'VOLUME 4

DOCUMENTATION
PREPARATION

// —pre o
/ | / / UNIX* SYSTEM LIBR RY. o \

* Trademark of AT&T.

2l

VOLUME 4

PREPARATION
DOCUMENTATION

UNIX

programmers manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

2l

VOLUME 4

PREPARATION
DOCUMENTATION

UNIX

programmer’s manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

Steven V. Earhart: Editor

HOLT, RINEHART AND WINSTON
New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

* Trademark of AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T assumes
no liability to any party for any loss or damage caused by errors or omissions or statements of any kind in the
UNIX* Programmer’s Manual, its updates, supplements, or special editions, whether such errors are
omissions or statements resulting from negligence, accident, or any other cause. AT&T further assumes no
liability arising out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. AT&T disclaims all warranties
regarding the information contained herein, whether expressed, implied or statutory, including implied
warranties or merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function or design.

This document was set on an AUTOLOGIC, Inc. APS-5 phototypesetter driven by the TROFF formatter
operating under the UNIX system on an AT&T 3B20 computer.

* Trademark of AT&T.

Copyright®©1986 AT&T
All rights reserved.
Address correspondence to:
383 Madison Avenue

New York, NY 10017

No part of this publication may be reproduced, transmitted or used in any form or by any means—graphic,
electronic, mechanical or chemical, including photocopying, recording in any medium, taping, by any
computer or information storage and retrieval systems, etc. without prior permission in writing from
AT&T.

Library of Congress Cataloging-in-Publication Data
UNIX programmer’s manual.

At head of title: AT&T

Inclues index.

Contents: v. 1. Commands and utilities—v. 2.
System calls and library routines—v. 3. System
administration facilities.—v. 4. Document Preparation.

_ 1. UNIX (Computer operating system) I. Earhart,

Steven V. II. American Telephone and Telegraph Company.
QA76.76.063U548 1986 005.4'3 86-311

Select Code 320-03Y4
ISBN 0-03-011207-9

Printed in the United States of America
Published simultaneously in Cariada
678 090 98765432

CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

PREFACE

The UNIX Programmer’s Manual describes most of the features of the UNIX
System V. It does not provide a general overview of the UNIX system nor
details of the implementation of the system.

Not all commands, features, or facilities described in this series are available in
every UNIX system implementation. For specific questions on a machine
implementation of the UNIX system, consult your system administrator.

The UNIX Programmer’s Manual is available in several volumes.

e Volume 1 contains the Commands and Utilities (sections 1 and 6)

e Volume 2 contains the System Calls and Library Routines (sections 2,3,4,
and 5).

e Volume 3 contains the System Administration Facilities (sections 1M, 7,
and 8).

¢ Volume 4 contains the Document Preparation Facilities (mm, tbl, etc.).

o Volume 5 contains the Languages and Support Tools (C language, lex,
make, etc.). :

UNIX Programmer’s Manual Document Preparation—i

INTRODUCTION

An important feature of the UNIX#* operating system is to provide a method of
document preparation and generation. This manual provides information
needed to make optimum use of the system. The following sections delve into
text editing features of the UNIX operating system and describe programs that
are used to format a document in a user controlled style.

The Document Preparation section contains three parts:

o UNIX System Facilities
e Advanced Editing
o Stream Editor

The Advanced Editing part describes text editing functions which include
special characters, line addressing, global commands, commands for cut and
paste operations, and text editor-based programs. The Stream Editor part
describes the noninteractive context editor. The UNIX System Facilities part
outines some other tools that aid in document preparation.

The Formatting Facilities section contains three parts:

e NROFF and TROFF User’s Manual
o Table Formatting Program

e Mathematics Typesetting Program.

The NROFF and TROFF User’s Manual part presents information to enable
the user to do simple formatting tasks and to make incremental changes to
existing packages of troff formatter commands. The UNIX operating system
formatter, nroff, is identical to the troff formatter in most respects. The Table
Formatting Program part describes the tbl program usage and the input
commands used to generate documents that contain tables. The Mathematics
Typesetting Program part describes the eqn program usage and language for
obtaining text with mathematical expressions. The language interfaces directly

* Trademark of AT&T.

UNIX Programmer’s Manual Document Preparation—iii

with the troff processor so mathematical expressions can be embedded in the
running text of a manuscript and the entire document produced in one process.
The Memorandum Macros section is a user’s guide and reference manual for
the Memorandum Macros (MM) package. These macros provide a general
purpose package of text formatting macros used with the nroff and troff
formatters. The macros provide users of the UNIX operating system a unified,
consistent, and flexible tool for producing many common types of documents.
Although the UNIX operating system provides other macro packages for
various specialized formats, MM is the standard general purpose macro
package for most documents such as letters, reports, technical memoranda,
released papers, manuals, books, design proposals, and user guides. Uses of
MM range from single-page letters to documents of several hundred pages in
length.

The Viewgraphs and Slides Macros section describes the MV package of
macros. These macros provide users a method of preparing viewgraphs and
slides using the troff formatter. Included is a discussion on the use of the
macros and a philosophy of how a viewgraph or slide should appear.

iv—Document Preparation UNIX Programmer’s Manual

TABLE OF CONTENTS
DOCUMENT PREPARATION

DOCUMENT PREPARATION ¢ v ¢t v ¢ v 6 o o o o o o 0 a0 o o s 1
UNIXSYSTEMFACILITIES v ¢« ¢ ¢ v ¢ s o o o o o o o ot o o o s 1
ADVANCED EDITING . ¢ ¢ ¢ ¢ 4 ¢ o o v o o o o s s s o o o s o o o 4
Introduction « & v ¢ & v v ¢ e 4t e et e e e e e e e e e e e e e e 4
Special Characters .« . o v v v v v v @ v vt e e e e e e e e e e e e 5
Print and List Commands . . « ¢ ¢« ¢« v ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o o o o 5
Substitute Commands . + + « ¢ 4 ¢« 4 ¢ b 4 e e e e e e e e e e 6
UndoCommand . « & ¢ v v ¢ v ¢ ¢ o s o o o o o o o s o o o o o o o 7
MetacharaCters . . v ¢ ¢« v v o v o o o o o o ¢ o o o o o o o o e 4 o 7
= o 8
Backslash & v ¢ 4 v ¢ 4 0 bt e et e e e e e e s e e e e e 9
Dollar Sign . .« & 4 v v v v e b e et e e e e e e e e e e e e e 12
CircumfleX . & ¢ v v v 4 6 v v it e e e et e e e e e e e e e 13

1 T 14
Brackets .+ ¢ &« v v ¢ ¢ ¢t 6 4 4 e e e 4 b e e e e e e e e e e e 17
Ampersand . . . 4 0 0 b e s e e e e e e e e e e e e e e e 19
OperatingOnLines o v v v v v v v i v v v v vt e v 20
Substituting Newline Characters . « . . « v « v ¢ o ¢ ¢ v ¢ v o ¢ o o 20
Joining Lines . .+ ¢ & v ¢ 4 ¢ 4 b i e et e b e e e e e e e e e e e 21
Rearranging Lines ¢ ¢« v« v v o v v o v v b e v e e e e e 22
Line Addressinginthe Editor « . ¢ ¢« o v v 0 o0 e . 23
Address Arithmetic . . v ¢ ¢ v ¢ v v et b et e e e e e e e e e e 23
Repeated Searches ¢« v ¢ v v v v b b i e e e e e e e e 25
Default Line Numbers e e e e e e e e e e e e e e e 26
Semicolon « ¢ 4 v i vt e e et e e e e e e e e e e e e e e e 29
Interrupting the Editor ¢ ¢« v o o v oo o0 e e e e 31
Global Commands . « .« « v ¢« ¢ v ¢ « ¢ ¢ ¢ o o o o o s s o s o e 0 o 31
Basic. . . « « v ¢ o v 00 e e e e e e e e e e e e e e e 31
Multiline e e e e et e e e e e e e e e e e e e e 33
Cut and Paste e 34
Command FUunctions . . . « ¢« v ¢« v ¢ v o ¢ o o s o o o o o 0 o o o s 34
Change Name of Files e e e e e e e e e 35
Copy Files . « ¢« v v v v v o i et e e et e e e e e e e e e e e e 35
Combine Files . .+ ¢ « ¢ v ¢« v ¢ v 4 o 4 o o o o o o o o o s s o o 36
Remove Files . . ¢ ¢ ¢ v ¢ v 6 v v 6 6 v e bt et e ot o o e 37
Text Editor Functions . . . ¢ ¢« ¢« ¢ ¢ ¢ ¢ v ¢ ¢ o o o o o o o o o o o 38
File Names . . & v v v v ¢« v e v o o o o o o o s e o o o o o s o 38
Insert One File Into Another . . + « ¢« ¢ ¢ ¢« ¢ v ¢ 4 o ¢ v o o o o o s 39
WritteOut Partof aFile. . « . & ¢ ¢« ¢ ¢ ¢ ¢ v v v 0 v 0 e v v v o s 40
Move Lines Around . . « v ¢ v ¢ ¢ ¢ v ¢ 4 o ¢ o s o 0 s 0 s e e e 41
CopyLines . ¢ & v v v v v v v it e e e e e e e e e e e e e e 42
Marks &« v v v et e 43
Temporary Escape ¢ ¢ v ¢ v v v 0 vt v i e e e e e 44
Supporting ToOIS « « ¢ ¢ ¢ v v v v v v e i e e e e e e e e e e 44
Global Printing From a Set of Files (grep) 44
Editing Scripts « « ¢ v v v 0 v e b e e e e e e e e e e e e e e e e 45
STREAMEDITOR . . . & ¢ v it v v 4 e v o o s o s o v o o s o o a s 47
Introduction « « & ¢ ¢ v ¢ 4 vt b i e e e e e e e e e e e e e e e 47
Overall Operation . . v v v v v v v v e v v o o o o o o o o o v o o 48
Command Line . . . ¢ v v v 0 ¢ v e o v o o o o o o o o 0 o o u s 48
Order of Application of Editing Commands 48

Pattern SPace . v v v v ¢ v 4 4 4 b e e e e e e e e e e e e e e e 49

UNIX Programmer’s Manual Document Preparation—v

Examples . o . o v v v v v e e e e e e e e e e e e e e e e e e 49

Selecting Lines for Editing 000 50
Line Number Addresses .« « « v ¢ ¢ ¢ ¢ ¢ o ¢ v ¢ o o o o o v o o o » 50
Context Addresses e e e e e e e e e e e e e e e e e 50
Number of AdAresses .« . v v v v o o ¢ o v o v o o s o 0 o s 0 o o 51

Functions . . ¢« & © ¢ v ¢t 4 v ¢ 6 ¢ ¢ o o o o o o o s e e e e e e 52
Whole Line Oriented Functions e e e e e e e e 52
Substitute Function ¢ ¢+ v ¢ ¢« v ¢ ¢t v vt e e e e e e e 55
Pattern . &« & v 0 o v i et e e e e e e e e e e e e e e e e e e 55
Replacement . . . v v ¢ v v v v v v v i e e e e e e e e e e e e 55
S 56
Examples . . o v ¢ v v v i ot e e e e e e e e e e e e e e e e e 56
Input/Output Functions . . . « « v v ¢ v ¢ o v v o v v v v v v v o 57
Multiple Input Line Functions « « « v ¢ v ¢« v o v o v o v o 59
Holdand Get Functions . . . « ¢« ¢ & v 4 ¢ o ¢ v o o o o o o o o o & 59
Flow of Control Functions . . . « « v ¢« ¢ ¢ ¢ ¢ ¢ ¢ v ¢ v o ¢ o o o & 60
Miscellaneous Functions . . « « ¢« v ¢ ¢« v ¢ ¢ o v ¢ 4 ¢« ¢ o 0 e 0 0 62

FORMATTING FACILITIES

FORMATTING FACILITIES ¢ v v v v v vt v v e v vt e e v 63
NROFF AND TROFF USER'SMANUAL ¢« v v v v v o v o 63
INTRODUCTION . . . ¢ v v v v v v v o vt ot oo e oot o a s 63
USAGE . & v i i i e ittt t ettt ot e e e e e e e e e e e 64
NROFF/TROFF REFERENCEMANUAL ¢« .. 68
GENERAL EXPLANATION e e e e e e e e e 68
Formof Input . « « + ¢ ¢ ¢ v v v 0 v v v e e e e e e e e e e 68
Formatter and Device Resolution ¢« . . ¢ v v v v v v o o 69
Numerical Parameter Input ¢« . v o000 0o e e .. 69
Numerical EXpressions . . « « v v o v v v v v v v v v v v v 0 0. 70
Notation . & ¢ v ¢ v v vt v e et e e e e e e e e e e e e e e 71
Font and Character Size Control « . « + « « v ¢ v v v ¢ o v o v 0 o o 71
Fonts e e e e e e e e e e e e e e 71
Character Set . . v v ¢ v ¢ v 0 v o o o b ot e e e e e e e e 72
Character SiZe€ . . v v v v v« 4 v v 4 b e e e e e e e e e e e e e 73
Page Control . . . v & ¢ v v v 0 vt et e e e e e e e e e e e e 73
Text Filling, Adjusting, and Centering « v ¢« ¢« ¢ v ¢ v ¢ o o 74
Filling and Adjusting . . + v « v v v o v o 0 o b e vt e e e e 74
Interrupted TeXt . . . ¢ v ¢ ¢ v v v 6 v v 6 o o b b e e e e e e 74
Vertical Spacing e e e e e e e e e e e e e 75
Base-line Spacing . « + « v 4 ¢ v i b v e b e v e e e e e e e e e 75
ExtralineSpace . .« . « v v v v v v v v v v v v v e e e e e 75
Blocks of Vertical Space . . + « « v v v v v v o v e e e e e e e 76
Line Length and Indenting ¢ v v v v v v v v v v v 76
Macros, Strings, Diversions, and Position Traps . . . « + « « « « « .« . . 76
Macros and Strings . .+ « ¢ v ¢ ¢ 4t v e v e v v e e e e e e e e e 76
Copy Mode Input Interpretation « & ¢ v v v v v v v v 0 0. 77
ATBUIMENES & v o v 4 o 4 v o o s o o o o o o o o o o o o o o o o s 78
Diversions . « ¢ . ¢ v v vt it e e e e e e e e e e e e e e 79
Traps « « v v v v v v v v e e . e b e e e e e e e e s e e e e e 80
Number Registers . . « v v ¢ v v v v v v 0 6 v v v e e e e e e e e 80
Tabs, Leaders,and Fields « ¢ v v v v o v ¢ ¢t v v o v o 81
Tabsand Leaders ¢« v v v 0 v v v v v v e v b e e e e 81
Fields . « v v v v v i e i e e e e e e e e e e e e e e e e e e 82
Input/Output Conventions and Character Translations 83
Input Character Translations . . . « « + « v o v .0 v v o v v W . .83

vi—Document Preparation ' UNIX Programmer’s Manual

LiZatures o ¢ o o v o v o o o o o o o o o o o b b e e e e e 83

Backspacing, Underlining, and Overstriking 83
Control Characters . « « « v v « ¢ ¢ o 4 o o o o o o s o 4 o o 0 o s 83
Output Translation . . . « ¢ v ¢« ¢ ¢ ¢ v v v e v o v 0o v v e .. 83
Transparent Throughput v v v v v o v v v v v v o 84
Comments and Concealed Newline Characters « + « v v ¢ « 4 84
Local Horizontal/Vertical Motion and Width Function 85
Local Motion . . & & v ¢ v v v v o v v v v v e e e e e e e e e 85
Width Function ¢ ¢ 0 v v v 0 v i v i it e e e e e 85
Mark Horizontal Place ¢ . ¢ ¢« v v o . e e e e 86
Overstrike, Zero-Width, Bracket, and Line Drawing Functions 86
Overstrike . « & v v 0 v v i i i e e e e e e e e e e e e e e e e e 86
Zero-Width Characters . « . v ¢ ¢« ¢« ¢ ¢ v ¢ v v e v o 0 0 o v o o & 87
Large Brackets . . . o v ¢« v v v v v v v ottt et e e e e e e 87 -
LineDrawing . . ¢ ¢ ¢ ¢ v v v v o v v v 0 6 e 0 ot et e e e e 87
Hyphenation ¢ v v v v v v v i v v vt e e e e e e e e 89
Three-Part Titles & v v v v ¢ v v v v v v v v v o v e s e 89
Output Line Numbering+ ¢ v v v v ¢ v v v v 0 o v 0 o 0 o 90
Conditional Acceptance of Input . . « + & ¢ ¢ ¢ ¢ v v v v e v e e e e 90
Environment Switching . . « « v ¢ v ¢ ¢ 0 0 v v i i e e e e e e e e 92
Insertions From Standard Input ¢ o v o oo o000 92
Input/Output File Switching « « . ¢« ¢« v ¢ v v v o v 0 v v o 92
Miscellaneous . . « « « ¢ v v v v it e e e e e e e e e e e e e e e 92
Output and Error Messages + « « v ¢ v v ¢« ¢ o v v v v 0 0 e 000w 92
Compacted Macros . . ¢ v v v v v vttt e e e e e e e e e e 93
Building a Compacted Macro Package« ¢+ ¢ o ¢ . . 94
Produce Compacted Files . . . « « v ¢ v v ¢ v v v v 0 v v o v 0 0 94
Install Compacted Files . . . ¢ ¢ v v ¢ v v o v v v v o v v 0 o 0 o 95
Install Noncompactible Segment o oo o0 oL 95
TROFFTUTORIAL ¢ v v vttt t t e e e e s e o s e s s e 96
OVERVIEW i i i i e e e i e e ettt e et e v o v 96
POINT SIZESAND LINESPACING . . . v v v v v v o o v o v v o 97
FONTS AND SPECIAL CHARACTERS« « v v v v v o 99
INDENTSANDLINELENGTHS ¢ v v v v vt o v v v o 101
TABS & . i e 103
LOCALMOTIONS . . . ¢ ¢ i v v vt e et e et e e e e e v e o 104
Vertical MOLIONS « « v v v ¢ v v v 0 o v v v vt e e e e e e e 104
Horizontal Motions . . ¢ & ¢ v v ¢ ¢ v v v v v b v o vt e e e e e 105
OVErStIiKES v v v v v 4 v o & o o o o o o o o o o s o o o 0 o 0 o 107
Drawing Lines ¢ . v v v v v v v it i e e e e e e 107
STRINGS i i it et e et e v e o e e e e e e e e 107
INTRODUCTIONTOMACROS . . . ¢ ¢ v v v v v v v o ot o o o s 108
TITLES, PAGES, AND PAGE NUMBERING 110
NUMBER REGISTERS AND ARITHMETIC 114
MACROS WITH ARGUMENTS v v v v v v v v e v v o v s 117
CONDITIONALS . . v 4 v v v v e o o st s o e e s o o o s o o a s 120
ENVIRONMENTS ¢ ¢ i ot vt ettt e o e v e e o s 122
DIVERSIONS i i e i i e e e e e e e o et e e o e oo o 123
NROFF/TROFF TUTORIAL EXAMPLES i ¢« v ¢ v v v v o o 125
PAGEMARGINS 0 i it e e e it et e e st e e e e a 127
PARAGRAPHS ANDHEADINGS ¢ v v v v v v v v v 0 o 127
MULTIPLECOLUMNOUTPUT v v v v v v v o v v v o v 129
FOOTNOTEPROCESSING . . . ¢ v v v v v v v v v v o o s v o o 130
LASTPAGE ¢ i v v e v e b e e v v ot e e oot e v o s 132
TABLE FORMATTING PROGRAM v v v vt v v v v o 133

UNIX Programmer’s Manual Document Preparation—vii

INTRODUCTION & v i vt vttt it e et e e e e s 133

USAGE . & ¢ i i i e e i et e e et e e e e e e e e e e s 133
INPUTCOMMANDS . . & v v v v e e v e v e o v o o v ot o o o 135
Global Options « « v v v ¢ ¢ v & v o 4 o o o s s o o s s o o .. . 136
Format Section . . . « v v ¢« v ¢ v v v v e v v v v e e e e e e 137
Data ToBePrinted ¢« v v v ¢ v v v v v v v et v 0 v v o o 141
ADDITIONAL COMMANDLINES o v v v v v v v v 143
EXAMPLES . . . & o i i i i e i e e e e e e e e e e e e e e e 144
MATHEMATICS TYPESETTINGPROGRAM 145
INTRODUCTION . . & & v v v v v e e v e v e v e e o v e e s e o 145
USAGE . & ¢ i v e e e e i et e e e e e e e e e e e e e 146
LANGUAGE & i i i i e e o et o o o o s o ot e o a e o 147
Design « v v v vttt e 147
Structure . o . v v s i e 148
Modeof Operation . . . & ¢ v ¢ v v v v o v o v v o o 0 o o e e 148
USER'SSGUIDE v ¢ v v v e v e e v v e v o v v o v o e . 149
Delimiters e e e e e e e e e e e e e e e e e 149
Spacesand New Lines v v v ¢ v v v v v v v v v o 000 . 150
Input Spaces . «. ¢ & ¢ v v v bt vt e e e e e e e e e e e e e e 150
Output SPaces « v v v v v v v v e e e e e e e e e e e e e e e e 150
Symbols, Special Names, and Greek Alphabet 151
Subscripts and Superscripts .« . . v 0 v 0 s 0 e e e e e e e e e 152
Braces . . v v v 0 i it i e e e e e e el e d e e e e e e e 154
Fractions JR T T S 155
Square ROOES .+ v v v v v v v e e e e e e e e e e e e e e e 155
Summations, Integrals, and Similar Constructions 156
Sizeand Font Changes . . . + . « ¢ v v v v v 0 v o v v o v v 0 a0 157
Diacritical Marks . . . « . ¢ v v vttt e e e e e e e e e . . . 159
Quoted Text .« . & v v v v v v v v v v b v s e e e e e e e e e e 159
Aligning Equations e e e e e e e e e e e e e 160
Big BracketS « ¢ o ¢ v ¢ v o v o 0 0 o 0t e b e e e e e e e e e 161
162
MatriCes « v ¢ v v ¢ o v v e b e e e e e e e e e e e e e e e e e e 163
In-Line Equations ¢ ¢ ¢ ¢ v ¢ o b v b e e e e e e e e e 164
Defines . o v v v v 0 v i e 165
Local MOtIONS '« « v v v v v v o v vt b e e e e e e e e e e e e e 167
Precedence . . . & ¢ v vt it h e e e e e e e e e e e e e e e 167
TROUBLESHOOTING v ¢ v v v v v v v v v oo e o . . 168
FORMATTING FACILITIESEXAMPLES ¢+ v v v v o 170
Figure 1 — Font Style Examples ¢ v v v v v v oo 170
Figure 2 — Example of Output Line Numbering 172
Figure 3 — Table Using “box” Option « « v « v ¢« v v o o 173
Figure 4 — Table Using “allbox” Option . . . « « « « v ¢ v ¢ v ¢ o o 174
Figure 5 — Table Using “vertical bar” Key Letter Feature 175
Figure 6 — Table Using Horizontal Lines In Place Of Key Letters 177
Figure 7 — Table Using Additional Command Lines 178
Figure 8 — Table Using Text Blocks ¢ ¢ v v .. 180
Table A . & v v v v e e e e e e e e e e e e e e e e e e e 182
Table B . . v v v v v it ot et et e e e e e e s e e e e e e e 184
TableC 0. e e e e e e e e e e e e e e 186
Table D . & & v v v o it e e e e e e e e e e e e e e e e e e e 188
Table E . . . & v v v i v i e e e e e e e e e e e e e e e e e e e 193
Table F . v v v v v vttt s o s e e e v e v et e e e e e e 195
TableGo v . e e e e e e e e e e e e e e e 198
TableH e 200

viii—Document Preparation UNIX Programmer’s Manual

Table J & & & v vt e e et e et e e e e e e e e e e e e e e e 203
Table K & & v ¢ v v v o b e e e et e e e e e e e e e e e e e e e 206
Table L . . & ¢ v v vttt e e et e e e e e e e e e e e e 207
Table M . & v ¢ v et e e et e e e e e e e e e e e e e e e e 209
Table N & . & v v e v e e et e e et e e e e e e e e e e e e 210
Table O . & & v v o 0 o i e e et e e e e e e e e e e e e e e 212
Table P & v v v v o i e i et et e e e e e e e e e e e s e 214
Table Q . & & & vt v b i et e e e e s e e e e e e e e e e e 215
Table R . & & & v v i e i et e b e ettt s e e e e e e e e e 217
Table S & & & v vt i e i e e e e e e e e e e e e e e e e e e 218
Table T v ¢ v ¢ v v v e e e e e o e o s e et et e e e e e e 219
Table U & & v v v e v e e e e e e o ot e st et e e e e e e 220
Table V o v v v i it e e et et e e e e e e e e e e e e e e e e 221
Table W & & . & v i e i e e e e e e e e e e e e e e e e e e 222
Table X & & v ¢ v v e e i e e e e e e e e e e e e e e e e e e 223
Table Y & ¢ v v v vt e e e et e e e e e e e e e e e e e e e e 225
Table Z . . . & ¢ v & ot ittt e e e e e e e e e e e e e e e e 226

MEMORANDUM MACROS

MEMORANDUM MACROS . . . & v ¢ vt e v e v et v e e 229
INTRODUCTION . . & i i v e e e e v e o et e e et o e o 229
Purpose . « v ¢ v v it b i e e e e e e e e e e e e e e e e 229
Conventions « « « « « « ¢« « o o o o . e . . 229
Document Structure . . ¢ ¢« ¢« ¢ ¢ ¢ + v ¢ ot e 0 0 0 00 . . 230
Input Text Structure « « ¢ ¢ v ¢« « v o . . coe.o. . 231
Definitions ¢« . « ¢ ¢ ¢ 4 0 0 0 0 . . P) |
USAGE 232
The mmCommand . . ¢« ¢ v ¢ ¢ ¢ ¢ v ¢ o ¢+ o « o o o o o 233
The —cmor—mm Flag 234
Typical Command Lines e e e e e e e e . 2235

Parameters Set From Command Line « . . .237

Omission of —cm or —mm Fla
FORMATTING CONCEPTS
Basic Terms

Arguments and Double Quotes

Unpaddable Spaces e e .. 2242
Hyphenation & ¢ ¢« v v v v v v v b v vt v e e e 243
Tabs ¢« 0. e e e e e e e e e e e e e 244
BEL Character C e 244
Bullets e e e e e e e e e . 244
Dashes, Minus Slgns and Hyphens e e e e e e e e e o o . . 245
Trademark String e e e e e e e e e e e e e 245
Use of Formatter Requests e e e e .. 4246
PARAGRAPHS AND HEADINGS e ... 247
Paragraphs . .« ¢ ¢ v ¢ v ¢ 4 4 o 4 e e e e e e e e e ... 247
Paragraph Indention e e e e e e e e e e e e e e 247
Numbered Paragraphs « « ¢ ¢ ¢ v v ¢ v v 0o o v 0 .. 248
Spacing Between Paragraphs e e e e e e e e e e e . 4249
Numbered Headings « v v v v v v v v v v v v o249
Normal Appearance . « + « ¢« ¢« o o o o « o o s o o o o « o« «250
Altering Appearance . « « « « v o ¢« o o o 4 o 4 0 e e e .. . 251
Prespacing and Page Ejection251

Spacing After Headings

Centered Headings

UNIX Programmer’s Manual

Document Preparation—ix

Bold, Italic, and Underlined Headings+ 253
Controlby Level:+« v v v v v v v v .. 253
NROFF Underlining Style:o .. 253

Heading Point Sizes: e e e e e e e e 254
Marking StylesNumerals and Concatenation . . + . + .« 255
Unnumbered Headings oo v v v o . 255

Headings and Table of Contents«256
First-Level Headings and Page Numbering Style257

User Exit Macros et e e e e e e e e e e e e e e 257
Hints for Large DOCUMENtS + « v o v e e e 259
LISTS & i i i e et e 2260
ListMacros................. 260
List-Initialization Macros « . « « ¢« « ¢« ¢ ¢ ¢ « « ¢ ¢ ¢ « o & & 261

Automatically Numbered or Alphabetized List26l
Bullet List « « v & v ¢ v 6 v e e e e e e e e e e e e e e . 2262
Dash List . . v v v v v e e e e e e e e e e v o e e s o . 2262
Marked List &« ¢ v ¢ ¢ ¢ ¢ ¢ o v ¢ o o o o o o o s o o o o » 263
Reference List . & ¢ v v v v ¢ v 6 v ¢ o o o o o o o o o o o 263
Variable-Item List ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ v v v v o o . 264
List-Item Macro . . v « ¢ v ¢« ¢ ¢« ¢« ¢« o o ¢« « ¢« o« o+ o« « «265

List-End Macro . « « v v ¢« v v v v v v v v v o v v h e e 267
Example of Nested Llsts 267
List-Begin Macro and Customized Lists « « « . 269
User-Defined List Structures 271
MEMORANDUM & RELEASED-PAPER STYLE DOCUMENTS ~ . 275
Sequence of Beginning Macros«0 000 e . . 275
Title .« & v v e 276
Authors . . & v v v v b i e e e e e e e e e e e e e e . 277
TM Numbers . . v ¢ v v v v v v o v v o o o 0 o o o o o o 278
Abstract e e e e e e e e e e e e e e e e 278
Other Keywords . . . ¢ « « ¢ v v v v v v v v v v o o v o v 279
Memorandum Types . . . + . ¢« v ¢« v « o . e e e e v e s 279
Date Changes e e e e e e e e e e e e e . 2281
Alternate First-Page Format e e e e e e e e e e e e e .. 4282
Example . . . ¢ ¢ ¢ v v v v b i e e e e e e e e e e e e e 282
End of Memorandum Macros . . . « . . ¢ e v .. 2283
Signature Block e e e e e e e . 4283
“Copy to” and Other Notatxons e e e e e e e e 284
Approval Signature Line e e e e e e e 285
One-Page Letter « . v ¢ v v v v v v v v v v v v 286
DISPLAYS . . & i i v it e v e e s e e e e e e e e e e e . 2286
Static Displays . . « « « « . . . e e e e e e e e e e e .. 2287
Floating Displays . « « « v ¢ v v ¢« ¢ v o o o o o o o o o o o o 289
Tables . & ¢ v ¢ v i e e e e e e et e e e e e e e e e e e 291
Equations . . . & ¢ v ¢ v v v v v e e e e e e e e e e e e 292
Figure, Table, Equation, and Exhibit Titles 293
List of Figures, Tables, Equations, and Exhibits 294
FOOTNOTES e e e e e e e e e e e e e 294
Automatic Numbering of Footnotes - » » v v v 294
Delimiting Footnote Text « « .+« ¢« ¢« « & e e . 0295
Format Style of Footnote Text e« . 4296
Spacing Between Footnote Entries 2297
PAGE HEADERS AND FOOTERS 297
Default Headers and Footers « .« v v v v v v v v o o 298
Header and Footer Macros C e e e e e e e e e . 4298

x—Document Preparation UNIX Programmer’s Manual .

Page Header e e e e e e e 298
Even-Page Header « v ¢« v ¢« v v v v v v v o v o o« 2299

Odd-Page Header e e e e e e e e e e e 0299
Page Footer ¢ . .. e e e e e A
Even-Page Footer v o v v v v v vt . 299
Odd-Page FOOter . v v ¢ ¢ v ¢ ¢ e v ¢ o o ¢ o o o o o o o 300
First Page Footer« o+« 4300
Default Header and Footer Wlth Sectlon Page Numbermg e« .« 2300
Strings and Registers in Header and Footer Macros 300
Header and Footer Example 301
Generalized Top-of-Page Processing e e e e e . . 301
Generalized Bottom-of-Page Processing 303
Top and Bottom (Vertical§ Margins S [k)
Proprietary Marking 0000w e e 304
Private Documents . . e e e e e e e e e e e 304
TABLE OF CONTENTS AND COVER SHEET305
Table of Contents e e e e e e e e e e e .« . 305
CoverSheet........... 308
REFERENCES v ¢ v v it vttt e v e e e o 308
Automatic Numbering of References e e e e e e I 111
Delimiting Reference Text . . .« « v ¢« ¢ v « v v o o o« & ... 2308
Subsequent References, e ooeo. 4309
Reference Page « . v v v v v v v v v v v v v v v u 309
MISCELLANEOUS FEATURES . .« o v oo, . . .310
Bold, Italic,and Roman Fonts310
Justification of Right Margin 312
SCCS Release Identification « ¢ v v v v ¢ v v 040 312
Two-Column Output v v v v v v v v v 313
Column Headings for Two-Column Outputo .. 314
Vertical Spacing ¢ o 0 0 v e . e o o . 315
Skipping Pages 0 00000 e e e e e 315
ForcinganOdd Page« . v v v v v v v o 316
Setting Point Size and Vertical Spacing 316
Reducing Point Sizeof a String « 317
Producing Accents . . . v v v v 4 i e v e e e n e e e e e . 318
Inserting Text Interactively 318
ERRORSANDDEBUGGING v v v v v v v v 0o 0 v o 319
Error Terminations e e e e e e e e e e e 319
Disappearance of Output . . . v v v ¢ v ¢« ¢ v v 0 e e 0. . 320
EXTENDING AND MODIFYING MM MACROS e e e e e e . 2320
Naming Conventions . . « + v « ¢« v 4 ¢ o ¢ ¢« s 4 o s 00 .. 320
Names Used by Formatters « « . . . e e e e . 321
Names Used by MM . . e A |
Names Used by cw, eqn/neqn, and thl . . . v e e 322
Names Defined by 1675 322
Sample Extensions o 0000 e e e e e . 322

Appendix Headings v v v v v v v oo 0322
Hang1ngIndentW1thTabs N X

SUMMARY 0 i it e et et e e e e e e . . 325
Table AA . . . ¢ v v i e e e e e e e e e e e e e 326
Table BB e e e e e e 333
Table CC . . . v v v v v vt e e e e e e e e e o+ . 2335

UNIX Programmer’s Manual Document Preparation—xi

VIEWGRAPHS AND SLIDES MACROS

VIEWGRAPHS ANDSLIDESMACROS 341
INTRODUCTION v v v v v v e e v ot oo o o o s s 341
MACROS . . & i v i et e e e e s e et e et e e s e 341

Foil-Start Macros . . « ¢« v v v v ¢ o o v v v v e o o o o o s 341
Level Macros « v v v ¢ v v o v v 6 o o 6 o s 0 o s 0 o 0 e 343
The ALevel i v v v v v v v v ittt i e s e e o 343
The BLevel . ov. v v v v v v v v v v v i v e e e e e 344
The CLevel v v v v v v v v v v vt v e e e e e 345
The DLevel . « . . v v o v v v v v o v v vt e i e e e e 345
1 345
Global Indents . « « ¢ ¢ v v v v v o v v b e e e e e e e e 345
Point Sizes and Line Lengths 346
Default Fonts . . . « ¢ v v v v v v v v v v v v o v v v v o 346
Default Vertical Space . . . « « v ¢« v v v v v v o b 0 e 0 e 347
Underlining v ¢« ¢ ¢ ¢ v e 0 6 v v s e e s e o 0 o 347
Synonyms v 0 b e e e v e e e e e e e e e e e e 348
Breaks . . . & . v v 0 0 it e e e e e e e e e e e e e 348
Text Filling, Adjusting, and Hyphenation 348
THE TROFF PREPROCESSORS 348
1 [348
Mathematical Expressions o . oo 000 .. 349
Constant-Width Program Examples 349
FINISHEDPRODUCT v v v v v v . e e e e 349
Phototypesetter Qutput ¢« o v o v 4 v 0 e e 0 0. e . . 349
Output Approximation on a Termmal 350
Making Actual Viewgraphs and Slides 350
SUGGESTIONSFORUSE v v v v v 0 o v .. . 351
WARNINGS v o e ot e et e e e e e e e e e 353
Use of troff Formatter Requests « . . ¢« ¢« o o . . 353
Reserved Names ¢« v ¢ v v v v v v v v o o 0 v o o 353
Miscellaneous . . « ¢« v v v v v v v v e v e e e e e e e e e 353
DIMENSIONALDETAILS ¢ v v v v v v v o o o o 354
Table DD v v v v i e et e e e e e e e e e e e e 354
Table EE ¢ 0 v i v i i e e e e e e e e 355

xii—Document Preparation UNIX Programmer’s Manual

LIST OF FIGURES AND TABLES

Figure 1 — Font Style Examples 170
Figure 2 — Example of Output Line Numbering 172
Figure 3 — Table Using “box” Option « v . v v o v o . 173
Figure 4 — Table Using “allbox” Option . . + . « « « « v v o v o« . 174
Figure 5 — Table Using “vertical bar” Key Letter Feature 175
Figure 6 — Table Using Horizontal Lines In Place Of Key Letters . . . 177
Figure 7 — Table Using Additional Command Lines 178
Figure 8 — Table Using Text Blocks ¢ v v ¢ v o . 180
Table A . . v v vt e 182
Table B . . & . ¢ v v v e e e e e e e e e e e e e e e e e e 184
Table C . . v v v v o e v et e e e e e e e e e e e e e e e 186
Table D . . & & ¢ v v it e et e e e e e e e e e e e e e e 188
Table E ¢ 0 ¢ i i e e e e e e e e e e e e e e e e e e 193
11) (- 195
Table G . . & & ¢ v v vt e e e e e e e e e e e e e e e e 198
Table H . . & & o v v v i e it e e e e e e e e e e e e e 200
TableI ¢ 0 i e e s e e e e e e e e e e e e e e e 202
TableJ . . ¢ . i i e e e e e e e e e e e e e e e e e 203
Table K . . . ¢ ¢ v 0 v v i e e e e e e e e e e e e e e e 206
Table L . . & o v v i e i e s e e e e e e e e e e e e e e e 207
1) T 209
Table N . . & o ¢ i i it e e e e e e e e e e e e e e e e e 210
Table O . . . o ¢ v i i s i e e e e e e e e e e e e e e 212
TableP . . . & ¢ v i i i i e e e e e e e e e e e e e e 214
Table Q . & v v ¢ v i e e e e e e e e e e e e e e e e e e e 215
Table R . . . ¢ ¢ vt it e et e e e et e e e e e e e e e 217
Table S . & . & . i e 218
Table T &+ ¢ ¢ v v v v e i e et e et e e e e e e e e e e e e 219
11 (0 220
111) 221
Table W . . . & & v i i s e e e e e e e e e e e e e e e e e e 222
11) 223
Table Y . . . ¢ v v v i e e e e e e e e e e e e e e e e e e 225
Table Z . . & v v v i i i e e e e e e e e e e e e e e e e e e 226
Table AA . & & ¢ i i it e e e e e e e e e e e e e e e e e e 326
Table BB ¢ i i i it e e e e e e e e e e e e e e 333
Table CC v i v v i et i e e e e e e e e e e e e e 335
Table DD . . & ¢ v v v i e e s e e e e e e e e e e e e e e e 354
Table EE . . & & ¢ ¢ 0 i v e i e e e e e e e e e e e e e e e 355

UNIX Programmer’s Manual Document Preparation—xiii

DOCUMENT PREPARATION

The following section deals with the basics of document preparation. The
sections covered are:

e UNIX SYSTEM FACILITIES
e ADVANCED EDITING

e STREAM EDITOR

UNIX SYSTEM FACILITIES

Several miscellaneous facilities exist (via UNIX operating system commands) to
aid in the development of documentation. These facilities are easy to access
and are very effective. Their use is beneficial in documentation development.
Some available miscellaneous facilities are described briefly in the following
list. The UNIX Programmer’s Manual —Volume 1: Commands and Utilities
has a more detailed list.

bdiff The bdiff facility is used in a manner analogous to diff to find
which lines must be changed in two files to bring them into
agreement. Its purpose is to allow processing of files which
are too large for diff.

cat The cat facility reads each file in sequence and writes it on
the standard output. Thus:

cat file
prints the file named file, and
cat filel file2 > file3

concatenates filel and file2 and places the result in file3.

UNIX Programmer’s Manual Document Preparation—1

DOCUMENT PREPARATION

cmp

comm

diff

diff3

diffmk

grep

pr

sdiff

sort

The cmp facility compares two files. Under default options,
cmp makes no comment if the files are the same; if they
differ, it announces the byte and line number at which the
difference occurred.

The comm facility selects or rejects lines common to two
sorted files. It reads filel and file2 and produces a 3-column
output as follows: lines only in filel, lines only in file2, and
lines in both files.

The diff facility is a differential file comparator. It tells
what lines must be changed in two files to bring them into
agreement.

The diff3 facility is a 3-way differential file (files up to 64K)
comparator. It compares three versions of a file and
publishes disagreeing ranges of text flagged with special
codes.

The diffmk facility marks the differences between files. It
compares two versions of a file and creates a third file that
includes ‘“change mark” commands for the nroff or troff
formatter.

Commands of the grep facility search the input files for lines
matching a pattern. Normally, each line found is copied to
the standard output. The grep patterns are limited regular
expressions in the style of ed. The egrep patterns are full
regular expressions. The fgrep patterns are fixed strings.

The pr facility prints the named files on the standard output.
If file is — or if no files are specified, the standard input is
assumed.

The sdiff facility uses the output of diff to produce a side-
by-side listing of two files indicating those lines that are
different. Each line of the two files are printed with a blank
gutter between them if the lines are identical, a > in the
gutter if the line exists only in filel, a < in the gutter if the
line exists only in file2, and a | for lines that are different.

The sort facility sorts lines of all the named files together
and writes the results on the standard output.

2—Document Preparation UNIX Programmer’s Manual

spell The spell facility collects words from the named files and
looks them up in a spelling list. Words that do not occur in
the spelling list nor can be derived from them are printed on
the standard output. The spellin and spellout programs are
two additional subroutines of spell.

split The split facility splits a file into pieces.

typo The typo facility searches through a document for unusual
words, typographical errors, and hapax legomena and prints
them on the standard output.

uniq The uniq facility reports repeated lines in a file. It reads the
input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed;
the remainder is written on the output file.

UNIX Programmer’s Manual Document Preparation—3

DOCUMENT PREPARATION

ADVANCED EDITING

Introduction

The advanced editing part is meant to help UNIX operating system users
(secretaries, typists, programmers, etc.) make effective use of facilities for
preparing and editing documents, text, programs, files, etc. It provides
_explanations and examples of:

e special characters, operating on lines, line addressing, and global commands
in the text editor (ed)

e commands for “cut and paste” operations on files and parts of files, including
mv, cp, cat, and rm commands, and r, w, m, and t commands of the text editor
(ed)

e editing scripts and text editor-based programs like grep and sed {7}.

Examples are based on experience and observations of users and the difficulties
encountered.

Although this document is written for non-programmers, new UNIX operating
system users with any background should find helpful hints on how to get their
jobs done more easily. The UNIX operating system provides tools for text
editing, but that by itself is no guarantee that everyone will make the most
effective use of them. In particular, users who are not computer specialists
(typists, secretaries, casual users) often use the UNIX operating system less
effectively than they could.

The next paragraphs discuss shortcuts and labor-saving devices. Not all will be
instantly useful (some will) and others should provide ideas for future use.

A document like this should provide ideas about what to try. There is only one
way to learn to use something, and that is to use it. Reading a description is
no substitute for hands-on use.

The reader should be familiar with the HOW TO GET STARTED section of the
UNIX Programmer’s Manual —Volume 1: Commands and Utilities before
using the text editor. Further information on all commands discussed here can
be found in:

4—Document Preparation UNIX Programmer’s Manual

® UNIX Programmer’s Manual —Volume 1: Commands and Utilities

® UNIX Programmer’s Manual—Volume 2: System Calls and Library
Routines

e UNIX Programmer’s Manual —Volume 3: System Administration Facilities

Special Characters

The ed program is the primary interface to the system, so it is worthwhile to
know how to get the most out of it with the least effort.

Print and List Commands

Two commands are provided for printing contents of lines being edited. Most
users are familiar with the print command (p) in combinations like

1,$p
to print all lines that are being edited, or
s/abc/def/p

to change the first “abc” to “def” on the current line and print the results.
Less familiar is the list command (I) which gives slightly more information
than p. In particular, 1 makes characters visible that are normally invisible,
such as tabs and backspaces. If a line contains some of these, the 1 command
will print each tab as “>" and each backspace as “<”. This makes it easier
to correct typing mistakes that insert extra spaces adjacent to tabs or a
backspace followed by a space.

The 1 command also “folds” long lines for display purposes. Any line that
exceeds 72 characters is printed on multiple lines. Each printed line except the
last is automatically terminated by a backslash (\) to indicate that the line was
folded. A “$” character is appended to the real end of line. This is useful for
printing long lines on terminals having output line capability of only 72
characters per line.

UNIX Programmer’s Manual Document Preparation—5

DOCUMENT PREPARATION

Occasionally, the 1 command will print a string of numbers preceded by a
backslash, such as “\07” or ‘“\16”. These combinations are used to make
characters visible that normally do not print, e.g., form feed, vertical tab, or
bell. Each such combination is interpreted as a single character. When such
characters are detected, they may have surprising meanings when printed on
some terminals. Often their presence means that a finger slipped while typing.

Substitute Commands

The substitute command (s) is used for changing the contents of individual
lines. It is probably the most complex and effective of any ed command.

The meaning of a trailing global command (g) after a substitute command is
illustrated in the next two commands:

s/this/that/
and

s/this/that/g

The first form replaces the first “this” on the line with “that™. If there is more
than one occurrence of “this” on the line, the second form (with the trailing g)
changes all of them. Either of the two forms of the s command can be
followed by p or 1 to print or list the contents of the line:

s/this/that/p
s/this/that/1
s/this/that/gp
s/this/that/gl

All are legal and have slightly different meanings.

An s command can be preceded by one or two line numbers to specify that the
substitution is to take place on a group of lines specified by the line numbers.
Thus:

6—Document Preparation UNIX Programmer’s Manual

1,$s/mispell/misspell/

changes the first occurrence of “mispell” to “misspell” on every line of the file.
The following command changes every occurrence on every line:

1,$s/mispell/misspell/g

By adding a p or | to the end of any of these substitute commands, only the last
line that was changed will be printed, not all lines. How to print all the lines
that were changed is described in a later section.

Any character can be used to delimit pieces of an s command. There is
nothing sacred about slashes (but slashes must be used for context searching).
For instance, for a line that contains a lot of slashes already, e.g.:

//exec //sys.fort.go // etc. . .

a colon could be used as the delimiter. To delete all the slashes, the command
is

s/:/::g

Undo Command

Occasionally, an erroneous substitution is made in a line. The undo command
(u) negates the last command so that data is restored to its previous state.
This command is especially useful after executing a global command if it is
discovered the command did things that are undesirable.

Metacharacters

When using ed, certain characters have special meanings when they occur in
the left side of a substitute command or in a search for a particular line. These
are called “metacharacters” which are:

e Period .

e Backslash \

UNIX Programmer’s Manual Document Preparation—7

DOCUMENT PREPARATION

¢ Dollar Sign $
¢ Circumflex "

e Star *

e Brackets []

e Ampersand &

Even though metacharacters are discussed separately in the following text, they
can be combined.

Period

The period (.) on the left side of a substitute command or in a search stands
for any singie character. Thus the search

/x.y/
finds any line where “x” and “y” occur separated by a single character, as in

x+y
Xy
x<sp>y
X.y

The “<sp>" stands for a space character whenever needed to make it visible.

Since the period matches any single character, a way to deal with the
“invisible” characters printed by 1 is available. For instance, if there is a line
that when printed with the I command, appears as

...th\07is...

and it is desired to get rid of the “\07” (the bell character), the most obvious
solution is to try

8—Document Preparation UNIX Programmer’s Manual

s/\07//

This will fail. Retyping the entire line is a reasonable tactic if the line in
question is not too long. However, for a very long line, retyping could result in
additional errors. Since ‘“\07” really represents a single character, the
command

s/th.is/this/

gets the job done. The period matches the mysterious character between the
“h and the “i”.

Since the period matches any single character, the command

s/./,/

“@%

converts the first character on the line into a *,”.

As is true of many characters in ed, the period has several meanings depending
on its context. In the line

sl././

e The first period is the line number of the line being edited, which is called
“d()t”,

e The second period is a metacharacter that matches any single character on
that line (in this instance the first character of the line).

o The third period is the only one that really is a literal period. On the right
side of a substitution, the period is not special.

Backslash

Since a period means “any character”, the question arises of what to do when a
period is really needed. For example, to convert the line:

Now is the time.

UNIX Programmer’s Manual Document Preparation—9

DOCUMENT PREPARATION

into
Now is the time?

the backslash (\) is used. A backslash turns off any special meaning that the
next character might have. In particular, “\+™ converts the period from a
“match anything” into a “match the period” statement. The “\.” pair of
characters is considered by ed to be a single literal period. To replace the
period with a question mark, the following command is used:

s/\./?/

The backslash can also be used when searching for lines that contain a special
character. If a search is made to look for a line that contairs

PP
the search
/.PP/
is not adequate. It will find a line like
THE APPLICATION OF ...
The period matches the letter “A”. But if the command
/\ .PP/
is used, only the lines that contain “.PP” are found.

The backslash can also be used to turn off special meanings for characters
other than the period. For example, to find a line that contains a backslash,
the search

10—Document Preparation ' UNIX Programmer’s Manual

/I\/

will not work because the “\” is not a literal backslash, but instead means that
the second “/” no longer delimits the search. A search can be made for a
literal backslash by preceding a backslash with another “\”:

/\\/
Similarly, searches can be made for a slash (/) with
TAVZ

The backslash turns off the meaning of the immediately following “/” so that
it does not terminate the search prematurely.

Some substitute commands, each of which will convert the line

\x\\y

into the line

\x\y .

are

s/\\.//
s/x../x/
s/..yly/

The user’s erase character and the line kill character (# and @ by default)
must also be used with a backslash to turn off their special meaning. When
adding text with append (a), insert (i), or change (¢c) commands, the backslash
is special only for the erase and line kill characters, and only one backslash
should be used for each one needed.

UNIX Programmer’s Manual Document Preparation—11

DOCUMENT PREPARATION

Dollar Sign

In the left side of a substitute command or in a search command the dollar
sign ($) stands for “the end of line”. The word “time” is added to the end of
the following phrase:

Now is the

with the following command:
s/$/ <sp>time/

The result is
Now is the time

A space is needed before “time” in the substitute command, otherwise, the
following will be printed:

Now is thetime

The second comma in the following line can be replaced with a period without
altering the first:

Now is the time, for all good men,
The needed command is
s/,$/./

- The “$” provides context to indicate which specific comma. Without it the s
command would operate on the first comma to produce

Now is the time. for all good men,

To convert

12—Document Preparation UNIX Programmer’s Manual

Now is the time.
into
Now is the time?
that was previously done with the backslash, the following command is used:
s/.$/7/
The “$” has multiple meanings depending on context. In the line
$s/8/8/

e The first $ refers to the last line of the file.
e The second $ refers to the end of the line.

e The third $ is a literal dollar sign to be added to that line.

Circumflex

The circumflex ("), alias “hat” or “caret”, stands for the beginning of the line.
For example, if a search is made for a line that begins with “the”, the
command

/the/

will probably find several lines that contain “the” before arriving at the line
that was wanted. But the command

/" the/
narrows the context, and thus arrives at the desired line more quickly.

The other use of the circumflex is to enable text to be inserted at the beginning
of a line. For example:

UNIX Programmer’s Manual Document Preparation—13

DOCUMENT PREPARATION

s/ "/ <sp>/
places a space at the beginning of the current line.

Metacharacters can be combined. For example, to search for a line that
contains only the characters

PP
the command
/ "\ .PP$/

can be used.

Star

The star (*) is useful to replace all spaces between x and y with a single
space, as in the following example:

text x y text

where text stands for lots of text, and there are an indeterminate number of
spaces between x and y. The line is too long to retype, and there are too many
spaces to count.

A regular expression (typically a single character) followed by a star stands for
as many consecutive occurrences of that regular expression as possible. To
refer to all the spaces at once, the following command is used:

s/x<sp>*y/x<sp>y/

The construction <sp>* means *“as many spaces as possible”. Thus
x<sp>*y means: “an X, followed by as many spaces as possible, and then a
y’,.

The star can be used with any character, not just space. If the original
example was

14—Document Preparation UNIX Programmer’s Manual

then all “—" characters can be replaced by a single space with the command
s/x—*y/x<sp>y/

If the original line was

and if the following command was typed:
s/x.*y/x<sp>y/

what happens depends upon the occurrence of other x’s or y’s on the line. If
there are no other x’s or y’s, then everything works, but it is blind luck, not
good management. Since a period matches any single character, then .*
matches as many single characters as possible. Unless the user is careful the
star can eat up a lot more of the line than expected. If the line was

text X text X......... y text y text

then the command will take everything from the first “x” to the last “y”,
which, in this example, is undoubtedly more than wanted. The proper way is
to turn off the special meaning of period with “\.”.

s/x\ .*¥y/x<sp>y/
Now everything works since “\.*” means “as many periods as possible”.

