initialization shell scripts. brc: brc(IM)
sdb: symbolic debugger. • sdb(l)

program. sdiff: side-by-side difference sditT(l)
grep: search a file for a pattern. · grep(l)

bsearch: binary search a sorted table. bsearch (3C)
accounting file(s). acctcom: search and print process • acctcom0)

Isearch: linear search and update. Isearch()C)
hsearch: manage hash search tables. hsearch()C)

tsearch: manage binary search trees. tsearch OC)
jotto: secret word game. • jotto(6)

object file. scnhdr: section header for a common • scnhdr(4)
tread an indexed/named section header of a file. ldshread(3X)

to line number entries of a section of a file. /seek Idlseek OX)
to relocation entries of a section of a file. /seek Idrseek(3X)

/seek to an indexed/named section of an object file. Idsseek(3X)
files. size: print section sizes of common object · size(])

sed: stream editor.• · sed(I)
section of an object/ Idsseek: seek to an indexed/named • Idsseek()X)

a section of a file. Idlseek: seek to line number entries of • Idlseek(3X)
a section of a file. Idrseek: seek to relocation entries of ldrseek(3X)
header of a file. Idohseek: seek to the optional file ldohseek(3X)

common object file. ldtbseek: seek to the symbol table of a ldtbseek(3X)
shmget: get shared memory segment. • shmget(2)

brk: change data segment space allocation. • brk(2)r to two sorted files. comm: select or reject lines common • comm(l)
greek: select terminal filter. · greek(I)

of a file. cut: cut out selected fields of each line cut(l)
file. dump: dump selected parts of an object • dump(l)

semctl: semaphore control operations. • semctl(2)

• 31 -

Permuted Index

semop: semaphore operations. semop(2)
semget: get set of semaphores. semget(2)

operations. semcll: semaphore control semctl(2)

'~semget: get set of semaphores. semget(2)
semop: semaphore operations. semop(2)

a group of processes. kill: send a signal to a process or kill (2)
submit RJE jobs. send: gather files and/or send (I C)

mail. mail: send mail to users or read mail(I)
line printer. Ip, cancel: send/cancel requests to an LP Ip(I)

stream. setbuf: assign buffering to a setbufOS)
IDs. setuid, setgid: set user and group setuid(2)

setjmp: non-local goto. setjmpOC)
setmnt: establish mount table. setmnt(IM)
setpgrp: set process group ID. setpgrp(2)

login time. profile: setting up an environment at profile(4)
gettydefs: speed and terminal settings used by getty. gettydefs(4)

group IDs. setuid, setgid: set user and setuid(2)
standard/restricted command/ sh: shell, the sh(l)

operations. shmctl: shared memory control shmctl(2)
/multiple-access-user-space (shared memory) operations. maus(2)

shmop: shared memory operations. shmop(2)
shmget: get shared memory segment. shmget(2)

system: issue a shell command from Fortran. system0 F)
system: issue a shell command. systemOS)

shl: shell layer manager. shJ(I)
accounting. chargefee: shell procedures for acctsh(l M)

brc: system initialization shell scripts. brc(l M)
command programming/ sh: shell, the standard/restricted sh(l)

shl: shell layer manager. shJ(I)
operations. shmctl: shared memory control shmctl(2)

segment. shmget: get shared memory shmget(2)

)operations. shmop: shared memory • shmop(2)
processing. shutdown: terminate all shutdown (I M)

program. sdiff: side-by-side difference sdifT(l)
intrinsic function. sign: Fortran transfer-of-sign sign (3 F)

login: sign on. 10gin(I)
pause: suspend process until signal. •••••• pause(2)
what to do upon receipt of a signal. signal: specify signal (2)
action on receipt of a system signal. /specify Fortran signal OF)

on receipt of a system/ signal: specify Fortran action signal(3F)
upon receipt of a signal. signal: specify what to do • signal (2)
of processes. kill: send a signal to a process or a group kill (2)

ssignal: software signals. ssignal (3C)
lex: generate programs for simple lexical tasks. lex(I)

generator. rand: simple random-number • rand(JC)
function. sin: Fortran sine intrinsic sinOF)

sin: trigonometric functions. trig(3M)
sin: Fortran sine intrinsic function. sin(JF)

sinh: Fortran hyperbolic sine intrinsic function. sinhOF)
intrinsic function. sinh: Fortran hyperbolic sine sinh(3F)

sinh: hyperbolic functions. sinhOM)
common object files. size: print section sizes of • size(I)

files. size: print sizes of object . size.pdp(I)
size: print section sizes of common object files. size(I)

size: print sizes of object files. size.pdp(I)
sky: obtain ephemerides. sky (6)

an interval. sleep: suspend execution for sleep(J)
interval. sleep: suspend execution for sleepOC)

current/ ttyslot: find the slot in the utmp file of the ttyslot (3C)
spline: interpolate smooth curve. spline(IG)

~sno: SNOBOL interpreter. sno(J)
sno: SNOBOL interpreter. sno(I)

pg: file perusal filter for soft-copy terminals. pg(l)
ssignal: software signals. ssignal (3C)

• 32·

Permuted Index

mill: MLlI solid-state disk. mlll.pdp(7)
sort: sort and/or merge files. sort (I)

r qsort: quicker sort. qsortOC)
sort: sort and/or merge files. sort (J)

tsort: topological sort. tsort(l)
or reject lines common to two sorted files. comm: select comm(J)

bsearch: binary search a sorted table. bsearch()C)
brk: change data segment space allocation. brk(2)

terminal. ct: spawn getty to a remote ct(1 C)
fspec: format specification in text files. fspec(4)

receipt of a system/ signal: specify Fortran action on signaJ(3F)
receipt of a signal. signal: specify what to do upon signaJ(2)
/set terminal type, modes, speed, and line discipline. getty(1 M)

used by getty. gettydefs: speed and terminal settings gettydefs(4)
spell: find spelling errors. spell(l)

spell: find spelling errors. spell(l)
curve. spline: interpolate smooth spline<IG)

split: split a file into pieces. split(l)
csplit: context split. csplit(l)

files. fsplit: split n7, ratfor, or efl fsplit(J)
pieces. split: split a file into split(I)

uuclean: uucp spool directory clean-up. uuclean(1 M)
vpr: Versatec printer spooler. vpr(l)

Ipadmin: configure the LP spooling system. Ipadmin(1 M)
data in a machine-independent/ sputl: access long integer sputlOX)

intrinsic function. sqrt: Fortran square root sqrt()F)
exponential, logarithm, power, square root functions. exp: exp(3M)

function. sqrt: Fortran square root intrinsic • sqrt OF)
ssignal: software signals. ssignal ()C)

scc: C compiler for stand-alone programs. scc(J)
package. stdio: standard buffered input/output stdio()S)

~
communication package. ftok: standard interprocess stdipc()C)

.'/" \

"
programming/ sh: shell, the standard/restricted command sh(l)

scheduler lpsched: start/stop the LP request Ipsched(1 M)
unixboot: UNIX system startup and boot procedures. unixboot (8)

system call. stat: data returned by stat stat(5)
stat: get file status. stat(2)

useful with graphical! stat: statistical network stat(lG)
stat: data returned by stat system call. stat (5)
with graphical! stat: statistical network useful slat(IG)
ff: list file names and statistics for a file system. ff(l M)
ustat: get file system statistics. ustat (2)

Ipstat: print LP status information. Ipstat(l)
ferror: stream status inquiries. . • ferror()S)

control. uus1at: uucp status inquiry and job uustat (I C)
communication facilities status. /report inter-process ipcs(J)

ps: report process status. ps(l)
rjestat: RJE status report rjesta1(IC)
stat: get file status. stat (2)

input/output package. stdio: standard buffered stdio()S)
stime: set time. stimC(2)

wait for child process to stop or terminate. wait: wait (2)
strcat: string operations. string()C)

sed: stream editor. scd(l)
fclose: close or flush a stream. fclose(3S)

fopen: open a stream. fopen(JS)
reposition a file pointer in a stream. fseek: fseek(3S)

get character or word from a stream. getc: getc(3S)
gets: get a string from a stream. gets(3S)

~
put character or word on a stream. putc: putc(3S)

puts: put a string on a stream. puts(JS)
setbuf: assign buffering to a stream. setbuf(3S)

ferror: stream status inquiries. ferror(3S)
push character back into input stream. ungetc: ungetc(JS)

- 33 -

Permuted Index

long integer and base-64 ASCII string. a641: convert between a641(3C)
functions. Ige: string comparision intrinsic strcmp(3F)

convert date and time to string. ctime: • ctime(3C)

~floating-point number to string. ccvt: convert ecvt(3C)
gps: graphical primitive string, format of graphicall gps(4)

gets: get a string from a stream. gets(3S)
len: return length of Fortran string. len(3F)

puts: put a string on a stream. puts (3S)
strcat: string operations. string(3C)

number. strtod: convert string to double-precision strtod(3C)
strtol: convert string to integer. strtol(3C)

relocation bits. strip: remove symbols and strip.pdp(I)
number information from al strip: strip symbol and line strip(I)

information from al strip: strip symbol and line number strip(I)
double-precision number. strtod: convert string to strtod(JC)

integer. strtol: convert string to strtol(3C)
processes using a file or file structure. fuser: identify fused I M)

terminal. stty: set the options for a stty(I)
another user. su: become super-user or su(l)

send: gather files and/or submit RJE jobs. send(IC)
intro: introduction to subroutines and libraries. intro(3)

plot: graphics interface subroutines. plot(3X)
return location of Fortran substring. index: index (3 F)

count of a file. sum: print checksum and block sum(I)
du: summarize disk usage. du(l)

accountingl acctcms: command summary from per-process acctcms<I M)
sync: update the super block. sync(l)

sync: update super-block. sync(2)
su: become super-user or another user. su(l)

qasurvey: Quality Assurance Survey. qasurvey(t M)
interval. sleep: suspend execution for an sleep(t)

'~interval. sleep: suspend execution for sleep(3C)
pause: suspend process until signal. pause(2)

swab: swap bytes. swab(3C)
swab: swap bytes. swab(3C)

sxt: pseudo-device driver. sxt(7)
information froml strip: strip symbol and line number strip(I)

tablel Idgetname: retrieve symbol name for file symbol Idgetname(3X)
Iretrieve symbol name for file symbol table entry. Idgetname(3X)

Icompute the index of a symbol table entry of a file. Idtbindex (3X)
ldtbread: read an indexed symbol table entry of a file. Idtbread (3X)
syms: common object file symbol table format. syms(4)

object/ ldtbseek: seek to the symbol table of a common Idtbseek(3X)
sdb: symbolic debugger. sdb(I)

strip: remove symbols and relocation bits. strip.pdp(I)
symbol table format. syms: common object file syms(4)

sync: update super-block. sync(2)
sync: update the super block. sync(I)

du: DU-ll synchronous line interface. du.pdp(7)
sysdef: system definition. sysdef(l M)

binary search a sorted table. bsearch: bsearch(3C)
symbol name for file symbol table entry. '/retrieve Idgetname(3X)

/compute the index of a symbol table entry of a file. Idtbindex (3X)
/read an indexed symbol table entry of a file. Idtbread<JX)

common object file symbol table format. syms: syms(4)
master device information table. master: master.dec(4)

mnttab: mounted file system table. mnttab(4)
Idtbseek: seek to the symbol table of a common object file. Idtbseek(3X)

toc: graphical table of contents routines. toc(IG)
setmnt: establish mount table. setmnt(IM)

~hsearch: manage hash search tables. hsearch (3C)
tabs: set tabs on a terminal. tabs(I)

tabs: set tabs on a terminal. tabs(I)
a file, tail: deliver the last part of tail(O

·34·

Permuted Index

function. tan: Fortran tangent intrinsic tan(3F)
tan: Fortran tangent intrinsic function. tan(3F)

~.
tanh: Fortran hyperbolic tangent intrinsic function. tanh(3F)

tangent intrinsic function. tanh: Fortran hyperbolic tanh(JF)
tapeboot: magnetic tape bootstrap program. tapeboot(8)

gt: general driver for tape drives. gt(7)
hpio: HP 2645A terminal tape file archiver. hpioO)

tar: tape file archiver. tarO)
recover files from a backup tape. frec: frecO M)

ht: TU 16/TE16 magnetic tape interface. ht(7)
tm: TM II/TU 10 magnetic tape interface. tm.pdp(7)

ts: TS 11 magnetic tape interface. tsl1 (7)
tu78: TU78 magnetic tape interface. tu78 (7)

bootstrap program. tapeboot: magnetic tape tapeboot(8)
tar: tape file·archiver. tarO)

programs for simple lexical tasks. lex: generate lexO)
tee: pipe fitting. teeO)

4014: paginator for the TEKTRONIX 4014 terminal. 40140)
tmpfile: create a temporary file. tmpfile(3S)

tmpnam: create a name for a temporary file. , " tmpnam(3S)
terminals. term: conventional names for term (5)

term: format of compiled term file .. term (4)
file.. term: format of compiled term term (4)

for the TEKTRONIX 4014 terminal. 4014: paginator 4014(1)
functions of the DASI 450 terminal. 450: handle special 4500)

terminfo: terminal capability data base. terminfo(4)
ct: spawn getty to a remote terminal. ctOC)

generate file name for terminal. ctermid: ctermid (JS)
greek: select terminal filter. greek(l)

termio: general terminal interface. termio(7)
tty: controlling terminal interface. tty(7)

~
dial: establish an out-going terminal line connection. dial(JC)
getty. gettydefs: speed and terminal settings used by gettydefs(4)

stty: set the options for a terminal. sttyO)
tabs: set tabs on a terminal. tabsO)

hpio: HP 264SA terminal tape file archiver. hpioO)
tty: get the name of the terminal. ttyO)
ttyname: find name of a terminal. ttyname(JC)

and linel getty: set terminal type, modes, speed. gettyOM)
300: DASI 300 and 300s terminals. 3000)

handle special functions of HP terminals. hp: hpO)
perusal filter for soft-copy terminals. pg: file pg(t)

term: conventional names for terminals. term(S)
kill: terminate a process. kil}(1)

shutdown: terminate all processing. shutdown (1 M)
abort: terminate Fortran program. abort(JF)

exit: terminate process. exit(2)
daemon. errstop: terminate the error-logging errstopO M)

for child process to stop or terminate. wait: wait wait(2)
tic: terminfo compiler. ticO M)

tput: query terminfo database. tputO)
data base. terminfo: terminal capability terminfo(4)
interface. termio: general terminal termio(7)

command. test: condition evaluation testO)
vpmtest: test KMC lines. vpmtest (I M)

quiz: test your knowledge. quiz(6)
ed, red: text editor. ed(I)

edit: text editor edit(I)
ex: text editor. ex(l)

~
change the format of a text file. newform: newform(t)

fspec: format specification in text files. fspec(4)
plock: lock process, text, or data in memory. plock (2)

tic: terminfo compiler. tic(IM)
ttl: tic-tac-toe. ttt(6)

- 35 -

Permuted Index

data and system! timex: time a command; report process timex(l)
time: time a command. timeO)

mclock: return Fortran time accounting. mclock (3 F)
execute commands at a later time. at: at(1) /~systems for optimal access time. dcopy: copy file dcopyO M)

time: get time. time(2)
profil: execution time profile. profil(2)

up an environment at login time. profile: setting profile(4)
stime: set time. stime(2)

time: time a command. time(1)
time: get time. time(2)

ctime: convert date and time to string. ctime(3C)
clock: report CPU time used. clockOC)

process times. times: get process and child times(2)
update access and modification times of a file. touch: touch(l)

get process and child process times. times: times(2)
file access and modification times. utime: set utime(2)

process data and system! timex: time a command; report timex(l)
interface. tm: TM II/TU 10 magnetic tape tm.pdp(7)

interface. tm: TM II/TU I0 magnetic tape tm.pdp(7)
file. tmpfile: create a temporary tmpfileOS)

temporary file. tmpnam: create a name for a tmpnamOS)
contents routines. toc: graphical table of toc(IG)

popen: initiate pipe to/from a process. popenOS)
tsort: topological sort. tsort(I)

acctmerg: merge or add total accounting files. acctmerg(l M)
modification times of a file. touch: update access and touch(l)

toupper: translate characters. convOC)
tplot: graphics filters. tplotOG)
tput: query terminfo database. tputO)
tr: translate characters. trO)
trace: event-tracing driver. trace(7))ptrace: process trace. ptrace(2)

save and print VPM event traces. vpmsave: vpmsave(l M)
function. sign: Fortran transfer-of-sign intrinsic signOF)

toupper: translate characters. convOC)
tr: translate characters. tr(I)

ftw: walk a file tree. ftw(3C)
tsearch: manage binary search trees. tsearchOC)

report. trenter: enter a trouble trentedl)
sin: trigonometric functions. trigOM)

trenter: enter a trouble report. trentedl)
true: provide truth values. trueO)

type. pdpll, vax: provide truth value about processor machid(l)
true: provide truth values. trueO)

interface. ts: TS II magnetic tape ts II (7)
ts: TSII magnetic tape interface. ts II (7)

trees. tsearch: manage binary search tsearchOC)
tsort: topological sort. tsort (I)
ttt: tic-tac-toe. ttt(6)

interface. tty: controlling terminal tty(7)
terminal. tty: get the name of the tty(l)
terminal. ttyname: find name of a ttynameOC)

utmp file of the currentl ttyslot: find the slot in the ttyslotOC)
interface. ht: TUI6!TEI6 magnetic tape ht(7)

tu78: TU78 magnetic tape interface. tu78(7)
interface. tu78: TU78 magnetic tape tu78 (7)

int: explicit Fortran type conversion. ftypeOF)
file: determine file type. file(J)

truth value about processor type. pdpll, vax: provide • machid(l))getty: set terminal type, modes, speed, and linel getty0 M)
types. types: primitive system data types(S)

types: primitive system data types. types(S)
getpw: get name from UID. getpwOC)

- 36 -

Permuted Index

limits. ulimit: get and set user . ulimit(2)
creation mask. umask: set and get file umask(2)

~\
mask. umask: set file-creation mode umask(l)

umount: unmount a file system. umount(2)
UN IX system. uname: get name of current . uname(2)
UNIX system. uname: print name of current uname()

file. unget: undo a previous get of an SCCS unget(l)
an SCCS file. unget: undo a previous get of unget())

into input stream. ungetc: push character back ungetc()S)
drand48: generate uniformly distributed/ • . • drand48 ()C)

a file. uniq: report repeated lines in uniq(»
mktemp: make a unique file name. mktemp()C)

acu: Automatic Call Unit (ACU) interface. acu(7)
units: conversion program. units()

and boot procedures. unixboot: UN IX system startup unixboot (8)
execution. uux: UNIX-to-UNIX system command uux() C)

uuto: public UNIX-to-UNIX system file copy. uuto(1 C)
entry. unlink: remove directory unlink(2)

link: exercise link and unlink system calls. link() M)
umount: unmount a file system. umount(2)

times of a file. touch: update access and modification touch()
of programs. make: maintain, update, and regenerate groups make()

bdblk: print, initialize, update bad information bdblk() M)
Isearch: linear search and update. Isearch ()C)

sync: update super-block. sync(2)
sync: update the super block. • sync(»

du: summarize disk usage. du()
stat: statistical network useful with graphical/ · stat(IG)

id: print user and group IDs and names. id()
setuid, setgid: set user and group IDs. • setuid(2)

~
crontab: user crontab file. • crontab(»

character login name of the user. cuserid: get cuserid(3S)
environ: user environment. environ(S)

disk accounting data by user 10. diskusg: generate • diskusg (I M)
getuid: get user IDs • getuid(2)

ulimit: get and set user limits. ulimit(2)
logname: return login name of user. 10gname()X)
become super-user or another user. su: su()

the utmp file of the current user. /find the slot in ttyslot(3C)
write: write to another user. · write(»

mail: send mail to users or read mail. mail()
wall: write to all users. wall()M)

fuser: identify processes using a file or file/ fuser(1 M)
statistics. ustat: get file system • ustat(2)

gutil: graphical utilities. • gutiJ(IG)
modification times. utime: set file access and • utime(2)

utmp: utmp and wtmp entry formats. • utmp(4)
getutent: access utmp file entry. • getut()C)

ttyslot: find the slot in the utmp file of the current user. ttys!ot ()C)
formats. utmp: utmp and wtmp entry utmp(4)

clean-up. uuclean: uucp spool directory uuclean (I M)
uusub: monitor uucp network. uusub(IM)

uuclean: uucp spool directory clean-up. · uuclean () M)
control. uustat: uucp status inquiry and job uustat(IC)

system copy. uucp: UNIX system to UNIX uucp(JC)
and job control. uustat: uucp status inquiry uustat(IC)

uusub: monitor uucp network. uusub(1 M)
system file copy. uuto: public UNIX-to-UNIX uuto(JC)

command execution. uux: UNIX-to-UNIX system uux(JC)

~
val: validate SCCS file. • val()

val: validate SCCS file. • val()
pdpll, vax: provide truth value about processor type. machid(J)

abs: return integer absolute value. · abs()C)
abs: Fortran absolute value. • abs()F)

- 37 -

Permuted Index

getenv: return value for environment name. getenv(3C)
ceiling, remainder, absolute value functions. Iftoor, floor(3M)

putenv: change or add value to environment. putenv(3C)
values. values: machine-dependent • values(S) '~

true: provide truth values. trueO)
values: machine-dependent values. • values(S)

/print formatted output of a varargs argument list. vprintf(3S)
/print formatted output of a varargs argument list. vprintf(3X)

argument list. varargs: handle variable varargs(S)
varargs: handle variable argument list. varargs(S)

return Fortran environment variable. getenv: getenv(3F)
processor type. pdpll, vax: provide truth value about machid(l)

7S00ps: VAX-III7S0 console operations. 7S00ps(S)
verification program. vcf: VAX-I 11780 configuration vcf(IM)

7S00ps: VAX-III7S0 console operations. 7S00ps(S)
interface. vlx: VAX-1I1780 LSI console floppy vlx(1 M)

files between PDP-II and VAX-1I1780 systems. /convert fscv.vax 0 M)
vc: version control. vcO)

verification program. vcf: VAX-1I1780 configuration vcf(IM)
option letter from argument vector. getopt: get getopt(3C)

vcf: VAX-I 11780 configuration verification program. vcf(1 M)
assert: verify program assertion. assert(3X)

vpr: Versatec printer spooler. vpr())
vp: Versatec printer. • vp.pdp(7)
vc: version control. vcO)

get: get a version of an SCCS file. getO)
sccsdiff: compare two versions of an SCCS file. sccsdiff(I)

vi: screen-oriented editor viOl
vpm: Virtual Protocol Machine. vpm(7)

vpmc: compiler for the virtual protocol machine. vpmc.decO M)
floppy interface. vb: VAX-1I1780 LSI console . vlxOM)

with label checking. volcopy: copy file systems • volcopyO M))file system: format of system volume. fs(4)
vp: Versatec printer. vp.pdp(7)

vpmset: connect/load VPM drivers vpmset(IM)
vpmsave: save and print VPM event traces. vpmsave(I M)

vpm: Virtual Protocol Machine. vpm(7)
protocol machine. vpmc: compiler for the virtual vpmc.decO M)

event traces. vpmsave: save and print VPM vpmsave(1M)
drivers vpmset: connectlload VPM vpmset(IM)

vpmtest: test KMC lines. vpmtest0 M)
vpr: Versatec printer spooler. vpr())

output of a varargs argument/ vprintf: print formatted vprintf(3S)
output of a varargs argumentl vprintf: print formatted vprintf(3X)

process. wait: await completion of waite))
or terminate. wait: wait for child process to stop wait(2)

to stop or terminate. wait: wait for child process wait(2)
ftw: walk a file tree. ftw(3C)

wall: write to all users. wall(1 M)
wc: word count. we(l)
what: identify SCCS files. what(J)

signal. signal: specify what to do upon receipt of a signal (2)
crashes. crash: what to do when the system • crash.decCg)

whodo: who is doing what. whodoOM)
who: who is on the system. who(I)

who: who is on the system. who(I)
whodo: who is doing what. whodoOM)

cd: change working directory. edO)
chdir: change working directory. chdir(2)

get path-name of current working directory. getcwd: getcwd(3C)

~pwd: working directory name. pwd(I)
write: write on a file. write(2)

putpwent: write password file entry. putpwent(3C)
wall: write to all users. walHlM)

- 38 -

write: write to another user.
write: write on a file.
write: write to another user.

open: open for reading or writing. ••••.
utmp: utmp and wtmp entry formats. . . .

hunt-the-wumpus. wump: the game of
list(s) and execute command. xargs: construct argument

functions. and, or, xor, not: Fortran boolean ••
jO, j I, jn, yO, yI, yn: Bessel functions. .

jO, j I, jn, yO, yI, yn: Bessel functions.
compiler-compiler. yacc: yet another

jO, jl, jn, yO, yl, yn: Bessel functions. • ••

- 39 -

Permuted Index

•.•• write(J)
write(2)
write(J)
open (2)
utmp(4)

• wump(6)
· xargs(J)
· bool (3 F)
· bessel(3M)
• bessel(3M)
• yacc(J)

bessel(3M)

INTRO(2)

NAME

INTRO(2)

~'

intro - introduction to system calls and error numbers

SYNOPSIS
#include < errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise impossible
returned value. This is almost always -1; the individual descriptions specify
the details. An error number is also made available in the external variable
ermo. Errno is not cleared on successful calls, so it should be tested only after
an error has been indicated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined in
<errno.h>.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way
forbidden except to its owner or super-user. It is also returned for
attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist
but doesn't, or when one of the directories in a path name does not
exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill
or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the interrupted
system call returned this error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for example,
a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member of
the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropri­
ate permissions, does not start with a valid magic number (see
a.out(4».

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively,
write) request is made to a file which is open only for writing (respec­
tively, reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-for
child processes.

- 1 -

INTRO(2) INTRO(2}

II EAGAIN No more processes
A fork failed because the system's process table is full or the user is
not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the max­
imum space size is a system parameter. The error may also occur if
the arrangement of text, data, and stack segments requires too many
segmentation registers, or if there is not enough swap space during a
fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protec­
tion system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argu­
ment of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required,
e.g., in mount.

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or
an attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text segment).
It will also occur if an attempt is made to enable accounting when it is
already enabled. The device or resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a dev­
ice; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for exam­
ple in a path prefix or as an argument to chdir (2) .

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; men­
tioning an undefined signal in signal, or kill; reading or writing a file
for which Iseek has generated a negative pointer). Also set by the
math functions described in the OM) entries of this manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a time.

25 ENOTTY Not a character device
An attempt was made to iocl1(2) a file that is not a special character
device.

- 2 -

INTRO(2) INTRO(2)

33

~\ 34
I-

35

36

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing a
pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes)
or ULIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the
device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000)
to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal
is ignored.

EDOM Math argument
The argument of a function in the math package OM) is out of the
domain of the function.

ERANGE Result too large
The value of a function in the math package OM) is not representable
within machine precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue; see msgop (2).

E1DRM Identifier Removed
This error is returned to processes that resume execution due to the
removal of an identifier from the file system's name space (see
msgctJ(2). semctJ(2), and shmctJ(2».

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer
called a process ID. The range of this ID is from I to 30,000.

Parent Process 10
A new process is created by a currently active process; see fork (2). The parent
process ID of a process is the process ID of its creator.

Process Group 10
Each active process is a member of a process group that is identified by a posi­
tive integer called the process group 10. This ID is the process ID of the group
leader. This grouping permits the signaling of related processes; see ki/J(2).

Tty Group 10
Each active process can be a member of a terminal group that is identified by a
positive integer called the tty group 10. This grouping is used to terminate a
group of related processes upon termination of one of the processes in the
group; see exit (2) and signaJ(2).

- 3 -

INTRO(2) INTRO(2)

Real User 10 and Real Group 10
Each user allowed on the system is identified by a positive integer called a real
user ID.

Each user is also a member of a group. The group is identified by a positive
integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real
user ID and real group 10, respectively, of the user responsible for the creation
of the process.

Effective User 10 and Effective Group 10
An active process has an effective user ID and an effective group ID that are
used to determine file access permissions (see below). The effective user ID and
effective group ID are equal to the process's real user ID and real group ID
respectively, unless the process or one of its ancestors evolved from a file that
had the set-user-ID bit or set-group ID bit set; see exec(2).

Super-user
A process is recognized as a super-user process and is granted special privileges
if its effective user 10 is O.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are special processes
and are referred to as procO and prod.

ProcO is the scheduler. Prod is the initialization process Gnit). Proel is the
ancestor of every other process in the system and is used to control the process
structure.

File Descriptor
A file descriptor is a small integer used to do I/O on a file. The value of a file
descriptor is from 0 to 19. A process may have no more than 20 file descriptors
(0-19) open simultaneously. A file descriptor is returned by system calls such
as open(2) , or pipe(2). The file descriptor is used as an argument by calls such
as read(2), write (2) , ioctI(2), and c1ose(2).

File Name
Names consisting of 1 to 14 characters may be used to name an ordinary file,
special file or directory.

These characters may be selected from the set of all character values excluding
\0 (null) and the ASCII code for I (slash).

Note that it is generally unwise to use *, ?, I, or) as part of file names because
of the special meaning attached to these characters by the shell. See sh (I).
Although permitted, it is advisable to avoid the use of unprintable characters in
file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional
slash (f), followed by zero or more directory names separated by slashes,
optionally followed by a file name.

More precisely, a path name is a null-terminated character string constructed
as foHows:

<path-name> ::=<file-name> I<path-prefix> <file-name>11
< path-prefix> ::.... < rtprefix > II < rtprefix >
< rtprefix>. ::.... <dirname> II < rtprefix> <dirname> I

where <file-name> is a string of I to 14 characters other than the ASCII slash
and null, and <dirname> is a string of 1 to 14 characters (other than the
ASCII slash and nun> that names a directory.

- 4 -

INTRO(2) INTRO(2)

If a path name begins with a slash, the path search begins at the root direc­
tory. Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named
a non-existent file.

Directory
Directory entries are called links. By convention, a directory contains at least
two links, . and .., referred to as dot and dot-dot respectively. Dot refers to
the directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path name searches. The root
directory of a process need not be the root directory of the root file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted to a process if
one or more of the following are true:

The effective user 10 of the process is super-user.

The effective user 10 of the process matches the user 10 of the owner
of the file and the appropriate access bit of the "owner" portion (0700)
of the file mode is set.

The effective user 10 of the process does not match the user 10 of the
owner of the file, and the effective group 10 of the process matches the
group of the file and the appropriate access bit of the "group" portion
(070) of the file mode is set.

The effective user 10 of the process does not match the user 10 of the
owner of the file, and the effective group 10 of the process does not
match the group 10 of the file, and the appropriate access bit of the
"other" portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a
msgget (2) system call. Each msqid has a message queue and a data structure
associated with it. The data structure is referred to as msqid_ds and contains
the following members:

ipc-'perm msgyerm;
msg_qnum;
msg_qbytes;
msgJspid;
msgJrpid;
msg_stime;
msgJtime;
msg_ctime;

struct
ushort
ushort
ushort
ushort
time_t
time_t
time_t

/- operation permission struct -/
/- number of msgs on q -/
/- max number of bytes on q -/
/- pid of last msgsnd operation -/
/- pid of last msgrcv operation -/
/- last msgsnd time -/
/- last msgrcv time -/
/- last change time -/
/- Times measured in secs since -/
/- 00:00:00 GMT, Jan. I, 1970 -/

Msg.."erm is an ipcJ>erm structure that specifies the message operation permis­
sion (see below). This structure includes the following members:

ushort cuid; /- creator user id -/
ushort cgid; /- creator group id -/
ushort uid; /- user id -/
ushort gid; /- group id -/
ushort mode; /- r/w permission -/

- 5 -

INTRO(2) INTRO(2)

Msg_qnum is the number of messages currently on the queue. Msg_qbytes is
the maximum number of bytes allowed on the queue. MsgJspid is the process
id of the last process that performed a msgsnd operation. MsgJrpid is the pro­
cess id of the last process that performed a msgrcv operation. Msg_stime is the
time of the last msgsnd operation, msgJtime is the time of the last msgrcv
operation, and msg_ctime is the time of the last msgct/(2} operation that
changed a member of the above structure.

Message Operation Permissions
In the msgop(2} and msgct/(2} system call descriptions, the permiSSion
required for an operation is given as "hoken}", where "token" is the type of per­
mission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or more
of the following are true:

The effective user 10 of the process is super-user.

The effective user 10 of the process matches msg...,Perm.lcJuid in the
data structure associated with msqid and the appropriate bit of the
"user" portion (0600) of msg...,Perm.mode is set.

The effective user 10 of the process does not match msg...,Perm.lcluid
and the effective group 10 of the process matches msg...,Perm.lclgid and
the appropriate bit of the "group" portion (060) of msg...,Perm.mode is
set.

/- operation permission struct -/
/- number of sems in set -/
/. last operation time -/
/. last change time ./
/- Times measured in secs since -/
/- 00:00:00 GMT, Jan. I. 1970 -/

Sem..."erm is an ipc.J>Crm structure that specifies the semaphore operation per­
mission (see below). This structure includes the following members:

ushort cuid; /- creator user id -/
ushort cgid; /. creator group id ./
ushort uid; /. user id •/
ushort gid; /. group id ./
ushort mode; /- rIa permission -/

The value of sem_osems is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to the value of sem_nsems

The effective user 10 of the process does not match msg..."erm.lcluid
and the effective group 10 of the process does not match
msg...,Perm.lclgid and the appropriate bit of the "other" portion (06) of
msg..."erm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a
semget (2) system call. Each semid has a set of semaphores and a data struc­
ture associated with it. The data structure is referred to as semid_ds and con­
tains the following members:

struct ipc.J>erm sem""perm;
ushort sem_nsems;
time_t sem_otime;
time_t sem_ctime;

- 6 -

INTRO(2) INTRO(2)

minus 1. Sem_otime is the time of the last semop {2} operation, and sem_ctime
is the time of the last semct/{2} operation that changed a member of the above
structure.

A semaphore is a data structure that contains the following members:

ushort semval; /* semaphore value -/
short sempid; /- pid of last operation -/
ushort semncnt; /* # awaiting semval > cval -/
ushort semzcnt; /* # awaiting semval 0 -/

Semval is a non-negative integer. Sempid is equal to the process ID of the last
process that performed a semaphore operation on this semaphore. Semncnt is a
count of the number of processes that are currently suspended awaiting this
semaphore's semval to become greater than its current value. Semzcnt is a
count of the number of processes that are currently suspended awaiting this
semaphore's semval to become zero.

Semaphore Operation Permissions
In the semop(2} and semct/(2} system call descriptions, the permission
required for an operation is given as "hoken}", where "token" is the type of per­
mission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more
of the following are true:

The effective user 10 of the process is super-user.

The effective user 10 of the process matches semj»erm.lc]uid in the
data structure associated with semid and the appropriate bit of the
"user" portion {0600} of semj»erm.mode is set.

The effective user ID of the process does not match semj»erm.lc]uid
and the effective group 10 of the process matches sem....Perm.lc]gid and
the appropriate bit of the "group" portion {060} of sem...,Perm.mode is
set.

The effective user 10 of the process does not match sem...,Perm.lc]uid
and the effective group 10 of the process does not match
semj»erm.lclgid and the appropriate bit of the "other" portion {06} of
semj»erm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier {shmid} is a unique positive integer created by a
shmget (2) system call. Each shmid has a segment of memory (referred to as a
shared memory segment) and a data structure associated with it. The data
structure is referred to as shmid_ds and contains the following members:

struct ipc""perm shm....perm; /- operation permission struct -/
int shm_segsz; /- size of segment -/
ushort shm_cpid; /- creator pid -/
ushort shmJpid; /* pid of last operation */
short shm nattch; /* number of current attaches -/
time t shm-atime; /- last attach time -/
time-t shm-dtime; /- last detach time -/
time:t shm:ctime; /- last change time -/

/- Times measured in secs since -/

- 7 -

INTRO(2) INTRO(2)

/- 00:00:00 GMT, Jan. I, 1970 -/

Shm..,Perm is an ipc-pcrm structure that specifies the shared memory operation
permission (see below). This structure includes the following members:

ushort cuid; /- creator user id -/
ushort cgid; /- creator group id -/
ushort uid; /- user id -/
ushort gid; /- group id -/
ushort mode; /- r/w permission -/

Shm_segsz specifies the size of the shared memory segment. Shm_cpid is the
process id of the process that created the shared memory identifier. ShrnJpid is
the process id of the last process that performed a shmop (2) operation.
Shm_oattch is the number of processes that currently have this segment
attached. Shm_atime is the time of the last shmat operation, shm_dtime is the
time of the last shmdt operation, and shm_ctime is the time of the last
shmctl (2) operation that changed one of the members of the above structure.

Shared Memory Operation Permissions
In the shmop (2) and shmctJ(2) system call descriptions, the permission
required for an operation is given as "hoken}", where "token" is the type of per­
mission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more
of the following are true:

The effective user 10 of the process is super-user.

The effective user 10 of the process matches shm....Perm.lcluid in the
data structure associated with shmid and the appropriate bit of the
"user" portion (0600) of shm..,Perm.mode is set.

The effective user 10 of the process does not match shm..,Perm.lcluid
and the effective group 10 of the process matches shm...,Perm.lclgid and
the appropriate bit of the "group" portion (060) of shm..,Perm.mode is
set.

The effective user 10 of the process does not match shm....Perm.lcluid
and the effective group 10 of the process does not match
shm...,Perm.lclgid and the appropriate bit of the "other" portion (06) of
shm...,Perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(J).

- 8 -

"

ACCESS (2)

NAME

ACCESS (2)

[EROFS]

[EFAULT]

[ENOENT]
[EACCES]

~\
\

access - determine accessibility of a file

SYNOPSIS
iot access (path, amode)
char .path;
iot amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for
accessibility according to the bit pattern contained in amode, using the real
user ID in place of the effective user ID and the real group ID in place of the
effective group ID. The bit pattern contained in amode is constructed as fol­
lows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTD1R] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
Write access is requested for a file on a read-only
file system.

[ETXTBSY] Write access is requested for a pure procedure
(shared text) file that is being executed.

[EACCESS] Permission bits of the file mode do not permit
the requested access.
Path points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to th~ "owner" read,
write, and execute mode bits Members of the file's group other than the owner
have permissions checked with respect to the "group" mode bits, and all others
have permissions checked with respect to the "other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

- 1 -

ACCT(2) ACCT(2)

NAME

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EACCES)

[EISDIR]

[EROFS)

[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

acct - enable or disable process accounting

SYNOPSIS
iot acct (patb)
cbar .patb;

DESCRIPTION
Acct is used to enable or disable the system process accounting routine. If the
routine is enabled, an accounting record will be written on an accounting file
for each process that terminates. Termination can be caused by one of two
things: an exit call or a signal; see exit (2) and signaI(2). The effective user ID
of the calling process must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file
format is given in acct (4).

The accounting routine is enabled if path is non-zero and no errors occur dur­
ing the system call. It is disabled if path is zero and no errors occur during the
system call.

Acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.

[EBUSY) An attempt is being made to enable accounting when it is
already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file path name do
not exist.

A component of the path prefix denies search permission.

The file named by path is not an ordinary file.

Mode permission is denied for the named accounting file.

The named file is a directory.

The named file resides on a read-only file system.

Path points to an illegal address.

SEE ALSO
exit(2), signaI(2), acct(4).

- 1 -

ALARM (2)

NAME

ALARM (2)

~.,

alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sed
unsigned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds specified
by sec have elapsed; see signa/(2).

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling process.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the alarm clock of
the calling process.

SEE ALSO
pause(2), signa1(2).

• 1 •

BRK(2)

NAME
brk. sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk Cincr)
int iner;

BRK(2)

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated for
the calling process's data segment; see exec(2). The change is made by reset­
ting the process's break value and allocating the appropriate amount of space.
The break value is the address of the first location beyond the end of the data
segment. The amount of allocated space increases as the break value increases.
The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Incr can be negative. in which case the amount of allocated space
is decreased.

Brk and sbrk will fail without making any change in the allocated space if one
or more of the following are true:

Such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see u!imit(2». [ENOMEMI

Such a change would result in the break value being greater than or
equal to the start address of any attached shared memory segment (see
shmop(2».

RETURN VALUE
Upon successful completion. brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and errno is set to ind'icate
the error.

SEE ALSO
exec(2), shmop(2). ulimit(2).

- 1 -

CHDIR(2)

NAME

CHDIR(2)

~."""'"\' '

chdir - change working directory

SYNOPSIS
iot cbdir (path)
cbar .path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory
to become the current working directory, the starting point for path searches
for path names not beginning with t.
Chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR) A component of the path name is not a directory.

[ENOENT) The named directory does not exist.

[EACCES) Search permission is denied for any component of the path
name.

[EFAULT] Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -)
is returned and errno is set to indicate the error.

SEE ALSO
chroot(2).

- I -

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int cbmod (path, mode)
cbar .path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permission
portion of the named file's mode according to the bit pattern contained in
mode.

Access permission bits are interpreted as follows:

Otherwise, a value of -1

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied on a component of the path
prefix.

The effective user 10 does not match the owner of the file and
the effective user 10 is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the process.

[EPERM)

04000 Set user 10 on execution.
02000 Set group 10 on execution.
01000 Save text image after execution.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user 10 of the process is not super-user, mode bit 01000 {save
text image on execution} is cleared.

If the effective user 10 of the process is not super-user and the effective group
10 of the process does not match the group 10 of the file, mode bit 02000 {set /~.,
group 10 on execution} is cleared. J
If an executable file is prepared for sharing then mode bit 01000 prevents the
system from abandoning the swap-space image of the program-text portion of
the file when its last user terminates. Thus, when the next user of the file exe-
cutes it, the text need not be read from the file system but can simply be
swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the fol­
lowing are true:

[ENOTDlR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned.
is returned and ermo is set to indicate the error.

SEE ALSO
chown (2), mknod(2).

• 1 •

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
cbar ·patb;
int owner, group;

Otherwise, a value of -I

[EPERM]

[EROFS]

[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned.
is returned and errno is set to indicate the error.

DESCRIPTION
Path points to a path name naming a file. The owner 10 and group 10 of the
named file are set to the numeric values contained in owner and group respec­
tively.

Only processes with effective user 10 equal to the file owner or super-user may
change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-IO and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named filt: will remain
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

The effective user 10 does not match the owner of the file and
the effective user 10 is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the process.

SEE ALSO
chmod(2).
chown(t) in the UNIX System V User Reference Manual.

- 1 -

CHROOT(2)

NAME

CHROOT(2)

chroot - change root directory

SYNOPSIS
int cbroot (patb)
cbar .path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named
directory to become the root directory, the starting point for path searches for
path names beginning with I. The user's working directory is unaffected by the
chroot system call.

The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root
directory.

Chroot will fail and the root directory will remain unchanged if one or more of
the following are true:

[ENOTOIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user 10 is not super-user.

[EFAULT] Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -I
is returned and errno is set to indicate the error.

SEE ALSO
chdir(2).

- 1 -

CLOSE(2)

NAME

CLOSE (2)

close -- close a file descriptor

SYNOPSIS
iot close (tildes)
iot tildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creal, open, dup, lentI, or pipe sys­
tem call. Close closes the file descriptor indicated by jildes.

Close will fail if jildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of --I
is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2) .

• 1 •

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char .path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing file named
by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner 10 is set to the effective user 10, of the
process the group 10 of the process is set to the effective group 10, of the pro­
cess and the low-order 12 bits of the file mode are set to the value of mode
modified as follows:

All bits set in the process's file mode creation mask are cleared. See
umask(2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2).

[EROFS]

[ETXTBSV]

[ENOENT]

[EACCES]

Upon successful completion, the file descriptor is returned and the file is open
for writing, even if the mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to remain open across exec
system calls. See !cntI(2). No process may have more than 20 files open
simultaneously. A new file may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:

[ENOTOIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

The path name is null.

The file does not exist and the directory in which the file is to
be created does not permit writing.

The named file resides or would reside on a read-only file sys-
tem.

The file is a pure procedure (shared text) file that is being
executed.

The file exists and write permission is denied.

The named file is an existing directory.

Twenty (20) file descriptors are currently open.

Path points outside the allocated address space of the process.

The system file table is full.

[EACCES]

[EISDIR]

[EMFILE]

[EFAULT]

[ENFILE]

RETURN VALUE
Upon successful completion. a non-negative integer. namely the file descriptor,
is returned. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
chmod(2) , close(2). dup(2). fcntl(2). Iseek(2). open(2). read(2). umask(2),
write(2).

- 1 -

DUP(2)

NAME

DUP(2)

~••• ­(
dup - duplicate an open file descriptor

SYNOPSIS
int dup (tildes)
int tildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creal, open, dup, fentl, or pipe sys­
tem call. Dup returns a new file descriptor having the following in common
with the original:

Same open file (or pipe).

Same file pointer (Le., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exee system calls. See
fent/(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

IEMFILE] Twenty (20) file descriptors are currently open.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -I is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), close(2), exec(2), fcntI(2). open(2), pipe(2).

- 1 -

EXEC (2)

NAME

EXEC (2)

execl. execv. execle. execve. execlp. execvp - execute a file

SYNOPSIS
int execl (patb, argO, argl, ..., argn, 0)
cbar .patb, .argO, .argl, ..., ·argn;

int exec' (patb, argv)
cbar ·patb, .argv[I;
int execle (patb, argO, argl, ..., argn, 0, en,p)
cbar .patb, .argO, ·argl, ..., ·argn, .en,p[I;
int execve (patb, argv, envp)
char .patb, .argvl I, .envp[I;
int execlp (file, argO, argl, ..., argo, 0)
char .file, .argO, .argl, ..., ·argn;

int exec,p (file, argv)
char .file, .argv[I;

DESCRIPTION
Exec in all its forms transforms the calling process into a new process. The
new process is constructed from an ordinary. executable file called the new pro­
cess file. This file consists of a header (see a.out (4». a text segment. and a
data segment. The data segment contains an initialized portion and an unini­
tialized portion (bss). There can be no return from a successful exec because
the calling process is overlaid by the new process.

When a C program is executed. it is called as follows:

main (argc, argv, envp)
int argc;
cbar nargv, nenvp;

where argc is the argument count and argv is an array of character pointers to
the arguments themselves. As indicated. argc is conventionally at least one and
the first member of the array points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line "PATH" (see
environ (5». The environment is supplied by the shell (see sh (1».

ArgO. arg} • argn are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By conven­
tion. at least argO must be present and point to a string that is the same as
path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings
constitute the argument list available to the new process. By convention. argv
must have at least one member. and it must point to a string that is the same
as path (or its last component>. Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process. Envp is terminated by a null
pointer. For exec! and execv. the C run-time start-off routine places a pointer
to the environment of the calling process in the global cell:

extern char ·.environ;
and it is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process.
except for those whose close-on-exec flag is set; see !cntI(2). For those file
descriptors that remain open. the file pointer is unchanged.

- 1 -

EXEC (2) EXEC(2)

Signals set to terminate the calling process will be set to terminate the new pro­
cess. Signals set to be ignored by the calling process will be set to be ignored
by the new process. Signals set to be caught by the calling process will be set
to terminate new process; see signaI(2).

If the set-user-IO mode bit of the new process file is set (see chmod(2», exec
sets the effective user 10 of the new process to the owner 10 of the new process
file. Similarly, if the set-group-IO mode bit of the new process file is set, the
effective group 10 of the new process is set to the group 10 of the new process
file. The real user 10 and real group 10 of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process (see shmop(2».

Profiling is disabled for the new process; see profiI(2).

The new process also inherits the following attributes from the calling process:

nice value (see nice (2»
process 10
parent process 10
process group 10
semadj values (see semop (2»
tty group 10 <See exit(2) and signaI(2»
trace flag (see ptrace (2) request 0)
time left until an alarm clock signal (see alarm (2»
current working directory
root directory
file mode creation mask (see umask (2»
file size limit (see ulimit (2»
utime, stime, cutime I and cstime (see times (2»

Exec will fail and return to the calling process if one or more of the following
are true:

[ENOENT]

[ENOTOIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY)

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT)

One or more components of the new process path name of the
file do not exist.

