

X9700(1) X9700(1)

EXCEPTIONS
Lines that exceed the page width are truncated. Page breaks
occur not only at the logical end of page (controlled by the -I
option), but also at the physical end of page (controlled by the
machine). Lines which exceed the latter limit are usually forced
to an extra, overflow page. The number of.lines on a page includes
the indent of the -v option.

It is difficult to get to all of the TX train.

FONT SUMMARY
style bold-italic graph

port land port land

elite y y n n
Gothic y y n n
goth24 n n n n
mini n n n n
pica y y n n
times14 n n n n
times28 n n n n
vintage y y y y
vint20 n n y y
xerox y y n n
xerox 1 8 n n n n

DIAGNOSTICS
"missing parameter to -option"
"can't open file"
"unsupported style/orientation combination"
"bad mask name"
"bad horizontal indent specification"
"bad page length specification"
"bad vertical indent specification"

Check parameter list.

"page length larger than max"
X9700 has been directed to place more than 140 lines
on a page.

"attempt to back off page"
An attempt to field a reverse line feed would cause a
return to a previous page.

UNIX Programmer's Manual Commands and Utilities-50 1

X9700(1) X9700(1)

''file too wide"
X9700 has encountered a line with more than 132
characters on it. This usually happens when input not
produced with nroff -TX is given to x9700 with the
-TX option.

"unknown escape sequence"
X9700 has been given an escape sequence which does
not correspond to a reverse line feed, a font change, a
shade change, or a hyperascii character. Escape
sequences are introduced with an ascii esc character
(octal 33). This usually happens when -TX is not
supplied to nroff.

"too many masks"
X9700 allows a total of only ten separate mask
specifications.

"page too dense"
X9700 has encountered a page with too much over­
printing. The cause may be too much backspacing or
too many font changes. It may be small comfort that
even if the x9700 program could format the page, the
Xerox printer would probably fail to print it.

"internal error"
"machine seized"

Get help.

EXAMPLES
The following examples do not include the final pipeline to direct
the output to the Xerox 9700 printer, because that is an
installation-dependent procedure.

To obtain standard memo format:

nroft' -rA3 -rEI -rUI -rL71 -TX -cm file I
x9700 -hiO -TX -k prinl

To obtain manual page:

nroft' -TX -man file I
x9700 -166 -v3 -hl0 -TX

502-Commands and Utilities UNIX Programmer's Manual

X9700(l) X9700(l)

To obtain this manual page:

nroff -man -TX file I
x9700 -hl2 -v2 -166 -TX -k prinl 1 -k prin2 2 -k prin3 3 \
-lk prinl 4 -lk prin2 5 -k vgraf 6 -k sdisc 7

To obtain viewgraphs:

nroff -TX - file < < eof I
.p135
.11 45
eof
x9700 -s vint20 -TX

UNIX Programmer's Manual Commands and Utilities-503

XARGS(l) XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read
from standard input to execute the specified command one or more
times. The number of arguments read for each command invoca­
tion and the manner in which they are combined are determined
by the flags specified.

Command, which may be a shell file, is searched for, using one's
SPATH. If command is omitted, Ibin/echo is used.

Arguments read in from standard input are defined to be contigu­
ous strings of characters delimited by one or more blanks, tabs, or
new-lines; empty lines are always discarded. Blanks and tabs may
be embedded as part of an argument if escaped or quoted. Char­
acters enclosed in quotes (single or double) are taken literally, and
the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial­
arguments, followed by some number of arguments read from
standard input (Exception: see -i flag). Flags -i, -I, and -n
determine how arguments are selected for each command invoca­
tion. When none of these flags are coded, the initial-arguments
are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with
the accumulated args. This process is repeated until there are no
more args. When there are flag conflicts (e.g., -I vs. -n), the
last flag has precedence. Flag values are:

-Inumber Command is executed for each non-empty
number lines of arguments from standard
input. The last invocation of command will
be with fewer lines of arguments if fewer
than number remain. A line is considered
to end with the first new-line unless the
last character of the line is a blank or a
tab; a trailing blank/tab signals continua­
tion through the next non-empty line. If
number is omitted, 1 is assumed. Option
-x is forced.