There are times when the pattern “.*” is exactly what is wanted. For
example, to change

Now is the time for all good men ...
into

UNIX Programmer’s Manual Document Preparation—15

DOCUMENT PREPARATION

Now is the time.
the following deletes everything after the word “time™:
s/ <sp>for.*/./

There are a couple of additional pitfalls associated with * to be aware of. Most
notable is that “as many as possible” means zero or more. The fact that zero
is a legitimate possibility is sometimes rather surprising. For example, if a line
contains

text Xy text X y text
and the command is
s/x<sp>*y/x<sp>y/

6,9

the first “xy” matches this pattern, for it consists of an “x”, zero spaces, and a

[T 1)

y”. The result is that the substitute acts on the first “xy” and does not touch
the later one that actually contains some intervening spaces. The proper way is
to specify a pattern like

/x<sp><sp>*y/

which says “an x, a space, as many more spaces as possible, and then a y” (in
other words, one or more spaces).

The other startling behavior of * is also related to the zero being a legitimate
number of occurrences of something followed by a star. The command

s/x*/ylg
when applied to the line

abcdef

16—Document Preparation UNIX Programmer’s Manual

produces

yaybycydyeyfy

which is almost certainly not what was intended. The reason for this behavior
is that zero is a legal number of matches, and there is no “x” at the beginning
of the line (so that gets converted into a “y”), nor between the “a” and the “b”
(so that gets converted into a “y”), etc. The following command:

s/xx*/y/g

where “xx*” is “one or more Xx’s”’, when applied to the line
abcdefxghi

produces

abcdefyghi

Brackets

Should a number that appears at the beginning of all lines of a file need to be
deleted, a first thought might be to perform a series of commands like:

1,8s/ " 1*//
1,8s/"2%//
1,8s/73%//

This is going to take forever if the numbers are long. Unless it is desired to
repeat the commands over and over until finally all numbers are gone, the
digits can be deleted on one pass. This is the purpose of brackets ([1).

The construction

[01234567891]

UNIX Programmer’s Manual Document Preparation—17

DOCUMENT PREPARATION

matches any single digit. The whole thing is called a “character class”. With
a character class, the job is easy. The pattern “[{0123456789]*” matches zero
or more digits (an entire number), so

1,8s/°[01234567891* //
deletes all digits from the beginning of all lines.

Any characters can appear within a character class; and just to confuse the
issue, there are essentially no special characters inside the brackets. Even the
backslash does not have a special meaning. The following command searches
for special characters within the brackets:

/NS 1/

Within a character class, the “[” is not special. To get a “1” into a character
class, it should be placed as the first character in the class. For example:

/T1N$"[1/

It is a nuisance to have to spell out the digits. They can be abbreviated as
[0-9]; similarly, [a—z] stands for the lowercase letters and [A—Z] for
uppercase letters.

The user can specify a character class that means “none of the following
characters”. This is done by beginning the class with a circumflex.

["0-9]

which stands for “any character except a digit”. The following search finds the
first line that does not begin with a tab or space:

/" " (space) (tab)1/

Within a character class, the circumflex has a special meaning only if it occurs
at the beginning. For example:

18—Document Preparation UNIX Programmer’s Manual

/711
finds a line that does not begin with a circumflex.

Ampersand
The ampersand (&) is used primarily to save typing. For example, if the
following is the original line:
Now is the time
and it needs to be
Now is the best time
the command

s/the/the best/

can be used, but it is unnecessary to repeat the “the”. The & is used to
climinate the repetition. On the right-hand side of a substitute command, the
ampersand means “whatever was just matched”, so in the command

s/the/ & best/

the & represents “the”. This is not much of a saving if the thing matched is
just “the”; but if it is something long or complicated or if it is something (such
as .*) which matches a lot of text, the & can save some tedious typing. There
is also much less chance of making a typing error in the replacement text. For
example, to parenthesize a line, regardless of its length:

s/. ¥/ (&) /
The ampersand can occur more than once on the right side.

s/the/ & best and & worst/

UNIX Programmer’s Manual Document Preparation—19

DOCUMENT PREPARATION

makes the original line

Now is the best and the worst time
and

s/.¥/ &Y &/
converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, the backslash is used to turn off the special
meaning.

s/ampersand/\& /

converts the word into the symbol. The & is not special on the left-hand side
of a substitute, only on the right.

Operating On Lines

Substituting Newline Characters

The ed program provides a facility for splitting a single line into two or more
lines by substituting in a newline character. If a line is unmanageably long
because of editing or merely because of the way it is typed, it can be divided as
follows: ~

text Xy text

(I 1]

can be broken between the “x” and the “y” with the following substitute
command: '

20—Document ’Preparation * UNIX Programmer’s Manual

s/xy/x\
y/

This is actually a single command although it is typed on two lines. Since the
“\” turns off special meanings, a “\” at the end of a line makes the newline
character there no longer special. When a new line is substituted in, dot is left
pointing at the last line created.

A single line can be made into several lines with this same mechanism. The
word “very” in the following example can be put on a separate line preceded
with the nroff formatter underline command (ub):

text a very big text
The commands

s/ <sp>very<sp>/\
ul\

very\
/

convert the line into four shorter lines:

text a
.ul

very
big text

The word “very” is preceded by the line containing the “.ul” and spaces around
“very” are eliminated at the same time.
Joining Lines

Lines may be connected with the join command (j). Given the lines

Now is
<sp>the time

and if dot is set to the first line, then the j command joins them together. No
UNIX Programmer’s Manual Document Preparation—21

DOCUMENT PREPARATION

spaces are added which is why a space is shown at the beginning of the second
line.

All by itself, a j command joins dot to dot+1. Any contiguous set of lines can
be joined by specifying the starting and ending line numbers. For example:

1,8jp

joins all the lines into a big one and prints it.

Rearranging Lines

The & metacharacter stands for whatever was matched by the left side of an s
command. Similarly, several pieces can be captured of what was matched; the
only difference is it must be specified on the left side just what pieces the user
is interested in. For instance, if there is a file of lines that consist of names in
the form ‘

Smith, A. B.
Jones, C.

etc., and it was intended to have the initials to precede the name, as in:

A. B. Smith
C. Jones

It is possible to do this with a series of tedious and error-prone editing
commands. The alternative is to “tag” the pieces of the pattern (in this case,
the last name and the initials) and then rearrange the pieces. On the left side
of a substitution if part of the pattern is enclosed between “\(> and “\)”,
whatever matched that part is remembered and available for use on the right
side. On the right side, the symbol “\1” refers to whatever matched the first
“\(...\) ” pair, “\2” to the second “\(...\) > pair, etc.

The command

1,8s/ "\ ’([A,]*\),<sp> *\ (F\)N\2<sp>\1/

22-—-Document Preparation UNIX Programmer’s Manual

although hard to read, does the job. The first “\(...\)” matches the last
name, which is any string up to the comma,; this is referred to on the right side
with “\1”. The second “\(...\)” is whatever follows the comma and any
spaces and is referred to as “\2”.

With any complicated editing sequence, it is foolhardy to run it and hope.
Global commands provide a way to print those lines affected by the substitute
command.

Line Addressing in the Editor

Line addressing in ed specifies the lines to be affected by editing commands.
Previous constructions like

1,8s/x/y/

were used to specify a change on all lines. Most users are familiar with using a
single newline character (or return) to print the next line and with

/string/
to find a line that contains “string”. Less familiar is the use of
Istring?

to scan backwards for the previous occurrence of “string”. This is handy when
the user realizes that the string to be operated on is back up the page (file)
from the current line being edited. The slash and question mark are the only
characters that can be used to delimit a context search. '

Address Arithmetic
with “+” and “—". Thus:

-1

UNIX Programmer’s Manual Document Preparation—23

DOCUMENT PREPARATION

is a command. to print the next to last line of the current file (i.e., one line
before line $). For example:

$—5,%p

prints the last six lines. If there are not six lines, an error message will be
indicated.

As another example:
~3,.+3p

prints from three lines before the current line to three lines after. The “+”
can be omitted:

—3,.3p
is identical in meaning.

Another area in which to save typing effort in specifying lines is by using “—"
and “+ as line numbers by themselves. For instance, a

by itself is a command to move back up one line in the file. Several minus
signs can be strung together to move back up that many lines:

moves up three lines, as does “—3”. Thus:
=3,+3p

is also identical to the examples above.

24—Document Preparation. UNIX Programmer’s Manual

Since “—" is shorter than “.—1”, constructions like
—,.s/bad/good/

are useful. This changes the first occurrence of “bad” to “good” on both the
previous line and the current line.

The “+” and “—" can be used in combination with searches using
“/string/ 7, “ ?string?”’, and “$”. The search

/string/——

finds the line containing “string” and positions dot two lines before it.

Repeated Searches

When the search command is
/horrible string/

and when the line is printed, it is discovered that it is not the “horrible string”
that was wanted. It is necessary to repeat the search again, but it is not
necessary to retype it. The construction

1

is a shorthand for “the string that was previously searched for”, whatever it
was. This can be repeated as many times as necessary. This also applies to the
backwards search

2?
which searches for the same string but in the reverse direction.

Not only can the search be repeated, but the // construction can be used on
the left side of a substitute command to mean “the most recent pattern’:

UNIX Programmer’s Manual Document Preparation—25

DOCUMENT PREPARATION

/horrible string/

--- ed prints line with “horrible string”
s//good/p

--- ed prints the corrected line

To search backwards and change a line, the following command is used:
?7s//good/

Of course, the & on the right-hand side of a substitute can still be used to
stand for whatever got matched:

//s// & <sp>&/p

finds the next occurrence of whatever was searched for last, replaces it by two
copies of itself, and then prints the line to verify that it worked.

Default Line Numbers

One of the most effective ways to speed editing is by knowing which lines are
affected by a command with no address and where dot will be positioned when
a command finishes. Editing without specifying unnecessary line numbers can
save a lot of typing. As the most obvious example, the search command

/string/

puts dot at the next line that contains “string”. No address is required with
commands like:

e p to print the current line

e | to list the current line

¢ d to delete the current line

e a to append text after the current line

e ¢ to change the current line

26—Document Preparation UNIX Programmer’s Manual

e i to insert text before the current line.

e s to make a substitution on the current line

If there was no “string” detected, dot stays on the line where it was. This is
also true if it was sitting on the only “string” when the command was issued.
The same rules hold for searches that use “ ?string? ”’; the only difference is
direction of search.

The delete command (d) leaves dot at the line following the last deleted line.
However, dot points to the new last line when the last line is deleted.

Line-changing commands a, ¢, and i affect (by default) the current line if no
line number is specified. They behave identically in one respect - after
appending, changing, or inserting, dot points at the last line entered. For
example, the following can be done without specifying any line number for the
substitute command or for the second append command:

a

--= text

--- botch _ (minor error)
s/botch/correct/ (fix botched line)
a

--- more text

The following overwrites the major error and permits continuation of entering
information:

a
--- text
--- horrible botch (major error)

c
--- fixed up line (replace entire line)
--- more text

The read command (r) will read a file into the text being edited, either at the
end if no address is given or after the specified line if an address is given. In
either case, dot points at the last line read in. The Or command can be used to
read in a file at the beginning of the text and the 0a or 1i commands can be
used to start adding text at the beginning.

UNIX Programmer’s Manual Document Preparation—27

DOCUMENT PREPARATION

The write command (w) writes out the entire file. If the command is preceded
by one line number, that line is written. Preceding the command by two line
numbers causes a range of lines to be written. The w command does not
change dot, therefore, the current line remains the same regardless of what
lines are written. This is true even if a command like

/"\.AB/,/ "\ .AE/w abstract ’

is made which involves a context search. Since the w command is easy to use,
the text being edited should be saved regularly just in case the system crashes
or a file being edited is clobbered.

The command with the least intuitive behavior is the s command. The dot
remains at the last line that was changed. If there were no changes, then dot is
unchanged. To illustrate, if there are three lines in the buffer and dot is sitting
" on the middle one:

x1
x2
x3

the command
—,+s/x/y/p

prints the third line, which is the last one changed. But if the three lines had
been:

x1
y2
y3

and the same command issued while dot pointed at the second line, then the
result would be to change and print only the first line and that is where dot
would be set.

28—Document Preparation UNIX Programmer’s Manual

Semicolon

or backward, respectively, until they either find the pattern or get back to the
current line. Sometimes this is not what is wanted. Suppose, for example, that
the buffer contains lines like

ab

be

Starting at line 1, one would expect that the command
/al,/b/p

prints all the lines from the “ab” to the “bc”, inclusive. This is not what
happens. Both searches (for “a” and for “b”) start from the same point, and
thus they both find the line that contains “ab”. The result is to print a single
line. If there had been a line with a “b” in it before the “ab” line, then the
print command would be in error since the second line number would be less
than the first; and it is illegal to try to print lines in reverse order. This is
because the comma separator for line numbers does not set dot while each
address is processed. Each search starts from the same place.

In ed, the semicolon (;) can be used just like comma with the single difference
that use of a semicolon forces dot to be set at that point while line numbers are
being evaluated. In effect, the semicolon “moves” dot. Thus in the example
above, the command

lal;/b/p

prints the range of lines from “ab” to “bc” because after the “a” is found dot
is set to that line, and then “b” is searched for starting beyond that line. This

UNIX Programmer’s Manual Document Preparation—29

DOCUMENT PREPARATION

property is most often useful in a very simple situation. If the need is to find
the second occurrence of “string”, then the commands

/string/
//

print the first occurrence as well as the second. The command
/string /;//

finds the first occurrence of “string” and sets dot there. Then it finds the
second occurrence and prints only that line.

Searching for the second previous occurrence of “string”, as in
Istring?;7?

is similar. Printing the third, fourth, etc. occurrence in either direction is left
as an exercise.

When searching for the first occurrence of a character string in a file where dot
is positioned at an arbitrary place within the file, the command

" 1;/string /
will fail if “string™ occurs on line 1. It is possible to use the command
0; /string /

(one of the few places where 0 is a legal line number) to start the search at
line 1.

30—Document Preparation UNIX Programmer’s Manual

Interrupting the Editor

If the user interrupts ed while performing a command by depressing the
BREAK key, the INTERRUPT key, or the user interrupt character (RUB
OUT or DEL CHAR keys by default), the file is put back together again. The
file state is restored as much as possible to what it was before the command
began. Naturally, some changes are irrevocable. If the file is being read from
or written into, substitutions are being made, or lines are being deleted, these
will be stopped in some clean but unpredictable state in the middle of the
command execution (which is why it is not usually wise to stop them). Dot
may or may not be changed.

Printing is more clear cut. Dot is not changed until the printing is done. Thus
if a user interrupts ed while some printing is being done, dot is not sitting on
the last printed line or even near it. Dot is returned to where it was when the p
command was started.

Global Commands

Basic

Global commands (g and v) are used to perform one or more editing commands
on all lines of a file. The g command operates on those lines that contain a
specified string. As the simplest example, the command

g/THIS/p

prints all lines that contain the string “THIS”. The string that goes between
the slashes can be anything that could be used in a line search or in a
substitute command; exactly the same rules and limitations apply. As another
example:

g/"\./p
prints all lines that begin with period.

The v command (there is no mnemonic significance to the letter “v”) is
identical to g, except that it operates on those lines that do not contain an
occurrence of the string. So

UNIX Programmer’s Manual Document Preparation—31

DOCUMENT PREPARATION

v/"\./p

prints the lines that do not begin with period.

The command that follows g or v can be almost any command. For example:
g/"\./d

deletes all lines that begin with period, and
g/"$/d

deletes all empty (blank) lines.

Probably the most useful command that can follow a global command is the
substitute command since this can be used to make a change and print each
affected line for verification. For example, to change the word “This” to
“THIS” everywhere in a file and verify that it really worked, the command is

g/ This/s//THIS/gp

The use of “//” in the substitute command means ‘“the previous pattern”, in
this case, “This”. The p command is done on every line that matches the
pattern, not just those on which a substitution took place.

Global commands operate by making two passes over the file. On the first
pass, all lines that match the pattern are marked. On the second pass, each
marked line in turn is examined, dot is set to that line, and the command
executed. This means that it is possible for the command that follows a g or v
to use addresses, set dot, etc., quite freely. For example:

g/ “\.PP/+

prints the line that follows each “.PP” macro (the signal for a new paragraph
in some formatting packages). The “+* means “one line past dot”, and

32—Document Preparation UNIX Programmer’s Manual

g /topic/?"\ .SH?1

searches for each line that contains “topic”, scans backwards until it finds a
line that begins “.SH” (a section heading) and prints the line that follows, thus
showing the section headings under which “topic” is mentioned. Finally:

g/ "\.EQ/+,/"\.EN/—p

prints all the lines that lie between lines beginning with the “.EQ” and “.EN”
formatting macros.

The g and v commands can also be preceded by line numbers, in which case
the lines searched are only those in the range specified.

Multiline

It is possible to do more than one command under the control of a global
command although the syntax for expressing the operation is not especially

669

natural or easy. As an example, suppose the task is to change “x” to “y” and

6,9

a” to “b” on all lines that contain “string”. Then:

g/string/s/x/y/\
s/a/b/

is sufficient. The backslash signals the g command that the set of commands
continues on the next line. It terminates on the first line that does not end with
“\”. A substitute command can not be used to insert a newline character
within a g command.

The command

g/x/s//y/\
s/a/b/

does not work as expected. The remembered pattern is the last pattern that
was actually executed, so sometimes it will be “x” (as expected) and sometimes
it will be “a” (not expected). The desired pattern should be spelled out:

UNIX Programmer’s Manual . Document Preparation—33

DOCUMENT PREPARATION

e/x/s/x/y/\
s/a/b/

It is also possible to execute a, ¢, and i commands (append, change, and insert)
under a global command. As with other multiline constructions, all that is
needed is to add a “\” at the end of each line except the last. Thus to add a
.nf and .sp command before each “.EQ” line, the following is typed:

g/ "\ .EQ/i\
.nf\

Sp

There is no need for a final line containing a period to terminate the i
command unless there are further commands being done under the global. On
the other hand, it does no harm to put it in.

It is good practice, after each global command, to check that the command did
only what was desired. Surprises sometimes happen. When they do occur, the
u command (undo) is useful to negate what was done by the last command.

Cut and Paste

There are two editing areas in which ‘“cut and paste” operations can be
performed.

e Command functions

e Text editor functions

Most operations are actually easy if the task is defined and precautions are
taken when entering the commands.

Command Functions

The UNIX operating system command functions perform the following:

e Change name of ﬁlés

34—Document Preparation UNIX Programmer’s Manual

¢ Copy files
e Combine files

e Remove files

Change Name of Files

If there is a file named oldname and if it needs to be renamed to newname, the
move command (mv) will do the job. It moves the file from one name to
another (the target file), for example:

mv oldname newname

Note: If there is already a file with the new name, its contents will be
overwritten with information from the other (oldname) file. The one exception
is that a file cannot be moved to itself, therefore, the following command is
illegal.

mv oldname oldname

Copy Files

Sometimes a copy of a file is needed while retaining the original file. This
might be because a file needs to be worked on and yet have a back up in case
something happens to the file. In any case, the copy is made with the copy
command (cp). To make a copy of a file named good, the following command
will place a copy in a file named savegood:

cp good savegood

Two identical copies of the file good exist. If savegood previously contained
something, it is overwritten.

To get the file savegood back to its original filename, good, the following
commands are used:

mv savegood good

UNIX Programmer’s Manual Document Preparation—35

DOCUMENT PREPARATION

if savegood is not needed anymore or
cp savegood good
to retain a copy of savegood.

In summary, mv renames a file; cp makes a duplicate copy. Both commands
overwrite the target file if one already exists unless write permission is denied
by the mode of the file.

Combine Files

A familiar requirement is that of collecting two or more files into one big file,
bigfile. This is needed, for example, when the author of a paper decides that
several sections are to be combined. There are several ways to do this; the
cleanest is a command called cat (not all commands have 2-letter names). The
word cat is short for “concatenate” which is exactly what is desired. The
command

cat file
prints the contents of the file on the terminal. The command
cat filel file2

causes the contents of filel and file2 to be printed on the terminal, in that
order, but does not place them in bigfile.

There is a way to tell the system to put the same information in a file instead
of printing on the terminal. The way to do it is to add to the command line the
“>” character and the name of the file where the output is to go. The
command

cat filel file2 > bigfile

is used and the job is done. As with cp and mv, when something is put into

bigfile, anything already there is destroyed. The ability to capture the output

of a program can be used with any command that prints on a terminal.
s

36—Document Preparation UNIX Programmer’s Manual

Several files can be combined, not just two:
cat filel file2 file3 ... > bigfile
collects many individual files.
Sometimes a file needs to be appended to the end of another file. For example:

cat good goodl >temp
mv temp good

is the most direct way. The following command:
cat good goodl >good

does not work because the ‘“>"’ empties good before the cat program begins.
The easiest way is to use a variant of “>”, called “>>". In fact, “>>" is
identical to “>" except that instead of clobbering the old file it adds something
to the end. Thus the command

cat goodl > > good

adds goodl to the end of good. If good does not exist, this makes a copy of
good| called good.

Remove Files

If a file is not needed, it can be removed. The rm command

rm savegood
irrevocably deletes the file called savegood if the user has write permission.
Several files can be removed with one command.

rm save*

UNIX Programmer’s Manual Document Preparation—37

DOCUMENT PREPARATION

removes all files that begin with “save”. The command
rm savel save2 save3

removes three files.

Text Editor Functions
The text editor (ed) function performs the following operations:
e Insert one file into another
e Write out part of a file
e Move lines ar(;und
¢ Copy lines

e Marks

File Names
It is important to know the editor (ed) commands for reading and writing files.
Equally useful is the edit command (e). Within ed, the command

e newfile

says “edit a new file called newfile without leaving the text editor”. The e
command discards whatever is being worked on and starts over on newfile.
This is the same as if one had quit with the ¢ command and reentered ed with
a new file name except that if a pattern has been remembered, a command like
“//” will still work.

When entering ed with the command
ed file

ed remembers the name of the file, and any subsequent e, r, or w commands

38—Document Preparation UNIX Programmer’s Manual

that do not contain a file name will refer to this remembered file. Thus:

ed filel
—-- (editing)

w (writes back in filel)

e file2 (edit different file without leaving ed)
- (editing on file2)

w (writes back in file2)

etc. does a series of edits on various files without leaving ed and without typing
the name of any file more than once. By examining the sequence of commands
in this example, it can be seen why many operating systems use e as a synonym
for ed.

The current file name can be found at any time with the f command by typing
f without a file name. Also, the name of a remembered file can be changed
with f. A useful sequence is

ed precious
f junk
--- (editing)

This obtains a copy of the file precious and guarantees that a subsequent w
command without a filename will write to junk and will not overwrite the
original file.

Insert One File Into Another

When a file is to be inserted into another, the r command can be used. For
example, if the file table is to be inserted just after the reference to “Table 17,
the following can be used:

/ Table 1/
Table 1 shows that... (response from ed)
T table

The critical line is the last one. The .r command reads a file in after dot. Anr
command without any address adds lines to the end of the file, so it is
equivalent to the $r command.

UNIX Programmer’s Manual Document Preparation—39

.DOCUMENT PREPARATION

Write Out Part of a File

Another feature is writing to another file part of the document that is being
edited. For example, it is possible to split into a separate file the table from the
previous example, so it can be formatted or tested separately. If in the file
being edited, there is

--= text
TS

--- data for table
.TE

--- text

(which is the way a table is set up as explained in the TABLE FORMATTING
PROGRAM section) to isolate the table information in a separate file called
table. First the start of the table (the .TS line) is found, and then the desired
part is written on file table:

/™\TS/
TS (response from ed)
.,/ "\ .TE/w table

The same job can be accomplished with the single command
/°\.TS/;/"\.TE/w table

The point is that the w command can write out a group of lines instead of the
whole file. A single line can be written by using one line number instead of
two. For example, if a complicated line was just typed and it will be needed
again, it should be saved and read in later rather than retyped:

40--Document Preparation UNIX Programmer’s Manual

N

a
--- lots of stuff
--- stuff to repeat

W temp
a
--- more stuff

.I temp
a
--- more stuff

Move Lines Around

Moving a paragraph from its present position in a paper to the end can be done
several ways. For example, it is assumed that each paragraph in the paper
begins with the “.PP” formatting macro. The brute force way (not necessarily
bad) is to write the paragraph onto a temporary file, delete it from its current
position, and then read in the temporary file at the end. If dot is at the “.PP”
macro that begins the paragraph, this is the sequence of commands:

.,/ "\ .PP/—w temp
. 11—d
$r temp

This states that from where dot is now until one line before the next “.PP”
write onto file temp. The same lines are deleted and the file temp is read in at
the end of the working file.

An easier way is to use the move command (m) that ed provides. This does the
whole set of operations at one time without a temporary file. The m command
is like many other ed commands in that it takes up to two line numbers in front
to tell which lines are to be affected. It is also followed by a line number that
tells where the lines are to go. Thus:

linel,line2m line3

says “move all the lines from linel through line2 to after line3”. Any of
“linel”, etc., can be line numbers, strings between slashes or dollar signs, or
other line specifications. If dot is at the first line of the paragraph, the

UNIX Programmer’s Manual Document Preparation—41

DOCUMENT PREPARATION

command
.,/ "\ .PP/—m$
will also accomplish this task.

As another example of a frequent operation, the order of two adjacent lines can
be reversed by moving the first one after the second. If dot is positioned at the
first line, then

m+

does it. It says to move the line to after the dot. If dot is positioned on the
second line:

m——
does the interchange.

The m command is more concise and direct than writing, deleting, and
rereading. The main difficulty with the m command is that if patterns are used
to specify both the line being moved and the target line, they must be specified
properly or the wrong lines may be moved. The result of a botched m
command can be a costly mistake. Doing the job a step at a time makes it
easier to verify that each step accomplished what was wanted. It is also a good
idea to issue a w command before doing anything complicated; then if an error
is made, it is easy to back up.

Copy Lines

The ed program provides a transfer command (t) for making a copy of a group
of one or more lines at any point. This is often easier than writing and
reading. The t command is identical to the m command except instead of
moving lines it duplicates them at the place referenced. Thus:

1,5t$
" duplicates the entire contents that is being edited. A more common use for t is

42—Document Preparation UNIX Programmer’s Manual

creating a series of lines that differ only slightly. For example:

a

--- long line of stuff
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/ylz/ (change it a bit)

Marks

The ed program provides for marking a line with a particular name so that the
line can be referenced later by its name regardless of its line number. This can
be useful for moving lines and for keeping track of them as they move. The
mark command is k. The mark name must be a single lowercase letter. The
command

kx

marks the current line with the name “x”. If a line number precedes the k,
that line is marked. The marked line can then be referred to with the address

Marks are most useful for moving things around. The first line of the block to
be moved is found and marked with ka. Then the last line of the block is
found and marked with kb. Dot is then positioned at the place where the lines
are to go and the following command is performed:

’a,”’bm

Note: Only one line can have a particular mark name associated with it at any
given time.

UNIX Programmer’s Manual Document Preparation—43

DOCUMENT PREPARATION

Temporary Escape

Sometimes it is convenient to temporarily escape from the text editor to do
some UNIX operating system command without leaving the text editor. The
escape command (!) provides a way to do this. If the command

!<any UNIX operating system command >

is entered, the current editing state is suspended; and the command asked for is
executed. When the command finishes, ed will return a signal by printing
another “!” and editing can be resumed.

Any UNIX operating system command may be performed including another ed
(this is quite common). In this case, another “!” can be done.

Supporting Tools

There are several related tools and techniques which are relatively easy to learn
after ed has been learned because they are based on ed. Examples of these
techniques are shown, more to indicate their existence than to provide a
complete tutorial.

Global Printing From a Set of Files (grep)

Sometimes all occurrences of some word or pattern in a set of files need to be
found in order to edit them or perhaps to verify their presence or absence. It
may be possible to edit each file separately and look for the pattern of interest.
If there are many files, this can be tedious; and if the files are really big, it may
be impossible because of limits in ed.

The grep program was written to get around these limitations. Search patterns
are often called “regular expressions”, and “grep” stands for

g/re/p

This describes what grep does - it prints every line in a set of files that contains
a particular pattern. Thus:

44—Document Preparation UNIX Programmer’s Manual -

grep ’string’ filel file2 file3 ...

finds “string” wherever it occurs in any of the files filel, file2, etc. The grep
program also indicates the file in which the line was found, so it can be edited
later if needed.

The pattern represented by “string” can be any pattern that can be used in the
text editor since grep and ed use the same mechanism for pattern searching. It
is wisest to enclose the pattern in the single quotes (string’) if it contains any
nonalphabetic characters since many such characters also mean something
special to the UNIX operating system command interpreter (the *shell”).
Without single quotes, the command interpreter will try to interpret them
before grep has the opportunity.

There is also a way to find lines that do not contain a pattern:
grep —v ’string’ filel file2 ...

finds all lines that do not contain “string”. The —v option must occur in the
position shown. Given grep and grep —v, it is possible to select all lines that
contain some combination of patterns. For example, to obtain all lines that

€6y,99,

contain “x” but not “y’”:

grep x file... | grep —v y

The pipe notation (|) causes the output of the first command to be used as
input to the second command.

Editing Scripts

If a fairly complicated set of editing operations is to be performed on an entire
set of files, the easiest thing to do is to make a script file, i.e., a file that
contains the operations to be performed and then apply this script to each file
in turn. For example, if every instance of “This” needs to be changed to
“THIS” and every instance of “That” needs to be changed to “THAT” in a
large number of files, a file script is made with the following contents:

UNIX Programmer’s Manual Document Preparation—45

DOCUMENT PREPARATION

g/This/s//THIS/g
g/That/s//THAT/g
w

q

The following is done:

ed filel <script
ed file2 <script

This causes ed to take its commands from the prepared script. The whole job

has to be planned in advance.

By using the UNIX operating system command interpreter [sh(1)], a set of files
can be cycled automatically with varying degrees of ease.

46—Document Preparation

UNIX Programmer’s Manual

STREAM EDITOR

Introduction

The stream editor (sed) is a noninteractive text editor that runs on the UNIX
operating system. It is a lineal descendant of the text editor, ed. Changes
between ed and sed exist because of differences between interactive and
noninteractive operations. The sed software is especially useful in the following
cases:

o Editing files that are too large. for comfortable interactive editing

e Editing any size file when the sequence of editing commands is too
complicated to be comfortably typed in interactive mode

" e Performing multiple global editing functions efficiently in one pass through
the input file.

The effective size of a file that can be edited is limited only by the requirement
that input and output files fit simultaneously into available secondary storage.
This is because only a few lines of the input file reside in memory at one time
and no temporary files are used.

Complicated editing scripts can be created separately and given to the sed
program as a command file. For complex edits, this saves considerable typing
and attendant errors. The sed program running from a command file is ‘more
efficient than an interactive editor even if that editor can be driven by a
prewritten script.

Principal loss of functions, compared to an interactive editor, are:

o Lack of relative addressing (because of the line-at-a-time operation)

e Lack of immediate verification that a command has done what was intended.

UNIX Programmer’s Manual Document Preparation—47

DOCUMENT PREPARATION

Overall Operation

The sed program by default copies the standard input to the standard output,
perhaps performing one or more editing commands on each line before writing
it to the output. This behavior may be modified by arguments on the command
line.

Command Line

The general format of an editing command is
[address1,address2] function [arguments]

e One or both addresses may be omitted.
e The function must be present.
o Any number of blanks or tabs may separate addresses from the function.

¢ Arguments may be required or optional according to the function given.
Three arguments are recognized on the command line:

—n Copy only those lines specified by p (print) functions or p
arguments after s (substitute) functions

—e Take the next argument as an editing command

—f Take the next argument as a file name; the file should contain
editing commands — one to a line.

e Tab characters and spaces at the beginning of lines are ignored.

Order of Application of Editing Commands

All editing commands are compiled into a form which will be moderately
efficient during the execution phase (when the commands are actually applied
to lines of the input file) and before any input file is opened.

e Commands are compiled in the order encountered; generally, the order they
will be attempted at execution time.

48—Document Preparation UNIX Programmer’s Manual

e Commands are applied one at a time; the input to each command is the
output of all preceding commands.

The default linear order of application of editing commands can be changed by
the t (test substitution) and b (branch) flow-of-control commands. When the
order of application is changed by these commands, it remains true that the
input line to any command is the output of any previously applied command.

Pattern Space

The range of pattern matches is called the pattern space. Ordinarily, pattern
space is one line of the input text, but more than one line can be read into the
pattern space by using the next command (n).

Examples

Examples scattered throughout the following paragraphs use the following
standard input text, except where noted:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

The command
2q
will copy the first two lines of the input and quit. The output will be

In Xanadu did Kubla Khan
A stately pleasure dome decree:

UNIX Programmer’s Manual Document Preparation—49

DOCUMENT PREPARATION

Selecting Lines for Editing

Input file lines that editing commands are to be applied can be selected by
addresses. ‘Addresses may be cither line numbers or context addresses.

The application of a group of commands can be controlled by one address (or
address pair) by grouping commands with braces ({}).

Line Number Addresses

A line number is a decimal integer. As each line is read from the input, a line
number counter is incremented. A line number address matches (selects) the
input line causing the internal counter to equal the address line number. The
counter runs cumulatively through multiple input files. It is not reset when a
new input file is opened. As a special case, the $ character matches the last
line of the last input file.

Context Addresses .

A context address is a pattern (a regular expression) enclosed in slashes
(/string/). Regular expressions recognized by the sed program are constructed
as follows:

¢ An ordinary character is a regular expression and matches that character.

e A circumflex (") at the beginning of a regular expression matches the null
character at the beginning of a line.

e A dollar sign ($) at the end of a regular expression matches the null
character at the end of a line.

e The “\n” character matches an embedded newline character but not the
newline character at the end of the pattern space.

e A period (.) matches any character except the terminal newline character of
the pattern space.

e A regular expression followed by an asterisk (*) matches any number
(including 0) of adjacent occurrences of the regular expression it follows.

o A string of characters in square brackets ([1) matches any character in the
string and no others. If, however, the first character of the string is a

50—Document Preparation UNIX Programmer’s Manual

circumflex ("), the regular expression matches any character except the
characters in the string and the terminal newline character of the pattern
space. The circumflex is the only metacharacter recognized within the square
brackets. If “]” needs to be in the set of square brackets, it should be the first
nonmetacharacter. For example:

(1.1 Includes “]”
["]..1 Does not include “]”

e A concatenation of regular expressions is a regular expression which matches
the concatenation of strings matched by the components of the regular
expression.

e A regular expression between the sequences “\(” and “\)” is identical in
effect to the unadorned regular expression but has side effects which are
described under the s command (substitute function) below.

e The expression “\d” means the same string of characters matched by an
expression enclosed in “\(” and “\) ” earlier in the same pattern. The d is a
single digit; the string specified is that beginning with occurrence d of “\(”
counting from the left. For example, the following expression matches a line
beginning with two repeated occurrences of the same string:

“\CHON

e The null regular expression standing alone (e.g., //) is equivalent to the last
regular expression compiled.

e Special characters (" $. * [1\ /), when used as literal characters, must
be preceded by a backslash (V).

e For a context address to match, the whole pattern within the input address
must match some portion of the pattern space.

Number of Addresses

Commands can have 0, 1, or 2 addresses. The maximum number of allowed
addresses is given under each command. It is considered an error when a
command has more addresses than the maximum allowed.

If a command has no addresses, it is applied to every line in the input.

UNIX Programmer’s Manual Document Preparation—51

DOCUMENT PREPARATION

If a command has one address, it is applied to all lines which match that
address.

If a command has two addresses, it is applied to the first line which matches
the first address and to all subsequent lines until (and including) the first
subsequent line which matches the second address. An attempt is made on
subsequent lines to again match the first address, and the process is repeated.
Two addresses are separated by a comma. The following table indicates some
command examples applied to the standard input text and the resulting match.

/an/ matches lines 1, 3, and 4
/an.*an/ matches line 1
/"an/ matches no lines
/./ matches all lines
N./ matches line 5
/r*an/ matches lines 1, 3, and 4 (number = 0)
/\(an\).®\1/ matches line 1.
Functions

Functions are named by a single alphabetic character. In the following
function summaries, the maximum number of allowable addresses is enclosed in
parentheses followed by the single character function name. Possible
arguments are enclosed in angle brackets (< >), and a description of each
function is given. Angle brackets around arguments are not part of the
argument and should not be typed in actual editing commands.

Whole Line Oriented Functions

(2)d The d function deletes from the file (does not write to the output)
those lines matched by its addresses. It also has the side effect that
no further commands are attempted on the corpse of a deleted line.
As soon as the d function is executed, a new line is read from the
input, and the list of editing commands is restarted from the
beginning on the new line.

(2)n The n function reads the next line from the input, replacing the

current line, and the current line is written to the output. The list
of editing commands is continued following the n command.

52—Document Prepération UNIX Programmer’s Manual

(1)a\

<text> The a function causes the text argument (<text>) to be written
to the output after the line matched by its address. The a
command is inherently multiline; a must appear at the end of a
line, and <text> may contain any number of lines. To preserve
the one-command-to-a-line fiction, interior newline characters must
be hidden by a backslash character (\) immediately preceding the
newline character. The <text> is terminated by the first unhidden
newline character not immediately preceded by a backslash. Once
an a function is successfully executed, text will be written to the
output regardless of what later commands do to the line which
triggered it. Even if that line is deleted, text will still be written to
the output. The <text> is not scanned for address matches, and
no editing commands are attempted on it. The a function does not
cause a change in the line number counter.

(Di\

<text> The i function causes the text argument (<text>) to be written to
the output before the line matched by its address. The i command
is inherently multiline; i must appear at the end of a line, and
<text> may contain any number of lines. To preserve the one-
command-to-a-line fiction, interior newline characters must be
hidden by a backslash character (\) immediately preceding the
newline character. The <text> is terminated by the first unhidden
‘newline character not immediately preceded by a backslash. Once
an i function is successfully executed, text will be written to the
output regardless of what later commands do to the line which
triggered it. Even if that line is deleted, text will still be written to
the output. The <text> is not scanned for address matches, and
no editing commands are attempted on it. The i function does not
cause a change in the line number counter.

(2)c\

<text> The ¢ function deletes lines selected by its addresses and replaces
them with the lines in the text argument (<text>). Like a and i,
¢ must be followed by a newline character hidden by a backslash;
interior newline characters in <text> must be hidden by
backslashes. The ¢ command may have two addresses, and
therefore select a range of lines. If it does, all lines in the range are
deleted, but only one copy of text is written to the output, not one
copy per line deleted. As with a and i, <text> is not scanned for
address matches, and no editing commands are attempted on it. It
does not change the line number counter. After a line has been
deleted by a ¢ function, no further commands are attempted on the

UNIX Programmer’s Manual Document Preparation—53

DOCUMENT PREPARATION

corpse. If text is appended after a line by a or r functions and the
line is subsequently changed, the text inserted by the ¢ function will
be placed before the text of the a or r functions (the r function is
described later).

Leading blanks and tabs will disappear, as in sed commands, for text put in the
output by these functions. To get leading blanks and tabs into the output, the
first desired blank or tab is preceded by a backslash. The backslash will not
appear in the output. The list of editing commands for example:

n

a\
XXXX
d

applied to the standard input produces

In Xanadu did Kubla Khan
XXXX

Where Alph, the sacred river, ran
XXXX

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two
following command lists: '

or

o\ .
XXXX

54—Document Preparation UNIX Programmer’s Manual

Substitute Function

One important substitute function that changes parts of lines selected by a
context search within the line is

(2)s<pattern> <replacement> <flags>

The s function replaces the part of a line selected by <pattern> with
<replacement>. It can be read

Substitute for <pattern>, <replacement>

Pattern

The pattern argument (<pattern>) contains a pattern exactly like the
patterns in addresses. The only difference between <pattern> and a context
address is that the context address must be delimited by slash (/) characters;
<pattern> may be delimited by any character other than space or newline.
By default, only the first string matched by <pattern> is replaced unless the g
flag (below) is invoked.

Replacement

The replacement argument (<replacement>) begins immediately after the
second delimiting character of <pattern> and must be followed immediately
by another instance of the delimiting character (thus there are exactly three
instances of the delimiting character). The <replacement> is not a pattern,
and the characters which are special in patterns do not have special meaning in
<replacement>. Instead, other characters are special:

\& is replaced by the string matched by <pattern>.

\d is replaced by substring d (d is a single digit), matched by parts of
<pattern>, and enclosed in “\(” and “\) ”. If nested substrings occur
in <pattern>, substring d is determined by counting opening delimiters
(\(O). As in patterns, special characters may be made literal characters
by preceding them with backslash (\).

UNIX Programmer’s Manual Document Preparation—55

DOCUMENT PREPARATION

Flags
The flags argument (<flags>) may contain the following:

g Substitute <replacement> for all nonoverlapping instances of
<pattern> in the line. After a successful substitution, the scan for the
next instance of <pattern> begins just after the end of the inserted
characters. Characters put into the line from <replacement> are not
rescanned.

p Print the line if a successful replacement was done. The p flag causes the
line to be written to the output if and only if a substitution was actually
made by the s function. If several s functions, each followed by a p flag,
successfully substitute in the same input line, multiple copies of the line
will be written to the output — one for each successful substitution.

w <filename>

Write the line to a file if a successful replacement was done. The w flag
causes lines which are actually substituted by the s function to be written
to a file named by <filename>. If <filename> exists before sed is run,
it is overwritten; if not, it is created. A single space must separate w and
<filename>. The possibilities of multiple, somewhat different copies of
one input line being written are the same as for p. A maximum of ten
different file names may be mentioned after w flags and w functions.

Examples

The command
s/to/by/w changes
applied to the standard input produces on the output

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and on the file named changes

- 56—Document Preparation UNIX Programmer’s Manual

Through caverns measureless by man
Down by a sunless sea.

If the .no-copy option is in effect, the command
s/[.;2:1/*P&* /gp
produces

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

To illustrate the effect of the g flag, the command
/X/s/an/AN/p

produces (assuming no-copy mode)
In XANadu did Kubla Khan

and the command
/X/s/an/AN/gp

produces

In XANadu did Kubla KhAN

Input/Output Functions

(2Q)p The print function writes addressed lines to the standard output file.
They are written at the time the p function is encountered regardless of
what succeeding editing commands may do to the lines.

(2w <filename>
The write function writes addressed lines to the file named by

UNIX Programmer’s Manual Document Preparation—57

DOCUMENT PREPARATION

‘<filename>. If the file previously existed, it is overwritten; if not, it is
created. The lines are written exactly as they exist when the write
function is encountered for each line regardless of what subsequent
editing commands may do to them. Exactly one space must separate
the w and <filename>. A maximum of ten different files may be
mentioned in write functions and w flags after s functions combined.

(Dr <filename>

The read function reads the contents of <filename> and appends
them after the line matched by the address. The file is read and
appended regardless of what subsequent editing commands do to the
line which matched its address. If r and a functions are executed on
the same line, the text from a functions and r functions is written to
the output in the order that the functions are executed. Exactly one
space must separate the r and <filename>. If a file mentioned by an
r function cannot be opened, it is considered a null file, not an error,
and no diagnostic is given.

Note: Since there is a limit to the number of files that can be opened
simultaneously, care should be taken that no more than ten files be
mentioned in w functions or flags. That number is reduced by one if
any r functions are present (only one read file is opened at a time).

If the file notel has the following contents:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan and founder
of the Mongol dynasty in China.

then the command
/Kubla/r notel

produces

58—Document Preparation UNIX Programmer’s Manual

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan and founder of
the Mongol dynasty in China.

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

Multiple Input Line Functions

Three functions, all spelled with capital letters, deal with pattern spaces
containing embedded newline characters. They are intended principally to
provide pattern matches across lines in the input.

(2N

(2D

@r

Append the next input line to the current line in the pattern space.
The two input lines are separated by an embedded newline character.
Pattern matches may extend across embedded newline characters.

Delete first part of the pattern space.

Delete up to and including the first newline character in the current
pattern space. If the pattern space becomes empty (the only newline
character was the terminal newline character), read another line from
the input. In any case, begin the list of editing commands again from
the beginning.

Print first part of the pattern space.
Print up to and including the first newline character in the pattern
space.

The P and D functions are equivalent to their lowercase counterparts if there
are no embedded newline characters in the pattern space.

Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h

Hold pattern space.
The h function copies contents of the pattern space into a hold area
destroying previous contents.

UNIX Programmer’s Manual Document Preparation—59

DOCUMENT PREPARATION

(2)H Hold pattern space.

Qg

G

2)x

The H function appends contents of the pattern space to contents of
the hold area. Former and new contents are separated by a newline
character.

Get contents of hold area.
The g function copies contents of the hold area into the pattern space
destroying previous contents.

Get contents of hold area.

The G function appends contents of the hold area to contents of the
pattern space. Former and new contents are separated by a newline
character.

Exchange.
The exchange command interchanges contents of the pattern space and
the hold area.

The following are examples:

1h

1s/ did.*//
1x

G

s/\n/ :/

when applied to the standard input text produce

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

Flow of Control Functions

These functions do no editing on the input lines but control the application of
functions to the lines selected by the address part.

0))

Don’t.
The don’t command causes the next command (written on the same

60—Document Preparation UNIX Programmer’s Manual

line) to be applied to those input lines not selected by the address part.

(2) Grouping.
The grouping command causes the next set of commands to be applied
(or not applied) as a block to the input lines selected by the addresses
of the grouping command. The first of the commands under control of
the grouping may appear on the same line as the { or on the next line.
The group of commands is terminated by a matching } standing on a
line by itself. Groups can be nested.

(0):<label>
Place a label.
The label function marks a place in the list of editing commands which
may be referred to by b and t functions. The <label> argument may
be any sequence of eight or fewer characters. . If two different colon
functions have identical labels, a compile time diagnostic will be
generated; and no execution attempted.

(2)b<label>

Branch to label.

The branch function causes the sequence of editing commands being
applied to the current input line to be restarted immediately after the
place where a colon function with the same <label> was encountered.
If no colon function with the same label can be found after all editing
commands have been compiled, a compile time diagnostic is produced;
and no execution is attempted. A b function with no <label> is a
branch to the end of the list of editing commands. Whatever should be
done with the current input line is done, and another input line is read.
The list of editing commands is restarted from the beginning on the
new line.

(2)t<label>
Test substitutions.
The t function tests whether any successful substitutions have been
made on the current input line; if so, it branches to <label>; if not, it
does nothing. The flag which indicates that a successful substitution
has been executed is reset by reading a new input line and executing a
t function.

UNIX Programmer’s Manual Document Preparation—61

DOCUMENT PREPARATION

Miscellaneous Functions

(1)= The “=" function writes to standard output the line number of the line
matched by its address.

(1)q The q function causes the current line to be written to the output Gf it

should be), any appended or read text to be written, and execution to
be terminated.

62—Document Preparation UNIX Programmer’s Manual

NROFF AND TROFF USER’S MANUAL

INTRODUCTION

Text processors, nroff and troff, under the UNIX operating system format text
for typewriter-like terminals and for a phototypesetter, respectively. Both nroff
and troff processors accept lines of text interspersed with lines of format control
information. They format the text into a printable, paginated document having
a user-designed style. The nroff and troff formatters offer unusual freedom in
document styling including:

e Arbitrary style headers and footers

e Arbitrary style footnotes

e Multiple automatic sequence numbering for paragraphs and sections
¢ Multiple column output

¢ Dynamic font and point-size control

e Arbitrary horizontal and vertical local motions at any point

e Overstriking, bracket construction, and line drawing functions.

Since nroff and troff formatters are reasonably compatible, it is usually possible
to prepare input acceptable to both. Conditional input is provided that enables
the user to embed input expressly destined for either program. The nroff
formatter can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

The troff processor is a text-formatting program for driving a phototypesetter
on the UNIX operating system. It is capable of producing high quality text.
The phototypesetter normally runs with four fonts containing Roman, italic,
and bold letters; a full Greek alphabet; a substantial number of special
characters; and mathematical symbols. Characters can be printed in a range of
sizes and placed anywhere on the page.

Full user control over fonts, sizes, and character positions, as well as the usual
features of a formatter (right-margin justification, automatic hyphenation, page

UNIX Programmer’s Manual Document Preparation—63

FORMATTING FACILITIES

titling and numbering, etc.) are provided by the troff processor. It also
provides macros, arithmetic variables and operations, and cond1t10nal testing
for complicated formatting tasks.

USAGE

The general form of invoking an nroff or troff formatter at the UNIX operating
system command level is

nroff options files
or
troff options files

where options represents any of a number of option arguments and files
represents the list of files containing the document to be formatted. An
argument consisting of a single minus sign (—) is taken to be a file name
corresponding to the standard input. Input is taken from the standard input if
no file names are given. Options may appear in any order so long as they
appear before the files.

nroff AND troff OPTIONS

Option Effect

—olist Prints only pages whose page numbers appear in [Jist, which
consists of comma-separated numbers and number ranges.

e A number range has the form N—AM and means pages /N through
M

e An initial —N means from the beginning to page N
e A final N— means from page NN to the end.
—=nN Number the first generated page V.

—sN Stop every N pages and cause the bell control character to be
output to the terminal. The nroff formatter will halt after every NV

64—Document Preparation UNIX Programmer’s Manual

—mname

—cname

—raN

—-q

' /

—kname

pages (default N=1) to allow paper loading or changing and will
resume upon receipt of a new line. The troff formatter will stop the
phototypesetter every N pages, produce a trailer to allow changing
cassettes, and resume after the phototypesetter START button is
pressed.

Prepend the macro file
/usr/lib/tmac/tmac.name

to the input files. Multiple —m macro package requests on a
command line are accepted and are processed in sequence.

Prepend the macro files

/usr/lib/macros/cmp.ntl.[dt).name
and
/usr/lib/macros/ucmp.ntl.name

to the input files. Multiple —c¢ macro package requests on a
command line are accepted. The compacted version of macro
package name should be used if it exists. If not, the nroff/troff
formatter will try the equivalent —mmname option instead. This
option should be used instead of —m because it makes the
nroff/troff formatters execute significantly faster.

Set register a (one character) to N.
Read standard input after the input files are exhausted.
Invoke the simultaneous input/output mode of the rd request.

Suppress formatted output. Only message output will occur (from
tm requests and diagnostics).

Produce a compacted macro package from this invocation of the
nroff/troff formatter. This option has no effect if no .co request is
used in the nroff/troff formatter input. Otherwise, the compacted
output is produced in files d.name and t.name.

UNIX Programmer's Manual ‘ Document Preparation—65

FORMATTING FACILITIES

Option

—Trame

-e

-w

nroff ONLY OPTIONS

Effect

Specify the name of the output terminal type. Currently defined
names are:

37 (default) for the TELETYPE® Model 37

tn300 for the GE TermiNet 300 (or any terminal without half-line
capabilities)

300 for the DASI 300
300s for the DASI 300s
450 for the DASI 450.

Produce equally spaced words in adjusted lines using full terminal
resolution.

Use output tabs during horizontal spacing to speed output and to

reduce output byte count. Device tab settings are assumed to be

. every eight nominal character widths. The default settings of -

logical input tabs are also every eight nominal character widths.
Set the emboldening factor (number of character overstrikes) in the

nroff formatter for the third font position (bold) to be n (zero if n is
missing).

troff ONLY OPTIONS

Effect
Direct output to the standard output instead of the phototypesetter.

Refrain from feeding paper and stopping phototypesetter at the end
of the run.

Wait until phototypesetter is available if busy.

66—Document Preparation UNIX Programmer’s Manual

-b Report whether phototypesetter is busy or available. No text
processing is done.

—a Send a printable approximation in American Standard Code for
Information Interchange (ASCII) character set of the results to the
standard output. This approximates a display of the document.

—pN Print all characters in point size N while retaining all prescribed
spacings and motions to reduce phototypesetter elapsed time.

-g Prepare output for the Murray Hill Computation Center
phototypesetter and direct it to the standard output.

Each option is invoked as a separate argument. For example:
nroff —04,8—10 —T300s —mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the
- files named filel and file2, specifies the output terminal as a DASI 300s, and
invokes the macro package abc.

Various preprocessors and postprocessors are available for use with the nroff
and troff formatters:

o The equation preprocessors are neqn and eqn (for nroff and troff formatters,
respectively). '

e The table-construction preprocessor is thl.

e A reverse-line postprocessor for multiple-column nroff formatter output on
terminals without reverse-line ability is col. The TELETYPE® Model 37
escape sequences that the nroff formatter produces by default are expected by
col.

e The TELETYPE® Model 37-simulator postprocessor for printing nroff
formatter output on a Tektronix 4014 is 4014.

e The phototypesetter-simulator postprocessor for the troff formatter that

produces an approximation of phototypesetter output on a Tektronix 4014 is te.
For example, in:

UNIX Programmer’s Manual Document Preparation—67

FORMATTING FACILITIES

tbl files | eqn | troff —t [options] | tc

the first | indicates the piping of tbl output to eqn input; the second | indicates
the piping of eqn output to the troff formatter input; and the third | 1nd1cates
the piping of the troff formatter output to the tc postprocessor.

NROFF/TROFF REFERENCE MANUAL

GENERAL EXPLANATION

Form of Input

Input data consists of text lines, which are destined to be printed, interspersed
with control lines, which set parameters or otherwise control subsequent
processing. Control lines begin with a control character, normally a period .or
an acute accent, followed by a 1- or 2-character name that specifies a basic
request or the substitution of a user-defined macro in place of the control line.
The acute accent control character suppresses the break function (the forced
output of a partially filled line) caused by certain requests. Control characters
may be separated from request/macro names by white space (spaces and/or
tabs) for aesthetic reasons. Names must be followed by either a space or a
newline character. Control lines with unrecognized request/macro names are
ignored. Table A is a cross reference of request names to the table in this
" section where an explanation of the request is displayed.