A component of the new process path of the file prefix is not a
directory.

Search permission is denied for a directory listed in the new
process file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

The exec is not an execlp or execvp, and the new process file
has the appropriate access permission but an invalid magic
number in its header.

The new process file is a pure procedure (shared text) file that
is currently open for writing by some process.

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

The number of bytes in the new process's argument list is
greater than the system-imposed limit of 5120 bytes.

The new process file is not as long as indicated by the size
values in its header.

Path, argv, or envp point to an illegal address.

- 2 -

EXEC(2) EXEC(2)

RETURN VALUE
If exec returns to the calling process an error has occurred; the return value
will be -I and errno will be set to indicate the error.

SEE ALSO
alarm(2), exit(2), fork (2) , nice(2) , ptrace(2), semop(2) , signal(2), times(2),
ulimit(2), umask(2), a.out(4), environ(S).
sh(I) in the UNIX System V User Reference Manual.

• 3 •

'~

EXIT (2)

NAME

EXIT (2)

exit, _exit - terminate process

SYNOPSIS
void exit <status)
int status;
void exit <status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wail, it is
notified of the calling process's termination and the low order eight bits
(i.e., bits 0377) of status are made available to it; see wail (2).

If the parent process of the calling process is not executing await, the
calling process is transformed into a zombie process. A zombie process
is a process that only occupies a slot in the process table. It has no
other space allocated either in user or kernel space. The process table
slot that it occupies is partially overlaid with time accounting informa­
tion (see <sys/proc.h» to be used by times.

The parent process 10 of all of the calling process's existing child
processes and zombie processes is set to I. This means the initializa­
tion process (see intro(2» inherits each of these processes.

Each attached shared memory segment is detached and the value of
sbm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value (see semop(2», that semadj value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock, an unlock is performed
(see plock (2» .

An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acct (2).

If the process 10, tty group 10, and process group 10 of the calling pro­
cess are equal, the SIGHUP signal is sent to each process that has a
process group 10 equal to that of the calling process.

The C function exit may cause cleanup actions before the process exits. The
function _exit circumvents all cleanup.

SEE ALSO
acct (2), intro(2), plock(2), semop(2), signal (2), wait (2).

WARNING
See WARNING in signa/(2).

- 1 -

FCNTL(2)

NAME

FCNTL(2)

Fildes is not a valid open file descriptor.

Cmd is F_DUPFD and 20 file descriptors are currently open.

Cmd is F_DUPFD and arg is negative or greater than 20.

fcntl - file control

SYNOPSIS
#include <fcntl.b>

int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
Fcntl provides for control over open files. Fildes i~ an open file descriptor
obtained from a creat, open, dup,fcntl, or pipe system call.

The commands available are:

F_DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file <i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file descriptor
is set to remain open across exec (2) system calls.

F_GETFD Get the close-an-exec flag associated with the file descriptor
fildes. If the low-order bit is 0 the file will remain open
across exec, otherwise the file will be closed upon execution
of exec.

Set the close-on-exec flag associated with fildes to the low­
order bit of arg (0 or 1 as above>.

Get file status flags.

Set file status flags to argo Only certain flags can be set; see
fcnt/{S).

Fcntl will fail if one or more of the following are true:

[EBADF]

[EMFILE]

[EMFILEJ

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F SETFD Value other than -1.
F=GETFL Value of file flags.
F SETFL Value other than -1.

Otherwise~a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2) , exec(2) , open (2), fcntI(S).

- I -

FORK(2)

NAME

FORK(2)

~.

"

fork - create a new process

SYNOPSIS
iot fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child pro­
cess inherits the following attributes from the parent process:

environment
c1ose-on-exec flag (see exec (2»
signal handling settings (i.e., SIG_DFl. SIG_ING. function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice (2»
all attached shared memory segments (see shmop(2»
process group I D
tty group ID (see exit (2) and s;gna/(2»
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm (2»
current working directory
root directory
file mode creation mask {see umask (2»
file size limit (see ulimit(2»

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID
of the parent process).

The child process has its own copy of the parent's file descriptors.
Each of the child's file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared {see semop (2».

Process locks. text locks and data locks are not inherited by the child
(see plock (2» .

The child process's utime, Slime, cutime, and cslime are set to O. The
time left until an alarm clock signal is reset to O.

Fork will fail and no child process will be created if one or more of the follow­
ing are true:

[EAGAIN)

[EAGAIN)

The system-imposed limit on the total number of processes
under execution would be exceeded.

The system-imposed limit on the total number of processes
under execution by a single user would be exceeded.

- 1 -

FORK(2) FORK (2)

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and
returns the process 10 of the child process to the parent process. Otherwise, a
value of -I is returned to the parent process, no child process is created, and
errno is set to indicate the error.

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), times(2),
ulimit(2), umask(2), wait(2).

·2·

GETPID(2)

NAME

GETPID(2)

~\
\

getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process 10 of the calling process.

Getpgrp returns the process group 10 of the calling process.

Getppid returns the parent process 10 of the calling process.

SEE ALSO
exec(2) I fork (2). intro(2). setpgrp(2). signal (2).

- 1 -

GETUID(2)

NAME

GETUID(2)

getuid. geteuid. getgid. getegid - get real user. effective user. real group, and
effective group IDs

SYNOPSIS
unsigned sbort getuid ()

unsigned sbort geteuid ()

unsigned sbort getgid ()

unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2). setuid(2) .

- 1 -

IOCTL(2)

NAME

IOCTL(2)

ioctl - control device

SYNOPSIS
ioetl (fildes, request, arg)
int fildes, request;

DESCRIPTION
loctl performs a variety of functions on character special files {devices}. The
write-ups of various devices in Section 7 of the UNIX System V Administrator
Reference Manual discuss how ioctl applies to them.

loctl will fail if one or more of the following arc true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY] Fildes is not associated with a character special device.

[EINVAL] Request or arg is not valid. See Section 7 of the UNIX Sys­
tem V Administrator Reference Manual.

[EINTR] A signal was caught during the ioctl system call.

RETURN VALUE
If an error has occurred, a value of -I is returned and errno is set to indicate
the error.

SEE ALSO
termio{7} in the UNIX System V Administrator Reference Manual.

- 1 -

KILL (2)

NAME

KILL(2)

kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group
of processes to which the signal is to be sent is specified by pid. The signal
that is to be sent is specified by sig and is either one from the list given in sig­
nal(2), or O. If sig is 0 (the null signa}), error checking is performed but no
signal is actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or
effective user ID of the receiving process, unless the effective user ID of the
sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes
(see intro(2» and will be referred to below as procO and procl, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and procl whose
process group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be
sent to all processes excluding procO and prod whose real user ID is equal to
the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and prod.

If pid is negative but not -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:

[EINVAL] Sig is not a valid signal number.

[EINVAL] Sig is SIGKILL and pid is 1 (procI).

[ESRCH] No process can be found corresponding to that specified by
pM.

[EPERM] The user ID of the sending process is not super-user, and its
real or effective user ID does not match the real or effective
user ID of the receiving process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -}
is returned and errno is set to indicate the error.

SEE ALSO
getpid (2), setpgrp(2), signal (2) .
kill(I) in the UNIX System V User Reference Manual.

- 1 -

.~.')

LINK(2) LINK (2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char .patbl, .patb2;

DESCRIPTION
Pathl points to a path name naming an existing file. Path2 points to a path
name naming the new directory entry to be created. Link creates a new link
(directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are
true:

Otherwise, a value of -I

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by pathl does not exist.

The link named by path2 exists.

The file named by path/ is a directory and the effective user
10 is not super-user.

The link named by path2 and the file named by pathl are on
different logical devices (file systems).

Path2 points to a null path name.

The requested link requires writing in a directory with a mode
that denies write permission.

The requested link requires writing in a directory on a read­
only file system.

Path points outside the allocated address space of the process.

The maximum number of links to a file would be exceeded.

[EROFS]

[ENOENT)

[EACCES)

[EXOEV)

[ENOTOIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST)

[EPERM)

[EFAULT]

[EMLlNK)

RETURN VALUE
Upon successful completion, a value of 0 is returned.
is returned and errno is set to indicate the error.

~.

SEE ALSO
unlink(2).

- 1 -

LSEEK(2)

NAME

LSEEK(2)

Iseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup. or fentl system call.
Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting 'pointer location, as measured in bytes
from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the
following are true:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe or fifo.

[EINVAL and SIGSYS signall
Whence is not 0, 1, or 2.

[EINVAll The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

SEE ALSO
creat(2), dup(2). fcnt)(2), open(2).

- 1 -

'~

~,

MAUS(2)

NAME

(PDP-II only) MAUS(2)

maus - multiple-access-user-space (shared memory) operations

SYNOPSIS
#include <sys/fcntl.h>

int getmaus (path, oftag)
char *path;
int oftag;

int freemaus (mausdes)
int mausdes;

char *enabmaus (mausdes)
int mausdes;

int dismaus {saddr>
char *saddr;

char *switmaus (mausdes, saddr)
int mausdes;
char *saddr;

DESCRIPTION
MAUS (Multiple Access User Space) is a dedicated portion of physical memory
that is subdivided into logical subsections. These subsections can be attached
to the data segment of the calling process or released from its data segment
with the following calls.

Path points to a path name naming a special file that is one of the MAUS logi­
cal subsections. Getmaus opens a maus descriptor for the named file and sets
the file status flag according to the value of oflag. Oflag is one of the follow­
ing:

O_RDONLY Open for reading only.

0_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

No process may have more than eight (8) maus descriptors open simultane­
ously.

The named file is opened unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EINVAll The named file is not a rnaus special file.

(EACCES] A component of the path prefix denies search permission.

[EACCES] Oflag permission is denied for the named file.

[EMFILE] Eight (8) maus descriptors are currently open.

[ENXIO] The MAUS area associated with the special file does not exist.

[EFAULT] Path points to an illegal address.

Freemaus closes the maus descriptor specified by mausdes. Note that if a
maus descriptor has been enabled (see enabmaus below) it may still be closed:
a MAUS file remains attached to a data segment of the process until a dismaus
(see below) is used to free it.

[EBADF] Freemaus will fail if mausdes is not a valid open maus
descriptor.

Enabmau.s attaches the MAUS file associated with mausdes to the data seg­
ment of the calling process. The file is attached starting at the first available

- 1 •

MAUS(Z) (PDP-II only) MAUS(2)

8k-byte boundary address beyond the current break value (see brk (2». Note
that multiple enabmaus calls can be made with the same maus descriptor.
Each call will attach the file at a different 8k-byte boundary address.

Enabmaus will fail and not attach the MAUS file if one or more of the follow­
ing are true:

[EBADF] Mausdes is not a valid open maus descriptor.

[ENOMEM] No more 8k-byte boundary starting addresses are available.

Dismaus frees from the calling process's data segment the MAUS file that starts
at the data segment address given by {saddr - (saddr modulus 8192».

[EINVAL] Dismaus will fail and not free the MAUS file if (saddr ­
<saddr modulus 8192» is not the data segment starting
address of a MAUS file.

Switmaus attaches the MAUS file associated with mausdes to the data segment
of the calling process. The file is attached starting at the address given by
<saddr - <saddr modulus 8192». .

Switmaus will fail if one or more of the following are true:

[EBADF] Mausdes is not a valid open maus descriptor.

[EINVAL] The value of {saddr - (saddr modulus 8192» is not a legal
8k-byte boundary address above the current break value.

RETURN VALUES
Upon successful completion, the return value is as follows:

Getmaus returns a non-negative integer, namely a maus descriptor.

Freemaus returns a value of o.
Enabmaus returns the data segment starting address of the attached
MAUS file.

Dismaus and switmaus return the maus descriptor previously associ­
ated with the data segment starting address given by (saddr - (saddr
modulus 8192» if one exists. Otherwise, a value of -2 is returned.

On other than successful completion, a value of -1 is returned with errno set to
indicate the error.

- 2 -

MKNOD(2)

NAME

MKNOO(2)

~..

,

mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, de\'>
char ·path;
int mode, de\';

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The
mode of the new file is initialized from mode, where the value of mode is
interpreted as follows:

0170000 file type; one of the following:
00 I0000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group IO on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute <search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner IDof the file is set to the effective user 10 of the process. The
group 10 of the file is set to the effective group 10 of the process.

Values of mode other than those above are undefined and should not be used.
The low-order 9 bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared. See
umask (2). If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block I/O device. If
mode does not indicate a block special or character special device. dev is
ignored.

Mknod may be invoked only by the super-user for file types other than FI FO
special.

Mknod will fail and the new file will not be created if one or more of the fol­
lowing are true:

[EPERM]

[ENOTOIR]

[ENOENT)

[EROFS]

[EEXIST]

[EFAULT]

The effective user ID of the process is not super-user.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The directory in which the file is to be created is located on a
read-only file system.

The named file exists.

Path points outside the allocated address space of the process.

. I -

MKNOO(2) MKNOO(2)

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -I
is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), exec(2), umask(2), fs(4).
mkdir(I) in the UNIX System V User Reference Manual.

- 2 -

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount <spec, dir, rwftag)
char .spec, .dir;
int rwftag;

Otherwise, a value of -1

[EBUSY]

[EBUSY]

[EBUSY]

RETURN VALUE
Upon successful completion a value of 0 is returned.
is returned and errno is set to indicate the error.

DESCRIPTION
Mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. Spec and dir
are pointers to path names.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the mounted
file system; if I, writing is forbidden, otherwise writing is permitted according
to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR] A component of a path prefix is not a directory.

[ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does not exist.

[ENOTDlR] Dir is not a directory.

[EFAULT] Spec or dir points outside the allocated address space of the
process.

Dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

SEE ALSO
umount(2) .

- 1 -

MSGCTL(2) MSGCTL(2)

NAME

[EPERM]

[EPERM]

[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

msgctl - message control operations

SYNOPSIS
#include < sys/types.h >
#include < sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, bur>
int msqid, cmd;
struct msqid_ds -bur;

DESCRIPTION
Msgct/ provides a variety of message control operations as specified by cmd.
The following cmds are available:

fPC STAT Place the current value of each member of the data structure
- associated with msqid into the structure pointed to by buf.

The contents of this structure are defined in intro(2). (READ)

Set the value of the following members of the data structure
associated with msqid to the corresponding value found in the
structure pointed to by buf:

msg....Perm.uid
msg....Perm.gid
msg....Perm.mode /- only low 9 bits -/
msg_qbytes

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user or to the
value of msg....Perm.uid in the data structure associated with
msqid. Only super user can raise the value of msg_qbytes.

Remove the message queue identifier specified by msqid from
the system and destroy the message queue and data structure
associated with it. This cmd can only be executed by a pro­
cess that has an effective user ID equal to either that of super
user or to the value of msg....Perm.uid in the data structure
associated with msqid.

Msgct/ will fail if one or more of the following are true:

[EINVAL] Msqid is not a valid message queue identifier.

[EINVAL] Cmd is not a valid command.

[EACCES] Cmd is equal to IPC_STAT and {READ} operation permission
is denied to the calling process (see intro (2».

Cmd is equal to IPC_RMfD or fPC_SET. The effective user ID
of the calling process is not equal to that of super user and it
is not equal to the value of msg...,Perm.uid in the data structure
associated with msqid.

Cmd is equal to (PC_SET, an attempt is being made to
increase to the value of msg_qbytes, and the effective user ID
of the calling process is not equal to that of super user.

Buf points to an illegal address.

SEE ALSO
intro(2), msgget(2), msgop(2).

- 1 -

MSGGET(2)

NAME

MSGGET(2)

msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgftg)
key_t key;
int msgftg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated. message queue and data structure
(see intro(2» are created for key if one of the following are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with
it. and (msgflg & IPC_CREAT) is Utrue",

Upon creation. the data structure associated with the new message queue
identifier is initialized as follows:

Msg....Perm.cuid. msg....Perm.uid. msg....Perm.cgid. and msg....Perm.gid are
set equal to the effective user 10 and effective group 10. respectively. of
the calling process.

The low-order 9 bits of msg....Perm.mode are set equal to the low-order 9
bits of msgflg.

Msg_qnum, msgJspid, msgJrpid, msg_stime. and msg_rtime are set
equal to O.

Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key. but operation per­
mission (see intro (2» as specified by the low-order 9 bits of
msgflg would not be granted.

[ENOENT] A message queue identifier does not exist for key and (msgflg
& IPC_CREAT) is "false".

[ENOSPC]

[EEXIST]

A message queue identifier is to be created but the system­
imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

A message queue identifier exists for key but ((msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL>) is "true".

RETURN VALUE
Upon successful completion. a non-negative integer. namely a message queue
identifier. is returned. Otherwise. a value of -) is returned and errno is set to
indicate the error.

SEE ALSO
intro(2). msgctI(2). msgop(2).

- 1 -

MSGOP(2}

NAME

MSGOP(2}

msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h>
#include <sys/msg.h>

int msgsnd hnsqid, msgp, msgsz, msgftg}
int msqid;
struct msgbuf ·msgp;
int msgsz, msgftg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
iot msqid;
struct msgbuf .msgp;
int msgsz;
long msgtyp;
iot msgftg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message
queue identifier specified by msqid. (WRITE) Msgp points to a structure con­
taining the message. This structure is composed of the following members:

long mtype; /- message type -/
char mtexdl; /- message text -/

Mtype is a positive integer that can be used by the receiving process for mes­
sage selection (see msgrcv below). Mtext is any text of length msgsz bytes.
Msgsz can range from 0 to a system-imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see
illtro (2».

The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWAIT) is "true", the message will not be sent and
the calling process will return immediately.

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend
execution until one of the following occurs:

The condition responsible for the suspension no longer exists,
in which case the message is sent.

Msqid is removed from the system (see msgct/(2». When
this occurs, ermo is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught. In
this case the message is not sent and the calling process
resumes execution in the manner prescribed in signal (2».

Msgsnd will fail and no message will be sent if one or more of the following are
true:

[EINVALl

[EACCES)

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process (see
intro(2».

- 1 -

MSGOP(2) MSGOP(2)

[EINVALl

[EINVALl

[EAGAIN)

Mlype is less than 1.

The message cannot be sent for one of the reasons cited above
and (msgflg & IPC_NOWAIT) is "true".

Msgsz is less than zero or greater than the system-imposed
limit.

[EFAULT] Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid (see intro (2».

Msg_qnum is incremented by 1.

MsgJspid is set equal to the process ID of the calling process.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by msgp.
(READ) This structure is composed of the following members:

long mtype; /. message type ./
char mtexdl; /. message text ./

Mlype is the received message's type as specified by the sending process.
MleXI is the text of the message. Msgsz specifies the size in bytes of mlexl.
The received message is truncated to msgsz bytes if it is larger than msgsz and
(msgflg & MSG_NOERROR) is "true". The truncated part of the message is
lost and no indication of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msglyp is
received.

If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msglyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not
on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the calling process will return
immediately with a return value of -I and errno set to ENOMSG.

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend
execution until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errno
is set equal to EIDRM, and a value of -I is returned.

The calling process receives a signal that is to be caught. In
this case a message is not received and the calling process
resumes execution in the manner prescribed in signal (2» .

Msgrcv will fail and no message will be received if one or more of the following
are true:

~'

[EINVAL]

[EACCES]

[EINvAL]

[E2BIG]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

Msgsz is less than O.

Mtext is greater than msgsz and (msgflg & MSG_NOERROR)
is "false".

- 2 -

MSGOP(2) MSGOP(2)

[ENOMSG] The queue does not contain a message of the desired type and
(msglyp & IPC_NOWAIT) is "true".

[EFAULT] Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid (see intro (2».

Msg_qnum is decremented by 1.

MsgJrpid is set equal to the process 10 of the calling process.

Msg]time is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of -] is
returned to the calling process and errno is set to EINTR. If they return due to
removal of msqid from the system, a value of -I is returned and errno is set to
EIORM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actually placed
into rntext.

Otherwise, a value of -I is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl (2), msgget (2), signal (2).

- 3 -

NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice Cincr)
int incr;

NICE(2)

~.

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process's
nice value is a positive number for which a more positive value results in lower
CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by
the system. Requests for values above or below these limits result in the nice
value being set to the corresponding limit.

[EPERM) Nice will fail and not change the nice value if incr is negative
or greater than 40 and the effective user ID of the calling pro­
cess is not super-user.

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20. Other­
wise, a value of -} is returned and errno is set to indicate the error.

SEE ALSO
exec(2).
nice(}) in the UNIX System V User Reference Manual.

- 1 -

OPEN (2)

NAME

OPEN (2)

O_APPEND

open - open for reading or writing

SYNOPSIS
#include <fcntl.b>
int open (patb, oflag [, mode])
cbar .path;
int oflag, mode;

DESCRIPTION
Palh points to a path name naming a file. Open opens a file descriptor for the
named file and sets the file status flags according to the value of oflag. Oflag
values are constructed by or-ing flags from the following list (only one of the
first three flags below may be used):

o_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

o_NDELAY This flag may affect subsequent reads and writes. See read (2)
and write (2) .

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no pro­
cess currently has the file open for reading.

If O_NOELAY is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:

If O_NDELAY is set:

The open will return without waiting for carrier.

If O_NOELAY is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior to
each write.

If the file exists, this flag has no effect. Otherwise, the owner
ID of the file is set to the effective user 10 of the process, the
group ID of the file is set to the effective group ID of the pro­
cess, and the low-order 12 bits of the file mode are set to the
value of mode modified as follows (see creal (2»:

All bits set in the file mode creation mask of the pro­
cess are cleared. See umask (2).

The "save text image after execution bit" of the mode
is cleared. See chmod (2) .

If the file exists, its length is truncated to 0 and the mode and
owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if the file ~
exists. J

- 1 -

OPEN (2) OPEN (2)

Otherwise, a value

[EFAULT]

[EEXIST]

[ENXIO]

[ETXTBSY]

[EMFILE]

[ENXIO]

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file descriptor is set to remain open across exec system calls. See
!cnt/(2).

The named file is opened unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] Oflag permission is denied for the named file.

[EISDIR] The named file is a directory and oflag is write or read/write.

[EROFS] The named file resides on a read-only file system and oflag is
write or read/write.

Twenty (20) file descriptors are currently open.

The named file is a character special or block special file. and
the device associated with this special file does not exist.

The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write.

Path points outside the allocated address space of the process.

O_CREAT and O_EXCL are set. and the named file exists.

o_NDELAY is set. the named file is a FI FO. 0_WRONLY is
set. and no process has the file open for reading.

A signal was caught during the open system call.

The system file table is full.

[EINTR]

[ENFILE]

RETURN VALUE
Upon successful completion, the file descriptor is returned.
of -} is returned and errno is set to indicate the error.

SEE ALSO
chmod(2). close(2), creat(2). dup(2). fcntI(2). Iseek(2). read(2). umask(2),
write(2).

·2·

PAUSE(2)

NAME

PAUSE(2)

pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must
be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function (see signaJ(2» , the calling process resumes execution
from the point of suspension; with a return value of -I from pause and errno
set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

- 1 -

PIPE(2)

NAME

PIPE(2)

pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes(21;

DESCRIPTION
Pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[O] and fildes[I J. Fildes[O] is opened for reading and fildes[1] is opened
for writing.

Up to 5120 bytes of data are butTered by the pipe before the writing process is
blocked. A read only file descriptor fildeslOl accesses the data written to
fildesl 11 on a first-in-first-out (FIFO) basis.

Pipe will fail if 19 or more file descriptors are currently open.

The system file table is full.

[EMFILE]

[ENFILE]

RETURN VALUE
Upon successful completion, a value of 0 is returned.
is returned and errno is set to indicate the error.

Otherwise, a value of -I

SEE ALSO
read (2), wri te(2) .
sh() in the UNIX System V User Reference Manual.

- I -

PLOCK (2)

NAME

PLOCK (2)

plock - lock process, text, or data in memory

SYNOPSIS
#include <sys!lock.b>

int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock), its data
segment (data lock), or both its text and data segments (process lock) into
memory. Locked segments are immune to all routine swapping. Plock also
allows these segments to be unlocked. The effective user ID of the calling pro­
cess must be super-user to use this call. Op specifies the following:

PROCLOCK - lock text and data segments into memory (process
lock)

TXTLOCK ­

DATLOCK ­

UNLOCK -

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

Plock will fail and not perform the requested operation if one or more of the
following are true:

[EPERM] The effective user 10 of the calling process is not super-user.

[EINVALl Op is equal to PROCLOCK and a process lock, a text lock, or a
data lock already exists on the calling process.

[EINVALl Op is equal to TXTLOCK and a text lock, or a process lock
already exists on the calling process.

[EINVAL] Op is equal to DATLOCK and a data lock, or a process lock
already exists on the calling process.

[EINvAL] Op is equal to UNLOCK and no type of lock exists on the cal­
ling process.

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of -I is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit (2), fork (2) .

- 1 -

PROFIL(2)

NAME

PROFIL(2)

profil - execution time profile

SYNOPSIS
void profit (buff, bufsiz, offset, scale)
char -buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufs;z. After
this call, the user's program counter (pc) is examined each clock tick (60th
second); offset is subtracted from it, and the result multiplied by scale. If the
resulting number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at
the left: 0177777 (octal) gives a I-I mapping of pc's to words in buff; 077777
(octal) maps each pair of instruction words together. 02(octal) maps all
instructions onto the beginning of buff (producing a non-interrupting core
clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by
giving a bufs;z of O. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned off if
an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
monitor(JC) .
prof(l) in the UNIX System V User Reference Manual.

- 1 -

PTRACE(2)

NAME

PTRACE(2)

ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptraee provides a means by which a parent process may control the execution
of a child process. Its primary use is for the implementation of breakpoint
debugging; see sdb(I). The child process behaves normally until it encounters
a signal (see signa/(2) for the IisO, at which time it enters a stopped state and
its parent is notified via wait(2). When the child is in the stopped state. its
parent can examine and modify its "core image" using ptraee. Also, the parent
can cause the child either to terminate or continue, with the possibility of
ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptraee and
is one of the following:

o This request must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that stipu­
lates that the child should be left in a stopped state upon receipt
of a signal rather than the state specified by June; see signal (2).
The pid, addr, and data arguments are ignored, and a return
value is not defined for this request. Peculiar results will ensue if
the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For
each, pid is the process ID of the child. The child must be in a stopped state
before these requests are made.

1, 2 With these requests, the word at location addr in the address
space of the child is returned to the parent process. If I and 0
space are separated (as on PDP-II s), request 1 returns a word
from I space, and request 2 returns a word from D space. Ir I
and 0 space are not separated (as on the 38 20 computer and
VAX- 111780), either request 1 or request 2 may be used with
equal results. The data argument is ignored. These two requests
will fail if addr is not the start address of a word, in which case a
value of -1 is returned to the parent process and the parent's
ermo is set to EIO.

3 With this request, the word at location addr in the child's USER
area in the system's address space (see <sys/user.h» is
returned to the parent process. Addresses in this area range from
o to 1024 on the PDP-lis and 0 to 2048 on the 38 20 computer
and VAX. The data argument is ignored. This request will fail
if addr is not the start address of a word or is outside the USER
area, in which case a value of -} is returned to the parent pro­
cess and the' parent's ermo is set to EIO.

4, 5 With these requests, the value given by the data argument is
written into the address space of the child at location addr. If I
and D space are separated (as on PDP-lis), request 4 writes a
word into I space, and request 5 writes a word into 0 space. If I
and 0 space are not separated (as on the 38 20 computer and
VAX), either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written into the
address space of the child is returned to the parent. These two
requests will fail if addr is a location in a pure procedure space

- I -

~.
\.

PTRACE(2)

6

PTRACE(2)

and another process is executing in that space, or addr is not the
start address of a word. Upon failure a value of -I is returned
to the parent process and the parent's errno is set to EIO.

With this request, a few entries in the child's USER area can be
written. Data gives the value that is to be written and addr is
the location of the entry. The few entries that can be written
are:

the general registers (j.e., registers 0-11 on the 38 20
computer, registers 0-7 on PDP-lis, and registers 0-15
on the VAX)

the condition codes of the Processor Status Word on the
38 20 computer

the floating point status register and six floating point
registers on PDP-II s

certain bits of the Processor Status Word on PDP-II s
(j.e, bits 0-4 and 8-11)

certain bits of the Processor Status Longword on the
VAX (j.e., bits 0-7, 16-20, and 30-3}).

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that caused
the child to stop are canceled before it resumes execution. If the
data argument is a valid signal number, the child resumes execu­
tion as if it had incurred that signal, and any other pending sig­
nals are canceled. The addr argument must be equal to 1 for
this request. Upon successful completion, the value of data is
returned to the parent. This request will fail if data is not 0 or a
valid signal number, in which case a value of -1 is returned to
the parent process and the parent's errno is set to EIO.

8 This request causes the child to terminate with the same conse­
quences as exit (2).

9 This request sets the trace bit in the Processor Status Word of
the child (j.e., bit 4 on PDP-II s; bit 30 on the VAX) and then
executes the same steps as listed above for request 7. The trace
bit causes an interrupt upon completion of one machine instruc­
tion. This effectively allows single stepping of the child. On the
313 20 computer, there is no trace bit; and this request returns an
error.
Note: The trace bit remains set after an interrupt on PDP-II s but
is turned off after an interrupt on the VAX.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent
exed2) calls. If a traced process calls exec, it will stop before executing the
first instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

IEIO] Request is an illegal number.

IESRCH] Pid identifies a child that does not exist or has not executed a
ptrace with request O.

SEE ALSO
exec(2), signaI(2), wait(2).
sdb(I) in the UNIX System V User Reference Manual.

- 2 -

READ(2)

NAME

READ (2)

read - read from file

SYNOPSIS
int read (fildes, bur, nbyte)
int fildes;
char .bur;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creal, open, dUp, fcnl/, or pipe sys­
tem call.

Read attempts to read nbyle bytes from the file associated with jildes into the
buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with ji/des. Upon return from read, the file pointer
is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nbyte if the file is asso­
ciated with a communication line (see ;ocl/(2) and lermio(7», or if the
number of bytes left in the file is less than nbyle bytes. A value of 0 is
returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a O.

If °NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently
available:

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data becomes avail­
able.

Read will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] Buf points outside the allocated address space.

[EINTR] A signal was caught during the read system call.

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returned and errno is set to
indicate the error.

SEE ALSO
creat (2), dup(2), fcntI(2), ioctI(2), open(2), pipe(2).
termio(7) in the UNIX System V Administrator Reference Manual.

- I -

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#inelude <sys/sem.h>

int semetl (semid, semnum, emd, arg)
int semid, emd;
int semnum;
union semun {

int val;
struet semid ds -buf;
ushort -array;

arg;

DESCRIPTION
Semet/ provides a variety of semaphore control operations as specified byemd.

The following emds are executed with respect to the semaphore specified by
semid and semnum:

Return the value of semval (see intro (2». {READ}

Set the value of semval to argo val . {ALTER) When this
cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all processes
is cleared.

Return the value of sempid. {READ}

Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

return and set, respectively, every semval in the set of

GETVAL

SETVAL

Place semvals into array pointed to by arg.array.
{READ}

SETALL Set semvals according to the array pointed to by
arg.array . {ALTER} When this cmd is successfully exe­
cuted the semadj values corresponding to each specified
semaphore in all processes are cleared.

The following emds are also available:

IPC STAT Place the current value of each member of the data
- structure associated with semid into the structure pointed

to by arg.buj. The contents of this structure are defined
in intro (2). {READ}

IPC_SET Set the value of the following members of the data struc­
ture associated with semid to the corresponding value
found in the structure pointed to by arg.buf:
semjlerm.uid
semjlerm.gid
semjlerm.mode I· only low 9 bits .1
This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user or to
the value of semjlerm.uid in the data structure associ­
ated with semid.

GETPID

GETNCNT

GETZCNT

The following emds
semaphores.

GETALL

- I -

SEMCTL(2) SEMCTL(2)

IPC_RMID Remove the semaphore identifier specified by semid from
the system and destroy the set of semaphores and data
structure associated with it. This cmd can only be exe­
cuted by a process that has an effective user ID equal to
either that of super-user or to the value of sem_perm.uid
in the data structure associated with semid.

Semell will fail if one or more of the following are true:

[EINVALl Semid is not a valid semaphore identifier.

[EINVAL] Semnum is less than zero or greater than sem_Dsems.

[EINVALl Cmd is not a valid command.

[EACCES] Operation permission is denied to the calling process
(see intro (2».

[ERANGE] Cmd is SETVAL or SETALL and the value to which
semval is to be set is greater than the system imposed
maximum.

[EPERM] Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal to
that of super-user and it is not equal to the value of
semj)erm.uid in the data structure associated with
semid.

[EFAULT] Arg.buf points to an illegal address.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of O.

Otherwise, a value of -I is returned and errno is set to indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

- 2 -

SEMGET(2)

NAME

SEMGET(2)

semget - get set of semaphores

SYNOPSIS
#include < sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores (see intro(2» are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore identifier
is initialized as follows:

SemjJerm.cuid, semjJerm.uid, semjJerm.cgid, and semjJerm.gid are set
equal to the effective user ID and effective group ID, respectively, of
the calling process.

The low-order 9 bits of semjJerm.mode are set equal to the low-order 9
bits of semjfg.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to the current
time.

Semget will fail if one or more of the following are true:

[EINVALl

[EACCESJ

[EINVALl

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXIST]

Nsems is either less than or equal to zero or greater than the
system-imposed limit.

A semaphore identifier exists for key, but operation permis­
sion (see intro(2» as specified by the low-order 9 bits of
semjfg would not be granted.

A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems and
nsems is not equal to zero.

A semaphore identifier does not exist for key and (semjfg &
IPC_CREAT) is "false".

A semaphore identifier is to be created but the system­
imposed limit on the maximum number of allowed semaphore
identifiers system wide would be exceeded.

A semaphore identifier is to be created but the system­
imposed limit on the maximum number of allowed semaphores
system wide would be exceeded.

A semaphore identifier exists for key but { (semjfg &
IPC_CREAT) and (semjfg & IPC_EXCL)) is "true".

- I -

SEMGET(2) SEMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of - I is returned and errno is set to
indicate the error.

SEE ALSO
intra (2), semctJ(2). semop(2) .

- 2 -

.,

SEMOP(2)

NAME

SEMOP(2)

semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf **sops;
int nsops;

DESCRIPTION
Semop is used to automatically perform an array of semaphore operations on
the set of semaphores associated with the semaphore identifier specified by
semid. Sops is a pointer to the array of semaphore-operation structures.
Nsops is the number of such structures in the array. The contents of each
structure includes the following members:

short sem_num; /. semaphore number ./
short sem_op; /. semaphore operation ./
short semJlg; /. operation flags ./

Each semaphore operation specified by sem_op is performed on the correspond­
ing semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will occur:
{ALTER}

If semval (see intro(2» is greater than or equal to the abso­
lute value of sem_op, the absolute value of sem_op is sub­
tracted from semval. Also, if (sem.flg & SEM_UNDO) is
"true". the absolute value of sem_op is added to the calling
process's semadj value (see exit (2» for the specified sema­
phore.

If semval is less than the absolute value of sem _op and
(sem.flg & IPC_NOWAIT) is "true", semop will return
immediately.

If semval is less than the absolute value of sem _op and
(sem.flg & IPC_NOWAIT) is "false", semop will increment
the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the fol­
lowing conditions occur.

Semval becomes greater than or equal to the absolute value
of sem_op. When this occurs, the value of semncnt associ­
ated with the specified semaphore is decremented, the abso­
lute value of sem_op is subtracted from semval and, if
(sem.flg & SEM_UNDO) is "true", the absolute value of
sem_op is added to the calling process's semadj value for the
specified semaphore.

The semid for which the calling process is awaiting action is
removed from the system (see semct/(2». When this occurs,
errno is set equal to EIDRM, and a value of -I is returned.

- 1 -

SEMOP(2) SEMOP(2)

[E2BIG]

[EACCES]

[ENOSPC]

[EAGAIN]

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with the
specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal (2).

If sem_op is a positive integer, the value of sem_op is added to semval
and, if (sem.flg & SEM_UNDO) is "true", the value of sem_op is sub­
tracted from the calling process's semadj value for the specified sema­
phore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem.flg & IPC_NOWAIT)
is "true", semop will return immediately.

If semval is not equal to zero and (sem.flg & IPC_NOWAIT)
is "false", semop will increment the semzcnt associated with
the specified semaphore and suspend execution of the calling
process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt
associated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action is
removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of -I is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzcnt associated with the
specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal (2).

Semop will fail if one or more of the following are true for any of the sema­
phore operations specified by sops:

[EINVALl Semid is not a valid semaphore identifier.

[EFBIG] Sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

Nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see
intro(2» .

The operation would result in suspension of the calling process
but (sem.flg & IPC_NOWAIT) is "true".

The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

[EINVAL] The number of individual semaphores for which the calling
process requests a SEM_UNDO would exceed the limit.

[ERANGE] An operation would cause a semval to overflow the system­
imposed limit.

[ERANGE] An operation would cause a semadj value to overflow the
system-imposed limit.

[EFAULT] Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified
in the array pointed to by sops is set equal to the process ID of the calling pro­
cess.

- 2 -

SEMOP(2) SEMOP(2)

RETURN VALUE
If semop returns due to the receipt of a signal, a value of -] is returned to the
calling process and errno is set to EINTR. If it returns due to the removal of a
semid from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of the call for the
last operation in the array pointed to by sops is returned. Otherwise, a value of
-I is returned and errno is set to indicate the error.

SEE ALSO
exec(2). exit(2), fork(2), intro(2), semctl(2), semget(2).

- 3 -

SETPGRP(2)

NAME

SETPGRP(2)

setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION
Setpgrp sets the process group 10 of the calling process to the process 10 of the
calling process and returns the new process group 10.

RETURN VALUE
Setpgrp returns the value of the new process group 10.

SEE ALSO
exec(2). fork (2), getpid (2). intro(2), kilI(2), signaI(2).

- 1 -

SETUID(2)

NAME

SETUID(2)

setuid, setgid - set user and group IDs

SYNOPSIS
iot setuid (uid)
iot uid;

iot setgid (gid)
iot gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) 10 and effective user
(group) 10 of the calling process.

If the effective user 10 of the calling process is super-user, the real user (group)
10 and effective user (group) 10 are set to uid (gid).

If the effective user 10 of the calling process is not super-user, but its real user
(group) ID is equal to uid (gid) , the effective user (group) 10 is set to uid
(gid) .

If the effective user 10 of the calling process is not super-user, but the saved
set-user (group) ID from exec(2) is equal to uid (gid), the effective user
(group) 10 is set to uid (gid).

Setuid (setgid) will fail if the real user (group) 10 of the calling process is not
equal to uid (gid) and its effective user ID is not super-user. [EPERM]

The uid is out of range. [EINVALl

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -I
is returned and errno is set to indicate the error.

SEE ALSO
getuid (2), intro(2).

- 1 -

SHMCTL(2) SHMCTL(2)

NAME
shmctl - shared memory control operations

[EPERM]

[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -I
is returned and ermo is set to indicate the error.

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h>
#include <sys/shm.h>

int shmctl <shmid, cmd, bur>
int shmid, cmd;
struct shmid_ds -buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specified by
cmd. The following cmds are available:

fPC_STAT Place the current value of each member of the data
structure associated with shmid into the structure
pointed to by buJ. The contents of this structure are
defined in intro(2). {READ}

Set the value of the foHowing members of the data struc­
ture associated with shmid to the corresponding value
found in the structure pointed to by buJ:
shmyerm.uid
shmyerm.gid
shmyerm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user or to
the value of shmj)erm.uid in the data structure associ­
ated with shmid.

IPC_RMfD Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment
and data structure associated with it. This cmd can only
be executed by a process that has an effective user ID
equal to either that of super-user or to the value of
shmJerm.uid in the data structure associated with
shmid.

Shmctl will fail if one or more of the following are true:

[EINVAL] Shmid is not a valid shared memory identifier.

[EINVAL] Cmd is not a valid command.

[EACCES] Cmd is equal to fPC_STAT and {READ} operation
permission is denied to the calling process (see
intro(2».

Cmd is equal to IPC_RMID or IPC_SET and the
effective user 10 of the calling process is not equal to
that of super-user and it is not equal to the value of
shmj)erm.uid in the data structure associated with
shmid.

BuJ points to an illegal address.

SEE ALSO
intro(2), shmget(2), shmop(2).

- 1 -

SHMGET(2)

NAME

SHMGET(2)

shmget - get shared memory segment

SYNOPSIS
#include < sys/types.h >
#include <sys/ipc.h>
#include < sys/shm.h >

int shmget (key, size, shmftg)
key_t key;
int size, shmftg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of size size bytes (see intro (2» are created for key if one of the fol­
lowing are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier associated with
it, and (shmjlg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

Shm..Jlerm.cuid, shm...,Perm.uid, shm..Jlerm.cgid, and shm..Jlerm.gid are
set equal to the effective user ID and effective group 10, respectively, of
the calling process.

The low-order 9 bits of shm..Jlerm.mode are set equal 10 the low-order 9
bits of shmjlg. Shm_segsz is set equal to the value of size.

ShmJpid, shm_nattch, shm_atime, and shm_dtime are sel equal to O.

Shm_ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

[EINVALl Size is less than the system-imposed minimum or greater than
the system-imposed maximum.

[EACCES) A shared memory identifier exists for key but operation per­
mission (see intro (2» as specified by the low-order 9 bits of
shmjlg would not be granted.

[EINVALl A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not
equal to zero.

[ENOENT) A shared memory identifier does nol exist for key and (shmjlg
& IPC_CREAT) is "false".

[ENOSPC)

[ENOMEM)

[EEXIST)

A shared memory identifier is to be created but the system­
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory
segment are to be created but the amount of available physi­
cal memory is not sufficient to fill the request.

A shared memory identifier exists for key but ((shmjlg &
IPC_CREAT) and (s~mjlg & IPC_EXCL>) is "true".

- I -

SHMGET(2) SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of - I is returned and erma is set to
indicate the error.

SEE ALSO
intro(2), shmctl (2) t shmop(2).

- 2 -

:t)

SHMOP(2)

NAME

SHMOP(2)

shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.b>
#include <sys/shm.h>

char .shmat (shmid, shmaddr, shmftg)
int shmid;
char .shmaddr
int shmftg;

int shmdt (shmaddr)
char .shmaddr

DESCRIPTION
Shmal attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the calling process.
The segment is attached at the address specified by one of the following cri­
teria:

If shmaddr is equal to zero, the segment is attached at the first avail­
able address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "true",
the segment is attached at the address given by {shmaddr - (shmaddr
modulus SHMLBA».

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "false",
the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true"
{READ}, otherwise it is attached for reading and writing (READ/WRITE).

Shmal will fail and not attach the shared memory segment if one or more of
the following are true: .

(EINVAL] Shmid is not a valid shared memory identifier.

[EACCESI Operation permission is denied to the calling process (see
intro(2».

[ENOMEMI

[EINVAL]

[EINVALl

[EMFILEI

[EINVAL]

[EINVALl

The available data space is not large enough to accommodate
the shared memory segment.

Shmaddr is not equal to zero, and the value of (shmaddr ­
(shmaddr modulus SHMLBA» is an illegal address.

Shmaddr is not equal to zero, (shmflg & SHM_RND) is
"false", and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the cal­
ling process would exceed the system-imposed limit.

Shmdt detaches from the calling process's data segment the
shared memory segment located at the address specified by
shmaddr.

Shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared
memory segment.

- 1 -

SHMOP(2) SHMOP(2)

RETURN VALUES
Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared
memory segment.

Shmdt returns a value of o.
Otherwise. a value of -} is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctI(2), shmget(2).

• 2 •

.~

SIGNAL(2)

NAME

SIGNAL(2)

signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

int (-signal (sig, fune» ()
int sig;
void (-fune> ();

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is pos­
sible to handle the receipt of a specific signal. Sig specifies the signal and June
specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03* quit
SIGILL 04* illegal instruction (not reset when caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* lOT instruction
SIGEMT 07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV II * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR I 16 llser-defined signal I
SIGUSR2 17 user-defined signal 2
SIGCLD 18 death of a child

(see WARNING below)
SIGPWR 19 power fail

(see WARNING below)

See below for the significance of the asterisk (-) in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address.
The actions prescribed by these values are as follows:

SIG_OFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be ter­
minated with all of the consequences outlined in exir(2). In addi­
tion a "core image" will be made in the current working directory
of the receiving process if .rig is one for which an asterisk appears in
the above list and the following conditions are met:

The effective user 10 and the real user ID of the receiving
process are equal.

An ordinary file named core exists and is writable or can
be created. If the file must be created, it will have the fol­
lowing properties:

a mode of 0666 modified by the file creation
mask (see umask (2»

a file owner 10 that is the same as the effective
user 10 of the receiving process.

- I -

SIGNAL(2) SIGNAL (2)

a file group 10 that is the same as the effective
group 10 of the receiving process

SIGJGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address - catch signal
Upon receipt of the signal sig. the receiving process is to execute the
signal-catching function pointed to by June. The signal number sig
will be passed as the only argument to the signal-catching function.
Additional arguments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal-catching func­
tion. the value of June for the caught signal will be set to SIG_OFL
unless the signal is SIGILL. SIGTRAP. or SIGPWR.

Upon return from the signal-catching function. the receiving process
will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read. a write, an
open. or an ioctl system call on a slow device Oike a terminal; but not
a file}. during a pause system call. or during a wait system call that
does not return immediately due to the existence of a previously
stopped or zombie process. the signal catching function will be exe­
cuted and then the interrupted system call may return a -1 to the
calling process with ermo set to EINTR.

Note: The signal SIGKILL cannot be caught.

A call to signar cancels a pending signal sig except for a pending SIGKILL sig­
nal.

Signal will fail if sig is an illegal signal number, including SIGKILL. [EINVAL)

RETURN VALUE
Upon successful completion. signal returns the previous value of June for the
specified signal sig. Otherwise. a value of -I is returned and ermo is set to
indicate the error.

SEE ALSO
kiI1(2}. pause(2}. ptrace(2}. wait(2). setjmpOC}.
kill(l) in the UNIX System V User ReJerence Manual.

WARNING
Two other signals that behave differently than the signals described above exist
in this release of the system; they are:

SIGCLO 18 death of a chiid (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that. in future releases of the UNIX system. these signals
will continue to behave as described below; they are included only for compati­
bility with other versions of the UNIX system. Their use in new programs is
strongly discouraged.

For these signals. June is assigned one of three values: SIG_OFL. SIG_IGN. or a
Junction address. The actions prescribed by these values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also. if sig is SIGCLO. the calling
process's child processes will not create zombie processes when they
terminate; see exit (2) .

- 2 -

SIGNAL(2) SIGNAL(2)

~,
\

function address - catch signal
If the signal is SIGPWR. the action to be taken is the same as that
described above for func equal to function address. The same is
true if the signal is SIGCLD except, that while the process is execut­
ing the signal-catching function, any received SIGCLD signals will
be queued and the signal-catching function will be continually reen­
tered until the queue is empty.

The SIGCLD affects two other system calls (wait(2), and exit(2» in the fol­
lowing ways:

wait If the func value of SIGCLD is set to SIG_IGN and a wait is exe­
cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of -) with errno set
to ECHILD.

exit If in the exiting process's parent process the func value of SIGCLD is
set to SIGJGN. the exiting process will not create a zombie process.

When processing. a pipeline, the shell makes the last process in the pipeline
the parent of the proceeding processes. A process that may be piped into in
this manner (and thus become the parent of other processes) should take
care not to set SIGCLD to be caught.

- 3 -

STAT(2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys!stat.b>

int stat (path, bur>
char .path;
struct stat .buf;

int fstat (fildes, bur>
int fildes;
struct stat .buf;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute permission
of the named file is not required, but all directories listed in the path name
leading to the file must be searchable. Stat obtains information about the
named file.

