
ATlaT

UNIX® SYSTEM V
RELEASE 4
Device Driver Interface/
Driver-Kerne/lnterface (OOIIOKI)
Reference Manual

UNIX Software Operation

Copyright 1990,1989,1988,1987,1986,1985,1984,1983 AT&T
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be. reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap
ing, by any computer or informatiOn storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effOrt has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state
ments of any kind in this clQcument, its updates, supplements, or special editions, whether such er
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes. no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or liCense to make,use or se.1I equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, fUnction, or design.

TRADEMARKS

UNIX and WE are registered trademarkS of AT&T.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-933680-X

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632.
Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, SA, Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

®
AT&T UNIX System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User's and Administrator's Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator's Guide

(II

UNIX System V Release 4 System Administrator's Reference Manual
UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 User's Reference Manual

General Programmer's Series

UNIX® System V Release 4 Programmer's Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer's Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: System Services

and Application Packaging Tools
UNIX® System V Release 4 Programmer's Reference Manual

System Programmer's Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide
UNIX® System V Release 4 Device Driver Interface / Driver-Kernel

Interface (DDI / DKI) Reference Manual
UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Available from Prentice Hall Ii

1

2

3

4

Contents

Introduction
About This Document
Organization of Driver Reference Manuals
Conventions Used in This Document
Related Learning Materials

Driver Entry Points (02)
Introduction
Overview of Driver Entry-Point Routines and Naming

Conventions
Manual Pages

Kernel Functions (03)
Introduction
Manual Pages

Data Structures (04)
Introduction
Manual Pages

A Appendix A: Error Codes

Table of Contents

1-1
1-7
1-8
1-9

2-1

2-2
2-4

3-1
3-7

4-1
4-3

Table of Contents ___________________ _

B

II

Appendix B: Migration from Release 3.2 to
Release 4.0

Index

Permuted Index

DDIIDKI Reference Manual

Figures and Tables

Figure 1-1: Scope of DDI and DKI
Table 1-1: Exclusive Entry Points, Functions, and Structures
Table 1-2: Textual Conventions Used in This Book
Table 2-1: STREAMS Driver Entry Point Summary
Table 2-2: Driver Entry Points not Specific to STREAMS
Table 3-1: STREAMS Kernel Function Summary
Table 3-2: Kernel FuncUcms Not Specific to STREAMS
Table 4-1: STREAMS Data Structure Summary
Table 4-2: Data Structures not Specific to STREAMS
Table A-1: Driver Error Codes
Table A-2:Error Codes by Driver Routine
Tallie 8-1: 3.2 to ~.O Migration

Table of Contents

1-1
1-5
1-8
2-2
2·3
3-2
3-4
4-1
4-2
A-1
A-2
B-2

iii

1 Introduction

About This Document 1-1
~rt~ 1~
Scope of Interfaces 1-3

• Scope of the Device Driver Interface (001) 1-3
• Scope of the Driver-Kernel Interface (DKI) 1-4

Interface Members 1-5
Audience 1-5
How to Use This Document 1-6

Organization of Driver Reference Manuals 1-7

Conventions Used in This Document 1-8

Related Learning Materials 1-9
Documentation 1-9

• Driver Development 1-9
• STREAMS 1-10
• C Programming Language and General Programming 1-10
• Assembly Language 1-10
• Operating System 1-11
• Software Packaging 1-11

Training 1-11

Table of Contents

About This Document

The Device Driver Interface/Driver- Kernel Interface Reference Manual provides
reference information needed to write device drivers in the UNIX System V
Release 4 environment. It describes two device driver interface specifications:
the Device Driver Interface (DDI) and the Driver-Kernel Interface (DKI).
Drivers written to conform to one or both of these interfaces are more likely to
be portable to other environments. DDI and DKI address different aspects of
the compatibility problem-their differences are summarized in Figure 1-1.

Figure 1-1: Scope of 001 and DKI

processor
specific
routines

processor
independent
routines

DDI
only
(OxD)

DDI
and
DKI
(OxOK)

supported
after SVR4

OKI
only
(OxK)

supported
through SVR4

Each box in Figure 1-1 represents a different set of interfaces. The "ODI only"
set (indicated throughout this manual with the DxD cross-reference code) are
processor specific and are intended to be supported beyond Release 4.0. The
DDI described in this manual is specific to the porting base, the 3B2 computer.
The "DKI only" set (DxK cross-reference code) are processor independent, but
are not guaranteed to be supported in the next release.

Most of the routines, functions, and structures described in this manual are part
of both DDI and DKI (cross-referenced by DxDK). As Figure 1-1 shows, drivers
written to conform to both interfaces are portable to all AT&T computers sup
porting UNIX System V Release 4, and they will be compatible through and
beyond Release 4. To understand more completely what is meant by "portable"
and "compatible" for DDI and DKI, the scope of each interface must be more
thoroughly explained.

Introduction 1-1

About This Document

The goals of 001 and OKI overlap, and are not in any way mutually exclusive.
That is, a driver may be written to conform to both interfaces, increasing the
chances that driver code can be ported and can remain compatible with future
releases of the operating system.

Porting

Software is usually considered portable if it can be adapted to run in a different
environment more cheaply than it can be rewritten. The new environment may
include a different processor, operating system, and even the language in which
the program is written, if a language translator is available. More often, how
ever, software is ported between environments that share an operating system,
processor, and source language. The source code is modified to accommodate
the differences in compilers or processors or releases of the operating system.

In the past, device drivers did not port easily for one or more of the following
reasons:

• To enhance functionality, members had been added to kernel data struc
tures accessed by drivers, or the sizes of existing members had been
redefined.

• The calling or return syntax of kernel functions had changed.

• Driver developers did not use existing kernel functions where available,
or relied on undocumented side effects that were not maintained in the
next release.

• Processor-specific code had been scattered throughout the driver when it
could have been isolated.

Operating systems are periodically reissued to customers as a way to improve
performance, fix bugs, and add new features. This is probably the most com
mon threat to compatibility encountered by developers responsible for maintain
ing software. Another common problem is upgrading hardware. As new
hardware is developed, customers occasionally decide to upgrade to faster,
more capable computers of the same family. Although they may run the same
operating system as those being replaced, processor-specific code may prevent
the software from porting.

1-2 DDIIDKI Reference Manual

About This Document

Scope of Interfaces

Although application programs have all of the porting problems mentioned,
developers attempting to port device drivers have special challenges. Before
describing the differences between DDI and DKI, it is necessary to understand
the position of device drivers in UNIX systems.

Device drivers are kernel modules that control data transferred to and received
from peripheral devices. Although drivers are configured into a UNIX system as
part of the kernel, they are developed independently from the rest of the kernel.
If the goal of achieving complete freedom in modifying the kernel is to be
reconciled with the goal of binary compatibility with existing drivers, the
interaction between drivers and the kernel must be rigorously regulated. This
driver/kernel service interface is the most important of the three distinguishable
interfaces for a driver, summarized as follows:

• Driver-Kernel. I/O System calls result in calls to driver entry point rou
tines. These make up the kernel-to-driver part of the service interface,
described in Section 2 of this manual. Drivers may call any of the func
tions described in Section 3. These are the driver-to-kernel part of the
interface.

• Driver-Hardware. All drivers (except software drivers) must include an
interrupt handling entry point, and may also perform direct memory
access (DMA). These, and other hardware-specific interactions make up
the driver/hardware interface.

• Driver-Boot/Configuration Software. At boot time, the existence of a
driver is made known to the system through information in system files,
enabling the system to include the driver. The interaction between the
driver and the boot and configuration software is the third interface affect
ing drivers.

Scope of the Device Driver Interface (001)

The primary goal of DDI is to facilitate both source and binary portability across
successive releases of UNIX System Von a particular machine. Implicit in this
goal is an important fact. Although there is only one DKI, each processor pro
duct has its own DDI. Therefore, if a driver is ever to be ported to different
hardware, special attention must be paid to the machine-specific routines that
make up the ~'DDI only" part of a driver. These include but are not confined to

Introduction 1-3

About This Document

the driver/hardware interface (as described in the previous section). Some
processor-specific functionality also may belong to the driver/kernel interface,
and may not be easy to locate.

To achieve the goal of source and binary compatibility, the functions, routines,
and structures specified in a DDI must be used according to these rules.

• Drivers cannot access system state structure (for example, u and sysinfo)
directly.

• For structures external to the driver that may be accessed directly, only
the utility functions provided in Section 3 of this manual should be used.
More generally, these functions should be used wherever possible.

• The header file ddi. h must be included at the end of the list of header
files. This header file "undefines" several macros that are reimplemented
as functions.

Scope of the Oriver- Kernel Interface (OKI)

As its name implies, the DKI (Driver-Kernel Interface) is a defined service inter
face for the entry point routines and utility functions specified for communica
tion between the driver and kernel. It does not encompass the driver/hardware
or the driver/boot software interface.

Information is exchanged between the driver and kernel in the form of data
structures. The DKI specifies the contents of these structures as well as the cal
ling and return syntax of the entry points and utility functions.

The intent of DKI is to promote source portability across implementations of
UNIX System V on different machines, and applies only to System V Release 4.
Because DKI applies only to the driver/kernel interface, it must be understood
that the sections of driver code affecting the hardware and boot/configuration
interfaces may need to be rewritten, and should be isolated in subroutines as
much as possible.

1-4 DDI/DKI Reference Manual

About This Document

Certain interfaces documented in the DKI are not part of the 001. Driver
writers should be aware that the use of these interfaces is not guaranteed to
be supported beyond System V Release 4.

Interface Members

As noted before, most entry points (Section 2), functions (Section 3), and struc
tures (Section 4) described in this manual belong to both ODI and OKl. Table
1-1 lists the thoSe that are exclusive either to ODI or OKI.

Table 1-1: Exclusive Entry Points, Functions, and Structures

ODI only OKl only
Section 2 init, int, size, start segmap, nmap

Section 3 dIna yageio, etoimajor, hat_getkpfnum
getema.jor, geterninor,
getvec, hdeeqd, hdeleg,
itoemajor, kvtophys,
physiock, vtop

Section 4 hdedata None

Audience

This manual is for experienced C programmers responsible for creating, modify
ing, or maintaining drivers that run on AT&T UNIX System V Release 4 and
beyond. It assumes that the reader is familiar with UNIX system internals and
the advanced capabilities of the C Programming Language. See the "Related
Learning Materials" section for a listof available AT&T documents and courses.

Introduction 1-5

About This Document

How to Use This Document

This manual is organized into four sections and two appendixes:

1-6

• "Section 1: Introduction" introduces the DDI, DKI, and other driver inter
faces, lists the notational conventions used in this document, and lists
related courses and documents.

• "Section 2: Driver Entry Points" contains reference pages for all driver
entry point routines.

• "Section 3: Kernel Functions" contains reference pages for all driver func
tions used in DDI/DKI drivers.

• "Section 4: Data Structures" contains reference pages for structures used
in DDI/DKI drivers.

• II Appendix A: Error Codes" contains a list of the error codes that are
appropriate for use in DDI/DKI drivers.

• II Appendix B: Migration from Release 3.2 to Release 4.0" describes the
changes to DDI/DKI between Release 3.2 and Release 4.0 of System V.

DDI/DKI Reference Manual

Organization of Driver Reference Manuals

Driver reference manual pages are similar to those in the Programmer's Reference
Manual, with the page name followed by a section number in parentheses. All
driver reference manual entries begin with a "D" to distinguish them as driver
reference pages.

Currently, the reference pages for the different interfaces are published in
separate volumes. Each manual contains three sections:

D2 driver entry points
D3 kernel functions used by drivers
D4 system data structures accessed by drivers

Each section number is suffixed with a letter indicating the interfaces covered.
The suffixes used are:

D Device Driver Interface (DDl)
K Driver-Kernel Interface (DKI)
DK DDI and DKI
I SCSI Device Interface (SDl)
P Portable Device Interface (PDl)
X Block and Character Interface (BCl)

For example, open(D2DK) refers to the open entry point routine for a driver, not
to the open(2) system call documented in the Programmer's Reference Manual.

Introduction 1-7

Conventions Used in This Document

Table 1-21ists the textual conventions used in this book.

Table 1-2: Textual Conventions Used In This Book

Item Style Example
C Reserved Words Constant Width typedef

C typedef Declarations Constant Width caddr t
Driver Routines Constant Width open routine

Error Values Constant Width EINTR
File Names Constant Width sys/conf.h
Flag Names Constant Width B WRITE

Kernel Macros Constant Width minor
Kernel Functions Constant Width ttopen

Kernel Function Arguments Italics bp
Structure Members Constant Width b addr

Structure Names Constant Width bUf structure
Symbolic Constants Constant Width NULL

System Calls Constant Width ioctl(2)
C Library Calls Constant Width printf(3S)

Shell Commands Constant Width layers(1)
User-Defined Variable Italics prefix close

1-8 OOI/OKI Reference Manual

Related Learn ing Materials

AT&T provides a number of documents and courses to support users of our
systems. For a listing see:

AT&T Computer Systems Documentation Catalog (300-000)
AT&T Computer Systems Education Catalog (300-002)

Documentation

Most documents listed here are available from the AT&T Customer Information
Center. Refer to the six-digit select code (in parentheses, following the docu
ment title) when ordering.

If ordering by telephone, use the following numbers:

1-800-432-6600 (toll free within the continental United States)
1-317-352-8557 (outside the continental United States)

In addition to AT&T documents, the following list includes some commercially
available documents that are relevant.

Driver Development
The UNIX System V and V/386, Release 3, Block and Character Interface (BCl)
Development Guide(307-191) discusses driver development concepts, debugging,
performance, installation, and other related driver topics for UNIX System V
Release 3.

The UNIX System V and V/386, Release 3, Block and Character Interface (BCl) Driver
Reference Manual (307-192) includes UNIX System V Rlease 3 reference material
to be used in conjunction with the above manual. It describes driver entry point
routines (Section D2X), kernel-level functions used in Bel drivers (Section D3X),
and data structures accessed by BO drivers (Section D4X).

The UNIX System V PDI Driver Design Reference Manual (305-014) defines the ker
nel functions and data structures used for Portable Driver Interface (PDI)
drivers.

The UNIX System V SCSI Driver Interface (SDI), Driver Design Reference Manual
(305-009) defines the kernel functions and data structures used for SDI drivers.

Introduction 1-9

· Related Learning Materials

STREAMS

The Programmer's Guide: STREAMS tells how to write drivers and access devices
that use the STREAMS driver in.terface for character access.

C Programming Language and General Programming
Bentley, Jon Louis, Writing Efficient Programs (320-004), Englewood Cliffs, New
Jersey: Prentice-Hall, 1982, gives hints for coding practices that improve process
performance. Many of these ideas can be applied to driver code.

Kernighan, B. and D. Rit<1rle, C Programming Language, Second Edition (307-136),
Englewood Cliffs, New Jersey: Prentice-Hall, 1988, defines the functions, struc
tures, and interfaces of the C Programming Language. A short tutorial is
included.

Lapin, J. E., Portable C and UNIX System Programming, Englewood Cliffs, New
Jersey: Prentice-Hall, 1987, discusses how to maximize the portability of C
language programs.

The Programmer's Guide: Networking Interfaces provides detailed information,
with examples, on the Section 3N library that comprises the UNIX system Tran
sport Level Interface (TLI).

The Programmer's Guide: ANSI C and Programming Support Tools includes instruc
tions on using a number of UNIX utilities, including make and secs.

Assembly Language
The AT&T 3B2/3B5/3B15 Computers Assembly Language Programming Manual
(305-000) describes the Assembly Language instructions used by AT&T 3B2,
3B15 and 3B4000 computers.

WE 32100 Microprocessor Information Manual, Maxicomputing in Microspace (307-
730hntroduces the WE 32100 microprocessor and summarizes its available sup
port products.

1-10 OOI/OKI Reference Manual

Related Learning Materials

Operating System

Bach, Maurice J., Design of the UNIX Operating System (320-044), Englewood
Cliffs, New Jersey: Prentice-Hall, 1986, discusses the internals of the UNIX
operating system, and includes an explanation of how drivers relate to the rest
of the kernel.

The UNIX System V reference manuals are the standard reference materials for
the UNIX operating system. This information is organized into three books,
published separately for each system:

• The System Administrator's Reference Manual includes information on
administrative commands (Section 1M), special device files (Section 7), and
system-specific maintenance commands (Section 8).

• The Programmer's Reference Manual includes information on programming
commands (Section 1), system calls (Section 2), library routines (Section 3),
file formats (Section 4), and miscellaneous topics (Section 5).

• The User's Reference Manual includes information on UNIX system user
level commands (Section 1).

Software Packaging

The Programmer's Guide: System Services and Application Packaging Tools describes
how to write the scripts necessary to install a driver (or other software) under
the System Administration utility.

Training

The following courses are of particular interest to driver writers. To register for
a class:

• Within the continental United States, call 1-800-TRAINER.

• Within Canada, call 1-800-221-1647.

• Outside the continental United States, call 1-201-953-7554.

Introduction 1·11

Related Learning Materials

C LAnguage for Experienced Programmers (UC1OO1) is a thorough, formal introduc
tion to the C Programming Language.

Internal UNIX System Calls and Libraries Using C LAnguage (UC10ll) is an intro
duction to UNIX application programming in C. Topics include the execution
environment, memory management, input/output, record and file locking, pro
cess generation, and interprocess communication (IPC).

UNIX System V Release 4 Device Drivers(UC1056) explores device driver mechan
isms, operating system supplied functions, device driver source code examples,
installation procedures and debugging techniques. Character, SlREAMS, and
block devices are covered as well as the entire I/O subsystem.

UNIX System V Release 4 Internals (UC1057) presents an in-depth look at UNIX
System V, Release 4, including the process, file and I/O subsystems. New
UNIX System V Release 4 concepts such as Network File Sharing (NFS), fast file
system, and virtual file systems (VFS) are also reviewed.

Internal System Calls and Libraries (Part 1) (UC1058) presents the C language
programmer's interface to UNIX System V Release 4. This course covers those
system calls and library functions not pertaining to interprocess communication.
Interprocess communication system calls and library functions are covered in
Part 2 of this course.

Internal System Calls and Libraries (Part 2) (UC1059) presents UNIX System V
Release 4 system calls and library functions pertaining to interprocess communi
cation.

1-12 OOI/OKI Reference Manual

2 Driver Entry Points (D2)

Introduction 2-1

Overview of Driver Entry-Point Routines
and Naming Conventions 2-2

Manual Pages 2-4
chpoll(020K) 2-4
close(020K) 2-6
init(020) 2-9
int(020) 2-10
ioctl(020K) 2-12
mmap(02K) 2-16
open(020K) 2-17
print(020K) 2-19
put(020K) 2-20
read(020K) 2-22
segmap(02K) 2-23
size(020) 2-25
srv(020K) 2-26
start(020) 2-28
strategy(020K) 2-29
write(020K) 2-30

Table of Contents

Introduction

This chapter describes the DDI/DKI, DDI-only, and DKI-only entry-point rou
tines a developer may include in a device driver. These are called entry-point
routines because they provide the calling and return syntax from the kernel into
the driver. For all driver types, these routines are called in response to system
calls, when the computer is started, when a device generates an interrupt, or for
STREAMS drivers, in response to STREAMS events.

All driver routines common to both DDI and DKI are identified with the
(D2DK) cross reference code. All DDI-only or DKI-only routines are identified
with the (D2D) or (D2K) reference codes respectively.

Functions provided to allow the driver to communicate with the kernel are
described in section 3, and use the (D3DK), (D3D), and (D3K) cross reference
codes.

In this section, reference pages contain the following headings:

• NAME describes the routine's purpose.

• SYNOPSIS summarizes the routine's calling and return syntax.

• ARGUMENTS describes each of the routine's arguments.

• DESCRIPTION provides general information about the routine.

• DEPENDENCIES lists possible dependent routine conditions.

• SEE ALSO gives sources for further information.

Driver Entry Points (D2) 2-1

Overview of Driver Entry-Point Routines and
Naming Conventions

Each driver is organized into two parts: the base level and the interrupt level.
The base level interacts with the kernel and the user program; the interrupt
level interacts with the device.

To uniquely identify a driver, a prefix string is added to the driver routine
names. The prefix is defined in the driver's master file. For a driver with the
pre prefix, the driver code may contain routines named pre_open, pre_close,
pre_init, pre_int, and so forth. All global variables associated with the driver
should also use the same prefix.

System routines can call subroutines that are assigned names by the driver
writer. Subroutines should be declared as static, and should also use the
driver prefix to increase code readability.

Table 2-1 summarizes the STREAMS driver entry points described in this section.
These entry points may be used in either DOl or DKI.

Table 2-1: STREAMS Driver Entry Point Summary

Routine DeSCription

put receive messages from the preceding queue

srv service queued messages

2-2 DDI/DKI Reference Manual

Overview of Driver Entry-Point Routines and Naming Conventions

Table 2-2 summarizes the block I/O driver entry points described in this sec
tion. These entry points may be used in either DDI or DKI, except as noted.

Table 2-2: Driver Entry Points not Specific to STREAMS

Routine Description Type

chpoll poll entry point for a non-STREAMS char-
acter driver

close relinquish access to a device

init initialize a device 001 only

int process a device inteJTu~ 001 only

ioctl control a character device

rrmap return page frame number DKlonly

open gain access to a device

print display a: driver message on system console

read read data from a device

segmap map device memory into user space DKlonly

size return size of logical device 001 only

start start access to a dl':lvice DDlonly

strategy perform block I/O

write write data to a device

Driver Entry Points (D2) 2-3

chpoll (D2DK) chpoll (D2DK)

NAME
chpoll - poll entry point for a non-STREAMS character driver

SYNOPSIS
iinclude <sys/poll.h>

chpoll (dev t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

ARGUMENTS
dev
events

anyyet

reventsp

phpp

DESCRIPTION

The device number for the device to be polled.

The events that may occur. Valid events are:

POLLIN Data are available to be read.
POLLOUT Data may be written without blocking.
POLLPRI High priority data may be read.
POLLHUP A device hangup.
POLLERR A device error.

A flag that is non-zero. if any other file descriptors in the pollfd
array have events pending. The poll(2) system call takes a pointer to
an array of pollfd structures as one of its arguments. See the
poll(2) reference page for more details.

A pointer to a bitmask of the returned events satisfied.

A pointer to a pointer to a pollhead structqre. The pollhead
structure is defined in sys/poll. h.

The chpoll entry point routine is used by non-stREAMS character device
drivers that wish to support polling. The driver must implement the polling dis
cipline itself. The following rules must be followed when implementing the pol
ling discipline:

1. Implement the following algorithm when the chpoll entry point is called:

if (events are satisfied now) {
*reventsp = mask_of_satisfied_events;

else (
*reventsp = 0;
if (!anyyet)

*phpp = &my_Iocal-pollhead_structure;

return (0);

2. Allocate an instance of the pollhead structure. This instance may be tied
to the per-minor data structure defmed by the driver. The pollhead struc
ture should be treated as a "black box" by the driver. None of its fields
should be referenced. However, the size of this structure is guaranteed to
remain the same across releases.

3. Call the pollwakeup(D3DK) function whenever an event of type events
listed above occur. This function should only be called with one event at a
time.

2-4 10/89

chpoll (D2DK) chpoll (D2DK)

RETURN
A chpoll routine should return 0 for success, or the appropriate error number.

SEE ALSO
pollwakeup(D3DK), poll(2)

10189 2-5

close (D2DK) close (D2DK)

NAME
close - relinquish access to a device

SYNOPSIS [Block and Character]
iinclude <sys/types.h>
iinclude <sys/file.h>
iinclude <sys/errno.h>
iinclude <sys/open.h>
iinclude <sys/cred.h>
iinclude <sys/ddi.h>

int pre[ixclose(dev_t dev, int flag, int otyp, cred_t *credy);

ARGUMENTS
dev Device number.

flag File status flag, as set by the open(2) or modified by the fcntl(2)
system calls. The flag is for information only-the file should always
be closed completely. The flag is taken from the f_flag member of
the file structure which is in file. h. Possible values are:
FEXCL, FNDELAY, FREAD, and FWRITE.· Refer to open(D2D) for
more information.

otyp Parameter supplied so that the driver can determine how many times
a device was opened and for what reasons. The flags assume the
open routine may be called many times, but the close routine
should only be called on the last close of a device.

OTYP _BLK close was through block interface for the device

OTYP _CHAR close was through the raw/character interface for the
device

OTYP MNT close was called as a result of a umount(2) system call;
unmount the file system associated with the block dev
ice

OTYP SWP close a swapping device

OTYP LYR close a layered process (a higher-level driver called the
close routine of the device)

*cred y Pointer to the cred(D4D) user credential structure.

SYNOPSIS [STREAMS]

2-6

iinclude <sys/types.h>
iinclude <sys/stream.h>
iinclude <sys/file.h>
iinclude <sys/errno.h>
iinclude <sys/open.h>
iinclude <sys/cred.h>
iinclude <sys/ddi.h>

int pre[ixclose(queue_t *q, int fla~cred_t *credy);

10/89

close (D2DK) close (D2DK)

ARGUMENTS
*q Pointer to queue structure used to reference the read side of the

driver. (A queue is the central node of a collection of structures and
routines pointed to by a queue.)

flag File status flag.

*cred y Pointer to the cred(D4DK) user credential structure.

DESCRIPTION
For STREAMS drivers, the close routine is called by the kernel through the
cdevsw table entry for the device. (Modules use the fmodsw table.) A non-null
value in the d _ str field of the cdevsw entry points to a streamtab structure,
which points to a qinit structure containing a pointer to the close routine.
Non-STREAMS close routines are called directly from the bdevsw (block) or
cdevsw (character) tables.

The close routine ends the connection between the user process and the device,
and prepares the device (hardware and software) so that it is ready to be opened
again.

A device may be opened simultaneously by multiple processes and the open
driver routine is called for each open, but the kernel will only call the close
routine when the last process using the device issues a close(2) or umount(2)
system call or exits. (An exception is a close occurring with the otyp argument set
to OTYP_LYR, for which a close (also having otyp = OTYP_LYR) occurs for each
open.)

In general, a close routine should always check the validity of the minor
number component of the dev parameter. The routine should also check permis
sions as necessary, by using the cred(D4D) structure (if pertinent), and the
appropriateness of the flag and otyp parameter values.

A close routine could perform any of the following general functions:

disable interrupts
hang up phone lines
rewind a tape
deallocate buffers from a private buffering scheme
unlock an unsharable device (that was locked in the open routine)
flush buffers
notify a device of the close
deallocate any resources allocated on open

The close routines of STREAMS drivers and modules are called when a stream
is dismantled or a module popped. The steps for dismantling a stream are per
formed in the following order. First, any multiplexor links present are unlinked
and the lower streams are closed. Next, the following steps are performed for
each module or driver on the stream, starting at the head and working toward
the tail:

1. The write queue is given a chance to drain.

close (D2DK) close (D2DK)

2. The close routine is called.
3. The module or driver is removed from the stream.

RETURN VALUE
The close routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of DDI/DKI error numbers. Return errors rarely
occur, but if a failure is detected, the driver should decide whether the severity of
the problem warrants either displaying a message on the console or, in worst
cases, triggering a system panic. Generally, a failure in a close routine occurs
because a problem occurred in the associated device.

SEE ALSO
open(D2D), cred(D4DK)

2-8 10/89

Inlt(020) Inlt(020)

NAME
ini t - initialize a device

SYNOPSIS
void prejixinit () ;

DESCRIPTION
init and start(D2D) routines are used to initialize drivers and the devices
they control. ini t routines are executed during system initialization, and can be
used in drivers that do not require low level system services in order to be initial
ized. start routines are executed after low level services are enabled, such as
interrupts and lower level kernel interfaces, but before file systems are available.
Most drivers can use either an init or a start routine, or they can be used in
combination. However, an ini t routine must be used in any driver controlling
a device required to bring the system up.

Not all drivers need an init or a start routine. However, a driver must have
either an init or start routine if it needs to allocate any data structures.

init and start routines can perform functions such as:

allocating buffers for private buffering schemes

mapping a device into virtual address space

initializing hardware (for example, system generation or resetting the
board)

initializing a serial device in a character driver

Because the ini t and start routines are executed before there is user context,
no functions that require user-context, such as sleep(D3DK), may be called.

SEE ALSO
start(D2D)

10/89 2-9

Int(D2D) Int(D2D)

NAME
int - process a device interrupt

SYNOPSIS
void prefixint (int ivec) i

ARGUMENT
ivec Number used by the operating system to associate a driver's interrupt

handler with an interrupting device. The makeup and interpretation of
ivec is specific to each system implementation. In some systems, this
number may be the logical device number, or a combination of logical
device and logical controller numbers, used to map the correct interrupt
routine with a subdevice. In others, this number could be the interrupt
vector number.

DESCRIPTION

2-10

The int routine is the interrupt handler for both block and character hardware
drivers. The interrupt handler is responsible for determining the reason for an
interrupt, servicing the interrupt, and waking up any base-level driver processes
sleeping on the interrupt completion. For example, when a disk drive has
transfered information to the host to satisfy a read request, the disk drive's con
troller generates an interrupt. The CPU acknowledges the interrupt and calls the
interrupt handler associated with that controller and disk drive. The interrupt
routine services the interrupt and then wakes up the driver base-level process
waiting for data. The base-level portion of the driver then conveys the data to
the user.

In general, most interrupt routines must do the following tasks:
keep a record of interrupt occurrences
return immediately if no devices controlled by a driver caused the inter
rupt (only for systems supporting shared interrupts)
interpret the interrupt routine argument ivec
reject requests for devices that are not served by the device's controller
process interrupts that happen without cause (called spurious interrupts)
handle all possible device errors
wake processes that are sleeping on the resolution of an interrupt request

There are also many tasks the int routine must perform that are driver-type and
device specific. For example, the following types of .drivers require different
functions from their int routines:

A block driver dequeues requests, wakes up processes sleeping on an I/O
request, and ensures that system generation has completed.

A terminal driver receives and sends characters.

A printer driver ensures that characters are sent.

In addition, the functions of an int routine are device dependent. You should
know the exact chip set that produces the interrupt for your deVice. You need to
know the exact bit patterns of the device's control and status register and how
data is transmitted into and out of your computer. These specifics differ for
every device you access.

10/89

Int(020) Int(020)

The int routine for an intelligent controller that does not use individual inter
rupt vectors for each subdevice must access the completion queue to determine
which subdevice generated the interrupt. It must also update the status informa
tion, set/dear flags, set/dear error indicators, and so forth to complete the han
dling of a job. The code should also be able to handle a spurious completion
interrupt identified by an empty completion queue. When the routine finishes, it
should advance the unload pointer to the next entry in the completion queue.

If the driver called biowait(D3DK) or sleep(D3DK) to await the completion of
an operation, the int routine must call biodone(D3DK) or wakeup(D3DK) to
signal the process to resume.

int is only used with hardware drivers, not software drivers.

CAUTION: The int routine must never:

contain calls to the sleep kernel function

use functions that call sleep

drop the interrupt priority level below the level at which the interrupt
routine was entered

call any function or routine that requires user context (that is, if it accesses
or alters information associated with the running process)

NOTE: uiolllOve(D3DK) cannot be used in an interrupt routine when the
uio seqflq member of the uio(D4DK) structure is set to uro USERSPACE
(indICatin.g a transfer between user and kernel space).

SEE ALSO
biowait(D3DK), sleep(D3DK), biodone(D3DK), wakeup(D3DK)

10/89 2-11

ioctl(D2DK) ioctl(D2DK)

NAME
ioctl - control a character device

SYNOPSIS
tinclude <sys/cred.h>
tinclude <sys/types.h>
tinclude <sys/errno.h>

int prefixioctl (dev_t dev, int cmd, int arg, int mode, cred_t *credy,
int *rvaly);

ARGUMENTS
dev Device number.

cmd

2-12

Command argument the driver ioctl routine interprets as the opera
tion to be performed. It should be defined, along with an integer
value that is actually passed, in the header file.

The I/O control command name and value can be defined in the
driver code itself, but this is not recommended. If I/O control com
mands are defined in a header file, the user program and the driver
can both access the same definitions to ensure that they agree about
what each I/O control command value represents.

The I/O control command name is traditionally an all uppercase
alphabetic string. This alphabetic name can be a mnemonic. You
should try to keep the values for your I/O control commands distinct
from others on the system. Each driver's I/O control commands are
discrete, but it is possible for user-level code to access a driver with an
I/O control command that is intended for another driver, which can
lead to serious consequenc:es, such as if it meant to pass "drop carrier
on a communication line," but instead sends the argument to a disk
where it is interpreted as "reformat drive." Permissions can be set to
prevent most such events, but the more unique your I/O control com
mand values are, the safer you are.

A number of different schemes are legal for assigning values to I/O
control command names. The most straightforward is to use decimal
numbers; for example

tdefine COMMAND1 01
tdefine COMMAND2 02

Similarly, one can assign hexadecimal numbers as values

tdefine COMMAND A OxOa
tdefine COMMANDFF Oxff

The drawback to these methods is that one quickly gets an operating
system that contains several instances of each I/O control command
value, with the inherent risks discussed above.

A common method to assign I/O control command values that are
less apt to be duplicated is to use a left-shifted 8 scheme. For instance

10/89

ioctl(D2DK} loctl (D2DK)

Idefine COMMAND10 ('0'«8110)
Idefine COMMAND11 ('0'«8111)
Idefine COMMAND12 ('0'«8112)

Alternately, the shift-Ieft-8 scheme can be defined as a constant then
used for the I/O ronh'91 command definitions. For example

Idefine ROTA ('q'«8)
Idefine CO~D23 (ROTA 1 234)
Idefine CO~D25 (ROTA 1 254)

An alternative coding style is to use enumerations for the command
argument, which allows the compiler to do additional type checking.

typedef enum (
XX COMMAND10 - '0'«8 10,
XX=COMMAND11 = '0'«8 11,
XX COMMAND12 - '0'«8 12,

xx_cmds_t; ;

termio(7) specifies the command types that must. work for AT&T ter
minal drivers. Terminal drivers typically have a command to read the
current ioctl settings and at least one other that defines new set
tings.

arg Passes parameters between a user program and the driver.

mode

"credy
"roaly

When used with terminals, the argument is the address of a user pro
gram structure containing driver or hardware settings. Alternatively,
the argument may be an integer that has meaning only to the driver.
The interpretation of the argument is driver dependent and usually
depends on the command type; the kernel does not interpret the argu
ment.

Contains values set when the device was opened.

Use of this mode is optional. However, the driver may use it to deter
mine if the device was opened for reading or writing. The driver
makes this determination by checking the FREAD or FWRlTE setting
(values are in file. h).

See the flag argument description of the open routine for further
values for the ioctl routine's mode argument.

pointer to the cred(D4DK) user credential structure.

Pointer to return value for calling process. The driver may elect to set
the value which is valid only if the ioctl(D2DK) succeeds.

DESCRIPTION

10/89

The ioctl(D2DK) routine provides character-access drivers with an alternate
entry point that can be used for almost any operation other than a simple transfer
of characters in and out of buffers. Most often, ioctl is used to control device
hardware parameters and establish the protocol used by the driver in processing
data.

2-13

loct! (D2DK) loctl (D2DK)

The kernel looks up the device's file table entry, determines that this is a charac
ter device, and looks up the entry point routines in cdevsw. The kernel then
packages the user request and arguments as integers and passes them to the
driver's ioctl routine. The kernel itself does no processing of the passed com
mand, so it is up to the user program and the driver to agree on what the argu
ments mean.

I/O control commands are used to implement the terminal settings passed from
ttymon(1M) and stty(l), to format disk devices, to implement a trace driver for
debugging. and to clean up character queues. Since the kernel does not interpret
the command type that defines the operation, a driver is free to define its own
commands.

Drivers that use an ioctl routine typically have a command to "read" the
current ioctl settings, and at least one other that sets new settings. You can
use the mode argument to determine if the device unit was opened for reading or
writing, if necessary, by checking the FREAD or FWRITE setting.

If the third argument, arg, is a pointer to user space, the driver should call the
copyin(D3DK) and copyout(D3DK) functions to transfer data between kernel
and User space.

To implement I/O control commands for a driver the following two steps are
required:

1. Define the I/O control command names and the associated value in the
driver's header file and comment the commands.

2. Code the ioctl routine in the driver that defines the functionality for
each I/O control command name that is in the header file.

The ioctl routine is coded with instructions on the proper action to take for
each command. It is basically a switch statement, with each case definition
corresponding to an ioctl name to identify the action that should be taken.
However, the command passed to the driver by the user process is an integer
value associated with the command name in the header file.

It is critical that command definitions and routines be clearly commented.
Because there is so much flexibility in how commands are used, uncommented
commands can be very difficult to interpret at a later time.

Terminal drivers use and support the ioctl commands defined on the ter
mio(7) manual page. For instance, TCGETA gets the parameters associated with
the terminal and stores them in the structure referenced in the third argument of
the routine call. TCSETA sets the parameters associated with the terminal from
the structure referenced in the third argument.

NOTE: STREAMS drivers do not have ioctl routines. The stream head con
verts I/O control commands to M_IOCTL messages, which are handled by the
driver's put(D2DK) or srv(D2DK) routine.

RETURN VALUE

2-14

The ioctl routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of DOI/DKI error numbers. The driver may also
set the value returned to the calling process through the rvaZy pointer.

10/89

loctl (D2DK) loctl (D2DK)

SEE ALSO
copyin(D3DK), copyout(D3DK)

10/89 2-15

mmap(D2K) mmap(D2K)

NAME
mmap - check virtual mapping for memory mapped device

SYNOPSIS
'include <sys/types.h>
'include <sys/cred.h>
'include <sys/mman.h>
'include <sys/vm.h>

int prefixmmap (dev_t dev, off_t off, int prot) ;
ARGUMENTS

dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

prot Protection flag from mman. h (e.g., PROT_WRITE , PROT_READ).

DESCRIPTION
The mmap entry point is a required entry point for character drivers supporting
memory-mapped devices. A memory mapped device has memory that can be
mapped into a process's address space. The mmap(2) system call, when applied
to a character special file, allows this device memory to be mapped into user
space for direct access by the user application (no kernel buffering overhead is
required).