Various special functions may be introduced anywhere in the input by means of
an escape character (\). For example, the function \nR causes the
interpolation of the contents of the number register R in place of the function.
Number register R is either a x for a single letter register name or (xx for a
2-character register name. Table B itemizes escape sequences for characters,
indicators, and functions.

68—Document Preparation UNIX Programmer’s Manual

Formatter and Device Resolution

The troff processor internally uses 432 units/inch, corresponding to the Wang
Laboratories phototypesetter which has a horizontal resolution of 1/432 inch
and a vertical resolution of 1/144 inch. It rounds horizontal/vertical numerical
parameter input to the actual horizontal/vertical resolution of the typesetter.

The nroff processor internally uses 240 units/inch, corresponding to the least
common multiple of the horizontal and vertical resolutions of various
typewriter-like output devices. It rounds numerical input to the actual
resolution of the output device indicated by the —T option (default
TELETYPE® Model 37).

Numerical Parameter Input

Both nroff and troff formatters accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in
points, V' is the current vertical line spacing in basic units, and C is a nominal
character width in basic units.

SCALE NUMBER OF BASIC UNITS
MEANING
IN DI CATOR troﬂ' nroﬂ'

i Inch 432 240
C Centimeter 432x50/127 | 240x50/127
P Pica = 1/6 inch 72 240/6
m em = S points 6xS C
n en = em/2 3xS C, same as em
p Point = 1/72 inch | 6 240/72
u Basic unit 1 1
v Vertical line space | V | 4

none Default

In nroff processors, both em and en are taken to be equal to C, which is
output-device dependent; common values are 1/10 and 1/12 inch. Actual
character widths in the nroff formatter need not be all the same. Constructed
characters (such as —>) are often extra wide. Default scaling is:

e em for horizontally oriented requests (ll, .im, .ti, .ta, .It, .po, .mc¢) and
functions (\h, \I).

e V for vertically oriented requests (pl, .wh, .ch, .dt, .sp, .sv, .ne, at) and
functions (\v, \x, \L)

UNIX Programmer’s Manual Document Preparation—69

FORMATTING FACILITIES

¢ p for .vs request

e u for .nr, .if, and .ie requests.

All other requests ignore scale indicators. When a number register containing
an already appropriately scaled number is interpolated to provide numerical
input, the basic unit scale indicator (w) may need to be appended to prevent an
additional inappropriate default scaling. The number, NV, may be specified in
decimal-fraction form but the parameter finally stored is rounded to an integer
number of basic units.

The absolute position indicator (|) may be prepended to a number N to
generate the distance to the vertical or horizontal place V.

e For vertically oriented requests and functions, |V becomes the distance in
basic units from the current vertical place on the page or in a diversion to the
vertical place N.

e For all other requests and functions, [NV becomes the distance from the
current horizontal place on the input line to the horizontal place N.
For example: '

Sp |3.2¢

will space in the required direction to 3.2 centimeters from the top of the page.

Numerical Expressions
Wherever numerical input is expected, an expression involving parentheses the
arithmetic operators
+, —, /, *, % (mod)
and the logical operators

<, >, <=, >= = (or ==), & (and), : (or)

may be used. Except where controlled by parentheses, evaluation of
expressions is left to right; there is no operator precedence. In the case of

70—Document Preparation UNIX Programmer’s Manual

certain requests, an initial + or — is stripped and interpreted as an increment
or decrement indicator. In the presence of default scaling, the desired scale
indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x
contains 2 and the current point size is 10, then:

A1 (4.25i+\nxP+3)/2u

will set the line length to % the sum of 4.25 inches + 2 picas + 3 ems (30
points since the point size is 10).

Notation

Numerical parameters are indicated in this manual in two ways. A £ N means
that the argument may take the forms N, +N, or —N and that the
corresponding effect is to set the affected parameter to N, to increment it by N,
or to decrement it by N, respectively. Plain NV means that an initial algebraic
sign is not an increment indicator but merely the sign of N. Generally,
unreasonable numerical input is either ignored or truncated to a reasonable
value. For example, most requests expect to set parameters to non-negative
values; exceptions are .sp, .wh, .ch, .nr, and .if. The .ps, .ft, .po, .vs, .Is, .1, .in,
and .It requests restore the previous parameter value in the absence of an
argument.

Single character arguments are indicated by single lowercase letters and 1- or
2-character arguments are indicated by a pair of lowercase letters. Character
string arguments are indicated by multicharacter mnemonics.

Font and Character Size Control

Fonts

Default mounted fonts are Times Roman (R), Times Italic (I), Times Bold
(B), and Special Mathematical (S) on physical typesetter positions 1, 2, 3, and
4, respectively. These font styles are shown in Figure 1. The current font,
initially Times Roman, may be changed (among the mounted fonts) by use of
the .ft request or by imbedding at any desired point either \fx, \f(xx, or \fN
where x and xx are the name of a mounted font and N is a numerical font
position. It is not necessary to change to the Special Font; characters on that
font are automatically handled. A request for a named but not mounted font is
ignored. '

UNIX Programmer’s Manual Document Preparation—71

FORMATTING FACILITIES

The troff processor can be informed that any particular font is mounted by use
of the .fp request. The list of known fonts is installation dependent. In the
subsequent discussion of font-related requests, F represents either a 1- or 2-
character font name or the numerical font position, 1 through 4. The current
font is available as numerical position in the read-only number register .f.

Font control is understood by the nroff formatter which normally underlines
italic characters. Table C is a summary and explanation of font control
requests.

Character Set

The troff character set consists of the so-called Commercial II character set
plus a Special Mathematical font character set each having 102 characters.
All ASCII characters are included with some on the Special Mathematical
font. The ASCII characters are input as themselves (with three exceptions);
and non-ASCII characters are input in the form \(xx, where xx is a 2-
character name given in Table D. The three ASCII character exceptions are
mapped as follows:

ASCII INPUT PRINTED BY troff
CHARACTER NAME CHARACTER NAME
! acute accent ’ close quote
§ grave accent ‘ open quote
- minus - hyphen

The characters °, §, and — may be input by \’, \¢, and \ —, respectively, or by
their names. The ASCII characters @, #,", ", §, <, >,\,{,}, ", ",and _

’

exist on the Special Mathematical font and are printed as a one em space if
that font is not mounted.

The nroff processor understands the entire troff character set but can print
. only:

o ASCII characters
¢ Additional characters as may be available on the output device
e Such characters as may be able to be constructed by overstriking or other

combinations

72—Document Preparation UNIX Programmer’s Manual

e Those characters that can reasonably be mapped into other printable
characters.

The exact behavior is determined by a driving table prepared for each device.
The characters *, §, and _ print as themselves.

Character Size

Character point sizes available are 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24,
28, and 36. This is a range of 1/12 inch to 1/2 inch. The .ps request is used
to change or restore the point size. Alternatively, the point size may be
changed between any two characters by imbedding a \s/V at the desired point
to set the size to N or a \s=/N (1<N<9) to increment/decrement the size by
N; \sO restores the previous size. Requested point size values that are between
two valid sizes yield the larger of the two. The current size is available in the
.s number register. The nroff formatter ignores type size control. Table E is a
summary and explanation of character size requests.

Page Control

Top and bottom margins are not automatically provided. They may be defined
by two macros which set traps at vertical positions 0 (top) and —N (IV from
the bottom). A pseudo-page transition onto the first page occurs either when
the first break occurs or when the first nondiverted text processing occurs.
Arrangements for a trap to occur at the top of the first page must be completed
before this transition. A summary and explanation of page control requests is
shown in Table F. References to the current diversion mean that the
mechanism being described works during both ordinary and diverted output
(the former is considered as the top diversion level).

Usable page width on the phototypesetter is about 7.54 inches. The left margin
begins about 1/27 inch from the edge of the 8-inch wide, continuous roll paper
{4.4}). Physical limitations on the nroff processor output are output-device
dependent.

UNIX Programmer’s Manual Document Preparation—73

FORMATTING FACILITIES
Text Filling, Adjusting, and Centering

Filling and Adjusting

Normally, words are collected from input text lines and assembled into an
output text line until some word does not fit. An attempt may be made to
hyphenate the word in an effort to assemble a part of it into the output line.
The spaces between the words on the output line are increased to spread out
the line to the current line length minus any current indent. A word is any
string of characters delimited by the space character or the beginning/end of
the input line. Any adjacent pair of words that must be kept together (neither
split across output lines nor spread apart in the adjustment process) can be tied
together by separating them with the wunpaddable space backslash-space
character (\). The adjusted word spacings are uniform in the troff formatter,
and the minimum interword spacing can be controlled with the .ss request. In
the nroff formatter, they are normally nonuniform because of quantization to
character-size spaces; however, the command line option —e causes uniform
spacing with full output device resolution. Filling, adjustment, and
hyphenation can all be prevented or controlled. The text length on the last line
output is available in the .n number register, and text base-line position on the
page for this line is in the nl number register. The text base-line high-water
mark (lowest place) on the current page is in the .h register.

An input text line ending with ., ?, or ! is taken to be the end of a sentence,
and an additional space character is automatically provided during filling.
Multiple interword space characters found in the input are retained, except for
trailing spaces; initial spaces also cause a break. '

When filling is in effect, a \p escape sequence may be imbedded in or attached
to a word to cause a break at the end of the word and have the resulting output
line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to
not look like a control line by prefacing it with the nonprinting, zero-width
filler character (\&). Another way is to specify output translation of some
convenient character into the control character using the .tr request.

74—Document Preparation UNIX Programmer’s Manual

Interrupted Text

Copying of an input line in no-fill mode can be interrupted by terminating the
partial line with a \c escape sequence. The next encountered input text line
will be considered to be a continuation of the same line of input text.
Similarly, a word within filled text may be interrupted by terminating the word
(and line) with \c; the next encountered text will be taken as a continuation of
the interrupted word. If the intervening control lines cause a break, any partial
line will be forced out along with any partial word.

Table G is a summary and explanation of filling, adjusting, and centering
requests.

Vertical Spacing

Base-line Spacing

Vertical spacing size (V) between base lines of successive output lines can be
set using the .vs request with a resolution of 1/144 inch = 1/2 point in the troff
formatter and to the output device resolution in the nroff formatter. Spacing
size must be large enough to accommodate character sizes on affected output
lines. For the common type sizes (9 through 12 points), usual typesetting
practice is to set V to two points greater than the point size; troff default is 10-
point type on a 12-point spacing. The current V is available in the .v register.
Multiple-¥ line separation (e.g., double spacing) may be obtained with a .Is
request.

Extra Line Space

If a word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and/or after it, the extra line
space function \x’ N’ can be imbedded in or attached to that word. In this and
other functions having a pair of delimiters around their parameter, the
delimiter choice is arbitrary except that it can not look like the continuation of
a number expression for N.

o If N is negative, the output line containing the word will be preceded by N
extra vertical spaces.

o If N is positive, the output line containing the word will be followed by N
extra vertical spaces.

UNIX Programmer’s Manual Document Preparation—75

FORMATTING FACILITIES

o If successive requests for extra space apply to the same line, the maximum
value is used.

The most recently utilized post-line extra line space is available in the .a
register.

Blocks of Vertical Space

A block of vertical space is ordinarily requested using .sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of
vertical space may be reserved using the .sv request.

Table H is a summary and explanation of vertical spacing requests.

Line Length and Indenting

The maximum line length for fill mode may be set with a .ll request. The
indent may be set with a .in request; an indent applicable to only the next
output line may be set with the .ti request. The line length includes indent
space but not page offset space. The line length minus the indent is the basis
for centering with the .ce request. If a partially collected line exists, the effect
of 1L, .in, or .ti is delayed until after that line is output. In fill mode, the length
of text on an output line is less than or equal to the line length minus the
indent. The current line length and indent are available in registers .l and .i,
respectively. The length of 3-part titles produced by .tl is independently set by
Jdt. Table T is a summary and explanation of line length and indenting
requests.

Macros, Strings, Diversions, and Position Traps

Macros and Strings

A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline
character, that may be interpolated by name at any point. Request, macro,
and string names share the same name list. Macro and string names may be
1- or 2-characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with .rn or removed with
Jm.

76—Document Preparation UNIX Programmer’s Manual

e Macros are created by .de and .di and appended by .am and .da (di and .da
cause normal output to be stored in a macro)
e Strings are created by .ds and appended by .as.

A macro is invoked in the same way as a request; a control line beginning .xx
will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any
desired point with *x and *(xx, respectively. String references and macro
invocations may be nested.

Copy Mode Input Interpretation

During the definition and extension of strings and macros (not by diversion),
the input is read in copy mode. The input is copied without interpretation
except that:

¢ Contents of number registers indicated by \n are interpolated.

e Strings indicated by * are interpolatedn.

o Arguments indicated by \$ are interpolated.

e Concealed newline characters indicated by \ <newline> are eliminated.
e Comments indicated by \" are eliminated.

e\t and \a are interpreted as ASCII horizontal tab and start of heading
(SOH).

¢ \\ is interpreted as “\”.

T3 1]
.« .

e \. is interpreted as

These interpretations can be suppressed by prepending a \. For example, since
\\ maps into a \, \\m will copy as \m which will be interpreted as a number
register indicator when the macro or string is reread.

UNIX Programmer’s Manual Document Preparation—77

FORMATTING FACILITIES

Arguments

When a macro is invoked by name, the remainder of the line may contain up to
nine arguments. The argument separator is the space character, and
arguments may be surrounded by double-quotes to permit imbedded space
characters. Pairs of double-quotes may be imbedded in double-quoted
arguments to represent a single double-quote. If the desired arguments will not
fit on a line, a concealed newline character may be used to continue on the next
line.

When a macro is invoked, the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is completely
read and the previous level is restored. A macro’s own arguments can be
interpolated at any point within the macro with \$N, which interpolates the
Nth argument (1 < N < 9). If an invoked argument does not exist, a null
string results. For example, the macro xx may be defined by

de xx \"begin definition
Today is \\$1 the \\ $2.
\"end definition

and called by
.Xx Monday 14th
to produce the text
Today is Monday the 14th.

The \$ was concealed in the definition with a prepended backslash. The
number of currently available arguments is in the .$ register.

e No arguments are available at the top (nonmacro) level in this
implementation.

e No arguments are available from within a string, because string referencing
is implemented as an input-level pushdown.

o No arguments are available within a trap-invoked macro.

78—Document Preparation UNIX Programmer’s Manual

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct
reference to a long string (interpolated at copy time), and it is advisable to
conceal string references (with an extra \) to delay interpolation until argument
reference time.

Diversions

Processed output may be diverted into a macro for purposes such as footnote
processing or determining the horizontal and vertical size of some text for
conditional changing of pages or columns. A single diversion trap may be set
at a specified vertical position. The number registers .dn and .dl, respectively,
contain the vertical and horizontal size of the most recently ended diversion.
Processed text that is diverted into a macro retains the vertical size of each of
its lines when reread in no-fill mode regardless of the current V. Constant-
spaced (.cs) or emboldened (.bd) text that is diverted can be reread correctly
only if these modes are again or still in effect at reread time. One way to do
this is to imbed in the diversion the appropriate .cs or .bd request with the
transparent mechanism.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top non-diversion level may be thought of
as diversion level 0). These parameters and registers are:

o diversion trap and associated macro

® no-space mode

internally saved marked place (see .mk and .rt)
e current vertical place (.d register)

current high-water text base line (.h register)

current diversion name (.z register).

UNIX Programmer’s Manual o ‘Document Preparation—79

FORMATTING FACILITIES

Traps

Three types of trap mechanisms are available:

® page trap
e diversion trap

e input-line-count trap.

Macro-invocation traps may be planted using .wh requests at any page position
including the top. This trap position may be changed using the .ch request.
Trap positions at or below the bottom of the page have no effect unless or until
moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at
different positions and then moving one of the traps; the first planted trap will
conceal the second unless and until the first one is moved. If the first planted
trap is moved back, it again conceals the second trap. The macro associated
with a page trap is automatically invoked when a line of text is output whose
vertical size reaches or sweeps past the trap position. Reaching the bottom of a
page springs the top-of-page trap, if any, provided there is a next page. The
distance to the next trap position is available in the .t register; if there are no
traps between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

Macro-invocation traps, effective in the current diversion, may be planted using
.dt requests. The .t register works in a diversion. If there is no subsequent
trap, a large distance is returned.

Table J is a summary and explanation of macros, strings, diversion, and
position traps requests.

Number Registers

A variety of predefined number registers (Table K) are available to the user.
In addition, the user may define his own named registers. Register names are
1- or 2-characters long and do not conflict with request, macro, or string
names. Except for certain predefined read-only number registers (Table L), a
number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One
common use of user-defined registers is to automatically number sections,
paragraphs, lines, etc. A number register may be used any time numerical

80—Document Preparation UNIX Programmer’s Manual

SEQUENCE EFFECT ON VALUE
REGISTER INTERPOLATED

\nx none N

\n(xx none N

\n+x x incremented by M N+M
\n—x x decremented by M N-M
\n+ (xx xx incremented by M N+M
\n—(xx xx decremented by M N-M

According to the format specified by the .af request, a number register is
converted (when interpolated) to:

e decimal (default)

e decimal with leading zeros

e lowercase Roman

e uppercase Roman

e Jowercase sequential alphabetic

e uppercase sequential alphabetic.

Table M is a summary and explanation of number registers requests.

Tabs, Leaders, and Fields

Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH character (the
leader) can both be used to generate either horizontal motion or a string of
repeated characters. The length of the generated entity is governed by internal
tab stops specified with a .ta request. The default difference is that tabs
generate motion and leaders generate a string of periods; .tc and .lc offer the
choice of repeated character or motion. There are three types of internal tab
stops: left justified, right justified, and centered. In the following table:

e next-string consists of the input characters following the tab (or leader) up
to the next tab (or leader) or end of line

UNIX Programmer’s Manual Document Preparation—381

FORMATTING FACILITIES
Tabs, Leaders, and Fields

Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH character (the
leader) can both be used to generate either horizontal motion or a string of
repeated characters. The length of the generated entity is governed by internal
tab stops specified with a .ta request. The default difference is that tabs
generate motion and leaders generate a string of periods; .te and .c offer the
choice of repeated character or motion. There are three types of internal tab
stops: left justified, right justified, and centered. In the following table:

e next-string consists of the input characters following the tab (or leader) up
to the next tab (or leader) or end of line

e D is the distance from the current position on the mput line (where a tab or
leader was found) to the next tab stop

e W is the width of next-string.

TAB LENGTH OF MOTION OR LOCATION OF

TYPE REPEATED CHARACTERS next-string

Left : D Following D

Right D—w Right justified within D
Centered D—wpR Centered on right end of D

- The length of generated motion is allowed to be negative but that of a repeated
character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is prepended as motion. Tabs
(or leaders) found after the last tab stop are ignored, but they may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. The \t and \a always
generate a noninterpreted tab and leader, respectively, and are equivalent to
actual tabs and leaders in copy mode.

82—Document Preparation UNIX Programmer’s Manual

Fields

A field is contained between a pair of field delimiter characters. It consists of
substrings separated by padding indicator characters. The field length is the
distance on the input line from the position where the field begins to the next
tab stop. The difference between the total length of all the substrings and the
field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding is allowed to be
negative. For example, if the field delimiter is “#” and the padding indicator
is “"”, then

#"xxx right#

specifies a right-justified string with the string xxx centered in the remaining
space. Table N is a summary and explanation of tab, leader, and field
requests.

Input/Output Conventions and Character Translations

input Character Translations

The newline character delimits input lines. In addition, STX, ETX, ENQ,
ACK, and BEL are accepted and may be used as delimiters or translated into a
graphic with a .tr request. All others are ignored.

The escape character (\) introduces sequences that cause the following
character to mean another character or to indicate some function. A complete
list of such sequences is given in Table B. The escape character:

e should not be confused with the ASCII control character ESC of the same
name

o can be input with the sequence \\
e can be changed with .ec, and all that has been said about the default \

becomes true for the new escape character.

A \e sequence can be used to print the current escape character. If necessary
or convenient, the escape mechanism may be turned off with .eo and restored
with .ec. A summary and explanation of input character translations requests
are contained in Table O.

UNIX Programmer’s Manual Document Preparation—83

FORMATTING FACILITIES

Ligatures

Five ligatures are available in the troff character set: fi, fl, ff, ffi, and fil. They
may be input (even in the mroff formatter) by \(fi, \(fl, \(ff, \(Fi,and \(FI,
respectively. The ligature mode is normally on in the troff formatter and
automatically invokes ligatures during input. A summary and explanation of
ligature requests are included in Table O.

Backspacing, Underlining, and Overstriking

Unless in copy mode, the ASCII backspace character is replaced by a
backward horizontal motion having the width of the space character.
Underlining as a form of line drawing and, as a generalized overstriking
function.

The nroff processor underlines characters automatically in the underline font,
specifiable with the .uf request. The underline font is normally on font position
2 (Times Italic). In addition to .ft request and \fF escape sequence, the
underline font may be selected by .ul and .cu requests. Underlining is
restricted to an output-device-dependent subset of reasonable characters. A
summary and explanation of backspacing, underlining, and overstriking
requests are included in Table O.

Control Characters

Both the break control character (.) and the no-break control character (°)
may be changed, if desired. Such a change must be compatible with the design
of any macros used in the span of the change and particularly of any trap-
invoked macros. A summary and explanation of the .cc and .c2 control
character requests are included in Table O.

Output Translation

One character can be made a stand-in for another character using the .tr
request. All text processing (e.g., character comparisons) takes place with the
input (stand-in) character which appears to have the width of the final
character. Graphic translation occurs at the moment of output (including
diversion). Included in Table O is a summary and explanation of the output
translation request.

84—Document Preparation UNIX Programmer’s Manual

Transparent Throughput

An input line beginning with a \! is read in copy mode and transparently
output (without the initial \!); the text processor is otherwise unaware of the
line’s presence. This mechanism may be used to pass control information to a
post-processor or to imbed control lines in a macro created by a diversion.

Comments and Concealed Newline Characters

An uncomfortably long input line that must stay one line (e.g., a string
definition or no-filled text) can be split into many physical lines by ending all
but the last one with the escape character (\). The sequence \ <mewline> is
ignored except in a comment. Comments may be imbedded at the end of any
line by prefacing them with \". The newline character at the end of a comment
cannot be concealed. A line beginning with \" will appear as a blank line and
behave like .sp 1; a comment can be on a line by itself by beginning the line
with \".

Local Horizontal/Vertical Motion and Width Function

Local Motion

The functions \v’N’> and \W’N* can be used for local vertical and horizontal
motion, respectively. The distance N may be negative; the positive directions
are rightward and downward. A local motion is one contained within a line.
To avoid unexpected vertical dislocations, it is necessary that the net vertical
local motion (within a word in filled text and otherwise within a line) balance
to zero. The above and certain other escape sequences providing local motion
are summarized and explained in Table P. As an example, Eis generated by
the sequence E\v’ —.5%\s —4\ & 2\s0\v'.5’.

Width Function

The width function \w’string® generates the numerical width of string (in basic
units). Size and font changes may be imbedded in string and will not affect
the current environment. For example,

ti=\w’l.u

could be used to temporarily indent leftward a distance equal to the size of the
string “1.”,

UNIX Programmer’s Manual Document Preparation—85

FORMATTING FACILITIES

The width function also sets three number registers. The registers st and sb
are set respectively to the highest and lowest extent of string relative to the
baseline; then, for example, the total height of the string is \n(stu-\n(sbu. In
the troff formatter, the number register ct is set to a value between 0 and 3:

e 0 means that all characters in string are short lowercase characters without
descenders (like e)

e 1 means that at least one character has a descender (like y)
e 2 means that at least one character is tall (like H)

¢ 3 means that both tall characters and characters with descenders are present.

Mark Horizontal Place

The escape sequence \kx will cause the current horizontal position in the input
line to be stored in register x. As an example, the construction

\ kxword \I’|\nxu+2u’word

will embolden word by backing up to almost its beginning and overprinting it,
resulting in word.

Overstrike, Zero-Width, Bracket, and Line Drawing Functions

Overstrike

Automatically centered overstriking of up to nine characters is provided by the
overstrike function \o’string’. Characters in string are overprinted with centers
aligned; the total width is that of the widest character. The string should not
contain local vertical motion. As examples, “\o’e\”” produces &, and
“No’\(ci\(pl’” produces &®.

86—Document Preparation UNIX Programmer’s Manual

Zero-Width Characters

The function \zc will output ¢ without spacing over it and can be used to
produce left-aligned overstruck combinations. As examples, “\z\(ci\(pl” will
produce ®, and “\(br\z\(rn\(ul\(br” will produce the smallest possible
constructed box ([]). :

Large Brackets

The Special Mathematical Font contains a number of bracket construction
pieces that can be combined into various bracket styles. The function \b’szring’
may be used to pile up vertically the characters in string (the first character on
top and the last at the bottom); the characters are vertically separated by one
em and the total pile is centered one-half em above the current base line (one-
half line in the nroff formatter). For example:

\ b \Uc\Uf’E\[\ b’ \(rc\ (rf*\x’-0.5m’\x’0.5m’

produces [E] .

Line Drawing

The \PNe¢’ function will draw a string of repeated ¢’s toward the right for a
distance N (1 is lowercase L).

e If ¢ looks like a continuation of an expression for V, it may be insulated from
N with a “\&™”.

e If ¢ is not specified, the base-line rule (_) is used (underline character in
nroff).

o If N is negative, a backward horizontal motion of size N is made before
drawing the string.

Any space resulting from N/(size of ¢) having a remainder is put at the
beginning (left end) of the string. In the case of characters that are designed
to be connected, such as base-line rule (.), underrule (\(ul), and root en
(\(ru), the remainder space is covered by overlapping. If N is less than the
width of ¢, a single ¢ is centered on a distance N. As an example, a macro to
underscore a string can be written:

UNIX Programmer’s Manual Document Preparation—87

FORMATTING FACILITIES

.de us

\$1\Pjo\ G’
or one to draw a box around a string:

.de bx
\(br\|\\$ 1\ |\ (br\I’| O\ (rn*\I’| O\ (ul®

such that

.us "underlined words"
and

.bx "words in a box"
yield

underlined words

and

words 1n a box

The function \L’Nc¢’ will draw a vertical line consisting of the optional
character ¢ stacked vertically apart one em (one line in nroff), with the first
two characters overlapped, if necessary, to form a continuous line. The default
character is box rule (\(br); the other suitable character is bold vertical (\(bv).
The line is begun without any initial motion relative to the current base line.
A positive N specifies a line drawn downward, and a negative N specifies a line
drawn upward. After the line is drawn, no compensating motions are made;
the instantaneous base line is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination
to produce large boxes. The zero-width box-rule and the one-half em wide
underrule were designed to form corners when using one em vertical spacings.

88—Document Preparation UNIX Programmer’s Manual

For example, the macro

.de eb

sp —1 \"compensate for next automatic base-line spacing

.of \"avoid possibly overflowing word buffer

\h’ =.5n\L’|\\nau—1">\I'\\n Clu+1n\(ul’ \L’—|\\nau+1°\I’| ou—.5n\(ul’ \"draw
box

il

will draw a box around some text whose beginning vertical place was saved in
number register z (e.g., using .mk z).

Hyphenation

The automatic hyphenation may be switched off and on. When switched on
with .hy, several variants may be set. A hyphenation indicator character may
be imbedded in a word to specify desired hyphenation points or may be
prepended to suppress hyphenation. In addition, the user may specify a small
exception word list. The default condition of hyphenation is off.

Only words that consist of a central alphabetic string surrounded by
nonalphabetic strings (usually null) are considered candidates for automatic
hyphenation. Words that were input containing hyphens (minus), em-dashes
(\(em), or hyphenation indicator characters (such as mother-in-law) are always
subject to splitting after those characters whether or not automatic hyphenation
is on or off. Table Q is a summary and explanation of hyphenation requests.

Three-Part Titles

The titling function .tl provides for automatic placement of three fields at the
left, center, and right of a line with a title length specifiable with .It. The .tl
may be used anywhere and is independent of the normal text collecting process.
A common use is in header and footer macros. Table R is a summary and
explanation of 3-part title requests.

UNIX Programmer’s Manual Document Preparation—89

FORMATTING FACILITIES

Output Line Numbering

Automatic sequence numbering of output lines may be requested with .nm.
When in effect, a 3-digit, Arabic number plus a digit-space is prepended to
output text lines. Text lines are offset by four digit-spaces and otherwise retain
their line length. A reduction in line length may be desired to keep the right
margin aligned with an earlier margin. Blank lines, other vertical spaces, and
lines generated by .tl are not numbered. Numbering can be temporarily
suspended with .nn or with a .nm followed by a later .nm +0. In addition, a
line number indent I and the number-text separation S may be specified in
digit-spaces. Further, it can be specified that only those line numbers that are
multiples of some number M are to be printed (the others will appear as blank
number fields). Table S is a summary and explanation of output line
numbering requests.

Figure 2 is an example of output line numbering: Paragraph portions are
numbered with M = 3.

e .nm 1 3 was placed at the beginning
e .nm +0 was placed in front of the second and third paragraphs

¢ .nm was placed at the end.

Line lengths were also changed (by \w’0000°u) to keep the right side aligned.
Another example is:

.nm +55x3

which turns on numbering with the line number of the next line to be five
greater than the last numbered line, with M =35, spacing S untouched, and the
indent 7 set to 3.

» Conditional Acceptance of Input
In Table T, which is a summary and explanation of conditional acceptance
requests:

e ¢ is a 1-character, built-in condition name.

90—Document Preparation UNIX Programmer’s Manual

e ! signifies not.
e N is a numerical expression.

o stringl and string2 are strings delimited by any nonblank, non-numeric
character not in the strings.

e anything represents what is conditionally accepted.

Built-in condition names are:

CONDITION
TRUE IF
NAME
o Current page number is odd
e Current page number is even
t Formatter is troff
n Formatter is nroff

If condition ¢ is true, if number NNV is greater than zero, or if strings compare
identically (including motions and character size and font), anything is
accepted as input. If a *“!” precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped
over. The anything can be either a single input line (text, macro, or whatever)
or a number of input lines. In the multiline case, the first line must begin with
a left delimiter “\{” and the last line must end with a right delimiter *“\} .

The request .ie (if-else) is identical to .if except that the acceptance state is
remembered. A subsequent and matching .el (else) request then uses the
reverse sense of that state. The .ie - .el pairs may be nested. For example:

.if e .tl * Even Page %’

outputs a title if the page number is even, and

ie\n%>1\{\
’sp 0.5i

.tl "Page %’
*sp|1.2i\}

el .sp|2.5i

treats page 1 differently from other pages.

UNIX Programmer’s Manual Document Preparation—91

FORMATTING FACILITIES

Environment Switching

A number of parameters that control text processing are gathered together into
an environment, which can be switched by the user. Environment parameters
are those associated with some requests. The tables at the end of this section
indicate in the “Explanation” column those requests so affected. In addition,
partially collected lines and words are in the environment. Everything else is
global; examples are page-oriented parameters, diversion-oriented parameters,
number registers, and macro and string definitions. All environments are
initialized with default parameter values. Table U is a summary and
explanation of the environment switching request.

Insertions From Standard Input

The input can be switched temporarily to the system standard input with .rd
and switched back when two newline characters in a row are found (the extra
blank line is not used). This mechanism is intended for insertions in form-
letter-like documentation. On the UNIX operating system, the standard input
can be the user keyboard, a pipe, or a file.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line option —q will turn off the echoing
of keyboard input and prompt only with BEL. The regular input and insertion
input cannot simultaneously come from the standard input. As an example,
multiple copies of a form letter may be prepared by entering insertions for all
copies in one file to be used as the standard input and causing the file
containing the letter to reinvoke itself by using the .nx request. The process
would be ended by a .ex request in the insertion file. Table V is a summary
and explanation of insertions from the standard input requests.

Input/Output File Switching

Table W is a summary and explanation of input/output file switching requests.

Miscellaneous

Table X is a summary and explanation of miscellaneous requests.

92—Document Preparation ~ UNIX Programmer’s Manual

Output and Error Messages

Output from .tm, .pm, and prompt from .rd, as well as various error messages
are written onto the UNIX operating system standard message output. The
latter is different from the standard output, when compared to the nroff
formatted output. By default, both are written onto the user’s terminal, but
they can be independently redirected.

Various error conditions may occur during the operation of the nroff and troff
formatters. Certain less serious errors having only local impact do not cause
processing to terminate. Two examples are:

e word overflow - caused by a word that is too large to fit into the word buffer
(in fill mode)

o line overflow - caused by an output line that grew too large to fit in the line
buffer.

In both cases, a message is printed, the offending excess is discarded, and the
affected word or line is marked at the point of truncation with a * (in nroff) or
a W (in troff). The philosophy is to continue processing, if possible, on the
grounds that output useful for debugging may be produced. If a serious error
occurs, processing terminates, and an appropriate message is printed.
Examples are the inability to create, read, or write files, and the exceeding of
certain internal limits that make future output unlikely to be useful. Table Y
is a summary and explanation of output and error messages requests.

Compacted Macros

The time required to read a macro package by the nroff formatter may be
lessened by using a compacted macro (a preprocessed version of a macro
package). The compacted version is equivalent to the noncompacted version,
except that a compacted macro package cannot be read by the .so request. A
compacted version of a macro package, called name, is used by the —cname
command line option, while the uncompacted version is used by the —mname
option. Because —cname defaults to —mname if the name macro package has
not been compacted, the user should always use —c rather than —m.

UNIX Programmer’s Manual Document Preparation—93

FORMATTING FACILITIES

Building a Compacted Macro Package

Only macro, string, and diversion definitions; number register definitions and
values; environment settings; and trap settings can be compacted. End macro
(em) requests and any commands that may interact during package
interpretation with command-line settings (such as references in the MM
package to the number register P, which can be set from the command line)
are not compactible. There are two steps to make a compacted macro from a
macro package:

o Separate compactible from noncompactible parts

o Place noncompactible material at the end of the macro package with a .co
request. The .co request indicates to the nroff formatter when to compact its
current internal state.

Compactible Material

.co
Noncompactible Material

Produce Compacted Files

When compactible and noncompactible segments have been established, the
nroff formatter may be run with the —k option to build the compacted files.
For example, if the output file to be produced is called mac, the following may
be used to build the compacted files:

nroff -kmac mac

This command causes the nroff formatter to create two files in the current
directory, d.mac and t.mac. The macro file must contain a .co request. Only
lines before the .co request will be compacted. Both —k and .co are necessary.
If no .co is found in the file, the —k is ignored. Likewise, if no —k appears on
the command line, the .co is ignored.

94—Document Preparation UNIX Programmer’s Manual

Each macro package must be compacted separately by the nroff formatter.
Compacted macro packages depend on the particular version of the nroff
formatter that produced them. Any compacted macro packages must be
recompacted when a new version of an mroff formatter is installed. If it is
discovered that a macro package was produced by a different version than that
attempting to read it, the —c will be abandoned, and the equivalent —m option
attempted instead.

Install Compacted Files

The two compacted files, d.mac and t.mac, must be installed into the system
macro library (/usr/lib/macros) with the proper names. If the files were
produced by an nroff formatter, cmp.n. must be prepended to their names. For
example, if the macro package is called mae, the two nroff formatter
compacted files may be installed by

cp d.mac /usr/lib/macros/cmp.n.d.mac
or
cp t.mac /usr/lib/macros/cmp.n.t.mac

Install Noncompactible Segment

The noncompactible segment from the original macro package must be
installed on the system as

/usr/lib/macros/ucmp.[nt].mac

where n of Intl means the nroff formatter version, and t means the troff
formatter version. The noncompactible segment must be produced manually by
using the editor. Using the mac package as an example, the following could be
used to install the nroff formatter noncompactible segment:

$ ed mac
/ "\ .co$/+,$w /usr/lib/macros/ucmp.n.mac

UNIX Programmer’s Manual Document Preparation—95

FORMATTING FACILITIES

TROFF TUTORIAL

OVERVIEW

An important rule of using the troff formatter is to use it through an
intermediary. In many ways the troff formatter resembles an assembly
language, remarkably powerful and flexible, but nonetheless such that many
operations must be specified at a level of detail and in a form that is too
difficult for most people to use effectively.

There are programs that provide an interface to the troff formatter for the
majority of users for two special applications.

e The eqn program provides an easy to learn language for typesetting
mathematics. The user does not need to know the troff formatter to typeset
mathematics.

e The thl program provides an easy to learn language for producing tables of
arbitrary complexity.

For producing text that may contain mathematics or tables, there are a number
of macro packages that define formatting rules and operations for specific styles
of documents and reduce the amount of direct contact with the troff formatter.
In particular, the Memorandum Macros (MM) package provides most of the
facilities needed for a wide range of document preparation. There are also
packages for viewgraphs and other special applications. These packages are
easier to use than the troff formatter once the user gets beyond the most trivial
operations. They should be considered first.

In the few cases where existing packages do not accomplish the job, the
solution is not to write an entirely new set of troff instructions from scratch but
to make small changes to adapt packages that already exist. In accordance
with this philosophy, the part of the troff formatter described here is only a
small part of the whole, although it tries to concentrate on the more useful
parts. The emphasis is on doing simple things and making incremental changes
to what already exists. The troff formatter described is the C language version
running on the UNIX operating system at Murray Hill.

96—Document Preparation - UNIX Programmer’s Manual

To use the troff formatter, the actual text must be prepared plus some
information that describes how it is to be printed. Text and formatting
information are intimately intertwined. Most commands to the troff formatter
are placed on a line separate from the text itself, one command per line
beginning with a period. For example:

Some text.
.ps 14
Some more text.

will change the point size of the letters being printed to 14 point (one point is
1/72 of an inch).

Occasionally, someth##g special occurs in the middle of a line, such as an
exponent. The formula for the area of a circle is typed as follows:

Area = \(*p\fIr\fR\|\s8\u2\d\sO

The backslash (\) is used to introduce troff commands and special characters
within a line of text.

POINT SIZES AND LINE SPACING

The .ps request sets the point size. Since one point is 1/72 inch, 6-point
characters are 1/12 inch high, and 36-point characters are 1/2 inch high.
There are 15 point sizes - 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and
36. Point size is rounded up to the next valid value, with a maximum of 36, if
the number following the .ps request is not a legal value.

If no number follows the .ps request, point size reverts to the previous value.
The troff processor begins with point size 10. Point size can also be changed in
the middle of a line or a word with a \s escape sequence. The \s sequence
should be followed by a legal point size. The \s0 sequence causes the size to
revert to its previous value. The \s1011 sequence is understood correctly as
“point size 10, followed by an 11"

Relative size changes are also legal and useful:

UNIX Programmer’s Manual Document Preparation—97

FORMATTING FACILITIES

\s—2UNCLE\s+2

temporarily decreases the size by two points, then restores it. Relative size
changes have the advantage that the size difference is independent of the
starting size of the document. The amount of the relative change is restricted
to a single digit.

Another parameter that determines what the type looks like is the spacing
between lines. It is set independently of the point size. Vertical spacing is
measured from the bottom of one line to the bottom of the next. The
command to control vertical spacing is .vs. For running text, it is usually best
to set the vertical spacing about 20 percent larger than the character size. For
example, a usable combination would be

ps9
.vs 11p

Vertical spacing is partly a matter of taste, depending on how much text is to
be squeezed into a given space, and partly a matter of traditional printing style.
By default, the troff formatter uses a point size of 10 and a vertical spacing of
12. When .vs is used without arguments, vertical spacing reverts to the
previous value. '

The .sp request is used to get extra vertical space. Used alone, it gives one
extra blank line (at whatever value .vs is set). Since that may be more or less
than desired, .sp can be followed by information about how much space is
wanted. For instance:

sp 1.5i means “a space of 1.5 inches”
(most troff processor installations understand
decimal fractions)

.Sp 2i means “two inches of vertical space”
.Sp 2p means “two points of vertical space”
Sp 2 or sp 2v means “two vertical spaces”

(two of whatever .vs is set).

These same scale factors can be used after the .vs request to define line
spacing. Scale factors can be used after most commands that deal with

98—Document Preparation UNIX Programmer’s Manual

physical dimensions.

All size numbers are converted internally to machine units, which are 1/432
inch (1/6 point). For most purposes, this is enough resolution to provide good
accuracy of representation. The situation is not quite so good vertically, where
resolution is 1/144 inch (1/2 point).

FONTS AND SPECIAL CHARACTERS

The troff processor and the typesetter allow four different fonts at one time.
Normally, three fonts (Times Roman, Times Italic, and Times Bold) and one
collection of special characters are permanently mounted. The Greek,
mathematical symbols, and miscellany of the special font are listed in Table D.

The troff processor prints in Roman unless otherwise commanded. To change
the font, the .ft request is used:

ft B switch to bold font.

ft 1 switch to italics font.

ft R switch to Roman font.
ft P return to previous font.
ft return to previous font.

The underline request (ul) causes the next input line to print in italics. It can
be followed by a number to indicate that more than one line is to be italicized.

Fonts can be changed within a line or word with the \f in-line sequences. For
instance:

boldface text
is produced by
\fBbold\fIface\fR text

If it is desired to do this so the previous font is left undisturbed, extra \fP
sequences should be inserted:

UNIX Programmer’s Manual Document Preparation—99

FORMATTING FACILITIES

\fBbold\fP\fIface\fP\fR text\fP

Since only the immediately previous font is remembered, the previous font must
be restored after each change or it will be lost. The same is true of .ps and .vs
when used without an argument.

There are other fonts available besides the standard set, although only four can
be used at any given time. The .fp request tells the troff formatter what fonts
are actually mounted on the typesetter. For example:

fp3H

says that the Helvetica font is mounted on position 3. A list of fonts and what
they look like are shown in Figure 1. Appropriate .fp requests should appear at
the beginning of a document if standard fonts are not used.

It is possible to make a document relatively independent of the actual fonts
used to print it by using font numbers instead of names. For example: \f3 and
ft3 mean “whatever font is mounted at position 3. Normal settings are
Roman font on 1, italic on 2, bold on 3, and special on 4.

There is also a way to get synthetic bold fonts by overstriking letters with a
slight offset. The .bd request addresses this function.

Special characters have 4-character input names beginning with \(and may be
inserted anywhere in the text. In particular, Greek letters are all of the form
\(*—, where — is an uppercase or lowercase Roman font letter reminiscent of
the Greek. A list of these special names is given in Table D.

Some characters are automatically translated into others: grave and acute
accents become: open and close single quotation marks. Similarly, a typed
minus sign becomes a hyphen. The \ — input will print an explicit minus sign.
A \e entry causes a backslash to be printed.

100—Document Preparation UNIX Programmer’s Manual

INDENTS AND LINE LENGTHS

The troff processor starts with a line length of 6.5 inches which is too wide for
8-1/2 inch by 11 inch paper. The .Il request resets the line length. For
example:

Al 6i

As with the .sp request, the actual length can be specified in several ways;
inches are probably the most intuitive. The maximum line length provided by
the phototypesetter is 7.54 inches. To use the full width, the default physical
left margin (page offset) must be reset. This is done by the .po request. The
margin is normally slightly less than 1 inch from the left edge of the paper.
The .po 0 request sets the offset as far to the left as it will go.

The indent request (.in) causes the left margin to be indented by some specified
amount from the page offset. If the .in request is used to move the left margin
to the right and the .l request is used to move the right margin to the left,
offset blocks of text are obtained. As an example:

.in 0.5i

1 —0.5i

text to be set into a block
1 +0.51

Ain —0.51

will create a block of text that looks like:

A clergyman at Cambridge preached a sermon which one of
his auditors commended. “Yes,” said a gentleman to whom it
was mentioned, “it was a good sermon, but he stole it.” This
was told to the preacher. He resented it, and called the
gentleman to retract what he had said. “I am not,” replied
the aggressor, “very apt to retract my words, but in this
instance I will. I said, you had stolen the serman; I find I was
wrong; for on returning home and referring to the book
whence I thought it was taken, I found it there.”

The use of + and — changes the previous setting by the specified amount
rather than just overriding it. The distinction is quite important:

UNIX Programmer’s Manual Document Preparation—101

FORMATTING FACILITIES

e .1l +1i makes lines 1 inch longer

o Il 1i makes lines 1 inch long.

With the .in, I, and .po requests, the previous value is used if no argument is
specified.

The .ti request is used to temporarily indent a single line. For example, all
paragraphs in this manual effectively begin with the .ti 3 request. Since no
units are specified, the line is indented three ems by default. The default unit
for .ti, as for most horizontally oriented requests (I, .in, .po), is ems. An em is
roughly the width of the letter m in the current point size. Precisely, an em in
size p is p points. Although inches are usually clearer than ems to people who
do not set type for a living, ems have a place: they are a measure of size that
is proportional to the current point size. The ems unit is used to make text
that keeps its proportions regardless of point size. The ems can be specified as
scale factors directly, as in .ti 2.5m.

Lines can be indented negatively if the indent is alréady positive:
=31

causes the next line to be moved back 3/10 of an inch.

To make a decorative initial capital that is three lines high:

e The whole paragraph is indented.
¢ The initial character is moved back with the .ti request.

e The initial character is made bigger (e.g., \s36N\s0) and moved down from
its normal position.

102—Document Preparation UNIX Programmer’s Manual

TABS

Tabs (the ASCII horizontal tab character) can be used to produce output in
columns or to set the horizontal position of output. Typically, tabs are used
only in unfilled text. - Tab stops are set by default every half inch from the
current indent but can be changed by the .ta request. Tab stops are set every
inch, for example, with the following entry:

.ta 1i 2i 3i 4i 5i 6i

Tab stops are left justified (as on a typewriter), so lining up columns of right-
justified numbers can be a problem. If there are many numbers or if a table
layout is needed, the table formatting program (tbl) is available.

A handful of numeric columns can be done by preceding every number with
enough blanks to make it line up when typed. For instance:

.nf

.ta 11 2i 3i
\O\01\0\02\0\03
\040\050\060
700800900

Nl

Each leading blank is a \0 escape sequence. This character does not print but
has the same width as a digit. The symbol represents a tab character. When
printed the above input produces:

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space with some character other than
blanks by setting the tab replacement character with the .tc request:

.ta 2i 3i .
.te \(ru \"the ‘“\(ru” string is the rule (_) character

NameAge

produces: -

UNIX Programmer’s Manual Document Preparation—103

FORMATTING FACILITIES

Name Age

(=]

To reset the tab replacement character to a blank, the .tc request (with no
argument) is used. Lines can also be drawn with the \l escape sequence.

The troff processor provides a general mechanism called “fields” for setting up
complicated columns. This is used by the tbl program.

LOCAL MOTIONS

The troff processor provides a number of escape sequences for placing
characters of any size at any place. They can be used to draw special
characters or to tune the output for a particular appearance. Most of these
sequences are straightforward but messy to read and tough to type correctly.

Vertical Motions

If the eqn prograin is not used, subscripts and superscripts are most easily done
with the half-line local motions \u and \d sequences. To go back up the page
half a point size, insert a \u at the desired place; to go down half a point size,
insert a \d. The \u and \d should always be used in pairs. Since \u and \d
refer to the current point size, they should either be both inside or both outside
the size changes. Otherwise, an unbalanced vertical motion will result.

Sometimes the space given by \u and \d is not the right amount. The \v
sequence can be used to request an arbitrary amount of vertical motion. The
in-line sequence \v’N’ causes motion up or down the page by the amount
specified in N. For example, to move the character “N” down, the following
would apply

.in +0.6i \"indent paragraph

11 —0.3i \"shorten lines

i —0.3i \"move N back
\v2\s36N\sO\v’—2’ott met Shott, Nott
shot at Shott...

A minus sign causes upward motion, while no sign or a plus sign means down
the page. Thus \v’—2’ causes an upward vertical motion of two line spaces.

104—Document Preparation UNIX Programmer’s Manual

There are other ways to specify the amount of motion:

\v’0.17
\v’3p’
\v—0.5m’

are all legal. The scale specifier i, p, or m goes inside the quotes. Any
character can be used in place of the quotes. This is true of all other troff
formatter commands and sequences described in this section.

Since the troff formatter does not take within-the-line vertical motions into
account when figuring where it is on the page, output lines can have
unexpected positions if the left and right ends are not at the same vertical
position. Thus \v, like \u and \d, should always balance upward vertical motion
in a line with the same amount in the downward direction.

"Horizontal Motions

Arbitrary horizontal motions are also available, \h is analogous to \v, except
that the default scale factor is ems instead of line spaces. As an example,

\h’—0.11’

causes a backwards motion of a tenth of an inch. In a practical situation, when
printing the mathematical symbol > >, the default spacing is too wide, so eqn
replaces this by

>\h'—0.3m’>
to produce >>.

Frequently, \h is used with the “width function” \w to generate motions equal
to the width of some character string. The construction

\w’thing’

is a number equal to the width of “thing” in machine units (1/432 inch). All
troff formatter computations are ultimately done in these units. To move
horizontally, the width of an x,

UNIX Programmer’s Manual Document Preparation—105

FORMATTING FACILITIES
\h’\w’x’u’

is used. Since the default scale factor for all horizontal dimensions is' m (ems),
u (machine units) must be used, or the motion produced will be too large.
Nested quotes are acceptable to the troff formatter as long as none are omitted.
An example of this kind of construction would be to print the string .sp by
overstriking with a slight offset. The following example prints .sp, moves left
by the width of .sp, moves right one unit, and prints .sp again:

sp\h’—\w’.sp’uw’\h’1u’.sp
There are several special-purpose troff formatter sequences for local motion:

e The \0 is an unpaddable (never widened or split across a line-by-line
justification and filling) white space of the same width as a digit.

o The \ <space> is an unpaddable character the width of a space,
e The \| is 1/6 the width of a space.
e The \" is 1/12 the width of a space.

o The \& has zero width and is useful in entering a text line that would
otherwise begin with a ..

e The \o sequence causes up to nine characters to be overstruck, centered on
the widest. This is for accents such as:

syst\o"e\(ga"me t\o"e\(aa"\o"e\(aa"phonique
which produces
systéme téléphonigue

The accents \(ga and \(aa (\" and \') are just one character to the troff
formatter.

106—Document Preparation UNIX Programmer’s Manual

Overstrikes

Overstrikes can be made with another special convention, \z, the zero-motion
sequence. Normal horizontal motion is suppressed with the \zx after printing
the single character x, so another character can be laid on top of it. Although
sizes can be changed within \o, characters are centered on the widest, and there
can be no horizontal or vertical motions. The \z may be the only way to get
what is needed.

A more ornate overstrike is given by the bracketing function \b, which piles up
characters vertically, centered on the current base line. Thus big brackets are
obtained by constructing them with piled-up smaller pieces.

Drawing Lines

A convenient facility for drawing horizontal and vertical lines of arbitrary
length with arbitrary characters is provided by the troff formatter. A 1-inch
long line is printed with a \P1i’ sequence. The length can be followed by the
character to use if the _is not appropriate. The \I’0.5i.” sequence draws a 1/2
inch line of dots. Escape sequence \L is analogous, except that it draws a
vertical instead of a horizontal line. The part titled “Table Formatting
Program™ describes other ways of providing horizontal and vertical lines.

STRINGS

If a paper contains a large number of occurrences of an acute accent over a
letter e, typing \o"e\’" for each é would be a nuisance. Fortunately, the troff
formatter provides a way to store an arbitrary collection of text in a “string”,
and thereafter use the string name as a shorthand for its contents. Strings are
one of several troff formatter mechanisms whose judicious use permits typing a
document with less effort and organizing it so that extensive format changes
can be made with few editing changes.

A reference to a string is replaced by whatever text the string was defined as.
Strings are defined with the .ds request. The line

dselo"e\’"

defines the string e to have the value \o"e\’".

UNIX Programmer’s Manual ' Document Preparation—107

FORMATTING FACILITIES

String names may be either 1- or 2-characters long. They are referred to by
*x for 1-character names or *(xy for 2-character names. Thus to get

téléphone

given the definition of the string e as above,
t*el*ephone

is the input.

If a string must begin with blanks, it is defined as
ds xx " text

The double quote signals the beginning of the definition. There is no trailing
quote; the end of the line terminates the string.

A string may be several lines long. If the troff formatter encounters a \ at the
end of any line, it is thrown away and the next line is added to the current one.
A long string can be made by ending each line except the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other strings or even in terms of themselves.

INTRODUCTION TO MACROS

In its simplest form, a macro is a shorthand notation similiar to a string. For
instance, if every paragraph is to start in exactly the same way, with a space
and a temporary indent of two ems, the following requests would perform the
operation:

108—Document Preparation UNIX Programmer’s Manual

.spfR
ti +2m

To save typing these requests every time used, they could be collapsed into one
shorthand line, such as a troff command, .PP. The .PP is called a macro. The
way to tell the troff formatter what .PP means is to define it with the .de
request:

.de PP

.Sp
ti +2m

The first line names the macro (PP in this example). It is in uppercase so it
will not conflict with any name that the troff formatter might already know
about. The last line (..) marks the end of the definition. In between is the text
which is inserted whenever the troff formatter encounters the .PP macro call.
A macro can contain any mixture of text and formatting requests.