Similarly, fstat obtains information about an open file known by the file
descriptor fildes, obtained from a successful open, creat, dup, Jcntl, or pipe
system call.

BuJ is a pointer to a stat structure into which information is placed concerning
the file.

st nlink;
st-uid;
st~id;
st_size;
st_atime;
st_mtime;
st_ctime;

stJdev;

short
ushort
ushort
olf_t
time_t
time_t
time_t

The contents of the structure pointed to by buf include the following members:
ushort st mode; /. File mode; see mknod(2) ./
ino t st-ino; /. Inode number ./
dev-=,t st=dev; /. ID of device containing ./

/. a directory entry for this file ./
/. ID of device ./
/. This entry is defined only for ./
/. character special or block special files ./
/. Number of links ./
/. User ID of the file's owner ./
/ .. Group ID of the file's group ./
/ .. File size in bytes ./
/ .. Time of last access .. /
/ .. Time of last data modification */
/ .. Time of last file status change ./
/. Times measured in seconds since ./
/·00:00:00 GMT, Jan. I, 1970 .. /

st atime Time when file data was last accessed. Changed by the following
system calls: creat(2), mknod(2), pipe(2) , utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following sys­
tem calls: creat(2), mknod(2) , pipe (2), utime(2), and write (2).

st_ctime Time when file status was last changed. Changed by the following
system calls: chmod (2), chown (2), creat (2), link (2), mknod (2),
pipe(2), unlink (2), utime (2), and write (2) .

Stat will fail if one or more of the following are true:

[ENOTDlR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

- 1 -

STAT(2) STAT(2)

[EFAULTl Buf or path points to an invalid address.

Fstat will fail if one or more of the following are true:

[EBADFJ Fildes is not a valid open file descriptor.

[EFAULTJ Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -I
is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read (2), time(2),
unlink (2), utime(2), write(2).

- 2 -

STIME(2)

NAME
stime - set time

STIME(2)

SYNOPSIS
iot stime <tp)
long .tp;

DESCRIPTION
Stime sets the system's idea of the time and date. Tp points to the value of
time as measured in seconds from 00:00:00 GMT January I, 1970.

[EPERM] Slime will fail if the effective user 10 of the calling process is
not super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
time(2).

- 1 -

'~

SYNC(2)

NAME

SYNC(2)

~.
\

sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example jsck,
dj, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return from
sync.

- 1 -

TIME(2)

NAME

TIME(2)

time - get time

SYNOPSIS
long time «(long -) 0)

long time {(loC>
long -tloe;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1.
1970.

If tloe <taken as an integer) is non-zero, the return value is also stored in the
location to which tloe points.

[EFAULT] Time will fail if tloe points to an illegal address.

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise. a value
of -1 is returned and ermo is set to indicate the error.

SEE ALSO
stime(2).

- I -

TIMES(2) TIMES(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms -buffer;

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

);

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information.
The following arc the contents of this structure:

struct tms (
time t
time t
time_t
time_t

This information comes from the calling process and each of its terminated
child processes for which it has executed a wait. All times are in 60ths of a
second on DEC processors, IOOths of a second on AT& T processors.

Tms_utime is the CPU time used while executing instructions in the user space
of the calling process.

Tms_stime is the CPU time used by the system on behalf of the calling process.

TmsJulime is the sum of the tms_utimes and tmsJutimes of the child
processes.

Tms_cstime is the sum of the tms_stimes and tmsJstimes of the child
processes.

[EFAULTJ Times will fail if buffer points to an illegal address.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in 60ths
(IOOths) of a second, since an arbitrary point in the past (e.g., system start-up
time). This point does not change from one invocation of times to another. If
times fails, a -I is returned and errno is set to indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

- 1 -

ULIMIT(2)

NAME

ULIMIT(2)

ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit>
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values available
are:

1 Get the file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of new/imil. Any process
may decrease this limit, but only a process with an effective user ID of
super-user may increase the limit. U/imit will fail and the limit will be
unchanged if a process with an effective user 10 other than super-user
attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk (2) .

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, a
value of -I is returned and errno is set to indicate the error.

SEE ALSO
brk(2), write(2).

- 1 -

.~

UMASK(2)

NAME

UMASK(2)

umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION
Umask sets the process's file mode creation mask to cmask and returns the pre­
vious value of the mask. Only the low-order 9 bits of cmask and the file mode
creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2).
mkdir(J), sh(1) in the UNIX System V User Reference Manual.

- 1 -

UMOUNT(2)

NAME

UMOUNT(2)

umount - unmount a file system

SYNOPSIS
int umount (spec)
char .spec;

DESCRIPTION
Umount requests that a previously mounted file system contained on the block
special device identified by spec be unmounted. Spec is a pointer to a path
name. After unmounting the file system, the directory upon which the file sys­
tem was mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

[EPERM) The process's effective user ID is not super-user.

[ENXIO) Spec does not exist.

[ENOTBLK) Spec is not a block special device.

[EINVAL) Spec is not mounted.

[EBUSY) A file on spec is busy.

[EFAULT) Spec points to an illegal address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -I
is returned and errno is set to indicate the error.

SEE ALSO
mount(2).

- 1 -

UNAME(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include < sys/utsname.h>

int uname (name)
struct utsname -name;

UNAME(2)

DESCRIPTION
Uname stores information identifying the current UNIX system in the structure
pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose members are:

char sysname[9];
char nodenamel9];
char release[9];
char version[9];
char machine[9];

Uname returns a null-terminated character string naming the current UNIX
system in the character array sysname. Similarly, /lodename contains the
name that the system is known by on a communications network. Release and
version further identify the operating system. Machine contains a standard
name that identifies the hardware that the UN IX system is running on.

[EFAULT) Uname will fail if name points to an invalid address.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, -I is
returned and errno is set to indicate the error.

SEE ALSO
uname(I) in the UNIX System V User Reference Manual.

. I .

UNLINK (2)

NAME

UNLlNK(2)

unlink - remove directory entry

SYNOPSIS
iot unlink (patb)
cbar .patb;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to be
path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

[EACCES] Write permission is denied on the directory containing the link
to be removed.

[EPERM] The named file is a directory and the effective user ID of the
process is not super-user.

[EBUSY] The entry to be unlinked is the mount point for a mounted file
system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure
{shared text> file that is being executed.

[EROFS] The directory entry to be unlinked is part of a read-only file
system.

[EFAULT] Path points outside the process's allocated address space.

When all links to a file have been removed and no process has the file open, the
space occupied by the file is freed and the file ceases to exist. If one or more
processes have the file open when the last link is removed, the removal is post­
poned until all references to the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -}
is returned and errno is set to indicate the error.

SEE ALSO
close(2), link(2), open (2) .
rm(I) in the UNIX System V User Reference Manual.

- 1 -

USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

USTAT(2)

int ustat (de" buO
int de,;
struet ustat .buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device number
identifying a device containing a mounted file system. Buf is a pointer to a
ustat structure that includes to following elements:

daddr t f tfree; /. Total free blocks ./
ino t - f-tinode; /. Number of free inodes ./
char (fnamel6l; /. Filsys name ./
char fJpack[6]; /. Filsys pack name ./

USlal will fail if one or more of the following are true:

[EINVALl Dev is not the device number of a device containing a
mounted file system.

[EFAULTJ Buf points outside the process's allocated address space.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise. a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

- 1 -

UTIME(2) UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (pat~ times)
char -path;
struct utimbuf -times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write permission
to use utime in this manner.

/. access time ./
/. modification time ./

If times is not NULL, times is interpreted as a pointer to a utimbuf structure
and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user may use
utime this way.

The times in the following structure are measured in seconds since 00:00:00
GMT, Jan. I, 1970.

struct utimbuf
time_t actime;
time t modtime;

};

Utime will fail if one or more of the following are true:

[ENOENT) The named file does not exist.

[ENOTDIR) A component of the path prefix is not a directory.

[EACCES) Search permission is denied by a component of the path
prefix.

[EPERM) The effective user ID is not super-user and not the owner of
the file and times is not ~ULL.

The effective user ID is not super-user and not the owner of
the file and times is NULL and write access is denied.

The file system containing the file is mounted read-only.

Times is not NULL and points outside the process's allocated
address space.

Path points outside the process's allocated address space.

[EROFS)

[EFAULT)

[EACCES)

[EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and erma is set to indicate the error.

SEE ALSO
stat (2).

- 1 -

WAIT(2)

NAME

WAIT(2)

wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat loC>
int -statJoe; -

int wait «int -)0)

DESCRIPTION
Wait suspends the calling process until until one of the immediate children ter­
minates or until a child that is being traced stops, because it has hit a break
point. The wait system call will return prematurely if a signal is received and
if a child process stopped or terminated prior to the call on wait, return is
immediate.

If stat-'DC <taken as an integer> is non-zero, 16 bits of information called
status are stored in the low order 16 bits of the location pointed to by stat_IDe.
Status can be used to differentiate between stopped and terminated child
processes and if the child process terminated, status identifies the cause of ter­
mination and passes useful information to the parent. This is accomplished in
the following manner:

If the child process stopped, the high order 8 bits of status will contain
the number of the signal that caused the process to stop and the low
order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits
of status will be zero and the high order 8 bits will contain the low
order 8 bits of the argument that the child process passed to exit; see
exit (2).

If the child process terminated due to a signal, the high order 8 bits of
status will be zero and the low order 8 bits will contain the number of
the signal that caused the termination. In addition, if the low order
seventh bit (j.e., bit 200) is set, a "core image" will have been pro­
duced; see signal (2).

If a parent process terminates without waiting for its child processes to ter­
minate, the parent process 10 of each child process is set to 1. This means the
initialization process inherits the child processes; see intro(2).

Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child
processes.

[EFAULT] Stat_IDe points to an illegal address.

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -I is returned to the
calling process and ermo is set to EINTR. If wait returns due to a stopped or
terminated child process, the process 10 of the child is returned to the calling
process. Otherwise, a value of -I is returned and ermo is set to indicate the
error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptracc(2), signa)(2).

WARNING
See WARNING in signaJ(2).

- I -

WRITE(2)

NAME

WRITE (2)

write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char -buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe sys­
tem call.

Write attempts to write nbyte bytes from the buffer pointed to by buf to the
file associated with the jildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write, the
file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to
the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of the
following are true:

[EBADFJ Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]
An attempt is made to write to a pipe that is not open for
reading by any process.

[EFBIGJ An attempt was made to write a file that exceeds the process's
file size limit or the maximum file size. See u/imit (2).

[EFAULT] Buf points outside the process's allocated address space.

[EINTRJ A signal was caught during the write system call.

If a write requests that more bytes be written than there is room for (e.g., the
u/imit (see u/imit (2» or the physical end of a medium), only as many bytes as
there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write of 512 bytes will return
20. The next write of a non-zero number of bytes will give a failure return
(except as noted below).

If the file being written is a pipe (or FIFO) and the 0 _NDELAY flag of the file
flag word is set, then write to a full pipe (or FIFO) will return a count of O.
Otherwise <O_NDELAY dead, writes to a full pipe (or FIFO) will block until
space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned.
Otherwise, -I is returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

- 1 -

INTRO(3)

NAME
intro - introduction to subroutines and libraries

INTRO(3)

~'

SYNOPSIS
#include < stdio.h >

#include <math.h>

DESCRIPTION
This section describes functions found in various libraries, other than those
functions that directly invoke UN IX system primitives, which are described in
Section 2 of this volume. Certain major collections are identified by a letter
after the section number:

OC) These functions, together with those of Section 2 and those marked
OS), constitute the Standard C Library libc, which is automatically
loaded by the C compiler, cc(l). The link editor ld(l) searches this
library under the -Ie option. Declarations for some of these functions
may be obtained from #include files indicated on the appropriate pages.

OS) These functions constitute the "standard I/O package" (see stdio (3S».
These functions are in the library libc, already mentioned. Declarations
for these functions may be obtained from the #include file <stdio.h>.

OM) These functions constitute the Math Library, libm. They are automati­
cally loaded as needed by the FORTRAN compiler /77(1). They are not
automatically loaded by the C compiler, cdt); however, the link editor
searches this library under the -1m option. Declarations for these func­
tions may be obtained from the #include file < math.h>. Several gen­
erally useful mathematical constants are also defined there (see
math (5».

(3X) Various specialized libraries. The files in which these libraries are found
are given on the appropriate pages.

OF) These functions constitute the FORTRAN intrinsic function library,
/ibF77. These functions are automatically available to the FORTRAN
programmer and require no special invocation of the compiler.

DEFINITIONS
A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, represented in the C language as '\0'. A
character array is a sequence of characters. A null-terminated character
array is a sequence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The null string
is a character array containing only the null character. A NULL pointer is the
value that is obtained by casting 0 into a pointer. The C language guarantees
that this value will not match that of any legitimate pointer, so many functions
that return pointers return it to indicate an error. NULL is defined as 0 in
<stdio.h>; the user can include an appropriate definition if not using
<stdio.h> .

Many groups of FORTRAN intrinsic functions have generic function names that
do not require explicit or implicit type declaration. The type of the function
will be determined by the type of its argument (s). For example, the generic
function max will return an integer value if given integer arguments (maxO), a
real value if given real arguments (amaxf), or a double-precision value if given
double-precision arguments (dmax f).

FILES
/lib/libc.a
/lib/libm.a
/usr/lib/libF77.a

- 1 -

INTRO(3) INTRO(J)

SEE ALSO
intro(2), stdio(3S), matMs).
ar(}), cd}), n7(I), Id(I}, lint(I), nm(}) in the UNIX System V User Refer­
ence Manual.

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return the conven­
tional values 0 or ±HUGE <the largest-magnitude single-precision floating-point
numbers; HUGE is defined in the <math.h> header file} when the function is
undefined for the given arguments or when the value is not representable. In
these cases, the external variable errno (see intro(2» is set to the value EDOM
or ERANGE. As many of the FORTRAN intrinsic functions use the routines
found in the Math Library, the same conventions apply.

WARNING
Many of the functions in the libraries call and/or refer to other functions and
external variables described in this section and in section 2 (System Calls). If
a program inadvertantly defines a function or external variable with the same
name, the presumed library version of the function or external variable may not
be loaded. The /int(I} program checker reports name conflicts of this kind as
"multiple declarations" of the names in question. Definitions for sections 2, 3C,
and 38 are checked automatically. Other definitions can be included by using
the -I option (for example, -1m includes definitions for the Math Library, sec­
tion 3M) . Use of /int is highly recommended.

- 2 -

A64L(3C)

NAME

A64L(3C)

I~"

a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (5)
char .5;

char .164a «)
long I;

DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCII charac­
ters. This is a notation by which long integers can be represented by up to six
characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0 through 9 for
2-11, A through Z for 12-37, and a through z for 38-63.

A641 takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

L64a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, 164a returns a pointer to a null string.

BUGS
The value returned by 164a is a pointer into a static buffer, the contents of
which are overwritten by each call.

- 1 -

ABORT(3C)

NAME

ABORT(3C)

abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
Abort first closes all open files if possible, then causes an lOT signal to be sent
to the process. This usually results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which
case the value returned is that of the kil/(2) system call.

SEE ALSO
exit (2). kill (2), signal (2).
adb(I), sdb(I) in the UNIX System V User Reference Manual.

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a
core dump is produced and the message "abort - core dumped" is written by
the shell.

- I -

ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (0
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS

ABS(3C)

~.

"

In two's-complement representation, the absolute value of the negative integer
with largest magnitude is undefined. Some implementations trap this error, but
others simply ignore it.

SEE ALSO
floorOM).

- 1 -

BSEARCH (JC)

NAME

BSEARCH (JC)

bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char -bsearch ({char -) key, <char -) base, nel, sizeof <-key), cClmpar)
unsigned nel;
int <-compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table indicating where a datum may be found.
The table must be previously sorted in increasing order according to a provided
comparison function. Key points to a datum instance to be sought in the table.
Base points to the element at the base of the table. Nel is the number of ele­
ments in the table. Compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. The
function must return an integer less than, equal to, or greater than zero as
accordingly the first argument is to be considered less than, equal to, or greater
than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the
node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints out the string and its length, or prints an error message.

#include < stdio.h>
#include <search.h>

#define TABSIZE

struct node {
char *string;
int length;

1000

/* these are stored in the table */

};
struct node table[TABSIZE]; /* table to be searched */

} else {
(void)printf("not found: %s\n", node.string);

struct node *nodeytr, node;
int node_compare{); 1* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf{"%s", node.string) != EOF) {

node""ptr = (struct node *)bsearch«char *)(&node) ,
(char *>table, TABSIZE,
sizeof(struct node), node_compare);

if (node....ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node....ptr- > string, node....ptr- > length);

- 1 -

return strcmp(node1-> string, node2-> string);

BSEARCH (JC) BSEARCH (JC)

This routine compares two nodes based on an
alphabetical ordering of the string field ../

int
node_compare(node1, node2)
struct node .node I, .node2;
(

}

NOTES
The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

SEE ALSO
hsearch(JC), Isearch(JC), qsort(3C), tsearch(JC).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

- 2 -

CLOCK(3C)

NAME

CLOCK(3C)

clock - report CPU time used

SYNOPSIS ~
long clock (> }

DESCRIPTION
Clock returns the amount of CPU time Gn microseconds> used since the first
call to clock. The time reported is the sum of the user and system times of the
calling process and its terminated child processes for which it has executed
wait (2) or system OS).

The resolution of the clock is 10 milliseconds on AT&T Technologies 3B com­
puter processors, 16.667 milliseconds on Digital Equipment Corporation proces­
sors.

SEE ALSO
times(2), wait(2), systemOS).

BUGS
The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this,
the value returned will wrap around after accumulating only 2147 seconds of
CPU time (about 36 minutes).

- 1 -

CONV(3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include < ctype.h>
int toupper <c)
int c;

int tolower <c)
int c;

int _toupper <c)
int c;

int tolower <c)
int c;

int toascii <c)
int c;

CONV(3C)

DESCRIPTION
Toupper and tolower have as domain the range of gelc<3S): the integers from
-1 through 255. If the argument of toupper represents a lower-case letter, the
result is the corresponding upper-case letter. If the argument of tolower
represents an upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

The macros _loupper and _t%wer, are macros that accomplish the same thing
as toupper and t%wer but have restricted domains and are faster. _toupper
requires a lower-case letter as its argument; its result is the corresponding
upper-case leller. The macro _t%wer requires an upper-case letter as its
argument; its result is the corresponding lower-case letter. Arguments outside
the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not part of a stan­
dard ASCII character; it is intended for compatibility with other systems.

SEE ALSO
ctype<3C), getc<3S).

- 1 -

CRYPT(JC)

NAME

CRYPT (3C)

crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char .crypt (key, salt>
char .key, .salt;

void setkey (key)
char .key;

void encrypt (block, edflag)
char .block;
iot edflag;

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS Data
Encryption Standard (DES), with variations intended (among other things) to
frustrate use of hardware implementations of the DES for key search.

Key is a user's typed password. Salt is a two-character string chosen from the
set [a-zA-ZO-9.11; this string is used to perturb the DES algorithm in one of
4096 different ways, after which the password is used as the key to encrypt
repeatedly a constant string. The returned value points to the encrypted pass­
word. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual
DES algorithm. The argument of setkey is a character array of length 64 con­
taining only the characters with numerical value 0 and 1. If this string is
divided into groups of 8, the low-order bit in each group is ignored; this gives a
56-bit key which is set into the machine. This is the key that will be used with
the above mentioned algorithm to encrypt or decrypt the string block with the
function encrypt.

The argument to the encrypt entry is a character array of length 64 containing
only the characters with numerical value 0 and I. The argument array is
modified in place to a similar array representing the bits of the argument after
having been subjected to the DES algorithm using the key set by setkey. If
edjlag is zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
getpass(JC), passwd(4).
10gin(I), passwd(I) in the UNIX System V User Reference Manual.

BUGS
The return value points to static data that are overwritten by each call.

- 1 -

CTERMID OS)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <5tdio.h>
char -ctermid (5)
char -s;

CTERMID OS)

~
~ ,.- ,

DESCRIPTION
Clermid generates the path name of the controlling terminal for the current
process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the con­
tents of which are overwritten at the next call to clermid, and the address of
which is returned. Otherwise, s is assumed to point to a character array of at
least L_ctermid elements; the path name is placed in this array and the value of
s is returned. The constant L_ctermid is defined in the <stdio.h> header file.

NOTES
The difference between clermid and ttyname (3C) is that tlyname must be
handed a file descriptor and returns the actual name of the terminal associated
with that file descriptor, while clermid returns a string (/dev/tty) that will
refer to the terminal if used as a file name. Thus ttyname is useful only if the
process already has at least one file open to a terminal.

SEE ALSO
ttyname{3C) .

- 1 -

CTIME(3C) CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
#include < time.h>
char .ctime (clock)
long .clock;

struct tm .Iocaltime (clock)
long .clock;

struct tm ·gmtime (clock)
long .c1ock;

char .asctime hm)
struct tm .tm;

extern long timezone;

extern int daylight;

extern char .tzname(2);

void tzset ()

/. seconds (0 - 59) ./
/. minutes (0 - 59) ./
/. hours (0 - 23) ./
/. day of month (1 - 3I) ./

/. month of year (0 - II) ./
/. year - 1900 ./
/. day of week (Sunday = 0) ./
/. day of year (0 - 365) ./

};

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26­
character string in the following form. All the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

Loealtime and gmtime return pointers to "tm" structures, described below.
Loealtime corrects for the time zone and possible Daylight Savings Time;
gmtime converts directly to Greenwich Mean Time (GMT), which is the time
the UNIX system uses.

Asctime converts a "tm" structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the "tm" structure, are in
the <time.h> header file. The structure declaration is:

struct tm {
int tm_sec;
int tm min;
int tm-hour;
int tm=mday;
int tm_mon;
int tmyear;
int tm_wday;
int tmyday;
int tmJsdst;

Tm_isdst is non-zero if Daylight Savings Time is in effect. .

The external long variable timezone contains the difference, in seconds, between
GMT and local standard time Gn EST, timezone is 5·60.60); the external vari­
able daylight is non-zero if and only if the standard U.S.A. Daylight Savings
Time conversion should be applied. The program knows about the peculiarities
of this conversion in 1974 and 1975; if necessary, a table for these years can be
extended.

If an environment variable named TZ is present, asctime uses the contents of
the variable to override the default time zone. The value of TZ must be a

- 1 -

CTIME(3C) CTIMEOC)

r
three-Ieller time zone name, followed by a number representing the difference
between local time and Greenwich Mean Time in hours, followed by an
optional three-letter name for a daylight time zone. For example, the setting
for New Jersey would be ESTSEDT. The effects of setting TZ are thus to
change the values of the external variables timezone and daylight; in addition,
the time zone names contained in the external variable

char .tznamel21 :::: { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets these exter­
nal variables from TZ; tzset is called by asctime and may also be called expli­
citly by the user.

Note that in most installations, TZ is set by default when the user logs on, to a
value in the local letclprofile file (see projile(4».

SEE ALSO
timc(2), getenv(JC), profile(4). environ (5).

BUGS
The return values point to static data whose content is overwritten by each call.

• 2 -

CTYPE(3C)

NAME

CTYPEOC)

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include <ctype.h>

int isalpha Cd
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each is
a predicate returning nonzero for true, zero for false. [saseU is defined on all
integer values; the rest are defined only where isascii is true and on the single
non-ASCII value EOF (-I - see stdio(JS».

isalpha e is a letter.

isupper

islower

isdigit

isxdigit

isalnum

isspaee

ispunet

isprint

isgraph

isentrl

isaseii

e is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9J.

c is a hexadecimal digit [0-9], [A-F) or [a-fl.

e is an alphanumeric {letter or digit>.

c is a space, tab, carriage return, new-line, vertical tab, or
form-feed.

c is a punctuation character (neither control nor
alphanumeric) .

e is a printing character, code 040 (space) through 0176
(tilde).

c is a printing character, like isprint except false for space.

c is a delete character (0177) or an ordinary control character
(less than 040).

c is an ASCII character, code less than 0200.

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function, the
result is undefined.

SEE ALSO
stdio(JS), ascii (5).

- I -

CUSERID (3S)

NAME

CUSERID (3S)

cuserid - get character login name of the user

SYNOPSIS
#include < 5tdio.b>

cbar .cuserid (5)
cbar .5;

DESCRIPTION
Cuserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If s is a NULL pointer, this
representation is generated in an internal static area, the address of which is
returned. Otherwise, s is assumed to point to an array of at least L_cuserid
characters; the representation is left in this array. The constant L_cuserid is
defined in the <5tdio.b> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer. a null character (\0) will be placed at slOl.

SEE ALSO
getlogin (3C) , getpwent (3C) .

- 1 -

DIAL{3C) DIALOC)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>
int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for read/write. The argu­
ment to dial is a CALL structure <defined in the <dial.h> header file).

When finished with the terminal line. the calling program must invoke undial
to release the semaphore that has been set during the allocation of the terminal
device.

/. pointer to termio attribute struct ./
/. transmission data rate ./
/. 212A modem: low=300. high==1200 ./
/. device name for out-going line ./
/. pointer to tel-no digits string ./
/. specify modem control for direct lines ./
/*WiIl hold the name of the device used
to make a connection */

int devJen; /* The length of the device used to make
} CALL; connection */

The CALL element speed is intended only for use with an outgoing dialed call,
in which case its value should be either 300 or 1200 to identify the 113A
modem, or the high- or low-speed setting on the 212A modem. Note that the
113A modem or the low-speed setting of the 212A modem will transmit at any
rate between 0 and 300 bits per second. However, the high-speed setting of the
212A modem transmits and receivers at 1200 bits per secound only. The CALL
element baud is for the desired transmission baud rate. For example, one
might set baud to 110 and speed to 300 (or 1200). However, if speed set to
I200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name
should be placed in the line element in the CALL structure. Legal values for
such terminal device names are kept in the L-devices file. In this case, the
value of the baud element need not be specified as it will be determined from
the L-devices file.

The telno element is for a pointer to a character string representing the tele­
phone number to be dialed. Such numbers may consist only of symbols
described on the acu (7). The termination symbol will be supplied by the dial
function, and should not be included in the telno string passed to dial in the
CALL structure.

The CALL element modem is used to specify modem control for direct lines.
This element should be non-zero if modem control is required. The CALL ele­
ment aUr is a pointer to a termio structure, as defined in the termio.h header
file. A NULL value for this pointer element may be passed to the dial function,
but if such a structure is included, the elements specified in it will be set for
the outgoing terminal line before the connection is established. This is often
important for certain attributes such as parity and baud-rate.

The definition of CALL in the <dial.h> header file is:

typcdef struct {
struct termio ·attr;
int baud;
int speed;
char ·Iine;
char ·telno;
int modem;
char *device;

- 1 -

DIAL(3C) DIAL(3C)

The CALL element device is used to hold the device name (cuI..) that estab­
lishes the connection.

The CALL element dev-'en is the length of the device name that is copied into
the array device.

FILES

/. interrupt occurred ./
/. dialer hung (no return from write) ./
/. no answer within 10 seconds ./
/. illegal baud-rate ./
/. acu problem (openO failure) ./
/. line problem (openO failure) ./
/. can't open LDEVS file ./
/. requested device not available ./
/. requested device not known ./
/. no device available at requested baud ./
/. no device known at requested baud ./

-I
-2
-3
-4
-5
-6
-7
-8
-9
-10
-II

/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK ..tty-device

SEE ALSO
uucp(IC) in the UNIX System V User Reference Manual.
alarm(2), read(2), write(2).
acu(7), termio(7) in the UNIX System V Administrator Reference Manual.

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be
returned. Mnemonics for these negative indices as listed here are defined in the
<dial.h> header file.

INTRPT
D_HUNG
NO_ANS
ILL_BD
A_PROB
L_PROB
NO_Ldv
DV_NT_A
DV_NT_K
NO_BD_A
NO_BD_K

WARNINGS
Including the <dial.h> header file automatically includes the <termio.h>
header file.

The above routine uses <stdio.h>, which causes it to increase the size of pro­
grams, not otherwise using standard I/O, more than might be expected.

BUGS
An alarm (2) system call for 3600 seconds is made (and caught) within the
dial module for the purpose of "touching" the LCK.. file and constitutes the
device allocation semaphore for the terminal device. Otherwise, uucp (I C) may
simply delete the LCK.. entry on its 90-minute clean-up rounds. The alarm
may go off while the user program is in a read (2) or write (2) system call,
causing an apparent error return. If the user program expects to be around for
an hour or more, error returns from reads should be checked for
(errno = =EINTR), and the read possibly reissued.

- 2 -

DRAND48 (3C)

NAME

DRAND48 (3C)

drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubU
unsigned short xsubi(3);

long Irand48 ()

long nrand48 (xsubU
unsigned short xsubi(3);

long mrand48 ()

long jrand48 (xsubU
unsigned short xsubi(3);

void srand48 (seedvaO
long seedval;

unsigned short .seed48 (seed16v)
unsigned short seed16vl31;

void Icong48 (param)
unsigned short paraml7J;

DESCRIPTION
This family of functions generates pseudo-random numbers using the well­
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating­
point values uniformly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distri­
buted over the interval [_231 , 231).

Functions srand48, seed48 and Icong48 are initialization entry points, one of
which should be invoked before either drand48, Irand48 or mrand48 is called.
(Although it is not recommended practice, constant default initializer values
will be supplied automatically if drand48, lrand48 or mrand48 is called
without a prior call to an initialization entry point.> Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to be called
first.

All the routines work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula

X n+1 - (aXn +C>mod m n ~O.

The parameter m 248
; hence 48-bit integer arithmetic is performed. Unless

lcong48 has been invoked, the multiplier value a and the addend value care
given by

a 5DEECE66D I6 273673163155 8

C B 16 138'

The value returned by any of the functions drand48, erand48, lrand48.
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit
Xi in the sequence. Then the appropriate number of bits, according to the type
of data item to be returned, are copied from the high-order (leftmost) bits of
Xi and transformed into the returned value.

- 1 -

DRAND48(JC) DRAND48(JC)

The functions drand48. Irand48 and mrand48 store the last 48-bit Xi gen­
erated in an internal buffer; that is why they must be initialized prior to being
invoked. The functions erand48. nrand48 and jrand48 require the calling pro­
gram to provide storage for the successive Xi values in the array specified as an
argument when the functions are invoked. That is why these routines do not
have to be initialized; the calling program merely has to place the desired ini­
tial value of Xi into the array and pass it as an argument. By using different
arguments, functions erand48. nrand48 and jrand48 allow separate modules of
a large program to generate several independent streams of pseudo-random
numbers, i.e., the sequence of numbers in each stream will not depend upon
how many times the routines have been called to generate numbers for the
other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits
contained in its argument. The low-order 16 bits of Xi are set to the arbitrary
value 330E16•

The initializer function seed48 sets the value of Xi to the 48-bit value specified
in the argument array. In addition, the previous value of Xi is copied into a
48-bit internal buffer, used only by seed48, and a pointer to this buffer is the
value returned by seed48. This returned pointer, which can just be ignored if
not needed, is useful if a program is to be restarted from a given point at some
future time - use the pointer to get at and store the last Xi value, and then
use this value to reinitialize via seed48 when the program is restarted.

The initialization function Icong48 allows the user to specify the initial Xi, the
multiplier value a, and the addend value c. Argument array elements
paramfO-21 specify Xi, paramO-51 specify the multiplier a, and paramf61
specifies the 16-bit addend c. After lcong48 has been called, a subsequent call
to either srand48 or seed48 will restore the "standard" multiplier and addend
values, a and c, specified on the previous page.

NOTES
The versions of these routines for the VAX-II and PDP-II are coded in assem­
bly language for maximum speed. It requires approximately 80 ~sec on a
VAX-lln80 and 130 ~sec on a PDP-llnO to generate one pseudo-random
number. On other computers, the routines are coded in portable C. The
source code for the portable version can even be used on computers which do
not have floating-point arithmetic. In such a situation, functions drand48 and
erand48 do not exist; instead, they are replaced by the two new functions
below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubil31, m;

Functions irand48 and krand48 return non-negative long integers uniformly
distributed over the interval [0, m-I).

SEE ALSO
rand(3C).

- 2 -

ECVT(3C)

NAME

ECVT(JC)

ecvt. fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char -eevt (value, ndigit, deept, sign)
double value;
int ndigit, -deept, -sign;

char -revt <value, ndigit, deept, sign)
double value;
int ndigit, -deept, -sign;

ehar -gevt (value, ndigit, bur>
double value;
int ndigit;
ehar -bur;

DESCRIPTION
Eevt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The high-order digit is non-zero, unless the value is zero. The
low-order digit is rounded. The position of the decimal point relative to the
beginning of the string is stored indirectly through deept (negative means to
the left of the returned digits). The decimal point is not included in the
returned string. If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero.

FeVl is identical to eevt, except that the correct digit has been rounded for
printf U%r' (FORTRAN F-format) output of the number of digits specified by
ndigit.

Gevt converts the value to a null-terminated string in the array pointed to by
buf and returns buf. It attempts to produce ndigit significant digits in FOR·
TRAN f·format if possible, otherwise E-format, ready for printing. A minus
sign, if there is one. or a decimal point will be included as part of the returned
string. Trailing zeros are suppressed.

SEE ALSO
printf(3S) .

BUGS
The values returned by eevt and feVl point to a single static data array whose
content is overwritten by each call.

• 1 •

END(3C)

NAME

END(3C)

~'

end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents.
The address of etext is the first address above the program text, edata above
the initialized data region, and end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data)
coincides with end, but the program break may be reset by the routines of
brk (2), maUoc OC), standard input/output (stdio OS», the profile (-p)
option of cc (I), and so on. Thus, the current value of the program break
should be determined by sbrk(0) (see brk (2».

SEE ALSO
brk(2), malloc(JC), stdio(JS).
ccO) in the UNIX System V User Reference Manual.

- I -

FCLOSE(3S)

NAME

FCLOSE(JS)

fclose, mush - close or flush a stream

SYNOPSIS
#include <stdio.h>
int fclose (stream)
FILE *stream;

int mush (stream)
FILE *stream;

DESCRIPTION
Fc/ose causes any buffered data for the named stream to be written out, and
the stream to be closed.

Fc/ose is performed automatically for all open files upon calling exit (2).

Fjiush causes any buffered data for the named stream to be written to that file.
The stream remains open.

DIAGNOSTICS
These functions return 0 for success. and EOF if any error (such as trying to
write to a file that has not been opened for writing) was detected.

SEE ALSO
c1ose(2). cxit(2). fopen(3S). setbuf(3S).

- 1 -

FERROR(3S)

NAME

FERROR(3S)

ferror, feof, c1earerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h >
int rerror (stream)
FILE -stream;

int reor (stream)
FI LE -stream;

void clearerr (stream)
FI LE -stream;

int fileno (stream)
FI LE -stream;

DESCRIPTION
Ferror returns non-zero when an I/O error has previously occurred reading
from or writing to the named stream, otherwise zero.

Feo! returns non-zero when EOF has previously been detected reading the
named input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named
stream.

Fileno returns the integer file descriptor associated with the named stream; see
open (2).

NOTE
All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO
open (2), fopen OS).

- 1 -

FOPEN(JS)

NAME

FOPEN(3S)

fopen, freopen, fdopen - open a stream

SYNOPSIS ~
#include <stdio.b>J

FILE .ropen (file-name, type)
char .file-name, .type;

FILE .rreopen (file-name, type, stream)
char .file-name, .type;
FILE .stream;

FILE .rdopen (fildes, type)
int fildes;
char .type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it.
Fopen returns a pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to be
opened.

Type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append; open for writing at end of file, or create for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file '1
Freopen substitutes the named file in place of the open stream. The original
stream is closed, regardless of whether the open ultimately succeeds. Freopen
returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin,
stdout and stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are obtained
from open, dup, creat, or pipe(2), which open files but do not return pointers
to a FILE structure stream. Streams are necessary input for many of the Sec­
tion 3S library routines. The type of stream must agree with the mode of the
open file.

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input
without an intervening fseek or rewind, and input may not be directly followed
by output without an intervening fseek, rewind, or an input operation which
encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossi­
ble to overwrite information already in the file. Fseek may be used to reposi­
tion the file pointer to any position in the file, but when output is written to the
file, the current file pointer is disregarded. All output is written at the end of
the file and causes the file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append, each process may write
freely to the file without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the file in the order in /~
which it is written.-)

- 1 -

FOPEN(3S)

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S).

DIAGNOSTICS
Fopen and jreopen return a NULL pointer on failure.

- 2 -

FOPEN(JS)

FREAD(3S)

NAME

FREAD(JS)

fread, fwrite - binary input/output

SYNOPSIS
#include <stdio.h>

int fread (ptr, size, nitems, stream)
char .ptr;
int size, nitems;
FILE .stream;

int fwrite (ptr, size, nitems, stream)
char .ptr;
int size, nitems;
FILE .stream;

DESCRIPTION
Fread copies, into an array pointed to by ptr, nitems items of data from the
named input stream, where an item of data is a sequence of bytes (not neces­
sarily terminated by a null byte) of length size. Fread stops appending bytes if
an end-of-file or error condition is encountered while reading stream. or if
nitems items have been read. Fread leaves the file pointer in stream, if
defined, pointing to the byte following the last byte read if there is one. Fread
does not change the contents of stream.

Fwrite appends at most nitems items of data from the array pointed to by ptr
to the named output stream. Fwrite stops appending when it has appended
nitems items of data or if an error condition is encountered on stream. Fwrite
does not change the contents of the array pointed to by ptr.

The argument size is typically sizeof(.ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data type
other than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2) , fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts (3S), scanf(3S).

DIAGNOSTICS
Fread and fwrite return the number of items read or written. If size or nitems
is non-positive, no characters are read or written and 0 is returned by both
fread and fwrite.

BUGS
On the PDP-II, the number of bytes transferred is the product of size and
nitems, modulo 65536.

- 1 -

FREXP(JC)

NAME

FREXP(JC)

frexp, Idexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int .eptr;

double Idexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, ·iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x. 2n

, where the "mantissa"
(fraction) x is in the range 0.5 ~ Ixl < 1.0, and the "exponent" n is an
integer. Frexp returns the mantissa of a double value, and stores the exponent
indirectly in the location pointed to by eplr. If value is zero, both results
returned by frexp are zero.

Ldexp returns the quantity value. 2exp
•

Mod! returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iplr.

DIAGNOSTICS
If Idexp would cause overflow, ±HUGE is returned (according to the sign of
value), and errno is set to ERANGE.
If Idexp would cause underflow, zero is returned and errno is set to ERANGE.

- I -

FSEEK(3S)

NAME

FSEEK(3S)

fseek. rewind. ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>
int fseek (stream, offset, ptrname)
FILE -stream;
long offset;
int ptrname;

void rewind (stream)
FILE -stream;

long ftell (stream)
FILE -stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offset bytes from the beginning, from
the current position. or from the end of the file. according as ptrname has the
value O. 1. or 2.

Rewind(stream) is equivalent to fseek(stream. OL. 0). except that no value is
returned.

Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind. the next operation on a file opened for update may be
either input or output.

Ftell returns the offset of the current byte relative to the beginning of the file
associated with the named stream.

SEE ALSO
Iseek(2), fopen(3S). popen(JS), ungetc(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek
can be, for example, an fseek done on a file that has not been opened via fopen;
in particular, fseek may not be used on a terminal, or on a file opened via
popen(3S).

WARNING
Although on the UNIX system an offset returned by ftell is measured in bytes,
and it is permissible to seek to positions relative to that offset, portability to
non-UNIX systems requires that an offset be used by fseek directly. Arithmetic
may not meaningfully be performed on such an offset, which is not necessarily
measured in bytes.

- 1 -

FTW(3C)

NAME

FTW(3C)

ftw - walk a file tree

SYNOPSIS
#include < ftw.h >
int ftw (path, Cn, depth)
char *path;
int (*Cn) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, Jtw calls In, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat structure
(see star(2» containing information about the object, and an integer. Possible
values of the integer, defined in the <ftw.h> header file, are FTW_F for a file,
FTW_D for a directory, FTW_DNR for a directory that cannot be read, and
FTW_NS for an object for which stat could not successfully be executed. If the
integer is FTW_DNR, descendants of that directory will not be processed. If the
integer is FTW_NS, the stat structure will contain garbage. An example of an
object that would cause FTW_NS to be passed to In would be a file in a direc­
tory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn
returns a nonzero value, or some error is detected within Jtw (such as an I/O
error). If the tree is exhausted, ftw returns zero. If In returns a nonzero value,
Jtw stops its tree traversal and returns whatever value was returned by In. If
Jtw detects an error, it returns -1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument
limits the number of file descriptors so used. If depth is zero or negative, the
effect is the same as if it were 1. Depth must not be greater than the number
of file descriptors currently available for use. Ftw will run more quickly if
depth is at least as large as the number of levels in the tree.

SEE ALSO
stat(2), malloc(3C).

BUGS
Because Jtw is recursive, it is possible for it to terminate with a memory fault
when applied to very deep file structures.
It could be made to run faster and use less storage on deep structures at the
cost of considerable complexity.
Ftw uses ma//od3C> to allocate dynamic storage during its operation. If Jtw is
forcibly terminated, such as by /ongjmp being executed by In or an interrupt
routine, Jtw will not have a chance to free that storage, so it will remain per­
manently allocated. A safe way to hanale interrupts is to store the fact that an
interrupt has occurred, and arrange to have In return a nonzero value at its
next invocation.

- 1 -

GETC(3S)

NAME

GETC(3S)

gelc, gelchar, fgelc, getw - get character or word from a stream

SYNOPSIS
#ioclude <stdio.h>
iot getc (stream)
FILE .stream;

iot getchar ()

iot fgetc (stream)
FILE .stream;

iot getw (stream)
FILE .stream;

DESCRIPTION
Getc returns the next character (i.e., byte) from the named input stream, as an
integer. It also moves the file pointer, if defined, ahead one character in
stream. Getchar is defined as getc(stdin). Getc and getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs
more slowly than getc, but it takes less space per invocation and its name can
be passed as an argument to a function.

Getw returns the next word (i.e., integer) from the named input stream. Getw
increments the associated file pointer, if defined, to point to the next word. The
size of a word is the size of an integer and varies from machine to machine.
Getw assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, Jerror<3S) should be used to detect getw errors.

WARNING
If the integer value returned by getc, getchar, or Jgetc is stored into a character
variable and then compared against the integer constant EOF, the comparison
may never succeed, because sign-extension of a character on widening to
integer is machine-dependent.

BUGS
Because it is implemented as a macro, getc treats incorrectly a stream argu­
ment with side effects. In particular, getC<.f++) does not work sensibly.
Fgetc should be used instead.
Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and may not be read using getw on a
different processor.

- 1 -

GETCWD(JC)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char -getcwd (bur, size)
char -bur;
int size;

GETCWD(JC)

~... , •.
t

DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The value of size
must be at least two greater than the length of the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
malloc(3C>' In this case, the pointer returned by getewd may be used as the
argument in a subsequent call to free.

The function is implemented by using popen (3S) to pipe the output of the
pwd (I) command into the specified string space.

EXAMPLE
char ·cwd, ·getcwd0;

if «cwd 0= getcwd«char .)NULL, 64» == NULL) (
perror(Upwd");
exit(I);

)
printf(H%s\n", cwd);

SEE ALSO
malloc(3C), popen (3S).
pwd(l) in the UNIX System V User Reference Manual.

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error ocurrs in
a lower-level function.

- 1 -

GETENV(3C)

NAME

GETENV(JC)

getenv - return value for environment name

SYNOPSIS
char -getenv (name)
char -name;

DESCRIPTION
Getenv searches the environment list (see environ (5» for a string of the form
name =value, and returns a pointer to the value in the current environment if
such a string is present, otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(S).

- 1 -

GETGRENT (JC) GETGRENT (JC)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent. fgetgrent - get group file
entry

SYNOPSIS
#include < grp.h >

Gelgrent when first called returns a pointer to the first group structure in the
file; thereafter, it returns a pointer to the next group structure in the file; so,
successive calls may be used to search the entire file. Getgrgid searches from
the beginning of the file until a numerical group id matching gid is found and
returns a pointer to the particular structure in which it was found. Getgrnam
searches from the beginning of the file until a group name matching name is
found and returns a pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading, these functions return a
NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is
complete.

Fgetgrent returns a pointer to the next group structure in the stream f. which
matches the format of /etc/group.

-gr_name; /- the name of the group -/
-gr""passwd; /- the encrypted group password -/
gr..,gid; /- the numerical group ID -/
..gr_mem; /- vector of pointers to member names -/

};

struct group .getgrent ()

struct group ·getgrgid (gid)
int gid;

struct group .getgrnam (name)
char .name;

void setgrent ()

void endgrent ()

struct group .fgetgrent (f)
FILE .f;

DESCRIPTION
Gelgrent. getgrgid and getgrnam each return pointers to an object with the fol­
lowing structure containing the broken-out fields of a line in the /etc/group file.
Each line contains a "group" structure, defined in the <grp.h> header file.

struct group {
char
char
int
char

~\
\

FILES
/etc/group

SEE ALSO
getlogin(JC), getpwent(]C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>. which causes them to increase the size of
programs, not otherwise using standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be
saved.

- I -

GETLOGIN (3C)

NAME

GETLOGIN (3C)

getlogin - get login name

SYNOPSIS
char .getlogin ();

DESCRIPTION
Get/ogin returns a pointer to the login name as found in /etc/utmp. It may be
used in conjunction with getpwnam to locate the correct password file entry
when the same user 10 is shared by several login names.

If get/ogin is called within a process that is not attached to a terminal, it
returns a NULL pointer. The correct procedure for determining the login name
is to call cuserid, or to call get/ogin and if it fails to call getpwuid.

FILES
letc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwentC3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

- 1 -

GETOPT(JC)

NAME

GETOPT(JC)

getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char uargv, .opstring;

extern char .optarg;
extern int optind, opterr;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring.
Optstring is a string of recognized option letters; if a letter is followed by a
colon. the option is expected to have an argument that mayor may not be
separated from it by white space. Optarg is set to point to the start of the
option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically
before the first call to getopt .

When all options have been processed (j.e., up to the first non-option argu­
ment>, getopt returns EOF. The special option - - may be used to delimit the
end of the options; EOF will be returned, and - - will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when
it encounters an option letter not included in optstring. This error message
may be disabled by setting opterr to a non-zero value.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the options
f and 0, both of which require arguments:

main (argc, argv)
int argc;
char ..argv;
{

int c;
extern char ·optarg;
extern iot optiod;

while «c <=> getopt(argc, argv, "abf:o:"» != EOF)
switch (c) (
case 'at:

if (bftg)
errftg++;

else
aftg++;

break;
case 'b/:

if (aftg)
errftg++;

else
bproc();

break;
case 'r:

ifile - optarg;
break;

• 1 •

GETOPT(3C)

case '0':
ofile = optarg;
break;

case ',/':
errflg++;

}
if (errfig) {

fprintf(stderr. "usage: . . . ");
exit (2);

}
for (; optind < argc; optind++) {

if (access(argv[optindl, 4» (

SEE ALSO
getopt(I) in the UNIX System V User Reference Manual.

- 2 -

GETOPT(3C)

GETPASS OC)

NAME

GETPASS (3C)

getpass - read a password

SYNOPSIS
char .getpass (prompt>
char .prompt;

DESCRIPTION
Getpass reads up to a newline or EOF from the file Idev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 charac­
ters. If Idev/tty cannot be opened, a NULL pointer is returned. An interrupt
will terminate input and send an interrupt signal to the calling program before
returning.

FILES
/dev/tty

SEE ALSO
crypt(JC) .

WARNING
The above routine uses <stdio.b>, which causes it to increase the size of pro­
grams not otherwise using standard I/O, morc than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

- 1 -

GETPW(3C)

NAME

GETPW(3C)

getpw - get name from UfO

SYNOPSIS
int getpw (uid, bur>
int uid;
char -bur;

DESCRIPTION
Getpw searches the password file for a user id number that equals uid. copies
the line of the password file in which uid was found into the array pointed to
by bu/. and returns O. Getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should
not be used; see getpwent (3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C). passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>. which causes it to increase. more than
might be expected. the size of programs not otherwise using standard I/O.

