

-
-

ATs.T

UNIX® SYSTEM V
RELEASE4
Programmer's Guide:
ANSI Cand
Programming Support Tools

UNIX Software Operation

Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT & T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state
ments of any kind in this document, its updates, supplements, or special editions, whether such er
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied wa"anties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

Intel 80386 and Intel 80860 are trademarks of Intel Corporation.
Motorola 68000 and Motorola 88000 are trademarks of Motorola Corporation.
PDP is a registered trademark of Digital Equipment Corporation.
SPARC is a registered trademark of Sun Microsystems, Inc.
Teletype, UNIX, and WE are registered trademarks of AT&T.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-933706-7

UNIX
PRESS

A Prentice Hall Title

P R E N T C E H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632.
Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

®
AT&T UNIX System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User's and Administrator's Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator's Guide

®
UNIX System V Release 4 System Administrator's Reference Manual
UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 User's Reference Manual

General Programmer's Series

UNIX® System V Release 4 Programmer's Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer's Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: System Services

and Application Packaging Tools
UNIX® System V Release 4 Programmer's Reference Manual

System Programmer's Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD I XENIX® Compatibility Guide
UNIX® System V Release 4 Device Driver Interface I Driver- Kernel

Interface (DDI I DKI) Reference Manual
UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Available from Prentice Hall ii

1

2

3

Contents

Purpose

Notation Conventions

Overview
Introduction
C Compilation
C Language
Summary of Contents
Other Tools

C Compilation System
Introduction
Compiling and Linking
Libraries and Header Files

C Language
Introduction
Source Files and Tokenization
Preprocessing
Declarations and Definitions
Conversions and Expressions
Statements
Portability Considerations

Table of Contents

1-1
1-2
1-4
1-7
1-12

2-1
2-2
2-33

3-1
3-5
3-11
3-21
3-31
3-47
3-52

Table of Contents -----------------------

4

5

6

7

ii

C Compiler Diagnostics
Introduction
Messages
Operator Names
Other Error Messages

lint
Introduction
What lint Does
Usage
lint-specific Messages

sdb
Introduction
Command Line Syntax
Interactive Commands
Example

I prof
Overview of C Profiling Utilities
Compiling the Program
Running the Profiled Program
Invoking lprof
Profiling Archive or Shared Object Library Code
Notes
Improving Program Performance
Improving Test Coverage

4-1
4-3
4-130
4-132

5-1
5-3
5-8
5-17

6-1
6-3
6-5
6-18

7-1
7-4
7-5
7-10
7-18
7-20
7-22
7-29

ANSI C and Programming Support Tools

----------------------- Table of Contents

8

9

10

11

cscope
Introduction
How to Use cscope
Notes

make
Introduction
Basic Features
Description Files and Substitutions
Command Usage
Suggestions and Warnings
Internal Rules

SCCS
Introduction
Basic Usage
Delta Numbering
SCCS Command Conventions
SCCS Commands
SCCS Files

lex
Introduction
Generating a Lexical Analyzer Program
Writing lex Source
Using lex with yacc
Miscellaneous
Summary of Source Format

Table of Contents

8-1
8-2
8-26

9-1
9-2
9-7
9-20
9-23
9-24

10-1
10-2
10-7
10-10
10-12
10-37

11-1
11-2
11-5
11-22
11-25
11-26

iii

Table of Contents

12

13

14

15

Iv

yacc
Introduction
Basic Specifications
Parser Operation
Ambiguity and Conflicts
Precedence
Error Handling
The yacc Environment
Hints for Preparing Specifications
Advanced Topics
Examples

Object Files
Introduction
Program Linking
Program Execution

Floating Point Operations
Introduction
IEEE Arithmetic
Conversion Between Binary and Decimal Values
Single-Precision Floating Point Operations
Double-Extended-Precision
IEEE Requirements

m4 Macro Processor
Overview
m4 Macros

12-1
12-4
12-12
12-17
12-22
12-28
12-31
12-33
12-37
12-44

13-1
13-4
13-39

14-1
14-2
14-13
14-16
14-19
14-20

15-1
15-4

ANSI C and Programming Support Tools

A

B

Appendix A: Enhanced asm Facility
Introduction
Example
Definition Of Terms
Detailed Description
Writing asm Macros

Appendix B: Mapfile Option
Introduction
Using the Mapfile Option
Mapfile Structure and Syntax
Mapping Example
Maptile Option Defaults
Internal Map Structure
Error Messages

Glossary

I Index

Table of Contents

Table of Contents

A-1
A-2
A-4
A-5
A-8

8-1
8-2
8-3
8-9
8-11
8-13
8-17

v

Figures and Tables

Figure 2·1: Organization of C Compilation System
Figure 2-2: Excerpt from string(3S) Manual Page
Figure 2-3: How strcmp() Is Used in a Program
Figure 2·4: Standard 1/0 Functions and Macros
Figure 2-5: String Operations
Figure 2-6: Classifying 8-Bit Character-Coded Integer Values
Figure 2-7: Converting Characters, Integers, or Strings
Figure 2-8: Math Functions
Figure 2·9: libgen Functions
Figure 2-10: Using argv[1] to Pass a File Name
Figure 2·11: Using Command Line Arguments to Set Flags
Figure 6-1: Source Program c _recurse.c
Figure 6·2: sdb Usage Example
Figure 7-1: Example of lprof Default Output
Figure 7-2: Example of !prof -x Output
Figure 7-3: Example of !prof -s Output
Figure 7-4: prof Output
Figure 7-5: lprof Output for the Function CAfind()
Figure 7-6: !prof Output for New Version of CAfind()
Figure 7-7: prof Output for New Version of lprof
Figure 7-8: lprof Summary Output for a Test Suite
Figure 7-9: Fragment of Output from lprof -x
Figure 7-10: Output from lprof -x for putdata()
Figure 8·1: The escape Menu of Tasks
Figure 8-2: Menu Manipulation Commands
Figure 8-3: Requesting a Search for a Text String
Figure 8-4: escape Lists Lines Containing the Text String
Figure 8-5: Commands for Use after Initial Search
Figure 8·6: Examining a Line of Code Found by escape
Figure 8-7: Requesting a List of Functions That Call alloctest()
Figure 8-8: escape Lists Functions That Call alloctest()
Figure 8-9: escape Lists Functions That Call mymalloc()
Figure 8·10: Viewing dispinit() in the Editor
Figure 8-11: Using escape to Fix the Problem
Figure 8-12: Changing a Text String

Table of Contents

2-3
2-35
2-37
2-39
2-40
2-42
2-43
2-44
2-48
2-54
2-55
6-19
6-20
7-13
7-15
7-16
7-22
7-23
7-26
7-28
7-29
7-30
7-31
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-19

vii

Table of Contents

Figure 8-13: escape Prompts for Lines to Be Changed
Figure 8-14: Commands for Selecting Lines to Be Changed
Figure 8-15: Marking Lines to Be Changed
Figure 8-16: escape Displays Changed Lines of Text
Figure 8-17: Escaping from escape to the Shell
Figure 9-1: Summary of Default Transformation Path
Figure 9-2: make Internal Rules
Figure 10-1: Evolution of an SCCS File
Figure 10-2: Tree Structure with Branch Deltas
Figure 10-3: Extended Branching Concept
Figure 10-4: Determination of New SID
Figure 11-1: Creation and Use of a Lexical Analyzer with lex
Figure 11-2: lex Operators
Figure 13-1: Object File Format
Figure 13-2: 32-Bit Data Types
Figure 13-3: ELF Header
Figure 13-4: e ident[] Identification Indexes
Figure 13-5: Data Encoding ELFDATA2LSB
Figure 13-6: Data Encoding ELFDATA2MSB
Figure 13-7: WE 32100 Identification, e_ident
Figure 13-8: Processor-Specific Flags, e _flags
Figure 13-9: 6386 Computer Identification, e ident
Figure 13-10: Special Section Indexes -
Figure 13-11: Section Header
Figure 13-12: Section Types, sh type
Figure 13-13: Section Header Table Entry: Index o
Figure 13-14: Section Attribute Flags, sh_flags
Figure 13-15: sh link and sh info Interpretation
Figure 13-16: Special Sections
Figure 13-17: Special Sections, .got and .pit
Figure 13-18: String Table
Figure 13-19: String Table Indexes
Figure 13-20: Symbol Table Entry
Figure 13-21: Symbol Binding, ELF32 ST BIND
Figure 13-22: Symbol Types, ELF32 ST TYPE
Figure 13-23: Symbol Table Entry: Index O
Figure 13-24: Relocation Entries
Figure 13-25: 3B2 Computer Relocatable Fields
Figure 13-26: 3B2 Computer Relocation Types
Figure 13-27: 6386 Computer Relocatable Fields

8-20
8-21
8-22
8-23
8-24
9-13
9-24
10-7
10-8
10-9
10-21
11-4
11-9
13-2
13-3
13-4
13-7
13-9
13-10
13-10
13-11
13-11
13-12
13-14
13-15
13-18
13-18
13-19
13-20
13-23
13-24
13-24
13-25
13-26
13-27
13-29
13-30
13-32
13-34
13-35

viii ANSI C and Programming Support Tools

Table of Contents

Figure 13-28: 6386 Computer Relocation Types 13-37
Figure 13-29: Program Header 13-39
Figure 13-30: Segment Types, p type 13-40
Figure 13-31: Segment Flag Bits~ p flags 13-43
Figure 13-32: Segment Permissions 13-43
Figure 13-33: Text Segment 13-44
Figure 13-34: Data Segment 13-44
Figure 13-35: Note Information 13-45
Figure 13-36: Example Note Segment 13-46
Figure 13-37: Executable File 13-48
Figure 13-38: Program Header Segments 13-48
Figure 13-39: Process Image Segments 13-50
Figure 13-40: Example Shared Object Segment Addresses 13-51
Figure 13-41: Dynamic Structure 13-54
Figure 13-42: Dynamic Array Tags, d tag 13-55
Figure 13-43: Global Offset Table - 13-61
Figure 13-44: 382 Computer Procedure Linkage Table 13-62
Figure 13-45: 6386 Computer Absolute Procedure Linkage Table 13-64
Figure 13-46: 6386 Computer Position-Independent Procedure Linkage Table 13-64
Figure 13-47: Symbol Hash Table 13-67
Figure 13-48: Hashing Function 13-68
Figure B-1: User-Defined Mapfile 8-9
Figure B-2: Default Mapfile 8-11
Figure B-3: Simple Map Structure 8-14

Table of Contents ix

Purpose

The Programmer's Guide: ANSI C and Programming Support Tools describes UNIX
system tools supplied with the C compilation system for AT&T 3B2 and 6386
computers. We do not attempt to teach you how to program in C, nor do we
cover every UNIX system tool you might conceivably use in creating a C pro
gram. The UNIX system text editor vi, for example, which you might use to
create the source files for a C program, and the file system itself, are described
in the User's Guide. UNIX system calls are described in the Programmer's
Guide: System Services and Application Packaging Tools, networking services in the
Programmer's Guide: Networking Interfaces, and so on. The guides themselves ela
borate on two foundation documents of the UNIX system, the User's Reference
Manual and the Programmer's Reference Manual. The manuals are foundation
documents in the sense that they describe formally and comprehensively every
feature of the UNIX system. Because their formality takes some getting used to,
the guides are provided to help you get started.

This book concentrates on tools described in Section 1 of the Programmer's Refer
ence Manual:

• the compilation system

• the program analysis tools lint, sdb, lprof, and cscope

• the program maintenance tools make and SCCS

• the program development tools lex, yacc, and m4

See Chapter 1 for a complete summary of contents. Of course, we refer you to
other documents wherever appropriate.

We recommend two texts for programmers new to the C language: Kernighan
and Ritchie, The C Language, Second Edition, 1988, Prentice-Hall; Harbison
and Steele, C: A Reference Manual, Second Edition, 1987, Prentice-Hall. For
implementation-specific details not covered in this book, refer to the Application
Binary Interface for your machine. For tutorial discussions of the transition to
ANSI C, consult the ANSI C Transition Guide.

Purpose 1

Notation Conventions

The following conventions are observed in this book:

• Computer input and output appear in constant width type, substitut
able values in italic type:

$ cc file. c file. c file . c

The dollar sign is the default system prompt for the ordinary user. There
is an implied carriage return at the end of each command. When a com
mand extends beyond the width of our page, we mark the break with a
backslash and an indented second line:

$ cc -L .. /archives -L .. /mylibs filel.c file2.c file3.c \
file4.c -lfoo

Of course, a command that extends beyond the width of your terminal
screen will wrap around. You should use the backslash only if you enter
the command exactly as we show it.

• In cases where you are expected to enter a control character, the character
is shown as, for example, control_ d or "d. Either form means that you
press the d key while holding down the CTRL key.

• A number in parentheses following a command or function name refers to
the section of the Programmer's Reference Manual in which the command or
function is described. ld(l), for example, means that the ld command is
described in Section 1 of the Programmer's Reference Manual.

Notation Conventions 1

1 Overview

Introduction

C Compilation

C Language
Modular Programming in C
Libraries and Header Files
How C Programs Communicate with the Shell

Summary of Contents
Creating an Executable
Program Analysis
Program Management
Program Development
Advanced Programming Utilities

Other Tools

Table of Contents

1-1

1-2

1-4
1-4
1-5
1-5

1-7
1-7
1-8
1-9
1-10
1-11

1-12

Introduction

This volume of the Programmer's Guide is about UNIX system tools that are used
to create, maintain, and extend C programs. As we noted in the "Purpose" sec
tion in the beginning of this book, we do not attempt to teach you how to pro
gram in C. We assume you know how to do that, or are learning how to do it
concurrently.

Nor could we possibly cover every tool that is supplied with the C compilation
system, or every facet of the tools that we do cover. The Programmer's Reference
Manual exists to do both those things. The idea, instead, is to explain and pro
vide examples of how you use the most important of these tools, and to present
a coherent picture of how they fit together. In addition, we have included
material that we think most C programmers will find invaluable, but that does
not lend itself to the reference manual format. The C compiler diagnostics
chapter is a good example of what we mean.

So how should you read the Guide? If you are not experienced in writing C
programs, you will probably want to read it sequentially, since, as far as possi
ble, we've organized the tools in functional groupings. At the same time, you
will also want to read it selectively. We don't expect anyone to read through all
four hundred or so compiler diagnostics, or casual programmers to read the
entire chapter on object files. The information you will need to make decisions
about what to read is contained in the "Summary of Contents" section below,
which introduces the programming support tools covered in the Guide and
sketches their relationship. Before we tum to it, there's some background we
want to give on C compilation and the C language.

Overview 1-1

C Compiiation

The most important of the tools we discuss in these pages is the C compilation
system, which translates your C source code into the machine instructions of the
computer your program is to run on - compiles it, in other words. On the
UNIX operating system, the command to do this is cc:

$ cc mycode.c

If your program is in multiple source files, then the command is

$ cc filel.c file2.c file3.c

and so on. As the examples suggest, the source files to be compiled must have
names that end in the characters . c.

There are other things going on invisibly in these command lines that you will
want to read about in Chapter 2, which describes the C compilation system. For
now it's enough to note that either of these commands will create an executable
program in a file called a.out in your current directory. The second command
will also create in your current directory object files that correspond to each of
your source files:

$ ls -1
a.out
filel.c
filel.o
file2.c
file2.o
file3.c
file3.o

Each . o file contains a binary representation of the C language code in the
corresponding source file. The cc command creates and then links these object
files to produce the executable object file a. out. The standard C library func
tions that you have called in your program - printf (), for example - are
automatically linked with the executable at run time. You can, of course, avoid
these default arrangements by using the command line options to cc that we
describe in Chapter 2. We'll talk a bit more formally about link editing in the
"Summary of Contents" section below. We'll look at libraries in the next
section.

1-2 ANSI C and Programming Support Tools

C Compilation

You execute the program by entering its name after the system prompt:

$ a.out

Since the name a. out is only of temporary usefulness, you will probably want
to rename your executable:

$ mv a.out myprog

You can also give your program a different name when you compile it - with a
cc command line option:

$ cc -o myprog filel.c file2.c file3.c

Here, too, you execute the program by entering its name after the prompt:

$ myprog

Overview 1-3

C Language

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. All the same, the relationship
between the UNIX system and the C language has been and remains very close.
The language was developed on the UNIX operating system, and is used to code
the UNIX system kernel. Most UNIX application programs are written in C.

Chapter 3 provides a complete reference guide to the C language. Here are
some features of the language:

• basic data types: characters, integers of various sizes, and floating point
numbers;

• derived data types: functions, arrays, pointers, structures, and unions;

• a rich set of operators, including bit-wise operators;

• flow of control: if, if-else, switch, while, do-while, and for state
ments.

Application programs written in C usually can be transported to other machines
without difficulty. Programs written in ANSI standard C (conforming to stan
dards set down by the American National Standards Institute) enjoy an even
higher degree of portability.

Programs that require direct interaction with the UNIX system kernel - for
low-level 1/0, memory management, interprocess communication, and the like
- can be written efficiently in C using the calls to system functions contained in
the standard C library, and described in Section 2 of the Programmer's Reference
Manual.

Modular Programming in C

C is a language that lends itself readily to modular programming. It is natural
in C to think in terms of functions. And since the functions of a C program can
be compiled separately, the next logical step is to put each function, or group of
related functions, in its own file. Each file can then be treated as a component,
or a module, of your program.

Chapter 3 describes how you write C code so that the modules of your program
can communicate with each other. What we want to stress here is that coding a
program in small pieces eases the job of making changes: you need only recom
pile the revised modules. It also makes it easier to build programs from code

1·4 ANSI C and Programming Support Tools

C Language

you have written already: as you write functions for one program, you will
surely find that many can be picked up for another.

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/output, string handling,
and other high-level operations that are not explicitly provided by the C
language. Header files contain definitions and declarations that your program
will need if it calls a library function. The functions that perform standard 1/0,
for example, use the definitions and declarations in the header file stdio. h.
When you use the line

#include <std.io.h>

in your program, you assure that the interface between your program and the
standard 1/0 library agrees with the interface that was used to build the library.

Chapter 2 describes some of the more important standard libraries and lists the
header files that you need to include in your program if you call a function in
those libraries. It also shows you how to use library functions in your program
and how to include a header file. You can, of course, create your own libraries
and header files, following the examples of modular programming described in
Chapter 2.

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on
the command line, which is to say, by the shell. We have already seen, for
instance, how you invoke the cc command with the names of your source files
as arguments:

$ cc filel.c file2.c file3.c

When you execute a C program, command line arguments are made available to
the function main () in two parameters, an argument count, conventionally
called argc, and an argument vector, conventionally called argv. (Every C pro
gram is required to have an entry point named main.) argc is the number of
arguments with which the program was invoked. argv is an array of pointers
to character strings that contain the arguments, one per string. Since the

overview 1-5

C Language

command name itself is considered to be the first argument, or argv [0], the
count is always at least one. Here is the declaration for main () :

int
main(int argc, char *argv[])

For two examples of how you might use run-time parameters in your program,
see the last subsection of Chapter 2.

The shell, which makes arguments available to your program, considers an
argument to be any sequence of non-blank characters. Characters enclosed in
single quotes ('abc def') or double quotes ("abc def") are passed to the pro
gram as one argument even if blanks or tabs are among the characters. You are
responsible for error checking and otherwise making sure that the argument
received is what your program expects it to be.

In addition to argc and argv, you can use a third argument: envp is an array of
pointers to environment variables. You can find more information on envp in
the Programmer's Reference Manual under exec in Section 2 and environ in
Section 5.

C programs exit voluntarily, returning control to the operating system, by
returning from main() or by calling the exit() function. That is, a return (n)
from main() is equivalent to the call exit (n). (Remember that main() has type
"function returning int.")

Your program should return a value to the operating system to say whether it
completed successfully or not. The value gets passed to the shell, where it
becomes the value of the $? shell variable if you executed your program in the
foreground. By convention, a return value of zero denotes success, a non-zero
return value means some sort of error occurred. You can use the macros
EXIT_SUCCESS and EXIT_FAILURE, defined in the header file stdlib.h, as
return values from main() or argument values for exit () .

1-6 ANSI C and Programming Support Tools

Summary of Contents

This section sketches the programming support tools covered by the Guide in
five functional groupings:

• creating an executable

• program analysis

• program management

• program development

• advanced programming utilities

Italicized notes suggest typical ways in which the tools are used.

In addition to the chapters discussed here, the Guide includes appendices on
assembly language escapes that use the keyword asm,. and on mapfiles, a facil
ity for mapping object file input sections to executable file output segments. It
also includes a glossary and an index.

Creating an Executable

Chapter 2 describes the C compilation system, the set of software tools that you
use to generate an executable program from C language source files. It contains
material that will be of interest to the novice and expert programmer alike.

The first section, "Compiling and Linking," details the command line syntax
that is used to produce a binary representation of a program - an executable
object file. We mentioned earlier that the modules of a C program can com
municate with each other. A symbol declared in one source file can be defined
in another, for example. Link editing refers to the process whereby the symbol
referenced in the first file is connected with the definition in the second. By
means of command line options to the cc command, you can select either of
two link editing models:

• static linking, in which external references are resolved before execution;

• dynamic linking, in which external references are resolved during execu
tion.

overview 1-7

Summary of Contents

"Compiling and Linking" describes, among many other things, the options that
let you tailor the link editor's behavior to your needs. It also includes a discus
sion of the advantages and disadvantages of each model. One major difference
is that dynamic linking permits library code to be shared - used simultane
ously - by different programs at run time. Another is that dynamically linked
code can be fixed or enhanced without having to relink applications that depend
on it.

The second section of the chapter, "Libraries and Header Files," focuses on the
standard C library, in particular, the functions you use for standard I/0. It also
describes the math library and libgen. The header files that you need to
include in your program if you call a function in these libraries are listed in this
section.

Use the cc command and its options to control the process in which object files are
created from source files, then linked with each other and with the library functions
called in your program.

As noted, Chapter 3 provides a reference guide to the C language, which is to
say, the language accepted by the C compilation system. Chapter 4 lists the
warning and error messages produced by the C compiler. Check the code
examples given in the compiler diagnostics chapter when you need to clarify
your understanding of the rules of syntax and semantics summarized in the
language chapter. In many cases they'll prove helpful.

Program Analysis

The lint program, described in Chapter 5, checks for code constructs that may
cause your C program not to compile, or to execute with unexpected results.
lint issues every error and warning message produced by the C compiler. It
also issues "lint-specific'' warnings about inconsistencies in definition and use
across files and about potential portability problems. The chapter includes a list
of these warnings, with examples of source code that would elicit them.

selb stands for "symbolic debugger," which means that you can use the sym
bolic names in your program to pinpoint where a problem has occurred. You
can run your program under control of selb to see what the program is doing
up to the point at which it fails. Alternatively, you can use it to rummage
through a core image file left by a program that failed. That lets you check the

1-8 ANSI C and Programming Support Tools

Summary of Contents

status of the program at the moment of failure, which may disclose the underly
ing problem. Chapter 6 is a tutorial on sdb.

Use lint to check your program for portability and cross-file consistency, and to
assure it will compile. Use sdb to locate a bug.

Profilers are tools that analyze the dynamic behavior of your program: how fast
and how often the parts of its code are executed.

• prof is a time profiler. It reports the amount of time and the percentage
of time that was spent executing the parts of a program. It also reports
the number of calls to each function and the average execution time of the
calls.

• lprof is a line-by-line frequency profiler. It reports how many times each
line of C source code was executed. In that way, it lets you identify the
unexecuted and most frequently executed parts of your code.

Chapter 7 of the Guide discusses the lprof program in greater detail. It
includes an overview of the C profiling utilities that describes the procedure you
must follow to profile a program with either of these tools.

The escape browser is an interactive program that locates specified elements of
code in C, lex, or yacc source files. It lets you search and, if you want, edit
your source files more efficiently than you could with a typical editor. That's
because escape knows about function calls - when a function is being called,
when it is doing the calling - and C language identifiers and keywords.
Chapter 8 is a tutorial on the escape browser.

Use prof and lprof to identify, and escape to rewrite, inefficient lines of code.
Use escape for any other program-editing task.

Program Management

A number of UNIX system tools were designed to make it easier to manage C
programs. make, Chapter 9, is used to keep track of the dependencies between
modules of a program, so that when one module is changed, dependent ones
are brought up to date. make reads a specification of how the modules of your
program depend on each other, and what to do when one of them is modified.
When make finds a component that has been changed more recently than

Overview 1-9

Summary of Contents

modules that depend on it, the specified commands - typically to recompile
the dependent modules - are passed to the shell for execution.

The Source Code Control System, SCCS, is a set of programs that you can use to
track evolving versions of files, ordinary text files as well as source files. When
a file has been put under control of SCCS, you can specify that only a single
copy of any version of it can be retrieved for editing at a time. When the edited
file is returned to SCCS, the changes are recorded. That makes it possible to
audit the changes and reconstruct the file's earlier versions. Chapter 10
describes secs.
Use make for any program with multiple files. Use SCCS to keep track of program
versions.

Program Development

Two UNIX system tools were designed to make it easier to build C programs.
lex, Chapter 11, and yacc, Chapter 12, generate C language modules that can
be useful components of a larger application, in fact, any kind of application
that needs to recognize and act on a systematic input.

lex generates a C language module that performs lexical analysis of an input
stream. The lexical analyzer scans the input stream for sequences of characters
- tokens - that match regular expressions you specify. When a token is
found, an action, which you also specify, is performed.

yacc generates a C language module that parses tokens that have been passed
to it by a lexical analyzer. The parser describes the grammatical form of the
tokens according to rules you specify. When a particular grammatical form is
found, an action, which again you specify, is taken. The lexical analyzer need
not have been generated by lex. You could write it in C, with somewhat more
effort.

Use lex to create the lexical analyzer, and yacc the parser, of a user interface.

1-10 ANSI C and Programming Support Tools

Summary of Contents

Advanced Programming Utilities

Chapter 13, "Object Files," describes the executable and linking format (ELF) of
the object code produced by the C compilation system. Strictly speaking, the
chapter is required reading only for programmers who need to access and mani
pulate object files. Still, because it provides a larger perspective on the work
ings of the compilation system, especially the dynamic linking mechanism, it
may prove useful to readers who seek to widen their understanding of the
material presented in earlier chapters.

Chapter 14, "Floating Point Operations," details the standard single- and
double-precision data types, operations, and conversions for floating point arith
metic that are generated by the C compiler. It also describes the low-level
library functions that are provided to programmers who need the full range of
floating point support. Most users will not need to call low-level functions to
employ floating point operations in their programs. Those who do will find the
information they need in Chapter 14.

Chapter 15 describes m4, a general purpose macro processor that can be used to
preprocess C and assembly language programs.

Overview 1-11

Other Tools

This section lists programming support tools that do not receive extended treat
ment in the Guide. Consult the index for references to these tools in related con
texts, and Section 1 of the Programmer's Reference Manual for details of usage.

Tools for analyzing source code:

• cflow produces a chart of the external references in C, lex, yacc, and
assembly language files. Use it to check program dependencies.

• ctrace prints out variables as each program statement is executed. Use it
to follow the execution of a C program statement by statement.

• cxref analyzes a group of C source files and builds a cross-reference table
for the automatic, static, and global symbols in each file. Use it to check
program dependencies and to expose program structure.

Tools for reading and manipulating object files:

• cof2elf translates object files in the common object file format (COFF) to
the executable and linking format (ELF).

• dis disassembles object files.

• dump dumps selected parts of object files.

• !order generates an ordered listing of object files.

• mes manipulates the sections of an object file.

• nm prints the symbol table of an object file.

• size reports the number of bytes in an object file's sections or loadable
segments.

• strip removes symbolic debugging information and symbol tables from
an object file.

1-12 ANSI C and Programming Support Tools

2 C Compilation System

Introduction 2-1

Compiling and Linking 2-2
Basic cc Command Line Syntax 2-4
Commonly Used cc Command Line Options 2-8

• Searching for a Header File 2-8
• Preparing Your Program for Symbolic Debugging 2-9
• Preparing Your Program for Profiling 2-9
• Optimizing Your Program 2-10

Link Editing 2-10
• Default Arrangement 2-11
• Linking with Standard Libraries 2-13
• Creating and Linking with Archive and Shared Object

Libraries 2-14
• Specifying Directories to Be Searched by the Link Editor 2-17
• Specifying Directories to Be Searched by the Dynamic Linker 2-19
• Checking for Run-Time Compatibility 2-20
• Dynamic Linking Programming Interface 2-21
• Implementation 2-21
• Guidelines for Building Shared Objects 2-24
• Multiply Defined Symbols 2-29
• Quick-Reference Guide 2-31

Libraries and Header Files 2-33
Header Files 2-33
How to Use Library Functions 2-35
C Library (libc) 2-38

• Subsection 3S Routines 2-38
• Subsection 3C Routines 2-40
• System Calls 2-43

Table of Contents

Table of Contents

Math Library (libm)
General Purpose Library (libgen)
Standard 1/0

• Three Files You Always Have
• Named Files
• Passing Command Line Arguments

2-44
2-48
2-50
2-50
2-51
2-52

II ANSI C and Programming Support Tools

Introduction

This chapter describes the UNIX system tools that you use to generate an execut
able program from C language source files.

The first section, "Compiling and Linking," details the command line syntax
that you use to produce a binary representation of a program - an executable
object file. It concentrates on the options to the cc command that control the
process in which object files are, first, created from source files, then linked with
each other and with the library functions that you have called in your program.
As we indicated in Chapter 1, the major focus of the section is on static vs.
dynamic linking: how each model is implemented and invoked, and its relative
merits.

Standard libraries are the focus of the second section of the chapter, "Libraries
and Header Files." Because the C language contains no intrinsic input/ output
facility, for example, 1/0 must be carried out by explicitly called functions. On
the UNIX system, the functions that perform these and other high-level tasks
have been standardized and grouped in libraries; they are convenient, portable,
and, in most cases, optimized for your machine. The contents of some impor
tant standard libraries are described later in this chapter.

Header files contain definitions and declarations that serve as the interface
between your program and the functions in these libraries. They also contain a
number of "functions" - getc () and putc () , for example - that actually are
defined as macros. (The manual page will generally tell you whether what you
are using is a macro or a function. As a practical matter, it makes very little
difference: you use them the same way in your program.) The descriptions of
standard libraries in this chapter show the header files that you need to include
in your program if you call a function in those libraries; the manual page for
each function also lists the required header files. In a later section of this
chapter, we'll show you how to use library functions in your program and how
to include header files. We'll pay particular attention to standard 1/0.

C Compilation System 2-1

Compiling and Linking

The C compilation system consists of a compiler, assembler, and link editor.
The cc command invokes each of these components automatically unless you
use command line options to specify otherwise. Before we turn to the cc com
mand line syntax, let's look briefly at the four steps in which an executable C
program is created:

2-2

1. The preprocessor component of the compiler reads lines in your source
files that direct it to replace a name with a token string (#define),
perhaps conditionally (:fl:if, for example). It also accepts directives in
your source files to include the contents of a named file in your program
(:fl:include). As we'll see in the second part of this chapter, included
header files for the most part consist of #define directives and declara
tions of external symbols, definitions and declarations that you want to
make available to more than one source file.

2. The compiler proper translates the C language code in your source files,
which now contain the preprocessed contents of any included header
files, into assembly language code.

3. The assembler translates the assembly language code into the machine
instructions of the computer your program is to run on. As we indicated
in Chapter 1, these instructions are stored in object files that correspond
to each of your source files. In other words, each object file contains a
binary representation of the C language code in the corresponding source
file. Object files are made up of sections, of which there are usually at
least two. The text section consists mainly of program instructions; text
sections normally have read and execute, but not write, permissions.
Data sections normally have read, write, and execute permissions. See
Chapter 13 for the details of the object file format.

4. The link editor links these object files with each other and with any
library functions that you have called in your program, although when it
links with the library functions depends on the link editing model you
have chosen:

• An archive, or statically linked library, is a collection of object
files each of which contains the code for a function or a group of
related functions in the library. When you use a library function
in your program, and specify a static linking option on the cc
command line, a copy of the object file that contains the function
is incorporated in your executable at link time.

ANSI C and Programming Support Tools

Compiling and Linking

• A shared object, or dynamically linked library, is a single object
file that contains the code for every function in the library.
When you call a library function in your program, and specify a
dynamic linking option on the cc command line, the entire con
tents of the shared object are mapped into the virtual address
space of your process at run time. As its name implies, a shared
object contains code that can be used simultaneously by different
programs at run time.

We'll discuss these two ways in which libraries are implemented in the "Link
Editing" section below. We'll also show you how to combine the static and
dynamic linking approaches in different ways according to your needs.

Figure 2-1 shows the organization of the C compilation system. Note that we
have omitted discussing the optimizer here because it is optional. We'll show
you how to invoke it in "Commonly Used cc Command Line Options" below.

Figure 2-1: Organization of C Compilation System

C source &
header files

~--------------------t libraries

C Compilation System

a.out

2-3

Compiling and Linking

Basic cc Command Line Syntax

Now let's look at how this process works for a C language program to print the
words hello, world. Here is the source code for the program, which we have
written in the file hello. c:

#include <stdio.h>
main()
{

printf("hello, world\n");

As we noted in Chapter 1, the UNIX system command to create an executable
program from C language source files is cc:

$ cc hello.c

As we also noted there, the source files to be compiled must have names that
end in the characters . c. Otherwise you can name them anything you want.

Since we haven't committed any syntactic or semantic errors in our source code,
the above command will create an executable program in the file a . out in our
current directory:

$ ls -1
a.out
hello.c

Note that a . o file is not created when you compile a single source file.

We can execute the program by entering its name after the system prompt:

$ a.out
hello, world

Since the name a. out is only of temporary usefulness, we'll rename the execut
able:

$ mv a. out hello

We could also have given the program the name hello when we compiled it,
with the -o option to the cc command:

$ cc -o hello hello.c

2-4 ANSI C and Programming Support Tools

Compiling and Linking

In either case, we execute the program by entering its name after the system
prompt:

$ hello
hello, world

Now let's look at how the cc command controls the four-step process that we
described in the previous section. When we specify the -P option to cc, only
the preprocessor component of the compiler is invoked:

$ cc -P hello.c

The preprocessor's output - the source code plus the preprocessed contents of
stdio. h - is left in the file hello. i in our current directory:

$ ls -1
hello.c
hello.i

That output could be useful if, for example, you received a compiler error mes
sage for the undefined symbol a in the following fragment of source code:

if (i > 4)
{

/* declaration follows
int a; /* end of declaration */
a = 4;

The unterminated comment on the third line will cause the compiler to treat the
declaration that follows it as part of a comment. Because the preprocessor
removes comments, its output

if (i > 4)
{

a = 4;

will clearly show the effect of the unterminated comment on the declaration.
You can also use the preprocessed output to examine the results of conditional
compilation and macro expansion.

C Compilation System 2-5

Compiling and Linking

If we specify the -s option to the cc command, only the preprocessor and
compiler phases are invoked:

$ cc -s hello.c

The output - the assembly language code for the compiled source - is left in
the file hello.sin our current directory. That output could be useful if you
were writing an assembly language routine and wanted to see how the compiler
went about a similar task.

If, finally, we specify the -c option to cc, all the components but the link editor
are invoked:

$ cc -c hello.c

The output - the assembled object code for the program - is left in the object
file hello. o in our current directory. You would typically want this output
when using make (Chapter 9).

Now we need only enter the command

$ cc hello.o

to create the executable object file a. out. By default, the link editor arranges
for the standard C library function that we have called in our program -
printf () - to be linked with the executable at run time. In other words, the
standard C library is a shared object, at least in the default arrangement we are
describing here.

The outputs we have described above are, of course, inputs to the components
of the compilation system. They are not the only inputs, however. The link
editor, for example, will supply code that runs just before and just after your
program to do startup and cleanup tasks. This code is automatically linked
with your program only when the link editor is invoked through cc. That's
why we specified cc hello . o in the previous example rather than ld
hello. o. For similar reasons, you should invoke the assembler through cc
rather than as:

$ cc hello.s

As we noted in Chapter 1, the compilation process is largely identical if your
program is in multiple source files. The only difference is that the default cc
command line will create object files, as well as the executable object file a. out,
in your current directory:

2-6 ANSI C and Programming Support Tools

Compiling and Linking

$ cc filel.c file2.c file3.c
$ ls -1
a.out
filel.c
filel.o
file2.c
file2.o
file3.c
file3.o

What this means is that if one of your source files fails to compile, you need not
recompile the others. Suppose, for example, you receive a compiler error diag
nostic for filel. c in the above command line. Your current directory will
look like this:

$ ls -1
filel.c
file2.c
file2.o
file3.c
file3.o

That is, compilation proceeds but linking is suppressed. Assuming you have
fixed the error, the following command

$ cc filel.c file2.o file3.o

will create the object file filel . o and link it with file2. o and file3 . o to
produce the executable program a. out. As the example suggests, C source
files are compiled separately and independently. To create an executable pro
gram, the link editor must connect the definition of a symbol in one source file
with external references to it in another.

Note, finally, that not all the cc command line options that we have discussed
are compiler options. Because, for example, it is the link editor that creates an
executable program, the -o option - the one you use to give your program a
name other than a. out - is actually an ld option that is accepted by the cc
command and passed to the link editor. We'll see further examples of this
below. The main reason we mention it is so that you can read about these
options on the appropriate manual page.

C Compilation System 2-7

Compiling and Linking

Commonly Used cc Command Line Options

In this section we'll talk about cc command line options that let you

• specify the order in which directories are searched for included header
files;

• prepare your program for symbolic debugging or profiling;

• optimize your program.

We'll postpone until the next section a discussion of the cc command line
options that you use to link your program with the library functions you have
called in it.

Searching for a Header File

Recall that the first line of our sample program was

#include <std.io.h>

The format of that directive is the one you should use to include any of the
standard header files that are supplied with the C compilation system. The
angle brackets (< >) tell the preprocessor to search for the header file in the
standard place for header files on your system, usually the /usr/include
directory.

The format is different for header files that you have stored in your own direc
tories:

#include "header.h"

The quotation marks (" ") tell the preprocessor to search for head.er. h first in
the directory of the file containing the #include line, which will usually be
your current directory, then in the standard place.

If your header file is not in the current directory, you specify the path of the
directory in which it is stored with the - I option to cc. Suppose, for instance,
that you have included both stdio. h and header. h in the source file
mycode.c:

2-8

#include <std.io.h>
#include "header.h"

ANSI C and Programming Support Tools

Compiling and Linking

Suppose further that header. h is stored in the directory .. /defs. The com
mand

$cc -I .. /defs mycod.e.c

will direct the preprocessor to search for header. h first in the current directory,
then in the directory .. /defs, and finally in the standard place. It will also
direct the preprocessor to search for stdio. h first in .. I defs, then in the stan
dard place - the difference being that the current directory is searched only for
header files whose name you have enclosed in quotation marks.

You can specify the -I option more than once on the cc command line. The
preprocessor will search the specified directories in the order they appear on the
command line. Needless to say, you can specify multiple options to cc on the
same command line:

$cc -o prog -I .. /defs mycode.c

Preparing Your Program for Symbolic Debugging
When you specify the -q option to cc

$ cc -q mycode . c

you arrange for the compiler to generate information about program variables
and statements that will be used by the symbolic debugger sdb (Chapter 6).
The information supplied to sdb will allow you to use the symbolic debugger
to trace function calls, display the values of variables, set breakpoints, and
soon.

Preparing Your Program for Profiling
To use either of the profilers (Chapter 7) that are supplied with the C compila
tion system, you must do two things:

1. Compile and link your program with a profiling option:

for prof: $ cc -qp mycode . c
for !prof: $ cc -ql mycode. c

2. Run the profiled program:

$a.out

C Compllatlon System 2-9

Compiling and Linking

At the end of execution, data about your program's run-time behavior are writ
ten to a file in your current directory:

for prof: men. out
for lprof: prog. cnt

where prog is the name of the profiled program. The files are inputs to the
profilers.

Optimizing Your Program

The -0 option to cc invokes the optimizer:

$ cc -0 mycode.c

The optimizer improves the efficiency of the assembly language code generated
by the compiler. That, in turn, will speed the execution time of your object
code. Use the optimizer when you have finished debugging and profiling your
program.

Link Editing

Because we try to cover the widest possible audience in this section, it may
provide more background than many users will need to link their programs
with a C language library. If you are interested only in the how-to, and are
comfortable with a purely formal presentation that scants motivation and
background alike, you may want to skip to the quick-reference guide in the
last subsection.

Link editing refers to the process in which a symbol referenced in one module
of your program is connected with its definition in another - more concretely,
the process by which the symbol printf () in our sample source file hello. c
is connected with its definition in the standard C library. Whichever link edit
ing model you choose, static or dynamic, the link editor will search each
module of your program, including any libraries you have used, for definitions
of undefined external symbols in the other modules. If it does not find a
definition for a symbol, the link editor will report an error by default, and fail to
create an executable program. (Multiply defined symbols are treated differently,
however, under each approach. For details, see the section "Multiply Defined
Symbols" below.) The principal difference between static and dynamic linking
lies in what happens after this search is completed:

2·10 ANSI C and Programming Support Tools

Compiling and Linking

• Under static linking, copies of the archive library object files that satisfy
still unresolved external references in your program are incorporated in
your executable at link time. External references in your program are
connected with their definitions - assigned addresses in memory -
when the executable is created.

• Under dynamic linking, the contents of a shared object are mapped into
the virtual address space of your process at run time. External references
in your program are connected with their definitions when the program is
executed.

In this section, we'll examine the link editing process in detail. We'll start with
the default arrangement, and with the basics of linking your program with the
standard libraries supplied by the C compilation system. Later, we'll discuss
the implementation of the dynamic linking mechanism, and look at some coding
guidelines and maintenance tips for shared library development. Throughout
the discussion, we'll consider the reasons why you might prefer dynamic to
static linking. These are, briefly:

• Dynamically linked programs save disk storage and system process
memory by sharing library code at run time.

• Dynamically linked code can be fixed or enhanced without having to
relink applications that depend on it.

Default Arrangement

We stated earlier that the default cc command line

$ cc filel.c file2.c file3.c

would create object files corresponding to each of your source files, and link
them with each other to create an executable program. These object files are
called relocatable object files because they contain references to symbols that
have not yet been connected with their definitions - have not yet been assigned
addresses in memory.

We also suggested that this command line would arrange for the standard C
library functions that you have called in your program to be linked with your
executable automatically. The standard C library is, in this default arrangement,
a shared object called libc. so, which means that the functions you have called
will be linked with your program at run time. (There are some exceptions. A

C Compilation System 2-11

Compiling and Linking

number of C library functions have been left out of libc. so by design. If you
use one of these functions in your program, the code for the function will be
incorporated in your executable at link time. That is, the function will still be
automatically linked with your program, only statically rather than dynami
cally.) The standard C library contains the system calls described in Section 2 of
the Programmer's Reference Manual, and the C language functions described in
Section 3, Subsections 3C and 35. See the second part of this chapter for details.

Now let's look at the formal basis for this arrangement:

1. By convention, shared objects, or dynamically linked libraries, are desig
nated by the prefix lib and the suffix . so; archives, or statically linked
libraries, are designated by the prefix lib and the suffix . a. libc. so,
then, is the shared object version of the standard C library; libc. a is the
archive version.

2. These conventions are recognized, in turn, by the -1 option to the cc
command. That is,

$ cc filel.c file2.c file3.c -lx

directs the link editor to search the shared object libx. so or the archive
library libx. a. The cc command automatically passes - le to the link
editor.

3. By default, the link editor chooses the shared object implementation of a
library, libx. so, in preference to the archive library implementation,
libx. a, in the same directory.

4. By default, the link editor searches for libraries in the standard places on
your system, /usr/ccs/lib and /usr/lib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr/ccs/lib.

Adding it up, we can say, more exactly than before, that the default cc com
mand line will direct the link editor to search /usr/ccs/lib/libc. so rather
than its archive library counterpart. We'll look at each of the items that make
up the default in more detail below.

libc. so is, with one exception, the only shared object library supplied by the C
compilation system. (The exception, libdl . so, is used with the programming
interface to the dynamic linking mechanism described later. Other shared object
libraries are supplied with the operating system, and usually are kept in the
standard places.) In the next section, we'll show you how to link your program

2-12 ANSI C and Programming Support Tools

Compiling and Linking

with the archive version of libc to avoid the dynamic linking default. Of
course, you can link your program with libraries that perform other tasks as
well. Finally, you can create your own shared objects and archive libraries.
We'll show you the mechanics of doing that below.

The default arrangement, then, is this: the cc command creates and then links
relocatable object files to generate an executable program, then arranges for the
executable to be linked with the shared C library at run time. If you are
satisfied with this arrangement, you need make no other provision for link edit
ing on the cc command line.

Linking with Standard Libraries

libc. so is a single object file that contains the code for every function in the
shared C library. When you call a function in that library, and dynamically link
your program with it, the entire contents of libc. so are mapped into the vir
tual address space of your process at run time.

Archive libraries are configured differently. Each function, or small group of
related functions (typically, the related functions that you will sometimes find
on the same manual page), is stored in its own object file. These object files are
then collected in archives that are searched by the link editor when you specify
the necessary options on the cc command line. The link editor makes available
to your program only the object files in these archives that contain a function
you have called in your program.

As noted, libc. a is the archive version of the standard C library. The cc com
mand will automatically direct the link editor to search libc. a if you turn off
the dynamic linking default with the -dn option:

$ cc -dn filel.c file2.c file3.c

Copies of the object files in libc. a that resolve still unresolved external refer
ences in your program will be incorporated in your executable at link time.

If you need to point the link editor to standard libraries that are not searched
automatically, you specify the -1 option explicitly on the cc command line. As
we have seen, - lx directs the link editor to search the shared object libx. so or
the archive library libx. a. So if your program calls the function sin () , for
example, in the standard math library libm, the command

$ cc filel.c file2.c file3.c -lm

will direct the link editor to search for /usr/ccs/lib/libm. so, and if it does

C Compilation System 2-13

Complllng and Linking

not find it, /usr/ccs/lib/libm.a, to satisfy references to sin() in your pro
gram. Because the compilation system supplies shared object versions only of
libc and libdl, the above command will direct the link editor to search
libm. a unless you have installed a shared object version of libm in the stan
dard place. Note that because we did not turn off the dynamic linking default
with the -dn option, the above command will direct the link editor to search
libc.so rather than libc.a. You would use the same command with the -d.n
option to link your program statically with libm.a and libc.a. The contents
of libJn are described in the second part of this chapter.

Note, finally, that because the link editor searches an archive library only to
resolve undefined external references it has previously seen, the placement of
the -1 option on the cc command line is important. That is, the command

$ cc -d.n filel.c -lm file2.c file3.c

will direct the link editor to search libJn. a only for definitions that satisfy still
unresolved external references in filel. c. As a rule, then, it's best to put -1
at the end of the command line.

Creating and Linking with Archive and Shared Object Libraries

In this section we describe the basic mechanisms by which archives and shared
objects are built. The idea is to give you some sense of where these libraries
come from, as a basis for understanding how they are implemented and linked
with your programs. Of course, if you are devek>ping a library, you will need
to know the material in this section. Even if you are not, it should prove a use
ful introduction to the subsequent discussion.

The following commands

$ cc -c functionl.c function2.c function3.c
$ ar -r libfoo.a functionl.o function2.o function3.o

will create an archive library, libfoo. a, that consists of the named object files.
(Check the ar(l) manual page for details of usage.) When you use the -1
option to link your program with libfoo. a

$ cc -Ldir filel. c file2. c file3. c - lfoo

the link editor will incorporate in your executable only the object files in this
archive that contain a function you have called in your program. Note, again,
that because we did not tum off the dynamic linking default with the -dn
option, the above command will direct the link editor to search libc. so as well

2-14 ANSI C and Programming Support Tools

Compiling and Linking

as libfoo. a. We'll look at the directory search option - represented in the
above command line by -Ldir - in the next section. For now it's enough to
note that you use it to point the link editor to the directory in which your
library is stored.

You create a shared object library by specifying the -G option to the link editor:

$ cc -G -o libfoo.so functionl.o function2.o function3.o

That command will create the shared object libfoo. so consisting of the object
code for the functions contained in the named files. <We are deferring for the
moment a discussion of a compiler option, -K PIC, that you should use in
creating a shared object. For that discussion, see the "Implementation" section
below.) When you use the -1 option to link your program with libfoo. so

$ cc -Ldir filel.c file2.c file3.c -lfoo

the link editor will record in your executable the name of the shared object and
a small amount of bookkeeping information for use by the system at run time.
Another component of the system - the dynamic linker - does the actual
linking.

A number of things are worth pointing out here. First, because shared object
code is not copied into your executable object file at link time, a dynamically
linked executable normally will use less disk space than a statically linked exe
cutable. For the same reason, shared object code can be changed without break
ing executables that depend on it. In other words, even if the shared C library
were enhanced in the future, you would not have to relink programs that
depended on it (as long as the enhancements were compatible with your code;
see "Checking for Run-Time Compatibility'' below). The dynamic linker would
simply use the definitions in the new version of the library to resolve external
references in your executables at run time.