An mmap(D2K) routine checks if each offset is within the range of pages sup
ported by the device. For example, a device that has 512 bytes of memory that
can be mapped into user space should not support offsets greater than 512. If the
offset does not exist, then -1 is returned. If the offset does exist, mmap returns
the masked page table entry for the page at offset off in the device's memory.

mmap should only be supported for memory-mapped devices or pseudo-devices.
See the segmap(D2K) reference page for further information on memory-mapped
device drivers.

RETURN VALUE
If the protection and offset are valid for the device, the driver should return the
masked page table entry, typically obtained using the function
hat_getkpfnum(D3K), for the page at offset off in the device's memory. If not,
-1 should be returned.

SEE ALSO
segmap(D2K), hat_getkpfnum(D3K)

2-16 10/89

open (D2DK) open (D2DK)

NAME
open - gain access to a device

SYNOPSIS [Block and Character]
tinclude <sys/types.h>
tinclude <sys/file.h>
tinclude <sys/errno.h>
tinclude <sys/open.h>
tinclude <sys/cred.h>

prefixopen (dev_t *dev, int flag, int otyp, cred_t *credy) ;
ARGUMENTS

dev Pointer to a device number.

10/89

flag Information passed from the user program open(2) or create(2) sys
tem call instructs the driver on how to open the file. The bit settings
for the flag are found in file.h associated with the f_flag
member of the file structure. Valid settings are:

FNDELAY open the device and return immediately without sleep
ing (do not block the open even if there is a problem)

FREAD

FWRITE

open the device with read-only permission (if ORed
with FWRITE, then allow both read and write access)

open a device with write-only permission (if ORed with
FREAD, then allow both read and write access)

otyp Parameter supplied so that the driver can determine how many times
a device was opened and for what reasons. The flags assume the
open routine may be called many times, but the close routine
should only be called on the last close of a device. All flags are
defined in open. h.

"credy

OTYP BLK open occurred through block interface for the device

OTYP CHAR open occurred through the raw/character interface for
the device

OTYP MNT the file system on the block device is being opened due
to a mount(2) system call

OTYP SWP open a swapping device

OTYP_LYR open a layered process. This flag is used when one
driver calls another driver's open or close routine.
In this case, there is exactly one close for each open
called. This permits software drivers to exist above
hardware drivers and removes any ambiguity from the
hardware driver regarding how a device is used. This
flag applies to both block and character devices.

Pointer to the cred(D4DK) user credential structure.

2-17

open (D2DK) open (D2DK)

SYNOPSIS [STREAMS]
tinclude <sys/file.h>
tinclude <sys/stream.h>

pre[i.xopen (queue_t *q, dev_t *dev, int oflag, int sflag, cred_t *credy);
ARGUMENTS [STREAMS]

*q A pointer to the read queue. (A queue is the central node of a collec
tion of structures and routines pointed to by a queue.)

*dev Pointer to a device number. For modules, *dev always points to the
device number associated with the driver at the end (tail) of the
stream.

oflag Valid oflag values are the same as those listed above, with the excep
tion that FAPPEND, FCREAT, and FTRUNC have no meaning to a
STREAMS device. For modules, oflag is always set to o.

sflag Valid values are as follows:

*credy

CLONEOPEN Eliminates the need for user processes to poll many
minor devices when looking for an unused one. If the
driver wishes to assign the device a device file, the
open routine must assign and return a minor number.
If no device file is required, the open routine does not
have to return a minor number.

MODOPEN Indicates that an open routine is being called for a
module, not a driver. Drivers should return error
numbers or 0 if an open is attempted with sflag set to
MODOPEN.

o Indicates a driver opened directly, without calling the
clone driver.

Pointer to the cred(D4DK) user credential structure.

DESCRIPTION
The driver's open routine is called by the kernel through the cdevsw or
bdevsw entry for the device during an open(2) or a mount(2) on the special file
for the device. The routine should verify that the minor number component of
dev is valid, that the type of access requested by otyp and flag is appropriate for
the device, and, if required, check permissions using the user credentials pointed
to by credy.

RETURN VALUE
The open routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of DDI/DKI error numbers.

SEE ALSO
close(D2DK)

2-18 10/89

ptint{D2DK) print (D2DK)

NAME
print - display a driver message on system console

SYNOPSIS
'include <sys/types.h>
'include <sys/errno.h>

int prefixprint (dev_t deo, char *str);

ARGUMENTS
deo Device number.

"str Pointer to a character string describing the problem. An explanation
of the problem contained in the string should be included in the driver
output.

DESCRIPTION
The print routine iscaUed indirectly by the kermil through the bdevsw entry
for the device when the kernel has detected an eXceptional condition (such as out
of space) in the device. To display the message on the console, the driver should
use the cmn_ err(D3DK) kernel function.

RETURN VALUE
The print routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of DDI/DKI error numbers. The print routine
can fail if the driver implemented a non-standard print routine that attempted
to perform error logging, but was unable to complete the logging for whatever
reason. Gerterally, since"most print routines call the Cmrt_err(D3DK) function,
and this function is declared as void, return values are seldom returned from
this routine. If a failure occurs, call cmn_err to display a message to the opera
tor.

SEE ALSO
cmn _ err(D3DK)

10/89 2-19

put (D2DK) put(D2DK)

NAME
put - receive messages from the preceding queue

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stream.h>
tinclude <sys/stropts.h>

void prefixrput (queue_t *q, mblk_t mp) ; /* read side * /

void prefixwput(queue_t *q, mblk_t mp); /* write side */
ARGUMENTS

*q Pointer to the queue(D4DK) structure.

mp Pointer to the message block.

DESCRIPTION
The primary task of the put routine is to coordinate the passing of messages
from one queue to the next in a stream. The put routine is called by the preced
ing stream component. (module, driver, or stream head). put routines are desig
nated "write" or "read" depending on the direction of message flow.

With few exceptions, a module or driver must have a put routine. One excep
tion is the read side of a driver, which does not need a put routine because there
is no component downstream to call it. The put routine is always called before
the component's corresponding srv(D2DK) (service) routine, and so put should
be used for the immediate processing of messages.

A put routine must do at least one of the following when it receives a message:

pass the message to the next component on the stream by calling the
putnext(D3DK) function

process the message, if immediate processing is required (for example,
high priority messages)

enqueue the message (with the putq(D3DK) function) for deferred pro
cessing by the service srv(D2DK) routine

Typically, a put routine will switch on message type, which is contained in the
db_type member of the datab structure pointed to by mp. The action taken by
the put routine depends on the message type. For example, a put routine
might process high priority messages, enqueue normal messages, and handle an
unrecognized message by changing its type to M_IOCNAK (negative acknowledge
ment) and sending it back to the stream head using the qreply(D3DK) function.

The putq(D3DK) function can be used as a module's put routine when no spe
cial processing is required and all messages are to be enqueued for the srv rou
tine.

put routines do not have user context and so may not call sleep(D3DK).

SEE ALSO
The Bel Driver Development Guide, Chapter 7, "STREAMS"

2-20 10/89

put(D2DK) put(D2DK)

10/89

The STREAMS Programmer's Guide

streamtab(D4DK), putctl(D3DK), putctl1(D3DK), putnext(D3DK),
putq(D3DK), qreply(D3DK), srv(D2DK)

2-21

read (D2DK) read (D2DK)

NAME
read - read data from a device

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/errno.h>
iinc!ude <sys/open.h>
tinclude <sys/uio.h>
tinclude <sys/cred.h>

prefixread(dev_t dev, uio *uioy, cred_t *credy);

ARGUMENTS
dev
Device number.

*uioy

*credy

Pointer to the uio(D4DK) structure that describes where the data is to
be stored in user space.

Pointer to the cred(D4DK) user credential structure for the I/O tran
saction.

DESCRIPTION
The driver read routine is called indirectly through cdevsw by the read(2)
system call. The read routine should check the validity of the minor number
component of dev and the user credentials contained in the cred(D4DK) struc
ture pointed to by *cred Y (if pertinent). The read routine should supervise the
data transfer into the user space described by the uio(D4DK) structure.

RETURN VALUE
The read routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of error values.

SEE ALSO
write(D2DK)

2-22 10/89

segmap(D2K) segmap(D2K)

NAME
seqmap - map device memory into user space

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mman.h>
tinclude <sys/param.h>
tinclude <sys/vm.h>

int pre[ixseqmap (dev_t dev, off_t of!,struct as *asp, addr_t *addrp,
off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credy);

ARGUMENTS
dev Device whose memory is to be mapped.

of!

"asp

"addrp

len

Offset within device memory at which mapping begins.

Pointer to the address space into which the device memory should be
mapped.
Pointer to the address in the address space to which the device
memory should be mapped.

Length (in bytes) of the memory to be mapped.

prot Protection flag (from sys/mman.h) for example, PROT_WRITE,
PROT_READ, PROT_USER (indicating the mapping is being done as.a
result of a mmap(2) system call).

maxprot

flags

"credy

Maximum protection flag possible for attempted map (PROT_WRITE
may be masked out if the user opened the special file read-only). If
(maxprot & prot) != prot then there is an access violation.

Flags indicating type of mmap (for example, MAP _SHARED vs.
MAP_PRIVATE), whether the user specified an address (MAP_FIXED).
Found in sys/mman.h.

Pointer to the cred(D4DK) user credentials structure.

DESCRIPTION

10/89

The segmap entry point is an optional routine for character drivers that support
memory mapping. The mmap(2) system call, when applied to a character special
file, allows device memory to be mapped into user space for direct access by the
user application (no kernel buffering overhead is required).

Typically, a character driver that needs to support the mmap(2) system call sup
plies either a single mmap(D2K) entry point, or both an mmap and a segmap
entry point routine (see the mmap(D2K) reference page). If no segmap entry
point is provided for the driver, the default kernel seqmap routine is called to
perform the mapping.

A driver for a memory-mapped device would provide a segmap entry point if it:

requires the mapping to be done through a virtual memory (VM) segment
driver other than the default se~L dey driver provided by the kernel

2-23

segmap(D2K) segmap(D2K)

needs to control the selection of the user address at which the mapping
occurs in the case where the user did not specify an address in the
mmap(2) system call

Among the responsibilities of a segmap entry point are:

Select a segment driver and check the memory map flags for appropriate
ness to the segment driver. For example, the seg_dev segment driver
does not support memory maps that are marked MAP_PRIVATE (copy
on-write).

Verify that the range to be mapped makes sense in the context of the dev
ice (does the offset and length make sense for the device memory that is
to be mapped). Typically, this task is performed by calling the
mmap(D2K) entry point.
If MAP_FIXED is not set in flags, obtain a user address at which to map.
Otherwise, unmap any existing mappings at the user address specified.

Perform the mapping and return the error status if it fails.

RETURN VALUE
The routine returns 0 if the driver is successful in performing the memory map
of its device address space into the specified address space. An error number
should be returned on failure. For example, valid error numbers would be
ENXIO if the offset/length pair specified exceeds the limits of the device memory,
or EINVAL if the driver detects an invalid type of mapping attempted.

SEE ALSO
mmap(D2K)

2-24 10/89

size (020)

NAME
size - return size of logical device

SYNOPSIS
tinclude <sys/types.h>

pre[ixsize (dev_t dev);

ARGUMENT
dev The logical device number.

DESCRIPTION

size(020)

Returns the number of 512-byte units on a logical device (partition). Although
this routine is not required, it is recommended that new drivers include one as
the Release 4.0 kernel calls the size routine on behalf of certain UNIX com
mands such as stat(3G).

RETURN VALUE

10/89

The number of 512 byte units on the logical device specified by dev, or -1 on
failure.

2-25

srv(D2DK) srv(D2DK)

NAME
srv - service queued messages

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stream.h>
tinclude <sys/stropts.h>

void pre[ixrsrv(queue_t q); /* read side */

void pre[ixwsrv(queue_t q); /* write side */
ARGUMENTS

*q Pointer to the queue(D4DK) structure

DESCRIPTION

2-26

The optional service (srv) routine may be included in a STREAMS module or
driver for one or more of the following reasons:

to provide greater control over the flow of messages in a stream

to make it possible to defer the processing of some messages to avoid
depleting system resources

to combine small messages into larger ones, or break large messages into
smaller ones

to recover from resource allocation failure. A module's or driver's
put(D3DK) routine can test for the availability of a resource, and if it is
not available, enqueue the message for later processing by the srv rou
tine.

A message is first passed to a module's or driver's put(D2DK) routine, which
mayor may not do some processing. It must then either

pass the message to the next stream component with putnext(D3DK)

if a srv routine has been included, it may call the putq(D3DK) function
to place the message on the queue

Once a message has been enqueued, the Sf REAMS scheduler controls the calling
of the service routine. Service routines are called in FIFO order by the scheduler.
No guarantees can be made about how long it will take for a srv routine to be
called except that it will happen before any user level process are run.

Every stream component (stream head, module or driver) has limit values it uses
to implement flow control. Tunable high and low water marks are checked to
stop and restart the flow of message processing. Flow control limits apply only
between two adjacent components with srv routines.

STREAMS messages can be defined to have up to 256 different priorities to sup
port some networking protocol requirements for multiple bands of data flow. At
a minimum, a stream must distinguish between normal (priority zero) messages
and high priority messages (such as M_IOCACK). High priority messages are
always placed at the head of the srv routine's queue, after any other enqueued
high priority messages. Next are messages from all included priority bands,

10/89

srv(D2DK) srv(D2DK)

which are enqueued in decreasing order of priority. Each priority band has its
own flow control limits. If a flow controlled band is stopped, all lower priority
bands are also stopped.

Once a srv routine is called by the STREAMS scheduler it must process all mes
sages on its queue. The following steps are general guidelines for processing
messages. Keep in mind that many of the details of how a srv routine should
be written depend of the implementation, the direction of flow (upstream or
downstream), and whether it is for a module or a driver.

1. Use the getq(D3DK) function to get the next enqueued message.

2. If the message is high priority, process (if appropriate) and pass to the next
stream component with the putnext(D3DK) function.

3. If it is not a high priority message (and therefore subject to flow control),
attempt to send it to the next stream component with a srv routine. Use
bcanput(D3DK) to determine if this can be done.

4. If the message cannot be passed, put it back on the queue with
putbq(D3DK). If it can be passed, process (if appropriate) and pass with
putnext.

NOTE: Each stream module has a read and write service (srv) routine. If a ser
vice routine is not needed (because the put routine processes all messages), a
NULL pointer should be placed in module's qinit structure. Do not use the
nulldev routine instead of the NULL pointer. Use of nulldev for a srv rou
tine may result in flow control errors.

SEE ALSO

10/89

The BCI Driver Development Guide, Chapter 7, "STREAMS"

The STREAMS Programmer's Guide, Chapter 5, "Messages"

bcanput(D3DK), canput(D3DK), getq(D3DK), put (D2DK), putbq(D3DK),
putnext(D3DK), putq(D3DK), queue(D4DK)

2-27

start (D2D) start (D2D)

NAME
start - start access to a device

SYNOPSIS
void prepxstart();

DESCRIPTION
The start routine is called when a computer starts placing a device into a
known state. At the time this routine is called, the developer cannot depend on
root being mounted. However, the developer can depend on low level system
services being available such as interrupts enabled.

A start routine may perform the following types of activities:

initialize data structures for device access

allocate buffers for private buffering scheme

map device into virtual address space

initialize hardware (for example, perform a system generation and reset
the board)

initialize the serial device for character drivers

initialize any static data associated with the driver
SEE ALSO

init(D2DK)

2-28 10/89

strategy (D2DK) strategy (D2DK)

NAME
strategy - perform block I/O

SYNOPSIS
'include <sys/types.h>
'include <sys/buf.h>

int prepxstrategy(struct buf *bp);
ARGUMf=NT

bp Pointer to the buf(04DK) structure.

DESCRIPTION
The strategy routine is called indirectly (through bdevsw) by the kernel to
read and write blocks of data on the block device. strategy may also be called
directly or indirectly (via a call to the kernel function physiock(D3D», to sup
port the raw character interface of a block device (read(D20K), write(D2DK)
and ioctl(D2DK». The strategy routine's responsibility is to set up and ini
tiate the transfer.

RETURN VALUE
On an error condition, OR the b flags member of the buf(D4DK) structure
with B_ERROR. and set the b_error member to the appropriate error value.

SEE ALSO
read(D2DK), wr i te(D2DK)

10189 2-29

write (D2DK) write (D2DK)

NAME
write - write data to a device

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/errno.h>
tinclude <sys/open.h>
tinclude <sys!cred.h>

int prefixwrite (dev_t dev, uio_t *uioy, cred_t *aedy);
ARGUMENTS

deo
Device number.
uroy

aedy

Pointer to the uio(D4DK) structure that describes where the data is to
be stored in user space.
Pointer to the cred(D4DK) user credential structure for the I/O tran
saction.

DESCRIPTION
Used for character or raw data I/O, the driver write routine is called indirectly
through cdevsw by the write(2) system call. The write routine supervises the
data transfer from user space to a device described by the uio(D4DK) structure.

The write routine should check the validity of the minor number component of
deo and the user credentials pointed to by aed y (if pertinent),

RETURN VALUE
The write routine should return 0 for success, or the appropriate error number.
Refer to Appendix A for a list of DOI/DK! error numbers.

SEE ALSO
read(D2DK)

2-30 10/89

3 Kernel Functions (03)

Introduction
Function Summary

Manual Pages
adjmsg(D3DK)
allocb(D3DK)
backq(D3DK)
bcanput(D3DK)
bcopy(D3DK)
biodone(D3DK)
biowait(D3DK)
bp mapin(D3DK)
bp mapout(D3DK)
brelse(D3DK)
btop(D3DK)
btopr(D3DK)
bufcall(D3DK)
bzero(D3DK)
canput(D3DK)
clrbuf(D3DK)
cmn_err(D3DK)
copyb(D3DK)
copyin(D3DK)
copymsg(D3DK)
copyout(D3DK)
datamsg(D3DK)
delay(D3DK)
dma_pageio(D3D)
drv _getparm(D3DK)
drv _ hztousec(D3DK)

Table of Contents

3-1
3-2

3-7
3-7
3-8
3-10
3-11
3-12
3-14
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-24
3-25
3-26
3-27
3-30
3-32
3-33
3-35
3-37
3-38
3-40
3-42
3-44

Table of Contents ____________________ _

drY J>riv(030K) 3-45
drY _ usectohz(03 OK) 3-46
drY _ usecwait(030K) 3-47
dupb(030K) 3-48
dupmsg(030K) 3-50
enableok(030K) 3-51
esballoc(030K) 3-52
esbbcall(030K) 3-53
etoimajor(030) 3-54
flushband(030K) 3-55
flushq(030K) 3-56
freeb(030K) 3-58
freemsg(030K) 3-59
freerbuf(030K) 3-60
getemajor(030) 3-61
geteminor(030) 3-62
geterror(030K) 3-63
getmajor(030K) 3-64
getminor(D30K) 3-65
getq(030K) 3-66
getrbuf(030K) 3-67
getvec(030) 3-68
hat_getkpfnum(03K) 3-69
hdeeqd(030) 3-70
hdelog(030) 3-73
insq(030K) 3-76
itoemajor(030) 3-78
kmem alloc(030K) 3-79
kmem free(030K) 3-80
kmem _ zalloc(030K) 3-81
kvtophys(03 D) 3-82
Iinkb(030K) 3-83
makedevice(030K) 3-84
max(030K) 3-85
min(030K) 3-86
msgdsize(030K) 3-87
noenable(03 OK) 3-88

II OOI/OKI Reference Manual

_____________________ Table of Contents

OTHERQ(D3DK) 3-89
page nu mtopp(D3 DK) 3-90
pageyptonum(D3DK) 3-91
physiock(D3D) 3-92
pollwakeup(D3DK) 3-95
ptob(D3DK) 3-96
pullupmsg(D3DK) 3-97
putbq(D3DK) 3-99
putctl(D3DK) 3-100
putctl1 (D3DK) 3-102
putnext(D3DK) 3-103
putq(D3DK) 3-104
qenable(D3DK) 3-105
qreply(D3DK) 3-106
qSize(D3DK) 3-108
RD(D3DK) 3-109
rmalloc(D3DK) 3-110
rmfree(D3DK) 3-114
rminit(D3DK) 3-115
rmsetwant(D3DK) 3-116
rmvb(D3DK) 3·117
rmvq(D3DK) 3-118
rmwant(D3DK) 3-120
SAMESTR(D3DK) 3-121
sleep(D3DK) 3-122
spl(D3D) 3-125
strlog(D3DK) 3-127
strqget(D3DK) 3-128
strqset(D3DK) 3-129
testb(D3DK) 3-130
timeout(D3DK) 3-132
uiornove(D3DK) 3-133
unlinkb(D3DK) 3-134
untimeout(D3DK) 3-135
ureadc(D3DK) 3-138
useracc(D3DK) 3-139
uwritec(D3DK) 3-140

Table of Contents iii

Table of Contents

iv

vtop(D3D)
wakeup(D3DK)
WR(D3DK)

3-141
3-142
3-143

OOI/OKI Reference Manual

I ntrod uction

This chapter describes the kernel functions available for use by device drivers.
Each function is described in a separate entry. Most functions are part of both
DDI and DKI~these are indicated by the (D3DK) cross reference code. Func
tions belonging only to DDI are cross-referenced by (D3D) and DKI-only func
tions are marked (D3K).

In this section; the information for each driver function is organized under the
following headings:

• NAME surpinarizes the function's purpose.

• SYNOPSIS shows the syntax of the function's entry point in the $Duree
code. linclude statements are shown for required header files.

• ARGUMENTS describes any arguments required to invoke the function.

• DESCRIPTION deSCribes general information about the function.

• RETURN VALUE describes the retul1l values and messages that can result
from invoking the function,

• LEVEL indicates from which driver level (base or interrupt) the function
can be called.

• SEE ALSO indicates functions that are related by usage and sources, and
which can be referred to for further information.

• EXAMPLE shows how the function can he used in driver code.

Tha ddi.~ haader file undefines macros that have baen reimplemented as
tllnctjon~ inl)NIX System V Releasa 4.p~ Always place ddi. 11. at the end of
t~.eldistP,.f itlPl. p~'lilf~~~m~~t$ tp ~~i~ qQq.t.",nti(;ln tletweal1 macro anq func-
tion ec aratlons. . '.' ... " ,.

Kernel Functions {03} 3-1

Introduction

Function Summary

Table 3-1 summarizes the STREAMS functions described in this section.
STREAMS functions may be used in either DOlor DKl.

Table 3-1: STREAMS Kernel Function Summary

Routine Description

adjmsq remove the specified number of bytes from
a message

allocb allocate a message block

backq get pointer to the previous queue

bcanput test for flow control in specified priority
band

bufcall get buffer when allocb fails

canput test for room in a message queue

copyb copy a message block

copymsq copy a message to a new message

datamsq test whether a message is a. data message

dupb duplicate a message block descriptor

dupmsq duplicate a message

enableok enable a queue for service

esballoc allocate a message block with a shared
buffer

esbbcall: get message header when esballoc fails

flushband flush messages for specified priority band

flushq remove messages from a queue

freeb free a message block

freemsq free all message blocks in a message

qetq get a message from the front of a queue

insq insert a message into a queue

linkb concatenate two message blocks

3-2 OOI/OKI ReJerence Manual

Introduction

Table 3-1: STREAMS Kernel Function Summary (continued)

Routine Description

msgdsize return the number of bytes in a message

noenable prevent a queue from being scheduled

OTHERQ get a pointer to a module's other queue

pullupmsq concatenate bytes in a message

putbq place a message at the head of a queue

putctl put a control message on a queue

putctll put a control message with a one-byte
parameter on a queue

putnext send a message to the next module in the
stream

putq put a message on a queue

qenable enable a queue

qreply send a message in the reverse direction

qsize find the number of messages on a queue

RD get a pointer to a module's read queue

rmvb remove a message block from a queue

rmvq remove a message from a queue

SAMESTR test if next queue is same type

strloq submit messages for logging

strqqet get information about a queue

strqset change information about a queue

testb check for an available buffer

unlinkb remove the message block from the head of
a message

WR get pointer to this module's write queue

Kernel Functions (03) 3-3

Introduction

Table 3-2 summarizes the functions not specific to STREAMS. Functions can be
used in either DDI or DKI, except as noted.

Table 3·2: Kernel Functions Not Specific to STREAMS

Routine Description Type

bcopy copy data between locations in the kernel,
for example, from one buffer to another

biodone release buffer after block I/O and wakeup
processes

biowait suspend processes pending completion of
block I/O

bp map in allocate virtual address space

bp_mapout deallocate virtual address space

brelse return buffer to the kernel

btop return number of memory pages contained
in specified number of bytes (downward
rounding)

btopr return number of memory pages contained
in specified number of bytes (upward
rounding)

bzero clear memory for a number of bytes

clrbuf erase buffer contents

cmn err display message or panic the system

copyin copy data from user space to the driver

copyout copy data from the driver to user space

delay delay for specified number of clock ticks

dmayageio break up DMA requests DOl only

drv getparm retrieve kernel state information

drv_hztousec convert from clock ticks to microseconds

drvyriv determine driver privileges

drv_usectohz convert from microseconds to clock ticks

3·4 OOI/OKI Reference Manual

Introduction

Table 3-2: Kernel Functions Not Specific to STREAMS (continued)

Routine Description Type

drv_usecwait wait for specified number of microseconds

etoimajor convert external major number to internal DOl only
major number

freerbuf free a raw buffer header

getemajor get external major number DOl only

geteminor get external minor number DOl only

get error return an I/O error

getmajor get major number

getminor get minor number

getrbuf get a raw buffer header

getvec get an interrupt vector for a given virtual DOl only
board address

hat getkpfnum get page frame number for address DKlonly

hdeeqd initialize error logging in the hard disk DOl only

hdelog log a hard disk error DOl only

itoemajor convert internal major number to external DOl only
number

kmem_alloc allocate storage from kernel free space

kmem free free previously allocated kernel memory

kme~zalloc allocate and clear storage from kernel free
memory

kvtophys convert kernel virtual to physical address DOl only

makedevice create a device number

max return the larger of two integers

min return the smaller of two integers

page_numtopp convert page frame number to page struc-
ture

Kernel Functions (03) 3-5

Introduction

Table 3-2: Kernel Functions Not Specific to STREAMS (continued)

Routine Description Type

page-pptonum convert page structure to page frame
number

physiock validate and issue raw I/O request DDI only

pollwakeup inform a process that an event has occurred

ptob convert size in pages to size in bytes

rmalloc allocate space from a private space manage·
mentmap

rmfree free space back into a private space
management map

rminit initialize a private space management map

rmsetwant set the map's wait flag for wakeup

rmwant wait for free memory

sleep suspend execution

spl suspend or allow interrupts

timeout call function in clock ticks

uiom:>ve copy kernel data using uio structure

untimeout cancel timeout with matching ID

ureadc add character to uio structure

·useracc verify user access to data structures

uwritec remove a character from a uio structure

vtop convert virtual to physical address DDI only

wakeup resume suspended execution

3-6 OOI/OKI Reference Manual

adJmsg (D3DK)

NAME
adjmsq - trim bytes from a message

SYNOPSIS
'include <sys/stream.h>

int adjmsq(mblk_t *mp, int len);

ARGUMENTS
"mp Pointer to the message to be trimmed.

len The number of.bytes to be removed.

DESCRIPTION

adjmsg (D3DK)

adjmsq removes bytes from a message. I len I (the absolute value of len) specifies
how many bytes are to be removed. If len is greater than 0, bytes are removed
from the head of the message. If len is less than 0, bytes are removed from the
tail. adjmsq fails if I len I is greater than the number of bytes in mp.

RETURN VALUE

LEVEL

If the lI\essage can be trimmed successfully, 1 is returned. Otherwise, ° is
returned.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

10/89 3-7

alloc~ (D3DK) allocb (D3DK)

NAME
allocb - allocate a message block

SYNOPSIS
tinclude <sys/stream.h>

mblk t *alloc1:> (int size, int pri) ;
ARGUfJ!ENTS

size The number of bytes in the message block.

Priority of the request (no longer used). pri
DESC~IPTION

allocb tries to allocate a STREAMS message block. Buffer allocation fails only
when the system is out of memory. If no buffer is available, the
bufcall(D3DK) function can help a module recover from an allocation failure.

NOTE: The pri argument is no longer used in UNIX System V Release 4, but is
retained for compatibility with existing drivers.

The following figure identifies the data structure members that are affected when
a message block is allocated.

b cont (0)
b-rptr - r b-WPtr -
b:datap

meS$age block
(mblk_t)

db base
db-lim
db-type (M DATA)
db=class (6)

data block
(db 1 k_t)

~

~
data buffer

RETURN VALUE

LEVEL

If successful, allocb returns a pointer to the allocated message block of type
M~DATA (defined in sya/stream.h). If a block cannot be allocated, a NULL
pointer. is returned.

Base or Interrupt

SEE ALSO
. Bel Driver Development Guide, Chapter 7, "STREAMS"

STREAMS Programmer's Guide, Chapter 5, "Messages"

bufcall(D3DK), esballoc(D3DK), esbbcal1(D3DI<), testb(D3DK)

EXAMPLE

3-8

Given a pbinter to a queue (q) and an error number (err), the send-,"error rou
tine sends an M _ERROR type message to the stream head.

If a message cannot be allocated, 0 is returned, indicating an allocation failure
(line 8). Otherwise, the message type is set to M_ERROR (line 10). Line Ii incre
ments the write pointer (bp->b_wptr) by the size (one byte) of the data in the
message.

10/89

allocb(OaOK) allocb(030K)

10/89

A message must be sent up the read side of the stream to arrive at the stream
head. To determine whether q points to a read queue or a write queue, the q
><t..,.flag member is test~ to see if QREADR is set (line 13). If it is not set, q
points to a write queue, and in line 14 the RI)(D3DK) function is used to find the
corresponding read queue. In line 15, the putne~t(D3DK) function is used to
send the message upstream, returning 1 if successful.

1 send_error(q,err)

2 queue_t *q;

3 unsiqp.ed char err;
4

5 mblk_t *bp;

6
7 if «bp - allocb(l, BPRI_HI)) __ NULL) 1* alloc~te msq. block *1
8 return (0) ;

9
10

11

12
13

14
15

bp->b_datap->db_type - M_ERROR;

*bp->b_wptr++ ~ err;

if(!q"'~flag , QREADR))

q - RD(q);
putnext (q, bp) ;

16 return(l);

17

1* set msg type to M_ERRCiR *1
1* ip.crement write pointer *1

1* if not read queue *1
1* get read queue *1
1* send message upstream *1

3-9

backq (D3DK) backq (D3DK)

NAME
backq - get pointer to the queue behind the current queue

SYNOPSIS
tinclude <sys/stream.h>

queue_t *backq(queue_t *cq);
ARGUMENT

*cq The pointer to the current queue. queue _tis an alias for the
queue(D4DK) structure.

DESCRIPTION
backq returns a pointer to the queue preceding cq (the current queue). If cq is a
read queue, backq returns a pointer to the queue downstream from cq, unless it
is the stream end. If cq is a write queue, backq returns a pointer to the next
queue upstream from cq, unless it is the stream head.

RETURN VALUE:

LEVEL

If successful, backq returns a pointer to the queue preceding the current queue.
Otherwise, it returns NULL.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

3-10 10/89

bcanput(D3DK) bcanput (D3DK)

NAME
bcanput - test for flow control in specified priority band

SYNOPSIS
tinclude <sys/stream.h>

int bcanput(queue_t *q,unsigned char pri>;
ARGUMENT

q Pointer to the message queue.

Message priority. pri
DESCRIPTION

Like the canput(D3DK) function, bcanput searches through the stream (start
ing at q) until it finds a queue containing a service routine where the message can
be enqueued, or until it reaches the end of the stream. If found, the queue con
taining the service routine is tested to see if there is room for a message in the
queue. If the queue is full, bcanput sets the QWANTW flag to back-enable the
caller's service routine.

If pri is 0, the bcanput call is equivalent to a call to canput.

NOTE: You are responsible for both testing a queue with bcanput and refrain
ing from placing a message on the queue if bcanput fails.

RETURN VALUE

LEVEL

A 1 is returned if a message of priority pri can be placed on the queue, or if the
band does not yet exist on the queue. A 0 is returned if the priority band is
flow-controlled.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

canput(D3DK), putbq(D3DK), putnext(D3DK)

10/89 3-11

bcopy(030K) bcopy(030K)

NAME
bcopy - copy data between address locations in the kernel

SYNOPSIS
tinclude <sys/types.h>

int bcopy (caddr_t from, caddr_t to, long bcount) ;
ARGUMENTS

from Source address from which the copy is made.

to

bcount

Destination address to which copy is made.

The number of bytes moved.

DESCRIPTION
bcopy copies bcount bytes from one kernel address to another. If the input and
output addresses overlap, the command executes, but the results may not be as
expected.

CAUTION: The from and to addresses must be within the kernel space. No range
checking is done. If an address outside of the kernel space is selected, the driver
may corrupt the system in an unpredictable way.

Note that bcopy should never be used to move data in or out of a user buffer,
because it has no provision for handling page faults. The user address space can
be swapped out at any time, and bcopy always assumes that there will be no
paging faults. If bcopy attempts to access the user buffer when it is swapped
out, the system will panic. It is safe to use bcopy to move data within kernel
space, since kernel space is never swapped out.

RETURN VALUE
Under all conditions, 0 is returned.

LEVEL
Base or Interrupt

SEE ALSO
BCl Driver Development Guide, Chapter 6, "Input/Output Operations"

copy in(D3DK), copyout(D3DK)

EXAMPLE
An I/O request is made for data stored in a RAM disk. If the I/O operation is a
read request, the data is copied from the RAM disk to a buffer (line 7). If it is a
write request, the data is copied from a buffer to the RAM disk (line 11). The
bcopy function is used since both the RAM disk and the buffer are part of the
kernel address space.

1 .define RAMDNBLK 1000 /* blocks in the RAM disk */

2 'define RAMDBSIZ 512 /* bytes per block */
3 char ramdblks[RAMDNBLK] [RAMDBSIZ]; /* blocks forming RAM disk */

4

5 if (bp->b_flags & B_READ) /* if read request, copy data from RAM */

6 /* disk data block to system buffer */
7 bcopy(&ramdblks[bp->b_blkno] [0], bp->b_un.b_addr, bp->b_bcount);
8

3-12 10/89

bcopy(D3DK) bcopy(D3DK)

9 else /* else write request. copy data from a */
10 /* system buffer to RAM disk data block */
11 bcopy(bp->b_un.b_addr. 'ramdblks[bp->b_blkno] [0]. bp->b_bcount);

10/89 3-13

biodone(D3DK) biodone (D3DK)

NAME
biodone - release buffer after block I/O and wakeup processes

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

void biodone(struct buf *bp);
ARGUMENT

*bp Pointer to the buffer header structure defined in buf. h. This is the
address of the buffer header associated with the buffer where the I/O
occurred.

DESCRIPTION
The biodone function is called by either the driver int(D2D) or
strategy(D2DK) routines when a block I/O request is complete. In general,
biodone awakens sleeping processes waiting for the I/O to complete, sets the
B_DONE flag in the buf structure b_flags field, and releases the block if the
I/O is asynchronous.

For drivers that wish to make multiple I/O requests without releasing and reallo
cating a buffer header for each individual request, biodone provides the capa
bility to check for an additional function to be called before the buffer header is
released. Additional routines to be called from biodone are referenced by the
(*b_biodone) field ofthe buf structure.

biodone performs the following functions in the order presented:

checks the (*biodone) field of the buf structure for additional routines
to be called. If an additional routine is referenced, it is called and the
functions listed below are not completed.

awakens the process(es) that called sleep(D3DK) to wait for the buffer
header if I/O is synchronous

releases the block if I/O is asynchronous and awakens processes awaiting
asynchronous I/O

marks b_flags of buffer with B DONE

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCl Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software
Events"

biowait(D3DK), buf(D4DK), delay(D3DK), int(D3D), strategy(D3DK),
sleep(D3DK), timeout(D3DK), untimeout(D3DK), wakeup(D3DK)

EXAMPLE

3-14

Generally, the first validation test performed by any block device
strategy(D2DK) routine is a check for an end-of-file (EOF) condition. The
strategy routine is responsible for determining an EOF condition when the

10/89

blodone (D3DK) blodone(D3DK)

10/89

device is accessed directly. If a read request is made for one block beyond the
limits of the device (line 10), it will report an EOF condition. Otherwise, if the
request is outside the limits of the device, the routine will report an error condi
tion. In either case, report the I/O operation as complete (line 27).

1 'define RAMDNBLK
2 'define RAMDBSIZ

1000

512

1* Number of blocks in RAM disk */
1* Number of bytes per block *1

3 char ramdb1ks[RAMDNBLK] [RAMDBSIZ]; 1* Array containing RAM disk */
4

5 ramdstrategy(bp)
6 register struct buf *bp;
7

8
9

10

11

12

13

14
15

16
17
18
19
20
21

22
23
24

25

26
27

28

29
30
31
32
33
34

register daddr_t blkno - bp->b_blkno; 1* get block number *1

if (blkno < 0 1 1 blkno >- RAMDNBLK) {
1*

* If requested block is outside RAM disk
* limits, test for EOF' which could result
* from a direct (physiock) request.
*1

if (blkno -- RAMDNBLK " bp->b_flags , B_READ)
1*

* If read is for block beyond RAM disk
* limits, mark EOF condition.
*1
bp-~b_resid -- bp->b_bcount;/* compute return value */

else (
bp->b_error - ENXIO;
bp->b_flags 1- B_ERROR;

1* endU *1

1* I/O attempt is beyond *1
1* limits of RAM disk *1
1* return error *1

biodone(bp); 1* mark I/O complete (B_DONE) *1
1*

* Wake any processes awaiting this I/O
* or release buffer for asynchronous
* (B_ASYNC) request.
*1

return;
/* eDdU *1

3-15

biowalt(D3DK) blowait(D3DK)

NAME
biowait - suspend processes pending completion of block I/O

SYNOPSIS
'include <sys/types.h>
'include <sys/buf.h>

int biowait(struct buf *bp};

ARGUMENT
*bp Pointer to the bUf structure.

DESCRIPTION
The biowait function suspends process execution during a block I/O transfer
by calling sleep(D3DK). Block driver routines using the buf structure to allo
cate buffers can use the biowait function to suspend a process while waiting
for a read or write request to complete.