504-Commands and Utilities UNIX Programmer's Manual

XARGS(l)

-ireplstr

XARGS(l)

Insert mode: command is executed for
each line from standard input, taking the
entire line as a single arg, inserting it in
initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in
initial-arguments may each contain one or
more instances of replstr. Blanks and tabs
at the beginning of each line are thrown
away. Constructed arguments may not
grow larger than 255 characters, and option
-x is also forced. {} is assumed for
replstr if not specified.

-onumber Execute command using as many standard
input arguments as possible, up to number
arguments maximum. Fewer arguments
will be used if their total size is greater
than size characters, and for the last invo­
cation if there are fewer than number argu­
ments remaining. If option -x is also
coded, each number arguments must fit in
the size limitation, else xargs terminates
execution.

-t Trace mode: The command and each con­
structed argument list are echoed to file
descriptor 2 just prior to their execution.

-p Prompt mode: The user is asked whether to
execute command each invocation. Trace
mode (-t) is turned on to print the com­
mand instance to be executed, followed by
a ? •• prompt. A reply of y (optionally fol­
lowed by anything) will execute the com­
mand; anything else, including just a car­
riage return,. skips that particular invoca­
tion of command.

-x Causes xargs to terminate if any argument
list would be greater than size characters;
-x is forced by the options -i and -I.
When neither of the options -i, -I, or -0

are coded, the total length of all arguments
must be within the size limit.

UNIX Programmer's Manual Commands and Utilities-505

XARGS(l)

-ssize

-eeofstr

XARGS(l)

The maximum total size of each argument
list is set to size characters; size must be a
positive integer less than or equal to 470. If
-s is not coded, 470 is taken as the
default. Note that the character count for
size includes one extra character for each
argument and the count of characters in
the command name.

Eofstr is taken as the logical end-of-file
string. Underbar (_) is assumed for the
logical EOF string if -e is not coded. The
value -e with no eofstr coded turns off the
logical EOF string capability (underbar is
taken literally). Xargs reads standard
input until either end-of-file or the logical
EOF string is encountered.

Xargs will terminate if either it receives a return code of -1 from,
or if it cannot execute, con:zmand. When command is a shell pro­
gram, it should explicitly exit (see sh (1)) with an appropriate
value to avoid accidentally returning with -1.

EXAMPLES
The following will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

Is $1 I xargs -i -t mv $1/{) $2/{}

The following will combine the output of the parenthesized com­
mands onto one line, which is then echoed to the end of file log:

(log name; date; echo $0 $*) I xargs > > log

The user is asked which files in the current directory are to be
archived and archives them into arch (1.) one at a time, or (2.)
many at a time.

1. Is I xargs -p -1 ar r arch
2. Is I xargs -p -1 I xargs ar r arch

The following will execute diff(l) with successive pairs of argu­
ments originally typed as shell arguments:

echo $* I xargs -n2 diff

506-Commands and Utilities UNIX Programmer's Manual

XARGS(l)

SEE ALSO
sh(I).

DIAGNOSTICS
Self-explanatory.

UNIX Programmer's Manual

XARGS(l)

Commands and Utilities-507

YACC(l) YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yaee [-vdIt] grammar

DESCRIPTION
Yacc converts a context-free grammar into a set of tables for a
simple automaton which executes an LR(l) parsing algorithm.
The grammar may be ambiguous; specified precedence rules are
used to break ambiguities.

The output file, y.tab.e, must be compiled by the C compiler to
produce a program yyparse. This program must be loaded with
the lexical analyzer program, yylex, as well as main and yyerror,
an error handling routine. These routines must be supplied by the
user; lex (1) is useful for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report on conflicts gen­
erated by ambiguities in the grammar.

If the -d flag is used, the file y.tab.b is generated with the #define
statements that associate the yacc-assigned "token codes" with the
user-declared "token names". This allows source files other than
y .tab.e to access the token codes.

If the -I flag is given, the code produced in y.tab.e will not con­
tain any #line constructs. This should only be used after the
grammar and the associated actions are fully debugged.