- 1 -

GETPWENT (JC)

NAME

GETPWENT (JC)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password
file entry

SYNOPSIS
#include < pwd.h>
struct passwd -getpwent ()

struct passwd -getpwuid (uid)
int uid;

struct passwd -getpwnam (name)
char -name;

void setpwent ()

void endpwent ()

struct passwd -fgetpwent (f)
FILE -f;

DESCRIPTION
Getpwent, getpwuid and getpwnam each returns a pointer to an object with the
following structure containing the broken-out fields of a line in the letc/passwd
file. Each line in the
<pwd.h> header file:

struct passwd {
char
char
int
int
char
char
char
char
char

file contains a "passwd" structure, declared in the

·pw_name;
.pwyasswd;
pw_uid;
pw.....gid;
·pw_age;
.pw_comment;
·pw....8ecos;
.pw_dir;
.pw_shell;

};

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The pwJomment field is unused; the others have meanings described in
passwd(4).

Getpwent when first called returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file; so
successive calls can be used to search the entire file. Getpwuid searches from
the beginning of the file until a numerical user id matching uid is found and
returns a pointer to the particular structure in which it was found. Getpwnam
sear~hes from the beginning of the file. until a login name matching name is
found, and returns a pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading, these functions return a
NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file when
processing is complete.

Fgetpwent returns a pointer to the next passwd structure in the stream f, which
matches the format of letc/passwd.

FILES
letc/passwd

-.1 -

GETPWENT (3C) GETPWENT(3C)

SEE ALSO
getlogin (3C), getgrent (3C), passwd (4).

DIAGNOSTICS ~
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.b>, which causes them to increase the size of
programs, not otherwise using standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be
saved.

• 2 •

GETS(3S)

NAME

GETS(3S)

gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char .gets (s)
char .s;

char .fgets (s, n, stream)
char .s;
int D;
FILE .stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an end-of-file condition is
encountered. The new-line character is discarded and the string is terminated
with a null character.

Fgets reads characters from the stream into the array pointed to by s, until
n-l characters are read, or a new-line character is read and transferred to s,
or an end-of-file condition is encountered. The string is then terminated with a
null character.

SEE ALSO
ferror(3S), fopen(JS), fread(JS), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters
are transferred to s and a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened for
reading, a NULL pointer is returned. Otherwise s is returned.

- 1 -

GETUT(3C) GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname .- access
utmp file entry

SYNOPSIS
#include <utmp.h>
struct utmp -getutent ()

struct utmp -getutid (id)
struct utmp -id;

struct utmp -getutline Oine)
struct utmp -line;

void pututline (utmp)
struct utmp -utmp;

void setutent ()

void endutent ()

void utmpname (file)
char -file;

/. Process termination status ./
/. Process exit status */
/. The exit status of a process
• marked as DEAD PROCESS.•/

/* time entry was m-ade */

/* User login name */
/. /etc/inittab id (usually line #) ./
/. device name (console, Inxx) ./
/. process id ./
/. type of entry ./

ut user[S];
ut-id[4];
ut-Iine[12];
utyid;
ut_type;
exit_status {

e_termination;
e_exit;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a structure of the fol­
lowing type:

struct utmp {
char
char
char
short
short
struct

short
short

} ut_exit;

};

Getutent reads in the next entry from a utmp-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until it finds
an entry with a ut_type matching id - >ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in id
is INIT PROCESS, LOGIN PROCESS, USER PROCESS or DEAD PROCESS,
then getutid will return a pointer to the first entry whose type is one of these
four and whose ut id field matches id - > ut id. If the end of file is reached
without a match, it-fails. -

Getutline searches forward from the current point in the utmp file until it finds
an entry of the type LOGIN_PROCESS or USER]ROCESS which also has a
ut)ine string matching the line - > ut)ine string. If the end of file is reached
without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses
getutid to search forward for the proper place if it finds that it is not already at
the proper place. It is expected that normally the user of pututline will have
searched for the proper entry using one of the getut routines. If so, pututline
will not search. If pututline does not find a matching slot for the new entry, it
will add a new entry to the end of the file.

- 1 -

GETUTOC) GETUT(3C)

Sewtent resets the input stream to the beginning of the file. This should be
done before each search for a new entry if it is desired that the entire file be
examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/etc/utmp to any other file. It is most often expected that this other file will be
/etc/wtmp. If the file does not exist, this will not be apparent until the first
attempt to reference the file is made. Utmpname does not open the file. It just
closes the old file if it is currently open and saves the new file name.

FILES
letclutmp
letc/wtmp

SEE ALSO
ttyslot (3C), utmp(4}.

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions or
having reached the end of file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. Each call to either getutid
or getutline sees the routine examine the static structure before performing
more I/O. If the contents of the static structure match what it is searching for,
it looks no further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each success, or
getutline would just return the same pointer over and over again. There is one
exception to the rule about removing the structure before further reads are
done. The implicit read done by pututline (if it finds that it is not already at
the correct place in the file) will not hurt the contents of the static structure
returned by the getutent, getutid or getutline routines, if the user has just
modified those contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes trying
to modify the utmp and wtmp files.

- 2 -

HSEARCH (3C)

NAME

HSEARCH (3C)

hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int bcreate (nel)
unsigned nel;

void bdestroy ()

DESCRIPTION
Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm
D. It returns a pointer into a hash table indicating the location at which an
entry can be found. Item is a structure of type ENTRY (defined in the
<search.h> header file) containing two pointers: item.key points to the com­
parison key, and item.data points to any other data to be associated with that
key. (Pointers to types other than character should be cast to pointer-to­
character.) Action is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that
the item should be inserted in the table at an appropriate point. FIND indicates
that no entry should be made. Unsuccessful resolution is indicated by the
return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before
hsearch is used. Nel is an estimate of the maximum number of entries that
the table will contain. This number may be adjusted upward by the algorithm
in order to obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by another call to
hcreate.

NOTES
Hsearch uses open addressing with a multiplicative hash function. However,
its source code has many other options available which the user may select by
compiling the hsearch source with the following symbols defined to the prepro­
cessor:

DIV Use the remainder modulo table size as the hash function
instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertaining
table membership. The routine should be named hcompar
and should behave in a mannner similar to strcmp (see
string (3C)).

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in ascend­
ing order.

SORTDOWN Keep the linked list sorted by key in des-
cending order.

Additionally, there are preprocessor flags for obtaining debugging printout ~.
(- DDEBUG) and for including a test driver in the calling routine }
(- DDRIVER) . The source code should be consulted for further details.

- 1 -

HSEARCH (3C) HSEARCH (3C)

EXAMPLE
The following example will read in strings followed by two numbers and store
them in a hash table. discarding duplicates. It will then read in strings and
find the matching entry in the hash table and print it out.

#include < stdio.h >
#include <search.h>

struct info (/- this is the info stored in the table -/
int age. room; /- other than the key. -/

) ;
#define NUM_EMPL

main()
(

5000 /- # of elements in search table -/

} else (
(void)printf("no such employee %s\n".

name_to_find)

/- space to store strings -/
char string_space[NUM_EMPL-20);
/- space to store employee info -/
struct info info_space[NUM_EMPL];
/- next avail space in string_space -/
char .strytr -= string_space;
/. next avail space in info_space ./
struct info ·infoytr = info_space;
ENTRY item. ·found item••hsearch();
/. name to look for in table ./
char name to find(30);
int i = 0; - -

/. create table ./
(void) hcreate(NUM EMPL);
while (scanf("%s%d%<i". strytr. &info....ptr-> age.

&info....ptr->room) != EOF && i++ < NUM_EMPL)
/. put info in structure, and structure in item ./
item.key - strytr;
item.data = (char .)info....Ptr;
strytr +.... strlen (strytr) + 1;
info....ptr++;
/. put item into table ./
(void) hsearch(item. ENTER);

/. access table ./
item.key - name_to_find;
while (scanf("%s". item.key) !-= EOF) {

if «found item hsearch(item. FIND» != NULL) (
/. if item is in. the table ./
(void)printf("found %s, age ;;;: %d, room %d\n",

foundjtem- > key.
«struct info .)foundjtem->data)-> age,
«struct info .)foundjtem->data)->room);

- 2 -

HSEARCH (3C) HSEARCH (3C)

SEE ALSO
bsearch(3C) t Isearch(3C) t malloc(3C) t malloc(3X), string(3C) t tsearch (3C) .

DIAGNOSTICS '~
HseaTch returns a NULL pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

HCTeate returns zero if it cannot allocate sufficient space for the table.

WARNING
HseaTch and hCTeate use malloc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

·3·

L3TOL(3C)

NAME
13tol, hol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol Up, cp, n)
long -Ip;
char -cp;
int n;

void Itol3 (cp, Ip, n)
char -cp;
long -Ip;
int n;

L3TOL(3C)

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by lp.

Ltol3 performs the reverse conversion from long integers (/p) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(4) .

BUGS
Because of possible differences in byte ordering, the numerical values of the
long integers are machine-dependent.

- I -

LSEARCH(3C)LSEARCH (1)
NAME

lsearcb, lfind - linear search and update

SYNOPSIS
#include < stdio.h>
#include <search.h>

char -.search ({cbar -)key, (char -)base, nelp, sizeof(-key), compar)
unsigned -nelp;
int (-compar) ();

char -.find ({cbar -)key, (cbar -)base, nelp, sizeof(-key), compar)
unsigned -nelp;
int (-compar)();

DESCRIPTION
Lsearch is a linear search routine generalized from Knuth (6. I) Algorithm S.
It returns a pointer into a table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table. Key points to the
datum to be sought in the table. Base points to the first element in the table.
Nelp points to an integer containing the current number of elements in the
table. The integer is incremented if the datum is added to the table. Compar
is the name of the comparison function which the user must supply (strcmp, for
example). It is called with two arguments that point to the elements being
compared. The function must return zero if the elements are equal and non­
zero otherwise.

Lfind is the same as lsearch except that if the datum is not found, it is not
added to the table. Instead, a NULL pointer is returned.

NOTES
The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

EXAMPLE
This fragment will read in ~ TABSIZE strings of length ~ ELSIZE and store
them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZEl, tab[TABSIZE][ELSIZEl. -lsearch();
unsigned nel == 0;
int strcmp();

while (fgetsOine, ELSIZE, stdin) !== NULL &&
nel < TABSIZE)

(void) IsearchOine, (char ->tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(JC). hsearch(JC), tsearch(JC).

- I -

LSEARCH (3C) LSEARCH (3C)

~\
\

DIAGNOSTICS
If the searched for datum is found, both /search and /find return a pointer to
it. Otherwise, /find returns NULL and /search returns a pointer to the newly
added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a
new item.

·2-

MALLOC(3C)

NAME

MALLOC(JC)

malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char .malloc (size)
unsigned size;

void free (ptr)
char .ptr;

char .realloc (ptr, size)
char .ptr;
unsigned size;

char .calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation package.
Mal/oc returns a pointer to a block of at least size bytes suitably aligned for
any use.

The argument to free is a pointer to a block previously allocated by mal/oc;
after free is performed this space is made available for further allocation, but
its contents are left undisturbed.

Undefined results will occur if the space assigned by mal/oc is overrun or if
some random number is handed to free.

Mal/oc allocates the first big enough contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adjacent free
blocks as it searches. It calls sbrk (see brk (2» to get more memory from the
system when there is no suitable space already free.

Real/oc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes. If no free block of size
bytes is available in the storage arena, then realloc will ask mal/oc to enlarge
the arena by size bytes and will then move the data to the new space.

Real/oc also works if ptr points to a block freed since the last call of mal/oc,
real/oc, or calloc; thus sequences of free, mal/oc and real/oc can exploit the
search strategy of mal/oc to do storage compaction.

Calloc allocates space for an array of ne/em elements of size elsize. The space
is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned {after
possible pointer coercion} for storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
Mal/oc, realloc and cal/oc return a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed to by ptr may be des­
troyed.

NOTE
Search time increases when many objects have been allocated; that is, if a pro­
gram allocates but never frees, then each successive allocation takes longer.
For an alternate, more flexible implementation, see mal/oc (3X).

- 1 -

'~

MEMORYOC)

NAME

MEMORYOC)

memccpy. memchr, memcmp. memcpy. memset - memory operations

SYNOPSIS
#include < memory.h>
char .memccpy (sl, s2, c, n)
char .S1, .52;
int c, n;

char .memchr (5, c, n)
char .s;
int c, 0;

iot memcmp (51, 52, 0)
char .51, ·52;
iot 0;

char .memcpy (51, 52, 0)
char .51, .52;
iot 0;

char .memset (s, c, n)
char .s;
iot c, 0;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do
not check for the overflow of any receiving memory area.

Memccpy copies characters from memory area 52 into 51, stopping after the
first occurrence of character c has been copied, or after 0 characters have been
copied, whichever comes first. It returns a pointer to the character after the
copy of c in sl, or a NULL pointer if c was not found in the first n characters
of 52.

Memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, according as sl is lexi­
cographically less than, equal to, or greater than 52.

Memcpy copies 0 characters from memory area 52 to 51. It returns 51.

Memset sets the first 0 characters in memory area 5 to the value of character
c. It returns 5.

NOTE
For user convenience, all these functions are declared in the optional
<memory.h> header file.

BUGS
Memcmp uses native character comparison, which is signed on PDP-lIs and
VAX-lIs, unsigned on other machines. Thus the sign of the value returned
when one of the characters has its high-order bit set is implementation­
dependent.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

- 1 -

MKTEMP(3C)

NAME

MKTEMP(JC)

mktemp - make a unique file name

SYNOPSIS
char -mktemp <template)
char -template;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template by a unique
file name, and returns the address of template. The string in template should
look like a file name with six trailing Xs; mktemp will replace the Xs with a
letter and the current process ID. The letter will be chosen so that the resulting
name does not duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

- 1 -

MONITOR (JC)

NAME

MONITOR (JC)

monitor - prepare execution profile

SYNOPSIS
#include < mon.h >
void monitor (Iowpc, highpc, buffer, bursize, nrune>
int (.lowpcH), (.highpcH);
WORD •buffer;
int bursize, nrunc;

DESCRIPTION
An executable program created by cc -p automatically includes calls for mon­
itor with default parameters; monitor needn't be called explicitly except to gain
fine control over profiling.

Monitor is an interface to proji/(2}. Lowpc and highpc are the addresses of
two functions; buffer is the address of a (user supplied) array of buJsize
WORDs (defined in the <mon.h> header file). Monitor arranges to record a
histogram of periodically sampled values of the program counter, and of counts
of calls of certain functions, in the buffer. The lowest address sampled is that
of IOwpc and the highest is just below highpc. Lowpc may not equal 0 for this
use of monitor. At most nfunc call counts can be kept; only calls of functions
compiled with the profiling option -p of cd I) are recorded. (Except on the
PDP-II, the C Library and Math Library supplied when cc -p is used also
have call counts recorded'>

For the results to be significant, especially where there are small, heavily used
routines, it is suggested that the buffer be no more than a few times smaller
than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor «int (.) 0}2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file mon.out, use

monitor (Gnt (·)0)0,0,0,0,0);

ProJO) can then be used to examine the results.

FILES
mon.out
/lib/libp/libc.a
/lib/libp/libm.a

SEE ALSO
profil (2), end (3C).
ccO), prof(t) in the UNIX System V User Reference Manual.

- I -

NLlST(JC)

NAME

NLlST(JC)

nlist - get entries from name list

SYNOPSIS
#include < nlist.h>
int nlist (file-name, nO
char -file-name;
struct nlist -nl;

DESCRIPTION
NUst examines the name list in the executable file whose name is pointed to by
file-name, and selectively extracts a list of values and puts them in the array of
nlist structures pointed to by nl. The name list nl consists of an array of struc­
tures containing names of variables, types and values. The list is terminated
with a null name; that is, a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the name is
found, the type and value of the name are inserted in the next two fields. The
type field will be set to 0 unless the file was compiled with the -g option. If
the name is not found, both entries are set to O. See a.out (4) for a discussion
of the symbol table structure.

This function is useful for examining the system name list kept in the file
lunix. In this way programs can obtain system addresses that are up to date.

NOTES
The <nUst.h> header file is automatically included by <a.oul.h> for compa­
tability. However, if the only information needed from <a.oul.h> is for use of
nUst, then including <a.out.h> is discouraged. If <a.oul.h> is included, the
line "#undef n_name" may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it does not contain a
valid name list.

Ntist returns -1 upon error; otherwise it returns O.

- I -

..~

PERROR(JC)

NAME

PERROR(JC)

perror, ermo, sys_crrlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char .s;

extern int errno;

extern char .sys_errlisd J;
extern int sys_nerr;

DESCRIPTION
Perror produces a mcssage on the standard error output, describing the last
error encountered during a call to a system or library function. The argument
string s is printed first, then a colon and a blank, then the message and a new­
line. To be of most use, the argument string should include the name of the
program that incurred the error. The error number is taken from the external
variable errno, which is set when errors occur but not cleared when non­
erroneous calls arc made.

To simplify variant formatting of messages, the array of message strings
sys_err/ist is provided; errno can be used as an index in this table to get the
message string without the new-line. Sys_nerr is the largest message number
provided for in thc table; it should be checked because new error codes may be
added to the system before they are added to thc table.

SEE ALSO
intro(Z) .

- 1 -

POPEN(JS)

NAME

POPEN(JS)

popen, pelose - initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>
FILE -,open (command, type)
char -command, -type;

int pclose (stream)
FILE -stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing,
respectively, a shell command line and an I/O mode, either r for reading or w
for writing. Popen creates a pipe between the calling program and the com­
mand to be executed. The value returned is a stream pointer such that one can
write h> the standard input of the command, if the I/O mode is w, by writing to
the file stream; and one can read from the standard output of the command, if
the 110 mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter
and a type w as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS
Popen returns a NULL pointer if files or processes cannot be created, or if the
shell cannot be accessed.

Pclose returns -I if stream is not associated with a upopened" command.

BUGS
If the original and upopened" processes concurrently read or write a common
file, neither should use buffered I/O, because the buffering gets all mixed up.
Problems with an output filter may be forestalled by careful buffer flushing, e.g.
with .fflush; see fclose(3S).

- 1 -

PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>
int printf (format [, arg] .,.)
char .format;

int fprintf (stream, format [, arg] ...)
FILE .stream;
char .format;

int sprintf (5, format [, arg] ...)
char ·5, format;

PRINTF(3S)

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places out­
put on the named output stream. Sprintf places "output," followed by the null
character (\0), in consecutive bytes starting at *s; it is the user's responsibility
'to ensure that enough storage is available. Each function returns the number
of characters transmitted (not including the \0 in the case of sprint/) , or a
negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of
the format. The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which results in fetching of zero or more args.
The results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag '-" described
below, has been given) to the field width. If the field width for an s
conversion is preceded by a 0, the string is right adjusted with zero­
padding on the left.

A precision that gives the minimum number of digits to appear for the
d, 0, u, x, or X conversions, the number of digits to appear after the
decimal point for the e and f conversions, the maximum number of
significant digits for the g conversion, or the maximum number of
characters to be printed from a string in 5 conversion. The precision
takes the form of a period (.) followed by a decimal digit string; a null
digit string is treated as zero.

An optional I (elJ) specifying that a following d, 0, U, x, or X conver­
sion character applies to a long integer argo A I before any other
conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (.) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The
arg that is actually converted is not fetched until the conversion letter is seen,
so the args specifying field width or precision must appear before the arg (if
any) to be converted.

- I .

PRINTF(3S) PRINTF(3S)

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+
or -).

blank If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alternate
form." For c, d, s, and u conversions, the flag has no effect. For 0

conversion, it increases the precision to force the first digit of the
result to be a zero. For x or X conversion, a non-zero result will
have Ox or OX prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it>. For g and G conversions,
trailing zeroes will not be removed from the result (which they nor­
mallyare).

The conversion characters and their meanings are:

d,o,u,x,x The integer arg is converted to signed decimal, unsigned octal,
decimal, or hexadecimal notation (x and X), respectively; the letters
abcdef are used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. (For compatibility
with older versions, padding with leading zeroes may alternatively
be specified by prepending a zero to the field width. This does not
imply an octal value for the field width,) The default precision is I.
The result of converting a zero value with a precision of zero is a
null string.

f The float or double arg is converted to decimal notation in the style
"[-]ddd.ddd," where the number of digits after the decimal point
is equal to the precision specification. If the precision is missing, six
digits are output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style ,,[- ld.ddde±dd,"
where there is one digit before the decimal point and the number of
digits after it is equal to the precision; when the precision is miss­
ing, six digits are produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with E instead
of e introducing the exponent. The exponent always contains at
least two digits.

g,G The float or double arg is printed in style for e (or in style E in the
case of a G format code), with the precision specifying the number
of significant digits. The style used depends on the value converted:
style e will be used only if the exponent resulting from the conver­
sion is less than -4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is
followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters

from the string are printed until a null character (\0) is encoun­
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null character are printed.
A NULL value for arg will yield undefined results.

- 2 -

PRINTFOS) PRINTFOS)

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by printJ and
JprintJ are printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02," where weekday
and month are pointers to null-terminated strings:

printf("%s, %s %d. %d:%.2d", weekday, month, day, hour. min);

To print 1r to 5 decimal places:

printf("pi """ %.5(", 4 • atan(].O»;

SEE ALSO
ecvt (3C). putc(JS), scanf(3S), stdio(JS).

- 3 -

PUTC(3S)

NAME

PUTC(3S)

putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>
int putc (c, stream)
int c;
FILE .stream;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE .stream;

int putw (w, stream)
int w;
FILE .stream;

DESCRIPTION
Pute writes the character e onto the output stream (at the position where the
file pointer, if defined, is pointing). Putchar(c) is defined as putC<e, stdout).
Pute and putehar are macros.

Fpute behaves like pute, but is a function rather than a macro. Fpute runs
more slowly than pute, but it takes less space per invocation and its name can
be passed as an argument to a function.

Putw writes the word G.e. integer) w to the output stream (at the position at
which the file pointer, if defined, is pointing). The size of a word is the size of
an integer and varies from machine to machine. Putw neither assumes nor
causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output
refers to a terminal. The standard error output stream stderr is by default
unbuffered, but use of jreopen (see jopen OS» will cause it to become buffered
or line-buffered. When an output stream is unbuffered, information is queued
for writing on the destination file or terminal as soon as written; when it is
buffered, many characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing on the destination termi­
nal as soon as the line is completed (that is, as soon as a new-line character is
written or terminal input is requested). Setbuj()S) or SetbujOS) may be used
to change the stream's buffering strategy.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts()S), setbufOS).

DIAGNOSTICS
On success, these functions each return the value they have written. On
failure, they return the constant EOF. This will occur if the file stream is not
open for writing or if the output file cannot be grown. Because EOF is a valid
integer, jerror(3S) should be used to detect putw errors.

BUGS
Because it is implemented as a macro, pute treats incorrectly a stream argu­
ment with side effects. In particular, putC<c, .f+ +); doesn't work sensibly.
Fpute should be used instead.
Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and may not be read using getw on a
different processor.

- I -

.~.
)

PUTENV()C)

NAME

PUTENV(3C)

putenv - change or add value to environment

SYNOPSIS
int putent' (string)
char .string;

DESCRIPTION
String points to a string of the form "name"" value." Putenv makes the value
of the environment variable name equal to value by altering an existing vari­
able or creating a new one. In either case, the string pointed to by string
becomes part of the environment, so altering the string will change the environ­
ment. The space used by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space via mal/Dc for
an expanded environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(S).

WARNINGS
Putenv manipulates the environment pointed to by environ, and can be used in
conjunction with getenv. However, envp <the third argument to main) is not
changed.
This routine uses mal/oc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument,
then exit the calling function while string is still part of the environment.

- 1 -

PUTPWENT (3C)

NAME

PUTPWENT (3C)

putpwent - write password file entry

SYNOPSIS
#include < pwd.h>

int putpwent (p, f)
struct passwd .p;
FILE .f;

DESCRIPTION
Putpwent is the inverse of getpwent (3C). Given a· pointer to a passwd struc­
ture created by getpwent (or getpwuid or getpwnam). putpwent writes a line on
the stream /. which matches the format of letc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, other­
wise zero.

SEE ALSO
getpwent (3C).

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of pro­
grams, not otherwise using standard I/O, more than might be expected.

- I -

PUTS (3S)

NAME

PUTS (3S)

~'

puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>
int puts (s)
char -s;

int fputs (5, stream)
char -s;
FILE -stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-line
character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write
on a file that has not been opened for writing.

SEE ALSO
ferror(3S), fopenOS), freadOS), printf(3S), putcOS).

NOTES
Puts appends a new-line character while fputs does not.

- 1 -

QSORT(3C)

NAME

QSORT(3C)

qsort - quicker sort

SYNOPSIS
void qsort «char -) base, nel, sizeof (-base), compar)
unsigned nel;
int (-compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Base points to the element at the base of the table. Nel is the number of ele­
ments in the table. Compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. As the
function must return an integer less than, equal to, or greater than zero, so
must the first argument to be considered be less than, equal to, or greater than
the second.

NOTES
The pointer to the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
bsearch (3C), lsearch (3C), string (3C) .
sortO) in the UNIX System V User Reference Manual.

- I -

'~

'~

RAND(JC)

NAME

RAND(JC)

rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION
Rand uses a multiplicative congruential random-number generator with period
232 that returns successive pseudo-random numbers in the range from 0 to
215_1.

Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

NOTE
The spectral properties of rand leave a great deal to be desired. Drand48 (3C)
provides a much belter, though more elaborate, random-number generator.

SEE ALSO
drand48 (3C) .

- 1 -

SCANF(JS)

NAME

SCANF(JS)

scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] ...)
char -format;

int fscanf (stream, format [, pointer] ...)
FILE -stream;
char -format;

int sscanf (s, format [, pointer] ...)
char .s, -format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each function
reads characters, interprets them according to a format, and stores the results
in its arguments. Each expects, as arguments, a control string format
described below, and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

I. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the next
non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional assign­
ment suppressing character -, an optional numerical maximum field width,
an optional I (ell) or h indicating the size of the receiving variable, and a
conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated by -. The suppression of assignment pro­
vides a way of describing an input field which is to be skipped. An input field
is defined as a string of non-space characters; it extends to the next inappropri­
ate character or until the field width, if specified, is exhausted. For all descrip­
tors except "[" and "c", white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion codes
are legal:

% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an

integer pointer.
u an unsigned decimal integer is expected; the corresponding argument

should be an unsigned integer pointer.
o an octal integer is expected; the corresponding argument should be an

integer pointer.

- 1 -

SCANF(3S) SCANF(3S)

s

c

x

e,f,g

a hexadecimal integer is expected; the corresponding argument should
be an integer pointer.
a floating point number is expected; the next field is converted accord­
ingly and stored through the corresponding argument, which should be
a pointer to a float. The input format for floating point numbers is an
optionally signed string of digits, possibly containing a decimal point,
followed by an optional exponent field consisting of an E or an e, fol-
lowed by an optional +, -, or space, followed by an integer.
a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to
accept the string and a terminating \0, which will be added automati­
cally. The input field is terminated by a white-space character.
a character is expected; the corresponding argument should be a char­
acter pointer. The normal skip over white space is suppressed in this
case; to read the next non-space character, use % Is. If a field width is
given, the corresponding argument should refer to a character array;
the indicated number of characters is read.
indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which
we will call the scanset, and a right bracket; the input field is the max­
imal sequence of input characters consisting entirely of characters in
the scanset. The circumflex (A), when it appears as the first character
in the scanset, serves as a complement operator and redefines the scan­
set as the set of all characters not contained in the remainder of the
scanset string. There are some conventions used in the construction of
the scanset. A range of characters may be represented by the con­
struct first-last, thus [0123456789] may be expressed [0-9). Using
this convention, first must be lexically less than or equal to last, or else
the dash will stand for itself. The dash will also stand for itself when­
ever it is the first or the last character in the scanset. To include the
right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and
in this case it will not be syntactically interpreted as the closing
bracket. The corresponding argument must point to a character array
large enough to hold the data field and the terminating \0, which will
be added automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, D, 0, and x may be preceded by I or h to indicate
that a pointer to long or to short rather than to 'int is in the argument list.
Similarly, the conversion characters e, f, and g may be preceded by I to indicate
that a pointer to double rather than to lIoat is in the argument list. The I or h
modifier is ignored for other conversion characters.

Scanf conversion terminates at EOF, at the end of the control string, or when
an input character conflicts with the control string. In the latter case, the
offending character is left unread in the input stream.

Scan! returns the number of successfully matched and assigned input items;
this number can be zero in the event of an early conflict between an input char­
acter and the control string. If the input ends before the first conflict or
conversion, EOF is returned.

- 2 -

SCANF(3S) SCANFOS)

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name
will contain thompson\O. Or:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name.
The next call to getchar (see getc (3S» will return a.

SEE ALSO
getc(3S), printf(3S), strtod(3C) , strtol (3C).

NOTE
Trailing white space (including a new-line) is left unread unless matched in the
control string.

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or
illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly deter­
minable.

- 3 -

SETBUF(JS)

NAME

SETRUF(JS)

setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h>

void setbuf (stream, bur>
FILE -stream;
char -buf;

int setvbuf (stream, bur, type, size)
FILE -stream;
char -bur;
int type, size;

DESCRIPTION
SetbuJ may be used after a stream has been opened but before it is read or
written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. If buJ is the NULL pointer input/output will be
completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an
array is needed:

char bul1BUFSIZ);

Setvbuf may be used after a stream has been opened but before it is read or
written. Type determines how stream will be buffered. Legal values for type
(defined in stdio.h) are:

IOFBF causes input/output to be fully buffered.

JOLBF causes output to be line bufTered; the buffer will be flushed
when a newline is written, the buffer is full, or input is
requested.

JONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. Size specifics the size of the
buffer to be used. The constant BUFSIZ in <stdio.h> is suggested as a good
buffer size. If input/output is unbuffered, buf and size arc ignored.

By default, output to a terminal is line buffered and all other input/output is
fully buffered.

SEE ALSO
fopen(JS), getc(JS), malloc(JC), putc(JS), stdio(JS).

DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf returns a non-zero value.
Otherwise, the value returned will be zero.

NOTE
A common source of error is allocating buffer space as an ·'automatic" variable
in a code block, and then failing to close the stream in the same block.

• 1 •

SETJMP(JC)

NAME

SETJMP(3C)

setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.b>

int setjmp (em')
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in
a low-level subroutine of a program.

Seljmp saves its stack environment in env (whose type, jmp_buf, is defined in
the <seljmp.h> header file) for later use by longjmp. It returns the value O.

Longjmp restores the environment saved by the last call of seljmp with the
corresponding env argument. After longjmp is completed, program execution
continues as if the corresponding call of seljmp (which must not itself have
returned in the interim) had just returned the value val. Longjmp cannot
cause setjmp to return the value O. If longjmp is invoked with a second argu­
ment of 0, seljmp will return 1. All accessible data had values as of the time
longjmp was called.

SEE ALSO
signal(2).

WARNING
If longjmp is called even though env was never primed by a call to setjmp, or
when the last such call was in a function which has since returned, absolute
chaos is guaranteed.

- 1 -

.~

SLEEP(JC)

NAME

SLEEP(JC>

sleep - suspend execution for interval

SYNOPSIS
unsigned sleep <seconds>
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested for two reasons: <l) Because scheduled wakeups occur at fixed 1­
second intervals, (on the second, according to an internal clock) and (2)
because any caught signal will terminate the sleep following execution of that
signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other activity in the
system. The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested sleep time, or premature
arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or
some other signal> occurs. The previous state of the alarm signal is saved and
restored. The calling program may have set up an alarm signal before calling
sleep. If the sleep time exceeds the time till such alarm signal, the process
sleeps only until the alarm signal would have occurred. The caller's alarm
catch routine is executed just before the sleep routine returns. But if the sleep
time is less than the time till such alarm. the prior alarm time is reset to go off
at the same time it would have without the intervening sleep.

SEE ALSO
alarm(2). pause(2). signal(2).

- 1 -

SSIGNAL (3C)

NAME

SSIGNAL (3C)

ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>
int (.ssignal (sig, action» ()
int sig, (·actionH);

int gsignal (sig)
int sig;

DESCRIPTION
Ssignal and gsignal implement a software facility similar to signal (2). This
facility is used by the Standard C Library to enable users to indicate the dispo­
sition of error conditions, and is also made available to users for their own pur­
poses.

Software signals made available to users are associated with integers in the
inclusive range 1 through 15. A call to ssignal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to gsig­
nal. Raising a software signal causes the action established for that signal to
be taken.

The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the action; it
is either the name of a (user-defined) action function or one of the manifest
constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal returns the action
previously established for that signal type; if no action has been established or
the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset
to SIG-PFL and the action function is entered with argument sig. Gsig­
nal returns the value returned to it by the action function.

If the action for sig is SIGJGN, gsignal returns the value 1 and takes no
other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no
other action.

If sig has an illegal value or no action was ever specified for sig. gsignal
returns the value 0 and takes no other action.

SEE ALSO
signal(2).

NOTES
There are some additional signals with numbers outside the range 1 through 15
which are used by the Standard C Library to indicate error conditions. Thus,
some signal numbers outside the range 1 through 15 are legal, although their
use may interfere with the operation of the Standard C Library.

- 1 -

STDIO(JS)

NAME

STDIO(JS)

stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h>

FILE -stdin, -stdout, -stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute
an efficient, user-level 1/0 buffering scheme. The in-line macros gele OS) and
putc(3S) handle characters quickly. The macros gelehar and putehar, and the
higher-level routines Jgetc, Jgets, JprintJ, Jpule, JpUIS, Jread, JseanJ, Jwrite,
gels, getw, printJ, puts, putw, and seanJ all use or act as if they use gete and
pule; they can be freely intermixed.

A file with associated buffering is called a slream and is declared to be a
pointer to a defined type FILE. Fopen OS) creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
<stdio.h> header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-I) is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions for
details) .

An integer constant BUFSIZ specifies the size of the buffers used by the partic­
ular implementation.

Any program that uses this package must include the header file of pertinent
macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this
manual are declared in that header file and need no further declaration. The
constants and the following "functions" ate implemented as macros (redeclara­
tion of these names is perilous): gele, getchar, pUle, putehar, Jerror, JeoJ.
clearerr, and fileno.

SEE ALSO
open(2) , close (2) , Iseek(2), pipe(2), read(2), write(2), ctermidOS) ,
cuserid OS), fcloseOS), ferror(3S), fopen OS), fread (3S), fseek OS), getcOS) ,
getsOS) , popenOS), printfOS), putcOS), putsOS), scanfOS), setbufOS),
system OS), tmpfileOS), tmpnam OS), ungetcOS).

DIAGNOSTICS
Invalid Slream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible
error conditions.

- 1 -

STDIPC{JC)

NAME

STDIPC{JC)

ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok (path, id)
char .path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be
used by the msgget(2), semget(2), and shmged2) system calls to obtain inter­
process communication identifiers. One suggested method for forming a key is
to use the ftok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining
portion as a sequence number. There are many other ways to form keys, but it
is necessary for each system to define standards for forming them. If some
standard is not adhered to, it will be possible for unrelated processes to uninten­
tionally interfere with each other's operation. Therefore, it is strongly sug­
gested that the most significant byte of a key in some sense refer to a project so
that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. Path must be the path name of an existing
file that is accessible to the process. ld is a character which uniquely identifies
a project. Note that ftok will return the same key for linked files when called
with the same id and that it will return different keys when called with the
same file name but different ids.

SEE ALSO
intro (2), msgget (2), semget (2), shmget (2).

DIAGNOSTICS
Ftok returns (key_t) -1 if path does not exist or if it is not accessible to the
process.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to the
file, future calls to ftok with the same path and id will return an error. If the
same file is recreated, then ftok is likely to return a different key than it did
the original time it was called.

- I -

STRING(JC)

NAME

STRING(JC)

r"

strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk,
strspn, strcspn, strtok - string operations

SYNOPSIS
#ioclude <striog.h>
char -strcat (sl, s2)
char -sl, -s2;

char -strncat (sl, s2, n)
char -s1, -s2;
int 0;

iot strcmp (s1, s2)
char -sl, -s2;

int strncmp (s1, s2, n)
char _s1, -s2;
iot n;

char -strcpy (sl, s2)
char -s1, -s2;

char -strncpy (sl, s2, n)
char -sl, -s2;
iot n;

int strlen (s)
char -s;

char -strchr (s, c>
char -s;
int c;

char -strrchr (s, c>
char -s;
int c;

char -strpbrk (s1, s2)
char -sl, -s2;

int strspn (s1, s2)
char -sl, -s2;

int strcspn (s1, s2)
char -sl, -s2;

char -strtok (sl, s2)
char -sl, -s2;

DESCRIPTION
The arguments sl, s2 and s point to strings (arrays of characters terminated by
a null character). The functions streat, strneat, strepy, and strnepy all alter
sl. These functions do not check for overflow of the array pointed to by sl.

Streat appends a copy of string s2 to the end of string sl. Strneat appends at
most n characters. Each returns a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as sl is lexicographically less than, equal to, or
greater than s2. Strnemp makes the same comparison but looks at at most n
characters.

- 1 -

STRING(JC) STRING(3C)

Strcpy copies string s2 to sl, stopping after the null character has been copied.
Strncpy copies exactly n characters, truncating s2 or adding null characters to
sl if necessary. The result will not be null-terminated if the length of s2 is n
or more. Each function returns sl.

Str/en returns the number of characters in s, not including the terminating null
character.

Strchr (strrchr) returns a pointer to the.first Oast} occurrence of character c in
string s, or a NULL pointer if c does not occur in the string. The null charac­
ter terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string sl of any character
from string s2, or a NULL pointer if no character from s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment of string sl which
consists entirely of characters from (not from) string s2.

Str/ok considers the string sl to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string
s2. The first call (with pointer sl specified) returns a pointer to the first char­
acter of the first token, and will have written a null character into sl immedi­
ately following the returned token. The function keeps track of its position in
the string between separate calls, so that subsequent calls (which must be made
with the first argument a NULL pointer) will work through the string sl
immediately following that token. In this way subsequent calls will work
through the string sl until no tokens remain. The separator string s2 may be
different from call to call. When no token remains in 51, a NULL pointer is
returned.

NOTE
For user convenience, all these functions are declared in the optional
<string.h> header file.

BUGS
Strcmp and strncmp use native character comparison, which is signed on PDP­
lis and VAX-I Is, unsigned on other machines. Thus the sign of the value
returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

- 2 -

STRTOD(3C)

NAME

STRTOD(JC)

strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod <str, ptr)
char -str, "ptr;

double atof (str)
char .str;

DESCRIPTION
Strtod returns as a double-precision floating-point number the value
represented by the character string pointed to by str. The string is scanned up
to the first unrecognized character.

Strtod recognizes an optional string of "white-space" characters (as defined by
isspace in ctype (3C», then an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E followed by an optional sign
or space, followed by an integer.

If the value of ptr is not (char ")NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no number can be
formed, ·ptr is set to str, and zero is returned.

Ato/(str) is equivalent to strtod(str. (char ")NULV.

SEE ALSO
ctype(3C), scanf(3S), strtol (3C).

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE is returned (according to the
sign of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to
ERANGE.

- I -

STRTOL(JC)

NAME

STRTOL(3C)

strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char .str, "ptr;
int base;

long atol (str)
char .str;

int atoi (str)
char .str;

DESCRIPTION
Strto/ returns as a long integer the value represented by the character string
pointed to by str. The string is scanned up to the first character inconsistent
with the base. Leading "white-space" characters (as defined by isspace in
ctype (3C» are ignored.

If the value of ptr is not {char ")NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no integer can be
formed, that location is set to str. and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conver­
sion. After an optional leading sign. leading zeros are ignored, and "Ox" or
"OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an optional
leading sign a leading zero indicates octal conversion. and a leading "Ox" or
"OX" hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can. of course. take place upon assignment or by an
explicit cast.

AtoJ(str) is equivalent to strto/(str. (char u)NULL, 10).

Ato;(str) is equivalent to (;nt) strto/{str, (char U)NULL, /0).

SEE ALSO
ctype(JC). scanf(JS), strtod (JC).

BUGS
Overflow conditions are ignored.

- 1 -

SWABOC)

NAME

SWABOC)

~.

"

swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char -from, -to;
int nbytes;

DESCRIPTION
Swab copies nbyles bytes pointed to by from to the array pointed to by 10.
exchanging adjacent even and odd bytes. It is useful for carrying binary data
between PDP-II s and other machines. Nbyles should be even and non­
negative. If nbyles is odd and positive swab uses nbyles-I instead. If nbytes is
negative, swab does nothing.

- I -

SYSTEM()S)

NAME

SYSTEM(JS)

system - issue a shell command

SYNOPSIS
#include <stdio.b>

int system (string)
cbar .string;

DESCRIPTION
System causes the string to be given to sh (I) as input, as if the string had
been typed as a command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell.

FILES
/bin/sb

SEE ALSO
exec(2).
sh(I) in the UNIX System User Reference Manual.

DIAGNOSTICS
System forks to create a child process that in turn exec's Ibin/sb in order to
execute string. If the fork or exec fails, system returns a negative value and
sets ermo.

- I -

TMPFILE (3S)

NAME

TMPFILE(3S)

~\

tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>
FILE -tmpfile ()

DESCRIPTION
Tmpji/e creates a temporary file using a name generated by tmpnam (JS), and
returns a corresponding FILE pointer. If the file cannot be opened, an error
message is printed using perror(3C>, and a NULL pointer is returned. The file
will automatically be deleted when the process using it terminates. The file is
opened for update ("w+").

SEE ALSO
creat(2), unlink(2), fopen(JS). mktemp(JC). perror(]C>. tmpnam(]S).

- I -

TMPNAM(JS)

NAME

TMPNAM(JS)

tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h >
char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate file names that can safely be used for a temporary
file.

Tmpnam always generates a file name using the path-prefix defined as
P tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its result
in-an internal static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If s is not NULL, it is assumed
to be the address of an array of at least L_tmpnam bytes, where L_tmpnam is a
constant defined in <stdio.h>; tmpnam places its result in that array and
returns s.

Tempnam allows the user to control the choice of a directory. The argument
dir points to the name of the directory in which the file is to be created. If dir
is NULL or points to a string which is not a name for an appropriate directory,
the path-prefix defined as P_tmpdir in the <stdio.h> header file is used. If
that directory is not accessible, Itmp will be used as a last resort. This entire
sequence can be up-staged by providing an environment variable TMPDlR in
the user's environment, whose value is the name of the desired temporary-file
directory.

Many applications prefer their temporary files to have certain favorite initial
letter sequences in their names. Use the pfx argument for this. This argument
may be NULL or point to a string of up to five characters to be used as the first
few characters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the constructed file name, and
returns a pointer to this area. Thus, any pointer value returned from tempnam
may serve as an argument to free (see malloc(3C». If tempnam cannot
return the expected result for any reason, Le. malloc(3C) failed, or none of
the above mentioned attempts to find an appropriate directory was successful, a
NULL pointer will be returned.

NOTES
These functions generate a different file name each time they are called.

Files created using these functions and either !open(JS) or creal (2) are tem­
porary only in the sense that they reside in a directory intended for temporary
use, and their names are unique. It is the user's responsibility to use unlink (2)
to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(JS), malloc(3C), mktemp(3C), tmpfile(3S).

BUGS
If called more than 17,576 times in a single process, these functions will start
recycling previously used names.
Between the time a file name is created and the file is opened, it is possible for
some other process to create a file with the same name. This can never happen
if that other process is using these functions or mktemp, and the file names are
chosen so as to render duplication by other means unlikely.

- 1 -

'~

TSEARCH OC)

NAME

TSEARCH OC)

tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>
char etsearch ({char e) key, (char ..) rootp, compar)
int (ecompar)();

char etfind «char e) key, (char ..) rootp, compar)
int (ecompar)();

char etdelete ({char e) key, (char ee) rootp, compar)
int (ecompar) ();

void twalk «char e) root, action)
void (eaction)();

DESCRIPTION
Tsearch. tfind. tdelete. and twalk are routines for manipulating binary search
trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All com­
parisons are done with a user-supplied routine. This routine is called with two
arguments, the pointers to the elements being compared. It returns an integer
less than, equal to, or greater than 0, according to whether the first argument is
to be considered less than, equal to or greater than the second argument. The
comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to -key <the value
pointed to by key), a pointer to this found datum is returned. Otherwise, -key
is inserted, and a pointer to it returned. Only pointers are copied, so the calling
routine must store the data. Rootp points to a variable that points to the root
of the tree. A NULL value for the variable pointed to by rootp denotes an
empty tree; in this case, the variable will be set to point to the datum which
will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it
if found. However, if it is not found, lfind will return a NULL pointer. The
arguments for tfind are the same as for tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the same
as for tsearch. The variable pointed to by rootp will be changed if the deleted
node was the root of the tree. Tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below that
node'> Action is the name of a routine to be invoked at each node. This rou­
tine is, in turn, called with three arguments. The first argument is the address
of the node being visited. The second argument is a value from an enumeration
data type Iypede! enum { preorder. postorder. endorder. leaf} VISIT; (defined
in the <search.h> header file), depending on whether this is the first, second
or third time that the node has been visited (during a depth-first, left-to-right
traversal of the tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to­
element, and cast to type pointer-to-character. Similarly, although declared as
type pointer-to-character, the value returned should be cast into type pointer­
to-element.

- 1 -

TSEARCH (JC) TSEARCH OC)

EXAMPLE
The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the
stored strings and their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

/- pointers to these are stored in the tree -/

/- space to store strings -/
/- nodes to store -/
/- this points to the root -/

};
char string_spacer 10000];
struct node nodes(500);
struct node -root = NULL;

struct node {
char -string;
int length;

main()
(

char -strptr = string_space;
struct node -nodeptr "'" nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500)
/- set node -/
nodeptr- > string strptr;
nodeptr- > length = strlen (strptr);
/- put node into the tree -/
(void) tsearch«char -) nodeptr, &root,

node_compare) ;
/- adjust pointers, so we don't overwrite tree -/
strptr += nodeptr- > length + I;
nodeptr++;

}
twalk(root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

return strcmp(node1-> string, node2- > string);

-/
int
node_compare(node1, node2)
struct node -node I, -node2;
{

}
/-

This routine prints out a node. the first time
twalk encounters it.

- 2 •

TSEARCH (JC) TSEARCH (JC)

void
print_node (node, order, level)
struct node ..node;
VISIT order;
int level;
{

if (order === preorder II order == leaf) {
(void)printf{"string == %20s, length """ %d\n",

(-node) - > string, (-node) - > length);

SEE ALSO
bsearch (JC), hsearch (JC), Isearch (JC) .

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.
A NULL pointer is returned by tsearch. tfind and tdelete if rootp is NULL on
entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL. and tsearch returns a pointer to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection less than the footp argu­
ments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are
visited. Tsearch uses preorder, postorder and endorder to respectively refer to
visting a node before any of its children. after its left child and before its right.
and after both its children. The alternate nomenclature uses preorder, inorder
and postorder to refer to the same visits, which could result in some confusion
over the meaning of postorder.

BUGS
If the calling function alters the pointer to the root, results are unpredictable.

- 3 -

TTYNAME(JC)

NAME

TTYNAME (3C)

ttyname, isatty - find name of a terminal

SYNOPSIS
char .ttyname (fildes)
int fildes;

int isatty (fildes)
int tildes;

DESCRIPTION
Ttyname returns a pointer to a string containing the null-terminated path name
of the terminal device associated with file descriptor fildes.

[satty returns 1 if fildes is associated with a terminal device, 0 otherwise.

FILES
/dev/·

DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not describe a terminal device
in directory Ide".

BUGS
The return value points to static data whose content is overwritten by each call.