The biowait function is one of three functions used to aid block I/O transfers.
The other functions in this group are biodone(D3DK), which notifies biowait
that the I/O is complete, and brelse, which frees the buffer allocated for the
transfer.

Drivers using the biowait function. must also include the biodone(D3DK)
function in their interrupt routines. The biodone function awakens biowait
when the I/O transfer is complete.

Because biowait calls sleep, biowait cannot be called from an interrupt
routine or from an init(D2D) routine.

RETURN VALUE

LEVEL

None. However, biowait returns any error that may have occured during the
I/O transfer to the user using geterror(D3DK).

Base Only (Do not call from an interrupt routine)

SEE ALSO

3-16

biodone(D3DK), brelse(D3DK), sleep(D3DK), timeout(D3DK),
untimeout(D3DK), wakeup(D3DK)

10189

bp_mapin(030K)

NAME
bp_mapin - allocate virtual address s~ce

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

vaddr_t bp_mapin(struct buf *bp);
ARGUMENTS

"bp Pointer to the buffer header structure.

DESCRIPTION·
Ute bp_mapill function is used to map virtual address space to a page list main
taned by the buffer header during a paged-I/O request. bp_mapin allocates sys
tem virtual address space, maps that space to the page list, and returns the offset
into the map. The offset is stored in the bp->b_un.b_addr field of the of the
buf structure (see buf(D4DK». Virtual address space is then deallocated using
the bp_mapout function.

If a 1W~ page list is encountered, bp_mapin returns without allocating space
and no mapping is performed.

RETURN VALUE
The starting address of the allocated system virtual address space.

LEVEL
Base

SEE ALSO
bp _ mapout(D3DK), buf(D4DK)

10/89 3-17

bp _mapout (D3DK)

NAME
bp _mapout - deallocate virtual address space

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

void bp_mapin(struct buf *bp);
ARGUMENTS

bp Pointer to the buffer header structure.
DESCRIPTION

bp_mapout(D3DK)

This function deallocates system virtual address space allocated by a previous call
to bp...:.mapin(D3DK). bp_mapin maps virtual address space to a page list
maintained by the buffer header for a paged-I/O request, then returns the offset
into the map to the b_addr field of the buf structure.

RETURN VALUE
None

LEVEL
Base

SEE ALSO
bp _ mapin(D3DK), buf(D4DK)

3-18 10/89

brelS8(D3DK) brelse(D3DK)

NAME
brelse - return buffer to the bfreelist

SYNOPSIS
'include <sys/types.h>
'include <sys/buf.h>

void brelse(struct buf *bp);
ARGUMENT

"bp Pointer to the buf structure.

DESCRIPTION
The brelse function returns a previously allocated buffer to the buffer free list.
First, brelse wakes up processes sleeping on the buffer. After the driver func
tion is finished with the buffer, brelse returns the buffer header to a list of free
buffers and awakens any processes that called sleep(D3DK) to wait for a free
buffer on the bfreelist.

RETURN VALUE

LEVEL

None, however, if b flags has B ERROR enabled due to an error in an earlier
I/O transfer, b flags is ORed With B STALE and B_AGE, B ERROR and
B_DELWRI are disabled, and b_error is set to o.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 6, "Input/Output Operations"

clrbuf(D3DK), biodone(D3DK), biowait(D3DK)

10189 3-19

btop(D3DK)

NAME
btop - convert size in bytes to size in pages (round down)

SYNOPSIS
tinclude <sys/ddi.h>

unsigned long btop(unsigned long num~es);
ARGUMENT

numbytes Number of bytes.

DESCRIPTION

btop(D3DK)

The btop function returns the number of memory pages that are contained in
the specified number of bytes, with downward rounding in the case that the byte
count is not a page multiple. For example, if the page size is 2048, then
btop(4096) returns 2, and btop(4097) returns 2 as well. btop(O) returns
O.

RETURN VALUE
The return value is always the number of pages. There are no invalid input
values, and therefore no error return values.

LEVEL
Base or Interrupt

SEE ALSO
btopr(D3DK), ptob(D3DK)

3-20 10/89

btopr(D3DK)

NAME
btopr - convert size in bytes to size in pages (round up)

SYNOPSIS
'include <sys/ddi.h>

unsigned long btopr(unsigned long nUnWyt~);

ARGUMENT
nunWyt~ Number of bytes.

DESCRIPTION

btopr(D3DK)

This function returns the number of memory pages contained in the specified
number of bytes memory, rounded up to the next whole page. For example, if
the page size is 2048, then btopr(4096) returns 2, and btopr(4097) returns
3.

RETURN VALUE

LEVEL

The return value is always the number of pages. There are no invalid input
values, and therefore no error return values.

Base or Interrupt
SEE ALSO

btop(D3DK), ptob(D3DK)

10/89 3-21

bufcall (D3DK) bufcall (D3DK)

NAME
bufcall - call a function when a buffer becomes available

SYNOPSIS
'include <sys/stream.h>

int bufcall (int size, int pri, int (*june) (), long arg) ;
ARGUMENTS

size Number of bytes in the buffer.

pri Priority of the allocb(D3DK) allocation request (not used).

june Function or driver routine to be called when a buffer becomes avail
able.

arg Argument to the function to be called when a buffer becomes avail
able.

DESCRIPTION
bufcall serves as a timeout(D3DK) call of indeterminate length. When a
buffer allocation request fails, bufcall can be used to schedule the routine june,
to be called with the argument arg when a buffer becomes available. june may be
a routine that calls bufcall or it may be another kernel function.

NOTE: Even when june is called by bufcall, allocb(D3DK) can still fail if
another module or driver had allocated the memory before june was able to call
allocb.

RETURN VALUE

LEVEL

If the bufcall scheduling fails, june is never called and 0 is returned. If suc
cessful, bufcall returns 1.

Base or Interrupt
SEE ALSO

Bel Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), esballoc(D3DK), esbbcall(D3DK), testb(D3DK),
timeout(D3DK)

EXAMPLE

3-22

The purpose of this srv(D2DK) service routine is to add a header to all M_DATA
messages. Service routines must process all messages on their queues before
returning, or arrange to be rescheduled.

While there are message to be processed (line 13), check to see if it is a high
priority message or a normal priority message that can be sent on (line 14). Nor
mal priority message that cannot be sent are put back on the message queue (line
34). If the message was a high priority one, or if was normal priority and
canput(D3DK) succeeded, then send all but M _DATA messages to the next
stream entity with putnext(D3DK) (line16).

For M_DATA messages, try to allocate a buffer large enough to hold the header
(line 18). If no such buffer is available, the service routine must be rescheduled
for a time when a buffer is available. The original message is put back on the
queue (line 20) and bufcall (line 21) is used to attempt the rescheduling. It

10/89

bufcall (D3DK) bufcall (D3DK)

10/89

will succeed if a buffer of the specified size (sizeof (struct hdr» is avail
able. If it does, qenable(D3DK) will put q on the list of queues to have their
service routines called. If bufcall fails, timeout(D3DK) (line 22) is used to
try again in about a half second (HZ/2).

If the buffer allocation was successful, initialize the header (lines 25-28), make the
message type M_PROTO (line 29), link the M_DATA message to it (line 30), and
pass it on (line 31).

1 struct hdr {
2 unsigned int h_size;
3 int h_version;
4 };

5

6 modsrv(q)
7 queue_t *q;
8

9 mblk_t *bp;
10 mblk_t *mp;
11 struct hdr *hp;
12

13 while «mp - getq(q» >!- NULL) { 1* get next message *1
14 if (mp->b_datap->db~type >- QPCTL I I 1* if high priority *1

canput(q->~next» { 1* normal' can be passed *1
15 if (mp->b_datap->db_type !- M_DATA)
16
17
18
19
20
21

22
23
24

25
26
27

28
29
30
31
32
33
34
35
36
37
38

put next (q, mp);
else {

1* send all but M_DATA *1

else {

bp - allocb(sizeof(struct hdr) , BPRI_LO);
if (bp -- NULL) { 1* if unsuccessful *1

putbq(q, mp); 1* put it back *1
if (!bufcall(sizeof(struct hdr) , BPRI_LO,

qenable, (long)q» 1* try to reschedule *1
timeout (qenable, (long)q, HZ/2);

return;

hp - (struct hdr *)bp->b_wptr;
hp->h_size - msgdsize(mp); 1* initialize header *1
hp->h_version - 1;
bp->b_wptr +- sizeof(struct hdr);
bp->b_datap->db_type - M_PROTO; 1* make M_P~TO *1
bp->b_cont - mp; 1* link it *1
putnext(q, bpI; 1* pass it on *1

putbq(q, mp);
return;

1* normal priority, canput failed *1
1* put back on the message queue *1

3-23

bzero (D3DK)

NAME
bzero - clear memory for a given number of bytes

SYNOPSIS
tinclude <sys/types.h>

int bzero (caddr_taddr, int bytes) ;

ARGUMENTS
addr Starting virtual address of memory to be cleared.

bytes The number of bytes to clear starting at addr.

DESCRIPTION

bzero (D3DK)

The bzero function clears a contiguous portion of memory by filling the
memory with zeros.

CAUTION: The address range specified must be within the kernel space. No
range checking is done. If an address outside of the kernel space is selected, the
driver may corrupt the system in an unpredictable way.

RETURN VALUE
Under normal conditions, a 0 is returned. Otherwise, a -1 is returned.

LEVEL
Base or Interrupt

SEE ALSO
bcopy(D3DK), clrbuf(D3DK), kmem _ zalloc(D3DK)

EXAMPLE

3-24

In a driver close(D2DK) routine, rather than clear each individual member of
its private data structure, the driver could use bze;r:o as shown here:

bzero(&drv_dat[minor(dev)], sizeof(struct drvr_data»;

10/89

eanput (D3DK) can put (D3DK)

NAME
canput - test for room in a message queue

SYNOPSIS
'include <sys/stream.h>

int canputCqueue_t *cq);
ARGUMENT

"clf The pointer to the message queue. queue _tis an alias for the
queue(D4DK) structure.

DESCRIPTION
canput searches through the stream (starting at cq) until it finds a queue contain
ing a service routine where the message can be enqueued, or until it reaches the
end of the stream. If found, the queue containing the service routine is tested to
see if there is room for a message in the queue. If the queue is full, canput sets
the QWANTW flag to back-enable the caller's service routine.

NOTE: You are responsible for both testing a queue with canput and refraining
from placing a message on the queue if canput fails.

RETURN VALUE
If the message queue is not full, 1 is returned. A 0 is returned if the queue is
full.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, ''STREAMS''

bcanput(D3DK), putbq(D3DK), putnext(D3DK)

EXAMPLE
See the bufcall(D3DK) function page for an example of canput.

1018$ 3-25

clrbuf(D3DK)

NAME
clrbuf - erase the contents of a buffer

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/buf.h>

void clrbuf(struct buf *bp);

ARGUMENT
*bp

DESCRIPTION

Pointer to the buf(D4DK) structure

clrbuf (D3DK)

The clrbuf function zeros a buffer and sets the b resid member of the buf
structure to o. Zeros are placed in the buffer starting at bp->b _ un. b _words
for a length of bp->b_bcount bytes. b_un .b_words and b_bcount are
members of the buf structure defined in sys/buf. h.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
brelse(D3DK), buf(D4DK)

EXAMPLE
See biowait(D3DK).

3-26 10/89

cmn_err(D3DK)

NAME
cmn_err - display an error message or panic the system

SYNOPSIS
'include <sys/cmn_err.h>

int cmn_err (int level, char *format, int args) ;
ARGUMENTS

level

format

10/89

A constant defined in the sys/ cmn err. h header file. level indicates
the severity of the error condition. The four severity levels are

CE _ CONT used to continue another message or to display an
informative message not connected with an error.

CE_NOTE used to display a message preceded with NOTICE.
This message is used to report system events that do
not necessarily require user action, but may interest the
system administrator. For example, a message saying
that a sector on a disk needs to be accessed repeatedly
before it can be accessed correctly might be
noteworthy.

used to display a message preceded with WARNING.
This message is used to report system events that
require immediate attention, such as those where if an
action is not taken, the system may panic. For exam
ple, when a peripheral device does not initialize
correctly, this level should be used.

CE_PANIC used to display a message preceded with PANIC or
DOUBLE PANIC, and to panic the system. Drivers
should specify this level only under the most severe
conditions or when debugging a driver. A valid use of
this level is when the system cannot continue to func
tion. If the error is recoverable, or not essential to con
tinued system operation, do not panic the system. This
level halts multiuser processing.

The message to be displayed. By default, the message is sent both to
the system console and to the kernel buffer putbuf. If the first char
acter in format is an exclamation point ("! "), the message goes only to
putbuf. If the first character in format is a circumflex ("""), the mes
sage goes only to the console. Except for the first character, the rules
for format are the same as those for printf(3S) strings. To read put
bUf, use the following crash(1M) commands:

od -d putbufsz
od -a putbuf size

The first command returns the size of putbuf (the default is 2000
bytes). The second command uses the returned size to read putbuf.

3-27

emIl_err appends \n to each format, even when a message is sent to
putbuf, except when lweI is CE_CONT.

Vaild conversion specifications are %8, %u, %d, %0, and %x. The emIl_err
function is otherwise similar to the printf(3S) library subroutine in displaying
messages on the system console or storing on putbuf.

NOTE: emIl_err does not accept length specifications in conversion
specifications. For example, %3d is ignored.

args the set of arguments passed with the message being displayed. Any
argument within the range of supported conversion specifications can
be passed.

DESCRIPTION
CmIl_err displays a specified message on the console and/or stores it in the
putbuf array. CmIl_err can also panic the system.

At times, a driver may encounter error conditions requiring the attention of a pri
mary or secondary system console monitor. These conditions may mean halting
multiuser processing; however, this must be done with caution. Except during
the debugging stage, a driver should never stop the system.

The CmIl _err function with the CE _ CONT argument can be used by driver
developers as a driver code debugging tool. However, using emIl_err in this
capacity can change system timing characteristics.

If CE_PANIC is set, CmIl_err stops the machine.

RETURN VALUE

LEVEL

None. However, if an unknown level is passed to CmIl_err, the following panic
error message is displayed:

PANIC: unknown level in emIl err (level .. level, m8g=format)

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 12

print(D2DK), printf(3S)

'EXAMPLE

3-28

The CmIl_err function can record tracing and debugging information only in the
putbuf (lines 15 and 16); display problems with a device only on the system con
sole Oine 21); or stop the system if a required device malfunctions Oine 27).

1 struct device { /* physical device registers layout */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 int error;
5 short recv _char;
6 short xmit_char;
7 }; /* end device */
8
9 extern struct device xx_addr[];

10 extern int xx_cnt;

/* error codes from device */
/* receive character from device */
/* transmit character to device */

/* physical device registers */
/* number of physical devices */

10/89

11 register struct device *rp;
12 rp - xx_addr[(getminor (dev) » 4) ,. Oxf);

13

/* get dev registers */

14 ,ifdef DEBUG /* in debugging mode, log function call */
15 cmn_err(CE_NOTE, "lxx_open function call, dev - Ox%x", dev);
16 cmn_err(CE_CONT, "! flag - Ox%x", flag); /* continue msg */
17 'endif /* end DEBUG *1
18

19 /* display device power failure on system console */

20 if «rp->status & POWER) -- OFF)
21 cmn_err(CE_WARN, "xx_open: Power is OFF on device %d port %d",
22 «getminor(dev) » 4) & Oxf), (getminor(dev) , Oxf»;
23

24 /* halt system if root device has bad VTOC */

25 /* send message to system console and to putbuf */
26 if (rp->error -- BADVTOC && dev -- rootdev)
27 cmn_err(CE_PANIC, "xx_open: Bad VTOC on root device");

10/89 3-29

copyb(030K) copyb (030K)

NAME
copyb - copy a message block

SYNOPSIS
tinclude <sys/stream.h>

mblk t *copyb (mblk_t *bp);

ARGUMENT
bp Pointer to the message block from which data is copied.

DESCRIPTION
copyb allocates a new message block, and copies into it the data from the block
pointed to by bp. The new block will be at least as large as the block being
copied. The b_rptr and b_wptr members of bp are used to determine how
many bytes to copy.

RETURN VALUE

LEVEL

If successful, copyb returns a pointer to the newly allocated message block con
taining the copied data. Otherwise, it returns a NULL pointer.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK)

EXAMPLE

3-30

For each message in the list, test to see if the downstream queue is full with the
canput(D3DK) function (line 21). If it is not full, use copyb(D3DK) to copy a
header message block, and dupmsg(D3DK) to duplicate the data to be
retransmitted. If either operation fails, reschedule a timeout at the next valid
interval.

Update the new header block with the correct destination address (line 34), link
the message to it (line 35), and send it downstream (line 36). At the end of the
list, reschedule this routine.

1 struct retrns {
2 1IIb1k_t *r_mp;
3 long r_address;
4 queue_t *r_outq;
5 struct retrns *r_next;
6 };

7

8 struct protoheader {

9

10 };
11
12 mblk_t *header;
13
14 retransmit (ret)

10/89

copyb(D3DK)

10189

15
16

17
18

19
20
21
22
23
24
25

26
27

28

29

30
31
32

33
34
35
36
37

38
39
40

copyb(D3DK)

register struct retrns *ret;

register mblk_t *bp, *nip;
struct protOheader *php;

while (ret)
if (!canput (ret->r_outq-><Lnext» (/* no room */

ret - ret->r_next;
continue;

bp - copyb(header); /* copy header msg. block */
it (bp -- NOLL)

break;
mp - dupmsg(ret->r_mp);
if (mp -- NOLL) (

freeb(bp) ;
break;

/* duplicate data */
/* if unsuccessful */
/* free the block */

php - (struct protOheader *)bp->b_rptr;
php->h_address - ret->r_address; /* new header */
bp->bp_cont - mp; /* link the message */
putnext(ret->r_outq, bpI;
ret - ret->r_next;

/* send downstream * /

timeout (retransmit, (long) ret, RETRNS_TlME); /* reschedule */

3-31

copyln (D3DK) copyln (D3DK)

NAME
copy in - copy data from a user program to a driver buffer

SYNOPSIS
tinclude <sys/types.h>

int copyin (caddr_t userbuf, caddr_t driverbuf, int en);
ARGUMENTS

userbuf User program source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

en Number of pytes transferred.

DESCRIPTION
copyin copies data from a user program source address to a driver buffer. The
driver developer must ensure that adequate space is allocated for the destination
address.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds
the most efficient move according to address alignment.

RETURN VALUE

LEVEL

Under normal conditions a 0 is returned indicating a successful copy. A -1 is
returned if one of the following occurs:

paging fault; the driver tried to access a page of memory for which it did
not have read or write access

invalid user area or stack area

invalid address that would have resulted in data being copied into the
user block

If a -1 is returned, return E;FAULT.

Base Only (Do not call from an interrupt routine)
SEE ALSO

Bel Driver Development Guide, Chapter 6, '1nput/Output Operations"
bcopy(D3DK), copyout<D3DK), uiomove(D3DK)

3-32 10/89

copymsg (D3DK) copymsg (D3DK)

NAME
copymsg - copy a message

SYNOPSIS
iinclude <sys/stream.h>

mblk t

ARGUMENTS
mp

*copymsg(mblk_t mp);

Pointer to the message to be copied. mblk t is an instance of the
msgb(D4DK) structure.

DESCRIPTION
copymsg forms a new message by allocating new message blocks, copies the con
tents of the message referred to by mp (using the copyb(D3DK) function), and
returns a pointer to the new message.

RETURN VALUE

LEVEL

If the copy is successful, copymsg returns a pointer to the new message. Other
wise, it returns a NULL pointer.

Base or Interrupt

SEE ALSO
Bel Driver Development G~ide, Chapter 7, "STREAMS"

allocb(D3DK), copyb(D3DK), msgb(D4DK)

EXAMPLE

10/89

The routine lctouc converts all the lowercase ASOI characters in the message to
uppercase. If the reference count is greater than one (line 8), then the message is
shared, and must be copied before changing the contents of the data buffer. If
the call to the copymsg(D3DK) function fails (line 9), return NULL (line 10), oth
erwise, free the original message (line 11). If the reference count was equal to 1,
the message can be modified. For each character (line 16) in each message block
(line 15), if it is a lowercase letter, convert it to an uppercase letter line 18). A
pointer to the converted message is returned (line 21).

1 mblk_t *lctouc(mp)
2 mblk_t *mp;
3

4

5
6

7

8
9

10

11

12

13
14

15

16

mblk_t *C1np;
mblk_t *tmp;
unsigned char *cp;

if (mp->b_datap->db_ref > 1)
if «cmp - copymsg(mp» -- NULL)

retum (Nt}LL) ;

freemsg (mp);
else (

cmp - mp;

for (tmp - crnp; tmp; trnp - tmp->b_next) (
for (cp - tmp->b_rptr; cp < tmp->b_wptr; cp++) (

3-33

copymsg (D3DK)

3-34

17
18

19
20
21 return(cmp);
22

if «*cp <- 'z') " (*cp>- 'a'»
*cp -- Ox20;

copymsg (D3DK)

10/89

copyout (D3DK) copyout (D3DK)

NAME
copyout - copy data from a driver to a user program

SYNOPSIS
tinclude <sys/types.h>

int copyout (caddr_t driverbuf, caddr_t userbuf, long en);
ARGUMENTS

driverbuf Source address in the driver from which the data is transferred.

Destination address in the user program to which the data is
transferred.

userbuf

en Number of bytes moved.

DESCRIPTION
copyout copies data from driver buffers to user data space.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds
the most efficient move algorithm according to address alignment.

RETURN VALUE

LEVEL

Under normal conditions a 0 is returned to indicate a successful copy. Other
wise, a -1 is returned if the specified address range is not valid.

If a -1 is returned, return EFAULT.

Base Only (Do not call from an interrupt routine)

SEE ALSO
Bel Driver Development Guide, Chapter 6, '1nput/Output Operations"

bcopy(D3DK), uiomove(D3DK), copyin(D3DK)

EXAMPLE

10/89

A driver ioctl(D2DK) routine (line 9) can be used to get or set device attributes
or registers. In the XX_GETREGS condition Oine 17), the driver copies the current
device register values toa user data area (line 18). If the specified argument con
tains an invalid address, an error code is returned.

1 struct device 1* layout of physical device registers */
2 int control; 1* physical device control word */
3 int status; 1* physical device status word */

4 short racv_char; 1* receive character from device */
5 short xmit_char; 1* transmit character to device */

6 }; /* end device *1
7

8 extern struct device xx_acidr[]; 1* phys. device regs. location */

9 xx_ioctl(dev, cmd, arg, flag)
10 dev_t dev;
11

12
13
14 register struct device *rp - &xx_addr[getminor(dev) » 4];

3-35

copyout (D3DK) copyout (D3DK)

3-36

15 switch (cmd)
16

17

18
19
20

21

case XX GETREGS: 1* copy device regs. to user program *1
if (copyout«caddr_t)rp, arg, sizeof(struct device»

return (EFAULT) ;
1* endif *1

break;

10/89

datamsg (D3DK) datamsg (D3DK)

NAME
datamsg - test whether a message is a data message

SYNOPSIS
'include <sys/stream.h>
'include <sys/ddi.h>

int datamsg (unsigned char type);
ARGUMENT

type The type of message to be tested. The db_type field of the datab
structure contains the message type. This field may be accessed
through the message block using np->b_datap->db_type.

DESCRIPTION
The datamsg function tests the type of message to determine if it is a data mes
sage type (M_DATA, M_DELAY, M_PROTO, or M_PCPROTO).

RETURN VALUE

LEVEL

datamsg returns 1 for TRUE, if the message is a data message; and 0 for
FALSE for any other type of message.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), datab(D4DK), msgb(D4DK)

EXAMPLE

10/89

The put(D2DK) routine enqueues all data messages for handling by the
srv(D2DK) (service) routine. All non-data messages are handled in the put rou
tine.

1 xxxput(q, mp)
2 queue_t *q;
3 mblk_t *mp;
4

5 if (datamsg(mp->b_datap->db_type»
6 putq(q, mp);
7 return;
8

9 switch (mp->b_datap->db_type)
10 case M_FLUSH:

11
12

3-37

delay(D3DK) delay(D3DK)

NAME
delay - delay process execution for a specified number of clock ticks

SYNOPSIS
void delay (long ticks);

ARGUMENT
ticks The number of clock cycles for a delay. ticks are frequently set as an

expression containing the system variable HZ, the number of clock
ticks in one second; HZ is defined in sys/param. h.

DESCRIPTION
delay provides a way to wait for an event to happen. Occasionally, a driver
may need to wait a given period of time until work is available. The value of HZ
can vary from system to system, and so the function drv_hztousec(D3DK)
should be used when accurate timing is required.

The delay function calls timeout(D3DK) to schedule a wakeup call after the
specified amount of time has elapsed. delay then goes to sleep until timeout
wakes up the sleeping process. While delay is active, splhi is set. At comple
tion, the former priority level is returned through splx.

delay requires user context.

RETURN VALUE
None

LEVEL
Base Only (Do not call from an interrupt routine)

SEE ALSO
Bel Driver Deuelopment Guide, Chapter 10, "Synchronizing Hardware and
Software Events"

biodone(D3DK), biowait(D3DK), dry hztousec(D3DK),
drv_us ectohz (D3DK), sleep(D3DK), timeout(D3DK), untimeout(D3DK),
wakeup(D3DK)

EXAMPLE

3-38

Before a driver I/O routine allocates buffers and stores any user data in them, it
checks the status of the device (line 12). If the device needs manual intervention
(such as, needing to be refilled with paper), a message is displayed on the system
console (line 14). The driver waits an allotted time (line 16) before repeating the
procedure.

1 struct device 1* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short xmit_char; /* transmit character to device */

5 }; 1* end device */
6

7 extern struct device xx_addr[]; /* physical device regs. location */

9 /* get device registers */

10 register struct device *rp - &xx_addr[getminor(dev»>4)];
11

10/89

delay(D3DK) delay(D3DK)

10/89

12 while(rp->status' NOPAPER) { /* while printer is out of paper */
13 /* display message and ring bell on system console */
14 cmrl_err(CE_WARN, "Axx_write: NO PAPER in printer 'lsd\007",
15 (d4!v , Oxf»;

16
17

delay(60 * HZ);
/* endwhile */

/* wait one minute and try again */

3-39

dma _pagelo (030) dma _pageio (030)

NAME
dmayageio - break up an I/O request into manageable units

SYNOPSIS
tinclude <sys/buf.h>

void dmayageio(void (*strat) () strat, struct buf *bp);
ARGUMENTS

"strat Pointer to the strategy(D2DK) routine to call to complete the I/O
transfer.

bp Pointer to the buf structure.

DESCRIPTION
dmayageio breaks up a data transfer request from physiock(D3DK) into units
of contiguous m.emory. This function enhances the capabilities of the direct
memory access controller (DMAC). The data is broken into 512-byte sectors until
the last data bytes are encountered. dmayageio executes splO around its
internal sleep calls on reads and writes after the strategy routine is called.
This may alter previously set spl(D3D) calls.

The driver must modify b_flags to indicate whether the transfer is a read or a
write. OR in B _READ to indicate a read; turn B _READ off to indicate a write.

RETURN VALUE

LEVEL

None. However, conditions in dma ""pageio can cause the following to be set:

If m.emory for a temporary buffer cannot be allocated, b_flags is ORed
with B ERROR and B DONE, and b error is set to EAGAIN (resource
temporarily unavailable). All allocated temporary buffers are deallocated
when the transfer completes.

If the I/O transfer is incomplete (b_flags does not contain B_DONE),
then b flags is set to B WANTED and sleep(D3DK) is called to wait
until a buffer can be allocated. The sleep priority is set to PRIBIO.

The $leep code section is surrounded by a spl6-splO function set
which may alter a previously set spl value.

If B_ERROR is set after the strategy(D2DK) routine completes, allo
cated memory is freed and dmayageio returns.

When the transfer completes, any allocated buffers are freed.

Base Only

SEE ALSO
BCl Driver Development Guide, Chapter 6, "Input/Output Operations"

EXAMPLE

3-40

The following example shows how dma""pageio is used when reading or writ
ing disk data.

1 struct dsize
2 daddr_t nblocks; /* number of blocks in disk partition */
3 int cyloff; /* starting cylinder t of partition */
4 } my_sizes[4] - {

10189

dma_pagelo{D3D) dmayagelo{D3D)

10/89

5
6

7

8 };
9

10 1*

12
13
14
15
16
17
18
19

20448, 21,
21888, 1

physical read *1

dev_t dev;
uio_t *uio-p;
cred_t *cred-p;

1* partition 0 - cyl 21-305
1* partition 1 -·cyl 1-305

register int nblks;
1* get number of blocks in the partition
nblks - my_aize~[getminor(dev) , Ox7].nblocks;

*1
*1

*1

20
21
22
23

1* if request is. wit~in limits for the device, schedule 1/0*1
physiock(my_breakup, 0, dev, B_READ. nblks, uio-p);

24 1* physical write *1
25 my_write (dev, uio-p, cred-p}
26 dev_t dey;
27 uio_t *u1o-p;
28 c%1ld_t ~cred""'p;

29
30
31
32
33

register int nblks;
I*~et the nqmber of blocks in the partition
nblks - my_sizestge~i~or(dev) & Ox7] .nblocks;

*1

34 1* if requ~9t is within limits for the device, schedule 1/0 *1
35 physiock(my_breakup, 0, dev, B_WRITE, nblks, uio-p);
36)
37
38 1*
39
40
41

*
*
*

42 *1
43

break up the request that came from physio into Chunks of
contiguous memory. Pass at least 512 bytes (one sector) at a
time (except for the last request).

44 static
45 my_breakup (bp)
46
47
48
49

register struct buf *bp;

3-41

drY _getparm (D3DK) dry _getparm (D3DK)

NAME
dry _getparm - retrieve kernel state information

SYNOPSIS
iinclude <sys/ddi.h>

int drv_getparm(unsigned long parm, unsigned long *valuey);

ARGUMENTS
parm The kernel parameter to be obtained from ddi. h. Possible values are

valuey

LBOLT Read the value of the lbolt. (lbolt is an integer that
represents the number of clock ticks since the last system
reboot. This value is used as a counter or timer inside
the system kernel.)

PPGRP Read the process group identification number. This
number determines which processes should receive a
HANGUP or BREAK signal when detected by a driver.

UPROCP Read the process table token value. This information is
used for the second argument of the vtop(D3D) func
tion.

PPID Read process identification number.

PSID Read process session identification number.

TIME Read time in seconds.

A pointer to the data space in which the value of the parameter is to
be copied.

DESCRIPTION
This function verifies that parm corresponds to a kernel parameter that may be
read. If the value of parm does not correspond to a parameter or corresponds to
a parameter that may not be read, -1 is returned. Otherwise, the value of the
parameter is stored in the data space pointed to by value y.

dry _getparm does not explicitly check to see whether the device has the
appropriate context when the function is called and the function does not check
for correct alignment in the data space pointed to by value y. It is the responsi
bility of the driver writer to use this function only when it is appropriate to do so
and to correctly declare the data space needed by the driver.

RETURN VALUE

LEVEL

3-42

dry getparm returns 0 to indicate success, -1 to indicate failure. The value
stored in the space pointed to by value Y is the value of the parameter if 0 is
returned, undefined if -1 is returned. -1 is returned if you specify a value
other than LBOLT, PPGRP, PPID, PSID, TIME or UPROCP. Always check
the return code when using this function.

Base only when using the PPGRP, PPID, PSID, TIME, or UPROCP argument
values.

10/89

dry _getparm (D3DK) drv_getparm (D3DK)

Interrupt usable when using the LBOLT argument value.

SEE ALSO
vtop(D3D), buf(D4DK)

10/89 3-43

drY _ hZtOUS8C (D3DK) drv_hztoUS8C(D3DK)

NAME
drv_hztousec - convert clock ticks to microseconds

SYNOPSIS
'include <sys/types.h>
'include <sys/ddi.h>

clock t dry hztousec(clock_t hz);
ARGUMENT

hz The length of time (expressed in HZ units) to convert to its
microsecond equivalent

DESCRIPTION
drv_hztousec converts into microseconds the length of time expressed by hz,
which is in units of time based on the value of HZ, the kernel parameter whose
value is defined in sys/param.h.
The kernel variable lbolt, which is readable through drv_qetparm(D3DK), is
the length of time the system has been up since boot and is expressed in HZ
units. Orivers often use the value of lbolt before and after an I/O request to
measure the amount of time it took the device to process the request.
dry hztousec can be used by the driver to convert the reading from HZ units,
whiCh could potentially vary between system implementations, to a known unit
of time.

RETURN VALUE

LEVEL

The number of microseconds equivalent to the hz argument. No error value is
returned. If the microsecond equivalent to hz is too large to be represented as a
clock_t, then the maximum clock_t value will be returned.

Base or Interrupt

SEE ALSO
dry _qetparm(D3DK), drY _ usectohz(D3DK)

3-44 10/89

dry J)rlY (D3DK) drY J)rlY (D3DK)

NAME
drv...,priv - determine driver privilege

SYNOPSIS
int drv""privCcred_t *er);

ARGUMENT
'fer Pointer to the cred(D4DK) (credential) structure.

DESCRIPTION
The drv...,priv function provides a general interface to the system privilege pol
icy. It determines whether the credentials supplied by the cred structure
pointed to by er identify a priviledged process. This function should only be
used when file access modes and special minor device numbers are insufficient to
provide protection for the requested driver function. It is intended to replace all
calls to suser () and any explicit checks for effective user ID - 0 in driver
code.

RETURN VALUE
This routine returns 0 if it succeeds, EPERM if it fails.

LEVEL
Base or Interrupt

SEE ALSO
cred(D4DK)

10189 3-45

drY _ usectohz (D3DK) drv_usectohz{D3DK)

NAME
drv_usectohz - convert microseconds to clock ticks

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

clock_t dry usectohz (clock_t microsecs);
ARGUMENTS

microsecs The number of microseconds to convert to its HZ equivalent.

DESCRIPTION
drv_usectohz converts a length of time eJS:pressed in microseconds to HZ, the
unit of time based on the the kernel parameter HZ whose value is defined in
sys/param. h. The time arguments to timeout(D3DK) and delay(D3DK) are
expressed in HZ, as well as the kernel variable Ibol t, which is readable through
drv_getparm(LBOLT).

drv_usectohz is a portable way for drivers to make calls to timeout(D3DK)
and delay(D3DK) and remain binary compatible should the driver object file be
made part of a kernel that was compiled with a value of HZ different from that
with which the driver was compiled.

RETURN VALUE

LEVEL

The value returned is the number of HZ units equivalent to the microsecs argu
ment. No error value is returned. If the HZ equivalent to microsecs is too large to
be represented as a clock_t, then the maximum clock t value will be
returned.

Base or Interrupt

SEE ALSO
dry _ hz tousec(D3DK)

3-46 10/89

dry _ usecwalt (D3DK) dry _ usecwalt (D3DK)

NAME
drv_usecwait - busy-wait for specified interval

SYNOPSIS
'include <sys/types.h>
'include <sys/ddi.h>

void dry usecwait (clock_t microsecs);
ARGUMENT

microsecs The number of microseconds to busy-wait.

DESCRIPTION
The kernel function delay(D3DI() can be used by a driver to delay for a
specified number of system ticks (given by parameter HZ in sys/param. h,
which indicates how many system ticks occur per second). There are two limita
tions: (1) the granularity of the wait time is limited to 11HZ second, which may
be more time than is needed for the delay, and (2) delay(D3DK) may only be
invoked with user context and hence cannot be used at interrupt time or system
initialization.

Often, drivers need to delay for only a few microseconds, waiting for a write to a
device register to be picked up by the device. In this case, even with user context,
delay(D3DI() produces too long a wait period. The function drv_usecwait is
provided to give drivers a· means of busy-waiting for a specified microsecond
count. The amount of time spent busy-waiting may be greater than the
mier.osecond count but will minimally be the number of microseconds specified.

Note . that the driver wastes processor time by making this call since
drv_usecwait does not invoke sleep but simply busy-waits. The driver should
only make calls to drv_usecwait as needed, and only for as much time as
needed. drv_usecwait does not raise the processor interrupt level; if the
driver wishes to mask out interrupts, it is its responsibility to set the priority level
before the call and restore it to its original value afterward.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
delay(D3DI(), timeout(D3DK), untimeout(D3DK)

10/89 3-47

dupb(030K) dupb(030K)

NAME
dupb - duplicate a message block descriptor

SYNOPSIS
tinclude <sys/stream.h>

mblk_t *dupb (mblk_t *bp);
ARGUMENTS

"bp Pointer to the message block to be duplicated. mblk t is an instance
of the msgb(D4DK) structure.

DESCRIPTION
dupb creates it new mblk_tstructure to reference the message block pointed to
by bp. Unlike copyb(D3DK), dupb does not copy the information in the data
block, but creates a new structure to point to it.

The following figure shows how the db_ref field of the dblk_t structure has
peen changed from 1 to 2, reflecting the increase in the number of references to
the data block. The new mblk t contains the same information as the first.
Note that b_rptr and b_wptr are copied from bp, and that db_ref is incre
mented.

db_ref (2)
db_base

bp bp

J
flbp

L b_datap b_datap

r-- b rptr b_rptr r-
r- b:::wptr b_wptr

1
..........

Before After

nbp=dupb (bp) ;

RETURN VALUE
If successful, dupb returns a pointer to the new message block. Otherwise, it
returns a NULL pointer.

LEVEL
Base or Interrupt

SEE ALSO
copyb(D3DK)

dupb(030K) dupb(030K)

EXAMPLE

10/89

This srv(D3DK) (service) routine adds a header to all M_DATA messages before
passing them along. The message block for the header was allocated elsewhere.
For each message on the queue, if it is a priority message, pass it along immedi
ately (lines 9-10). Otherwise, if it is anything other than an M_DATA message
(line 11), and if it can be sent along (line 12), then do so (line 13). Otherwise, put
the message back on the queue and return (lines 15-16). For all M_DATA mes
sages, first check to see if the stream is flow-controlled (line 19). If it is, put the
message back on the queue and return (line 22); if it is not, the header block is
duplicated (line 20). If dupb fails, the service routine is rescheduled in one tenth
of a second (HZ/10) with timeout and then we return (lines 23-24). If dupb
succeeds, link the M_DATA message to it (line 26) and pass it along (line 27).
dupb can be used here instead of copyb(D3DK) because the contents of the
header block are not changed.