Runtime debugging code is always generated in y.tab.e under con­
ditional compilation control. By default, this code is not included
when y.tab.e is compiled. However, when yacc's -t option is
used, this debugging code will be compiled by default. Indepen­
dent of whether the -t option was used, the runtime debugging
code is under the control of YYDEBUG, a pre-processor symbol. If
YYDEBUG has a non-zero value, then the debugging code is
included. If its value is zero, then the code will not be included.
The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

508-Commands and Utilities UNIX Programmer's Manual

YACC(l) YACC(l)

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp,
yacc.debug, yacc.acts temporary files
/usrllib/yaccparparser prototype for C programs

SEE ALSO
lex(l).
malloc(3X) in the UNIX Programmer's Manual-Volume 2: Sys­
tem Calls and Library Routines.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported
on the standard error output; a more detailed report is found in the
y.output file. Similarly, if some rules are not reachable from the
start symbol, this is also reported.

Because file names are fixed, at most one yacc process can be
active in a given directory at a time.

UNIX Programmer's Manual Commands and Utilities-509

INTRO(6) INTRO(6)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational programs
found in the directory /usr/games. The availability of these pro­
grams may vary from system to system.

UNIX Programmer's Manual Commands and Utilities-511

I

ARITHMETIC (6) ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+ -xl] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an
answer to be typed in. If the answer is correct, it types back
"Right!", and a new problem. If the answer is wrong, it replies
"What?", and waits for another answer. Every twenty problems,
it publishes statistics on correctness and the time required to
answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be
generated; +, -, x, and / respectively cause addition, subtraction,
multiplication, and division problems to be generated. One or
more characters can be given; if more than one is given, the
different types of problems will be mixed in random order; default
is +-.
Range is a decimal number; all addends, subtrahends, differences,
multiplicands, divisors, and quotients will be less than or equal to
the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally
likely to appear. If the respondent makes a mistake, the numbers
in the problem which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give
correct answers, since the learner should, in principle, be able to
calculate them. Thus the program is intended to provide drill for
someone just past the first learning stage, not to teach number
facts de novo. For almost all users, the relevant statistic should be
time per problem, not percent correct.

512-Commands and Utilities UNIX Programmer's Manual

BACK(6) BACK(6)

NAME
back - the game of backgammon

SYNOPSIS
/usr/garnes/back

DESCRIPTION

FILES

BUGS

Back is a program which provides a partner for the game of back­
gammon. It is designed to play at three different levels of skill,
one of which you must select. In addition to selecting the
opponent's level, you may also indicate that you would like to roll
your own dice during your turns (for the superstitious players).
You will also be given the opportunity to move first. The practice
of each player rolling one die for the first move is not incorporated.

The points are numbered 1-24, with 1 being white's extreme inner
table, 24 being brown's inner table, 0 being the bar for removed
white pieces and 25 the bar for brown. For details on how moves
are expressed, type y when back asks "Instructions?" at the
beginning of the game. When back first asks "Move?", type? to
see a list of move options other than entering your numerical
move.

When the game is finished, back will ask you if you want the log.
If you respond with y, back will attempt to append to or create a
file back. log in the current directory.

lusr I games/lib/backrules
Itmp/b.
back.log

rules file
log temp file
log file

The only level really worth playing is "expert", and it only plays
the forward game.
Back will complain loudly if you attempt to make too many moves
in a turn, but will become very silent if you make too few.
Doubling is not implemented.

UNIX Programmer's Manual Commands and Utilities-513

I

BJ(6) BJ(6)

NAME
bj - the game of black jack

SYNOPSIS
lusr Igames/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of
black jack (or twenty-one) as might be found in Reno. The fol­
lowing rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural
loses $2. Both dealer and player naturals is a "push" (no
money exchange).

If the dealer has an ace up, the player is allowed to make an
"insurance" bet against the chance of a dealer natural. If
this bet is not taken, .play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer
has a natural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is
allowed to "double". He is allowed to play two hands, each
with one of these cards. (The bet is doubled also; $2 on each
hand.)

If a dealt hand has a total of ten or eleven, the player may
"double down". He may double the bet ($2 to $4) and
receive exactly one more card on that hand.

Under normal play, the player may "hit" (draw a card) as
long as his total is not over twenty-one. If the player "busts"
(goes over twenty-one), the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer
hits until he attains a total of seventeen or more. If the
dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total
wins. A tie is. a push.

The machine deals and keeps score. The following questions will
be asked at appropriate times. Each question is answered by y fol­
lowed by a new-line for "yes", or just new-line for "no".

? (means, "do you want a hit?")
Insurance?

514-Commands and Utilities UNIX Programmer's Manual

BJ(6) BJ(6)

Double down?