Second, we specified the name of the shared object that we wanted to be created
under the -G option. Of course, you don't have to do it the way we did. The
following command, for example, will create a shared object called a. out:

$ cc -G functionl.o function2.o function3.o

You can then rename the shared object:

$ mv a.out libfoo.so

As noted, you use the lib prefix and the . so suffix because they are conven
tions recognized by -1, just as are lib and .a for archive libraries. So while it

C Compllatlon System 2-15

Compiling and Linking

is legitimate to create a shared object that does not follow the naming conven
tion, and to link it with your program

$ cc -G -o shared.ob functionl.o function2.o function3.o
$ cc filel.c file2.c file3.c /path/shared.ob

we recommend against it. Not only will you have to enter a path name on the
cc command line every time you use shared.ob in a program, that path name
will be hard-coded in your executables. The reason why you want to avoid this
is related to our next point.

We said that the command line

$ cc -Ldir filel.c file2.c file3.c -lfoo

would direct the link editor to record in your executable the name of the shared
object with which it is to be linked at run time. Note: the name of the shared
object, not its path name. What this means is that when you use the -1 option
to link your program with a shared object library, not only must the link editor
be told which directory to search for that library, so must the dynamic linker
(unless the directory is the standard place, which the dynamic linker searches by
default). We'll show you how to point the dynamic linker to directories in the
section "Specifying Directories to Be Searched by the Dynamic Linker" below.
What we want to stress here is that as long as the path name of a shared object
is not hard-coded in your executable, you can move the shared object to a dif
ferent directory without breaking your program. That's the main reason why
you should avoid using path names of shared objects on the cc command line.
Those path names will be hard-coded in your executable. They won't be if you
use -1.

Finally, the cc -G command will not only create a shared object, it will accept
a shared object or archive library as input. In other words, when you create
libfoo. so, you can link it with a library you have already created, say,
libshared.ob. so:

$ cc -G -o libfoo. so -Ldir functionl. o function2. o \
function3.o -!shared.ob

That command will arrange for libsharedob. so to be linked with libfoo. so
when, at run time, libfoo. so is linked with your program. Note that here
you will have to point the dynamic linker to the directories in which both
libfoo. so and libshared.ob. so are stored.

2-16 ANSI C and Programming Support Tools

Compiling and Linking

Specifying Directories to Be Searched by the Link Editor

In the previous section we created the archive library libfoo. a and the shared
object libfoo. so. For the sake of discussion, we'll now say that both these
libraries are stored in the directory /home/mylibs. We'll also assume that you
are creating your executable in a different directory. In fact, these assumptions
are not academic. They reflect the way most programmers organize their work
on the UNIX system.

The first thing you must do if you want to link your program with either of
these libraries is point the link editor to the /home/mylibs directory by specify
ing its path name with the -L option:

$ cc -L/home/mylibs filel.c file2.c file3.c -lfoo

The -L option directs the link editor to search for the libraries named with -1
first in the specified directory, then in the standard places. In this case, having
found the directory /home/mylibs, the link editor will search libfoo. so
rather than libfoo.a. As we saw earlier, when the link editor encounters oth
erwise identically named shared object and archive libraries in the same direc
tory, it searches the library with the . so suffix by default. For the same reason,
it will search libc. so here rather than libc. a. Note that you must specify -L
if you want the link editor to search for libraries in your current directory. You
can use a period (.) to represent the current directory.

To direct the link editor to search libfoo. a, you can tum off the dynamic link
ing default:

$ cc -d.n -L/home/mylibs filel.c file2.c file3.c -lfoo

Under -d.n, the link editor will not accept shared objects as input. Here, then,
it will search libfoo. a rather than libfoo. so, and libc. a rather than
libc.so.

To link your program statically with libfoo. a and dynamically with libc. so,
you can do either of two things. First, you can move libfoo . a to a different
directory - /home/archives, for example - then specify /home/archives
with the -L option:

$ cc -L/home/archives -L/home/mylibs filel.c file2.c \
file3.c -lfoo

As long as the link editor encounters the /home/archives directory before it
encounters the /home/my libs directory, it will search libfoo. a rather than
libfoo. so. That is, when otherwise identically named . so and . a libraries

C Compilation System 2-17

Compiling and Linking

exist in your directories, the link editor will search the first one it finds. The
same thing is true, by the way, for identically named libraries of either type. If
you have different versions of libfoo. a in your directories, the link editor will
search the first one it finds.

A better alternative might be to leave libfoo. a where you had it in the first
place and use the -Bstatic and -Bdynamic options to turn dynamic linking
off and on. The following command will link your program statically with
libfoo. a and dynamically with libc. so:

$ cc -L/home/mylibs filel.c file2.c file3.c -Bstatic \
-lfoo -Bdynamic

When you specify -Bstatic, the link editor will not accept a shared object as
input until you specify -Bdynamic. In other words, you can use these options
as toggles - any number of times - on the cc command line:

$ cc -L/home/mylibs filel.c file2.c -Bstatic -lfoo \
file3.c -Bdynamic -lsharedob

That command will direct the link editor to search

• first, libfoo. a to resolve still unresolved external references in filel . c
and file2 . c;

• second, libsharedob. so to resolve still unresolved external references in
all three files and in libfoo. a;

• last, libc. so to resolve still unresolved external references in all three
files and the preceding libraries.

Files, including libraries, are searched for definitions in the order they are listed
on the cc command line. The standard C library is always searched last.

You can add to the list of directories to be searched by the link editor by using
the environment variable LD LIBRARY PATH. LD LIBRARY PATH must be a list
of colon-separated directory names; ~optional second listis separated from the
first by a semicolon:

$ LD _LIBRARY _PATH=dir: dir; dir: dir export LO_ LIBRARY _PATH

The directories specified before the semicolon are searched, in order, before the
directories specified with -L; the directories specified after the semicolon are
searched, in order, after the directories specified with -L. Note that you can use
LD_LIBRARY_PATH in place of -L altogether. In that case the link editor will
search for libraries named with -1 first in the directories specified before the

2-18 ANSI C and Programming Support Tools

Compiling and Linking

semicolon, next in the directories specified after the semicolon, and last in the
standard places. You should use absolute path names when you set this
environment variable.

As we explain in the next section, LO LIBRARY PATH is also used by the
dynamic linker. That is, if LO LIBRARY PATH exists in your environment,
the dynamic linker will search the directories named in it for shared objects
to be linked with your program at execution. In using LO LIBRARY PATH
with the link editor or the dynamic linker, then, you shoulcfkeep in mind that
any directories you give to one you are also giving to the other.

Specifying Directories to Be Searched by the Dynamic Linker

Earlier we said that when you use the -1 option, you must point the dynamic
linker to the directories of the shared objects that are to be linked with your
program at execution. The environment variable LD_RUN_PATH lets you do that
at link time. To set LD _RUN _PATH, list the absolute path names of the direc
tories you want searched in the order you want them searched. Separate
path names with a colon. Since we are concerned only with the directory
/home/mylibs here, the following will do:

$ LD_RUN_PATH=/home/mylibs export LD RUN PATH

Now the command

$ cc -o prog -L/home/mylibs filel.c file2.c file3.c -lfoo

will direct the dynamic linker to search for libfoo. so in /home/my libs when
you execute your program:

$ prog

The dynamic linker searches the standard place by default, after the directories
you have assigned to LD_RUN_PATH. Note that as far as the dynamic linker is
concerned, the standard place for libraries is /usr/lib. Any executable ver
sions of libraries supplied by the compilation system are kept in /usr/lib.

The environment variable LD_LIBRARY_PATH lets you do the same thing at run
time. Suppose you have moved libfoo. so to /home/ sharedobs. It is too late
to replace /home/mylibs with /home/sharedobs in LD_RUN_PATH, at least
without link editing your program again. You can, however, assign the new
directory to LD_LIBRARY_PATH, as follows:

$ LD_LIBRAR.Y_PATH=/home/sharedobs export LD LIBRARY PATH

C Compilation System 2-19

Compiling and Linking

Now when you execute your program

$ prog

the dynamic linker will search for libfoo. so first in /home/my libs and, not
finding it there, in /home/ sharedobs. That is, the directory assigned to
LD_RUN_PATH is searched before the directory assigned to LD_LIBRARY_PATH.
The important point is that because the path name of libfoo. so is not hard
coded in prog, you can direct the dynamic linker to search a different directory
when you execute your program. In other words, you can move a shared object
without breaking your application.

You can set LD_LIBRARY_PATH without first having set LD_RUN_PATH. The
main difference between them is that once you have used LD_RUN_PATH for an
application, the dynamic linker will search the specified directories every time
the application is executed (unless you have relinked the application in a dif
ferent environment). In contrast, you can assign different directories to
LD_LIBRARY_PATH each time you execute the application. LD_LIBRARY_PATH
directs the dynamic linker to search the assigned directories before it searches
the standard place. Directories, including those in the optional second list, are
searched in the order listed. See the previous section for the syntax.

Note, finally, that when linking a set-user or set-group ID program, the dynamic
linker will ignore any directories specified by LO_ LIBRARY _PATH that are not
"trusted." Trusted directories are built into the dynamic linker and cannot be
modified by the application. Currently, the only trusted directory is /usr/lib.

Checking for Run-Time Compatibility

Suppose you have been supplied with an updated version of a shared object.
You have already compiled your program with the previous version; the link
editor has checked it for undefined symbols, found none, and created an execut
able. According to everything we have said, you should not have to link your
program again. The dynamic linker will simply use the definitions in the new
version of the shared object to satisfy unresolved external references in the exe
cutable.

Suppose further that this is a database update program that takes several days
to run. You want to be sure that your program does not fail in a critical section
because a symbol that was defined by the previous version of the shared object
is no longer defined by the new version. In other words, you want the informa-

2-20 ANSI C and Programming Support Tools

Compiling and Linking

tion that the link editor gives you - that your executable is compatible with the
shared library - without having to link edit it again.

There are two ways you can check for run-time compatibility. The command
ldd ("list dynamic dependencies") directs the dynamic linker to print the path
names of the shared objects on which your program depends:

$ ldd prog

When you specify the -d option to ldd, the dynamic linker prints a diagnostic
message for each unresolved data reference it would encounter if prog were exe
cuted. When you specify the -r option, it prints a diagnostic message for each
unresolved data or function reference it would encounter if prog were executed.

You can do the same thing when you execute your program. Whereas the
dynamic linker resolves data references immediately at run time, it normally
delays resolving function references until a function is invoked for the first time.
Normally, then, the lack of a definition for a function will not be apparent until
the function is invoked. By setting the environment variable LD BIND NOO

$ LD_BIND_NOW=l export LD_BIND_NOW

before you execute your program, you direct the dynamic linker to resolve all
references immediately. In that way, you can learn before execution of main()
begins that the functions invoked by your process actually are defined.

Dynamic Linking Programming Interface

You can use a programming interface to the dynamic linking mechanism to
attach a shared object to the address space of your process during execution,
look up the address of a function in the library, call that function, and then
detach the library when it is no longer needed. The routines for this are stored
in libdl. so. Subsection 3X of the Programmer's Reference Manual describes its
contents.

Implementation

We have already described, in various contexts in this section, the basic imple
mentation of the static and dynamic linking mechanisms:

• When you use an archive library function, a copy of the object file that
contains the function is incorporated in your executable at link time.
External references to the function are assigned virtual addresses when
the executable is created.

C Compilation System 2-21

Compiling and Linking

• When you use a shared library function, the entire contents of the library
are mapped into the virtual address space of your process at run time.
External references to the function are assigned virtual addresses when
you execute the program. The link editor records in your executable only
the name of the shared object and a small amount of bookkeeping infor
mation for use by the dynamic linker at run time.

We'll take a closer look at how dynamic linking is implemented in a moment.
First let's consider the one or two cases in which you might not want to use it.
Earlier we said that because shared object code is not copied into your execut
able object file at link time, a dynamically linked executable normally will use
less disk space than a statically linked executable. If your program calls only a
few small library functions, however, the bookkeeping information to be used
by the dynamic linker may take up more space in your executable than the code
for those functions. You can use the size command, described in Section 1 of
the Programmer's Reference Manual, to determine the difference.

In a similar way, using a shared object may occasionally add to the memory
requirements of a process. Although a shared object's text is shared by all
processes that use it, its data typically are not (at least its writable data; see the
section "Guidelines for Building Shared Objects" below for the distinction).
Every process that uses a shared object usually gets a private copy of its entire
data segment, regardless of how many of the data are needed. If an application
uses only a small portion of a shared library's text and data, executing the
application might require more memory with a shared object than without one.
It would be unwise, for example, to use the standard C shared object library to
access only strcmp () . Although sharing strcmp () saves space on your disk
and memory on the system, the memory cost to your process of having a
private copy of the C library's data segment would make the archive version of
strcmp () the more appropriate choice.

Now let's consider dynamic linking in a bit more detail. First, each process that
uses a shared object references a single copy of its code in memory. That means
that when other users on your system call a function in a shared object library,
the entire contents of that library are mapped into the virtual address space of
their processes as well. If they have called the same function as you, external
references to the function in their programs will, in all likelihood, be assigned
different virtual addresses. That is, because the function may be loaded at a dif
ferent virtual address for each process that uses it, the system cannot calculate
absolute addresses in memory until run time.

2·22 ANSI C and Programming Support Tools

Compiling and Linking

Second, the memory management scheme underlying dynamic linking shares
memory among processes at the granularity of a page. Memory pages can be
shared as long as they are not modified at run time. If a process writes to a
shared page in the course of relocating a reference to a shared object, it gets a
private copy of that page and loses the benefits of code sharing (although
without affecting other users of the page).

Third, to create programs that require the least possible amount of page
modification at run time, the compiler generates position-independent code
under the -K PIC option. Whereas executable code normally must be tied to a
fixed address in memory, position-independent code can be loaded anywhere in
the address space of a process. Because the code is not tied to specific
addresses, it will execute correctly - without page modification - at a different
address in each process that uses it. As we have indicated, you should specify
-K PIC when you create a shared object:

$ cc -K PIC -G -o libfoo.so functionl.c function2.c \
function3.c

Relocatable references in your object code will be moved from its text segment
to tables in the data segment. See Chapter 13, "Object Files," for the details.

In the next section we'll look at some basic guidelines for building shared
objects. For now, we'll sum up the reasons why you might want to use one:

• Because library code is not copied into the executables that use it, they
require less disk space.

• Because library code is shared at run time, the dynamic memory needs of
systems are reduced.

• Because symbol resolution is put off until run time, shared objects can be
updated without having to relink applications that depend on them.

• As long as its path name is not hard-coded in an executable, a shared
object can be moved to a different directory without breaking an applica
tion.

C Compilation System 2-23

Compiling and Linking

Guidelines for Building Shared Objects

This section gives coding guidelines and maintenance tips for shared library
development. Before getting down to specifics, we should emphasize that if
you plan to develop a commercial shared library, you ought to consider provid
ing a compatible archive as well. As we have noted, some users may not find a
shared library appropriate for their applications. Others may want their appli
cations to run on UNIX system releases without shared object support. Shared
object code is completely compatible with archive library code. In other words,
you can use the same source files to build archive and shared object versions of
a library.

Let's look at some performance issues first. There are two things you want to
do to enhance shared library performance:

Minimize the Library's Data Segment. As noted, only a shared object's text seg
ment is shared by all processes that use it; its data segment typically is not.
Every process that uses a shared object usually gets a private memory copy of
its entire data segment, regardless of how many of the data are needed. You
can cut down the size of the data segment a number of ways:

• Try to use automatic (stack) variables. Don't use permanent storage if
automatic variables will work.

• Use functional interfaces rather than global variables. Generally speaking,
that will make library interfaces and code easier to maintain. Moreover,
defining functional interfaces often eliminates global variables entirely,
which in tum eliminates global "copy" data. The ANSI C function
strerror (),described in Subsection 3C of the Programmer's Reference
Manual, illustrates these points.

2-24

In previous implementations, system error messages were made available
to applications only through two global variables:

extern int sys_nerr;
extern char *sys_errlist[];

That is, sys_ err list [X] gives a character string for the error X, if X is a
nonnegative value less than sys_nerr. Now if the current list of mes
sages were made available to applications only through a lookup table in
an archive library, applications that used the table obviously would not be
able to access new messages as they were added to the system unless they
were relinked with the library. In other words, errors might occur for

ANSI C and Programming Support Tools

Compiling and Linking

which these application::: could not produce meaningful diagnostics.
Something similar happens when you use a global lookup table in a
shared library.

First, the compilation system sets aside memory for the table in the
address space of each executable that uses it, even though it does not
know yet where the table will be loaded. After the table is loaded, the
dynamic linker copies it into the space that has been set aside. Each pro
cess that uses the table, then, gets a private copy of the library's data seg
ment, including the table, and an additional copy of the table in its own
data segment. Moreover, each process pays a performance penalty tor the
overhead of copying the table at run time. Finally, because the space for
the table is allocated when the executable is built, the application will not
have enough room to hold any new messages you might want to add in
the future. A functional interface overcomes these difficulties.
strerror () might be implemented as follows:

static const char *msg [] = {
"Error 0",
"Not owner",
"No such file or directory",

} ;

char *
strerror(int err)
{

if (err< 0 I I err>= sizeof(msg)/sizeof(msg[O]))
return O;

return (char *)msg[err];

The message array is static, so no application space is allocated to hold a
separate copy. Because no application copy exists, the dynamic linker
does not waste time moving the table. New messages can be added,
because only the library knows how many messages exist. Finally, note
the use of the type qualifier const to identify data as read-only. Whereas
writable data are stored in a shared object's data segment, read-only data
are stored in its text segment. For more on const, see Chapter 3,
"C Language."

C Compilation System 2-25

Compiling and Linking

In a similar way, you should try to allocate buffers dynamically - at run
time - instead of defining them at link time. That will save memory
because only the processes that need the buffers will get them. It will also
allow the size of the buffers to change from one release of the library to
the next without affecting compatibility. Example:

char *
buffer()
{

static char *buf = O;

if (buf == 0)
{

if ((buf = malloc (BUFSIZE)) == 0)
return O;

return buf;

• Exclude functions that use large amounts of global data - that is, if you
cannot rewrite them in the ways described in the foregoing items. If an
infrequently used routine defines a great deal of static data, it probably
does not belong in a shared library.

• Make the library self-contained. If a shared object imports definitions
from another shared object, each process that uses it will get a private
copy not only of its data segment, but of the data segment of the shared
object from which the definitions were imported. In cases of conflict, this
guideline should probably take precedence over the preceding one.

Minimize Paging Activity. Although processes that use shared libraries will not
write to shared pages, they still may incur page faults. To the extent they do,
their performance will degrade. You can minimize paging activity in the fol
lowing ways:

• Organize to improve locality of reference. First, exclude infrequently used
routines on which the library itself does not depend. Traditional a. out
files contain all the code they need at run time. So if a process calls a
function, it may already be in memory because of its proximity to other
text in the process. If the function is in a shared library, however, the

2-26 ANSI C and Programming Support Tools

Compiling and Linking

surrounding library code may be unrelated to the calling process. Only
rarely, for example, will any single executable use everything in the
shared C library. If a shared library has unrelated functions, and if unre
lated processes make random calls to those functions, locality of reference
may be decreased, leading to more paging activity. The point is that func
tions used by only a few a. out files do not save much disk space by
being in a shared library, and can degrade performance.

Second, try to improve locality of reference by grouping dynamically
related functions. If every call to funcA () generates calls to funcB ()
and funcC () , try to put them in the same page. cf low, described in
Section 1 of the Programmer's Reference Manual, generates this kind of static
dependency information. Combine it with profiling (Chapter 7) to see
what things actually are called, as opposed to what things might be
called.

• Align for paging. Try to arrange the shared library's object files so that
frequently used functions do not unnecessarily cross page boundaries.
First, determine where the page boundaries fall. Page size on the 362 is
typically 2K; on the 6386 it is 4K. You can use the nm command,
described in Section 1 of the Programmer's Reference Manual, to determine
how symbol values relate to page boundaries. After grouping related
functions, break them up into page-sized chunks. Although some object
files and functions are larger than a page, many are not. Then use the less
frequently called functions as glue between the chunks. Because the glue
between pages is referenced less frequently than the page contents, the
probability of a page fault is decreased. You can put frequently used,
unrelated functions together because they will probably be called ran
domly enough to keep the pages in memory.

• A void hardware thrashing. The 362, for example, uses memory manage
ment hardware with an eight-entry cache for translating virtual to physi
cal addresses. Each segment (128 KB) is mapped to one of the eight
entries. So segments 0, 8, 16, ... use entry 0; segments 1, 9, 17, ... use entry
1; and so forth. You get better performance by arranging the typical pro
cess to avoid cache entry conflicts. If a heavily used library had both its
text and its data segments mapped to the same cache entry, the perfor
mance penalty would be particularly severe. Every library instruction
would bring the text segment information into the cache. Instructions that
referenced data would flush the entry to load the data segment. Of
course, the next instruction would reference text and flush the cache entry

C Compilation System 2-27

Compiling and Linking

again. At least on the 3B2, a library's text and data segment numbers
should differ by something other than eight.

Now let's look at some maintenance issues. We have already seen how allocat
ing buffers dynamically can ease the job of library maintenance. As a general
rule, you want to be sure that updated versions of a shared object are compati
ble with its previous versions so that users will not have to recompile their
applications. At the very least, you should avoid changing the names of library
symbols from one release to the next.

All the same, there may be instances in which you need to release a library ver
sion that is incompatible with its predecessor. On the one hand, you will want
to maintain the older version for dynamically linked executables that depend on
it. On the other hand, you will want newly created executables to be linked
with the updated version. Moreover, you will probably want both versions to
be stored in the same directory. In this situation, you could give the new
release a different name, rewrite your documentation, and so forth. A better
alternative would be to plan for the contingency in the very first instance by
using the following sequence of commands when you create the original version
of the shared object:

$ cc -K PIC -G -h libfoo.1 -o libfoo.1 functionl.c \
function2.c function3.c

$ ln libfoo.1 libfoo.so

In the first command -h stores the name given to it, libfoo .1, in the shared
object itself. You then use the UNIX system command ln, described in Section 1
of the User's Reference Manual, to create a link between the name libfoo. 1 and
the name libfoo. so. The latter, of course, is the name the link editor will look
for when users of your library specify

$ cc -Ldir filel.c file2.c file3.c -lfoo

In this case, however, the link editor will record in the user's executable the
name you gave to -h, libfoo .1, rather than the name libfoo. so. That
means that when you release a subsequent, incompatible version of the library,
libfoo. 2, executables that depend on libfoo. 1 will continue to be linked with
it at run time. As we saw earlier, the dynamic linker uses the shared object
name that is stored in the executable to satisfy unresolved external references at
run time.

2-28 ANSI C and Programming Support Tools

Compiling and Linking

You use the same sequence of commands when you create libfoo.2:

$ cc -K PIC -G -h libfoo.2 -o libfoo.2 functionl.c \
function2.c function4.c

$ ln libfoo.2 libfoo.so

Now when users specify

$ cc -Ldir filel.c file2.c file3.c -lfoo

the name libfoo. 2 will be stored in their executables, and their programs will
be linked with the new library version at run time.

Multiply Defined Symbols

Multiply defined symbols - except for different-sized initialized data objects -
are not reported as errors under dynamic linking. To put that more formally,
the link editor will not report an error for multiple definitions of a function or a
same-sized data object when each such definition resides within a different
shared object or within a dynamically linked executable and different shared
objects. The dynamic linker will use the definition in whichever object occurs
first on the cc command line. You can, however, specify -Bsymbolic when
you create a shared object

$ cc -K PIC -G -Bsymbolic -o libfoo.so functionl.c \
function2.c function3.c

to insure that the dynamic linker will use the shared object's definition of one of
its own symbols, rather than a definition of the same symbol in an executable or
another library.

In contrast, multiply defined symbols are generally reported as errors under
static linking. We say "generally'' because definitions of so-called weak sym
bols can be hidden from the link editor by a definition of a global symbol. That
is, if a defined global symbol exists, the appearance of a weak symbol with the
same name will not cause an error.

To illustrate this, let's look at our own implementation of the standard C library.
This library provide services that users are allowed to redefine and replace. At
the same time, however, ANSI C defines standard services that must be present
on the system and cannot be replaced in a strictly conforming program.
fread () , for example, is an ANSI C library function; the system function
read () is not. So a conforming program may redefine read () and still use
fread () in a predictable way.

C Compilation System 2-29

Complllng and Linking

The problem with this is that read() underlies the fread () implementation in
the standard C library. A program that redefines read() could "confuse" the
fread () implementation. To guard against this, ANSI C states that an imple
mentation cannot use a name that is not reserved to it. That's why we use
_read() - note the leading underscore - to implement fread () in the stan
dard C library.

Now suppose that a program you have written calls read(). If your program
is going to work, a definition for read() will have to exist in the C library.
One does. It is identical to the definition for read () and contained in the
same object file. -

Suppose further that another program you have written redefines read () , as it
has every right to do under ANSI C. And that this same program calls
fread () . Because you get our definitions of both _read() and read() when
you use fread O , we would expect the link editor to report the multiply
defined symbol read () as an error, and fail to create an executable program.
To prevent that, we used the fpragma directive in our source code for the
library as follows:

#pragma weak read = _read

Because our read () is defined as a weak symbol, your own definition of
read() will override the definition in the standard C library. You can use the
#pragma directive in the same way in your own library code.

There's a second use for weak symbols that you ought to know about:

tpragma weak read

tells the link editor not to complain if it does not find a definition for the weak
symbol read. References to the symbol use the symbol value if defined, 0 oth
erwise. The link editor does not extract archive members to resolve undefined
weak symbols. The mechanism is intended to be used primarily with functions.
Although it will work for most data objects, it.should not be used with unini
tialized global data ("common" symbols) or with shared library data objects that
are exported to executables.

2-30 ANSI C and Programming Support Tools

Compiling and Linking

Quick-Reference Guide
1. By convention, shared objects, or dynamically linked libraries, are desig

nated by the prefix lib and the suffix . so; archives, or statically linked
libraries, are designated by the prefix lib and the suffix . a. libc. so,
then, is the shared object version of the standard C library; libc. a is the
archive version.

2. These conventions are recognized, in tum, by the -1 option to the cc
command. That is, -lx directs the link editor to search the shared object
libx. so or the archive library libx. a. The cc command automatically
passes -le to the link editor. In other words, the compilation system
arranges for the standard C library to be linked with your program tran
sparently.

3. By default, the link editor chooses the shared object implementation of a
library, libx. so, in preference to the archive library implementation,
libx. a, in the same directory.

4. By default, the link editor searches for libraries in the standard places on
your system, /usr/ccs/lib and /usr/lib, in that order. The standard
libraries supplied by the compilation system normally are kept in
/usr/ccs/lib.

In this arrangement, then, C programs are dynamically linked with libc. so
automatically:

$ cc filel.c file2.c file3.c

To link your program statically with libc. a, turn off the dynamic linking
default with the -dn option:

$ cc -dn filel.c file2.c file3.c

Specify the -1 option explicitly to link your program with any other library. If
the library is in the standard place, the command

$ cc filel.c file2.c file3.c -lx

will direct the link editor to search for libx. so, then libx. a in the standard
place. Note that the compilation system supplies shared object versions only of
libc and libdl. (Other shared object libraries are supplied with the operating
system, and usually are kept in the standard places.) Note, too, that, as a rule,
it's best to place -1 at the end of the command line.

C Compilation System 2-31

Compiling and Linking

If the library is not in the standard place, specify the path of the directory in
which it is stored with the -L option

$ cc -Ldir filel.c file2.c file3.c -lx

or the environment variable LD LIBRARY PATH

$ LD_LIBRARY_PATH=dir export LD_LIBRARY_PATH
$ cc filel.c file2.c file3.c -lx

If the library is a shared object and is not in the standard place, you must also
specify the path of the directory in which it is stored with either the environ
ment variable LD_RUN_PATH at link time, or the environment variable
LD LIBRARY PATH at run time: - -

$ LD_RUN_PATH=dir export LD_RUN_PATH
$ LD_LIBRARY_PATH=direxport LD_LIBRARY_PATH

It's best to use an absolute path when you set these environment variables.
Note that LD LIBRARY PATH is read both at link time and at run time.

To direct the link editor to search libx. a where libx. so exists in the same
directory, tum off the dynamic linking default with the -dn option:

$ cc -dn -Ldir filel.c file2.c file3.c -lx

That command will direct the link editor to search libc. a well as libx. a. To
link your program statically with libx. a and dynamically with libc. so, use
the -Bstatic and -Bdynamic options to turn dynamic linking off and on:

$ cc -Ldir filel.c file2.c file3.c -Bstatic -lx -Bdynamic

Files, including libraries, are searched for definitions in the order they are listed
on the cc command line. The standard C library is always searched last.

2-32 ANSI C and Programming Support Tools

Libraries and Header Files

As we have noted, the standard libraries supplied by the C compilation system
contain functions that you can use in your program to perform input/output,
string handling, and other high-level operations that are not explicitly provided
by the C language. Header files contain definitions and declarations that your
program will need if it calls a library function. They also contain function-like
macros that you can use in your program as you would a function.

In the first part of this chapter, we showed you how to link your program with
these standard libraries and how to include a header file. In this part, we'll talk
a bit more about header files and show you how to use library functions in your
program. We'll also describe the contents of some of the more important stan
dard libraries, and tell you where to find them in the Programmer's Reference
Manual. We'll close with a brief discussion of standard I/0.

Header Files

Header files serve as the interface between your program and the libraries sup
plied by the C compilation system. Because the functions that perform standard
I/0, for example, very often use the same definitions and declarations, the sys
tem supplies a common interface to the functions in the header file stdio. h.
By the same token, if you have definitions or declarations that you want to
make available to several source files, you can create a header file with any edi
tor, store it in a convenient directory, and include it in your program as
described in the first part of this chapter.

Header files traditionally are designated by the suffix . h, and are brought into
a program at compile time. The preprocessor component of the compiler does
this because it interprets the #include statement in your program as a direc
tive. The two most commonly used directives are #include and fdefine. As
we have seen, the #include directive is used to call in and process the contents
of the named file. The fdefine directive is used to define the replacement
token string for an identifier. For example,

fdefine NULL 0

defines the macro NULL to have the replacement token sequence O. See Chapter
3, "C Language," for the complete list of preprocessing directives.

Many different . h files are named in the Programmer's Reference Manual. Here
we are going to list a number of them, to illustrate the range of tasks you can
perform with header files and library functions. When you use a library

C Compilation System 2·33

Libraries and Header Files

function in your program, the manual page will tell you which header file, if
any, needs to be included. If a header file is mentioned, it should be included
before you use any of the associated functions or declarations in your program.
It's generally best to put the finclude right at the top of a source file.

2-34

assert.h
ctype.h
errno.h
float.h
limits.h
locale.h
math.h
setjmp.h
signal.h
stdarg.h
stddef.h
stdio.h
stdlib.h
string.h
time.h
unistd.h

assertion checking
character handling
error conditions
floating point limits
other data type limits
program's locale
mathematics
nonlocal jumps
signal handling
variable arguments
common definitions
standard input/ output
general utilities
string handling
date and time
system calls

ANSI C and Programming Support Tools

Libraries and Header Files

How to Use Library Functions

The manual page for each function describes how you should use the function
in your program. As an example, we'll look at the strcmp () routine, which
compares character strings. The routine is described on the string manual
page in Section 3, Subsection 35, of the Programmer's Reference Manual. Related
functions are described there as well, but only the sections relevant to strcmp ()
are shown in Figure 2-2.

Figure 2-2: Excerpt from strlng(3S) Manual Page

striru.!: strcat, stclup, strncat, strcmp, strncrnp, strcpy, strncpy, strlen,
strcb?;, strJ;ciu:', atrpb:r;k, strspn, strcspn, strok • string operations.

As shown, the DESCRIPTION section tells you what the function or macro does.
It's the SYNOPSIS section, though, that contains the critical information about
how you use the function or macro in your program.

Note that the first line in the SYNOPSIS is

#include <string.h>

That means that you should include the header file string. h in your program

C Compilation System 2-35

Libraries and Header Flies

because it contains useful definitions or declarations relating to strcmp ().In
fact, string. h contains the line

extern int strcmp(const char*, const char*);

that describes the kinds of arguments expected and returned by strcmp () .
This line is called a function prototype. Function prototypes afford a greater
degree of argument type checking than old-style function declarations, so you
lessen your chance of using the function incorrectly. By including string. h,
you assure that the compiler checks calls to strcmp () against the official inter
face. You can, of course, examine string. h in the standard place for header
files on your system, usually the /usr/include directory.

The next thing in the SYNOPSIS section is the formal declaration of the function.
The formal declaration tells you:

• the type of value returned by the function;

• the arguments the function expects to receive when called, if any;

• the argument types.

By way of illustration, let's look at how you might use strcmp () in your own
code. Figure 2-3 shows a program fragment that will find the bird of your
choice in an array of birds.

2·36 ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-3: How strcmp() Is Used In a Program

C Compilation System 2-37

Libraries and Header Filas

C Library (libc)

In this section, we describe some of the more important routines in the standard
C library. As we indicated in the first part of this chapter, libc contains the
system calls described in Section 2 of the Programmer's Reference Manual, and the
C language functions described in Section 3, Subsections 3C and 3S. We'll
explain what each of these subsections contains below. We'll look at system
calls at the end of the section.

Subsection 35 Routines

Subsection 3S of the Programmer's Reference Manual contains the so-called stan
dard 1/0 library for C programs. Frequently, one manual page describes
several related functions or macros. In Figure 2-4, the left-hand column contains
the name that appears at the top of the manual page; the other names in the
same row are related functions or macros described on the same manual page.
Programs that use these routines should include the header file stdio . h.
We'll talk a bit more about standard 1/0 in the last subsection of this chapter.

2-38 ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-4: Standard 110 Functions and Macros

fclose fflush Close or flush a stream.

ferror feof clearerr fileno Stream status inquiries.

fopen freopen fdopen Open a stream.

fread fwrite Input/ output.

fseek rewind ft ell Reposition a file pointer in a
stream.

getc get char fgetc getw Get a character or word from a
stream.

gets fgets Get a string from a stream.

po pen pc lose Begin or end a pipe to/from a
process.

printf fprintf sprintf Print formatted output.

putc put char fputc putw Put a character or word on a
stream.

puts fputs Put a string on a stream.

scanf fscanf sscanf Convert formatted input.

setbuf setvbuf Assign buffering to a stream.

system Issue a command through the
shell.

tmpfile Create a temporary file.

tmpnam tempnam Create a name for a temporary
file.

ungetc Push character back into input
stream.

vprintf vfprintf vsprintf Print formatted output of a
varargs argument list.

C Compilation System 2-39

Libraries and Header Files

Subsection 3C Routines

Subsection 3C of the Programmer's Reference Manual contains functions and mac
ros that perform a variety of tasks:

• string manipulation

• character classification

• character conversion

• environment management

• memory management.

Here we'll look at functions and macros that perform the first three tasks.

Figure 2-5 lists string-handling functions that appear on the string page in
Subsection 3C of the Programmer's Reference Manual. Programs that use these
functions should include the header file string. h.

Figure 2-5: String Operations

strcat

strncat

strcmp

strncmp

strcpy

strncpy

2-40

Append a copy of one string to the end of another.

Append no more than a given number of characters from one
string to the end of another.

Compare two strings. Returns an integer less than, greater
than, or equal to 0 to show that one is lexicographically less
than, greater than, or equal to the other.

Compare no more than a given number of characters from the
two strings. Results are otherwise identical to strcmp.

Copy a string.

Copy a given number of characters from one string to another.
The destination string will be truncated if it is longer than the
given number of characters, or padded with null characters if it
is shorter.

ANSI C and Programming Support Tools

Libraries and Header Flies

Figure 2-5: String Operations (continued)

strdup

strchr

strrchr

strlen

strpbrk

strspn

strcspn

strstr

strtok

Return a pointer to a newly allocated string that is a duplicate
of a string pointed to.

Return a pointer to the first occurrence of a character in a
string, or a null pointer if the character is not in the string.

Return a pointer to the last occurrence of a character in a
string, or a null pointer if the character is not in the string.

Return the number of characters in a string.

Return a pointer to the first occurrence in one string of any
character from the second, or a null pointer if no character
from the second occurs in the first.

Return the length of the initial segment of one string that con
sists entirely of characters from the second string.

Return the length of the initial segment of one string that con
sists entirely of characters not from the second string.

Return a pointer to the first occurrence of the second string in
the first string, or a null pointer if the second string is not
found.

Break up the first string into a sequence of tokens, each of
which is delimited by one or more characters from the second
string. Return a pointer to the token, or a null pointer if no
token is found.

C Compilation System 2-41

Libraries and Header Files

Figure 2-6 lists functions and macros that classify 8-bit character-coded integer
values. These routines appear on the conv and ctype pages in Subsection 3C
of the Programmer's Reference Manual. Programs that use these routines should
include the header file ctype. h.

Figure 2-6: Classifying 8-Bit Character-Coded Integer Values

isalpha

is upper

is lower

isdigit

isxdigit

isalnum

is space

ispunct

isprint

isgraph

iscntrl

isascii

toupper

_toupper

tolower

tolower

toascii

2-42

Is c a letter?

Is c an uppercase letter?

Is c a lowercase letter?

Is c a digit [0-9]?

Is c a hexadecimal digit [0-9], [A-F], or [a-f]?

Is c alphanumeric (a letter or digit)?

Is ca space, horizontal tab, carriage return, new-line, vertical tab,
or form-feed?

Is c a punctuation character (neither control nor alphanumeric)?

Is c a printing character?

Same as isprint except false for a space.

Is c a control character or a delete character?

Is c an ASCII character?

Change lower case to upper case.

Macro version of toupper.

Change upper case to lower case.

Macro version of tolower.

Turn off all bits that are not part of a standard ASCII character;
intended for compatibility with other systems.

ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-7 lists functions and macros in Subsection 3C of the Programmer's
Reference Manual that are used to convert characters, integers, or strings from
one representation to another. The left-hand column contains the name that
appears at the top of the manual page; the other names in the same row are
related functions or macros described on the same manual page. Programs that
use these routines should include the header file stdlib. h.

Figure 2-7: Converting Characters, Integers, or Strings

a641 164a Convert between long integer and base-64
ASCII string.

ecvt fcvt gcvt Convert floating point number to string.

13tol ltol3 Convert between 3-byte packed integer and
long integer.

strtod at of Convert string to double-precision number.

strtol atol atoi Convert string to integer.

strtoul Convert string to unsigned long.

System Calls

UNIX system calls are the interface between the kernel and the user programs
that run on top of it. read(), write(), and the other system calls in Section
2 of the Programmer's Reference Manual define what the UNIX system is. Every
thing else is built on their foundation. Strictly speaking, they are the only way
to access such facilities as the file system, interprocess communication primi
tives, and multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are performing input/output, for example, you
can use the standard 1/0 functions described earlier. When you use these func
tions, the details of their implementation on the UNIX system - for example,
that the system call read () underlies the fread () implementation in the
standard C library - are transparent to the program. In other words, the

C Compilation System 2-43

Libraries and Header Flies

program will generally be portable to any system, UNIX or not, with a conform
ing C implementation.

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use read () in a
program that performed a simple 1/0 operation. Other operations, however,
including most multitasking mechanisms, do require direct interaction
with the UNIX system kernel. These operations are discussed in detail in the
Programmer's Guide: System Services and Application Packaging Tools.

Math Library (libm)

The math library, libm, contains the mathematics functions supplied by the C
compilation system. These appear in Subsection 3M of the Programmer's Refer
ence Manual. Here we describe some of the major functions, organized by the
manual page on which they appear. Note that functions whose names end with
the letter fare single-precision versions, which means that their argument and
return types are float. The header file math. h should be included in pro
grams that use math functions.

Figure 2-8: Math Functions

exp(3M)

exp expf

cbrt

log logf

loglO loglOf

pow powf

2-44

Return ex.

Return cube root of x.

Return the natural logarithm of x. The
value of x must be positive.

Return the base-ten logarithm of x. The
value of x must be positive.

Return xY. If xis zero, y must be posi
tive. If x is negative, y must be an
integer.

ANSI C and Programming Support Tools

Figure 2·8: Math Functions (continued)

sqrt sqrtf

hypot(3M)

hypot

gamma(3M)

ganuna lganuna

trig(3M)

sin sinf
cos co sf
tan tanf

a sin as inf

a cos a co sf

atan atanf

atan2 atan2f

C Compllatlon System

Libraries and Header Files

Return the non-negative square root of
x. The value of x must be non
negative.

Return sqrt(x * x + y * y), taking pre
cautions against overflows.

Return ln(I r(x) I), where r(x) is
x

defined as J e-1t"'-1dt.
0

Return, respectively, the sine, cosine,
and tangent of x, measured in radians.

Return the arcsine of x, in the range
[-7t/2, +7t/2].

Return the arccosine of x, in the range
[0,+7t].

Return the arctangent of x, in the range
(-7t/2, +7t/2).

Return the arctangent of y/x, in the
range (-7t, +7t], using the signs of both
arguments to determine the quadrant
of the return value.

2-45

Libraries and Header Flies

Figure 2-8: Math Functions (continued)

sinh(3M)

sinh
co sh
tanh

asinh
a co sh
atanh

matherr(3M)

matherr

erf(3M)

erf

erf c

floor(3M)

floor

ceil

copy sign

2-46

sinhf
cos hf
tanhf

floorf

ceilf

Return, respectively, the hyperbolic
sine, cosine, and tangent of their argu
ment.

Return, respectively, the inverse hyper
bolic sine, cosine, and tangent of their
argument.

Error handling.

Returns the error function of x, defined
:r:

2 J t2 as-,- e- dt.
'\/7t 0

erfc, which returns 1.0 - erf(x), is pro
vided because of the extreme loss of
relative accuracy if erf is called for
large x and the result subtracted from
1.0 (e.g., for x = 5, 12 places are lost).

Return the largest integer not greater
than x.

Return the smallest integer not less
than x.

Return x but with the sign of y.

ANSI C and Programming Support Tools

Figure 2-8: Math Functions (continued)

fmod fmodf

fabs fabsf

rint

remainder

C Compilation System

Libraries and Header Files

Return the floating point remainder of
the division of x by y: x if y is zero,
otherwise the number f with same sign
as x, such that x = iy + f for some
integer i, and I f I< I Y I .
Return the absolute value of x, I x I .
Return the integer value nearest to the
double-precision floating point argu
ment x as a double-precision floating
point number. The returned value is
rounded according to the currently set
machine rounding mode. If round-to
nearest (the default mode) is set and
the difference between the function
argument and the rounded result is
exactly 0.5, then the result will be
rounded to the nearest even integer.

Return the floating point remainder of
the division of x by y: NaN if y is zero,
otherwise the value r = x - yn, where n
is the integer nearest the exact value of
x/y. Whenever In - x/yl = 1/2, then n
is even.

2-47

Libraries and Header Files

General Purpose Library (libgen)

libgen contains general purpose functions, and functions designed to facilitate
internationalization. These appear in Subsection 3G of the Programmer's Refer
ence Manual. Figure 2-9 describes functions in libgen. The header files
libgen. h and, occasionally, regexp . h should be included in programs that
use these functions.

Figure 2-9: libgen Functions

advance step

base name

bgets

bufsplit

compile

copy list

dirname

eaccess

gmatch

isencrypt

2-48

Execute a regular expression on a string.

Return a pointer to the last element of a path
name.

Read a specified number of characters into a
buffer from a stream until a specified character
is reached.

Split the buffer into fields delimited by tabs
and new-lines.

Return a pointer to a compiled regular expres
sion that uses the same syntax as ed.

Copy a file into a block of memory, replacing
new-lines with null characters. It returns a
pointer to the copy.

Return a pointer to the parent directory name
of the file path name.

Determine if the effective user ID has the
appropriate permissions on a file.

Check if name matches shell file name pattern.

Use heuristics to determine if contents of a
character buffer are encrypted.

ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-9: llbgen Functions (continued)

mkdirp

p2open

pat hf ind

regcmp

regex

rmdirp

strccpy

strecpy

strfind

p2close

strcadd

C Compllatlon System

Create a directory and its parents.

p2open is similar to popen(35). It establishes
a two-way connection between the parent and
the child. p2close closes the pipe.

Search the directories in a given path for a
named file with given mode characteristics. If
the file is found, a pointer is returned to a
string that corresponds to the path name of the
file. A null pointer is returned if no file is
found.

Compile a regular expression and return a
pointer to the compiled form.

Compare a compiled regular expression against
a subject string.

Remove the directories in the specified path.

st rccpy copies the input string to the output
string, compressing any C-like escape
sequences to the real character. strcadd is a
similar function that returns the address of the
null byte at the end of the output string.

Copy the input string to the output string,
expanding any non-graphic characters with the
C escape sequence. Characters in a third argu
ment are not expanded.

Return the offset of the first occurrence of the
second string in the first string. -1 is returned
if the second string does not occur in the first.

2-49

Libraries and Header Flies

Figure 2-9: libgen Functions (continued)

strrspn

strtrns

Standard 1/0

Trim trailing characters from a string. It
returns a pointer to the last character in the
string not in a list of trailing characters.

Return a pointer to the string that results from
replacing any character found in two strings
with a character from a third string. This func
tion is similar to the tr command.

As we have seen, the functions in Subsection 35 of the Programmer's Reference
Manual constitute the standard 1/0 library for C programs. In this section, we
want to discuss standard 1/0 in a bit more detail. First, let's briefly define what
1/0 involves. It has to do with

• reading information from a file or device to your program;

• writing information from your program to a file or device;

• opening and closing files that your program reads from or writes to.

Three Files You Always Have

Programs automatically start off with three open files: standard input, standard
output, and standard error. These files with their associated buffering are called
streams, and are designated stdin, stdout, and stderr, respectively. The
shell associates all three files with your terminal by default.

This means that you can use functions and macros that deal with stdin,
stdout, or stderr without having to open or close files. gets (), for exam
ple, reads a string from stdin; puts() writes a string to stdout. Other
functions and macros read from or write to files in different ways: character at
a time, getc () and putc ();formatted, scanf () and printf ();and so on.
You can specify that output be directed to stderr by using a function such as

2-50 ANSI C and Programming Support Tools

Libraries and Header Flies

fprintf (). fprintf () works the same way as printf () except that it
delivers its formatted output to a named stream, such as stderr.

Named Files

Any file other than standard input, standard output, and standard error must be
explicitly opened by you before your program can read from or write to the file.
You open a file with the standard library function fopen (). fopen () takes a
path name, asks the system to keep track of the connection between your pro
gram and the file, and returns a pointer that you can then use in functions that
perform other 1/0 operations.

The pointer is to a structure called FILE, defined in stdio. h, that contains
information about the file: the location of its buffer, the current character posi
tion in the buffer, and so on. In your program, then, you need to have a declara
tion such as

FILE *fin;

which says that fin is a pointer to a FILE. The statement

fin= fopen("filename", "r");

associates a FILE structure with filename, the path name of the file to open,
and returns a pointer to it. The "r" means that the file is to be opened for
reading. This argument is known as the mode. There are modes for reading,
writing, and both reading and writing.

In practice, the file open function is often included in an if statement:

if ((fin= fopen("filename", "r")) ==NULL)
(void) fprintf (stderr, "Cannot open input file %s\n",

"filename");

which takes advantage of the fact that fopen () returns a NULL pointer if it
cannot open the file. To avoid falling into the immediately following code on
failure, you can call exit () , which causes your program to quit:

if ((fin = fopen ("filename", "r")) == NULL)
(void) fprintf (stderr, "Cannot open input file %s\n",

"filename");
exit(l);

C Compilation System 2-51

Libraries and Header Files

Once you have opened the file, you use the pointer fin in functions or macros
to refer to the stream associated with the opened file:

int c;
c = getc (fin);

brings in one character from the stream into an integer variable called c. The
variable c is declared as an integer even though we are reading characters
because getc () returns an integer. Getting a character is often incorporated in
some flow-of-control mechanism such as

while ((c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc () are all defined in stdio. h. getc () and other macros in the stan
dard I/O package keep advancing a pointer through the buffer associated with
the stream; the UNIX system and the standard 1/0 functions are responsible for
seeing that the buffer is refilled if you are reading the file, or written to the out
put file if you are producing output, when the pointer reaches the end of the
buffer.

Your program may have multiple files open simultaneously, 20 or more depend
ing on system configuration. If, subsequently, your program needs to open
more files than it is permitted to have open simultaneously, you can use the
standard library function fclose () to break the connection between the FILE
structure in stdio.hand the path names of the files your program has
opened. Pointers to FILE may then be associated with other files by subse
quent calls to fopen () . For output files, an fclose () call makes sure that all
output has been sent from the output buffer before disconnecting the file.
exit() closes all open files for you, but it also gets you completely out of your
process, so you should use it only when you are sure you are finished.