The definition of a macro has to precede its first use; undefined macros are
ignored. Names are restricted to one or two characters.

Using macros for commonly occurring sequences of requests is important since
it saves typing and makes later changes easier. If it is decided that in
producing a document the paragraph indent is too small, the vertical space is
too large, and Roman font should be forced, only the definition of .PP needs to
be changed to read

.de PP \"paragraph macro
.Sp 2p

.t +3m

ftR

The change takes effect everywhere .PP is used and is easier than changing
commands throughout the whole document.

A troff formatter escape sequence that causes the rest of the line to be ignored
is \". It is used to add comments to the macro definition (a wise idea once
definitions get complicated).

UNIX Programmer’s Manual Document Preparation—109

FORMATTING FACILITIES

Another example of macros that start and end a block of offset, unfilled text is

.de OS \"start indented block

.Sp
.nf
.in +0.5i

.de OE \"end indented block

Sp
A

.in —0.5i

The .OS and .OE macros could be used before and after text to provide the
following effect:

Copy to

John Doe
Richard Roberts
Stanley Smith

In this example, the indention used is .im +0.5i instead of .im 0.5i. This
permits the nesting of the .OS and .OE macros to get blocks within blocks.

Should the amount of indention be changed at a later date, it is necessary to
change only the definitions of .OS and .OE, not individual requests throughout
the whole paper.

TITLES, PAGES, AND PAGE NUMBERING

Titles, pages, and page numbering is a complicated area where nothing is done
automatically. Of necessity, some of this section is a cookbook to be copied
literally until some experience is obtained.

To get a title at the top of each page, such as:

left top center top right top

110—Document Preparation UNIX Programmer’s Manual

it was possible on an older system (roff) to get headers and footers
automatically on every page with the following:

.he ’left top’center top’right top’
.fo ’left bottom’center bottom’right bottom’

This does not work in the troff formatter. Instead specifications must be
provided:

o What to do at and around the title line
e When to print the title

e What the actual title is.

The .NP macro (new page) is defined to process titles at the end of one page
and the beginning of the next:

.de NP

’bp

’sp 0.5i

.tl ’left top’center top’right top’
’sp 0.3i

These requests are explained as follows:

o The ’bp (begin page) request causes a skip to the top-of-page.
e The ’sp 0.5i request will space down 1/2 inch.
e The .tl request prints the title.

e The ’sp 0.3i request provides another 0.3 inch space.

The reason that the ’bp and ’sp requests are used instead of the .bp and .sp
requests is that the .sp and .bp cause a break to take place. This means that
all the input text collected but not yet printed is flushed out as soon as possible,
and the next input line is guaranteed to start a new line of output. Had .bp
been used in the .NP macro, a break in the middle of the current output line
would occur when a new page is started. The effect would be to print the left-

UNIX Programmer’s Manual k Document Preparation—111

FORMATTING FACILITIES

over part of that line at the top of the page, followed by the next input line on
a new output line. This is not desired. Using “’” instead of “.” for a request
tells the troff formatter that no break is to take place. The output line
currently being filled should not be forced out before the space or new page.

The list of requests that cause a break is short and natural:

.bp begin page

.br break

.ce center

Bl fill mode

.nf no-fill mode

Sp space

.in indent

.t temporary indent

Other requests cause no break, regardless of whether a “.” or a “’” is used.
]

If a break is really needed, a .br request at the appropriate place will provide
it.

To ask for .NP at the bottom of each page, a statement like “when the text is
within an inch of the bottom of the page, start the processing for a new page”
is used. This is done with the .wh request. For example:

.wh =1i NP

No *“.”” character is used before NP since it is simply the name of a macro and
not 4 macro call. The minus sign means “measure up from the bottom of the
page”, so —1i means 1 inch from the bottom. The .wh request appears in the
input data outside the definition of the .NP macro. Typically, the input would
be

112—Document Preparation UNIX Programmer’s Manual

.de NP
--- body of macro

.wh —1i NP

As text is actually being output, the troff formatter keeps track of its vertical
position on the page; and after a line is printed within 1 inch from the bottom,
the .NP macro is activated.

e The .wh request sets a trap at the specified place.

e The trap is sprung when that point is passed.

The .NP macro causes a skip to the top of the next page (that is what the ’bp
was for) and prints the title with appropriate margins.

Something to beware of when changing fonts or point sizes is crossing a page
boundary in an unexpected font or size.

e Titles come out in the size and font most recently specified instead of what
was intended.

e The length of a title is independent of the current line length, so titles will
come out at the default length of 6.5 inches unless changed. Changing title
length is done with the .It request.

There are several ways to fix the problems of point sizes and fonts in titles.
The .NP macro can be changed to set the proper size and font for the title, and
then restore the previous values, like this:

.de NP

bp

’sp 0.51

ft R \"set title font to Roman
.ps 10 \"set size to 10 point

At 6 \"set length to 6 inches
.tl ’left top’center top’right top’

.ps \"revert to previous size
ft P \"and to previous font

’sp 0.3i

This version of .NP does not work if the fields in the .tl request contain size or

UNIX Programmer’s Manual Document Preparation—113

FORMATTING FACILITIES

font changes. To cope with that contingency requires the troff formatter
“environment” mechanism.

To get a footer at the bottom of a page, the .NP macro should be modified.
One option is to have the .NP macro do some processing before the ’bp request.
Another option is to split the .NP macro into a footer macro (invoked at the
bottom margin) and a header macro (invoked at the top of page).

Output page numbers are computed automatically as each page is produced
(starting at 1), but no numbers are printed unless explicitly requested. To get
page numbers printed, the % character should be included in the .tI request at
the position where the number is to appear. For example:

A= % =

centers the page number inside hyphens. The page number can be set at any
time with either a .bp n request (which immediately starts a new page
numbered n) or with .pn n (which sets the page number for the next page but
does not cause a skip to the new page). The .bp +n sets the page number to n
more than its current value. The .bp request without an argument means .bp
+1.

NUMBER REGISTERS AND ARITHMETIC

The troff processor has a facility for doing arithmetic and defining and using
variables with numeric values, called number registers. Number registers, like
strings and macros, can be useful in setting up a document so it is easy to
change later. They also serve for any sort of arithmetic computation.

Like strings, number registers have 1- or 2-character names. They are set by
the .nr request and are referenced anywhere by \mx (1-character name) or
\n(xy (2-character name).

There are quite a few predefined number registers maintained by the troff
formatter, among them: '

e % for the current page number

114—Document Preparation UNIX Programmer’s Manual

e ni for the current vertical position on the page
e dy, mo, and yr for the current day, month, and year

e s and .f for the current size and font (the font is a number from one to
four).

Any of these can be used in computations like any other register, but some, like
.s and .f, cannot be changed with .nr.

An example of the use of number registers is in an older macro package where
most significant parameters are defined in terms of the values of a handful of
number registers. These include the point size for text, the vertical spacing,
and the line and title lengths. To set the point size and vertical spacing, a user
may input

anr PS 9
.anr VS 11

The paragraph macro, .PP, is roughly defined as follows:

.de PP
ps Wn(PS \'reset size
vs \n(VSp \"spacing

ft R \"font
sp 0.5v \"half a line
1 +3m

This sets the font to Roman and the point size and line spacing to whatever
values are stored in the number registers PS and VS.

The reason for two backslashes is to indicate that a backslash is really meant.
When the troff formatter originally reads the macro definition, it peels off one
backslash to see what is coming next. Two backslashes in the definition are
required to ensure that a backslash is left in the definition when the macro is
used. If only one backslash is used, point size and vertical spacing will be
~ frozen at the time the macro is defined, not when it is used.

Protection with an extra layer of backslashes is needed only for \nm, *, \$, and \
itself. Things like \s, \f, \h, \v, etc. do not need an extra backslash since they
are converted by the troff formatter to an internal code immediately upon

UNIX Programmer’s Manual Document Preparation—115

FORMATTING FACILITIES

detection.

Arithmetic expressions can appear anywhere that a number is expected. As an
example:

.r PS \\n(PS—2

decrements register PS by 2. Expressions can use the arithmetic operators +,
—, *, /, % (mod), the relational operators >, >=, <, <=, =, = (not equal),
and parentheses.

So far, the arithmetic has been straightforward; more complicated things are
tricky.

o Number registers hold only integers. In the troff formatter, arithmetic uses
truncating integer division just like Fortran.

e In the absence of parentheses, evaluation is done left-to-right without any
operator precedence including relational operators. Thus:

7*—4+3/13

becomes —1.

Number registers can occur anywhere in an expression and so can scale
indicators like p, i, m, etc. (but no spaces). Although integer division causes
truncation, each number and its scale indicator is converted to machine units
(1/432 inch) before any arithmetic is done, so 1i/2u evaluates to 0.5i correctly.

The scale indicator u often has to appear when least expected, in particular
when arithmetic is being done in a context that implies horizontal or vertical
dimensions. For example, Al 7/2i is not 3% inches. Instead, it is really 7
ems/2 inches. When translated into machine units, it becomes 0. This is
because the default units for horizontal parameters (like .H) are ems. Another
incorrect try is .1 7i/2. The 2 is 2 ems, so 7i/2 is small, although not 0. The
Al 7i/2u must be used. A safe rule is to attach a scale indicator to every
number, even constants. '

116—Document Preparation UNIX Programmer’s Manual

For arithmetic done within a .nr request, there is no implication of horizontal
or vertical dimension, so the default units are “units”, and 7i/2 and 7i/2u mean
the same thing. Thus:

ar 1l 7i/2
J1\\n(lu

accomplishes what is desired as long as the u on the .1l request is included.

MACROS WITH ARGUMENTS

Two things are needed to be able to define macros that can change from one
use to the next according to parameters supplied as arguments:

1. When the macro is defined, it must be indicated that some parts will be
provided as arguments when the macro is called.

2. When the macro is called, the actual arguments to be plugged into the
definition must be provided.

An example would be to define a macro (.SM) that will print its argument two
points smaller than the surrounding text.

de SM
\s—2\\$1\s+2

The macro call would appear:
.SM SMALL

The argument (“SMALL” in this example) would then appear two points
smaller than the rest of the print.

Within a macro definition, the symbol \\$n refers to the nth argument with
which the macro was called. Thus \\$1 is the string to be placed in a smaller
point size when .SM is called.

UNIX Programmer’s Manual Document Preparation—117

FORMATTING FACILITIES

A slightly more complicated version is the following definition of .SM which
permits optional second and third arguments that will be printed in the normal
size:

.de SM
\\S3\s—2\\$ 1\s+2\\$2

Arguments not provided when the macro is called are treated as empty. The
macro call

.SM ABLE),
would appear (with “ABLE” in smaller type)
ABLE),
The macro call
.SM BAKER). (
produces the following (with “BAKER” in smaller print):
(BAKER).

It is convenient to reverse the order of arguments because trailing punctuation
is much more common than leading. The number of arguments that a macro
was called with is available in number register .$.

The macro, .BD, is used to make “bold Roman” for troff formatter command
names in text. It combines horizontal motions, width computations, and
argument rearrangement:

.de BD
\ENS\INS I\ —\w\\$ ’u+2u"\\$ 1\fP\\$2

118—Document Preparation UNIX Programmer’s Manual

The \h and \w escape sequences need no extra backslash. The \ & is there in
case the argument begins with a period. Two backslashes are needed with the
\\$n commands to protect one of them when the macro is being defined. A
second example will make this clearer. A .SH macro can be defined to produce
automatically numbered section headings with the title in smaller size bold
print. The use is

.SH "Section title ..."

If the argument to a macro is to contain blanks, it must be surrounded by
double quotes. ’

The definition of the .SH macro is

.nr SH 0 \"initialize section number
.de SH

.sp 0.3i

ft B

.nr SH \\n(SH+1 \"increment number

.ps \\n(PS-1 \"decrease PS number
\\n(SH. \\$1 \"title

.ps \\n(PS \"restore PS

.sp 0.3i

ft R

The section number is kept in number register SH, which is incremented each
time just before use.

Note: A number register may have the same name as a macro without conflict
but a string may not.

A \\n(SH and \\n(PS was used instead of a \n(SH and \n(PS. Had \n(SH
been used, it would have yielded the value of the register at the time the macro
-was defined, not at the time it was used. Similarly, by using \\n(PS, the point
size at the time the macro was called is obtained.

An example that does not involve numbers is the .NP macro (defined earlier)
which had the request

UNIX Programmer’s Manual Document Preparation—119

FORMATTING FACILITIES

.t1 ’left top’center top’right top’
The fields could be made into parameters by using instead
AW T\WH(CT*(RT

The title comes from three strings called LT, CT, and RT. If these are empty,
the title will be a blank line. Normally, CT would be set with

dsCT — % —

to give just the page number between hyphens. A user could supply private
definitions for any of the strings.

CONDITIONALS

Suppose it is desired that the .SH macro leave two extra inches of space just
before Section 1, but nowhere else. The cleanest way to do that is to test inside
the .SH macro whether the section number is 1, and add some space if it is.
The .if command provides the conditional test that can be added just before the
heading line is output:

Af \n(SH=1 .sp 2i \"first section only

The condition after the .if request can be any arithmetic or logical expression.
If the condition is logically true or arithmetically greater than zero, the rest of
the line is treated as if it were text (a request in this case). If the condition is
false, zero, or negative, the rest of the line is skipped.

It is possible to do more than one request if a condition is true. For example, if
several operations are to be done prior to Section 1, the .S1 macro is defined
and invoked when Section 1 is almost complete (as determined by an .if).

120—Document Preparation ~ UNIX Programmer’s Manual

.de S1
--- processing for section 1

.de SH

if \\n(SH=1 .S1

An alternate way is to use the extended form of the .if request, e.g.:

Af \\n(SH=1 \{--- processing
for section 1 ---\}

The braces, “\{” and “\}”’, must occur in the positions shown or unexpected
extra lines will be in the output. The troff processor also provides an “if-else”
construction.

A condition can be negated by preceding it with !. The same effect as above is
obtained (but less clearly) by using

Af \\n(SH>1 .S1

There are a handful of other conditions that can be tested with .if. For
example:

Aif e .tl ’left top’center top’right top’ \"Even page title
if o .tl ’left top’center top’right top’ \"Odd page title

gives facing pages different titles, depending on whether the page number is
even or odd, when used inside an appropriate new page macro.

Two other conditions are t and n, which tells whether the formatter is troff or
nroff:

Af t troff stuff ...
Af n nroff stuff ...

String comparisons may be made in a .if request.

UNIX Programmer’s Manual Document Preparation—121

FORMATTING FACILITIES

Af ’string1’string2’ stuff

executes the program stuff if stringl is the same as string?. The character
separating the strings can be anything reasonable that is not contained in either
string. The strings themselves can reference strings with “*”, arguments with
“\$”, etc.

ENVIRONMENTS

There is a potential problem when going across a page boundary: parameters
like size and font for a page title may be different from those in effect in the
text when the page boundary occurs. A general way to deal with this and
similar situations is provided by the troff formatter.

There are three environments. Each has independently selectable versions of
many parameters associated with processing, including size, font, line and title
lengths, fill/no-fill mode, tab stops, and partially collected lines. Thus the
titling problem may be solved by processing the main text in one environment
and titles in another with its own suitable parameters.

The .ev n request shifts to environment n (n must be 0, 1, or 2). The .ev
request with no argument returns to the previous environment. Environment
names are maintained in a stack, so calls for different environments may be
nested and unwound consistently.

If the main text is processed in environment O where the troff formatter begins
by default, the new page macro, .NP, can then be modified to process titles in
environment 1, e.g.:

.de NP
ev 1 \"shift to new environment
Jt 6i \"set parameters here
ftR
.ps 10
--- any other processing
.ev \"return to previous environment

It is also possible to initialize the parameters for an environment outside the

122—-Document Preparation UNIX Programmer’s Manual

.NP macro, but the version shown keeps all the processing in one place and is
easier to understand and change.

DIVERSIONS

There are numerous occasions in page layout when it is necessary to store some
text for a period of time without actually printing it. Footnotes are the most
obvious example. Text of the footnote usually appears in the input well before
the place on the page is reached where it is to be printed. The place where it is
output normally depends upon the magnitude of the footnote. This implies that
there must be a way to process the footnote, at least enough to decide its size
without printing it.

A mechanism called a diversion is provided by the troff formatter for doing this
processing. Any part of the output may be diverted into a macro instead of
being printed; and at some convenient time, the macro may be put back into
the input.

The .di xy request begins a diversion. All subsequent output is collected into
the macro xy until the .di request with no arguments is encountered. This
terminates the diversion. Processed text is available at any time thereafter by
giving the .xy request. The vertical size of the last finished diversion is
contained in the built-in number register dn. For instance, to implement a
keep-release operation so that text between the macros .KS and .KE will not be
split across a page boundary (as for a figure or table), the following applies:

e When a .KS is encountered, the output is diverted to determine its size.

e When a .KE is encountered and if the diverted text will fit on the current
page, it is printed there. If the diverted text does not fit on the current page, it
is printed at the top of the next page.

The definitions of the .KS and .KE macros are as follows:

.de KS \"start keep

.br \"start fresh line

evl \"collect in new environment
A \"make it filled text

di XX \"collect in XX

UNIX Programmer’s Manual Document Preparation—123

FORMATTING FACILITIES

.de KE \"end keep

.br \"get last partial line

di \"end diversion

Aif Wn(dn>=\\n(.t .bp \"bp if does not fit

.nf \"bring it back in no-fill

XX \"text

.ev \"return to normal environment

The number register nl indicates the current position on the output page. Since
output was being diverted, it remains at its value when the diversion started.
The dn register contains the amount of text in the diversion. The distance to
the next trap is in the built-in register .t. It is assumed that the next trap is at
the bottom margin of the page. If the diversion is large enough to go past the
trap, the .if is satisfied; and a .bp request is issued. In either case, the diverted
output is brought back with .XX. It is essential to bring it back in no-fill mode
so the troff formatter will do no further processing on it.

This is not the most general keep-release operation nor is it robust in the face
of all conceivable inputs. It would require more space than available to display
it in full generality. This manual is not intended to teach everything about
diversions, but to sketch out enough so that existing macro packages can be
read with some comprehension.

124—Document Preparation UNIX Programmer’s Manual

NROFF/TROFF TUTORIAL EXAMPLES

Although the nroff and troff formatters have by design a syntax reminiscent of
earlier text processors with the intent of easing their use, it is usually necessary
to prepare at least a small set of macro definitions to describe most documents.
Such common formatting needs such as page margins and footnotes are
deliberately not built into the nroff and troff formatters. Instead, the macro
and string definition, number register, diversion, environment switching, page-
position trap, and conditional input mechanisms provide the basis for user-
defined implementations.

Examples in the following text are intended to be useful and somewhat realistic
but will not necessarily cover all relevant contingencies. Explicit numerical
parameters are used to make the examples easier to read and to illustrate
typical values. In many cases, number registers would be used to reduce the
number of places where numerical information is kept and to concentrate
conditional parameter initialization data that depends on whether the troff or
nroff formatter is being used.

PAGE MARGINS

Header and footer macros are defined to describe the top and bottom page
margin areas, respectively. A trap is planted at page position O for the header
and at —N (N from the page bottom) for the footer. A simple header and
footer macro definition is

.de hd \"define header
’sp li

.. \"end definition
de fo \"define footer
bp

.. \"end definition
.wh 0 hd

.wh —1i fo

This example provides blank 1-inch top and bottom margins. The header will
occur on the first page, only if the definition and trap exist prior to the initial
pseudopage transition. In fill mode, the output line that springs the footer trap
was typically forced out because some part or whole word did not fit on it. If
anything in the footer and header that follows causes a break, that word or
part word will be forced out. In this and other examples, requests like bp and
sp that normally cause breaks are invoked using the no-break control character

UNIX Programmer’s Manual Document Preparation—125

FORMATTING FACILITIES

(’). When the header/footer design contains material requiring independent -
text processing, the environment may be switched to avoid interaction with
running text. '

A more realistic example follows:

.de hd \"header
Af t .\’ \ @’ \"troff cut mark
Af \\n%>1 \{\

’sp |0.5i—1 \"tl base at 0.5 inch
=% = \"centered page number
.ps \"restore size

ft \"restore font

s \} \"restore vs

sp |1.0i \"space to 1.0 inch

.ns \"turn on no-space mode
.de fo \"footer

.ps 10 \"set footer/header size
ftR ' \"set font

vs 12p \"set base-line spacing

Af \n%=1 \{\
’sp \n(.pu—0.5i—1 \"tl base 0.5 inch up

=% = \} \"first page number
,bp

.wh 0 hd

.wh =1i fo

This example sets the size, font, and base-line spacing parameters for the footer
material. Parameters are restored to their original values when the header is
completed. The material in this case is a page number at the bottom of the
first page and at the top of the remaining pages. If the troff formatter is used,
a cut mark is drawn in the form of root-en’s at each margin. The sp’s refer to
absolute positions to avoid dependence on the base-line spacing. Another
reason for the sp in the footer is that the footer is invoked by printing a line
whose vertical spacing swept past the trap position by possibly as much as the
base-line spacing. The no-space mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top of the running text.

The above method of restoring size, font, etc. presupposes that such requests
(that set previous value) are not used in the running text. A better scheme is

126—Document Preparation : UNIX Programmer’s Manual

to save and to restore both the current and previous values as shown for size in

the following:

.de fo

.nr sl \\n(s
.ps

.r s2 \n(s

de hd
.ps \-{n (s2
.ps \\n(s1

\"current size

\"previous size
\"rest of footer

\"header stuff
\"restore previous size
\"restore current size

Page numbers may be printed in the bottom margin by a separate macro
triggered during the footer’s page ejection:

.de bn
M=% =

\"bottom number
\"centered page number

.wh —0.5i—1v bn\"tl base 0.5 inch up

PARAGRAPHS AND HEADINGS

Housekeeping associated with starting a new paragraph should be collected in a
paragraph macro that does the desired preparagraph spacing, forces the correct
font, size, base-line spacing, and indent; checks that enough space remains for
more than one line; and requests a temporary indent.

.de pg
.br

ft R

.ps 10

-.vs 12p

in O

.sp 0.4

.ne 1+\\n(.Vu
.ti 0.2i

\"paragraph

\"break

\"force font,

\"size,

\"spacing,

\"and indent

\"prespace

\"want more than 1 line
\"temporary indent

UNIX Programmer’s Manual Document Preparation—127

FORMATTING FACILITIES

The first break in pg will force out any previous partial lines and must occur
before the .vs request. The forcing of font, size, base-line spacing, and indent is
partly a defense against prior error and partly to permit things like section
heading macros to set parameters only once. The prespacing parameter is
suitable for the troff formatter; a larger space, at least as big as the output
device vertical resolution, would be more suitable in the nroff formatter. The
choice of remaining space to test for in the .ne is the smallest amount greater
than one line (the .V is the available vertical resolution).

A macro to automatically number section headings might look like:

.de sc \"section

- \"force font, etc.
sp 0.4 \"prespace
ne 2.4+\\n(.Vu \"want 2.4+ lines
Bil .
\\n+S.
arS01 \"initial S

The usage is sc¢, followed by the section heading text, followed by pg. The .ne
test value includes one line of heading, 0.4 line in the following pg, and one line
of the paragraph text. A word consisting of the next section number and a
period is produced to begin the heading line. The format of the number may
be set by the .af request.

Another common form is the labeled, indented paragraph where the label
protrudes left into the indent space.

de Ip \"labeled paragraph
.pg

.in 0.5 \"paragraph indent
.ta 0.2i 0.51 \"label, paragraph
ti 0

\t\WS1\t\e \"flow into paragraph
The intended usage is

p label

128—Document Preparation ; UNIX Programmer’s Manual

The label will begin at 0.2 inch and cannot exceed a length of 0.3 inch without
intruding into the paragraph. The label could be right adjusted against 0.4
inch by setting the tabs instead with

.ta 0.4iR 0.5i

The last line of the lp macro ends with \¢ so that it will become a part of the
first line of the text that follows.

MULTIPLE COLUMN OUTPUT

The production of multiple column pages requires the footer macro to decide
whether it was invoked by other than the last column, so that it will begin a
new column rather than produce the bottom margin. The header can initialize
a column register that the footer will increment and test. The following is
arranged for two columns but is easily modified for more:

.de hd \"header

anrcl01 \"initial column count
.mk \"mark top of text

.de fo \"footer

de \\n+(cl<2 \{\

.po +3.4i \"next column; 3.14+0.3
Tt \"back to mark

.ns \} \"no-space mode

el \{\

.po \\nMu \"restore left margin
"bp \}

A 3.14 \"column width

ar M\\n(Co \"save left margin

Typically, a portion of the top of the first page contains full width text; the
request for the narrower line length, as well as another .mk request, will be
made where the 2-column output is to begin.

UNIX Programmer’s Manual Document Preparation—129

FORMATTING FACILITIES

FOOTNOTE PROCESSING

The footnote mechanism is used by imbedding the footnotes in the input text at
the point of reference demarcated by an initial .fn and a terminal .ef.

fn
Footnote text and control lines.
ef

The following macro definitions cause footnotes to be processed in a separate
environment and diverted for later printing in the space immediately prior to
the bottom margin. There is provision for the case where the last collected
footnote does not completely fit in the available space:

.de hd \"header

anrx01 \"initial footnote count
.nr y 0—\\nb \"current footer place
.ch fo —\\nbu \"reset footer trap

if \\n(dn .fz \"leftover footnote

de fo \"footer

anrdn O \"zero last diversion size
Af \\nx \f\

evl \"expand footnotes in environment 1
.nf \"retain vertical size
FN \"footnotes

rm FN \"delete it

Aif \\n(z’fy’ di

nrxo0

\"end overflow diversion
\"disable fx

ev \ \"pop environment
9bp
“de fx \"process footnote overflow

Af \\nx .di fy

.de fn

\"divert overflow

\"start footnote
da FN \"divert (append) footnote
evl \"in environment 1
Af \\n+x=1 fs \"if first, include separator
A \"fill mode

130—Document Preparation

UNIX Programmer’s Manual

de ef \"end footnote

.br \"finish output

ar z \\n(v \"save spacing

v \"pop environment

di \"end diversion

ar y —\\n(dn \"new footer position
Af \\nx=1 .nr y —(\\n(.v-\\n2)\ \"uncertainty correction
.ch fo \\nyu \"y is negative

Aif (\n(nl+1v) > Q\nCp+H\ny)\

.ch fo \\n(nlu+1v \"it did not fit

de fs \"separator

\P17° \"1 inch rule

Jbr

de fz \"get leftover footnote
.fn

.nf \"retain vertical size
fy \"where fx put it

.ef

.nr b 1.0i \"bottom margin size
.wh 0 hd \"header trap

.wh 12i fo \"footer trap, temp position
.wh —\\nbu fx \"fx at footer position
.ch fo —\\nbu \"conceal fx with fo

o The header macro (hd) initializes a footnote count register x and sets both
the current footer trap position register y and the footer trap itself to a nominal
position specified in register b.

o If the register dn indicates a leftover footnote, the fz macro is invoked to
reprocess it.

¢ The footnote start macro (fn) begins a diversion (append) in environment 1
and increments the footnote count register x; if the count is one, the footnote
separator macro (fs) is interpolated. The separator is kept in a separate macro
to permit user redefinition.

e The footnote end macro (ef) restores the previous environment and ends the
diversion after saving spacing size in register z.

UNIX Programmer’s Manual Document Preparation—131

FORMATTING FACILITIES

e Register y is decremented by the size of the footnote which is available in
register dn.

¢ On the first footnote, register y is further decremented by the difference in
vertical base-line spacings of the two environments. This prevents late
triggering of the footer trap from causing the last line of the combined
footnotes to overflow.

e The footer trap is set to the lower of y or the current page position (nl) plus
one line to allow for printing the reference line.

e If indicated by x, the footer fo rereads the footnotes from FN in no-fill mode
in environment 1 and deletes FN. If the footnotes were too large to fit, the
macro fx will be trap-invoked to redivert the overflow into fy, and the register
~dn will later indicate to the header whether or not fy is empty.

¢ Both fo and fx macros are planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo trap is moved.

e The footer terminates the overflow diversion (if necessary) and zeros x to
disable fx. This is because the uncertainty correction, together with a not-too-
late triggering of the footer, can result in footnote macros finishing before
reaching the fx trap.

LAST PAGE

After the last input file has ended, nroff and troff formatters invoke the end
macro, if any, and eject the remainder of the page.

.de en \"end-macro
\c
7bp

.em en
During the eject, any traps encountered are processed normally. At the end of
this last page, processing terminates unless a partial line, word, or partial word

remains. If it is desired that another page be started, the end-macro will
deposit a null partial word and effect another last page.

132—Document Preparation UNIX Programmer’s Manual

TABLE FORMATTING PROGRAM

INTRODUCTION

The tbl program is a document formatting preprocessor for the formatter which
makes fairly complex tables easy to specify and enter. Tables consist of
columns which may be independently centered, right-adjusted, left-adjusted, or
aligned by decimal points. Headings may be placed over single columns or
groups of columns. A table entry may contain equations or consist of several
rows of text. Horizontal or vertical lines may be drawn as desired in the table,
and any table or element may be enclosed in a box.

A description of a table is put by the thl program into an nroff/troff formatter
list of requests that prints the table. The tbl program isolates a portion of a job
that can be successfully handled and leaves the remainder for other programs.
Thus, tbl may be used with the equation formatting program (eqn) and/or
various formatter layout macro packages without function duplication.

USAGE

On the UNIX operating system, the tbl program can be run on a simple table
with the command

tbl filename|troff

When there are several input files containing tables, equations, and ms or mm
macro requests, the normal command is

tbl filel file2...|eqn|troff —ms

The usual options may be used on the troff formatter. Usage of the nroff
formatter is similar to that of troff, but only TELETYPE® Model 37 and
Diablo-mechanism (DASI or GSI) terminals can print boxed tables. If a file
name is “ —”, the standard input is read at that point.

For the convenience of users employing line printers without adequate driving
tables or post-filters, there is a special -7.X command-line option to tbl which

UNIX Programmer’s Manual Document Preparation—133

FORMATTING FACILITIES

produces output that does not have fractional line motions. The only other
command-line options recognized by tbl are -ms and -mm. They are turned
into commands to fetch the corresponding macro files. It is usually more
convenient to place these arguments on the troff formatter part of the
command line, but they are accepted by tbl as well.

When both tbl and egn programs operate on the same file, tbl should be called
first. If there are no equations within tables, either sequence works. It is
usually faster to execute tbl first since eqn normally produces a larger
expansion of the input. However, if there are equations within tables (using
the delim statement in eqn), thl must be executed first or the output will be
scrambled. Use of equations in n-style columns should be avoided since tbl
attempts to split numerical format items into two parts. The delim (xy) global
option prevents splitting numerical columns within delimiters. For example, if
the eqn delimiters are “$$”, a delim ($8) statement causes a numerical
column such as

1245 $+ 168
to be divided after 1245, not after 16.

The tbl program accepts up to 35 columns; the actual number that can be
processed may be smaller depending on availability of troff formatter number
registers. Number register names used by tbl must be avoided within tables.
These include 2-digit numbers from 31 to 99 and strings of the form 4x, S5x,
#x, x+, x|, “x, and x —, where x is any lowercase letter. The names ##, #—,
and #” are also used in certain circumstances. To conserve register names, the
n and a key letters share a register. Hence, the restriction that they may not
be used in the same column.

As an aid in writing layout macros, tbl defines a number register TW which is
the table width. The TW number register is defined by the time that the .TE
macro is invoked and may be used in the expansion of that macro. More
importantly, to assist in laying out multipage boxed tables, the macro T# is
defined to produce the bottom lines and side lines of a boxed table and then be
invoked at its end. By use of this macro in the page footer, a multipage table
can be boxed. In particular, the ms and mm macros can be used to print a
multipage boxed table with a repeated heading by giving the argument H to
the .TS macro. If the table start macro is written

134—Document Preparation UNIX Programmer’s Manual

TS H
a line of the form
.TH

must be given in the table after any table heading (or at the start if none).
Material up to the .TH is placed at the top of each page of the table. The
remaining lines in the table are placed on several pages as required. This is not
a feature of tbl but of the ms and mm macros.

INPUT COMMANDS

Input to thl is text for a document with tables preceded by a .TS (table start)
command and followed by a .TE (table end) command. The tbl program
proceses the tables, generates formatting requests, and leaves the text
unchanged. The .TS and .TE lines are copied so that troff formatter layout
macros (such as memorandum formatting macros) can use these lines as
delimiters. Arguments on the .TS or .TE lines are copied, but otherwise
ignored, and may be used by document layout macro requests.

The general format of the input is

text
TS
table
.TE
text
TS
table
.TE
text

The format of each table is

UNIX Programmer’s Manual Document Preparation—135

FORMATTING FACILITIES

TS
options;
Sformat.
data
.TE

Each table is independent and contains:

o Global options
o A format section describing individual columns and rows of the table

e Data to be printed.

The format section and data are always required but not the options.

Global Options

There may be a single line of options affecting the whole table. If present, this
line must immediately follow the .TS line and must contain a list of option
names separated by spaces, tabs, or commas and must be terminated by a
semicolon. Allowable options are:

e center - center table (default is left-adjust)

¢ expand - make table as wide as current line length

e box - enclose table in a box

e allbox - enclose each item of table in a box

e doublebox - enclose table in two boxes

e tab (x) - separate data items by using x instead of tab

o linesize (n) - set lines or rules (e.g., from box) in n-point type

e delim (xy) - recognize x and y as eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate
.ne (need) requests. These requests are calculated from the number of lines in
the tables. If there are spacing requests embedded in the input, the .ne

136—Document Preparation UNIX Programmer’s Manual

requests may be inaccurate. Normal troff formatter procedures, such as keep-
release macros, are used in that case. If a multipage boxed table is required,
macros designed for this purpose (.TS H and .TH) should be used.

Format Section

The format section of the table specifies the layout of the columns. Each line
in the format section corresponds to one line of table data (except the last
format line corresponds to all following data lines up to any additional .T&
command line). Each format line contains a key letter for each column of the
table. Key letters may be separated by spaces or tabs for readibility purposes.
Key letters are:

Lorl Indicates a left-adjusted column entry.

Rorr Indicates a right-adjusted column entry.

Corc Indicates a centered column entry.

Norn Indicates a numerical column entry. Numerical entries

are aligned so that the units digits of numbers line up.

A or a Indicates an alphabetic subcolumn. All corresponding
entries are aligned on the left and positioned so that the
widest entry is centered within the column.

Sors Indicates a spanned heading. The entry from the previous
column continues across this column (not allowed for the
first column of the table).

Indicates a vertically spanned heading. The entry from
the previous row continues down through this row (not
allowed for the first row of the table).

When numerical column alignment (n) is specified, a location for the decimal
point is sought. The rightmost dot (.) adjacent to a digit is used as a decimal
point. If there is no dot adjoining a digit, the rightmost digit is used as a units
digit. If no alignment is indicated, the item is centered in the column.
However, the special nonprinting character string \& may be used to override
dots and digits or to align alphabetic data. This string lines up where a dot
normally would (the \& disappears from the final output). In the following
example, items shown in the INPUT column will be aligned (in a numerical
column) as shown in the OUTPUT column.

UNIX Programmer’s Manual Document Preparation—137

FORMATTING FACILITIES

INPUT: OUTPUT:
TS

center;

n.

13 13
4.2 4.2
26.4.12 26.4.12
abcdefg abcdefg
abed\&efg abcdefg
_abcdefg\& abcdefg
43\&3.22 433.22
749.12 749.12
.TE

If numerical data are used in the same column with wider L (the capital L key
letter is used instead of lowercase for readability) or r type table entries, the
widest number is centered relative to the wider L or r items. Alignment within
the numerical items is preserved. This is similar to the behavior of a type data.
Alphabetic subcolumns (requested by the a key letter) are always slightly
indented relative to L items. If necessary, the column width is increased to
force this. This is not true for n type entries.

Note: The n and a items should not be used in the same column.

The end of the format section is indicated by a period. The layout of key
letters in the format section resembles the layout of the actual data in the
table. Thus, a simple 3-column format might appear as

css
Inn.

The first line of the table contains a heading centered across all three columns.
Each remaining line contains a left-adjusted item in the first column followed
by two columns of numerical data. A sample table in this format is:

138—Document Preparation ' UNIX Programmer’s Manual

OVERALL TITLE
Item-a 34.22 9.1
Item-b 12.65 .02
Item-c 23 5.8
Total 69.87 1492

Instead of listing the format of successive lines of a table on consecutive lines
of the format section, successive line formats may be given on the same line,
separated by commas. The format for the above example could be written:

css,lnn.
Additional features of the key letter system are:

e Horizontal lines - A key letter may be replaced by underscore (_) to
indicate a horizontal line in place of the column entry or equal (=) to indicate
a double horizontal line. If an adjacent column contains a horizontal line or if
there are vertical lines adjoining this column, the horizontal line is extended to
meet nearby lines. If any data entry is provided for this column, it is ignored
and a warning message is printed.

e Vertical lines - A vertical bar (|) placed between column key letters will
cause a vertical line between the corresponding columns of the table. A
vertical bar to the left of the first key letter or to the right of the last one
produces a line at the edge of the table. If two vertical bars appear between
key letters, a double vertical line is drawn.

o Space between columns - A number may follow the key letter indicating the
amount of separation between this column and the next column. The number
specifies the separation in ens. One en is about the width of the letter “n”.
More precisely, an en is the number of points (1 point = 1/72 inch) equal to
half the current type size. If the expand option is used, these numbers are
multiplied by a constant such that the table is as wide as the current line
length. The default column separation number is 3. If the separation is
changed, the worst case (largest space requested) governs.

® Vertical spanning - Vertically spanned items extending over several rows of
the table are centered in their vertical range. If a key letter is followed by t or
T, any corresponding vertically spanned item will begin at the top line of its
range.

UNIX Programmer’s Manual Document Preparation—139

FORMATTING FACILITIES

® Font changes - A key letter followed by a string containing a font name or
number preceded by the letter f or F indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font
names are one or two letters. A 1-letter font name should be separated from
whatever follows by a space or tab. The single letters B, b, I, and i are shorter
synonyms for fB and fI. Font-change requests given with the table entries
override these specifications.

e Point size changes - A key letter followed by p or P and a number indicates
the point size of the corresponding table entries. If the number is a signed
digit, it is taken as an increment or decrement from the current point size. If
both a point size and a column separation value are given, one or more blanks
must separate them.

o Vertical spacing changes - A key letter followed by v or V and a number
indicates the vertical line spacing used within a multiline table entry. The
number may be a signed digit, in which case it is taken as an increment or
decrement from the current vertical spacing. A column separation value must
be separated by blanks or some other specification from a vertical spacing
request. This request has no effect unless the corresponding table entry is a
text block.

o Column width indication - A key letter followed by w or W and a width
value in parentheses indicates minimum column width. If the largest element
in the column is not as wide as the width value given after the w, the largest
element is assumed to be that wide. If the largest element in the column is
wider than the specified value, its width is used. The width is also used as a
default line length for included text blocks. Normal troff formatter units can
be used to scale the width value. The default value is ens if none are used. If
the width specification is a unitless integer, the parentheses may be omitted. If
another width value is given in a column, the last one controls the width.

e Equal-width columns - A key letter followed by e or E indicates equal-width
columns. - All columns whose key letters are followed by e or E are made the
same width. This permits a group of regularly spaced columns.

e Staggered columns - A key letter followed by u or U indicates that the
corresponding entry is to be moved up one-half line. This makes it easy to
have a column of differences between numbers in an adjoining column. The
allbox option does not work with staggered columns.

o Zero-width item - A key letter followed by z or Z indicates that the
corresponding data item is to be ignored in calculating column widths. This

140—Document Preparation UNIX Programmer’s Manual

may be useful in allowing headings to run across adjacent columns where
spanned headings would be inappropriate.

® Default - Column descriptors missing from the end of a format line are
assumed to be L. The longest line in the format section, however, defines the
number of columns in the table. Extra columns in the data are ignored.

The order of the features is immaterial. They need not be separated by spaces
except as indicated to avoid ambiguities involving point size and font changes.
Thus, a numerical column entry in italic font and 12-point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column
could be specified as

npl12w(2.5Df1 6

Data To Be Printed

Data for the table are input after the format section. Each table line is typed
as one line of data. Very long input lines can be broken. Any line whose last
character is a backslash (\) is combined with the following line; i.e., the
backslash vanishes. Data for different columns (table entries) are separated by
tabs or by whatever character has been specified in the tab global option.
There are a few special cases of data entries:

o troff commands within tables - An input line beginning with a dot and
followed by anything but a number (.xx) is assumed to be a request to the
formatter and is passed through unchanged retaining its position in the table.
For example, a space within a table may be produced with the .sp request in
the data.

e Full width horizontal lines - An input line containing only the
(underscore) character or = (equal sign) is taken to be a single or double lme
respectively, extending the full width of the table.

o Single column horizontal lines - An input table entry containing only the
character or the = is taken to be a single or double line extending the full
width of the column. Such lines are extended to meet horizontal or vertical
lines adjoining this column. To obtain these characters explicitly in a column,
they should be preceded by a \& or followed by a space before the usual tab or
newline character.

UNIX Programmer’s Manual Document Preparation—141

FORMATTING FACILITIES

e Short horizontal lines - An input table entry containing only the string _ is
assumed to be a single line as wide as the contents of the column. It is not
extended to meet adjoining lines. '

® Repeated characters - An input table entry containing only a string of the
form \Rx, where x is any character, is replaced by repetitions of the character
x as wide as data in the column. The sequence is not extended to meet
adjoining columns.

® Vertically spanned items - An input table entry containing only the \"
character string indicates that the table entry immediately above spans
downward over this row. It is equivalent to a table format key letter of ".

e Text blocks - In order to include a block of text as a table entry, precede it
by T and follow it by T. Thus, the sequence

... T
block of
text

T} ...

is the way to enter as a single entry in the table something that cannot
conveniently be typed as a simple string between tabs. The T (end delimeter)
must begin a line. Additional columns of data may follow after a tab on the
same line. Text blocks are pulled out from the table, processed separately by
the formatter, and replaced in the table as a solid block.

Various limits in the troff program are likely to be exceeded if 30 or more text
blocks are used in a table. This produces diagnostic messages such as “too

many string/macro names” or “too many number registers”.

If no line length is specified in the block of text or in the table format, the
default is to use

LxC/(N+1)

where L is the current line length, C is the number of table columns spanned
by the text, and N is the total number of columns in the table.

Other parameters (point size, font, etc.) used in typesetting the text block are:

142—Document Preparation / UNIX Programmer’s Manual

(a) those in effect at the beginning of the table (including the effect of the
.TS macro)

(b) any table format specifications of size, spacing, and font using the p, v,
and f modifiers to the column key letters

(c) troff requests within the text block itself (requests within the table data
but not within the text block do not affect that block).

Although any number of lines may be present in a table, only the first 200 lines
are used in setting up the table. A multipage table may be arranged as several
single-page tables if this proves to be a problem.

When calculating column widths, all table entries are assumed to be in the font
and size being used when the .TS command was encountered. This is true
except for font and size changes indicated in the table format section or within
the table data (as in the entry \s +3Data\s0). Because arbitrary troff requests
may be sprinkled in a table, care must be taken to avoid confusing width
calculations. It is not possible to change the number of columns, the space
between columns, the global options such as box, or the selection of columns to
be made equal in width.

ADDITIONAL COMMAND LINES

To change the format of a table after many similar lines, as with subheadings
or summarizations, the .T& (table continue) command is used to change
column parameters. It is not recognized after the first 200 lines of a table.
The outline of such a table input is

UNIX Programmer’s Manual Document Preparation—143

FORMATTING FACILITIES

TS
options;
format .
data
T&
format .
data
T&
format .

data
.TE

Using this procedure, each table line can be close to its corresponding format
line.

EXAMPLES

Figures 3 through 8 are included to show input and output information that
illustrate the basic concepts of the tbl program. The symbol in the input data
represents a tab character. Although each figure has a title that indicates an
option or feature, other examples of use may be gleaned from them. For
instance, Figure 7 also indicates the requesting of bold type print in the format
area.

144—Document Preparation UNIX Programmer’s Manual

MATHEMATICS TYPESETTING PROGRAM

INTRODUCTION

Mathematical text is known in the publishing trade as “penalty copy” because
it is slower, more difficult, and more expensive to set in type than any other
kind of copy normally occurring in books and journals.

e One difficulty is the multiplicity of characters, sizes, and fonts. Many
mathematical expressions require an intimate mixture of Roman, italic, and
greek letters (in three sizes) and a number of special characters. Typesetting
such expressions by traditional methods is essentially a manual operation.

e A second difficulty is the 2-dimensional character of mathematics. This is
illustrated by the following example which shows line-drawing, built-up
characters (such as braces and radicals), and a spectrum of positioning
problems:

1 \/_emx__\/F
zmﬁ & Jaem™+ b
f mxdx = 4 tanh_l(ACe’”x)

ae™ —pe™™* m\/T
~ coth™ 1(AE-)
m\/_b—

The eqn software for typesetting mathematics has been designed to be easy to
learn and to use by people (for example, secretaries and mathematical typists)
who know neither mathematics nor typesetting. The language can be learned
in an hour or so since it has few rules and fewer exceptions. It interfaces
directly with the phototypesetting language, the troff formatter, so
mathematical expressions can be embedded in the running text of a
manuscript, and the entire document produced in one process. Typical
mathematical expressions include size and font changes, positioning, line
drawing, and other necessary functions to print according to mathematical
conventions, and are done automatically. The syntax of the language is
specified by a small context-free grammar; a compiler-compiler is used to make
a compiler that translates this language into typesetting commands. Output
may be produced on either a phototypesetter or on a terminal with forward and
reverse half-line motions.

UNIX Programmer’s Manual Document Preparation—145

FORMATTING FACILITIES

USAGE

On the UNIX operating system, the phototypesetter is driven by a text
formatting program, troff, which was designed for typesetting text. Facilities
needed for printing mathematical expressions, such as arbitrary horizontal and
vertical motions, line drawing, and font size changing are also provided.
Syntax for describing these special operations is difficult to learn and difficult
even for experienced users to type correctly. For this reason, the troff
formatter is used as an assembly language by the eqn program which describes
and compiles mathematical expressions. ’

Running a preprocessor is easy on the UNIX operating system. To typeset text
stored in files, the following command is issued:

eqn files | troff

The vertical bar connects the output of one eqn process to the input of another
troff process. Any troff formatter options are located following the troff
formatter part of the command. For example:

eqn files | troff -ms

A compatible version of eqn can be used on devices like TELETYPE Model 37,
DASI, and GSI terminals which have half-line forward and reverse
capabilities. Input language is identical, but neqn and the nroff formatter are
used instead of eqn and the troff formatter. Some things will not look as good
because terminals do not provide the variety of characters, sizes, and fonts that
a typesetter does, but the output is usually adequate for proofreading.

e To print equations on a TELETYPE Model 37, the following command is
used:

neqn files | nroff

e To use a GSI or DASI terminal as the output device, the following command
is used:

neqn files | nroff -Tx

146—Document Preparation UNIX Programmer’s Manual

where x is the terminal type being used, such as 300 or 300S.

The egn and neqgn programs can be used with the thl program for typesetting
tables that contain mathematics

tbl files | eqn | troff
tbl files | neqn | nroff

Missing delimiters and some equation errors can be detected early with
program aids. Using these troubleshooting devices should be considered as an
initial step in formatting a document.

LANGUAGE

Design

The fundamental principle upon which the eqn language design is based is that
the language should be easy to use by those who know neither mathematics nor
typesetting. This principle implies:

e Normal mathematical conventions about operator precedence, such as
parentheses, cannot be used. To give special meaning to such characters means
that the user has to understand what is being typed. The language should not
assume that parentheses are always balanced.

e There should be few rules, keywords, special symbols, and operators. This
keeps the language easy to learn and remember. Furthermore, there should be
few exceptions to the rules that do exist. If something works in one situation, it
should work everywhere. If a variable can have a subscript, then a subscript
can have a subscript, etc., without limit.

e Standard things should happen automatically. When “x=y+z+1” is typed,
“x=y+z+1” should be the result. Subscripts and superscripts should be
printed automatically (with no special intervention) in appropriately smaller
size. Fraction bars should be made the right length and positioned at the
correct height. A mechanism for overriding default actions should exist, but its
application is the exception, not the rule.

UNIX Programmer’s Manual Document Preparation—147

FORMATTING FACILITIES

A secondary, but still important, design goal is that the system should be easy
to build and to change. To this end and to guarantee regularity, the language
is defined by a context-free grammar. The compiler for the language was built
using a compiler-compiler.

The typist should have a reasonable picture (a 2-dimensional representation) of
the desired final form, such as might be handwritten by the author of a paper.
It is also assumed that the input is to be typed on a computer terminal much
like an ordinary typewriter. This implies an input alphabet of perhaps 100
characters, none of them special.

The troff processor performs work for the mathematics typesetting function. It
is a powerful program, with a macro facility, text and arithmetic variables,
numerical computation and testing, and conditional branching. Text strings are
passed to the troff formatter omitting the need for a separate storage
management package. The user need not be concerned with most details of the
particular device and character set currently in use. For example, the troff
formatter computes the widths of all strings of characters; the user does not
need to know about them.

Structure

The basic structure of the language is not original. Equations are pictured as a
set of boxes, pieced together in various ways. For example, something with a
subscript is a box followed by another box moved downward and shrunk an
appropriate amount. A fraction is a box centered above another box, at the
right altitude, with a line of correct length drawn between them.

Mode of Operation

Since the eqn program is useful for typesetting mathematics only, it interfaces
with the underlying typesetting language in order to get intermingled
ﬁﬁlathematics and text. The standard mode of operation is that when a
d‘pcument is typed, mathematical expressions are input as part of the text but
marked by delimiters, .EQ and .EN. The program reads this input and treats
as comments those things which are not mathematics passing them through
untouched. At the same time, it converts mathematical inputs into troff
formatter commands. The resulting output is passed directly to the formatter
where comments and mathematical parts become text and/or formatter
commands.

148—Document Preparation UNIX Programmer’s Manual

USER’S GUIDE

Delimiters

The eqn preprocessor reads intermixed text and equations and passes its output
to the troff formatter. Since the formatter uses lines beginning with a period as
control words (.ce means “center the next output line”), eqn uses the .EQ
macro to mark the beginning of an equation and the .EN macro to mark the
end. The .EQ and .EN delimiters are passed through to the formatter
untouched, so they can be used to center equations, number them
automatically, etc. The troff and nroff formatter macro packages, —ms and
—mm, allow equations to be centered, indented, left-justified, and numbered.
The —ms package centers (by default) equations. To left-justify an equation,
the .EQ L macro is used. A .EQ I macro will indent the equation. Any of
these sequences can be followed by an arbitrary equation number placed at the
right margin. For example, the input

EQ I (4.12)
x = f(y/2) +y/2
.EN

produces the output
x=f(Qy/D+y/2

By default .EQ and .EN are ignored by the troff formatter, so equations are
printed in-line.

The .EQ and .EN macros can be supplemented by troff commands as desired.
A centered display equation can be produced with the input

.ce
.EQ
xsubi=ysubi...
.EN

Since it is tedious to type .EQ and .EN around very short expressions (e.g.,
single letters), two characters can be defined to serve as the left and right
delimiters of expressions. These characters are recognized anywhere in
subsequent text.

UNIX Programmer’s Manual Document Preparation—149

FORMATTING FACILITIES
Spaces and New Lines

Input Spaces

Input is free form. Space and newline characters in the input are used by eqn
to separate pieces of the input; they are not used to create space in the output.
Thus an input

produces
x=y+z+1

Free-form input is easier to type initially. Space and newline characters should
be freely used to make input equations readable and easy to edit. Very long
lines are hard to correct if a mistake is made.

Output Spaces

Extra white space can be forced into the output by several characters of various
sizes. A tilde (7) gives a space equal to the normal word spacing in text, a
circumflex (") gives half this much, and a tab character spaces to the next tab
stop (tab stops must be set by troff commands). Spaces, tildes, circumflexes,
and tabs also serve to delimit pieces of input. For example, to get

x=y+z

the following expression is input

150—Document Preparation UNIX Programmer’s Manual

Symbols, Special Names, and Greek Alphabet

Mathematical symbols, mathematical names, and the Greek alphabet are
known by eqn. For example:

x=2 pi int sin (omega t)dt
produces
x =27rfsin (wt)dt

Spaces in the input are necessary to indicate that sin, pi, int, and omega are
separate entities and should get special treatment. The eqn program looks up
each string of characters in a table, and if found, gives it a translation. Digits,
parentheses, brackets, punctuation marks, and the following mathematical
words are converted to Roman font:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

In the previous example, pi and omega become their Greek equivalents (7 and
w), int becomes the integral sign (which is moved down and enlarged), and sin
is output in Roman font, following conventional mathematical practice.
Parentheses, digits, and operators are output in Roman font.