- 1 -

'~

TTYSLOT(3C)

NAME

TTYSLOT(3C)

ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION
Ttyslot returns the index of the current user's entry in the letc/utmp file. This
is accomplished by actually scanning the file letc/inittab for the name of the
terminal associated with the standarainput, the standard output, or the error
output (0, I or 2).

FILES
letclinittab
letc/utmp

SEE ALSO
getut(JC), ttyname(JC).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the
terminal name or if none of the above file descriptors is associated with a termi­
nal device.

- l -

UNGETC(3S)

NAME

UNGETC(3S)

ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>
int ungetc (c, stream)
int c;
FILE -stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an input stream.
That character. c. will be returned by the next getc(3S) call on that stream.
Ungetc returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed, provided something has already been
read from the stream and the stream is actually buffered. In the case that
stream is stdin, one character may be pushed back onto the buffer without a
previous read statement.

If c equals EOF. ungetc does nothing to the buffer and returns EOF.

Fseek OS) erases all memory of inserted characters.

SEE ALSO
fseek OS). getc(3S). setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

• 1 •

VPRINTF(JS)

NAME

VPRINTF(3S)

vprintf. vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.b>
#include < varargs.b>

int vprintf (format, ap)
cbar -format;
vaJist ap;

iot vfprintf (stream, format, ap)
FILE -stream;
cbar -format;
vaJist ap;

int vsprintf (s, format, ap)
cbar -s, -format;
vaJist ap;

DESCRIPTION
vprintf. vfprintf. and vsprintf are the same as printf. fprintf. and sprintf
respectively, except that instead of being called with a variable number of argu­
ments, they are called with an argument list as defined by varargs (5) .

EXAMPLE
The following demonstrates how vfprintf could be used to write an error rou­
tine.

#include < stdio.h>
#include <varargs.h>

I-
- error should be called like

error(function_oame. format. argl, arg2.. '>;
-I

I-YARARGSO-/
void
error(va alist}
I- Note-that the function_name and format arguments cannot be

separately declared because of the definition of varargs.

vaJist args;
char -fmt;

va_start(args);
I- print out name of function causing error -/
(void)fprintf(stderr, "ERROR in %s: ., va_arg(args. char -»;
fmt "'" va_arg(args. char .);
/- print out remainder of message .1
(void)vfprintf(fmt. args);
va_end (args);
(void)abort();

SEE ALSO
vprintf(JX). varargs (5) .

- 1 -

BESSEL(3M)

NAME

BESSEL(3M)

jO, j I, jn, yO, y I, yn - Bessel functions

SYNOPSIS
#include < math.h>

double jO (x)
double x;

double j 1 (x)
double x;

double jn (n, x)
int n;
double x;

double yO (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JO and j/ return Bessel functions of x of the first kind of orders 0 and
respectively. In returns the Bessel function of x of the first kind of order n.

YO and yl return Bessel functions of x of the second kind of orders 0 and I
respectively. Yn returns the Bessel function of x of the second kind of order n.
The value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO, y/ and yn to return the value -HUGE and to
set errno to EDOM. In addition, a message indicating DOMAIN error is printed
on the standard error output.

Arguments too large in magnitude cause jO, j/, yO and yl to return zero and to
set errno to ERANGE. In addition, a message indicating TLOSS error is printed
on the standard error output.

These error-handling procedures may be changed with the function
matherr(JM).

SEE ALSO
matherr(JM).

- I -

ERF(JM)

NAME

ERFOM)

erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION
x

Erf returns the error function of x, defined as ~ Ie-Ildl.
V'Tr 0

Erfc, which returns 1.0 - erf(xJ, is provided because of the extreme loss of
relative accuracy if erf(xJ is called for large x and the result subtracted from
1.0 (e.g., for x -= 5, 12 places are lost>.

SEE ALSO
expOM).

- 1 -

·1

EXPOM)

NAME

EXP(3M)

exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns eX.

Log returns the natural logarithm of x. The value of x must be positive.

LoglO returns the logarithm base ten of x. The value of x must be positive.

Pow returns xY. If x is zero, y must be positive. If x is negative, y must be an
integer.

Sqrt returns the non-negative square root of x. The value of x may not be
negative.

DIAGNOSTICS
Exp returns HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and sets errno to ERANGE.

Log and /oglO return -HUGE and set errno to EDOM when x is non-positive.
A message indicating DOMAIN error (or SING error when x is 0) is printed on
the standard error output.

Pow returns 0 and sets errno to EooM when x is 0 and y is non-positive, or
when x is negative and y is not an integer. In these cases a message indicating
DOMAIN error is printed on the standard error output. When the correct value
for pow would overflow or underflow, pow returns ±HUGE or 0 respectively,
and sets errno to ERANGK

Sqrt returns 0 and sets errno to EooM when x is negative. A message indicat­
ing DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
hypot(3M). matherr(3M). sinh(3M).

- 1 -

FLOOR(3M)

NAME

FLOOR (3M)

floor. ceil, fmod. fabs - floor, ceiling. remainder. absolute value functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number> not greater
than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero if y is
zero or if xly would overflow; otherwise the number f with the same sign as x.
such that x """ iy +f for some integer i. and 1fI < Iy I.

Fabs returns the absolute value of x.lxl.
SEE ALSO

abs(JC).

- 1 -

GAMMA()M)

NAME

GAMMA()M)

gamma - log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;

DESCRIPTION

Gamma returns In(lr(x) I), where r(x) is defined as I e-t tX-ldt. The sign of
o

r(x) is returned in the external integer s;gngam. The argument x may not be
a non-positive integer.

The following C program fragment might be used to calculate r:

if «y <= gamma(x» > LN_MAXDOUBLE)
errore);

y <= signgam • exp(y);

where LN_MAXDOUBLE is the least value that causes exp(JM) to return a
range error, and is defined in the <values.h> header file.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and ermo is set to
EDOM. A message indicating SING error is printed on the standard error out­
put.

If the correct value would overflow, gamma returns HUGE and sets ermo to
ERANGE.

These error-handling procedures may be changed with the function
matherr(JM) .

SEE ALSO
exp(3M), matherr(3M), values(S).

- 1 -

HYPOT(JM)

NAME

HYPOT(JM)

hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x • x 1- Y • y),

taking precautions against unwarranted overflows.

DIAGNOSTICS
When the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
mathcrr(3M),

- 1 -

MATHERR(3M)

NAME

MATHERR(3M)

]
case SING:

/- all other domain or sing errors, print message and abort ./

~\
\.

matherr - error-handling function

SYNOPSIS
#include < math.h>
int matherr (x)
struct exception .x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are detected.
Users may define their own procedures for handling errors, by including a func­
tion named rnatherr in their programs. Matherr must be of the form described
above. When an error occurs, a pointer to the exception structure x will be
passed to the user-supplied rnatherr function. This structure, which is defined
in the <rnath.h> header file, is as follows:

struct exception {
int type;
char -name;
double arg 1, arg2, retval;

] ;

The element type is an integer describing the type of error that has occurred,
from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element narne points to a string containing the name of the function that
incurred the error. The variables arg! and arg2 are the arguments with which
the function was invoked. Retval is set to the default value that will be
returned by the function unless the user's rnatherr sets it to a different value.

If the user's rnatherr function returns non-zero, no error message will be
printed, and ermo will not be set.

If rnatherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These
procedures are also summarized in the table below. In every case, errno is set
to EDOM or ERANGE and the program continues.

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception -x;
(

switch (x->type)
case DOMAIN:

/- change sqrt to return sqrt(-argI), not 0 -/
if (!strcmp(x->name, "sqrt"» (

x->retval =0 sqrt(-x->argI);
return (0); '* print message and set errno *'

- 1 -

MATHERR(3M) MATHERR(3M)

fprintf(stderr, "domain error in %s\n", x- > name) ;
abort();

case PLOSS:
/- print detailed error message -/
fprintf(stderr, "loss of significance in %s(%g) == %g\n",

x->name, x->argl, x->retval);
return (1); /* take no other action */

}
return (0); /- all other errors, execute default procedure */

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors
type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - - - M,O .
[yO, yl, yn (arg ~ 0) M,-H - - - - -
EXP: - - H 0 - -
LOG. LOG 10:

(arg < 0) M,-H - - - - -
(arg - 0) - M,-H - - - -

POW: - - ±H 0 - -
neg •• nan-int M,O - - - - -

0 .. non-pas

SQRT: M,O - - - - -
GAMMA: - M,H H - - -
HYPOT: - - H - - -
SINH: - - ±H - - -
~OSH: - - H - - -
~IN, COS, TAN: - - - - M,O .
~SIN, ACOS, ATAN2: M, 0 - - - - -

ABBREVIATIONS
As much as possible of the value is returned.

M Message is printed (EDOM error).
H HUGE is returned.

-H -HUGE is returned.
±H HUGE or -HUGE is returned.
o 0 is returned.

- 2 -

SINH(3M)

NAME

SINH(3M)

sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double X;

double cosh (x)
double X;

double tanh (x)
double X;

DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and
tangent of their argument.

DIAGNOSTICS
Sinh and cosh return HUGE (and sinh may return -HUGE for negative x)
when the correct value would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M).

- I -

TRIG(3M)

NAME

TRIGC3M)

sin. cos. tan. asin. acos. atan. atan2 - trigonometric functions

SYNOPSIS
#include < math.h>
double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of their argu­
ment, x, measured in radians.

Asin returns the arcsine of x, in the range -1r12 to 1r12.

Acos returns the arccosine of x, in the range 0 to 1r.

Alan returns the arctangent of x, in the range -1r12 to 1r12.

Atan2 returns the arctangent of ylx, in the range -1r to 11", using the signs of
both arguments to determine the quadrant of the return value.

DIAGNOSTICS
Sin, cos, and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would oth­
erwise be a complete loss of significance. In this case a message indicating
TLOSS error is printed on the standard error output. For less extreme argu­
ments causing partial loss of significance, a PLOSS error is generated but no
message is printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one. or if both
arguments of alan2 are zero, zero is returned and errno is set to EDOM. In
addition, a message indicating DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(JM).

- I -

ASSERT(JX)

NAME

ASSERT(JX)

assert - verify program assertion

SYNOPSIS
#include < assert.h >

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is exe­
cuted, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the name
of the source file and nnn the source line number of the assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp (1», or with the
preprocessor control statement "#define NDEBUG" ahead of the "#include
<assert.h>" statement, will stop assertions from being compiled into the pro­
gram.

SEE ALSO
abort(3C).
cpp(I) in the UNIX System V User Reference Manual.

- 1 -

CURSES (3X)

NAME

cURSES(JX)

curses - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>
cc [flags) files -Icurses [libraries 1

DESCRIPTION
These routines give the user a method of updating screens with reasonable
optimization. In order to initialize the routines, the routine initscrO must be
called before any of the other routines that deal with windows and screens are
used. The routine endwinO should be called before exiling. To gel character­
at-a-time input without echoing, (most interactive, screen oriented-programs
want this) after calling initscrO you should call "non/O,' cbreakO; noechoO;"

The full curses interface permits manipulation of data structures called win­
dows which can be thought of as two dimensional arrays of characters
representing all or part of a CRT screen. A default window called stdscr is sup­
plied, and others can be created with newwin. Windows are referred to by vari­
ables declared "WINDOW *", the type WINDOW is defined in curses.h to be a
C structure. These data structures are manipulated with functions described
below, among which the most basic are move, and addch. (More general ver­
sions of these functions are included with names beginning with 'w', allowing
you to specify a window. The routines not beginning with 'w' affect stdscr.)
Then reJreshO is called, telling the routines to make the users CRT screen look
like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more
than one window. To invoke this subset, use -DMINICURSES as a cc option.
This level is smaller and faster than full curses.

If the environment variable TERM INFO is defined, any program using curses
will check for a local terminal definition before checking in the standard place.
For example, if the standard place is /usr/lib/terminfo, and TERM is set to
"vtlOO", then normally the compiled file is found in /usr/lib/terminfo/v/vtlOO.
(The "v" is copied from the first letter of "vt 100" to avoid creation of huge
directories.) However, if TERMINFO is set to /usr/mark/myterms, curses will
first check /opusr/mark/myterms/vlvtlOO, and if that fails, will then check
/usr/lib/terminfo/v/vtlOO. This is useful for developing experimental
definitions or when write permission in /usr/lib/terminfo is not available.

SEE ALSO
terminfo(4) .

FUNCTIONS
Routines listed here may be called when using the full curses. Those marked
with an asterisk may be called when using Mini-Curses.

addch(ch) * add a character to stdsCf (like putchar)
(wraps to next line at end of line)

addstr(str) * calls addch with each character in sir

a ttroff(attrs)* turn off attributes named
altron (attrs) * turn on attributes named
altrset(attrs)* set current attributes to oUr.s
baudrateO * current terminal speed
beepO * sound beep on terminal
box (win. vert. hor> draw a box around edges of wi"

veri and hor are chars to use for verl. and
hor. edges of box

clearO clear Sldscr

clearok(win, be> clear screen before next redraw of will

- I -

cURSES(JX) CURSES OX)

c1rtobot()
c1rtoeolO
cbreakO*
delay_output (ms) *
delch()
delctcln()
delwin (win)
doupdateO
echo()*
cndwinO*
eraseO
erasecharO
tixtermO
flash 0
flushinpO*
gctch()*
getstr(str)
gettmode()
getyx(win, y. x)
hasjcO
hasjlO
idlok<win, bf)·
inchO
initscrO*
insch(c)
insertlnO
intrflush (win, bf)
keypad(win, bf)
killcharO
leaveok(win, flag)

~'

clear to bottom of sldscr
clear to end of line on sldscr
set cbreak mode
insert ms millisecond pl1use in output
delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase sldscr
return user's erase character
restore tty to "in curses" state
flash screen or beep
throwaway any typeahead
get a char from tty
get a string through sldscr
establish current tty modes
get (y, x) co-ordinates
true if terminal can do insert character
true if terminal can do insert line
use terminal's insert/delete line if bf != 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE
enable keypad input
return current user's kill character
OK to leave cursor anywhere after refresh if
flag!=O for win, otherwise cursor must be left
at current position.

10ngnameO return verbose name of terminal
meta (win, flag) * allow meta characters on input if flag != 0
move(y, x)* move to (y, x) on !i/dscr
mvaddch(y, x, ch) move(y, x) then addch<ch)
mvaddstr(y, x, str) similar...
mvcur(oldrow, oldcol, ncwrow, newcoJ)low level cursor motion
mvdelch(y, x) like delch, but movc(y, x) first
mvgetch(y, x) etc.
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c>
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch<win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch<win, y, x)
mvwinsch<win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols) create a new pad with given dimensions
newterm (type, fd) set up new terminal of given type to output on fd

- 2 -

CURSES (3X) CURSES OX)

newwinOines, cols, beginJ, begin_x) create a new window
nl (). set newline mapping
nocbreak () • unset cbreak mode
nodelay(win, bf) enable nodelay input mode through getch
noecho()· unset echo mode
nonlO· unset newline mapping
norawO· unset raw mode
overlay (win I, win2) overlay win I on win2
overwrite (win I, win2) overwrite win I on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxco))

like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxco))

refresh from pad starting with given upper left corner of pad
with output to given portion of screen

printw(fmt, argl, arg2, ..J printfon stdscr
rawO· set raw mode
refreshO· make current screen look like sldscr
reseltermO· set tty modes to "out of curses" state
resettyO· reset tty flags to stored value
saveterm0 * save current modes as "in curses" state
savettyO· store current tty flags
scanw(fmt, argl, arg2, ..J scanf through stdscr
scrolI(win) scroll win one line
scrol!ok(win, ftag) allow terminal to scroll if ftag !c:::I 0
set_term (new) now talk to terminal new
setscrregh, b) set user scrolling region to lines t through b
setterm (type) establish terminal with given type
setupterm (term, filenum, errret)
standendO· clear standout mode attribute
standout0 * set standout mode attribute
subwin(win, lines, cols, beginJ, begin_x) create a subwindow
touchwin(win) change all of win
traceoffO turn off debugging trace output
traceonO turn on debugging trace output
typeahead (fd) use file descriptor fd to check typeahead
unctrl (ch)· printable version of ch
waddch{win, ch) add char to win
waddstr(win, str) add string to win
wattroff(win, attrs) turn off oUrs in win
wattron(win, attrs) turn on oUrs in win
wattrset(win, attrs) set attrs in win to oUrs
wClear(win) clear win
wclrtobot(win) clear to bottom of win
wclrtocoI(win) clear to end of line on win
wdelch{win, c) delete char from win
wdeleteln(win) delete line from win
werase(win) erase win
wgetch (win) get a char through win
wgetstdwin, str) get a string through win
winch{win) get char at current (y, x) in win
winsch(win, c) insert char into win
winsertln(win) insert line into win
wmove(win, y, x) set current (y, x) co-ordinates on win
wnoutrefresh{win) refresh but no screen output
wprintw(win, fmt, arg I, arg2, ...) printf on win
wrefresh{win) make screen look like win
wscanw(win, fmt, argl, arg2, ..J scanf through win

- 3 -

CURSES OX) CURSESOX)

wsetscrreg (win, t, b)
wstandend (win)
wstandout (win)

set scrolling region of win
clear standout attribute in win
set standout attribute in win

vidattr<attrs)

putp(str)
vidputs(attrs. putc)

resettermO
setupterm{term, fd, rc)

tparm(str, pI, p2, p9)
tputs(str, atfcnt, pute)

TERMINFO LEVEL ROUTINES
These routines should be called by programs wishing to deal directly with the
terminfo database. Due to the low level of this interface, it is discouraged. Ini­
tially, setupterm should be called. This will define the set of terminal depen­
dent variables defined in terminfo(4). The include files <curses.h> and
<term.h> should be included to get the definitions for these strings, numbers,
and flags. Parmeterized strings should be passed through tparm to instantiate
them. All terminfo strings Gncluding the output of tparm) should be printed
with tputs or pUlp . Before exiting, resetterm should be called to restore the tty
modes. (Programs dc~iring shell escapes or suspending with control Z can call
resetterm before the shell is called and fixterm after returning from the shell'>
fixtermO restore tty modes for terminfo use

(called by setupterm)
reset tty modes to state before program entry
read in database. Terminal type is the
character string term, all output is to UNIX System file
descriptor fd. A status value is returned in the
integer pointed to by rc: 1 is normal. The simplest
call would be setupterm(O. I, 0) which uses all the defaults.
instantiate string str with parms Pi"
apply padding info to string str.
affcnt is the number of lines affected, or I if
not applicable. PUle is a putchar-Iike function
to which the characters are passed. one at a time.
handy function that calls tputs(str, I, putchar).
output the string to put terminal in video attribute
mode attrs, which is any combination of the attributes
listed below. Chars are passed to putchar-like function pute.
Like vidputs but outputs through putchar

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Blanking Gnvisible)
Protected
Alternate character set

TERMCAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for programs that use
termcap. Their parameters are the same as for termcap. They are emulated
using the terminfo database. They may go away at a later date.
tgetent(bp, name) look up termcap entry for name
tgetflag Gd) get boolean entry for id
tgetnum Gd) get numeric entry for id
tgetstrGd, area) get string entry for id
tgoto(cap, col, row) apply parms to given cap
tputs(cap, affcnt, fn) apply padding to cap calling fn as putchar

ATTRIBUTES
The following video attributes can be passed to the functions
attron,attroff,attrset.
A STANDOUT
A=UNDERLINE
A REVERSE
A-BLINK
A-DIM
A=BOLD
A BLANK
A=PROTECT
A_ALTCHARSET

- 4 -

CURSESC3X) CURSES (3X)

..~

Home key (upward+lefl arrow)
backspace (unreliable)
Function keys. Space for 64 is reserved.
Formula for fn.
Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll I line forward
Scroll I line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)
soft (partial) reset (unreliable)
reset or hard reset (unreliable>
print or copy
home down or bottom (lower left)

Key name
break key (unreliable)
The four arrow keys ...

Value
0401
0402
0403
0404
0405
0406
0407
0410
(KEY_FO+(n»
0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

FUNCTION KEYS
The following function keys might be returned by getch if keypad has been
enabled. Note that not all of these are currently supported, due to lack of
definitions in terminfo or the terminal not transmitting a unique code when the
key is pressed.
Name
KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFf
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_FO
KEY_F(n}
KEY_DL
KEYJL
KEY_DC
KEYJC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

WARNING
The plotting library plot OX) and the curses library curses OX) both use the
names eraseO and moveO. The curses versions are macros. If you need both
libraries, put the plot OX) code in a different source file than the curses OX)
code, and/or #undef moveO and eraseO in the plotC3X) code.

- 5 -

LDAHREAD OX)

NAME

(not on PDP-It) LDAHREAD(3X)

ldahread - read the archive header of a member of an archive file

SYNOPSIS
#include < stdio.h>
#include < ar.h >
#include < filehdr.h >
#include <Idfcn.h>

int Idahread Hdptr, arhead)
LDFILE .Idptr;
ARCHDR .arhead;

DESCRIPTION
If TYPE(/dptr) is the archive file magic number. ldahread reads the archive
header of the common object file currently associated with ldptr into the area
of memory beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if TYPE(/dptr)
does not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(JX>. Idopen(3X). Idfcn(4). ar(4).

- 1 -

LDCLOSE(3X)

NAME

(not on PDP-II) LDCLOSE OX)

ldclose, ldaclose - close a common object file

SYNOPSIS
#include < stdio.b>
#include < filehdr.h >
#include <ldfcn.h>

int ldclose Odptr)
LDFILE .ldptr;

int ldaclose Odptr)
LDFILE .Idptr;

DESCRIPTION
Ldopen (3X) and ldclose are designed to provide uniform access to both simple
object files and object files that are members of archive files. Thus an archive
of common object files can be processed as if it were a series of simple common
object files.

If TYPE([dptr) does not represent an archive file, Idclose will close the file and
free the memory allocated to the LDFILE structure associated with ldptr. If
TYPE([dptr) is the magic number of an archive file, and if there are any more
files in the archive, ldclose will reinitialize OFFSF:f(ldptr) to the file address of
the next archive member and return FAILURE. The LDFILE structure is
prepared for a subsequent ldopen (3X). In all other cases, Idclose returns suc­
CESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE structure
associated with ldptr regardless of the value of TYPE(/dptr). Ldaclose always
returns SUCCESS. The function is often used in conjunction with ldaopen.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
fclose(3S), Idopen(3X), Idfcn(4).

- 1 -

LDFHREADOX)

NAME

(not on PDP-I J) LDFHREAD OX)

ldfhread - read the file header of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include <ldfcn.h>

int Idfhread (ldptr, filehead)
LDFILE -Idptr;
FILHDR -filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently associated
with Idptr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it cannot read
the file header.

In most cases the use of Idfhread can be avoided by using the macro
HEADERHdptr) defined in Idfcn.h (see Idfcn (4». The information in any
field, fieldname, of the file header may be accessed using
HEADER (ldptr) .fieldname.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), IdopenOX), Idfcn(4).

- I -

LDGETNAME(3X)

NAME

(not on PDP-II) LDGETNAMEOX)

ldgetname - retrieve symbol name for common object file symbol table entry

SYNOPSIS
#include < stdio.b >
#include <filebdr.b>
#include < syms.b>
#include < Idfcn.b >

cbar -Idgetname (Jdptr, symbol)
LDFILE -Idptr;
SYMENT -symbol;

DESCRIPTION
Ldgetname returns a pointer to the name associated with symbol as a string.
The string is contained in a static buffer local to Idgetname that is overwritten
by each call to Idgetname, and therefore must be copied by the caller if the
name is to be saved.

As of UNIX system release 5.0, the common object file format has been
extended to handle arbitrary length symbol names with the addition of a
"string table". Ldgetname will return the symbol name associated with a sym­
bol table entry for either a pre-UNIX system 5.0 object file or a UNIX system
5.0 object file. Thus, Idgetname can be used to retrieve names from object files
without any backward compatibility problems. Ldgetname will return NULL
(defined in stdio.h) for a UNIX system 5.0 object file if the name cannot be
retrieved. This situation can occur:

if the "string table" cannot be found,

if not enough memory can be allocated for the string table,

if the string table appears not to be a string table (for example, if an
auxiliary entry is handed to Idgetname that looks like a reference to a
name in a non-existent string table), or

if the name's offset into the string table is past the end of the string
table.

Typically, Idgetname will be called immediately after a successful call to
Idtbread to retrieve the name associated with the symbol table entry filled by
Idtbread.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(JX), Idopen(3X), Idtbread(JX), Idtbseek(JX), Idfcn(4).

- I -

LDLREAD OX)

NAME

(not on PDP-II) LDLREAD OX)

ldlread, ldlinit, ldlitem - manipulate line number entries of a common object
file function

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include < linenum.h>
#include <Idfcn.h>

int Idlread(Jdptr, fcnindx, linenum, linent>
LDFILE eldptr;
long fcnindx;
unsigned short linenum;
LlNENO linent;

int Idlinit(Jdptr, fcnindx)
LDFILE .ldptr;
long fcnindx;

int Idlitem(Jdptr, Iinenum, linent>
LDFILE .Idptr;
unsigned short linenum;
LlNENO linent;

DESCRIPTION
Ldlread searches the line number entries of the common object file currently
associated with ldptr. Ldlread begins its search with the line number entry for
the beginning of a function and confines its search to the line numbers associ­
ated with a single function. The function is identified by fcnindx, the index of
its entry in the object file symbol table. Ldlread reads the entry with the smal­
lest line number equal to or greater than linenum into linent.

Ldlinit and ldlitem together perform exactly the same function as ldlread.
After an initial call to Idlread or ldlinit. Idlitem may be used to retrieve a
series of line number entries associated with a single function. Ldlin;t simply
locates the line number entries for the function identified by fcn;ndx. Ldlitem
finds and reads the entry with the smallest line number equal to or greater than
linenum into linent.

Ldlread, ldlin;t, and Idlitem each return either SUCCESS or FAILURE.
Ldlread will fail if there are no line number entries in the object file, if fcn;ndx
does not index a function entry in the symbol table, or if it finds no line number
equal to or greater than linenum. Ldlinit will fail if there are no line number
entries in the object file or if fcn;ndx does not index a function entry in the
symbol table. Ldlitem will fail if it finds no line number equal to or greater
than linenum.

The programs must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X). Idopen(JX), Idtbindex(JX). Idfcn(4).

- 1 -

LDLSEEK<JX)

NAME

(not on PDP-ll) LDLSEEK<JX)

ldlseek, Idnlseek - seek to line number entries of a section of a common object
file

SYNOPSIS
#include < stdio.h >
#include <filebdr.h >
#include <Idfcn.h>

int Idlseek (ldptr, sectindx)
LDFILE .'dptr;
unsigned short sectindx;

int Idnlseek Udptr, sectname)
LDFILE .Idptr;
char .sectname;

DESCRIPTION
Ld/seek seeks to the line number entries of the section specified by sectindx of
the common object file currently associated with /dplr.

Ldnlseek seeks to the line number entries of the section specified by seclname.

Ldlseek and ldnlseek return SUCCESS or FAILURE. Ldlseek will fail if sec­
lindx is greater than the number of sections in the object file; /dn/seek will fail
if there is no section name corresponding with ·sec/name. Either function will
fail if the specified section has no line number entries or if it cannot seek to the
specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(JX), Idopen(3X), Idshread(3X), Idfcn(4).

- 1 -

.~
j

LDOHSEEK (3X)

NAME

(not on PDP-II) LDOHSEEK OX)

Idohseek - seek to the optional file header of a common object file

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include < Idfcn.h >

int Idohseek Udptr)
LDFILE .Idptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object file currently
associated with /dptr.

Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if the object file
has no optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
IdcloseOX), IdopenOX>, IdfhreadOX), Idfcn(4).

- 1 -

LDOPEN(JX)

NAME

(not on PDP-II) LDOPEN(JX)

ldopen, ldaopen - open a common object file for reading

SYNOPSIS
#include <stdio.b>
#include < filebdr.b >
#include < Idfcn.b>

LDFILE .Idopen (filename, Idptr)
char .filename;
LDFILE .Idptr;

LDFILE .ldaopen (filename, oldptr)
char .filename;
LDFILE .oldptr;

DESCRIPTION
Ldopen and Idclose (3X) are designed to provide uniform access to both simple
object files and object files that are members of archive files. Thus an archive
of common object files can be processed as if it were a series of simple common
object files.

If Idptr has the value NULL, then Idopen will open filename and allocate and
initialize the LDFILE structure, and return a pointer to the structure to the cal­
ling program.

If Idptr is valid and if TYPE(/dptr) is the archive magic number, Idopen will
reinitialize the LDFILE structure for the next archive member of filename.

Ldopen and Idclose OX) are designed to work in concert. Ldclose will return
FAILURE only when TYPE(/dptr) is the archive magic number and there is
another file in the archive to be processed. Only then should Idopen be called
with the current value of Idptr. In all other cases, in particular whenever a
new filename is opened, Idopen should be called with a NULL Idptr argument.

The following is a prototype for the use of Idopen and Idclose OX).

/* for each filename to be processed ./

ldptr == NULL;
do
{

if (Odptr ... ldopen(filename, ldptr» != NULL)
{

/. check magic number */
/. process the file */

}
} while (ldclose(ldptr) === FAILURE);

If the value of oldptr is not NULL, Idaopen will open filename anew and allo­
cate and initialize a new LDFILE structure, copying the TYPE, OFFSET, and
HEADER fields from oldptr. Ldaopen returns a pointer to the new LDFILE
structure. This new pointer is independent of the old pointer, oldptr. The two
pointers may be used concurrently to read separate parts of the object file. For
example, one pointer may be used to step sequentially through the relocation
information, while the other is used to read indexed symbol table entries.

- 1 -

LDOPENC3x) (not on PDP-II) LDOPENC3x)

Both Idopen and Idaopen open filename for reading. Both functions return
NULL if filename cannot be opened, or if memory for the LDFILE structure
cannot be allocated. A successful open does not insure that the given file is a
common object file or an archived object file.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
fopen(3S), Idclose(JX). Idfcn(4).

- 2 -

LDRSEEK OX)

NAME

(not on PDP-))) LDRSEEK OX)

ldrseek, ldnrseek - seek to relocation entries of a section of a common object
file

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idrseek (Jdptr, sectindx)
LDFILE .Idptr;
unsigned short sectindx;

int Idnrseek (Idptr, sectname)
LDFILE .Idptr;
char .sectname;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by sectindx of
the common object file currently associated with Idptr.

Ldnrseek seeks to the relocation entries of the section specified by sectname.

Ldrseek and Idnrseek return SUCCESS or FAILURE. Ldrseek will fail if sec­
tindx is greater than the number of sections in the object file; Idnrseek will fail
if there is no section name corresponding with sectname . Either function will
fail if the specified section has no relocation entries or if it cannot seek to the
specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4) .

. I .

')

LDSHREAD OX)

NAME

(not on PDP-II) LDSHREAD(JX)

~.
Idshread, Idnshread - read an indexed/named section header of a common
object file

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include < Idfcn.h >

int Idshread <Idptr, sectindx, secthead}
LDFILE .Idptr;
unsigned short sectindx;
SCNHDR ·secthead;

int Idnshread Udptr, sectname, secthead>
LDFILE ·Idptr;
char .sectname;
SCNHDR .secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindx of the common object
file currently associated with ldptr into the area of memory beginning at sect­
head.

Ldnshread reads the section header specified by sectname into the area of
memory beginning at secthead.

Ldshread and Idnshread return SUCCESS or FAILURE. Ldshread will fail if
sectindx is greater than the number of sections in the object file: Idnshread will
fail if there is no section name corresponding with sectname . Either function
will fail if it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idclose(JX), Idopen(JX), Idfcn(4).

- 1 -

LDSSEEK OX)

NAME

(not on PDP-II) LDSSEEK OX)

Idsseek, Idnsseek - seek to an indexed/named section of a common object file

SYNOPSIS
#include <stdio.h>
#include < filehdr.h >
#include < Idfcn.h>
int Idsseek <Idptr, sectindx)
LDFILE eldptr;
unsigned short sectindx;

int Idnsseek (ldptr, sectname>
LDFILE eldptr;
char .sectname;

DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the common object file
currently associated with ldptr.

Ldnsseek seeks to the section specified by sectname .

Ldsseek and /dnsseek return SUCCESS or FAILURE. Ldsseek will fail if sec­
tindx is greater than the number of sections in the object file; ldnsseek will fail
if there is no section name corresponding with sectname . Either function will
fail if there is no section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(JX), Idfcn(4).

- I -

..~

LDTBINDEX (3X)

NAME

(not on PDP-II) LDTBINDEX OX)

ldtbindex - compute the index of a symbol table entry of a common object file

SYNOPSIS
#include < stdio.h>
#include < filehdr.h >
#include < syms.h >
#include <Idfcn.h>

long Idtbindex <Jdptr)
LDFILE .Idptr;

DESCRIPTION
Ldtbindex returns the (long) index of the symbol table entry at the current
position of the common object file associated with Idptr.

The index returned by Idtbindex may be used in subsequent calls to
ldtbread (3X). However. since Idtbindex returns the index of the symbol table
entry that begins at the current position of the object file, if Idtbindex is called
immediately after a particular symbol table entry has been read, it will return
the index of the next entry.

Ldtbindex will fail if there are no symbols in the object file, or if the object file
is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idopcn(3X). IdtbreadOX). Idtbseek(3X), Idfcn(4).

- 1 -

LDTBREAD Ox)

NAME

(not on PDP-! I) LDTBREAD OX)

ldtbread - read an indexed symbol table entry of a common object file

SYNOPSIS
#include <stdio.h>
#include < filehdr.h >
#include <syms.h>
#include <Idfcn.h>

iot Idtbread <Idptr, symindex, symbol)
LDFILE -Idptr;
long symindex;
SYMENT -symbol;

DESCRIPTION
Ldtbread reads the symbol table entry specified by symindex of the common
object file currently associated with Idptr into the area of memory beginning at
symbol.

Ldtbread returns SUCCFSS or FAILURE. Ldtbread will fail if symindex is
greater than the number of symbols in the object file, or if it cannot read the
specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idclose(JX), Idopen(JX), Idtbseek(JX>, Idgetname(JX>, Idfcn(4).

- 1 -

LDTBSEEK (3X)

NAME

(not on PDP-II) LDTBSEEK OX)

ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include <stdio.h>
#include < filehdr.h >
#include < Idfcn.h >
int Idtbseek (ldptr)
LDFILE .Idptr;

DESCRIPTION
Ldlbseek seeks to the symbol table of the object file currently associated with
ldplr.

Ldlbseek returns SUCCESS or FAILURE. Ldlbseek will fail if the symbol table
has been stripped from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(JX), Idopen(JX), Idtbread(JX), Idfcn(4).

-) -

LOGNAME(JX)

NAME

LOGNAME(3X)

logname - return login name of user

SYNOPSIS
char .Iogname()

DESCRIPTION
Logname returns a pointer to the null-terminated login name; it extracts the
SLOGNAME variable from the user's environment.

This routine is kept in /Iib/libPW.a.

FILES
/etc/profile

SEE ALSO
profile(4). environ(S).
env(I). 10gin(I) in the UNIX System V User Reference Manual.

BUGS
The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

- 1 -

MALLOC(JX)

NAME

MALLOC(JX)

~'

(",

malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator

SYNOPSIS
#include <malloc.h>
char -malloc (size)
unsigned size;

void free (ptr)
char -ptr;

char -realloc (ptr, size)
char -ptr;
unsigned size;

char -calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)
int max;

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation package,
which runs considerably faster than themal/od3C} package. It is found in the
library "malloc", and is loaded if the option "-lmalloc" is used with ce(I) or
Id(I).

Mal/oe returns a pointer to a block of at least size bytes suitably aligned for
any use.

The argument to free is a pointer to a block previously allocated by mal/oc;
after free is performed this space is made available for further allocation, and
its contents have been destroyed (but see mal/opt below for a way to change
this behavior) .

Undefined results will occur if the space assigned by ma//oc is overrun or if
some random number is handed to free.

Real/oe changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Cal/oe allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

Mal/opt provides for control over the allocation algorithm. The available
values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below
the size of maxfast in large groups and then doles them out
very quickly. The default value for maxfast is O.

M_NLBLKS Set numlblks to value. The above mentioned "large groups"
each contain numlblks blocks. Numlblks must be greater than
O. The default value for numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than max­
fast are considered to be rounded up to the nearest multiple of
grain. Grain must be greater than O. The default value of
grain is the smallest number of bytes which will allow align­
ment of any data type. Value will be rounded up to a multiple
of the default when grain is set.

- 1 -

MALLOC(3X) MALLOC{JX)

M_KEEP Preserve data in a freed block until the next ma/loe, rea/loe,
or ca//oc. This option is provided only for compatibility with
the old version of maUoc and is not recommended.

These values are defined in the <ma//oc.h> header file.

Mal/opt may be called repeatedly, but may not be called after the first small
block is allocated.

/* total space in arena */
/* number of ordinary blocks */
/* number of small blocks */
/* space in holding block headers */
/* number of holding blocks */
/* space in small blocks in use */
/* space in free small blocks */
/* space in ordinary blocks in use */
/* space in free ordinary blocks */
/* space penalty if keep option */
/* is used */

Mallinfo provides instrumentation describing space usage.
ture:

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

It returns the struc-

This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(JC).

DIAGNOSTICS
MaUoc, realloc and caUoc return a NULL pointer if there is not enough avail­
able memory. When real/oc returns NULL, the block pointed to by ptr is left
intact. If mal/opt is called after any allocation or if cmd or value are invalid,
non-zero is returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloC<3C).
The code size is also bigger than malloC<3C).
Note that unlike mallod3C), this package does not preserve the contents of a
block when it is freed, unless the M_KEEP option of mallopt is used.
Undocumented features of mallod3C) have not been duplicated.

- 2 -

PLOT(JX)

NAME

PLOT(JX)

plot - graphics interface subroutines

SYNOPSIS
openpl ()

erase ()

label (s)
char -s;

line (xl, yl, x2, y2)
int xl, yl, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yO, xl, yt>
int x, y, xO, yO, xl, yl;

move (x, y)
int x, y;

cont (x, y)
int x, y;

point (x, y)
int x, y;

Iinemod (s)
char -s;

space (xO, yO, xl, yt>
int xO, yO, xl, yl;

closepi ()

DESCRIPTION
These subroutines generate graphic output in a rclatively device-independent
manner. Space must be used before any of these functions to declare the
amount of space necessary. See plo(4). Openpl must be used before any of
the othcrs to open the device for writing. C/osepl flushes the output.

Circle draws a circle of radius r with center at the point (x. y).

Arc draws an arc of a circle with centcr at the point (x. y) between the points
(xO. yO) and (xl. yO.

String arguments to /ab~l and linemod are terminated by nulls and do not con­
tain new-lines.

See plot (4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these routines.

FILES
lusr/lib/libplot.a
lusr/lib/lib300.a
I usrII ib/l ib300s.a
lusr/lib/lib450.a
lusr/lib/lib40 14.a

produces output' for tplot (I G) filters
for DASI 300
for DASI 300s
for DASI 450
for TEKTRONIX 4014

- 1 -

PLOT(3X) PLOT(3X)

WARNINGS
In order to compile a program containing these functions in file.c it is necessary
to use "ccfile.c -lplot".

In order to execute it. it is necessary to use "a.out I tplot".

The above routines use <stdio.b>, which causes them to increase the size of
programs, not otherwise using standard I/O, more than might be expected.

SEE ALSO
plot(4).
graph(IG), stat()G). tplot(IG) in the UNIX System V User Reference Manual.

- 2 -

.~

REGCMP(JX)

NAME

REGCMP(JX)

regcmp, regex - compile and execute regular expression

SYNOPSIS
char .regcmp (stringI [, string2, ...), (char .)0)
char .stringI, ·string2, . u;

char .regex (re, subjectl, retO, ..•J)
char .re, .subject, .retO, ..•,

extern char •_toc I;

DESCRIPTION
Regemp compiles a regular expression and returns a pointer to the compiled
form. MalloC<3C) is used to create space for the vector. It is the user's
responsibility to free unneeded space so allocated. A NULL return from
regemp indicates an incorrect argument. Regemp (I) has been written to gen­
erally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional argu­
ments are passed to receive values back. Regex returns NULL on failure or a
pointer to the next unmatched character on success. A global character pointer
_Ioe I points to where the match began. Regemp and regex were mostly bor­
rowed from the editor, ed(l); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their associated
meanings.

[1* ." These symbols retain their current meaning.

S Matches the end of the string; \n matches a new-line.

Within brackets the minus means through. For example, [a -zl is
equivalent to [abcd •••xyzl. The - can appear as itself only if used as
the first or last character. For example, the character class expression
[I-I matches the characters) and -.

+ A regular expression followed by + means one or more times. For
example, [0 -9) + is equivalent to [0 -9)[0 -9)-.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the preced­
ing regular expression is to be applied. The value m is the minimum
number and u is a number, less than 256, which is the maximum. If
only m is present (e.g., (m}), it indicates the exact number of times
the regular expression is to be applied. The value {m,} is analogous to
{m,infinity}, The plus (+) and star (.) operations are equivalent to
{I,} and to,} respectively.

(...)$n
The value of the enclosed regular expression is to be returned. The
value will be stored in the (n + I)th argument following the subject
argument. At most ten enclosed regular expressions are allowed.
Regex makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g., ., +, {}, can
work on a single character or a regular expression enclosed in
parentheses. For example, (a*(cb+)*)SO.

By necessity, all the above defined symbols are special. They must, therefore,
be escaped to be used as therr:.;:'ves.

- I -

REGCMP(3X)

EXAMPLES
Example I:

char ·cursor. -newcursor, ·ptr;

REGCMP(3X)

newcursor -= regex«ptr -= regcmp("A\n", 0», cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed at by
cursor.

Example 2:
char retO[9];
char .newcursor, -name;

name -= regcmp("([A-Za-z][A-za-zO-9J{0,7})$0", 0);
newcursor -= regex(name, "l 23Testing32 I", retO);

This example will match through the string "Testing3" and will return the
address of the character after the last matched character (cursor+ I I). The
string "Testing3" will be copied to the character array retO.

Example 3:
#include "file.i"
char -string, -newcursor;

newcursor -= regex (name, string);

This example applies a precompiled regular expression in file.i (see regcmp (t»
against string.

This routine is kept in /lib/libPW.a.

SEE ALSO
malloC<3C) .
ed(I), regcmp(t) in the UNIX System V User Reference Manual.

BUGS
The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required. The following user-supplied
replacement for malloc(3C) reuses the same vector saving time and space:

/* user's program */

char ­
malloC<n)
unsigned n;
{

static char rebuf(SI2];
return (n <-= sizeof rebuf> ? rebuf: NULL;

- 2 -

.~.
')

SPUTL(3X)

NAME

SPUTL(3X)

~.,•...•".,....

<
sputl, sgetl - access long integer data in a machine-independent fashion.

SYNOPSIS
void sputl (value, buffer)
long value;
char •buffer;

long sgetl (buffer)
char •buffer;

DESCRIPTION
Spurl takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the
same across all machines.

Sgerl retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host
machine.

The combination of sputl and sgetl provides a machine-independent way of
storing long numeric data in a file in binary form without conversion to charac­
ters.

A program which uses these functions must be loaded with the object-file
access routine library libld.a.

- I -

VPRINTF(JX)

NAME

VPRINTF(JX)

vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include < varargs.h >
int vprintf (format, ap)
char -format;
vaJist ap;

int vfprintf (stream, format, ap)
FILE -stream;
char -format;
vaJist ap;

int vsprintf (s, format, ap)
char -s, -format;
vaJist ap;

DESCRIPTION
vprintJ, vJprintJ, and vsprintJ are the same as printJ, JprintJ, and sprintJ
respectively, except that instead of being called with a variable number of argu­
ments, they are called with an argument list as defined by varargs (5).

EXAMPLE
The following demonstrates how vJprintJ could be used to write an error rou­
tine.

#include <stdio.h>
#include <varargs.h>

/.
• error should be called like
• error (function_name, format, argl, arg2...);
./

/·YARARGSO·/
void
error(va alist)
/- Note-that the function_,lame and format arguments cannot be

- separately declared because of the definition of varargs.
-/

va del
(-

va list args;
char -fmt;

va....:start (args);
/. print out name of function causing error -/
(voidHprintf(stderr, "ERROR in %s: ", va_arg(args, char
fmt = va_arg(args, char .);
/- print out remainder of message -/
(void)vfprintf(fmt. args);
va_end (args);
(void)abort();

SEE ALSO
printf(3S), varargs(S).

- I -

..~

ABORT(JF)

NAME

ABORT(3F)

~,
\.

abort - terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION
Abort terminates the program which cans it. closing an open files truncated to
the current position of the file pointer.

DIAGNOSTICS
When invoked. abort prints "Fortran abort routine caned" on the standard
error output.

SEE ALSO
abortOC).

- 1 -

ABS(JF)

NAME

ABS(JF)

abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNOPSIS
integer it, i2
real rt, r2
double precision dpt, dp2
complex ext, cx2
double complex dxt, dx2

r2 == abs(rt)

i2 :::: iabsOt)
i2 == absOt)

dp2 dabs(dpt)
dp2 abs(dpt)

cx2 cabs(cxt)
cx2 abs(cxt)

dx2 zabs(dxt)
dx2 abs(dxt)

DESCRIPTION
Abs is the family of absolute value functions. labs returns the integer absolute
value of its integer argument. Dabs returns the double-precision absolute value
of its double-precision argument. Cabs returns the complex absolute value of
its complex argument. Zabs returns the double-complex absolute value of its
double-eomplex argument. The generic form abs returns the type of its argu­
ment.

SEE ALSO
fioor(3M).

- 3-1 -

ACOS(JF)

NAME

ACOS(JF)

acos, dacos - Fortran arccosine intrinsic function

SYNOPSIS
real rl, r2
double precision dp1, dp2

r2 CI acos(rl)

dp2 CI dacos(dpl)
dp2 CI acos(dpJ)

DESCRIPTION
Acos returns the real arccosine of its real argument. Dacos returns the
double-precision arccosine of its double-precision argument. The generic form
acos may be used with impunity as its argument will determine the type of the
returned value.

SEE ALSO
trig(JM) .

- I -

AIMAG(JF)

NAME

AIMAG(JF)

aimag. dimag - Fortran imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd

r 1:1 aimag(cxr)

dp = dimag(cxd)

DESCRIPTION
Aimag returns the imaginary part of its single-precision complex argument.
Dimag returns the double-precision imaginary part of its double-complex argu­
ment.

- I -

AINTOF)

NAME

AINT(3F)

aint, dint - Fortran integer part intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = aint(rJ>

dp2 = dint(dpJ>
dp2 = aint(dpJ>

DESCRIPTION
Aint returns the truncated value of its real argument in a real. Dint returns
the truncated value of its double-precision argument as a double-precision
value. Aint may be used as a generic function name, returning either a real or
double-precision value depending on the type of its argument.

- 1 -

ASIN OF)

NAME

ASIN(JF)

asin, dasin - Fortran arcsine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 == asin(rJ)

dp2 c: dasin(dp J)
dp2 == asin(dpJ)

DESCRIPTION
As;n returns the real arcsine of its real argument. Das;n returns the double­
precision arcsine of its double-precision· argument. The generic form as;n may
be used with impunity as it derives its type from that of its argument.

SEE ALSO
trig(3M).

- 1 -

ATAN(3F)

NAME

ATAN(3F)

atan, datan - Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 == atan(rJ)

dp2 = datan(dpJ)
dp2 == atan(dpI)

DESCRIPTION
Alan returns the real arctangent of its real argument. Dolan returns the
double-precision arctangent of its double-precision argument. The generic form
alan may be used with a double-precision argument returning a double­
precision value.

SEE ALSO
trig(3M).

- 1 -

ATAN2(3F)

NAME

ATAN2(3F)

atan2, datan2 - Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2, r3
double precision dp1, dp2, dp3

r3 == atan2(rl, r2)

dp3 == datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION
Alan2 returns the arctangent of argJ /arg2 as a real value. Dalan2 returns the
double-precision arctangent of its double-precision arguments. The generic
form alan2 may be used with impunity with double-precision arguments.