Passing Command Line Arguments
As we noted in Chapter 1, information or control data can be passed to a C pro
gram as an argument on the command line. When you execute the program,
command line arguments are made available to the function main () in two
parameters, an argument count, conventionally called argc, and an argument
vector, conventionally called argv. argc is the number of arguments with

2-52 ANSI C and Programming Support Tools

Libraries and Header Flies

which the program was invoked. argv is an array of pointers to characters
strings that contain the arguments, one per string. Since the command name
itself is considered to be the first argument, or argv [O], the count is always at
least one.

If you plan to accept run-time parameters in your program, you need to include
code to deal with the information. Figures 2-10 and 2-11 show program frag
ments that illustrate two common uses of run-time parameters:

• Figure 2-10 shows how you provide a variable file name to a program,
such that a command of the form

$ prog filename

will cause prog to attempt to open the specified file.

• Figure 2-11 shows how you set internal flags that control the operation of
a program, such that a command of the form

$ prog -opr

will cause prog to set the corresponding variables for each of the options
specified. The get opt () function used in the example is the most com
mon way to process arguments in UNIX system programs. get opt () is
described in Subsection 3C of the Programmer's Reference Manual.

C Compilation System 2-53

Libraries and Header Files

Figure 2-10: Using argv[1] to Pass a Fiie Name

2-54 ANSI C and Programming Support Tools

Libraries and Header Files

Figure 2-11: Using Command Line Arguments to Set Flags

C Compilation System 2-55

3 C Language

Introduction
Compilation Modes

• Global Behavior
How To Use This Chapter
Phases of Translation

Source Files and Tokenization
Tokens
Identifiers
Keywords
Constants

• Integral Constants
• Floating Point Constants
• Character Constants
• Wide Characters and Multibyte Characters

String Literals
Wide String Literals
Comments

Preprocessing
Trigraph Sequences
Preprocessing Tokens

• Preprocessing Numbers
Preprocessing Directives

• Preprocessing Operators
• Macro Definition and Expansion
• File Inclusion
• Conditional Compilation
• Line Control
• Assertions

Table of Contents

3-1
3-1
3-2
3-2
3-3

3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-9
3-9
3-9
3-10

3-11
3-11
3-11
3-12
3-12
3-12
3-13
3-14
3-15
3-17
3-17

Table of Contents ------------------------

II

• Version Control
• Pragmas
• Error Generation
• Predefined Names

Declarations and Definitions
Introduction
Types

• Basic Types
• Type Qualifiers
• Structures and Unions
• Enumerations

Scope
Storage Duration
Storage Class Specifiers
Declarators

• Pointer Declarators
• Array Declarators
• Function Declarators

Function Definitions

Conversions and Expressions
Implicit Conversions

• Characters and Integers
• Signed and Unsigned Integers
• Integral and Floating
• Float and Double
• Usual Arithmetic Conversions

Expressions
• Objects and lvalues
• Primary Expressions

Operators
• Unary Operators
• Cast Operators - Explicit Conversions
• Multiplicative Operators
• Additive Operators

3-18
3-18
3-19
3-20

3-21
3-21
3-21
3-21
3-22
3-22
3-24
3-24
3-25
3-26
3-27
3-27
3-28
3-28
3-29

3-31
3-31
3-31
3-31
3-32
3-32
3-32
3-33
3-33
3-33
3-34
3-34
3-36
3-36
3-37

ANSI C and Programming Support Tools

• Bitwise Shift Operators
• Relational Operators
• Equality Operators
• Bitwise AND Operator
• Bitwise Exclusive OR Operator
• Bitwise OR Operator
• Logical AND Operator
• Logical OR Operator
• Conditional Operator
• Assignment Expressions
• Comma Operator
• Structure Operators

Associativity and Precedence of Operators
Constant Expressions
Initialization

Statements
Expression Statement
Compound Statement
Selection Statements

• if
•else
• switch

Iteration Statements
•while
• do-while
• for

Jump Statements
•goto
• break
• continue
• return

Portability Considerations

Table of Contents

Table of Contents

3-38
3-39
3-39
3-39
3-40
3-40
3-40
3-41
3-41
3-42
3-42
3-42
3-43
3-43
3-44

3-47
3-47
3-47
3-47
3-47
3-48
3-48
3-49
3-49
3-49
3-50
3-50
3-50
3-51
3-51
3-51

3-52

Iii

Introduction

This chapter is a guide to the C language compilers for the AT&T 3B2 and 6386
computers. The level of presentation assumes some experience with C, and
familiarity with fundamental programming concepts.

The compilers are compatible with the C language described in the American
National Standards Institute (ANSI) "Draft Proposed American National Stan
dard for Information Systems-Programming Language C," document number
X3Jll/88-090, dated December 7, 1988. The standard language is referred to as
"ANSI C" in this document. The notation CI4 refers to previous issues of the
compilation system: C Issue 4.2 for the 3B2, C Issue 4.1.6 for the 6386.

Compilation Modes

The compilation system has three compilation modes that correspond to degrees
of compliance with ANSI C. The modes are:

-Xt

-xa

-Xe

C Language

Transition mode. Yields behavior compatible
with the previous issue (Cl4). Under this
option, the compiler provides new ANSI C
features and supports all extensions that were
provided in CI4. Where the interpretation of a
construct differs between CI4 and the Standard,
the compiler issues a warning and follows the
Cl4 behavior. This is the default compilation
mode.

ANSI C mode. Under this option, the compiler
provides ANSI C semantics where the interpre
tation of a construct differs between CI4 and the
Standard, and issues a warning. Extensions pro
vided in CI4, including those that are incompati
ble with the Standard, are supported.

Conformance mode. Enforces ANSI C confor
mance, and allows the use of conforming exten
sions. Conforming extensions are those that do
not interfere with conforming code. Non
conforming extensions are disallowed or cause
diagnostic messages.

3-1

Introduction

Global Behavior

A program that depends on unsigned-preserving arithmetic conversions will
behave differently. This is considered to be the most serious change made by
ANSI C to a widespread current practice.

In the first edition of Kernighan and Ritchie, The C Programming Language
(Prentice-Hall, 1978), unsigned specified exactly one type; there were no
unsigned chars, unsigned shorts, or unsigned longs, but most C compilers
added these very soon thereafter.

In previous AT&T C compilers, the "unsigned preserving" rule is used for pro
motions: when an unsigned type needs to be widened, it is widened to an
unsigned type; when an unsigned type mixes with a signed type, the result is
an unsigned type.

The other rule, specified by ANSI C, came to be called "value preserving," in
which the result type depends on the relative sizes of the operand types. When
an unsigned char or unsigned short is "widened," the result type is int if
an int is large enough (as it is on 3B2 and 6386 computers) to represent all the
values of the smaller type. Otherwise the result type would be unsigned int.
The "value preserving'' rule produces the ''least surprise" arithmetic result for
most expressions.

Only in the transition (-Xt) mode will the compiler use the unsigned preserving
promotions; in the other two modes, conformance (-Xe) and ANSI (-Xa), the
value preserving promotion rules will be used. No matter what the current
mode may be, the compiler will warn about each expression whose behavior
might depend on the promotion rules used.

This warning is not optional since this is a serious change in behavior.

How To Use This Chapter

You can use this chapter either as a quick reference guide, or as a comprehen
sive summary of the language as implemented by the compilation system.
Many topics are grouped according to their place in the ANSI-specified phases
of translation, which describe the steps by which a source file is translated into
an executable program. The phases of translation are explained in the following
section.

3-2 ANSI C and Programming Support Tools

Introduction

Phases of Translation

The compiler processes a source file into an executable in eight conceptual steps,
which are called phases of translation. While some of these phases may in actual
ity be folded together, the compiler behaves as if they occur separately, in
sequence.

1. Trigraph sequences are replaced by their single-character equivalents.
(Trigraph sequences are explained in the "Preprocessing" section of this
chapter).

2. Any source lines that end with a backslash and new-line are spliced
together with the next line by deleting the backslash and new-line.

3. The source file is partitioned into preprocessing tokens and sequences of
white-space characters. Each comment is, in effect, replaced by one space
character. (Preprocessing tokens are explained in the ''Preprocessing" sec
tion of this chapter).

4. Preprocessing directives are executed, and macros are expanded. Any
files named in #include statements are processed from phase 1 through
phase 4, recursively.

5. Escape sequences in character constants and strin5 literals are converted
to their character equivalents.

6. Adjacent character string literals, and wide character string literals, are
concatenated.

7. Each preprocessing token is converted into a token. The resulting tokens
are syntactically and semantically analyzed and translated. (Tokens are
explained in the "Source Files and Tokenization" section of this chapter).

8. All external object and function references are resolved. Libraries are
linked to satisfy external references not defined in the current translation
unit. All translator output is collected into a program image which con
tains information needed for execution.

Output from certain phases may be saved and examined by specifying option
flags on the cc command line.

C Language 3-3

Introduction

The preprocessing token sequence resulting from Phase 4 can be saved by using
the following options:

1. -P leaves preprocessed output in a file with a . i extension.

2. -E sends preprocessed output to the standard output.

Output from Phase 7 can be saved in a file with a . o extension by using the -c
option to cc. The output of Phase 8 is the compilation system's final output
(a.out).

3-4 ANSI C and Programming Support Tools

Source Files and Tokenization

Tokens

A token is a series of contiguous characters that the compiler treats as a unit.
Translation phase 3 partitions a source file into a sequence of tokens. Tokens
fall into seven classes:

• Identifiers

• Keywords

• Numeric Constants

• Character Constants

• String literals

• Operators

• Other separators and punctuators

Identifiers

• Identifiers are used to name things such as variables, functions, data
types, and macros.

• Identifiers are made up of a combination of letters, digits, or underscore
(_) characters.

• First character may not be a digit.

C Language 3-5

Source Flies and Tokenizatlon

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

asm default for short union
auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char en um long struct while
const extern register switch
continue float return typedef

The keyword asm is reserved in all compilation modes except -Xe. The key
word __ asm is a synonym for asm and is available under all compilation
modes, although a warning will be issued when it is used under the -Xe mode.

Constants

Integral Constants
• Decimal

3-6

o Digits 0-9.

o First digit may not be O (zero).

• Octal

D Digits 0-7.

o First digit must be O (zero).

• Hexadecimal

o Digits 0-9 plus letters a-f or A-F. Letters correspond to decimal
values 10-15.

o Prefixed by Ox or OX (digit zero).

ANSI C and Programming Support Tools

Source Files and Tokenization

• Suffixes

All of the above can be suffixed to indicate type, as follows:

Suffix Type

u or u
1 or L
both

Floating Point Constants

unsigned
long
unsigned long

• Consist of integer part, decimal point, fraction part, an e or E, an option
ally signed integer exponent, and a type suffix, one of f, F, l, or L.
Each of these elements is optional; however one of the following must be
present for the constant to be a floating point constant:

o A decimal point (preceded or followed by a number).

o An e with an exponent.

o Any combination of the above. Examples:

xxx e exp
xxx .
. xxx

• Type determined by suffix; f or F indicates float, 1 or L indicates
long double, otherwise type is double. The suffix L is only available
under compilation mode -Xe.

Character Constants

• One or more characters enclosed in single quotes, as in 'x'.

• All character constants have type int.

• Value of a character constant is the numeric value of the character in the
ASCII character set.

C Language 3-7

Source Files and Tokenlzatlon

• A multiple-character constant that is not an escape sequence (see below)
has a value derived from the numeric values of each character. For exam
ple, the constant '123' has a value of

or Ox333231 on the 3B2. On the 6386 the value is

0 , l' , 2' , 3'

or Ox313233.

• Character constants may not contain the character ' or new-line. To
represent these characters, and some others that may not be contained in
the source character set, the compiler provides the following escape
sequences:

Escape Sequences
new-line NL (LF) \n audible alert BEL \a
horizontal tab HT \t question mark ? \?
vertical tab VT \v double quote II \"
backspace BS \b octal escape 000 \ooo
carriage return CR \r hexadecimal escape hh \Ylih
forrnf eed FF \f backslash \ \\
single quote , \'

If the character following a backslash is not one of those specified, the compiler
will issue a warning and treat the backslash-character sequence as the character
itself. Thus, '\q' will be treated as 'q'. However, if you represent a character
this way, you run the risk that the character may be made into an escape
sequence in the future, with unpredictable results. An explicit new-line charac
ter is invalid in a character constant and will cause an error message.

• The octal escape consists of one to three octal digits.

• The hexadecimal escape consists of one or more hexadecimal digits.

3-8 ANSI C and Programming Support Tools

Source Files and Tokenization

Wide Characters and Multibyte Characters

• A wide character constant is a character constant prefixed by the letter L.

• A wide character has an external encoding as a multibyte character and
an internal representation as the integral type wchar_t, defined in
stddef.h.

• A wide character constant has the integral value for the multibyte charac
ter between single quote characters, as defined by the locale-dependent
mapping function mbtowc.

String Literals

• One or more characters surrounded by double quotes, as in "xyz ".

• Initialized with the characters contained in the double quotes.

• Have static storage duration and type "array of characters."

• The escape sequences described in "Character Constants" may also be
used in string literals. A double quote within the string must be escaped
with a backslash. New-line characters are not valid within a string.

• Adjacent string literals are concatenated into a single string. A null char
acter, \0, is appended to the result of the concatenation, if any.

• String literals are also known as "string constants."

Wide String Literals

• A wide-character string literal is a string literal immediately prefixed by
the letter L.

• Wide-character string literals have type "array of wchar_t."

• Wide string literals may contain escape sequences, and they may be con
catenated, like ordinary string literals.

C Language 3-9

Source Files and Tokenizatlon

Comments

Comments begin with the characters I* and end with the next *I.

/* this is a comment */

Comments do not nest.

If a comment appears to begin within a string literal or character constant, it
will be taken as part of the literal or constant, as specified by the phases of
translation.

char *P = "/* this is not a comment */"; /* but this is */

3-10 ANSI C and Programming Support Tools

Preprocessing

• Preprocessing handles macro substitution, conditional compilation, and
file inclusion.

• Lines beginning with f indicate a preprocessing control line. Spaces and
tabs may appear before and after the f.

• Lines that end with a backslash character\ and new-line are joined with
the next line by deleting the backslash and the new-line characters. This
occurs (in translation phase 2) before input is divided into tokens.

• Each preprocessing control line must appear on a line by itself.

Trigraph Sequences

Trigraph sequences are three-character sequences that are replaced by a
corresponding single character in Translation Phase 1, as follows:

??- f ?? ([??<
??/ \ ??)] ??>
??' A ??! I ??-

{

}

-
No other such sequences are recognized. The trigraph sequences provide a way
to specify characters that are missing on some terminals, but that the C
language uses.

Preprocessing Tokens

A token is the basic lexical unit of the language. All source input must be
formed into valid tokens by translation phase seven. Preprocessing tokens (pp
tokens) are a superset of regular tokens. Preprocessing tokens allow the source
file to contain non-token character sequences that constitute valid preprocessing
tokens during translation. There are four categories of preprocessing tokens:

• Header file names, meant to be taken as a single token.

• Preprocessing numbers (discussed in the following section).

C Language 3-11

Preprocessing

• All other single characters that are not otherwise (regular) tokens. See the
example in the "Preprocessing Numbers" section of this chapter.

• Identifiers, numeric constants, character constants, string literals, opera
tors, and punctuators.

Preprocessing Numbers

• A preprocessing number is made up of a digit, optionally preceded by a
period, and may be followed by letters, underscores, digits, periods, and
any one of e+ e- E+ E-.

• Preprocessing numbers include all valid number tokens, plus some that
are not valid number tokens. For example, in the macro definition:

fdef ine R 2e ff 3

the preprocessing number 2e is not a valid number. However, the
preprocessing operator H will "paste" it together with the preprocessing
number 3 when R is replaced, resulting in the preprocessing number
2e3, which is a valid number. See the "Preprocessing Operators" section,
below for a discussion of the H operator.

Preprocessing Directives

Preprocessing Operators

The preprocessing operators are evaluated left to right, without any defined pre
cedence.

3-12

A macro parameter preceded by the t prepro
cessing operator has its corresponding unex
panded argument tokens converted into a string
literal. (Any double quotes and backslashes con
tained in character constants or part of string
literals are escaped by a backslash). The t char
acter is sometimes referred to as the "stringiz
ing" operator. This rule applies only within
function-like macros.

ANSI C and Programming Support Tools

Preprocessing

If a replacement token sequence (see "Macro
Definition and Expansion" below) contains a H
operator, the H and any surrounding white
space are deleted and adjacent tokens are con
catenated, creating a new token. This occurs
only when the macro is expanded.

Macro Definition and Expansion

• An object-like macro is defined with a line of the form:

#define identifier token-sequence0 pt

where identifier will be replaced with token-sequence wherever identifier
appears in regular text.

• A function-like macro is defined with a line of the form:

#define identifier (identifier-list apt) token-sequence apt

where the macro parameters are contained in the comma-separated
identifier-list. The token-sequence following the identifier list determines
the behavior of the macro, and is referred to as the replacement list. There
can be no space between the identifier and the (character. For example:

#define FIM(a,b) a+b

The replacement-list a+b determines that the two parameters a and b
will be added.

• A function-like macro is invoked in normal text by using its identifier, fol
lowed by a (token, a list of token sequences separated by commas, and a
) token. For example:

FI.M (3, 2)

• The arguments in the invocation (comma-separated token sequences) may
be expanded, and they then replace the corresponding parameters in the
replacement token sequence of the macro definition. Macro arguments in
the invocation are not expanded if they are operands of for H operators
in the replacement string. Otherwise, expansion does take place. For
example:

C Language 3-13

Preprocessing

Assume that Ml is defined as 3:

#define Ml 3

When the function-like macro FIM is used, use of the # or H operators
will affect expansion (and the result), as follows:

Definition Invocation Result Expansion ?

a+b FIM(Ml,2) 3+2 Yes, Yes
#a FIM(Ml,2) "Ml" No
aHb FIM(Ml,2) Ml2 No, No
a+#a FIM(Ml,2) 3+"Ml" Yes, No

In the last example line, the first a in aHa is expanded, but the second a
is not expanded because it is an operand of the #operator.

• The number of arguments in the invocation must match the number of
parameters in the definition.

• A macro's definition, if any, can be eliminated with a line of the form:

#undef identifier

There is no effect if the definition doesn't exist.

File Inclusion

• A line of the form:

#include "filename"

causes the entire line to be replaced with the contents of filename. The fol
lowing directories are searched, in order.

o The current directory (of the file containing the #include line).

o Any directories named in - I options to the compiler, in order.

o A list of standard places, typically, but not necessarily,
/usr/include.

• A line of the form:

#include <filename>

3-14 ANSI C and Programming Support Tools

Preprocessing

causes the entire line to be replaced with contents of filename. The angle
brackets surrounding filename indicate that filename is not searched for in
the current directory.

• A third form allows an arbitrary number of preprocessing tokens to fol
low the #include, as in:

#include preprocessing-tokens

The preprocessing tokens are processed the same way as when they are
used in normal text. Any defined macro name is replaced with its
replacement list of preprocessing tokens. The preprocessing tokens must
expand to match one of the first two forms (< . . . > or " ... ").

• A file name beginning with a slash I indicates the absolute pathname of a
file to include, no matter which form of #include is used.

• Any #include statements found in an included file cause recursive pro
cessing of the named file(s).

Conditional Compilation

Different segments of a program may be compiled conditionally. Conditional
compilation statements must observe the following sequence:

1. One of: :ff:if or :ff:ifdef or :ff:ifndef.

2. Any number of optional :ff:elif lines.

3. One optional #else line.

4. One :ff:endif line.

• :ff:if integral-constant-expression

Is true if integral-constant-expression evaluates to nonzero.

If true, tokens following the if line are included.

The integral-constant-expression following the if is evaluated by following
this sequence of steps:

C Language

1 . Any preprocessing tokens in the expression are expanded. Any
use of the defined operator evaluates to 1 or O if its operand
is, respectively, defined, or not.

3-15

Preprocessing

2. If any identifiers remain, they evaluate to 0.

3. The remaining integral constant expression is evaluated. The
constant expression must be made up of components that evalu
ate to an integral constant. In the context of a #if, the integral
constant expression may not contain the sizeof operator, casts,
or floating point constants.

The following table shows how various types of constant expres
sions following a f:if would be evaluated. Assume that name is
not defined.

Constant expression Step 1 Step 2 Step 3

STDC 1 1 1
!defined(STDC) !1 !1 0 --
31 lname 31 lname 3110 1
2 + name 2 + name 2 + 0 2

• tifdef identifier

Is true if identifier is currently defined by #define or by the -D option to
the cc command line.

• tifndef identifier

Is true if identifier is not currently defined by #define (or has been
undefined).

• #elif constant-expression

Indicates alternate if-condition when all preceding if-conditions are false.

• #else

Indicates alternate action when no preceding if or elif conditions are
true. A comment may follow the else, but a token may not.

• #endif

3-16

Terminates the current conditional. A comment may follow the endif,
but a token may not.

ANSI C and Programming Support Tools

Preprocessing

Line Control

• Useful for programs that generate C programs.

• A line of the form

Uine constant "filename"

causes the compiler to believe, for the purposes of error diagnostics and
debugging, that the line number of the next source line is equal to constant
(which must be a decimal integer) and the current input file is filename
(enclosed in double quotes). The quoted file name is optional. constant
must be a decimal integer in the range 1 to MAXINT. MAXINT is defined
in limits. h.

Assertions

A line of the form

+assert predicate (token-sequence)

associates the token-sequence with the predicate in the assertion name space
(separate from the space used for macro definitions). The predicate must be an
identifier token.

+assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

The compiler provides the following predefined predicates by default on the
3B2:

+assert machine (u3b2)
+assert system (unix)
+assert cpu (M32)

The following defaults apply to the 6386:

+assert machine (i386)
+assert system (unix)
+assert cpu (i386)

C Language 3-17

Preprocessing

Any assertion may be removed by using tunassert, which uses the same syn
tax as assert. Using tunassert with no argument deletes all assertions on
the predicate; specifying an assertion deletes only that assertion.

An assertion may be tested in a tif statement with the following syntax:

.Jl:if #predicate (non-empty token-list)

For example, the predefined predicate system can be tested with the following
line:

tif tsystem(unix)

which will evaluate true.

Version Control
The tident directive is used to help administer version control information.

tident "version"

puts an arbitrary string in the . comment section of the object file. The
. comment section is not loaded into memory when the program is executed.

Prag mas
• Preprocessing lines of the form

tpragma pp-tokens

specify implementation-defined actions.

• Three tpragmas are recognized by the compilation system:

3-18

o tpragma ident "version"

which is identical in function to tident "version".

o tpragma weak identifier

which identifies identifier as a weak global symbol,

or

tpragma weak identifier = identifier2

which identifies identifier as a weak global symbol whose value is the
same as identifier2. identifier should otherwise be undefined. See

ANSI C and Programming Support Tools

Preprocessing

"Multiply Defined Symbols" in Chapter 2 for more information on
weak global symbols.

a #pragma int_to_unsigned identifier

which identifies identifier as a function whose type was int in previ
ous releases of the compilation system, but whose type is unsigned
int in this release. The declaration for identifier must precede the
#pragma.

unsigned int strlen(const char*);
tpragma int_to_unsigned strlen

#pragma int_ to_ unsigned makes it possible for the compiler to
identify expressions in which the function's changed type may affect
the evaluation of the expression. In the -Xt mode the compiler
treats the function as if it were declared to return int rather than
unsigned int.

• The 6386 has a fourth #pragma:

a tpragma pack(n)

which controls the layout of structure offsets. n is a number, 1, 2, or
4, that specifies the strictest alignment desired for any structure
member. If n is omitted, the alignment reverts to the default, which
may have been set by the -Zp option to cc.

A value of 4 is the default. A value of 2 gives structure layouts that
match those on an AT&T 6300+ computer.

• The compiler ignores unrecognized pragmas.

Error Generation
A preprocessing line consisting of

terror token-sequence

causes the compiler to produce a diagnostic message containing the token
sequence, and stop.

C Language 3-19

Preprocessing

Predefined Names
The following identifiers are predefined as object-like macros:

LINE
FILE -- --

DATE

TIME

STDC

The current line number as a decimal constant.
A string literal representing the name of the file being
compiled.

The date of compilation as a string literal in the form
"Mmm dd yyyy."

The time of compilation, as a string literal in the form
"hh:mm:ss."

The constant 1 under compilation mode -Xe, otherwise O.

With the exception of __ STDC _--' these predefined names may not be
undefined or redefined. Under compilation mode -Xt, __ STDC __ may be
undefined (#undef __ STDC _ _) to cause a source file to think it is being com
piled by a previous version of the compiler.

3-20 ANSI C and Programming Support Tools

Declarations and Definitions

Introduction

A declaration describes an identifier in terms of its type and storage duration.
The location of a declaration (usually, relative to function blocks) implicitly
determines the scope of the identifier.

Types

Basic Types
The basic types and their sizes are:

• char (1 byte)

• short int (2 bytes)

• int (4 bytes)

• long int (4 bytes)

Each of char, short, int, and long may be prefixed with signed or
unsigned. A type specified with signed is the same as the type specified
without signed except for signed char on the 3B2. (char on the 3B2 has
only non-negative values.)

• float (4 bytes)

• double (8 bytes)

• long double (12 bytes)

Under compilation mode -Xe, long double will cause a warning that
long double is equivalent to double. Using long double under compi
lation modes -xa and -Xt will result in an error.

• void

Integral and floating types are collectively referred to as arithmetic types. Arith
metic types and pointer types (see "Pointer Declarators") make up the scalar
types.

C Language 3-21

Declarations and Definitions

Type Qualifiers
• const

The compiler may place an object declared const in read-only memory.
The program may not change its value and no further assignment may be
made to it. An explicit attempt to assign to a const object will provoke
an error.

• volatile

volatile advises the compiler that unexpected, asynchronous events may
affect the object so declared, and warns it against making assumptions.
An object declared volatile is protected from optimization that might
otherwise occur.

Structures and Unions
• Structures

3-22

A structure is a type that consists of a sequence of named members. The
members of a structure may have different object types (as opposed to an
array, whose members are all of the same type). To declare a structure is
to declare a new type. A declaration of an object of type struct reserves
enough storage space so that all of the member types can be stored simul
taneously.

A structure member may consist of a specified number of bits, called a
bit-field. The number of bits (the size of the bit-field) is specified by
appending a colon and the size (an integral constant expression, the
number of bits) to the declarator that names the bit-field. The declarator
name itself is optional; a colon and integer will declare the bit-field. A
bit-field must have integral type. The size may be zero, in which case the
declaration name must not be specified, and the next member starts on a
boundary of the type specified. For example:

char :0

means "start the next member (if possible) on a char boundary." A
named bit-field number that is not declared with an explicitly signed
type holds values in the range

0 - (2n-1)

ANSI C and Programming Support Tools

Declarations and Definitions

where n is the number of bits. A bit-field declared with an explicit signed
type holds values in the range

-2n-l - c2n-1_1)

An optional structure tag identifier may follow the keyword struct. The
tag names the kind of structure described, and it and struct may then
be used as a shorthand name for the declarations that make up the body
of the structure. For example:

struct t {
int x;
float y;

stl, st2;

Here, stl and st2 are structures, each made up of x, an int, and y, a
float. The tag t may be used to declare more structures identical to
stl and st2, as in:

struct t st3;

A structure may include a pointer to itself as a member; this is known as
a self-referential structure.

• Unions

struct n {
int x;

} ;

struct n •left;
struct n *right;

A union is an object that may contain one of several different possible
member types. A union may have bit-field members. Like a structure,
declaring a union declares a new type. Unlike a structure, a union stores
the value of only one member at a given time. A union does, however,
reserve enough storage to hold its largest member.

C Language 3-23

Declarations and Definitions

Enumerations
An enumeration is a unique type that consists of a set of constants called
enumerators. The enumerators are declared as constants of type int, and
optionally may be initialized by an integral constant expression separated from
the identifier by an = character.

Enumerations consist of two parts:

• The set of constants.

• An optional tag.

For example:

enum color {red, blue=5, yellow};

color is the tag for this enumeration type. red, blue, and yellow are its
enumeration constants. If the first enumeration constant in the set is not fol
lowed by an =, its value is o. Each subsequent enumeration constant not fol
lowed by an = is determined by adding 1 to the value of the previous enumera
tion constant. Thus yellow has the value 6.

enum color car_color;

declares car_ color to be an object of type enum color.

Scope

The use of an identifier is limited to an area of program text known as the
identifier's scope. The four kinds of scope are function, file, block, and function
prototype.

• The scope of every identifier (other than label names) is determined by
the placement of its declaration (in a declarator or type specifier).

• The scope of structure, union and enumeration tags begins just after the
appearance of the tag in a type specifier that declares the tag. Each
enumeration constant has scope that begins just after the appearance of its
defining enumerator in an enumerator list. Any other identifier has scope
that begins just after the completion of its declarator.

3-24 ANSI C and Programming Support Tools

Declarations and Definitions

• If the declarator or type specifier appears outside a function or parameter
list, the identifier has file scope, which terminates at the end of the file
(and all included files).

• If the declarator or type specifier appears inside a block or within the list
of parameter declarations in a function definition, the identifier has block
scope, which ends at the end of the block (at the } that closes that block).

• If the declarator or type specifier appears in the list of parameter declara
tions in a function prototype declaration, the identifier has function proto
type scope, which ends at the end of the function declarator (at the) that
ends the list).

• Label names always have function scope. A label name must be unique
within a function.

Storage Duration

• Automatic Storage Duration

Storage is reserved for an automatic object, and is available for the object
on each entry (by any means) into the block in which the object is
declared. On any kind of exit from the block, storage is no longer
reserved.

• Static Storage Duration

An object declared outside any block, or declared with the keywords
static or extern, has storage reserved for it for the duration of the
entire program. The object retains its last-stored value throughout pro
gram execution.

C Language 3·25

Declaratlons and Definitions

Storage Class Specifiers

•auto

An object may be declared auto only within a function. It has block
scope and the defined object has automatic storage duration.

• register

A register declaration is equivalent to an auto declaration. It also
advises the compiler that the object will be accessed frequently.

• static

static gives a declared object static storage duration (see "Storage Dura
tion"). The object may be defined inside or outside functions. An
identifier declared static with file scope has internal linkage. A func
tion may be declared or defined with static. If a function is defined to
be static, the function has internal linkage. A function may be declared
with static at block scope; the function should be defined with static
as well.

• extern

extern gives a declared object static storage duration. An object or func
tion declared with extem has the same linkage as any visible declaration
of the identifier at file scope. If no file scope declaration is visible the
identifier has external linkage.

• typedef

3·26

Using typedef as a storage class specifier does not reserve storage.
Instead, typedef defines an identifier that names a type. See the section
on derived types for a discussion of typedef.

ANSI C and Programming Support Tools

Declarators

A brief summary of the syntax of declarators:

declarator:
pointer opt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expression t] op
direct-declarator (parameter-type-list)
direct-declarator (identifier-list t) op

pointer:
* type-qualifier-list

l 'fi 1. opt * type-qua i er- ist opt pointer

Pointer Declarators
• Pointer to a type:

char *p;

Declarations and Definitions

p is a pointer to type char. p contains the address of a char object.

Care should be taken when pointer declarations are qualified with canst :

canst int *pci;

declares a pointer to a canst-qualified ("read-only'') int.

int •canst cpi;

declares a pointer-to-int that is itself "read-only."

• Pointer to a pointer:

char **t;

t points to a character pointer.

• Pointer to a function:

int (*f) ();

f is a pointer to a function that returns an int.

C Language 3-27

Declaratlons and Definitions

• Pointer to void:

void *
A pointer to void may be converted to or from a pointer to any object or
incomplete type, without loss of information. This "generic pointer"
behavior was previously carried out by char *;a pointer to void has the
same representation and alignment requirements as a pointer to a charac
ter type.

Array Declarators
• One-dimensional array:

int ia[lOJ;

ia is an array of 10 integers.

• Two-dimensional array:

char d[4] [10);

d is an array of 4 arrays of 10 characters each.

• Array of pointers:

char *p[7);

p is an array of seven character pointers.

An array type of unknown size is known as an incomplete type.

Function Declarators
• A function declaration includes the return type of the function, the func

tion identifier, and an optional list of parameters.

• Function prototype declarations include declarations of parameters in the
parameter list.

• If the function takes no arguments, the keyword void may be substituted
for the parameter list in a prototype.

• A parameter type list may end with an ellipsis", ... "to indicate that the
function may take more arguments than the number described. The
comma is necessary only if it is preceded by an argument.

3-28 ANSI C and Programming Support Tools

Declarations and Definitions

• The parameter list may be omitted, which indicates that no parameter
information is being provided.

Examples:

•void srand(unsigned int seed);

The function srand returns nothing; it has a single parameter which is
an unsigned int. The name seed goes out of scope at the) and as such
serves solely as documentation.

• int rand (void) ;

The function rand returns an int; it has no parameters.

• int strcmp (canst char *, canst char *) ;

The function strcmp returns an int; it has two parameters, both of
which are pointers to character strings that strcmp does not change.

•void (*signal(int, void (*)(int))) (int);

The function signal returns a pointer to a function that itself returns
nothing and has an int parameter; the function signal has two parame
ters, the first of which has type int and the second has the same type as
signal returns.

• int fprintf (FILE *stream, canst char *fo:anat, ...) ;

The function fprintf returns an int; FILE is a typedef name declared
in stdio. h; fo:anat is a const qualified character pointer; note the use
of ellipsis (...) to indicate an unknown number of arguments.

Function Definitions

A function definition includes the body of the function after the declaration of
the function. As with declarations, a function may be defined as a function pro
totype definition or defined in the old style. The function prototype style
includes type declarations for each parameter in the parameter list. This exam
ple shows how main would be defined in each style:

C Language 3-29

Declarations and Definitions

Function Prototype Style

int
main (int argc, char *argv [])
{

Old Style

int
main(argc, argv)
int argc;
char *argv[];

{

Some important rules that govern function definitions:

• An old style definition names its parameters in an identifier list, and their
declarations appear between the function declarator and the " {" that
begins the function body.

• Under the old style, if the type declaration for a parameter was absent,
the type defaulted to int. In the new style, all parameters in the parame
ter list must be type-specified and named. The exception to this rule is
the use of ellipsis, explained in the "Function Declarators" section of this
chapter.

• A function definition serves as a declaration.

• Incomplete types are not allowed in the parameter list or as the return
type of a function definition. They are allowed in other function declara
tions.

3-30 ANSI C and Programming Support Tools

Conversions and Expressions

Implicit Conversions

Characters and Integers

Any of the following may be used in an expression where an int or unsigned
int may be used.

• char.

• short int.

• A char, short, or int bit-field.

• The signed or unsigned varieties of any of the above types.

• An object or bit-field that has enumeration type.

If an int can represent all values of the original type, the value is converted to
an int; otherwise it is converted to an unsigned int. This process is called
integral promotion.

~ The promotion rules for ANSI C are different from previous releases. The T compile• warns abol4 expressions whe•e this may lead to diffe•ent behavio•.

Compilation Mode Dependencies That Affect Unsigned Types
• Under compilation mode -Xt, unsigned char and unsigned short are

promoted to Unsigned int.

• Under compilation modes -xa and -Xe, unsigned char and unsigned
short are promoted to int.

Signed and Unsigned Integers

• When an integer is converted to another integral type, the value is
unchanged if the value can be represented by the new type.

• If a negative signed integer is converted to an unsigned integer with
greater size, the signed integer is first promoted to the signed integer
corresponding to the unsigned integer.

C Language 3-31

Conversions and Expressions

Integral and Floating
When a floating type is converted to any integral type, any fractional part is dis
carded.

Float and Double
A float is promoted to double or long double, or a double is promoted to
long double without a change in value.

The actual rounding behavior that is used when a floating point value is con
verted to a smaller floating point value depends on the rounding mode in effect
at the time of execution. The default rounding mode is "round to nearest." See
Chapter 14, "Floating Point Operations," and the IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985) for a more complete discus
sion of rounding modes.

Usual Arithmetic Conversions
Some binary operators convert the types of their operands in order to yield a
common type, which is also the type of the result. These are called the usual
arithmetic conversions:

• If either operand is type long double, the other operand is converted to
long double.

• Otherwise, if either operand has type double, the other operand is con
verted to double.

• Otherwise, if either operand has type float, the other operand is con
verted to float.

• Otherwise, the integral promotions are performed on both operands.

3-32

Then, these rules are applied:

o If either operand has type unsigned long int, the other operand is
converted to unsigned long int.

o Otherwise, if one operand has type long int and the other has type
unsigned int, both operands are converted to unsigned long
int.

ANSI C and Programming Support Tools

Conversions and Expressions

o Otherwise, if either operand has type long int, the other operand
is converted to long int.

o Otherwise if either operand has type unsigned int, the other
operand is converted to unsigned int .

o Otherwise, both operands have type int.

Expressions

Objects and lvalues
An object is a manipulatable region of storage. An lvalue is an expression refer
ring to an object. An obvious example of an lvalue expression is an identifier.
There are operators that yield lvalues: for example, if E is an expression of
pointer type, then *Eis an lvalue expression referring to the object to which E
points.

An lvalue is modifiable if:

• it does not have array type,

• it does not have an incomplete type,

• it does not have a const-qualified type,

and, if it is a structure or union, it does not have any member (including, recur
sively, any member of all contained structures or unions) with a const-qualified
type.

The name "lvalue" comes from the assignment expression El = E2 in which
the left operand El must be an lvalue expression.

Primary Expressions
• Identifiers, constants, string literals, and parenthesized expressions are pri

mary expressions.

• An identifier is a primary expression, provided it has been declared as
designating an object (which makes it an lvalue) or a function (which
makes it a function designator).

C Language 3-33

Conversions and Expressions

• A constant is a primary expression; its type depends on its form and
value.

• A string literal is a primary expression; it is an lvalue.

• A parenthesized expression is a primary expression. Its type and value
are identical to those of the unparenthesized version. It is an lvalue, a
function designator, or a void expression, according to the type of the
unparenthesized expression.

Operators

A table of operator associativity and precedence appears in the next section.

Unary Operators
Expressions with unary operators group right to left.

* e

& e

-e

3.34

Indirection operator. Returns the object or func
tion pointed to by its operand. If the type of the
expression is "pointer to ... ," the type of the
result is " ... ".

Address operator. Returns a pointer to the
object or function referred to by the operand.
Operand must be an lvalue or function type,
and not a bit-field or an object declared
register. Where the operand has type "type,"
the result has type "pointer to type."

Negation operator. The operand must have
arithmetic type. Result is the negative of its
operand. Integral promotion is performed on
the operand, and the result has the promoted
type. The negative of an unsigned quantity
is computed by subtracting its value from zn
where n is the number of bits in the result type.

ANSI C and Programming Support Tools

+e

! e

-e

++e

--e

e++

e--

C Language

Conversions and Expressions

Unary plus operator. The operand must have
arithmetic type. Result is the value of its
operand. Integral promotion is performed on
the operand, and the result has the promoted
type.

Logical negation operator. The operand must
have arithmetic or pointer type. Result is one if
the value of its operand is zero, zero if the value
of its operand is nonzero. The type of the result
is int.

The - operator yields the one's complement (all
bits inverted) of its operand, which must have
integral type. Integral promotion is performed
on the operand, and the result has the promoted
type.

The object referred to by the lvalue operand of
prefix + + is incremented. The value is the new
value of the operand but is not an lvalue. The
expression ++xis equivalent to x += 1. The
type of the result is the type of the operand.

The modifiable lvalue operand of prefix - - is
decremented analogously to the prefix + +
operator.

When postfix + + is applied to a modifiable
lvalue, the result is the value of the object
referred to by the lvalue. After the result is
noted, the object is incremented in the same
manner as for the prefix + + operator. The type
of the result is the same as the type of the
lvalue.

When postfix -- is applied to an lvalue, the
result is the value of the object referred to by the
lvalue. After the result is noted, the object is
decremented in the same manner as for the
prefix - - operator. The type of the result is the
same as the type of the lvalue.

3.35

Conversions and Expressions

sizeof e

sizeof (type)

The sizeof operator yields the size in bytes of
its operand. When applied to an object with
array type, the result is the total number of
bytes in the array. (The size is determined from
the declarations of the objects in the expression.)
This expression is semantically an unsigned
constant (of type size_t, a typedef) and may
be used anywhere a constant is required (except
in a hf preprocessing directive line). One
major use is in communication with routines like
storage allocators and 1/0 systems.

The sizeof operator may also be applied to a
parenthesized type name. In that case it yields
the size in bytes of an object of the indicated
type.

Cast Operators - Explicit Conversions

(type> e Placing a parenthesized type name before an
expression converts the value of the expression
to that type. Both the operand and type must be
pointer type or an arithmetic type.

Multiplicative Operators

The multiplicative operators *, I, and % group left to right. The usual arith
metic conversions are performed, and that is the type of the result.

3-36

e * e Multiplication operator. The * operator is com
mutative.

e/e

e%e

Division operator. When positive integers are
divided, truncation is toward 0. If either
operand is negative, the quotient is negative.
Operands must be arithmetic types.

Remainder operator. Yields the remainder from
the division of the first expression by the
second. The operands must have integral type.

ANSI C and Programming Support Tools

Additive Operators

Conversions and Expressions

The sign of the remainder is that of the first
operand. It is always true that (a/b) *b + a%b
is equal to a (if a/b is representable).

The additive operators + and - group left to right. The usual arithmetic
conversions are performed. There are some additional type possibilities for each
operator.

e+e

e-e

C Language

Result is the sum of the operands. A pointer to
an object in an array and an integral value may
be added. The latter is in all cases converted to
an address offset by multiplying it by the size of
the object to which the pointer points. The
result is a pointer of the same type as the origi
nal pointer that points to another object in the
same array, appropriately offset from the origi
nal object. Thus if P is a pointer to an object in
an array, the expression P+l is a pointer to the
next object in the array. No further type combi
nations are allowed for pointers.

The + operator is commutative.

The valid operand type combinations for the +
operator are:

a+ a
p + i or i + p

where a is an arithmetic type, i is an integral
type, and p is a pointer.

Result is the difference of the operands. The
operand combinations are the same as for the +
operator, except that a pointer type may not be
subtracted from an integral type.

Also, if two pointers to objects of the same type
are subtracted, the result is converted (by divi
sion by the size of the object) to an integer that

3-37

Conversions and Expressions

Bitwise Shift Operators

represents the number of objects separating the
pointed-to objects. This conversion will in gen
eral give unexpected results unless the pointers
point to objects in the same array, since pointers,
even to objects of the same type, do not neces
sarily differ by a multiple of the object size. The
result type is ptrdiff _ t (defined in stddef. h).
ptrdiff_t is a typedef for int in this imple
mentation. It should be used "as is" to ensure
portability. Valid type combinations are

a - a
p-i
p- p

The bitwise shift operators <<and >>take integral operands.

el << e2 Shifts el left by e2 bit positions. Vacated bits are
filled with zeros.

el >> e2 Shifts el right by e2 bit positions. Vacated bits
are filled with zeros on the 3B2. On the 6386,
vacated bits are filled with zeros if the promoted
type of el is an unsigned type. Otherwise they
are filled with copies of the sign bit of the pro
moted value of el.

The result types of the bitwise shift operators are compilation-mode dependent,
as follows:

-Xt

-xa, -xc

3·38

The result type is unsigned if either operand is
unsigned

The result type is the promoted type of the left
operand. Integral promotion occurs before the
shift operation.

ANSI C and Programming Support Tools

Relational Operators

a relop a
p relop p

Conversions and Expressions

• The relational operators < (less than) > (greater than) <=(less than or
equal to) >=(greater than or equal to) yield 1 if the specified relation is
true and o if it is false.

• The result has type int.

• Both operands:

o have arithmetic type; or

o are pointers to qualified or unqualified versions of the same object or
incomplete types.

Equality Operators

a eqop a
p eqop p
p eqop O
O eqop p

• The ==(equal to) and !=(not equal to) operators are analogous to the
relational operators; however, they have lower precedence.

Bitwise AND Operator

iel & ie2

• Bitwise "and" of iel and ie2.

• Value contains a 1 in each bit position where both iel and ie2 contain a 1,
and a O in every other position.

• Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

C Language 3-39

Conversions and Expressions

Bitwise Exclusive OR Operator

iel A ie2

• Bitwise exclusive "or'' of iel and ie2.

• Value contains a 1 in each position where there is a 1 in either iel or ie2,
but not both, and a O in every other bit position.

• Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

Bitwise OR Operator

iel I ie2

• Bitwise inclusive "or'' of iel and ie2.

• Value contains a 1 in each bit position where there is a 1 in either iel or
ie2, and a O in every other bit position.

• Operands must be integral; the usual arithmetic conversions are applied,
and that is the type of the result.

Logical AND Operator

el && e2

• Logical "and" of el and e2.

• el and e2 must be scalars.

• el is evaluated first, and e2 is evaluated only if el is nonzero.

• Result is 1 if both el and e2 are non-zero, otherwise O.

• Result type is int.

3-40 ANSI C and Programming Support Tools

Conversions and Expressions

Logical OR Operator
el 11 e2

• Logical "or'' of el and e2.

• el and e2 must be scalars.

• el is evaluated first, and e2 is evaluated only if el is zero. Result is 0 only
if both el and e2 are false, otherwise 1.

• Result type is int.

Conditional Operator
e? el : e2

• If e is nonzero, then el is evaluated; otherwise e2 is evaluated. The value
is el or e2.

• The first operand must have scalar type.

• For the second and third operands, one of the following must be true:

o Both must be arithmetic types. The usual arithmetic conversions are
performed to make them a common type and the result has that
type.

o Both must have compatible structure or union type; the result is that
type.

o Both operands have void type; the result has void type.

o Both operands are pointers to qualified or unqualified versions of
compatible types. The result type is the composite type.

o One operand is a pointer and the other is a null pointer constant.
The result type is the pointer type.

o One operand is a pointer to an object or incomplete type and the
other is a pointer to a qualified or unqualified version of void. The
result type is a pointer to void.

For the pointer cases (the last three), the result is a pointer to a type
qualified by all the qualifiers of the types pointed to by the operands.

C Language 3-41

Conversions and Expressions

Assignment Expressions
• Assignment operators are:

= *= I= %= += -= <<= >>= &= I= "=

• An expression of the form el op= e2 is equivalent to el = el op (e2) except
that el is evaluated only once.

• The left operand:

o must be a modifiable lvalue.

o must have arithmetic type, or, for += and -=, must be a pointer to
an object type and the right operand must have integral type.

o of an =operator, if the operand is a structure or union, must not
have any member or submember qualified with canst.

• Result type is the type of the (unpromoted) left operand.

Comma Operator
el , e2

• el is evaluated first, then e2.

• The result has the type and value of e2 and is not an !value.

Structure Operators
su.mem

Indicates member mem of structure or union su.

sup-> mem

Indicates member mem of structure or union pointed to by sup. Equivalent to
(*sup). mem.

3-42 ANSI C and Programming Support Tools

Conversions and Expressions

Associativity and Precedence of Operators

Operators
() [l -> .
! - ++ -- + - * & (type) sizeof
* I %
+ -
<< >>
< <= > >=

&

&&
11
?:

!=

== += _,.. *= /= %= &= "= I=<<=>>=

Associativity
left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

Unary +, -, and * have higher precedence than their binary versions.

Prefix ++and -- have higher precedence than their postfix versions.

Constant Expressions

• A constant expression is evaluated during compilation (rather than at run
time). As a result, a constant expression may be used any place that a
constant is required.

• Constant expressions must not contain assignment, + +, - -, function-call,
or comma operators, except when they appear within the operand of a
sizeof operator.

C Language 3-43

Conversions and Expressions

Initialization

• Scalars (all arithmetic types and pointers):

Scalar types with static or automatic storage duration are initialized with
a single expression, optionally enclosed in braces. Example:

int i = 1;

Additionally, scalar types (with automatic storage duration only) may be
initialized with a nonconstant expression.

• Unions:

An initializer for a union with static storage duration must be enclosed in
braces, and initializes the first member in the declaration list of the union.
The initializer must have a type that can be converted to the type of the
first union member. Example:

union {
int i;
float f;

u = {1}; /* initialize u.i */

For a union with automatic storage duration, if the initializer is enclosed
in braces, it must consist of constant expressions that initialize the first
member of the union. If the initializer is not enclosed in braces, it must
be an expression that has the matching union type.

• Structures:

3-44

The members of a structure may be initialized by initializers that can be
converted to the type of the corresponding member.

struct s {
int i;
char c;
char *s;

st = { 3, 'a', "abc" } ;

This example illustrates initialization of all three members of the structure.
If initialization values are missing, as in

struct s st2 = {5};

ANSI C and Progn•mming Support Tools

Conversions and Expressions

then the first member is initialized (in this case, member i is initialized
with a value of 5), and any uninitialized member is initialized with O for
arithmetic types and a null pointer constant for pointer types.