1 xxxsrv(q)
2 queue_t *q;
3

4 mblk_t *mp;
5 mblk_t *bp;
6 extern mblk_t *hdr;
7

8 while «mp - getq(q» !- NULL) {

9 if (mp->b_datap->db_type >- QPCTL)
10 putnext(q, mp);
11 else if (mp->b_datap->db_type !- M_DATA)

12 if (canput(q->~next»
13
14

15
16
17
18

19
20
21

22
23

24

25
26
27

28
29

30

31
32

33

34

putnext (q, mp);
else {

putbq(q, mp);
return;

else { /* M_DATA */
if (canput(q->~next»

bp - dupb (hdr) ;
if (bp -- NULL)

putbq(q, mp);
timeout (qenable, (long)q, HZ/10);

return;

linkb (bp, mp);
putnext (q, bp);

else {
putbq(q, mp);
return;

3-49

dupmsg(D3DK)

NAME
dupmsg - duplicate a message

SYNOPSIS
tinclude <sys/stream.h>

mblk t *dupmsg(mblk_t *mp);

ARGUMENTS
mp Pointer to the message block.

DESCRIPTION

dupmsg (D3DK)

dupmsg forms a new message by copying the message block descriptors pointed
to by mp and linking them. dupb(D3DK) is called for each message block. The
data blocks themselves are not duplicated.

RETURN VALUE
If successful, dupmsg returns a pointer to the new message block. Otherwise, it
returns a NULL pointer.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

copyb(D3DK), copymsg(D3DK), dupb(D3DK)

EXAMPLE
See the copyb(D3DK) function page for an example of dupmsg.

3-50 10/89

enableok (D3DK)

NAME
enableok - reschedule a queue for service

SYNOPSIS
'include <sys/stream.h>
'include <sys/ddi.h>

void enableok(queue_t *q};

ARGUMENT
q A pointer to the queue to be rescheduled.

DESCRIPTION

enableok(D3DK)

The enableok function allows queue q to be rescheduled for service. It cancels
the effect of a previous use of the noenable(D3DK) function on q by turning off
the QNOENB flag in the queue.

RETURN VALUE
None

lEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

noenable(D3DK), qenable(D3DK)

EXAMPLE
The qrestart routine uses two STREAMS functions to restart a queue that has
been disabled. The enableok function turns off the QNOENB flag, allowing the
qenable(D3DK) function to schedule the queue for immediate processing.

1 void

2 qrestart(rdwr_q)
3 register queue_t *rdwr_q;
4

5

6 enableok (rdwr_q) ;

7 /* re-enable a queue that has been disabled */
8 (void) qenable (rdwr_q);
9

10

10/89 3-51

asballoe (D3DK) esballoe(D3DK)

NAME
esballoc - allocate a message block using a shared buffer

SYNOPSIS
'include <sys/stream.h>

mblk t *esballoc (unsiqned char *base, int size, int prj,
-frtn_t *frJtnp):

ARGUMENTS
base Address of user supplied data buffer.

Number of bytes in data buffer. size
pri

frJtnp

Priority of allocation request (to be used by allocb(D3DK) function,
called by esballoc).

Free routine data structure.

DESCRIPTION
esballoc creates a STREAMS message and attaches a user-supplied data buffer
in place of a STREAMS data buffer. It calls allocb(D3DK) to get a message and
data block header only. The user-supplied data buffer, pointed to by base, is used
as the data buffer for the message.

The free rtn structure is referenced by the dp_freep member of the datab
structure. -When freeb(D3DK) is called to free the message, the driver's mes
sage freeing routine (referenced through the free_rtn structure) is called, with
arguments, to free the data buffer.

The free _ rtn structure has the following declaration:

struct free rtn {
void (*free func) (); 1* user's freeinq routine *1
char *free_arq; 1* arquments to free_func() *1

typedef struct free_rtn frtn_t;

Instead of requiring a specific number of arguments, the free_arq field is
defined of type char *. This way, the driver can pass a pointer to a structure if
more than one argument is needed.

NOTE: The free_func function must be defined in kernel space, should be
declared void and accept one argument. It has no user context and must not
sleep.

RETURN VALUE

LEVEL

On success, a pointer to the newly allocated message block is returned. On
failure, NULL is returned.

Base or Interrupt

SEE ALSO
allocb(D3DK), freeb(D3DK), datab(D4DK), free_rtn(D4DK)

3-52 10/89

esbbcall (D3DK)

NAME
esbbcall - call function when buffer is available

SYNOPSIS
tinclude <sys/stream.h>

mblk t *esbbcall (int pri, int Junc, long arg);
ARGUMENTS

esbbcall (D3DK)

pri Priority of allocation request (to be used by allocb(D3DK) function,
called by esbbcall)

Junc
arg

Function to be called when buffer becomes available.

Argument to Junc.
DESCRIPTION

esbbcall, like bufcall(D3DK), serves as a timeout(D3DK) call of indeter
minate length. If esballoc(D3DK) is unable to allocate a message and data
block header to go with its externally supplied data buffer, esbbcall can be
used to schedule the routine Junc, to be called with the argument arg when a
buffer becomes available. Junc may be a routine that calls esbbcall or it may
be another kernel function.

RETURN VALUE
On success, 1 is returned. On failure, 0 is returned.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), bufcall(D3DK), datab(D4DK), esballoc(D3DK)

10/89 3-53

etolmajor (030)

NAME
etoimajor - convert external to internal major device number

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

int etoimajor(major_t e~j);

ARGUMENT
e~j

DESCRIPTION

An external major number.

etolmajor (030)

etoimajor converts the external major number (e~j) to an internal major
number.

RETURN VALUE

LEVEL

etoimajor returns the internal major number or NODEV if the external major
number exceeds the bdevsw and cdevsw count.

Base or Interrupt

SEE ALSO
getemajor(D3D), geteminor(D3D), getmajor(D3DK), getminor(D3DK),
itoemajor(D3D), makedevice(D3DK)

3-54 10189

flushband (D3DK) flushband (D3DK)

NAME
flushband - flush messages for a specified priority band

SYNOPSIS
'include <sys/stream.h>

void flushband(queue_t ~unsi9ned char pri, int flag);
ARGUMENTS

q
pri
flag

Pointer to the queue.

Priority of messages to be flushed.

Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO, and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION
The flushband function flushes messages associated with the priority band
specified by pri. If pri is 0, only normal and high priority messages are flushed.
Otherwise, messages are flushed from the band pri according to the value of flag.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

flushq(D3DK)

10/89 3-55

flushq (D3DK) flushq (D3DK)

NAME
flushq - remove messages from a queue

SYNOPSIS
tinclude <sys/stream.h>

void flushq (queue_t *q, int flag) ;
ARGUMENTS

*q Pointer to the queue to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO, and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION
flushq frees messages and their associated data structures by calling
freemsg(D3DK). If the queue's count falls below the low water mark and
QWANTW is set, the nearest upstream service procedure is enabled.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

freemsg(D3DK), putq(D3DK)

EXAMPLE

3-56

This example depicts the canonical flushing code for STREAMS modules. The
module has a write service procedure and potentially has messages on the queue.
If it receives an M_FLUSH message, and if the FLUSHR bit is on in the first byte
of the message (line 10), then the read queue is flushed (line 11). If the FLUSHW
bit is on (line 12), then the write queue is flushed (line 13). Then the message is
passed along to the next entity in the stream (line 14). See the example for
qreply(D3DK) for the canonical flushing code for drivers.

1 /*
2 * Module write-side put procedure.
3 */
4 xxxwput(q, mp)
5 queue_t *q;
6 mblk_t *mp;
7

8

9

10
11

12

13

14

switch (mp->b_datap->db_type)
case M_Ii'LUSH:

if (*mp->b_rptr & Ii'LU5HR)
flushq(RD(q), FLUSHALL);

if (*mp->b_rptr & FLUSHW)
flushq(q. FLUSHALL);

putnext(q. mp);

10/89

flushq (OODK)

10/89

15

16

17 }

flushq{D3DK)

bl=8ak;

3-57

freeb(D3DK) freeb (D3DK)

NAME
freeb - free a message block

SYNOPSIS
tinclude <sys/stream.h>

void freeb(mblk_t *bp);
ARGUMENTS

bp Pointer to the message block to be deallocated. mblk t is an
instance of the msgb(D4DK) structure.

DESCRIPTION
freeb deallocates a message block. If the reference count of the db_ref
member of the datab(D4DK) structure is greater than 1, freeb decrements the
count. If db_ref equals 1, it deallocates the message block and the correspond
ing data block and buffer.

If the data buffer to be freed was allocated with the esballoc(D3DK) function,
the buffer may be a non-STREAMS resource. In that case, the driver must be
notified that the attached data buffer needs to be freed, and run its own freeing
routine. To make this process independent of the driver used in the stream,
freeb finds the free rtn(D4DK) structure associated with the buffer. The
free_rtn(D4DK) structUre contains a pointer to the driver-dependent routine,
which releases the buffer. Once this is accomplished, freeb releases the
STREAMS resources associated with the buffer.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), dupb(D3DK), esballoc(D3DK), free_rtn(D4DK)

EXAMPLE
See the copyb(D3DK) function page for an example of freeb.

3-58 10/89

freemsg (D3DK)

NAME
freemsq - free all message blocks in a message

SYNOPSIS
'include <sys/stream.h>

int freemsq(mblk_t *mp);
ARGUMENT

freemsg (D3DK)

mp Pointer to the message blocks to be deallocated. mblk_t is an instance
of the msqb(D4DK) structure.

DESCRIPTION
freemsq calls freeb(D3DK) to free all message and data blocks associated with
the message pointed to by mp.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

freeb(D3DK)

EXAMPLE
See the copymsq(D3DK) function page for an example of freemsq.

10/89 3-59

freerbuf{D3DK)

NAME
freerbuf - free a raw buffer header

SYNOPSIS
tinclude <sys/buf.h>
tinclude <sys/ddi.h>

void freerbuf(struct buf *bp)i

freerbuf (D3DK)

ARGUMENTS
"bp Pointer to a previously allocated buffer header structure.

DESCRIPTION
freerbuf frees a raw buffer header previously allocated by getrbuf(D3DI<).
This function does not sleep and so may be called from an interrupt routine.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO

3-60

getrbuf(D3DK), kmem alloc(D3DK), kmem free(D3DK),
kmem_zalloc(D3DK)

10/89

getemajor (030)

NAME
getemajor - get external major device number

SYNOPSIS
tinclude <sys/types.h>
'include <sys/ddi.h>

major_t getemajor(dev_t dev);

ARGUMENT

getemajor (030)

dev An external device number (contains both the major and minor
number).

DESCRIPTION
getemajor returns the external major number given a device number, dev.

RETURN VALUE
The external major number.

LEVEL
Base or Interrupt

SEE ALSO
geteminor(D3D), etoimajor(D3D), getmajor(D3DK), makedevice(D3DK),
getminor(D3DK)

10/89 3-61

geteminor(D3D)

NAME
geteminor - get external minor device number

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

minor_t geteminor(dev_t dev);

ARGUMENT
dev

DESCRIPTION

External device number.

geteminor(D3D)

geteminor returns the external minor number given a device number, dev.

RETURN VALUE
The external minor number.

LEVEL
Base or Interrupt

SEE ALSO
getemajor(D3D), etoimajor(D3D), getmajor(D3DK), makedevice(D3DK),
getminor(D3DK)

3-62 10/89

geterror (D3DK)

NAME
get error - return I/O error

SYNOPSIS
'include <sys/types.h>
'include <sys/buf.h>

int geterror(struct bUf *bp);

ARGUMENT

geterror (D3DK)

bp Pointer to the block interface buffer structure defined in buf. h.

DESCRIPTION
geterror is called to retrieve the error number from the error field of the buffer
header structure.

RETURN VALUE

LEVEL

An error number indicating the error condition of the I/O request is returned. If
the I/O requested is completed successfully, 0 is returned.

Base or Interrupt

SEE ALSO
buf(D4DK)

10/89 3-63

getmaJor (D3DK) getmajor (D3DK)

NAME
qetmajor - get major or internal major device number

SYNOPSIS
linclude <sys/types.h>
linclude <sys/mkdev.h>
linclude <sys/ddi.h>

major_t qetmajor(dev_t dev);
ARGUMENT

dio Device number.

DESCRIPTION
Theqetmajor function extracts either the major number or the interna.1 major
number from a device number. For the 3B2, qetmajor returns the internal
major number. For architectures that do not make a distinction between internal
and external major numbers, qetmajor returns the major number.

RETURN VALUE

LEVEL

The major number or internal major number.

NOTE: No validty checking is performed. If dev is invalid, an invalid number is
returned.

Base or Interrupt

SEE ALSO
Bel Driver Deoelopment Guide, Chapter 3, "Drivers in the UNIX Operating System"

makedevice(D3DK), qetminor(D3DK)
EXAMPLE

3-64

The following example shows both the qetmajor and qetminor(D3DK) func
tions used in a debug cmn _ err(D3DK) statement to return the major and minor
numbers for the device supported by the driver. This example is 3B2 specific.

dev_t dev;

lifdef DEBUG
cmn err(CE NOTE, "Driver Started. Internal Majort = %d,

- Internal Minor. = id", qetmajor(dev), qetminor(dev»;
lendif

10/89

getmlnor(03DK) getmlnor(D3DK)

NAME
getminor - get minor or internal minor device number

SYNOPSIS
'include <$ys/types.h>
'include <sys/mkdev.h>
iiriclude <sys/ddi.h>

minor t getminor (dev_t deV);

ARGUMENT
dev Device number.

DESCRIPTION
The getminor function extracts either the minor number or the internal minor
number from a device number. For the 3B2, getminor returns the internal
minor ntimber, For architectures that do not make a distinction between internal
and external minor numbers, getminor retQl"ns the minor number.

RETURN VALUE

LEVEL

The minqr number or internal minor number.

NOTE: No validty checking is performed. If dev is invalid, an invalid number is
returned.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 3, "Drivers in the UNIX Operating System"

getmajor(D3DK), makedevice(D3DK)

10/89 3-65

getq(D3DK) getq(D3DK)

NAME
getq - get the next message from a queue

SYNOPSIS
'include <sys/stream.h>

mblk_t *getq(queue_t *q);

ARGUMENTS
q Pointer to the queue from which the message is to be retrieved.

DESCRIPTION
getq is used by a service (srv(D2DK) routine to retrieve its enqueued messages.

A module or driver may include a service routine to process enqueued messages.
Once the STREAMS scheduler calls srv it must process all enqueued messages,
unless prevented by flow control. getq gets the next available message from
the top of the queue pointed to by q. It should be called in a while loop that
should be exited only when there are no more messages.

getq hU"ns the QWANTR flag off when a queue is being read, and turns QWANTR
on when there are no more messages. When QWA,NTW is set it means an attempt
has been made to write to the queue while it was blocked by flow control. If this
is the case, getq back-enables (restarts) the service routine once it falls below the
low water mark.

RETURN VALUE .

LEVEL

If there is a message to retrieve, getq returns a pointer t~ it. If no message is
queueq, getq returns a NULL pointer.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

STREAMS Programmer's Guide, Chapter 5, "Messa~es"

bcanput(D3DK), canput(D3DK), putbq(D3DK), putq(D3DK),
qenable(D3DK), srv(D2DK)

EXAMPLE
See the dupb(D3DK) function page for an example of getq.

3-66 10/89

getrbuf (D3DK) getrbuf(D3DK)

NAME
getrbuf - get a raw buffer header

SYNOPSIS
'include <sys/buf.h>
'include <sys/kmem.h>
'include <sys/ddi.h>

struet buf *getrbuf (long sleepflag);
ARGUMENT

s1eepflag Indicates whether driver should sleep for free space.

DESCRIPTION
getrbuf allocates the space for a buffer header to the caller. It is used in cases
where a block driver is performing raw <character interface) I/O and needs to set
up a buffer header that is not associated with the buffer cache.

getrbuf calls kmem_alloe(D3DK) to perform the memory allocation.
kmem alloe requires the information included in the s1eepflag argument. If
s1eepflag is set to KM_SLEEP, the driver may sleep until the space is freed up. If
s1eepflag is set to KM_NOSLEEP, the driver will not sleep. In either case, a pointer
to the allocated space is returned or NULL to indicate that no space was available.

RETURN VALUE
A pointer to the allocated buffer header, or NULL if no space is available.

LEVEL
Base or Interrupt (must not sleep if calling from interrupt routine)

SEe ALSO
freerbuf(D3DK), kme~alloe(D3DK), kmem _ free(D3DK)

10/89 3-67

getvec{D3D) getvec{D3D)

NAME
getvec - get an interrupt vector for a virtual feature card address

SYNOPSIS
unsigned char getvec (long baddr);

ARGUMENTS
baddr A virtual feature card address.

DESCRIPTION
getvec returns an interrupt vector for a specified virtual feature card address.
getvec is used in an init(D2D) routine. NOTE: If the feature card address is
0, a divide-by-zero error can occur.

RETURN VALUE

LEVEL

Under all conditions, an unsigned char numeric value is returned. The only
abnormal return value is a number not logical for the circumstances.

Base Only (Do not call from an interrupt routine)

EXAMPLE

3-68

With a 3B2 computer, each device that generates an interrupt must be given an
interrupt vector location code. During system initialization, the driver init rou
tine gets the interrupt vector location code (line 17) and stores the code in a
predefined address on the interface card (an address on the card in the range of
OxO to Ox200000 can be defined to hold the code).

When a device generates an interrupt, the interface card presents the code to the
CPU, which uses it to locate the interrupt handling routine(s) of the driver.

1
2

3
4

5
6
7

8

9

10

struct device
char
ushort
char
char

paddr t
int

} ; 1* end device

reservel4] ;
control;
status;

ivec_num;

addr;
count;

*1

1* physical device registers layout *1
1* reserve space on card *1
/* physical device control word *1
1* physical device status word *1
1* device interrupt vector number in *1
1* OxfO; subdevice reporting in OxOf *1
1* address of data to be read/written *1
/* amount of data to be read/written *1

11 extern struct device *xx_addrl]; 1* physical dev registers location *1
12

13 xx_ini t ()
14 I
15

16

17

18
19

1* get device register struct *1
register struct device *rp - xx_addrIO];
rp->ivec_num - getvec(xx_addrIO]); 1* get interrupt vector code *1

/* end xx_in it *1

10/89

hat_getkpfnum (03K) hat_getkpfnum (03K)

NAME
hat_getkpfnum - get page frame number for kernel address

SYNOPSIS
tinclude <sys/vm.h>
tinclude <sys/types.h>

u_int hat_getkpfnum(caddr_t addr);

ARGUMENT
addr The kernel virtual address for which the page frame number is to be

returned.

DESCRIPTION
Drivers implementing the mmap(D2K) entry point must return -1 (for error) or
the page frame number corresponding to the virtual address of the device
memory addr. This frame number can be obtained by a call to hat_getkpfnum.

RETURN VALUE

LEVEL

The page frame number corresponding to virtual address addr. There is no spe
cial error return value; invalid addresses will produce meaningless return values.

Base or interrupt. Although there is no reason why hat_getkpfnum cannot be
called at interrupt level, there is no need since it only needs to be called from
mmap(D2K).

SEE ALSO
mmap(D2K), page _ numtopp(D2DK), page ""pptonum(D2DK)

10/89 3-69

hdeeqd (030) hdeeqd (030)

NAME
hdeeqd - initialize hard disk error logging

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/hdelog.h>
tinclude <sys/mkdev.h>

int hdeeqd(o_dev_t dev, daddr_t pdsno, short edtyp);
ARGUMENTS

dev External device number (contains both the major number and the
minor number). The driver must call the cmpdev macro (defined in
mkdev. h) to compress the device number.

pdsno
edtyp

Physical description sector

Error device type.

EQD_EFC
EQD_EHDC
EQD_ID
EQD IF
EQD:TAPE

The valid values are

external floppy controller
external hard disk controller
integral disk drive
integral floppy disk drive
cartridge tape drive

DESCRIPTION
hdeeqd initializes information in the hard disk error logging table for the device
specified by dev. This function is called once per device.
NOTE: This function is not part of the default set of kernel functions. Ensure
that the HDE bootable object module is placed in the /boot directory.

RETURN VALUE

LEVEL

3-70

Under all conditions, a 0 is returned. However, internal errors can occur in
hdeeqd causing a warning message to display on the console. Errors occur in
the following conditions:

The internal major device number is greater than or equal to the number of
the controllers, called cdevcnt, which is assigned by lboot when the
operating system is loaded. The message is

WARNING: hdeeqd: major (ddev) = int-major (>=cdevcnt)

int-major is the internal major device number.

The count of used disk slots in the error logging table exceeds the number
of available slots. The message is

WARNING: Too few HDE equipped slots
bad block handling skipped for maj/min = ext-maj, ext-min

ext-maj and ext-min are the external major and minor numbers.

Base or Interrupt

10189

hdeeqd{D3D) hdeeqd (D3D)

SEE ALSO
Bel Driver Development Guide, Chapter 12, "Error Reporting"

hdelog(D3D), hdedata(D4D)

EXAMPLE

10/89

When a device is opened for the first time, the driver open(D2DK) or
init(D2D) routines (open in this example) must identify the device and set up
controlling information about the device. In this example, the information is kept
on a controlling sector on the disk. If the controlling sector does not exist, the
information is encoded as a static table in the driver.

1 .deUne XX_CNTLBLKNO 0
2 struc,t device {

1* controlling sector block number *1
1* physical device :registers layout *1

3

4

S

6

7

8

9

cha:r
ushort
cha:r
cha:r

:rese:rve[4]; 1* :rese:rve space on card *1
cont:rol; 1* physical device cont:rol word *1
status;
ivec_nU1ll;

paddr_t addr;
int count;

10 }; 1* end device *1

1* physical device status word *1
1* device interrupt vector nU1llber in *1
1* 0x(0; subdevice reporting in OxOf *1
1* data address to be :read/written *1
1* amount of data to be read/written *1

11 struct xx_ 1* logical device structure * I
12 struct buf *xx_head; 1* I/O buffer queue head pointer *1
13 struct buf *xx_tail; 1* I/o buffer queue tail pointer *1
14 SItOrt xx_flag; 1* logical status flag *1
lS struct hdedata xX_edata; 1* disk erro:r log er:ror record *1
16 struct iostat xx_stat; 1* unit I/O statistics for *1
17 1* establishing an error'rate during error logging *1
18 }; 1* end xx_ *1
19
20 struct XX_info
21 long xx_id;
22 long xx_cyl;
23 long xx_trk;
24
2S
26
27

long xx_sec;
char xx_serial[12];

}; 1* end xx_info *1

1* information on control sector *1
1* disk device id code
1* total number of cylinders

*1
*1

1* number of tracks per cylinder *1
1* number of sectors per track
1* device se:rial number

*1
*1

28 exte:rn struct xx_ xx_devtab[]; 1* logical device structures table *1
29 exte:rn struct device *xx_addr[]; 1* physical dev :registe:rs location *1
30 exte:rn struct xx_info xx_info[]; 1* device cont:rol information *1
31 exte:rn int xx_cnt; 1* number of devices *1

32 xx_open {dev, flag, otyp, crp}
33 dev_t *dev;
34
3S
36

int flag, otype;
struct cred *crp;

37 register struct xx_ *dp;
38 register struct device *:rp;

3-71

hdeeqd (030) hdeeqd (030)

3-72

39

40
41
42 if
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

register int unit;

unit - getminor(dev) » 4; 1* get drive unit number *1
dp - &xx_devtab[unitJ; 1* get logical device information *1
«dp->xx_flag & XX_OPEN) -- 0) (1* if first time device opened *1
register struct buf *bp;
hdeeqd(cmpdev(dev), XX_CNTLB~KNO, EOD_ID); 1* initialize error logging *1
bp - kmem_a11oc(1024, KM_NOSLEEP); 1* get control sector buffer *1
bp->b_flags - B_BEAD; 1* set up buffer to read *1
bp->b_blkno - XX_CNTLBLKNO; 1* control sector from disk *1
bp->b_count - 512;
bp->b_dev - dev;
xx_strategy(bp); 1* read control sector *1
biowait(bp); 1* wait for read to complete *1
if «bp->b_flags & B_ERROR) !- 0) (

1* if data error occurred, displaY message on console *1
xx-print(dev, "xx_open: cannot read control sector");

else (1* copy control sector data to info table *1
bcopy(bp->b_un.b_addr, &xx_info[unitJ, sizeof(struct xx_info»;
hdeeqd(cmpdev(dev), XX_CNTLBLKNO, EOD_ID); 1* start error logging *1
dp->f1ag 1- XX_OPEN; 1* indicate device open *1

1* end!! *1
brelse(bp); 1* release system buffer *1

1* end!! *1

If this is the first open, hdeeqd (line 44) is used to initiate error logging for· the
device. A system buffer is allocated (line 45) and the driver reads the controlling
sector from the xx strategy routine (line SO). If an error occurred on the read
attempt, an error -message is displayed (line 54) and an error condition is
returned. Otherwise, the driver saves information from the controlling sector
with bcopy (line 56) and indicates the device has been opened. Finally, the sys
tem buffer is released (line 60).

10/89

hdelog(D3D} hdelog (D3D)

NAME
hdelog - log hard disk errpr

SYNOPSIS
'include <sys/types.h>
'include <sys/hdelog.h>
.include <sys/mkdev.h>

int hdelog(struct hdedata *eptr);

ARGUMENT
eptr Pointer to the hdedata(D4D) structure defined in sys/hdelog. h.

The driver developer places information in the structure before hde
log is called.

DESCRIPTION
hdelog logs a hard disk error in the error logging queue and displays a warning
message on the console to alert the operator to the problem.

The console message is

WARNING: severity readtype ha;-d disk error:
maj/min == external-major-num, external-minor-num

where severity is "marginal" or "unreadable", and readtype is "CRC" (cyclic
redundancy check) or "Eee" (error check and correction).

hdeeqd(D3D) must be called once before this function to initialize error logging.
hdelog logs disk drive media errors. NOTE: This function is not part of the
default kernel. Ensure that the HOE bootable object module is placed in the
/bo9t directory.

Before calling this function, values must be assigned to the hdedata(D4D) s~ruc
ture. These members include the device number; the disk pack serial number; the
physical block address; the type of read operation CRC or ECC; whether the error
is. marginal or whether the disk is unreadable; the number of unreadable tries; the
bit width of the corrected error; and a time stamp.

RETURN VALUE

LEVEL

Under all conditions, a 0 is returned. However, an internal error can occur in:
hdelog causing a warriing message to display on the console. This error occurs
When the errrirlogging table is full. In this case, the usual disk error warning
message is prefaced with

WARNING: HOE queue full, following report not logged

Base or Interrupt

SEE ALSO
BCI DriVer Development Guide, Chapter 12, "Error Reporting"

hdeeqd(D3D), hdedata(D4D)

EXAMPLE

10189

A, driver interrupt routine must check for data transfer errors (called data checks).
When a data check occurs (reported by the device in the status or error register),
the driver determines if there ~ave been sufficient attempts to resolve the error.

3-73

hdelog (030) hdelog(D30)

3-74

If so, the driver abandons the I/O request by marking the buffer as being in
error, logging an unresolved error (line 60), and marking the I/O operation com
plete (line 61). When an error persists in spite of multiple attempts to resolve it,
the driver logs marginal errors (line 75) and attempts the I/O operation again.
The driver may try to resolve the error with software by using the error correc
tion bits in an error check and correction (ECC) register. See hdedata(D4D) for
a description of the xx_edata structure shown in this example line 17).

1 struct device (
2

3
4

5
6
7

8
9

10
11

char
ushort
char

reservei4];
control;
status;

paddr_t addr;
int count;

}; /* end device *1

12 struct xx_
13
14
15
16
17

18
19

struct buf
struct buf
short

*xx_head;
*xx_tail;
xx_flag;

struct hdedata xx_edata;
struct iostat xx_stat;

20 }; 1* end xx_ *1
21

1* layout of physical device regs *1
1* reserve space on card *1
1* physical device control word *1
1* physical device status word *1
1* device interrupt vector no. in *1
1* OxfO; subdevice in OxOf *1
1* address of data read/written *1
1* amount of data read/written *1

1* logical device structure *1
1* 1/0 buffer queue head pointer *1
1* 1/0 buffer queue tail pointer *1
1* logical status flag *1
1* ha~ disk error record *1
1* unit 1/0 stats for setting an *1

1* error rate during error logging *1

22 struct xx_info
23 1* information on disk control sector *1
24
25

26
27

28
29

long
long
long
long

xx_id;
xx_cyl;
xx_trk;
xx_sec;

char xx_serialI12];
}; 1* end xx_info *1

1* device id code *1
1* total number of cylinders
1* number of tracks per cylinder
1* number of sectors per track
1* device serial number

*1
*1
*1
*1

30 extern struct xx_ xx_devtabl];I* logical dey structures table *1
31 extern struct device *xx_addrl]; 1* physical dey register location *1
32 extern struct xx_info xx_infol]; 1* device control information *1
33 extern int xx_cnt; 1* number of devices *1
34
35
36
37
38

39
40
41
42

xx_int(board)
int board;

register struct device
register struct xx_
register struct buf
register int unit;

*rp - xx_addr[board];
*dp;
*bp;

unit - (beard« 4) I (rp->ivec_num, Oxf);

1* get dey registers *1

1* make unit number *1

10/89

hdelog (030) hdelog (030)

10/89

43
44

45

46

47

48

49

50

51

52

53
54

55

56

57

58
59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

dp - &xx_devtab[unit];
if «rp->status & DATACHK) !- 0) I

1* if data check error occurred *1
if (++dp->xx_edata.badrtcnt > XX_MAXTRY) 1* if sufficient *1

1* attempts have been made, then abandon the 1/0 request *1
bp - dp->xx_head; 1* get buffer from 1/0 queue *1
dp->xx_head - bp->av_forw; 1* remove buffer from 1/0 queue *1
bp->b_flags 1- B_ERROR; 1* mark buffer as being in error *1
bp->b_error - EIO; 1* supply error condition *1

1* supply information needed for error logging *1
dp->xx_edata.diskdev - cmpdev(bp->b_dev); 1* device number *1
dp->xx_edata.blkaddr - bp->b_blkno; 1* block no. in error *1
dp->xx_edata.readtype HDEECC;
dp->xx_edata.severity HDEUNRD;
dp->xx_edata.bitwidth - 0;

1* error type: error check *1
1* data was unreadable *1

dp->xx_edata.timestmp - time; 1* time recording occurred *1
bcopy(dp->xx_edata.dskserno, xx_info [unit] .serial, 12);

hdelog(&dp->xx_edata); 1* log abandoned 1/0 operations*1
biodone(bp); 1* mark 1/0 operation complete *1

else if(dp->xx_edata.badrtcnt > 1) 1/* if more than one retry *1
1* log error as marginal *1

bp - dp->xx_head; 1* get buffer from 1/0 queue but leave on *1
1* 1/0 queue so that 1/0 operation is repeated *1

1* supply information needed for error logging *1
dp->xx_edata.diskdev - cmpdev(bp->b_dev); 1* device number *1
dp->xx_edata.blkaddr - bp->b_blkno; 1* error block number *1
dp->xx_edata.readtype - HDEECC; 1* err. type: error check *1
dp->xx_edata. severity - HDEMARG; 1* marginal error *1
dp->xx_edata.bitwidth - 0;
dp->xx_edata.timestmp - time; 1* time recording occurred *1
bcopy(dp->xx_edata.dskserno, xx_info [unitJ .serial, 12);

hdelog(&dp->xx_edata);
1* endif *1

1* endif *1

1* log data check error *1

3-75

Insq(030K) Insq(030K)

NAME
insq - insert a message into a queue

SYNOPSIS
'include <sys/stream.h>

int insq(queue_t *q,mblk_t *~,mblk_t *nmp);
ARGUMENTS

q Pointer to the queue containing message emp.

~ Enqueued message before which the new message is to be inserted
(mblk_t is an instance of the msgb(D4DK) structure).

nmp
DESCRIPTION

Message to be inserted.

insq inserts a message into a queue. The message to be inserted, nmp, is placed
in q immediately before the message emp. If emp is NULL, the new message is
placed at the end of the queue. The queue class of the new message is ignored.
All flow control parameters are updated. The service procedure is enabled unless
QNOENB is set.

CAUTION: If ~ is non-NULL, it must point to a message on q or a system panic
could result.

RETURN VALUE
insq returns 1 on success, and 0 on failure.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE

3-76

This routine illustrates the steps a transport provider may take to place expedited
data ahead of normal data on a queue (assume all M_DATA messages are con
verted into M_PROTO T_DATA_REQ messages). Normal T_DATA_REQ messages
are just placed on the end of the queue (line 14). However, expedited
T_EXDATA_REQ messages are inserted before any normal messages already on the
queue (line 28). If there are no normal messages on the queue, bp will be NULL
and we will fall out of the for loop (line 21). insq will act like putq(D3DK)
in this case.

1 'include <sys/tihdr.h>
2

3 %XXWput(q; mp)
4 queue_t *q;
5 mblk_t *mp;
6 {
7

8
9

10
11

union T-primitives *tp;

switch (mp->b_datap->db_type)
case M_PROTO:

tp - (union T-primitives *)mp->b_rptr;

10/89

Insq(D3DK)

10/89

12
13

14

15
16
17

19
20
21

22
23
24

25
26
27

28
29

30

32

33
34

switch (tp->type) {
case T_DATA_REQ:

putq (q, mp);
break;

case T_EXDATA_REQ:
mblk_t *bp;
union T-primitives *ntp;

for (bp - q->~first; bpi bp - bp->b_next) {
if (bp->b_datap->db_type -- ~PROTO) {

ntp - (union T-primitives *)bp->b_rptr;
if (ntp->type !- T_EXDATA_REQ)

break;

insq(q, bp, mp);
break;

Insq(D3DK)

3-77

ltoemaJor (DaD) ltoemaJor (D3D)

NAME
itoemajor - convert internal to external major device number

SYNOPSIS
'include <sys/types.h>
'include <sys/ddi.h>

int itoemajor (major_t imaj, int prevemaj);
ARGUMENTS

imaj
prevemaj

An internal major number.

Most recently obtained external major number (or NODEV, if this is the
first time the function has been called).

DESCRIPTION
itoemajor converts the internal major number to the external major number.
The external-to-intemal major number mapping is many-to-one, and so any inter
nal major number may correspond to more than one external major number. By
repeatedly invoking this function and passing the most recent external major
number obtained, the driver can obtain all possible external major number values.

RETURN VALUE
External major number, or NODEV, if all have been searched

LEVEL
Base or Interrupt

SEE ALSO

3-78

getemajor(D3D), geteminor(D3D), etoimajor(D3D), getmajor(D3DK),
getminor(D3DK), makedevice(D3DK)

10/89

kmem_8I1oc(030K) kmem_alloc(030K)

NAME
kmem_alloc - allocate space from kernel free memory

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/kmem.h>

VOID *kmellLalloc (size_t size, int flag);
ARGUMENTS

size Number of bytes to allocate.

flag Determines if caller will sleep to wait for free space. Possible flags are
KM_SLEEP to sleep while waiting for free space, and KM NOSLEEP to
return NULL if space is not available.

DESCRIPTION
The kmem_alloc function allocates a specified amount of kernel memory in
bytes and returns a pointer to the allocated memory. The flag argument deter
mines whether the. function will sleep while waiting for free space to be released.
If flag has KM _SLEEP set, the caller may sleep until free space is available. If flag
has KM_NOSLEEP set and space is not available, NULL will be returned.

NOTE: Memory allocated by kmem_alloc is not paged. Available memory is
therefore limited. Excessive use of this memory is likely to affect overall system
performance.

RETURN VALUE

LEVEL

If successfull, kmem_alloc returns a pointer to the allocated space. NULL is
returned if KM_NOSLEEP is set and memory cannot be allocated.

Base (interrupt only if KM _NOSLEEP is set in flag)
SEE ALSO

10/89

freerbuf(D3DK), getrbuf(D3DK), kmem free(D3DK),
kmem zalloc(D3DK), rmalloc(D3DK), rmfree(D3DK), rminit(D3DK),
rms etwant (D3DK), rmwant(D3DK)

3-79

kmem_free(030K) kmem_free(030K)

NAME
Ionem_free - free previously allocated kernel memory

SYNOPSIS
tinclude <sys/tpes.h>
tinclude <sys/Ionem.h>

void kmem_free eVOID *cp, size_t size);
ARGUMENTS

cp Address of the allocated storage from which to return size of allocated
memory.

size Number of bytes to free (same number of bytes as allocated by
kmeIILalloc(D3DK) or kmem_zalloc(D3DK).

DESCRIPTION
This function returns size of storage to kernel free space previously allocated by
lonem_alloc(D3DK) or lonem_zalloc(D3DK). The cp and size values must
specify exactly one complete area of allocated memory. One kmem free call
must correspond to one allocation.

RETURN VALUE
Under all conditions, no value is returned.

LEVEL
Base or Interrupt

SEE ALSO

3-80

freerbuf(D3DK), getrbuf(D3DK), kmem alloc(D3DK),
Ionem zalloc(D3DK), rmalloc(D3DK), riiifree(D3DK), rminit(D3DK),
rmsetwant(D3DK), rmwant(D3DK)

10/89

kmem_zalloc(D3DK) kmem_zalloc(D3DK)

NAME
kmem_zalloc - allocate and clear space from kernel free memory

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/kmem.h>

VOID *kmem_zalloc(unsigned long size, unsigned long flag);
ARGUMENTS

size Number of bytes to allocate.

flag Determines if caller may sleep to wait for free space. Possible flags are
KM _SLEEP to sleep while waiting for free space, and I<M NOSLEEP to
return NULL if space is not available.

DESCRIPTION
This function allocates size of storage from kernel free space, clears it, and returns
a pointer to the allocated memory. If flag has I<M _SLEEP set, the caller may sleep
until free space is available. If flag has KM_NOSLEEP set and space is not avail
able, NULL will be returned.

NOTE: Memory allocated by kmem_zalloc is not paged. Available memory is
therefore limited. Excessive use of this memory is likely to affect overall system
performance.

RETURN VALUE

LEVEL

kmeItL.zalloc returns NULL if memory cannot be allocated. Otherwise, it
returns a pointer to the allocated space.