Every time the deck is shuffled, the dealer so states and the
"action" (total bet) and "standing" (total won or lost) is printed.
To exit, hit the interrupt key (DEL) and the action and standing
will be printed.

UNIX Programmer's Manual Commands and Utilities-5I5

I

CRAPS (6) CRAPS (6)

NAME
craps - the game of craps

SYNOPSIS
/usr/galnes/craps

DESCRIPTION
Craps is a form of the game of craps that is played in Las Vegas.
The program simulates the roller, while the user (the player)
places bets. The player may choose, at any time, to bet with the
roller or with the House. A bet of a negative amount is taken as a
bet with the House, any other bet is a bet with the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over
the total
bankroll is rejected and the program prompts with bet? until a
proper bet is made.

Once the bet is accepted, the roller throws the dice. The following
rules apply (the player wins or loses depending on whether the bet
is placed with the roller or with the House; the odds are even).
The first roll is the roll immediately following a bet:

1. On the first roll:

7 or 11 wins for the roller;
2, 3, or 12 wins for the House;
any other number is the point.; roll again (Rule 2

applies).

2. On subsequent rolls:
point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend
the player an additional $2,000. The program will prompt:

marker?

A yes (or y) consummates the loan. Any other reply terminates
the game.

If a player owes the House money, the House reminds the player,
before a bet is placed, how many markers are outstanding.

516-Commands and Utilities UNIX Programmer's Manual

CRAPS (6) CRAPS (6)

If, at any time, the bankroll of a player who has outstanding
markers exceeds $2,000, the House asks:

Repay marker?

A reply of yes (or y) indicates the player's willingness to repay the
loan. If only 1 marker is outstanding, it is immediately repaid.
However, if more than 1 marker is outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is
entered (or just a carriage return), an appropriate message is
printed and the program will prompt with How many? until a valid
number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed
from the House), the program informs the player of the situation
and exits.

Should the bankroll of a player who has outstanding markers
exceed $50,000, the total amount of money borrowed will be
automatically repaid to the House.

Any player who accumulates $100,000 or more breaks the bank.
The program then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the
case of bet? or How many?). To exit, send an interrupt (break),
DEL, or control-D. The program will indicate whether the player
won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the
seconds from the time of day. Depending on system usage, these
numbers, at times, may seem strange but occurrences of this type
in a real dice situation are not uncommon.

UNIX Programmer's Manual Commands and Utilities-517

I

HANGMAN (6)

NAME
hangman - guess the word

SYNOPSIS
/usr/games/hangman [arg

DESCRIPTION

HANGMAN (6)

Hangman chooses a word at least seven letters long from a dic­
tionary. The user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
lusr /lib/w2006

BUGS
Hyphenated compounds are run together.

5I8-Commands and Utilities UNIX Programmer's Manual

JOTTO(6) JOTTO(6)

NAME
jotto - secret word game

SYNOPSIS
/usr/games/jotto [-p]

DESCRIPTION

BUGS

Jotto is a word guessing game. You try to guess the computer's
secret word before it guesses yours. Clues are obtained by enter­
ing probe words. For example, if the computer's secret word is
"brown" and you probe with "stare", it will reply "1" indicating
that there is one letter in common between your probe and the
secret word. Double letters count only once unless they appear in
both words. For example, if the hidden word is "igloo" and you
probe with "broke", the computer will reply "1". But if you probe
with "gloom", the computer will respond "4". All secret words
and probe words should be non-proper English five-letter words. If
the computer guesses your word exactly, please respond with "y".
It will then tell you what its secret word was. The -p flag
instructs the computer to report its progress in guessing your word.

The dictionary contains some unusual words and lacks some com­
mon ones.

UNIX Programmer's Manual Commands and Utilities-519

I

MAZE (6)

NAME
maze - generate a maze

SYNOPSIS
/usr/gammes/mmaze

DESCRIPTION
Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

MAZE(6)

520-Commands and Utilities UNIX Programmer's Manual

MOO(6) MOO(6)

NAME
moo - guessing game

SYNOPSIS
lusr Igames/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer
picks a number consisting of four distinct decimal digits. The
player guesses four distinct digits being scored on each guess. A
"cow" is a correct digit in an incorrect position. A "bull" is a
correct digit in a correct position. The game continues until the
player guesses the number (a score of four bulls).