For a structure with automatic storage duration, if the initializer is
enclosed in braces, it must consist of constant expressions that initialize
the respective members of the structure. If the initializer is not enclosed
in braces, it must be an expression that has the matching structure type.

• Arrays:

The number of initializers for an array must not exceed the dimension,
(i.e., the declared number of elements), but there may be fewer initializers
than the number of elements. When the number of initializers is less than
the size of the array, the first array elements are initialized with the values
given, until the supply of initializers is exhausted. Any remaining array
elements are initialized with the value 0 or a null pointer constant, as
explained above in the discussion of structures. Example:

int ia[S] = { 1, 2 };

In this example, an array of five ints is declared, but only the first two
members are initialized explicitly. The first member, ia[O], is initialized
with a value of 1; the second member, ia [1], is initialized with a value
of 2. The remaining members are initialized with a value of O.

When no dimensions are given, the array is sized to hold exactly the
number of initializers supplied.

A character array may be initialized with a string literal, as in:

char ca[]= { "abc" }; /*curly braces are optional*/

where the size of the array is four (three characters with a null byte
appended). The following:

char cb[3] = "abc";

is valid; however, in this case the null byte is discarded. But:

char cc[2] = "abc";

is erroneous because there are more initializers than the array can hold.

C Language 3-45

Conversions and Expressions

3-46

Arrays may be initialized similarly with wide characters:

wchar_t we[] = L"abc";

Initializing subaggregates (for example, arrays of arrays) requires the
proper placement of braces. For example,

int ia [4] [2] =

} ;

1,
2,
3,
4

initializes the first two rows of ia (ia [0] [0], ia [O] [l], ia [l] [0],
and ia [l] [l]), and initializes the rest to o. This is a minimally bracketed
initialization.

Note that a similar fully bracketed initialization yields a different result:

int ia [4] [2]
{

} ;

{l} I

{2} I

{3} I
{ 4} I

initializes the first column of ia (ia[O] [OJ, ia[l] [OJ, ia[2] [OJ, and
ia [3 l [0]}, and initializes the rest to o.

Mixing the fully and minimally bracketed styles may lead to unexpected
results. Use one style or the other consistently.

ANSI C and Programming Support Tools

Statements

Expression Statement

expression;

The expression is executed for its side effects, if any (such as assignment or func
tion call).

Compound Statement

declaration-list t

statement-list otp
op

• Delimited by { and } .

• May have a list of declarations.

• May have a list of statements.

• May be used wherever statement appears below.

Selection Statements

if
if (expression)

statement

• If expression evaluates to nonzero (true), statement is executed.

• If expression evaluates to zero (false), control passes to the statement fol
lowing statement.

• The expression must have scalar type.

C Language 3-47

Statements

else

if (expression1)
statement1

else if (expression2)
statement2

else
statement3

• If expression1 is true, statement1 is executed, and control passes to the state
ment following statement3. Otherwise, expression2 is evaluated.

• If expression2 is true, statement2 is executed, and control passes to the state
ment following statement3. Otherwise, statement3 is executed, and control
passes to the statement following statement3.

• An else is associated with the lexically nearest if that has no else and
that is at the same block level.

switch

switch (expression)
statement

• Control jumps to or past statement depending on the value of expression.

• expression must have integral type.

• Any optional case is labeled by an integral constant expression.

• If a default case is present, it is executed if no other case match is
found.

• If no case matches, including default, control goes to the statement fol
lowing statement.

• If the code associated with a case is executed, control falls through to the
next case unless a break statement is included.

• Each case of a switch must have a unique constant value after conversion
to the type of the controlling expression.

3-48 ANSI C and Programming Support Tools

Statements

In practice, statement is usually a compound statement with multiple cases, and
possibly a default; the description above shows the minimum usage. In the
following example, flag gets set to 1 if i is 1 or 3, and to 0 otherwise:

switch (i)
case 1:
case 3:

flag = l;
break;

default:
flag = O;

Iteration Statements

while

while (expression)
statement

This sequence is followed repetitively:

• expression is evaluated.

• If expression is non-zero, statement is executed.

• If expression is zero, statement is not executed, and the repetition stops.

expression must have scalar type.

do-while

do
statement

while (expression);

This sequence is followed repetitively:

• statement is executed.

C Language 3-49

Statements

• expression is evaluated.

• If expression is zero, repetition stops.

(do-while tests loop at the bottom; while tests loop at the top.)

for
for (expression1; expression2; expression3)

statement

• expression1 initializes the loop.

• expression2 is tested before each iteration.

• If expression2 is true:

o statement is executed.

o expression3 is evaluated.

o Loop until expression2 is false (zero).

• Any of expressionl, expression2, or expression3 may be omitted, but not the
semicolons.

• expression1 and expression3 may have any type; expression2 must have
scalar type.

Jump Statements

goto
goto identifier;

• Goes unconditionally to statement labeled with identifier.

• Statement is labeled with an identifier followed by a colon, as in:

A2: x = 5;

3-50 ANSI C and Programming Support Tools

Statements

• Useful to break out of nested control flow statements.

• Can only jump within the current function.

break

Terminates nearest enclosing switch, while, do, or for statement. Passes
control to the statement following the terminated statement. Example:

for (i=O; i<n; i++) {
if ((a[i] = b[i]) == 0)

break; /* exit for */

continue

Goes to top of smallest enclosing while, do, or for statement, causing it to
reevaluate the controlling expression. A for loop's expression3 is evaluated
before the controlling expression. Can be thought of as the opposite of the
break statement. Example:

return

for (i=O; i<n; i++)
if (a[i] != 0)

continue;
a[i] = b[i];
k++;

return;
return expression;

• return by itself exits a function.

• return expression exits a function and returns the value of expression. For
example,

return a + b;

C Language 3-51

Portability Considerations

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the main
ones.

Purely hardware issues like word size and the properties of floating point arith
metic and integer division have proven in practice to be not much of a problem.
Other facets of the hardware are reflected in differing implementations. Some
of these, particularly sign extension (converting a negative character into a nega
tive integer) and the order in which bytes are placed in a word, are nuisances
that must be carefully watched. Most of the others are only minor problems.

The number of variables declared with register that can actually be placed in
registers varies from machine to machine as does the set of valid types.
Nonetheless, the compilers all do things properly for their own machine; excess
or invalid register declarations are ignored.

The order of evaluation of function arguments is not specified by the language.
The order in which side effects take place is also unspecified. For example, in
the expression

a[i] = b[i++]

the value of i could be incremented after b [i] is fetched, but before a [i] is
evaluated and assigned to, or it could be incremented after the assignment.

The value of a multi-character character constant may be different for different
machines.

Fields are assigned to words, and characters to integers, right to left on some
machines and left to right on other machines. These differences are invisible to
isolated programs that do not indulge in type punning (e.g., by converting an
int pointer to a char pointer and inspecting the pointed-to storage) but must
be accounted for when conforming to externally imposed storage layouts.

The lint tool is useful for finding program bugs and non-portable constructs.
For information on how to use lint, see Chapter 5.

3-52 ANSI C and Programming Support Tools

4 C Compiler Diagnostics

Introduction
Message Types and Applicable Options
Operator Names in Messages

Messages

Operator Names

Other Error Messages

Table of Contents

4-1
4-2
4-2

4-3

4-130

4-132

Introduction

This chapter contains the text and explanation for all the warning and error
messages produced by the AT&T C compiler. The messages are listed in
alphanumeric order (special characters are ignored). Numbers precede capital
letters and capital letters precede lowercase letters. n, when it represents a
number, comes at the beginning of the list.

The message entries are formatted as follows:

Entry Comment

n extra byte (s) in string literal initializer ignored Text of message.

Type: Warning Options: all

A string literal that initializes a character array contains
n more characters than the array can hold.

char ca[3] = "abed";

"/fie", line 1: warning: 1 extra byte(s) in string
literal initializer ignored

Type of message and
command-line options
which must be set for
the message to appear
(all indicates that the
message is independent
of options).

Explanation of message.

Example of code that
might generate the mes
sage.

Message output.

When an error occurs, the error message is preceded by a file name and line
number. The line number is usually the line on which a problem has been diag
nosed. Occasionally the compiler must read the next token before it can diag
nose a problem, in which case the line number in the message may be a higher
line number than that of the offending line.

Note that lint (Chapter 5) issues all of the messages listed in this chapter, and
additional messages about potential bugs and portability problems.

C Compiler Diagnostics 4-1

Introduction

Message Types and Applicable Options

Each message description includes a Type and an Options field as follows:

Type indicates whether the message is a warning, an error, a fatal
error, or a combination of error types (see below).

Options indicates which cc command options must be set for the mes
sage to appear. "all" implies that the message is independent of
cc options.

The following paragraphs explain the differences between warnings, errors, and
fatals.

Warning messages, in which the word warning: appears after the file name and
line number, provide useful information without interrupting compilation. They
may diagnose a programming error, or a violation of C syntax or semantics, for
which the compiler will nevertheless generate valid object code.

Error messages, which lack the warning: prefix, will cause the cc command to
fail. Errors occur when the compiler has diagnosed a serious problem that
makes it unable to understand the program or to continue to generate correct
object code. It will attempt to examine the rest of your program for other
errors, however. The cc command will not link your program if the compiler
diagnoses errors.

Fatal errors cause the compiler to stop immediately and return an error indica
tion to the cc command. A fatal error message is prefixed with the word
fatal: . Such messages typically apply to start-up conditions, such as being
unable to find a source file.

Operator Names in Messages

Some messages include the name of a compiler operator, as in:

operands must have arithmetic type: op "+".

Usually the operator in the message is a familiar C operator. At other times the
compiler uses its internal name for the operator, like u-. The "Operator Names"
section of this document, found after the message list, lists these internal names
and describes what they mean.

4-2 ANSI C and Programming Support Tools

Messages

n extra byte(s) in string literal initializer ignored

Type: Warning Options: all

A string literal that initializes a character array contains n more charac
ters than the array can hold.

char ca[3] = "abed";

"file", line 1: warning: 1 extra byte (s) in string literal
initializer ignored

0 is invalid in t <number> directive

Type: Error Options: all

The line number in a line number information directive (which the com
piler uses for internal communication) must be a positive, non-zero
value.

t 0 "foo.c"

"file", line 1: 0 is invalid in # <number> directive

0 is invalid in #line directive

Type: Error Options: all

This diagnostic is similar to the preceding one, except the invalid line
number appeared in a Uine directive.

Uine O

"file", line 1: 0 is invalid in #line directive

C Compiler Diagnostics 4-3

Messages

ANSI C behavior differs; not modifying typedef with "modifier"

Type: Warning Options: -xa, -xc

A typedefed type may not be modified with the short, long, signed,
or unsigned type modifiers, although earlier versions of C compilers
permitted it. modifier is ignored. A related message is modifying
typedef with "modifier"; only qualifiers allowed

typedef int INT;
unsigned INT ui;

"file", line 2: warning: ANSI C behavior differs; not
modifying typedef with "unsigned"

ANSI C predefined macro cannot be redefined

Type: Warning Options: all

The source code attempted to define or redefine a macro that is
predefined by ANSI C. The predefined macro is unchanged.

#define _FILE_ "xyz. c"

"file", line 1: warning: ANSI C predefined macro cannot be
redefined

ANSI c predefined macro cannot be undefined

4-4

Type: Warning Options: all

The source code contains an attempt to undefine a macro that is
predefined by ANSI C.

fundef _FILE_

"file", line 1: warning: ANSI C predefined macro cannot
be undefined

ANSI C and Programming Support Tools

Messages

ANSI C requires formal parameter before " II

Type: Warning Options: -Xe, -v

The AT&T C implementation allows you to define a function with a
variable number of arguments and no fixed arguments. ANSI C
requires at least one fixed argument.

f(...) {}

"file", line 1: warning: ANSI C requires formal parameter
before " II

ANSI C treats constant as unsigned: op "operator"

Type: Warning Options: all

The type promotion rules for ANSI C are slightly different from those of
previous versions of AT&T C. In the current release the default
behavior is to duplicate the previous rules. In future releases the
default will be to use ANSI C rules. You may obtain the ANSI C
interpretation by using the -xa option for the cc command.

Previous AT&T C type promotion rules were "unsigned-preserving." If
one of the operands of an expression was of unsigned type, the
operands were promoted to a common unsigned type before the opera
tion was performed.

ANSI C uses "value-preserving" type promotion rules. An unsigned
type is promoted to a signed type if all its values may be represented in
the signed type.

ANSI C also has a different rule from previous AT & T C versions for the
type of an integral constant that implicitly sets the sign bit.

The different type promotion rules may lead to different program
behavior for the operators that are affected by the unsigned-ness of their
operands:

C Compiler Diagnostics 4-5

Messages

• The division operators: /, /=, %, %=.

• The right shift operators: >>, >>=.

• The relational operators: <, <=, >, >=.

The warning message tells you that your program contains an expres
sion in which the behavior of operator will change in the future. You
can guarantee the behavior you want by inserting an explicit cast in the
expression.

f(void) {
int i;
/* constant was integer in AT&T C, unsigned in ANSI C */
i /= OxfOOOOOOO;

"file", line 4 : warning: ANSI C treats constant as unsigned:
op "/="

You can get the same behavior as in previous versions of AT&T C by
adding an explicit cast:

f(void){
int i;
/* constant was integer in AT&T C, unsigned in ANSI c */
i /= (int) OxfOOOOOOO;

-D option argument not an identifier

Type: Error Options: all

An identifier must follow the -D cc command line option.

cc -D3b2 -c x.c

command line: -D option argument not an identifier

ANSI C and Programming Support Tools

Messages

-D option argument not followed by "="

Type: Warning Options: all

If any tokens follow an identifier in a -D command line option to the cc
command, the first such token must be =.

cc -DTW0+2 -c x.c

command line: warning: -D option argument not followed by "="

EOF in argument list of macro: name

Type: Error Options: all

The compiler reached end-of-file while reading the arguments for an
invocation of function-like macro name.

:ff:define mac(a)
mac(argl

"file", line 5: EOF in argument list of macro: mac

EOF in asm function definition

Type: Error Options: all

The compiler reached end-of-file while reading an enhanced asm func
tion definition.

EOF in character constant

Type: Error Options: all

The compiler encountered end-of-file inside a character constant.

C Compiler Diagnostics 4-7

Messages

EOF in canment

Type: Warning Options: all

The compiler encountered end-of-file while reading a comment.

EOF in string literal

Type: Error Options: all

The compiler encountered end-of-file inside a string literal.

NUL in asrn function definition

Type: Warning Options: all

The compiler encountered a NUL (zero) character while reading an
enhanced asm function definition. The NUL is ignored.

-U option argument not an identifier

Type: Error Options: all

An identifier must follow the -u cc command line option.

cc -U3b2 -c x.c

command line: -u option argument not an identifier

a cast does not yield an !value

Type: Warning, Error Options: all

You may not apply a cast to the operand that constitutes the object to be
changed in an assignment operation. The diagnostic is a warning if the
size of the operand type and the size of the type being cast to are the
same; otherwise it is an error.

ANSI C and Programming Support Tools

Messages

f(void) {
int i;
(long) i = 5;
(short) i - 4;

"file", line 3: warning: a cast does not yield an !value
"file", line 4: a cast does not yield an !value

\a is ANSI C "alert" character

Type: Warning Options: -Xt

In earlier AT&T C products, '\a' was equivalent to 'a'. However,
ANSI C defines '\a' to be an alert character. In the AT&T implementa
tion, the corresponding character code is 07, the BEL character.

int c = '\a';

"file", line 1 : warning: \a is ANSI C "alert" character

access through "void" pointer ignored

Type: Warning Options: all

A pointer to void may not be used to access an object. You wrote an
expression that does an indirection through a (possibly qualified)
pointer to void. The indirection is ignored, although the rest of the
expression (if any) is honored.

f(){
volatile void *vpl, *vp2;
(vpl = vp2); / assigrunent does get done*/

"file", line 3: warning: access through "void" pointer ignored

C Compiler Diagnostics 4-9

Messages

argument cannot have unknown size: arg #n

Type: Error Options: all

An argument in a function call must have a completed type. You
passed a struct, union, or enum object whose type is incomplete.

f () {
struct s •st;
g(•st);

"file", line 3: argument cannot have unknown size: arg #1

argument does not match remembered type: arg #n

4-10

Type: Warning Options: -v

At a function call, the compiler determined. that the type of then-th
argument passed to a function disagrees with other information it has
about the function. That other information comes from two sources:

1. An old-style (non-prototype) function definition, or

2. A function prototype declaration that has gone out of scope,
but whose type information is still remembered.

The argument in question is promoted according to the default argu
ment promotion rules.

This diagnostic may be incorrect if the old-style function definition case
applies and the function takes a variable number of arguments.

ANSI C and Programming Support Tools

Messages

void f(i)
int i;
{ }

void g()
{

f("erroneous");

"file", line 7 : warning: argument does not match remembered
type: arg #1

argument is incompatible with prototype: arg #n

Type: Error Options: all

You called a function with an argument whose type cannot be converted
to the type in the function prototype declaration for the function.

struct s {int x;} q;
f(void){

int g (int, int);
g(3,q);

"file", line 4: argument is incompatible with prototype:
arg #2

argument mismatch

Type: Warning Options: all

The number of arguments passed to a macro was different from the
number in the macro definition.

#define twoarg(a,b) a+b
inti= twoarg(4);

"file", line 2 : warning: argument mismatch

C Compiler Diagnostics 4-11

Messages

argument mismatch: n1 arg[s} passed, n2 expected

Type: Warning Options: -v

At a function call, the compiler determined that the number of argu
ments passed to a function disagrees with other information it has about
the function. That other information comes from two sources:

1. An old-style (non-prototype) function definition, or

2. A function prototype declaration that has gone out of scope,
but whose type information is still remembered.

This diagnostic may be incorrect if the old-style function definition case
applies and the function takes a variable number of arguments.

extern int out_of_scope();
int f()
{ /* function takes no args */

extern int out_of_scope (int);

int g()
{

f(l);
out_of_scope ();

/* f takes no args */
/* out_of_scope expects one arg */

"file", line 9 : warning: argument mismatch: 1 arg passed,
0 expected

"file", line 10: warning: argument mismatch: 0 args passed,
1 expected

array too big

Type: Error Options: all

4-12

An array declaration has a combination of dimensions such that the
declared object is too big for the target machine.

ANSI C and Programming Support Tools

Messages

int bigarray[lOOO] [1000] [1000];

"file", line 1: array too big

asm() argunent must be normal string literal

Type: Error Options: all

The argument to an old-style asm () must be a normal string literal, not
a wide one.

asm(L"wide string literal not allowed");

"file", line 1: asm() argunent must be normal string literal

asm definition cannot have old-style parameters

Type: Error Options: all

The definition of an enhanced asm function may use the ANSI C func
tion prototype notation to declare types for parameters. It may not
declare parameters by using the old-style C function definition notation
of an identifier list, followed by a declaration list that declares parame
ter types.

asm is an extension of ANSI C

Type: Warning Options: -Xe

You declared an enhanced asm function and compiled the code with
-Xe. This warning informs you that the enhanced _asm is a violation
of ANSI C syntax, which the compiler is obliged to diagnose, and is not
a compatible extension.

C Compiler Diagnostics 4-13

Messages

"asm" valid only for function definition

Type: Warning Options: all

The asm storage class may only be used for function definitions. It is
ignored here.

asm int f (void) ;

"file", line 1: warning: "asm" valid only for function
definition

"tassert identifier (... " expected

Type: Error Options: all

In a +assert directive, the token following the predicate was not the
that was expected.

+assert system unix

"file", line 1: "#assert identifier (... " expected

"#assert identifier" expected

4-14

Type: Error Options: all

In a #assert directive, the token following the directive was not the
name of the predicate.

#assert 5

"file", line 1: "fassert identifier" expected

ANSI C and Programming Support Tools

Messages

"#assert" missing")"

Type: Error Options: all

In a #assert directive, the parenthesized form of the assertion lacked a
closing) .

#assert system(unix

"file", line 1 : "#assert" missing ") "

assignment type mismatch

Type: Warning, Error Options: all

The operand types for an assignment operation are incompatible. The
message is a warning when the types are pointer types that do not
match. Otherwise the message is an error.

struct s { int x; } st;
f(void) {

int i;
char *cp;
canst char *ccp;
i = st;
cp = ccp;

"file", line 6: assignment type mismatch
"file", line 7: warning: assignment type mismatch

auto/register/asm inappropriate here

Type: Error Options: all

A declaration outside any function has storage class auto or register
or a declaration within a function has storage class asm.

C Compiler Diagnostics 4-15

Messages

auto int i;
f(void) {

asm int j;

"file", line 1: auto/register/asm inappropriate here
"file", line 3: auto/register/asm inappropriate here

automatic redeclares external: name

Type: Warning Options: all

You have declared an automatic variable name in the same block and
with the same name as another symbol that is extern. ANSI C prohi
bits such declarations, but previous versions of AT&T C allowed them.
For compatibility with previous versions, references to name in this
block will be to the automatic.

f(void) {
extern int i;
int i;

"file", line 3: warning: automatic redeclares external: i

bad file specification

Type: Error Options: all

4-16

The file specifier in a #include directive was neither a string literal nor
a well-formed header name.

#include stdio.h

"file", line 1: bad file specification

ANSI C and Programming Support Tools

bad octal digit: 'digit'

Type: Warning Options: -Xt

Messages

An integer constant that began with O included the non-octal digit digit.
An 8 is taken to have value 8, and a 9 is taken to have value 9, even
though they are invalid.

int i = 08;

"file", line 1: warning: bad octal digit: '8'

bad tpragma pack value: n

Type: Warning Options: all

The value n that was specified in a tpragma pack directive was not one
of the acceptable values: 1, 2, or 4. The erroneous value is ignored and
the directive has no effect.

bad token in terror d.irecti ve : token

Type: Error Options: all

The tokens in a terror directive must be valid C tokens. The source
program contained the invalid token token.

terror "this is an invalid token

"file", line 1: bad token in terror directive: "
"file", line 1: terror: "this is an invalid token

C Compiler Diagnostics 4-17

Messages

bad use of "t" or "tt" in macro #define

Type: Warning Options: all

In a macro definition, a t or H operator was followed by a t or H
operator.

tdefine bug(s) t t s
tdefine bug2(s) t ft s

"file", line 1: warning: bad use of "#" or "ff" in macro #define
"file", line 2: warning: bad use of "t" or "ft" in macro #define

base type is really "type tag" : name

4-18

Type: Warning Options: -Xt

A type was declared with a struct, union, or enwn type specifier and
with tag tag, and then used with a different type specifier to declare
name. type is the type specifier that you used for the original declara
tion.

For compatibility with previous releases of AT&T C, the compiler treats
the two types as being the same. In ANSI C (with the -xa or -Xe
options), the types are different.

struct s { int x,y,z; };
f(void) {

union s foo;

"file", line 3: warning: base type is really "struct s": foo
"file", line 3: warning: declaration introduces new type in

ANSI C: union s

ANSI C and Programming Support Tools

-

bit-field size <= 0: name

Type: Error Options: all

Messages

The declaration for bit-field name specifies a zero or negative number of
bits.

struct s { int x:-3; };

"file", line 1: bit-field size <= 0: x

bit-field too big: name

Type: Error Options: all

The declaration for bit-field name specifies more bits than will fit in an
object of the declared type.

struct s { char c:20; };

"file", line 1: bit-field too big: c

"break" outside loop or switch

Type: Error OpHons: all

A function contains a break statement in an inappropriate place, namely
outside any loop or switch statement.

f(void){
break;

"file", line 2: "break" outside loop or switch

C Compiler Diagnostics 4-19

Messages

cannot access member of non-struct/union object

Type: Error Options: all

The structure or union member must be completely contained within
the left operand of the . operator.

f(void){
struct s { int x; };
char c;
c.x = 1;

"file", line 4: warning: left operand of "." must be struct/
union object

"file", line 4: cannot access member of non-struct/union object

cannot begin macro replacement with "##"

Type: Warning Options: all

The H operator is a binary infix operator and may not be the first token
in the macro replacement list of a macro definition.

#define mac(s) ** s

"file", line 1: warning: cannot begin macro replacement with
"##"

cannot concatenate wide and regular string literals

4-20

Type: Warning, Error Options: all

Regular string literals and string literals for wide characters may be con
catenated only if they are both regular or both wide. The compiler
issues a warning if a wide string literal is followed by a regular one
(and both are treated as wide); it issues an error if a regular string literal
is followed by a wide one.

ANSI C and Programming Support Tools

,,,,,.,.

Messages

#include <stddef.h>
wchar_t wa(] ... L"abc" "def";
char a[] = "abc" L"def";

"file", line 2: warning: cannot concatenate wide and regular
string literals

"file", line 3: cannot concatenate wide and regular string
literals

cannot declare array of functions or void

Type: Error Options: all

You have attempted to declare an array of functions or an array of
void.

int f [5] ();

"file", line 1 : cannot declare array of functions or void

cannot define "defined"

Type: Warning Options: all

The predefined preprocessing operator defined may not be defined as a
macro name.

#define defined xyz

"file", line 1: warning: cannot define "defined"

cannot dereference non-pointer type

Type: Error Options: all

The operand of the * (pointer dereference) operator must have pointer
type. This diagnostic is also issued for an array reference to a non
array.

C Compiler Diagnostics 4-21

Messages

f(){
int i;
*i = 4;
i[4] = 5;

"file", line 3: cannot dereference non-pointer type
"file", line 4: cannot dereference non-pointer type

cannot do pointer arithmetic on operand of unknown size

Type: Error Options: all

An expression involves pointer arithmetic for pointers to objects whose
size is unknown.

f(void) {
struct s *ps;
g(ps+l);

"file", line 3: cannot do pointer arithmetic on operand
of unknown size

cannot end macro replacement with "#" or "##"

4-22

Type: Warning Options: all

A # or ## operator may not be the last token in the macro replacement
list of a macro definition.

#define macl(s) abc ## s ##
#define mac2(s) s #

"file", line 1: warning: cannot
or "ft"

"file", line 2: warning: cannot
or "##"

end macro replacement with "#"

end macro replacement with "*"

ANSI C and Programming Support Tools

...

Messages

cannot find include file: filename

Type: Error Options: all

The file filename specified in a #include directive could not be located
in any of the directories along the search path.

#include "where is it.h"

"file", line 1: cannot find include file: "where is it. h"

cannot have" ... " in asm function

Type: Warning Options: all

An enhanced asm definition may not be a function prototype definition
with ellipsis notation.

cannot have void object: name

Type: Error Options: all

You may not declare an object of type void.

void v;

"file", line 1: cannot have void object: v

cannot initialize "extern" declaration: name

Type: Error Options: all

Within a function, the declaration of an object with extern storage class
may not have an initializer.

C Compiler Diagnostics 4-23

Messages

f(void){
extern int i 1;

"file", line 2: cannot initialize "extern" declaration: i

cannot initialize function: name

Type: Error Options: all

A name declared as a function may not have an initializer.

int f(void) = 3;

"file", line 1: cannot initialize function: f

cannot initialize parameter: name

Type: Error Options: all

Old-style function parameter name may not have an initializer.

int f (i)
int i = 4;
{

}

"file", line 2: cannot initialize parameter: i

cannot initialize typedef: name

Type: Error Options: all

A typedef may not have an initializer.

4-24 ANSI C and Programming Support Tools

typedef int INT = 1;

"file", line 1: cannot initialize typedef: INT

cannot open file: explanation

Type: Fatal Options: all

Messages

The compiler was unable to open an input or output file. Usually this
means the file name argument passed to the cc command was incorrect.
explanation describes why file could not be opened.

cc glorch.c -c x.c

cormnand line: fatal: cannot open glorch.c: No such file or
directory

cannot open include file (too many open files): filename

Type: Error Options: all

The compiler could not open a new include file, filename, because too
many other include files are already open. Such a situation could arise
if you have file1 that includes file2 that includes file3, and so on. The
compiler supports at least eight levels of "nesting," up to a maximum
defined by the operating system. The most likely reason for the diag
nostic is that at some point an include file includes a file that had
already been included. For example, this could happen if file1 includes
file2, which includes file1 again.

In this example, imagine that the file il.h contains #include "il.h".

#include "il.h"

"./il.h", line 1: cannot open include file (too many open
files): "il.h"

C Compiler Diagnostics 4-25

Messages

cannot recover from previous errors

Type: Error Options: all

Earlier errors in the compilation have confused the compiler, and it can
not continue to process your program. Please correct those errors and
try again.

cannot return incomplete type

Type: Error Options: all

When a function is called that returns a structure or union, the complete
declaration for the structure or union must have been seen already.
Otherwise this message results.

f(){
struct s g();
g();

"file", line 3: cannot return incomplete type

cannot take address of bit-field: name

4·26

Type: Error Options: all

You cannot take the address of a bit-field member of a structure or
union.

f(void){
struct s { int x:3, y:4; } st;
int •ip = &st.y;

"file", line 3: cannot take address of bit-field: y

ANSI C and Programming Support Tools

•

cannot take address of register: name

Type: Warning, Error Options: all

Messages

You attempted to take the address of name, which is an object that was
declared with the register storage class. You are not permitted to do
so, whether or not the compiler actually allocates the object to a register.
The attempt to take an object's address may have been implicit, such as
when an array is dereferenced. The diagnostic is an error if a register
was allocated for the object and a warning otherwise.

f(void) {
register int i;
register int ia[S];
int *ip = &i;
ia[2] = 1;

"file", line 4: cannot take address of register: i
"file", line 5: warning: cannot take address of register: ia

cannot take sizeof bit-field: name

Type: Warning Options: all

The sizeof operator may not be applied to bit-fields.

struct s { int x:3; } st;
inti= sizeof(st.x);

"file", line 2: warning: cannot take sizeof bit-field: x

cannot take sizeof function: name

Type: Error Options: all

The sizeof operator may not be applied to functions.

C Compiler Diagnostics 4-27

Messages

int f (void) ;
inti= sizeof(f);

"file", line 2 : cannot take sizeof function: f

cannot take sizeof void

Type: Error Options: all

The sizeof operator may not be applied to type void.

void v (void) ;
inti= sizeof(v());

"file", line 2: cannot take sizeof void

cannot undefine "defined"

Type: Error Options: all

The predefined preprocessing operator defined may not be undefined.

f:undef defined

"file", line 1: warning: cannot undefine "defined"

case label affected by conversion: value

4-28

Type: Warning Options: -v

The value for the case label cannot be represented by the type of the
controlling expression of a switch statement. If the type of the case
expression and the type of the controlling expression have the same
size, the actual bit representation of the case expression is unchanged,
but its interpretation is different. For example, the controlling expres
sion may have type int and the case expression may have type
unsigned int. In the diagnostic, value is represented as a hexadecimal
value if the case expression is unsigned, decimal if it is signed.

ANSI C and Programming Support Tools

-

Messages

f () {
int i;

switch(i) {
case Oxffffffffu:

"file", line 5: warning: case label affected by conversion:
Oxfff ff ff f

In this example Oxffffffffu is not representable as an int. When the
case expression is converted to the type of the controlling expression
(int), its effective value is -1. That is, the case will be reached if i has
the value -1, rather than Oxffffffff.

"case" outside switch

Type: Error Options: all

A case statement occurred outside the scope of any switch statement.

f(void) {
case 4: ;

"file", line 2: "case" outside switch

character constant too long

Type: Warning Options: all

The character constant contains too many characters to fit in an integer.
Only the first four characters of a regular character constant, and only
the first character of a wide character constant, are used. (Character
constants that are longer than one character are non-portable.)

C Compiler Diagnostics 4-29

Messages

int i = 'abode';

"file", line 1: warning: character constant too long

character escape does not fit in character

Type: Warning Options: all

A hexadecimal or octal escape sequence in a character constant or string
literal produces a value that is too big to fit in an unsigned char. The
value is truncated to fit.

char *P = "\xlff\400";

"file", line 1 : warning: \x is ANSI C hex escape
"file", line 1: warning: character escape does not fit in

character
"file", line 1: warning: character escape does not fit in

character

character escape does not fit in wide character

Type: Warning Options: all

This message diagnoses a condition similar to the previous one, except
the character constant or string literal is prefixed by L to designate a
wide character constant or string literal. The character escape is too
large to fit in an object of type wchar _ t and is truncated to fit.

comment does not concatenate tokens

4-30

Type: Warning Options: -xa, -Xe

In previous releases of AT&T C, it was possible to "paste" two tokens
together by juxtaposing them in a macro with a comment between them.
This behavior was never defined or guaranteed. ANSI C provides a
well-defined operator, H, that serves the same purpose and should be

ANSI C and Programming Support Tools

..

Messages

used. This diagnostic warns that the old behavior is not being pro
vided.

#define PASTE(a,b) a/*GLUE*/b
int PASTE(prefix,suffix) = l; /* does not create */

/* prefixsuffix */

"file" I line 1: warning: comment does not concatenate tokens
"file" I line 2: syntax error, probably missing",", "·" , or "=="
"file" I line 2: syntax error before or at: suffix
"file" I line 2: warning: old-style declaration; add "int"

comment is replaced by "##"

Type: Warning Options: -Xt

This message is closely related to conment does not concatenate
tokens. The diagnostic tells you that the compiler is treating an
apparent concatenation as if it were the H operator. The source code
should be updated to use the new operator.

#define PASTE(a,b) a/*GLUE*/b
int PASTE(prefix,suffix) = l; /* creates prefixsuffix •/

"file", line 1 : warning: camnent is replaced by "##"

const object should have initializer: name

Type: Warning Options: -v

A canst object cannot be modified. If you do not supply an initial
value, the object will have a value of zero, or for automatics its value
will be indeterminate .

canst int i;

"file", line 1: warning: canst object should have initializer:
i

C Compiler Diagnostics 4-31

Messages

"continue" outside loop

Type: Error Options: all

Your program contains a continue statement outside the scope of any
loop.

f(void) {
continue;

"file", line 2: "continue" outside loop

controlling expressions must have scalar type

Type: Error Options: all

The expression for an if, for, while, or do-while must be an
integral, floating-point, or pointer type.

f(void){
struct s {int x;} st;
while (st) {}

"file", line 3: controlling expressions must have scalar type

conversion of double to float is out of range

Type: Warning, Error Options: all

A double expression has too large a value to fit in a float. The diag
nostic is a warning if the expression is in executable code and an error
otherwise.

float f = le30 * le30;

"file", line 1: conversion of double to float is out of range

4-32 ANSI C and Programming Support Tools

•

Messages

conversion of double to integral is out of range

Type: Warning, Error Options: all

A double constant has too large a value to fit in an integral type. The
diagnostic is a warning if the expression is in executable code and an
error otherwise.

int i = lelOO;

"file", line 1 : conversion of double to integral is out of
range

conversion of floating-point constant to type out of range

Type: Error Options: all

A floating-point constant has too large a value to fit in type type (float,
double, long double).

float f = le300f;

"file", line 1: conversion of floating-point constant to float
out of range

declaration hides parameter: name

Type: Warning Options: all

You have declared an identifier name with the same name as one of the
parameters of the function. References to name in this block will be to
the new declaration .

C Compiler Diagnostics 4-33

Messages

int f(int i,int INT) {
int i;
typedef int INT;

"file", line 2 : warning: declaration hides parameter: i
"file", line 3: warning: declaration hides parameter: INT

declaration introduces new type in ANSI c: type tag

Type: Warning Options: -Xt

struct, union, or enum tag has been redeclared in an inner scope. In
previous releases of AT & T C, this tag was taken to refer to the previous
declaration of tag. In ANSI C, the declaration introduces a new type.
When the -Xt option is selected, AT&T C reproduces the earlier
behavior.

struct sl { int x; } ;

f(void) {
struct sl;
struct s2 struct sl *psl; } ; I* sl refers to line 1 */
struct sl { struct s2 *ps2; };

"file", line 3: warning: declaration introduces new type in
ANSI C: struct sl

"default" outside switch

Type: Error Options: all

A default label appears outside the scope of a switch statement.

4-34 ANSI C and Programming Support Tools

f(void) {
default:
}

"file", line 2: "default" outside switch

#define requires macro name

Type: Error Options: all

Messages

A #define directive must be followed by the name of the macro to be
defined.

tdefine +3

"file", line 1: fdefine requires macro name

digit sequence expected after "tline"

Type: Error Options: all

The compiler expected to find the digit sequence that comprises a line
number after tline, but the token it found there is either an inappropri
ate token or a digit sequence whose value is zero.

tline 09a

"file", line 1: digit sequence expected after "fline"

directive is an upward-compatible ANSI C extension

Type: Warning Options: -Xe

This diagnostic is issued when the AT&T C compiler sees a directive
that it supports, but that is not part of the ANSI C standard, and -Xe
has been selected.

C Compiler Diagnostics 4-35

Messages

tassert system (unix)

"file", line 1: warning: directive is an upward-compatible
ANSI C extension

directive not honored in macro argument list

Type: Warning, Error Options: all

A directive has appeared between the () 's that delimit the arguments
of a function-like macro invocation. The following directives are disal
lowed in such a context: fident, #include, Uine, fundef. The diag
nostic is a warning if it appears within a false group of an if-group, and
an error otherwise.

#define flm.(a) a+4
int i = flm.(
f ifdef flm.

fundef f lm.
4

/* allowed */
/* disallowed:

#else /* allowed */

error */

:fl:undef flm. I* disallowed: warn *I

fendif
) ;

6
I* allowed *I

"file", line 4: directive not honored in macro argument list
"file", line 7: warning: directive not honored in macro

argument list

division by 0

4-36

Type: Warning, Error Options: all

An expression contains a division by zero that was detected at compile
time. If the division is part of a fif or felif directive, the result is
taken to be zero.

ANSI C and Programming Support Tools

Messages

The diagnostic is a warning if the division is in executable code, an error
otherwise.

f (void)
int i 1/0;

"file", line 2: warning: division by 0

dubious type declaration; use tag only: tag

Type: Warning Options: all

You declared a new struct, union, or enum type with tag tag within a
function prototype declaration or the parameter declaration list of an
old-style function definition, and the declaration includes a declarator
list for type. Calls to the function would always produce a type
mismatch, because the tag declaration goes out of scope at the end of
the function prototype declaration or definition, according to ANSI C's
scope rules. You could never declare an object of that type outside the
function. You should declare the struct, union, or emun ahead of the
function prototype or function definition and then refer to it just by its
tag.

int f(struct s {int x;} st)
{}

"file", line 1: warning: dubious struct declaration; use tag
only: s

Rewrite this as

struct s {int x; } ;
int f(struct s st)
{}

C Compiler Diagnostics 4-37

Messages

dubious escape: \c

Type: Warning Options: all

Only certain characters may follow\ in string literals and character con
stants; c was not one of them. AT&T C ignores the\.

int i - '\q';

"file", line 1: waming: dubious escape: \q

dubious escape: \<hex value>

Type: Warning Options: all

This message diagnoses the same condition as the preceding one, but
the character that follows \ in the program is a non-printing character.
The hex value between the brackets in the diagnostic is the character's
code, printed as a hexadecimal number.

dubious reference to type typedef: typedef

4-38

Type: Warning Options: all

This message is similar to dubious tag in function prototype :
type tag. A function prototype declaration refers to a type struct,
union, or enum typedef with name typedef. Because the struct, union,
or enum has been declared within a function, it could not be in scope
when you define the function whose prototype is being declared. The
prototype declaration and function definition thus could never match.

ANSI C and Programming Support Tools

Messages

f () {
struct s { int x; };
typedef struct s ST;
extern int g(ST, struct s);

"file", line 4: warning: dubious reference to struct typedef:
ST

"file", line 4: warning: dubious tag in function prototype:
struct s

dubious static function at block level

Type: Warning Options: -Xe

You declared a function with storage class static at block scope. The
ANSI C standard says that the behavior is undefined if you declare a
function at block scope with an explicit storage class other than extern.
Although AT&T Callows you to declare functions this way, other
implementations might not, or they might attach a different meaning to
such a declaration.

void
f(void) {

static void g(void);

"file", line 3 : warning: dubious static function at block
level

dubious tag declaration: type tag

Type: Warning Options: all

You declared a new struct, union, or enwn type with tag tag within a
function prototype declaration or the parameter declaration list of an
old-style function definition. Calls to the function would always pro
duce a type mismatch, because the tag declaration goes out of scope at

C Complier Diagnostics 4-39

Messages

the end of the function declaration or definition, according to ANSI C's
scope rules. You could never declare an object of that type outside the
function.

int f(struct s *);

"file", line 1 : warning: dubious tag declaration: struct s

dubious tag in function prototype: type tag

Type: Warning Options: all

This message is similar to the previous one. A function prototype
declaration refers to a struct, union, or enum type with tag tag. The
tag has been declared within a function. Therefore it could not be in
scope when you define the function whose prototype is being declared.
The prototype declaration and function definition thus could never
match.

f(){
struct s {int x;};
int g(struct s *);

"file", line 3: warning: dubious tag in function prototype:
struct s

duplicate case in switch: value

Type: Error Options: all

There are two case statements in the current switch statement that
have the same constant value value.

ANSI C and Programming Support Tools

f(void) {
int i = 5;
switch(i) {
case 4:
case 4:

break;

"file", line 5: duplicate case in switch: 4

duplicate "default" in switch

Type: Error Options: all

There are two default labels in the current switch statement.

f(void){
int i = 5;
switch(i) {
default:
default:

break;

"file", line 5: duplicate "default" in switch

duplicate formal parameter: name

Type: Warning Options: all

Messages

In a function-like macro definition, name was used more than once as a
formal parameter.

#define add.3(a,a,c) a+ b + c

"file", line 1: warning: duplicate formal parameter: a

C Compiler Diagnostics 4-41

Messages

duplicate member name: member

Type: Error Options: all

A struct or union declaration uses the name member for more than
one member.

union u {
int i;
float i;

} ;

"file", line 3: duplicate member name: i

duplicate name in % line specification: name

Type: Error Options: all

Formal parameter name was mentioned more than once in the % line of
an enhanced asm function.

telif follows #else

Type: Warning Options: all

4-42

A preprocessing if-section must be in the order tif, optional :lf:elif's,
followed by optional #else and tendif. The code contains a felif
after the #else directive.

ANSI C and Programming Support Tools

Messages

#if defined(ONE)
int i = 1;

telif defined('lWO)
int i = 2;

telse
int i = 3;

telif defined(FOUR)
int i = 4;

tendif

"file", line 7: warning: telif follows telse

telif has no preceding #if

Type: Error Options: all

An telif directive must be part of a preprocessing if-section, which
begins with a #if directive. The code in question lacked the tif.

telif defined('lWO)
int i = 2;

tendif

"file", line 1: telif has no preceding tif
"file", line 3: tif-less tendif

#elif must be followed by a constant expression

Type: Error Options: all

There was no expression following the telif directive.

C Compiler Diagnostics 4-43

Messages

fif defined(ONE)
int i 1;

int i 4;

"file", line 3: warning: felif must be followed by a constant
expression

telse has no preceding #if

Type: Error Options: all

An #else directive was encountered that was not part of a preprocess
ing if-section.

#else
int i =7;

tendif

"file", line 1: #else has no preceding #if
"file", line 3: hf-less fendif

embedded NUL not permitted in asm()

4-44

Type: Error Options: all

The string literal that appears in an old-style asm () contains an embed
ded NUL character (character code 0).

asm("this is an old-style asm with embedded NUL: \0");

"file", line 1: embedded NUL not permitted in asm()

ANSI C and Programming Support Tools

empty tassert directive

Type: Error Options: all

A tassert directive contained no predicate name to assert.

tassert

"file", line 1: empty tassert directive

empty character constant

Type: Error Options: all

The program has a character constant without any characters in it.

int i
, ,

"file", line 1: empty character constant

empty constant expression after macro expansion

Type: Error Options: all

A tif or telif directive contained an expression that, after macro
expansion, consisted of no tokens.

tdef ine EMPTY
tif EMPTY

char *mesg = "EMPTY is non-empty";
tendif

"file", line 2: empty constant expression after macro
expansion

C Compiler Diagnostics

Messages

4-45

Messages

empty #define directive line

Type: Error Options: all

A #define directive lacked both the name of the macro to define and
any other tokens.

f:def ine

"file", line 1: empty #define directive line

empty file name

Type: Error Options: all

The file name in a #include directive is null.

#include <>

"file", line 1: empty file name

empty header name

Type: Error Options: all

This diagnostic is similar to the preceding one, but the null file name
arises after macro substitution.

#define NULLNAME <>
#include NULLNAME

"file", line 2: empty header name

empty predicate argument

Type: Error

4-46

Options: all

ANSI C and Programming Support Tools

Messages

The compiler expects to find tokens between the () 's that delimit
a predicate's assertions in a :fl:unassert directive. None were present.

:fl:unassert machine()

"file", line 1: empty predicate argument

empty translation unit

Type: Warning Options: all

The source file has no tokens in it after preprocessing is complete. The
ANSI C standard requires the compiler to diagnose a file that has no
tokens in it.

:fl:ifdef COMPILE
int token;

:fl:endif

"file", line 5: warning: empty translation unit

empty :fl:unassert directive

Type: Error Options: all

A :fl:unassert contained no predicate name to discard.

:fl:unassert

"file", line 1: empty #unassert directive

empty :fl:undef directive, identifier expected

Type: Error Options: all

A :fl:undef directive lacked the name of a macro to "undefine."

C Compiler Diagnostics 4-47

Messages

#undef

"file", line 1: empty tundef directive, identifier expected

{}-enclosed initializer required

Type: Warning Options: all

When you initialize an aggregate, except when you initialize a character
array with a string literal or an automatic structure with an expression,
you must enclose the initializer in { }'s.

int ia[S] = 1;
f(void) {

struct s { int x,y; } st 1;

"file", line 1: waming: { }-enclosed initializer required
"file", line 3: warning: {}-enclosed initializer required
"file", line 3: struct/union-valued initializer required

end-of-loop code not reached

Type: Warning Options: all

4-48

You have written a loop in such a way that the code at the end of the
loop that the compiler generates to branch back to the beginning of the
loop is not reachable and will never be executed.

f(void){
int i = 1;
while (i) {

return 4;

"file", line 5: warning: end-of-loop code not reached

ANSI C and Programming Support Tools

Messages

enum constants have different types: op "operator"

Type: Warning Options: -v

You have used relational operator operator to compare enumeration con
stants from two different enumeration types. This may indicate a pro
gramming error. Note also that the sense of the comparison is known
at compile time, because the constants' values are known.

enum el { ecll, ecl2
enum e2 { ec21, ec22
void v(void){

if (ecll > ec22)

evl;
} ev2;

"file", line 4: warning: enum constants have different types:
op ">"

enum type mismatch: arg #n

Type: Warning Options: -v

The program is passing an enumeration constant or object to a function
for which a prototype declaration is in scope. The passed argument is
of a different enumerated type from the one in the function prototype,
which may indicate a programming error.

enum el { ecll } evl;
enum e2 { ec21 } ev2;
void ef(enum el);

void v(void) {
ef (ec21);

"file", line 6: warning: enum type mismatch: arg #1

C Complier Diagnostics 4-49

Messages

enum type mismatch: op "operator"

Type: Warning Options: -v

This message is like the previous one. One of the operands of operator is
an enumeration object or constant, and the other is an enumeration
object or constant from a different enumerated type.

enum el { ecll, ec12
enum e2 { ec21, ec22
void v(void) {

if (evl > ec22)

evl;
} ev2;

"file", line 4: warning: enum type mismatch: op ">"

enumeration constant hides parameter: name

Type: Warning Options: all

A declaration of an enumerated type within a function includes an
enumeration constant with the same name as parameter name. The
enumeration constant hides the parameter.

int
f(int i) {

enum e { 1, k, j, i };

"file", line 3: warning: enumeration constant hides parameter:
i

enumerator used in its own initializer: name

4-50

Type: Warning Options: all

When setting the value of enumerator name in an enumeration type
declaration, you have used name in the expression. ANSI C's scope

ANSI C and Programming Support Tools

Messages

rules take name in the expression to be whatever symbol was in scope at
the time.

int i;
f(void) {

enum e i i+l, j, k }; /* uses global i in i+l */

"file", line 3: warning: enumerator used in its own
initializer: i

"file", line 3: integral constant expression expected

enumerator value overflows INT_MAX (2147483647)

Type: Warning Options: all

The value for an enumeration constant overflowed the maximum integer
value.

enum e { el=2147483647, e2 }; /* overflow for e2 */

"file", line 1: warning: enumerator value overflows INT MAX
(2147483647)

terror: tokens

Type: Error Options: all

A terror directive was encountered in the source file. The other tokens
in the directive are printed as part of the message.

tdefine ONE 2
:#=if ONE ! = 1
terror ONE != 1
tendif

"file", line 3: #error: ONE ! = 1

C Compiler Diagnostics 4-51

Messages

%error encountered in asm function

Type: Error Options: all

A %error specification line was encountered while an enhanced asm
was being expanded.

error in asm; expect ";" or "\n", saw 'c'

Type: Error Options: all

In a % line of an enhanced asm function, the compiler expected to read a
semi-colon or new-line and found character c instead.

error writing output file

Type: Error Options: all

An output error occurred while the compiler attempted to write its out
put file or a temporary file. The most likely problem is that a file sys
tem is out of space.