Base (interrupt only if KM_NOSLEEP is set in flag)
SEE ALSO

10/89

freerbuf(D3DK), getrbuf(D3DK), kmem alloc(D3DK), kmelll free(D3DK),
rmalloc(D3DK), rmfree(D3DK), rminit(D3DK), rmsetwant(D3DK),
rmwant(D3DK)

3-81

kvtophys(D3D)

NAME
kvtophys - convert kernel virtual address to physical address

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ddi.h>

pacidr t kvtophys (caddr_t caddr);

ARGUMENTS
Cliddr Kernel virtual address to translate.

DESCRIPTION

kvtophys(D3D)

This function returns the physical address equivalent of the specified kernel vir
tual address. The same functionality is provided in the vtop(D3D) function.

RETURN VALUE

LEVEL

kvtophys returns NULL if caddr is invalid; otherwise, a physical address is
returned. CAUTION: If caddr is invalid, kvtophys could panic the system.

Base or Interrupt
SEE ALSO

vtop(D3D)

3-82 10/89

IInkb (D3DK)

NAME
linkb - concatenate two message blocks

SYNOPSIS
tinclude <sys/stream.h>

void linkb(mblk_t *mpl,mblk_t *mp2);

Iinkb(D3DK)

ARGUMENTS
mpl The message to which mp2 is to be added. mblk_t is an instance of

the msqb(D4DK) structure.

mp2 The message to be added.

DESCRIPTION
linkb creates a new message by adding mp2 to the tail of mpl. The continuation
pointer (b_cont) of the first message is set to point to the second message:

mpl

RETURN VALUE
None

LEVEL

mp

b_datap

b_cont -

2 b_datap

b_cont (0)

Base or Interrupt
SEE ALSO

db_base

- r--=- db_base

linkb(mpl, mp2);

Bel Driver Development Guide, Chapter 7, "STREAMS"

unlinkb(D3DK)

EXAMPLE

data
buffer

data
buffer

See the dupb(D3DK) function page for an example of linkb.

10/89 3-83

makedevlce (D3DK) makedevlce(D3DK)

NAME
makedevice - make device number from external major and minor

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/makedev.h>
tinclude <sys/ddi.h>

dev_t make device (major_t majnum, minor_t minnum);

ARGUMENTS
majnum External major number.

minnum External minor number.

DESCRIPTION
The makedevice function creates a device number from an external major and
external minor device number. makdevice should be used to create device
numbers so that additional overhead on the driver can be avoided, and so the
driver will port easily to releases that treat device numbers differently.

RETURN VALUE

LEVEL

The device number, containing both the major number and the minor number, is
returned. No validation of the external major or minor numbers is performed.

NOTE: The numbers returned by getmajor(D3DK) and getminor(D3DK) are
not valid arguments to makedevice in systems where there is a distinction
between internal and external numbers. The functions getemajor(D3D) and
geteminor(D3D) should be used on those systems.

Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 3, "Drivers in the UNIX Operating System"

getemajor(D3D), geteminor(D3D), getmajor(D3DK), getminor(D3DK)

EXAMPLE

3-84

In the following example makedevice creates device numbers for every device
supported by the example init(D2D) routine. The init routine initializes each
device by calling the xxx_de v_in it () routine (line 8) with the device number
for each device. The device numbers are created from the preconfigured major
device number, XXMAJOR, and the range of valid minor numbers for the device.

1 xxxinit ()

2 {

3 dev_t dev;

4 minor_t min;

5
6 for (min - 0; min < XXMAXMIN; min++) {

7 dev - makedevice (XXMAJOR, min);

8 xxx_dev_init (dev);
9

10

10/89

max (D3DK)

NAME
max - return the larger of two integers

SYNOPSIS
int max (int intl, int int2);

ARGUMENTS
intl, int2 The integers to be compared.

DesCRIPTION
max compares two integers and returns the larger of two.

RETURN VALUE
The larger of the two numbers.

LEVEL
Base or Interrupt

SEE ALSO
min(D3DK.)

10/89

max{D3DK)

3-85

min (030K)

NAME
min - return the lesser of two integers

SYNOPSIS
int min (int intl, int int2);

ARGUMENTS
intl, int2 The integers to be compared.

DESCRIPTION
min compares two integers and returns the lesser of the two.

RETURN VALUE
The lesser of the two integers.

LEVEL
Base or Interrupt

SEE ALSO
max(D3DI<)

3-86

min (030K)

10/89

msgdslze(D3DK}

NAME
m&gdsize - return the number of bytes in a message

SYNOPSIS
'include <sys/stream.h>

int m&gdsize(mblk_t *mp);
ARGUMENT

mp Message to be evaluated.

DESCRIPTION

msgdslze(D3DK}

mSgdsize counts the number of bytes in a data Qlessage. Only bytes included in
the data blocks of type M_DATA are included in the count.

RETURN VALUE
The number of data bytes in a message, expressed as an integer.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE
See the bufcall(D3DK) function page for an example of the msgdsize func
tion.

10/89 3-87

noenable(D3DK) noenable(D3DK)

NAME
noenable - prevent a queue from being scheduled

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

void noenable(queue_t *q);

ARGUMENT
q Pointer to the queue.

DESCRIPTION
The noenable function prevents the queue q from being scheduled for service
by insq(D3DK), or by putq(D3DK) or putbq(D3DK) when enqueuing an ordi
nary priority message. The queue can be re-enabled with the enableok(D3DK)
function.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO

3-88

Bel Driver Development Guide, Chapter 7, "STREAMS"

enableok(D3DK), insq(D3DK), putq(D3DK), putbq(D3DK),
qenable(D3DK)

10/89

OTHERQ{030K) OTHERQ{030K)

NAME
OTHERQ - get pointer to queue's partner queue

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

queue_t *OTHERQ(queue_t *q);

ARGUMENT
q Pointer to the queue.

DESCRIPTION
The OTHERQ function returns a pointer to the other of the two queue structures
that make up a STREAMS module or driver. If q points to the read queue the
write queue will be returned, and vice versa.

RETURN VALUE
OTHERQ returns a pointer to a queue's partner.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE

10/89

This routine sets the minimum packet size, the maximum packet size, the high
water mark, and the low water mark for the read and write queues. of a given
module or driver. It is passed either one of the queues. This could be used if a
module or driver wlshed to update its queue parameters dynamically.

1 void
2 set_~arams(q, min, max, hi, 10)
3 queue_t *q;
4 short min;
5 short max;
6 ushort hi;
7 ushort 10;
8 {
9 q-~minpsz - min;

10 q-><t...maxpsz - max;
11 q-><Lhiwat - hi;
12 q"-~10wat - 10;
13 OTHERQ(q)-~minpsz - min;
14 OTHERQ(q)-~maxpsz - max;
15 OTHERQ(q)-~hiwat - hi;
16 OTHERQ(q)-~10wat - 10;
17

3-89

page _ numtopp (D3DK) page _ numtopp (D3DK)

NAME
page _ numtopp - convert page frame number to page structure

SYNOPSIS
tinclude <sys/types.h>
tinclude <vm/page.h>

page_t page_numtopp(u_int ~);
ARGUMENT

pfn The page frame number to be converted.
DESCRIPTION

page _numtopp converts a page frame number to its corresponding page struc
ture.

RETURN VALUE

LEVEL

A pointer to the page structure is returned. If the page frame number is invalid,
NULL is returned.

Base or Interrupt
SEE ALSO

page '-pptonum(D3DK)

3-90 10/89

page "'pptonum (D3DK) page _pptonum (D3DK)

NAME
page""pptonum - convert page structure to page frame number

SYNOPSIS
'include <sys/types.h>
'include <vm/page.h>

u_int page....pptonum(page_t "pp);
ARGUMENT

pp Pointer to a page structure.
DESCRIPTION

page ""pptonum is called to convert a page structure to its corresponding page
frame number.

RETURN VALUE

LEVEL

The page frame number corresponding to the page structure is returned. No
error is returned. If pp (the page structure address) is invalid, the system will
panic.

Base or Interrupt

SEE ALSO,
page _ numtopp(D3DK),

10189 3-91

physiock(030) physiock(030)

NAME
physiock - validate and issue raw I/O request

SYNOPSIS
tinclude<sys/types.h>
tinclude <sys/buf.h>
'include <sys/errno.h>
'include <sys/uio.h>
'include <sys/cred.h>

int physiock (int (* (strategy) (), struct buf *buf, dev_t dev,
int rwflag, daddr_t nblocks, uio_t *uioy);

ARGUMENTS
strategy Address of the driver strategy routine.

buf

dev

rwflag

nblocks

uioy

Pointer to the buf structure describing the I/O request. If set to
NULL, then a buffer is allocated from the buffer pool and returned to
the free list after the transfer completes.

Device number.

Flag indicating whether the access is a read (B_READ) or a write
(B_WRITE). Note that B_WRITE cannot be directly tested as it is 0

Number of blocks that a logical device can support, for example, a
disk partitioQ., or tape.

Pointer to the uio structure that defines the user space of the I/O
request.

DESCRIPTION

3-92

physiock is called by the character interface to block driver read(D2DK) and
write(D2DK) routines to help perform unbuffered I/O while maintaining the
buffer header as the interface structure.

physiock performs the following functions:

verifies the requested transfer is valid by checking if the offset is at or past
the end of the device

sets up a buffer header describing the transfer

faults pages in and locks the pages impacted by the I/O transfer so they
can not be swapped out

calls the driver strategy(D2DK) routine passed to it

sleeps until the transfer is complete and is awakened by the
biodone(D3DK) function in the driver's interrupt routine

performs the necessary cleanup and updates, then returns to the driver
routine

A transfer using physiock is considered valid if the specified data location
exists on the device, and the user has specified a storage area that exists in user
memory space.

10/89

physlock (D3D) physlock{D3D)

RETURN VALUE

LEVEL

physiock returns 0 if the result is successful, the appropriate error number upon
failure. physiock returns the ENXIO error (see Appendix A for more informa
tion) if an attempt is made to read beyond the end of the device. If a read is per
formed at the end of the device, 0 is returned. ENXIO is also returned if an
attempt is made to write at the end of a device or beyond the end of the device.
EFAULT is returned if user memory is not available. EAGAIN is returned if phy
siock could not lock pages for DMA.

Base Only (Do not call from an interrupt routine)

SEE ALSO
dina -paqeio(D3D}, strateqy(D2DK}

EXAMPLE
1

2
3
4

5

6

7

8

9
10
11

12
13
14
15

struct dsize
daddr_t nblocks; /* disk partition block number */
int cyloff; /* starting cylinder f of partition

DISKsizes[16] -{

20448, 21, /* partition o - cyl 21-305 */
12888, 126, /* 1 - cyl 126-305 */
9360, 175, /* 2 - cyl 175-305 */
7200, 205, /* 3 - cyl 205-305 */
3600, 255, /* 4 - cyl 255-305 */
21816, 3, /* 5 - cyl 2-305 */
21888, 1, /* 6 - cyl 1-305 */
72, 1, /* 7 - cyl 1 */

};

*/

16 DISKread(dev, uio-p, cred-p) /* direct read request from block device */

10/89

17 dev_t dev;
18 uio_t *uio-p;
19
20
21
22
23
24
25
26
27
28
29
30
31
32

register int nblks;

/* get number of blocks in the partition */
nblks - DISKsizes[minor{dev) , Ox7] .nblocks;

/*
* Check limits of read request. If request is in
* the limits of the disk partition, schedule direct I/O.
*/

physiock{DISKstrat, 0, dev, B_READ, nblks, uio-p);

33 /* end DISKread */
34
35

3-93

physlock(D3D) physlock(D3D)

36 DISKwrite(dav. uio-p. cred-p) 1* direct write request to block davice *1
36 dav_t day;
37

38
39
40

41
42

43
44
45

46

47

48

49

50
51

uio_t *uio-p;
cred_t *cred-p

register int nblks;

1* get number of blocks in the partition *1
nblks - DISKsizes[minor(dev) , Ox7].nblocks;

1*
* Check limits of write request. If request is in
* the limits of the disk partition. schedule direct I/O.
*1

physioCk(DISKstrat. O. dev. B_WRITE. nblks. uio-p);

52) 1* end DISKwrite *1

3-94 10/89

pollwakeup (D3DK)

NAME
pollwakeup - inform a process that an event has occurred

SYNOPSIS
tinclude <sys/poll.h>

poliwakeup(D3DK)

void pollwakeup (struct pollhead *php, short event);
ARGUMENTS

php
event

DESCRIPTION

Pointer to a pollhead structure.

Event to notify the process about.

The pollwakeup function wakes a process waiting on the occurrence of an
event. It should be called from a driver for each occurrence of an event. The
pollhead structure will usually be associated with the driver's private data
structure associated with the particular minor device where the event has
occurred. See chpoll(D2DK) and poll(2) for more detail.

RETURN
None

LEVEL
Base or Interrupt

SEE ALSO
chpoll(D2DK), poll(2)

10/89 3-95

ptob(D3DK)

NAME
ptob - convert size in pages to size in bytes

SYNOPSIS
tinclude <sys/ddi.h>

unsigned long ptob (unsigned long numpages);

ARGUMENT
numpages Size in number of pages to convert to size in bytes.

DESCRIPTION

ptob(D3DK)

This function returns the number of bytes that are contained in the specified
number of pages. For example, if the page size is 2048, then ptob (2) returns
4096. ptob (0) returns O.

RETURN VALUE

LEVEL

The return value is always the number of bytes in the specified number of pages.
There are no invalid input values, and no checking will be performed for
overflow in the case of a page count whose corresponding byte count cannot be
represented by an unsigned long. Rather, the higher order bits will be
ignored.

Base or interrupt

SEE ALSO
btop(D3DK), btopr(D3DK)

3-96 10/89

pullupmsg (D3DK) pullupmsg (D3DK)

NAME
pullupmsg - concatenate bytes in a message

SYNOPSIS
'include <sys/stream.h>

int pullupmsg (mblk_t *mp, int len);

ARGUMENTS
*mp Pointer to the message whose blocks are to be concatenated. mblk t

is an instance of the msgb(D4DK) structure.

len Number of bytes to concatenate.

DESCRIPTION
pullupmsg tries to combine multiple data blocks into a single block. pul
lupmsg concatenates and aligns the first len data bytes of the message pointed to
by mp. If len equals -1, all data is concatenated. If len bytes of the same mes
sage type cannot be found, pullupmsg fails and returns O.

RETURN VALUE
On success, 1 is returned; on failure, 0 is returned.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK)

EXAMPLE

10/89

This is a. driver write srv(D2DK) (service) routine for a device that does not sup
port scatter/gather DMA. For all M_DATA messages, the data will be transferred
to the device with DMA.

First, try to pull up the message into one message block with the pullupmsg
fu.nction (line 12). If successful, the transfer can be accomplished in one DMA job.
Otherwise, it must be done one mes$age block at a time (lines 19-22). After the
data ha!; beell transferred to the device,free the message and continue processing
messages on the queue.

1 xxxwsrv(q)
2 queue_t *q;
3
4

5
6
7

8
9

10
11
12

13

14

mhlk_t *mp;
mhlk_t *tmp;

while «mp - getq(q» !- NULL) {
switch (mp->b_datap->db_type)
case M_DATA:

if (pullupmsg (mp, -1» (
dma_addr - vtop(mp->b_rptr);
dma_len - mp->b_wptr - mp->b_rptr;

3-97

pullupmsg (D3DK)

3-98

15

16

17

18
19

20
21

22

23
24

25

26
27

28

pullupmsg (D3DK)

xxx_do_dma(dma_addr, dma_len);
treemsg (mp);
break;

tor (tmp - mp; tmp; tmp - tmp->b_cont) {
dma_addr - vtop(tmp->b_rptr);
dma_len - tmp->b_wptr - tmp->b_rptr;
xxx_do_dma (dma_addr, dma_len);

treemag (mp) ;
break;

10/89

putbq (D3DK) putbq (D3DK)

NAME
putbq - place a message at the head of a queue

SYNOPSIS
tinclude <sys/stream.h>

int putbq(queue_t *q,mblk_t *bp) ;

ARGUMENTS
q Pointer to the queue.

bp Pointer to the message block.

DESCRIPTION
putbq places a message at the beginning of the appropriate section of the mes
sage queue. There are always sections for high priority and ordinary messages.
If other priority bands are used, each will have its own section of the queue, in
priority band order, after high priority messages and before ordinary messages.
putbq can be used only for ordinary and priority band messages. High priority
messages are not subject to flow control, and so cannot be put back on the queue.

This function is usually called when bcanput(D3DK) or canput(D3DK) deter
mines that the message cannot be passed on to the next stream component. The
flow control parameters are updated to reflect the change in the queue's status. If
QNOENB is not set, the service routine is enabled.

RETURN VALUE
putbq returns 1 on success and 0 on failure.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

STREAMS Programmer's Guide, Chapter 5, "Messages"

bcanput(D3DK), canput(D3DK), getq(D3DK), putq(D3DK)

EXAMPLE
See the bufcall(D3DK) function page for an example of putbq.

10/89 3-99

putctl (D3DK) putctl (D3DK)

NAME
putctl - send a control message to a queue

SYNOPSIS
'include <sys/stream.h>

int putctl (queue_t *q, int type);

ARGUMENTS
q Queue to which the message is to be sent.

Message type (must be control, not data type). type
DESCRIPTION

putctl tests the type argument to make sure a data type has not been specified,
and then attempts to allocate a message block. putctl fails if type is
M_DATA,M_DELAY, M_PROTO, or M_PCPROTO, or if a message block cannot be
allocated. If successful, putctl calls the put(D2DK) routine of the queue
pointed to by q.

RETURN VALUE

LEVEL

On success, 1 is returned. If type is a data type, or if a message block cannot be
allocated, 0 is returned.

Base or Interrupt

SEE ALSO
Bel Driver Deoelopment Guide, Chapter 7, "STREAMS"

datamsg(D3DK), putctll(D3DK)

EXAMPLE

3-100

The send_ctl routine is used to pass control messages downstream. M_BREAK
messages are handled with putctl (line 11). putctll (line 16) is used for
M_DELAY messages, so that parm can be used to specify the length of the delay.
In either case, if a message block cannot be allocated a variable recording the
number of allocation failures is incremented (lines 12, 17). If an invalid message
type is detected, CJnn_err(D3DK) panics the system (line 21).

1 void
2 send_ctl(wrq, type, pa:cn)
3 queue_t *wrq;
4 unchar type;
5 unchar pa:cn;
6 {
7 extern int num_alloc_fail;
8
9 switch (type) {

10 case M_BREAK:
11 if (!putctl (wrq-~next, M_BREAK»
12

13
14
15

16

break;

calle M_DELAY:
if (!putctl1 (wrq-~next, H_DELAY, pa:cn»

10/89

putctl (OODK)

17
18

19
break;

20 default:

putctl(D3DK)

21 cmn_err(CE_PANIC, "send_etl: bad message type passed");
22 break;
23
24

10/89 3-101

putctl1 (D3DK) putctl1 (D3DK)

NAME
putctll - send a control message with a one-byte parameter to a queue

SYNOPSIS
'include <sys/stream.h>

int putctll (queue_t *q, int type, int p);
ARGUMENTS

q
type
p

DESCRIPTION

Queue to which the message is to be sent.

Type of message.

One-byte parameter.

putctll, like putctl(D3DK), tests the type argument to make sure a data type
has not been specified, and attempts to allocate a message block. The p parame
ter can be used, for example, to specify how long the delay will be when an
M_DELAY message is being sent. putctll fails if type is M_DATA, M_PROTO,
or M_PCPROTO, or if a mesage block cannot be allocated. If successful, putctll
calls the put(D2DK) routine of the queue pointed to by q.

RETURN VALUE
On success, 1 is returned. 0 is returned if type is a data type, or if a message
block cannot be allocated.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), datamsg(D3DK), putctl(D3DK)
EXAMPLE

See the putctl(D3DK) function page for an example of putctll.

3-102 10/89

putnext (D3DK) putnext(D3DK)

NAME
putnext - send a message to the next queue

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

int putnext(queue_t *q,mblk_t *mp)i

ARGUMENTS
q
mp

DESCRIPTION

Pointer to the queue from which the message mp will be sent.

Message to be passed.

The putnext function is used to pass a message to the put(D2DK) routine of
the next queue in the stream.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE
See the allocb(D3DK) function page for an example of putnext.

10/89 3-103

putq(D3DK)

NAME
putq - put a message on a queue

SYNOPSIS
tinclude <sys/stream.h>

int putq(queue_t *q,mblk_t *bp);
ARGUMENTS

putq (D3DK)

q Pointer to the queue to which the message is to be added.

bp Message to be put on the queue.

DESCRIPTION
putq is used to put messages on a driver's queue after the module's put routine
has finished processing the message. The message is placed after any other mes
sages of the same priority, and flow control parameters are updated. If QNOENB
is not set, the service routine is enabled. If no processing is done, putq can be
used as the module's put routine.

RETURN VALUE
putq returns 1 on success and 0 on failure.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

putbq(D3DK), qenable(D3DK), rmvq(D3DK)

EXAMPLE
See the datamsg(D3DK) function page for an example of putq.

3-104 10/89

qenable (D3DK)

NAME
qenable - enable a queue

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

void qenable(queue_t *q);

ARGUMENT
q

DESCRIPTION

Pointer to the queue to be enabled.

qenable (D3DK)

qenable puts the queue pointed to by q on the linked list of those whose service
routines are ready to be called by the STREAMS scheduler.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE
See the dUPb(D3DK) function page for an example of the qenable.

10/89 3-105

qreply(D3DK) qreply (D3DK)

NAME
qreply - send a message on a stream in the reverse direction

SYNOPSIS
tinclude <sys/stream.h>

void qreply(queue_t *q, mblk_t *bp);

ARGUMENTS
q Pointer to the queue.

bp Pointer to the message to be sent in the opposite direction.

DESCRIPTION
qreply sends a message on a stream. in the opposite direction from q. It calls the
OTHERQ(D3DK) function to find q's module partner, and passes the message by
calling the put(D2DK) routine of the next queue in the stream after q's partner.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

STREAMS Programmer's Guide .

OTHERQ(D3DK), putnext(D3DK)

EXAMPLE

3-106

This example depicts the canonical flushing code for STREAMS drivers. The
driver has a write srv(D2DK) (service) routine that may have messages on the
queue. If it receives an M_FLUSH message (line 6), and if the FLUSHW bit is on in
the first byte of the message (line 7), then the write queue is flushed (line 8) and
the FLUSHW bit is turned off (line 9). If the FLUSHR bit is on, then the read
queue is flushed (line 12) and the message is sent back up the read side of the
stream. with the qreply(D3DK) function (line 13). If the FLUSHR bit is off, then
the message is freed (line 15). See the example for flushq(D3DK) for the canon
ical flushing code for modules.

qreply.does two things. First, it calls theOTHERQ function to change pointer q
to the module's other queue(D4DK) structure, reversing the direction of the
flow. Then it uses that queue's <t..next pointer to call the next module's
put(D2DK) routine with the M_IOCNAK message.

1 xxxwput (q, mp)
2 queue_t *q;
3 mblk_t *mp;
4

5 switch (mp->b_datap->db_type)
6 case M_FLUSH:
7 if (*mp->b_rptr & FLUSHW)
8 flnshq(q, FLUSHALL);
9 *mp->b_rptr &- -FLUSHW;

10

10/89

qreply(D3DK)

10/89

11
12

13
14
15

16
17

18
19

if (*mp->b_rptr , FLUSHR) {
flushq(RD(q), FLUSHALL);
qreply(q, mp);

else {
freemsg(mp);

break;

qreply (D3DK)

3-107

qsize(030K)

NAME
qsize - find the number of messages on a queue

SYNOPSIS
tinclude <sys/stream.h>

int qsize(queue_t *q);

ARGUMENT
q

DESCRIPTION

Queue to be evaluated.

qslze(030K)

qsize evaluates the queue q and returns the number of messages it contains.

RETURN VALUE
If there are no message on the queue, qsize returns o. Otherwise, it returns
the integer representing the number of messages on the queue.

LEVEL
Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

3-108 10/89

RD(D3DK)

NAME
RD - get pointer to the read queue

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

queue_t RD(queue_t *q);

ARGUMENT

RD(D3DK)

q Pointer to the write queue whose read queue is to be returned.

DESCRIPTION
The RD function accepts a write queue pointer as an argument and returns a
pointer to the read queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a write queue.
RD will not check for queue type, and a system panic could result if it is not the
right type.

RETURN VALUE
The pointer to the read queue.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

WR(D3DK)

EXAMPLE
See the qreply(D3DK) function page for an example of RD.

10/89 3-109

rmalloc(D3DK) rmalloc(D3DK)

NAME
rmalloc - allocate space from a private space management map

SYNOPSIS
tinclude <sys/map.h>
tinclude <sys/ddi.h>

unsigned long rmalloc(struct map *mp, long size);
ARGUMENTS

mp Memory map from where the resource is drawn.

size Number of units of the resource.

DESCRIPTION
rmalloc is used by a driver to allocate space from a previously defined and ini
tialized private space management map. The map itself is declared as a structure
using the driver prefix in the form prefixmap. Memory is initially allocated for the
map either by a data array, or by the kmem_alloc(D3DK) function. rmalloc
is one of five functions used for private map management. The other functions
include

rmfree Return previously allocated space to a map.
rminit Define a map structure and initialize a map table.
rmwant Return the number of processes waiting for free space.
rmsetwant Increment the count of the number of processes waiting for

free space in the map.

The rmalloc function allocates space from a memory map in terms of arbitrary
units. The system maintains the map structure by size and index, computed in
urdts appropriate for the memory map. For example, units may be byte
addresses, pages of memory, or blocks. The elements of the memory map are
sorted by index, and the system uses the size member to combine adjacent objects
into one memory map entry. The system allocates objects from the memory map
on a first-fit basis. The normal return value is an unsigned long set to the value
of m _ addr from the map structure.

RETURN VALUE

LEVEL

Under normal conditions, rmalloc returns the base of the allocated space. Oth
erwise, rmalloc function returns a 0 if all memory map entries are already
allocated.

Base

Interrupt if rmwant is not set

SEE ALSO
BCI Driver Development Guide, Chapter 6, ''Input/Output Operations"

dma yageio(D3D), rmini t(D3DK), rmwant(D3DK), rmfree(D3DK)

EXAMPLE

3-110

The following example is a simple memory map, but it illustrates the principles of
map management. A driver initializes the map table by calling both the
rminit(D3DK) and rmfree(D3DK) functions. rminit(D3DK) establishes the
number of slots or entries in the map, and rmfree to initialize the total buffer

10/89

rmalloc(D3DK) rmalloc (D3DK)

10189

area the map is to manage. The following example is a fragment from a
hypothetical start routine and illustrates the following procedures:

Declaration of the map structure (line 4). The defined map array must be
initialized to zero before calling rminit.

The use of kmem_alloc(D3DK) to allocate memory for the map. This
example panics the system if the required amount of memory can not be
allocated (lines 10-14).

The use of mapinit to configure the total number of entries in the map,
and of rmfree to configure the total buffer area.

1 ldefine Xx_MAPSIZE 12

2 Idefine XX_BUFSIZE 2560
3
4 struct map xx_map[XX_MAPSIZEj; /* Space management map for */
5 /* a private buffer */

6 xx_start 0
7 /*
8 * , Allocate private buffer. If insufficient memory,
9 * display message and halt system.
10 */
11

12 register caddr_t bpI

14

15 cmn_err(CE~PANIC, "xx_start: kmem_a1loc failed before %d buffer

allocation", XX_BUFSIZE);
16 /* endif */
17 /*
18 * Initialize space management map with number

19 * of slots in map.

20 */
21 rminit$xx~map, ~_MAPSIZE);
22 /* "

23 * Initialize space management map with total
24 * buffer area it is to manage.
25 */
26 rmfree(xx_map, XX_BUFSIZE, bp);

The rmalloc(D3DK) "function is then used by the driver's read or write rou
tine to allocate buffers for specinc data transfers. If the appropriate space cannot
be allocated, the rmsetwant(D3DK) function is used to wait for a free buffer
and the process is put to sleep until a buffer is available. When a buffer becomes
available, the rmfree(D3DK) function is called to return the buffer to the map
and to wake the sleeping process (no wakeup(D3DK) call is required). The
uiomove(D3DK) function is used to move the data between user space and local

3-111

rmalloc(D3DK} rmalloc(D3DK}

3-112

driver memory. The device then moves data between itself and local driver
memory through DMA.

The next example illustrates the following procedures:

1
2
3
4
5
6
7

The size of the I/O request is calculated and stored in the size vl,lriable
Gines 14-15).

While buffers are available, buffers are allocated through the rmalloc
function using the size value (line 25).

If there are not enough buffers free for use, the rmsetwant(D3DK) func
tion is called, arid the process is put to sleep (lines 26- 28). When a buffer
becomes available, the rmfree(D3DK) function returns the buffer to the
map and wakes the process.

The uiomove(D30K) function is used to move data to the allocated
buffet (line 35).

If the address passed to the uiomove functioridi~ ,tl,tvalid, the rmfree
function is called to release the previously aHocated buffer, and an
EFAULT error is returned.

.define XX_MAPPRIO (PZERO + 6)
'define XX~SIZE 12
'define Xx_BUFSIZE 2560
'define XX_~SIZE (XX_BUFSIZE / 4)

struct map xx_mapIXX_MAPSIZEj;
char xx_bufferIXX_BUFSIZEj;

/* Private buffer space map */
/* driver xx_ buffer area */

8 read(dev, uio-p, cred-p)
9 dev_t dev;
10
11

12

uio_t uio-p;
cred_t cred-p;

/* Pointer to uio structure for I/O */

13 register caddr_t addr;
14 register int size;
15 size - min (COUNT, XX_~SIZE); /* Break large I/O request */
16
17
18

19
20
21
22
23
24
25
26
27

28
29

/* into small ones */
/*
* Get buffer. If space is not avaiiable, then
* request a wakeup when sPace is returned. Wait
* for space; rmfree will check rmsetwant and
* supply the wakeup call.
*/

oldlevel - sp14();

while«addr - (caddr_t)rmalloc(xx_map, size» -- NULL) (
rmsetwant(xx_map)
sleep (xx_map, XX_~RIO);

/* endwhile * /
splx(old.level);

10/89

rmalloc(D3DK)

10/89

30
31
32

33

34
35
36
37

38

39
40

1*
* Move data to buffer. If invalid address is found,
* return buffer to map and return error code.
*1

if (uiomove(addr, size, UIO_READ, uio-p) -- -1)
oldlevel - sp14();
rmfree(xx_map, size, addr);
splx(oldlevel);
return (EFAULT) ;

1* endif *1

rmalloc(D3DK)

3-113

rmfree (D3DK) rmfree (D3DK)

NAME
rmfree - free space back into a private space management map

SYNOPSIS
tinclude <sys/map.h>
tinclude <sys/ddi.h>

void rmfree (struct map *mp, long size, unsigned long index);
ARGUMENTS

"mp Pointer to the map(D4DK) structure.

size Number of units being freed.

index Index of the first unit of the allocated resource.

DESCRIPTION
rmfree releases space back into a private space management map. It is the
opposite of rmalloc(D3DK), which allocates space that is controlled by a private
map structure.

Drivers may define private space management buffers for allocation of memory
space, in terms of arbitrary units, using the rmalloc(D3DK), rmfree and
rminit(D3DK) functions. The drivers must include the file map.h. The system
maintains the memory map list structure by size and. index, computed in units
appropriate for the memory map. For example, units may be byte addresses,
pages of memory, or blocks. The elements of the memory map are sorted by
index, and the system uses the size member so that adjacent objects are combined
into one memory map entry. The system allocates objects from the memory map
on a first-fit basis. rmfree frees up unallocated memory for re-use.

RETURN. VALUE

LEVEL

None. However, if the m addr member of the map structure is returned as 0,
the following warning meSSage is displayed on the console:

WARNING: rmfree map overflow mp lost size items at index
where mp is the hexadecimal address of the map structure, size is the decimal
number of buffers freed, and index is the decimal address to the first buffer unit
freed.

Base or Interrupt

SEE ALSO
rmalloc(D3DK), rminit(D3DK), rmwant(D3DK)

EXAMPLE
See rmalloc(D3DK).

3-114 10/89

rmlnlt (D3DK) rminit(D3DK)

NAME
rmini t - initialize a private space management map

SYNOPSIS
, 'include <sys/map.h>

'include <sys/ddi.h>

void rminit (struct map *mp, unsigned long mapsize);
ARGUMENTS

"mp
mapsize

Pointer to the memory map from where the resource is drawn.

Number of entries for the memory map table.

DESCRIPTION
The rmini t function initializes a private map structure that can be used for the
allocation of memory space. The map itself is declared as a structure using the
driver prefix in the form prefixmap. Memory is initially allocated for the map
either by a data array, or by the kmem_alloc(D3DK) function.

The driver must initialize the map structure by calling rminit. However,
rminit does not cause the memory map entries to be labeled available. This
must be done through rmfree(D3DK) before objects can actually be allocated
from the memory map.

The system maintains the memory map list structure by size and index, computed
in units appropriate for the memory map. Units may be byte addresses, pages of
memory, or blocks. The elements of the memory map are sorted by index.

Two memory map table entries are reserved for internal system use and they are
not available for memory map use.

NOTE: The map array must be initialized to zero before calling rminit.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 6, '1nput/Output Operations"

rmalloc(D3DK), rmwant(D3DK), rmfree(D3DK), rmsetwant(D4DK)

EXAMPLE
See rmalloc(D3DK).

10/89 3-115

rmsetwant(D3DK) rmsetwant(D3DK)

NAME
rmsetwant - set the map's wait flag for a wakeup

SYNOPSIS
tinclude <sys/map.h> tinclude <sys/ddi.h>

void rmsetwant(struct map *mapjP);

ARGUMENTS
map jP Pointer to the map the driver is waiting for.

DESCRIPTION
The rmsetwant function increments the counter on the wait flag of the map
pointed to by mapjP. It is typically called from the driver's read or write rou
tine after an unsuccessful attempt to allocate space from the map using
rmalloc(D3DK).

Typically, a driver will sleep on map J> after calling rmsetwant. When the
rmfree function returns space to the map, it calls wakeup(D3DK).

RETURN VALUE
None

LEVEL
Base only

SEE ALSO
rmalloc(D3DK), rmfree(D3DK), rminit(D3DK), rmwant(D3DK),
map(D4DK)

EXAMPLE
See rmalloc(D3DK).

3-116 10/89

rmvb(D3DK) rmvb(D3DK)

NAME
rmvb - remove a message block from a message

SYNOPSIS
tinclude <sys/stream.h>

mblk t *rmvb(mblk_t *mp, mblk_t *bp);

ARGUMENTS
"'mp Message from which a block is to be removed. mblk t is an

instance of the msgb(D4DK) structure.

bp Message block to be removed.

DESCRIPTION
rmvb removes a message block (bp) from a message (mp), and returns a pointer to
the altered message. The message block is not freed, merely removed from the
message. It is the module or driver's responsibility to free the message block.

RETURN VALUE

LEVEL

If successful, a pointer to the message (minus the removed block) is returned.
The pointer is NULL if bp was the only block of the message before rmvb was
called. If the designated message block (bp) does not exist, -1 is returned.

Base or Interrupt

EXAMPLE

10/89

This routine removes all zero-length M_DATA message blocks from the given mes
sage. For each message block in the message, save the next message block (line
10). If the current message block is of type M_DATA and has no data in its buffer
(line 11), then remove it from the message (line 12) and free it (line 13). In either
case, continue with the next message block in the message (line 16).

1 void
2 xxclean (mp)
3 mblk_t *mp;
4

5 mblk_t *tmp;
6 mblk_t *nmp;
7

8 tmp - mp;
9 while (tmp)

10 nmp - tmp->b_next;
11 if «tmp->b_datap->db_type -- M_DATA) &&

(tmp->b_rptr -- tmp->b_wptr» {
12 rmvb(mp, tmp);
13 freeb(tmp);
14

15
16
17

tmp - nmp;

3-117

rmvq(D3DK) rmvq(D3DK)

NAME
rmvq - remove a message from a queue

SYNOPSIS
tinclude <sys/stream.h>

void rmvq(queue_t *q, mblk_t "mp);
ARGUMENTS

q Queue containing the message to be removed.

mp Message to remove.

DESCRIPTION
rmvq removes a message from a queue. A message can be removed from any
where on a queue. To prevent modules and drivers from having to deal with the
internals of message linkage on a queue, either rmvq or qetq(D3DK) should be
used to remove a message from a queue.

CAUTION: Make sure that the message mp exists to avoid a possible system
panic.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
BCl Driver Development Guide, Chapter 7, "STREAMS"

EXAMPLE

3-118

This code fragment illustrates how one may flush one type of message from a
queue. In this case, only M_PROTO T_DATA_IND messages are flushed. For each
message on the queue, if it is an M_PROTO message (line 8) of type T_DATA_IND
(line 10), save a pointer to the next message (line 11), remove the T_DATA_IND
message (line 12) and free it (line 13). Continue with the next message in the list
(line 19).

1 mblk_t *mp;
2 mblk_t *nmp;
3 queue_t *q:
4 union T-primitives *tp;
5

6 mp - q-~first;

7 While (mp) (
8 if (mp->b_datap->db_type -- M_PROTO)

9

10

11
12

13
14
15
16
17

tp - (union T-primitives *)mp->b_rptr:
if (tp->type -- T_DATA_IND) (

nmp - mp->b_next:
rmvq(q, mp):
freemsq (mp) :
mp - nmp:

else (
mp - mp->b_next;

10/89

rmvq(D3DK) rmvq(D3DK)

18 else {
19 mp - mp->b_next;
20
21

10/89 3-119

rmwant (D3DK) rmwant (D3DK)

NAME
rmwant - wait for free memory

SYNOPSIS
tinclude <sys/map.h>
tinclude <sys/ddi.h>

unsigned long rmwant(struct map *nMp-p);

ARGUMENT
map -P Pointer to the map(04DK) structure on which the driver is waiting for

space.

DESCRIPTION
The rmwant function returns the number of processes waiting for free space in
the map.

RETURN VALUE
The number of processes waiting for free space in the map.

LEVEL
Base or Interrupt

SEE ALSO

3-120

Bel Driver Development Guide, Chapter 6, '1nput/Output Operations"
rmalloc(D3DK), rminit(D3DK), rmfree(D3DK), rmsetwant(D3DK),
map(D4DK)

10/89

SAMESTR(D3DK)

NAME
SAMESTR - test if next queue is same type

SYNOPSIS
tinclude <sys/stream.h>

int SAMESTR(queue_t *q);
ARGUMENT

*q Pointer to the queue.