Spaces should be put around separate parts of the input. A common error is to
type “f(pi)” without leaving spaces on both sides of the “pi”. As a result, eqn
does not recognize pi as a special word, and it appears as “f(pi)” in the output.
A list of eqn names appears in Table Z. Four-character troff names can also
be used for anything eqn does not recognize, e.g., “\(pl” for the + sign.

The only way eqn can deduce that some sequence of letters may be special is if
that sequence is separated from the letters on either side of it. This can be
done by surrounding a special word by ordinary space, tab, or newline
characters. Special words can also be made to stand out by surrounding them
with tildes or circumflexes, e.g.:

X"="2"pi"int"sin"("omega™t”) "dt

UNIX Programmer’s Manual Document Preparation—151

FORMATTING FACILITIES

is much the same as the previous example, except tildes separate words like sin,
omega, etc., and also add an extra space per tilde. The output of this example
is:

x=2x [sin(wt)dr

Subscripts and Superscripts

Subscripts and superscripts are introduced by the keywords “sub” and “sup™:
X2+,

is produced by
xsup 2+ ysubk

The eqgn program takes care of all size changes and vertical motions needed to
make the hard copy look right. The words “sub” and “sup” must be
surrounded by spaces. A space or tilde is used to mark the end of a subscript
or superscript. Return to the original base line is automatic.

Multiple levels of subscripts or superscripts are allowed. Subscripted subscripts
and superscripted superscripts such as:

x subisub 1
produces
X

1

A subscript and superscript on the same thing are printed one above the other
if the subscript comes first. The construct “something sub something sup
something” is recognized as a special case.

x sub i sﬁp 2

152—Document Preparation UNIX Programmer’s Manual

is
x}
Other than this special case, “sub” and “sup” group to the right
X sup y sub z
generates
¥
not
x?,
A common erroneous expression is of the form
y = (x sup 2)+1
‘which causes
y=(x2)+1
instead of the intended
y=(x2)+1
The error is in omitting a delimiting space. The correct input expression is

y=(xsup2) +1

UNIX Programmer’s Manual Document Preparation—153

FORMATTING FACILITIES

Braces

Complicated expressions can be formed by using braces () to keep objects
together in unambiguous groups. Braces indicate what goes over what or what
terms are to be grouped before applying another mathematical function.

Normally, the end of a subscript or superscript is marked by a space, tilde,
circumflex, or tab. If the subscript or superscript is something that has to be
typed with spaces in it, braces are used to mark the beginning and end. The
input '

e sup {i omega t}
produces

iwt

Braces can be used to force eqn to treat something as a unit or just to make the
intent perfectly clear.

Braces can occur within braces if necessary. The statement
e sup {i pi sup {rho +1}}
generates

okl
enr"

A general rule is that an arbitrarily complicated string enclosed in braces can
be used in place of a single character (such as x). The eqn program
administers formatting details. In all cases, the correct number of braces must
be used. Omitting one or adding an extra one causes eqn to complain.

The braces convention is an example of the power of using a recursive
grammar to define the language. It is part of the language that dictates if a
construct can appear in some context then any expression within braces can
also occur in that context.

154—Document Preparation UNIX Programmer’s Manual

Fractions

Fractions are specified with the keyword over.
at+b over ctd+e = 1

produces

_atb _
c+d+e

The line is made the correct length and positioned automatically. When there
is both an “over” and a “sup” in the same expression, eqn performs the “sup”
first.

—b sup 2 over pi

is

Square Roots

There is a sqrt operator for making square roots of the appropriate size.
x = {—b +— sqrt{b sup 2 —4ac}} over 2a

yields

—b tlfbf—4ac
x=

2a

Note: Since large radicals look poor on some typesetters, sqrt is not
recommended for tall expressions.

UNIX Programmer’s Manual Document Preparation—155

FORMATTING FACILITIES

Summations, Integrals, and Similar Constructions

Summations, integrals, and similar constructions are easy.
sum from i=0 to {i= inf} x sup i

produces

j=00

!

i=0

Braces indicate where the upper part (i= inf) begins and ends. None are
necessary for the lower part (i=0) because it contains no spaces. Braces will
never hurt; but if the “from” and “to” parts contain any spaces, braces must be
put around them.

The “from” and “to” parts of the construction are optional; but if both are
used, they have to occur in that order.

Other useful characters can replace the sum in the above example. They are
int
prod

union

inter

which become, respectively

oCcHE>

Since characters before the “from” can be anything, even something in braces,
“from-to” can often be used in unexpected ways.

156—Document Preparation UNIX Programmer’s Manual

lim from {n —> inf} x sub n =0

lim x,=0

n—oo

Size and Font Changes

Although eqn makes an attempt to use correct sizes and fonts, there are times
when default assumptions are not what is wanted. Slides and transparencies
often require larger characters than normal text. Thus size and font changing
commands are also provided. By default, equations are set in 10-point type
with standard mathematical conventions to determine what characters are in
Roman and italic font. Size and font changes are made with size n and roman,
italic, bold, or fat operations. As with the “sub” and “sup” keywords, size and
font changes affect only the string that follows and revert to the normal
situation afterward. Thus:

bold x y
is
Xy

Braces can be used if something more complicated than a single letter is to be
affected.

bold {x y} z
produces
Xyz

If fonts other than Roman, italic, and bold are to be used, the font X statement
(X is a 1-character troff name or number for the font) can be used. Since eqn
is tuned for Roman, italic, and bold fonts, other fonts may not give as good an
appearance.

UNIX Programmer’s Manual Document Preparation—157

FORMATTING FACILITIES

The fat operation takes the current font and widens it by overstriking. For
instance:

A = fat {pi r sup 2}
produces
A==r
Legal sizes which may follow size are
6,7,8,9,10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 36.
The size can also be changed by a given amount. For example:
size +2

makes the size two points larger. This has the advantage that knowledge of the
current size is not necessary.

If an entire document is to be in a nonstandard size or font, it is a nuisance to
write out a size and font change for each equation. Accordingly, a global size
or font can be set that thereafter affects all equations. The following
statements would appear at the beginning of any equation to set the size to 16
and the font to Roman:

.EQ

gsize 16

gfont R

.EN
In place of R, any of the troff font names may be used. The size after gsize
~ can also be a relative change with + or —.

Generally, gsize and gfont appear at the beginning of a document. They can
also appear throughout a document. The global font and size can be changed

158—Document Preparation UNIX Programmer’s Manual

as often as needed, for example, in a footnote in which the size of equations
should match the size of the footnote text. Footnote text is usually two points
smaller than the main text. Global size should be reset at the end of the
footnote.

Diacritical Marks

Diacritical marks, a problem in traditional typesetting, are straightforward in
eqn. There are several words used to get marks on top of letters.

INPUT OouUTPUT
x dot X
x dotdot
x hat
X tilde
X vec
x dyad
x bar
x under

RIS TR

The diacritical mark is placed at the correct height, and bar and under are
made the right length for the entire construct. Other marks are centered. An
example of an expression using diacritical marks is:

XHRAPHXAY =247
It is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

Quoted Text

An input entirely within quotes ("...") is not subject to font changes or spacing
adjustments normally done by the typesetting program. This provides for
individual spacing and adjusting if needed. For example:

italic "sin(x)" + sin (x)
produces

UNIX Programmer’s Manual Document Preparation—159

FORMATTING FACILITIES

sin(x) +sin(x)
Quotes are also used to get braces and other eqn keywords printed.
"{ size alpha } "
prints
{ size alpha'}
and
roman "{ size alpha }"
prints
{ size alpha }

The " construction is often used as a place-holder when grammatically egn
needs something, but nothing is actually wanted on the output.

Aligning Equations

Sometimes it is necessary to align a series of equations at a horizontal position,
often at an equals sign. This is done with two operations called mark and
lineup.

The word mark may appear once at any place in an equation. It remembers
the horizontal position where it appeared. Successive equations can contain one
occurrence of the word lineup. The place where lineup appears is made to line
up with the place marked by the previous mark if at all possible. For example:

160—Document Preparation UNIX Programmer’s Manual

EQ1

x+y mark = z
.EN

EQ 1

X lineup = 1
.EN

produces

x+ty=z
x=1

When eqn and —ms are used, either .EQ I or .EQ L should be used. The
mark and lineup operations do not work with centered equations. Also, mark
does not look ahead.

x mark =1
x+y lineup =z

is not going to work because there is not room for the x +y part after the mark
remembers where the x is.

Big Brackets

To get large brackets [1, braces {}, parentheses (), and bars | around
information that exists on more than one line, the left and right keywords are
used.

left { a over b + 1 right }
= left (¢ over d right)
+ left [e right]

produces

{—Z—+1}= + [e]

The resulting brackets are made large enough to cover whatever they enclose.

4

d

UNIX Programmer’s Manual Document Preparation—161

FORMATTING FACILITIES

Other characters can be used besides these, but they are not likcly to look very
good. One exception is the floor and ceiling characters.

left floor x over y right floor
<= left ceiling a over b right ceiling

produces
X a
Xlig | &
y| |8

Braces are larger than brackets and parentheses because they are made up of
three, five, seven, etc., pieces while brackets can be made up of two, three, four,
etc., pieces. Large left and right parentheses often look strange because of the
design of the character set.

The right keyword may be omitted. A “left something” need not have a
corresponding “right something™. If the right part is omitted, braces are put
around the thing that the left bracket is.to encompass. Otherwise, resulting
brackets may be too large. If the left part is to be omitted, things are more
complicated because technically a right cannot exist without a corresponding
left . Instead the following input will do:

left ™ ... right)

The left " means a "left nothing" which satisfies the rules without hurting the
output. '

Piles

- Large braces, brackets, parenthesis, and vertical bars are often used with
another facility (piles) which makes vertical piles of objects. Elements of the
_pile (there can be any number) are centered one above another, at the right
height for most purposes. The keyword above is used to separate the pieces;
braces are used around the entire list. Elements of a pile can be as
complicated as needed, even containing more piles.

162—Document Preparation UNIX Programmer’s Manual

Three other forms of pile exist:

e Ipile makes a pile with the elements left-justified
e rpile makes a right-justified pile

e cpile makes a centered pile, just like pile.

Vertical spacing between pieces is somewhat larger for Ipile, rpile, and cpile
than it is for ordinary piles. For example, to get

1 if x>0
sign(x)={ 0 if x=0
-1 if x<0

the following is input:

sign (x) == left {
rpile {1 above 0 above -1}
“Ipile {if above if above if}
~“Ipile {x>0 above x=0 above x <0}

The left construction makes a left brace large enough to enclose the rpile ...,
which is a right-justified pile of “above ... above ...”. The Ipile construction
makes a left-justified pile.

Matrices

It is possible to make matrices. For example, to make a neat array like

X; .X2

vi »?

the following is the input:

UNIX Programimer’s Manual Document Preparation—163

FORMATTING FACILITIES

matrix {
ccol { x sub i above y sub i}
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered columns. Elements of the columns
are then listed just as for a pile. Each element is separated by the word
“above”. The Icol or rcol keyword can also be used to left- or right-justify
columns. Each column can be separately adjusted, and there can be as many
columns as desired.

The reason for using a matrix instead of two adjacent piles is if the elements of
the piles are not all the same height they will not line up properly. A matrix
forces them to line up because it looks at the entire structure before deciding
the spacing to use.

Note: Each column must have the same number of elements.

In-Line Equations

In a mathematical document, it is necessary to follow mathematical
conventions in display equations and in text. Making variable names (such as
x) italic is one instance. Although this could be done by surrounding the
appropriate parts with .EQ and .EN, the continual repetition of .EQ and .EN is
a nuisance. Furthermore, with —mm, .EQ and .EN imply a displayed equation.

The eqn program provides a shorthand notation for short in-line equations.
Two characters can be defined to mark the left and right ends of an in-line
equation, and then expressions in the middle of text lines can be typed.

EQ
delim $$
.EN

The three lines added to the beginning of the document set both the left and
right characters to dollar signs. A sample input is:

Let $alpha sub i$ be the primary variable, and let $beta$
be zero. Then it can be shown that $x sub 1§ is $>=08.

164—Document Preparation UNIX Programmer’s Manual

to produce:

Let «; be the primary variable, and let 8 be zero. Then it can be
shown that x; is =0.

This works as expected — space characters, newline characters, etc., are
significant in the input text, but not in the resultant equation. Multiple
equations can occur in a single input line. Space is left before and after a line
that contains in-line expressions so that a tall expression will not interfere with
surrounding lines. To turn off the delimiters:

.EQ
delim off
.EN

Note: The following should be observed when using the in-line equations
format:

e Do not use braces, tildes, circumflexes, or double quotes as
delimiters.

e In-line font changes must be closed before in-line equations are
encountered.

Defines

There is a definition facility, so a user can say
define name ’...

at any time in the document. Henceforth, any occurrence of name in an
expression will be expanded into whatever was inside the quotes in its
definition. This lets users tailor the language to their own specifications. It is
possible to redefine keywords like sup, sub, or over. For example, if the
sequence

xsubisub 1+ ysubisub'l

-.appears repeatedly.throughout a paper; typing time can-be saved each time the
sequence-is use by defining it:

UNIX Programmer’s Manual Document Preparation—165

FORMATTING FACILITIES

define xy ’xsubisubl + ysubisub I’

This define makes xy a shorthand for whatever characters occur between the
single quotes in the definition. Any character can be used instead of the quote
to mark the ends of the definition as long as it does not appear inside the
definition.

The above expression can now be input as follows:

fx) =xy...
.EN

Each occurrence of xy will expand into its definition. Spaces (or their
equivalent) are to be left around the name when used. The eqn program will
identify it as special. :

Although definitions can use previous definitions, as in:

.EQ

define xi 'xsubi’
define xil ’xisub 1’
.EN

it is erroneous to define something in terms of itself. For instance:
define X ’roman X’

Since X is now defined in terms of itself, problems will result. However, if the
following expression is used, the quotes protect the second X, and everything
works fine. \

define X ’roman "X"’

The eqn keywords can be redefined. By making / mean over with the following
statement:

166—Document Preparation UNIX Programmer’s Manual

define / ’ over’

or by redefining over as / with:
define over ’/’

the keyword is redefined.

If different things are needed to be printed on a terminal and on the typesetter,
symbols may be defined differently in neqn and eqn. This can be done with
ndefine and tdefine. A definition made with ndefine takes effect when running
neqn. When tdefine is used, the definition applies only for the eqn processor.
Names defined with the define facility apply to both eqn and negn.

Local Motions

Although the eqn formatter tries to position things correctly on the paper, it
occasionally needs tuning to make the output just right. Small extra horizontal
spaces can be obtained with tilde and circumflex. By using back n and fwd n,
small amounts are moved horizontally, where n is how far to move in 1/100’s
of an em (an em is about the width of the letter “m’). Thus, back 50 moves
back about half the width of an “m”. Similarly, things can be moved up or
down with an up n and a down n. As with sub or sup, local motions affect the
next thing in the input, and this can be something arbitrarily complicated if it
is enclosed in braces.

Precedence

Precedence rules resolve the ambiguity in a construction like
asup 2 over b

The “sup” is defined to have a higher precedence than “over”. A user can
force a particular analysis by placing braces around expressions. If braces are
not used to group functions, the eqn formatter will do operations in the
following order:

UNIX Programmer’s Manual - Document Preparation—167

FORMATTING FACILITIES

dyad vec under bar tilde hat dot dotdot
fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

The following operations group to the left:
over sqrt left right

All others group to the right.

TROUBLESHOOTING

If a mistake is made in an equation, such as omitting a brace, having one too
many braces, or having a “sup” with nothing before it, the eqn formatter
produces the following message:

syntax error between lines x and vy, file z

where x and y are approximately the lines between which the trouble occurred,
and z is the name of the file in question. There are also self-explanatory
messages that arise when a quote is ommitted or eqn is run on a nonexistent
file. To check a document before printing

eqn files >/dev/null
discards the output but prints the message.

It is easy to leave out a dollar sign when used as delimiters. The checkeq
program checks for misplaced or missing dollar signs (in-line delimiters) and
similar troubles. '

In-line equations can be only so big because of an internal buffer in the troff
formatter. If a “word overflow” message is received, the limit has been
exceeded. Printing the equation as a displayed equation usually causes the
message to go away. The “line overflow” message indicates that an even bigger

168—Document Preparation UNIX Programmer’s Manual

buffer has been exceeded. In this case, the equation must be broken into two
separate ones, marking each with .EQ/.EN delimiters. The eqn program does
not warn about equations that are too long for one line.

UNIX Programmer’s Manual Document Preparation—169

FORMATTING FACILITIES

FORMATTING FACILITIES EXAMPLES

The following font examples are printed in 12-point, with a vertical spacing of
14-point, and with non-alphanumeric characters separated by % em space. The
original Special Mathematical Font was prepared for AT&T Bell Laboratories
by Wang Laboratories, Inc., of Hudson, New Hampshire. The Times Roman,
Italic, and Bold are among the many standard fonts available.

Figure 1 — Font Style Examples

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
'1$%B & () *+—.,/:;=2[1]
o0 —-_UuLhUAAFHMA T ¢®O

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

18% & () %+ — ., [:;=2[]]
o0 —-_ULUfiiffifl f ¢e®®

Times Bold

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890
1$% & V°*+ — ., /:;=211]]
om . _VLhYUfiifififict ' ¢®0

170—Document Preparation UNIX Programmer’s Manual

Special Mathematical Font

"\ §/<>{}#@+—==+
aByoelnOiklpuvéowrposTvdxyw
TAGAEZIIZYPT QO
J 2 E~=z -t
|

x++UNC
§V - [« @€ iwrwm | |

l -
OfJit

DC D29
[

11

—

I

UNIX Programmer’s Manual Document Preparation—171

FORMATTING FACILITIES

12

15

18

21

24

27

Figure 2 — Example obf Output Line Numbering

Automatic sequence numbering of output lines may be requested with .nm.
When in effect, a 3-digit, arabic number plus a digit-space is prepended to
output text lines. Text lines are offset by four digit-spaces and otherwise
retain their line length. A reduction in line length may be desired to keep
the right margin aligned with an earlier margin. Blank lines, other
vertical spaces, and lines generated by .tl are not numbered. Numbering
can be temporarily suspended with .nn or with a .nm followed by a later
.nm +0. In addition, a line number indent I and the number-text
separation S may be specified in digit-spaces. Further, it can be specified
that only those line numbers that are multiples of some number M are to
be printed (the others will appear as blank number fields). Table S is a
summary and explanation of output line numbering requests.

As an example of output line numbering, paragraph portions of this figure
are numbered with M=3: .nm 1 3 was placed at the beginning; .nm was
placed at the end of the first paragraph; and .nm +0 was placed in front
of this paragraph; and .nm placed at the end. Line lengths were also
changed (by \w'0000'u) to keep the right side aligned. Another example
is .nm +5 5 x 3, which turns on numbering with the line number of the
next line to be five greater than the last numbered line, with M =35,
spacing .S untouched, and the indent 7 set to 3.

A clergyman at Cambridge preached a sermon which one of his auditors
commended. “Yes,” said a gentleman to whom it was mentioned, “it was
a good sermon, but he stole it.” This was told to the preacher. He
resented it, and called the gentleman to retract what he had said. “I am
not,” replied the aggressor, “very apt to retract my words, but in this
instance I will. I said, you had stolen the serman; I find I was wrong; for
on returning home and referring to the book whence I thought it was
taken, I found it there.”

172—Document Preparation UNIX Programmer’s Manual

Figure 3 — Table Using “box” Option

INPUT:

TS

box;

ccc

111

LanguageAuthorsRuns on

.Sp

FortranManyAlmost anything
P1/11BM360/370
CBTL11/45,H6000,370

BLISSCarnegie-MellonPDP-10,11

IDSHoneywellH6000

PascalStanford370

.TE

OUTPUT:
Language Authors Runs on
Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegie-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

UNIX Programmer’s Manual

Document Preparation—173

FORMATTING FACILITIES

Figure 4 — Table Using “allbox” Option

INPUT:

TS
allbox;
css

cccC

nnn.

AT&T Common Stock
YearPriceDividend
197141-54$2.60
241-542.70
346-552.87
440-533.24
545-523.40
651-59.95*

.TE

* (first quarter only)

OUTPUT:

AT&T Common Stock

Year | Price | Dividend
1971 | 41-54 $2.60
2 | 41-54 2.70
3 | 46-55 2.87
4 | 40-53 3.24
5 | 45-52 3.40
6 | 51-59 95%*

* (first quarter only)

174—Document Preparation

UNIX Programmer’s Manual

Figure 5 — Table Using “vertical bar” Key Letter Feature
INPUT:

TS

box;

css

clele

111 n.

Major New York Bridges

EridgeDesignerLength

BrooklynJ. A. Roebling1595
ManhattanG. Lindenthal1470
WilliamsburgL.. L. Buck1600

(—)ueensboroughPalmer &1182
Hornbostel

1380
TriboroughO. H. Ammann_
383

Bronx WhitestoneO. H. Ammann2300
Throgs NeckO. H. Ammann1800
.TE

UNIX Programmer’s Manual Document Preparation—175

FORMATTING FACILITIES

OUTPUT:
Major New York Bridges
Bridge Designer Length
Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182
Hornbostel

1380

Triborough O. H. Ammann
383
Bronx Whitestone | O. H. Ammann 2300
Throgs Neck O. H. Ammann 1800

176—Document Preparation UNIX Programmer’s Manual

Figure 6 — Table Using Horizontal Lines In Place Of Key Letters

INPUT:

.TS
box;
LLL
LL
LL|LB
LL
LLL.

januaryfebruarymarch

aprilmay
junejulyMonths
augustseptember

octobernovemberdecember

.TE

OUTPUT:

january february
april may

june july
august september

october november

march

Months

december

UNIX Programmer’s Manual

Document Preparation—177

FORMATTING FACILITIES

Figure 7 — Table Using Additional Command Lines

INPUT:

TS

box;

cfBsss.
Composition of Foods

T&

cless

cless

clele]e.

FoodPercent by Weight
\

\ProteinFatCarbo-
\\\hydrate

T&

1|n]n|n.
Apples.4.513.0
Halibut18.45.2. ..
Lima beans7.5.822.0
Milk3.34.05.0
Mushrooms3.5.46.0
Rye bread9.0.652.7
.TE

178—Document Preparation

UNIX Programmer’s Manual

OUTPUT:

Composition of Foods
Percent by Weight
Food Protein | Fat li/ E}:i;
Apples 4 S 13.0
Halibut 18.4 5.2 e
Lima beans 7.5 8 22.0
Milk 33 4.0 5.0
Mushrooms 35 4 6.0
Rye bread 9.0 .6 52.7

UNIX Programmer’s Manual

Document Preparation—179

FORMATTING FACILITIES

Figure 8 — Table Using Text Blocks

INPUT:

TS

" allbox;

cfl ss

¢ cw(1.51) cw(1.51)

11L

New York Area Rocks

.Sp

EraFormationAge (years)
PrecambrianReading Prong>1 billion
PaleozoicManhattan Prong400 million
MesozoicT{

.na

Newark Basin, incl.
Stockton,Lockatong, and Brunswick
formations

.ad

T}200 million

CenozoicCoastal PlainT{

.na

On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation

.ad

T)

.TE

180—Document Preparation

UNIX Programmer’s Manual

OUTPUT:

New York Area Rocks

Era Formation Age (years)
Precambrian | Reading Prong >1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, incl. 200 million
Stockton, Lockatong,
and Brunswick
formations
Cenozoic Coastal Plain On Long Island 30,000

years; Cretaceous
sediments redeposited by
recent glaciation

UNIX Programmer’s Manual

Document Preparation—181

FORMATTING FACILITIES

Table A

CROSS REFERENCE
REQUEST NAME TO TABLE NUMBER

NAME NUMBER NAME NUMBER
ab Y Is H
ad G It R
af M mc X
am J mk F
as J na G
bd C ne F
bp F nf G
br G nh Q
c2 (0] nm S
cC O nn S
ce G nr M
ch J ns H
co X nx W
cs E 0s H
cu 0] pc R
da J pi w
de J pl F
di J pm X
ds J pn F
dt J po F
ec O ps E
el T rd A%
em J rm J
€0 (0} rn J
ev U rr M
ex \Y% s H
fc N rt F

fi G S0 W
fl X sp H
fp C ss E
ft C SV H
he Q ta N
hw Q tc N
hy Q ti I

182—Document Preparation UNIX Programmer’s Manual

CROSS REFERENCE

REQUEST NAME TO TABLE NUMBER

NAME NUMBER NAME NUMBER

ie T tl R
if T tm X
ig X tr 0]
in I uf (6]
it J ul 0]
Ic N vs H
lg 0] wh J
| I

UNIX Programmer’s Manual

Document Preparation—183

FORMATTING FACILITIES

Table B

ESCAPE SEQUENCES FOR

CHARACTERS, INDICATORS, AND FUNCTIONS

ESCAPE MEANING
SEQUENCE
\ \ (to prevent or delay the interpretation of \)
\’ Acute accent
\$§ Grave accent
\— Minus sign in the current font
\. Period (dot) (see de)
\ <space> Unpaddable space-size space character
\0 Unpaddable digit width space
\| 1/6 em narrow space character (zero width nroff)
* 1/12 em half-narrow space character (zero width nroff)
\& Nonprinting zero width character
! Transparent line indicator
\" Beginning of comment
\$N Interpolate argument (1 < N<9)
\% Default optional hyphenation character
\(xx Character named xx
\VEx, * (xx Interpolate string x or xx
\q Begin conditional input
\} End conditional input
\ <newline> Concealed (ignored) newline character
\a Noninterpreted leader character
\b’abe... Bracket building function
\c Continuation of interrupted text
\d Forward (down) % em vertical motion (Y2 line nroff)
\e Printable version of current escape character
\fx ,\f(xx ,\fN¥N | Change to font named x or xx or position N
\gx,\glx Return the .af-type format of the register x or xx
(returns nothing if x or xx has not yet been referenced)
\b’'N’ Local horizontal motion
\jx,\jlxx Mark the current horizontal output position in register x or xx
\kx Mark horizontal input place in register x
\I’'N¢’ Horizontal line drawing function (optionally with ¢)

184—Document Preparation

UNIX Programmer’s Manual

ESCAPE SEQUENCES FOR
CHARACTERS, INDICATORS, AND FUNCTIONS

ESCAPE MEANING

SEQUENCE

\L’N¢’ Vertical line drawing function (optionally with ¢)
\nx,\n(xx Interpolate number register x or xx

\o’abc... Overstrike characters a, b, c...

\p Break and spread output line

\r Reverse 1 em vertical motion (reverse line nroff)
\SN\sxN Point-size change function

\t Noninterpreted horizontal tab

\u Reverse (up) % em vertical motion (! line nroff)
\V'N’ Local vertical motion

\w’string’ Interpolate width of string

\xX’N’ Extra line-space function (negative before, positive after)
\zc Print ¢ with zero width (without spacing)

\X Any character not listed above

Escape sequences \\, \., \", \$, *, \a, \n, \t, and \<newline> are interpreted in copy mode.

UNIX Programmer’s Manual Document Preparation—185

FORMATTING FACILITIES

Table C

FONT CONTROL REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

EXPLANATION

bd F N

bdSFN

fpNF

off

off

R,I,B,S

ignored

Embolden font F by N—1 units.
Characters in font F will be
artificially emboldened by printing
each one twice, separated by N—1
basic units. A reasonable value for
N is 3 when the character size is
in the vicinity of 10 points. If N is
missing, the embolden mode is
turned off. The mode must still
(or again) be in effect when the
characters are physically printed.
There is no effect in the nroff
formatter.

Embolden special font when
current font is F. The characters
in the special font will be
emboldened whenever the current
font is F. The mode must still (or
again) be in effect when the
characters are physically printed.
There is no effect in the nroff
formatter.

Font position. A font named F is
mounted on position N (1 through
4). It is a fatal error if F is not
known. The phototypesetter has
four fonts physically mounted.
Each font consists of a film strip
which can be mounted on a
numbered quadrant of a wheel.
(Cont’d)

186—Document Preparation

UNIX Programmer’s Manual

FONT CONTROL REQUESTS

REQUEST INITIAL IF NO EXPLANATION
FORM VALUE ARGUMENT
The default mounting sequence
assumed by the troff formatter is
R, I, B, and S on positions 1, 2, 3,
and 4.
ftF Roman previous Change to font F (F is x, xx, 1

through 4, or -P). Font P means
the previous font. For font
changes within a line of text,
sequences \fx, \f(xx, or \fN can
be used. Relevant parameters are
a part of the current environment.

UNIX Programmer’s Manual

Document Preparation—187

FORMATTING FACILITIES
Table D
NAMING CONVENTIONS FOR NON-ASCII CHARACTERS

Non-ASCII characters and minus on the standard fonts.

CHARACTER ZZ:]:;]; IC\;;I:[? CTER
’ close quote
‘ § open quote
—_ \(em % Em dash
- - hyphen or
- \(hy hyphen
- \- current font minus
° \(bu bullet
m| \(sq square
_ \(ru rule
Va \(14 Ya
%) \(12 %3
% \(34 Ya
fi \(fi fi
fl \(f fl
ff \(ff ff
fii \(Fi il
fil \(FI il

\(de degree
\(dg dagger
' \(fm foot mark
¢ \(ct cent sign
® \(rg registered
© \(co copyright

188—Document Preparation UNIX Programmer’s Manual

NAMING CONVENTION FOR NON-ASCII CHRACTERS

Non-ASCII characters and ', §, , +,

—, =, and * on the special font.

INPUT
NAME

+ \(pl
- \(mi
\(eq
\(**
\(sc
\(aa
\(ga
\(ul
\ (sl
\(*a
\(*b
\(*g
\(*d
\(*e
\(*z
\(*y
\(*h
\(*i
\(*k
\(*1
\(*m
\(*n
\(*c
\(*o
\(*p
\(*r
\(*s
\(ts
\(*t
\(*u
\(+f
\(*x
\(*q
\(*w

CHARACTER

wn ~wn % |

EEXR S T W AD H OMT R AR & DI vy an L WWR I

UNIX Programmer’s Manual

CHARACTER
NAME

math plus
math minus
math equals
math star
section
acute accent
grave accent
underrule
slash (matching backslash)
alpha

beta

gamma
delta

epsilon

Zeta

eta

theta

iota

kappa
lambda

mu

nu

xi

omicron

pi

rho

sigma
terminal sigma
tau

upsilon

phi

chi

psi

omega

Document Preparation—189

FORMATTING FACILITIES

NAMING CONVENTION FOR NON-ASCII CHRACTERS

Non-ASCII characters and *, §, , +, —, =, and * on the special font.

CHARACTER INPUT CHARACTER

NAME NAME

A \(*A Alphat

B \(*B Betat '

r \(*G Gamma

A \(*D Delta

E \(*E Epsilon?

Z \(*Z Zetat

H \(*Y Etat

0 \(*H Theta

I \(*I Iota¥

K \(*K Kappat

A \(*L Lambda

M \(*M Mut

N \(*N Nut

o) \(*C Xi

0 \(*O Omicront

I \(*P Pi

P \(*R Rhot

> \(*S Sigma

T \(*T Taut

Y \(*U Upsilon

® \(*F Phi

X \(*X Chif

v \(*Q Psi

Q \(*W Omega

v \(sr square root

- \(rn root en extender

> \(>= >=

< \(<= <=

= \(== identically equal

= \(= approximately equal -

~ \(ap approximates

190—Document Preparation ‘ UNIX Programmer’s Manual

NAMING CONVENTION FOR NON-ASCII CHRACTERS

Non-ASCII characters and ', §, , +, —, =, and » on the special font.

INPUT
NAME
\(=
\(=>
\(<—
\(ua
\(da
\x
\(di
\(+—
\(cu
\(ca
\(sb
\(sp
\(ib
\(Gip
\Gf
\(pd
\(gr
\(no
\(s
\(pt
\(es
\(mo
\(br
\(dd
\(rth
\(h
\(bs
\(or
\(ci
\(t
\(b

CHARACTER

8 {+—28r=1de3UNUNDCH+x—=1]1%

f——\o—

UNIX Programmer’s Manual

CHARACTER
NAME

not equal

right arrow

left arrow

up arrow

down arrow
multiply

divide
plus-minus

cup (union)

cap (intersection)
subset of
superset of
improper subset
improper superset
infinity

partial derivative
gradient

not

integral sign
proportional to
empty set
member of

box vertical rule
double dagger
right hand

left hand

Bell logo

- or

circle
left top (big brace)
left bottom (big brace)

Document Preparation—191

FORMATTING FACILITIES

NAMING CONVENTION FOR NON-ASCII CHRACTERS

‘Non-ASCII characters and *, §, _, +, —, =, and * on the special font.

CHARACTER INPUT CHARACTER
NAME NAME

) \(rt right top (big brace)
] \(rb right bottom (big brace)
{ \(1k left center (big brace)
b \(rk right center (big brace)
| \(bv bold vertical
L \Qf left floor (big bracket)
J \Gf right floor (big bracket)
[\dc left ceiling (big bracket)
] \(rc right ceiling (big bracket)

192—Document Preparation UNIX Programmer’s Manual

Table E

CHARACTER SIZE CONTROL REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

EXPLANATION

S FNM

off

10 point

previous

Set constant character space (width)
mode on for font F (if mounted).
The width of every character is
assumed to be N/36 ems. If M is
absent, the em 1is that of the
character point size; if M is given,
the em is M-points. All affected
characters are centered in this space
including those with an actual width
larger than this space. Special font
characters occurring while the
current font is F are also so treated.
If N is absent, the mode is turned
off. The mode must still (or again)
be in effect when the characters are
printed. There is no effect in the
nroff formatter.

Set point size to £N. Any valid
positive size value may be requested;
if invalid, the next larger valid size
will result (maximum of 36). Valid
point sizes are: 6, 7, 8, 9, 10, 11,
12, 14, 16, 18, 20, 22, 24, and 36.
A paired sequence +N, —N will
work because the previous requested
value is remembered. For point size
changes within a line of text,
sequences \sN or \s£N can be used.
Relevant parameters are a part of
the current environment. There is
no effect in the nroff formatter.

UNIX Programmer’s Manual

Document Preparation—193

FORMATTING FACILITIES

CHARACTER SIZE CONTROL REQUESTS

REQUEST INITIAL IF NO EXPLANATION
FORM VALUE ARGUMENT
ss NV 12/36 em |ignored Set space-character size to

N/36 ems. This size is the
minimum word spacing in adjusted
text. Relevant parameters are a
part of the current environment.
There is no effect in the nroff
formatter.

194—Document Preparation

UNIX Programmer’s Manual

Table F

PAGE CONTROL REQUESTS

REQUEST
FORM

INITIAL
VALUE*

IF NO
ARGUMENT

EXPLANATION

bp =N

.mk R

.ne N

N=1

none

internal

Begin page. The current page is
ejected and a new page is begun. If]
+N is given, the new page number
will be £N. The scale indicator is
ignored if not specified in the
request. The request causes a break.
The use of “’” as the control
character (instead of “.”)
suppresses the break function. The
request with no NV is inhibited by the
.S request.

Mark current vertical place in an
internal register (associated with the
current diversion level) or in register
R, if given. The request is used in
conjunction with “return to marked
vertical place in current diversion”
request (rt). Mode or relevant
parameters are associated with
current diversion level.

Need N vertical spaces.

The scale indicator is ignored if not
specified in the request. If the
distance to the next trap position
(D) is less than N, a forward
vertical space of size D occurs which
will spring the trap.

If there are no remaining traps on
the page, D is the distance to the
bottom of the page. (Cont’d)

UNIX Programmer's Manual

Document Preparation—195

FORMATTING FACILITIES

PAGE CONTROL REQUESTS
REQUEST | INITIAL IF NO
FORM' VALUE* ARGUMENT EXPLANATION

If D is less than vertical spacing
(V), another line could still be
output and spring the trap.

In a diversion, D is the distance to
the diversion trap (if any) or is very
large. Mode or relevant parameters
are associated with current diversion
level.

pl =N 11in 11in Page length set to =+N. The

internal limitation is about 75 inches
in the troff formatter and 136 inches
in the nroff formatter. Current page
length is available in the .p register.
The scale indicator is ignored if not
specified in the request.

.pn =N N=1 ignored Page number. The next page (when
it occurs) will have the page number
£ N. The request must occur before
the initial pseudopage transition to
affect the page number of the first
page. The current page number is
in the % register.

.po £N 0; previous Page offset. The current left margin
26/27in is set to =N. The scale indicator is
ignored if not specified in the
request. The troff formatter initial
value provides about 1 inch of paper
margin including the physical
typesetter margin of 1/27 inch.
(Cont’d)

196—Document Preparation UNIX Programmer’s Manual

PAGE CONTROL REQUESTS

REQUEST INITIAL IF NO
FORM VALUE* | ARGUMENT EXPLANATION
In the troff formatter the maximum
(line-length) + (page-offset) is
about 7.54 inches. The current page
offset is available in the .o register.
at =N none internal Return (upward only) to marked

vertical place in current diversion.
If £N (with respect to place) is
given, the vertical place is =N from
the top of the page or diversion. If
N is absent, the vertical place is
marked by a previous .mk. The .sp
request may be used in all cases
instead of .t by spacing to the
absolute place stored in an explicit
register; e.g., using the sequence .mk
R...spRu Mode or relevant
parameters are associated with
current diversion level. The scale
indicator is ignored if not specified
in the request.

* Values separated by “;” are for the nroff and troff formatters, respectively.

UNIX Programmer’s Manual Document Preparation—197

FORMATTING FACILITIES

Table G

TEXT FILLING, ADJUSTING, AND CENTERING REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
|ARGUMENT|

EXPLANATION

.ad N

Lbr

.ce IV

adjust

off

fill

adjust

Adjust. Output lines are adjusted with mode N.
If the type indicator (V) is present, thd
adjustment type is as follows:

N ADJUSTMENT TYPE

1 adjust left margin only

r adjust right margin only

¢ center

b or n adjust both margins

absent unchanged

The adjustment type indicator N may also be a
number obtained from the .j register. If fill mode
is not on, adjustment will be deferred. Relevant
parameters are a part of the current environment.

Break. Filling of the line currently being
collected is stopped and the line is output without
adjustment. Text lines beginning with space]
characters and empty text lines (blank lines) also
cause a break.

Center. The next N input text lines are centered|
within the current line-length. If N=0, any|
residual count is cleared. A break occurs after
each of the N input lines. If the input line is too
long, it will be left adjusted. The request|
normally causes a break. Relevant parameters
are a part of the current environment.
Fill mode. The request causes a break.
Subsequent output lines are filled to provide an
even right margin. Relevant parameters are a

part of the current environment.

198—Document Preparation

UNIX Programmer’s Manual

TEXT FILLING, ADJUSTING, AND CENTERING REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO

URGUMENT|

EXPLANATION

.na

.nf

adjust

fill

No adjust. Output line adjusting is not done.
Since adjustment is turned off, the right margin|
will be ragged. Adjustment type for the .ad|
request is not changed. Output line filling still
occurs if fill mode is on. Relevant parameters are
a part of the current environment.

No-fill mode. Subsequent output lines are neither,
filled nor adjusted. The request normally causes a
break. Input text lines are copied directly to
output lines without regard for the current line|
length. Relevant parameters are a part of the
urrent environment. -

UNIX Programmer’s Manual

Document Preparation—199

FORMATTING FACILITIES

Table H

VERTICAL SPACING REQUESTS

REQUEST
FORM

INITIAL
VALUE*

ARGUMENT

IF NO

EXPLANATION

s N

.ns

.08

IS

Ssp N

N=1

space

previous

Line spacing set to £/N. Output N—1 blank
lines (V's) after each output text line. If the|
text or previous appended blank line reached a
trap position, appended blank lines are
omitted. Relevant parameters are a part of]
the current environment.

Set no-space mode on. The no-space mode
inhibits .sp and .bp requests without a next
page number. It is turned off when a line of]
output occurs or with the .rs request. Mode or
relevant parameters are associated with
current diversion level.

Output saved vertical space. The request is
used to output a block of vertical space
requested by an earlier .sv request. The no-
space mode (.ns) has no effect.

Restore spacing. The no-space mode (.ms) is
turned off. Mode or relevant parameters are
associated with current diversion level.

Space vertically. The request provides spaces
in either direction. If N is negative, the
motion is backward (upward) and is limited to
the distance to the top of the page. Forward
(downward) motion is truncated to the
distance to the nearest trap. If the no-space
mode (.ns) is on, no spacing occurs. The scale
indicator is ignored if not specified in the
request. The request causes a break.

200—Document Preparation

UNIX Programmer’s Manual

VERTICAL SPACING REQUESTS

REQUEST } INITIAL IF NO
FORM | VALUE* | ARGUMENT

EXPLANATION

.sv IV - N=1V

.vs N 1/6in; |previous
12pts

Blank line

Save a contiguous vertical block of size N. If]
the distance to the next trap is greater than N,
N vertical spaces are output. If the distance
to the next trap is less than NV, no vertical
space is immediately output; but N is
remembered for later - output (os).
Subsequent .sv requests overwrite any still
remembered N. The no-space mode (.ns) has
no effect. The scale indicator is ignored if not
specified in the request.

Set vertical base-line spacing size V.
Transient extra vertical spaces are available
with \x’N’. The scale indicator is ignored if]
not specified in the request. Relevant
parameters are a part of the current
environment.

This condition causes a break and output of a
blank line (just as does .sp 1).

T3]

* Values separated by “;” are for the nroff and troff formatters, respectively.

UNIX Programmer’s Manual

Document Preparation—201

FORMATTING FACILITIES

Table I

LINE LENGTH AND INDENTING REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

EXPLANATION

Jn £ N

=N

St EN

N=0

6.5 in

previous

previous

ignored

Indent. The indent is set to =N and
prepended to each output line. The scale
indicator is ignored if not specified in the
request. Relevant parameters are a part of the

current environment. The request causes a
break.

Line length. The line length is set to £/N. In
the troff formatter, the maximum (line-
length) + (page-offset) is about 7.54 inches.
The scale indicator is ignored if not specified
in the request. Relevant parameters are a part
of the current environment.

Temporary indent. The next output text line
will be indented a distance +/V with respect to
the current indent. The resulting total indent
may not be negative. The current indent is
not changed. The scale indicator is ignored if
not specified in the request. Relevant
parameters are a part of the current
environment. The request causes a break.

202—Document Preparation

UNIX Programmer’s Manual

Table J

MACROS, STRINGS, DIVERSIONS, AND POSITION TRAPS REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

EXPLANATION

.am

.as xx string

.ch xx N

.da xx

.de xx yy

xxyy

yy=..

ignored

end

Vy=..

‘Append to macro xx (append
version of .de).
Append string to xx
(append version of .ds).

string

Change trap location. Change the
position for macro xx to be N. In
the absence of N, the trap is
removed. The scale indicator is
ignored if not specified.

Divert and append to macro xx.
Mode or relevant parameters are
associated with current diversion
level.

Define or redefine macro xx.
Contents of the macro begin on
the next line. Lines are copied in
copy mode until the definition is
terminated by a line beginning
with .yy. yy is then called. In the
absence of yy, definition is
terminated by a line beginning

with “..”. A macro contains .de
requests provided terminating
macros differ or contained

definition terminator is concealed;
““..” can be concealed as ‘“\\..”
which copies as “\..” and rereads

as X3 "

UNIX Programmer’s Manual

Document Preparation—203

FORMATTING FACILITIES

MACROS, STRINGS, DIVERSIONS, AND POSITION TRAPS REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO

ARGUMENT

EXPLANATION

Ldi xx end

.ds xx string ignored

Ldt V xx off

Lem XxXx none none

Divert output to macro xx.
Normal text processing occurs
during diversion except that page
offsetting is not done. The
diversion ends when the request .di
or .da is encountered without an
argument; extraneous requests of
this type should not appear when
nested diversions are being used.
Mode or relevant parameters are
associated with current diversion
level.

Define a string xx containing
string. Any initial double-quote in
string is stripped to permit initial
blanks.

Install a diversion trap at position
N in the current diversion to
invoke macro xx. Another .dt will
redefine the diversion trap. If no
arguments are given, the diversion
trap is removed. Mode or relevant
parameters are associated with
current diversion level. The scale
indicator is ignored if not specified
in the request.

End macro. Macro xx will be
invoked when all input has ended.
the end of the last file processed.

204—Document Preparation

UNIX Programmer’s Manual

MACROS, STRINGS, DIVERSIONS, AND POSITION TRAPS REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

EXPLANATION

it V xx

rm xXx

.rn xx yy

lwh NV xx

off

ignored

ignored

Input-line-count trap. An input-
line-count trap is set to invoke the
macro xx after N lines of text
input have been read (control or
request lines do not count). Text
may be in-line or interpolated by
in-line or trap-invoked macros.
Relevant parameters are a part of
the current environment.

Remove. A request, macro, or
string is removed. The name xx is
removed from the name list and
any related storage space is freed.
Subsequent references have no
effect.

Rename. Rename request, macro,
or string from xx to yy. If yy
exists, it is first removed.

When. A location trap is set to
invoke macro xx at page position
N; a negative N is interpreted with
respect to the page bottom. Any
macro previously planted at N is
replaced by xx. A zero N refers
to the top of a page. In the
absence of xx, the first found trap
at N, if any, is removed. The scale
indicator is ignored if not specified

in the request.

UNIX Programmer’s Manual

Document Preparation—205

FORMATTING FACILITIES

Table K

PREDEFINED GENERAL NUMBER REGISTERS

REGISTER DESCRIPTION
NAME

% Current page number.

ct Character type (set by width function).

dl Width (maximum) of last completed diversion.

dn Height (vertical size) of last completed diversion.

dw Current day of the week (1 through 7).

dy Current day of the month (1 through 31).

hp Current horizontal place on input line.

In Output line number.

mo Current month (1 through 12).

nl Vertical position of last printed text base line.

sb Depth of string below base line (generated by width function).

st Height of string above base line (generated by width function).

yr Last two digits of current year.

c. Provides general register access to the input line number in the
current input file. Contains the same value as the read-only .c
register.

R Number of number registers that remain available for use.

b Emboldening factor of the current font.

206—Document Preparation UNIX Programmer’s Manual

Table L

PREDEFINED READ-ONLY NUMBER REGISTERS

REGISTER
NAME DESCRIPTION

$ Number of arguments available at the current macro level.

A Set to 1 in the troff formatter if -a option used; always 1 in
the nroff formatter.

.F Value is a string that is the name of the current input file.

H Available horizontal resolution in basic units.

.L Contains the current line spacing parameter (the value of the
most recent .Is request). |

P appear in the —o option list.

.T Set to 1 in the nroff formatter if -T option used; always 0 in
the troff formatter.

Y Available vertical resolution in basic units.

.a Post-line extra line space most recently utilized using x"/V'.

.c Number of lines read from current input file.

d Current vertical place in current diversion; equal to nl if no
diversion.

1 Current font as physical quadrant (1 through 4).

h Text base-line high-water mark on current page or diversion.

J Current indent.

J ‘Indicates the current adjustment mode ard type. Can be
saved and later given to the .ad request to restore a previous
mode.

k Contains the horizontal size of the text portion (without
indent) of the current partially collected output line, if any, in
the current environment.

A Current line length.

. Length of text portion on previous output line.

.0 Current page offset.

P Current page length.

.S Current point size.

.t Distance to the next trap.

UNIX Programmer’s Manual Document Preparation—207

FORMATTING FACILITIES

PREDEFINED READ-ONLY NUMBER REGISTERS

REGISTER DESCRIPTION
NAME
u Equal to 1 in fill mode and 0 in no-fill mode.
R Current vertical line spacing.
W Width of previous character.
X Reserved version-dependent register.
.y Reserved version-dependent register.
.z Name of current diversion.

208—Document Preparation UNIX Programmer’s Manual

Table M

NUMBER REGISTERS REQUESTS

REQUEST |INITIAL| IF NO ﬂ EXPLANATION
FORM VALUE ARGUMEN

Laf R ¢ Arabic |- Assign format. Format c¢ is assigned to register
IR. Available formats are:
lc — NUMBERING SEQUENCE
1-0,1,234,;5,...
001 — 000,001,002,003,004,005,. ..
i — 0,i,ii,iii,iv,v,. ..
I — O,LILIILIV,V,...
— 0,a,b,...,z,aa,ab,...,zz,aaa,...
A — 0,A,B,...,Z,AAAB,....ZZ AAA,. ..
An Arabic format having N digits
specifies a field width of N digits. Read-only
registers and width function are always arabic.

nr R =N M} - Number register. The number register R iJ
ssigned the value +/N with respect to the
revious value, if any. The automatid
incrementing value is set to M. The number
egister value (V) is ignored if not specified in
he request.

lrr R F - emove register. The number register R is
emoved. If many registers are being created
ynamically, it may be necessary to remove
egisters that are no longer used in order to
ecapture internal storage space for newer
egisters.

UNIX Programmer’s Manual

Document Preparation—209

FORMATTING FACILITIES

Table N

TABS, LEADERS, AND FIELDS REQUESTS

REQUEST
FORM

INITIAL
VALUE*

IF NO
ARGUMENT

EXPLANATION

fcab

Jdec

.ta Nt. ..

off

8n;
0.51n

off

none

none

Field delimiter is set to a. The
padding indicator is set to the space
character or to b, if given. In the
absence of arguments, the field
mechanism is turned off.

Leader repetition character becomes
¢ or is removed specifying motion.
Relevant parameters are a part of the
current environment.

Set tab stops and types. The
adjustment within the tab is as
follows:

t — ADJUSTMENT TYPE

R — right
C — centering
absent — left

Tab stops for the troff formatter are
preset every 0.5 inch; Tab stops for
the nroff formatter are preset every
eight nominal character widths. Stop
values are separated by spaces, and a
value preceded by + is treated as an
increment to the previous stop value.
Relevant parameters are a part of the
current environment. The scale
indicator is ignored if not specified in
the request.

210—Document Preparation

UNIX Programmer’s Manual

TABS, LEADERS, AND FIELDS REQUESTS

REQUEST INITIAL IF NO
EXPLANATION
FORM VALUE* ARGUMENT :
e e none none Tab repetition character becomes ¢

or is removed specifying motion.
Relevant parameters are a part of the
current environment.

* Values separated by

6,9

2

are for the nroff and troff formatters, respectively.

UNIX Programmer’s Manual

Document Preparation—211

FORMATTING FACILITIES

Table O

INPUT AND OUTPUT CONVENTIONS
AND CHARACTER TRANSLATIONS REQUESTS

REQUEST
FORM

INITIAL
VALUE*

IF NO
MRGUMENT

EXPLANATION

LCCC

lcu N

Llc2 ¢

veC ¢
h€O

+lg N

Ltr abéd e

off

Pn

off;on

none

Pn

'Ftring, register, file names, and copy mode. Therg

%9
.

Set control character to ¢ or reset to
Relevant parameters are a part of the current
environment.

Continuous underline in the nroff formatter. A
variant of .ul that causes every character to be
underlined. Identical to .ul in the troff formatter
Relevant parameters are a part of the current
environment.

Set no-break control character to ¢ or reset td
“’”. Relevant parameters are a part of the
current environment.

Set escape character to \ or to ¢ if given.
Turn escape character mechanism off.
Ligature mode is turned on if N is absent op
nonzero and turned off if N=0. If N=2, only the
2-character ligatures are automatically invoked.

Ligature mode is inhibited for request, macro,

is no effect in the nroff formatter.

Translate a into b, ¢ into d, etc. on output. If an

pdd number of characters is given, the last ong
ill be mapped into the space character. To be
onsistent, a particular translation must stay in
ffect from input to output time.

212—Document Preparation

UNIX Programmer’s Manual

INPUT AND OUTPUT CONVENTIONS
AND CHARACTER TRANSLATIONS REQUESTS

IREQUEST|INITIAL| IF NO
FORM | VALUE* |ARGUMENT|

EXPLANATION

uf F Italic [Italic

lul vV off N =

Underline font set to F (to be switched to by .ul).
In the nroff formatter F may not be on position 1
(initially Times Roman).

Underline in the nroff formatter (italicize in troff)
the next N input text lines. Switch to underline]
font saving the current font for later restoration;|
other font changes within the span of a .ul will
take effect, but the restoration will undo the last
change. Output generated by .tl is affected by the]
font change but does not decrement N. If N is
greater than 1, there is the risk that a trap|
interpolated macro may provide text lines within
the span, which environment switching can
prevent. Relevant parameters are a part of the
lcurrent environment.

* Values separated by

UNIX Programmer’s Manual

[T 1}
b

are for the nroff and troff formatters, respectively.

Document Preparation—213

FORMATTING FACILITIES

Table P

LOCAL MOTIONS

VERTICAL LOCAL MOTION

FUNCTION EFFECT IN

trofff nroff’
\VN’ Move distance N
\u Y% em up 5 line up
\d 14 em down 15 line down
\r 1 em up 1 line up

HORIZONTAL LOCAL MOTION

FUNCTION EFFECT IN

troff nroff’
\h’N’ Move distance N
\(space) Unpaddable space-size space
\O \ Digit-size space
\ 1/6 em space ignored
\ 1/12 em space ignored

214—Document Preparation UNIX Programmer’s Manual

Table Q

HYPHENATION REQUESTS
REQUEST INITIAL IF NO EXPLANATION
FORM VALUE ARGUMENT
Jhe ¢ \% \% Hyphenation character.
, Hyphenation indicator

character is set to ¢ or to the
default “\% . The indicator
does not appear in the
output. Relevant parameters
are a part of the current
environment.

hw wordl . .. - ignored Exception words.
Hyphenation points in words
are specified with imbedded
minus signs. Versions of a
word with terminal s are
implied; i.e., dig-it implies
dig—its. This list s
examined initially and after
each suffix stripping. Space
available is small — about
128 characters.

by N off N=0 onN=1 Hyphenate. Automatic
hyphenation is turned on for
N21 or off for N=0. If
N=2, last lines (ones that
will cause a trap) are not
hyphenated. For N=4 the
last two characters of a word
are not divided.