SEE ALSO
trigOM).

- I -

BOOL(3F)

NAME

BOOL(3F)

and, or, xor, not, Ishift, rshift - Fortran bitwise boolean functions

SYNOPSIS
integer i, j, k
real a, b, c
double precision dpl, dp2, dp3

k =- and<i, j)
C = or(a, b)
j CI xor<i, a)
j = notO)
k = Ishift<i, j)
k = rshift<i, j)

DESCRIPTION
The generic intrinsic boolean functions and, or and xor return the value of the
binary operations on their arguments. Not is a unary operator returning the
one's complement of its argument. Lshift and rshift return the value of the
first argument shifted left or right, respectively, the number of times specified
by the second (integer) argument.

The boolean functions are generic, that is, they are defined for all data types as
arguments and return values. Where required, the compiler will generate
appropriate type conversions.

NOTE
Although defined for all data types, use of boolean functions on any but integer
data is bizarre and will probably result in unexpected consequences.

BUGS
The implementation of the shift functions may cause large shift values to
deliver weird results.

- I -

CONJG(3F)

NAME

CONJG(JF)

conjg, dconjg - Fortran complex conjugate intrinsic function

SYNOPSIS
complex cx1, cx2
double complex dx1, dx2

cx2 = conjg(cx»

dx2 = dconjg(dx»

DESCRIPTION
Conjg returns the complex conjugate of its complex argument. Dconjg returns
the double-complex conjugate of its double-complex argument.

- 1 -

COS(3F)

NAME

COS(3F)

~,
'.

~\
'"

COS, dcos, ccos - Fortran cosine intrinsic function

SYNOPSIS
real rl, rl
double precision dpl, dpl
complex cxt, cxl

rl = cos(rI)

dp2 dcos(dpI)
dpl cos(dpJ)

cxl ccos(cxI)
cxl cos(cxI)

DESCRIPTION
Cos returns the real cosine of its real argument. Dcos returns the double­
precision cosine of its double-precision argument. Ccos returns the complex
cosine of its complex argument. The generic form cos may be used with
impunity as its returned type is determined by that of its argument.

SEE ALSO
trig(JM).

-.1 -

COSH(3F)

NAME

COSH(3F)

cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = cosh(rt)

dp2 = dcosh(dpt)
dp2 = cosh(dpl)

DESCRIPTION
Cosh returns the real hyperbolic cosine of its real argument. Dcosh returns the
double-precision hyperbolic cosine of its double-precision argument. The gen­
eric form cosh may be used to return the hyperbolic cosine in the type of its
argument.

SEE ALSO
sinh(JM).

- 1 -

~I

DIM(3F)

NAME
dim, ddim, idim - positive difference intrinsic functions

SYNOPSIS
integer a1,82,a3
83 = idim(al,a2)

real 81,82,a3
83 = dim(al,a2)

double precision al,a2.,a3
a3 = ddim(a l,a2)

DESCRIPTION
These functions return:

al-a2 if al > a2
o ifal <=a2

- 1 -

DIM(3F)

DPROD(JF)

NAME
dprod - double precision product intrinsic function

SYNOPSIS
real al,a2
double precision a3
a3 = dprod (al,a2)

DESCRIPTION
Dprod returns the double precision product of its real arguments.

• 1 •

DPROD(JF)

EXP()F)

NAME

EXP()F)

exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = exp(rt)

dp2 dexp(dpt)
dp2 exp(dpt)

cx2 clog(cxt)
cx2 exp(cxt)

DESCRIPTION
Exp returns the real exponential function eX of its real argument. Dexp
returns the double-precision exponential function of its double-precision argu­
ment. Cexp returns the complex exponential function of its complex argument.
The generic function exp becomes a call to dexp or cexp as required. depend­
ing on the type of its argument.

SEE ALSO
exp(3M).

- I -

FTYPE(3F)

NAME

FTYPEOF)

int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char - explicit For­
tran type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character-J ch

inter)
int(dp)
int(cx)
int(dcx)
ifix(r)
idint(dp)

r real(i)
r real(dp)
r real (cx)
r real(dcx)
r ftostCi>
r sngl(dp)

dp dbleH>
dp dble(r)
dp dble(cx)
dp dble(dcx)

cx cmplx(j)
cx emplx(i, j)
cx emplx(r)
cx cmplx (r, 5)
ex cmplx(dp)
cx = cmplx(dp, dq)
cx = cmplx(dcx)

dcx dcmplx (i)
dex dcmplx (i, j)
dcx dcmplx(r)
dcx dcmplx <r, s)
dcx dcmplx (dp)
dcx dcmplx (dp, dq)
dcx dcmplx(cx)

i = ichar(ch)
ch = char(j)

DESCRIPTION
These functions perform conversion from one data type to another.

The function int converts to integer form its real, double precision, complex, or
double complex argument. If the argument is real or double precision, int
returns the integer whose magnitude is the largest integer that does not exceed
the magnitude of the argument and whose sign is the same as the sign of the
argument G.e. truncation). For complex types, the above rule is applied to the
real part. ifix and idint convert only real and double precision arguments
respectively.

- I -

FTYPE(3F) FTYPE(3F)

The function real converts to real form an integer, double precision, complex,
or double complex argument. If the argument is double precision or double
complex, as much precision is kept as is possible. If the argument is one of the
complex types, the real part is returned. float and sngl convert only integer and
double precision arguments respectively.

The function dble converts any integer, real, complex, or double complex argu­
ment to double precision form. If the argument is of a complex type, the real
part is returned.

The function cmplx converts its integer, real, double precision, or double com­
plex argument (s) to complex form.

The function dcmplx converts to double complex form its integer, real, double
precision, or complex argument(s).

Either one or two arguments may be supplied to cmplx and dcmplx . If there is
only one argument, it is taken as the real part of the complex type and an ima­
ginary part of zero is supplied. If two arguments are supplied, the first is taken
as the real part and the second as the imaginary part.

The function ichar converts from a character to an integer depending on the
character's position in the collating sequence.

The function char returns the character in the ith position in the processor col­
lating sequence where i is the supplied argument.

For a processor capable of representing n characters,

ichar(char(j) "'" i for 0 ~ i < n, and

char(ichar(ch» == ch for any representable character ch.

- 2 -

GETARG(3F)

NAME

GETARG(3F)

getarg - return Fortran command-line argument

SYNOPSIS
character-N c
integer i

getarg<i, c>
DESCRIPTION

Getarg returns the i-th command-line argument of the current process. Thus, if
a program were invoked via

foo argl arg2 arg3

getargf2, c) would return the string "arg2" in the character variable c.

SEE ALSO
getopt (3C) .

- 1 -

'~

GETENV(3F)

NAME

GETENV(3F)

getenv - return Fortran environment variable

SYNOPSIS
character-N c

getenv(WTMPDIRw
, c>

DESCRIPTION
Getenv returns the character-string value of the environment variable
represented by its first argument into the character variable of its second argu­
ment. If no such environment variable exists, all blanks will be returned.

SEE ALSO
getenv(JC), environ (5).

- 1 -

IARGC(3F)

NAME

IARGC(3F)

large

SYNOPSIS
integer i
i = iargcO

DESCRIPTION
The iargc function returns the number of command line arguments passed to
the program. Thus, if a program were invoked via

roo arg I arg2 arg3

iargcO would return "3".

SEE ALSO
getarg (3 F) .

- 3-1 -

INDEX(JF)

NAME

INDEX(JF)

index - return location of Fortran substring

SYNOPSIS
character-N I chI
character-N2 ch2
integer i

i = index (chI, ch2)

DESCRIPTION
Index returns the location of substring ch2 in string chI. The value returned is
the position at which substring ch2 starts. or 0 is it is not present in string chI.

- I -

LEN(3F)

NAME
len - return length of Fortran string

SYNOPSIS
character.N ch
integer i

i :::: len(ch)

DESCRIPTION
Len returns the length of string ch.

- 1 ..

LEN (3F)

LOG(3F)

NAME

LOG(3F)

log, alog, dlog, clog - Fortran natural logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cx1, cx2

r2 = alog(r))
r2 = 10gb))

dp2 dlog(dpl)
dp2 log(dp))

cx2 clog(cxt)
cx2 log(cx))

DESCRIPTION
Alog returns the real natural logarithm of its real argument. Dlog returns the
double-precision natural logarithm of its double-precision argument. Clog
returns the complex logarithm of its complex argument. The generic function
log becomes a call to alog, dlog, or clog depending on the type of its argu­
ment.

SEE ALSO
exp(3M).

- 1 -

LOGIO(3P)

NAME

LOGIO(3F)

10glO, aloglO, dloglO - Fortran common logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpI, dp2

r2 = aloglO(rt)
r2 = loglO(rt)

dp2 = dloglO(dpl)
dp2 = loglO(dpl)

DESCRIPTION
AloglO returns the real common logarithm of its real argument. DloglO
returns the double-precision common logarithm of its double-precision argu­
ment. The generic function loglO becomes a call to aloglO or dloglO depend­
ing on the type of its argument.

SEE ALSO
exp(JM).

- I -

MAX(3F)

NAME

MAX(3F)

~',

max, maxO, amaxO, max I, amax 1, dmax I - Fortran maximum-value functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dpI, dp2, dp3

I = max<i, j, k)
c max(a, b)
dp = max (a, b, c>
k = maxO<i, j)
a 0= amaxO<i, j, k)
i "'" maxI (a, b)
d "'" amaxl (a, b, c>
dp3 "'" dmaxHdpl, dp2)

DESCRIPTION
The maximum-value functions return the largest of their arguments (of which
there may be any number). Max is the generic form which can be used for all
data types and takes its return type from that of its arguments (which must all
be of the same type). MaxO returns the integer form of the maximum value of
its integer arguments; amaxO, the real form of its integer arguments; maxi,
the integer form of its real arguments; amaxI. the real form of its real argu­
ments; and dmax I. the double-precision form of its double-precision arguments.

SEE ALSO
min{3F).

- 1 -

MCLOCK(JF)

NAME

MCLOCK(JF)

mclock - return Fortran time accounting

SYNOPSIS
integer i

i := mclock()

DESCRIPTION
Me/ock returns time accounting information about the current process and its
child processes. The value returned is the sum of the current process's user time
and the user and system times of all child processes.

SEE ALSO
times(2). clock(3C). system(3F).

- 1 -

MIN (3F)

NAME

MIN(JF)

min, minO, aminO, min I, amin I, dmin I - Fortran minimum-value functions

SYNOPSIS
integer i, i, k, I
real a, b, c, d
double precision dpI, dp2, dp3

I == minH, i, k)
C = min(a, b)
dp == min(a, b, c>
k == minOn, i)
a = aminOn, i, k)
i == mini (a, b)
d == amin Ha, b, c>
dp3 == dminHdpl, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their arguments (of
which there may be any number). Min is the generic form which can be used
for all data types and takes its return type from that of its arguments (which
must all be of the same type). MinO returns the integer form of the minimum
value of its integer arguments; aminO, the real form of its integer arguments;
minI, the integer form of its real arguments; aminI, the real form of its real
arguments; and dminI, the double-precision form of its double-precision argu­
ments.

SEE ALSO
max(JF).

- I -

MOD{3F)

NAME

MOD(JF)

mod, amod, dmod - Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k = mod(i, j)

r3 amod(rl, r2)
r3 = mod<rl, r2)

dp3 = dmod(dpl, dp2)
dp3 = mod(dpl, dp2)

DESCRIPTION
Mod returns the integer remainder of its first argument divided by its second
argument. Amod and dmod return, respectively, the real and double-precision
whole number remainder of the integer division of their two arguments. The
generic version mod will return the data type of its arguments.

- 1 -

RAND(3F)

NAME

RAND(3F)

~,
irand. rand. srand - random number generator

SYNOPSIS
call srand<iseed)

i == irandO
x == rand()

DESCRIPTION
[rand generates successive pseudo-random numbers in the range from 0 to
2··15-1. Rand generates pseudo-random numbers distributed in (0, 1.0).
Srand uses its integer argument to re-initialize the seed for successive invoca­
tions of irand and rand.

SEE ALSO
rand(3C).

- 1 •

ROUND(3F)

NAME

ROUND(3F)

anint, dnint, nint, idnint - Fortran nearest integer functions

SYNOPSIS
integer i
real rl, r2
double precision dpl, dp2

r2 1::1 anint(rt)
i 1::1 nint<rU

dp2 "'" anint<dpt)
dp2 1::1 dnint(dpt)

i = nint (dp t>
i = idnint(dpt)

DESCRIPTION
Anint returns the nearest whole real number to its real argument (i.e.,
int(a+0.5) if a ~ 0, int(a-0.5) otherwise). Dnint does the same for its
double-precision argument. Nint returns the nearest integer to its real argu­
ment. Idnint is the double-precision version. Anint is the generic form of
anint and dnint . performing the same operation and returning the data type of
its argument. Nint is also the generic form of idnint.

- 1 -

/~
0;-1

/

.~

SIGN(3F)

NAME

SIGN(3F)

sign, isign, dsign - Fortran transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k = isign0, j)
k = sign0, j)

r3 ::: sign(rl, r2)

dp3 ::: dsign(dpl, dp2)
dp3 ::: sign(dpl, dp2)

DESCRIPTION
[sign returns the magnitude of its first argument with the sign of its second
argument. Sign and dsign are its real and double-precision counterparts,
respectively. The generic version is sign and will devolve to the appropriate
type depending on its arguments.

- 1 -

SIGNALOF)

NAME

SIGNAL OF)

signal - specify Fortran action on receipt of a system signal

SYNOPSIS
integer i
extemal integer intfnc

call signaUi, intfnd

DESCRIPTION
Signal allows a process to specify a function to be invoked upon receipt of a
specific signal. The first argument specifies which fault or exception; the second
argument the specific function to be invoked.

SEE ALSO
kilI(2) t signaI(2).

- 1 -

SIN OF)

NAME

SIN OF)

sin, dsin, csin - Fortran sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cx1, cx2

r2 = sin(rt)

dp2 dsin(dpt)
dp2 sin(dp1)

cx2 csin(cxt)
cx2 sin(cxt)

DESCRIPTION
Sin returns the real sine of its real argument. Dsin returns the double­
precision sine of its double-precision argument. Csin returns the complex sine
of its complex argument. The generic sin function becomes dsin or csin as
required by argument type.

SEE ALSO
trigOM).

- 1 -

SINH (3F)

NAME

SINH(JF)

sinh, dsinh - Fortran hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = sinh(rt)

dp2 == dsinh(dpt)
dp2 c::: sinh(dpt)

DESCRIPTION
Sinh returns the real hyperbolic sine of its real argument. Dsinh returns the
double-precision hyperbolic sine of its double-precision argument. The generic
form sinh may be used to return a double-precision value when given a
double-precision argument.

SEE ALSO
sinh(3M).

- I -

/~
I

SQRT(JF)

NAME

SQRT(JF)

sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = sqrt(rt)

dp2 dsqrt (dpJ)
dp2 sqrt(dpJ)

cx2 csqrt(cxt>
cx2 sqrt(cxt>

DESCRIPTION
Sqrt returns the real square root of its real argument. Dsqrt returns the
double-precision square root of its double-precision argument. Csqrt returns
the complex square root of its complex argument. Sqrt, the generic form, will
become dsqrt or csqrt as required by its argument type.

SEE ALSO
exp(JM).

- 1 •

ai, a2

STRCMP(3F)

NAME
1ge. 19t, lie, lit - string comparision intrinsic functions

SYNOPSIS
character*N
logical I

STRCMP(3F)

Ige (al,a2)
Igt (al,a2)
lie (al,a2)

I lit (al,a2)

DESCRIPTION
These functions return .TRUE. if the inequality holds and .FALSE. otherwise.

- I -

SYSTEM (3F)

NAME

SYSTEM(JF)

system - issue a shell command from Fortran

SYNOPSIS
character-N c

call system(c)

DESCRIPTION
System causes its character argument to be given to sh (I) as input, as if the
string had been typed at a terminal. The current process waits until the shell
has completed.

SEE ALSO
exec{2}, system OS} .
sh(I) in the UNIX System V User Reference Manual.

- I -

TAN(3F)

NAME

TAN(3F)

tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 == tan(rt)

dp2 == dtan(dpt)
dp2 == tan(dpt)

DESCRIPTION
Tan returns the real tangent of its real argument. Dtan returns the double­
precision tangent of its double-precision argument. The generic tan function
becomes dtan as required with a double-precision argument.

SEE ALSO
trig(3M).

- 1 -

TANH OF)

NAME

TANH (3F)

\.

~
'.

tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 1:1 tanh(rt)

dp2 = dtanh (dpI)
dp2 = tanh(dp t>

DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument. Dtanh returns
the double-precision hyperbolic tangent of its double-precision argument. The
generic form tanh may be used to return a double-precision value given a
double-precision argument.

SEE ALSO
sinh(3M).

- I -

·:'..

(";:
. -

INTRO(4)

NAME

INTRO(4)

intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declarations for
the file formats are given where applicable. Usually, these structures can be
found in the directories /usr/include or /usr/include/sys.

References of the type name(IM) refer to entries found in Section I of the"
UNIX System V Administrator Reference Manual .

• 1 •

A.OUT(4)

NAME

(not on PDP-II) A.OUT(4)

a.out - common assembler and link editor output

DESCRIPTION
The file name a.out is the output file from the assembler as 0) and the link edi­
tor /dO). Both programs will make a.out executable if there were no errors in
assembling or linking and no unresolved external references.

A common object file consists of a file header, a UNIX system header, a table
of section headers, relocation information, (optionaD line numbers, and a sym­
bol table. The order is given below.

File header.
UNIX system header.
Section I header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section I line numbers.

Section n line numbers.
Symbol table.
String table.

The last four sections (relocation, line numbers, symbol table and string table)
may be missing if the program was linked with the -s option of /dO) or if the
symbol table and relocation bits were removed by strip (1). Also note that if
there were no unresolved external references after linking, the relocation infor­
mation will be absent. The string table exists only if necessary.

The sizes of each segment (contained in the header, discussed below) are in
bytes and are even.

When an a.out file is loaded into memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by
uninitialized, the latter actually being initialized to all O's), and a stack. The
text segment begins at location 0 in the core image. The header is never
loaded. If the magic number (the first field in the UNIX system header) is 407
(octaD, it indicates that the text segment is not to be write-pr~tected or shared,
so the data segment will be contiguous with the text segment. If the magic
number is 410 (octaD, the data segment and the text segment are not writable
by the program; if other processes are executing the same a.out file, the
processes will share a single text segment.

On the 38 20 computer, the stack begins at the end of the data section and
grows towards higher addresses. On the 38 5 computer the stack begins at
location Oxc0020000 and grows toward higher addresses. The maximum stack
size on the 38 5 computer is 512K. On the VAX, the stack begins at the end of
memory and grows towards lower addresses. The stack is automatically
extended as required. The data segment is extended only as requested by the
brk (2) system call.

The value of a word in the text or data portions that is not a reference to an
undefined external symbol is exactly the value that will appear in memory when
the file is executed. If a word in the text involves a reference to an undefined

- 1 -

A.OUT(4) (not on PDP-II) A.OUT(4)

external symbol. the storage class of thc symbol-table entry for that word will
be marked as an "external symbol". and the section number will be set to O.
When the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word in thc file.

File Header
The format of the filehdr header is

struct filehdr
{

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f nscns;
(timdat;
(symptr;
f_nsyms;
f_opthdr;
f_nags;

/- magic number -/
/- number of sections -/
/- time and datc stamp -/
/- file ptr to symtab -/
/- # symtab entries -/
/- sizeof(opt hdr) -/
/- nags -/

};

UNIX System Header
The format of the VAX UNIX system header is

typedef struct aouthdr
{

/- magic number -/
/- version stamp -/
/- text size in bytes. padded -/
/- initialized data (data) -/
/- uninitialized data (.bss) -/
/- entry point -/
/- base of text used for this file -/
/- base of data used for this file -/

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
text_start;
data_start;

short
short
long
long
long
long
long
long

} AOUTHDR;

The format of the 38 20 computer UNIX system header is

typedef struct aouthdr
(

~ ..

short
short
long
long
long
long
long
long
long
long

) AOUTHDR;

magic;
vstamp;
tsize;
dsize;
bsize;
duml;
dum2;
entry;
text start;
data-ytart;

/- magic number -/
/- version stamp -/
/- text size in bytes, padded -/
/- initialized data (data) -/
/- uninitialized data (bss) -i
/- unused fill space included -/
/- for historical reasons -/
/- entry point -/
/- base of text used for this file -/
/- base of data used for this file -/

- 2 -

A.OUT(4) (not on PDP-l I) A.OUT(4)

Section Header
The format of the section header is

struct scnhdr
(

) ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s name[SYMNMLEN];/. section name 'o/
sJ,addr; /* physical address ./
s vaddr; /* virtual address */
s-size; /* section size ./
s=scnptr~ /* file ptr to raw data ./
sJelptr; /* file ptr to relocation */
sJnnoptr; /* file ptr to line numbers ./
s nreloc; /. # reloc entries ./
s-nlnno; /. # line number entries ./
s)lags; /* flags ./

Relocation
Object files have one relocation entry for each relocatable reference in the text
or data. If relocation information is present, it will be in the following format:

struct reloc
(

long r_vaddr; /* (virtual) address of reference ./
long r_symndx; /* index into symbol table ./
short r_type; /* relocation type ./

);

The start of the relocation information is sJe/ptr from the section header. If
there is no relocation information, sJelptr is o.

- 3 -

.~

A.OUT(4) (nolon PDP-II) A.OUT(4)

Symbol Table
The format of the symbol table header is

#define SYMNMLEN 8
#define FI LN MLEN 14
#define SYMESZ 18

struct syment
{

union
{

/* the size of a SYMENT */

/. all ways to get a symbol name ./

_n_namelSYMNMLEN); /. name of symbol ./

};

char
struct
{

long
long

} n n;
char-

} n;
unsigned long
short
unsigned short
char
char

n zeroes;
=n=offset;

n_value;
n_scnum;
n_type;
n_sclass;
n_numaux;

/. == OL if in string table ./
/. location in string table ./

/. allows overlaying ./

/. value of symbol ./
/. section number ./
/. type and derived type ./
/. storage class ./
/. number of aux entries ./

#define n_name n. n name
#define n zeroes n. n n. n zeroes
#define n=offset =n.=n=n.=n=offset
#define n_nptr _n._n_nptrl I]

Some symbols require more information than a single entry; they are followed
by auxiliary emries that are the same size as a symbol entry. The format fol­
lows.

- 4 -

A.OUT(4) (not on PDP-I»

union auxent {
struet {

long x_tagndx;
union (

struet {
unsigned short xJnno;
unsigned short x_size;

} x Insz;
long xJsize;

} x mise;
union {

struet (
long xJnnoptr;
long x_endndx;

} x fen;
struct (

A.OUT(4)

x_tvfill;
x tvlen;
x=tvran[21;

};

unsigned short x_dimen[DIMNUM1;
} x_ary;

} xJenary;
unsigned short x_tvndx;

} x_sym;

struet (
ehar xJnamelFILNMLEN1;

) xJile;

struet {
long x_senlen;
unsigned short x m!loe;
unsigned short x=nlinno;

} x_sen;

struet (
long
unsigned short
unsigned short

) x_tv;

'~

Indexes of symbol table entries begin at zero. The start of the symbol table is
J_symptr (from the file header> bytes from the beginning of the file. If the
symbol table is stripped, J_symptr is O. The string table (if one exists) begins
at J_symptr + if_nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO
brk(2), filehdr(4), Idfen(4), linenum(4), reloC(4), senhdr(4). syms(4).
as(», eeO), Id(1) in the UNIX System V User Reference Manual.

- 5 -

A.OUT(4)

NAME

(PDP-II only) A.OUT(4)

~.. '"''
,""

a.out - PDP-II assembler and link editor output

DESCRIPTION
A.out is the output file of the assembler as(l) and the link editor ld(). Both
programs will make a.out executable if there were no errors in assembling or
linking and no unresolved external references.

This file has four sections: a header, the program text and data segments, relo­
cation information. and a symbol table (in that order>. The last two sections
may be missing if the program was linked with the -s option of ld (I) or if the
symbol table and relocation bits were removed by strip (I). Also note that if
there were no unresolved external references after linking. the relocation infor­
rna t ion wilt be removed.

The sizes of each segment <Contained in the header, discussed below) are in
bytes and are even. The size of the header is not included in any of the other
sizes.

When an a.out Hie is loaded into memory for execution. three logical segments
are set up: the text segment. the data segment (initialized data followed by
uninitialized, the latter actually being initialized to all O·s). and a stack. The
text segment begins at location 0 in the core image; the header is not loaded.
If the magic number <the first field in the header> is 407 (octa)), it indicates
that the text segment is not to be write-protected or shared. so the data seg­
ment will be contiguous with the text segment. If the magic number is 410
(octa)), the data segment begins at the first 0 mod 8K-byte boundary following
the text segment. and the text segment is not writable by the program. If other
processes are executing the same a.out file, they will share a single text seg­
ment. If the magic number is 411 (octa)) the text segment is again pure
(write-protected and shared) and, moreover, the instruction and data spaces are
separated; the text and data segment both begin at location O. See the pop·
1100 Processor Handbook for restrictions that apply to this situation.

The stack will occupy the highest possible locations in the core image: from
177776 (octal) on the PDP-II and growing downwards. The stack is automati­
cally extended as required. The data segment is only extended as requested by
the brk (2) system call.

The start of the text segment in the a.out file is hsize; the start of the data seg­
ment is hsize+S, (the size of the text), where hsize is 20 (octal) on the PDP­
II.

The value of a word in the text or data portions that is not a reference to an
undefined external symbol is exactly the value that will appear in memory when
the file is executed. If a word in the text or data portion involves a reference to
an undefined external symbol, as indicated by the relocation information (dis­
cussed below) for that word, then the value of the word as stored in the file is
an offset from the associated external symbol. When the file is processed by
the link editor and the external symbol becomes defined, the value of the sym­
bol will be added to the word in the file.

- I -

A.OUT(4) (PDP-II only) A.OUT(4)

Header-POP-II
The format of the a.out header for the PDP-II is as follows:

);

Relocation-POP-II
If relocation information is present. it amounts to two bytes per relocatable
datum. There is no relocation information if the "suppress relocation" nag
(a.JIag) in the header is on.

The format of the relocation data is:

struct exec
short
unsigned
unsigned
unsigned
unsigned
unsigned
char
char
char
char

(
a_magic; /* magic number */
a_text; /* size of text segment */
a_data; /* size of data segment */
a_bss; /* size of bss segment */
a_syms; /* size of symbol table */
a_entry; /* entry point of program */

a unused;
a)itext; /* hi bits for large text spaces */
a_flag; /* set if relocation info stripped */
a_stamp; /* version stamp */

struct

};

rjnfo
int

{
r_symbolnum: 11.
r_segment:3.
rycrel: I;

The ryael field indicates. if on, that the reference is relative to the program
counter (pC> register (e.g,. elr x); if off', that the reference is to the actual sym­
bol (e.g., elr .$x).

The r_segment Ileld indicates the segment referred to by the text or data word
associated with the relocation word:

00 indicates the reference is absolute;
02 indicates the reference is to the text segment;
04 indicates the reference is to initialized data;
06 indicates the reference is to bss (uninitialized data);
10 indicates the reference is to an undefined external symbol.

The Ileld r_symbolmmr contains a symbol number in the case of external refer­
ences, and is unused otherwise. The first symbol is numbered O. the second 1.
etc.

The start of the relocation information on the PDP-II is:

hsize+a_/ex/ +a_datG

Symbol Table-POP-II
The symbol table on the PDP-I I consists of entries of the form:

struct nlist {
char n_namel8J;
int n_type;
unsigned n_value;

};

- 2 -

A.OUT(4) (PDP-II only) A.OUT(4)

The "_name field contains the ASCII name of the symbol, null-padded. The
"_type field indicates the type of the symbol: the following values are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
04 bss segment symbol
37 file name symbol (produced by Id(I»
40 undefined external symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

The start of the symbol table on the PDP-II is:

hsize+2(a_text +a_data)

if relocation information is present, and

hsize+a text +a data
ifit is not. - -

If the type of a symbol on the PDP-II is undefined external and the value field
is non-zero, the symbol is interpreted by the link editor ld (J) as the name of a
common region whose size is indicated by the value of the symbol.

SEE ALSO
as(l), Id(J). nm(l), strip(I) in the VNI.'< System V User Refere1lce Manual.

- 3 -

ACCT(4)

NAME

ACCT(4)

acct - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form defined by
<sys/acct.h>, whose contents are:

typedef ushort comp_t; /* "floating point" */
/* 13-bit fraction, 3-bit exponent */

/. Accounting flag ./
/. Exit status ./

struct acct
{

char
char
ushort
ushort
dev_t
time_t
comp_t
comp_t
comp_t
comp_t
comp_t
comp_t
char

};

ac_flag;
ac_stat;
ac uid;
ac~id;
ac_tty;
ac_btime; /* Beginning time ./
ac_utime; /* acctng user time in clock ticks ./
ac_stime; /. acctng system time in clock ticks ./
ac_etime; /. acctng elapsed time in clock ticks */
ac_mem; /. memory usage in clicks ./
ac io; /. chars trnsfrd by read/write ./
ac-rw; /. number of block reads/writes */
ac=comm[S]; /* command name */

extern struct acct
extern struct inode

acctbuf;
acctp; / inode of accounting file */

#define AFORK 01 /* has executed fork, but no exec ./
#define ASU 02 /. used super-user privileges */
#define ACCTF 0300 /* record type: 00 = acct */

In ac.flag, the AFORK flag is turned on by each !ork(2) and turned off by an
exec(2). The ac_comm field is inherited from the parent process and is reset
by any exec. Each time the system charges the process with a clock tick, it
also adds to ac_mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_memHac_stime +ac_utimeJ can be viewed as an approxima­
tion to the mean process size, as modified by text-sharing.

- I -

ACCT(4) ACCT(4)

The structure facet.h, which resides with the source files of the accounting com­
mands, represents the total accounting format used by the various accounting
commands:

I·
• total accounting (for acct period), also for day
·1

struct tacct (
uid_t
char
float
float
float
float
long
unsigned short
unsigned short
unsigned short

ta uid;
ta-name[S];
ta=cpu[2];
ta kcorel2];
ta-con[2];
ta=du;
ta....pc;
ta sc;
ta-dc;
ta)ee;

I. userid .1
I· login name ·1
I· cum. cpu time, p/np (mins) ·1
I. cum kcore-minutes, p/np ·1
I. cum. connect time, p/np, mins ·1
I. cum. disk usage ·1
I· count of processes ·1
I· count of login sessions .1
I· count of disk samples ·1
I. fee for special services ·1

);

SEE ALSO
acct (2), exec(2} , fork (2) .
acct(I M} in the UNIX System V Administrator Reference Manual.
acctcom(I) in the UNIX System V User Reference Manual.

BUGS
The ac_mem value for a short-lived command gives little information about the
actual size of the command, because ac_mem may be incremented while a
different command (e.g., the shell) is being executed by the process.

- 2 -

AR(4)

NAME

(nol on PDP-ll) AR(4)

ar - common archive file format

DESCRIPTION
The archive command ar(l) is used to combine several files into one. Archives
are used mainly as libraries to be searched by the link editor Id(l).

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n"
#define SARMAG 8

/- magic string -/
/- length of magic string -/

Each archive which contains common object files (see a.out (4» includes an
archive symbol table. This symbol table is used by the link editor Id(l) to
determine which archive members must be loaded during the link edit process.
The archive symbol table Gf it exists) is always the first file in the archive (but
is never listed) and is automatically created and/or updated by ar.

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following format:

#define ARFMAG "'\n" /- header trailer string -/

struct ar hdr
{ -

};

char
char
char
char
char
char
char

ar name[16];
ar-date[12];
ar-uid[6];
ar~id[6];
ar mode[8];
ar-size[101;
ar)mag[21;

/- file member header -/

/- '/' terminated file member name -/
/- file member date -/
/- file member user identification -/
/- file member group identification -/
/- file member mode (octal) -/
/- file member size -/
/- header trailer string -/

All information in the file member headers is in printable ASCII. The numeric
information contained in the headers is stored as decimal numbers (except for
ar_mode which is in octal). Thus, if the archive contains printable files, the
archive itself is printable.

The ar_name field is blank-padded and slash (/) terminated. The ar_date field
is the modification date of the file at the time of its insertion into the archive.
Common format archives can be moved from system to system as long as the
portable archive command ar(I) is used. Conversion tools such as arcv (I) and
convert (l) exist to aid in the transportation of non-common format archives to
this format.

Each archive file member begins on an even byte boundary; a newline is
inserted between files if necessary. Nevertheless the size given reflects the
actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero length
name G.e., ar_namelOJ == '/'). The contents of this file are as follows:

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes • "the
number of symbols".

- 1 -

AR(4) (not on PDP-II) AR(4)

~"

"'.. ".~ .~;.,

• The name string table. Length: ar_size - (4 bytes * ("the number of
symbols" + 1».

The number of symbols and the array of offsets are managed with sget/ and
sputl. The string table contains exactly as many null terminated strings as
there are elements in the offsets array. Each offset from the array is associated
with the corresponding name from the string table Gn order). The names in
the string table are all the defined global symbols found in the common object
files in the archive. Each offset is the location of the archive header for the
associated symbol.

SEE ALSO
sput)(3X), a.out(4).
ar(l), arcv(l), convert(I), Id(l), strip(l) in the UNIX System V User Refer­
ence Manual.

CAVEATS
The common archive structure is not compatible between the PDP-II and the
IBM-370, due to the different file formats. See arcv(l) and convert(I) to con­
vert between machines.

Strip (l) will remove all archive symbol entries from the header. The archive
symbol entries must be restored via the ts option of the ar(l) command before
the archive can be used with the link editor Id(I).

- 2·

AR(4)

NAME

(PDP-lJ only) AR(4)

ar - archive file format

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor ld (l).

A file produced by ar has a magic number at the start, followed by the consti­
tuent files, each preceded by a file header. The magic number is
0177545(octaI) (it was chosen to be unlikely to occur anywhere else). The
header of each file is 26 bytes long:

#define ARMAG 0177545
struct ar hdr (

char ar name[14l;
long ar=date;
char ar uid;
char ar:=Bid;
int ar mode;
long ar=size;

);

Each file begins on a word boundary; a null byte is inserted between files if
necessary. Nevertheless the size given reflects the actual size of the file
exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(l), IdO) in the UNIX System V User Reference Manual.

- 1 -

CHECKLIST (4)

NAME

CHECKLIST (4)

checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory fetc and contains a list of, at most, 15 special file
names. Each special file name is contained on a separate line and corresponds
to a file system. Each file system will then be automatically processed by the
fsck (I M) command.

SEE ALSO
fsck{I M) in the UNIX System V Administrator Reference Manual.

- 1 -

CORE(4)

NAME

CORE (4)

core - format of core image file

DESCRIPTION
The UNIX system writes out a core image of a terminated process when any of
various errors occur. See signal (2) for the list of reasons; the most common
are memory violations, illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in the process's working
directory (provided it can be; normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data for
the process, including the registers as they were at the time of the fault. The
size of this section depends on the parameter usize, which is defined in
/usr/include/sys/param.h. The remainder represents the actual contents of the
user's core area when the core image was written. If the text segment is read­
only and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user struc­
ture of the system, defined in /usr/include/sys/user.h. The important stuff not
detailed therein is the locations of the registers, which are outlined in
/usr/include/sys/reg.h.

SEE ALSO
setuid (2), signal (2).
crash(J M) in the UNIX System V Administrator Reference Manual.
sdb() in the UNIX System V User Reference Manual.

- I -

'~

CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(I) is not used, is:

struct {
short h_magic,

h dev;
ushort h=ino,

h mode,
h-uid,
h~id;

short h nlink,
h-rdev,
h- mtime[2],
h- namesize,
h-filesize[2];

char h=name[h_namesize rounded to word];

CPIO(4)

} Hdr;

When the -c option is used, the header information is described by:

sscanf{Chdr,"%60%60%60%60%60%60%60%60% 1110%60%Illo%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.hjno, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h...,gid, &Hdr.h_nlink, &Hdr.hJdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.hjilesize,
respectively. The contents of each file are recorded in an element of the array
of varying length structures, archive, together with other items describing the
file. Every instance of h_magic contains the constant 070707 (octal). The
items h_dev through h_mtime have meanings explained in stat (2). The length
of the null-terminated path name h_name, including the null byte, is given by
h_names;ze .

The last record of the archive always contains the name TRAILER!!!. Special
files, directories, and the trailer are recorded with h.filesize equal to zero.

SEE ALSO
stat (2).
cpio(I), find(I) in the UNIX System V User Reference Manual.

- I .

DIR(4)

NAME

DIR (4)

dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write
into a directory. The fact that a file is a directory is indicated by a bit in the
flag word of its i-node entry (see fs (4». The structure of a directory entry as
given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

};

ino t d ino;
char d=name[DIRSIZ];

By convention, the first two entries in each directory are for. and ... The first
is an entry for the directory itself. The second is for the parent directory. The
meaning of •• is modified for the root directory of the master file system; there
is no parent, so •• has the same meaning as ..

SEE ALSO
fs(4).

- 1 -

ERRFILE(4) ERRFILE(4)

NAME
errfile - error-log file format

0100

042

011
012
013
014
020
030
031
041

#define EJOP

#define E GORT
#define E)TOP
#define E_TCHG
#define E CCHG
#define E=BLK
#define E_STRAY
#define E_PRTY
#define E_PIO

DESCRIPTION
When hardware errors are detected by the system, an error record is generated
and passed to the error-logging daemon for recording in the error log for later
analysis. The default error log is /usr/adm/errfile.

The format of an error record depends on the type of error that was encoun­
tered. Every record, however, has a header with the following format:

struct errhdr (
short e_type; /* record type */
short e len; /* bytes in record (jnc hdr) */
time_t e)ime; /* time of day */
int e_cpu; /* proc recording error· 38 20A

}; computer only */

The permissible record types are as follows:

#define E_GOTS 010 /* start for UNIX System
... Release 3.0*/

/* start for UNIX system/RT ./
/* stop */
/* time change */
/. configuration change ./
/. block device error ./
/. stray interrupt ./
/. memory parity */
/* 38 20 computer programmed

... I/O */
/* 38 20 computer I/O

... processor */
/. N[20 error */

/* kbytes per array */

/* CPU type ./
/* system names */

/* contents mem mgmt reg 3 ~/

/* 11170 system memory size */
/* block dey configuration */

Some records in the error file are of an administrative nature. These include
the startup record that is entered into the file when logging is activated, the
stop record that is written if the daemon is terminated "gracefully", and the
time-change record that is used to account for changes in the system's time-of­
day. These records have the following formats:

struct estart {
short e_cpu;
struct utsname e name;

#ifndef u3b -
short e_mmr3;
long e_syssize;
short e_bconf;

#endif
#ifdef u3b

int
#endif
};

);

#define eend errhdr /. record header ./

struct etimchg (
time t

- I -

ERRFILE(4) ERRFILE(4)

/. stray loc or device addr ./
/. active block devices •/

/. stray loc or device addr ./

e saddr;
e=sbacty;

e_saddr;

Stray interrupts cause a record with the following format to be logged:

struct estray {
#ifdef u3b

uint
#else

physadr
short

#endif
};

e-parreg[4]; /. memory subsys registers ./

e-parreg[3]; /. 38 computer memory
* registers ./

Memory subsystem error on 38 20 computer and VAX
the following record to be generated:

struct eparity {
#ifdef u3b

int

#else
short

#endif
};

11170 processor cause

e sbier;
e=memcad;

};

Memory subsystem errors on VAX-I 11780 processors cause the following record
to be generated:

struct ememory {
int
int

/. page table for transfer ./
/. offset into page table ./
/. status word I ./
/. status word 2 ./

/. page table entries ./

/. device number ./

/. read/write. error. etc ./
/. logical block number ./
/. number bytes to transfer ./

/. number read/writes ./
/. number "other" operations ./
/. number unlogged errors ./

io_ops;
io misc;
io=unlog;
e stats;
e=bflags;
e_bnum;
e_bytes;

}
short
daddr_t
uint
union ptbl {

int page[64];
union ptbl *pnext;

e-ptbl;
e-ptbl;
e_voff;
e_statl;
e_stat2;

}
struct ptbl
uint
uint
uint

#endif

Error records for block devices have the following format:

struct eblock {
#ifdef u3b

ushort e_num;
struct iostat {

long
long
ushort

- 2 -

ERRFILE(4) ERRFILE(4)

/. read/write, error. etc ./
/. logical dev start cyl ./
/. logical block number ./
/. number bytes to transfer ./
/. buffer memory address ./
/. number retries ./
/. number device registers ./

/. number read/writes ./
/. number "other" operations ./
/. number unlogged errors ./

/. lit rue" major + minor dev no ./
/. controller address ./
/. other block 1/0 activity ./

io_ops;
io_misc;
io_unlog;
e stats;
e=bflags;
e_cyloff;
e_bnum;
e_bytes;
e_memadd;
eJtry;
e_nreg;

e_dev;
eJegloc;
e_bacty;

}
short
short
daddr_t
ushort
paddr_t
ushort
short

#endif
#ifdef vax

struct mbaJegs {
long mba_csr;
long mba_cr;
long mba_sr;
long mba_var;
long mba_vcr;

} e mba;
#endif -
};

#ifndef u3b
dey t
physadr
short
struct iostat {

long
long
ushort

The following values are used in the e_bflags word:

#define E_WRITE 0 /. write operation ./
#define E_READ 1 /. read operation ./
#define E_NOIO 02 /. no I/O pending ./
#define E_PHYS 04 /. physical I/O ./
#define E_MAP 010 /. Unibus map in use ./
#define E_ERROR 020 /. 1/0 failed ./

The following error records are for the 3B 20 computer only:

struct epio { /. programmed I/O (pio) error ./
char e chan; /. which channel ./
char e-dey; /. which devon channel ./
uint e-chstat; /. channel status ./
uint e=cmd; /. pio command ./

struct eiop (
char
uint
uint

e unit;
e-wordO;
e=wordl;

/. I/O processor Gop) error ./
/. unit number ./
/. iop report word •/
/. iop report word •/

- 3 -

ERRFILE(4) ERRFILE(4)

The "true" major device numbers that identify the failing device are as follows:

Digital Equipment AT&T Technologies ~

#define RKO 0 #define DFCO 0)
#define RPO I #define IOPO 1
#define RFO 2 #define MTO 2
#define TMO 3
#define TCO 4
#define HPO 5
#define HTO 6
#define HSO 7
#define RLO 8
#define HPJ 9
#define HP2 10
#define HPJ 11

SEE ALSO
errdemon(J M) in the UNIX System V Administrator Reference Manual.

- 4 -

FILEHDR (4)

NAME

(not on PDP-t I) FILEHDR(4)

filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The following C struct
declaration is used:

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic ;
f nscns ;
f-timdat ;
(symptr;
f_nsyms ;
f_opthdr ;
f_flags;

I. magic number *1
I. number of sections .1
1* time & date stamp *1
1* file ptr to symtab *1
1* # symtab entries .1
1* sizeof(opt hdr) *I
1* flags *1

1* relocation entries stripped *1
1* file is executable *1
1* line numbers stripped *1
1* local symbols stripped *1
1* minimal object file *1
1* update file, ogen produced *1
1* file is "pre-swabbed" *1
1* 16 bit DEC host *1
1* 32 bit DEC host .1
I· non-DEC host *1
I· "patch" list in opt hdr *1

F_symptr is the byte offset into the file at which the symbol table can be found.
Its value can be used as the offset in Jseek OS) to position an 1/0 stream to the
symbol table. The UNIX system optional header is 36 bytes on the 38 20 com­
puter, 28 bytes otherwise. The valid magic numbers are given below:

#define N3BMAGIC 0550 1* 38 20 computer *1
#define NTVMAGIC 0551 1* 38 20 computer *1

#define VAXWRMAGIC 0570 1* VAX writable text segments *1
#define VAXROMAGIC 0575 1* VAX readonly sharable text segments

The value in J_timdat is obtained from the time (2) system call. Flag bits
currently defined are:

#define F_R ELFLG 0000 I
#define F_EXEC 00002
#define F LNNO 00004
#define F).SYMS 00010
#define F_MINMAL 00020
#define F UPDATE 00040
#define F-SWABD 00100
#define F=AR 16WR 00200
#define F_AR32WR 00400
#define F_AR32W 01000
#define F_PATCH 02000

SEE ALSO
time(2), fseek()S), a.out(4).

- I -

FS(4)

NAME

FS(4)

file system - format of system volume

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital infor­
mation. Every such volume is divided into a certain number of 512-byte long
sectors. Sector 0 is unused and is available to contain a bootstrap program or·
other information.

Sector I is the super-block. The format of a super-block is:

/.
• Structure of the super-block
./

struct filsys
{

};

ushort
daddr_t
short
daddr_t
short
ino_t
char
char
char
char
time_t
short
daddr_t
ino_t
char
char
long
long
long

sJsize;
sJsize;
s_nfree;
sJree[NICFREE);
s ninode;
s=inode[NICINOD);
sJlock;
sJlock;
sJmod;
sJonly;
s_time;
s_dinfo(4);
s_tfree;
s tinode;
s=fname(6);
sJpack(6);
sJiII(13);
s_magic;
s_type;

/. size in blocks of i-list -/
/. size in blocks of entire volume -/
/. number of addresses in s_free -/
/. free block list ./
/- number of i-nodes in sJnode ./
/. free i-node list ./
/- lock during free list manipulation -/
/- lock during i-list manipulation -/
/- super block modified flag -/
/- mounted read-only flag -/
/- last super block update -/
/- device information -/
/- total free blocks-/
/- total free i-nodes -/
/- file system name ./
/. file system pack name ./
/. ADJUST to make sizeof filsys be 512 -/
/- magic number to denote new file system -/
/. type of new file system -/

#define FsMAGlC Oxfd 187e20

#define Fslb I /. 512 byte block -/
#define Fs2b 2 /. 1024 byte block -/

S_type indicates the file system type. Currently, two types of file systems are
supported: the original 512-byte oriented and the new improved I024-byte
oriented. S_magic is used to distinguish the original 512-byte oriented file sys­
tems from the newer file systems. If this field is not equal to the magic
number, FsMAGIC, the type is assumed to be Fslb, otherwise the s_type field
is used. In the following description, a block is then determined by the type.
For the original 512-byte oriented file system, a block is 512 bytes. For the
1024-byte oriented file system, a block is 1024 bytes or two sectors. The
operating system takes care of all conversions from logical block numbers to
physical sector nu~bers.

S isize is the address of the first data block after the i-list; the i-list starts just
after the super-block, namely in block 2; thus the i-list is s_isize-2 blocks long.

- 1 -

FS(4)

FILES

FS(4)

S Jsize is the first block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block numbers; if an "impos­
sible" block number is allocated from the free list or is freed, a diagnostic is
written on the on-line console. Moreover, the free array is cleared, so as to
prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The sJree array con­
tains, in sJreeltl, ..., sJreels_nfree-tl, up to 49 numbers of free blocks.
SJreelOl is the block number of the head of a chain of blocks constituting the
free list. The first long in each free-chain block is the number (up to 50) of
free-block numbers listed in the next 50 longs of this chain member. The first
of these 50 blocks is the link to the next member of the chain. To allocate a
block: decrement s_nfree, and the new block is sJreels_nfreel. If the new
block number is 0, there are no blocks left, so give an error. If s_nfree became
0, read in the block named by the new block number, replace s_nfree by its
first word, and copy the block numbers in the next 50 longs into the sJree
array. To free a block, check if s_nfree is 50; if so, copy s_nfree and the sJree
array into it, write it out, and set s_nfree to O. In any event set sJreels_nfreel
to the freed block's number and increment s_nfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array. To allocate an
i-node: if s_ninode is greater than 0, decrement it and return
s_inodels_ninode l. If it was 0, read the i-list and place the numbers of all free
i-nodes (up to 100) into the s_inode array, then try again. To free an i-node,
provided s_ninode is less than 100, place its number into s_inodels_ninodel and
increment s_ninode. If s_ninode is already 100, do not bother to enter the
freed i-node into any table. This list of i-nodes is only to speed up the alloca­
tion process; the information as to whether the i-node is really free or not is
maintained in the i-node itself.