DESCRIPTION

SAMESTR (D3DK)

The SAMESTR function is used to see if the next queue in a stream (if it exists) is
the same type as the current queue (that is, both are read queues or both are
write queues).

RETURN VALUE
SAMESTR returns 1 if the next queue is the same type as the current queue. It
returns 0 if the next queue does not exist or if it is not the same type.

LEVEL
Base or Interrupt

SEE ALSO
OTHERQ(D3DK)

10/89 3-121

sleep (D3DK) sleep (D3DK)

NAME
sleep - suspend process activity pending execution of an event

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/param.h>

int sleep (caddr_t event, int priority);
ARGUMENTS

event

priority

Address (signifying an event) for which the process will wait to be
updated.

Priority that is assigned to the process when it is awakened. If priority
is ORed with the defined constant PCATCH, the sleep function does
not call longjmp on receipt of a signal. Instead, it returns the value
1 to the calling routine.

DESCRIPTION

3-122

sleep suspends execution of a process to await certain events such as reaching a
known system state in hard ware or software. For instance, when a process wants
to read a device and no data is available, the driver may need to call sleep to
wait for data to become available before returning. This causes the kernel to
suspend executing the process that called sleep and schedule another process.
The process that called sleep can be restarted by a call to the wakeup(D3DK)
function with the same event specified as that used to call sleep.

A driver (with data stored in local variables) may call sleep while waiting for
an event to occur. Make sure another process will not interrupt the driver and
overwrite the local variables.

The event address used when calling sleep should be the address of a kernel
data structure or one of the driver's own data structures. The sleep address is
an arbitrary address that has no meaning except to the corresponding wakeup
function call. This does not mean that any arbitrary kernel address should be
used for sleep. Doing this could conflict with other, unrelated sleep/wakeup
operations in the kernel. A kernel address used for sleep should be the address
of a kernel data structure directly associated with the driver I/O operation (for
example, a buffer assigned to the driver).

Before a process calls sleep, the driver usually sets a flag in a driver data struc
ture indicating the reason why sleep is being called.

The priority argument, called the sleep priority, is used for scheduling purposes
when the process awakens. This parameter has critical effects on how the process
that called sleep reacts to signals. If the numerical value of the sleep priority
is less than or equal to the constant P ZERO (defined in the sys/param. h header
file), then the sleeping process will not be awakened by a signal. However, if the
numerical value is greater than P ZERO, the system awakens the process that
called sleep prematurely (that is, before the event on which sleep was called
occurred) on receipt of a non-ignored, non-held signal. In this case, it returns the
value 1 to the calling routine if PCATCH is set; otherwise it does a longjmp and
never returns to the driver. If the event occurred, 0 is returned.

10/89

sleep (D3DK) sleep (D3DK)

To pick the correct sleep priority, base your decision on whether or not the
process should be awakened on the receipt of a signal. If the driver calls sleep
for an event that is certain to happen, the driver should use a priority numeri
cally less than or equal to PZERO. (However, you should only use priorities less
than or equal to P ZERO if your driver is crucial to system operation.) If the
driver calls sleep while it awaits an event that may not happen, use a priority
numerically greater than PZERO.

An example of an event that may not happen is the arrival of data from a remote
device. When the system tries to read data from a terminal, the terminal driver
might call sleep to suspend the current process while waiting for data to arrive
from the terminal. If data never arrives, the sleep call will never be answered.
When a user at the terminal presses the BREAK key or hangs up, the terminal
driver interrupt handler sends a signal to the reading process, which is still exe
cuting sleep. The signal causes the reading process to finish the system call
without having read any data. If sleep is called with a priority value that is not
awakened by signals, the process can be awakened only by a specific wakeup
call. If that wakeup call never happened (the user hung up the terminal), then
the process executes sleep until the system is rebooted.

Another important criteria for selecting the appropriate priority is how important
the event or resource being waited for is to overall system performance. For
example, disk I/O is often a bottleneck, so the priority for disk I/O is higher than
most other priorities. In contrast, terminal I/O is a much lower priority. The
sooner the process runs, the faster the resource will be used and freed again.

Drivers calling sleep must occasionally perform cleanup operations before
returning. Typical items that need cleaning up are locked data structures that
should be unlocked when the system call completes. This is done by DRing prior
ity with PCATCH and executing sleep. If sleep returns a 1, then you can
cleanup any locked structures or free any allocated resources, and return. CAU
TION: If sleep is called from the driver strategy(D2DK) routine, you should
DR the priority argument with PCATCH or select a priority of PZERO or less.

RETURN VALUE

LEVEL

If the sleep priority argument is ORed with the defined constant PCATCH, the
sleep function does not call longjnp on receipt of a signal; instead, it returns
the value 1 to the calling routine. If the process put in a wait state by sleep is
awakened by an explicit wakeup call rather than by a signal, the sleep call
returns o.

Base Only (Do not call from an interrupt routine)

SEE ALSO

10/89

Bel Driver Development Guide, Chapter 10, "Synchronizing Hardware and
Software Events"

delay(D3DK), biodone(D3DK), biowait(D3DK), timeout(D3DK),
untimeout(D3DK), wakeup(D3DK)

3-123

sleep (D3DK) sleep (D3DK)

EXAMPLE
See the untimeout(D3DK) function page for an example of sleep.

3-124 10/89

spl(D3D) spl(D3D)

NAME
spl - block/allow interrupts

SYNOPSIS
'include <sys/inline.h>

int splOO;
int spll 0;
int spl4 0;
int splSO;
int spl60 ;
int spI7 ();
int splvm() ;
int splhi ();
int splstrO;
int splttyO;

int splx (int oldlevel);

ARGUMENT
oldlevel Last set priority value (only splx has an input argument).

DESCRIPTION

10/89

spl blocks or allows interrupts. When a process is executing code in a driver,
the system will not switch context from that process to another executing process
unless it is explicitly told to do so by the driver. This protects the integrity of the
kernel and driver data structures. However, the system does allow devices to
interrupt the processor and handle these interrupts immediately.

The integrity of system data structures would be destroyed if an interrupt
handler were to manipulate the same data structures as a process executing in the
driver. To prevent such problems, the kernel provides the spl functions allow
ing a driver to set processor execution levels, prohibiting the handling of inter
rupts below the level set.

The selection of the appropriate spl function is important. The execution level
to which the processor is set must be high enough to protect the region of code;
but this level should not be so high that it unnecessarily locks out interrupts that
need to be processed quickly. A hardware device is assigned to an interrupt
priority level depending on the type of device. By using the appropriate spi
function, a driver can inhibit interrupts from its device or other devices at the
same or lower interrupt priority levels.

The spl command changes the state of the processor status word (PSW). The
PSW stores the current processor execution level, in addition to information relat
ing to the operating system internals. The spl functions block out interrupts
that come in at a priority level at or below a machine-dependent interrupt prior
ity level. The spl functions include the following:

splO Restores all interrupts when executing on the base level. A driver
routine may use splO when the routine has been called through
a system call; that is, if it is known that the level being restored is
indeed at base level.

3-125

spl(D3D) spl(D3D)

spll Used in context and process switch to protect critical code.

sp14 Used in character drivers to protect critical code.

splS Used in character drivers to protect critical code (this function has
the same effect as sp14).

sp16 Used in block drivers to protect critical code.

sp17 Used in any type of driver to mask out all interrupts including the
clock, and should be used very sparingly.

splvm Used in memory management code to protect critical regions.

splhi Used in any type of driver to mask out all interrupts including the
dock, and should be used very sparingly. (This function is identi
cal to sp17.)

spltty Used by a TrY driver to protect critical code.

splstr Used to protect STREAMS driver and module critical regions of
code. This is defined to be high enough to block interrupts from
the highest priority STREAMS device. splstr is mapped to
spltty.

splx Used to terminate a section of protected critical code. This func
tion restores the interrupt level to the previous level specified by
its argument oldlevel.

NOTE: spl functions should not be used in interrupt routines unless you save
the old interrupt priority level in a variable as it was returned from an spl call.
Later, splx must be used to restore the saved old level. Never drop the inter
rupt priority level below the level at which an interrupt routine was entered. For
example, if an interrupt routine is entered at the interrupt priority level of an
sp16, do not call splO through splS or the stack may become corrupted.

RETURN VALUE
All spl functions (except splx) return the former priority level.

EXAMPLE
See the untimeout(D3DK) function page for an example of spl.

3-126 10/89

strlog (D3DK) strlog (D3DK)

NAME
str log - submit messages to the log driver

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/strlog.h>
tinclude <sys/log.h>

int strlog(short mid, short sid, char level, unsigned short flags,
char *fmt, unsigned argl, ...) ;

ARGUMENTS
mid Identification number of the module or driver submitting the message.

Identification number for a particular minor device. sid
level
flags

fmt

argl

Tracing level for selective screening of low priority messages.

Valid flag values are:

SL_ERROR Message is for error logger.
SL TRACE Message is for trace.
SL::::NOTIFY Mail copy of message to system administrator.
SL CONSOLE

- Log message to console.
SL FATAL Error is fatal.
SL WARN Error is a warning.
SL_NOTE Error is a notice.

printf(3S) style format string. %s, %e, %g, and %G formats are not
allowed.

Zero or more arguments to printf.

DESCRIPTION
strlog submits formatted messages to the 10g(7) driver. The messages can be
retrieved with the getmsg(2) system call. The flags argument specifies the type
of the message and where it is to be sent. strace(1M) receives messages from
the log driver and sends them· to the standard output. strerr(1M) receives
error messages from the log driver and appends them to a file called
/var/adm/streams/error.mm-dd, where mm-dd identifies the date of the error
message.

RETURN VALUE
strlog returns 0 if the message is not seen by all the readers, 1 otherwise.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 12, "Error Reporting"

10g(7)

10/89 3-127

strqget (D3DK) strqget(D3DK)

NAME
strqget - get infonnation about a queue or band of the queue

SYNOPSIS
tinclude <sys/stream.h>

int strqget (queue t *q, qfields_t what, unsigned char pri,
long *valp) i -

ARGUMENTS
q Pointer to the queue

what Which field of the queue structure to return information about. Valid
values are specified in stream. h:

pri
valp

DESCRIPTION

typedef enum qfields {
QHIWAT
QLOWAT
QMAXPSZ
QMINPSZ
QCOUNT
QFIRST
QLAST
QFLAG
QBAD

qfields_t;

Priority of request.

0,
1,
2,
3,

= 4,
= 5,

6,
7,

= 8

The value for the requested field.

/* ~hiwat or qb_hiwat */
/* ~lowat or qb_lowat */
/* ~maxpsz */
/* ~minpsz */
/* ~count or qb_count */
/* ~first or qb_first */
/* ~last or qb_last */
/* ~flaq or qb_flag */

strqget gives drivers and modules a way to get information about a queue or a
particular band of a queue without directly accessing STREAMS data structures.

RETURN VALUE
On success, 0 is returned. An error number is returned on failure.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

strqset(D3DK)

3-128 10/89

strqset (D30K) strqset (D3DK)

NAME
strqset - change information about a queue or band of the queue

SYNOPSIS
'include <sys/stream.h>

int strqset(queue t *~qfields_t wmu,unsigned char pn,
long *val); -

ARGUMENTS
If
what

Pointer to the queue.

Which field of the queue structure to return information about.
values are specified in stream. h:

Valid

pri

val

typedef enum qfields {
QHIWAT = 0,
QLOWAT = 1,
QMAXPSZ 2,
QMINPSZ = 3,
QCOUNT 4,
QFIRST 5,
QLAST 6,
QFLAG 7,
QBAD = 8

qfields_t;

Priority of request.

/* ~hiwat or qb_hiwat */
/* ~lowat or qb_lowat */
/* ~maxpsz */
/* ~minpsz */
/* ~count or qb_count */
/* ~first or qb_first */
/* ~last or qb_last */
/* ~flag or qb_flag */

The value for the field to be changed.

DESCRIPTION
strqset gives drivers and modules a way to change information about a queue
or a particular band of a queue without directly accessing STREAMS data struc
tures. The fields that can be returned are defined in the enumerated type
qfields. qfields defines the following fields:

ReTURN VAL""E

LEVEL

On success, 0 is returned. An errpr numper is returned on failure. If the what
field is read-only, EPERM is returned and the field is left unchiUlged,

Base Or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

strqget(D3DK)

10/89 3-129 ,

testb(D3DK) testb (D3DK)

NAME
testb - check for an available buffer

SYNOPSIS
tinclude <sys/stream.h>

int testb (int size, int pri);
ARGUMENTS

size Size of the requested buffer.

pri Priority of the a1locb request.

DESCRIPTION
testb checks to see if an allocb(D3DK) call is likely to succeed if a buffer of
size bytes at priority pri is requested. Even if testb returns successfully, the call
to allocb can fail.

RETURN VALUE
Returns 1 if a buffer of the requested size is available, and 0 if one is not.

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 7, "STREAMS"

allocb(D3DK), bufcall(D3DK)

EXAMPLE

3-130

In a srv(D2DK) (service) routine, if copymsg(D3DK) fails (line 6), the message
is put back on the queue (line 7) and a routine, tryagain, is scheduled to be
run in one tenth of a second (HZ/10). Then the service routine returns.

When the timeout(D3DK) function runs, if there is no message on the front of
the queue, it just returns. Otherwise, for each message block in the first message,
check to see if an allocation would succeed. If the number of message blocks
equals the number we can allocate, then enable the service procedure. Otherwise,
reschedule tryagain to run again in another tenth of a second. Note that
tryagain is merely an approximation. Its accounting may be faulty. Consider
the case of a message comprised of two l024-byte message blocks. If there is
only one free l024-byte message block and no free 2048-byte message blocks, then
testb will still succeed twice. If no message blocks are freed of these sizes
before the service procedure runs again, then the copymsg(D3DK) will still fail.
The reason testb is used here is because it is significantly faster than calling
copymsg. We must minimize the amount of time spent in a timeout routine.

1 xxxsrv(q)
2

3

4

5

6

7

8

mblk_t *mp;
mblk_t *nmp;

if «nmp - copymsg(mp» -- NULL)
putbq(q, mp);
timeout (tryagain, (long) q, HZ/10);

10/89

testb(D3DK)

10/89

9
10

11
12

return;

13 tryagain (q)

14 queue_t *q;
15
16 register int can_alloc - 0;

17 register int num_blks - 0;
18 register mblk_t *nip;

19
20 if (!q-><Lfirst)
21 return;

22 for (mp - q-><Lfirst; mp; mp - mp->b_cont) (
23 num_blks++;
24 can_alloc +- testb«mp->b_datap->db_lim -
25 mp->b_datap->db_base), BPRI_MED);
26
27 if (num_blkS -- can_alloc)
28 qenable (q) ;

29 else
30 timeout (tryagain, (long)q, HZ/10);

31

testb(D3DK)

3-131

timeout (D3DK) timeout (D3DK)

NAME
timeout - execute a function after a specified length of time

SYNOPSIS
tinclude <sys/types.h>

int timeout(int (*ftn) (), caddr_t arg, long ticks);

ARGUMENTS
ftn Kernel function to invoke when the time increment expires.

Argument to the function. arg

ticks Number of clock ticks to wait before the function is called.

DESCRIPTION
The timeout function schedules the specified function to be called after a
specified time interval. Control is immediately returned to the caller. This is use
ful when an event is known to occur within a specific time frame, or when you
want to wait for I/O processes when an interrupt is not available or might cause
problems. For example, some robotics applications do not provide a status flag
for determining when to pump information to the robot's controller. By using
timeout, the driver can wait a predetermined interval and then begin transfer
ring data to the robot.

The exact time interval over which the timeout takes effect cannot be guaranteed,
but the value given is a close approximation. The function called by timeout
must adhere to the same restrictions as a driver interrupt handler. It can neither
sleep nor use previously set local variables.

RETURN VALUE

LEVEL

Under normal conditions, an integer timeout identifier is returned (which may, in
unusual circumstances, be set to 0). Otherwise, if the timeout table is full, the
following panic message results:

PANIC: Timeout table overflow

The timeout function returns an identifier that may be passed to the
untimeout(D3DK) function to cancel a pending request. NOTE: No value is
returned from the called function.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 10, "Synchronizing Hardware and
Software Events"

delay(D3DKK), biodone(D3DK), biowait(D3DK), sleep(D3DK),
untimeout(D3DK), wakeup(D3DK)

EXAMPLE
See the bufcall(D3DK) function page for an example of timeout.

3-132 10/89

ulomove(D3DK) ulomove(D3DK)

NAME
uiomove - copy kernel data using uio(D4DK) structure

SYNOPSIS
'include <sys/types.h>
'include <sys/uio.h>

int uiomove (caddr_t address, long nbytes, enum uio_rw rwflag,
struct uio * uio y) ;

ARGUMENTS
address Source/destination kernel address of the copy.

Number of bytes to copy. nbytes

rwflag Flag indicating read or write operation. Possible values are
UIO READ and UIO WRITE. - -

uio y Pointer to the uio structure for the copy.

DESCRIPTION
The uiomove function copies nbytes of data to or from the space defined by the
uio structure (described in uio. h) and the driver.

The uio_segflg member of the uio structure determines the the type of space
to or from which the transfer being made. If it is set to UIO_SYSSPACE the data
transfer is between addresses in the kernel. If it is set to UIO USERSPACE the
transfer is between a user program and kernel space. -

In addition to moving the data, uiomove adds the number of bytes moved to
the iov base member of the iovec(D4DK) structure, decreases the iov len
member,increases the uio offset member of the uio structure, and decreases
the uio_resid member. -

This function does automatic page boundary checking. nbytes does not have to be
word-aligned.

CAUTION: If uio segflg is set to OIO SYSSPACE and address is selected from
user space, the system panics.

RETURN VALUE

LEVEL

uiomove returns 0 upon success or -1 on failure. The driver entry point routine
through which uiomove was called should return EFAOLT if -1 is returned.

Base.
SEE ALSO

uio(D4DK), ureadc(D3DK), uwritec(D3DK)

EXAMPLE
See rmalloc.

10/89 3-133

unlinkb(D3DK)

NAME
unlinkb - remove a message block from the head of a message

SYNOPSIS
'include <sys/stream.h>

mblk_t *unlinkb(mblk_t *mp);

ARGUMENT
mp Pointer to the message.

DESCRIPTION

unlinkb (D3DK)

unlinkb removes the first message block from the message pointed to by mp. A
new message, minus the removed message block, is returned.

RETURN VALUE

LEVEL

If successful, unlinkb returns a pointer to the message with the first message
block removed. If there is only one message block in the message, NULL is
returned.

Base or Interrupt

SEE ALSO
BCI Driver Development Guide, Chapter 7, "STREAMS"

linkb(D3DK)

EXAMPLE

3-134

The routine expects to get passed an M_PROTO T_DATA_IND message. It will
remove and free the M_PROTO header and return the remaining M_DATA portion
of the message.

1 mblk_t *
2 makedata (mp)
3 mb1k_t *mp;
4

5 mb1k_t *nmp;
6
7 nmp - unlinkb(mp);
8 freeb(mp);
9 return(nmp);

10

10/89

untlmeout (D3DK) untimeout(D3DK)

NAME
untimeout - cancel previous timeout(D3DK) function call

SYNOPSIS
tinclude <sys!types.h>

int untimeout (int id) ;

ARGUMENTS
id Identification value generated by a previous timeout function call.

DESCRIPTION
untimeout cancels a pending timeout(D3DK) request.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 10, "Synchronizing Hardware and
Software Events"

delay(D3DK), biodone(D3DK), biowait(D3DK), sleep(D3DK),
timeout(D3DK), wakeup(D3DK)

EXAMPLE

10/89

A driver may have to repeatedly request outside help from a computer operator.
The timeout function is used to delay a certain amount of time between
requests. However, once the request is honored, the driver will want to cancel
the timeout operation. This is done with the untimeout function.

In a driver open(D2DK) routine, after the input arguments have been verified,
the status of the device is tested. If the device is not on-line, a message is
displayed on the system console. The driver schedules a wakeup(D3DK) call and
waits for five minutes (line 41). If the device is still not ready, the procedure is
repeated.

When the device is made ready, an interrupt is generated. The driver interrupt
handling routine notes there is a suspended process. It cancels the timeout
request (line 59) and wakens the suspended process (line 61).

1 struct mtu_device {
2

3

4

5
6

int
int
int
paddr_t

control;
status;
byte_cnt;
baddr:

7 I; /* end device */

8
9 struct mtu

10

/* layout of physical device registers */
/* physical device control word */

/* physical device status' word */

/* number of bytes to be transferred */

/* DMA starting physical address */

11

12

13

/* magnetic tape unit logical structure */
1* pointer to I/O queue head */
/* pointer to buffer I/O queue tail */

struct buf *mtu_head;
struct buf *mtu_tail;
int mtu_flag; /* logical status flag */

3-135

untimeout (D3DK) untimeout(D3DK)

3-136

14 int

15 }; /* end mtu */

16

17 extern struct mtu_device *mtu_addr[);

18 extern struct mtu mtu_tbl[);

19 extern int

20 mtu_open(dev, flag, type, c-ptr)

21 dev_t dev;

22

23 register struct mtu *dp;
24 register struct mtu_device *rp;

*/

/* location of dev regs */

/* location of dev structs */

25 if «getminor(dev) » 3) > mtu_cnt) { /* if dev doesn't exist */

26

27

28

29

30
31

32

33

return (ENXIO) ;

} /* endif */

dp - &mtu_tbl[getminor(dev»);

if (dp->mtu_flag & MTU_BUSY)
return (EBUSY) ;

} /* endif */

/* then return error condition */

/* get logical device struct */

!- 0) { /* if device is in use, */
/* return busy status */

34 dp->mtu_flag - MTU_BUSY; /* mark device in use & clear flags */

35 rp - xx_addr[getminor(dev) » 3); /* get device regs */

36 oldlevel2 - splhi();
37 while«rp->status & MTU_LOAD) -- 0) (/* while tape not loaded */

38 /* display mount request on console */

39 cmn_err(CE_NOTE, "!Tape MOUNT, drive %d", minor (dev) & 0x3);

40 dp->mtu_flag 1- MTU_WAIT; /* indicate process suspended */

41 dp->mtu_to_id - timeout(wakeup, dp, 5*60*HZ); /* wait 5 min */

42 if (sleep (dp, (PCATCH 1 PZERO+2» -- 1) {/*wait on tape load */
43 /* if user aborts process, release */

44 dp->mtu_flag - 0; /* tape device by clearing flags */

45 untimeout (dp->mtu_to_id);

46 splx (01dleve12) ;

47 /* endif */

48 } /* endwhile */
49 splx(oldleve12);

50 /* end mtu_open */

51

52

53
54

55

56

57

58

mtu_int(cntr)

int cntr;

register struct

register struct

/* controller that caused the interrupt */

mtu_device *rp - xx_addr[cntr); /* get device regs */

mtu *dp - &mtu_tbl[cntr « 3 I (rp->status & Ox3»);

if «dp->mtu_flag & MTU_WAIT) !- 0) (/* if process is suspended */

/* waiting for tape mount, */

untimeout(dp->mtu_to_id); /* cancel timeout request */

10/89

untimeout(D3DK)

10/89

59
60
61

dp->flag ,. -MTU_~IT;
wakeup(dp);

1* endif *1

untlmeout (D3DK)

1* clear wait flag *1
1* awaken suspended process *1

3-137

ureadc (D3DK)

NAME
ureadc - add character to a uio structure

SYNOPSIS
tinclude <sys/uio.h>

int ureadc (int c, uio_t *uio"p);

ARGUMENTS
c
"uio"p

DESCRIPTION

The character added to the uio structure.
Pointer to the uio(D4DK) structure.

ureadc(D3DK}

ureadc transfers the character c into the address space of the uio structure
pointed to by uio..p, and updates the uio structure as for uiomove(D3DK).

RETURN VALUE
o is returned on success and EFAULT on failure.

LEVEL
Base or Interrupt

SEE ALSO
uiomove(D3DK), uwritec(D3DK), iovec(D4DK), uio(D4DK)

3-138 10/89

useracc(D3DK) useracc(D3DK)

NAME
useracc - verify whether user has access to memory

SYNOPSIS
'include <sys/types.h>
'include <sys/buf.h>

int useracc (caddr_t base, uint count, int access) ;
ARGUMENTS

base The start address of the user data area

count
access

The size of the data transfer in bytes

A flag to determine whether the access is a read or write. The defined
constant B _ READ specifies a read from the device and a write to
memory. This requires that the user have write access permission for
the specified data area. The defined constant B_WRITE specifies a
read from memory and a write to the device. It requires read access
permission for the data area. (B_READ and B_WRITE are defined in
the system header file sys/buf. h.)

DESCRIPTION
useracc verifies if a user has proper access to memory. It is not necessary to
use useracc for buffered I/O (including use of the copyin(D3DK) and
copyout(D3DK) functions).

RETURN VALUE

LEVEL

Under normal conditions, 1 is returned. If the user does not have the proper
access permission to the memory specified return EFAULT.

Base Only (Do not call from an interrupt routine)

SEE ALSO
drv-priv(D3DK)

10189 3-139

uwrltec(D3DK)

NAME
uwritec - remove a character from a uio structure

SYNOPSIS
tinclude <sys/uio.h>

int uwritec (uio_t *uioy);
ARGUMENTS

"uioy
DESCRIPTION

Pointer to the uio(D4DK) structure.

uwritec (D3DK)

uwritec returns a character from the uio structure pointed to by uioy, and
updates the uio structure as for uiomove(D3DK).

RETURN VALUE

LEVEL

The next character for processing is returned on success, and -1 is returned if
uio is empty or there is an error.

Base or Interrupt

SEE ALSO
uiomove(D3DK), ureadc(D3DK), iovec(D4DK), uio(D4DK)

3-140 10/89

vtop(D3D) vtop(D3D)

NAME
vtop - convert virtual to physical address

SYNOPSIS
tinclude <sys/types.h>

paddr_t vtop(long vaddr, proc_t *p);

ARGUMENTS
vaddr Virtual address to convert.

p Pointer to the proc(D4X) structure used by vtop to locate the infor
mation tables used for memory management. To indicate that the
address is in kernel virtual space or in the virtual space of the current
process, set p to NULL. Block drivers that can transfer data directly in
and out of user memory space must set p to the b ""proc member of
the buf(D4DK) structure.

DESCRIPTION
vtop converts a virtual address to a physical address. When a driver receives a
memory address from the kernel, that address is virtual. Generally, memory
management is performed by· the MMU. However, devices that access memory
directly (DMA) deal only with physical memory addresses. In such cases, the
driver must provide the device with physical memory addresses.

The virtual address is the memory address being translated. The vtop function
returns the translated address.

The same functionality is provided by the kvtophys(D3D) function.

RETURN VALUE

LEVEL

Under normal conditions, a physical address is returned. Otherwise, the follow
ing can be returned:

-1 if the virtual address to be translated is not a valid one

o if there is no physical memory mapped to the virtual address

Base or Interrupt.

SEE ALSO
Bel Driver Development Guide, Chapter 6, '1nput/Output Operations"

btop(D3DK), btopr(D3DK), ptob(D3DK), kvtophys(D3D)

10/89 3-141

wakeup (D3DK) wakeup (D3DK)

NAME
wakeup - resume suspended process execution

SYNOPSIS
'include <sys/types.h>

void wakeup (caddr_t event) ;
ARGUMENT

event Address that is the same address used by sleep(D3DK) to suspend
process execution.

DESCRIPTION
wakeup awakens all processes that called sleep with an address as the event
argument. This lets the processes execute according to the scheduler. Ensure
that the same event argument is used for both sleep and wakeup. It is recom
mended for code readability and for efficiency to have a one-to-one correspon
dence between events and sleep addresses. Also, there is usually one bit in the
driver flag member that corresponds to the reason for calling sleep.

Whenever a driver calls sleep, it should test to ensure the event on which the
driver called sleep occurred. There is an interval between the time the process
that called sleep is awakened and the time it resumes execution where the state
forcing the sleep may have been reentered. This can occur because all
processes waiting for an event are awakened at the same time. The first process
given control by the scheduler usually gains control of the event. All other
processes awakened should recognize that they cannot continue and should reis
sue sleep.

RETURN VALUE
None

LEVEL
Base or Interrupt

SEE ALSO
Bel Driver Development Guide, Chapter 10, "Synchronizing Hardware and
Software Events"

delay(D3DK), biodone(D3DK), biowait(D3DK), sleep(D3DK),
timeout(D3DK), untimeout(D3DK)

EXAMPLE
See the untimeout(D3DK) function page for an example of wakeup.

3-142 10/89

WR(D3DK) WR(D3DK)

NAME
WR - get pointer to the write queue for this module or driver

SYNOPSIS
tinclude <sys/stream.h>
tinclude <sys/ddi.h>

queue_t WR(queue_t *q);

ARGUMENTS
q Pointer to the read queue whose write queue is to be returned.

DESCRIPTION
The WR function accepts a read queue pointer as an argument and returns a
pointer to the write queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a read queue.
WR will not check for queue type, and a system panic could result if the pointer is
not to a read queue.

RETURN VALUE
The pointer to the write queue.

LEVEL
Base or Interrupt

SEE ALSO
STREAMS Programmer's Guide

OTHERQ(D3DK), RD(D3DK)

EXAMPLE

10/89

In a STREAMS close routine, the driver or module is passed a pointer to the
read queue. The driver must zero out the Cl...Ptr field of both the read and write
queues if it had previously initialized them in its open routine. These usually
are set to the address of the module-specific data structure for the minor device.

1 xxxclose(q. flag)

2 queue_t *q;
3 int flag;

4

5 q->q...Ptr - NULL;
6 WR(q)->q...Ptr - NULL;

"I }

3-143

4 Data Structures (04)

Introduction 4-1

Manual Pages 4-3
buf(D4DK) 4-3
cred(D4DK) 4-7
datab(D4DK) 4-8
free rtn(D4DK) 4-9
hdedata(D4D) 4-10
iovec(D4DK) 4-11
map(D4DK) 4-12
module _info(D4DK) 4-13
msgb(D4DK) 4-14
qband(D4DK) 4-15
qinit(D4DK) 4-16
queue(D4DK) 4-17
streamtab(D4DK) 4-18
uio(D4DK) 4-19

Table of Contents

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I

I
I

I

I
I
I
I

Introduction

This chapter describes the data structures used by drivers to share information
between the driver and the kernel. All driver data structures shared by both
DDI and DKl are identified with the (D4DK) cross reference code. All DDI-only
or DKl-only structures are identified with the (D4D) or (D4K) cross reference
codes respectively.

In this section, reference pages contain the following headings:

• NAME summarizes the structure's purpose.

• SYNOPSIS lists the include file that defines the structure.

• DESCRIPTION provides general information about the structure.

• STRUCTURE MEMBERS lists all accessible structure members.

• SEE ALSO gives sources for further information.

Table 4-1 summarizes the STREAMS structures described in this section.
STREAMS structures may be used in either DDI or DKl.

Table 4-1: STREAMS Data Structure Summary

Routine Description

datab STREAMS message data structure

free rtn structure specifying routine that frees non-STREAMS data -
buffers

module info STREAMS driver identification and limit value structure -
msgb STREAMS message block structure

qband STREAMS queue flow control information structure

qinit structure specifying STREAMS queue processing procedures

queue STREAMS queue structure

streamtab structure specifying qinit structures

Data Structures (04) 4·1

Introduction

Table 4-2 summarizes structures that are not specific to STREAMS I/O. These
structures may be used in either DDI or DKI, except as noted.

Table 4-2: Data Structures not Specific to STREAMS

Routine Description Type

buf block I/O data transfer structure

ered access credential structure

hdedata hard disk error data structure DDlonly

iovee structure specifying address and size of
I/O request using uio(D4DK)

map private memory map structure

uio scatter/gather I/O request structure

<. > change between releases. Rely only on the structure members listed in
T Do not declare arrays of structures as the size of the structures may

•••••••••• this chapter and not on unlisted members or the position of a member in
a structure.

4-2 DDI/DKI Reference Manual

buf(D4DK) buf(D4DK)

NAME
buf - block I/O data transfer structure

SYNOPSIS
iinclude <sys/buf.h>

DESCRIPTION
The buf structure is the basic data structure for block I/O transfers. Each block
I/O transfer has an associated buffer header. The header contains all the buffer
control and status information. For drivers, the buffer header pointer is the sole
argument to a block driver strategy(D2DK) routine. Do not depend on the size
of the buf structure when writing a driver.

It is important to note that a buffer header may be linked in multiple lists simul
taneously. Because of this, most of the members in the buffer header cannot be
changed by the driver, even when the buffer header is in one of the drivers' work
lists.

Buffer headers are also used by the system for unbuffered or physical I/O for
block drivers. In this case, the buffer describes a portion of user data space that
is locked into memory (see physiock(D3D».

Block drivers often chain block requests so that overall throughput for the device
is maximized. The av forw and the av back members of the buf structure
can serve as link pointers for chaining block requests.

The following figure illustrates two linked lists of buffers. The top illustration is
the bfreelist, the list of available buffers. The bottom illustration is a queue of
allocated buffers. The lined areas indicate other buffer members.

bfreelist bUf structures

Available Buffers

Allocated Buffers

STRUCTURE MEMBERS

10/89 4-3

buf(D4DK)

int
struct buf
struct buf
struct buf
struct buf
o_dev_t
unsigned
caddr_t
daddr_t
char
unsigned int
clock_t
struct proc
struct page
unsigned long
long
int
struct vnode
int
dev_t

b_flags;
*b_forw;
*b_back;
*av_forw;
*av_back;
b_dev;
b_bcount;
b_addr;
b_blkno;
b_oerror;
b_resid;
b_start;
*byroc;
*byages;
b_reltime;
b_bufsize;
(*b_iodone) ;
*b_vp;
b_error;
b_edev;

/* Buffer status */
1* headed by d_tab of conf.c *1
1* headed by d_tab of conf.c *1
/* Driver work list link *1
/* Driver work lists link *1

buf(D4DK)

1* Major/minor device numbers *1
1* t of bytes to transfer *1
/* Buffer's virtual address *1
/* Block number on device *1
1* Old post-I/O error number */
1* t of bytes not transferred *1
1* request start time *1
/* Process table entry address *1
/* page list for PAGEIO *1
1* previous release time */
1* size of allocated buffer *1
1* function called by biodone *1
1* vnode associated with block *1
1* expanded error field *1
1* expanded dev field *1

CAUTION: Buffers are a shared resource within the kernel. Drivers should read
or write only the members listed in this section. Drivers that attempt to use
undocumented members of the buf structure risk corrupting data in the kernel
or on the device.

The paddr macro (defined in buf .h) provides access to the b_un.b_addr
member of the buf structure. (b_un is a union that contains b_addr.)

The members of the buffer header available to test or set by a driver are as fol
lows:

b flags stores the buffer status and tells the driver whether to read or write to
the device. The driver must never clear the b flags member. If this is done,
unpredictable results can occur including loss-of disk sanity and the possible
failure of other kernel processes.

Valid flags are as follows:

B BUSY indicates the buffer is in use.

B DONE indicates the data transfer has completed.

B ERROR indicates an I/O transfer error.

B KERNBUF indicates the buffer is allocated by the kernel and not by a
driver.

B_PAGEIO indicates the buffer is being used in a paged I/O request.
If B_PAGEIO is set, the byages field of the buffer
header will point to a sorted list of page structures. Also,
the b addr field of the buffer header will be offset into
the first page of the page list. If B_PAGEIO is not set, the
b addr field of the buffer header will contain the kernel
virtual address of the I/O request. The byages field of

4-4 10/89

buf(D4DK) buf(D4DK)

10/89

B PHYS

BREAD

B WANTED

B WRITE

the buffer header is not used.

indicates the buffer header is being used for physical
(direct) I/O to a user data area. The b un member con
tains the starting address of the user data-area.

indicates data is to be read from the peripheral device into
main memory.

indicates the buffer is sought for allocation.

indicates the data is to be transferred from main memory
to the peripheral device. B_WRITE is a pseudo flag that
occupies the same bit location as B_READ. B_WRITE can
not be directly tested; it is only detected as the NOT form
of BREAD.

av forw and av _back can be used by the driver to link the buffer into driver
work lists.

b _ dey contains the external major and minor device numbers of the device
accessed. For Release 4.0, this field is replaced by the expanded device number
field b_edev. b_dev is maintained for compatibility.

b_bcount specifies the number of bytes to be transferred in both a paged and a
non-paged I/O request.

b_addr is either the virtual address of the I/O request, or an offset into the first
page of a page list depending on whether B_PAGEIO is set. If it is set, the
b Jlages field of the buffer header will point to a sorted list of page structures
and b_addr will be the offset into the first page. If B_PAGEIO is not set,
b_addr is the virtual address from which data is read or to which data is writ
ten.

b_blkno identifies which logical block on the device (the device is defined by the
device number) is to be accessed. The driver may have to convert this logical
block number to a physical location such as a cylinder, track, and sector of a disk.

The b_oerror with a char data type and the expanded b_error with an int
data type both may hold an error code that should be passed as a return code
from your driver routine. b_error and b_oerror is set in conjunction with
the B_ERROR flag (set by the operating system in the b_flags member). The
error codes are described in Appendix A.

b_resid indicates the number of bytes not transferred because of an error.

b_start holds the time the I/O request was started.

b Jlroc contains the process table entry address for the process requesting an
unbuffered (direct) data transfer to a user data area (this member is set to 0
when the transfer is buffered). The process table entry is used to perform proper
virtual to physical address translation of the b un member.

bJlages contains a pointer to the page structure list used in a paged I/O
operation.

4-5

buf(D4DK) buf(D4DK)

b_bufsize contains the size of the allocated buffer.

(*b_iodone) identifies a specific biodone routine to be called by the driver
when the I/O is complete.

b _ vp identifies the vnode associated with the block.

SEE ALSO
st rate gy(D2DK), physiock(D3D), brelse(D3DK), clrbuf(D3DK),
iovec(D4DK), uio(D4DK)

4-6 10/89

cred(D4DK) cred(D4DK)

NAME
cred - access credential structure

SYNOPSIS
'include <sys/cred.h>

DESCRIPTION
This structure is used to check the access credentials of the process requesting
access to kernel space.