") " expected

Type: Error Options: all

In an tunassert directive, the assertion of a predicate to be dropped
must be enclosed in () .

tunassert system(unix

"file", line 1: ")" expected

"("expected after"# identifier"

Type: Error Options: all

When the #= operator is used in a #if or telif directive to select a

4-52 ANSI C and Programming Support Tools

Messages

predicate instead of a like-named macro, the predicate must be followed
by a parenthesized list of tokens.

tassert system(unix)
#define system "unix"
tif #system

char *systype system;
tendif

"file", line 3: "(" expected after "t identifier"

"("expected after first identifier

Type: Error Options: all

In an tunassert directive, the assertion of a predicate to be dropped
must be enclosed in () .

funassert system unix

"file", line 1: " (" expected after first identifier

extern and prior uses redeclared as static: name

Type: Warning Options: -Xe, -v

You declared name at file scope as an extern, then later declared the
same object or function as static. ANSI C rules require that the first
declaration of an object or function give its actual storage class. AT&T
C accepts the declaration and treats the object or function as if the first
declaration had been static.

extern int i;
static int i;

"file" , line 2 : warning: extern and prior uses redeclared as
static: i

C Compiler Diagnostics 4-53

Messages

first operand must have scalar type: op "?:"

Type: Error Options: all

The conditional expression in a ? : expression must have scalar
(integral, floating-point, or pointer) type.

struct s { int x; } st;
f(void) {

int i = st ? 3 : 4;

"file", line 3: first operand must have scalar type: op "?: "

floating-point constant calculation out of range: op "operator"

Type: Warning, Error Options: all

The compiler detected an overflow at compile time when it attempted
the operator operation between two floating-point operands. The diag
nostic is a warning if the expression is in executable code and an error
otherwise.

double dl = le300 * le300;

"file", line 1: floating-point constant calculation out of
range: op "*"

floating-point constant folding causes exception

4-54

Type: Error Options: all

This message is like the previous one, except that the operation caused a
floating-point exception that causes the compiler to exit.

ANSI C and Programming Support Tools

Messages

formal parameter lacks name: param In

Type: Error Options: all

In a function prototype definition, you failed to provide a name for the
n-th parameter.

int f (int) {

"file", line 1: formal parameter lacks name: param #1

function actually returns double: name

Type: Warning Options: -v

A function that was declared to return type float actually returns
double. 'This information may be useful to know if you try to write an
assembly language version of the called routine, or if you write the rou
tine in C++.

float f ();

"file", line 1: warning: function actually returns double: f

function cannot return function or array

Type: Error Options: all

You declared a function whose return type would be a function or
array, rather than, perhaps, a pointer to one of those.

int f(void) []; /* function returning array of ints */

"file", line 1: function cannot return function or array

C Compiler Diagnostics 4-55

Messages

function designator is not of function type

Type: Error Options: all

You used an expression in a function call as if it were the name of a
function or a pointer to a function when it was not.

f(void) {
char *p;
p();

"file", line 3: function designator is not of function type

function expects to return value: name

Type: Warning Options: -v

The current function was declared with a non-void type, but you used a
return statement with no return value expression.

f(void) {
return;

"file", line 2: warning: function expects to return value: f

function prototype parameters must have types

Type: Warning Options: all

A function prototype declaration cannot contain an identifier list; it
must declare types. The identifier list is ignored.

int f(i);

"file", line 1: warning: function prototype paramaters must
have types

4-56 ANSI C and Programming Support Tools

Messages

identifier expected after "f"

Type: Error Options: all

The compiler expected to find an identifier, a predicate name, after a :fl:
in a conditional compilation directive, and none was there.

Uf #system(unix) I I f
char *os = "sys";

:fl:endif

"file", line 1: identifier expected after ":fl:"

identifier expected after fundef

Type: Error Options: all

A fundef must be followed by the name of the macro to be undefined.
The token following the directive was not an identifier.

fundef 4

"file", line 1: identifier expected after :fl:undef

identifier or "-" expected after -A

Type: Error Options: all

The cc command line argument -A must be followed by the name of a
predicate to assert, or by a-, to eliminate all predefined macros and
predicates. The token following -A was neither of these.

cc -A3b2 -c x.c

command line: identifier or "-" expected after -A

C Compiler Diagnostics 4-57

Messages

identifier or digit sequence expected after "#"

Type: Error Options: all

An invalid token or non-decimal number follows the t that introduces a
preprocessor directive line.

t Ox12

"file", line 1: identifier or digit sequence expected after "#"

identifier redeclared: name

4-58

Type: Warning, Error Options: all

You declared the identifier name in a way that is inconsistent with a pre
vious appearance of name, or you declared name twice in the same
scope.

Previous releases of AT&T C were forgiving of inconsistent redeclara
tions if the types were "nearly" the same (such as int and long on an
AT&T 3B2 computer). ANSI C considers the types to be different. The
-Xt option will allow you to retain the previous behavior, although the
compiler will issue a warning. When the types are manifestly different,
the diagnostic is always an error. The -xa and -Xe options always pro
duce an error when the types are different.

int x;
long x;
int y;
double y;

"file", line 2: warning: identifier redeclared: x
"file", line 4: identifier redeclared: y

Declarations of functions with and without argument information can
often lead to confusing diagnostics. The following example illustrates.

ANSI C and Programming Support Tools

int f(char);
int f ();

"file", line 2: warning: identifier redeclared: f

Messages

According to ANSI C's type compatibility rules, a function declaration
that lacks type information (i.e., one that is not a function prototype
declaration) is compatible with a function prototype only when each
parameter type is unchanged by the default argument promotion rules.
In the example, char would be affected by the promotion rules (it
would be promoted to int). Therefore the two declarations have
incompatible types.

identifier redeclared; ANSI C requires "static": name

Type: Warning Options: all

You declared name twice at file scope. The first one used storage class
static, but the second one specified no storage class. ANSI C's rules
for storage classes require that all redeclarations of name after the first
must specify static.

static int i;
int i;

"file", line 2: warning: identifier redeclared; ANSI C
requires "static": i

identifier redefined: name

Type: Error Options: all

You have defined name more than once. That is, you have declared an
object more than once with an initializer, or you have defined a function
more than once.

C Compiler Diagnostics 4.59

Messages

int i 1;
int i = 1;

"file", line 2: identifier redefined: i

tif must be followed by a constant expression

Type: Warning Options: all

No expression appeared after a #if directive.

tif
int i = 4;

tendif

"file", line 1: warning: fif must be followed by a constant
expression

tif on line n has no tendif

Type: Error Options: all

The compiler reached end of file without finding the tendif that would
end the preprocessing if-section that began with the if directive that was
on linen. The if directive is one of Uf, Ufdef, or Ufndef.

Ufdef NOENDIF
int i = 1;

"file", line 5: Ufdef on line 1 has no matching tendif
"file", line 5: warning: empty translation unit

tif-less tendif

Type: Error Options: all

4-60

An tendif directive was encountered that was not part of a preprocess
ing if-section.

ANSI C and Programming Support Tools

Messages

int i 1;
tend.if

"file", line 2: #if-less tend.if

tifd.ef must be followed by an identifier

Type: Warning Options: all

A Ufdef preprocessing directive must be followed by the name of the
macro to check for being defined. The source code omitted the
identifier. The Ufdef is treated as if it were false.

Ufdef
int i = 1;

tend.if

"file", line 1: warning: f:ifdef must be followed by an
identifier

tifndef must be followed by an identifier

Type: Warning Options: all

The Ufndef directive must be followed by the identifier that is to be
tested for having been defined.

Ufndef
int i = 5;

tend.if

"file", line 1: warning: f:ifndef must be followed by an
identifier

C Compiler Diagnostics 4-61

Messages

ignoring malfo:rmed #pragma int_to_unsigned symbol

Type: Warning Options: all

The compiler encountered a tpragma int_to_unsigned directive that
did not have the form shown. The erroneous directive is ignored.

tpragma int_to_unsigned strlen();

"file", line 1: warning: ignoring malfo:rmed #pragma
int_to_unsigned symbol

ignoring malformed tpragma pack(n)

Type: Warning Options: all

The compiler encountered a tpragma pack directive that did not have
the form shown. The erroneous directive is ignored.

ignoring malfo:rmed tpragma weak symbol [=value]

Type: Warning Options: all

The compiler encountered a tpragma weak directive that did not have
the form shown. The erroneous directive is ignored.

tpragma weak write,_write

"file", line 1: warning: ignoring malfo:rmed tpragma weak
symbol [-value]

implicitly declaring function to return int: name()

4-62

Type: Warning Options: -v

The program calls function name, which has not been previously
declared. The compiler warns you that it is assuming that function
name returns int.

ANSI C and Programming Support Tools

Messages

void v(void) {
g ();

"file", line 2: warning: implicitly declaring function to
return int : g ()

improper cast of void expression

Type: Error Options: all

You cannot cast a void expression to something other than void

f(void) {
void v (void) ;
inti= (int) v();

"file", line 3: improper cast of void expression

improper member use : name

Type: Warning, Error Options: all

Your program contains an expression with a-> or . operator, and
name is not a member of the structure or union that the left side of the
operator refers to, but it is a member of some other structure or union.

This diagnostic is an error if the member is not "unique." A unique
member is part of one or more structures or unions but has the same
type and offset in all of them.

C Compiler Diagnostics 4·63

Messages

struct sl
struct s2
f(void) {

int x,y; } ;
int q,r; };

struct sl *psl;
psl->r "" 3;

"file", line 5 : warning: improper member use: r

improper pointer subtraction

Type: Warning, Error Options: all

The operands of a subtraction are both pointers, but they point at dif
ferent types. You may only subtract pointers of the same type that
point to the same array.

The diagnostic is a warning if the pointers point to objects of the same
size, and an error otherwise.

f(void) {
int *ip;
char •cp;
int i = ip - cp;

"file", line 4: improper pointer subtraction

improper pointer/integer combination: arg tn

4-64

Type: Warning Options: all

At a function call for which there is a function prototype declaration in
scope, the code is passing an integer where a pointer is expected, or vice
versa.

ANSI C and Programming Support Tools

int f(char *);
g(void) {

f(S);

Messages

"file", line 3: warning: improper pointer/integer combination:
arg fl

iroproper pointer/integer combination: op "aperator"

Type: Warning Options: all

One of the operands of aperator is a pointer and the other is an integer,
but this combination is invalid.

f(void) {
int i = "abc";
int j = i ? 4 : "def";

"file", line 2: warning: improper pointer/integer combination:
op "="

"file", line 3: warning: improper pointer/integer combination:
op ".ti

"file", line 3: warning: inproper pointer/integer combination:
op "="

inappropriate qualifiers with "void"

Type: Warning Options: all

You may not qualify void (with canst or volatile) when it stands by
itself.

int f(const void);

"file", line 1: warning: inappropriate qualifiers with "void"

C Compiler Diagnostics 4-65

Messages

#include< ... missing'>'

Type: Warning OpHons: all

In a #include directive for which the header name began with <, the
closing > character was omitted.

#include <stdio.h

"file", line 1: warning: #include< ... missing '>'

#include directive missing file name

Type: Error OpHons: all

A #include directive did not specify a file to include.

#include

"file", line 1: #include directive missing file name

#include of /usr/include/ ... may be non-portable

4-66

Type: Warning OpHons: all

The source file included a file with the explicit prefix /usr/include.
Such an inclusion is implementation-dependent and non-portable. On
some systems the list of default places to look for a header might not
include the /usr/include directory. In such a case the wrong file
might be included.

#include </usr/include/stdio.h>

"file", line 1: warning: #include of /usr/include/ ... may be
non-portable

ANSI C and Programming Support Tools

..

Messages

in~lete #define macro parameter list

Type: Error Options: all

In the definition of a function-like parameter, the compiler did not find
a) character on the same (logical) line as the #define directive.

#define mac(a

"file", line 1 : incomplete #define macro parameter list

incomplete struct/union/enum tag: name

Type: Error Options: all

You declared an object name, with struct, union, or enum type and tag
tag, but the type is incomplete.

struct s st;

"file", line 1: incomplete struct/union/enum s: st

inconsistent redeclaration of extern: name

Type: Warning Options: all

You have redeclared function or object name with storage class extern
for which there was a previous declaration that has since gone out of
scope. The second declaration has a type that conflicts with the first .

C Compiler Diagnostics 4-67

Messages

f(void) {
int *P = (int*) malloc(S*sizeof(int));

q(void) {
void •malloc () ;

"file", line 5: warning: inconsistent redeclaration of extern:
malloc

inconsistent redeclaration of static: name

4·68

Type: Warning Options: all

You have redeclared an object or function that was originally declared
with storage class static. The second declaration has a type that
conflicts with the first.

The two most frequent conditions under which this diagnostic may be
issued are:

1. A function was originally declared at other than file scope and
with storage class static. The subsequent declaration of the
function has a type that conflicts with the first.

2. A function or object was originally declared at file scope and
with storage class static. A subsequent declaration of the
same object or function at other than file scope used storage
class extern (or possibly no storage class, if a function), and
there was an intervening, unrelated, declaration of the same
name.

ANSI C and Programming Support Tools

Messages

f(void){
static int myfunc(void);

g(void) {
static char •myfunc(void);

"file", line 5: warning: inconsistent redeclaration of static:
myf unc

static int x;
f(void){

int x;
{

/* unrelated */

extern float x; /* related to first declaration */

"file", line 5: warning: inconsistent redeclaration of static:
x

inconsistent storage class for function: name

Type: Warning Options: all

ANSI C requires that the first declaration of a function or object at file
scope establish its storage class. You have redeclared function name in
an inconsistent way according to these rules.

g(void) {
int f(void);
static int f(void);

"file", line 3 : warning: inconsistent storage class for
function: f

C Compiler Diagnostics 4-69

Messages

initialization type mismatch

Type: Warning Options: all

The type of an initializer value is incompatible with the type of the
object being initialized. This specific message usually applies to
pointers.

int a;
unsigned int •pa = &a;

"file", line 2: warning: initialization type mismatch

initializer does not fit : value

Type: Warning Options: all

The value value does not fit in the space provided for it. That is, if it
were fetched from that space, it would not reproduce the same value as
was put in. In the message, value is represented as a hexadecimal value
if the initializer is unsigned, decimal if it is signed.

struct s {signed int m1:3; unsigned int m2:3;} st= {4, 5};
unsigned char uc == 300u;

"file", line 1: warning: initializer does not fit: 4
"file", line 2: warning: initializer does not fit: Ox12c

integer overflow detected: op "operator"

4-70

Type: Warning Options: all

The compiler attempted to compute the result of an operator expression
at compile-time, and determined that the result would overflow. The
low-order 32 bits of the result are retained, and the compiler issues this
diagnostic.

ANSI C and Programming Support Tools

Messages

int i = 1000000 * 1000000;

"file", line 1 : warning: integer overflow detected: op "*"

integral constant expression expected

Type: Error Options: all

The compiler expected (required) an integral constant or an expression
that can be evaluated at compile time to yield an integral value. The
expression you wrote contained either a non-integral value, a reference
to an object, or an operator that cannot be evaluated at compile time.

int ia[S.0];

"file", line 1 : integral constant expression expected

integral constant too large

Type: Warning Options: all

An integral constant is too large to fit in an unsigned long.

int i = 1234567890123;

"file", line 1: warning: integral constant too large

internal compiler error: message

Type: Error Options: all

This message does not diagnose a user programming error (usually), but
rather a problem with the compiler itself. One of the compiler's internal
consistency checks has failed. The problem diagnosed by message is
important to AT&T's support staff but is probably meaningless to you.

C Compiler Diagnostics 4-71

Messages

You can help AT&T to identify the problem by performing the follow
ing and then calling an AT&T support center.

Run the cc command again with the same options as when it failed,
plus the -E' option. You will not get the internal compiler error
message again. However, assuming you compiled file. c, the cc com
mand will create a file. i file in your current directory. This file will
help AT&T to identify the compiler problem.

interpreted as a #line directive

Type: Warning Options: -Xe

A source line was encountered that had a number where the directive
name usually goes. Such a line is reserved for the compiler's internal
use, but it must be diagnosed in the -Xe (strictly conforming) mode.

* 9

"file", line 1: warning: interpreted as a #line directive
"file", line 1: warning: directive is an upward-compatible

ANSI C extension

invalid cast expression

Type: Error Options: all

4-72

You cannot apply the cast to the expression because the types are
unsuitable for casting. Both the type of the expression being cast and
the type of the cast must be scalar types. A pointer may only be cast to
or from an integral type.

f(void) {
struct s {int x;} st;
int i = (int) st;

"file", line 3: invalid cast expression

ANSI C and Programming Support Tools

Messages

invalid class in asrn % line: class

Type: Error Options: all

The storage class class that the compiler encountered in an enhanced asm
% line is not one of the acceptable classes.

invalid conpiler control line in ".i" file

Type: Error Options: all

A . i file, the result of a cc -P command, is assumed to be a reserved
communication channel between the preprocessing phase and the com
pilation phase of the compiler. The . i file lets you examine that inter
mediate form to detect errors that may otherwise be hard to detect.
However, the compiler expects to find only a few directives that are
used for internal communication. The source file that was compiled (a
. i file) contained a preprocessing directive other than one of the special
directives.

invalid directive

Type: Error Options: all

The identifier that follows a# in a preprocessing directive line was one
that the compiler did not recognize.

t unknown

"file", line 1: invalid directive

invalid initializer

Type: Error Options: all

Your program contains an initializer for an extem or static that
attempts to store a pointer in a smaller than pointer-sized object. Such
initializations are not supported by AT&T C.

C Compiler Diagnostics 4.73

Messages

int j;
char c = (char) &j;

"file", line 2: invalid initializer

invalid multibyte character

Type: Error Options: all

A multibyte character in a string literal or character constant could not
be converted to a single wide character in the host environment.

invalid source character: 'c'

Type: Error Options: all

The compiler encountered a character (c) in the source program that is
not a valid ANSI C token.

int i = 1$;

"file", line 1: invalid source character: '$'

invalid source character: <hex value>

Type: Error Options: all

This message diagnoses the same condition as the previous one, but the
invalid character is not printable. The hex value between the brackets in
the diagnostic is the hexadecimal value of the character code.

invalid switch expression type

Type: Error Options: all

The controlling expression of a switch statement could not be converted

4.74 ANSI C and Programming Support Tools

Messages

to int. This message always follows switch expression must have
integral type.

f(){
struct s {int x; } sx;
switch (sx) {
case 4: ;
}

"file", line 3 : switch expression must have integral type
"file", line 3: invalid switch expression type

invalid token: non-token

Type: Error Options: all

The compiler encountered a sequence of characters that does not
comprise a valid token. An invalid token may result from the prepro
cessing H operator. The offending non-token is shown in the diagnostic.
If the non-token is longer than 20 characters, the first 20 are printed, fol
lowed by " ... ". The offending invalid token is ignored.

fdefine eASTE(l,r) 1 ff r
double dl = le;
double d2 ... PASTE(l,e);
int i = lveryverylongnontoken;

"file", line 2: invalid token: le
"file", line 2: syntax error before or at: ;

"file", line 2: warning: syntax error: empty declaration
"file", line 3: invalid token: le
"file", line 3: syntax error before or at: ;

"file", line 3: warning: syntax error: empty declaration
"file", line 4: invalid token: lveryverylongnontoke ...
"file", line 4: syntax error before or at: ;

"file", line 4: warning: syntax error: empty declaration

C Compiler Diagnostics 4.75

Messages

invalid token in fdefine macro parameters: token

Type: Error Options: all

The compiler encountered an inappropriate token while processing the
argument list of a function-like macro definition. token is the erroneous
token.

fdefine mac(a,4) ab c

"file", line 1: invalid token in :fl:define macro parameters: 4

invalid token in directive

Type: Error Options: all

The compiler found an invalid token at the end of what would other
wise be a correctly formed directive.

fline 7 "file.c

"file", line 1: warning: string literal expected after
:fl:line <number>

"file", line 1: invalid token in directive: "
"file", line 1: warning: tokens ignored at end of directive

line

invalid type combination

Type: Error Options: all

4-76

You used an inappropriate combination of type specifiers in a declara
tion.

short float f;

"file", line 1: invalid type combination

ANSI C and Programming Support Tools

Messages

invalid type for bit-field: name

Type: Error Options: all

The type you chose for bit-field name is not permitted for bit-fields. Bit
fields may only be declared with integral types.

struct s { float f:3; };

"file", line 1: invalid type for bit-field: f

invalid use of "defined" operator

Type: Error Options: all

A defined operator in a #if or telif directive must be followed by an
identifier or () 's that enclose an identifier. The source code did not
use it that way.

#if defined
int i l;

tendif

"file", line 1: invalid use of "defined" operator

invalid white space character in directive

Type: Warning Options: all

The only white space characters that are permitted in preprocessing
directives are space and horizontal tab. The source code included some
other white space character, such as form feed or vertical tab. The com
piler treats this character like a space.

C Compiler Diagnostics 4-n

Messages

label redefined: name

Type: Error Options: all

The same label name has appeared more than once in the current func
tion. (A label's scope is an entire function.)

f(void) {

L:

L:
}

int i;
i = 1;
if (i)

while (i)
g();

goto L;

"file", line 10: label redefined: L

left operand must be modifiable lvalue: op "operator"

4-78

Type: Error Options: all

The operand on the left side of operator must be a modifiable lvalue, but
it wasn't.

f(void) {
int i = 1;
+i -= 1;

"file", line 3: left operand must be modifiable lvalue:
op"-="

ANSI C and Programming Support Tools

Messages

left operand of "->" must be pointer to struct/union

Type: Warning, Error Options: all

The operand on the left side of a -> operator must be a pointer to a
structure or union, but it wasn't. The diagnostic is a warning if the
operand is a pointer, an error otherwise.

struct s { int x; };
f(void) {

long *lp;
lp->x = l;

"file", line 4: warning: left operand of "->" must be pointer
to struct/union

left operand of "." must be !value in this context

Type: Warning Options: all

The operand on the left side of a . operator is an expression that does
not yield an lvalue. Usually this results from trying to change the
return value of a function that returns a structure.

struct s { int ia[lO]; };
struct s sf(void);
f(void) {

sf() . ia [01 = 3;

"file", line 4: warning: left operand of
this context

" "

left operand of "." must be struct/union object

Type: Warning, Error Options: all

must be !value in

The . operator is only supposed to be applied to structure or union

C Compiler Diagnostics 4-79

Messages

objects. The diagnostic is an error if the operand to the left of . is an
array, pointer, function call, enumeration constant or variable, or a regis
ter value that got allocated to a register; it is a warning otherwise.

f(void) {
struct s { short s; } ;
int i;
i.s = 4;

"file", line 4: warning: left operand of
union object

" " must be struct/

()-less function definition

Type: Error Options: all

The declarator portion of a function definition must include parentheses.
You cannot define a function by writing a typedef name for a function
type, followed by an identifier and the braces ({ }) that define a func
tion.

typedef int F () ;
F f{ }

"file", line 2: () - less function definition

"long double" not yet supported

4·80

Type: Error Options: -xt, -xa

AT&T C does not yet support long double as it will in the future. You
are discouraged from using long double at this time.

ANSI C and Programming Support Tools

Messages

"long double" not yet supported; using "double"

Type: Warning Options: -Xe

The AT&T implementation of ANSI C supports long double under the
-Xe flag by treating it the same as double. In future releases long
double will be fully supported, and you will have to recompile this
code.

loop not entered at top

Type: Warning Options: all

The controlling expression at the beginning of a for or while loop can
not be reached by sequential flow of control from the statement before
it.

f(void) {
int i;
goto lab;
for (i = 1; i > 0; --i) {

lab:;
i=S;

"file", line 4: warning: loop not entered at top

macro recursion

Type: Fatal Options: -Xt

The source code calls a macro that calls itself, either directly or
indirectly. ANSI C's semantics prevent further attempts to rescan the
macro. Older C compilers would try to rescan the macro, which eventu
ally leads to a fatal error.

C Compiler Diagnostics 4·81

Messages

Because the rescanning rules are different for ANSI C and its predeces
sor, the AT&T C compiler provides the old behavior in -Xt mode,
which includes producing this diagnostic when macro recursion is
detected.

#define a(x) b(x)
#define b(x) a(x)
a (3)

"file", line 3: fatal: macro recursion

macro redefined: name

Type: Warning Options: all

The source code redefined a macro. Previous releases of AT&T C
allowed such redefinitions silently if both definitions were identical
except for the order and spelling of formal parameters. ANSI C
requires that, when a macro is redefined correctly, the definitions must
be identical including the order and spelling of formal parameters. This
diagnostic is produced under all options if the new macro definition
disagrees with the old one. For strict conformance, it is also produced
under the -Xe option when the macro definitions disagree only in the
spelling of the formal parameters.

#define TIMES(a,b) a* b
#define TIMES(a,b) a - b

"file", line 2: warning: macro redefined: TIMES

macro replacement within a character constant

4-82

Type: Warning Options: -Xt

Previous releases of AT&T C allowed the value of a formal parameter to
be substituted in a character constant that is part of a macro definition.
ANSI C does not permit such a use.

ANSI C and Programming Support Tools

Messages

#define CTRL(x) ('x'&037) /* form control character */

int ctrl_c = CTRL(c);

"file", line 1: warning: macro replacement within a character
constant

The proper way to express this construct in ANSI C is the following:

#define CTRL(x) (x&037) /* form control character */

int ctrl_c = CTRL('c');

macro replacement within a string literal

Type: Warning Options: -Xt

This message diagnoses a similar condition to the preceding one, except
the substitution is being made into a string literal.

#define HELLO (name) "hello, name"

char *hello_dave = HELLO(Dave);

"file", line 1: warning: macro replacement within a string
literal

ANSI C provides a way to accomplish the same thing. The * "string
ize" operator turns the tokens of a macro argument into a string literal,
and adjacent string literals are concatenated. The correct form is:

#define HELLO(name) "hello, " #name

char *hello dave = HELLO(Dave);

C Compiler Diagnostics 4-83

Messages

member cannot be function: name

Type: Error Options: all

A function may not be a member of a structure or union, although a
pointer to a function may. You declared member name as a function.

struct s {int f(void); };

"file", line 1: member cannot be function: f

mismatched "?" and "·"

Type: Error Options: all

An expression in a Uf or telif directive contained a malformed ?
expression.

#if defined(foo) ? 5
int i;

tendif

"file", line 1: mismatched "?" and H •II

mismatched parentheses

Type: Error Options: all

4-84

Parentheses were mismatched in a preprocessing conditional compila
tion directive.

Uf ((1)
int i 1;

tendif

"file", line 1: mismatched parentheses

ANSI C and Programming Support Tools

Messages

missing ")"

Type: Error Options: all

In a test of a predicate that follows a i operator in a iif or ielif direc
tive, the) that follows the assertion was missing.

#if # system(unix
char *system = "unix";

#endif

"file", line 1 : missing ") "

missing formal name in % line

Type: Error Options: all

ln an enhanced asm function, a % line specified a storage class, but not
the formal parameter than has that storage class.

missing operand

Type: Error Options: all

The constant expression of a preprocessing conditional compilation
directive is malformed. An expected operand for some operator was
missing.

:#'define EMPTY
Uf EMPTY I 4

int i = 1;
:#'endif

"file", line 2: missing operand

C Compiler Diagnostics 4-85

Messages

missing operator

Type: Error Options: all

The constant expression of a preprocessing conditional compilation
directive is malformed. An operator was expected but was not encoun
tered.

#if 1 4
int i 1;

#endif

"file", line 1: missing operator

missing tokens between parentheses

Type: Error Options: all

In a #:assert directive, there are no assertions within the parentheses of
the predicate.

#:assert system ()

"file", line 1: missing tokens between parentheses

modifying typedef with "modifier"; only qualifiers allowed

4-86

Type: Warning Options: -Xt

You are applying a type modifier to a typedef name, which ANSI C
prohibits. ANSI C only permits you to modify a typedef with a type
qualifier (const, volatile). However, for compatibility, AT&T C
accepts the declaration and treats it as did previous AT&T C compilers.
Future releases will reject this declaration.

ANSI C and Programming Support Tools

Messages

typedef int INT;
unsigned INT i;

"file", line 2: warning: modifying typedef with "unsigned";
only qualifiers allowed

modulus by zero

Type: Warning, Error Options: all

The second operand of a % operator is zero. If the modulus operation is
part of a Uf or telif directive, the result is taken to be zero.

The diagnostic is a warning if the modulus is in executable code, an
error otherwise.

Uf 42 % 0
int i l;

tendif

"file", line 1: warning: modulus by zero

more than one character honored in character constant: constant

Type: Warning Options: all

A character constant has an integral value that derives from the charac
ter codes of the characters. If a character constant comprises more than
one character, the encoding of the additional characters depends on the
implementation. This warning alerts you that the encoding that the
preprocessing phase uses for the character constant constant is different
in this release of the AT&T C compiler from the one in previous
releases, which only honored the first character. (The encoding for char
acter constants you use in executable code is unchanged.)

C Compiler Diagnostics 4-87

Messages

#if 'ab' != ('b' * 256 + 'a')
terror unknown encoding
tendif

"file", line 1: warning: more than one character honored in
character constant: 'ab'

"*" must be followed by formal identifier in #define

Type: Error Options: all

The "string-ize" operator :It must be followed by the name of a formal
parameter in a function-like macro.

#define mac(a) :It + a

"file", line 1: ":/F" must be followed by formal identifier in
fdef ine

must have type "function-returning-unsigned": name

Type: Warning Options: all

The name that is a part of a :/Fpragma int_ to_ unsigned directive must
be an identifier whose type is function-returning-unsigned.

extern int f(int);
tpragrna int_to_unsigned f

"file", line 2: warning: must have type
"function-returning-unsigned": f

name in asm % line is not a formal: name

Type: Error Options: all

The identifier name that followed a storage class specifier in the % line of

4-88 ANSI C and Programming Support Tools

Messages

an enhanced asm function was not one of the formal parameters of the
function.

nested asm calls not now supported

Type: Error Options: all

The compiler does not now support calls to enhanced asm functions as
part of the argument expression for another enhanced asm function.

newline in character constant

Type: Error Options: all

You wrote a character constant that had no closing ' on the same line as
the beginning ' .

int i = 'a

"file", line 1: newline in character constant

newline in string literal

Type: Warning, Error Options: all

You wrote a string literal that had no closing " on the same line as the
beginning ". The diagnostic is a warning if the string literal is part of a
preprocessing directive (and the compiler provides the missing ") and
an error otherwise.

char *P = "abc

"file", line 1: newline in string literal

C Compiler Diagnostics 4-89

Messages

newline not last character in file

Type: Warning Options: all

Every non-empty source file and header must consist of complete lines.
This diagnostic warns that the last line of a file did not end with a new
line.

no actual for asm foonal: name

Type: Error Options: all

An enhanced asm function was called with fewer arguments than there
were parameters in the definition. Thus there was no actual argument
for parameter name.

no closing">" in "tinclude < ... "

Type: Error Options: all

A finclude directive that used the< >form of header omitted the clos
ing>.

tinclude <stdio.h

"file", line 1: warning: finclude < ... missing '>'

no file name after expansion

Type: Error Options: all

4-90

You used the form of #include directive that permits macro expansion
of its argument, but the resulting expansion left no tokens to be taken as
a file name.

ANSI C and Programming Support Tools

#define EMPTY
#include EMPTY

"file", line 2 : no file nane after expansion

no hex digits follow \x

Type: Warning Options: -xa, -Xe

Messages

The \x escape in character constants and string literals introduces a hex
adecimal character escape. The \x must be followed by at least one hex
adecimal digit.

char *cp = "\xz";

"file", line 1: warning: no hex digits follow \x

no macro replacement within a character constant

Type: Warning Options: -xa, -Xe

This message is the inverse of macro replacement within a charac
ter constant. It informs you that the macro replacement that was
done for -Xt mode is not being done in -xa or -Xt mode.

no macro replacement within a string literal

Type: Warning Options: -xa, -Xe

This message is the inverse of macro replacement within a string
literal. It informs you that the macro replacement that was done for
-Xt mode is not being done in -xa or -Xt mode.

C Compiler Diagnostics 4-91

Messages

no tokens after expansion

Type: Error Options: all

After macro expansion was applied to the expression in a Uine direc
tive, there were no tokens left to be interpreted as a line number.

#define EMPTY
Uine EMPTY

"file", line 2: no tokens after expansion

no tokens follow ":lf:pragma"

Type: Warning Options: -v

The compiler encountered a :lf:pragma directive that contained no other
tokens.

:lf:pragma

"file", line 1: warning: no tokens follow "fpragma"

no tokens following "fassert name ("

4-92

Type: Error Options: all

A use of the #assert directive is malformed. The assertions and the)
that should follow are missing.

fassert system(

"file", line 1: no tokens following "fassert name ("

ANSI C and Programming Support Tools

no tokens in #line directive

Type: Error Options: all

Messages

The rest of a Uine directive was empty; the line number and optional
file name were missing.

fline

"file", line 1: no tokens in #line directive

non-constant initializer: op "operator"

Type: Error Options: all

The initializer for an extern, static, or array object must be a
compile-time constant. The initializers for an automatic structure or
union object, if enclosed in { } , must also be compile-time constants.
operator is the operator whose operands could not be combined at com
pile time.

int j;
int k = j+l;

"file", line 2: non-constant initializer: op "+"

non-fonnal identifier follows "*" in #define

Type: Warning Options: all

The identifier that follows a f operator in a macro definition must be a
formal parameter of a function-like macro.

#define mac(a) "abc" f b

"file", line 1: non-fonnal identifier follows "f" in #define

C Compiler Diagnostics 4-93

Massages

non-integral case expression

Type: Error Options: all

The operand of a case statement must be an integral constant.

f(void){
int i = 1;
switch (i) {
case 5.0: ;

"file", line 4: non-integral case expression

non-unique member requires struct/union: name

4·94

Type: Error Options: all

The operand on the left side of a . operator was not a structure, union,
or a pointer to one, and member name was not unique among all struc
ture and union members that you have declared. You should only use
. with structures or unions, and the member should belong to the
structure or union corresponding to the left operand.

struct sl int x,y; };
struct s2 { int y,z; };
f(void) {

long *lp;
lp.y = 1;

"file", line 5: non-unique member requires struct/union object:
y

"file", line 5: left operand of " " nn.ist be struct/union object

ANSI C and Programming Support Tools

Messages

non-unique member requires struct/union pointer: name

Type: Error Options: all

This message diagnoses the same condition as the preceding one, but for
the -> operator.

null character in input

Type: Error Options: all

The compiler encountered a null character (a character with a character
code of zero).

null dimension: name

Type: Warning, Error Options: all

A dimension of an array is null in a context where that is prohibited.
The diagnostic is a warning if the offending dimension is outermost and
an error otherwise.

int ia[4] [];
struct s { int x, y[]; };
inti= sizeof(int []);

"file", line 1: null dimension: ia
"file", line 2: warning: null dimension: y
"file", line 3: warning: null dimension: sizeof ()

number expected

Type: Error Options: all

The compiler did not find a number where it expected to find one in a
Uf or telif directive.

C Compiler Diagnostics 4-95

Messages

tif 1 +
int i 1;

tend.if

"file", line 1: number expected

old-style declaration hides prototype declaration: name

Type: Warning Options: -v

You redeclared function name in an inner scope. The outer declaration
was a function prototype declaration, but the inner one lacks parameter
information. By ANSI C's scoping rules, the parameter information is
hidden and the automatic conversions of types that the prototype would
have provided are suppressed.

extern double sin(double);
f(void) {

extem double sin() ;
double d;
d = sin (1) ; I* Note : no conversion to double! *I

"file", line 3: warning: old-style declaration hides prototype
declaration: sin

"file", line 5: warning: argument does not match remembered
type: arg #1

old-style declaration; add "int"

4-96

Type: Warning Options: all

Objects and functions that are declared at file scope must have a storage
class or type specifier. You will get this warning if you omit both.

ANSI C and Programming Support Tools

Messages

i;
f(void);

"file", line 1: warning: old-style declaration; add "int"
"file", line 2: warning: old-style declaration; add "int"

only one storage class allowed

Type: Error Options: all

You specified more than one storage class in a declaration.

f(void) {
register auto i;

"file", line 2: only one storage class allowed

only qualifiers allowed after *
Type: Error Options: all

You may only specify the const or volatile type qualifiers after a * in
a declaration.

int * const p;
int * unsigned q;

"file", line 2: only qualifiers allowed after *

only "register" valid as formal parameter storage class

Type: Error Options: all

You may specify a storage class specifier in a function prototype
declaration, but only register is permitted.

C Compiler Diagnostics 4-97

Messages

int f(

) ;

register int x,
auto int y

"file", line 3: only "register" valid as fo:cmal parameter
storage class

operand cannot have void type: op "operator"

Type: Error Options: all

One of the operands of operator has void type.

f(void){
void v (void) ;
int i = v();

"file", line 3: operand cannot have void type: op "="
"file", line 3: assiqnm.ent type mismatch

operand must be modifiable !value: op "operator"

4-98

Type: Error Options: all

The operand of operator must be a modifiable lvalue, but it wasn't.

f(void) {
int i = -3;

"file", line 2: operand must be modifiable !value: op"-"

ANSI C and Programming Support Tools

j

Messages

operand treated as unsigned: constant

Type: Warning Options: -Xt

An operand you used in a #if or #elif directive has a value greater
than LONG_MAX (2147483647) but has no unsigned modifier suffix (u or
U). Previous releases of AT&T C treated such constants as signed quan
tities which, because of their values, actually became negative. ANSI C
treats such constants as unsigned long integers, which may affect their
behavior in expressions. This diagnostic is a transition aid that informs
you that the value is being treated differently from before.

#if 2147483648 > 0
char *mesg = "ANSI C-style";

#endif

"file", line 1: warning: operand treated as unsigned:
2147483648

operands have incompatible pointer types: op "operator"

Type: Warning Options: all

You have applied operator to pointers to different types.

f(void) {
char *cp;
int *ip;
if (ip < cp)

"file", line 4: warning: operands have incompatible pointer
types: op "<"

C Compiler Diagnostics 4-99

Messages

operands have incompatible types: op "operator"

Type: Error Options: all

The types of the operands for operand are unsuitable for that kind of
operator.

f(void) {
char *cp;
int *ip;
void *VP = ip + ep;

"file", line 4: operands have incompatible types: op "+"

operands must have category type: op "operator"

Type: Error Options: all

The operands for operator do not fall into the appropriate category for
that operator. category may be arithmetic, integral, or scalar.

f(void) {
int ia[S];
int *ip = ia/4;

"file", line 3: operands must have arithmetic type: op "/"

out of scope extern and prior uses redeclared as static: name

4-100

Type: Warning Options: -Xe, -v

You declared name as extern in a block that has gone out of scope.
Then you declared name again, this time as static. The AT&T C com
piler treats the object or function as if it were static, and all references,
including ones earlier in the source file, apply to the static version.

ANSI C and Programming Support Tools

Messages

f(void) {
extern int i;

static int i;

"file", line 4 : warning: out of scope extern and prior uses
redeclared as static: i

overflow in hex escape

Type: Warning Options: all

In a hexadecimal escape (\x) in a character constant or string literal, the
accumulated value for the escape grew too large. Only the low-order 32
bits of value are retained.

inti= '\xabcdefedc';

"file", line 1: warning: \x is ANSI C hex escape
"file", line 1: warning: overflow in hex escape
"file", line 1: warning: character escape does not fit in

character

parameter mismatch: ndecl declared, ndef defined

Type: Warning Options: all

A function prototype declaration and an old-style definition of the func
tion disagree in the number of parameters. The declaration had ndecl
parameters, while the definition had ndef.

int f (int);
int f (i, j)
int i, j;
{}

"file", line 4: warning: parameter mismatch: 1 declared,
2 defined

C Compiler Diagnostics 4-101

Massages

parameter not in identifier list: name

Type: Error Options: all

Variable name appears in an old-style function definition's parameter
declarations, but it does not appear in the parameter identifier list.

f(a,b)
int i;
{}

"file", line 2: parameter not in identifier list: i

parameter redeclared: name

Type: Error Options: all

You have used name more than once as the name for a parameter in a
function definition.

int f(int i, int i) { }
int g(i, j)
int i;
int i;
{ }

"file", line 1: parameter redeclared: i
"file", line 4 : parameter redeclared: i

preprocessing a .i file

Type: Warning Options: all

4-102

The source file is a . i file, a file that has already been preprocessed, and
the -E cc option was selected. The compiler will simply copy the input
file to the standard output without further processing.

ANSI C and Programming Support Tools

Messages

prototype mismatch: n1 arg[s] passed, n2 expected

Type: Error Options: all

You called a function for which there is a function prototype declaration
in scope, and the number of arguments in the call, n2, did not match the
number of parameters in the declaration, n1 .

int f (int);
g(void) {

f(l,2);

"file", line 3: prototype mismatch: 2 args passed, 1 expected

return value type mismatch

Type: Error Options: all

You are attempting to return a value from a function that cannot be
converted to the return-type of the function.

f(void) {
struct s { int x; } st;
return (st) ;

"file", line 3: return value type mismatch

semantics of "operator" change in ANSI C; use explicit cast

Type: Warning Options: all

The type promotion rules for ANSI C are slightly different from those of
previous versions of AT&T C. In the current release the default
behavior is to duplicate the previous rules. In future releases the
default will be to use ANSI C rules. You may obtain the ANSI C
interpretation by using the -Xa option for the cc command.

C Compiler Diagnostics 4-103

Messages

4-104

Previous AT&T C type promotion rules were "unsigned-preserving." If
one of the operands of an expression was of unsigned type, the
operands were promoted to a common unsigned type before the opera
tion was performed.

ANSI C uses "value-preserving" type promotion rules. An unsigned
type is promoted to a signed type if all its values may be represented in
the signed type.

The different type promotion rules may lead to different program
behavior for the operators that are affected by the unsigned-ness of their
operands:

• The division operators: /, /=, %, %=.

• The right shift operators: >>, >>=.

• The relational operators: <, <=, >, >=.

The warning message tells you that your program contains an expres
sion in which the behavior of operator will change in the future. You
can guarantee the behavior you want by inserting an explicit cast in the
expression.

f(void) {
unsigned char uc;
int i;
/* was unsigned divide in AT&T C, signed in ANSI C */
i /= uc;

"file", line 5: warning: semantics of "/=" change in ANSI C;
use explicit cast

You can get the same behavior as in previous versions of AT&T C by
adding an explicit cast:

ANSI C and Programming Support Tools

f(void){
unsigned char uc;
int i;

Messages

/* was unsigned divide in AT&T C, signed in ANSI C *I
i /= (unsigned int) uc;

shift count negative or too big: op n

Type: Warning Options: all

The compiler determined that the shift count (the right operand) for
shift operator op is either negative or bigger than the size of the operand
being shifted.

f(){
short s;
s <<= 25;

"file", line 3: warning: shift count negative or too big:
<<= 25

statement not reached

Type: Waming Options: all

This statement in your program cannot be reached because of goto,
break, continue, or return statements preceding it.

f(void) {
int i;
return i;
i ... 4;

"file", line 4: warning: statement not reached

C Compiler Diagnostics 4-105

Messages

static function called but not defined: name()

Type: Warning Options: all

The program calls function name, which has been declared static, but
no definition of name appears in the translation unit. (The line number
that is displayed in the message is one more than the number of lines in
the file, because this condition can be diagnosed only after the entire
translation unit has been seen.)

static int statfunc(int);
void
f(){

inti= statfunc(4);

"file", line 7: warning: static function called but not
defined: statfunc()

static redeclares external: name

4-106

Type: Warning Options: all

You reused name as the name of a static object or function after hav
ing used it in the same block as the name of an extern object or function.
The version of name that remains visible is the static version.

f(void) {
extern int i;
static int i;

"file", line 3: warning: static redeclares external: i

ANSI C and Programming Support Tools

Messages

storage class after type is obsolescent

Type: Warning Options: -v

According to the ANSI C standard, writing declarations in which the
storage class specifier is not first is "obsolescent."

int static i;

"file", line 1: warning: storage class after type is
obsolescent

storage class for function must be static or extern

Type: Warning Options: all

You used an inappropriate storage class specifier for a function declara
tion or definition. Only extern and static may be used, or the
storage class may be omitted. The specifier is ignored.

f(void){
auto g (void) ;

"file", line 2: warning: storage class for function must be
static or extern

string literal expected after t <number>

Type: Warning Options: all

The f line information directive takes an optional second token, a file
name. If present, it must be in the form of a string literal.

C Compiler Diagnostics 4-107

Messages

* 1 x.c

"file", line 1: warning: string literal expected after
t <number>

"file", line 1: warning: tokens ignored at end of directive
line

string literal expected after #file

Type: Error Options: all

The Hile directive (which is reserved for the compilation system) is
used for internal communication between preprocessing and compila
tion phases. A string literal operand is expected as the operand.

string literal expected after #ident

Type: Error Options: all

A #ident directive must be followed by a normal (not wide character)
string literal.

tident no-string

"file", line 1: string literal expected after #ident

string literal expected after #line <nurnber>

4-108

Type: Warning Options: all

This diagnostic is similar to string literal expected after #
<number>, except that it applies to the standard #line directive.

ANSI C and Programming Support Tools

Messages

string literal must be sole array initializer

Type: Warning Options: all

You may not initialize a character array with both a string literal and
other values in the same initialization.

char ca[]= { "abc", 'd' };

"file", line 1: warning: string literal must be sole array
initializer

struct/union has no named members

Type: Warning Options: all

You have declared a structure or union in which none of the members is
named.

struct s { int :4; char :O; };

"file", line 1: warning: struct/union has no named members

struct/union-valued initializer required

Type: Error Options: all

ANSI Callows you to initialize an automatic structure or union, but the
initializer must have the same type as the object being initialized.

f(void) {
int i;
struct s { int x; } st i;

"file", line 3: warning: {}-enclosed initializer required
"file", line 3: struct/union-valued initializer required

C Compiler Diagnostics 4-109

Messages

switch expression must have integral type

Type: Warning, Error Option.s: all

You wrote a switch statement in which the controlling expression did
not have integral type. The message is a warning if the invalid type is a
floating-point type and an error otherwise. A floating-point switch
expression is converted to int.

f(void) {
float x;
switch (x)
case 4: ;

"file", line 3: warning: switch expression must have integral
type

syntax error before or at : token

Type: Error Option.s: all

This is an all-purpose diagnostic that means you have juxtaposed two
(or more) language tokens inappropriately. The compiler shows you the
token at which the error was detected.

f(void) {
int i = 3+;

"file", line 2: syntax error before or at:

syn.tax error in macro parameters

4-110

Type: Error Option.s: all

The macro parameter list part of a function-like macro definition is mal
formed. The list must be a comma-separated list of identifiers and was
not.

ANSI C and Programming Support Tools

Messages

tdefine mac(a,b,) ab

"file", line 1: syntax error in macro parameters

syntax error, probably missing",", ";"or "="

Type: Error Options: all

You wrote a declaration that looked like a function definition, except
that the type of the symbol declared was not "function returning." You
probably left out a ; or =.

int i
int j;

"file", line 2: syntax error, probably missing ", ",
"file", line 2: parameter not in identifier list: j
"file", line 4: syntax error before or at: <EOF>

syntax error: empty declaration

Type: Warning Options: all

II• II , or "="

You wrote a null statement at file scope. This looks like an empty
declaration statement. AT&T C permitted this previously, but ANSI C
does not.

int i;;

"file", line 1: warning: syntax error: empty declaration

syntax error: " & ••• " invalid

Type: Warning Options: -Xe

You wrote & . • • in a program that was compiled with the -Xe option.
& ••• is invalid ANSI C syntax. You should not use this notation expli
citly.

C Complier Diagnostics 4-111

Messages

syntax requires ";" after last struct/union member

Type: Warning Options: all

You omitted the ; that C syntax requires after the last structure or
union member in a structure or union declaration.

struct s { int x } ;

"file", line 1: warning: syntax requires ";" after last
struct/union mamber

(type) tag redeclared: name

Type: Error Options: all

You have redeclared tag name that was originally a type (struct, union,
or enum) tag.

struct q { int ml, m2; } ;
enum q { el, e2 };

"file", line 2: (struct) tag redeclared: q

token not allowed in directive: token

4·112

Type: Error Options: all

You used a token in a #if or felif directive that is neither a valid
operator for constant expressions, nor a valid integer constant.

#if 1 > "l"
int i = l;

fendif

"file", line 1: token not allowed in directive: "1"

ANSI C and Programming Support Tools

Messages

token-less macro argument

Type: Warning Options: -Xe

The actual argument to a preprocessor macro consisted of no tokens.
The ANSI C standard regards this condition as undefined. The AT&T C
compiler treats the empty list of tokens as an empty argument, and,
under the -Xe mode, it also issues this warning.