UNIX Programmer’s Manual Document Preparation—215

FORMATTING FACILITIES

HYPHENATION REQUESTS

INITIAL
VALUE

REQUEST
FORM

IF NO
ARGUMENT

EXPIANATION

.nh no hyphen

For N=8 the first two
characters of a word are not
divided. These values are
additive; i.e., N=14 invokes
all three restrictions.
Relevant parameters are a
part of the current
environment.

No hyphenation. Automatic
hyphenation is turned off.
Relevant parameters are a
part of the current
environment.

216—Document Preparation

UNIX Programmer’s Manual

Table R

THREE-PART TITLES REQUESTS

REQUEST INITIAL

IF NO

FORM VALUE ARGUMENT

EXPLANATION

Jt =N 6.5in

Jpc ¢ %

previous

off

Alleft center’right’

Length of title set to =N. Line length and
title length are independent. Indents do not
apply to titles; page offsets do. Relevant
parameters are a part of the current
environment. The scale indicator is ignored if|
not specified in the request.

Page number character set to ¢ or removed.
The page number register remains %.

Three-part title. The strings Jeft, center, and
right are respectively left-adjusted, centered,
and right-adjusted in the current title length.
Any of the strings may be empty, and
overlapping is permitted. If the page number
character (initially %) is found within any of
the fields, it is replaced by the current page
number having the format assigned to register
% . Any character may be used as the string
delimiter.

UNIX Programmer’s Manual

Document Preparation—217

FORMATTING FACILITIES

Ta

ble S

OUTPUT LINE NUMBERING REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
MRGUMENT

EXPLANATION

inm =N M S |

inn N

off

Line number mode. If £V is given, ling
numbering is turned on, and the next
output line is numbered +£N. Default
values are M=1, S=1, .and I=0|
Parameters corresponding to missing
arguments are unaffected; a non-numeric
argument is considered missing. In the
absence of all arguments, numbering is
turned off, and the next line number i
preserved for possible further use i
number register In. Relevant parameter:
are a part of the current environment.

Next N lines are not numbered.
Relevant parameters are a part of the

current environment.

218—Document Preparation

UNIX Programmer’s Manual

Table T

CONDITIONAL ACCEPTANCE OF INPUT REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

EXPLANATION

.el anything -

Jde ¢ anything -

Jif ¢ anything -

if /¢ anything -

Aif N anything -
Af ! N anything -

JAif ’sfringl " string2’ anything

Aif ! ’stringl ’ string2’ anything

The “else” portion of “if-else”.

The “if” portion of “if-else”. The ¢
can be any of the forms acceptable
with the .if request.

If condition c true, accept anything as
input; for multiline case, use
\lanything\}. The scale indicator is
ignored if not specified in the request.

If condition c false, accept anything.

If expression V > 0, accept anything.
The scale indicator is ignored if not
specified in the request.

If expression N < 0 accept anything.
The scale indicator is ignored if not
specified in the request.

If stringl is identical
accept anything.

to string2,

If stringl is not identical to string2,
accept anything.

UNIX Programmer’s Manual

Document Preparation—219

'FORMATTING FACILITIES

Table U

ENVIRONMENT SWITCHING REQUEST

REQUEST INITIAL IF NO EXPLANATION
FORM VALUE | ARGUMENT
ev N N=0 previous Environment switched to O, 1, or 2.

Switching is done in pushdown fashion
so that restoring a previous
environment must be done with .ev
rather than specific reference.

220—Document Preparation

UNIX Programmer’s Manual

Table V

INSERTIONS FROM STANDARD INPUT REQUESTS

REQUEST |INITIAL IF NO
FORM VALUE ARGUMENT

EXPLANATION

(9. L

rd prompt prompt=BEL

Exit from the nroff/troff formatter. Text]
ﬁrocessing is terminated exactly as if all input
ad ended.

Read insertion from the standard input until
two newline characters in a row are found. If
standard input is the user keyboard, a prompt
(or a BEL) is written onto the user terminal|
The request behaves like a macro; argument

may be placed after prompt. 5‘

UNIX Programmer’s Manual

Document Preparation—221

FORMATTING FACILITIES

Table W

INPUT/OUTPUT FILE SWITCHING REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

\nx filename

pi program

so filename

end-of-file

Next file is filename. The current file is
considered ended, and the input is immediately]
switched to filename.

Pipe output to program (mroff formatter only)
This request must occur before any printing
occurs. No arguments are transmitted to
program.

Switch source file (pushdown). The top input
level (file reading) is switched to filename.
Contents are interpolated at the point the request]
E encountered. When the new file ends, input is|

gain taken from the original file. The .so
equests may be nested.

222—Document Preparation

UNIX Programmer’s Manual

Table X

MISCELLANEOUS REQUESTS

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

EXPLANATION

.CO

g yy

amc c N

yy=..

off

Specify the point in the macro file at which
compaction ends. When -kname is called on
the command line, all lines in the file name
before the .co request will be compacted.

Flush output buffer. Used in interactive
debugging to force output. The request causes
a break.

Ignore input lines until call of yy. This
request behaves like the .de request except
that the input is discarded. The input is read
in copy mode, and any automatically
incremented registers will be affected.

Sets margin character ¢ and separation N.
Specifies that a margin character ¢ appear a
distance N to the right of the right margin
after each nonempty text line (except those
produced by .tl). If the output line is too long
(as can happen in no-fill mode), the character
will be appended to the line. If NV is not given,
the previous NN is used; the initial NV is
0.2 inches in the nroff formatter and 1 em in
troff. Relevant parameters are a part of the
current environment. The scale indicator is
ignored if not specified in the request.

UNIX Programmer’s Manual

Document Preparation—223

FORMATTING FACILITIES

MISCELLANEOUS REQUESTS

REQUEST | INITIAL IF NO
FORM VALUE | ARGUMENT

EXPLANATION

.pm ¢ - all

.tm string newline

Print macros. The names and sizes of all
defined macros and strings are printed on the
user terminal. If ¢ is given, only the total of
the sizes is printed. Sizes are given in blocks
of 128 characters. ’

Print string on terminal (UNIX operating
system standard message output). After
skipping initial blanks, string (rest of the line)
is read in copy mode and written on the user

terminal.

224—Document Preparation

UNIX Programmer’s Manual

Table Y

OUTPUT AND ERROR MESSAGES REQUEST

RE
QUEST |INITIAL| IF NO EXPLANATION
FORM VALUE |ARGUMENT
.ab zext - - Prints text on the message output and

terminates without further processing. If text
is missing, “User Abort.” is printed. This
request does not cause a break. The output
buffer is flushed.

UNIX Programmer’s Manual

Document Preparation—225

FORMATTING FACILITIES

Table Z

NAMING CONVENTION
FOR THE MATHEMATICS
TYPESETTING PROGRAM

CHARACTER

ourpPUT
SEQUENCE

> =
< =

| =

+ J—

- >

< —
<<
>>
inf
partial
half
prime
approx
nothing
cdot
times
del
grad

W~ 8 YAT IHYNIAV

R

sum
int
prod
union
inter

DCH—:

226—Document Preparation UNIX Programmer’s Manual

NAMING CONVENTION
FOR THE MATHEMATICS
TYPESETTING PROGRAM

CHARACTER

OUTPUT
SEQUENCE

DELTA
GAMMA
LAMBDA
OMEGA
PHI

PI

PSI
SIGMA
THETA
UPSILON
X1

alpha
beta

chi

delta
epsilon
eta
gamma
iota

kappa
lambda
mu

nu

omega
omicron
phi

pi

psi

rho

TEFIOCERRTE>Ar LI avX RN OME T D E>HD

UNIX Programmer’s Manual ‘ Document Preparation—227

FORMATTING FACILITIES

NAMING CONVENTION
FOR THE MATHEMATICS
TYPESETTING PROGRAM

CHARACTER
ouTPUT

SEQUENCE

sigma o
tau T
theta 0
upsilon v

Xi ¢
zeta ¢

228—Document Preparation UNIX Programmer’s Manual

MEMORANDUM MACROS

INTRODUCTION

Purpose

This section is a guide and reference manual for users of Memorandum Macros
(MM). These macros provide a general purpose package of text formatting
macros for use with the UNIX operating system text formatters nroff and troff
(refer to troff(1) in the UNIX Programmer’s Manual ~Volume 1: Commands
and Utilities for more details).

Conventions

Each part of this section explains a single facility of MM and progresses from
general case to special-case facilities. It is recommended that a user read a
part in detail only to the point where there is enough information to obtain the
desired format, then skim the rest because some details may be of use to only a
few.

In the synopses of macro calls, square brackets ([1) surrounding an argument
indicate that it is optional. Ellipses (...) show that the preceding argument
may appear more than once.

Examples may show both nroff and troff formatter outputs (of files using MM
macros). In those cases in which the behavior of the two formatters is
obviously different, the nroff formatter output is described first with the troff
formatter output following in parentheses. For example:

The title is underlined (italic).

means that the title is underlined by the nroff formatter and italicized by the
troff formatter.

UNIX Programmer’s Manual Document Preparation—229

MEMORANDUM MACROS

Document Structure

Input for a document to be formatted with the MM text formatting macro
package has four major segments, any of which may be omitted; if present, the
segments must occur in the following order:

® Parameter setting segment sets the general style and appearance of a
document. The user can control page width, margin justification, numbering
styles for. heading and lists, page headers and footers, and many other
properties of the document. Also, the user can add macros or redefine existing
ones. This segment can be omitted entirely if the user is satisfied with default
values; it produces no actual output, but performs only the formatter setup for
the rest of the document.

® Beginning segment includes those items that occur only once, at the
beginning of a document, e.g., title, author’s name, date.

® Body segment is the actual text of the document. It may be as small as a
single paragraph or as large as hundreds of pages. It may have a hierarchy of
headings up to seven levels deep. Headings are automatically numbered Gf
desired) and can be saved to generate the table of contents. Five additional
levels of subordination are provided by a set of list macros for automatic
numbering, alphabetic sequencing, and *“marking” of list items. The body may
also contain various types of displays, tables, figures, references, and footnotes.

e Ending segment contains those items that occur only once at the end of a
document. Included are signature(s) and lists of notations (e.g., “Copy to”
lists). Certain macros may be invoked here to print information that is wholly
or partially derived from the rest of the document, such as the table of contents
or the cover sheet for a document.

Existence and size of these four segments varies widely among different
document types. Although a specific item (such as date, title, author names,
etc.) of a segment may differ depending on the document there is a uniform
way of typing it into an input text file.

230—Document Preparation UNIX Programmer’s Manual

Input Text Structure

In order to make it easy to edit or revise input file text at a later time:

e Input lines should be kept short
e Lines should be broken at the end of clauses

e Each new sentence should begin on a new line.

Definitions

Formatter refers to either the nroff or troff text-formatting program.

Requests are built-in commands recognized by the formatters. Although a user
seldom needs to use these requests directly, this section contains references to
some of the requests. For example, the request

Sp

inserts a blank line in the output at the place the request occurs in the input
text file.

Macros are named collections of requests. Each macro is an abbreviation for a
collection of requests that would otherwise require repetition. The MM
package supplies many macros, and the user can define additional ones.
Macros and requests share the same set of names and are used in the same
way. Table AA is an alphabetical list of macro names used by MM. The first
line of each item lists the name of the macro, a brief description, and a
reference to the paragraph in which the macro is described. The second line
illustrates a typical macro structure.

Strings provide character variables, each of which names a string of characters.
Strings are often used in page headers, page footers, and lists. These registers
share the pool of names used by requests and macros. A string can be given a
value via the .ds (define string) request, and-its value can be obtained by
referencing its name, preceded by “*” (for 1-character names) or “*(” (for
2-character names). For instance, the string DT in MM normally contains the
current date, thus the input line

UNIX Programmer’s Manual Document Preparation—231

MEMORANDUM MACROS

Today is *(DT.
may result in the following output:
Today is December 12, 1984,
The current date can be replaced, e.g.:
.ds DT 01/01/79

by invoking a macro designed for that purpose. Table BB is an alphabetical
list of string names used by MM. A brief description, paragraph reference,
and initial (default) value(s) are given for each.

Number registers fill the role of integer variables. These registers are used for
flags and for arithmetic and automatic numbering. A register can be given a
value using a .nr request and be referenced by preceding its name by \n (for 1-
character names) or \n((for 2-character names). For example, the following
sets the value of the register d to one more than that of the register dd:

ar d 1+H\n(dd

Table CC is an alphabetical list of number register names giving for each a
brief description, paragraph reference, initial (default) value, and legal range
of values (where [m:n] means values from m to n, inclusive).

Tables AA, BB, and CC list all macros, strings, and number registers defined
in MM.

USAGE

This part describes how to access MM, illustrates UNIX operating system
command lines appropriate for various output devices, and describes command
line flags for the MM text formatting macro package.

232—Document Preparation UNIX Programmer’s Manual

The mm Command

The mm(1) command can be used to prepare documents using the nroff
formatter and MM; this command invokes nroff with the —cm flag. The mm
command has options to specify preprocessing by tbl and/or by negn and for
postprocessing by various output filters.

Note: Options can occur in any order but must appear before the file names.

Any arguments or flags that are not recognized by the mm command, e.g.,
—rC3, are passed to the nroff formatter or to MM, as appropriate. Options

are:
OPTION

=€

—t

—C

-y

—-12

—T450

—T450—12
—T300
—T300—12
—T300s

—T300s—12

MEANING

The neqn is to be invoked; also causes neqm to read
fusrlpublegnchar [see eqnchar(7) 1.

The tb1(1) processor is to be invoked.
The col(1) postprocessor is to be invoked.
The —e option of the nroff formatter is to be invoked.

The —mm (uncompacted macros) is to be used instead
of —cm.

The 12-pitch mode is to be used. The pitch switch on
the terminal should be set to 12 if necessary.

Output is to a DASI 450. This is the default terminal
type [unless STERM is set; see sh(1)]. It is also
equivalent to —T1620.

Output is to a DASI 450 in 12-pitch mode.

Output is to a DASI 300 terminal.

Output is to a DASI 300 in 12-pitch mode.

Output is to a DASI 300S.

Output is to a DASI 300S in 12-pitch mode.

UNIX Programmer’s Manual Document Preparation—233

' MEMORANDUM MACROS

—T4014 Output is to a Tektronix 4014.
—T37 Output is to a TELETYPE Model 37.
—T382 Output is to a DTC-382.

~T4000a Output is to a Trendata 4000A.

-TX Output is prepared for an EBCDIC line printer.

~Thp Output is to a HP264x (implies —c).

—T43 Output is to a TELETYPE® Model 43 (implies —c).
~T40/4 Output is to a TELETYPE Model 40/4 (implies —c).
=T745 Output is to a Texas Instrument 700 series terminal

(implies —c).

-T2631 Output is prepared for a HP2631 printer where
—T2631—e and —T2631—c may be used for expanded
and compressed modes, respectively (implies —c).

—Tlp Output is to a device with no reverse or partial line
motions or other special features (implies —c).

Any other —T option given does not produce an error; it is equivalent to —Tlp.

A similar command is available for use with the troff formatter [see mmt(1)].

The —cm or —mm Flag

The MM package can also be invoked by including the —cm or —mm flag as
an argument to the formatter. The —cm flag causes the precompacted version
of the macros to be loaded. The -—mm flag causes the file
/usr/lib/tmac/tmac.m to be read and processed before any other files. This
action:

e defines the Memorandum Macros

o sets default values for various parameters

234—Document Preparation UNIX Programmer’s Manual

e initializes the formatter to be ready to process input text files.

Typical Command Lines

The prototype command lines are as follows:
o Text without tables or equations:

mm [options] file ...
or :
nroff [options] —cm file ...

mmt [options] file ...
or
troff [options] —cm file ...

e Text with tables:

mm —t [options] file ...
or
tbl file .. |nroff [options] —cm

mmt —t [options] file ...

or
tbl file .. Jtroff [options] —cm

o Text with equationvs:

mm —e [options] file ...
or
neqn /usr/pub/eqnchar file .. Jnroff [options] —cm

mmt —e [options] file ...
or
eqn /usr/pub/eqnchar file .. Jtroff [options] —cm

o Text with both tables and equations:

UNIX Programmer’s Manual ‘Document Preparation—235

MEMORANDUM MACROS

mm —t —e [options] file ...
or
tbl file ...|neqn /usr/pub/eqnchar —|nroff [options] —cm

mmt —t —e [options] file ...
or
tbl file ...|eqn /usr/pub/eqnchar —|troff [options] —cm

When formatting a document with the nroff processor, the output should
normally be processed for a specific type of terminal because the output may
require some features that are specific to a given terminal, e.g., reverse paper
motion or half-line paper motion in both directions. Some commonly used
terminal types and the command lines appropriate for them are given below.
More information is found in 300(1), 450(1), 4014(1), hp(1), col(1),
termio(4), and term(5) of the UNIX Programmer’s Manual.

e DASI 450 in 10-pitch; 6 lines/inch mode, with 0.75 inch offset, and a line
length of 6 inches (60 characters) where this is the default terminal type so no
—T option is needed (unless STERM is set to another value):

mm file ...
or
nroff —T450 —h —cm file ...

e DASI 450 in 12-pitch, 6 lines/inch mode, with 0.75 inch offset, and a line
length of 6 inches (72 characters):

mm —12 file ...
or
nroff —T450-12 —h —cm file ...

or to increase the line length to 80 characters and decrease the offset to 3
characters:

mm —12 —rW80 —rO3 file ...
or
nroff —T450-12 —rW80 —rO3 —h —cm file ...

236—Document Preparation UNIX Programmer’s Manual

e Hewlett-Packard HP264x CRT family:

mm —Thp file ...
or
nroff —cm file .. .|col|hp

® Any terminal incapable of reverse paper motion and also lacking hardware
tab stops (Texas Instruments 700 series, etc.):

mm —T745 file ...
or
nroff —cm file .. .|col —x

The tbl(1) and eqn(1)/negn formatters must be invoked as shown in the
command lines illustrated earlier.

If 2-column processing is used with the mroff formatter, either the —c option
must be specified to mm(1) [mm(1) uses col(1) automatically for many
terminal types] or the nroff formatter output must be postprocessed by col(1).
In the latter case, the —T37 terminal type must be specified to the nroff
formatter, the —h option must not be specified, and the output of col(1) must
be processed by the appropriate terminal filter [e.g., 450(1)]; mm(1) with the
—c option handles all this automatically.

Parameters Set From Command Line

Number registers are commonly used within MM to hold parameter values
that control various aspects of output style. Many of these values can be
changed within the text files with .nr requests. In addition, some of these
registers can be set from the command line. This is a useful feature for those
parameters that should not be permanently embedded within the input text. If
used, the number registers (with the exception of the P register) must be set on
the command line or before the MM macro definitions are processed. The
number register meanings are: :

—rAn n =1 has effect of invoking the .AF macro without an
argument.
n = 2 permits use of Bell logo, if available, on a printing
device (currently available for Xerox 9700 only).

UNIX Programmer’s Manual Document Preparation—237

MEMORANDUM MACROS

—rCn

—rD1

—rEn

—rlk

—rNn

- sets type of copy (e.g., DRAFT) to be printed at bottom of

each page.

n =1 for OFFICIAL FILE COPY.

n =2 for DATE FILE COPY.

n =3 for DRAFT with single spacing and default paragraph
style.

n = 4 for DRAFT with double spacing and 10-space
paragraph indent.

sets debug mode.

This flag requests formatter to continue processing even if

MM detects errors that would otherwise cause termination.
It also includes some debugging information in the default

page header {9.2.1, 12.3}.

controls font of Subject/Date/From fields.

n = 0, fields are bold (default for the troff formatter).

n = 1, fields are Roman font (regular text-default for the
nroff formatter).

sets length of physical page to k lines.

For the nroff formatter, k is an unscaled number representing
lines.

For the troff formatter, kK must be scaled.

Default value is 66 lines per page.

This flag is used, for example, when directing output to a
Versatec® printer.

specifies page numbering style.

n = 0 (default), all pages get the prevailing header.

n = 1, page header replaces footer on page 1 only.

n = 2, page header is omitted from page 1.

n = 3, “section-page” numbering occurs (.FD defines footnote
and reference numbering in sections).

n = 4, default page header is suppressed; however, a user-
specified header is not affected.

n =5, “section-page” and “section-figure”” numbering occurs.

238—Document Préparation UNIX Programmer’s Manual

PAGE 1 PAGES 2ff

N W —=O

header header

header replaces footer header

no header header

“section-page” as footer same as page 1 ,
no header no header unless .PH defined
“section-page” as footer same as page 1

and “section-figure”

—rOk

—rPn

—rSn

—1Tn

Contents of the prevailing header and footer do not depend on
number register /V value; /V controls only whether the header
(N=3) or the footer (N=5) is printed, as well as the page
numbering style. If header and footer are null, the value of vV
is irrelevant.

offsets output k spaces to the right.

For the nroff formatter, &k is an unscaled number representing
lines or character positions.

For the troff formatter, k must be scaled.

This flag is helpful for adjusting output positioning on some
terminals. The default offset if this register is not set on the
command line is 0.75 inch (nroff) and 0.5 inch (troff).

Note: Register name is the capital letter “O”.
specifies that pages of the document are to be numbered

starting with n.
This register may also be set via a .nr request in the input

“text.

sets point size and vertical spacing for the document.

The default n is 10, i.e., 10-point type on 12-point vertical
spacing, giving six lines per inch.

This flag applies to the troff formatter only.

provides register settings for certain devices.

If nis 1, line length and page offset are set to 80 and 3,
respectively.

Setting # to 2 changes the page length to 84 lines per page
and inhibits underlining; it is meant for output sent to the
Versatec printer.

The default value for n is 0.

This flag applies to the nroff formatter only.

UNIX Programmer’s Manual Document Preparation—239

MEMORANDUM MACROS

—rUl1

—-rWk

controls underlining of section headings.

This flag causes only letters and digits to be underlined.
Otherwise, all characters (including spaces) are underlined.
This flag applies to the nroff formatter only.

sets page width (line length and title length) to k.

For the nroff formatter, k is an unscaled number representing
character positions.

For the troff formatter, k must be scaled.

This flag can be used to change page width from the default
value of 6 inches (60 characters in 10 pitch or 72 characters
in 12 pitch).

Omission of —cm or —mm Flag

If a large number of arguments is required on the command line, it may be
convenient to set up the first (or only) input file of a document as follows:

zero or more initializations of registers
.so /usr/lib/tmac/tmac.m
remainder of text

In this case, the user must not use the —cm or —mm flag [nor the mm(1) or
mmt(1) commandl; the .so request has the equivalent effect, but registers
shown in paragraph 2.4 must be initialized before the .so request because their
values are meaningful only if set before macro definitions are processed. When
using this method, it is best to lock into the input file only those parameters
that are seldom changed. For example:

.nr W 80
ar O 10
anar N3

.50 /usr/lib/tmac/tmac.m
.H 1 "INTRODUCTION"

specifies, for the nroff formatter, a line length (W) of 80, a page offset (O) of
10, and “section-page” (N) numbering.

240—Document Preparation UNIX Programmer’s Manual

FORMATTING CONCEPTS

Basic Terms

Normal action of the formatters is to fill output lines from one or more input
lines. Output lines may be justified so that both the left and right margins are
aligned. As lines are being filled, words may also be hyphenated as necessary.
It is possible to turn any of these modes on and off (.SA, Hy, and the .nf and .fi
formatter requests). Turning off fill mode also turns off justification and
hyphenation.

Certain formatting commands (requests and macros) cause filling of the
current output line to cease, the line (of whatever length) to be printed, and
subsequent text to begin a new output line. This printing of a partially filled
output line is known as a break. A few formatter requests and most of the
MM macros cause a break.

Formatter requests can be used with MM; however, there are consequences and
side effects that each such request might have. A good rule is to use formatter
requests only when absolutely necessary. The MM macros described herein
should be used in most cases because:

e It is much easier to control (and change at any later point in time) overall
style of the document.

e Complicated features (such as footnotes or tables of contents) can be
obtained with ease.

e User is insulated from peculiarities of the formatter language.

Arguments and Double Quotes

For any macro call, a null argument is an argument whose width is zero. Such
an argument often has a special meaning; the preferred form for a null
argument is ". Omitting an argument is not the same as supplying a null
argument (e.g., the .MT macro). Omitted arguments can occur only at the
end of an argument list; null arguments can occur anywhere in the list.

Any macro argument containing ordinary (paddable) spaces must be enclosed
in double quotes. A double quote (") is a single character that must not be
confused with two apostrophes (**), acute accents (**), or grave accents (§§).

UNIX Programmer’s Manual Document Preparation—241

MEMORANDUM MACROS

Otherwise, it will be treated as several separate arguments.

Double quotes are not permitted as part of the value of a macro argument or of
a string that is to be used as a macro argument. If it is necessary to have a
macro argument value, two grave accents (§8) and/or two acute accents (")
may be used instead. This restriction is necessary because many macro
arguments are processed (interpreted) a variable number of times. For
example, headings are first printed in the text and may be reprinted in the
table of contents.

Unpaddable Spaces

When output lines are justified to give an even right margin, existing spaces in
a line may have additional spaces appended to them. This may distort the
desired alignment of text. To avoid this distortion, it is necessary to specify a
space that cannot be expanded during justification, i.e., an unpaddable space.
There are several ways to accomplish this:

e The user may type a backslash followed by a space (\). This pair of
characters directly generates an unpaddable space.

e The user may sacrifice some seldom-used character to be translated into a
space upon output.

Because this translation occurs after justification, the chosen character may be
used anywhere an unpaddable space is desired. The tilde (7) is often used with
the translation macro for this purpose. To use the tilde in this way, the
following is inserted at the beginning of the document:

Agr ”

If a tilde must actually appear in the output, it can be temporarily “recovered”
by inserting

Ar

before the place where needed. Its previous usage is restored by repeating the
.tr ~ after a break or after the line containing the tilde has been forced out.

Note: Use of the tilde in this fashion is not recommended for documents in

242—Document Preparation UNIX Programmer’s Manual

which the tilde is used within equations.

Hyphenation

Formatters do not perform hyphenation unless requested. Hyphenation can be
turned on in the body of the text by specifying

.nr Hy 1

once at the beginning of the document input file. Paragraph 8.3 describes
hyphenation within footnotes and across pages.

If hyphenation is requested, formatters will automatically hyphenate words if
need be. However, the user may specify hyphenation points for a specific
occurrence of any word with a special character known as a hyphenation
indicator or may specify hyphenation points for a small list of words (about
128 characters). "

If the hyphenation indicator (initially, the 2-character sequence *“\%”) appears
at the beginning of a word, the word is not hyphenated. Alternatively, it can
be used to indicate legal hyphenation points inside a word. All occurrences of
the hyphenation indicator disappear on output.

The user may specify a different hyphenation indicator.
.HC [hyphenation-indicator]

The circumflex (") is often used for this purpose by inserting the following at
the beginning of a document input text file:

HC"

Note: Any word containing hyphens or dashes (also known as em dashes) will
be hyphenated immediately after a hyphen or dash if it is necessary to
hyphenate the word, even if the formatter hyphenation function is turned off.

The user may supply, via the exception word .hw request, a small list of words
with the proper hyphenation points indicated. For example, to indicate the
proper hyphenation of the word “printout”, the user may specify

UNIX Programmer’s Manual Document Preparation—243

MEMORANDUM MACROS
.hw print-out

Tabs

Macros .MT, .TC, and .CS use the formatter tabs .ta request to set tab stops
and then restore the default values of tab settings (every eight characters in the
nroff formatter; every ' inch in the troff formatter). Setting tabs to other than
the default values is the user’s responsibility.

Default tab setting values are 9, 17, 25, ..., 161 for a total of 20 tab stops.
Values may be separated by commas, spaces, or any other non-numeric
character. A user may set tab stops at any value desired. For example:

ta 9172533414957 ... 161

A tab character is interpreted with respect to its position on the input line
rather than its position on the output line. In general, tab characters should
appear only on lines processed in no-fill (.nf) mode.

The tbl(1) program changes tab stops but does not restore default tab settings.

BEL Character

The nonprinting character BEL is used as a delimiter in many macros to
compute the width of an argument or to delimit arbitrary text, e.g., in page
headers and footers, headings, and lists. Users who include BEL characters in
their input text file (especially in arguments to macros) will receive mangled
output.

Bullets

A bullet (®) is often obtained on a typewriter terminal by using an “o”
overstruck by a “+”. For compatibility with the troff formatter, a bullet string
is provided by MM with the following sequence:

*(BU

The bullet list (BL) macro uses this string to generate automatically the
bullets for bullet listed items.

244—Document Preparation UNIX Programmer’s Manual

Dashes, Minus Signs, and Hyphens

The troff formatter has distinct graphics for a dash, a minus sign, and a
hyphen; the nroff formatter does not.

e Users who intend to use the nroff formatter only may use the minus sign (-)
for the minus, hyphen, and dash.

¢ Users who plan to use the troff formatter primarily should follow troff escape

conventions.

e Users who plan to use both formatters must take care during input text file
preparation. Unfortunately, these graphic characters cannot be represented in
a way that is both compatible and convenient for both formatters.

The following approach is suggested:

Dash

Hyphen

Minus

Type “*(EM” for each text dash for both nroff and troff
formatters. This string generates an em dash in the troff
formatter and two dashes (--) in the nroff formatter.
Dash list (DL) macros automatically generate the em
dash for each list item.

Type “-” and use as is for both formatters. The nroff
formatter will print it as is. The troff formatter will print
- (a true hyphen).

Type “\-” for a true minus sign regardless of formatter.

The nroff formatter will ignore the\. The troff formatter
will print a true minus sign.

Trademark String

A trademark string “*(Tm” is available with MM. This places the letters
“TM?” one-half line above the text that it follows. For example:

UNIX Programmer’s Manual Document Preparation—245

MEMORANDUM MACROS

The

I

UNIX

.R

*(Tm

A

Programmer’s Manual

.R

is available from the library.

yields:

The UNIX ™ Programmer’s Manual is available from the library.

Use of Formatter Requests

Most formatter requests should not be used with MM because MM provides
the corresponding formatting functions in a much more user-oriented and
surprise-free fashion than do the basic formatter requests. However, some
formatter requests are useful with MM, namely the following:

.af Assign format

Jbr Break

.ce Center

.de Define macro

.ds Define string

A Fill output lines

.hw Exception word

s Line spacing

.nf No filling of output lines

.nr - Define and set number register
.nx Go to next file (does not return)
om Remove macro

IT Remove register

IS Restore spacing

.50 Switch to source file and return

Sp Space

.ta Tab stop settings
.t Temporary indent
Al Title -

tr Translate

246—Document Preparation UNIX Programmer’s Manual

A Escape

The fp, .Ig, and .ss requests are also sometimes useful for the troff formatter.
Use of other requests without fully understanding their implications very often
leads to disaster.

PARAGRAPHS AND HEADINGS

Paragraphs

P [typel
one or more lines of text.

The .P macro is used to control paragraph style.

Paragraph Indention

An indented or a nonindented paragraph is defined with the type argument:

type RESULT
0 left justified
1 indent

In a left-justified paragraph, the first line begins at the left margin. In an
indented paragraph, the paragraph is indented the amount specified in the Pi
register (default value is 5). For example, to indent paragraphs by ten spaces,
the following is entered at the beginning of the document input file:

ar Pi 10

A document input file possesses a default paragraph type obtained by
specifying “.P” before each paragraph that does not follow a heading. Default
paragraph type is controlled by the Pt number register.

e The initial value of Pt is 0, which provides left-justified paragraphs.

UNIX Programmer’s Manual Document Preparation—247

MEMORANDUM MACROS

o All paragraphs can be forced to be indented by 1nscrt1ng the following at the
beginning of the document input file:

ar Pt 1

e All paragraphs can be indented except after headings, lists, and displays by
entering the following at the beginning of the document input file:

.nr Pt 2

Both the Pi and Pt register values must be greater than zero for any
paragraphs to be indented.

Note: Values that specify indentation must be unscaled and are treated as
character positions, i.e., as a number of ens. In the nroff formatter, an en is
equal to the width of a character. In the troff formatter, an en is the number
of points (1 point = 1/72 of an inch) equal to half the current point size.

Regardless of the value of Pt, an individual paragraph can be forced to be left-
justified or indented. The “.P 0” macro request forces left justification; “.P 1
causes indentation by the amount specified by the register Pi.

If .P occurs inside a list, the indent (if any) of the paragraph is added to the
current list indent.

Numbered Paragraphé

Numbered paragraphs may be produced by setting the Np register to 1. This
produces paragraphs numbered within first level headings, e.g., 1.01, 1.02, 1.03,
2.01, etc.

A different style of numbered paragraphs is obtained by using the .nP macro
rather than the .P macro for paragraphs. This produces paragraphs that are
numbered within second level headings.

248—Document Preparation UNIX Programmer’s Manual

.H 1 "FIRST HEADING"
.H 2 "SECOND HEADING"
.nP

one or more lines of text

The paragraphs contain a “double-line indent” in which the text of the second
line is indented to be aligned with the text of the first line so that the number
stands out.

Spacing Between Paragraphs

The Ps number register controls the amount of spacing between paragraphs.
By default, Ps is set to 1, yielding one blank space (one-half a vertical space).

Numbered Headings

.H level [heading-text] [heading-suffix]
zero or more lines of text

The level argument provides the numbered heading level. There are seven
heading levels; level 1 is the highest, level 7 is the lowest.

The heading-text argument is the text of the heading. If the heading contains
more than one word or contains spaces, the entire argument must be enclosed
in double quotes.

The heading-suffix argument may be used for footnote marks which should not
appear with heading text in the table of contents.

There is no need for a .P macro immediately after a .H or .HU because the .H
macro also performs the function of the .P macro. Any immediately following
.P macro is ignored. It is, however, good practice to start every paragraph with
a .P macro, thereby ensuring that all paragraphs uniformly begin with a .P
throughout an entire document.

UNIX Programmer’s Manual Document Preparation—249

MEMORANDUM MACROS

Normal Appearance

The effect of the .H macro varies according to the /evel argument. First-level
headings are preceded by two blank lines (one vertical space); all others are
preceded by one blank line (one-half a vertical space). The following table
describes the default effect of the level argument.

.H 1 heading-text

.H 2 heading-text

.H n heading-text

Produces a bold font heading followed by a
single blank line (one-half a vertical space).
The following text begins on a new line and is
indented according to the current paragraph
type. Full capital letters should be used to
make the heading stand out.

Produces a bold font heading followed by a
single blank line (one-half a vertical space).
The following text begins on a new line and is
indented according to the current paragraph
type. Initial capitals should be used in the
heading text.

Produces an underlined (talicized) heading
followed by two spaces 3 < n < 7). The
following text begins on the same line, i.e.,
these are run-in headings.

Appropriate numbering and spacing (horizontal and vertical) occur even if the
heading-text argument is omitted from a .H macro call.

The following listing gives the first few .H calls used for this part:

250—Document Preparation

UNIX Programmer’s Manual

.H 1 "PARAGRAPHS AND HEADINGS"
.H 2 "PARAGRAPHS"

.H 3 "Paragraph Indention"

.H 3 "Numbered Paragraphs"

.H 3 "Spacing Between Paragraphs”

.H 2 "NUMBERED HEADINGS"

.H 3 "Normal Appearance"

.H 3 "Altering Appearance"

.H 4 "Prespacing and Page Ejection"

.H 4 "Spacing After Headings"

.H 4 "Centered Headings"

.H 4 "Bold, Italic, and Underlined Headings"
.H 5 "Control by Level:"

Note: Users satisfied with the default appearance of headings may skip to the
paragraph entitled “Unnumbered Headings”.

Altering Appearance

The user can modify the appearance of headings quite easily by setting certain
registers and strings at the beginning of the document input text file. This
permits quick alteration of a document’s style because this style-control
information is concentrated in a few lines rather than being distributed
throughout the document.

Prespacing and Page Ejection

A FIRST-LEVEL HEADING (H 1) NORMALLY HAS TWO BLANK
LINES (one vertical space) preceding it, and all other headings are preceded
by one blank line (one-half a vertical space). If a muitiline heading were to be
split across pages, it is automatically moved to the top of the next page. Every
first-level heading may be forced to the top of a new page by inserting:

ar Ej 1

at the beginning of the document input text file. Long documents may be
made more manageable if each section starts on a new page. Setting the Ej
register to a higher value causes the same effect for headings up to that level,
i.e,, a page eject occurs if the heading level is less than or equal to the Ej
value.

UNIX Programmer’s Manual Document Preparation—251

MEMORANDUM MACROS

Spacing After Headings

Three registers control the appearance of text immediately following a .H call.
The registers are Hb (heading break level), Hs (heading space level), and Hi
(post-heading indent).

e If the heading level is less than or equal to Hb, a break occurs after the
heading.

o If the heading level is less than or equal to Hs, a blank line (one-half a
vertical space) is inserted after the heading.

e If a heading level is greater than Hb and also greater than Hs, then the
heading (if any) is run into the following text.

These registers permit headings to be separated from the text in a consistent
way throughout a document while allowing easy alteration of white space and
heading emphasis. The default value for Hb and Hs is 2.

For any stand-alone heading, i.e., a heading not run into the following text,
alignment of the next line of output is controlled by the Hi number register.

o If Hiis 0, text is left-justified.

o If Hiis 1 (the default value), text is indented according to the paragraph
type as specified by the Pt register.

o If Hi is 2, text is indented to line up with the first word of the heading itself
so that the heading number stands out more clearly.

To cause a blank line (one-half a vertical space) to appear after the first three
heading levels, to have no run-in headings, and to force the text following all
headings to be left-justified (regardless of the value of Pr), the following should
appear at the beginning of the document input text file:

.ar Hs 3
.ar Hb 7
.ar Hi 0

252—Document Preparation UNIX Programmer’s Manual

Centered Headings

The Hc register can be used to obtain centered headings. A heading is
centered if its Jevel argument is less than or equal to Hc and if it is also a
stand-alone heading. The Hec register is O initially (no centered headings).

Bold, Italic, and Underlined Headings

Control by Level:

Any heading that is underlined by the nroff formatter is italicized by the troff
formatter. The string HF (heading font) contains seven codes that specify
fonts for heading levels 1 through 7. Legal codes, code interpretations, and
defaults for HF codes are:

[p— HF CODE DEFAULT

RM. R 1 2 3 HF CODE
nroff no underline underline bold | 3322222
troff Roman italic bold | 3322222

Thus, levels 1 and 2 are bold; levels 3 through 7 are underlined by the mroff
formatter and italicized by the troff formatter. The user may reset HF as
desired. Any value omitted from the right end of the list is assumed to be a 1.
The following request would result in five bold levels and two Roman font
levels:

dsHF 33333

NROFF Underlining Style:

The nroff formatter underlines in either of two styles:

e The normal style (ul request) is to underline only letters and digits.

e The continuous style (.cu request) underlines all characters including spaces.

By default, MM attempts to use the continuous style on any heading that is to
be underlined and is short enough to fit on a single line. If a heading is to be
underlined but is longer than a single line, the heading is underlined in the
normal style.

UNIX Programmer’s Manual Document Preparation—253

MEMORANDUM MACROS

All underlining of headings can be forced to the normal style by using the
—rUl1 flag when invoking the nroff formatter.

Heading Point Sizes:

The user may specify the desired point size for each heading level with the HP
string (for use with the troff formatter only).

.ds HP [ps1] [ps2] [ps3] [ps4] [ps5] [ps6] [ps7]

By default, the text of headings ((H and .HU) is printed in the same point size
as the body except that bold stand-alone headings are printed in a size one
point smaller than the body. The string HP, similar to the string HF, can be
specified to contain up to seven values, corresponding to the seven levels of
headings. For example:

.ds HP 12 12 10 10 10 10 10

specifies that the first and second level headings are to be printed in 12-point
type with the remainder printed in 10-point. Specified values may also be
relative point-size changes, for example:

ds HP +2 +2 —1 —1

If absolute point sizes are specified, then absolute sizes will be used regardless
of the point size of the body of the document. If relative point sizes are
specified, then point sizes for headings will be relative to the point size of the
body even if the latter is changed.

Null or zero values imply that default size will be used for the corresponding
heading level.

Note: Only the point size of the headings is affected. Specifying a large point

size without providing increased vertical spacing (via .HX and/or .HZ) may
cause overprinting. '

254—Document Preparation UNIX Programmer’s Manual

Marking Styles—Numerals and Concatenation
.HM [argl] ... [arg7]

The registers named HI through H7 are used as counters for the seven levels of
headings. Register values are normally printed using Arabic numerals. The
.HM macro (heading mark style) allows this choice to be overridden thus
providing ‘““outline” and other document styles. This macro can have up to
seven arguments; each argument is a string indicating the type of marking to
be used. Legal arguments and their meanings are:

ARGUMENT MEANING
' 1 Arabic (default for all levels)
0001 Arabic with enough leading zeroes
to get the specified number of digits

A Uppercase alphabetic
a Lowercase alphabetic
I Uppercase Roman.

i Lowercase Roman

omitted Interpreted as 1 (Arabic)
illegal No effect

By default, the complete heading mark for a given level is built by
concatenating the mark for that level to the right of all marks for all levels of
higher value. To inhibit the concatenation of heading level marks, i.e., to
obtain just the current level mark followed by a period, the heading mark type
register (Ht) is set to 1. For example, a commonly used “outline” style is
obtained by: ‘

HMIA1lai
ar Ht 1

Unnumbered Headings
.HU heading-text

The .HU macro is a special case of .H; it is handled in the same way as .H
except that no heading mark is printed. In order to preserve the hierarchical
structure of headings when .H and .HU calls are intermixed, each .HU heading
is considered to exist at the level given by register Hu, whose initial value is 2.

UNIX Programmer’s Manual Document Preparation—255

MEMORANDUM MACROS

Thus, in the normal case, the only difference between:
.HU heading-text

and
.H 2 HEADING-TEXT

is the printing of the heading mark for the latter. Both macros have the effect
of incrementing the numbering counter for level 2 and resetting to zero the
counters for levels 3 through 7. Typically, the value of Hu should be set to
make unnumbered headings (if any) be the lowest-level headings in a
document.

The .HU macro can be especially helpful in setting up appendices and other
sections that may not fit well into the numbering scheme of the main body of a
document.

Headings and Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accomplished by doing
the following: :

e specifying in the contents level register, Cl/, what level headings are to be
saved

e invoking the .T'C macro at the end of the document.

Any heading whose level is less than or equal to the value of the CI register is
saved and later displayed in the table of contents. The default value for the CI
register is 2, i.e., the first two levels of headings are saved.

Due to the way headings are saved, it is possible to exceed the formatter’s
storage capacity, particularly when saving many levels of many headings, while
also processing displays and footnotes. If this happens, the “Out of temp file
space” formatter error message will be issued; the only remedy is to save fewer
levels and/or to have fewer words in the heading text.

256—Document Preparation ' UNIX Programmer’s Manual

First-Level Headings and Page Numbering Style

By default, pages are numbered sequentially at the top of the page. For large
documents, it may be desirable to use page numbering of the “section-page”
form where “section” is the number of the current first-level heading. This
page numbering style can be achieved by specifying the —rN3 or —rNS5 flag on
the command line. As a side effect, this also has the effect of setting Ej to 1,
i.e., each first level section begins on a new page. In this style, the page
number is printed at the bottom of the page so that the correct section number
is printed.

User Exit Macros

Note: This paragraph is intended primarily for users who are accustomed to
writing formatter macros.

.HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .HX, .HY, and .HZ macros are the means by which the user obtains a
final level of control over the previously described heading mechanism. These
macros are not defined by MM, they are intended to be defined by the user.
The .H macro call invokes .HX shortly before the actual heading text is
printed; it calls .HZ as its last action. After .HX is invoked, the size of the
heading is calculated. This processing causes certain features that may have
been included in .HX, such as .ti for temporary indent, to be lost. After the
size calculation, .HY is invoked so that the user may respecify these features.
All default actions occur if these macros are not defined. If .HX, .HY, or .HZ
are defined by the user, user-supplied definition is interpreted at the
appropriate point. These macros can therefore influence handling of all
headings because the .HU macro is actually a special case of the .H macro.

If the user originally invoked the .H macro, then the derived level argument
(dlevel) and the real level argument (rlevel) are both equal to the level given
in the .H invocation. If the user originally invoked the .HU macro, dlevel is
equal to the contents of register Hu, and rlevel is 0. In both cases, heading-
text is the text of the original invocation.

By the time .H calls .HX, it has already incremented the heading counter of
the specified level, produced blank lines (vertical spaces) to precede the
heading, and accumulated the “heading mark”, i.e., the string of digits, letters,

UNIX Programmer’s Manual Document Preparation—257

MEMORANDUM MACROS

and periods needed for a numbered heading. When HX is called, all user-
accessible registers and strings can be referenced, as well as the following:

string }0 If rlevel is nonzero, this string contains the “heading
mark”. Two unpaddable spaces (to separate the mark
from the heading) have been appended to this string.
If rlevel is 0, this string is null.

register ;0 This register indicates the type of spacing that is to
follow the heading.
A value of 0 means that the heading is run-in.
A value of 1 means a break (but no blank line) is to
follow the heading. :
A value of 2 means that a blank line (one-half a vertical
space) is to follow the heading.

string }2 If “register ;0™ is 0, this string contains two unpaddable
spaces that will be used to separate the (run-in) heading
from the following text.
If “register ;0” is nonzero, this string is null.

register ;3 This register contains an adjustment factor for a .ne
request issued before the heading is actually printed.
On entry to .HX, it has the value 3 if dlevel equals 1,
and 1 otherwise. The .ne request is for the following
number of lines: the contents of the “register ;0” taken
as blank lines (halves of vertical space) plus the
contents of “register ;3” as blank lines (halves of
vertical space) plus the number of lines of the heading.

The user may alter the values of }0, }2, and ;3 within .HX. The following are
examples of actions that might be performed by defining .HX to include the
lines shown:

e Change first-level heading mark from format ». to n.0:
Af \\$1=1 .ds }0 \\n(H1.0\ <sp>\<sp>
(where <sp> stands for a space)

e Separate run-in heading from the text with a period and two unpaddable

spaces:
Af \\n(G0=0 .ds }2 \<sp>\<sp>

258—Document Preparation UNIX Programmer’s Manual

o Assure that at least 15 lines are left on the page before printing a first-level
heading:
Af \\$1=1 .nr ;3 (15-\\nGO)v

o Add three additional blank lines before each first-level heading:
Af\\$1=1 sp 3

e Indent level 3 run-in headings by five spaces:
Af \\$1=3 .ti 5n

If temporary strings or macros are used within .HX, their names should be
chosen with care.

When the .HY macro is called after the .ne is issued, certain features requested
in .HX must be repeated. For example:

de HY
Aif \\$1=3 .ti 5n

The .HZ macro is called at the end of .H to permit user-controlled actions
after the heading is produced. In a large document, sections may correspond to
chapters of a book; and the user may want to change a page header or footer,
e.g.

.de HZ
Aif \\$1=1 .PF "Section \\$3"

Hints for Large Documents

A large document is often organized for convenience into one input text file per
section. If the files are numbered, it is wise to use enough digits in the names
of these files for the maximum number of sections, i.e., use suffix numbers 01
through 20 rather than 1 through 9 and 10 through 20.

Users often want to format individual sections of long documents. To do this
with the correct section numbers, it is necessary to set register HI to one less
than the number of the section just before the corresponding .H 1 call. For
example, at the beginning of Part 5, insert

UNIX Programmer’s Manual Document Preparation—259

MEMORANDUM MACROS

ar H1 4

Note: This is not good practice. It defeats the automatic (re)numbering of
sections when sections are added or deleted. Such lines should be removed as
soon as possible.

LISTS

This part describes different styles of lists; automatically numbered and
alphabetized lists, bullet lists, dash lists, lists with arbitrary marks, and lists
starting with arbitrary strings, i.e., with terms or phrases to be defined.

List Macros

In order to avoid repetitive typing of arguments to describe the style or
appearance of items in a list, MM provides a convenient way to specify lists.
All lists share the same overall structure and are composed of the following
basic parts:

e A list-initialization macro (AL BL, .DL, .ML, .RL, or .VL) determines the
style of list: line spacing, indentation, marking with special symbols, and
numbering or alphabetizing of list items. /

e One or more list-item macros (LI) identifies each unique item to the
system. It is followed by the actual text of the corresponding list item.

e The list-end macro (.LE) identifies the end of the list. It terminates the list
and restores the previous indentation.

Lists may be nested up to six levels. The list-initialization macro saves the
previous list status (indentation marking style, etc.); the .LE macro restores it.

With this approach, the format of a list is specified only once at the beginning
of the list. In addition by building onto the existing structure, users may create
their own customized sets of list macros with relatively little effort.

260—Document Preparation UNIX Programmer’s Manual

List-Initialization Macros

List-initialization macros are implemented as calls to the more basic .LB
macro. They are:

AL Automatically Numbered or Alphabetized List
.BL Bullet List

.DL Dash List

.ML Marked List

.RL Reference List

.VL Variable-Item List

Automatically Numbered or Alphabetized List
AL [typel [text-indent] [1]

The .AL macro is used to begin sequentially numbered or alphabetized lists. If
there are no arguments, the list is numbered; and text is indented by Li
(initially six) spaces from the indent in force when the .AL is called. This
leaves room for a space, two digits, a period, and two spaces before the text.
Values that specify indentation must be unscaled and are treated as “character
positions”, i.e., number of ens.

Spacing at the beginning of the list and between items can be suppressed by
setting the list space register (Ls). The Ls register is set to the innermost list
level for which spacing is done. For example:

anrLs O

specifies that no spacing will occur around any list items. The default value for
Ls is six (which is the maximum list nesting level).

e The type argument may be given to obtain a different type of sequencing.
Its value indicates the first element in the sequence desired. If fype argument
is omitted or null, the value 1 is assumed.

UNIX Programmer’s Manual Document Preparation—261

MEMORANDUM MACROS

ARGUMENT INTERPRETATION
1 Arabic (default for all levels)
A Uppercase alphabetic
a Lowercase alphabetic
I Uppercase Roman
i Lowercase Roman

o If text-indent argument is non-null, it is used as the number of spaces from
the current indent to the text, i.e., it is used instead of the Li register for this
list only. If text-indent argument is null, the value of Li will be used.

o If the third argument is given, a blank line (one-half a vertical space) will

not separate items in the list. A blank line will occur before the first item
however.

Bullet List
.BL [text-indent] [1]

The .BL macro begins a bullet list. Each list item is marked by a bullet (®)
followed by one space.

o If the text-indent argument is non-null, it overrides the default indentation
(the amount of paragraph indentation as given in the Pi register). In the
default case, the text of a bullet list lines up with the first line of indented
paragraphs.

e If the second argument is specified, no blank lines will separate items in the
list. ‘

Dash List
DL [text-indent] [1]

The .DL macro begins a dash list. Each list item is marked by a dash (—)
followed by one space.

262—Document Preparation UNIX Programmer’s Manual

o If the text-indent argument is non-null, it overrides the default indentation
(the amount of paragraph indentation as given in the Pi register). In the
default case, the text of a dash list lines up with the first line of indented
paragraphs.

o If the second argument is specified, no blank lines will separate items in the

list.

Marked List
ML mark [text-indent] [1]

The .ML macro is much like .BL and .DL macros but expects the user to
specify an arbitrary mark which may consist of more than a single character.

e Text is indented text-indent spaces if the second argument is not null;
otherwise, the text is indented one more space than the width of mark.

o If the third argument is specified, no blank lines will separate items in the
list.

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified.

Reference List
.RL [text-indent] [1]

A .RL macro call begins an automatically numbered list in which the numbers
are enclosed by square brackets ([1).

o If text-indent argument is non-null, it is used as the number of spaces from
the current indent to the text, i.e., it is used instead of Li for this list only. If
text-indent argument is omitted or null, the value of Li is used.

o If the second argument is specified, no blank lines will separate the items in
the list.

UNIX Programmer’s Manual Document Preparation—263

'MEMORANDUM MACROS

Variable-ltem List
.VL text-indent [mark-indent] {1]

When a list begins with a .VL macro, there is effectively no current mark; it is
expected that each .LI will provide its own mark. This form is typically used
to display definitions of terms or phrases.

o Text-indent provides the distance from current indent to beginning of the
text.

® Mark indent produces the number of spaces from current indent to beginning
of the mark, and it defaults to 0 if omitted or null.

e If the third argument is specified, no blank lines will separate items in the
list.