The size of the cr _qroups [] array is configurable, however, its size is the same
for all cred structures. Note that cr nqroups records the number of elements
currently in use, not the array size. -

STRUCTURE MEMBERS
ushort

ushort
uid_t
qid_t
uid_t
qid_t
uid_t
qid_t
qid_t

cr_nqroups;
cr_uid;
cr_qid;
cr_ruid;
cr_rqid;
cr_suid;
cr_sqid;
cr_qroups[l];

/* reference count on processes usinq */
/* cred structure. Not set by drivers. */
/* number of qroups in cr_qroups */
/* effective user IO */
/* effective qroup IO */
/* real user IO */
/* real qroup IO */
/* "saved" user IO (from exec) */
/* "saved" qroup IO (from exec) */
/* supplementary qroups list */

The cred structure is defined as type cred_t.

SEE ALSO

10/89

open(D2DK), close(D2DK), ioctl(D2DK), mmap(D2DK), read(D2DK),
write(D2DK), segmap(D2DK)

4-7

datab(D4DK) datab (D4DK)

NAME
datab - STREAMS message data structure

SYNOPSIS
tinclude <sys/stream.h>

DESCRIPTION
The datab structure describes the data of a STREAMS message. The actual data
contained in a STREAMS message is stored in a data buffer pointed to by this
structure. A IIISqb (message block) structure includes a field that points to a
datab structure.

A data block can have more than one message block pointing to it at one time, so
the db_ref member keeps track of a data block's references, preventing it from
being deallocated until all message blocks are finished with it.

STRUCTURE MEMBERS
union {

struct datab
struct free_rtn
db_f;

unsiqned char
unsiqned char
unsiqned char
unsiqned char
unsiqned char
unsiqned int
caddr_t
long

*freep;
*frtnp;

*db_base;
*db_lim;
db_ref;
db_type;
db_iswhat;
db_size;
db_msgaddr;
db_filler;

/* routine to free non-STREAMS buffer */

/* first byte of buffer */
/* last byte (+1) of buffer */
/* t of message pointers to this data */
/* message type */
/* status of msg/data/buffer triplet */
/* used internally */
/* triplet mesg header; points to datab */
/* reserved for future use */

A datab structure is defined as type dblk_t.

SEE ALSO
Bel Driver Development Guide, Chapter 4, ''Header Files and Data Structures"

free _ rtn(D4DK), IIISqb(D4DK)

4-8 10/89

free Jtn (D4DK) freeJtn(D4DK)

NAME
free_rtn - structure that specifies a driver's message freeing routine

SYNOPSIS
tinclude <sys/stream.h>

DESCRIPTION
The free_rtn structure is referenced by the dp_freep member of the datab
structure. When freeb(D3D) is called to free the message, the driver's message
freeing routine (referenced through the free_rtn structure) is called, with argu
ments, to free the data buffer.

STRUCTURE MEMBERS
void (*free_func) () /* user's freeing routine */
char *free_arq /* arguments to free_func() */

The free_rtn structure is defined as type frtn t.

SEE ALSO
datab(D4DK), esballoc(D3DK)

10/89 4-9

hdedata (040) hdedata (040)

NAME
hdedata - hard. disk error data structure

SYNOPSIS
tinclude <sys/hdelog.h>

DESCRIPTION
The hdedata data structure temporarily stores hard disk error information sent
to an error queue. A hdedata structure is initialized for every disk on the sys
tem by hdeeqd(D3D) when the system is booted. An error queue is also initial
ized by hdeeqd.

When the disk driver finds an error, it provides hdelog(D3D) with the error
information. hdelog passes the hdedata structure for the error to the error
queue. This error queue is a queue of bad block reports that have not been
remapped. This queue resides in the kernel and not on the disk.

After a number or errors are accumulated, an administrator examines the list of
errors collected in the queue. If any of the errors need to be "fixed," the
administrator remaps the bad block. Remapping means that the block address is
rewritten to a defect table on the disk. Physical Description sector information
points to this defect table.

The following figure illustrates the logging of hard. disk errors:

STRUCTURE MEMBERS
o dev t diskdev;

char dskserno[12];
daddr_t blkaddr;

char

char
char
char
time t

readtype;

severity;
badrtcnt;
bitwidth;
timestmp;

/* Major/minor disk device number */
/* (major number for character device) */
/* Disk pack serial number (can be all zeros) */
/* Physical block address */
/* in machine-independent form */
/* Error type:CRC (cyclical redundancy check) */
/* or ECC (error check and correction) */
/* Severity type: marginal or unreadable */
/* Number of unreadable tries */
/* Bitwidth of corrected error: 0 if CRC */
/* Time stamp */

NOTE: The disk pack serial number is not currently evaluated, but it must con
tain a value. Set to all zeros.

SEE ALSO
hdeeqd(D3D), hdelog(D3D)

4-10 10/89

lovec(D4DK} lovec(D4DK}

NAME
iovec - data storage structure for I/O using uio(D4DK)

SYNOPSIS
tinclude <sys/uio.h>

DESCRIPTION
An iovec structure describes a data storage area for transfer in a uio structure.
Conceptually, it may be thought of as a base address and length specification.

STRUCTURE MEMBERS
caddr_t iov_base; 1* base address of the data storage area *1

1* represented by the iovec structure *1
int iov_len; 1* size of the data storage area in bytes *1

SEE ALSO
uio(D4DK)

10/89 4-11

map (D4DK) map (D4DK)

NAME
map - private memory map structure

SYNOPSIS
tinclude <sys/map.h>

DESCRIPTION
The map structure defines the size and index into a private space management
map. The private map is declared as an instance of the map structure using the
driver prefix in the form prefixmap. The size is defined in the m_size field as
the number of arbitrary units used to make up the map. The index is defined in
m_addr as the first available unit of the map.

Private maps are managed through a set five functions:

rmalloc allocates space from a defined and initialized map
rmfree returns previously allocated space to map
rminit defines a map structure and initializes a map table
rmwant returns the number of processes waiting for free space
rmsetwant increments the count of the number of processes waiting for

free space in the map

Private maps can be made up of any units appropriate for the specific uses of the
map. For example, units may be byte addresses, pages of memory, or blocks.
The map itself does not define the resource, and the size of the map is not related
to the size of the map structure.

STRUCTURE MEMBERS
unsigned long m_size 1* number of units available *1
unsigned long m_addr 1* address of first available unit *1

SEE ALSO

4-12

rmalloc(D3DK), rmfree(D3DK), rminit(D3DK), rmsetwant(D3DK),
rmwant(D3DK)

10/89

moduleJnfo(D4DK) moduleJnfo(D4DK)

NAME
module_info - STREAMS driver identification and limit value structure

SYNOPSIS
'include <sys/stream.h>

DESCRIPTION
When a module or driver is declared, several identification and limit values can
be set. These values are stored in the module_info structure.

The module_info structure is intended to be read-only. However, the flow
control limits (mi_hiwat and mi_lowat) and the packet size limits (mi_minpsz
and mi_maxpsz) are copied to the QUEUE structure, where they may be
modified.

STRUCTURE MEMBERS
ushort mi idnum; /* module IO number */
char *mi idname; /* module name */
short mi_minpsz; /* minimum packet size */
short mi_maxpsz; /* maximum packet size */
ushort mi_hiwat; /* hiqh water mark */
ushort mi_ lowat; /* low water mark */

The constant FMNAMESZ, limiting the length of a module's name, is currently set
to a value of eight.

SEE ALSO
queue(D4DK)

10189 4-13

msgb(D4DK) msgb(D4DK)

NAME
msgb - Sf REAMS message block structure

SYNOPSIS
iinclude <sys/stream.h>

DESCRIPTION
A STREAMS message is made up of one or more message blocks, referenced by a
pointer to a msgb structure. The b_next and bJ>rev pointers are used to link
messages together on a QUEUE's message queue. The b _ cont pointer links mes
sage blocks together when a message is composed of more than one block.

Each msgb structure also includes a pointer to a datab structure, the data block
(which contains pointers to the actual data of the message), and the type of the
message.

STRUCTURE MEMBERS
struct msgb *b_next; /* next message on queue */
struct msgb *bJrev; /* previous message on queue */
struct msgb *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st unread data byte of buffer */
unsigned char *b_wptr; /* 1st unwritten data byte of buffer */
struct datab *b_datap; /* pointer to data block */
unsigned char b_band; /* message priority */
unsigned char bJad1; /* used internally */
unsigned short b_flag; /* used by stream head */
long bJad2; /* used internally */

The msgb structure is defined as type rnblk_t.

SEE ALSO
Bel Driver Development Guide, Chapter 4, ''Header Files and Data Structures"

da tab(D4DK)

4-14 10/89

qband (D4DK)

NAME
qband - STREAMS queue flow control information structure

SYNOPSIS
tinclude <sys/stream.h>

DESCRIPTION

qband (D4DK)

The qband structure contains flow control information for each priority band in
a queue.

The qband structure is defined as type qband_t.

STRUCTURE MEMBERS
struct qband *qb_next; /* next band's info */
ulonq qb_count /* number of bytes in band */
struct msqb *qb_first; /* start of band's data */
struct msqb *qb_last; /* end of band's data */
ulonq *qb_hiwat; /* band's hiqh water mark */
ulonq *qb_lowat; /* band's low water mark */
ulonq *qb_flaq; /* band's status */
lonq *qb""pad1; /* reserved for future use */

SEE ALSO
msgb(D4DK), queue(D4DK)

10/89 4-15

qinit(D4DK) qinit(D4DK)

NAME
qinit - STREAMS queue processing procedures structure

SYNOPSIS
tinclude <sys/stream.h>

DESCRIPTION
The qinit structure contains pointers to processing procedures for a QUEUE.
The streamtab structure for the module or driver contains pointers to one
qinit structure for both upstream and downstream processing.

STRUCTURE MEMBERS
int
int
int
int
int
struct module_info
struct module_stat

SEE ALSO

(*qi...,putp) () ;
(*qi_srvp) () ;
(*qi_qopen) () ;
(*qi_qclose) ();
(*qi_qadmin) () ;
*qi_minfo;
*qi_mstat;

/* put procedure */
/* service procedure */
/* open procedure */
/* close procedure */
/* unused */
/* module parameters */
/* module statistics */

Bel Driver Development Guide, Chapter 4, ''Header Files and Data Structures"

queue(D4DK), streamtab(D4DK)

4-16 10/89

queue (D4DK) queue(D4DK)

NAME
queue - STREAMS queue structure

SYNOPSIS
tinclude <sys/stream.h>

DESCRIPTION
A SI'REAMS driver or module consists of two queue structures, one for
upstream processing (read) and one for downstream processing (write). This
structure is the major building block of a stream. It contains pointers to the pro
cessing procedures, pointers to the next and previous queues in the stream, flow
control parameters, and a pointer defining the position of its messages on the
STREAMS scheduler list.

The queue structure is defined as type queue_to
STRUCTURE MEMBERS

struct qinit
struct msgb
struct msgb
struct queue
struct queue
_VOID
ulong
ulong
long
long
ulong
ulong
struct qband
unsigned char
unsigned char
long

SEE ALSO

*CLqinfo;
*CLfirst;
*CLlast;
*CLnext;
*CLlink;
'LPtr;
CLcount;
CLflag;
CLminpsiz;
CLmaxpsiz;
CLhiwat;
CLlowat;
*CLbandp;
CLnband;
'LPad1 [3];
'LPad2 [2];

msgb(D4DK), qband(D4DK)

10/89

1* module or driver entry points *1
1* first message in queue *1
1* last message in queue *1
1* next queue in stream *1
1* used internally *1
1* pointer to private data structure *1
1* approximate size of message queue *1
1* status of queue *1
1* smallest packet accepted by QUEUE *1
1* largest packet accepted by QUEUE *1
1* high water mark *1
1* low water mark *1
1* separate flow info *1
1* number of priority band> 0 *1
1* reserved for future use *1
1* reserved for future use *1

4-17

streamtab (D4DK) streamtab (D4DK)

NAME
streamtab - STREAMS entity declaration structure

SYNOPSIS
'include <sys/stream.h>

DESCRIPTION
Each STREAMS driver or module must have a streamtab structure. Drivers
access this structure through the cdevsw table, and modules use the fmodsw
table.

streamtab is made up of qinit structures for both the read and write queue
portions of each module or driver. (Multiplexing drivers require both upper and
lower qinit structures.) The qinit structure contains the entry points through
which the module or driver routines are called.

Normally, the read QUEUE contains the open and close routines. Both the
read and write queue can contain put and service procedures.

STRUCTURE MEMBERS
struct qinit
struct qinit
struct qinit
struct qinit

SEE ALSO
qinit(D4DK)

4-18

*st_rdinit;
*st_wrinit;
*st_mwtrinit;
*st_mwtwinit;

/* read QUEUE */
/* write QUEUE */
/* lover read QUEUE*/
/* lover write QUEUE*/

10/89

uio(D4DK) uio(D4DK)

NAME
uio - scatter/gather I/O request structure

SYNOPSIS
'include <sys/uio.h>

DESCRIPTION
A uio structure describes an I/O request that can be broken up into different
data storage areas (scatter/gather I/O). A request is a list of iovec structures
(base/length pairs) indicating where in user space or kernel space the I/O data is
to be read/written.

The contents of uio structures passed to the driver through the entry points
should not be written by the driver. The uiomove(D3D) function takes care of
all overhead related to maintaining the state of the uio structure.

STRUCTURE MEMBERS

int uio_iovcnt;
off_t uio_offset;

short uio_seqflq;

short uio_fmode;
daddr_t uio_limit;

int uio_resid;

/* pointer to the start of the iovec */
/* list for the uio structure */
/* the number of iovecs in the list */
/* offset into file where data is */
/* transferred from or to */
/* identifies the type of I/O transfer: */
/* UIO_SYSSPACE: kernel <-> kernel */
/* UIO_USERSPACE: kernel <-> user */
/* file mode flaqs (not driver setable) */
/* ulimit for file (maximum block offset). */
/* not driver set able */
/* residual count */

The uio _ iov member is a pointer to the beginning of the iovec(D4DK) list for
the uio. When the uio structure is passed to the driver through an entry point,
the driver should not set uio iov. When the uio structure is created by the
driver, uio_iov should be initialized by the driver and not written to afterward.

SEE ALSO
iovec(D4DK)

10/89 4-19

Appendix A: Error Codes

This appendix lists the error codes that should be returned by a driver routine
when an error is encountered. Table A-l lists the error values in alphabetic
order. All the error values are defined in /usr/include/sys/errno.h. In the
driver open(D2D), close(D2D), ioctl(D2D), read(D2D), and write(D2D) rou
tines, errors are passed back to the user with the return instruction at the end
of the routine. In the driver strategy(D2D) routine, errors are passed back to
the user by setting the b_error member of the buf(D4D) structure to the error
codes.

For STREAMS ioctl routines, error numbers translate to the error numbers sent
upstream in an M _ IOCNAK message. For STREAMS read and write routines,
error numbers translate to the error numbers sent upstream in an M _ERROR mes
sage.

~ .•..............•...•....•....•.......•.....•......•....

~
The driver print routine should not return an error code, as the function that
it calis, cmn_err(D3D), is declared as void (no error is returned).

Table A-1: Driver Error Codes

Error Use in these
Value Error Description Driver Routines (D2D)
EAGAIN Kernel resources, such as the buf struc- open, ioctl, read,

ture or cache memory, are not available write, strategy
at this time; cannot open device (device
may be busy, or the system resource is
not available).

EFAULT An invalid address has been passed as open, close, ioctl,
an argument; memory addressing read, write, stra-
error. tegy

EINTR PCATCH set, wake with signal; sleep open, close, ioctl,
interrupted by signal. read, write, stra-

tegy

EINVAL An invalid argument was passed to the open, ioctl, read,
routine. write, strategy

Appendix A: Error Codes A-1

Appendix A: Error Codes

Table A-1: Driver Error Codes (continued)

EIO A device error occurred; a problem open, close, ioctl,
was detected in a device status register read, write, stra-
(the I/O request was valid, but an tegy
error occurred on the device).

ENXIO An attempt was made to access a dev- open, close, ioctl,
ice or subdevice that does not exist read, write, stra-
(one that is not configured); an attempt tegy
was made to perform an invalid I/O
operation; an incorrect minor number
was specified.

EI?ERM A process attempting an operation did open, ioctl, read,
not have required permission. write, close

EROFS An attempt was made to open for writ- open
ing a read-only device.

Table A-2 cross references error values to the driver routines from which the
error values can be returned.

Table A-2: Error Codes by Driver Routine

read, write,
open close ioctl and strategy

EAGAIN EFAULT EAGAIN EAGAIN
EFAULT EINTR EFAULT EFAULT
EINTR EIO EINTR EINTR
EINVAL ENXIO EINVAL EINVAL
EIO EIO EIO
ENXIO ENXIO ENXIO
EI?ERM EI?ERM
EROFS

A-2 DDI/DKI Reference Manual

Appendix B: Migration from Release 3.2 to
Release 4.0

The UNIX System V Block and Character Interface (BC!) Reference Manual defined
the functions, routines, and structures appropriate for use in the UNIX System V
Release 3.2 environment. Table B-1 presents all of the kernel utility functions
included in the BCI followed by information about changes to the functions for
Release 4.0. Most of the functions fall into one of these categories:

• No change. The function behaves the same way it did in Bel.

• Not supported. The function is not included in either DDI or DKl. No
replacement is provided.

• Supported but obsolete. The function is included in DDI or DKI but a
replacement is suggested.

• Macro reimplemented as function. The calling and return syntax has not
changed for macros converted to functions.

• Replaced. The function is not included in either DDI or DKI but a
replacement is provided.

• Renamed only. The function was renamed, but the functionality is the
same as it was under the old name.

Appendix 8: Migration from Release 3.2 to Release 4.0 8-1

Appendix B: Migration from Release 3.2 to Release 4.0

Table B-1: 3.2 to 4.0 Migration

BCI Comments DDI/DKI

adjmsg No change adjmsg
alloeb For memory mapped I/O, use esbal- alloeb

loe
backq No change baekq
beopy No change beopy
brelse Supported but obsolete. Allocate kmem free

buffer with kmem alloe or or freerbuf
getrbuf(D3DK).

btoe Replaced btop,btopr
bufcall Do not use with esballoe bufeall
bzero Word alignment no longer required bzero
canon Not supported None
eanput Use beanput to test specific priority canput

band
elrbuf buf structure has changed elrbuf
cmn err No change cmn err
eopyb No change copyb
eopyin Supported but obsolete. Use uiomove uiomove
eopymsg No change eopymsg
eopyout Supported but obsolete. Use uiomove uiomove
etob Replaced ptob
datamsg No change datamsg
delay No change delay
dma alloe Not supported None
dma_breakup Replaced dma""'pageio
drv rfile Not supported None
dupb No change dupb
dupmsg No change dupmsg
enableok Macro reimplemented as function enableok
flushq Use flushband to flush specific prior- flushq

ity band

B-2 DDIIDKI Reference Manual

Appendix B: Migration from Release 3.2 to Release 4.0

Table B-1: 3.2 to 4.0 Migration (continued)

BCI Comments DDI/DKI

freeb Frees alloeb and esballoe allocated freeb
buffers

freemsg No change freemsg
fubyte Replaced uiOIOOve
fuword Replaced uiOIOOve
gete Not supported None
getcb Not supported None
getef Not supported None
geteblk Replaced. Use kmem_alloe or getrbuf kmem alloc -to allocate a buffer header or getrbuf
getq No change getq
get vee No change get vee
hdeeqd No change hdeeqd
hdelog No change hdelog
inb Not supported None
ind Not supported None
insq No change insq
iodone Renamed only biodone
iOIOOve Replaced uiOIOOve
iowait Renamed only biowait
kseg Not supported None
linkb No change linkb
logmsg Not supported None
logstray Not supported None
longjrnp Not supported None
major Renamed. Macro reimplemented as getmajor

function
makedev Renamed. Macro reimplemented as makedeviee

function
malloe Renamed only rmalloc
mapinit Renamed only rminit
mapwant Renamed only rmsetwa.nt

Appendix B: Migration from Release 3.2 to Release 4.0 B-3

Appendix 8: Migration from Release 3.2 to Release 4.0

Table 8-1: 3.2 to 4.0 Migration (continued)

BO Comments DDI/DKI

max No change max
mfree Renamed only rmfree
min No change min
minor Renamed. Macro reimplemented as getminor

function
msgdsize No change msgdsize
noenable Macro reimplemented as function noenable
OTHERQ Macro reimplemented as function OTHERQ

physck Replaced. Functionality included in physiock
physiock

physio Replaced. Functionality included in physiock
physiock

psignal Not supported None
pullupmsg No change pullupmsg
putbq No change putbq
putc Not supported None
putcb Not supported None
putcf Not supported None
putctl No change putctl
putctll No change putctll
put next Macro reimplemented as function put next
putq No change putq
qenable Macro reimplemented as function qenable
qreply No change , qreply
qsize No change qsize
RD Macro reimplemented as function RD

rmvb No change rmvb
rmvq No change rmvq
signal Not supported None
sleep No change sleep
spl No change spl

8-4 OOI/OKI Reference Manual

Appendix B: Migration from Release 3.2 to Release 4.0

Table B-1: 3.2 to 4.0 Migration (continued)

BCI Comments DDI/DKI

splx No change splx
sptalloe Not supported kmem alloe -
sptfree Not supported kmem free
strlog No change strlog
subyte Replaced uiomove
suser Replaced drvyriv
suword Replaced uiomove
testb No change testb
timeout No change timeout
ttelose Not supported None
ttin Not supported None
ttinit Not supported None
ttioeom Not supported None
ttioetl Not supported None
ttopen Not supported None
ttout Not supported None
ttread Not supported None
ttrstrt Not supported None
tttimeo Not supported None
ttwrite Not supported None
ttyflush Not supported None
ttywait Not supported None
ttxput Not supported None
unkseg Not supported None
unlinkb No change unlinkb
untimeout No change untimeout
useraee No change useraee
vtop No change vtop
wakeup No change wakeup
WR Macro reimplemented as function WR

Appendix B: Migration from Release 3.2 to Release 4.0 B-5

Index

A
adjrnsg(D3DK) 3: 7
allocb(D3DK) 3: 8

exannple 3: 9, 23

B
backq(D3DK) 3: 10
bcanput(D3DK) 3: 11
bcopy(D3DK) 3: 12
biodone(D3DK) 3: 14
biowait(D3DK) 3: 16
block I/O 3: 4-6

buf(D4DK) 4: 3
iovec(D4DK) 4: 11
uio(D4DK) 4: 19

bp_mapin(D3DK) 3: 17
bp_mapout(D3DK) 3: 18
brelse(D3DK). 3: 19
b~op(D3DK) 3: 20
btopr(D3DK) 3: 21
bufcall(D3DK) 3: 22

exannple 3: 22
buf(D4DK) 3: 26, 4: 3

exannple 3: 1?, 40

buffer header 3: 60, 67
buf(D4DK)· 4: 3

buffers, for raw I/O 3: 6
bzero(D3DK) 3: 24

c
canput(D3DK) 3: 25

exannple 3:22-23,30,49
chpoll(D2DK) 2: 4
clock cycles 3: 38

Index

close(D2DK) 2: 6
clrbuf(D3DK) 3: 26
cmn_err(D3DK) 2: 19, 3: 27

exannple 3:28,38,64,100
copyb(D3DK) 3: 30

exannple 3: 30
copyin(D3DK) 3: 32
copymsg(D3DK) 3: 33

exannple 3: 33
copyout(D3DK) 3: 35

exannple3: 35
CRC (Cyclic Redundancy Check)

4: 10
cred(D4DK) 4: 7
Cyclic Redundancy Check (CRC)

4: 10

D
datab(D4DK) 3: 8, 48, 4: 8

structure nnennbers 4: 8
datamsg(D3DK) 3: 37

exannple 3: 37
DDI/D~I (Device Driver

Interface/Driver-Kernel Inter
face) 1: 1-5

data structures 4: 1-2
driver entry point routines 2: 1-3
error codes A: 1-2
kernel functions. 3:1-6
nnigration fronn Release 3.2 to

Release 4.0 B: 1-5
delay(D3DK) 3: 38

exannple 3: 38
Device Driver Interface (see

DOI/DKI)
Direct Mennory Access (DMA) 3: 40

1-1

Index

DKI (Driver-Kernel Interface) (see
DDI/DKI)

DMA (Direct Memory Access) 3: 40
dma. yageio(D3D) 3: 40

example 3: 40

driver
block 3: 4-6

entry points 2: 1-3
functions 3: 1-6

porting 1: 2
S11tEAMS 3:2-3
structures 4: 1-2

Driver-Kernel Interface (see
DDI/DKI)

drv _getpann(D3DK) 3: 42
drv _ hztousec(D3DK) 3: 44

drvyriv(D3DK) 3: 45
drv _ usectohz(D3DK) 3: 46

drv_usecwait(D3DK) 3: 47

dupb(D3DK) 3: 48

example 3: 49
dupmsg(D3DK) 3: 50

example 3: 30

E
ECC (Error Check or Correction)

4: 10

enableok(D3DK) 3: 51

example 3: 51

Error Check or Correction (ECC)
4: 10

esballoc(D3DK) 3: 52

esbbcall(D3DK) 3: 53

etOimajor(D3D) 3: 54

1-2

F
flushl:)and(D3DK) 3: 55

flushq(D3DK) 3: 56

example 3:56,106
freeb(D3DK) 3: 58

example 3:30,117,134
freemsg(D3DK) 3: 59

example 3:33,97,118
freerbuf(D3DK) 3: 60

free_rtn(D4DK) 4: 9

G
getema.jor(D3D) 3: 61
geteminor(D3D) 3: 62

getmajor(D3DK) 3: 64

example 3: 64
getminor(D3DK) 3: 65

example 3:28,38,40,71
getq(D3DK) 3: 66

example 3: 22, 49, 97
getrbuf(D3DK) 3: 67
getvec(D3D) 3: 68

example 3: 68

H
hat_getkpfnum(D3K) 3: 69
hdedata(D4D) 4: 10

example 3: 71, 73

hdeeqd(D3D) 3: 70, 4: 10

example 3: 71

hdelog(D3D) 3: 73, 4: 10

example 3: 73

HZ (clock cycles) 3: 38

OOI/OKI Reference Manual

init(D2D) 2: 9

example 3: 68

insq(D3DK) 3: 76

example 3: 76

int(D2D) 2: 10
ioctl(D2DK) 2: 12

example 3: 35

iovec(D4DK) 4: 11

itoemajor(D3D) 3: 78

K
kernel, data copy in 3: 12

kmem_alloc(D3DK) 3: 79

kmem _ free(D3DK) 3: 80

kmem_zalloc(D3DK) 3: 81
kvtophys(D3D) 3: 82

L
linkb(D3DK) 3: 83

example 3: 8, 49

M
major device number 3: 54, 78

external 3: 61

internal 3: 64

makedevice(D3DK) 3: 84
map(D4D) 4: 12

max(D3DK) 3: 85

memory, clear 3: 24

message block descriptor 3: 48

message (STREAMS) 3: 8, 11, 25

block 3: 49, 59

Index

min(D3DK) 3: 86

minor device number
external 3: 62

internal 3:65

mnap(D2K) 2: 16

roodule info(D4DK) 4: 13
msgb(D4DK) 3: 8, 48, 4: 14

example 3: 8, 97,106,117-118

msgdsize(D3DK) 3: 87

example 3: 22

N
noenable(D3DK) 3: 88

o
open(D2DK) 2: 17

OTHERQ(D3DK) 3: 89

example 3: 89

p
page fault 3: 32

panic 3: 27-28

physiock(D3DK) 3: 92

example 3: 40

pollwakeup(D3DK) 3: 95

print (D2DK) 2: 19

ptob(D3DK) 3: 96

pullupmsg(D3DK) 3: 97

example 3: 97

putbq(D3DK) 3: 99

example 3:22-23,49,130

putctl1(D3DK) 3: 102

example 3: 100

Index

1-3

Index

put ct 1(D3DK) 3: 100

example 3: 100

put (D2DK) 2: 20

example 3: 56
putnext(D3DK) 3: 103

example 3:8-9,22-23,30,49,56
putq(D3DK) 3: 104

example 3: 37, 76

Q
qband(D4DK) 4: 15

qenable(D3DK) 3: 105
example 3:22-23,49,51,130

qinit(D4DK) 4: 16

qreply(D3DK) 3: 106
qsize(D3DK) 3: 108

queue(D4DK) 4: 17

example 3: 49,51,56,97,100,106,118

R
raw I/O 3: 6
RD(D3DK) 3: 109

example 3:8-9,56,106

read(D2DK) 2: 22, 3: 35

example 3: 40
rmalloc(D3DK) 3: 110

example 3: 112
rmfree(D3DK) 3: 114

rminit(D3DK) 3: 115

rmsetwant(D3DK) 3: 116

example 3: 112
rmvb(D3DK) 3: 117

example 3: 117
rmvq(D3DK) 3: 118

example 3: 118

1-4

rmwant(D3DK) 3: 120

s
SAMESTR(D3DK) 3: 121

scatter/gather I/O 4: 19
segmap(D2K) 2: 23
size(D2D) 2: 25

sleep(D3DK) 3: 122
spl(D3D) 3: 125

during DMA 3: 40
srv(D2DK) 2: 26

example 3:22,130
start(D2D) 2: 28

strategy(D2DK) 2: 29, 4: 3

example 3: 40

S1REAMS entry points 2: 1-3
S1REAMS functions 3: 2-3
S1REAMS message blocks 3: 8-9, 48,

50,58-59

S1REAMS message queues 3: 10-11,
25,51

S1REAMS messages 3: 7, 33, 37,
55-56,87

S1REAMS structures 4: 1-2
streamtab(D4DK) 4: 18

strlog(D3DK) 3: 127
strqget(D3DK) 3: 128

strqset(D3DK) 3: 129

T
testb(D3DK) 3: 130

example 3: 130

timeout(D3DK) 3: 132
example 3:22-23,49,130,135

OOI/OKI Reference Manual

u
uio(D4DK) 4: 19

UioIOOve(D3DK) 3: 133

unlinkb(D3DK) 3: 134

example 3: 134

untirneout(D3DK) 3: 135

example 3: 135

ureadc(D3DK) 3: 138
useracc(D3DK) 3: 139
uwritec(D3DK) 3: 140

v
vtop(D3D) 3: 141

w
wakeup(D3DK) 3: 142

example 3: 135

WR(D3DK) 3: 143

example 3: 143

write(D2DK) 2: 30, 3: 35

example 3: 40

Index

Index

1-5

Permuted Index

cred:
close: relinquish

open: gain
start: start

useracc: verify whether user has
event sleep: suspend process

ureadc:
vector for a virtual feature card

get page frame number for kernel
virtual address to physical

vtop: convert virtual to physical
bcopy: copy data between
bp _ mapin: allocate virtual

bp _ mapout: deallocate virtual
kvtophys: convert kernel virtual

allocb:
shared buffer esballoc:

kernel free memory kmem _ zalloc:
space management map rmalloc:

memory kmem _ alloc:
bp_mapin:

kmem_free: free previously

testb: check for an
a function when a buffer becomes

call function when buffer is
behind the current queue

messages for a specified priority
get information about a queue or

information about a queue or
locations in the kernel

call a function when a buffer
backq: get pointer to the queue

brelse: return buffer to the
block I/O and wakeup processes
pending completion of block I/O

allocb: allocate a message
copyb: copy a message

freeb: free a message
rmvb: remove a message

unlinkb: remove a message
biodone: release buffer after

buf:
processes pending completion of

strategy: perform
msgb: STREAMS message

Permuted Index

access credential structure ... cred(D4DK)
access to a device ... close(D2DK)
access to a device ... open(D2DK)
access to a device .. start(D2D)
access to memory .. useracc(D3DK)
activity pending execution of an sleep(D3DK)
add character to a uio structure ureadc(D3DK)
address getvec: get an interrupt getvec(D3D)
address hat~etkpfnum: hat~etkpfnum(D3K)
address kvtophys: convert kernel kvtophys(D3D)
address .. vtop(D3D)
address locations in the kernel bcopy(D3DK)
address space .. bp _ mapin(D3DK)
address space .. bp _ mapout(D3DK)
address to physical address kvtophys(D3D)
adjmsg: trim bytes from a message adjmsg(D3DK)
allocate a message block ... allocb(D3DK)
allocate a message block using a esballoc(D3DK)
allocate and clear space from kmem_zalloc(D3DK)
allocate space from a private rmalloc(D3DK)
allocate space from kernel free kmem _ alloc(D3DK)
allocate virtual address space bp _ mapin(D3DK)
allocated kernel memory kmem _free(D3DK)
allocb: allocate a message block allocb(D3DK)
available buffer ... testb(D3DK)
available bufcall: call .. bufcall(D3DK)
available esbbcall: .. esbbcall(D3DK)
backq: get pointer to the queue backq(D3DK)
band flushband: flush ... flushband(D3DK)
band of the queue strqget: strqget(D3DK)
band of the queue / change strqset(D3DK)
bcopy: copy data between address bcopy(D3DK)
becomes available bufcall: bufcall(D3DK)
behind the current queue ... backq(D3DK)
bfreelist .. brelse(D3DK)
biodone: release buffer after biodone(D3DK)
biowait: suspend processes biowait(D3DK)
block ... allocb(D3DK)
block ... copyb(D3DK)
block ... freeb(D3DK)
block from a message ... rmvb(D3DK)
block from the head of a message unlinkb(D3DK)
block I/O and wakeup processes biodone(D3DK)
block I/O data transfer structure buf(D4DK)
block I/O biowait: suspend biowait(D3DK)
block I/O ... strategy(D2DK)
block structure ... msgb(D4DK)

1

Permuted Index

esballoc: allocate a message
spl:

linkb: concatenate two message
address space
address space

manageable units dma J>ageio:
bfreelist

size in pages (round down)
size in pages (round up)

structure
buffer becomes available

processes biodone: release
bufcall: call a function when a
clrbuf: erase the contents of a

from a user program to a driver
a message block using a shared

testb: check for an available
freerbuf: free a raw

getrbuf: get a raw
esbbcall: call function when

bre1se: return
drv usecwait:

memory for a given number of
convert size in pages to size in

adjmsg: trim
msgdsize: return the number of

pullupmsg: concatenate
down) btop: convert size in

btopr: convert size in
number of bytes

becomes available bufcall:
previous timeout(D3DK) function

available esbbcall:
function call untimeout:

vector for a virtual feature
or band of the queue strqset:

ioctl: control a
entry point for a non-STREAMS

uwritec: remove a
ureadc: add

testb:
mapped device mmap:

non-STREAMS character driver
of bytes bzero:

memory kmem_zalloc: allocate and
for a specified number of
convert microseconds to

2

block using a shared buffer esballoc(D3DK)
block/ allow interrupts .. spl(D3D)
blocks ... linkb(D3DK)
bp _ mapin: allocate virtual bp _ mapin(D3DK)
bp _ mapout: deallocate virtual bp _ mapout(D3DK)
break up an I/O request into dmaJ>ageio(D3D)
brelse: return buffer to the ... brelse(D3DK)
btop: convert size in bytes to btop(D3DK)
btopr: convert size in bytes to btopr(D3DK)
buf: block I/O data transfer ... buf(D4DK)
bufcall: call a function when a bufcall(D3DK)
buffer after block I/O and wakeup biodone(D3DK)
buffer becomes available ... bufcall(D3DK)
buffer .. clrbuf(D3DK)
buffer copyin: copy data .. copyin(D3DK)
buffer esballoc: allocate .. esballoc(D3DK)
buffer .. testb(D3DK)
buffer header ... freerbuf(D3DK)
buffer header .. getrbuf(D3DK)
buffer is available ... esbbcall(D3DK)
buffer to the bfreelist ... brelse(D3DK)
busy-wait for specified interval drv _ usecwait(D3DK)
bytes bzero: clear ... bzero(D3DK)
bytes ptob: .. ptob(D3DK)
bytes from a message ... adjmsg(D3DK)
bytes in a message ... msgdsize(D3DK)
bytes in a message .. pullupmsg(D3DK)
bytes to size in pages (round btop(D3DK)
bytes to size in pages (round up) btopr(D3DK)
bzero: clear memory for a given bzero(D3DK)
call a function when a buffer bufcall(D3DK)
call untimeout: cancel .. untimeout(D3DK)
call function when buffer is esbbcall(D3DK)
cancel previous timeout(D3DK) untimeout(D3DK)
card address / get an interrupt getvec(D3D)
change information about a queue strqset(D3DK)
character device ... ioctl(D2DK)
character driver chpoll: poll chpoll(D2DK)
character from a uio structure uwritec(D3DK)
character to a uio structure ureadc(D3DK)
check for an available buffer .. testb(D3DK)
check virtual mapping for memory............................ mmap(D2K)
chpoll: poll entry point for a chpoll(D2DK)
clear memory for a given number bzero(D3DK)
clear space from kernel free kmem _ zalloc(D3DK)
clock ticks /process execution delay(D3DK)
clock ticks drv _ usectohz: drv _ usectohz(D3DK)