#define rn(x) x+3
int i = m();

"file", line 2: warning: token-less macro argument

tokens after -A- are ignored

Type: Warning Options: all

In the -A- option to the cc command, there were additional tokens
adjacent to the option. They are ignored.

cc -A-extra -c x.c

conunand line: warning: tokens after -A- are ignored

tokens expected after "# identifier ("

Type: Error Options: all

When the # operator is used in a Uf or #elif directive to select a
predicate instead of a like-named macro, the predicate must be followed
by a parenthesized list of tokens.

#if #system(
char *system= "unix";

#endif

"file", line 1: tokens expected after "# identifier ("

C Compiler Diagnostics 4-113

Messages

tokens expected after"("

Type: Error Options: all

In a #unassert directive, the assertion(s) and closing) after the predi
cate \Vere missing.

#unassert system(

"file", line 1 : tokens expected after " ("

tokens expected between parentheses

Type: Error Options: all

The name of an assertion of a predicate to test \Vas omitted in an f:if or
#elif directive.

Uf #system()
char *sysname = H??H, . . '

#endif

"file", line 1: tokens expected between parentheses

tokens ignored after "-U{identifier}"

4-114

Type: Warning Options: all

In the command line -u option, there \Vere tokens follo\Ving the name of
the macro to be undefined.

cc -Uunix,u3b2 -c x.c

command line: warning: tokens ignored after "-U{identifier}"

ANSI C and Programming Support Tools

I

Messages

tokens ignored at end of directive line

Type: Warning Options: all

A directive line contains extra tokens that are not expected as part of the
directive.

tundef a b /* can only undefine one */

"file", line 1: warning: tokens ignored at end of directive
line

too many array initializers

Type: Error Options: all

You provided more initializers for an array than the array can hold.

int ia[3] = { 1, 2, 3, 4 };

"file", line 1: too many array initializers

too many #else's

Type: Warning Options: all

The code contained more that one telse directive in a preprocessing if
section. All telse directives after the first are taken to be false.

f:ifdef ONE
int i 1;

telse
int i 2;

telse
int i 3;

tendif

"file", line 5: warning: too many #else's

C Compiler Diagnostics 4-115

Messages

too many errors

Type: Fatal Options: all

The compiler encountered too many errors to make further processing
sensible. Rather than produce further diagnostics, the compiler exits.

too many initializers for scalar

Type: Error Options: all

A { }-bracketed initialization for a scalar contains more than one value.

int i = { 1, 2 };

"file", line 1 : too many initializers for scalar

too many struct/union initializers

Type: Error Options: all

You have provided too many initializers for a structure or union.

struct s { int x,y; } st = { 1,2,3 };

"file", line 1: too many struct/union initializers

trailing"," prohibited in enum declaration

4-116

Type: Warning Options: -Xe, -v

You supplied an extra comma at the end of an enumeration type
declaration. The extra comma is prohibited by the syntax.

enum e { el, e2, };

"file", line 1: warning: trailing
declaration

II H , prohibited in enum

ANSI C and Programming Support Tools

• '

Messages

trigraph sequence replaced

Type: Warning Options: -Xt

ANSI C introduces the notion of trigraphs, three-character sequences
that stand for a single character. All such sequences begin with??.
Because sequences that are interpreted as trigraphs may appear in exist
ing code, the AT&T C compiler produces a transitional diagnostic when
such sequences are encountered.

char *surprise = "this is a trigraph??!";

"file", line 1: warning: trigraph sequence replaced

type does not match prototype: name

Type: Warning Options: all

You provided a function prototype declaration for a function, but used
an old-style definition. The type for parameter name in that definition is
incompatible with the type you used in the prototype declaration.

int f(char *) ;
int f(p)
int *p;
{}

"file", line 4: warning: type does not match prototype: p

The following example shows an especially confusing instance of this
diagnostic.

int f (char) ;
int f (C)

char c;
{}

"file", line 3: warning: identifier redeclared: f
"file", line· 4: warning: type does not match prototype: c

C Compiler Diagnostics 4-117

Messages

f has an old-style definition. For compatibility reasons, f's arguments
must therefore be promoted according to the default argument promo-
tions, which is how they were promoted before the existence of function• j
prototypes. Therefore the value that must actually be passed to f is an I
int, although the function will only use the char part of the value. The
diagnostic, then, identifies the conflict between the int that the function
expects and the char that the function prototype would (conceptually)
cause to be passed.

There are two ways to fix the conflict:

1. Change the function prototype to read int f (int) ;

2. Define f with a function prototype definition:

int f (char);
int f (char c)
{}

typedef already qualified with "qualifier"

Type: Warning Options: all

A type specifier includes a typedef and an explicit type qualifier,
qualifier. The typedef already included qualifier when it was declared.

typedef volatile int VOL;
volatile VOL v;

"file", line 2: warning: typedef already qualified with
"volatile"

typedef declares no type name

Type: Warning Options: all

4-118

In a declaration with storage class typedef, no type name was actually
declared. This is probably a programming error.

ANSI C and Programming Support Tools

Messages

typedef struct s { int x; } ;

"file", line 1: warning: typedef declares no type name

typedef redeclared: name

Type: Warning Options: all

You have declared typedef name more than once. The later declaration
has an identical type to the first.

typedef int i;
typedef int i;

"file", line 2: warning: typedef redeclared: i

typedef redeclares external: name

Type: Warning Options: all

You declared typedef name, but there is an extern of the same name in
the same block. The typedef hides the external.

f(void) {
extern int INT;
typedef int INT;

"file", line 3: warning: typedef redeclares external: INT

"typedef" valid only for function declaration

Type: Warning Options: all

A function definition may not have the typedef storage class. It is
ignored here.

C Compiler Diagnostics 4-119

Messages

typedef int f(void) {}

"file", line 1: warning: "typedef" valid only for function
declaration

unacceptable operand for unary &

Type: Error Options: all

You attempted to take the address of something whose address cannot
be taken.

f(void) {
int *ip = &g();

"file", line 2: unacceptable operand for unary &

tunassert requires an identifier token

Type: Error Options: all

The tunassert directive must name a predicate to "un-assert."

tunassert 5

"file", line 1: tunassert requires an identifier token

undefined label: label

Type: Error Options: all

4-120

You wrote a goto in the current function, but you never defined the tar
get label anywhere within the function.

ANSI C and Programming Support Tools

f(void) {
goto L;

"file", line 3: undefined label: L

undefined struct/union member: name

Type: Error Options: all

Messages

Your program made reference to a structure or union member, name,
that has not been declared as part of any structure.

struct s { int x; };
f(void) {

struct s q;
q.y = 1;

"file", line 4: undefined struct/union member: y

undefined symbol: name

Type: Error Options: all

You referred to symbol name for which there is no declaration in scope.

f(void) {
g(i);

"file", line 2: undefined symbol: i

undefining _STDC_

Type: Warning Options: -Xt

ANSI C prohibits undefining the predefined symbol _STDC_.

C Compiler Diagnostics 4-121

Messages

However, this release of AT&T C permits you to do so in transition
mode (only). You may want to use this feature to test C code that you
have written to work in both an ANSI C and non-ANSI C environment.

For example, suppose you have C code that checks _STDC_, declaring
function prototype declarations if it is defined, and old-style function
declarations (or definitions) if not. Because the AT&T C compiler
predefines _STDC_, you would ordinarily be unable to check the old
style code, and you would have to run the code through another (non
ANSI C) compiler. By undefining _STDC_ (usually on the command
line), you can use the AT&T C compiler to do the checking. This diag
nostic tells you, as required, that you are violating ANSI C constraints.

.fundef STDC /* usually -U_STDC_ on cc line */

.fifdef STDC
int
myfunc(const char *argl, int arg2)
#else /* non-ANSI C case */
int
myfunc(argl,arg2)
char *argl, /* oops */
int arg2;
.fendif
{

}

"file", line 1: warning: undefining STDC
"file", line 10: syntax error before or at: int
"file", line 12: syntax error before or at: {

unexpected"("

Type: Error Options: all

A misplaced (was encountered in a Uf or telif directive.

4-122 ANSI C and Programming Support Tools

Uf 1 (
int i 1;

tend.if

"file", line 1: unexpected "("

unexpected")"

Type: Error Options: all

A misplaced) was encountered in a hf or #elif directive.

tif) 1
int i = 1;

#end.if

"file", line 1: unexpected ") "

unexpected character in asrn % line: 'c'

Type: Error Options: all

Messages

In the % specification line of an enhanced asrn function, the compiler
expected to see an alphabetic character that begins a storage class
specifier. Instead it encountered the character c.

unknown operand size: op "operator"

Type: Error Options: all

You applied operator++,--, or= to an operand whose size is unknown.
The operand is usually a pointer to a structure or union whose members
have not been declared.

C Compiler Diagnostics 4-123

Messages

f(void) {
struct s *sp;
sp++;

"file", line 3: unknown operand size: op "++"

unnamed type member

Type: Warning Options: all

In your type declaration, you failed to give a member a name.

union s { int; char c; };

"file", line 1: warning: unnamed union member

unreachable case label : value

Type: Warning Options: all

The expression you specified in a case statement has a value outside
the range of the type of the controlling expression of the enclosing
switch statement. Therefore the case label can never be reached. In the
message, value is represented as a hexadecimal value if the case expres
sion is unsigned, decimal if it is signed.

f () {
unsigned char uc;

switch(uc) {
case 256:

"file", line 5: warning: unreachable case label: 256

4-124 ANSI C and Programming Support Tools

Massages

unrecognized #pragma ignored: pragma

Type: Warning Options: -v

Because tpragma directives are implementation-specific, when the -v
compilation flag is set, the AT&T C compiler warns about any such
directives that it is ignoring. The AT&T C compiler does not recognize
tpragma pragma.

tpragma list

"file", line 1: warning: unrecognized tpragma ignored: list

use "double" instead of "long float"

Type: Warning Options: all

You declared an object or function to be long float, which was a
synonym for double. ANSI C does not permit long float, although
AT&T C accepts it as a transition aid.

long float f = 1.0;

"file", line 1: warning: use "double" instead of "long float"

useless declaration

Type: Warning Options: all

ANSI C requires that every declaration actually declare something, such
as

• a declarator,

• a structure or union tag,

• structure or union members, or

C Compiler Diagnostics 4-125

Messages

• enumeration constants.

You wrote a declaration that provided no information to the compiler.

int; /* no identifier */
enum e { el, e2 }; /* introduces enum e */
enum e; /* no new information */

"file", line 1: warning: useless declaration
"file", line 3: warning: useless declaration

using out of scope declaration: name

Type: Warning Options: all

You previously declared name in a scope that is no longer active. In
some ANSI C implementations, referring to such an object would yield
an error; calling such a function would be interpreted as calling a func
tion returning int. AT&T C remembers the previous declaration and
uses it. This warning informs you what the compiler has done.

f(void) {
extern int i;
double sin(double);

g(void) {
doubled= sin(l.5);
i = 1;

"file", line 6: warning: using out of scope declaration: sin
"file", line 7: warning: using out of scope declaration: i

void expressions may not be arguments: arg fn

4-126

Type: Error Options: all

A function call contains an argument for which the expression type is
void.

ANSI C and Programming Support Tools

f(void){
void v (void) ;
g(v ());

Messages

"file", line 3: void expressions may not be arguments: arg fl

void function cannot return value

Type: Warning Options: all

You wrote a return statement with an expression, but the declared type
of the function is void.

void v(void){-
return 3;

"file", line 2: void function cannot return value

"void" must be sole parameter

Type: Error Options: all

Only the first parameter in a function prototype declaration may have
void type, and it must be the only parameter.

int f(int,void);

"file", line 1: "void" must be sole parameter

void parameter cannot have name: name

Type: Error Options: all

You have declared a parameter name in a function prototype declaration
that has void type.

C Compiler Diagnostics 4-127

Messages

int f(void v);

"file", line 1: void parameter cannot have name: v

\x is ANSI C hex escape

Type: Warning Options: -Xt

In earlier AT&T C products, '\x' was equivalent to 'x'. However, in
ANSI C, '\x' introduces a hexadecimal character escape. This diagnos
tic warns of the new meaning.

If valid hexadecimal characters follow '\x', they are interpreted as part
of the new escape sequence. Otherwise ' \x' is treated as it was in pre
vious AT&T C compilers.

inti= '\x';

"file", line 1: warning: \x is ANSI C hex escape

zero or negative subscript

4-128

Type: Warning, Error Options: all

The size in an array declaration is zero or negative. The diagnostic is a
warning if the size is zero and an error otherwise.

int ia[-5];
int ib[O];

"file", line 1: zero or negative subscript
"file", line 2: warning: zero or negative subscript

ANSI C and Programming Support Tools

zero-sized struct/union

Type: Error Options: all

You declared a structure or union with size of zero.

struct s { int ia[O]; };

"file", line 1: warning: zero or negative subscript
"file", line 1: zero-sized struct/union

C Complier Diagnostics

Messages

4-129

Operator Names

This section lists internal operator names that the compiler may use in error
messages with definitions of these names.

,o:e

ARG

AUTO

CALL

CBRANCH

CONV

FCON

ICON

NAME

PARAM

REG

RETURN

STAR

STRING

U&

u
UCALL

UGE

UGT

4-130

The C "comma operator'' (as distinct from the , that is used to
separate function arguments).

A function argument. That is, a value passed to a function.

An automatic variable that has not been allocated to a register.

A function call with arguments.

A conditional branch. (This may be part of an if or loop state
ment.)

A conversion. It may have been explicit, in the form of a cast,
or implicit, in the semantics of a C statement.

A floating-point constant.

An integer or address constant.

An object or function with extern or static storage class.

A function parameter. That is, a value that is received by a
function.

An object that has been allocated to a register.

The operation that corresponds to a return statement.

The indirection operator *,as in *P·

A string literal.

The "take address of" operator (as distinct from the bit-wise
AND operation).

The arithmetic negation operator (as distinct from subtraction).

A function call with no arguments.

An unsigned >= comparison.

An unsigned > comparison.

ANSI C and Programming Support Tools

ULE

ULT

UPLUS

An unsigned <= comparison.

An unsigned < comparison.

The ANSI C "unary+" operator.

C Compiler Diagnostics

Operator Names

4-131

Other Error Messages

The following messages may appear at compile time, but they are not generated
by the compiler. Messages beginning with Assembler: are produced by as.
Messages beginning with ld: are generated by ld, the link editor. Note that
the format of the messages varies, and some of the messages are displayed over
several lines.

Assembler: file.c
aline n (cline n) trouble writing; probably out of

temp-file space

The file system may be low on space, or the temporary file or output file
exceeded the current ulimit.

Assembler: file.c aline n (cline n)
Cannot open Output File filename

The directory containing the source file is unwritable, or
the file system containing source file is mounted read-only.

ld: Symbol name in file2.o is multiply defined. First defined in file1.o

A symbol name was defined more than once.

undefined
symbol

sym1

first referenced
in file

file1.o

ld fatal: Symbol referencing errors. No output written to a.out

A referenced symbol was not found. Compilation terminates.

4·132 ANSI C and Programming Support Tools

5 lint

Introduction
• Options and Directives
• lint and the Compiler
• Message Formats

What lint Does
Consistency Checks
Portability Checks
Suspicious Constructs

Usage
lint Libraries
lint Filters
Options and Directives Listed

lint-specific Messages

Table of Contents

5-1
5-1
5-2
5-2

5-3
5-3
5-4
5-6

5-8
5-9
5-10
5-11

5-17

Introduction

lint checks for code constructs that may cause your C program not to compile,
or to execute with unexpected results. lint issues every error and warning
message produced by the C compiler. It also issues "lint-specific" warnings
about potential bugs and portability problems.

In particular, lint compensates for separate and independent compilation in C
by flagging inconsistencies in definition and use across files, including any
libraries you have used. In a large project environment especially, where the
same function may be used by different programmers in hundreds of separate
modules of code, lint can help discover bugs that otherwise might be difficult
to find. A function called with one less argument than expected, for example,
looks at the stack for a value the call has never pushed, with results correct in
one condition, incorrect in another, depending on whatever happens to be in
memory at that stack location. By identifying dependencies like this one, and
dependencies on machine architecture as well, lint can improve the reliability
of code run on your machine or someone else's.

Options and Directives

lint is a static analyzer, which means that it cannot evaluate the run-time
consequences of the dependencies it detects. Certain programs, for instance,
may contain hundreds of unreachable break statements, of little importance,
about which you typically can do nothing, and which lint will faithfully flag
nevertheless. That's where lint's command line options and directives - spe
cial comments embedded in the source text - come in. For the example we've
cited here,

• you can invoke lint with the -b option to suppress all complaints about
unreachable break statements;

• for a finer-grained control, you can precede any unreachable statement
with the comment /* NOTREACHED *I to suppress the diagnostic for that
statement.

The "Usage" section below discusses options and directives in greater detail and
introduces the lint filter technique, which lets you tailor lint's behavior even
more finely to your project's needs. It also shows you how to use lint
libraries to check your program for compatibility with the library functions you
have called in it.

lint 5-1

Introduction

lint and the Compiler
Of the nearly five hundred diagnostics issued by lint, this chapter describes
only the much smaller subset of lint-specific warnings: those not also issued
by the compiler. The one exception to this rule applies to diagnostics issued
both by lint and the compiler that are capable of being suppressed only by
lint options. For the text and examples of all messages issued exclusively by
lint or subject exclusively to its options, refer to the "lint-specific Messages"
section at the end of this chapter. For the messages also issued by the compiler,
consult the "C Compiler Diagnostics" chapter of the Guide.

Message Formats
Most of lint's messages are simple, one-line statements printed for each
occurrence of the problem they diagnose. Errors detected in included files are
reported multiply by the compiler but only once by lint, no matter how many
times the file is included in other source files. Compound messages are issued
for inconsistencies across files and, in a few cases, for problems within them as
well. A single message describes every occurrence of the problem in the file or
files being checked. When use of a lint filter (see the "Usage" section below)
requires that a message be printed for each occurrence, compound diagnostics
can be converted to the simple type by invoking lint with the -s option.

5-2 ANSI C and Programming Support Tools

• .

What lint Does

lint-specific diagnostics are issued for three broad categories of conditions:
inconsistent use, nonportable code, and suspicious constructs. In this section,
we'll review examples of lint's behavior in each of these areas, and suggest
possible responses to the issues they raise.

Consistency Checks

Inconsistent use of variables, arguments, and functions is checked within files as
well as across them. Generally speaking, the same checks are performed for
prototype uses, declarations, and parameters as for old-style functions. (If your
program does not use function prototypes, lint will check the number and
types of parameters in each call to a function more strictly than the compiler.)
lint also identifies mismatches of conversion specifications and arguments in
[fs]printf () and [fs] scanf () control strings. Examples:

lint

• Within files, lint flags nonvoid functions that "fall off the bottom"
without returning a value to the invoking function. In the past, program
mers often indicated that a function was not meant to return a value by
omitting the return type: fun() { } . That convention means nothing to
the compiler, which regards fun() as having the return type int.
Declare the function with the return type void to eliminate the problem.

• Across files, lint detects cases where a nonvoid function does not return
a value, yet is used for its value in an expression, and the opposite prob
lem, a function returning a value that is sometimes or always ignored in
subsequent calls. When the value is always ignored, it may indicate an
inefficiency in the function definition. When it is sometimes ignored, it's
probably bad style (typically, not testing for error conditions). If you do
not need to check the return values of string functions like strcat () ,
strcpy (), and sprintf (), or output functions like printf () and
putchar () , cast the offending call(s) to void.

• lint identifies variables or functions that are declared but not used or
defined; used but not defined; or defined but not used. That means that
when lint is applied to some, but not all files of a collection to be loaded
together, it will complain about functions and variables declared in those
files but defined or used elsewhere; used there but defined elsewhere; or
defined there and used elsewhere. Invoke the -x option to suppress the
former complaint, -u to suppress the latter two.

5-3

What lint Does

Portability Checks

Some nonportable code is flagged by lint in its default behavior, and a few
more cases are diagnosed when lint is invoked with -p and/ or -Xe. The ~
latter tells lint to check for constructs that do not conform to the ANSI C stan-
dard. For the messages issued under -p and -Xe, check the "Usage" section
below. Examples:

5-4

• In some C language implementations, character variables that are not
explicitly declared signed or unsigned are treated as signed quantities
with a range typically from -128 to 127. In other implementations, they
are treated as nonnegative quantities with a range typically from 0 to 255.
So the test

char c;

c = getchar () ;
if (c == EOF) ...

where EOF has the value -1, will always fail on machines where character
variables take on nonnegative values. One of lint's -p checks will flag
any comparison that implies a "plain" char may have a negative value.
Note, however, that declaring c a signed char in the above example
eliminates the diagnostic, not the problem. That's because get char ()
must return all possible characters and a distinct EOF value, so a char
cannot store its value. We cite this example, perhaps the most common
one arising from implementation-defined sign-extension, to show how a
thoughtful application of lint's portability option can help you discover
bugs not related to portability. In any case, declare c as an int.

• A similar issue arises with bit-fields. When constant values are assigned to
bit-fields, the field may be too small to hold the value. On a machine that
treats bit-fields of type int as unsigned quantities, the values allowed for
int x: 3 range from 0 to 7, whereas on machines that treat them as
signed quantities they range from -4 to 3. However unintuitive it may
seem, a three-bit field declared type int cannot hold the value 4 on the
latter machines. lint invoked with -p flags all bit-field types other than
unsigned int or signed int. Note that these are the only portable bit
field types. AT&T C supports int, char, short, and long bit-field types
that may be unsigned, signed, or "plain." It also supports the enum
bit-field type.

ANSI C and Programming Support Tools

lint

What lint Does

• Bugs can arise when a larger-sized type is assigned to a smaller-sized
type. If significant bits are truncated, accuracy is lost:

short s;
long l;
s = l;

lint flags all such assignments by default; the diagnostic can be
suppressed by invoking the -a option. Bear in mind that you may be
suppressing other diagnostics when you invoke lint with this or any
other option. Check the list in the "Usage" section below for the options
that suppress more than one diagnostic.

• A cast of a pointer to one object type to a pointer to an object type with
stricter alignment requirements may not be portable. lint flags

int *fun(y)
char *Yi

return(int *)y;

because, on most machines, an int cannot start on an arbitrary byte
boundary, whereas a char can. You can suppress the diagnostic by
invoking lint with -h, although, again, you may be disabling other mes
sages. Better still, eliminate the problem by using the generic pointer
void *·

• ANSI C leaves the order of evaluation of complicated expressions
undefined. What this means is that when function calls, nested assign
ment statements, or the increment and decrement operators cause side
effects - when a variable is changed as a byproduct of the evaluation of
an expression - the order in which the side effects take place is highly
machine dependent. By default, lint flags any variable changed by a
side effect and used elsewhere in the same expression:

int a[lO];
main()
{

int i = l;
a[i++] = i;

Note that in this example the value of a [1] may be 1 if one compiler is

5-5

What lint Does

used, 2 if another. The bitwise logical operator & can give rise to this
diagnostic when it is mistakenly used in place of the logical operator &&:

if ((c = getchar()) != EOF & c != '0')

Suspicious Constructs

lint flags a miscellany of legal constructs that may not represent what the pro
grammer intended. Examples:

5-6

• An unsigned variable always has a nonnegative value. So the test

unsigned x;
if (x < 0) ...

will always fail. Whereas the test

unsigned x;
if (x > 0)

is equivalent to

if (x != 0)

which may not be the intended action. lint flags suspicious comparis
ons of unsigned variables with negative constants or 0. To compare an
unsigned variable to the bit pattern of a negative number, cast it to
unsigned:

if (u == (unsigned) -1) ...

Or use the U suffix:

if (u == -lU)

• lint flags expressions without side effects that are used in a context
where side effects are expected, that is, where the expression may not
represent what the programmer intended. It issues an additional warning
whenever the equality operator is found where the assignment operator
was expected, in other words, where a side effect was expected:

ANSI C and Programming Support Tools

lint

What lint Does

int fun()

int a, b, x, y;
(a = x) && (b == y) ;

• lint cautions you to parenthesize expressions that mix both the logical
and bitwise operators (specifically, & , I , A, <<, >>), where misunder
standing of operator precedence may lead to incorrect results. Because
the precedence of bitwise & , for example, falls below logical = =, the
expression

if (x & a == 0)

will be evaluated as

if (x & (a == 0))

which is most likely not what you intended. Invoking lint with -h dis
ables the diagnostic.

5-7

Usage

You invoke lint with a command of the form

$ lint file . c file . c

lint examines code in two passes. In the first, it checks for error conditions
local to C source files, in the second for inconsistencies across them. This pro
cess is invisible to the user unless lint is invoked with -c:

$ lint -c filel.c file2.c

That command directs lint to execute the first pass only and collect informa
tion relevant to the second - about inconsistencies in definition and use across
filel. c and file2. c - in intermediate files named filel. ln and file2. ln:

$ ls -1
filel.c
filel.ln
file2.c
file2.ln

In this way, the -c option to lint is analogous to the -c option to cc, which
suppresses the link editing phase of compilation. Generally speaking, lint' s
command line syntax closely follows cc's.

When the . ln files are linted

$ lint filel.ln file2.ln

the second pass is executed. lint processes any number of . c or . ln files in
their command line order. So

$ lint filel.ln file2.ln file3.c

directs lint to check file3 . c for errors internal to it and all three files for
consistency.

lint searches directories for included header files in the same order as cc (see
"Searching for a Header File" in Chapter 2). You can use the -I option to
lint as you would the - I option to cc. Namely, if you want lint to check
an included header file that is stored in a directory other than your current
directory or the standard place, specify the path of the directory with -I as fol
lows:

$ lint -Idir filel. c file2. c

You can specify - I more than once on the lint command line. Directories are

5·8 ANSI C and Programming Support Toots

f

Usage

searched in the order they appear on the command line. Of course, you can
specify multiple options to lint on the same command line. Options may be
concatenated unless one of the options takes an argument:

$ lint -cp - Idir -Idir filel. c file2. c

That command directs lint to

• execute the first pass only;

• perform additional portability checks;

• search the specified directories for included header files.

lint Libraries

You can use lint libraries to check your program for compatibility with the
library functions you have called in it: the declaration of the function return
type, the number and types of arguments the function expects, and so on. The
standard lint libraries correspond to libraries supplied by the C compilation
system, and generally are stored in the standard place on your system, the
directory /usr/ccs/lib. By convention, lint libraries have names of the form
llib-lx. ln.

The lint standard C library, llib-lc.ln, is appended to the lint command
line by default; checks for compatibility with it can be suppressed by invoking
the -n option. Other lint libraries are accessed as arguments to -1. That is,

$ lint -lx filel.c file2.c

directs lint to check the usage of functions and variables in filel. c and
file2. c for compatibility with the lint library llib-lx. ln. The library file,
which consists only of definitions, is processed exactly as are ordinary source
files and ordinary . ln files, except that functions and variables used incon
sistently in the library file, or defined in the library file but not used in the
source files, elicit no complaints.

To create your own lint library, insert the directive /* LINTLIBRARY */at
the head of a C source file, then invoke lint for that file with the -o option
and the library name that will be given to -1:

$ lint -ox files headed by I* LINTLIBRARY *I

lint 5-9

Usage

causes only definitions in the source files headed by /* LINTLIBRARY *I to he
written to the file llib-lx. ln. (Note the analogy of lint -o to cc -o.) A
library can be created from a file of function prototype declarations in the same
way, except that both /* LINTLIBRARY */and /* PROTOLIBn */must be
inserted at the head of the declarations file. If n is 1, prototype declarations will
be written to a library . ln file just as are old-style definitions. If n is 0, the
default, the process is cancelled. Invoking lint with -y is another way of
creating a lint library:

$ lint -y -ox filel.c file2.c

causes each source file named on the command line to be treated as if
it began with /* LINTLIBRARY *I and only its definitions to be written to
llib-lx. ln.

By default, lint searches for lint libraries in the standard place. To direct
lint to search for a lint library in a directory other than the standard place,
specify the path of the directory with the -L option:

$ lint -Ldir -lx filel.c file2.c

The specified directory is searched before the standard place.

lint Filters

A lint filter is a project-specific post-processor that typically uses an awk script
or similar program to read the output of lint and discard messages that your
project has decided do not identify real problems - string functions, for
instance, returning values that are sometimes or always ignored. It enables you
to generate customized diagnostic reports when lint options and directives do
not provide sufficient control over output.

Two options to lint are particularly useful in developing a filter. Invoking
lint with -s causes compound diagnostics to be converted into simple, one
line messages issued for each occurrence of the problem diagnosed. The easily
parsed message format is suitable for analysis by an awk script.

Invoking lint with -k causes certain comments you have written in the source
file to be printed in output, and can be useful both in documenting project deci
sions and specifying the post-processor's behavior. In the latter instance, if the
comment identified an expected lint message, and the reported message was
the same, the message might be filtered out. To use -k, insert on the line

5-10 ANSI C and Programming Support Tools

• .

Usage

preceding the code you wish to comment the /* LINTED [msg] *I directive,
where msg refers to the comment to be printed when lint is invoked with -k.
(Refer to the list of directives below for what lint does when -k is not
invoked for a file containing /* LINTED [msg] */.)

Options and Directives Listed

These options suppress specific messages:

lint

-a Suppress:

• assigrunent causes implicit narrowing conversion

• conversion to larger integral type may sign-extend
incorrectly

-b For unreachable break and empty statements, suppress:

• statement not reached

-h Suppress:

• assigrunent operator "=" found where equality opera
tor "==" was expected

• constant operand to op: " ! "

• fallthrough on case statement

• pointer cast may result in improper alignment

• precedence confusion possible; parenthesize

• statement has no consequent: if

• statement has no consequent: else

-m Suppress:

• declared global, could be static

5-11

Usage

-u Suppress:

• name defined but never used

• name used but not defined

-v Suppress:

• argument unused in function

-x Suppress:

• name declared but never used or defined

These options enable specific messages:

-p Enable:

• conversion to larger integral type may sign-extend
incorrectly

• may be indistinguishable due to truncation or case

• pointer casts may be troublesome

• nonportable bit-field type

• suspicious comparison of char with value: op "op"

-Xe Enable:

• bitwise operation on signed value nonportable

• function must return int: main()

• may be indistinguishable due to truncation or case

• only 0 or 2 parameters allowed: main()

• nonportable character constant

5-12 ANSI C and Programming Support Tools

Other options:

-c Create a . ln file consisting of information relevant to lint's
second pass for every . c file named on the command line. The
second pass is not executed.

Usage

-F When referring to the . c files named on the command line, print
their path names as supplied on the command line rather than only
their base names.

- Idir Search the directory dir for included header files.

-k When used with the directive /* LINTED [msg] */,print info:
msg.

- lx Access the lint library llib-lx. ln.

-Ldir When used with -1, search for a lint library in the directory dir.

-n Suppress checks for compatibility with the default lint standard C
library.

-ox Create the file llib-lx. ln, consisting of information relevant to
lint's second pass, from the . c files named on the command line.
Generally used with -y or /* LINTLIBRARY *I to create lint
libraries.

-s Convert compound messages into simple ones.

-y Treat every . c file named on the command line as if it began with
the directive /* LINTLIBRARY *I.

-v Write the product name and release to standard error.

lint 5-13

Usage

Directives:

I* ARGSUSEDn */

/* CONSTCOND */

/* EMPTY */

/* FALLTHRU */

Suppress:

• argument unused in function

for every argument but the first n in the function
definition it precedes. Default is 0.

Suppress:

• constant in conditional context

• constant operand to op: "!"

• logical expression always
"&&"

• logical expression always
II 11"

for the constructs it precedes. Also
/* CONSTANTCONDITION */.

Suppress:

false:

true:

op

op

• statement has no consequent: else

when inserted between the else and semicolon;

• statement has no consequent: if

when inserted between the controlling expression
of the if and semicolon.

Suppress:

• fallthrough on case statement

for the case statement it precedes. Also
/* FALLTHROUGH */.

/* LINTED [msg] *I When -k is not invoked, suppress every warning
pertaining to an intrafile problem except:

5-14 ANSI C and Programming Support Tools

lint

• argument unused in function

• declaration unused in block

• set but not used in function

• static unused

• variable unused in function

for the line of code it precedes. msg is ignored.

/* LINTLIBRARY *I When -o is invoked, write to a library . ln file
only definitions in the . c file it heads.

/* NOTREACHED *I Suppress:

• statement not reached

for the unreached statements it precedes;

• fallthrough on case statement

Usage

for the case it precedes that cannot be reached from
the preceding case;

• function falls off bottom without
returning value

for the closing curly brace it precedes at the end of
the function.

/* PRINTFLIKEn *I Treat the nth argument of the function definition it
precedes as a [fs] printf () format string and
issue:

• malformed format string

for invalid conversion specifications in that argu
ment, and

• function argument type inconsistent
with format

5-15

Usage

/* PROTOLIBn */

/* SCANFLIKEn */

/* VARARGSn */

5-16

• too few arguments for format

• too many arguments for format

for mismatches between the remaining arguments
and the conversion specifications. lint issues
these warnings by default for errors in calls to
[fs]printf () functions provided by the standard
C library.

When n is 1 and /* LINTLIBRARY *I is used,
write to a library . ln file only function prototype
declarations in the . c file it heads. Default is 0,
cancelling the process.

Same as /* PRINTFLIKEn */except that the nth
argument of the function definition is treated as a
[fs] scanf () format string. By default, lint
issues warnings for errors in calls to [fs] scanf ()
functions provided by the standard C library.

For the function whose definition it precedes,
suppress:

• function called with variable number
of arguments

for calls to the function with n or more arguments.

ANSI C and Programming Support Tools

' I

lint-specific Messages

This section lists alphabetically the warning messages issued exclusively by
lint or subject exclusively to its options. The code examples illustrate condi
tions in which the messages are elicited. Note that some of the examples would
elicit messages in addition to the one stated. For the remaining lint messages,
consult the "C Compiler Diagnostics" chapter of the Guide.

argument unused in function

Fonnat: Compound

A function argument was not used. Preceding the function definition with
I* ARGSUSEDn *I suppresses the message for all but the first n arguments;
invoking lint with -v suppresses it for every argument.

1 int fun(int x, int y)
2
3 return x;
4
5 I* ARGSUSEDl */
6 int fun2(int x, int y)
7
8 return x;
9

argument unused in function
(1) y in fun

lint 5-17

lint-specific Messages

array subscript cannot be > value: value

Fonnat: Simple

The value of an array element's subscript exceeded the upper array bound.

1 int fun()
2 {
3 int a[lO];
4 int *P = a;
5 while (p != &a[lO]) /* using address is ok */
6 p++;
7 return a[S + 6];
8

(7) warning: array subscript cannot be > 9: 11

array subscript cannot be negative : value

Fonnat: Simple

The constant expression that represents the subscript of a true array (as opposed
to a pointer) had a negative value.

1 int f ()
2
3 int a[lO];
4 return a[S * 2 I 10 - 2];
5

(4) warning: array subscript cannot be negative: -1

5-18 ANSI C and Programming Support Tools

lint-specific Messages

assignment causes implicit narrowing conversion

Fonnat: Compound

An object was assigned to one of a smaller type. Invoking lint with -a
suppresses the message. So does an explicit cast to the smaller type.

1 void fun()
2 {

3 short s;
4 long 1 0;
5 s = l;
6

assignment causes implicit narrowing conversion
(5)

assignment of negative constant to unsigned type

Fonnat: Simple

A negative constant was assigned to a variable of unsigned type. Use a cast or
the u suffix.

1 void fun()
2 {

3 unsigned i;
4 i = -1;
5 i = -lU;
6 i = (unsigned) (-4 + 3);
7

(4) warning: assignment of negative constant to unsigned type

lint 5-19

llnt-speclflc Messages

assigrunent operator "=" found where "==" was expected

Format: Simple

An assignment operator was found where a conditional expression was
expected. The message is not issued when an assignment is made to a variable
using the value of a function call or in the case of string copying (see the exam
ple below). The warning is suppressed when lint is invoked with -h.

1 void fun()
2 {
3 char *p, *q;
4 int a = O, b = 0, c = 0, d = 0, i;
5 i = (a = b) && (c == d) ;
6 i = (c == d) && (a = b) ;
7 if (a = b)
8 i = l;
9 while (*p++ = *q++) ;
10 while (a= b);
11 while ((a -= getchar ()) == b) ;
12 if (a= foo()) return;
13

(5) warning: assignment operator "==" found where
was expected

(7) warning: assignment operator "==" found where
was expected

(10) warning: assignment operator "=" found where
was expected

bitwise operation on signed value nonportable

Format: Compound

"===="

"===="

"===="

The operand of a bitwise operator was a variable of signed integral type, as
defined by ANSI C. Because these operators return values that depend on the
internal representations of integers, their behavior is implementation-defined for
operands of that type. The message is issued only when lint is invoked with
-Xe.

5-20 ANSI C and Programming Support Tools

lint-specific Messages

1 fun()
2 {

3 int i;
4 signed int j;
5 unsigned int k;
6 i = i & 055;
7 j = j I 022;
8 k = k » 4;
9

warning: bitwise operation on signed value nonportable
(6) (7)

constant in conditional context

Fonnat: Simple

The controlling expression of an if, while, or for statement was a constant.
Preceding the statement with /* CONSTCOND */ suppresses the message.

lint

1 void fun()
2 {
3 if (! 1) return;
4 while (1) foo();
5 for (; 1;) ;

6 for (; ;) ;

7 /* CONSTCOND */
8 while (1) ;

9

(3) warning: constant in conditional context
(4) warning: constant in conditional context
(5) warning: constant in conditional context

5-21

lint-specific Messages

constant operand to op: "!"

Format: Simple

The operand of the NOT operator was a constant. Preceding the statement with
I* CONSTCOND *I suppresses the message for that statement; invoking lint
with -h suppresses it for every statement.

1 void fun()
2 {
3
4
5
6

if (! 0) return;
/* CONSTCOND */
if (! 0) return;

(3) warning: constant operand to op: "!"

constant truncated by assigrunent

Format: Simple

An integral constant expression was assigned or returned to an object of an
integral type that cannot hold the value without truncation.

5-22

1 unsigned char f ()
2 {
3
4
5
6
7

unsigned char i;
i = 255;
i = 256;
return 256;

(5) warning: constant truncated by assigrunent
(6) warning: constant truncated by assigrunent

ANSI C and Programming Support Tools

llnt-specHlc Messages

conversion of pointer loses bits

Format: Simple

A pointer was assigned to an object of an integral type that is smaller than the
pointer.

1 void fun()
2 {

3 char c;
4 int •i;
5 c == i;
6

(5) warning: conversion of pointer loses bits

conversion to larger integral type may sign-extend incorrectly

Format: Compound

A variable of type "plain" char was assigned to a variable of a larger
integral type. Whether a "plain" char is treated as signed or unsigned is
implementation-defined. The message is issued only when lint is invoked with
-p, and is suppressed when it is invoked with -a.

llnt

1 void fun()
2 {
3
4
5

char c = O;
short s = 0;
long l;

6 l = c;
7 l = s;

8

conversion to larger integral type may sign-extend incorrectly
(6)

5-23

lint-specific Messages

declaration unused in block

Fonnat: Compound

An external variable or function was declared but not used in an inner block.

1 int fun()
2 {
3 int foo();
4 int bar();
5 return foo();
6

declaration unused in block
(4) bar

declared global, could be static

Fonnat: Compound

An external variable or function was declared global, that is, not declared
static, but was referenced only in the file in which it was defined. The mes
sage is suppressed when lint is invoked with -m.

5-24

file fl.c
1 int i;
2 int foo () {return i;}
3 int fun() {return i;}
4 static int stfun() {return fun();}
file f2.c
1 main()
2 {
3 int a;
4 a= foo();
5

declared global, could be static
fun fl.c(3)
i fl.c(l)

ANSI C and Programming Support Tools

lint-specific Messages

equality operator "==" found where "=" was expected

Format: Simple

An equality operator was found where a side effect was expected.

1 void fun(a, b)
2 int a, b;
3 {
4 a -- b;
5 for (a == b; a < 10; a++);
6

(4) warning: equality operator "====" found where
was expected

(5) warning: equality operator "====" found where
was expected

evaluation order undefined: name

Format: Simple

"="

"=="

A variable was changed by a side effect and used elsewhere in the same expres
sion.

lint

1 int a[lO];
2 main()
3 {
4 int i = 1;
5 a[i++] = i;
6

(5) warning: evaluation order undefined: i

5-25

llnt-speclflc Messages

fallthrough on case statement

Fonnat: Simple

Execution fell through one case to another without a break or return. Preced
ing a case statement with /* FALLTHRU */,or /* NGrREACHED */when the
case cannot be reached from the preceding case (see below), suppresses the mes
sage for that statement; invoking lint with -h suppresses it for every state
ment.

1 void fun(i)
2 {

3 switch (i)
4 case 10:
5 i = O;
6 case 12:
7 return;
8 case 14:
9 break;
10 case 15:
11 case 16:
12 break;
13 case 18:
14 i = 0;
15 I* FALLTHRU */
16 case 20:
17 error("bad number");
18 /* NOTREACHED */
19 case 22:
20 return;
21
22

(6) warning: fallthrough on case statement

5-26 ANSI C and Programming Support Tools

llnt-speclflc Messages

function argwnent (number) declared inconsistently

Format: Compound

The parameter types in a function prototype declaration or definition differed
from their types in another declaration or definition. The message described
after this one is issued for uses (not declarations or definitions) of a prototype
with the wrong parameter types.

file i3a.c
1 int funl(int);
2 int fun2 (int);
3 int fun3(int);
file i3b.c
1 int funl(int *i);
2 int fun2(int *i) {}
3 void foo()
4 {
5 int *i;
6 fun3 (i);
7

function argwnent
fun2 (arg 1)
funl (arg 1)

function argument
fun3 (arg 1)

number) declared inconsistently
i3b.c(2) int* :: i3a.c(2) int
i3a.c(l) int:: i3b.c(l) int*

number) used inconsistently
i3a.c(3) int :: i3b.c(6) int*

function argument (number) used inconsistently

Format: Compound

The argument types in a function call did not match the types of the formal
parameters in the function definition. (And see the discussion of the preceding
message.)

llnt 5-27

lint-specific Messages

file fl.c
1 int fun(int x, int y)
2 {
3 return x + y;
4 }
file f2.c
1 int main()
2 {
3 int *x;
4 extern int fun();
5 return fun(l, x);
6

function argument
fun(arg 2)

number) used inconsistently
fl.c(2) int:: f2.c(5) int*

function argument type inconsistent with format

Format: Compound

An argument was inconsistent with the corresponding conversion specification
in the control string of a [fs]printf() or [fs]scanf() function call. (See
also /* PRINTFLIKEn *I and /* SCANFLIKEn *I in the list of directives in the
"Usage"section above.)

5-28

1 #include <stdio.h>
2 main()
3 {

4 int i;
5 printf("%s", i);
6

function argument type inconsistent with format
printf(arg 2) int : : (format) char * test.c(S)

ANSI C and Programming Support Tools

lint-specific Messages

function called with variable number of arguments

Format: Compound

A function was called with the wrong number of arguments. Preceding a func
tion definition with /* VARARGSn *I suppresses the message for calls with nor
more arguments; defining and declaring a function with the ANSI C notation
" ... " suppresses it for every argument. (And see the discussion of the message
following this one.)

lint

file fl.c
1 int fun(int x, int y,
2 {

3 return x + y + z;
4
5 int fun2(int x, ...)
6
7 return x;
8
10 I* VARARGSl */
11 int
12 {

13
14 }
file f2.c

fun3(int x, int y,

return x;

1 int main()
2
3
4
5
6
7

extern
return
return
return

int fun(),
fun(l, 2);
fun2 (1, 2,
fun3(1, 2,

int z)

int z)

fun3 ()I fun2 (int x, ...) ;

3, 4);
3, 4, 5) ;

function called with variable number of arguments
fun fl.c(2) : : f2.c(4)

5-29

lint-specific Messages

function declared with variable number of arguments

Format: Compound

The number of parameters in a function prototype declaration or definition dif
fered from their number in another declaration or definition. Declaring and
defining the prototype with the ANSI C notation " ... " suppresses the warning
if all declarations have the same number of arguments. The message immedi
ately preceding this one is issued for uses (not declarations or definitions) of a
prototype with the wrong number of arguments.

file i3a.c
1 int funl(int);
2 int fun2(int);
3 int fun3 (int);
file i3b.c
1 int funl(int, int);
2 int fun2(int a, int b) {}
3 void foo()
4 {
5 int i, j, k;
6
7

i = fun3(j, k);

function declared with variable number of arguments
fun2 i3a.c(2) : : i3b.c(2)
funl i3a.c(l) :: i3b.c(l)

function called with variable number of arguments
fun3 i3a.c(3) : : i3b.c(6)

function falls off bottom without returning value

Format: Compound

A nonvoid function did not return a value to the invoking function. If the clos
ing curly brace is truly not reached, preceding it with /* NOTREACHED */
suppresses the message.

5-30 ANSI C and Programming Support Tools

lint-specific Messages

1 fun()
2 {}

3 void fun2 ()
4 {}

5 foo()
6 {

7 exit(l);
8 /* NOTREACHED */
9 }

function falls off bottom without returning value
(2) fun

function must return int: main O

Fonnat: Simple

You used a main O that did not return int, in violation of ANSI C restrictions.
The message is issued only when lint is invoked with -Xe.

1 void main ()
2 {}

(2) warning: function must return int: main()

function returns pointer to [automatic/parameter]

Fonnat: Simple

A function returned a pointer to an automatic variable or a parameter. Since an
object with automatic storage duration is no longer guaranteed to be reserved
after the end of the block, the value of the pointer to that object will be indeter
minate after the end of the block.

lint 5-31

llnt-speclflc Messages

1 int *fun(int x)
2 {

3 int a[lO];
4 int b;
5 if (x == 1)
6 return a;
7 else if (x == 2)
8 return &b;
9 else return &x;
10

(6) warning: function returns pointer to autanatic
(8) warning: function returns pointer to autanatic
(9) warning: function returns pointer to parameter

function returns value that is always ignored

Fonnat: Compound

A function contained a return statement and every call to the function ignored
its return value.

5-32

file fl..c
1 int fun()
2 {
3 return 1;
4 }
file p..c
1 extern int fun();
2 int main()
3 {
4 fun();
5 return 1;
6

function returns value that is always ignored
fun

ANSI C and Programming Support Tools

llnt-specHlc Messages

function returns value that is sometimes ignored

Fonnat: Compound

A function contained a return statement and some, but not all, calls to the
function ignored its return value.

file f1..c
1 int fun()
2 {
3
4 }
file f2.c

return l;

1 extern int fun () ;
2 int main()
3 {
4
5
6

if (1) {
return fun();

else {
7 fun();
8 return l;
9
10

function returns value that is sometimes ignored
fun

function value is used, but none returned

Fonnat: Compound

A nonvoid function did not contain a return statement, yet was used for its
value in an expression.

lint 5-33

lint-specific Messages

file fl.c
1 extern int fun();
2 main()
3 {
4 return fun();
5 }

file f2..c
1 int fun()
2 {}

function value is used, but none returned
fun

logical expression always false: op "&&"

Format: Simple

A logical AND expression checked for equality of the same variable to two dif
ferent constants, or had the constant 0 as an operand. In the latter case, preced
ing the expression with /* CONSTCOND *I suppresses the message.

5-34

1 void fun(a)
2 int a;
3 {

4 a= (a == 1) && (a == 2);
5 a= (a == 1) && (a == 1);
6 a= (1 == a) && (a == 2);
7 a= (a == 1) && 0;
8 /* CONSTCOND */
9 a= (0 && (a == 1));
10

(4) warning: logical expression always false: op "&&"
(6) warning: logical expression always false: op "&&"
(7) warning: logical expression always false: op "&&"

ANSI C and Programming Support Tools

llnt-speclflc Messages

loqical expression always true : op " I I "

Format: Simple

A logical OR expression checked for inequality of the same variable to two dif
ferent constants, or had a nonzero integral constant as an operand. In the latter
case, preceding the expression with /* CONSTCOND *I suppresses the message.

1 void fun (a)
2 int a;
3 {

4 a= (a != 1) 11 (a != 2);
5 a= (a != 1) 11 (a != 1);
6 a= (1 !=a) 11 (a != 2);
7 a= (a == 10) 11 1;
8 /* CONSTCOND */
9 a- (1 11 (a -- 10));
10

(4) warning: loqical expression always true: op "11"
(6) warning: loqical expression always true: op "I I"
(7) warning: loqical expression always true: op "11"

malformed format string

Format: Compound

A [fs]printf () or [fs] scanf () control string was formed incorrectly. (See
also /* PRINTFLIKEn */and /* SCANFLIKEn */in the list of directives in the
''Usage" section above.)