An example of .VL macro usage is shown below:

ar -

.VL 20 2

.LI mark™1

Here is a description of mark 1;
“mark 1” of the .LI line contains a tilde

translated to an unpaddable space in order

to avoid extra-spaces between

“mark™ and “1”.

.LI second"mark

This is the second mark also using a tilde translated
to an unpaddable space.

.LI third"mark~longer "than indent:

This item shows the effect of a long mark; one space
separates the mark from the text.

L1~

This item effectively has no mark because the

tilde following the .LI is translated into a space.
.LE

when formatted yields:

264—Document Preparation . "UNIX Programmer’s Manual

mark 1 Here is a description of mark 1; “mark 1”7 of the .LI
line contains a tilde translated to an unpaddable space
in order to avoid extra spaces between “mark™ and “1”,

second mark This is the second mark also using a tilde translated to
an unpaddable space.

third mark longer than indent: This item shows the effect of a long mark;
one space separates the mark from the text.

This item effectively has no mark because the tilde
following the .LI is translated into a space.

The tilde argument on the last .LI above is required; otherwise, a “hanging
indent” would have been produced. A “hanging indent” is produced by using
.VL and calling .LI with no arguments or with a null first argument. For
example:

.VL 10

L1

Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces.

.LE

when formatted yields:

Here is some text to show a hanging indent. The first line of text is at the left
margin. The second is indented 10 spaces.

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified.

List-ltem Macro

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists and for each list item. It normally causes
output of a single blank line (one-half a vertical space) before its list item
although this may be suppressed.

UNIX Programmer’s Manual Document Preparation—265

MEMORANDUM MACROS

o If no arguments are given, .LI labels the item with the current mark which is
specified by the most recent list-initialization macro.

o Ifa single argument is given, that argument is output instead of the current
mark.

o If two arguments are given, the first argument becomes a prefix to the
current mark thus allowing the user to emphasize one or more items in a list.
One unpaddable space is inserted between the prefix and the mark.

For example:

.BL 6

.LI

This is a simple bullet item.

L1+

This replaces the bullet with a “plus”.
LI+1

This uses a “plus” as prefix to the bullet.
.LE

when formatted yields:

o This is a simple bullet item.
+ This replaces the bullet with a “plus”.

+ e This uses a “plus” as prefix to the bullet.

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified.

If the current mark (in the current list) is a null string and the first argument
of .LI is omitted or null, the resulting effect is that of a “hanging indent”, i.e.,
the first line of the following text is moved to the left starting at the same place
where mark would have started.

266—Document Preparation UNIX Programmer’s Manual

List-End Macro

.LE [1]

The .LE macro restores the state of the list to that existing just before the most
recent list-initialization macro call. If the optional argument is given, the .LE
outputs a blank line (one-half a vertical space). This option should generally
be used only when the .LE is followed by running text but not when followed
by a macro that produces blank lines of its own such as the .P, .H, or .LI
macro.

The .H and .HU macros automatically clear all list information. The user may
omit the .LE macros that would normally occur just before either of these
macros and not receive the “LE:mismatched” error message. Such a practice
is not recommended because errors will occur if the list text is separated from
the heading at some later time (e.g., by insertion of text).

Example of Nested Lists

An example of input for the several lists and the corresponding output is shown
below. The .AL and .DL macro calls contained therein are examples of list-
initialization macros. Input text is:

UNIX Programmer’s Manual ' Document Preparation—267

MEMORANDUM MACROS

AL A

L1

" This is alphabetized list item A.

This text shows the alignment of the second line

of the item.

Notice the text indentations and alignment of left

and right margins.

AL

L1

This is numbered item 1.

This text shows the alignment of the second line

of the item.

The quick brown fox jumped over the lazy dog’s back.
.DL

LI

This is a dash item.

This text shows the alignment of the second line

of the item. v

The quick brown fox jumped over the lazy dog’s back.
LI+1

This is a dash item with a “plus” as prefix.

This text shows the alignment of the second line

of the item.

The quick brown fox jumped over the lazy dog’s back.
.LE

LI

This is numbered item 2.

.LE

L1

This is another alphabetized list item B.

This text shows the alignment of the second line

of the item.

The quick brown fox jumped over the lazy dog’s back.
.LE

P

This paragraph follows a list item and is aligned with
the left margin.

A paragraph following a list resumes the normal line
length and margins.

The output is:

268—Document Preparation UNIX Programmer’s Manual

A. This is alphabetized list item A. This text shows the alignment of the
second line of the item. Notice the text indentations and alignment of left
and right margins.

1. This is numbered item 1. This text shows the alignment of the second
line of the item. The quick brown fox jumped over the lazy dog’s
back.

— This is a dash item. This text shows the alignment of the second line
of the item. The quick brown fox jumped over the lazy dog’s back.

+ — This is a dash item with a “plus” as prefix. This text shows the
alignment of the second line of the item. The quick brown fox
jumped over the lazy dog’s back.

2. This is numbered item 2.

B. This is another alphabetized list item B. This text shows the alignment of
the second line of the item. The quick brown fox jumped over the lazy
dog’s back.

This paragraph follows a list item and is aligned with the left margin. A
paragraph following a list resumes the normal line length and margins.

List-Begin Macro and Customized Lists
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-spacel

List-initialization macros described above suffice for almost all cases. However,
if necessary, the user may obtain more control over the layout of lists by using
the basic list-begin macro (LB). The .LB macro is used by the other list-
initialization macros. Its arguments are as follows:

e The text-indent argument provides the number of spaces that text is to be
indented from the current indent. Normally, this value is taken from the Li
register (for automatic lists) or from the Pi register (for bullet and dash lists).

o The combination of mark-indent and pad arguments determines the
placement of the mark. The mark is placed within an area (called mark area)
that starts mark-indent spaces to the right of the current indent and ends

UNIX Programmer’s Manual Document Preparation—269

MEMORANDUM MACROS

where the text begins (i.e., ends text-indent spaces to the right of the current
indent). The mark-indent argument is typically 0.

o Within the mark area, the mark is left justified if the pad argument is 0. If
pad is a number n (greater than 0) then n blanks are appended to the mark;
the mark-indent value is ignored. The resulting string immediately precedes
the text. The mark is effectively right justified pad spaces immediately to the
left of text.

e Arguments type and mark interact to control the type of marking used. If
type is 0, simple marking is performed using the mark character(s) found in
the mark argument. If type is greater than 0, automatic numbering or
alphabetizing is done; and mark is then interpreted as the first item in the
sequence to be used for numbering or alphabetizing, i.e., it is chosen from the
set (1, A, a, I, i) as in. This is summarized in the following table:

ARGUMENT) RESULT
type mark
0 omitted hanging indent
0 string string is the mark
>0 | omitted Arabic numbering
>0 | one of: automatic numbering or
1, A, a, I, i | alphabetic sequencing

Each nonzero value of zype from one to six selects a different way of displaying
the marks. The following table shows the output appearance for each value of

type:

VALUE APPEARANCE

1 X.
2 x)
3 (x)
4 [x]
5 <x>
6 {x}

where x is the generated number or letter.

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified.

e The LI-space argument gives the number of blank lines (halves of a vertical
space) that should be output by each .LI macro in the list. If omitted, LI-

270-Document Preparation UNIX Programmer’s Manual

space defaults to 1; the value O can be used to obtain compact lists. If LI-
space is greater than 0, the .LI macro issues a .ne request for two lines just
before printing the mark.

e The LB-space argument is the number of blank lines (one-half a vertical
space) to be output by .LB itself. If omitted LB-space defaults to 0.

There are three combinations of LI-space and LB-space:

o The normal case is to set LI-space to 1 and LB-space to 0 yielding one blank
line before each item in the list; such a list is usually terminated with a .LE 1
macro to end the list with a blank line.

¢ For a more compact list, LI-space is set to 0, LB-space is set to 1, and the
.LE 1 macro is used at the end of the list. The result is a list with one blank
line before and after it.

o If both LI-space and LB-space are set to 0 and the .LE macro is used to end
the list, a list without any blank lines will result.

User-Defined List Structures

Note: This part is intended for users accustomed to writing formatter macros.

If a large document requires complex list structures, it is useful to define the
appearance for each list level only once instead of having to define the
appearance at the beginning of each list. This permits consistency of style in a
large document. A generalized list-initialization macro might be defined in
such a way that what the macro does depends on the list-nesting level in effect
at the time the macro is called. Levels 1 through 5 of the lists to be formatted
may have the following appearance: ‘

UNIX Programmer’s Manual Document Preparation—271

MEMORANDUM MACROS

(1]

a)
+

The following code defines a macro (.aL) that always begins a new list and
determines the type of list according to the current list level. To understand it,
the user should know that the number register :g is used by the MM list
macros to determine the current list level; it is O if there is no currently active
list. Each call to a list-initialization macro increments :g, and each .LE call
decrements it.

\'register g is used as a local temporary to save :g before it is changed

below
.de aL
ar g \\n(:g
if \\ng=0 .AL A \"produces an A.
if \\ng=1 LB\\n(LiO 1 4 \"produces a [1]
.if \\ng=2 .BL \"produces a bullet
Af \\ng=3 .LB\\n(Li022a \"produces an a)

if \\ng=4 ML + \"produces a +

This macro can be used (in conjunction with .LI and .LE) instead of .AL, .RL,
.BL, .LB, and .ML. For example, the following input:

272~Document Preparation UNIX Programmer’s Manual

.alL

LI

First line.
.al

.LI

Second line.
.LE

LI

Third line.
.LE

when formatted yields

A. First line.

[1] Second line.

B. Third line.

There is another approach to lists that is similar to the .H mechanism. List-
initialization, as well as the .LI and the .LE macros, are all included in a single
macro. That macro (defined as .bL below) requires an argument to tell it what
level of item is required; it adjusts the list level by either beginning a new list
or setting the list level back to a previous value, and then issues a .LI macro

call to produce the item:

.de bL
de \\n(.$.nr g \\$1

el .nr g \\n(g
if \\ng—\\n(:g>1 .)D

"
if \\ng>\\n(:g \{.aL \\ng—1
ar

\"

Af \\n(Gg>\\ng .LC \\ng

.\"
LI

UNIX Programmer’s Manual

\"if there is an argument, that is the
level
\"if no argument, use current level
\"=+ILLEGAL SKIPPING OF
LEVEL

increasing level by more than 1
\"if g > :g, begin new list
\"and reset g to current level

(.aL changes g)
\"if :g > g, prune back to correct
level ‘

if :g = g, stay within current list
\"in all cases, get out an item

Document Preparation—273

MEMORANDUM MACROS

For .bL to work, the previous definition of the .alL macro must be changed to
obtain the value of g from its argument rather than from :g. Invoking .bL
without arguments causes it to stay at the current list level. The .LC (List
Clear) macro removes list descriptions until the level is less than or equal to
that of its argument. For example, the .H macro includes the call “.LC 0”. If
text is to be resumed at the end of a list, insert the call “.LC 0” to clear out
the lists completely. The example below illustrates the relatively small amount
of input needed by this approach. The input text

The quick brown fox jumped over the lazy dog’s back.
.bL 1

First line.
.bL 2
Second line.
.bL 1

Third line.
.bL

Fourth line.
LCO

Fifth line.

when formatted yields
The quick brown fox jumped over the lazy dog’s back.
A. First line.

[1] Second line.
B. Third line.

C. Fourth line.
Fifth line.

274—Document Preparation UNIX Programmer’s Manual

MEMORANDUM AND RELEASED-PAPER STYLE
DOCUMENTS

One use of MM is for the preparation of memoranda and released-paper
documents (a documentation style used by AT&T Bell Laboratories) which
have special requirements for the first page and for the cover sheet. Data
needed (title, author, date, case numbers, etc.) is entered the same for both
styles; an argument to the .MT macro indicates which style is being used.

Sequence of Beginning Macros

Macros, if present, must be given in the following order:

.ND new-date

.TL [charging-case] [filing-casel

one or more lines of text

.AF [company-name]

.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg]
AT [title] ...

.M [number] ...

.AS [arg] [indent]

one or more lines of abstract text

AE

NS [arg]

one or more lines of “copy to” notation
.NE

.OK [keyword] ...

MT [typel [addresseel

The only required macros for a memorandum for file or a released-paper
document are .TL, .AU, and .MT; all other macros (and their associated input
lines) may be omitted if the features are not needed. Once .MT has been
invoked, none of the above macros (except .NS and .NE) can be reinvoked
because they are removed from the table of defined macros to save memory
space.

If neither the memorandum nor released-paper style is desired, the TL, AU,
TM, AE, OK, MT, ND, and AF macros should be omitted from the input text.
If these macros are omitted, the first page will have only the page header
followed by the body of the document.

UNIX Programmer’s Manual Document Preparation—275

MEMORANDUM MACROS

Title

.TL [charging-case] [filing-case]
one or more lines of title text

Arguments to the .TL macro are the charging-case number(s) and filing-case
number(s).

e The charging-case argument is the case number to which time was charged
for the development of the project described in the memorandum. Multiple
charging-case numbers are entered as “subarguments” by separating each from
the previous with a comma and a space and enclosing the entire argument
within double quotes.

e The filing-case argument is a number under which the memorandum is to be
filed. Multiple filing case numbers are entered similarly. For example:

TL "12345, 67890" 987654321
Construction of a Table of All Even Prime Numbers

The title of the memorandum or released-paper document follows the .TL
macro and is processed in fill mode. The .br request may be used to break the
title into several lines as follows:

.TL 12345

First Title Line
.br

\!l.br

Second Title Line

On output, the title appears after the word “subject” in the memorandum style
and is centered and bold in the released-paper document style.

If only a charging case number or only a filing case number is given, it will be
separated from the title in the memorandum style by a dash and will appear on
the same line as the title. If both case numbers are given and are the same,
then “Charging and Filing Case” followed by the number will appear on a line
following the title. If the two case numbers are different, separate lines for
“Charging Case” and “File Case” will appear after the title.

276—Document Preparation UNIX Programmer’s Manual

Authors

.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg]
AT [title] ...

The .AU macro receives as arguments information that describes an author. If
any argument contains blanks, that argument must be enclosed within double
quotes. The first six arguments must appear in the order given. A separate
.AU macro is required for each author.

The .AT macro is used to specify the author’s title. Up to nine arguments may
be given. Each will appear in the signature block for memorandum style on a
separate line following the signer’s name. The .AT must immediately follow
the .AU for the given author. For example:

AU "S. V. Earhart" SVE SF 4541 6037 5-219
AT Planner "Documentation Services"

In the “from” portion in the memorandum style, the author’s name is followed
by location and department number on one line and by room number and
extension number on the next line. The “x” for the extension is added
automatically. Printing of the location, department number, extension number,
and room number may be suppressed on the first page of a memorandum by
setting the register Au to 0; the default value for Au is 1. Arguments 7
through 9 of the .AU macro, if present, will follow this normal author
information in the “from” portion, each on a separate line. These last three
arguments may be used for organizational numbering schemes, etc. For
example:

AU "W, J. Salica" WIS SF 4541 6380 5-219 4541-543210.01MF

The name, initials, location, and department are also used in the signature
block. Author information in the “from” portion, as well as names and initials
in the signature block will appear in the same order as the .AU macros.

Names of authors in the released-paper style are centered below the title.
Following the name of the last author, “AT&T Bell Laboratories” and the
location are centered. The paragraph on memorandum types contams
information regarding authors from different locations.

UNIX Programmer’s Manual Document Preparation—277

MEMORANDUM MACROS

TM Numbers
TM [number] ...

If the memorandum is a technical memorandum, the TM numbers are supplied
via the .TM macro. Up to nine numbers may be specified. For example:

TM 7654321 77777777

This macro call is ignored in the released-paper and external-letter styles.

Abstract

.AS [arg] [indent]
text of abstract
AE

If a memorandum has an abstract, the input is identified with the .AS (abstract
start) and .AE (abstract end) delimiters. Abstracts are printed on page 1 of a
document and/or on its cover sheet. There are three styles of cover sheet:

o released paper
e technical memorandum

¢ memorandum for file (also used for engineer’s notes, memoranda for record,
etc.).

Cover sheets for released papers and technical memoranda are obtained by
invoking the .CS macro.

In released-paper style (first argument of the .MT macro is 4) and in technical
memorandum style if the first argument of .AS is:

0 — Abstract will be printed on page 1 and on the cover sheet (if any).

1 — Abstract will appear only on the cover sheet (if any).

In memoranda for file style and in all other documents (other than external

278—Document Preparation UNIX Programmer’s Manual

letters) if the first argument of .AS is:

0 — Abstract will appear on page 1 and there will be no cover sheet
printed.

2 — Abstract will appear only on the cover sheet which will be
produced automatically (i.e., without invoking the .CS macro).

It is not possible to get either an abstract or a cover sheet with an external
letter (first argument of the .MT macro is 5).

Notations such as a “copy to” list are allowed on memorandum for file cover
sheets; the .NS and .NE macros must appear after the .AS 2 and .AE macros.
Headings and displays are not permitted within an abstract.

The abstract is printed with ordinary text margins; an indentation to be used
for both margins can be specified as the second argument of .AS. Values that
specify indentation must be unscaled and are treated as “character positions”,
i.e., as the number of ens.

Other Keywords
.OK [keyword] ...

Topical keywords should be specified on a technical memorandum cover sheet.
Up to nine such keywords or keyword phrases may be specified as arguments to
the .OK macro; if any keyword contains spaces, it must be enclosed within
double quotes.

Memorandum Types
MT [typel [addresseel

The .MT macro controls the format of the top part of the first page of a
memorandum or of a released-paper document and the format of the cover
sheets. The type arguments and corresponding values are:

UNIX Programmer’s Manual Document Preparation—279

MEMORANDUM MACROS

type VALUE
" no memorandum type printed
0 no memorandum type printed
none MEMORANDUM FOR FILE
i MEMORANDUM FOR FILE

2 PROGRAMMER’S NOTES
3 ENGINEER’S NOTES
4 released-paper style
5 external-letter style
"string" string (enclosed in quotes)
If the type argument indicates a memorandum style document, the
corresponding statement indicated under “VALUE” will be printed after the

last line of author information. If type is longer than one character, then the
string, itself, will be printed. For example:

.MT "Technical Note #5"

A simple letter is produced by calling .MT with a null (but not omitted) or 0
argument.

The second argument to .MT is the name of the addressee of a letter. If
present, that name and the page number replace the normal page header on the
second and following pages of a letter. For example:

.MT 1 "Steven Earhart"
produces
Steven Earhart - 2

The addressee argument may not be used if the first argument is 4 (released-
paper style document).

The released-paper style is obtained by specifying

MT 4 [1]

280—Document Preparation UNIX Programmer’s Mdnual

This results in a centered, bold title followed by centered names of authors.
The location of the last author is used as the location following “AT&T Bell
Laboratories” (unless the .AF macro specifies a different company). If the
optional second argument to .MT 4 is given, then the name of each author is
followed by the respective company name and location. Information necessary
for the memorandum style document but not for the released-paper style
document is ignored.

If the released-paper style document is utilized, most location codes are defined
as strings that are the addresses of the corresponding locations. These codes
are needed only until the .MT macro is invoked. Thus, following the .MT
macro, the user may reuse these string names. In addition, the macros for the
end of a memorandum and their associated lines of input are ignored when the
released-paper style is specified.

Authors from locations may include their affiliations in the released-paper style
by specifying the appropriate .AF macro and defining a string (with a 2-
character name such as ZZ) for the address before each .AU. For example:

.TL

A Learned Treatise

.AF "Getem Inc."

.ds ZZ "22 Maple Avenue, Sometown 09999"
AU "S. Earhart" " ZZ

.AF "AT&T Bell Laboratories"

AU "Sam P. Lename" " CB

MT 41

In the external-letter style document (MT 5), only the title (without the word
“subject:””) and the date are printed in the upper left and right corners,
respectively, on the first page. It is expected that preprinted stationery will be
used with the company logo and address of the author.

Date Changes
.ND new-date

The .ND macro alters the value of the string DT, which is initially set to
produce the current date. If the argument contains spaces, it must be enclosed
within double quotes.

UNIX Programmer’s Manual Document Preparation—281

MEMORANDUM MACROS

Alternate First-Page Format
.AF [company-namel

An alternate first-page format can be specified with the .AF macro. The words
“subject”, “date”, and “from” (in the memorandum style) are omitted and an
alternate company name is used.

If an argument is given, it replaces “AT&T Bell Laboratories” without
affecting other headings. If the argument is null, “AT&T Bell Laboratories” is
suppressed; and extra blank lines are inserted to allow room for stamping the
document with a Bell logo or a AT&T Bell Laboratories stamp.

The .AF with no argument suppresses “AT&T Bell Laboratories” and the
“Subject/Date/From” headings, thus allowing output on preprinted stationery.
The use of .AF with no arguments is equivalent to the use of -rAl, except that
the latter must be used if it is necessary to change the line length and/or page
offset (which default to 5.8i and 1i, respectively, for preprinted forms). The
command line options —rOk and —rWk are not effective with .AF. The only
.AF use appropriate for the troff formatter is to specify a replacement for
“AT&T Bell Laboratories”.

The command line option —rEn controls the font of the “Subject/Date/From”
block.

Example

Input text for a document may begin as follows:

.TL

MM*(EMMemorandum Macros

AU "D. W. Smith" DWS PY

AU "J. R. Mashey" JRM PY

AU "E. C. Pariser (January 1980 Revision)" ECP PY
AU "N. W. Smith (June 1980 Revision)" NWS PY
.MT 4

282—Document Preparation UNIX Programmer’s Manual

End of Memorandum Macros

At the end of a memorandum document (but not of a released-paper
document), signatures of authors and a list of notations can be requested. The
following macros and their input are ignored if the released-paper style
document is selected.

Signature Block

.FC [closing]
SG larg] [1]

The .FC macro prints “Yours very truly,” as a formal closing, if no closing
argument is used. It must be given before the .SG macro. A different closing
may be specified as an argument to .FC.

The .SG macro prints the author’s name(s) after the formal closing, if any.
Each name begins at the center of the page. Three blank lines are left above
each name for the actual signature.

e If no arguments are given, the line of reference data (location code,
department number, author’s initials, and typist’s initials, all separated by
hyphens) will not appear.

¢ A non-null first argument is treated as the typist’s initials and is appended to
the reference data.

o A null first argument prints reference data without the typist’s initials or the
preceding hyphen.

o If there are several authors and if the second argument is given, reference
data is placed on the line of the first author.

Reference data contains only the location and department number of the first
author. Thus, if there are authors from different departments and/or from
different locations, the reference data should be supplied manually after the
invocation (without arguments) of the .SG macro. For example:

UNIX Programmer’s Manual Document Preparation—283

MEMORANDUM MACROS

SG

IS

sp —1v
PY/MH-9876/5432-J1J/SPL-cen

““Copy to”’ and Other Notations

NS [arg]
zero or more lines of the notation
.NE

Many types of notations (such as a list of attachments or “Copy to” lists) may
follow signature and reference data. Various notations are obtained through
the .NS macro, which provides for proper spacing and for breaking notations
across pages, if necessary.

Codes for arg and the corresponding notations are:

arg NOTATIONS
none Copy to

" Copy to

0 Copy to

1 Copy (with att.) to

2 Copy (without att.) to

3 Att.

4 Atts.

5 Enc.

6 Encs.

7 Under Separate Cover

8 Letter to

9 Memorandum to

"string" Copy (string) to

If arg consists of more than one character, it is placed within parentheses
between the words “Copy” and “to”. For example:

NS "with att. 1 only"

will generate

284—Document Preparation UNIX Programmer’s Manual

Copy (with att. 1 only) to

as the notation. More than one notation may be specified before the .NE
macro because a .NS macro terminates the preceding notation, if any. For
example: '

NS 4

Attachment 1-List of register names
Attachment 2-List of string and macro names
NS1

S. V. Earhart

NS 2

W. J. Salica

G. H. Hurtz

.NE

would be formatted as

Atts.
Attachment 1-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
S. V. Earhart

Copy (without att.) to
W. J. Salica
G. H. Hurtz

The .NS and .NE macros may also be used at the beginning following .AS 2
and .AE to place the notation list on the memorandum for file cover sheet. If
notations are given at the beginning without .AS 2, they will be saved and
output at the end of the document.

Approval Signature Line
.AV approver’s-name

The .AV macro may be used after the last notation block to automatically
generate a line with spaces for the approval signature and date. For example:

UNIX Programmer’s Manual Document Preparation—285

MEMORANDUM MACROS

AV "Jane Doe"

produces

APPROVED:

Jane Doe Date

One-Page Letter

At times, the user may like more space on the page forcing the signature or
items within notations to the bottom of the page so that the letter or memo is
only one page in length. This can be accomplished by increasing the page
length with the —rLn option, e.g., —rL90. This has the effect of making the
formatter believe that the page is 90 lines long and therefore providing more
space than usual to place the signature or the notations.

Note: This will work only for a single-page letter or memo.

DISPLAYS

Displays are blocks of text that are to be kept together on a page and not split
across pages. They are processed in an environment that is different from the
body of the text (see the .ev request). The MM package provides two styles of
displays — a static (.DS) style and a floating (.DF) style.

e In the static style, the display appears in the same relative position in the
output text as it does in the input text. This may result in extra white space at
the bottom of the page if the display is too long to fit in the remaining page
space.

¢ In the floating style, the display “floats” through the input text to the top of
the next page if there is not enough space on the current page. Thus input text
that follows a floating display may precede it in the output text. A queue of
floating displays is maintained so that their relative order of appearance in the
text is not disturbed.

286—Document Preparation UNIX Programmer’s Manual

By default, a display is processed in no-fill mode with single spacing and is not
indented from the existing margins. The user can specify indentation or
centering as well as fill-mode processing.

Note: Displays and footnotes may never be nested in any combination.
Although lists and paragraphs are permitted, no headings ((H or .HU) can
occur within displays or footnotes.

Static Displays

.DS [format] [fill] [rindent]
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the .DE macro.
With no arguments, .DS accepts lines of text exactly as typed (no-fill mode)
and will not indent lines from the prevailing left margin indentation or from
the right margin.

e The format argument is an integer or letter used to control the left margin
indentation and centering with the following meanings:

Sformat MEANING
" no indent
OorL no indent
lorl indent by standard amount

2orC center each line
3 or CB center as a-block
omitted no indent

e The fill argument is an integer or letter and can have the following
meanings:

fill MEANING

" no-fill mode
0 or N no-fill mode
lorF fill mode
omitted no-fill mode

e The rindent argument is the number of characters that the line length should
be decreased, i.e., an indentation from the right margin. This number must be
unscaled in the nroff formatter and is treated as ens. It may be scaled in the

UNIX Programmer’s Manual Document Preparation—287

MEMORANDUM MACROS

troff formatter or else defaults to ems.

The standard amount of static display indentation is taken from the Si register,
a default value of five spaces. Thus, text of an indented display aligns with the
first line of indented paragraphs, whose indent is contained in the Pi register.
Even though their initial values are the same (default values), these two
registers are independent.

The display format argument value 3 (or CB) centers (horizontally) the entire
display as a block (as opposed to .DS 2 and .DF 2 which center each line
individually). All collected lines are left justified, and the display is centered
based on width of the longest line. This format must be used in order for the
eqn/negn “mark” and “lineup” feature to work with centered equations. By
default, a blank line (one-half a vertical space) is placed before and after static
and floating displays. These blank lines before and after static displays can be
inhibited by setting the register Ds to 0.

The following example shows usage of all three arguments for static displays.
This block of text will be indented five spaces (ems in troff) from the left
margin, filled, and indented five spaces (ems in troff) from the right margin
(i.e., centered). The input text

DSIF5

“We the people of the United States,

in order to form a more perfect union,
establish justice, ensure domestic tranquillity,
provide for the common defense,

and secure the blessings of liberty to

ourselves and our posterity,

do ordain and establish this Constitution to the
United States of America.”

.DE

produces

“We the people of the United States, in order to form a more
perfect union, establish justice, ensure domestic tranquillity,
provide for the common defense, and secure the blessings of
liberty to ourselves and our posterity, do ordain and establish
this Constitution to the United States of America.”

288-—-Document Preparation UNIX Programmer’s Manual

Floating Displays

.DF [format] [fill] [rindent]
one or more lines of text
.DE

A floating display is started by the .DF macro and terminated by the .DE
macro. Arguments have the same meanings as static displays described above,
except indent, no indent, and centering are calculated with respect to the initial
left margin. This is because prevailing indent may change between when the
formatter first reads the floating display and when the display is printed. One
blank line (one-half a vertical space) occurs before and after a floating display.

The user may exercise precise control over the output positioning of floating
displays through the use of two number registers, De and Df (see below).
When a floating display is encountered by the nroff or troff formatter, it is
processed and placed onto a queue of displays waiting to be output. Displays
are removed from the queue and printed in the order entered, which is the
order they appeared in the input file. If a new floating display is encountered
and the queue of displays is empty, the new display is a candidate for
immediate output on the current page. Immediate output is governed by size
of display and the setting of the Df register code. The De register code
controls whether text will appear on the current page after a floating display
has been produced.

As long as the display queue contains one or more displays, new displays will
be automatically entered there, rather than being output. When a new page is
started (or the top of the second column when in 2-column mode), the next
display from the queue becomes a candidate for output if the Df register code
has specified “top-of-page” output. When a display is output, it is also
removed from the queue.

When the end of a section (using section-page numbering) or the end of a
document is reached, all displays are automatically removed from the queue
and output. This occurs before a .SG, .CS, or .TC macro is processed.

A display will fit on the current page if there is enough room to contain the
entire display or if the display is longer than one page in length and less than
half of the current page has been used. A wide (full-page width) display will
not fit in the second column of a 2-column document.

UNIX Programmer’s Manual Document Preparation—289

MEMORANDUM MACROS

The De and Df number register code settings and actions are as follows: -

De REGISTER

CODE ACTION

No special action occurs (also the default condition).
A page eject will always follow the output of each floating
display, so only one floating display will appear on a page and

no text will follow it.

Note: For any other code, the action performed is the same as
for code 1.

Df REGISTER

CODE ACTION

0

Floating displays will not be output until end of section (when
section-page numbering) or end of document.

Output new floating display on current page if there is space;
otherwise, hold it until end of section or document.

Output exactly one floating display from queue to the top of a
new page or column (when in 2-column mode).

Output one floating display on current page if there is space;
otherwise, output to the top of a new page or column.

Output as many displays as will fit (at least one) starting at the
top of a new page or column. If the De register is set to 1, each
display will be followed by a page eject causing a new top of
page to be reached where at least one more display will be
output.

Output a new floating display on the current page if there is
room (default condition). Output as many displays (but at least
one) as will fit on the page starting at the top of a new page or
column. If the De register is set to 1, each display will be
followed by a page eject causing a new top of page to be

290—Document Preparation UNIX Programmer’s Manual

reached where at least one more display will be output.

Note: For any code greater than 5, the action performed is the
same as for code 5.

The .WC macro may also be used to control handling of displays in double-
column mode and to control the break in text before floating displays.

Tables

TS [H]

global options;
column descriptors.
title lines

[.TH [N]]

data within the table.
.TE

The .TS (table start) and .TE (table end) macros make possible the use of the
th1(1) program. These macros are used to delimit text to be examined by thl
and to set proper spacing around the table. The display function and the tbl
delimiting function are independent. In order to permit the user to keep
together blocks that contain any mixture of tables, equations, filled text,
unfilled text, and caption lines, the .TS/.TE block should be enclosed within a
display (DS/.DE). Floating tables may be enclosed inside floating displays
(DF/.DB).

Macros .TS and .TE permit processing of tables that extend over several pages.
If a table heading is needed for each page of a multipage table, the “H”
argument should be specified to the .TS macro as above. Following the options
and format information, table title is typed on as many lines as required and is
followed by the .TH macro. The .TH macro must occur when “.TS H” is used
for a multipage table. This is not a feature of tbl but of the definitions
provided by the MM macro package.

The .-TH (table header) macro may take as an argument the letter N. This
argument causes the table header to be printed only if it is the first table
header on the page. This option is used when it is necessary to build long
tables from smaller . TS H/.TE segments. For example:

UNIX Programmer’s Manual Document Preparation—291

MEMORANDUM MACROS

.TSH

global options;
column descriptors.
Title lines

.TH

data

.TE

.TSH

global options;
column descriptors.
Title lines

.THN

data

.TE

will cause the table heading to appear at the top of the first table segment and
no heading to appear at the top of the second segment when both appear on the
same page. However, the heading will still appear at the top of each page that
the table continues onto. This feature is used when a single table must be
broken into segments because of table complexity (e.g., too many blocks of
filled text). If each segment had its own .TS H/.TH sequence, it would have
its own header. However, if each table segment after the first uses .TS H/.TH
N, the table header will appear only at the beginning of the table and the top
of each new page or column that the table continues onto.

For the nroff formatter, the —e option [—E for mm(1)] may be used for
terminals, such as the 450, that are capable of finer printing resolution. This
will cause better alignment of features such as the lines forming the corner of a
box. The —e is not effective with col(1).

Equations

.DS
.EQ [labell
equation(s)
.EN
.DE

Mathematical typesetting programs eqn(l) and meqn expect to use the .EQ
(equation start) and .EN (equation end) macros as delimiters in the same way

292—Document Preparat‘ion UNIX Programmer’s Manual

that tbl1(1) uses .TS and .TE; however, .EQ and .EN must occur inside a
.DS/.DE pair. There is an exception to this rule — if .EQ and .EN are used to
specify only the delimiters for in-line equations or to specify eqn/neqn defines,
the .DS and .DE macros must not be used; otherwise, extra blank lines will
appear in the output.

The .EQ macro takes an argument that will be used as a label for the equation.
By default, the label will appear at the right margin in the “vertical center” of
the general equation. The Egq register may be set to 1 to change labeling to the
left margin.

The equation will be centered for centered displays; otherwise, the equation will
be adjusted to the opposite margin from the label.

Figure, Table, Equation, and Exhibit Titles

.FG ltitle] [override] [flag]
.TB [title] [override] [flag]
.EC [title] [override] [flag]
.EX [title] [override] [flag]

The .FG (figure title), .TB (table title), .EC (equation caption), and .EX
(exhibit caption) macros are normally used inside .DS/.DE pairs to
automatically number and title figures, tables, and equations. These macros
use registers Fg, Th, Ec, and Ex, respectively (see —rN5 to reset counters in
sections). The .TB macro replaces “Figure” with “TABLE”, the .EC macro
replaces “Figure” with “Equation”, and the .EX macro replaces “Figure” with
“Exhibit”. The output title is centered if it can fit on a single line; otherwise,
all lines but the first are indented to line up with the first character of the title.
The format of the numbers may be changed using the .af request of the
formatter. By setting the Of register to 1, the format of the caption may be
changed from

Figure 1. Title
to

Figure 1 — Title

UNIX Programmer’s Manual Document Preparation—293

MEMORANDUM MACROS

The override argument is used to modify normal numbering. If the flag
argumnet is omitted or 0, override is used as a prefix to the number; if the flag
argument is 1, override is used as a suffix; and if the flag argument is 2,
override replaces the number. If —rN5 is given, “section-figure” numbering is
set automatically and user-specified override argument is ignored.

As a matter of formatting style, table headings are usually placed above the
text of tables, while figure, equation, and exhibit titles are usually placed below
corresponding figures and equations.

List of Figures, Tables, Equations, and Exhibits

A list of figures, tables, exhibits, and equations are printed following the table
of contents if the number registers Lf, Lt, Lx, and Le (respectively) are set to
1. The Lf, Lt, and Lx registers are 1 by default; Le is 0 by default.

Titles of these lists may be changed by redefining the following strings which
are shown here with their default values: '

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS
.ds Le LIST OF EQUATIONS

FOOTNOTES

There are two macros (.FS and .FE) that delimit text of footnotes, a string (F)
that automatically numbers footnotes, and a macro (FD) that specifies the
style of footnote text. Footnotes are processed in an environment different from
that of the body of text, refer to .ev request.

Automatic Numbering of Footnotes

Footnotes may be automatically numbered by typing the three characters
“*F” (i.e., invoking the string F) immediately after the text to be footnoted
without any intervening spaces. This will place the next sequential footnote
number (in a smaller point size) a half line above the text to be footnoted.

294—Document Preparation UNIX Programmer’s Manual

Delimiting Footnote Text

.FS [labell
one or more lines of footnote text
.FE

There are two macros that delimit the text of each footnote. The .FS (footnote
start) macro marks the beginning of footnote text, and the .FE (footnote end)
macro marks the end. The label on the .FS macro, if present, will be used to
mark footnote text. Otherwise, the number retrieved from the string F will be
used. Automatically numbered and user-labeled footnotes may be intermixed.
If a footnote is labeled (.FS label), the text to be footnoted must be followed
by label, rather than by ‘“*F”. Text between .FS and .FE is processed in fill
mode. Another .FS, a .DS, or a .DF are not permitted between .FS and .FE
macros. If footnotes are required in the title, abstract, or table only labeled
footnotes will appear properly. Everywhere else automatically numbered
footnotes work correctly. For example:

Automatically numbered footnote:

This is the line containing the word*F
.FS

This is the text of the footnote.

.FE

to be footnoted.

Labeled footnote:

This is a labeled*

.FS *

The footnote is labeled with an asterisk.
.FE

footnote.

Text of the footnote (enclosed within the .FS/.FE pair) should immediately
follow the word to be footnoted in the input text, so that “*F” or label occurs
at the end of a line of input and the next line is the .FS macro call. It is also
good practice to append an unpaddable space to “*F” or label when they
follow an end-of-sentence punctuation mark (i.e., period, question mark,
exclamation point).

UNIX Programmer’s Manual Document Preparation—295

MEMORANDUM MACROS

Format Style of Footnote Text

.FD [arg] [1]

Within footnote text, the user can control formatting style by specifying text
hyphenation, right margin justification, and text indentation, as well as left or
right justification of the label when text indenting is used. The .FD macro is
invoked to select the appropriate style.

The first argument (arg) is a number from the left column of the following
table. Formatting style for each number is indicated in the remaining four
columns. Further explanation of the first two of these columns is given in the
definitions of the .ad, .na, .hy, and .nh (adjust, no adjust, hyphenation, and no
hyphenation, respectively) requests.

TEXT LABEL
arg. HYPHENATION ADJUST INDENT JUSTIFICATION
0 .nh .ad yes left
| hy .ad yes left
2 .nh .na yes left
3 hy .na yes left
4 .nh .ad no left
5 sy .ad . no left
6 .nh .na no left
7 .hy .na no left
8 .nh .ad yes right
9 Sy .ad yes right
10 .nh .na yes right
11 hy .na yes right

If the first argument to .FD is greater than 11, the effect is as if .FD 0 were
specified. If the first argument is omitted or null, the effect is equivalent to
JFD 10 in the nroff formatter and to .FD 0 in the troff formatter; these are also
the respective initial default values.

If the second argument is specified, then when a first-level heading is
encountered, automatically numbered footnotes begin again with 1. This is
most useful with the “section-page” page numbering scheme. As an example,
the input line

296—Document Preparation UNIX Programmer’s Manual

'FD "n 1

maintains the default formatting style and causes footnotes to be numbered
afresh after each first-level heading in a document.

Hyphenation across pages is inhibited by MM except for long footnotes that
continue to the following page. If hyphenation is permitted, it is possible for
the last word on the last line on the current page footnote to be hyphenated.
The user has control over this situation by specifying an even .FD argument.

Footnotes are separated from the body of the text by a short line rule. Those
that continue to the next page are separated from the body of the text by a
full-width rule. In the troff formatter, footnotes are set in type two points
smaller than the point size used in the body of text.

Spacing Between Footnote Entries

Normally, one blank line (a 3-point vertical space) separates footnotes when
more than one occurs on a page. To change this spacing, the Fs number
register is set to the desired value. For example:

ar Fs 2

will cause two blank lines (a 6-point vertical space) to occur between footnotes.

PAGE HEADERS AND FOOTERS

Text printed at the top of each page is called page header. Text printed at the
bottom of each page is called page footer. There can be up to three lines of
text associated with the header — every page, even page only, and odd page
only. Thus the page header may have up to two lines of text — the line that
occurs at the top of every page and the line for the even- or odd-numbered
page. The same is true for the page footer.

This part describes the default appearance of page headers and page footers
and ways of changing them. The term header (not qualified by even or odd) is
used to mean the page header line that occurs on every page, and similarly for
the term footer.

UNIX Programmer’s Manual Document Preparation—297

MEMORANDUM MACROS

Default Headers and Footers

By default, each page has a centered page number as the header. There is no
default footer and no even/odd default headers or footers except as specified
previously.

In a memorandum or a released-paper style document, the page header on the
first page is automatically suppressed provided a break does not occur before
the .MT macro is called. Macros and text in the following categories do not
cause a break and are permitted before the memorandum types (MT) macro:

e Memorandum and released-paper style document macros (. TL, .AU, .AT,
.TM, .AS, .AE, .OK, .ND, .AF, .NS, and .NE)

e Page headers and footers macros (PH, .EH, .OH, .PF, .EF, and .OF)

o The .nr and .ds requests.

Header and Footer Macros

For header and footer macros (PH .EH, .OH, .PF, .EF, and .OF) the
argument [arg] is of the form:

”n

- "left-part’center-part’right-part

If it is inconvenient to use apostrophe () as the delimiter because it occurs
within one of the parts, it may be replaced uniformly by any other character.
The .fc request redefines the delimiter. In formatted output, the parts are left
justified, centered, and right justified, respectively. ‘

Page Header
PH [arg]

The .PH macro specifies the header that is to appear at the top of every page.
The initial value is the default centered page number enclosed by hyphens.
The page number contained in the P register is an Arabic number. The format
of the number may be changed by the .af macro request.

298—Document Preparation UNIX Programmer’s Manual

If “debug mode” is set using the flag —rD1 on the command line, additional
information printed at the top left of each page is included in the default
header. This consists of the Source Code Control System (SCCS) release and
level of MM (thus identifying the current version) followed by the current line
number within the current input file.

Even-Page Header
.EH [arg]

The .EH macro supplies a line to be printed at the top of each even-numbered
page immediately following the header. Initial value is a blank line.

Odd-Page Header
.OH [argl

The .OH macro is the same as the .EH except that it applies to odd-numbered
pages.

Page Footer
.PF [arg]

The .PF macro specifies the line that is to appear at the bottom of each page.
Its initial value is a blank line. If the —rCn flag is specified on the command
line, the type of copy follows the footer on a separate line. In particular, if
—rC3 or —rC4 (DRAFT) is specified, the footer is initialized to contain the
date instead of being a blank line.

Even-Page Footer
.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each even-
numbered page immediately preceding the footer. Initial value is a blank line.

UNIX Programmer’s Manual Document Preparation—299

MEMORANDUM MACROS

Odd-Page Footer

.OF [arg]

The .OF macro supplies a line to be printed at the bottom of each odd-
numbered page immediately preceding the footer. Initial value is a blank line.

First Page Footer

By default, the first page footer is a blank line. If, in the input text file, the
user specifies .PF and/or .OF before the end of the first page of the document,
these lines will appear at the bottom of the first page.

The header (whatever its contents) replaces the footer on the first page only if
the —rN1 flag is specified on the command line.

- Default Header and Footer With Section-Page Numbering

Pages can be numbered sequentially within sections by ‘“‘section-number page-
number”. To obtain this numbering style, —rN3 or —rNS5 is specified on the
command line. In this case, the default footer is a centered “section-page”
number, e.g., 7-2; and the default page header is blank.

Strings and Registers in Header and Footer Macros

String and register names may be placed in arguments to header and footer
macros. If the value of the string or register is to be computed when the
respective header or footer is printed, invocation must be escaped by four
backslashes. This is because string or register invocation will be processed
three times:

1. As the argument to the header or footer macro
2. In a formatting request within the header or footer macro

3. In a .tl request during header or footer processing.

For example, page number register P must be escaped with four backslashes in
order to specify a header in which the page number is to be printed at the right

" 300—Document Preparation UNIX Programmer’s Manual

margin, e.g.:
.PH " ,Page \\\\nP, "

creates a right-justified header containing the word “Page” followed by the
page number. Similarly, to specify a footer with the “section-page” style, the
user specifies:

PF ™'~ \W\a(HI-\\\nP —

If the user arranges for the string a/ to contain the current section heading
which is to be printed at the bottom of each page, the .PF macro call would be:

.PF [1}] a*(a]9 LA

If only one or two backslashes were used, the footer would print a constant
value for a/, namely, its value when .PF appeared in the input text.

Header and Footer Example

The following sequence specifies blank lines for header and footer lines, page
numbers on the outside margin of each page (i.e., top left margin of even pages
and top right margin of odd pages), and “Revision 3” on the top inside margin
of each page (nothing is specified for the center):

PH "™
PF "™

.EH "\\\\nP’ ’Rev1s1on 3"
.OH "Revision 3>\\\\nP""

Generalized Top-of-Page Processing

Note: This part is intended only for users accustomed to writing formatter
macros.

During header processing, MM invokes two user-definable macros:

e The .TP (top of page) macro is invoked in the environment (refer to .ev
request) of the header.

UNIX Programmer’s Manual Document Preparation—301

MEMORANDUM MACROS

e The .PX is a page header user-exit macro that is invoked (without
arguments) when the normal environment has been restored and with the “no-
space” mode already in effect.

The effective initial definition of .TP (after the first page of a document) is

.de TP

.sp 3
AL*(t

if e 't *(e
if ot *(o
.sp 2

The string }¢ contains the header, the string }e contains the even-page header,
and the string }o contains the odd-page header as defined by the .PH, .EH, and
.OH macros, respectively. To obtain more specialized page titles, the user may
redefine the .TP macro to cause the desired header processing. Formatting
done within the .TP macro is processed in an environment different from that
of the body. For example, to obtain a page header that includes three centered
lines of data, i.e., document number, issue ‘date, and revision date, the user
could define the .TP as follows:

.de TP

.Sp

ce3
777-888-999

Iss. 2, AUG 1977
Rev. 7, SEP 1977

.sp

The .PX macro may be used to provide text that is to appear at the top of each
page after the normal header and that may have tab stops to align it with
columns of text in the body of the document.

302—Document Preparation UNIX Programmer’s Manual

Generalized Bottom-of-Page Processing

.BS
zero or more lines of text
.BE

Lines of text that are specified between the .BS (bottom-block start) and .BE
(bottom-block end) macros will be printed at the bottom of each page after the
footnotes (if any) but before the page footer. This block of text is removed by
specifying an empty block, i.e.:

.BS
.BE

The bottom block will appear on the table of contents, pages, and the cover
sheet for memorandum for file, but not on the technical memorandum or
released-paper cover sheets.

Top and Bottom (Vertical) Margins
.VM [top] [bottom]

The .VM (vertical margin) macro allows the user to specify additional space at
the top and bottom of the page. This space precedes the page header and
follows the page footer. The .VM macro takes two unscaled arguments that
are treated as v’s. For example:

.VM 10 15

adds 10 blank lines to the default top of page margin and 15 blank lines to the
default bottom of page margin. Both arguments must be positive (default
spacing at the top of the page may be decreased by redefining .TP).

UNIX Programmer’s Manual Document Preparation—303

MEMORANDUM MACROS

Proprietary Marking
.PM [code]

The .PM (proprietary marking) macro appends to the page footer a
PRIVATE, NOTICE, AT&T BELL LABORATORIES PROPRIETARY, or
AT&T BELL LABORATORIES RESTRICTED disclaimer. The code
argument may be:

code DISCLAIMER
none turn off previous disclaimer, if any
P PRIVATE
N NOTICE
BP AT&T BELL LABORATORIES PROPRIETARY
BR AT&T BELL LABORATORIES RESTRICTED

These disclaimers are in a form approved for use by the AT&T System. The
user may alternate disclaimers by use of the .BS/.BE macro pair.

Private Documents
.nr Pv value

The word “PRIVATE” may be printed, centered, and underlined on the second
line of a document (preceding the page header). This is done by setting the Pv
register value:

value MEANING
0 do not print PRIVATE (default)
1 PRIVATE on first page only
1 PRIVATE on all pages

If value is 2, the user definable .TP macro may not be used because the .TP
macro is used by MM to print “PRIVATE” on all pages except the first page
of a memorandum on which .TP is not invoked.

304—Document Preparation ‘ UNIX Programmer’s Manual

TABLE OF CONTENTS AND COVER SHEET

The table of contents and the cover sheet for a document are produced by
invoking the .TC and .CS macros, respectively.

Note: This section refers to cover sheets for technical memoranda and released
papers only. The mechanism for producing a memorandum for file cover sheet
was discussed earlier.

These macros normally appear once at the end of the document, after the
Signature Block and Notations macros, and may occur in either order.

The table of contents is produced at the end of the document because the entire
document must be processed before the table of contents can be generated.
Similarly, the cover sheet may not be desired by a user and is therefore
produced at the end.

Table of Contents
.TC I[slevell [spacing] [tlevel] [tab] [head1] [head2] [head3] [head4] [head5]

The .TC macro generates a table of contents containing heading levels that
were saved for the table of contents as determined by the value of the CI
register. Arguments to .TC control spacing before each entry, placement of
associated page number, and additional text on the first page of the table of
contents before the word “CONTENTS”.

Spacing before each entry is controlled by the first and second arguments
(slevel and spacing). Headings whose level is less than or equal to slevel will
have spacing blank lines (halves of a vertical space) before them. Both slevel
and spacing default to 1. This means that first-level headings are preceded by
one blank line (one-half a vertical space). The slevel argument does not
control what levels of heading have been saved; saving of headings is the
function of the CI register.

The third and fourth arguments (tlevel and tab) control placement of

associated page number for each heading. Page numbers can be justified at the

right margin with either blanks or dots (called leaders) separating the heading
text from the page number, or the page numbers can follow the heading text.

UNIX Programmer’s Manual Document Preparation—305

MEMORANDUM MACROS

e For headings whose level is less than or equal to tlevel (default 2), page
numbers are justified at the right margin. In this case, the value of tab
determines the character used to separate heading text from page number. If
tab is 0 (default value), dots (i.e., leaders) are used. If tab is greater than 0,
spaces are used.

o For headings whose level is greater than tlevel, page numbers are separated
from heading text by two spaces (i.e., page numbers are “ragged right”, not
right justified).

Additional arguments (head! ... head5) are horizontally centered on the page
and precede the table of contents.

If the .TC macro is invoked with at most four arguments, the user-exit macro
.TX is invoked (without arguments) before the word “CONTENTS” is printed
or the user-exit macro .TY is invoked and the word “CONTENTS” is not
printed. '

By defining .TX or .TY and invoking .TC with at most four arguments, the
user can specify what needs to be done at the top of the first page of the table
of contents. For example: '

de TX

.ce 2

Special Application
Message Transmission
.Sp 2

.in +10n

Approved: \I’37’

.in

.Sp

.TC
yields the following output when the file is formatted

Special Application
Message Transmission

306—Document Preparation UNIX Programmer’s Manual

Approved:

CONTENTS

If the .TX macro were defined as .TY, the word “CONTENTS” would be
suppressed. Defining .TY as an empty macro will suppress “CONTENTS”
with no replacement:

de TY

By default, the first level headings will appear in the table of contents left
justified. Subsequent levels will be aligned with the text of headings at the
preceding level. These indentations may be changed by defining the Ci string
which takes a maximum of seven arguments corresponding to the heading
levels. It must be given at least as many arguments as are set by the CI
register. Arguments must be scaled. For example, with “C/ = 5™

.ds Ci .251 .51 .751 1i 1i \"troff
or
.ds Ci 0 2n 4n 6n 8n \"nroff

Two other registers are available to modify the format of the table of contents
— Oc and Cp.

e By default, table of contents pages will have lowercase Roman numeral page
numbering. If the Oc register is set to 1, the .TC macro will not print any
page number but will instead reset the P register to 1. It is the user’s
responsibility to give an appropriate page footer to specify the placement of the
page number. Ordinarily, the same .PF macro (page footer) used in the body
of the document will be adequate.

- The list of figures, tables, etc. pages will be produced separately unless Cp is
set to 1 which causes these lists to appear on the same page as the table of
contents.

UNIX Programmer’s Manual Document Preparation—307

MEMORANDUM MACROS

Cover Sheet
.CS [pages] [other] [totall] [figs] [tbls] [refs]

The .CS macro generates a cover sheet in either the released paper or technical
memorandum style. All other information for the cover sheet is obtained from
data given before the .MT macro call. If the technical memorandum style is
used, the .CS macro generates the “Cover Sheet for Technical Memorandum™.
The data that appear in the lower left corner of the technical memorandum
cover sheet (counts of: pages of text, other pages, total pages, figures, tables,
and references) are generated automatically (0 is used for “other pages”).
These values may be changed by supplying the corresponding arguments to the
.CS macro. If the released-paper style is used, all arguments to .CS are
ignored.

REFERENCES

There are two macros (RS and .RF) that delimit the text of references, a
string that automatically numbers the subsequent references, and an optional
macro (.RP) that produces reference pages within the document.

Automatic Numbering of References

Automatically numbered references may be obtained by typing *(Rf (invoking
the string Rf) immediately after the text to be referenced. This places the
next sequential reference number (in a smaller point size) enclosed in brackets
one-half line above the text to be referenced. Reference count is kept in the Rf
number register.