S _tinode is the total free i-nodes available in the file system.

S ..flock and sjlock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial. The value of
sJmod on disk is likewise immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk during the next
periodic update of file system information.

S Jonly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was changed, and is
the number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT).
During a reboot, the s_time of the super-block for the root file system is used to
set the system's idea of the time.

SJname is the name of the file system and sJpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i­
nodes are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is
reserved for the root directory of the file system, but no other i-number has a
built-in meaning. Each i-node represents one file. For the format of an i-node
and its flags, see inode(4).

lusr/include/sys/filsys.h
lusr/include/sys/stat.h

SEE ALSO
inode(4).
fsck(IM), fsdb(IM), mkfs(IM) in the UNIX System V Administrator Refer­
ence Manual.

- 2 -

FSPEC(4)

NAME

FSPEC(4)

fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX system with non­
standard tabs, (i.e., tabs which are not set at every eighth column). Such files
must generally be converted to a standard format, frequently by replacing all
tabs with the appropriate number of spaces, before they can be processed by
UNIX system commands. A format specification occurring in the first line of a
text file specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks
and surrounded by the brackets <: and :>. Each parameter consists of a
keyletter, possibly followed immediately by a value. The following parameters
are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:

I. a list of column numbers separated by commas, indicating
tabs set at the specified columns;

2. a - followed immediately by an integer n, indicating tabs at
intervals of n columns;

3. a - followed by the name of a ucanned" tab specification.

Standard tabs are specified by t-8, or equivalently, tt,9,17,2S,etc.
The canned tabs which are recognized are defined by the tabs(I)
command.

ssize The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have
been expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the
line containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t -8 and
mO. If the s parameter is not specified, no size checking is performed. If the
first line of a file does not contain a format specification, the above defaults are
assumed for the entire file. The following is an example of a line containing a
format specification:

• <:t5,10,15 s72:> •
If a format specification can be disguised as a comment, it is not necessary to
code the d parameter.

Several UNIX system commands correctly interpret the format specification for
a file. Among them is gath (see send(IC» which may be used to convert files
to a standard format acceptable to other UNIX system commands.

SEE ALSO
ed(I), newform(I), send(IC), tabs(I) in the UNIX System V User Reference
Manual.

- 1 -

GETTYDEFS (4)

NAME

GETTYDEFS (4)

~,
\

gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty (1 M) to set up the
speed and terminal settings for a line. It supplies information on what the
login prompt should look like. It also supplies the speed to try next if the user
indicates the current speed is not correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-Iabel

Each entry is followed by a blank line. The various fields can contain quoted
characters of the form \b. \n, \c, etc., as well as \nnn, where nnn is the octal
value of the desired character. The various fields are:

label This is the string against which getty tries to match its second
argument. It is often the speed, such as 1200, at which the ter­
minal is supposed to run, but it need not be (see below).

initial-flags These flags are the initial ioct/(2) settings to which the terminal
is to be set if a terminal type is not specified to getty. The flags
that getty understands are the same as the ones listed in
/usr/include/sys/termio.b (see termio (7». Normally only the
speed 'flag is required in the initial-flags. Getty automatically
sets the terminal to raw input mode and takes care of most of
the other flags. The initial-flag settings remain in effect until
getty executes login (t).

final-flags These flags take the same values as the initial-flags and are set
just prior to getty executes login. The speed flag is again
required. The composite flag SANE takes care of most of the
other flags that need to be set so that the processor and terminal
are communicating in a rational fashion. The other two com­
monly specified final-flags are TAB3, so that tabs are sent to the
terminal as spaces, and HUPCL, so that the line is hung up on
the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space. tab or new­
line), they are included in the login-prompt field.

next-label If this entry does not specify the desired speed, indicated by the
user typing a <break> character, then getty will search for the
entry with next-label as its label field and set up the terminal
for those settings. Usually, a series of speeds are linked together
in this fashion, into a closed set; For instance, 2400 linked to
1200, which in turn is linked to 300, which finally is linked to
2400,

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the default
entry. It is also used if getty can not find the specified label. If /etc/gettydefs
itself is missing, there is one entry built into the command which will bring up
a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be
run through getty with the check option to be sure there are no errors.

- 1 -

GETTYDEFS (4) GETTYDEFS (4)

I etclgettydefs

SEE ALSO
ioctl(2).
getty(lM), termio(7) in the UNIX System V Administrator Reference Manual.
login(l) in the UNIX System V User Reference Manual.

- 2 -

~,''',,'
. ;/

GPS(4)

NAME

GPS(4)

~
I,.

gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have been
developed to edit and display GPS files on various devices. Also, higher level
graphics programs such as plot (in stadlG» and vtoc (in toc(IG» produce
GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points from which zero

or more connected line segments are produced. The first point
given produces a move to that location. (A move is a relocation of
the graphic cursor without drawing.} Successive points produce line
segments from the previous point. Parameters are available to set
color, weight, and style (see below).

arc The arc primitive has a variable number of points ·to which a curve
is fit. The first point produces a move to that point. If only two
points are included, a line connecting the points will result; if three
points a circular arc through the points is drawn; and if more than
three, lines connect the points. (In the future, a spline will be fit to
the points if they number greater than three.} Parameters are avail­
able to set color, weight, and style.

text The text primitive draws characters. It requires a single point
which locates the center of the first character to be drawn. Param­
eters are color, font, textsize, and textangle.

hardware The hardware primitive draws hardware characters or gives control
commands to a hardware device. A single point locates the begin­
ning location of the hardware string.

comment A comment is an integer string that is included in a GPS file but
causes nothing to be displayed. All GPS files begin with a comment
of zero length.

GPS PARAMETERS
color Color is an integer value set for arc, lines, and text primitives.

weight Weight is an integer value set for arc and lines primitives to indi­
cate line thickness. The value 0 is narrow weight, 1 is bold, and :1
is medium weight.

style Style is an integer value set for lines and arc primitives to give one
of the five different line styles that can be drawn on TEKTRONIX
4010 series storage tubes. They are:

o solid
1 dotted
:1 dot dashed
3 dashed
4 long dashed

font An integer value set for text primitives to designate the text font to
be used in drawing a character string. (Currently font is expressed
as a four-bit weight value followed by a four-bit style value.}

textsize Textsize is an integer value used in text primitives to express the
size of the characters to be drawn. Textsize represents the height
of characters in absolute universe-units and is stored at one-fifth
this value in the size-orientation (so) word (see below).

- I -

GPS(4) GPS(4)

textangle Textangle is a signed integer value used in text primitives to express
rotation of the character string around the beginning point.
Textangle is expressed in degrees from the positive x-axis and can
be a positive or negative value. It is stored in the size-orientation
(so) word as a value 256/360 of it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines
arc
text
hardware
comment

cw

point(s)

sw

so

string

cw points sw
cw points sw
cw point sw so [string]
cw point [string]
cw [string]

Cw is the control word and begins all primitives. It consists of four
bits that contain a primitive-type code and twelve bits that contain
the word-count for that primitive.

Point(s) is one or more pairs of integer coordinates. Text and
hardware primitives only require a single point. Point(s) are values
within a Cartesian plane or universe having 64K (-32K to +32K)
points on each axis.

Sw is the style-word and is used in lines. are, and text primitives.
For all three, eight bits contain color information. In arc and lines
eight bits are divided as four bits weigh't and four bits style. In the
text primitive eight bits of sw contain the font.

So is the size-orientation word used in text primitives. Eight bits
contain text size and eight bits contain text rotation.

String is a null-terminated character string. If the string does not
end on a word boundary, an additional null is added to the GPS file
to insure word-boundary alignment.

SEE ALSO
graphics(IG), stat(IG), toc(IG) in the UNIX System V User Reference
Manual.

·2·

GROUP (4)

NAME

GROUP(4)

.~

group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group to
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no pass­
word is demanded.

This file resides in directory letc. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical group IO's to names.

FILES
/etc/group

SEE ALSO
crypt(3C), passwd(4).
newgrp(I), passwd(l) in the UNIX System V User Reference Manual.

- 1 -

INITTAB(4)

NAME

INITTAB(4)

inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process dispatcher.
The process that constitutes the majority of init's process dispatching activities
is the line process tete/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the
following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters per entry
are permitted. Comments may be inserted in the process field using the sh (I)
convention for comments. Comments for lines that spawn gettys are displayed
by the who{I) command. It is expected that they will contain some informa­
tion about the line such as the location. There are no limits (other than max­
imum entry size) imposed on the number of entries within the inittab file. The
entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed.
Run-levels effectively correspond to a configuration of processes in the
system. That is, each process spawned by init is assigned a run-level
or run-levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As an example,
if the system is in run-levell, only those entries having a 1 in the
rstate field will be processed. When init is requested to change run­
levels, all processes which do not have an entry in the rstate field for
the target run-level will be sent the warning signal (SIGTERM) and
allowed a 2o-second grace period before being forcibly terminated by
a kill signal (SIGKILL). The rstate field can define multiple run­
levels for a process by selecting more than one run-level in any com­
bination from 0 -6. If no run-level is specified, then the process is
assumed to be valid at all run-levels 0 -6. There are three other
values, a, band e, which can appear in the rstate field, even though
they are not true run-levels. Entries which have these characters in
the rstate field are processed only when the telinit {see init (1 M» pro­
cess requests them to be run (regardless of the current run-level of
the system). They differ from run-levels in that init can never enter
run-level a, b or e. Also, a request for the execution of any of these
processes does not change the current run-level. Furthermore, a pro­
cess started by an a, b or e command is not killed when init changes
levels. They are only killed if their line in /ete/inittab is marked oft'
in the action field, their line is deleted entirely from /ete/inittab, or
init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in
the process field. The actions recognized by init are as follows:

respawn If the process does not exist then start the process, do not
wait for its termination (continue scanning the inittab
file), and when it dies restart the process. If the process
currently exists then do nothing and continue scanning
the inittab file.

- 1 -

INITTAB(4) INITTAB(4)

wait Upon init's entering the run-level that matches the
entry's rstate, start the process and wait for its termina­
tion. All subsequent reads of the inittab file while init is
in the same run-level will cause init to ignore this entry.

once Upon init's entering a run-level that matches the entry's
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If upon entering
a new run-level, where the process is still running from a
previous run-level change, the program will not be res­
tarted.

boot The entry is to be processed only at init's boot-time read
of the inittab file. Init is to start the process, not wait for
its termination; and when it dies, not restart the process.
In order for this instruction to be meaningful, the rstate
should be the default or it must match init's run-level at
boot time. This action is useful for an initialization func­
tion following a hardware reboot of the system.

bootwait The entry is to be processed only at init's boot-time read
of the inittab file. Init is to start the process, wait for its
termination and, when it dies, not restart the process.

powerfail Execute the process associated with this entry only when
init receives a power fail signal (SIGPWR see signal (2» .

powerwait Execute the process associated with this entry only when
init receives a power fail signal (SIGPWR) and wait until
it terminates before continuing any processing of inittab.

off If the process associated with this entry is currently run­
ning, send the warning signal (SIGTERM) and wait 20
seconds before forcibly terminating the process via the kill
signal (SIGKlLL). If the process is nonexistent, ignore the
entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given
a different keyword in order to divorce its association with
run-levels. This is used only with the a, b or c values
described in the rstate field.

initdefault An entry with this action is only scanned when init ini­
tially invoked. Init uses this entry, if it exists, to deter­
mine which run-level to enter initially. It does this by
taking the highest run-level specified in the rstate field
and using that as its initial state. If the rstate field is
empty, this is interpreted as 0123456 and so init will
enter run-level 6. Also, the initdefault entry cannot
specify that init start in the SINGLE USER state. Addi­
tionally, if init does not find an initdefault entry in
letc/inittab, then it will request an initial run-level from
the user at reboot time.

- 2-

INITTAB(4) INITTAB(4)

sysinit Entries of this type are executed before init tries to access
the console. It is expected that this entry will be only
used to initialize devices on which init might try to ask ,~
the run-level question. These entries are executed and)
waited for before continuing.

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sh as sh -c 'exec com­
mand'. For this reason, any legal sh syntax can appear in the process
field. Comments can be inserted with the; #comment syntax.

FILES
letc/inittab

SEE ALSO
exec(2), open(2), signal (2) .
getty(IM), init(IM) in the UNIX System V Administrator Reference Manual.
sh(l), who(I) in the UNIX System V User Reference Manual.

- 3 -

INODE(4)

NAME

INODE(4)

inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the following struc­
ture defined by <sys/ino.h>.

/. Inode structure as it appears on a disk block.•/
struct dinode
{

ushort
short
ushort
ushort
off t
char
time_t
time_t
timc_t

di mode; /. mode and type of file ./
di-nlink; /. number of links to file·/
di-uid; /. owner's user id ./
dCgid; /. owner's group id ./
di_size; /. number of bytes in file ./
di addr[40l; I. disk block addresses ./
di-atime; /. time last accessed ./
di-mtime; /. time last modified ./
dCctime; /. time of last file status change ./

~'

};
/.
• the 40 address bytes:
• 39 used; 13 addresses

of 3 bytes each../
For the meaning of the defined types off_' and time_' see types (5).

FILES
/usr/include/sys/ino.h

SEE ALSO
stat(2), fs(4), types(5).

- 1 -

ISSUE(4)

NAME

ISSUE(4)

issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a
login prompt. This is an ASCII file which is read by program getty and then
written to any terminal spawned or respawned from the lines file.

FILES
/etc/issue

SEE ALSO
login(l) in the UNIX System V User Reference Manual.

• 1 •

LDFCN(4) (not on PDP-ll) LDFCN(4)

NAME
Idfcn - common object file access routines

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include < Idfcn.h >

IOPTR(Jdptr)

The file magic number used to distinguish between archive
members and simple object files.

The file pointer returned by Jopen and used by the standard
input/output functions.

OFFSET(Idptr) The file address of the beginning of the object file; the offset is
non-zero if the object file is a member of an archive file.

HEADER (Idptr) The file header structure of the object file.

The object file access functions themselves may be divided into four categories:

(1) functions that open or close an object file

ldopenOX) and ldopen(JX)
open a common object file

ldclose OX) and ldclose OX)
close a common object file

(2) functions that read header or symbol table information

ldahreadOX)
read the archive header of a member of an archive file

ldfhreadOX)
read the file header of a common object file

ldshread OX) and ldshread (JX)
read a section header of a common object file

ldlbreadOX)
read a symbol table entry of a common object file

ldgelname OX)
retrieve a symbol name from a symbol table entry or
from the string table

(3) functions that position an object file at (seck to) the start of the
section, relocation, or line number information for a particular section.

DESCRIPTION
The common object file access routines are a collection of functions for reading
an object file that is in VAX or 38 20 computer (common) object file form.
Although the calling program must know the detailed structure of the parts of
the object file that it processes, the routines effectively insulate the calling pro­
gram from knowledge of the overall structure of the object file.

The interface between the calling program and the object file access routines is
based on the defined type LDFILE, defined as struct Idfile, declared in the
header file Idfen.h. The primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are members of an
archive file.

The function ldopen OX) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through macros defined in
ldfen.h and contain the following information:

LDFILE *Idptr;

TYPE(Idptr)

~\

- 1 -

LDFCN(4) (not on PDP-II) LDFCN(4)

ldohseek OX)
seek to the optional file header of a common object file

/dsseek OX) and /dsseek OX)
seek to a section of a common object file

/drseek (3X) and /drseek OX)
seek to the relocation information for a section of a
common object file

/d/seek OX) and Idlseek OX)
seek to the line number information for a section of a
common object file

Idtbseek OX)
seek to the symbol table of a common object file

(4) the function Idtbindex OX) which returns the index of a particular
common object file symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except Idopen OX), Idgetname OX), Idopen OX), and
Idtbindex OX) return either SUCCESS or FAILURE, both constants defined in
Idfen.h. Ldopen (3X) and Idopen OX) both return pointers to an LDFILE struc­
ture.

Additional access to an object file is provided through a set of macros defined
in Idfen.h. These macros parallel the standard input/output file reading and
manipulating functions, translating a reference of the LDFILE structure into a
reference to its file descriptor field.

The following macros are provided:

GETC(Jdptr)
FGETC(Jdptr)
GETW(Jdptr)
UNGETC(c, Idptr)
FGETS(s, n, ldptr)
FREAD«char .) ptr, sizeof (·ptr), nitems, Idptr)
FSEEK (Jdptr, offset, ptrname)
FTELL(Jdptr)
REWIND(Jdptr)
FEOF(Jdptr)
FERROR(Jdptr)
FILENOOdptr)
SETBUFOdptr, bur>
STROFFSETOdptr)

The STROFFSET macro calculates the address of the string table in a UNIX
system release 5.0 object file. See the manual entries for the corresponding
standard input/output library functions for details on the use of the rest of the
macros.

The program must be loaded with the object file access routine library libld.a.

WARNING
The macro FSEEK defined in the header file Idfen.h translates into a call to the
standard input/output function !seekOS). FSEEK should not be used to seek
from the end of an archive file since the end of an archive file may not be the
same as the end of one of its object file members!

- 2 -

LDFCN(4) (not on PDP· I I) LDFCN(4)

~.
\

SEE ALSO
fseek(3S). Idahread(3X). Idclose(3X). Idgetname(3X). Idfhread(3X).
Idlread(3X). Idlseek(3X), Idohseek(3X). Idopen(3X). Idrseek(3X), Idlseek(3X),
Idshread(3X), Idtbindex(3X), Idtbread(3X). Idtbseek(3X). fseek(3S).
ldahread (3X), Idclose(3X), Idgetname(3X), Idfhread (3X). ldlread (3X).
Idlseek(3X), Idohseek(3X). Idopen(3X). Idrseek(3X). Idlseek(3X),
Idshread(3X). Idtbindex(3X). Idtbread(3X), Idtbseek(3X). intro(S).

• 3 -

LINENUM(4)

NAME

(not on PDP-II) LINENUM(4)

linenum - line number entries in a common object file

SYNOPSIS
#include < linenum.h>

DESCRIPTION
Compilers based on pee generate an entry in the object file for each C source
line on which a breakpoint is possible (when invoked with the -g option; see
eeO». Users can then reference line numbers when using the appropriate
software test system (see sdb (I». The structure of these line number entries
appears below.

struct lineno
{

union
{

} ;

long l_symndx ;
long I....paddr ;

} I addr;
unsigned short Onno;

Numbering starts with one for each function. The initial line number entry for
a function has I)nno equal to zero, and the symbol table index of the function's
entry is in /_symndx. Otherwise, /)nno is non-zero, and /yaddr is the physi­
cal address of the code for the referenced line. Thus the overall structure is the
following:

Caddr /)nno

~function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
a.out(4).
cc(l), sdb(l) in the UNIX System V User Reference Manual.

- 1 -

MASTER (4) (DEC only) MASTER (4)

NAME
master - master device information table

DESCRIPTION
This file is used by the config(} M) program to obtain device information that
enables it to generate the configuration files. The file consists of 3 parts, each
separated by a line with a dollar sign (5) in column I. Part 1 contains device
information; part 2 contains names of devices that have aliases; part 3 contains
tunable parameter information. Any line with an asterisk (.) in column 1 is
treated as a comment.

Field 4:

Field 2:

Field 3:

Field 5:
Field 6:
Field 7:
Field S:
Field 9:
Field 10:
Fields 11-13:

Part 1 contains lines consisting of at least 10 fields and at most 13 fields, with
the fields delimited by tabs andlor blanks:

Field I: device name (S chars. maximum).
Field 2: interrupt vector size (decimal, in bytes).
Field 3: device mask (octal)-each U on" bit indicates that the

handler exists:
000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.

device type indicator (octal):
000400 vAX-1I/7S0 massbus adapter
000200 allow only one of these devices
000100 suppress count field in the conr.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
00000 I fixed vector.

handler prefix (4 chars. maximum).
device address size (decimal).
major device number for block-type device.
major device number for character-type device.
maximum number of devices per controller (decimal).
maximum bus request level (4 through 7).
optional configuration table structure declarations (S
chars. maximum).

Part 2 contains lines with 2 fields each:

Field I: alias name of device (S chars. maximum).
Field 2: reference name of device (S chars. maximum; specified

in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file; 20
chars. maximum)
parameter name (as it appears in the conr.c file; 20
chars. maximum)
default parameter value (20 chars. maximum; parameter
specification is required if this field is omitted)

- 1 -

MASTER (4) (DEC only) MASTER (4)

Devices that are not interrupt-driven have an interrupt vector size of zero. The
040 bit in Field 4 causes conjig(lM) to record the interrupt vector although
the low.s (univec.c on the VAX-1l1780) file will show no interrupt vector 1
assignment at those locations (interrupts here will be treated as strays). ;

SEE ALSO
configO M) in the UNIX System V Administrator Reference Manual.

- 2 -

MNTTA8(4)

NAME

MNTTA8(4)

mnttab - mounted file system table

SYNOPSIS
#include < mnttab.b>

DESCRIPTION
Mnttab resides in directory fete and contains a table of devices, mounted by
the mount (I M) command, in the following structure as defined by
< mnttab.b>:

};

Each entry is 70 bytes in length; the first 32 bytes are the null-padded name of
the place where the special file is mounted; the next 32 bytes represent the
null-padded root name of the mounted special file; the remaining 6 bytes con­
tain the mounted special file's read/write permissions and the date on which it
was mounted.

struct mnttab {
char
char
short
time_t

mt dev[32];
mt=filsys[32];
mtJoJlg;
mt_time;

The maximum number of entries in mnttab is based on the system parameter
NMOUNT located in /usr/sre/uts/d/eonf.e, which defines the number of allow­
able mounted special files.

SEE ALSO
mount(I M), setmnt(} M) in the UNIX System V Administrator Reference
Manual.

- I -

PASSWD(4)

NAME

PASSWD(4)

passwd - password file

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted password
numerical user 10
numerical group 10
GCOS job number, box number, optional GCOS user 10
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the
next by a colon. The GCOS field is used only when communicating with that
system, and in other installations can contain any desired information. Each
user is separated from the next by a new-line. If the password field is null, no
password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory letc. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical user lOs to names.

The encrypted password consists of 13 characters chosen from a 64-character
alphabet (., I, 0 -9, A- Z, a -z), except when the password is null, in which
case the encrypted password is also null. Password aging is effected for a par­
ticular user if his encrypted password in the password file is followed by a
comma and a non-null string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the super-user,)

The first character of the age, M say, denotes the maximum number of weeks
for which a password is valid. A user who attempts to login after his password
has expired will be forced to supply a new one. The next character, m say,
denotes the minimum period in weeks which must expire before the password
may be changed. The remaining characters define the week (counted from the
beginning of 1970) when the password was last changed. (A null string is
equivalent to zero.) M and m have numerical values in the range 0-63 that
correspond to the 64-character alphabet shown above (Le., I => 1 week; z = 63
weeks) . If m =a M =a 0 (derived from the string . or u) the user will be forced
to change his password the next time he logs in (and the "age" will disappear
from his entry in the password file). If m > M (signified, e.g., by the string
./) only the super-user will be able to change the password.

FILES
/etc/passwd

SEE ALSO
a641(3C), crypt(3C), getpwent(3C), group(4).
10gin(I), passwd(I) in the UNIX System V User Reference Manual.

- 1 -

PLOT (4)

NAME

PLOT (4)

plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot OX) and are
interpreted for various devices by commands described in tplot (1 G). A graph­
ics file is a stream of plotting instructions. Each instruction consists of an
ASCII letter usually followed by bytes of binary information. The instructions
are executed in order. A point is designated by four bytes representing the x
and y values; each value is a signed integer. The last designated point in an I,
m, n, or p instruction becomes the "current point" for the next instruction.

Each of the following descriptions begins with the name of the corresponding
routine in plot (3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four
bytes. Seetplot(lG).

p point: Plot the point given by the next four bytes.

I line: Draw a line from the point given by the next four bytes to the point
given by the following four bytes.

label: Place the following ASCII string so that its first character falls on the
current point. The string is terminated by a new-line.

e erase: Start another frame of output.

r linemod: Take the following string, up to a new-line, as the style for draw­
ing further lines. The styles are "dotted", "solid", "longdashed", "short­
dashed", and "dotdashed". Effective only for the -T4014 and -Tver
options of tplot (I G) (TEKTRON IX 40 I4 terminal and Versatec plotter).

s space: The next four bytes give the lower left corner of the plotting area;
the following four give the upper right corner. The plot will be magnified or
reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below
for devices supported by the filters of tplot (I G). The upper limit is just outside
the plotting area. In every case the plotting area is taken to be square; points
outside may be displayable on devices whose face is not square.

DASI 300 space(O, 0, 4096, 4096);
DASI 300s space(O, 0, 4096, 4096);
DASI450 space(O, 0, 4096, 4096);
TEKTRONIX 4014 space(O, 0,3120,3120);
Versatec plotter space(O, 0, 2048, 2048);

SEE ALSO
plot(3X), gps(4), term(5).
graph(IG), tplot(IG) in the UNIX Systf!m V User Reference Manual.

WARNING
The plotting library plot OX) and the curses library curses (3X) both use the
names eraseO and moveO. The .curses versions are macros. If you need both
libraries, put the plot (3X) code in a different source file than the curses (3X)
code, and/or #undef moveO and eraseO in the plot (3X) code.

- I -

PNCH(4)

NAME

PNCH(4)

pnch - file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record consists
of a single control byte followed by a variable number of data bytes. The con­
trol byte specifies the number (which must lie in the range 0-80) of data bytes
that follow. The data bytes are 8-bit codes that constitute the card image. If
there are fewer than 80 data bytes, it is understood that the remainder of the
card image consists of trailing blanks.

SEE ALSO
send(IC) in the UNIX System V User Reference Manual.

- 1 -

PROFILE(4)

NAME

PROFILE (4)

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty crl nil -tabs; TERM=745;;
stty crl nlO -tabs;;
stty crO nlO -tabs fft; TERM=4014; echo "\33;";;
echo "$TERM unknown";;

~,
\.

profile - setting up an environment at login time

DESCRIPTION
If your login directory contains a file named .profile, that file will be executed
(via exec .profile) before your session begins; .profiles are handy for setting
exported environment variables and terminal modes. If the file /etc/profile
exists, it will be executed for every user before the .profile. The following
example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL=/usr/mail/myname
Add my /bin directory to the shell search sequence
PATH=SPATH:SHOME/bin
Set terminal type
echo "terminal: \c"
read TERM
case STERM in

300)
300s)
450)
hp)
7451735)
43)
40141 tek)
.)

esac

FILES
SHOME/.profile
/etc/profile

SEE ALSO
environ(5), term (5) .
env(I), login(I). maiI(I) , sh(I), stty(I), su(I) in the UNIX System V User
Reference Manual.

- 1 -

RELOC(4)

NAME

(not on PDP-II) RELOC(4)

reloc - relocation information for a common object file

SYNOPSIS
#include <reloc.h>

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the text
or data. If relocation information is present, it will be in the following format.

struct reloc
(

) ;

long
long
short

r vaddr ; /. (virtual) address of reference ./
r~ymndx; /. index into symbol table ./
r_type ; /. relocation type ./

/.
• All generics
• reloc. already performed to symbol in the same section

o

/.
• 38 computer generic
• 24-bit direct reference
• 24-bit "relative" reference
• 16-bit optimized "indirect" TV reference
* 24-bit "indirect" TV reference
* 32-bit "'indirect" TV reference
./

#define R_DIR24 04
#define R_REL24 05
#define R_OPT16 014
#define RJND24 015
#define RJND32 016

/.
* DEC Processors VAX 111780 and VAX 111750
*

'~

./
#define R RELBYTE
#define R- RELWORD
#define R- RELLONG
#define R- PCRBYTE
#define R- PCRWORD
#define R=PCRLONG

- 1 -

017
020
021
022
023
024

RELOC(4) (not on PDP-II) RELOC(4)

~.
\.

As the link editor reads each input section and performs relocation, the reloca­
tion entries are read. They direct how references found within the input section
are treated.

The reference is absolute, and no relocation is necessary. The
entry will be ignored.

A direct, 24-bit reference to a symbol's virtual address.

A "PC-relative", 24-bit reference to a symbol's virtual address.
Relative references occur in instructions such as jumps and calls.
The actual address used is obtained by adding a constant to the
value of the program counter at the time the instruction is exe­
cuted.

R_OPTl6 An optimized, indirect, 16-bit reference through a transfer vector.
The instruction contains the offset into the transfer vector table to
the transfer vector where the actual address of the referenced
word is stored.

R_IND24 An indirect, 24-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer vector,
where the actual address of the referenced word is stored.

R_IND32 An indirect, 32-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer vector,
where the actual address of the referenced word is stored.

R_RELBYTE A direct 8-bit reference to a symbol's virtual address.

R RELWORD
- A direct 16-bit reference to a symbol's virtual address.

R RELLONG
- A direct 32-bit reference to a symbol's virtual address.

R_PCRBYTE A "PC-relative", 8-bit reference to a symbol's virtual address.

R PCRWORD
- A "PC-relative", 16-bit reference to a symbol's virtual address.

R PCRLONG
- A "PC-relative", 32-bit reference to a symbol's virtual address.

On the VAX processors relocation of a symbol index of -1 indicates that the
relative difference between the current segment's start address and the
program's load address is added to the relocatable address.

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the assembler and automati­
cally utilized by the link editor. A link editor option exists for removing the
relocation entries from an object file.

SEE ALSO
a.out(4), syms(4).
IdO), strip(I) in the UNIX System V User Reference Manual.

- 2 -

SCCSFILE (4)

NAME

SCCSFILE (4)

sccsfile - format of sees file

DESCRIPTION
An sees file is an ASCII file. It consists of six logical parts: the checksum, the
delta table (contains information about each delta), user names (contains
login names and/or numerical group IDs of users who may add deltas), flags
(contains definitions of internal keywords), comments (contains arbitrary
descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH (start
of heading) character (octal 001). This character is hereafter referred to as
the control character and will be represented graphically as @. Any line
described below which is not depicted as beginning with the control character is
prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between
00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of
the first line. The @h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <sees 10> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD ...
@x DDDDD ...
@gDDDDD •••
@m <MR number>

@c <comments> •••

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d) con­
tains the type of the delta (currently, normal: D, and removed: R), the
sees 10 of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor, respec­
tively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

- 1 -

SCCSFILE(4) SCCSFILE (4)

The @e line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of users who may
add deltas to the file, separated by new-lines. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta. Any line starting with a ! prohibits the succeeding group or user
from making deltas.

Flags
Keywords used internally (see admin(l) for more information on their
use). Each flag line takes the form:

@f <flag> <optional text>

<module name>
<floor>
<ceiling>
<default-sid>

The following flags are defined:
@f t <type of program>
@f v < program name>
@f i <keyword string>
@fb
@fm
@ff
@fc
@fd
@fn
@f j
@f I <lock-releases>
@f q < user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword.
The v flag controls prompting for MR numbers in addition to com­
ments; if the optional text is present it defines an MR number validity
checking program. The i flag controls the warning/error aspect of the
"No id keywords" message. When the i flag is not present, this mes­
sage is only a warning; when the i flag is present, this message will
cause a "fatal" error {the file will not be gotten. or the delta will not
be made). When the b flag is present the -b keyletter may be used
on the gel command to cause a branch in the delta tree. The m flag
defines the first choice for the replacement text of the % M%
identification keyword. The f flag defines the "floor" release; the
release below which no deltas may be added. The c flag defines the
"ceiling" release; the release above which no deltas may be added.
The d flag defines the default SID to be used when none is specified on
a gel command. The n flag causes della to insert a "null" delta (a
delta that applies no changes) in those releases that are skipped when
a delta is made in a new release (e.g., when delta 5.1 is made after
delta 2.7, releases 3 and 4 are skipped). The absence of the n flag
causes skipped releases to be completely empty. The j flag causes get
to allow concurrent edits of the same base SID. The I flag defines a list
of releases that are locked against editing (get(I) with the -e
keyletter). The q flag defines the replacement for the %Q%
identification keyword. The z flag is used in certain specialized inter­
face programs.

- 2 -

SCCSFILE(4) SCCSFILE(4)

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The
comments section typically will contain a description of the file's pur­
pose.

Body
The body consists of text lines and control lines. Text lines do not
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the
delta for the control line.

SEE ALSO
admin(I), delta(I), get(I), prs(I) in the UNIX System V User Reference
Manual.
Source Code Control System User Guide in the UNIX System V User Guide.

- 3 -

SCNHDR(4)

NAME

(not on PDP· I I) SCNHDR(4)

scnhdr - section header for a common object file

SYNOPSIS
#include <scnbdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify the layout of
the data within the file. Each section within an object file has its own header.
The C structure appears below.

struct scnhdr
{

s_name[SYMNMLEN]; /- section name -/char
long
long
long
long
long
long
unsigned short
unsigned short
long

s..,paddr;
s_vaddr;
s_size;
s_scnptr;
sJelptr;
sJnnoptr;
s_nreloc;
s nlnno;
s)lags;

/- physical address -/
/- virtual address */
/* section size -/
/- file ptr to raw data -/
/- file ptr to relocation */
/* file ptr to line numbers -/
/- # reloc entries */
/- # line number entries -/
/- flags -/

} ;

File pointers are byte offsets into the file; they can be used as the offset in a
call to fseek OS). If a section is initialized, the file contains the actual bytes.
An uninitialized section is somewhat different. It has a size, symbols defined in
it, and symbols that refer to it. But it can have no relocation entries, line
numbers, or data. Consequently, an uninitialized section has no raw data in the
object file, and the values for s_scnptr, sJelptr, sjnnoptr, s_nreloc, and
S_nlnno are zero.

SEE ALSO
fseek(3S), a.out(4),
Id(l) in the UNIX System V User Reference Manual.

• 1 •

SYMS(4)

NAME

(not on PDP-II) SYMS(4)

syms - common object file symbol table format

SYNOPSIS
#include < syms.h>

DESCRIPTION
Common object files contain information to support symbolic software testing
(see sdb(l». Line number entries, linenum(4), and extensive symbolic infor­
mation permit testing at the C source level. Every object file's symbol table is
organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the struc­
ture hold the name (null padded), its value, and other information. The C
structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14

_n_namelSYMNMLEN]; /. symbol name ./

/. all ways to get symbol name ./

struct syment
{

union
{

char
struct
(

long
long

) _n_n;
char

} _n;
long
short
unsigned short
char
char

};

n zeroes;
=n=offset;

•_n_nptr[2];

n_value;
n_scnum;
n_type;
n_sclass;
n_numaux;

/. == OL when in string table ./
/. location of name in table ./

/. allows overlaying ./

/. value of symbol ./
/. section number ./
/. type and derived type ./
/. storage class •/
/. number of aux entries ./

#define n_name _n._n_name

- 1 -

SYMS(4) (not on PDP-l 1) SYMS(4)

#define n zeroes n. n n. n zeroes
#define n=offset -n.-n-n.-n-offset
#define n_nptr =n.=n=nt>trl1]

Meaningful values and explanations for them are given in both syms.h and
Common Object File Format. Anyone who needs to interpret the entries
should seek more information in these sources. Some symbols require more
information than a single entry; they are followed by auxiliary entries that are
the same size as a symbol entry. The format follows.

union auxent
(

struct
(

long x_tagndx;
union
(

struct
(

unsigned short xJnno;
unsigned short x_size;

) x Insz;
long x_fsize;

} x_mise;
union
(

struct
(

xJname[FILNMLEN];

xJnnoptr;
x_endndx;

unsigned short x_dimen[DIMNUM1;
x_ary;
xJenary;
x_tvndx;

long
long
x_fen;)

struet
(

)

ehar
xJile;

}
unsigned short

} x_sym;
struet
(

)
struet
(

long x_senlen;
unsigned short x nreloe;
unsigned short x=nlinno;
x_sen;

) ;

struet
(

long x tvfill;
unsigned short x-tvlen;
unsigned short x=tvran[21;
x_tv;

- 2 -

SYMS(4) (not on PDp· I I) SYMS(4)

Indexes of symbol table entries begin at zero.

SEE ALSO
a.out (4), Iinenum(4).
sdb(I) in the UNIX System V User Reference Manual.

CAVEATS
On machines in which longs are equivalent to ints 38 20 computer, VAX), they
are converted to ints in the compiler to minimize the complexity of the compiler
code generator. Thus the information about which symbols are declared as
longs and which, as ints, does not show up in the symbol table.

- 3 -

TERM (4)

NAME
term - format of compiled term file.

SYNOPSIS
term

TERM (4)

DESCRIPTION
Compiled terminfo descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a huge UNIX system
directory, a two-level scheme is used: /usr/lib/terminfo/c/name where name is
the name of the terminal, and c is the first character of name. Thus, act4 can
be found in the file /usr/lib/terminfo/a/act4. Synonyms for the same terminal
are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware. An 8
or more bit byte is assumed, but no assumptions about byte ordering or sign
extension are made.

The compiled file is created with the compile program, and read by the routine
setupterm. Both of these pieces of software are part of curses (3X). The file is
divided into six parts: the header, terminal names, boolean flags, numbers,
strings, and string table.

The header section begins the file. This section contains six short integers in
the format described below. These integers are (]) the magic number (octal
0432); (2) the size, in bytes, of the names section; (3) the number of bytes in
the boolean section; (4) the number of short integers in the numbers section;
(5) the number of offsets (short integers) in the strings section; (6) the size, in
bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant
8 bits. (Thus, the value represented is 256*second+first.> The value -1 is
represented by 0377, 0377, other negative value are illegal. The -1 generally
means that a capability is missing from this terminal. Note that this format
corresponds to the hardware of the VAX and PDP-II. Machines where this
does not correspond to the hardware read the integers as two bytes and com­
pute the result.

The terminal names section comes next. It contains the first line of the ter­
minfo description, listing the various names for the terminal, separated by the 't
character. The section is terminated with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or I as the
flag is present or absent. The capabilities are in the same order as the file
<term.h>.

Between the boolean section and the number section, a null byte will be
inserted, if necessary, to ensure that the number section begins on an even byte.
All short integers are aligned on a short word boundary.

The numbers section is similar to the flags section. Each capability takes up
two bytes, and is stored as a short integer. If the value represented is -I, the
capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer,
in the format above. A value of -) means the capability is missing. Other­
wise, the value is taken as an offset from the beginning of the string table.
Special characters in "X or \c notation are stored in their interpreted form, not
the printing representation. Padding information $<nn> and parameter infor­
mation %x are stored intact in uninterpreted form.

- 1 -

TERM (4) TERM (4)

The final section is the string table. It contains all the values of string capabili-
ties referenced in the string section. Each string is null terminated.

~Note that it is possible for setupterm to expect a different set of capabilities
than are actually present in the file. Either the database may have been
updated since setupterm has been recompiled (resulting in extra unrecognized
entries in the file) or the program may have been recompiled more recently
than the database was updated (resulting in missing entries). The routine
setupterm must be prepared for both possibilities - this is why the numbers
and sizes are included. Also, new capabilities must always be added at the end
of the lists of boolean, number, and string capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is
included:

microtermlact41microterm act iv,
cr="'M, cudlCl"'J, ind-"'J, bel......G, am, cubl="'H,
ed="'..." el= , clear-"'L, cup......T%p1%c%p2%c,
cols#80, lines#24, cuf1="'X, cuul="'Z, home.......],

000 032 001 \0 025 \0 \b \0 212 \0 \0 m i c r

020 0 t e r m a c t 4 m i c r 0

040 t e r m a c t i v \0 \0 001 \0 \0

060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

100 \0 \0 p \0 377 377 030 \0 377 377 377 377 377 377 377 377
120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0

140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0

160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377)
*
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0

560 024 " p 1 " c " p 2 " c \0 \n \0 035 \0
600 \b \0 030 \0 032 \0 \n \0

Some limitations: total compiled entries cannot exceed 4096 bytes. The name
field cannot exceed 128 bytes.

FILES
lusr/lib/terminfo/·l· compiled terminal capability data base

SEE ALSO
curses(3X}, terminfo(4}.

- 2 -

TERMINFO (4) TERMINFO(4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/lib/terminfo/*/*

Example
vt100-w
vt100-am
vt100-nam
aaa-60
cl00-na
cl00-4p
clOO-rv

Meaning
Wide mode (more than 80 columns)
With auto. margins (usually default)
Without automatic margins
Number of lines on the screen
No arrow keys (leave them in local)
Number of pages of memory
Reverse video

-np
-rv

DESCRIPTION
Term;n/o is a data base describing terminals, used, e.g." by vi (I) and
curses OX}. Terminals are described in terminfo by giving a set of capabilities
which they have, and by describing how operations are performed. Padding
requirements and initialization sequences are included in termin/o.

Entries in terminfo consist of a number of ',' separated fields. White space
after each ',' is ignored. The first entry for each terminal gives the names
which are known for the terminal, separated by 'I' characters. The first name
given is the most common abbreviation for the terminal, the last name given
should be a long name fully identifying the terminal, and all others are under­
stood as synonyms for the terminal name. All names but the last should be in
lower case and contain no blanks; the last name may well contain upper case
and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the
following conventions. The particular piece of hardware making up the termi­
nal should have a root name chosen, thus "hp2621". This name should not
contain hyphens, except that synonyms may be chosen that do not conflict with
other names. Modes that the hardware can be in, or user preferences, should
be indicated by appending a hyphen and an indicator of the mode. Thus, a
vt100 in 132 column mode would be vt100-w. The following suffixes should be
used where possible:

Suffix
-w
-am
-nam
-n
-na

CAPABILITIES
The variable is the name by which the programmer (at the terminfo level)
accesses the capability. The capname is the short name used in the text of the
database, and is used by a person updating the database. The i.code is the two
letter internal code used in the compiled database, and always corresponds to
the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5 charac­
ters has been adopted to keep them short and to allow the tabs in the source
file caps to line up nicely. Whenever possible, names are chosen to be the same
as or similar to the ANSI X3.64-1979 standard. Semantics are also intended
to match those of the specification.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm with parms as given
(#;).

indicates that padding may be based on the number of lines affected

indicates the ;th parameter.

- 1 -

TERMINFO(4) TERMINFO (4)

Variable Cap- I. Description
Booleans name Code

autoJeft_margin, bw bw cubl wraps from column 0 to last column
~autoJight_margin, am am Terminal has automatic margins

beehive~litch, xsb xb Beehive (f)-escape, f2-ctrl C)
ceol_standout~litch, xhp xs Standout not erased by overwriting (hp)
eat_newline~litch, xenl xn newline ignored after 80 cols (Concept)
erase_overstrike, eo co Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g... dialup, switch).
hard_copy, hc hc Hardcopy terminal
has_meta_key. km km Has a meta key (shift, sets parity bit>
has_statusJine. hs hs Has extra "status line"
insert_null~litch, in in Insert mode distinguishes nulls
memory_above. da da Display may be retained above the screen
memory_below. db db Display may be retained below the screen
movejnsert_mode, mir mi Safe to move while in insert mode
move_standout_mode. msgr ms Safe to move in standout modes
over_strike, os os Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status line
teleray...,glitch, xt xt Tabs ruin, magic so char (Teleray 1061)
tilde~litch, hz hz Hazeltine; can not print ·'s
transparent_underline, ul ul underline character overstrikes
xon_xolf, xon xo Terminal uses xon/xolf handshaking

Numbers:
columns, cols co Number of columns in a line
init_tabs, it it Tabs initially every # spaces
lines, lines li Number of lines on screen or page

~lines_of_memory, 1m 1m Lines of memory if > lines. 0 means varies
magic_cookie...,glitch. xmc sg Number of blank chars left by smso or rmso
padding_baudJate. pb pb Lowest baud where crlnl padding is needed
virtual_terminal. vt vt Virtual terminal number (UNIX system)
width_statusJine, wsl ws No. columns in status line

Strings:
back_tab. cbt bt Back tab (P)
bell. bel bl Audible signal (bell) (P)
carriageJeturn. cr cr Carriage return (P*)
change_scrollJegion, csr cs change to lines #1 through #2 (vt100) (PG)
clear_all_tabs, tbc ct Clear all tab stops (p)
clear_screen, clear cl Clear screen and home cursor (p*)
clr_col. el ce Clear to end of line (P)
clr_cos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term. settable cmd char in prototype
cursor_address, cup cm Screen reI. cursor motion row #1 col #2 (PG)
cursor_down. cud 1 do Down one line
cursor_home. home ho Home cursor (if no cup)
cursorjnvisible, civis vi Make cursor invisible
cursorJeft. cubl Ie Move cursor left one space
cursor_mem_address, mrcup CM Memory relative cursor addressing
cursor_normal, cnorm ve Make cursor appear normal (undo vs/vD
cursorJight, cuft nd Non-destructive space (cursor right)

~cursor_toJl, II II Last line, first column (if no cup)
cursor_up, cuul up Upline (cursor up)
cursor_visible. cvvis vs Make cursor very visible
delete_character, dchl dc Delete character (P*)

• 2 •

TERMINFO(4) TERMINFO (4)

deleteJine, dll dl Delete line (P*)
dis_statusJine, dsl ds Disable status line

~
down_halCline, hd hd Half-linc down (forward 1/2 linefeed)
enter_alt_charset_mode, smacs as Start altcrnate character set (p)
enter_blink_mode, blink mb Turn on blinking
enter_bold_mode, bold md Turn on bold (extra bright) mode
enter_ca_mode, smcup ti String to begin programs that use cup
enter_delcte_mode, smdc dm Delete modc (enter)
enter_dim_mode, dim mh Turn on half-bright mode
enterJnsert_mode, smir im Insert mode (enter);
enter""protected_mode, prot mp Turn on protected mode
enterJeverse_mode, rev mr Turn on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars invisible)
cntcr_standout_mode, smso so Begin stand out mode
enter_underline_mode, smul us Start underscore mode
erase_chars ech ec Erase #1 characters (PG)
exi t_all_charset_mode, rmacs ae End alternate character set (P)
exit_attribute_mode, sgrO me Turn off all attributes
exit_ca_mode, rmcup te String to end programs that use cup
~xit_delete_mode, rmdc ed End delete mode
exitJnsert_mode, rmir ei End insert mode
eXit_standout_mode, rmso se End stand out mode
exit_underline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor>
formJeed, ff ff Hardcopy terminal page eject (p*)
from_statusJine, fsl fs Return from status line
init_Istring, isl it Terminal initialization string

~
init_2string, is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
initJHe, if if Name of file containing is
insert_character, ichl ic Insert character (P)
insertJine, ill al Add new blank line (P*)
insertJ'adding, ip ip Insert pad after character inserted (P*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_de, kdchl kD Sent by delete character key
key_dl, kdll kL Sent by delete line key
key-down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert mode
key_eol, kel kE Sent by c1ear-to-end-of-line key
key_eos, ked kS Sent by c1ear-to-end-of-screen key
keyJO, kfO kO Sent by function key fO
keyJI, kfl kl Sent by function key fl
keyJIO, kflO ka Sent by function key fl 0
keyJ2, kf2 k2 Sent by function key f2
keyJ3, kf3 k3 Sent by function key f3
keyJ4, kf4 k4 Sent by function key f4
keyJ5, kf5 k5 Sent by function key f5
keyJ6, kf6 k6 Sent by function key £6
key_n, kn k7 Sent by function key n
key_fS, kfS k8 Sent by function key fS

~ key-f9, kf9 k9 Sent by function key f9
key_home, khome kh Sent by home key
keyjc, kichl kI Sent by ins char/enter ins mode key
keyjl, kill kA Sent by insert line

• 3 •

TERMINFO (4) TERMINFO(4)

keyJeft, kcubl kl Sent by terminal left arrow key
keyJI, kll kH Sent by home-down key
key_npage, knp kN Sent by next-page key .~keYJ>page, kpp kP Sent by previous-page key
keYJight, kcuft kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key_sr, kri kR Sent by scroll-backward/up key
key_stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypadJocal, rmb ke Out of Mkeypad transmit a mode
keypad_xmit, smkx ks Put terminal in Mkeypad transmit" mode
labJO, 1m 10 Labels on function key m if not m
labJl, 1ft 11 Labels on function key fl if not fl
labJlO, IflO la Labels on function key flO if not flO
labJ2, 1f2 12 Labels on function key f2 if not f2
labJ3, If3 13 Labels on function key f3 if not f3
lab_f4, If4 14 Labels on function key f4 if not f4
labJ5, If5 IS Labels on function key f5 if not f5
lab_f6, If6 16 Labels on function key f6 if not f6
labJ7, 1f7 17 Labels on function key f7 if not n
labJ'8, IfS 18 Labels on function key fS if not fS
lab_f9, 1f9 19 Labels on function key f9 if not f9
meta_on, smm mm Turn on Mmeta modeM (8th bit>
meta_off, rmm mo Turn off Mmeta modeM
newline, nel nw Newline (behaves like cr followed by If)
pad_char, pad pc Pad character (rather than null)
parm_dch, dch DC Delete #1 chars (PO-)
parm_deleteJine, dl DL Delete #1 lines (PO-)

)parm_down_cursor, cud DO Move cursor down #1 lines (PO-)
parmjch, ich IC Insert #1 blank chars (PO-)
parmjndex, indn SF Scroll forward #1 lines (PO)
parmjnsertJine, it AL Add #1 new blank lines (PO-)
parmJeft_cursor, cub LE Move cursor left #1 spaces (PO)
parmJight_cursor, cuf Rl Move cursor right #1 spaces (PO-)
parmJindex, rin SR Scroll backward #1 lines (PO)
parm_up_cursor, cuu UP Move cursor up #1 lines (PO-)
pkey_key, pfkey pk Prog funct key #1 to type string #2
pkeyJocal, pftoc pi Prog funct key #1 to execute string #2
pkey_xmit, pfx px Prog funct key # 1 to xmit string #2
print_screen, mcO ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer
prtr_on, mcS po Turn on the printer
repeat_char, rep rp Repeat char #1 #2 times. (PG-)
reset_lstring, rsl rl Reset terminal completely to sane modes.
reset_2string, rs2 r2 Reset terminal completely to sane modes.
reset_3string, rs3 r3 Reset terminal completely to sane modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute (set row) (PG)
save_cursor, sc sc Save cursor position (P)
scrollJorward, ind sf Scroll text up (p)
scrollJeverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9-)
set_tab, hts st Set a tab in all rows, current column

~set_window, wind wi Current window is lines #1-#2 cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line~ column #1

- 4-

TERMINFO (4)

underline_char.
up_halfJine.
init....Prog.
key_aI.
key_a3.
key_b2.
key_cI,
keLc3,
prtr_non.

uc
hu
iprog
kal
ka3
kb2
kcl
kc3
mc5p

uc
hu
iP
Kl
K3
K2
K4
KS
pO

TERMINFO(4)

Underscore one char and move past it
Half-line up (reverse 1/2 linefeed>
Path name of program for init
Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Turn on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept-I 00, is among the more
complex entries in the terminfo file as of this writing.

concept100 1 c1001 concept I c1041 c100-4p I concept 100,
am, be1~AG, b1ank~\EH, b1ink~\EC, c1ear~ALS<2*>, cnorm=\Ew,
co1s#80, cr aA MS<9>, cUb1 cA H, cUd1~AJ, cuf1~\E=,

cupa\Ea~p1~' '~+~c~p2X' 'X+~c,

cuu1~\Ei, cvvis~\EW, db, dch1a\EAAS<16*>, dima\EE, d11 a \E ABS<3*>,
ed~\EACS<16*>, e1=\E AUS<16>, eo, f1ash=\EkS<20>\EK, ht~\tS<8>,

i11~\EARS<3*>, in, ind",AJ, . indaA JS<9>, ip"S< 16*>,
is2=\EU\Ef\E7\E5\E8\E1\ENH\EK\E\200\Eo&\200\Eo\47\E,
kbs=Ah, kcub1~\E>, kcud1~\E<, kcuf1 c \E.. , kcuu1 c \Ei,
kf1 a \E5, kf2"\E6, kf3 .. \E7, khome=\E?,
1ines#24, mir, pb#9600, prot .. \EI, rep=\Er~p1~c~p2~' '~+XcS<.2*>,

rev=\ED, rmcupc\Ev S<6>\Ep\r\n, rmir a \E\200, rmkx .. \Ex,
rmso~\Ed\Ee, rmu1=\Eg, rmu1"\Eg, sgrO=\EN\200,
smcup=\EU\Ev 8p\Ep\r, smir~\EAp, smkx~\EX, smso~\EE\ED,

smu1"\EG, tabs, u1, vt#8, xen1,

Entries may continue onto multiple lines by placing white space at the begin­
ning of each line except the first. Comments may be included on lines begin­
ning with "#". Capabilities in terminfo are of three types: Boolean capabilities
which indicate that the terminal has some particular feature, numeric capabili­
ties giving the size of the terminal or the size of particular delays, and string
capabilities, which give a sequence which can be used to perform particular ter­
minaloperations.