1 #include <stdio.h>
2 main()
3 {
4 printf("%y");
5

malformed format string
printf test.c(4)

lint 5.35

lint-specific Messages

may be indistinguishable due to truncation or case

Fonnat: Compound

External names in your program may be indistinguishable when it is ported to
another machine due to implementation-defined restrictions as to length or case.
The message is issued only when lint is invoked with -Xe or -p. Under -Xe,
external names are truncated to the first 6 characters with one case, in accor
dance with the ANSI C lower bound; under -p, to the first 8 characters with one
case.

file fl.c
1 int foobarl;
2 int FooBarl2;
file f2..c
1 int foobar2;
2 int FOOBAR12;

under -p
may be indistinguishable due to truncation or case

FooBarl2 fl.c(2) FOOBAR12 f2.c(2)

under -Xe
may be indistinguishable due to truncation or case

foobarl fl.c(l) FooBarl2 fl.c(2)
foobarl fl.c(l) foobar2 f2.c(l)
foobarl fl.c(l) FOOBAR12 f2.c(2)

name declared but never used or defined

Fonnat: Compound

A nonstatic external variable or function was declared but not used or defined
in any file. The message is suppressed when lint is invoked with -x.

5-36 ANSI C and Programming Support Tools

lint-specific Messages

file f.c
1 extern int fun();
2 static int foo();

name declared but never used or defined
fun f.c(l)

name defined but never used

Fonnat: Compound

A variable or function was defined but not used in any file. The message is
suppressed when lint is invoked with -u.

file f.c
1 int i, j, k = l;
2 main()
3 {
4 j = k;
5

name defined but never used
i f.c(l)

name multiply defined

Fonnat: Compound

A variable was defined in more than one source file.

file fl.c
1 char i = 'a';
file f2..c
1 long i = l;

name multiply defined
i fl,c(l) f2. c (1)

lint 5-37

lint-specific Messages

name used but not defined

Format: Compound

A nonstatic external variable or function was declared but not defined in any
file. The message is suppressed when lint is invoked with -u.

file f.c
1 extern int fun();
2 int main()
3
4 return fun();
5

name used but not defined
fun f .c (4)

nonportable bit-field type

Format: Simple

You used a bit-field type other than signed int or unsigned int. The mes
sage is issued only when lint is invoked with -p. Note that these are the only
portable bit-field types. AT&T C supports int, char, short, and long bit-field
types that may be unsigned, signed, or "plain." It also supports the enum
bit-field type.

1 struct u {
2 unsigned v:l;
3 int w:l;
4
5
6
7 } ;

char
long
short

x:8;
y: 8;
z:8;

(3) warning: nonportable bit-field type
(4) warning: nonportable bit-field type
(5) warning: nonportable bit-field type
(6) warning: nonportable bit-field type

5-38 ANSI C and Programming Support Tools

lint-specific Messages

nonportable character constant

Fonnat: Simple

A multi-character character constant in your program may not be portable. The
message is issued only when lint is invoked with -Xe.

1 int c = 'abc';

(1) warning: nonportable character constant

only 0 or 2 parameters allowed: main()

Fonnat: Simple

The function main () in your program was defined with only one parameter or
more than two parameters, in violation of the ANSI C requirement. The mes
sage is issued only when lint is invoked with -Xe.

1 main(int argc, char **argv, char **envp)
2 {}

(2) warning: only 0 or 2 parameters allowed: main()

pointer cast may result in improper aligrunent

Fonnat: Compound

You cast a pointer to one object type to a pointer to an object type with stricter
alignment requirements. Doing so may result in a value that is invalid for
the second pointer type. The warning is suppressed when lint is invoked
with -h.

lint 5-39

lint-specific Messages

1 void fun()
2 {

3 short •s;
4 int *i;
5 i = (int *) s;
6

pointer cast may result in improper alignment
(5)

pointer casts may be troublesome

Format: Compound

You cast a pointer to one object type to a pointer to a different object type. The
message is issued only when lint is invoked with -p, and is not issued for the
generic pointer void *.

1 void fun()
2 {

3 int *i;
4 char •c;
5 void *v;
6 i = (int *) c;
7 i = (int *) v;
8

warning: pointer casts may be troublesome
(6)

precedence confusion possible; parenthesize

Fonnat: Simple

You did not parenthesize an expression that mixes a logical and a bitwise opera
tor. The message is suppressed when lint is invoked with -h.

5-40 ANSI C and Programming Support Tools

I~

1 void fun()
2 {
3 int x = 0, m = 0, MASK = 0, i;
4 i = (x + m == 0) ;

lint-specific Messages

5 i = (x & MASK == 0); /* eval'd (x & (MASK== 0)) */
6 i = (MASK == 1 & x); /* eval'd ((MASK== 1) & x) */
7

(5) warning: precedence confusion possible; parenthesize
(6) warning: precedence confusion possible; parenthesize

precision lost in bit-field assignment

Fonnat: Simple

A constant was assigned to a bit-field too small to hold the value without trun
cation. Note that in the following example the bit-field z may have values that
range from 0 to 7 or -4 to 3, depending on the machine.

lint

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void fun()
{

struct
signed x:3;
unsigned y:3;
int z:3;

s;
s.x = 3;
s.x = 4;
s.y = 7;
s.y = 8;
s.z = 7;
s.z = 8;

/* max value allowed is 3 */
/* max value allowed is 7 */
/* max value allowed is 7 */

(9) warning: precision lost in bit-field assignment: 4
(11) warning: precision lost in bit-field assignment: Ox8
(13) warning: precision lost in bit-field assignment: 8

5-41

lint-specific Messages

set but not used in function

Fonnat: Compound

An automatic variable or a function parameter was declared and set but not
used in a function.

1 void fun(y)
2 int y;
3
4 int x;
5 x= l;
6 y = l;
7

set but not used in function
(4) x in fun
(1) y in fun

statement has no consequent: else

Fonnat: Simple

An if statement had a null else part. Inserting /* EMPTY *I between the
else and semicolon suppresses the message for that statement; invoking lint
with -h suppresses it for every statement.

1 void f (a)
2 int a;
3 {

4 if (a)
5 return;
6 else;
7

(6) warning: statement has no consequent: else

5-42 ANSI C and Programming Support Tools

lint-specific Messages

statement has no consequent: if

Fonnat: Simple

An if statement had a null if part. Inserting I* EMPTY *I between the con
trolling expression of the if and semicolon suppresses the message for that
statement; invoking lint with -h suppresses it for every statement.

1 void f (a)
2 int a;
3
4 if (a);
5 if (a == 10)
6 /* EMPTY*/;
7 else return;
8

(4) warning: statement has no consequent: if

statement has null effect

Fonnat: Compound

An expression did not generate a side effect where a side effect was expected.
Note that the message is issued for every subsequent sequence point that is
reached at which a side effect is not generated.

lint 5-43

lint-specific Messages

1 void fun()
2 {

3 int a, b, c, x;
4 a;
5 a== 5;
6
7 while (x++ != 10);
8 (a == b) && (c = a);
9 (a = b) && (c == a);
10 (a, b) ;
11

statement has null effect
(4) (5) (9) (10)

statement not reached

Fonnat: Compound

A function contained a statement that cannot be reached. Preceding an
unreached statement with /* NOTREACHED */suppresses the message for that
statement; invoking lint with -b suppresses it for every unreached break and
empty statement. Note that this message is also issued by the compiler but can
not be suppressed.

5-44 ANSI C and Programming Support Tools

• ,,

lint-specific Messages

1 void fun(a)
2 {

3 switch (a)
4 case 1:
5 return;
6 break;
7 case 2:
8 return;
9 /* NOTREACHED */
10 break;
11
12

statement not reached
(6)

static unused

Format: Compound

A variable or function was defined or declared static in a file but not used in
that file. Doing so is probably a programming error because the object cannot
be used outside the file.

1 static int x;
2 static int main() {}

3 static int foo ();
4 static int y = l;

static unused
(4) y (3) foo (2) main (1) x

suspicious comparison of char with value: op "op"

Format: Simple

A comparison was performed on a variable of type "plain" char that implied it
may have a negative value (< 0, <= 0, >= 0, > 0). Whether a "plain" char is

lint 5-45

lint-specific Messages

treated as signed or nonnegative is implementation-defined. The message is
issued only when lint is invoked with -p.

1 void fun(c, d)
2 char c;
3 signed char d;
4 {

5 int i;
6 i = (c == -5) ;
7 i = (c < 0);
8 i = (d < 0) ;
9

(6) warning: suspicious comparison of char with negative
constant: op "=="

(7) warning: suspicious comparison of char with 0: op "<"

suspicious comparison of unsigned with value: op "op"

Fonnat: Simple

A comparison was performed on a variable of unsigned type that implied it
may have a negative value (< 0, <= 0, >= 0, > 0).

5-46 ANSI C and Programming Support Tools

lint-specific Messages

1 void fun(x)
2 unsigned x;
3 {

4 int i;
5 i (x > -2);
6 i (x < 0);
7 i (x <= 0);
8 i (x >= 0);
9 i (x > 0) ;
10 i (-2 < x);
11 i (x -1);
12 i (x -lU);

13

(5) warning: suspicious comparison of unsigned with negative
constant: op ">"

(6) warning: suspicious comparison of unsigned with 0: op "<"
(7) warning: suspicious comparison of unsigned with 0: op "<="
(8) warning: suspicious comparison of unsigned with 0: op ">="
(9) warning: suspicious comparison of unsigned with 0: op ">"
(10) warning: suspicious comparison of unsigned with negative

constant: op "<"
(11) warning: suspicious comparison of unsigned with negative

constant: op "=="

too few arguments for fonnat

Fonnat: Compound

A control string of a [fs] printf () or [fs] scanf () function call had more
conversion specifications than there were arguments remaining in the call. (See
also /* PRINTFLIKEn *I and /* SCANFLIKEn *I in the list of directives in the
"Usage" section above.)

lint 5-47

llnt-speclflc Messages

1 *include <stdio.h>
2 main()
3 {
4 int i;
5 printf("%d%d", i);
6

too few arguments for format
printf test.c(S)

too many arguments for format

Format: Compound

A control string of a [fs]printf () or [fs] scanf () function call had fewer
conversion specifications than there were arguments remaining in the call. (See
also /* PRINTFLIKEn *I and /* SCANFLIKEn *I in the list of directives in the
"Usage" section above.)

1 #include <stdio.h>
2 main()
3 {

4 int i, j;
5 printf ("%d", i, j) ;

6

too many arguments for format
printf test.c(S)

value type declared inconsistently

Format: Compound

The return type in a function declaration or definition did not match the return
type in another declaration or definition of the function. The message is also
issued for inconsistent declarations of variable types.

5-48 ANSI C and Programming Support Tools

llnt-speclflc Messages

file fl.c
1 void fun() {}
2 void foo () ;
3 extern int a;
file fl..c
1 extern int fun();
2 extern int foo();
3 extern char a;

value type declared inconsistently
fun fl.c(l) void() : : f2.c(l) int()
foo fl. c (2) void() : : f2. c (2) int()
a fl.c(3) int : : f2.c(3) char

value type used inconsistently

Fonnat: Compound

The return type in a function call did not match the return type in the function
definition.

lint

file fl.c
1 int *fun (p)
2 int *p;
3
4 return p;
5 }
file fl..c
1 main()
2 {
3 int i, *p;
4 i = fun(p);
5

value type used inconsistently
fun fl.c(3) int *O f2.c(4) int()

5-49

llnt-speclflc Messages

variable may be used before set : name

Fonnat: Simple

The first reference to an automatic, non-array variable occurred at a line number
earlier than the first assignment to the variable. Note that taking the address of
a variable implies both a set and a use, and that the first assignment to any
member of a struct or union implies an assignment to the entire struct or
union.

1 void fun()
2 {

3 int i, j, k;
4 static int x;
5 k = j;
6 i = i + 1;
7 x=x+ 1;
8

(5) warning: variable may be used before set: j
(6) warning: variable may be used before set: i

variable unused in function

Fonnat: Compound

A variable was declared but never used in a function.

1 void fun()
2 {
3 int x, y;
4 static z;
5

variable unused in function
(4) z in fun
(3) y in fun
(3) x in fun

5-50 ANSI C and Programming Support Tools

6 sdb

Introduction

Command Line Syntax

Interactive Commands
Printing a Stack Trace
Examining Variables
File Display and Manipulation
Debugging a Live Process
Machine Language Debugging
Exiting

Example

Table of Contents

6-1

6-3

6-5
6-5
6-6
6-10
6-12
6-16
6-17

6-18

Introduction

The symbolic debugger sdb is a source-level debugging program that lets you
interactively reference variables and the program statements in which they
occur by their symbolic names and line numbers in your C source code. You
can also use sdb to debug C and assembly language programs at the machine
level.

You typically want to debug a program in two situations. sdb was designed to
work in both of them.

sdb

• Postmortem debugging. When the UNIX system aborts an executing
program, it creates in your current directory a file called core that
contains the current memory image of the process at the time of the
failure. You receive a message such as

Memory Fault - core dumped

which means that the program tried to reference an area of memory that
it was not allowed to - a pointer pointed somewhere wild, for instance
-or

Bus Error - core dumped

typically caused by scanning a non-terminated string. core dumped
means that the system saved the core image of the process in the file
core. You then use sdb to examine the image, usually by printing a stack
trace: the function that was executing when the process died, the function
that called it, and so forth. That way you can check each function for
variables with unexpected values.

• Debugging a live process. Sometimes you need to do more than examine a
core image file to locate a problem in a process that has aborted. And, of
course, programs can also fail by running to completion with unexpected
results. In these cases, you can use sdb to examine and change the values
of variables as each statement in your program executes or as sections of
the program execute up to preset breakpoints. You can trace back vari
ables from these breakpoints and, in general, stop and restart your pro
gram as you see fit. In the case of a program that has aborted, sdb lets
you examine the core image file, then start a live process in the same ses
sion, so you can see what your program was doing up to the point at
which it failed.

6-1

Introduction

We'll show you how to do these things below. First we'll look at sdb's com
mand line syntax, then at the interactive commands you can use to examine a
core image file or monitor and control a live process. We'll close with an
extended example.

6-2 ANSI C and Programming Support Tools

Command Line Syntax

To use sdb to full advantage you must compile your program with the -g
option:

$ cc -g -o prog prog.c

-g tells the compiler and link editor to store in your executable information
about the names of variables and functions in your program, and their line
numbers in your source code. (When you have finished debugging your pro
gram, you can remove the debugging information with the strip command,
described in Section 1 of the Programmer's Reference Manual. strip removes
other information as well, so you may want simply to recompile the program
without -g.) Because optimization will occasionally confuse sdb, it's best, as a
general rule, not to compile your program with both -g and -o. All the same,
there may be times when an unoptimized program that appears to have exe
cuted correctly will fail after it has been optimized. (An optimized program
with an uninitialized variable, for example, will probably misbehave, even
though its unoptimized version produced an apparently correct result earlier.)
In situations like this, it's usually better to recompile the program with both -g
and -o. Although you will have to make some adjustments for optimization -
you may not be able to set breakpoints in all the places you set them before, for
example - you will be able to debug the program at the source rather than the
assembly language level. Note that you can link object files that were compiled
with -g with object files that were compiled without it.

Now we'll execute the program we compiled in the previous example:

$ prog
Memory Fault - core dumped

To examine the executable program and its core image, you use the following
command:

$ sdb prog

sdb accepts three command line arguments. The first is the name of the execut
able file to be debugged, or whose core image is to be debugged; it defaults to
a . out when not specified. The second is the name of the core file to be
debugged, defaulting to core. The third is a list of colon-separated directories
containing the source files of the executable; the default is the current directory.
In the example, the second and third arguments defaulted to the correct values,
so only the first was specified.

sdb 6-3

Command Line Syntax

You can also use sdb to "grab" an executing process, that is, stop it temporarily
so that you can examine it under sdb control. Suppose, for instance, you are
running the program rnyprog in the background. You notice that a portion of it
is executing more slowly than you think it should. You want to look at that f
portion with sdb without killing the process. You enter the command

$ sdb /proc/12345

where /proc is the UNIX system directory that contains information about each
process currently active on your system, and 12345 is the process ID of the pro
gram rnyprog. (You can use the ps command, described in Section 1 of the
User's Reference Manual, to determine the process ID of any process currently
active on your system.) The process stops at the first system call it executes or
signal it receives after the sdb command is invoked. You then use sdb to exam
ine the values of variables, set breakpoints, resume execution, stop at break
points, and so on. When you quit sdb, control returns to the program. That is,
the process continues execution where it left off.

Occasionally, the core file of another program may be in the directory of an
executable you want to run under control of sdb. When you specify a hyphen
as the second argument

$ sdb myprog -

you tell sdb to ignore the core image file.

Ordinarily, sdb will stop a live process when the process receives a signal.
When you specify a signal number with the -s option

$ sdb -s 14 rnyprog

you tell sdb not to stop the process for that signal. The signal is passed to the
process. You should use -s if your program will receive and handle numerous
signals.

When you use the -w option

$ sdb -w rnyprog

sdb lets you edit the executable or core file to be debugged.

6-4 ANSI C and Programming Support Tools

Interactive Commands

When you use sdb to examine an executable file, it prompts you with an aster
isk (*), which shows that it is waiting for a command. When you use it to
examine a core image file, such as the one in the previous section, its output
will look something like this:

sub:30: z[i] = 0;

*
sdb reports that the program quit at line 30 in the function sub () and displays
the source text of the offending line. It then prompts you to continue. Line
numbers are always counted relative to the beginning of the file and include
comments and blank lines. sdb has a notion of current file and current function,
and when the file was compiled with -q, of current line. If you are debugging
an executable file, sdb sets the current function and line to main () and the first
line of main(), respectively. If you are debugging a core image file, it sets the
current line and function to the last line and function that were executed - in
the example, 30 and sub (), respectively. In the latter case, if the function was
not compiled with -q, sdb prints a warning to that effect and displays the func
tion name and the address at which the error occurred.

Once you have received the* prompt, you can proceed as you like. You can
examine the core image file, for instance, or set a breakpoint and start a live
process. In the next three sections, we'll look at tasks common to debugging
core files and live processes: printing a stack trace, examining the values of
variables, and displaying source files. Since these are pretty much the only
things you can do in debugging core, we'll concentrate after that on how you
debug a live process.

Printing a Stack Trace

To trace function calls in a stopped process or a core image file, you use the t
command. In the following example, assume we are debugging core:

•t
sub(x=2,y=3) [prog.c:25)
inter(i=16012) [prog.c:96]
main(argc=l,argv=Ox7fffff54,envp=Ox7fffff5c) [prog.c:lS)
_start()

sdb's output shows that the function sub() at line 25 in the file prog. c was
called with the integer arguments x and y from inter () at line 96. inter ()

sdb 6-5

Interactive Commands

was called from main() at line 15. main() is always called by a startup routine
named _start () , and accepts three arguments, conventionally referred to as
argc, argv, and envp (see "How C Programs Communicate with the Shell" in
Chapter 1 for a discussion). argv and envp are pointers, so their vahies are t
printed in hexadecimal. Argument values are printed in hexadecimal regardless •
of type if the source file was not compiled with -g.

Examining Variables

You can display the value of a variable by entering its name followed by the I
command:

*errflag/

Unless otherwise specified, variables are assumed to be either local to or accessi
ble from the current function. To specify a different function, enter the name of
the function and a colon before the name of the variable:

*inter:i/

sdb will display the value of the variable i in the function inter(). We'll show
you how to change the current function in the next section.

To display the address of the variable i in inter () , you can specify

*inter:i=

An easier way to do it is to enter

*·=

The period tells sdb to look for the last variable entered, in this case, i in
inter(). So

*./

tells sdb to redisplay the value of i in inter () .

sdb supports a limited form of pattern matching for variable and function
names. The symbol * is used to match any sequence of characters of a variable
name, the symbol ? to match any single character. Consider the following com
mands:

6-6 ANSI C and Programming Support Tools

X/
•inter:y?/
**/

Interactive Commands

The first prints the values of all variables local to or accessible from the current
function that begin with x. The second prints the values of all two-letter vari
ables local to or accessible from the function inter() that begin with y. The
last prints the values of all variables local to or accessible from the current func
tion.

If you have multiple calls to a function, you can display the value of a variable
in a given call by using a comma as follows:

inter:,2/

That command displays the values of all variables in the second call to inter()
from the top of the stack. The command

**:*/

displays the values of variables in each function on the call stack. Note that you
cannot use the metacharacters * and ? in any command that specifies a line
number, or in the commands to call a function, change the current function, or
set a watchpoint. Nor can you use them to match a file name.

sdb normally displays the value of a variable in a format determined by its type
as declared in the source program. To request a different format, you place a
specifier after the I. The specifier consists of an optional length specifier fol
lowed by a format specifier. The length specifiers are:

b One byte

h Two bytes (half word)

1 Four bytes (long word)

The format specifiers are:

c Character

d Decimal

u Decimal unsigned

Interactive Commands

o Octal

x Hexadecimal

f 32-bit single-precision floating point

g 64-bit double-precision floating point

s Assume variable is a string pointer and print characters starting at the
address pointed to by the variable until a null is reached.

a Print characters starting at the variable's address until a null is
reached.

p Pointer to function.

i Interpret as a machine-language instruction.

So, to display the value of i in hexadecimal, you enter

*inter:i/x

or, more simply,

*./x

provided i in inter () was the last variable entered.

The length specifiers are effective only with the format specifiers d, o, x, and u.
If no length is specified, sdb uses the length for the type of the object being
examined. A number can be entered with the s or a format specifiers to control
the number of characters printed. The s and a specifiers normally print charac
ters until either a null is reached or 128 characters have been printed. The
number specifies exactly how many characters should be printed. So

•str/lOs

tells sdb to print ten characters starting at the address pointed to by the variable
str.

sdb also knows about C structures, arrays, and pointers, so that all of the fol
lowing commands work:

6-8

•array[2][3]/
•sym.id/
*psym->usage/
•xsym[20].p->usage/

ANSI C and Programming Support Tools

Interactive Commands

The only restriction is that array subscripts must be a number, *, or a range. (A
range is two numbers separated by a semicolon.) Note that as a special case

*psym.[0]

displays the structure pointed to by psym.

You can display the contents of core locations by specifying their absolute
addresses. The command

*1024/

displays the contents of location 1024 in decimal. As in C, numbers can also be
specified in octal or hexadecimal so the above command is equivalent to both

*02000/

and

*Ox400/

You can mix numbers and variables, so that

*1000.x/

refers to an element of a structure starting at address 1000, and

*1000->x/

refers to an element of a structure whose address is at 1000. For commands of
the type *1000.x/ and *1000->x/, sdb uses the structure template of the last
structure referenced.

You can print the value of a specified register, say r3, with the command

*%r3/

The x command prints the current instruction and the values of all registers.

If you are debugging a live process, you can set the value of a variable or a
register with the ! command. To set the value of the variable i to 10, for exam
ple, you enter

*inter:i!lO

To set the value of the register r3 to 10, you enter

*%r3!10

The value can be a number, a character constant - specified by 'character - or

sdb 6-9

Interactive Commands

another variable. (You can set a character to any of the C language escape
sequences described in the section "Source Files and Tokeniz.ation" of Chapter
3.) The value must be well-defined; expressions that produce more than one
value are not allowed, except when assigning a structure to a variable of the
same type. Numbers are treated as integers unless a decimal point or exponent
is used, in which case they are treated as having the type double. Register
values, except those for floating-point registers, are treated as integers. If the
address of a variable is given, it is regarded as the address of a variable of type
int. C language conventions govern any type conversions necessary to perform
the indicated assignment.

File Display and Manipulation

sdb has been designed to make it easy to debug a program without constant
reference to a current source listing. You can use it to display, and perform
context searches in, the source files of the executable you are debugging or
whose core image you are debugging. The commands are similar to those of
the UNIX system text editor ed. Like the editor, sdb has a notion of current file
and current line. sdb also knows how the lines of a file are partitioned into
functions, so it also has a notion of current function.

Five commands exist for displaying lines in a file:

1 Print the line corresponding to the current instruction.

p Print the current line.

w

z

control-d

Print a window of ten lines around the current line.

Print ten lines starting at the current line.

Print the next ten lines.

When a line from a file is printed, it is preceded by its line number. You can
use line numbers as input to some sdb commands.

z and control-d advance the current line by nine and ten, respectively. You
can also use the + and - commands to move the current line forward or back
ward, respectively, a specified number of lines. If the last command displayed
source, a carriage return advances the current line by one. Entering a line
number by itself causes that line to become the current line. You can combine
these commands with the display commands, so that

6-10 ANSI C and Programming Support Tools

Interactive Commands

*+lSz

advances the current line by 15, prints ten lines starting with the current line,
then advances the current line by nine. Note that the current line determines
the current function.

To change the current source file, you use the e command:

•e file.c

causes the named file to become current. The current line is set to the first line
of the named file. If the first line of the file is a function, that function becomes
current. Otherwise, there is no current function. If the directory of the file is
not in the search path, you use e to add its path name to the search path. The
path name must be followed by a /:

•e /home/trn/
•e file.c

You can also change the current file with the command

•e function

which causes the named function to become the current function, and the file
containing it to become the current file. The current line becomes the first line
of the function. If the directory of the file containing the function is not in the
search path, you must add its name to the search path as described above. Note
that you can use this form of the e command to change the current function in a
core file. Note, finally, that an e command with no arguments causes the
names of the current function and file to be printed.

You can use two commands to search for instances of a regular expression in a
file:

*/regular expression/
*?regular expression?

The first searches forward through the file for a line containing a string that
matches the regular expression; the second searches backward. In either case,
the search wraps around. The current line becomes the line containing the
matched string. The trailing I and ? can be omitted, provided they are not
embedded in a command associated with a breakpoint. Regular expression
matching is identical to that of ed.

sdb 6-11

Interactive Commands

Debugging a Live Process

As we noted earlier, you can use sd.b to examine and change the values of vari
ables as each statement in your program executes, or as sections of the program
execute up to preset breakpoints. To do either of these things, you must set at
least one breakpoint before you start the program - otherwise you will not be
able to stop it. If, for example, you are stepping through your program on a
statement-by-statement basis, you might set a breakpoint at the first executable
line of main () . The command

*main:b

does exactly that. If the first executable line of main () is line 3 of your current
file, the command

*3b

does the same thing. So does

*b

if the line is the current line, and

*main:3b

if line 3 of the current file occurs in main () . You can set a breakpoint at any
executable statement of a function compiled with -g, and at any function
whether or not it was compiled with -g. Of course, you can set as many break
points as you like before you execute your program, and as many as you like
while your live process is stopped. We'll show you how to delete breakpoints
below.

Now you are ready to run the program:

*r args

That command runs the program with the given arguments as if they had been
entered on the shell command line. If no arguments are specified, the argu
ments from sd.b' s last execution of the program are used. In other words, you
can start your program again in the same sd.b session, creating a new live pro
cess, by specifying r without arguments. To run a program with no arguments,
you use the R command.

6-12 ANSI C and Programming Support Tools

Interactive Commands

Once the program starts, execution continues until a breakpoint is encountered,
a watchpoint condition occurs (we'll explain watchpoints in a moment), a signal
such as INTERRUPT or QUIT is received, or the process terminates. In all cases,
after an appropriate message is printed, control returns to you.

Now that our program has stopped at the first executable line of main(), we
can execute that line - step through it - with the s command:

*S

The S command works the same way except that it does not stop in called func
tions. You use it when you are sure that the called function works correctly,
and want to test the calling routine. Both s and S take as an argument a count
of the number of statements to be executed. So, at the first executable statement
of main () , the command

*S 2

will cause that and the next executable statement to be executed. Note that if
you are single-stepping with s or s, and sdb reaches a function that was not
compiled with -q, it will continue execution until a function is reached that was
compiled with -q.

In these situations, you can use the i command to run your program one
machine-level instruction at a time. sdb will ignore any signal that stopped the
program. The I command does the same thing except that it passes the signal
that stopped the program back to the program. We'll talk a bit more about sig
nal handling in a moment. We'll look at machine-level debugging later in the
chapter.

Now suppose we are done stepping through our program and are ready to run
it to another breakpoint. Once a live process has stopped, you can resume its
execution with the c (for "continue") command:

*C

When you enter a line number before c

•9c

sdb places a breakpoint at the named line in your current file, and resumes exe
cution. When execution stops at that line, the breakpoint is deleted. In contrast,
when you specify

*C 9

sdb 6-13

Interactive Commands

sdb continues execution until the ninth breakpoint is encountered. In either
case, it will ignore any signal that stopped the program.

The c command does the same thing except that it passes the signal that
stopped the program back to the program. That can be useful in testing user
written signal handlers. As we have noted, the -s option can be used on the
sdb command line to specify the number of a signal that will automatically be
sent to a live process without stopping it. Again, you should use it if your pro
gram will receive and handle numerous signals.

You can tell sdb to continue execution at a given line with the g command:

*3g

That command causes execution to resume at line 3 of the current file. sdb will
resume execution at that line and skip two breakpoints with the command

*3g 2

You should be sure not to resume execution in a function different from that in
which the process was stopped, or at a line that bypasses needed initializations.
Generally speaking, you should try to avoid using g unless you are sure that the
section of code you are skipping is bad.

Except for the breakpoint counts, the syntax of c, C, and g is identical to that of
b. So

*main:6c

tells sdb to continue execution until it reaches the breakpoint it set at line 6 in
main().

The syntax is also the same to delete breakpoints with the d command:

*main:d

for example, tells sdb to delete the breakpoint at the first executable line of
main() . If the d command is given by itself, breakpoints are deleted interac
tively; as the location of each breakpoint is printed, you enter y or d to remove
it. The D command deletes all breakpoints; the B command lists them.

sdb will set a breakpoint, and when it reaches it, automatically perform a
sequence of commands when you specify the b command with a so-called
"associated command":

*12b t;x/;c

6-14 ANSI C and Programming Support Tools

Interactive Commands

That directs sdb, first, to set a breakpoint at line 12 of the current file, then to
print a stack trace and display the value of the variable x each time it reaches
the breakpoint. You can use the a (for "announce") command to do something
similar:

*function:a

tells sdb to print the name of the specified function and its arguments each time
it is called. The command

*function:12a

tells sdb to print line 12 in the specified function each time the line is about to
be executed.

You can call a function in either of two ways:

*proc (argl, arg2, ...)
*proc (argl, arg2, ...) Im

The first simply executes the function, the second executes the function and
displays the value it returns. The value is printed in decimal unless some other
format is specified by m. Arguments to functions may be register names,
integers, floating point, character, or string constants, or variables local to or
accessible from the current function. You can use this feature to test the same
function with different arguments or to call a user-supplied function that prints
structured data.

Finally, you can use watchpoints to monitor changes in the value of a variable
or the contents of an address. In the former case, you set the watchpoint with
the command

•x$m

where x is the variable to be monitored; in the latter, with the command

*1024:m

where 1024 is the address to be monitored. sdb will begin single-stepping as
with the s command, and stop when the value of the variable or the contents of
the address have changed. If they have, or if the process stops for any other
reason, including a breakpoint, the watchpoint is deleted automatically. The
variable must be local to or accessible from the current function.

sdb 6-15

Interactive Commands

The following is a summary of sdb commands discussed in this section:

r Run the program.

R Run the program with no arguments.

s Step through one or more program statements.

s Same as s except step over function calls.

i Step through one or more machine-level instructions.

I Same as i except pass the signal that stopped the program back to the
program.

c Continue execution.

c Same as c except pass the signal that stopped the program back to the
program.

g Continue execution at a given line.

b Set a breakpoint.

a Announce a line or a function and its arguments.

B List all breakpoints.

D Delete all breakpoints.

d Delete a breakpoint.

m Set a watchpoint.

Machine Language Debugging

As we noted in the previous section, you can use the i or I commands to step
through your program one machine-level instruction at a time. These and the
commands described below effectively disassemble your program for machine
level debugging. That is, you can use sdb to display the machine language
statements associated with a line in your source program and to place break
points at arbitrary addresses. You can also use it to display or modify the con
tents of machine registers, as described in ''Examining Variables" above.

6-16 ANSI C and Programming Support Tools

Interactive Commands

To display the machine language statements associated with line 25 in main(),
for example, you use the command

*rnain:25?

The ? command is identical to the I command except that it displays from text
space. The default format for printing text space is given by the i specifier,
described in "Examining Variables" above. You can use control-d to print the
next ten instructions.

Absolute addresses can be specified instead of line numbers by appending a
colon to them, so that

*Ox1024:?

displays the instruction at address Ox1024 in text space. Note that the command

*Ox1024?

displays the first instruction corresponding to line Oxl024 in the current file.

You can set or delete a breakpoint by specifying its absolute address:

*Ox1024:b

for example, sets a breakpoint at address Ox1024.

As noted, the x command prints the current instruction and the values of all
registers; X prints the current instruction.

Exiting

To quit sdb, use the q command:

*q

The ! command, when used immediately after the * prompt, is identical to that
in ed and is used to execute a shell command. Other commands are described
on the sdb page in Section 1 of the Programmer's Reference Manual.

sdb 6-17

Example

Figure 6-2 shows how you can use sdb to debug an aborted program. The
source code for the program is shown in Figure 6-1. The program consists of a
main() routine and a recursively called function foo () . The number of calls to
foo () is determined by the argument passed in argv [1] . That is, an argument
of 50 causes 50 calls to foo (), an argument of 150 causes 150 calls, and so on.
We have inserted line numbers in the source code and comments in the sdb
output to help you follow the session. Note that the example is for the 3B2.
Register names and other processor-specific information would be different on
the 6386.

6-18 ANSI C and Programming Support Tools

Example

Figure 6-1: Source Program c _recurse.c

sdb 6-19

Example

Figure 6-2: sdb Usage Example

(continued on next page)

6-20 ANSI C and Programming Support Tools

Example

Figure 6·2: sdb Usage Example (continued)

sdb 6·21

Example

Figure 6-2: sdb Usage Example (continued)

6-22 ANSI C and Programming Support Tools

7 lprof

Overview of C Profiling Utilities 7-1
How to Use the Profilers 7-2

Compiling the Program 7-4

Running the Profiled Program 7-5
The PROFOPTS Environment Variable 7-5
Examples of Using PROFOPTS 7-6

• Turning Off Profiling 7-6
• Merging Data Files 7-7
• Keeping Data Files in a Separate Directory 7-7
• Profiling within a Shell Script 7-8
• Profiling Programs That Fork 7-8

Invoking lprof 7-10
Searching for Source Files 7-11
Source Listing Output 7-12
Highlighting Unexecuted Lines 7-14
Summary Report 7-16
Merged Data 7-17

Profiling Archive or Shared Object Library
Code 7-10

Table of Contents

Table of Contents

Notes
Trouble at Run Time
Data File Cannot Be Found

Improving Program Performance
prof and lprof on lprof

Improving Test Coverage
Searching for Undocumented Options
Functions That Are Never Called
Hard to Produce Error Conditions

7-20
7-20
7-21

7-22
7-22

7-29
7-30
7-31
7-31

II ANSI C and Programming Support Tools

Overview of C Profiling Utilities

Profilers are tools that analyze the dynamic behavior of your program: how fast
and how often the parts of its code are executed when the program is run.
First, the profilers interpret data that have been collected about that behavior at
run time; then they display the interpreted data in a format you choose from a
number of options.

Two complementary utilities are available for profiling C source programs:

• prof is a time profiler. It reports the amount of time and the percentage
of time that was spent executing the parts of a program. It also reports
the number of calls to each function and the average execution time of the
calls. For an example of prof output, see Figure 7-4 below.

• !prof is a line-by-line frequency profiler. It reports whether and how
many times each line of source code was executed. In other words, it lets
you identify the unexecuted and most frequently executed parts of your
code. For an example of !prof output, see Figure 7-1 below.

The profilers are complementary in this sense. You can use prof to identify the
most time-consuming parts of a program. You can then use !prof to obtain
line-specific information only about those parts. In that way, you can avoid
generating uninformative output while targeting the lines of code whose perfor
mance needs to be improved. You may then be able to rewrite those lines to
execute more efficiently.

We'll see an example of this approach in the section "Improving Program Per
formance" below. For now it's enough to note that this complementary use of
the profilers takes the guesswork out of determining the small part of code that
usually accounts for a high percentage of run time.

We'll also look at ways of improving test coverage with !prof. By default,
!prof displays source code line by line with a count of the number of times
each line was executed, 0 if a line was never executed. You can obtain a sum
mary of coverage by invoking !prof with the -s option. The summary reports
the percentage of lines of code that were exercised for each function, by a test
suite or otherwise. You may then want to highlight the unexecuted lines in
functions with less than 100% coverage. The -x option to !prof causes it to
generate a source listing in which only unexecuted lines are marked. See the
sections "Invoking !prof" and "Improving Test Coverage" below for details.

I prof 7-1

overview of C Proflllng Utilities

One last feature of !prof ought to be mentioned here. You can obtain a more
representative sample of a program's dynamic behavior by running it more than
once, then invoking !prof with its merging options to obtain sums of the exe-
cution counts for the multiple runs. You can do the same thing by setting the t
environment variable PROFOPTS to its merging option before you run the pro-
gram. See the sections "Running the Profiled Program," "Invoking !prof,"
and "Profiling Archive or Shared Object Library Code" below for details.

How to Use the Profilers

To use either of these profilers, you must follow a three-step procedure:

7-2

Step 1: Compile and link the program with a profiling option:

Step 2:

Step 3:

for prof: $ cc -qp (or -p)
for !prof: $ cc -ql

The rules stated in the next section for compiling and linking a
program with -ql (!prof) are identical for -qp (prof).

Run the profiled program. At the end of execution, run-time
data are written to a file known as a data file. A data file con
sists of a header section, a section for each function, and an end
of data marker. The coverage datum (execution count) for each
function is recorded beside the name of the function. Data files
have the following default names:

for prof: mon. out
for !prof: prog. cnt

where prog is the name of the profiled program. For prof, the
PROFDIR environment variable and, for !prof, the PROFOPTS
environment variable enable you to specify names other than
mon.out and prog.cnt, respectively. They also allow you to
write data files to a directory other than the current directory
and, when they are set to the null string, to turn off profiling.

Execute the prof or !prof commands. By default, both
profilers expect a. out as the input. Both permit specification of
a differently named program on the command line (for !prof,
as an argument to the -o option), and both accept data files as

ANSI C and Programming Support Tools

Overview of C Profiling Utilities

input (for prof, as an argument to the -m option; for lprof, as
an argument to the -c option).

In the next four sections, we'll take a closer look at the steps you must follow to
profile a program with lprof. For further details of prof usage, check the
manual page in Section 1 of the Programmer's Reference Manual.

I prof 7.3

Compiling the Program

Suppose you have a program that consists of the source files travel . c and
misc. c. As we have seen, you must compile your source files with the -ql
option to profile a program with !prof:

$ cc -ql -o travel travef. c misc. c

When you specify -ql, you arrange for data about your program's run-time
behavior to be written to a data file at the end of execution.

If you compile and link your program in separate steps, you must specify -ql
when you link as well as when you compile:

$ cc -ql -c travel.c
$ cc -ql -c misc.c
$ cc -ql -o travel travel.a misc.o

See the section "Invoking !prof" below for the options you must specify to use
the profiler on a program with a name other than a. out.

These command lines illustrate what you must do to profile an entire program.
You may be interested in profiling only a piece of a large program. Suppose,
for instance, you have run prof on both source files and found out that 70% of
the total execution time can be accounted for by one function in travel . c.
Now you want to examine that function with !prof to determine how you can
improve its performance. To produce profiling data only for travel. c, you
enter the commands

$ cc -ql -c travel.c
$ cc -c misc.c
$ cc -ql -o travel travel.a misc.o

Note, finally, that the -ql option overrides the -o option. That is, the com
mand

$ cc -ql -0 -o travel travel.c misc.c

will not invoke the optimizer. Of course, you can optimize your program after
you have profiled it by recompiling your source files with -0 and without -ql.

7-4 ANSI C and Programming Support Tools

Running the Profiled Program

When you execute the profiled program

$ travel

run-time data are written to the data file travel. cnt in your current directory.
The following message is printed to stderr:

The PROFOPTS Environment Variable

The environment variable PROFOPTS provides run-time control over profiling.
When the profiled program is about to terminate execution, it examines the
value of PROFOPTS to determine how the profiling data are to be handled.

The PROFOPTS environment variable is a comma-separated list of options inter
preted by the program being profiled. If PROFOPTS is not defined in the
environment, then the default action is taken: the profiling data are saved in
prog. cnt in the current directory. If PROFOPTS is set to the null string, no
profiling data are produced.

The following options can be specified in PROFOPTS. They are explained in
more detail in the section ''Examples of Using PROFOPTS" below.

msg=yln

merge=yln

I prof

If msg=y is specified, print a message to stderr
stating that profiling data are being created. If
msg=n is specified, print only profiling error mes
sages. The default is msg=y.

If merge=n is specified, do not merge data files after
successive runs; the data file will be overwritten after
each execution. If merge=y is specified, the data
will be merged. The merge will fail if the program
has been recompiled between runs; the data file asso
ciated with the second tun will be stored in TMPDIR.
The default is merge=n.

7.5

Running the Profiled Program

pid=yln

dir=dir

file=Jile

If pid=y is specified, the name of the data file will
include the process ID of the profiled program. This
allows the creation of different data files for pro
grams calling fork(2). If pid=n is specified, the
default name is used. The default is pid=n.

Store the data file in the directory dir. Otherwise the
data file is created in the directory that is current at
the end of execution.

Use file as the name of the data file. Otherwise the
default name is used. (See "Profiling within a Shell
Script" for an example.)

Examples of Using PROFOPTS

The following sections provide examples of how PROFOPTS might be used to
tailor the environment to specific tasks.

Turning Off Profiling
If you do not want to profile a particular run, you can set PROFOPTS to the null
string when you execute the profiled program:

$ PROFOPTS="" travel

Because you did not export PROFOPTS, this value will remain in effect for only
one execution of the program. If you want to turn off profiling for more than
one program and/or run, export the value of PROFOPTS:

$ PROFOPTS="" export PROFOPTS
$ travel

Exporting the variable eliminates the need to specify it every time you execute
travel. It also makes the value of PROFOPTS applicable to all runs of any
profiled program, not just travel. Once you have exported PROFOPTS, it
keeps the value you have given it until you unset or redefine the variable.

7-6 ANSI C and Programming Support Tools

I~

Running the Profiled Program

Merging Data Files

Suppose you are not interested in the data from a single run; you want the
information collected from all runs. A data file that contains information from
multiple executions is called a merged data file. When data files are merged,
the line execution counts for all runs are added together arithmetically.

The following screen shows how you must specify the environment if you want
your data files from successive runs to be merged:

··:·:": . ··-: .. /:::::. · ... :::::::::::·:.:..:::::-:::.::·. ·.· ... ·:.:._ .. ···· .. ::· .. :. :;::··.

$ ••• PPDroJ?T2~e-y •••• ~ •. PRO~Ts··········· f••i:rave1>: • •·• ·

. / < i(. < < .•.

ci~ ~J;:ri!"Jq. da.ta from process· •ti-a;vel' •
·· <;ll'J,'FI:r.B ~tr#~,cn~~ ~ •· · ···

. -:-: :::·::: . ·::"::.>:: ::::: ·::-:· .:: . .<:-:-::.:.-:·.· :-.::.·.:-::: :< ::: .. ::::·:::.·· .. · .··: :-.::.. :.:::-::::

·············••••dlmlp~•··~11~···:t~ • froni·•~rC>Oe~,,······ha~e1•·••• • ·.•·• CN'l'FILE 'ti;llvel, ~i:• upchl,teci >

As noted, the merge will fail if the program has been recompiled between runs;
the data file associated with the second run will be stored in TMPDIR, and its
path name will be printed to stderr. See the section "Invoking !prof"
below for command line options to !prof that enable you to merge existing
data files of a recompiled program.

Keeping Data Files in a Separate Directory

To avoid clutter in your current directory, you may want to create a directory
specifically for data files. When you assign that directory to the PROFOPTS
environment variable, your data files will be created in that directory:

$ PROFOPTS="dir=cntfiles" travel

In this case, travel. cnt will be created in the directory cntfiles.

I prof 7-7

Running the Profiled Program

Profiling within a Shell Script

You may want to write a shell script that runs a profiled program automatically.
That could be useful for tasks you perform frequently, such as determining test
coverage. In that case,

• you might not want to receive notification that profiling data are being
created;

• you might want to have data from successive runs merged automatically;

• you might want to give the data file a name you can associate with a
given test case.

You can specify these conditions in PROFOPTS as follows:

$ PROFOPTS="msg=n,merge=y,file=testl.cnt" prog < testl

In this example, the profiling data will be written to a merged data file with the
name testl. cnt rather than the default name myprog. cnt.

Profiling Programs That Fork

If a profiled program uses the system call fork (), the data files of both the
parent and child processes will have the same name by default. You can avoid
that by using the PROFOPTS option pid. By setting pid to y, you insure that
the data file name will include the process ID of the program being profiled. As
a result, multiple data files will be created, each with a unique name.

What happens when you run a program that forks without using the pid
option? If you have set merge=y, the data will be merged; data from separate
processes will be indistinguishable. If you have set merge=n, the last process
to dump data will overwrite the data file.

The following screen shows how the pid option works, where forkprog is a
program that uses fork () :

7-8 ANSI C and Programming Support Tools

Running the Profiled Program

I prof 7-9

Invoking lprof

!prof correlates the data file with the profiled program to produce its report.
By default, !prof expects the profiled program to be called a. out and the
data file a. out . cnt. If the default names are used, and both the profiled pro
gram and the data file are in your current directory, you invoke !prof without
arguments:

$!prof

If the program and data file are in a different directory, you specify their paths
relative to the current directory with the -o and -c options, respectively:

$!prof -o dir/a.out -c dir/a.out.cnt

To invoke !prof for a program with a name other than a. out, you specify its
name after the -o option:

$!prof -o travel

!prof will assume the data file is called travel. cnt.

You can also invoke !prof for the data file. You specify the name of the data
file after the -c option:

$!prof -c travel.cot

The name of the profiled program is stored in the data file exactly as it
appeared on the command line when the program was run. When the -c
option is invoked, !prof consults the data file for the name of the profiled pro
gram. That is, even if run-time data have been written to a data file other than
the default prog. cnt - say, to a data file whose name you have specified in the
PROFOPTS environment variable - !prof will be able to determine the name
of the profiled program with which the data file is to be correlated. Because the
name of the data file is not stored in the profiled program, however, the reverse
is not true: you cannot specify the name of the program and expect !prof to
determine the name of the data file if it is other than prog. cnt.

The simplest way to invoke !prof, then, is to specify the name of the data file
and let !prof determine the name of the profiled program. Note, however,
that because the name of the program is stored in the data file exactly as it
appeared on the command line when it was run, !prof will not be able to
access the profiled program if you

7-10 ANSI C and Programming Support Tools

Invoking lprof

• use a relative path name on the command line when you run the profiled
program;

• invoke lprof in a different directory, specifying only the path name of
the data file, that is, without also specifying the profiled program's full
path name or its path name relative to your current directory.

Suppose, for instance, you are working in the directory /home/ cur. dir. You
enter the commands

$ cc -ql -o newprog newprog.c
$ newprog

A data file called newprog. cnt is created in cur. dir. The data file contains
the name of the profiled program exactly as it appeared on the command line
when the program was run, newprog. Now you change directories to /home
and enter the command

$ lprof -c cur.dir/newprog.cnt

lprof looks for newprog in the current directory and fails to find it:

cannot access object file 'newprog'

To make sure that lprof can access both the data file and the profiled pro
gram, you should specify their paths relative to /home with the -c and -o
options, respectively:

$ lprof -c cur.dir/newprog.cnt -o cur.dir/newprog

Searching for Source Files

To produce the source listing output described in the next section, lprof must
be able to access the source and header files that comprise the profiled program
(or the profiled part of it). By default, lprof searches

• the current directory for the source files to be displayed in the listing;

• the current directory and the standard place for header files - usually
/usr/include - for the header files to be displayed.

I prof 7-11

Invoking lprof

If your source or header files are in directories different from these, you must
specify their paths with the -I option. (That is, unlike cc -I, you use !prof
- I to specify directories to be searched for source files as well as header files.)
So if some of the source and header files for the profiled program sample are
stored in the directory /usr/src/cmd, and the rest in your current directory
and the standard place for header files, you use the command

$!prof -c sample.cnt -I/usr/src/cmd

to produce a source listing for all your profiled files. You can specify -I more
than once on the !prof command line. Directories are searched in the order
they appear on the command line.

If you want a source listing for selected source files, you specify the files with
the -r option:

$!prof -c sample.cnt -r samplel.c -r sample2.c

That command will produce source listing output only for sample!. c and
sample2 . c of the profiled program sample, provided, of course, that the
source files are in your current directory.

Source Listing Output

By default, !prof displays profiled source code line by line with a count of the
number of times each line was executed, 0 if an executable line was never exe
cuted. Line numbers of executable lines are enclosed in brackets, with the
number of times each line was executed printed to the left of the line number,
as shown in Figure 7-1. Note that lines that are not executable - declarations,
comments, and blank lines, for example - are marked neither with a line
number or an execution count.