Delimiting Reference Text

.RS [string-namel
.RF

The RS and .RF macros are used to delimit text of each reference as shown
below: .

308—Document Preparation UNIX Programmer’s Manual

A line of text to be referenced.* (Rf
.RS

reference text

.RF

Subsequent References

The .RS macro takes one argument, a string-name. For example:

.RS aA
reference text
.RF

The string aA is assigned the current reference number. This string may be
used later in the document as the string call, *(aA4, to reference text which
must be labeled with a prior reference number. The reference is output
enclosed in brackets one-half line above the text to be referenced. No .RS/.RF
pair is needed for subsequent references.

Reference Page
.RP [argl] [arg2]

A reference page, entitled by default “References”, will be generated
automatically at the end of the document (before table of contents and cover
sheet) and will be listed in the table of contents. This page contains the
reference items (i.e., reference text enclosed within .RS/.RF pairs). Reference
items will be separated by a space (one-half a vertical space) unless the Ls
register is set to O to suppress this spacing. The user may change the reference
page title by defining the Rp string:

.ds Rp "New Title"

The .RP (reference page) macro may be used to produce reference pages
anywhere else within a document (i.e., after each major section). It is not
needed to produce a separate reference page with default spacings at the end of
the document.

UNIX Programmer’s Manual Document Preparation—309

MEMORANDUM MACROS

Two .RP macro arguments allow the user to control resetting of reference
numbering and page skipping.

arg MEANING
reset reference counter (default)
1 do not reset reference counter

MEANING
put on separate page (default)
do not cause a following .SK
do not cause a preceding .SK
no .SK before or after

£
U-)N'—'Oog

If no .SK macro is issued by the .RP macro, a single blank line will separate
the references from the following/preceding text. The user may wish to adjust
spacing. For example, to produce references at the end of each major section:

sp 3
RP12
.H 1 "NEXT SECTION"

MISCELLANEOUS FEATURES

Bold, Italic, and Roman Fonts

.B [bold-arg] [previous-font-arg] ...
I [italic-arg] [previous-font-arg] ...
.R

When called without arguments, the .B macro changes the font to bold and the
J macro changes to underlining (italic). This condition continues until the
occurrence of the .R macro which causes the Roman font to be restored. Thus:

I
here is some text.
R

310—Document Preparation UNIX Programmer’s Manual

yields underlined text via the nroff and italic text via the troff(1) formatter.

If the .B or .I macro is called with one argument, that argument is printed in
the appropriate font (underlined in the nroff formatter for .I). Then the
previous font is restored (underlining is turned off in the nroff formatter). If
two or more arguments (maximum six) are given with a .B or .I macro call,
the second argument is concatenated to the first with no intervening space
(1/12 space if the first font is italic) but is printed in the previous font.
Remaining pairs of arguments are similarly alternated. For example:

Jitalic " text " right -justified
produces
italic text right-justified

The .B and .I macros alternate with the prevailing font at the time the macros
are invoked. To alternate specific pairs of fonts, the following macros are
available:

B .BI .IR .RI .RB .BR

Each macro takes a maximum of six arguments and alternates arguments
between specified fonts.

When using a terminal that cannot underline, the following can be inserted at
the beginning of the document to eliminate all underlining:

.rm ul
.rm cu

Note: Font changes in headings are handled separately.

UNIX Programmer’s Manual Document Preparation—311

MEMORANDUM MACROS

Justification of Right Margin

SA [arg]

The .SA macro is used to set right-margin justification for the main body of
text. Two justification flags are used — current and default. Initially, both
flags are set for no justification in the mroff formatter and for justification in
the troff formatter. The argument causes the following action:

arg MEANING
0 Sets both flags to no justification.
It acts like the .na request.
1 Sets both flags to cause both

right and left justification,
the same as the .ad request.
omitted Causes the current flag to be copied
from the default flag,
thus performing either a .na or .ad
~ depending on the default condition.

In general, the no adjust request (.na) can be used to ensure that justification is
turned off, but .SA should be used to restore justification, rather than the .ad
request. In this way, justification or no justification for the remainder of the
text is specified by inserting “.SA 0 or “.SA 1” once at the beginning of the
document. ’

SCCS Release Identification »
The RE string contains the SCCS release and the MM text formatting macro
package current version level. For example:
This is version *(RE of the macros.
produces

This is version 10.129 of the macros.

This information is useful in analyzing suspected bugs in MM. The easiest
way to have the release identification number appear in the output is to specify

312—Document Preparation UNIX Programmer’s Manual

—rD1 on the command line. This causes the RE string to be output as part of
the page header.

Two-Column Qutput

2C
text and formatting requests (except another .2C)
AC

The MM text formatting macro package can format two-columns on a page.
The .2C macro begins 2-column processing which continues until a .1C macro
(1-column processing) is encountered. In 2-column processing, each physical
page is thought of as containing 2-columnar “pages” of equal (but smaller)
“page” width, Page headers and footers are not affected by 2-column
processing. The .2C macro does not balance 2-column output.

It is possible to have full-page width footnotes and displays when in 2-column
mode, although default action is for footnotes and displays to be narrow in 2-
column mode and wide in 1-column mode. Footnote and display width is
controlled by the .WC (width control) macro, which takes the following
arguments:

arg MEANING

N Default mode (~WF, —FF, —WD, FB).

WF Wide footnotes (even in 2-column mode).

—WF DEFAULT: Turn off WF. Footnotes follow column mode; wide
in 1-column mode (1C), narrow in 2-column mode (2C), unless

FF is set.

FF First footnote. All footnotes have same width as first footnote
encountered for that page.

—FF DEFAULT: Turn off FF. Footnote style follows settings of WF
or —WF.

WD Wide displays (even in 2-column mode).

UNIX Programmer’s Manual Document Preparation—313

MEMORANDUM MACROS

—WD DEFAULT: Displays follow the column mode in effect when
display is encountered.

FB DEFAULT: Floating displays cause a break when output on the
current page.

—FB Floating displays on current page do not cause a break. -

Note: The .WC WD FF command will cause all displays to be wide and all
footnotes on a page to be the same width while .WC N will reinstate default
actions. If conflicting settings are given to .WC, the last one is used. A
WC WF —WF command has the effect of a .WC —WF.

Column Headings for Two-Column Output

Note: This section is intended only for users accustomed to writing formatter
macros.

In 2-column processing output, it is sometimes necessary to have headers over
each column, as well as headers over the entire page. This is accomplished by
redefining the .TP macro to provide header lines both for the entire page and
for each of the columns. For example:

.de TP

sp 2

.tl "Page \\nP’"OVERALL”
Al "TITLE”

Sp

.f

.ta 16C 31R 34 50C 65R
leftcenterrightleftcenterright
first columnsecond column
il

sp 2

where stands for the tab character.

The above example will produce two lines of page header text plus two lines of
headers over each column. Tab stops are for a-65-en overall line length.

314~Document Preparation UNIX Programmer’s Manual

Vertical Spacing
.SP [lines]

There exists several ways of obtaining vertical spacing, all with different effects.
The .sp request spaces the number of lines specified unless the no space (.ns)
mode is on, then the .sp request is ignored. The no space mode is set at the
end of a page header to eliminate spacing by a .sp or .bp request that happens
to occur at the top of a page. This mode can be turned off by the .rs (restore
spacing) request.

The .SP macro is used to avoid the accumulation of vertical space by successive
macro calls. Several .SP calls in a row will not produce the sum of the
arguments but only the maximum argument. For example, the following
produces only three blank lines:

.SP 2
SP 3
.SP

Many MM macros utilize .SP for spacing. For example, “.LE 1” immediately
followed by “.P” produces only a single blank line (one-half a vertical space)
between the end of the list and the following paragraph. An omitted argument
defaults to one blank line (one vertical space). Negative arguments are not
permitted. The argument must be unscaled but fractional amounts are
permitted. The .SP macro (as well as .sp) is also inhibited by the .ns request.

Skipping Pages
SK [pages]

The .SK macro skips pages but retains the usual header and footer processing.
If the pages argument is omitted, null, or 0, .SK skips to the top of the next
page unless it is currently at the top of a page (then it does nothing). A “.SK
n” command skips n pages. A “.SK” positions text that follows it at the top of
a page, while “.SK 1" leaves one page blank except for the header and footer.

UNIX Programmer’s Manual Document Preparation—315

MEMORANDUM MACROS

Forcing an Odd Page
.OP

The .OP macro is used to ensure that formatted output text following the
macro begins at the top of an odd-numbered page.

e If currently at the top of an odd-numbered page, text output begins on that
page (no motion takes place).

o If currently on an even page, text resumes printing at the top of the next
page.

o If currently on an odd page (but not at the top of the page), one blank page

is produced, and printing resumes on the next odd-numbered page after that.

Setting Point Size and Vertical Spacing
.S [point size] [vertical spacing]

The prevailing point size and vertical spacing may be changed by invoking the
.S macro. In the troff formatter, the default point size (obtained from the MM
register S) is 10 points, and the vertical spacing is 12 points (six lines per
inch). The mnemonics D (default value), C (current value), and P (previous
value) may be used for both arguments.

e If an argument is negative, current value is decremented by the specified
amount.

o If an argument is positive, current value is incremented by the specified
amount.

e If an argument is unsigned, it is used as the new value.
o If there are no arguments, the .S macro defaults to P.

e If the first argument is specified but the second is not, then (default) D is
used for the vertical spacing.

Default value for vertical spacing is always two points greater than the current

316—Document Preparation UNIX Programmer’s Manual

point size. Footnotes are two points smaller than the body with an additional
3-point space between footnotes. A null (") value for either argument defaults
to C (current value). Thus, if n is a numeric value:

S
S"™n
Sn"™
Sn
S
S
Snn

SPP
SCn
SnC
SnD
SCD
SCcC
Snn

If the first argument is greater than 99, the default point size (10 points) is
restored. If the second argument is greater than 99, the default vertical
spacing (current point size plus two points) is used. For example:

.S 100
S 14111

.S1012
S 14 16

Reducing Point Size of a String

.SM string] [string2] [string3]

The .SM macro allows the user to reduce by one point the size of a string. If
the third argument (string3) is omitted, the first argument (stringl) is made
smaller and is concatenated with the second argument (string2) if specified. If
all three arguments are present (even if any are null), the second argument is
made smaller and all three arguments are concatenated. For example:

INPUT
SM X
SM XY
SMYXY
SM YXYX
SM YXYX)
SM (YXYX)
SMY XYX "'

UNIX Programmer’s Manual

OUTPUT
X

XY
YXY
YXYX
YXYX)
(YXYX)
YXYX

Document Preparation—317

MEMORANDUM MACROS

Producing Accents

Strings may be used to produce accents for letters as shown in the following
examples:-

INPUT OUTPUT

Grave accent c\+§ c’
Acute accent e\x” e’
Circumflex o\+" o
Tilde n* n

Cedilla c\x, c,
Lower-case umlaut u*: u”
Upper-case umlaut U\x; U’

Inserting Text Interactively
.RD [prompt] [diversion] [string]

The .RD (read insertion) macro allows a user to stop the standard output of a
document and to read text from the standard input until two consecutive
newline characters are found. When newline characters are encountered,
normal output is resumed.

e The prompt argument will be printed at the terminal. If not given, RD
signals the user with a BEL on terminal output.

e The diversion argument allows the user to save all text typed in after the
prompt in a macro whose name is that of the diversion.

o The string argument allows the user to save for later reference the first line
following the prompt in the named string.

The .RD macro follows the formatting conventions in effect. Thus, the
following examples assume that the .RD is invoked in no fill mode (.nf):

.RD Name aA bB

318—Document Preparation ’ UNIX Programmer’s Manual

produces

Name: S. Earhart (user types name)
16 Elm Rd.,
Piscataway

The diverted macro .aA will contain

S. Earhart
16 Elm Rd.,
Piscataway

The string 5B (*(bB) contains “S. Earhart”.

A newline character followed by an EOF (user specifiable CONTROL d). also
allows the user to resume normal output.

ERRORS AND DEBUGGING

Error Terminations

When a macro detects an error, the following actions occur:

e A break occurs.

e The formatter output buffer (which may contain some text) is printed to
avoid confusion regarding location of the error.

® A short message is printed giving the name of the macro that detected the
error, type of error, and approximate line number in the current input file of
the last processed input line. Error messages are explained in Table 4.D.

e Processing terminates unless register D has a positive value. In the latter
case, processing continues even though the output is guaranteed to be deranged
from that point on.

The error message is printed by outputting the message directly to the user
terminal. If an output filter, such as 300(1), 450(1), or hp(1) is being used to

UNIX Programmer’s Manual Document Preparation—319

MEMORANDUM MACROS :

post-process the nroff formatter output, the message may be garbled by being
intermixed with text held in that filter’s output buffer.

Note: If any of cw(1), eqn(1)/negn, and tbl(1) programs are being used and if
the -olist option of the formatter causes the last page of the document not to be
printed, a harmless “broken pipe” message may result.

Disappearance of Output

Disappearance of output usually occurs because of an unclosed diversion (e.g.,
a missing .DE or .FE macro). Fortunately, macros that use diversions are
careful about it, and these macros check to make sure that illegal nestings do
not occur. If any error message is issued concerning a missing .DE or .FE, the
appropriate action is to search backwards from the termination point looking
for the corresponding associated .DF, .DS, or .FS (since these macros are used
in pairs).

The following command:
grep —n "\.[EDFRTI[EFNQS] files ...

prints all the .DF, .DS, .DE, .EQ, .EN, .FS, .FE, .RS, .RF, .TS, and .TE
macros found in files ..., each preceded by its file name and the line number in
that file. This listing can be used to check for illegal nesting and/or omission
of these macros.

EXTENDING AND MODIFYING MM MACROS

Naming Conventions

In this part, the following conventions are used to describe names:

Digit

Lowercase letter

Uppercase letter

Any alphanumeric character (n, a, or A, i.e., letter or digit)
Any nonalphanumeric character (special character)

“an s

320—Document Preparation UNIX Programmer’s Manual

All other characters are literals (characters that stand for themselves).

Request, macro, and string names are kept by the formatters in a single
internal table; therefore, there must be no duplication among such names.
Number register names are kept in a separate table.

Names Used by Formatters

requests:

registers:

Names Used by MM

macros and strings:

registers:

UNIX Programmer’s Manual

aa (most common)
an (only one, currently: c2)

aa (normal)
x (normal)
s (only one, currently: .$)

a. (only one, currently: c.)
% (page number)

A, AA, Aa (accessible to users; e.g., macros P
and HU, strings F, BU, and Lt)

nA (accessible to users; only two, currently:
1C and 20)

aA (accessible to users; only one, currently:
nP)

s (accessible to users; only the seven accents,
currently)

)x, }x, Ix, >x, 7x (internal)
An, Aa (accessible to users; e.g., H1, Fg)

A (accessible to users; meant to be set on the
command line; e.g., C)

X, X, #x, 7%, 'x (internal)

Document Preparation—321

MEMORANDUM MACROS

Names Used by cw, egn/neqn, and tbl

The c¢w(1) program is the constant-width font preprocessor for the troff
formatter. It uses the following five macro names:

.CD .CN .CP.CW .PC

This preprocessor also uses the number register names cE and cW.
Mathematical equation preprocessors, eqn(1) and neqn, use registers and string
names of the form nn. The table preprocessor, tbl(1), uses T&, T#, and TW,
and names of the form:

a— a+ al nn na "a #a #s

Names Defined by User

Names that consist either of a single lowercase letter or a lowercase letter
followed by a character other than a lowercase letter (names .c2 and .nP are
already used) should be used to avoid duplication with already used names.
The following is a possible naming convention:

Mmacros: aA (e.g., bG, kW)
strings: _ as (e.g., ©), fl, p})
registers: a (e.g., f, t)

Sample Extensions

Appendix Headings

The following is a way of generating and numbering appendix headings:

322—Document Preparation . UNIX Programmer’s Manual

.nr Hu 1

nrao0

.de aH

nr a +1

nr PO

PH ">’ Appendix \\na—\\\\\\\\nP""
SK

HU "\$1"

After the above initialization and definition, each call of the form
.aH "title"

begins a new page (with the page header changed to “Appendix a—n’") and
generates an unnumbered heading of title, which, if desired, can be saved for
the table of contents. To center apppendix titles the He register must be set to
1.

Hanging Indent With Tabs.

The following example illustrates the use of the hanging indent feature of
variable-item lists. A user-defined macro is defined to accept four arguments
that make up the mark. In the output, each argument is to be separated from
the previous one by a tab; tab settings are defined later. Since the first
argument may begin with a period or apostrophe, the “\&” is used so that the
formatter will not interpret such a line as a formatter request or macro call.

Note: The 2-character sequence ‘“\&” is understood by formatters to be a
“zero-width” space. It causes no output characters to appear, but it removes
the special meaning of a leading period or apostrophe.

The “\t” is translated by the formatter into a tab. The “\c¢” is used to

concatenate the input text that follows the macro call to the line built by the
macro. The user-defined macro and an example of its use are:

UNIX Programmer’s Manual ‘ Document Preparation—323

MEMORANDUM MACROS

.de aX
LI

\&ANSINNS2\\\S3\t\\$4\t\c

.ta 8 14 20 24
.VL 24

.aX .nh off \— no
No hyphenation.

Automatic hyphenation is turned off.

Words containing hyphens

(e.g., mother-in-law) may still be split across lines.

.aX .hy on \— no
Hyphenate.

Automatic hyphenation is turned on.

.aX .hc\<sp>c none none no

Hyphenation indicator character is set to “c” or removed.
During text processing, the indicator is suppressed

and will not appear in the output.

Prepending the indicator to a word has the effect
of preventing hyphenation of that word.

.LE

where <sp> stands for a space.

The resulting output is:

.nh off - no
.hy on - no
.hcc none none no

324—Document Preparation

No hyphenation. Automatic hyphenation is
turned off. Words containing hyphens (e.g.,
mother-in-law) may still be split across lines.

Hyphenate. Automatic hyphenation is turned
on.

Hyphenation indicator character is set to “c”
or removed. During text processing, the
indicator is suppressed and will not appear in
the output. Prepending the indicator to a
word has the effect of preventing hyphenation
of that word.

UNIX Programmer’s Manual

SUMMARY

The following are qualities of MM that have been emphasized in its design in
approximate order of importance:

® Robustness in the face of error — A user need not be an nroff/troff expert to
use MM macros. When the input is incorrect, either the macros attempt to
make a reasonable interpretation of the error or an error message describing
the error is produced. An effort has been made to minimize the possibility that
a user would get cryptic system messages or strange output as a result of
simple errors. ‘

e Fase of use for simple documents — It is not necessary to write complex
sequences of commands to produce documents. Reasonable macro argument
default values are provided where possible.

® Parameterization — There are many different preferences in the area of
document styling. Many parameters are provided so that users can adapt input
text files to produce output documents to their respective needs over a wide
range of styles.

e Extension by moderately expert users — A strong effort has been made to
use mnemonic naming conventions and consistent techniques in construction of
macros. Naming conventions are given so that a user can add new macros or
redefine existing ones if necessary.

® Device independence — A common use of MM is to produce documents on
hard copy via teletypewriter terminals using the nroff formatter. Macros can
be used conveniently with both 10- and 12-pitch terminals. In addition, output
can be displayed on an appropriate CRT terminal. Macros have been
constructed to allow compatibility with the troff(1) formatter so that output
can be produced on both a phototypesetter and a teletypewriter/CRT terminal.

e Minimization of input — The design of macros attempts to minimize
repetitive typing. For example, if a user wants to have a blank line after all
first- or second-level headings, the user need only set a specific parameter once
at the beginning of a document rather than type a blank line after each such
heading.

e Decoupling of input format from output style — There is but one way to
prepare the input text although the user may obtain a number of output styles
by setting a few global flags. For example, the .H macro is used for all
. numbered headings, yet the actual output style of these headings may be made
to vary from document to document or within a single document.

UNIX Programmer’s Manual Document Preparation—325

MEMORANDUM MACROS

Table AA

MM MACRO NAMES SUMMARY

MACRO] DESCRIPTION
1C 1-column processing
A1C
2C 2-column processing
2C
AE Abstract end
.AE

AF Alternate format of “Subject/Date/From” block
.AF [company-name]

AL Automatically incremented list start
.AL [type] [text-indent] [1]

AS Abstract start
.AS [arg] [indent]

AT Author’s title
AT [title] ...

AU Author information
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]

AV Approval signature
.AV [name]

B Bold ,
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev]

BE Bottom block end
.BE

BI Bold/Italic
.BI [bold-arg] [italic-arg] [bold] [italic] [bold] [italic]

BL Bullet list start
.BL [text-indent] [1]

326—Document Preparation UNIX Programmer’s Manual

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION
BR Bold/Roman
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman]
BS Bottom block start
.BS
CS Cover sheet ,
.CS [pages] [other] [total] [figs] [tbls] [refs]
DE Display end
.DE
DF Display floating start
.DF [format] [fill] [right-indent]
DL Dash list start
.DL [text-indent] [1]
DS Display static start
.DS [format] [fill] [right-indent]
EC Equation caption
.EC l[title] [override] [flag]
EF Even-page footer
.EF [arg]
EH Even-page header
.EH [arg]
EN End equation display
.EN
EQ Equation display start
.EQ [labell
EX Exhibit caption
.EX [title] [override] [flag]

UNIX Programmer’s Manual

Document Preparation—327

MEMORANDUM MACROS-

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION

FC Formal closing
.FC [closing]

FD Footnote default format
.FD [arg] [1]

FE Footnote end
.FE

FG Figure title
.FG [title] [override] [flag]

FS Footnote start
.FS [labell

H Heading~numbered
.H level [heading-text] [heading-suffix]

HC Hyphenation character
.HC [hyphenation-indicator]

HM Heading mark style (Arabic or Roman numerals, or letters)
.HM [arg1] ... [arg7]

HU Heading—unnumbered
.HU heading-text

HX* | Heading user exit X (before printing heading)
.HX dlevel rlevel heading-text

HY* Heading user exit Y (before printing heading)
.HY dlevel rlevel heading-text

* Macros marked with an asterisk are not, in general, called (invoked) directly by the user. They
are “user exits” defined by the user and called by the MM macros from inside header, footer, or

other macros.

328—Document Preparation UNIX Programmer’s Manual

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION
HZ* Heading user exit Z (after printing heading)
.HZ dlevel rlevel heading-text
I Italic (underline in the nroff formatter)
I [italic-arg] [previous-font-arg] [italic] [prev] [italic] [prev]
IB Italic/Bold ,
B [italic-arg] [bold-arg] [italic] [bold] [italic] [bold]
IR Italic/Roman
IR [italic-arg] [Roman-arg] [italic] [Roman] [italic] [Roman]
LB List begin
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-spacel
LC List-status clear
.LC llist-levell
LE List end
.LE [1]
LI List item
.LI [mark] [1]
ML Marked list start
ML mark [text-indent] [1]
MT Memorandum type
MT [typel [addressee] or .MT [4] [1]
ND New date
.ND new-date
NE Notation end
NE
NS Notation start
NS [arg]

* Macros marked with an asterisk are not, in general, called (invoked) directly by the user. They
are “user exits” defined by the user and called by the MM macros from inside header, footer, or

other macros.

UNIX Programmer’s Manual

Document Preparation—329

MEMORANDUM MACROS

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION

nP Double-line indented paragraphs

.nP
OF Odd-page footer
.OF [arg]
OH Odd-page header
.OH [arg]
OK Other keywords for the Technical Memorandum cover sheet

.OK [keyword] ...
OP QOdd page

.OP
P Paragraph
P [typel
PF Page footer
.PF [arg]
PH Page header
.PH [arg]
PM Proprietary Marking
.PM [codel
PX* Page-header user exit
PX
R Return to regular (Roman) font
R

RB Roman/Bold
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold]

* Macros marked with an asterisk are not, in general, called (invoked) directly by the user. They
are “user exits” defined by the user and called by the MM macros from inside header, footer, or

other macros.

330—Document Preparation UNIX Programmer’s Manual

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION

RD Read insertion from terminal
.RD [prompt] [diversion] [string]

RF Reference end
.RF

RI Roman/Italic
.RI [Roman-arg] [italic-arg] [Roman] [italic] [Roman] [italicl

RL Reference list start
.RL [text-indent] [1]

RP Produce Reference Page
.RP [arg] [arg]

RS Reference start
RS [string-namel

S Set troff formatter point size and vertical spacing
.S [size] [spacingl

SA Set adjustment (right-margin justification) default
SA [arg]

SG Signature line
.SG [arg] [1]

SK Skip pages
SK [pages]

SM Make a string smaller
.SM string1 [string2] [string3]

SP Space vertically
.SP [lines]

* Macros marked with an asterisk are not, in general, called (invoked) directly by the user. They
are “user exits” defined by the user and called by the MM macros from inside header, footer, or

other macros.

UNIX Programmer’s Manual : Document Preparation—331

MEMORANDUM MACROS

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION
TB Table title
.TB [title] [override] [flag]
TC Table of contents
.TC [slevell [spacing] [tlevell [tab] [head1] [head2] [head3]
[head4] [heads]
TE Table end
.TE
TH Table header
.TH [N]
TL Title of memorandum
TL [charging-case] [filing-casel
™ Technical Memorandum number(s)
.TM [number] ...
TP* Top-of-page macro
TP
TS Table start
TS [H]
TX* | Table of contents user exit
.TX
TY* Table of contents user exit (suppresses “CONTENTS”)
.TY ‘
VL Variable-item list start
.VL text-indent [mark-indent] [1]
VM Vertical margins
.VM [top] [bottom]
WC Footnote and Display Width Control
.WC I[format]

* Macros marked with an asterisk are not, in general, called (invoked) directly by the user. They
are “‘user exits” defined by the user and called by the MM macros from inside header, footer, or

other macros.

332—Document Preparation

UNIX Programmer’s Manual

Table BB

STRING NAMES SUMMARY

ISTRIN DESCRIPTION
BU | Bullet
NROFF: o
TROFF: e
Ci | Table of contents indent list
Up to seven scaled arguments for heading levels
DT | Date
Current date, unless overridden
Month, day, year (e.g., May 31, 1979)
EM | Em dash string
Produces an em dash in the troff formatter and a double hyphen in nroff
F | Footnote number generator
NROFF: \u\\n+(:p\d
TROFF: \v’'—.4m"\s—3\\n+(:p\sO\v’.4m’
HF | Heading font list
Up to seven codes for heading levels 1 through 7
3322222 (levels 1 and 2 bold, 3 through 7 underlined by nroff
and italicized by troff)
HP | Heading point size list
Up to seven codes for heading levels 1 through 7
Le | Title for LIST OF EQUATIONS
Lf | Title for LIST OF FIGURES
Lt | Title for LIST OF TABLES
Lx | Title for LIST OF EXHIBITS
RE [SCCS Release and Level of MM
Release.Level (e.g., 15.129)

Note: If the released-paper style is used, then (in addition to the above strings) certain location
codes are defined as strings. These location strings are needed only until the .MT macro is called.
Currently, the following codes are recognized:

AK, AL, ALF, CB, CH, CP, DR, FJ, HL, HO, HOH, HP, IH, IN, INH, IW, MH,
MV, PY, RD, RR, WB, WH, and WV.

UNIX Programmer’s Manual Document Preparation—333

. MEMORANDUM MACROS

STRING NAMES SUMMARY

STRING DESCRIPTION

Rf |Reference numberer
Rp | Title for references

Tm | Trademark string
Places the letters "TM" one-half line above the text that it follows

Seven accent strings are also available

Note: If the released-paper style is used, then (in addition to the above strings) certain location
codes are defined as strings. These location strings are needed only until the .MT macro is called.
Currently, the following codes are recognized:

AK, AL, ALF, CB, CH, CP, DR, FJ, HL, HO, HOH, HP, IH, IN, INH, IW, MH,
MV, PY, RD, RR, WB, WH, and WV,

334~-Document Preparation UNIX Programmer’s Manual

Table CC

NUMBER REGISTER NAMES SUMMARY

REGISTER DESCRIPTION
A *1 | Handles preprinted forms and AT&T logo
0, [0:2]
Au Inhibits printing of author information
1, [0:1]

C *1 | Copy type (original, DRAFT, etc.)
0 (Original), [0:4]

Cl . Level of headings saved for table of contents
2, [0:7]
Cp Placement of list of figures, etc.

1 (on separate pages), [0:1]

D *1 | Debug flag
0, [0:1]

De Display eject register for floating dislays

0, [0:1]

Df Display format register for floating displays
5, [0:5]

Ds Static display pre- and post-space
1, [0:1]

E *1 | Controls font of the Subject/Date/From fields
1 (nroff) O (troff), [0:1]

* An asterisk attached to a register name indicates that this register can be set only from the
command line or before the MM macro definitions are read by the formatter.

1 Any register having a single-character name can be set from the command line.

UNIX Programmer’s Manual Document Preparation—335

MEMORANDUM MACROS

NUMBER REGISTER NAMES SUMMARY

REGISTER

DESCRIPTION
Ec Equation counter, used by .EC macro
0, [0:?], incremented by one for each .EC call.
Ej Page-ejection flag for headings
0 (no eject), [0:7]
Eq Equation label placement
0 (right-adjusted), [0:1]
Ex Exhibit counter, used by .EX macro
0, [0:?], incremented by one for each .EX call.
Fg Figure counter, used by .FG macro
0, [0:?], incremented by one for each .FG call.
Fs Footnote space (i.e., spacing between footnotes)
1, [0:7]
H1-H7 | Heading counters for levels 1 through 7
0, [0:?], incremented by the .H macro of corresponding level or the .HU
magcro if at level given by the Hu register. The H2 through H7 registers
are reset to 0 by any .H (HU) macro at a lower-numbered level.
Hb Heading break level (after .H and .HU)
2, [0:7]
Hc Heading centering level for .H and .HU
0 (no centered headings), [0:7]
Hi | Heading temporary indent (after .H and .HU)
1 (indent as paragraph), [0:2]
Hs Heading space level (after .H and .HU)
2 (SPACE ONLY AFTER .H 1 AND .H 2), [0:7]

* An asterisk attached to a register name indicates that this register can be set only from the
command line or before the MM macro definitions are read by the formatter.

+ Any register having a single-character name can be set from the command line.

336—Document Preparation

UNIX Programmer’s Manual

NUMBER REGISTER NAMES SUMMARY

REGISTER DESCRIPTION

Ht Heading type (for .H: single or concatenated numbers)
0 (concatenated numbers: 1.1.1, etc.), [0:1]

Hu Heading level for unnumbered heading ((HU)
2 (HU AT THE SAME LEVEL AS.H 2), [0:7]

Hy Hyphenation control for body of document
0 (automatic hyphenation off), [0:1]

L *1 | Length of page

66, [20:7]1 (11i, [2i:?] in troff formatter)

Le List of equations
0 (list not produced) [0:1]

Lf List of figures
1 (list produced) [0:1]

Li List indent
6 (aroff) 5 (troff), [0:?]

Ls List spacing between items by level
6 (spacing between all levels) [0:6]

Lt List of tables
1 (list produced) [0:1]

Lx List of exhibits

» 1 (list produced) [0:1]
N *1 | Numbering style
0, [0:5]

* An asterisk attached to a register name indicates that this register can be set only from the
command line or before the MM macro definitions are read by the formatter.

t Any register having a single-character name can be set from the command line.

UNIX Programmer’s Manual Document Preparation—337

MEMORANDUM MACROS

NUMBER REGISTER NAMES SUMMARY

REGISTER,| DESCRIPTION

Np Numbering style for paragraphs
0 (unnumbered) [0:1]

O *t | Offset of page

7514, [0:71 (0.5i, [0i:?] in troff formatter)

For nroff formatter, these values are unscaled numbers representing
lines or character positions. For troff formatter, these values must
be scaled.

Oc Table of contents page numbering style
0 (lowercase Roman), [0:1]

of Figure caption style
| 0 (period separator), [0:1]

Pt Page number managed by MM
0, [0:?]

Pi Paragraph indent
5 (nroff) 3 (troff), [0:?]

Ps Paragraph spacing
1 (one blank space between paragraphs), [0:?]

Pt Paragraph type
0 (paragraphs always left justified), [0:2]

Pv “PRIVATE” header
0 (not printed), [0:2]

Rf Reference counter, used by .RS macro
0, [0:?], incremented by one for each .RS call.

S *t The troff formatter default point size
10, [6:361 '

* An asterisk attached to a register name indicates that this register can be set only from the
command line or before the MM macro definitions are read by the formatter.

T Any register having a single-character name can be set from the command line.

338—Document Preparation UNIX Programmer’s Manual

NUMBER REGISTER NAMES SUMMARY

IREGISTER DESCRIPTION

Si Standard indent for displays
5 (nroff) 3 (troff), [0:7]

T *1 | Type of nroff output device
0, [0:2]

Tb Table counter, used by .TB macro
0, [0:?], incremented by one for each .TB call.

U *% | Underlining style (nroff) for .H and .HU
0 (continuous underline when possible), [0:1]

W *1 | Width of page (line and title length)
6i, [10:1365] (6i, [2i:7.54i] in the troff formatter)

* An asterisk attached to a register name indicates that this register can be set only from the
command line or before the MM macro definitions are read by the formatter.

t Any register having a single-character name can be set from the command line.

UNIX Programmer’s Manual Document Preparation—339

VIEWGRAPHS AND SLIDES MACROS

INTRODUCTION

This section describes a package of UNIX operating system troff(1)! formatter
macros called MV designed for typesetting viewgraphs and slides. It is
assumed that the reader has a basic knowledge of the UNIX operating system,
the text editor ed(1), and the troff formatter.

With the MV macros, viewgraphs can be prepared in a variety of dimensions,
as well as 35mm slides and 2x2 “super-slides. These transparencies can be
made in a variety of styles, in different fonts, with oversize titles, and with
highlighted subordination levels. Because text from which the foils are typeset
is stored on the UNIX operating system, the contents of a foil can be readily
changed to include new data or can be incorporated into a new presentation.
Text of the foils can be passed through spell(1), or preprocessed by egn(1),
tb1(1), cw(1), etc.

It is not possible to include artwork, graphics, or multicolored text in foils made
with this macro package except by manual cut-and-paste methods.

MACROS

The following is an explanation of the MV macros which are summarized in
mv(1) of the UNIX Programmer’s Manual —Volume 1: Commands and
Utilities.

Foil-Start Macros

Each foil must start with a foil-start macro. There are nine foil-start macros
for generating nine different-sized foils; the names (and the corresponding
mounting-frame sizes) of these macros are shown in Table DD.

1. The notation name(%N) indicates entry mame in Section N of the UNIX Programmer’s Manual.

UNIX Programmer’s Manual Document Preparation—341

VIEWGRAPHS AND SLIDES MACROS

The naming convention for these nine macros is that the first character of the
name (V or S) distinguishes between viewgraphs and slides, while the second
character indicates whether the foil is square (S), small wide (w), small high
(h), big wide (W), or big high (H). Slides are thinner than the corresponding
viewgraphs; therefore, the ratio of the longer dimension to the shorter one is
larger for slides than for viewgraphs. As a result, slide foils can be used for
viewgraphs, but not vice versa. On the other hand, viewgraphs can
accommodate a bit more text.

Note: The .VW and .SW macros produce foils that are 7x5.4 inches because
commonly available typesetter paper is less than 9 inches wide. These foils
must be enlarged by a factor of 9/7 before they can be used as 9-inch wide by
7-inch high viewgraphs.

Each foil-start macro causes the previous foil (if any) to be terminated, foil
separators to be produced, and certain heading information to be generated.
The default heading information consists of three lines of right-justified data:

e The current date in the form mo/dy/yr
e Company

e FOIL n

where n is the sequence number in the current “run”. As explained below, this
heading information is replaced by the three arguments of the foil-start macro
if those arguments are given.

The actual projection area is marked by “cross hairs” (plus signs) that fit into
the corners of the viewgraph mount. This is an aid in positioning the foil for
mounting. '

All foils other than the square (.\VS) foil also have a set of horizontal and
vertical “crop marks”. These indicate how much of the foil will be seen if it is
made into a slide, rather than into a viewgraph.

Default heading information can be changed by specifying three optional
arguments to the foil-start macro. Square brackets ([1) indicate that the
argument they enclose is optional. ’

342—Document Preparation UNIX Programmer’s Manual

XX[nllid][date]
where:

e XX stands for one of the nine foil-start macros
e n is the foil identifier (typically a number)

e id is other identifying information (typically the initials of the person
creating the foil)

e date is usually the date.

The resulting heading information consists of three lines of right-justified text:
e id
e date

e FOIL n.

If date and id are omitted on a foil-start macro, then the corresponding values
(if any) from the previous foil-start macro are used.

Level Macros

The MV macros provide four levels of indentation, called .A, .B, .C, and .D.
Each of these level macros causes the text that follows it to be placed at the
corresponding level of indentation.

The amount of vertical spacing done by each level macro can be changed with
the .DV macro. ’

The .A Level
Alx]

The leftmost level (left margin) is obtained by the .A macro. The .A level is
automatically invoked by each of the foil-start macros. Each .A macro spaces
a half-line from the preceding text, unless the x argument is specified (x can be
any character or string of characters); x suppresses the spacing.

UNIX Programmer’s Manual Document Preparation—343

VIEWGRAPHS AND SLIDES MACROS

The .A macro does not generate a mark of any sort; it is the “left-margin”
macro. Repeated .A calls are ignored, but each successive call of any of the
other three level macros generates the corresponding mark.

The .A macro can also be invoked through the .I macro.

The .B Level
.B [mark [size]]

The .B level items are marked by a bullet (in slightly reduced point size). The
text that follows the .B macro is spaced one half-line from the preceding text.

The .B level mark may be changed by specifying the desired character string?
as the first argument. Without the second argument (size), the point size of
the mark is not reduced. Thus, the following will produce a numbered list:

.VS

This is a list of things:

.B 1.

This is thing number 1.

.B2.

This is thing number 2.

.B 3.

This is the third and last thing on this foil.

It is possible to change the point size of the mark with the second argument
(size). If given, it specifies the desired point-size change. An unsigned or
positive (+) argument is taken as an increment; a negative (—) argument is a
decrement. An argument greater than 99 causes the mark to be reduced in
size just as if it were the default mark, namely, the bullet. After the mark is
printed, the previous point size is restored. All these point-size changes are
completely invisible to the user.

2. All character-string arguments that contain spaces must be quoted ("...").

344—Document Preparation ~ UNIX Programmer’s Manual

The .C Level
.C [mark [size 1]

The .C level is like the .B level except that it is indented farther to the right
and the default mark is a long dash (\(em) in a slightly reduced point size.

The .D Level
.D [mark [size]]

The .D level is indented farther to the right than the .C level and does not
space from the previous text. It causes the following text to start on a new
line. In other words, it causes a break. Otherwise, it behaves like the .B and
.C levels. The .D level default mark is a bullet smaller than that used for the
.B level.

Titles
.T string

The .T macro creates a centered title from its argument (string). The
argument must be enclosed within double quotes ("...") if it contains spaces.
The size of the title is four points larger than prevailing point size. Any
indentation established by the .I macro has no effect on titles; they are always
centered within the foil horizontal dimension.

Global Indents
Jlindent][alx1]

The entire text (except titles) of the foil may be shifted right or left by the .I
macro. The first argument (indent) is the amount of indentation that is to be
used to establish a new left margin. This argument may be signed positive or
negative, indicating right or left movement from the current margin. If
unsigned, the argument specifies the new margin, relative to the initial default
margin. If the argument is not dimensioned, it is assumed to be in inches (see

UNIX Programmer’s Manual Document Preparation—345

VIEWGRAPHS AND SLIDES MACROS

the NROFF and TROFF User’s Manual section for legal troff formatter units).
If the argument is null or omitted, 0i is assumed causing the margin to revert
to the initial default margin.

If a second argument is specified, the .I macro calls the .A macro before
exiting. The third argument, if present, is passed to the .A macro.

Point Sizes and Line Lengths
Slpslln]

Each foil-start macro begins the foil with an appropriate default point size* and
line length. Prevailing point size and line length may be changed by invoking
the .S macro. If the ps argument is null, the previous point size is restored. If
ps is signed negative, the point size is decremented by the specified amount. If
ps is signed positive, it is used as an increment; and if ps is unsigned, it is used
as the new point size. If ps is greater than 99, the initial default point size is
restored (Table EE). Vertical spacing is always 1.25 times the current point
size.

The second argument (//), if given, specifies line length. It may be
dimensioned. If it is not dimensioned and less than 10, it is taken as inches. If
it is not dimensioned and greater than or equal to 10, it is taken as troff
formatter units (1/432nds of an inch).

Default Fonts

.DF n font [n font ...]

The MV macros assume that the Helvetica Regular (also known as Geneva)
font, mounted in position 1, is the default font. Additional fonts can be
mounted and the default font can be changed. The .DF macro informs the

3. Default point sizes for each type of foil and corresponding maximum number of lines are given
in Table EE.

346—Document Preparation ‘ UNIX Programmer’s Manual

troff formatter that font is in position n. The first-named font is the default
font. Up to four pairs of arguments may be specified.

The .DF macro must immediately precede a foil-start macro; the initial setting
is equivalent to

.DF1H2I3B4S

Default Vertical Space

Dviallbllclidl]

The default vertical space macro (.DV) allows changing the vertical spacing
done by each of the four level macros. The first argument (a) is the spacing
for the .A macro, b is for the .B macro, ¢ is for the .C macro, and d is for the
.D macro. All non-null arguments must be dimensioned. Null arguments leave
the corresponding spacing unaffected. The initial setting is equivalent to

DV 5v .5v .5v Ov

Underlining
.U stringl [string2]

The underline macro (\U) takes one or two arguments. The first argument
(stringl) is the string of characters to be underlined. The second argument
(string2), if present, is not underlined but concatenated to the first argument.
For example: :

.U phototypesetter
produces
phototypesetter

while

UNIX Programmer’s Manual Document Preparation—347

VIEWGRAPHS AND SLIDES MACROS

.U under line

produces

underline

Synonyms

The MV macro package recognizes the .AD, .BR, .CE, .FI, .HY, .NA, .NF,
.NH, .NX, .SO, .SP, .TA, and .TI uppercase text synonyms for the
corresponding lowercase troff formatter requests. The NROFF and TROFF
User’s Manual contains definitions of these requests.

Breaks

The .S, .DF, .DV, and .U macros do not cause a break. The .I macro causes a
break only if it is invoked with more than one argument. All other MV macros
always cause a break. The troff formatter synonyms .AD, .BR, .CE, .FI, .NA,
.NF, .SP, and .TI also cause a break.

Text Filling, Adjusting, and Hyphenation

By default, the MV macros fill, but neither adjust nor hyphenate text. This is
an aesthetic judgement that seems correct for foils. These defaults can, of
course, be changed by using the .AD, .FI, .HY, .NA, .NF, and .NH macros.

THE TROFF PREPROCESSORS

It is possible to use the various troff formatter preprocessors to typeset foils
that require more powerful formatting capabilities.

Tables

The tbl(1) ‘program can be used to set up columns of data within a viewgraph
or slide. The .TS and .TE macros are not defined in the MV macro package,
but are merely flags to thl. The Table Formatting Program (tbl) describes the
macros used for generating tables.

348—Document Preparation UNIX Programmer’s Manual

Mathematical Expressions

The eqn(1) program can be used to typeset mathematical expressions and
formulas on foils provided care is taken to specify proper fonts and point sizes.
The Mathematics Typesetting Program (egn) describes the macros used for
processing equations. The .EQ and .EN macros are not defined in the MV
macro package.

Constant-Width Program Examples

The constant-width font simulates computer-terminal and line-printer output
and can be sometimes effective in presenting computer-related topics. The
cw(1) program illustrates the preprocessor.

FINISHED PRODUCT

Phototypesetter Output
mvt [options] file ...

Typeset output is obtained via the mvt command. The file argument contains
text and macro invocations for the foils. The options argument can be one or
more of the following:

—a preview output on a terminal (other than a Tektronix 4014)
—e invoke eqn(1)
—t invoke tbl(1)
—Tterm direct output to term, where term can be one of the
following:
st STARE
4014 Tektronix 4014
vp Versatec printer

UNIX Programmer’s Manual Document Preparation—349

VIEWGRAPHS AND SLIDES MACROS

Using a hyphen (-) in place of file causes the mvt command to read the
standard input (rather than a file), as in the following example using the cw(1)
preprocessor:

cw [options 1 file ... | mvt [options] -

Output Approximation on a Terminal
mvt —a file_name ...

An approximation of the typeset output can be obtained with the mvt
command. The resulting output shows the formatted foils except that:

¢ Point-size changes are not visible

¢ Font changes cannot be seen

o Titles that are too long appear proper

o All horizontal motions are reduced to one horizontal space to the right

e All vertical motions are reduced to one vertical space down.

" For example, it appears that lines of text following a .B, .C, or .D macro do not
align properly (even though, in fact, they do).

Although alignment cannot be determined from this approximation, line breaks
and the amount of vertical space used by the text can be observed. If the foil
is not full, the macro package prints the number of blank lines (in the then
current point size) that remain on the foil; if the foil is full, a warning is
printed. If the text did overflow the foil, text will be printed after the “cross
hairs.”

Making Actual Viewgraphs and Slides

Output of the typesetter is so-called “mechanical paper,” which is white,
opaque photographic paper with black letters. There are several very simple
processes (e.g., Thermofax, Bruning) for making transparent foils from opaque
paper. Because some of these processes involve heat and because mechanical
paper is heat sensitive, one should first make copies of the typesetter output on

350—Document Preparation UNIX Programmer’s Manual

a good-quality office copier and then wuse these copies for making
transparencies.

Getting slides made is a much more complicated photographic process that is
best left to professionals. It is possible to make both positive (opaque letters on
transparent background) and negative (transparent letters on opaque
background) slides, as well as colored-background slides, etc.

SUGGESTIONS FOR USE

The following suggestions have been derived from experience, from the
examination of several other macro packages for making foils, and from some
publications that discuss good and bad foil-making practices:

e The most useful foil sizes are .VS and .Vw (or .Sw). This is because most
projection screens are either square or wider than they are tall and also because
the resulting foils are smaller, easier to carry, and require no enlargement
before use.

e Reducing point size below the default value should be avoided. Default point
size for each type of foil (Table EE) is the smallest point size that will result in
a foil that is legible by an audience of more than a dozen people. If there is
more text than fits onto a foil, two or more foils should be used instead of
reducing the point size.

e Numerous font changes should be avoided. A foil with more than two
typefaces looks cluttered and distracts the viewer.

e Underlined typeset text should be avoided. Even though this package
contains a macro for underlining, it should not be used. Underlined typeset
text almost always looks bad; instead use a different typeface.

e The Helvetica sans-serif font is thicker and easier to read than the Times
Roman serif font normally used for typesetting. On the other hand, the Times
Roman font permits more text to be squeezed onto a foil. If it is intended to
use italic and/or bold typefaces, either the Helvetica regular, italic, and
medium:*

UNIX Programmer’s Manual Document Preparation—351

VIEWGRAPHS AND SLIDES MACROS

.DF1H2HI 3 HM
or the Times Roman regular, italic, and bold:
DF1R2I3B

should be mounted via the .DF macro. Bold typefaces tend to be a bit
overwhelming. Choice of fonts is primarily a matter of personal aesthetics.

e The .SP macro can be used to insert a bit of additional white space (for
instance, .5v or lv, where v means “vertical space”) at the top of each foil (G.e.,
increase the top margin).

e Normal uppercase and lowercase text is more legible than uppercase text
only.> Uppercase and lowercase alphabets have evolved and been used for many
years because they result in more legible text. Furthermore, such text is less
bulky than uppercase text only, so more information can be put onto a foil
without crowding.

e Foils for a presentation should be made as consistent as possible. Changing
fonts, typefaces, point sizes, etc., from foil to foil tends to distract the viewer.
While it is possible to introduce emphasis and draw the viewer’s attention to
particular items with such changes, this works only if it is done purposefully
and sparingly. Overuse of these techniques is almost always counter-
productive.

In summary, the dictum that “the medium is the message” does not apply to
foil making. When in doubt:

e Do not change point sizes.

* Do not change fonts or typefaces.

4. Helvetica medium is really a bold typeface.

5. The only exceptions to this rule are foils set in a point size so small that lowercase characters
simply can not be read. This is usually the case for foils produced on a normal typewriter.

352—Document Preparation UNIX Programmer’s Manual

e Do not underline.

e Use many “sparse” foils rather than a few “dense” ones.
e Use fewer words rather than more.

e Use larger point sizes rather than smaller.

e Use larger top and bottom margins rather than smaller.

e Use normal uppercase and lowercase text rather than uppercase text only.

WARNINGS

Use of troff Formatter Requests

In general, it is not advisable to intermix arbitrary troff formatter requests with
the MV macros because this often leads to undesirable (and sometimes
astonishing) results. The “safe” requests are ones for which uppercase text
synonyms have been defined in the MV package. Other troff formatter
requests should be used sparingly (if at all) and with care and discipline.
Particularly dangerous are requests that affect point size, indentation, page
offset, line and title lengths, and vertical spacing between lines. The .S and .I
macros should be used instead.

Reserved Names

Certain names are used internally by this macro package. In particular, all 2-
character names starting with either “)” or “]” are reserved. Names that
are the same as names of the MV macros and strings described in this part or
names that are the same as troff names cannot be used. Furthermore, if any of
the preprocessors are used, their reserved names must also be avoided.

Miscellaneous

The .S macro changes the point size and vertical spacing immediately, but a
line-length change requested with that macro does not take effect until the
next-level macro call.

UNIX Programmer’s Manual Document Preparation—353

'VIEWGRAPHS AND SLIDES MACROS

Specifying a third argument to the .S macro usually results in a disaster.
The “*(Tm” string generates a trademark symbol.

The tilde (7) is defined by the MV macros as a “non-paddable” space; that is,
the tilde may be used wherever a fixed-size (non adjustable) space is desired.
To override this condition, the following line should be included in the input
file:

Ar

DIMENSIONAL DETAILS

For each style of viewgraph Table EE shows the default point size; the
maximum number of lines of text (at the default point size); and the height,
width, and aspect ratio, both nominal and actual.

Table DD
FOIL-START MACROS
MACRO NAME SIZE* AND TYPE FRAME NUMBER}

VS 7X7 viewgraph E-7351 or E-7351-R

or

2X2 super-slide
Vw 7XS viewgraph E-7351-B
.Vh 5X7 viewgraph E-7351-A
VW 9X7 viewgraph E-8814 or E-9148
.VH 7X9 viewgraph E-8814 or E-9148
Sw 7X5 35mm slide E-7351-B
Sh 5X7 35mm slide ' E-7351-A
SW 9X7 35mm slide E-8814 or E-9148
.SH 7X9 35mm slide E-8814 or E-9148

* Size of mounting frame opening (width and height) in inches.

t stock item number.

354—Document Preparation

UNIX Programnier"s Manual

DEFAULT POINT SIZE, DIMENSIONS, AND ASPECT RATIOS

Table EE

MAXIMUM NOMINAL ACTUAL (TEXT)
MACRO POINT LINES
(NOTE 1) SIZE (NOTE 2) w H AR 1 w H AR 1
— (NOTE 3) — AR — (NOTE 3) — AR
Vs 18 21 7 7 1 1 6 6.8 113 88
Vw 14 19 7 5 1 14 6 48 8 1.25
.Vh 14 27 5 7 1.4 7 42 6.8 1.6 62
VW 14 21 7 54 77 1.3 6 52 87 115
VH 18 28 7 9 1.3 77 6 8.8] 68
Sw 14 18 7 46 67 1.5 6 4.4 73 14
Sh 14 27 46 7 1.5 67 38 6.8 1.8 56
SW 14 18 7 4.6 67 LS 6 44 73 1.4
SH 18 28 6 9 15 67 5 8.8 1.76 57
® Note 1: If used as a viewgraph, the .SW macro and .VW macro generated foils must be

enlarged by a factor of 9/7.

e Note 2: Maximum number of lines of text at the default point size.

e Note 3:

e W — Width in inches.

e H — Height in inches.

e AR — Aspect ratio (H/W).

UNIX Programmer’s Manual

Document Preparation—355

Other Volumes
of the
UNIX* Programmer’s Manual

Volume 1

Commands and Utilities, contains the manual pages for the
commands and applications programs that can be invoked
directly by the user or by command language procedures.
Manual pages describe the purpose and use of the UNIX
system commands, warn of potential problems, give examples,
and tell where to find related information.

Volume 2

System Calls and Library Routines, describes the
programming features of the UNIX system. Included are the
descriptions of system calls, subroutines, libraries, file formats,
macro packages, and character set tables.

Volume 3

System Administration Facilities, contains the commands
used by UNIX system administrators. It describes system
maintenance commands and application programs, special
files, and system maintenance procedures.

Volume 5

Languages and Support Tools, describes languages and
software tools that aid the UNIX system user. There is detailed
information on the uses of the following languages and
programming support tools: Fortran and C programming
languages, make. SCCS. M4 Macro Processor, awk, Link
Editor, Common Object File Format. Arbitrary Precision Desk
Calculator Language. Interactive Desk Calculator, Lexical
Analyzer Generator, yacc, RJE, and UUCP.

Select Code 320-034
ISBN 0-03-011207-9

	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	xBack