Types of Capabilities

All capabilities have names. For instance. the fact that the Concept has
automatic margins (i.e., an automatic return and linefeed when the end of a
line is reached) is indicated by the capability am. Hence the description of the
Concept includes am. Numeric capabilities are followed by the character '#'
and then the value. Thus eols. which indicates the number of columns the ter­
minal has. gives the value '80' for the Concept.

Finally. string valued capabilities, such as el (clear to end of line sequence) are
given by the two-character code. an '-', and then a string ending at the next
following ','. A delay in milliseconds may appear anywhere in such a capabil­
ity, enclosed in $< .. > brackets, as in ela::a\EK$<3>, and padding characters
are supplied by tputs to provide this delay. The delay can be either a number,
e.g., '20', or a number followed by an '.', Le., '3·'. A '.' indicates that the
padding required is proportional to the number of lines affected by the opera­
tion, and the amount given is the per-affected-unit padding required. (In the
case of insert character, the factor is still the number of lines affected. This is
always one unless the terminal has xenl and the software uses it.> When a '.' is
specified. it is sometimes useful to give a delay of the form '3.5' to specify a
delay per unit to tenths of milliseconds. {Only one decimal place is allowed'>

- 5 -

TERMINFO (4) TERMINFO (4)

A number of escape sequences are provided in the string valued capabilities for
easy encoding of characters there. Both \E and \e map to an ESCAPE charac­
ter, AX maps to a control-x for any appropriate x, and the sequences \n \1 \r \t
\b \r \s give a newline, linefeed, return, tab, backspace, formfeed, and space.
Other escapes include \" for A, \\ for \, \, for comma, \: for :, and \0 for null.
<\0 will produce \200, which does not terminate a string but behaves as a null
character on most terminals'> Finally, characters may be given as three octal
digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name. For example, see the second ind in the
example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective
way to prepare a terminal description is by imitating the description of a simi­
lar terminal in terminfo and to build up a description gradually, using partial
descriptions with vi to check that they are correct. Be aware that a very
unusual terminal may expose deficiencies in the ability of the terminfo file to
describe it or bugs in vi. To easily test a new terminal description you can set
the environment variable TERMINFO to a pathname of a directory containing
the compiled description you are working on and programs will look there
rather than in IusrRiblterminfo. To get the padding for insert line right (if the
terminal manufacturer did not document it) a severe test is to edit letc/passwd
at 9600 baud, delete 16 or so lines from the middle of the screen, then hit the
'u' key several times quickly. If the terminal messes up, more padding is usu­
ally needed. A similar test can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal is a CRT, then the number of lines on the
screen is given by the lines capability. If the terminal wraps around to the
beginning of the next line when it reaches the right margin, then it should have
the am capability. If the terminal can clear its screen, leaving the cursor in the
home position, then this is given by the clear string capability. If the terminal
overstrikes (rather than clearing a position when a character is struck over)
then it should have the os capability. If the terminal is a printing terminal,
with no soft copy unit, give it both hc and os. (os applies to storage scope ter­
minals, such as TEKTRONIX 4010 series, as well as hard copy and APL termi­
nals'> If there is a code to move the cursor to the left edge of the current row,
give this as cr. (Normally this will be carriage return, control M'> If there is a
code to produce an audible signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left <such as back­
space) that capability should be given as cub!. Similarly, codes to move to the
right, up, and down should be given as cuft, cuul, and cudl. These local cursor
motions should not alter the text they pass over, for example, you would not
normally use 'cun.... ' because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in teT­
minfo are undefined at the left and top edges of a CRT terminal. Programs
should never attempt to backspace around the left edge, unless bw is given, and
never attempt to go up locally off the top. In order to scroll text up, a program
will go to the bottom left corner of the screen and send the ind (index> string.

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined when
not on their respective corners of the screen.

- 6 -

'~

TERMINFO (4) TERMINFO (4)

Parameterized versions of the scrolling sequences are indn and rin which have
the same semantics as ind and ri except that they take one parameter, and
scroll that many lines. They are also undefined except at the appropriate edge
of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cun from the last
column. The only local motion which is defined from the left edge is if bw is
given, then a cubl from the left edge will move to the right edge of the previ­
ous row. If bw is not given, the effect is undefined. This is useful for drawing
a box around the edge of the screen, for example. If the terminal has switch
selectable automatic margins, the terminfo file usually assumes that this is on;
Le., am. If the terminal has a command which moves to the first column of the
next line, that command can be given as nel (newline). It does not matter if
the command clears the remainder of the current line, so if the terminal has no
cr and If it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus
the model 33 teletype is described as

33ltty33lttylmodel 33 teletype,
bel=AG, cols#72, cr=AM, eud1=AJ, he, ind=AJ, os,

while the Lear Siegler ADM-3 is described as

adm3: 3 I lsi adm3,
am, be1=AG, e1ear=AZ, e018#80, er=AM, cUb1=AH, eud1=AJ,
ind=AJ, 1ine8#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability, with print/(JS) like escapes %x
in it. For example, to address the cursor, the cup capability is given, using two
parameters: the row and column to address to. (Rows and columns are num­
bered from zero and refer to the physical screen visible to the user, not to any
unseen memory.) If the terminal has memory relative cursor addressing, that
can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it.
Typically a sequence will push one of the parameters onto the stack and then
print it in some format. Often more complex operations are necessary.

The % encodings have the following meanings:

%%
%d
%2d
%3d
%02d
%03d
%c
%5

%p[1-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}

%+ %- %* %/ %m

outputs '%'
print popO as in printf
print popO like %2d
print popO like %3d

as in printf
print popO gives %c
print popO gives %5

push ith parm
set variable [a-zJ to popO
get variable [a-z] and push it
char constant c
integer constant nn

arithmetic (%m is mod): push(popO op popO)

- 7 -

TERMINFO (4)

%& o/~ %A
%-%> %<
%!%-
%i

TERMINFO (4)

bit operations: push<popO op popO)
logical operations: push (popO op popO)
unary operations push<op popO)
add I to first two parms (for ANSI terminals)

%1 expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-irs are possible ala Algol 68:
%1 c. %t b

J
.~ Cz%t bZ %e c3 %t b3 %e c4 %t b4 %e %;

ci are con ttlons, hi are bodies.

Binary operations are in postfix form with the operands in the usual order.
That is, to get x-5 one would use "%gx%(5}%-".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12,
needs to be sent \E&aI2c03Y padded for 6 milliseconds. Note that the order
of the rows and columns is inverted here, and that the row and column are
printed as two digits. Thus its cup capability is cup-6\E&%p2%2dc%pl %2dY.

The Microterm ACT-IV needs the current row and column sent preceded by a
AT, with the row and column simply encoded in binary, cup="T%pl%c%p2%c.
Terminals which use %c need to be able to backspace the cursor (cubI) , and to
move the cursor up one line on the screen (cuuI). This is necessary because it
is not always safe to transmit \0 AD and \r, as the system may change or dis­
card them. (The library routines dealing with terminfo set tty modes so that
tabs are never expanded, so \t is safe to send. This turns out to be essential for
the Ann Arbor 4080'>

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus cup-\E-%pl%' '%+%c%p2%' '%+%c. After sending
'\E....', this pushes the first parameter, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the two previous values)
and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be
given as single parameter capabilities hps (horizontal position absolute) and vps
(vertical position absolute). Sometimes these are shorter than the more general
two parameter sequence (as with the hp2645) and can be used in preference to
cup • If there are parameterized local motions (e.g., move n spaces to the right)
these can be given as cud, cub, cuf, and cuu with a single parameter indicating
how many spaces to move. These are primarily useful if the terminal does not
have cup, such as the TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor <to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the
lower left-hand corner can be given as U; this may involve going up with cuul
from the home position, but a program should never do this itself (unless U
does) because it can make. no assumption about the effect of moving up from
the home position. Note that the home position is the same as addressing to
(0,0): to the top left corner of the screen, not of memory. (Thus, the \EH
sequence on Hewlett-Packard terminals cannot be used for home'>

Area Qears

If the terminal can clear from the current position to the end of the line, leav­
ing the cursor where it is, this should be given as el. If the terminal can clear
from the current position to the end of the display, then this should be given as
ed. Ed is only defined from the first column of a line. (Thus, it can be simu­
lated by a request to delete a large number of lines, if a true ed is not

- 8 -

TERMINFO(4) TERMINFO(4)

available'>

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is,
this should be given as ill; this is done only from the first position of a line.
The cursor must then appear on the newly blank line. If the terminal can
delete the line which the cursor is on, then this should be given as dll; this is
done only from the first position on the line to be deleted. Versions of ill and
dll which take a single parameter and insert or delete that many lines can be
given as il and dl. If the terminal has a settable scrolling region Oike the
vt100) the command to set this can be described with the csr capability, which
takes two parameters: the top and bottom lines of the scrolling region. The
cursor position is, alas, undefined after using this command. It is possible to
get the effect of insert or delete line using this command - the sc and rc (save
and restore cursor> commands are also useful. Inserting lines at the top or bot­
tom of the screen can also be done using ri or ind on many terminals without a
true insert/delete line, and is often faster even on terminals with those features.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the parameterized string wind. The four
parameters are the starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should
be given; if display memory can be retained below, then db should be given.
These indicate that deleting a line or scrolling may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete
character which can be described using terminfo. The most common
insert/delete character operations affect only the characters on the current line
and shift characters off the end of the line rigidly. Other terminals, such as the
Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or expanded to two
untyped blanks. You can determine the kind of terminal you have by clearing
the screen and then typing text separated by cursor motions. Type abc def
using local cursor motions (not spaces) between the abc and the def. Then
position the cursor before the abc and put the terminal in insert mode. If typ­
ing characters causes the rest of the line to shift rigidly and characters to fall
off the end, then your terminal does not distinguish between blanks and
untyped positions. If the abc shifts over to the def which then move together
around the end of the current line and onto the next as you insert, you have the
second type of terminal, and should give the capability in, which stands for
insert null. While these are two logically separate attributes (one line vs. mul­
tiline insert mode, and special treatment of untyped spaces) we have seen no
terminals whose insert mode cannot be described with the single attribute.

Terminfo can describe both terminals which have an insert mode, and terminals
which send a simple sequence to open a blank position on the current line.
Give as smir the sequence to get into insert mode. Give as rmir the sequence to
leave insert mode. Now give as ichl any sequence needed to be sent just before
sending the character to be inserted. Most terminals with a true insert mode
will not give ichl; terminals which send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is usually prefer­
able to ichl. Do not give both unless the terminal actually requires both to be
used in combination'> If post insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence which may need to be

- 9 -

TERMINFO(4) TERMINFO (4)

sent after an insert of a single character may also be given in ip. If your termi­
nal needs both to be placed into an 'insert mode' and a special code to precede
each inserted character, then both smir/rmir and iebl can be given, and both
will be used. The ieb capability, with one parameter, n, will repeat the effects
of iebt n times.

It is occasionally necessary to move around while in insert mode to delete char­
acters on the same line (e.g., if there is a tab after the insertion position). If
your terminal allows motion while in insert mode you can give the capability
mir to speed up inserting in this case. Omitting mir will affect only speed.
Some terminals (notably Datamedia's) must not have mir because of the way
their insert mode works.

Finally, you can specify debt to delete a single character, deh with one parame­
ter, n, to delete n characters. and delete mode by giving smde and rmde to
enter and exit delete mode (any mode the terminal needs to be placed in for
debt to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as ecb with one parameter.

Highligbting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one display form
as standout mode, representing a good, high contrast, easy-on-the-eyes, format
for highlighting error messages and other attention getters. (If you have a
choice, reverse video plus half-bright is good, or reverse video alone'> The
sequences to enter and exit standout mode are given as smso and rmso, respec­
tively. If the code to change into or out of standout mode leaves one or even
two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xme
should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul
respectively. If the terminal has a code to underline the current character and
move the cursor one space to the right, such as the Microterm Mime, this can
be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking)
bold (bold or extra bright) dim (dim or half-bright) invis (blanking or invisible
text) prot (protected) rev (reverse video) sgrO (turn off all attribute modes)
smacs (enter alternate character set mode) and rmacs (exit alternate character
set mode). Turning on any of these modes singly mayor may not turn off
other modes.

If there is a sequence to set arbitrary combinations of modes, this should be
given as sgr (set attributes), taking 9 parameters. Each parameter is either 0
or I, as the corresponding attribute is on or off. The 9 parameters are. in
order: standout, underline, reverse, blink, dim, bold. blank. protect, alternate
character set. Not all modes need be supported by sgr, only those for which
corresponding separate attribute commands exist.

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when
they receive mode-setting sequences, which affect the display algorithm rather
than having extra- bits for each character. Some terminals, such as the
Hewlett-Packard 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit
standout mode before moving the cursor or sending a newline, unless the msgr
capability, asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a
bell replacement> then this can be given as ftash; it must not move the cursor.

- 10 -

TERMINFO (4) TERMINFO(4)

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to
find block or blinking underline) give this sequence as cvvis. If there is a way
to make the cursor completely invisible, give that as civis. The capability
cnorm should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smcup
and rmcup. This arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only memory relative cur­
sor addressing and not screen relative cursor addressing, a one screen-sized win­
dow must be fixed into the terminal for cursor addressing to work properly.
This is also used for the TEKTRONIX 4025, where smcup sets the command
character to be the one used by terminfo.

If your terminal correctly generates underlined characters (with no special
codes needed) even though it does not overstrike, then you should give the
capability uJ. If overstrikes are erasable with a blank, then this should be indi­
cated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed,
this information can be given. Note that it is not possible to handle terminals
where the keypad only works in local (this applies, for example, to the
unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or
not transmit, give these codes as smkx and rmkx. Otherwise the keypad is
assumed to always transmit. The codes sent by the left arrow, right arrow, up
arrow, down arrow, and home keys can be given as kcubl, kcufl, kcuul, kcudl,
and khome respectively. If there are function keys such as ro, fl, .u, fl 0, the
codes they send can be given as kfO, kfl, ..., kflO. If these keys have labels
other than the default ro through f1 0, the labels can be given as IfO, 1ft, ...,
IftO. The codes transmitted by certain other special keys can be given: kll
(home down), kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop
in this column), kclr (clear screen or erase key), kdchl (delete character), kdll
(delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear to
end of screen), kichl (insert character or enter insert mode), kill (insert line),
knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll
backward/up), kbts (set a tab stop in this column). In addition, if the keypad
has a 3 by 3 array of keys including the four arrow keys, the other five keys
can be given as kal, ka3, kb2, kel, and kc3. These keys are useful when the
effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab
stop can be given as ht (usually control n. A Ubacktab" command which
moves leftward to the next tab stop can be given as cbt. By convention, if the
teletype modes indicate that tabs are being expanded by the computer rather
than being sent to the terminal, programs should not use ht or cbt even if they
are present, since the user may not have the tab stops properly set. If the ter­
minal has hardware tabs which are initially set every n spaces when the termi­
nal is powered up, the numeric parameter it is given, showing the number of
spaces the tabs are set to. This is normally used by the tset command to deter­
mine whether to set the mode for hardware tab expansion, and whether to set
the tab stops. If the terminal has tab stops that can be saved in nonvolatile
memory, the terminfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the termi­
nal, iprog, the path name of a program to be run to initialize the terminal, and
if, the name of a file containing long initialization strings. These strings are

- 11 -

TERMINFO (4) TERMINFO (4)

expected to set the terminal into modes consistent with the rest of the terminfo
description. They are normally sent to the terminal, by the tset program, each
time the user logs in. They will be printed in the following order: isI; is2; set­
ting tabs using tbc and bts; if; running the program iprog; and finally is3. Most
initialization is done with is2. Special terminal modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in
isl and is3. A pair of sequences that does a harder reset from a totally unk­
nown state can be analogously given as rsI, rs2, rf, and rs3, analogous to is2
and if. These strings are output by the reset program, which is used when the
terminal gets into a wedged state. Commands are normally placed in rs2 and
rf only if they produce annoying effects on the screen and are not necessary
when logging in. For example, the command to set the vt 100 into 80-column
mode would normally be part of is2, but it causes an annoying glitch of the
screen and is not normally needed since the terminal is usually already in 80
column mode.

If there are commands to set and clear tab stops, they can be given as tbc
(clear all tab stops) and bts (set a tab stop in the current column of every
row). If a more complex sequence is needed to set the tabs than can be
described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily
needed by hard copy terminals, and are used by the Iset program to set teletype
modes appropriately. Delays embedded in the capabilities cr, ind, cubl, fT, and
tab will cause the appropriate delay bits to be set in the teletype driver. If pb
(padding baud rate) is given, these values can be ignored at baud rates below
the value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this
can be given as pad. Only the first character of the pad string is used.

If the terminal has an extra "status line" that is not normally used by software,
this fact can be indicated. If the status line is viewed as an extra line below
the bottom line, into which one can cursor address normally (such as the
Heathkit h19's 25th line, or the 24th line of a vtl 00 which is set to a 23-line
scrolling region), the capability bs should be given. Special strings to go to the
beginning of the status line and to return from the status line can be given as
tsl and fsl. (fsl must leave the cursor position in the same place it was before
tsl. If necessary, the sc and rc strings can be included in tsl and fsl to get this
effect'> The parameter tsl takes one parameter, which is the column number of
the status line the cursor is to be moved to. If escape sequences and other spe­
cial commands, such as tab, work while in the status line, the flag eslok can be
given. A string which turns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands to save and restore the
position of the cursor, give them as sc and rc. The status line is normally
assumed to be the same width as the rest of the screen, e.g., cols. If the status
line is a different width (possibly because the terminal does not allow an entire
line to be loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts
and subscripts on hardcopy terminals. If a hardcopy terminal can eject to the
next page (form feed). give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to
save time transmitting a large number of identical characters) this can be

- 12 -

TERMINFO(4) TERMINFO (4)

indicated with the parameterized string rep. The first parameter is the charac­
ter to be repeated and the second is the number of times to repeat it. Thus,
tparm(repeat_char, 'x', 10) is the same as ·xxxxxxxxxx'.

If the terminal has a settable command character, such as the TEKTRONIX
4025, this can be indicated with cmdch. A prototype command character is
chosen which is used in all capabilities. This character is given in the cmdch
capability to identify it. The following convention is supported on some UNIX
systems: The environment is to be searched for a CC variable, and if found, all
occurrences of the prototype character are replaced with the character in the
environment variable.

Terminal descriptions that do not represent a specific kind of known terminal,
such as switch, dialup, patch, and network, should include the go (generic)
capability so that programs can complain that they do not know how to talk to
the terminal. (This capability does not apply to virtual terminal descriptions
for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding
information should still be included so that routines can make better decisions
about costs, but actual pad characters will not be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit
of any character transmitted. this fact can be indicated with km. Otherwise.
software will assume that the 8th bit is parity and it will usually be cleared. If
strings exist to turn this "meta mode" on and off, they can be given as smm
and rmm. .

If the terminal has more lines of memory than will fit on the screen at once,
the number of lines of memory can be indicated with 1m. A value of Im#O
indicates that the number of lines is not fixed, but that there is still more
memory than fits on the screen.

If the terminal is one of those supported by the UN IX system virtual terminal
protocol, the terminal number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal
can be given as mcO: print the contents of the screen, mc4: turn off the printer,
and mcS: turn on the printer. When the printer is on, all text sent to the termi­
nal will be sent to the printer. It is undefined whether the text is also displayed
on the terminal screen when the printer is on. A variation mcSp takes one
parameter, and leaves the printer on for as many characters as the value of the
parameter, then turns the printer off. The parameter should not exceed 255.
All text, including mc4, is transparently passed to the printer while an mcSp is
in effect.

Strings to program function keys can be given as pfkey, pftoc, and pfx. Each of
these strings takes two parameters: the function key number to program (from
o to 10) and the string to program it with. Function key numbers out of this
range may program undefined keys in a terminal dependent manner. The
difference between the capabilities is that pfkey causes pressing the given key
to be the same as the user typing the given string; pftoc causes the string to be
executed by the terminal in local; and pfx causes the string to be transmitted to
the computer.

• 13 -

TERMINFO (4) TERMINFO (4)

Glitches and Braindamage

Hazeltine terminals, which do not allow'''' characters to be displayed should
indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the
Concept and vt100, should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on
top of it), xhp should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should
indicate xt (destructive tabs). This glitch is also taken to mean that it is not
possible to position the cursor on top of a "magic cookie", that to erase stan­
dout mode it is instead necessary to use delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or con­
trol C characters, has xsb, indicating that the fl key is used for escape and f2
for control C. (Only certain Superbees have this problem, depending on the
ROM.)

Other specific terminal problems may be corrected by adding more capabilities
of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the
name of the similar terminal. The capabilities given before use override those
in the terminal type invoked by use. A capability can be cancelled by placing
xx@ to the left of the capability definition, where xx is the capability. For
example, the entry

2621-nl, smkx@, rmkx@, use-2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence
does not turn on the function key labels when in visual mode. This is useful for
different modes for a terminal, or for different user preferences.

FILES
lusr/lib/terminfol?/. files containing terminal descriptions

SEE ALSO
curses(JX), printf(3S), term(S).
tic(l M) in the UNIX System V Administrator Reference Manual.

- 14 -

UTMP(4)

NAME

UTMP(4)

utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.b>
#include < utmp.b>

DESCRIPTION
These files, which hold user and accounting information for such commands as
who(I), write(l), and login (I), have the following structure as defined by
<utmp.b>:

#define UTMP_FILE "/etc/utmp"
#define WTMP_FILE "/etc/wtmp"
#define ut_name ut_user

struct utmp {
char
char
char
short
short
struct

short
short

} ut_exit;

};

ut user[S];
ut-id[4];
ut-line[12];
u(~pid;
ut_type;
exit_status {

e_termination;
e_exit;

/. User login name ./
/. /etc/inittab id (usually line #) ./
/. device name (console, lnxx) ./
/. process id •/
/. type of entry ./

/. Process termination status ./
/. Process exit status ./
/. The exit status of a process
• marked as DEAD PROCESS.•/
/. time entry was m-ade ./

/. Definitions for ut_type ./
#define EMPTY 0
#dellne RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5
#define LOGIN_PROCESS 6
#define USER_PROCESS 7
#define DEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING

/. Process spawned by "init" ./
/. A "getty" process waiting for login ./
/. A user process ./

/. Largest legal value of ul_lype ./

/. Special strings or formats used in the nut_line" field when ./
/. accounting for something other than a process ./
/. No string for the utJine field can be more than 11 chars + ./
/. a NULL in length ./
#define RUNLVL MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME MSG "old time"
#define NTIME~MSG "new time ll

- I -

UTMP(4)

FILES

UTMP(4)

lusr/include/utmp.h
letc/utmp
letc/wtmp

SEE ALSO
getut(JC).
login(I), who(I), write(I) in the UNIX System V User Reference Manual.

- 2 -

')

INTRO(S)

NAME

INTRO(S)

intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro packages l charac­
ter set tables, etc.

- 1 -

ASCII (5)

NAME

ASCIJ(5)

ascii - map of ASCII character set

SYNOPSIS ~
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

/000 nul 1001 soh /002 stx 1003 ctx 1004 eot 1005 enq 1006 aek 1007 bel
1010 bs lOll ht 1012 nl 1013 vt 1014 np 1015 er 1016 so 1017 si
1020 die 1021 del 1022 de2 1023 de3 1024 de41025 nak 1026 syn 1027 etb
1030 can 1031 em 1032 sub 1033 esc 1034 fs 1035 gs 1036 rs 1037 us
1040 sp 1041! 1042· 1043 # 1044 $ 1045 % 1046 & 1047 '
1050 (/051) 1052· 1053 + 1054. 1055 - 1056. 1057 /
1060 0 1061 I 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7
1070 8 1071 9 1072: 1073; 1074 < 1075 "'" 1076 > 1077?
1100@ IIOIA 1I02B 1I03C 1I04D 1I05E 1I06F 1I07G
1110 H 1111 I 1112 J 1113 K 1114 L IllS M 1116 N 11170
1120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 1127 W
1130 X 1131 Y 1132 Z 1133 [1134 \ 1135] 1136 A 1137
1140' 1141 a 1142 b 1143 e 1144 d 1145 e 1146 f 1147 g
1150 h 1151 1152 j 1153 k 1154 I 1155 m 1156 n 11570
1160 P 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 1167 w
/170 x 1171 y 1172 z 1173 { 1174 I 1175} 1176· 1177 del

00 nul 01 soh 02 stx 03 etx I 04 eot 05 enq 06 aek I 07 bel
08 bs 09 ht Oa 01 Ob vt I Oe np Od er Oe so I Of s i
10 die I I del 12 de2 13 dc3 I 14 dc4 IS nak 16 syn I 17 etb ~18 can 19 em la sub Ib esc 1 1e fs Id gs Ie rs 1 f us
20 sp 21 ! 22 " 23 # I 24 $ 25 % 26 & 27 ,
28 (29) 2a • 2b + I 2e • 2d - 2c . 2f I
30 0 31 I 32 2 33 3 I 34 4 35 5 36 6 37 7
38 8 39 9 3a : 3b ; / 3c < 3d ... 3e > 3 f ?
40 @ 41 A 42 B 43 C I 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K I 4e L 4d M 4e N 4f 0
50 P 51 Q 52 R 53 S I 54 T 55 U 56 V 57 W
58 X 59 Y Sa Z 5b [I 5e \ 5d] 5c

A

Sf -
60 ' 61 a 62 b 63 c 1 64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k / 6e I 6d m 6e n 6f 0
70 P 71 q 72r 73 s I 74 t 75 u 76 v 77w
78 x 79 y 7a z 7b (I 7e I 7d) 7e - 7f del

FILES
lusr/pub/ascii

• 1 •

ENVIRON(5)

NAME
environ - user environment

ENVIRON (5)

DESCRIPTION
An array of strings called the "environment" is made available by exec(2)
when a process begins. By convention, these strings have the form
"name=value". The following names are used by various commands:

PATH The sequence of directory prefixes that sh(t), time(t), nice(t),
nohup (1), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). Login(t) sets
PATH ICD :/bin:/usr/bin.

HOME Name of the user's login directory, set by /ogin(I) from the password
file passwd(4).

TERM The kind of terminal for which output is to be prepared. This informa­
tion is used by commands, such as mm(t) or tplot(lG), which may
exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is standard
local time zone abbreviation, n is the difference in hours from GMT,
and zzz is the abbreviation for the daylight-saving local time zone, if
any; for example, FSTSEDT.

Further names may be placed in the environment by the export command and
..name....value" arguments in sh (t), or by exec(2). It is unwise to conflict with
certain shell variables that are frequently exported by .profile files: MAIL, PSt,
PS2,IFS.

SEE ALSO
exec(2).
env(t), login(I), shO), mm(t), niceO), nohup(t), time(I), tplot(IG) in the
UNIX System V User Reference Manual.

• 1 •

/- Non-blocking 110 -/
/- append (writes guaranteed at the end) ./

FCNTL(S)

NAME
fcnd - file control options

SYNOPSIS
#include <fcntl.b>

DESCRIPTION
The fentl (2) function provides for control over open files.
describes requests and arguments to fentl and open (2).

/- Flag values accessible to open(2) and fcntl(2) -/
/- (The first three can only be set by open) -/
#define 0 RDONLY 0
#define 0-WRONLY 1
#define 0-RDWR 2
#define O=NDELAY 04
#define O_APPEND 010

FCNTL(S)

This include file

/- Flag values accessible only to open(2) -/
#define O_CREAT 00400 /- open with file create (uses third open arg)'/
#define O_TRUNC 01000 /- open with truncation -/
#define O_EXCL 02000 /- exclusive open -/

/. fcntl(2) requests -/
#define F_DUPFD 0
#define F GETFD 1
#define F-SETFD 2
#define F-GETFL 3
#define F=SETFL 4

SEE ALSO
fcntl (2), open(2).

/- Duplicate fildes ./
/- Get fildes flags ./
/- Set fildes flags -/
/. Get file flags -/
/- Set file flags -/

- 1 -

MATH(S)

NAME

MATH(S)

~\

math - math functions and constants

SYNOPSIS
#include < matb.b>

DESCRIPTION
This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C Library (Sec­
tion 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling
mechanisms, including the following constant used as an error-return value:

HUGE The maximum value of a single-precision floating-point
number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOGIOE The base-tO logarithm of e.

M_LN2 The natural logarithm of 2.

M_LNIO The natural logarithm of 10.

M PI 'l'I", the ratio of the circumference of a circle to its diame-
- ter. (There are also several fractions of'l'l", its reciprocal,

and its square root.>

M_SQRT2 The positive square root of 2.

M_SQRTl_2 The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see the descrip­
tion of the <values.h> header file.

FILES
lusr/include/math.h

SEE ALSO
intro(]), matherr(]M), values(S).

- 1 -

PROF(S)

NAME

PROF(S)

prof - profile within a function

SYNOPSIS J
#define MARK
#include < prof.b>
void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a
function entry point. Execution of the mark will add to a counter for that mark,
and program-counter time spent will be accounted to the immediately preced­
ing mark or to the function if there are no preceding marks within the active
function.

Name may be any combination of up to six letters, numbers or underscores.
Each name in a single compilation must be unique, but may be the same as
any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header
file <profh> is included. This may be defined by a preprocessor directive as
in the synopsis, or by a command line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK(name) statements may be left in the source
files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in
each loop. Unless this example is compiled with MARK defined on the com­
mand line, the marks are ignored.

#include <prof.h >

foo()
(

int i, j;

MARKOoopt);
for (i 0; i < 2000; i++) {

}
MARK(Ioop2);
for (j 0; j < 2000; j++) (

SEE ALSO
profil (2), monitor(3C) .
prof(I) in the UNIX System V User Reference Manual.

- 1 -

REGEXP(S)

NAME

REGEXP(S)

regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETCO <getc code>
#define PEEKC() < peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(vaO <error code>

#include < regexp.b >

cbar .compile (jnstring, expbuf, endbuf, eof)
cbar .instring, .expbuf, .endbuf;
int eof;

int step (string, expbuf)
cbar .string, .expbuf;

extern cbar .loc1, .loc2, .Iocs;

extern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines in the
form of ed(I), defined in /usr/include/regexp.b. Programs such as ed(l).
sed(l), grep(l). bs(l), expr(l). etc.• which perform regular expression match­
ing use this source file. In this way. only this file need be changed to maintain
regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this
file must have the following five macros declared before the
"#include < regexp.h>" statement. These macros are used by the c~mpile

routine.

GETC()

PEEKCO

UNGETC(c)

RETURN (pointer)

ERROR (va[)

Return the value of the next character in the regular
expression pattern. Successive calls to GETCO should
return successive characters of the regular expression.

Return the next character in the regular expression.
Successive calls to PEEKCO should return the same
character (which should also be the next character
returned by GETCO).

Cause the argument c to be returned by the next call to
GETCO (and PEEKCO). No more that one character
of pushback is ever needed and this character is
guaranteed to be the last character read by GETCO.
The value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile rou­
tine. The value of the argument pointer is a pointer to
the character after the last character of the compiled
regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine.
The argument val is an error number (see table below
for meanings). This call should never return.

- 1 -

REGEXP(S) REGEXP(S)

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 U\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \ (\) imbalance.
43 Too many \ <.
44 More than 2 numbers given in \(\}.
45 } expected after \.
46 First number exceeds second in \(\l.
49 I] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compileGnstring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but
is useful for programs that pass down different pointers to input characters. It
is sometimes used in the INIT declaration (see below). Programs which call
functions to input characters or have characters in an external array can pass
down a value of «char .) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where
the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuf-expbu/) bytes, a call to ERROR(50) is made.

The parameter eo! is the character which marks the end of the regular expres­
sion. For example, in ed(I), this character is usually a I.

Each program that includes this file must have a #define statement for INIT.
This definition will be placed right after the declaration for the function com­
pile and the opening curly brace «(). It is used for dependent declarations and
initializations. Most often it is used to set a register variable to point the
beginning of the regular expression so that this register variable can be used in
the declarations for GETCO, PEEKCO and UNGETCO. Otherwise it can be
used to declare external variables that might be used by GETCO, PEEKCO and
UNGETCO. See the example below of the declarations taken from grep(I).

There are other functions in this file which perform actual regular expression
matching, one of which is the function step. The call to step is as follows:

step(string, expbuf>

The first parameter to step is a pointer to a string of characters to be checked
for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match, two
external character pointers are set as a side effect to the call to step. The vari­
able set in step is loel. This is a pointer to the first character that matched
the regular expression. The variable Joc2, which is set by the function advance,
points to the character after the last character that matches the regular expres­
sion. Thus if the regular expression matches the entire line, Joel will point to
the first character of string and Joc2 will point to the null at the end of string.

- 2 -

REGEXP(S) REGEXP(S)

register char .sp instring;
(.sp++)
(.sp)
(--sp)
return;
regerrO

Step uses the external variable circf which is set by compile if the regular
expression begins with "'. If this is set then step will try to match the regular
expression to the beginning of the string only. If more than one regular expres­
sion is to be compiled before the first is executed the value of circf should be
saved for each compiled expression and circf should be set to that saved value
before each call to step.

The function advance is called from step with the same arguments as step.
The purpose of step is to step through the string argument and call advance
until advance returns non-zero indicating a match or until the end of string is
reached. If one wants to constrain string to the beginning of the line in all
cases. step need not be called; simply call advance.

When advance encounters a • or \(\J sequence in the regular expression. it
will advance its pointer to the string to be matched as far as possible and will
recursively call itself trying to match the rest of the string to the rest of the
regular expression. As long as there is no match. advance will back up along
the string until it finds a match or reaches the point in the string that initially
matched the • or \(\J. It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character pointer Iocs
is equal to the point in the string at sometime during the backing up process,
advance will break out of the loop that backs up and will return zero. This is
used by ed (I) and sed (I) for substitutions done globally (not just the first
occurrence. but the whole line) so, for example, expressions like s/y.llg do not
loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls
look from grep(I):

#define INIT
#define GETCO
#define PEEKeO
#define UNGETC(c)
#define RETURN(c)
#define ERROR (c)

#include <regexp.h>

(void) compile(.argv, expbuf, &expbut1ESIZE1. \0');

if (stepOinebuf, expbuf»
succeed();

FILES
/usr/include/regexp.h

SEE ALSO
bs(I), ed(I), expr(I). grep(I), sed(I) in the UNIX System V User Reference
Manual.

BUGS
The handling of circf is kludgy.
The actual code is probably easier to understand than this manual page.

- 3 -

STAT(S)

NAME

STAT{S)

stat - data returned by stat system call

SYNOPSIS
#include <sys/types.b>
#include <sys/stat.h>

DESCRIPTION
The system calls stat and fstat return data whose structure is defined by this
include file. The encoding of the field st_mode is defined in this file also.

/*
* Structure of the result of stat
*/

.~

struct stat
(

);

dev_t
ino t
uShort
short
ushort
ushort
dev_t
off_t
time_t
time_t
time_t

st_dev;
st ino;
st-mode;
st-nlink;
st-uid;
st~id;
stJdev;
st_size;
st_atime;
st_mtime;
st_ctime;

#define S_IFMT 0170000 /. type of file ./
#define S IFDIR 0040000 /. directory ./
#define S-IFCHR 0020000 /. character special ./
#define S)FBLK 0060000 /. block special ./
#define S IFREG 0100000 /. regular ./
#define S)FIFO 0010000 /. fifo ./
#define S_ISUID 04000 /. set user id on execution ./
#define S ISGID 02000 /. set group id on execution ./
#define S)SVTX 01000 /. save swapped text even after use ./
#define S_IREAD 00400 /. read permission, owner ./
#define SJWRITE 00200 /. write permission, owner ./
#define S_IEXEC 00100 /. execute/search permission, owner ./

FILES
/usr/include/sys/types.h
/usr/include/sys/stat.h

SEE ALSO
stat(2), types(S).

- 1 -

TERM(S)

NAME
term - conventional names for terminals

TERM(S)

DESCRIPTION
These names are used by certain commands (e.g., tabs(I). man(I) and are
maintained as part of the shell environment (see sh (I), projile(4) , and
environ (5» in the variable $TERM:

1520 Datamedia 1520
1620 DIABLO 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard 2640 series
2645 Hewlett-Packard 264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASJlDTC/GSI 300s
382 DTC 382
300s-12 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE~ Model 33 KSR
37 TELETYPE Model 37 KSR
40-2 TELETYPE Model 40/2
40-4 TELETYPE Model 40/4
4540 TELETYPE Model 4540
3270 IBM Model 3270
4000a Trendata 4000a
4014 TEKTRONIX 4014
43 TELETYPE Model 43 KSR
450 DASI 450 (same as Diablo 1620)
450-12 same, in 12-pitch mode
735 Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

line-feed and other special escape sequences
sync generic name for synchronous TELETYPE

4540-compatible terminals
hp Hewlett-Packard (same as 2645)
Ip generic name for a line printer
tn 1200 User Electric TermiNet 1200
tn300 User Electric TermiNet 300

Up to 8 characters, chosen from [-a-zO-9], make up a basic terminal name.
Terminal sub-models and operational modes are distinguished by suffixes begin­
ning with a -. Names should generally be based on original vendors, rather
than local distributors. A terminal acquired from one vendor should not have
more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept argu­
ments of the form -Tterm where term is one of the names given above; if no
such argument is present, such commands should obtain the terminal type from
the environment variable $TERM, which, in turn, should contain term.

- 1 -

TERM(S) TERM(S)

SEE ALSO
profile(4), environ(S).
man(t), mm(I), nroff(I), tplot(IG). sh(t). stty(I), tabs(I) in the UNIX Sys- ~.
tem V User Reference Manual.

BUGS
This is a small candle trying to illuminate a large, dark problem. Programs
that ought to adhere to this nomenclature do so somewhat fitfully.

- 2 -

TYPES (5)

NAME

TYPES (5)

types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some
data of these types are accessible to user code:

typedef struct { int r[I l; }• physadr;
typedef long daddr_t;
typedef char' caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_tllOl;
typedef short dev_t;
typedef long off_t;
typedef long paddr_t;
typedef long key_t;

The form daddr_t is used for disk addresses except in an i-node on disk, see
/$(4). Times are encoded in seconds since 00:00:00 GMT, January 1, 1970.
The major and minor parts of a device code specify kind and unit number of a
device and are installation-dependent. Offsets are measured in bytes from the
beginning of a file. The labeCt variables are used to save the processor state
while another process is running.

SEE ALSO
fs(4).

- 1 -

VALUES(5)

NAME

VALUES (5)

values - machine-dependent values

SYNOPSIS
#include <falues.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for particu­
lar processor architectures.

The model assumed for integers is binary representation (one's or two's comple­
ment), where the sign is represented by the value of the high-order bit.

BITS (type) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order bit
set (in most implementations, Ox8000).

HIBITL The value of a long integer with only the high-order bit
set (in most implementations, Ox80000000).

HIBI1'I The value of a regular integer with only the high-order
bit set (usually the same as HIBITS or HIBITL).

MAXSHORT The maximum value of a signed short integer (in most
implementations, Ox7FFF == 32767).

MAXLONO The maximum value of a signed long integer (in most
implementations, Ox7FFFFFFF == 2147483647).

MAXINT The maximum value of a signed regular integer (usually
the same as MAXSHORT or MAXLONO).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision
floating-point number, and its natural loga­
rithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double-precision
floating-point number, and its natural loga­
rithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single­
precision floating-point number, and its
natural logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double­
precision floating-point number, and its
natural logarithm.

FSIONIF The number of significant bits in the mantissa of a
single-precision floating-point number.

DSIGNIF The number of significant bits in the mantissa of a
double-precision floating-point number.

FILES
lusr/include/values.h

SEE ALSO
intro(J), matMS).

- 1 -

VARARGS(S)

NAME

VARARGS(S)

varargs - handle variable argument list

SYNOPSIS
#include < varargs.h >

va_alist

va_del

void va_start(pvar)
vaJist pvar;

type vs_srg(pvar, type)
vaJist pvar;

void va_end (pvar)
vaJist pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable argument
lists to be written. Routines that have variable argument lists (such as
print/OS» but do not use varargs are inherently nonportable, as different
machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_del is a declaration for va_oUst. No semicolon should follow va_del.

vaJist is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type is the
type the argument is expected to be. Different types can be mixed, but it is up
to the routine to know what type of argument is expected, as it cannot be
determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end. are possible.

EXAMPLE
This example is a possible implementation of exec/(2).

#include <varargs.h>
#define MAXARGS 100

/. execl is called by
execl{file, arg I, arg2, ..., (char .)0) ;

./
execI(va alist>
va dcl -
(-

vaJist ap;
char .file;
char .args[MAXARGS);
int argno CI 0;

va_start{ap);
file CI va_arg{ap, char .);
while «args[argno++) .. va_arg{ap, char .» !- (char .)0).
va_end (ap);
return execv(file, args);

- 1 -

VARARGS(S)

SEE ALSO
exec(2) , printf(3S).

BUGS

VARARGS(S)

It is up to the calling routine to specify how many arguments there are, since it
is not always possible to determine this from the stack frame. For example,
exec! is passed a zero pointer to signal the end of the list. Print! can tell how
many arguments are there by the format.
It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float arguments
to double before passing them to a function.

- 2 -

PROG REF MAN 307-113, Iss. ~ COMMENT FORM

__________________ Phone No. _

Your comments and suggestions are appreciated and will help us to provide the best documentation
for your usc.

1. How would you rate this document for COMPLETENESS? (Please Circle)

Excellent Adequate Poor
4---·....•....-..-·..•..-3 •.. ..2 --.----.....------...... I•......__•........0

2. Identify any information that you feel should be included or removed.

3. How would you rate this document for ACCURACY of information? (Please Circle>

Excellent Adequate Poor
4 _......_.. ..__.. 3------------------------2 ------------------------1 • ·_......_0

4. Specify page and nature of any errods) found in this document.

5. How would you rate this document for ORGANIZATION of information? (Please Circle)

Excellent Adequate Poor
4 ----------------------..3 ·........--·..•••••..···2·....••......-......---- I __.._..••..__....0

6. Describe any format or packaging problems you have experienced with this document.

7. Do you have any general comments or suggestions regarding this document?

8. We would like to know a little about your background as a user of this document:

A. Your job function _

B. Number of years experience with computer hardware: operation .
maintenance

C. Number of years experience with computer software: user .
programmer .

Your Name
Company _
Address _

City & State Zip Code _

ATs.T

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1999 GREENSBORO. N.C

POSTAGE WILL BE PAID BY ADDRESSEE

DOCUMENTATION SERVICES
2400 Reynolda Road
Winston-Salem, N.C. 27106-9989

1•• 1.11 ••• 1••• 1111 •••• 11 •• 1.1 •• 1.1 •• 1•• 1.1.1 •• 1.1 •• 1

Do Not Tear-Fold Here and Tape

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Introduction
	Table of Contents
	Permuted Index
	2
	3C and 3S
	3M
	3X
	3F
	4
	5