ODi/OKI Reference Manual

drv hztousec: convert
device
buffer

or panic the system
suspend processes pending

pullupmsg:
linkb:

a driver message on system
clrbuf: erase the

ioctl:
qband: STREAMS queue flow

putctl: send a
parameter to a/ putctll: send a

microseconds drv hztousec:
internal major number etoimajor:

major device number itoemajor:
physical address kvtophys:

ticks drv usectohz:
structure page _ numtopp:

frame number page J'ptonum:
pages (round down) btop:

pages (round up) btopr:
bytes ptob:

address vtop:
copyb:

copymsg:
locations in the kernel bcopy:

program copyout:
a driver buffer copyin:

structure uiomove:

program to a driver buffer

to a user program

cred: access
pointer to the queue behind the

the kernel bcopy: copy
read: read

program copy out: copy
driver buffer copyin: copy
test whether a message is a

using uio(D4DK) iovec:
datab: STREAMS message

hdedata: hard disk error
write: write

Permuted Index

Permuted Index

clock ticks to microseconds drv _ hztousec(D3DK)
close: relinquish access to a ... close(D2DK)
clrbuf: erase the contents of a clrbuf(D3DK)
cmn_err: display an error message cmn_err(D3DK)
completion of block I/O biowait: biowait(D3DK)
concatenate bytes in a message pullupmsg(D3DK)
concatenate two message blocks linkb(D3DK)
console print: display print(D2DK)
contents of a buffer .. clrbuf(D3DK)
control a character device .. ioctl(D2DK)
control information structure qband(D4DK)
control message to a queue .. putctl(D3DK)
control message with a one-byte putctl1(D3DK)
convert clock ticks to drv _ hztousec(D3DK)
convert external major number to etoimajor(D3D)
convert internal to external itoemajor(D3D)
convert kernel virtual address to kvtophys(D3D)
convert microseconds to clock drv _ usectohz(D3DK)
convert page frame number to page
.. page _ numtopp(D3DK)
convert page structure to page pageJ'ptonum(D3DK)
convert size in bytes to size in btop(D3DK)
convert size in bytes to size in btopr(D3DK)
convert size in pages to size in ptob(D3DK)
convert virtual to physical ... vtop(D3D)
copy a message block ... copyb(D3DK)
copy a message ... copymsg(D3DK)
copy data between address bcopy(D3DK)
copy data from a driver to a user copyout(D3DK)
copy data from a user program to copyin(D3DK)
copy kernel data using uio(D4DK) uiomove(D3DK)
copyb: copy a message block copyb(D3DK)
copyin: copy data from a user copyin(D3DK)
copymsg: copy a message copymsg(D3DK)
copyout: copy data from a driver copyout(D3DK)
cred: access credential structure cred(D4DK)
credential structure ... cred(D4DK)
current queue backq: get ... backq(D3DK)
data between address locations in bcopy(D3DK)
data from a device ... read(D2DK)
data from a driver to a user copyout(D3DK)
data from a user program to a copyin(D3DK)
data message datamsg: ... datamsg(D3DK)
data storage structure for I/O iovec(D4DK)
data structure .. datab(D4DK)
data structure ... hdedata(D4D)
data to a device ... write(D2DK)

3

Permuted Index

buf: block I/O
uiomove: copy kernel

structure
is a data message

bp_mapout:
streamtab: STREAMS entity

for a specified number of clock/
specified number of clock/ delay:

drvyriv:
close: relinquish access to a

init: initialize a
iocU: control a character

virtual mapping for memory mapped
open: gain access to a

read: read data from a
size: return size of logical

start: start access to a
write: write data to a

int: process a
segmap: map

getemajor: get external major
geteminor: get external minor

get major or internal major
get minor or internal minor

internal to external major
and minor makedevice: make

on a stream in the reverse
hdedata: hard

hdelog: log hard
hdeeqd: initialize hard
system console print:
the system cmn _err:

request into manageable units
in bytes to size in pages (round

data from a user program to a
point for a non-STREAMS character

submit messages to the log
write queue for this module or

value/ module_info: STREAMS
print: display a

drv yriv: determine
copyout: copy data from a
/structure that specifies a

state information
to microseconds

privilege
microseconds to clock ticks

4

data transfer structure buf(D4DK)
data using uio(D4DK) structure uiomove(D3DK)
datab: STREAMS message data datab(D4DK)
datamsg: test whether a message datamsg(D3DK)
deallocate virtual address space bp _ mapout(D3DK)
declaration structure streamtab(D4DK)
delay: delay process execution delay(D3DK)
delay process execution for a delay(D3DK)
determine driver privilege drv yriv(D3DK)
device ... close(D2DK)
device ... init(D2D)
device ioctl(D2DK)
device mmap: check ... mmap(D2K)
device ... open(D2DK)
device .. read(D2DK)
device .. size(D2D)
device start(D2D)
device .. write(D2DK)
device interrupt ... int(D2D)
device memory into user space segmap(D2K)
device number .. getemajor(D3D)
device number ... geteminor(D3D)
device number getmajor: getmajor(D3DK)
device number getminor: getminor(D3DK)
device number itoemajor: convert itoemajor(D3D)
device number from external major makedevice(D3DK)
direction qreply: send a message qreply(D3DK)
disk error data structure .. hdedata(D4D)
disk error .. hdelog(D3D)
disk error logging .. hdeeqd(D3D)
display a driver message on .. print(D2DK)
display an error message or panic cmn_err(D3DK)
dmayageio: break up an I/O dmayageio(D3D)
down) btop: convert size ... btop(D3DK)
driver buffer copyin: copy copyin(D3DK)
driver chpoll: poll entry .. chpoll(D2DK)
driver strlog: .. strlog(D3DK)
driver WR: get pOinter to the WR(D3DK)
driver identification and limit module _ info(D4DK)
driver message on system console print(D2DK)
driver privilege ... drv yriv(D3DK)
driver to a user program .. copyout(D3DK)
driver's message freeing routine freeJtn(D4DK)
drv _getparm: retrieve kernel drv _getparm(D3DK)
drv _ hztousec: convert clock ticks drv _ hztousec(D3DK)
drv yriv: determine driver drv yriv(D3DK)
drv _ usectohz: convert drv _ usectohz(D3DK)

OOI/OKI Reference Manual

specified interval
dupmsg:

qenable:
service

streamtab: STREAMS
character driver chpoll: poll

c1rbuf:
hdedata: hard disk

geterror: return I/O
hdelog: log hard disk

hdeeqd: initialize hard disk
cmn _err: display an

block using a shared buffer
buffer is available

number to internal major number
activity pending execution of an

inform a process that an
specified length of! timeout:

wakeup: resume suspended process
of clock/ delay: delay process

suspend process activity pending
/make device number from

getemajor: get
itoemajor: convert internal to

major number etoimajor: convert
geteminor: get

an interrupt vector for a virtual
queue qsize:

rmsetwant: set the map's wait
structure qband: STREAMS queue

priority band flushband:
specified priority band

queue
convert page structure to page

hat~etkpfnum: get page
page _ numtopp: convert page

freeb:
freerbuf:

allocate space from kernel
and clear space from kernel

rmwant: wait for
memory kmem _free:

space management map rmfree:

that specifies a driver's message
header

Permuted Index

Permuted Index

drv _ usecwait: busy-wait for drv _ usecwait(D3DK)
duplicate a message .. dupmsg(D3DK)
dupmsg: duplicate a message dupmsg(D3DK)
enable a queue .. qenable(D3DK)
enableok: reschedule a queue for enableok(D3DK)
entity declaration structure streamtab(D4DK)
entry point for a non-STREAMS chpoll(D2DK)
erase the contents of a buffer c1rbuf(D3DK)
error data structure .. hdedata(D4D)
error , .. geterror(D3DK)
error ... hdelog(D3D)
error logging ... hdeeqd(D3D)
error message or paniC the system cmn _ err(D3DK)
esballoc: allocate a message esballoc(D3DK)
esbbcall: call function when esbbca1l(D3DK)
etoimajor: convert external major etoimajor(D3D)
event sleep: suspend process sleep(D3DK)
event has occurred pollwakeup: pollwakeup(D3DK)
execute a function after a.. timeout(D3DK)
execution ; .. wakeup(D3DK)
execution for a specified number delay(D3DK)
execution of an event sleep: sleep(D3DK)
external major and minor makedevice(D3DK)
external major device number getemajor(D3D)
external major device number itoemajor(D3D)
external major number to internal etoimajor(D3D)
external minor device number geteminor(D3D)
feature card address getvec: get getvec(D3D)
find the number of messages on a............................. qsize(D3DK)
flag for a wakeup•......... rmsetwant(D3DK)
flow control information' .. qband(D4DK)
flush messages for a specified flushband(D3DK)
flushband: flush messages for a flushband(D3DK)
flushq: remove messages from a.............................. flushq(D3DK)
frame number page"'pptonum: pageyptonum(D3DK)
frame number for kernel address hat-zetkpfnum(D3K)
frame number to page structure page_numtopp(D3DK)
free a message block ... freeb(D3DK)
free a raw buffer header ... freerbuf(D3DK)
free memory kmem_alloc: kmem_alloc(D3DK)
free memory /allocate kmem_zalloc(D3DK)
free memory .. rmwant(D3DK)
free previously allocated kernel kmem_free(D3DK)
free space back into a private rmfree(D3DK)
freeb: free a message block .. freeb(D3DK)
freeing routine /structure free]tn(D4DK)
freerbuf: free a raw buffer freerbuf(D3DK)

5

Permuted Index

specifies a driver's message/
of time timeout: execute a

cancel previous timeout(D3DK)
available bufcall: call a

esbbca1l: call
open:

device number
device number

major device number
minor device number

queue

for a virtual feature card/
bzero: clear memory for a

hdedata:
hde1og: log

hdeeqd: initialize
number for kernel address

structure
error logging

remove a message block from the
putbq: place a message at the

freerbuf: free a raw buffer
getrbuf: get a raw buffer

module_info: STREAMS driver
has occurred pollwakeup:

of the queue strqget: get
of the queue strqset: change

retrieve kernel state
qband: STREAMS queue flow control

6

init:
management map rminit:

logging hdeeqd:
insq:

queue

max: return the larger of two
min: return the lesser of two

getmajor: get major or
convert external major number to

getminor: get minor or
number itoemajor: convert

int: process a device
feature card/ getvec: get an

free rtn: structure that ... free rtn(D4DK)
function after a specified length timeout(D3DK)
function call untimeout: untimeout(D3DK)
function when a buffer becomes bufcall(D3DK)
function when buffer is available esbbca1l(D3DK)
gain access to a device .. open(D2DK)
getemajor: get external major getemajor(D3D)
geteminor: get external minor geteminor(D3D)
geterror: return I/O error geterror(D3DK)
getmajor: get major or internal getmajor(D3DK)
getminor: get minor or internal getminor(D3DK)
getq: get the next message from a............................... getq(D3DK)
getrbuf: get a raw buffer header getrbuf(D3DK)
getvec: get an interrupt vector getvec(D3D)
given number of bytes ... bzero(D3DK)
hard disk error data structure hdedata(D4D)
hard disk error .. hde1og(D3D)
hard disk error logging .. hdeeqd(D3D)
hat~etkpfnum: get page frame hat~etkpfnum(D3K)
hdedata: hard disk error data hdedata(D4D)
hdeeqd: initialize hard disk hdeeqd(D3D)
hdelog: log hard disk error ... hdelog(D3D)
head of a !1lessage unlinkb: unlinkb(D3DK)
head of a queue .. putbq(D3DK)
header ... freerbuf(D3DK)
header .. getrbuf(D3DK)
identification and limit value/ module_info(D4DK)
inform a process that an event pollwakeup(D3DK)

. information about a queue or band strqget(D3DK)
information about a queue or band strqset(D3DK)
information drv ~etparm: drv ~etparm(D3DK)
information structure .. qband(D4DK)
init: initialize a device ... init(D2D)
initialize a device ... init(D2D)
initialize a private space ... rminit(D3DK)
initialize hard disk error ... hdeeqd(D3D)
insert a message into a queue insq(D3DK)
insq: insert a message into a... insq(D3DK)
int: process a device interrupt .. int(D2D)
integers ... max(D3DK)
integers .. min(D3DK)
internal major device number getmajor(D3DK)
internal major number etoimajor: etoimajor(D3D)
internal minor device number getminor(D3DK)
internal to external major device itoemajor(D3D)
interrupt ... int(D2D)
interrupt vector for a virtual .. getvec(D3D)

DDI/OKI Reference Manual

spl: block/allow
busy-wait for specified

/release buffer after block
buf: block

geterror: return
pending completion of block

strategy: perform block
physiock: validate and issue raw

dma -.Fageio: break up an
uio: scatter/gather

iovec: data storage structure for

I/O using uio(D4DK)
physiock: validate and

external major device number
get page frame number for

structure uiomove: copy
between address locations in the
kmem_ alloc: allocate space from

allocate and clear space from
free previously allocated

drv _getparm: retrieve
physical/ kvtophys: convert

kernel free memory
allocated kernel memory

space from kernel free memory
address to physical address

max: return the
a function after a specified

min: return the
/STREAMS driver identification and

blocks
bcopy: copy data between address

strlog: submit messages to the
hdelog:

initialize hard disk error
size: return size of

make device number from external
getemajor: get external

getmajor: get major or internal
convert internal to external

external major number to internal
etoimajor: convert external

number getmajor: get
from external major and minor

break up an I/O request into
space from a private space

Permuted Index

Permuted Index

interrupts ... spl(D3D)
interval drv usecwait: drv usecwait(D3DK)
I/O and wakeup processes -: biodone(D3DK)
I/O data transfer structure ... buf(D4DK)
I/O error .. geterror(D3DK)
I/O biowait: suspend processes biowait(D3DK)
I/O .. strategy(D2DK)
I/O request ... physiock(D3D)
I/O request into manageable units dma-.Fageio(D3D)
I/O request structure ... uio(D4DK)
I/O using uio(D4DK) ... iovec(D4DK)
ioctl: control a character device ioctl(D2DK)
iovec: data storage structure for iovec(D4DK)
issue raw I/O request .. physiock(D3D)
itoemajor: convert internal to itoemajor(D3D)
kernel address hat.-Setkpfnum: hat..setkpfnum(D3K)
kernel data using uio(D4DK) uiomove(D3DK)
kernel bcopy: copy data .. bcopy(D3DK)
kernel free memory .. kmem _ alloc(D3DK)
kernel free memory kmem_zalloc: kmem_zalloc(D3DK)
kernel memory kmemjree: kmemjree(D3DK)
kernel state information dry _getparm(D3DK)
kernel virtual address to ... kvtophys(D3D)
kmem_alloc: allocate space from kmem_alloc(D3DK)
kmemjree: free previously kmemjree(D3DK)
kmem_zalloc: allocate and clear kmem_zalloc(D3DK)
kvtophys: convert kernel virtual kvtophys(D3D)
larger of two integers ... max(D3DK)
length of time timeout: execute timeout(D3DK)
lesser of two integers .. min(D3DK)
limit value structure .. module _info(D4DK)
linkb: concatenate two message linkb(D3DK)
locations in the kernel ... bcopy(D3DK)
log driver ... strlog(D3DK)
log hard disk error ... hdelog(D3D)
logging hdeeqd: .. hdeeqd(D3D)
logical device size(D2D)
major and minor makedevice: makedevice(D3DK)
major device number .. getemajor(D3D)
major device number ... getmajor(D3DK)
major device number itoemajor: itoemajor(D3D)
major number etoimajor: convert etoimajor(D3D)
major number to internal major / etoimajor(D3D)
major or internal major device getmajor(D3DK)
makedevice: make device number makedevice(D3DK)
manageable units dma -.Fageio: dma -.Fageio(D3D)
management map rmalloc: allocate rmalloc(D3DK)

7

Permuted Index

8

space back into a private space
initialize a private space

segmap:
from a private space management
into a private space management

a private space management

map: private memory
check virtual mapping for memory

mmap: check virtual
rmsetwant: set the

integers
allocate space from kernel free

free previously allocated kernel
and clear space from kernel free

rmwant: wait for free
verify whether user has access to

bytes bzero: clear
segmap: map device

map: private
mmap: check virtual mapping for

putbq: place a
allocb: allocate a

copyb: copy a
freeb: free a

rmvb: remove a
message unlinkb: remove a

msgb: STREAMS
buffer esballoc allocate a

linkb: concatenate two
datab: STREAMS

adjmsg: trim bytes from a
copymsg: copy a

test whether a message is a data
dupmsg: duplicate a

return the number of bytes in a
pullupmsg: concatenate bytes in a

remove a message block from a
message block from the head of a

/ that specifies a driver's
getq: get the next

rmvq: remove a
insq: insert a

datamsg: test whether a
putq: put a

reverse direction qreply: send a
print: display a driver

management map rmfree: free rmfree(D3DK)
management map rminit: ... rminit(D3DK)
map device memory into user space segmap(D2K)
map rma1loc: allocate space rmalloc(D3DK)
map rmfree: free space back rmfree(D3DK)
map rminit: initialize ... rminit(D3DK)
map: private memory map structure map(D4DK)
map structure .. map(D4DK)
mapped device mmap: .. mmap(D2K)
mapping for memory mapped device mmap(D2K)
map's wait flag for a wakeup rmsetwant(D3DK)
max: return the larger of two max(D3DK)
memory kmem _ alloc: kmem _ alloc(D3DK)
memory kmem_free: ... kmem_free(D3DK)
memory kmem_zalloc: allocate kmem_zalloc(D3DK)
memory .. rmwant(D3DK)
memory useracc: .. useracc(D3DK)
memory for a given number of bzero(D3DK)
memory into user space ... segmap(D2K)
memory map structure .. map(D4DK)
memory mapped device ... mmap(D2K)
message at the head of a queue putbq(D3DK)
message block ... allocb(D3DK)
message block .. copyb(D3DK)
message block .. freeb(D3DK)
message block from a message rmvb(D3DK)
message block from the head of a......................... unlinkb(D3DK)
message block structure .. msgb(D4DK)
message block using a shared esballoc(D3DK)
message blocks ... linkb(D3DK)
message data structure .. datab(D4DK)
message ... adjmsg(D3DK)
message .. copymsg(D3DK)
message datamsg: .. datamsg(D3DK)
message ... dupmsg(D3DK)
message msgdsize: _......................... msgdsize(D3DK)
message ... pullupmsg(D3DK)
message rmvb: ... rmvb(D3DK)
message unlinkb: remove a................................... unlinkb(D3DK)
message freeing routine .. free_rtn(D4DK)
message from a queue ... getq(D3DK)
message from a queue ... rmvq(D3DK)
message into a queue ... insq(D3DK)
message is a data message datamsg(D3DK)
message on a queue ... putq(D3DK)
message on a stream in the qreply(D3DK)
message on system console : print(D2DK)

OOI/OKI Reference Manual

cmn _err: display an error
putctl: send a control

putnext: send a
to a/ putctl1: send a control

srv: service queued
band flushband:flush

flushq: remove
put: receive

qsize: find the number of
strlog: submit

convert clock ticks to
drv usectohz: convert

integers
geteminor: get external

getminor: get minor or internal
number from external major and

number getminor: get
memory mapped device

to the write queue for this
identification and limit value/

structure
bytes in a message

getq: get the
putnext: send a message to the

SAMESTR: test if
being scheduled

chpoll: poll entry point for a
major number to internal major

get external major device
get external minor device

major or internal major device
minor or internal minor device

internal to external major device
page structure to page frame

hat_getkpfnum: get page frame
minor makedevice: make device
bzero: clear memory for a given

msgdsize: return the
process execution for a Specified

qSize: find the
etoimajor: convert external major

page _ numtopp: convert page frame
a process that an event has

/ send a control message with a

partner queue

Permuted Index

Permuted Index

message or panic the system cmn_err(D3DK)
message to a queue .. putctl(D3DK)
message to the next queue putnext(D3DK)
message with a one-byte parameter putctl1(D3DK)
messages srv(D2DK)
messages for a specified priority fiushband(D3DK)
messages from a queue .. fiushq(D3DK)
messages from the preceding queue put(D2DK)
messages on a queue .. qsize(D3DK)
messages to the log driver ... strlog(D3DK)
microseconds drv hztousec: drv hztousec(D3DK)
microseconds to clOck ticks drv = usectohz(D3DK)
min: return the lesser of two ... min(D3DK)
minor device number ... geteminor(D3D)
minor device number .. getminor(D3DK)
minor makedevice: make device makedevice(D3DK)
minor or internal minor device getminor(D3DK)
mmap: check virtual mapping for mmap(D2K)
module or driver WR: get pointer WR(D3DK)
module_info: STREAMS driver module_info(D4DK)
msgb: STREAMS message block msgb(D4DK)
msgdsize: return the number of ., msgdsize(D3DK)
next message from a queue .. getq(D3DK)
next queue .. putnext(D3DK)
next queue is same type SAMESTR(D3DK)
noenable: prevent a queue from noenable(D3DK)
non-STREAMS character driver chpoll(D2DK)
number /convert external etoimajor(D3D)
number getemajor: ... getemajor(D3D)
number geteminor: .. geteminor(D3D)
number getmajor: get ... getmajor(D3DK)
number getminor: get .. getminor(D3DK)
number itoemajor: convert itoemajor(D3D)
number page.J>ptonum: convert pageyptonum(D3DK)
number for kernel address hat~etkpfnum(D3K)
number from external major and makedevice(D3DK)
number of bytes .. bzero(D3DK)
number of bytes in a message msgdsize(D3DK)
number of clock ticks /delay delay(D3DK)
number of messages on a queue qsize(D3DK)
number to internal major number etoimajor(D3D)
number to page structure page_numtopp(D3DK)
occurred pollwakeup: inform po!lwakeup(D3DK)
one-byte parameter to a queue putctl1(D3DK)
open: gain access to a device open(D2DK)
OTHERQ: get pointer to queue's OTHERQ(D3DK)

9

Permuted Index

convert page structure to

address hat~etkpfnum: get
structure page _ numtopp: convert

convert page frame number to
number page J>ptonum: convert

number to page structure

structure to page frame number
convert size in bytes to size in
convert size in bytes to size in

ptob: convert size in
display an error message or

a control message with a one-byte
OTHERQ: get pointer to queue's

. biowait: suspend processes
sleep: suspend process activity

strategy:
convert kernel virtual address to

vtop: convert virtual to
I/O request

queue putbq:
driver chpoll: poll entry

OTHERQ: get
current queue backq: get

RD: get
this module or driver WR: get

non-STREAMS character / chpoll:
an event has occurred

put: receive messages from the
scheduled noenable:

call untimeout: cancel
memory kmem _free: free

on system console
flush messages for a specified

map:
rmalloc: allocate space from a
rmfree: free space back into a

rminit: initialize a
drv J>riv: determine driver

qinit: STREAMS queue processing
int:

execution of ani sleep: suspend
wakeup: resume suspended

number of clock/ delay: delay
occurred pollwakeup: inform a

buffer after block I/O and wakeup

10

page frame number page J>Ptonum:
.. pageJ>Ptonum(D3DK)
page frame number for kernel hat_getkpfnum(D3K)
page frame number to page page_numtopp(D3DK)
page structure page_numtopp: page_numtopp(D3DK)
page structure to page frame page J>ptonum(D3DK)
page_numtopp: convert page frame
.. page_numtopp(D3DK)
pageJ>ptonum: convert page pageJ>ptonum(D3DK)
pages (round down) btop: ... btop(D3DK)
pages (round up) btopr: ... btopr(D3DK)
pages to size in bytes .. ptob(D3DK)
panic the system cmn _ err: cmn _ err(D3DK)
parameter to a queue /send putctl1(D3DK)
partner queue ... OTHERQ(D3DK)
pending completion of block I/O biowait(D3DK)
pending execution of an event sleep(D3DK)
perform block I/O ... strategy(D2DK)
physical address kvtophys: kvtophys(D3D)
physical address .. vtop(D3D)
physiock: validate and issue raw physiock(D3D)
place a message at the head of a.............................. putbq(D3DK)
point for a non-STREAMS character chpoll(D2DK)
pointer to queue's partner queue OTHERQ(D3DK)
pointer to the queue behind the backq(D3DK)
pointer to the read queue ... RD(D3DK)
pointer to the write queue for WR(D3DK)
poll entry point for a .. chpoll(D2DK)
pollwakeup: inform a process that pollwakeup(D3DK)
preceding queue ... put(D2DK)
prevent a queue from being noenable(D3DK)
previous timeout(D3DK) function untimeout(D3DK)
previously allocated kernel kmem_free(D3DK)
print: display a driver message print(D2DK)
priority band flushband: flushband(D3DK)
private memory map structure map(D4DK)
private space management map rmalloc(D3DK)
private space management map rmfree(D3DK)
private space management map rminit(D3DK)
privilege .. drv J>riv(D3DK)
procedures structure .. qinit(D4DK)
process a device interrupt ... int(D2D)
process activity pending .. sleep(D3DK)
process execution ... wakeup(D3DK)
process execution for a specified delay(D3DK)
process that an event has pollwakeup(D3DK)
processes biodone: release biodone(D3DK)

OOI/OKI Reference Manual

block I/O biowait: suspend
qinit: STREAMS queue

copy data from a driver to a user
copyin: copy data from a user

size in bytes
message

putq:
preceding queue
head of a queue

a queue
with a one-byte parameter to a/

next queue

information structure

procedures structure
stream in the reverse direction

messages on a queue
backq: get pointer to the

to the queue behind the current
flushq: remove messages from a

getq: get the next message from a
insq: insert a message into a

get pointer to queue's partner
place a message at the head of a

with a one-byte parameter to a
send a control message to a

messages from the preceding
send a message to the next

putq: put a message on a
qenable: enable a

find the number of messages on a
RD: get pointer to the read

rmvq: remove a message from a
about a queue or band of the
about a queue or band of the
structure qband: STREAMS

enableok: reschedule a
WR: get pointer to the write

noenable: prevent a
SAMESTR: test if next

strqget: get information about a
/ change information about a

structure qinit: STREAMS

queue: STREAMS
srv: service

Permuted Index

Permuted Index

processes pending completion of biowait(D3DK)
processing procedures structure qinit(D4DK)
program copyout: ... copyout(D3DK)
program to a driver buffer copyin(D3DK)
ptob: convert size in pages to ptob(D3DK)
pullupmsg: concatenate bytes in a pullupmsg(D3DK)
put a message on a queue .. putq(D3DK)
put: receive messages from the put(D2DK)
putbq: place a message at the putbq(D3DK)
putctl: send a control message to putctl(D3DK)
putctl1: send a control message putctl1(D3DK)
putnext: send a message to the putnext(D3DK)
putq: put a message on a queue putq(D3DK)
qband: STREAMS queue flow control qband(D4DK)
qenable: enable a queue .. qenable(D3DK)
qinit: STREAMS queue processing qinit(D4DK)
qreply: send a message on a qreply(D3DK)
qsize: find the number of ... qsize(D3DK)
queue behind the current queue backq(D3DK)
queue backq: get pointer ... backq(D3DK)
queue ... flushq(D3DK)
queue ... getq(D3DK)
queue ... insq(D3DK)
queue OTHERQ: .. OTHERQ(D3DK)
queue putbq: ... putbq(D3DK)
queue /send a control message putctl1(D3DK)
queue putctl: .. putctl(D3DK)
queue put: receive ... put(D2DK)
queue putnext: ... putnext(D3DK)
queue putq(D3DK)
queue ... qenable(D3DK)
queue qsize: qsize(D3DK)
queue .. RD(D3DK)
queue ... rmvq(D3DK)
queue strqget: get information strqget(D3DK)
queue / change information strqset(D3DK)
queue flow control information qband(D4DK)
queue for service .. enableok(D3DK)
queue for this module or driver WR(D3DK)
queue from being scheduled noenable(D3DK)
queue is same type .. SAMESTR(D3DK)
queue or band of the queue strqget(D3DK)
queue or band of the queue strqset(D3DK)
queue processing procedures qinit(D4DK)
queue: STREAMS queue structure queue(D4DK)
queue structure .. queue(D4DK)
queued messages .. srv(D2DK)

11

Permuted Index

OTHERQ: get pointer to
freerbuf: free a

getrbuf: get a
physiock: validate and issue

read:
RD: get pointer to the

preceding queue put
and wakeup processes biodone:

close:
structure uwritec:

message rmvb:
head of a message unlinkb:

rmvq:
flushq:

validate and issue raw I/O
dma.l'ageio: break up an I/O

uio: scatter/gather I/O
enableok:

execution wakeup:
drv _getparm:

brelse:
geterror:

size:
max:
min:

message msgdsize:
send a message on a stream in the

private space management map
private space management map

space management map
flag for a wakeup

a message
queue

size in bytes to size in pages
size in bytes to size in pages

a driver's message freeing
same type

structure uio:
prevent a queue from being

user space
putctl:

one-byte parameter to a/ putctll:
reverse direction qreply:

putnext:

12

queue's partner queue .. OTHERQ(D3DK)
raw buffer header ... freerbuf(D3DK)
raw buffer header .. getrbuf(D3DK)
raw I/O request .. physiock(D3D)
RD: get pointer to the read queue RD(D3DK)
read data from a device .. read(D2DK)
read queue ... RD(D3DK)
read: read data from a device read(D2DK)
receive messages from the .. put(D2DK)
release buffer after block I/O biodone(D3DK)
relinquish access to a device .. close(D2DK)
remove a character from a uio uwritec(D3DK)
remove a message block from a rmvb(D3DK)
remove a message block from the unlinkb(D3DK)
remove a message from a queue rmvq(D3DK)
remove messages from a queue flushq(D3DK)
request physiock: ... physiock(D3D)
request into manageable units dma .l'ageio(D3D)
request structure ... uio(D4DK)
reschedule a queue for service enableok(D3DK)
resume suspended process wakeup(D3DK)
retrieve kernel state information drv _getparm(D3DK)
return buffer to the bfreelist brelse(D3DK)
return I/O error ... geterror(D3DK)
return size of logical device .. size(D2D)
return the larger of two integers max(D3DK)
return the lesser of two integers min(D3DK)
return the number of bytes in a msgdsize(D3DK)
reverse direction qreply: .. qreply(D3DK)
rmalloc: allocate space from a rmalloc(D3DK)
rmfree: free space back into a rmfree(D3DK)
rminit: initialize a private .. rminit(D3DK)
rmsetwant: set the map's wait rmsetwant(D3DK)
rmvb: remove a message block from rmvb(D3DK)
rmvq: remove a message from a rmvq(D3DK)
rmwant: wait for free memory rmwant(D3DK)
(round down) btop: convert .. btop(D3DK)
(round up) btopr: convert .. btopr(D3DK)
routine /structure that specifies freeJtn(D4DK)
SAMESTR: test if next queue is SAMESTR(D3DK)
scatter/gather I/O request ... uio(D4DK)
scheduled noenable: .. noenable(D3DK)
segmap: map device memory into segmap(D2K)
send a control message to a queue putctl(D3DK)
send a control message with a putctl1(D3DK)
send a message on a stream in the qreply(D3DK)
send a message to the next queue putnext(D3DK)

DDI/DKI Reference Manual

enableok: reschedule a queue for
srv:

wakeup rmsetwant:
allocate a message block using a

ptob: convert size in pages to
(round down) btop: convert

(round up) btopr: convert
btop: convert size in bytes to

btopr: convert size in bytes to
ptob: convert

size: return
device

pending execution of an event
management map rmfree: free

allocate virtual address
deallocate virtual address

map device memory into user
management map rmalloc: allocate

kmem alloc: allocate
kmem _ zalloc: allocate and clear

allocate space from a private
free space back into a private

rminit: initialize a private
drv _ usecwait: busy-wait for
I execute a function after a

I delay process execution for a
flushband: flush messages for a

freeingl freeJtn: structure that

start:

uio(D4DK) iovec: data

qreply: send a message on a
limit value I module_info:

structure stream tab:
msgb:
datab:

information structure qband:
procedures structure qinit:

queue:
declaration structure

log driver
queue or band of the queue

a queue or band of the queue
buf: block I/O data transfer

Permuted Index

Permuted Index

service ... enableok(D3DK)
service queued messages ... srv(D2DK)
set the map's wait flag for a rmsetwant(D3DK)
shared buffer esballoc: ... esballoc(D3DK)
size in bytes ... ptob(D3DK)
size in bytes to size in pages btop(D3DK)
size in bytes to size in pages btopr(D3DK)
size in pages (round down) .. btop(D3DK)
size in pages (round up) ... btopr(D3DK)
size in pages to size in bytes ptob(D3DK)
size of logical device .. size(D2D)
size: return size of logical size(D2D)
sleep: suspend process activity sleep(D3DK)
space back into a private space rmfree(D3DK)
space bp_mapin: .. bp_mapin(D3DK)
space bp _ mapout: ... bp _ mapout(D3DK)
space segmap: segmap(D2K)
space from a private space rmalloc(D3DK)
space from kernel free memory kmem _ alloc(D3DK)
space from kernel free memory kmem_zalloc(D3DK)
space management map rmalloc: rmalloc(D3DK)
space management map rmfree: rmfree(D3DK)
space management map ... rminit(D3DK)
specified interval ... drv _ usecwait(D3DK)
specified length of time ... timeout(D3DK)
specified number of clock ticks delay(D3DK)
specified priority band .. flushband(D3DK)
specifies a driver's message freeJtn(D4DK)
spl: block I allow interrupts .. spl(D3D)
srv: service queued messages ... srv(D2DK)
start access to a device ... start(D2D)
start: start access to a device start(D2D)
storage structure for I/O using iovec(D4DK)
strategy: perform block liD strategy(D2DK)
stream in the reverse direction qreply(D3DK)
STREAMS driver identification and module_info(D4DK)
STREAMS entity declaration streamtab(D4DK)
STREAMS message block structure msgb(D4DK)
STREAMS message data structure datab(D4DK)
STREAMS queue flow control qband(D4DK)
STREAMS queue processing .. qinit(D4DK)
STREAMS queue structure .. queue(D4DK)
streamtab: STREAMS entity streamtab(D4DK)
strlog: submit messages to the strlog(D3DK)
strqget: get information about a strqget(D3DK)
strqset: change information about strqset(D3DK)
structure ... buf(D4DK)

13

Permuted Index

cred: access credential
datab: STREAMS message data

hdedata: hard disk error data
map: private memory map

identification and limit value
msgb: STREAMS message block

convert page frame number to page
queue flow control information

queue processing procedures
queue: STREAMS queue

STREAMS entity declaration
uio: scatter/gather I/O request

copy kernel data using uio(D4DK)
ureadc: add character to a uio
remove a character from a uio

iovec: data storage
driver's message/ free Jtn:

page yptonum: convert page
strlog:

execution of an event sleep:
completion of block I/O biowait:

wakeup: resume
display a driver message on

an error message or panic the
SAMESTR:

message datamsg:
buffer

for a specified number of clock
convert microseconds to clock

drv _ hztousec: convert clock
a specified length of time

untimeout: cancel previous
buf: block I/O data

adjmsg:
test if next queue is same

structure
ureadc: add character to a
remove a character from a

storage structure for I/O using
uiomove: copy kernel data using

uio(D4DK) structure
up an I/O request into manageable

from the head of a message
timeout(D3DK) function call

in bytes to size in pages (round
structure

useracc: verify whether

14

structure ... cred(D4DK)
structure ... datab(D4DK)
structure .. hdedata(D4D)
structure map(D4DK)
structure /STREAMS driver module _ info(D4DK)
structure ... msgb(D4DK)
structure page _ numtopp: page _ numtopp(D3DK)
structure qband: STREAMS qband(D4DK)
structure qinit: STREAMS ... qinit(D4DK)
structure queue(D4DK)
structure stream tab: .. streamtab(D4DK)
structure uio(D4DK)
structure uiomove: .. uiomove(D3DK)
structure ... ureadc(D3DK)
structure uwritec: ... uwritec(D3DK)
structure for I/O using uio(D4DK) iovec(D4DK)
structure that specifies a ... free_rtn(D4DK)
structure to page frame number page yptonum(D3DK)
submit messages to the log driver strlog(D3DK)
suspend process activity pending sleep(D3DK)
suspend processes pending biowait(D3DK)
suspended process execution wakeup(D3DK)
system console print: ... print(D2DK)
system cmn_err: display cmn_err(D3DK)
test if next queue is same type SAMESTR(D3DK)
test whether a message is a data datamsg(D3DK)
testb: check for an available ... testb(D3DK)
ticks /delay process execution delay(D3DK)
ticks drv _ usectohz: .. drv _ usectohz(D3DK)
ticks to microseconds drv _ hztousec(D3DK)
timeout: execute a function after timeout(D3DK)
timeout(D3DK) function call untimeout(D3DK)
transfer structure .. buf(D4DK)
trim bytes from a message adjmsg(D3DK)
type SAMESTR: .. SAMESTR(D3DK)
uio: scatter/gather I/O request uio(D4DK)
uio structure .. ureadc(D3DK)
uio structure uwritec: .. uwritec(D3DK)
uio(D4DK) iovec: data iovec(D4DK)
uio(D4DK) structure ... uiomove(D3DK)
uiomove: copy kernel data using uiomove(D3DK)
units dma yageio: break dma yageio(D3D)
unlinkb: remove a message block unlinkb(D3DK)
untimeout: cancel previous untimeout(D3DK)
up) btopr: convert size ... btopr(D3DK)
ureadc: add character to a uio ureadc(D3DK)
user has access to memory............................. useracc(D3DK)

OOI/OKI Reference Manual

copy data from a driver to a
copyin: copy data from a

segmap: map device memory into
access to memory

allocate a message block
data storage structure for I/O

uiomove: copy kernel data
a uio structure

request physiock:
driver identification and limit

address getvec: get an interrupt
memory useracc:

bp _ mapin: allocate
bp _ mapout: deallocate

address kvtophys: convert kernel
/get an interrupt vector for a

device mmap: check
vtop: convert

address
rmsetwant: set the map's

rmwant:
set the map's wait flag for a

buffer after block I/O and
execution

message datamsg: test
useracc: verify

queue for this module or driver
write:

driver WR: get pointer to the

Permuted Index

Permuted Index

user program copyout: .. copyout(D3DK)
user program to a driver buffer copyin(D3DK)
user space segmap(D2K)
useracc: verify whether user has useracc(D3DK)
using a shared buffer esballoc: esballoc(D3DK)
using uio(D4DK) iovec: .. iovec(D4DK)
using uio(D4DK) structure uiomove(D3DK)
uwritec: remove a character from uwritec(D3DK)
validate and issue raw I/O physiock(D3D)
value structure /STREAMS module)nfo(D4DK)
vector for a virtual feature card getvec(D3D)
verify whether user has access to useracc(D3DK)
virtual address space ... bp _ mapin(D3DK)
virtual address space ... bp _mapout(D3DK)
virtual address to physical kvtophys(D3D)
virtual feature card address ... getvec(D3D)
virtual mapping for memory mapped mmap(D2K)
virtual to physical address .. vtop(D3D)
vtop: convert virtual to physical vtop(D3D)
wait flag for a wakeup rmsetwant(D3DK)
wait for free memory ... rmwant(D3DK)
wakeup rmsetwant: ; rmsetwant(D3DK)
wakeup processes /release biodone(D3DK)
wakeup: resume suspended process wakeup(D3DK)
whether a message is a data datamsg(D3DK)
whether user has access to memory useracc(D3DK)
WR: get pointer to the write .. WR(D3DK)
write data to a device ... write(D2DK)
write queue for this module or WR(D3DK)
write: write data to a device write(D2DK)

15