UNIX Programmer's Manual Commands and Utilities-521

I

QUIZ(6) QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [category! category2]

DESCRIPTION

FILES

BUGS

Quiz gives associative knowledge tests on various subjects. It asks
items chosen from category 1 and expects answers from category 2,

. or vice versa. If no categories are specified, quiz gives instructions
and lists the available categories.

Quiz tells a correct answer whenever you type a bare new-line. At
the end of input, upon interrupt, or when questions run out, quiz
reports a score and terminates.

The -t flag specifies "tutorial" mode, where missed questions are
repeated later, and material is gradually introduced as you learn.

The -i flag causes the named file to be substituted for the default
index file. The lines of these files have the syntax:

line
category
alternate
primary
option

= category new-line I category: line
= alternate I category I alternate
= empty I alternate primary
= character I [category) I option
= { category}

The first category on each line of an index file names an informa­
tion file. The remaining categories specify the order and contents
of the data in each line of the information file. Information files
have the same syntax. Backslash \ is used as with sh (1) to quote
syntactically significant characters or to insert transparent new­
lines into a line. When either a question or its answer is empty,
quiz will refrain from asking it.

/usr / gamesllib/ quiz/index
/usr / games/lib/ quiz/ *

The construct "a I ab" does not work in an information file. Use
"a{b}".

522-Commands and Utilities UNIX Programmer's Manual

TTT(6) TTT(6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/usr / games/ttt
/usr/games/cubic

DESCRIPTION

FILES

BUGS

Ttt is the X and 0 game popular in the first grade. This is a
learning program that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games
to completely know the game.

Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board.
Moves are specified as a sequence of three coordinate numbers in
the range 1-4.

lusr/games/ttt.klearning file

Cubic does not yet work on the some computers.

UNIX Programmer's Manual Commands and Utilities-523

I

WUMP(6) WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/usr /games/wump

DESCRIPTION

BUGS

Wump plays the game of "Hunt the Wumpus." A Wumpus is a
creature that lives in a cave with several rooms connected by tun­
nels. You wander among the rooms, trying to shoot the Wumpus
with an arrow, meanwhile avoiding being eaten by the Wumpus
and falling into Bottomless Pits. There are also Super Bats which
are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line;
it will give a more detailed description if you want.

This program is based on one described in People's Computer
Company, 2, 2 (November 1973).

It will never replace Adventure.

524-Commands and Utilities UNIX Programmer's Manual

VOLUME1
1. Commands and Utilities

] VOLUME 3
1M. System Administration Commands
and Applications Programs

] VOLUME 2
2. System Calls

] VOLUME 2
3. Lib~ary Routines

] VOLUME 2
3C. C and Assembler Library Routines

] VOLUME 2
3S. Standard I/O Library Routines

] VOLUME2
3M. Mathematical Library Routines

] VOLUME 2
3X. Miscellaneous Routines

] VOLUME 2
3F. FORTRAN Library Routines

] VOLUME 2
4. File Formats

] VOLUME 2
5. Miscellaneous Facilities

VOLUME1
6. Games

] VOLUME 3
7. Special Files

] VOLUME 3
8. System Maintenance Procedures

Other Volumes
of the

UNIX* Programmer's Manual

Volume 2
System Calls and Library Routines,
describes the programming features of the
UNIX system. Included are the descriptions
of system calls, subroutines, libraries, file
formats, macro packages, and character set
tables.

Volume 3
System Administration Facilities, contains
the commands used by UNIX system
administrators. It describes system
maintenance commands and application
programs, special files, and system
maintenance procedures.

Volume 4
Documentation Preparation, describes and
explains the commands and macros needed
to input and format a document. It provides
examples of advanced UNIX system editing
commands and the stream editor (sed), a
non-interactive content editor. Also
described are the text processors used to
format text, nroft and troft, and the
preprocessors, tbl and eqn used to prepare ·
tables and typeset mathematics. .

VolumeS
Languages and Support Tools, describes
languages and software tools that aid the
UNIX system user. There is detailed
information on the uses of the following
languages and programming support tools:
Fortran and C programming languages,
make. SCCS. M4 Macro Processor, awk,
Link Editor, Common Object File Format.
Arbitrary Precision Desk Calculator
Language. Interactive Desk Calculator,
Lexical Analyzer Generator, yacc, RJE, and
UUCP.

Select Code 320-031
ISBN 0-03-009317-1