7-12 ANSI C and Programming Support Tools

Invoking lprof

Figure 7-1: Example of lprof Default Output

I prof 7-13

Invoking lprof

Highlighting Unexecuted Lines

If you specify the -x option to !prof, the source listing output will highlight
lines that have not been executed. Lines that have been executed will be
marked only by line numbers. Executable lines that have not been executed will
be marked with a line number preceded by a [U]. Figure 7-2 shows an exam
ple of output produced with the -x option.

7-14 ANSI C and Programming Support Tools

!
l

Invoking lprof

Figure 7-2: Example of lprof -x Output

I prof 7-15

Invoking lprof

Summary Report

You can obtain a summary of profiling data by invoking !prof with the -s
option:

$!prof -s -c sarnple.cnt

Because a source listing is not produced by !prof -s, the -I option need not
be specified. The summary reports the percentage of lines of code that were
executed for each function in the profiled program, as shown in Figure 7-3.

Figure 7·3: Example of lprof -s Output

To obtain both a source listing report and a summary report, you can invoke
!prof with the -s and -p options. As an exercise, you might want to con
sider what the following command does:

$!prof -p -s -c sarnple.cnt -r sarnple3.c -I/usr/src/crnd

7·16 ANSI C and Programming Support Tools

Invoking lprof

Merged Data

You can merge existing data files with the !prof command as follows:

$!prof -d destfile -m runl . cnt run2 . cnt run3 . cnt

where the data file runl . cnt was specified in the PROFOPTS environment
variable the first time the program was executed, the data file run2 . cnt the
second time the program was executed, and so on. The command line requires
both -d and -m. The -m option takes the names of two or more data files to
be merged. The -d option specifies the destination file that will contain the
merged data. The command will fail if the data files were not created by the
same program or if the program was recompiled between runs.

You can, however, use the -T option to merge existing data files of a recom
piled program. Suppose, for example, you have run the profiled program
travel, specifying the data file runl. cnt in the PROFOPTS environment
variable. Now you recompile travel with -ql and run it again, this time
specifying the data file run2 . cnt. The profiled programs have the same name,
travel, but different time stamps. Because the time stamps do not match, the
data files cannot be merged unless you override the time stamp check by speci
fying the -T option to !prof:

I prof

$!prof -d merqed.cnt -m runl.cnt run2.cnt -T

Use the -T option with care. H the control flow of the recompiled program
has changed, the merged data file is very likely to be erroneous; !prof will
produce an incorrect report.

7-17

Profiling Archive or Shared Object Library
Code

You can use lprof to profile archive library code as long as you specify -ql
when you compile the library source files, and again when you link the library
with your program:

$ cc -ql -c functionl.c function2.c
$ ar -r libfoo.a functionl.o function2.o
$ cc -c testl. c
$ cc -dn -ql -o testl -L. testl.o -lfoo
$ testl

Profiling data for the library functions are written to the data file testl. cnt.
The command

$ lprof -c testl.cnt

generates the default lprof output for the profiled archive library.

To profile testl as well as the library code, you specify -ql when you com
pile testl. c. Profiling data for both the library code and the test program are
written to testl. cnt.

You can profile shared object library code with lprof by specifying -ql when
you compile and link the library functions, and again when you link the library
with your program. Note that if you are not profiling the test program, you
must specify -g when you compile the source:

$ cc -K PIC -ql -c functionl.c function2.c
$ cc -ql -G -o libfoo.so functionl.o function2.o
$ cc -g -c testl.c
$ cc -ql -o testl -L. testl.o -lfoo
$ LD_LIBRARY_PATH=. export LD_LIBRARY_PATH
$ testl

Profiling data for the library functions are written to the data file
libfoo. so. cnt. That is, whereas profiling data for archive library functions
are stored in a data file that takes its name from the program, profiling data for
shared library functions are stored in a data file that takes its name from the
library. And whereas profiling data for archive library functions are stored in
the same data file as profiling data for the program, profiling data for shared
library functions are stored in a different data file. Had we specified -ql when
we compiled testl. c, two data files would have been created: testl. cnt

7-18 ANSI C and Programming Support Tools

Proflllng Archive or Shared Object Library Code

and libfoo. so. cnt. Whether or not you profile the test program, you
specify

$!prof -c libfoo.so.cnt

to generate !prof default output for the profiled shared library.

Note that because profiling data for shared library functions are stored in a data
file that takes its name from the library, you can obtain merged ouput for multi
ple test runs of a shared library even though the library was linked with a dif
ferent executable each time. Consider the following commands:

$ rnv libfoo.so.cnt libfoo.cnt
$ cc -g -c test2.c
$ cc -ql -o test2 -L. test2.o -lfoo
$ test2
$!prof -d rnerged.cnt -rn libfoo.cnt libfoo.so.cnt

That is, the data files libfoo. cnt and libfoo. so. cnt can be merged
because both were created by executing a program that used libfoo. so.

For a discussion of how libraries are created and linked with your program, see
the "Link Editing" section of Chapter 2.

I prof 7-19

Notes

This section describes certain problems that may arise when you use !prof
and how to avoid them.

Trouble at Run Time

You may get no data after running a profiled program. The program terminates
normally, and you receive neither a message about data being saved or an error
message. This may be caused by one of three problems:

• You may not have specified -ql at both compile time and link time. If
you forget to specify -ql when you link, the program will run but a data
file will not be created.

• Because profiling data are saved at termination by the system call
exit(2), no profiling data are saved if exit() is never called. The
profiled program may include a call to _exit() that is causing the pro
gram to quit without calling exit () . Replace calls to _exit () with
calls to exit () in order to save profiling data.

• The PROFOPTS environment variable may be set to the null string.

Finally, you may see the following error message at the end of execution:

Dumping profiling .data. from pi;ocess •a.~' , , ..
fatal.error! cannot find symbOltable se<ii:ion ill ./a.out.

Usually this is caused by running a stripped version of a profiled program.
Never strip files to be profiled. If necessary, change makefiles so that they do
not produce stripped files.

7-20 ANSI C and Programming Support Tools

Notes

Data File Cannot Be Found

Occasionally, you may not be able to find the data file, despite the fact that the
profiled program has terminated normally and you have received a message
saying that the data file has been created.

The profiled program creates the data file in the directory in which the program
is located when it terminates. If the program changes directories during execu
tion, the data file may be created in a directory different from both the directory
in which you executed the program and the directory in which the shell is
located when the program terminates.

Use the dir option of PROFOPTS to specify exactly where the data file is to be
created so you will be able to find it.

I prof 7-21

Improving Program Performance

This section presents an extended example of how you might use prof and
!prof together to improve program performance.

prof and lprof on lprof

During the development of !prof it was observed that the process of merging
profiling data was slow. The profiling data being merged came from two runs
of the C compiler, a medium-sized program with, at the time, 284 functions. It
took forty cpu seconds (two minutes of real time) to merge the two coverage
files. We wanted to improve on that.

The first step was to produce a time profile of !prof to see which functions
were taking the most time. Here is part of the output from prof:

Figure 7-4: prof Output

4'.72 lS.24
3;6!f 2L93
3.60. 5;52
2..99 26~51 2S4
2. 94 3L45 42472.
2.45 33:90 1154
l;l7. 35.07 .40475
1.09 36:16 4~4}L

· o:96 37.13 .··• >2
0;55/ 37~68 1 ·.

10 .. 53
0:0692
2.~123
0.0289

. 0.0257
482;
sso. ·•

· o.33 36,0l · 1431 o.23i
0.16 36.17>. isie . •. 0;;1os
0;11 36;28 569 o.a

The two most time-consuming user functions were CA jump () and CAf ind () .
We wondered why CAjump () was called 40,286 times and why the average
time per call for CAfind () was so high, 10.53 milliseconds. The next step was
to invoke !prof only for the source files containing the functions CA jump ()
and CAfind (). Here are the results for CAfind ():

7-22 ANSI C and Programming Support Tools

Improving Program Performance

Figure 7-5: lprof Output for the Function CAfind()

284 (.66]
284 [67]

40754· [69]
.40470 [70]

40470 [72]
40470 ['13]

40410 (75]
40470 (76]

284 [80]

284 (82]
284 [83]

40186 [87]
40186 f 88]

0 [90]
0 {91]

4-0410 [94]

0 [98]
0 [99]

I prof

•hort
.. CA.find (t'il.eclata, searchfunc)
st.t:uct caFILEDATA *filedata;
char· •searchfunc;
I

:Jhort zet_~,findflag;
wis:l.gned cha.r fnimie_11be;
char. •name;

CArewil:ld(fileda.ta); /* :r:ewind file pointel:S •/
findfiaq - 1;

while (findflag}
if ((f~({chaJ; •) &fpaJll!'_aize, aizeof(unsigned char),

1, tiledata->cov_data_;>tr)) > 0} I
nama • (char *"> mal.loc (fname_size+l);
fread(name, {int)fnarne_size, 1, filedata->cov_data_ptr};
I;,. make null-te.oninated * /
name[fnane_size] •'\O';
if (strcinp(naine, ~chf=> - 0)
{ I• this is the function, move

ptr·back: to beginning.of

function name •/
fseek(filedata->cov_data_ptr,

-{long)(fname_size+sizeof{unsigne;l char)),1);
:ret_code - OK;
findflaq • O;

else /• this is not it, move to next function •/
{

. if (fname_•ize !- mo)

if (CAjunp(filedata->cov_data_ptr) - F.OF_FAJ:L)

I I• error - end of file found •/
ret_code - FUNC_aIL;
findflag - 0;

free(n-);

else
I /* end of file befort;> function found •/

ret_code ., !'UNC_E'AIL;
findflag • O;

}

(continued on next page)

7-23

Improving Program Performance

Figure 7-5: lprof Output for the Function CAfind() (continued)

The data shown in the previous screen were reported by an earlier release
of lprof. The current release would treat the else statements in lines 85
and 96 as executable. Similarly, the case statements shown in Figure 7-9
below would be treated by the current release as executable.

CAfind () searches the data file for data pertaining to a particular function.
Recall that a data file consists of a header section, a section for each function,
and an end of data marker. The coverage datum (execution count) for each func
tion is recorded beside the function's name.

Notice that the while loop (shown between lines 70 and 94) was executed
40,470 times; for 284 successful searches, there were 40,186 unsuccessful
searches. We were getting a low rate of return for computing resources spent.
A look at the while loop also shows why fread () was executed so many
times: the loop contains two calls to fread () (lines 70 and 73). Finally, the
prof output reports that CA jump () was called 40,186 times, once for each
unsuccessful search.

Our goals were to minimize the number of unsuccessful searches and, if possi
ble, decrease the number of calls to fread (),because these are relatively
expensive.

The !prof algorithm for merging files consists of two steps: traversing the
functions in one of the files sequentially, and calling CAfind () to locate the
data for a given function in the other coverage file.

The first thing that happens in CAfind () is the resetting of the file pointers so
they point to the first function in the file (line 66). Then, because the given
function (which was passed to CAfind () as an argument) has not been found,
the next function in the file is examined to see if it is the correct function. If it
is, we are finished. If not, we can skip over the data and try the next function.
If we have reached the end of the file, there will be no data for that function in

7-24 ANSI C and Programming Support Tools

Improving Program Performance

the coverage file and we will return with a failure. By itself, CAfind () looked
fine. There didn't seem to be much we could do to improve its performance.

Looking over the entire program, however, we were able to observe that in
almost all situations the order of the coverage data in the two files to be merged
was identical. This meant that on subsequent calls to CAfind (), the next func
tion being sought was immediately after the one found on the last call to
CAfind () . The original implementation did not take advantage of the fact that
the search was usually sequential. The file pointers were always reset to the
beginning of the file before the search began. Because the functions were in
sequential order, this meant that each successive search took progressively
longer.

We changed the search strategy so that instead of starting at the beginning of
the file on each call to CAfind (), we started at the place in the file where the
previous search had ended. This could have been anywhere in the file. Because
files being merged are usually identical, the function being sought is almost
always the function following the last one found.

The new search strategy required a slightly more complicated algorithm.
Whereas the original strategy demanded only that we check for the end of the
file, the new strategy required that we both check for the end of the file and
keep track of our current location. The need to do both arose from the sequence
of events involved in this type of searching.

The new strategy dictated that each iteration of searching begin where the last
search ended. CAfind () was to search until the function being sought was
found. If CAfind () reached the end of the file before finding that function, it
had to continue the search between the first line of the file and the place where
it had started the search. Thus CAfind () had to keep track of when the end
of the file was reached. Because the goal of the new strategy was to start each
search iteration at the place where the last search had ended, it was obviously
necessary to keep track of our current location in the file.

The following screen shows the lprof output for CAfind () after we changed
it to accommodate our new strategy:

I prof 7-25

Improving Program Performance

Figure 7-6: lprof Output for New Version of CAfind()

7-26

· ... : .··.·.::·>:: :::::.:::}:·:::::·.:/:·: ... ::::::-.-::· ..

···•·· ~~p~ r··•
• · .. CAfillq{!iledata, · aeai:chfuno)

sti:uct ~ •filedaui,; ..

.

~nit_ioc •• '.'."l;>
wn,ile ·{l} (. •• • ··•• ·. . • • ·

if (init ...)ci(? :- ~l) f
h first time through */ .·•.....

) !Iµt"'loo ._ ftell (filedata->cov_(jata_pt:i::);

·else•·(·
I• have WEI wrapped. conpletely a.round'? *I.•
if {ftell(filtric!ata->cOV_data,J>tr) ..,. init_:_loc)

!• ·S!eiu:ched• all. ftmotiO!\$. •I
ret_cod6 - niNC_FAl'.t:
b+eak;

r . ·•· ·. ··••·. .. ·. •·•••· ·•••··
if Hfzead((ohar *l &friame..:.11:l.ze; .siz~(unsigned qtia:iy; .•..•.

1, filtridata'.'.">cov.,..data_ptr}} > 0) (. · · · ·
if {fname_size E'.OI)) (/

I• w:i::ap around. to .begil!liing •/
Cl\l:eW:lnd(!il.ajata) ; ..

· I~ 90 !'.!a~ t¢ top of lQOp
·aontin\ie;

.. ·.· ... ·. .. · .. ·

11ame ., <cha:i; ~> mBJ.1~(f1Jame..:.size+i1:
ftead(name;· (int)fname.:_siie, · 1, filEldat..,':")COv_data_ptr) i
/* maite nu.Uc.terminated ... i ·· · ··
Ill!lllelt:i:illlne_aizel • '\O' i
if (st~·<nlllne, s~unc) . .;..,. O)

.1 . . •••t• thh i:i the function, .mQvEI

. ·•·····• • •······ ptr ·~·· t~ ~ihn:l.1J9. of > flJ.Ilction Jiama / < ·· •I .
. . ·· f~ (file41<tl!c->cov_dat"J'tr,
•.... ·.·. • ... -(lonq) (fnlllne_sizetsiz~f (u.nsi9tJed ch,a.r;)J, 1):

ret..:.co&;i ... %1

. ·. ···•·· l>reak: .

ANSI C and Programming Support Tools

Improving Program Performance

Figure 7-6: lprof Output for New Version of CAflnd() (continued)

Note that not only did we greatly reduce the number of calls to fread (), but
in typical situations we eliminated calls to CA jump () entirely! Remember,
CAjump () originally took 3.69 seconds (9.5% of the total execution time), which
was more than any other user function.

The prof output for the new version is shown in the following screen:

I prof 7-27

Improving Program Performance

Figure 7-7: prof Output for New Version of lprof

%.'I'~ Secon4s eumsec.,
25.4 0.54 0.54

..
0.25 0.79 • 0.125 malloc
0;22 1.01.•····· 2848 0.07!1 !~
O.U·· 1.20. 579. 0.33• lseek
0.15 1.35 1518 0,099 fwrite
0 •. 13 1~48 _moount
0.09 1.57 569 0.16 CA.read
0.08 1.65 4369 0.018 memcpy
0.06 1.71 284 0.21 CAor
0.06 1,17 2 30. c.reat.
0.06 1.83 l 60. CAcov_join
0.04. · l.87 .. 284 0.14 CA.find

1.9 0.04 1,91 284 0.14
1.9 0.04 1 .• 95 1717 . 0;023
•i.4 •. o·.03 1.98 1 4;

The execution time for CAfind () decreased from 2.99 seconds to 0.04 seconds,
and for CAjump () from 3.69 seconds to 0 seconds. The overall performance of
the entire program decreased from forty cpu seconds (two minutes of real time)
to two cpu seconds (six seconds of real time).

7-28 ANSI C and Programming Support Tools

f

Improving Test Coverage

It is difficult to write test suites that fully cover programs if you have no way of
determining how much of the code is exercised. lprof removes the guess
work by showing, on a line-by-line basis, which lines of code are executed. That
allows the tester to know exactly what has been tested. It also makes it easier
to refine and improve tests.

Suppose we want to measure how well a given test suite tests a program. First
we compile and link the program with -ql so that profiling information will be
saved. Then we rµn the program with the tests to get the profiling data. By
looking at the summary output, we can see how much of the code is exercised.

Figure 7-8: lprof Summary Output for a Test Suite

Cove;r119e 011.ta Soim::e: teat, cnt
Date of Cover~ Data Source: Wed Mar 5 11:11:58 1985
Ol:>ject; Jl\)(prQ9

percent lines total function
~ oovere<J. lines name

91.~ 97. 106 09111Pile
100.0 .· 18 18 step·
100.0 73 73 advance
100,0 4 4 9etrru;ie

42.9 12 26 main
100.0 29 29 execute
100~0 19 19 suooee:i

42. 9 3 7 putdata
0.0 0 19 rec;re=

100.0 21 21 f;9etl

85.2 276 324 TOTAL

Now we can examine individual functions that do not have 100% coverage to
find ways of improving the tests.

The rest of this section consists of three examples that show why certain func
tions may not have 100% coverage. The first example demonstrates how to
uncover an option that is usually missed because it is not documented. The
second example shows how to uncover a function that is never called. The
third example examines code that is never executed because of an error

I prof 7-29

Improving Test Coverage

condition that is difficult to produce. Each section also explains how to resolve
the problem of lack of coverage.

Searching for Undocumented Options

First, examine the function main () to see what parts of the code are not exe
cuted. Use the -x option to !prof to highlight the unexecuted lines:

Figure 7-9: Fragment of Output from lprof -x

The output shows that the -v option was not tested. By checking the docu
mentation you can confirm that -v is an undocumented option. To correct this,
create a test that exercises the -v option and add the -v option to the manual
page.

7-30 ANSI C and Programming Support Tools

Improving Test Coverage

Functions That Are Never Called

None of the lines in the function regerr () are executed. To find out why,
invoke cscope (Chapter 8) and request a list of the functions that call
regerr () . cscope reports that no function calls regerr () . Because
regerr () will never be exercised, it ought to be - but, for arcane reasons, can
not be - deleted from the code. You can, though, discount the 19 lines of
regerr () in calculating the percentage of code that is covered by the test suite.

Hard to Produce Error Conditions

Now take a look at the function putdata () .

Figure 7-10: Output from lprof -x for putdata()

[9]

Ill]
[01 {12]
[O] [13]

(OJ [14]
[U] [15]

[17]

VQid

putdata (output,· data} · ·
char •data;
FILE •0utput; ..

I• cheCk fOr file system out of space•/
i!. (fpdntf(o11tput, "'iis", datlil) < 0} I

fprintf(st~r, "write exror with file 'b'", filenarnet};
fclose(Qutput); ·
Unl.w(newre!filel;
exit (l};

Because this error is hard to produce, the error recovery part of the function
usually does not get tested. You can simulate the error, however, by writing
your own fprintf () function that returns a value less than 0. That will cause
the error recovery part of the function to be exercised, allowing you to see the
following error message:

write error with file '@%f&HP'

Further inspection reveals that the variable filename was never initialized.
That oversight caused the error message to be garbled.

I prof 7-31

8 escape

Introduction
How cscope Works

How to Use cscope
Step 1: Set Up the Environment
Step 2: Invoke cscope
Step 3: Locate the Code
Step 4: Edit the Code
Command Line Options
Using Viewpaths
Stacking cscope and Editor Calls
Examples

• Changing a Constant to a Preprocessor Symbol
• Adding an Argument to a Function
• Changing the Value of a Variable

Notes
Unknown Terminal Type
Command Line Syntax for Editors

Tabla of Contents

8-1
8-1

8-2
8-2
8-3
8-4
8-14
8-15
8-17
8-18
8-18
8-19
8-25
8-25

8-26
8-26
8-26

' ,,

Introduction

The cscope browser is an interactive program that locates specified elements of
code in C, lex, or yacc source files. It lets you search and, if you want, edit
your source files more efficiently than you could with a typical editor. That's
because cscope knows about function calls - when a function is being called,
when it is doing the calling - and C language identifiers and keywords. This
chapter is a tutorial on the cscope browser.

How cscope Works

When you invoke cscope for a set of C, lex, or yacc source files, it builds a
symbol cross-reference table for the functions, function calls, macros, variables,
and preprocessor symbols in those files. It then lets you query that table about
the locations of symbols you specify. First, it presents a menu and asks you to
choose the type of search you would like to have performed. You may, for
instance, want cscope to find all functions that call a specified function.

When cscope has completed this search, it prints a list. Each list entry contains
the name of the file, the number of the line, and the text of the line in which
cscope has found the specified code. In our case, the list will also include the
names of the functions that call the specified function. You now have the
option of requesting another search or examining one of the listed lines with the
editor. If you choose the latter, cscope invokes the editor for the file in which
the line appears, with the cursor on that line. You may now view the code in
context and, if you wish, edit the file as you would any other file. You can then
return to the menu from the editor to request a new search.

Because the procedure you follow will depend on the task at hand, there is no
single set of instructions for using escape. For an extended example of its use,
review the cscope session described in the next section. It shows how you can
locate a bug in a program without learning all the code.

cscope 8-1

How to Use cscope

Suppose you are given responsibility for maintaining the program proq. You
are told that an error message, out of storage, sometimes appears just as the
program starts up. Now you want to use cscope to locate the parts of the code
that are generating the message. Here is how you do it. ~

Step 1: Set Up the Environment

cscope is a screen-oriented tool that can only be used on terminals listed in the
Terminal Information Utilities (te:tminfo) database. Be sure you have set the
TERM environment variable to your terminal type so that cscope can verify that
it is listed in the te:tminfo database. If you have not done so, assign a value to
TERM and export it to the shell as follows:

$ TERM=term _name export TERM

You may now want to assign a value to the EDITOR environment variable. By
default, cscope invokes the vi editor. (The examples in this chapter illustrate
vi usage.) If you prefer not to use vi, set the EDITOR environment variable to
the editor of your choice and export EDITOR:

$ EDITOR=emacs export EDITOR

Note that you may have to write an interface between cscope and your editor.
For details, see the section "Command Line Syntax for Editors" below.

If you want to use cscope only for browsing (without editing), you can set the
VIEWER environment variable to pg and export VIEWER. cscope will then
invoke pg instead of vi.

An environment variable called VPATH can be set to specify directories to be
searched for source files. See the section "Using Viewpaths" below.

8-2 ANSI C and Programming Support Tools

How to Use cscope

Step 2: Invoke cscope

By default, cscope builds a symbol cross-reference table for all the C, lex, and
yacc source files in the current directory, and for any included header files in
the current directory or the standard place. So if all the source files for the pro
gram to be browsed are in the current directory, and if its header files are there
or in the standard place, invoke cscope without arguments:

$ cscope

To browse through selected source files, invoke cscope with the names of those
files as arguments:

$ cscope filel.c file2.c file3.h

For other ways to invoke cscope, see the section "Command Line Options"
below.

cscope builds the symbol cross-reference table the first time it is used on the
source files for the program to be browsed. By default, the table is stored in the
file cscope. out in the current directory. On a subsequent invocation, cscope
rebuilds the cross-reference only if a source file has been modified or the list of
source files is different. When the cross-reference is rebuilt, the data for the
unchanged files are copied from the old cross-reference, which makes rebuilding
faster than the initial build and startup time less for subsequent invocations.

cscope 8-3

How to Use cscope

Step 3: Locate the Code

Now let's return to the task we undertook at the beginning of this section: to
identify the problem that is causing the error message out of storage to be
printed. You have invoked escape, the cross-reference table has been built.
The cscope menu of tasks appears on the screen:

Figure 8-1 : The cscope Menu of Tasks

Press the RETURN key to move the cursor down the screen (with wraparound at
the bottom of the display), and "p (control-p) to move the cursor up; or use the
up (i) and down (J,) arrow keys if your keyboard has them. You can manipu
late the menu, and perform other tasks, with the following single-key com
mands:

ANSI C and Programming Support Tools

How to Use cscope

Figure 8-2: Menu Manlpulatlon Commands

TAB move to next input field
RETURN move to next input field

"n move to next input field
"p move to previous input field
"y search with the last text typed
"b move to previous input field

and search pattern
"f move to next input field and

search pattern
"c toggle ignore/use letter case

when searching (a search
for FILE will match, for
example, File and file
when ignoring letter case)

"r rebuild the cross-reference
! start an interactive shell

(type "d to return to escape)
"l redraw the screen
? display list of commands

"d exit escape

If the first character of the text for which you are searching matches one of these
commands, you can escape the command by entering a backslash(\) before the
character.

Now move the cursor to the fifth menu item, Find this text string, enter
the text out of storage, and press the RETURN key:

cscope 8-5

How to Use cscope

Figure 8-3: Requesting a Search for a Text String

Follow the same procedure to perform any other task listed in the menu
except the sixth, Change this text string. Because this task is
slightly more complex than the others, there is a different procedure for per
forming it. For a description of how to change a text string, see the "Exam
ples" section below.

escape searches for the specified text, finds one line that contains it, and
reports its finding as follows:

8-6 ANSI C and Programming Support Tools

• ,

Figure 8-4: cscope Lists Lines Containing the Text String

File ... · .· . ·.·...
. . · .·.) . . lll;l.<lC, o . 63 (vo;id) fpdntf' lat®;r;r,

: ,;rm :r !:/;::i :0;;: i;;; :

:\.>'.(\:.-: .:< .. : ::· .. :.:.:.::: -:/\//.:.:: . .:::::\ ::::: .. :::<::::.::: :/ ·:.)/·.:-.. ::·:-:- ·: ·.·. ·.' <::-:<<·: .

> ~i~ tbi~ ~ ~~[// · .. / /·.· y <·
) Fi¥ ~;is. 9;J.o¥-;J. ~~ti~I> · > < • .. • · .·. ·.·.· ... · ·
) F;ind f~ct;l.Clll~ called by tM8 fJ!Jicti91i: ·. ·.

e>ind. tllnc:t:~~s c:a;1.1:t!'.l9' thl.a · tunotion: > ·

i=!~:~Jt~~:) ..•.•••.• <

~~~:;~?FG!:<••·•• > <> 
···•·· E'.itj(j; fi;].~s final~ t)U.8 #~: .· 

How to Use cscope 

After escape shows you the results of a successful search, you have several 
options. You may want to change one of the lines or examine the code sur
rounding it in the editor. Or, if escape has found so many lines that a list of 
them will not fit on the screen at once, you may want to look at the next part of 
the list. The following table shows the commands available after escape has 
found the specified text: 

cscope 8-7 



How to Use cscope 

Figure 8-5: Commands for Use after Initial Search 

1-9 

space 

+ 
"v 

"e 
> 

edit the file referenced by this line (the 
number you type corresponds to an item 
in the list of lines printed by escape) 
display next set of matching lines 
display next set of matching lines 
display next set of matching lines 
display previous set of matching lines 
edit displayed files in order 
append the list of lines being displayed to a file 
pipe all lines to a shell command 

Again, if the first character of the text for which you are searching matches one 
of these commands, you can escape the command by entering a backslash 
before the character. 

Now examine the code around the newly found line. Enter 1 (the number of 
the line in the list). The editor will be invoked with the file alloc . c; the cur
sor will be at the beginning of line 63 of alloc . c: 

8-8 ANSI C and Programming Support Tools 

• 



How to Use cscope 

Figure 8-6: Examining a Line of Code Found by cscope 

You can see that the error message is generated when the variable pis NULL. 
To determine how an argument passed to alloctest () could have been 
NULL, you must first identify the functions that call alloctest () . 

Exit the editor by using normal quit conventions. You are returned to the menu 
of tasks. Now type alloctest after the fourth item, Find functions cal
ling this function: 

cscope 8-9 



How to Use cscopa 

Figura 8-7: Requesting a List of Functions That Call alloctast() 

cscope finds and lists three such functions: 

8-10 ANSI C and Programming Support Tools 



How to Use cscopa 

Figura 8-8: cscopa Lists Functions That Call alloctast() 

Now you want to know which functions call mymalloc () . cs cope finds ten 
such functions. It lists nine of them on the screen and instructs you to press the 
space bar to see the rest of the list: 

cscopa 8-11 



How to Use cscope 

Figure 8-9: cscope Lists Functions That C&ll mymalloc() 

Because you know that the error message out of storage is generated. at the 
beginning of the program, you can guess that the problem may have occurred. 
in the function dispinit () (display initialization). To view dispinit (), the 
seventh function on the list, type 7: 

8-12 ANSI C and Programming Support Tools 



How to Use cscope 

Figure 8-10: Viewing dlsplnlt() In the Editor 

··············~~·······································································.··········· #spJ,n:tt:o·· 

t • • .1f~lc11lat:e t~~~ di~la~ ~~~~s •/ •. · 
· .· iilstdi.apl:ltle ~· ~ '" ~; .• ••• • / / • / < ···· · ·.· · ·.·. 

. • w#~p:;-Eifis ~ :L¥~p.).ir\e ".' ~~ + )i > . 
>ft (lliii~sJiiet~ > !ff ( . > . ····· . . . 

·•·•···>....:<<. .... •.;.•••.•.>·/·•<••• ·•#l!l~#s•·•·..;··9·;··.:··········· ·· < >r··. 
?H aJ.i~t.e~~spi~ lµie·~y•1 />•····· > <·· · 

··•·· }> clii!J>linf5 ~ Jii'lt JI inyin8l%•(!~1!pmfS ~ B~!1()£(iilt));······ 

mymalloc () failed because it was called either with a very large number or a 
negative number. By examining the possible values of FLDLINE and REFLINE, 
you can see that there are situations in which the value of mdisprefs is nega
tive, that is, in which you are trying to call mymalloc () with a negative 
number. 

cscope 8-13 



How to Use cscope 

Step 4: Edit the Code 

On a windowing terminal you may have multiple windows of arbitrary size. 
The error message out of storage might have appeared as a result of run
ning prog in a window with too few lines. In other words, that may have been 
one of the situations in which mymalloc () was called with a negative number. 
Now you want to be sure that when the program aborts in this situation in the 
future, it does so after printing the more meaningful error message screen 
too small. Edit the function dispinit () as follows: 

Figure 8·11: Using cscope to Fix the Problem 

You have fixed the problem we began investigating at the beginning of this sec
tion. Now if prog is run in a window with too few lines, it will not simply fail 
with the unedifying error message out of storage. Instead, it will check the 
window size and generate a more meaningful error message before exiting. 

8-14 ANSI C and Programming Support Tools 



How to Use cscope 

Command Line Options 

As noted, cscope builds a symbol cross-reference table for the C, lex, and 
yacc source files in the current directory by default. That is, 

$ cscope 

is equivalent to 

$ cscope *. [chly] 

We have also seen that you can browse through selected source files by invok
ing cscope with the names of those files as arguments: 

$ cscope filel.c file2.c file3.h 

cscope provides command line options that allow you greater flexibility in 
specifying source files to be included in the cross-reference. When you invoke 
cscope with the -s option and any number of directory names (separated by 
commas) 

$ cscope -s dir,dir,dir 

cscope will build a cross-reference for all the source files in the specified direc
tories as well as the current directory. To browse through all of the source files 
whose names are listed in file (file names separated by spaces, tabs, or new
lines), invoke cscope with the -i option and the name of the file containing 
the list: 

$ cscope -i file 

If your source files are in a directory tree, the following commands will allow 
you to browse through all of them easily: 

$ find . -name '*. [ chly] ' -print I sort > file 
$ cscope -i file 

Note that if this option is selected, cscope ignores any other files appearing on 
the command line. 

The -I option to cscope is similar to the -I option to cc. By default, cscope 
searches for included header files in the current directory, then the standard 
place. If you want cscope to search for an included header file in a different 
directory, specify the path of the directory with - I: 

cscope 8-15 



How to Use cscope 

$ escape -I dir 

In this case, escape will search the directory dir for #include files called into 
the source files in the current directory. Directories are searched for finclude 
files in the following order: 

1. the current directory; 

2. the directories specified with -I; 

3. the standard place for header files, usually usr/include. 

You can invoke the -I option more than once on a command line. escape will 
search the specified directories in the order they appear on the command line. 

You can specify a cross-reference file other than the default cs cope. out by 
invoking the -f option. This is useful for keeping separate symbol cross
reference files in the same directory. You may want to do this if two programs 
are in the same directory, but do not share all the same files: 

$ escape -f admin.ref admin.c conunon.c aux.c libs.c 
$ escape -f delta.ref delta.c conunon.c aux.c libs.c 

In this example, the source files for two programs, admin and delta, are in the 
same directory, but the programs consist of different groups of files. By specify
ing different symbol cross-reference files when you invoke escape for each set 
of source files, the cross-reference information for the two programs is kept 
separate. 

You can use the -pn option to specify that escape display the path name, or 
part of the path name, of a file when it lists the results of a search. The number 
you give to -p stands for the last n elements of the path name you want to be 
displayed. The default is 1, the name of the file itself. So if your current direc
tory is home/conunon, the command 

$ escape -p2 

will cause escape to display conunon/filel. c, conunon/file2. c, and so 
forth when it lists the results of a search. 

If the program you want to browse contains a large number of source files, you 
can use the -b option to tell escape to stop after it has built a cross-reference; 
escape will not display a menu of tasks. When you use escape -b in a pipe
line with the batch command, described in Section 1 of the User's Reference 
Manual, escape will build the cross-reference in the background: 

8-16 ANSI C and Programming Support Tools 



How to Use escape 

$ echo 'cscope -b' I batch 

Once the cross-reference is built (and as long as you have not changed a source 
file or the list of source files in the meantime), you need only specify 

$ cscope 

for the cross-reference to be copied and the menu of tasks to be displayed in the 
normal way. In other words, you can use this sequence of commands when 
you want to continue working without having to wait for cscope to finish its 
initial processing. 

The -d option instructs cscope not to update the symbol cross-reference. You 
can use it to save time - cscope will not check the source files for changes -
if you are sure that no such changes have been made. 

Use the -d option with care. If you specify -d under the erroneous impres
sion that your source files have not been changed, cscope will refer to an 
outdated symbol cross-reference in responding to your queries. 

Check the cscope page in Section 1 of the Programmer's Reference Manual for 
other command line options. 

Using Viewpaths 

As we have seen, cscope searches for source files in the current directory by 
default. When the environment variable VPATH is set, cscope searches for 
source files in directories that comprise your viewpath. A viewpath is an 
ordered list of directories, each of which has the same directory structure 
below it. 

For example, suppose you are part of a software project. There is an "official" 
set of source files in directories below /fsl/ofc. Each user has a home direc
tory (/usr/you). If you make changes to the software system, you may have 
copies of just those files you are changing in /usr/you/src/cmd/progl. 
The official versions of the entire program can be found in in the directory 
/fsl/ofc/src/cmd/progl. 

escape 8-17 



How to Use cscope 

Suppose you use cscope to browse through the three files that comprise 
progl, namely, fl. c, f2. c, and f3. c. You would set VPATH to /usr/you 
and /fsl/ofc and export it, as in 

$ VPATH=/usr/you:/fsl/ofc export VPATH 

You would then make your current directory /usr/you/src/cmd/progl, and 
invoke escape: 

$ escape 

The program will locate all files in the viewpath. In case duplicates are found, 
escape uses the file whose parent directory appears earlier in VPATH. Thus if 
f2. c is in your directory (and all three files are in the official directory), 
escape will examine f2. c from your directory and fl. c arid f3. c from the 
official directory. 

The first directory in VPATH must be a prefix (usually $HOME) of the directory 
you will be working in. Each colon-separated directory in VP ATH must be 
absolute: it should begin at I. 

Stacking escape and Editor Calls 

escape and editor calls can be stacked. That means that when escape puts 
you in the editor to view a reference to a symbol and there is another reference 
of interest, you can invoke escape again from within the editor to view the 
second reference without exiting the current invocation of either escape or the 
editor. You can then back up by exiting the most recent invocation with the 
appropriate escape and editor commands. 

Examples 

This section presents examples of how escape can be used to perform three 
tasks: changing a constant to a preprocessor symbol, adding an argument to a 
function, and changing the value of a variable. The first example demonstrates 
the procedure for changing a text string, which differs slightly from the other 
tasks on the escape menu. That is, once you have entered the text string to be 
changed, escape prompts you for the new text, displays the lines containing 
the old text, and waits for you to specify which of these lines you want it to 
change. 

8-18 ANSI C and Programming Support Tools 



How to Use escape 

Changing a Constant to a Preprocessor Symbol 

Suppose you want to change a constant, 100, to a preprocessor symbol, 
MAXSIZE. Select the sixth menu item, Change this text string, and 
enter \100. The 1 must be escaped with a backslash because it has a special 
meaning (item 1 on the menu) to escape. Now press RETURN. escape will 
prompt you for the new text string. Type MAXSIZE: 

Figure 8-12: Changing a Text String 

Findthis c symbol: 
Find 1;.llis 9lobal.9efinition: 
Find functions called. by this function: 
Find ful)ctions calling.this.tunctiOII: 
Find .this text. string: 
Change tnis ·text··string: 
Find· tnis · egrep ·pattern: 
Find this . ftle: 
Find files tincluding this file: 
To: MAXSIZE 

escape displays the lines containing the specified text string, and waits for you 
to select those in which you want the text to be changed: 

escape 8-19 



How to Use cscope 

Figure 8-13: cscope Prompts for Lines to Be Changed 

You know that the constant 100 in lines 1, 2, and 3 of the list (lines 4, 26, and 8 
of the listed source files) should be changed to MAXSIZE. You also know that 
0100 in read. c and 100. 0 in err. c (lines 4 and 5 of the list) should not be 
changed. You select the lines you want changed with the following single-key 
commands: 

8·20 ANSI C and Programming Support Tools 



How to Use cscope 

Figure 8-14: Commands for Selecting Lines to Be Changed 

1-9 mark or unmark the line to be changed 
* mark or unmark all displayed lines to be changed 

space display next set of lines 
+ display next set of lines 

display previous set of lines 
a mark all lines to be changed 
"d change the marked lines and exit 

ESC exit without changing the marked lines 

In this case, enter 1, 2, and 3. Note that the numbers you type are not printed 
on the screen. Instead, escape marks each list item you want to be changed by 
printing a > (greater than) symbol after its line number in the list: 

cscope 8-21 



How to Use cscope 

Figure 8-15: Marking Lines to Be Changed 

Now type "'d to change the selected lines. cscope displays the lines that have 
been changed and prompts you to continue: 

8-22 ANSI C and Programming Support Tools 



How to Use cscope 

Figure 8-16: cscope Displays Changed Lines of Text 

When you press RETURN in response to this prompt, cscope redraws the 
screen, restoring it to its state before you selected the lines to be changed, as 
shown in Figure 8-17. 

The next step is to add the #define for the new symbol MAXSIZE. Because the 
header file in which the #define is to appear is not among the files whose 
lines are displayed, you must escape to the shell by typing ! . The shell prompt 
will appear at the bottom of the screen. Then enter the editor and add the 
#define: 

cscope 8-23 



How to Use cscope 

Figure 8-17: Escaping from cscope to the Shell 

To resume the escape session, quit the editor and type "d to exit the shell. 

8-24 ANSI C and Programming Support Tools 



How to Use cscope 

Adding an Argument to a Function 

Adding an argument to a function involves two steps: editing the function itself 
and adding the new argument to every place in the code where the function is 
called. escape makes that easy. 

First, edit the function by using the second menu item, Find this global 
definition. Next, find out where the function is called. Use the fourth menu 
item, Find functions calling this function, to get a list of all the 
functions that call it. With this list, you can either invoke the editor for each 
line found by entering the list number of the line individually, or invoke the 
editor for all the lines automatically by typing "e. Using escape to make this 
kind of change assures that none of the functions you need to edit will be over
looked. 

Changing the Value of a Variable 

The value of escape as a browser becomes apparent when you want to see 
how a proposed change will affect your code. Suppose you want to change the 
value of a variable or preprocessor symbol. Before doing so, use the first menu 
item, Find this c symbol, to obtain a list of references that will be affected. 
Then use the editor to examine each one. This will help you predict the overall 
effects of your proposed change. Later, you can use escape in the same way to 
verify that your changes have been made. 

cscope 8-25 



Notes 

This section describes certain problems that may arise when you use escape 
and how to avoid them. 

Unknown Terminal Type 

You may see the error message 

Sorry, I don't know how to deal with your "term" 
terminal 

If this message appears, your terminal may not be listed in the Terminal Infor
mation Utilities (terminfo) database that is currently loaded. Make sure you 
have assigned the correct value to TERM. If the message reappears, try reload
ing the Terminal Information Utilities. 

You may also see 

Sorry, I need to know a more specific terminal type 
than "unknown" 

If this message appears, set and export the TERM variable as described in the 
section "Step 1: Set Up the Environment" above. 

Command Line Syntax for Editors 

As noted, escape invokes the vi editor by default. You may override the 
default setting by assigning your preferred editor to the EDITOR environment 
variable and exporting EDITOR, as described in the section "Step 1: Set Up the 
Environment'' above. Note, however, that escape expects the editor it uses to 
have a command line syntax of the form 

$ editor +linenum filename 

as does vi. If the editor you want to use does not have this command line syn
tax, you must write an interface between escape and the editor. 

Suppose you want to use ed, for example. Because ed does not allow 
specification of a line number on the command line, you will not be able to use 
it to view or edit files with escape unless you write a shell script (called 
myedi t here) that contains the following line: 

/usr/bin/ed $2 

8-26 ANSI C and Programming Support Tools 



Now set the value of EDITOR to your shell script and export EDITOR: 

$ EDITOR==m.yedit export EDITOR 

When escape invokes the editor for the list item you have specified, say, line 
17 in main. c, it will invoke your shell script with the command line 

$ myedit +17 main.c 

Notes 

myedit will discard the line number ($1) and called correctly with the file 
name ($2). Of course, you will then have to execute the appropriate ed com
mands to display and edit the line. That is, you will not be moved automati
cally to line 17 of the file. 

cscope 8-27 









g make 

Introduction 

Basic Features 

Description Files and Substitutions 
Comments 
Continuation Lines 
Macro Definitions 
General Form 
Dependency Information 
Executable Commands 
Extensions of$•,$@, and$< 
Output Translations 
Recursive Makefiles 
Suffixes and Transformation Rules 
Implicit Rules 
Archive Libraries 
Source Code Control System File Names 
The Null Suffix 
Included Files 
SCCS Makefiles 
Dynamic Dependency Parameters 

Command Usage 
The make Command 
Environment Variables 

Table of Contents 

9-1 

9-2 

9-7 
9-7 
9-7 
9-7 
9-8 
9-8 
9-9 
9-10 
9-10 
9-11 
9-11 
9-12 
9-14 
9-16 
9-17 
9-18 
9-18 
9-18 

9-20 
9-20 
9-21 



Table of Contents ---------------------

Suggestions and Warnings 9-23 

Internal Rules 9-24 

II ANSI C and Programming Support Tools 



Introduction 

The trend toward increased modularity of programs means that a project may 
have to cope with a large assortment of individual files. There may also be a 
wide range of generation procedures needed to tum the assortment of indivi
dual files into the final executable product. 

make provides a method for maintaining up-to-date versions of programs that 
consist of a number of files that may be generated in a variety of ways. 

An individual programmer can easily forget 

• file-to-file dependencies 

• files that were modified and the impact that has on other files 

• the exact sequence of operations needed to generate a new version of the 
program 

In a description file, make keeps track of the commands that create files and the 
relationship between files. Whenever a change is made in any of the files that 
make up a program, the make command creates the finished program by recom
piling only those portions directly or indirectly affected by the change. 

The basic operation of make is to 

• find the target in the description file 

• ensure that all the files on which the target depends, the files needed to 
generate the target, exist and are up to date 

• (re)create the target file if any of the generators have been modified more 
recently than the target 

The description file that holds the information on interfile dependencies and 
command sequences is conventionally called makefile, Makefile, s .makefile, 
or s .Makefile. If this naming convention is followed, the simple command 
make is usually sufficient to regenerate the target regardless of the number of 
files edited since the last make. In most cases, the description file is not difficult 
to write and changes infrequently. Even if only a single file has been edited, 
rather than entering all the commands to regenerate the target, entering the 
make command ensures that the regeneration is done in the prescribed way. 

make 9-1 



Basic Features 

The basic operation of make is to update a target file by ensuring that all of the 
files on which the target file depends exist and are up to date. The target file is 
regenerated if it has not been modified since the dependents were modified. 
The make program searches the graph of dependencies. The operation of make 
depends on its ability to find the date and time that a file was last modified. 

The make program operates using three sources of information: 

• a user-supplied description file 

• file names and last-modified times from the file system 

• built-in rules to bridge some of the gaps 

To illustrate, consider a simple example in which a program named prog is 
made by compiling and loading three C language files x. c, y. c, and z . c with 
the math library, libm. By convention, the output of the C language compila
tions will be found in files named x. o, y. o, and z . o. Assume that the files x. c 
and y. c share some declarations in a file named defs . h, but that z . c does not. 
That is, x. c and y. c have the line 

#include "defs.h" 

The following specification describes the relationships and operations: 

prog : x.o y.o z.o 
cc x.o y.o z.o -lm -o prog 

x.o y.o : defs.h 

If this information were stored in a file named makefile, the command 

$ make 

would perform the operations needed to regenerate prog after any changes had 
been made to any of the four source files x. c, y. c, z . c, or defs . h. In the 
example above, the first line states that prog depends on three . o files. Once 
these object files are current, the second line describes how to load them to 
create prog. The third line states that x. o and y. o depend on the file defs. h. 
From the file system, make discovers that there are three . c files corresponding 
to the needed . o files and uses built-in rules on how to generate an object from 
a C source file (that is, issue a cc -c command). 

9-2 ANSI C and Programming Support Tools 



Basic Features 

If make did not have the ability to determine automatically what needs to be 
done, the following longer description file would be necessary: 

prog : x.o y.o z.o 
cc x.o y.o z.o -lm -o prog 

x.o x.c defs.h 
cc -c x.c 

y.o y.c defs.h 
cc -c y.c 

z.o z.c 
cc -c z.c 

If none of the source or object files have changed since the last time prog was 
made, and all of the files are current, the command make announces this fact 
and stops. If, however, the defs. h file has been edited, x. c and y. c (but not 
z . c) are recompiled; and then prog is created from the new x. o and y. o files, 
and the existing z. o file. If only the file y. c had changed, only it is recompiled; 
but it is still necessary to reload prog. If no target name is given on the make 
command line, the first target mentioned in the description is created; otherwise, 
the specified targets are made. The command 

$ make x.o 

would regenerate x. o if x. c or defs. h had changed. 

A method often useful to programmers is to include rules with mnemonic 
names and commands that do not actually produce a file with that name. These 
entries can take advantage of make's ability to generate files and substitute mac
ros (for information about macros, see "Description Files and Substitutions" 
below.) Thus, an entry save might be included to copy a certain set of files, or 
an entry clean might be used to throw away unneeded intermediate files. 

If a file exists after such commands are executed, the file's time of last 
modification is used in further decisions. If the file does not exist after the com
mands are executed, the current time is used in making further decisions. 

You can maintain a zero-length file purely to keep track of the time at which 
certain actions were performed. This technique is useful for maintaining remote 
archives and listings. 

make 9-3 



Basic Features 

A simple macro mechanism for substitution in dependency lines and command 
strings is used by make. Macros can either be defined by command-line argu
ments or included in the description file. In either case, a macro consists of a 
name followed by the symbol = followed by what the macro stands for. A ~ 
macro is invoked by preceding the name by the symbol·$. Macro names longer 
than one character must be parenthesized. The following are valid macro invo-
cations: 

$ (CFLAGS) 
$2 
$ (xy) 

$Z 
$ (Z) 

The last two are equivalent. 

$*, $@, $?,and $<are four special macros that change values during the execu
tion of the command. (These four macros are described later in this chapter 
under ''Description Files and Substitutions.") The following fragment shows 
assignment and use of some macros: 

OBJECTS = x.o y.o z.o 
LIBES = -lm 
prog: $(OBJECTS) 

cc $(OBJECTS) $(LIBES) -o prog 

The command 

$ make LIBES="-11 -lm" 

loads the three objects with both the lex (-11) and the math (-lm) libraries, 
because macro definitions on the command line override definitions in the 
description file. (In UNIX system commands, arguments with embedded blanks 
must somehow be quoted.) 

As an example of the use of make, a description file that might be used to main
tain the make command itself is given. The code for make is spread over a 
number of C language source files and has a yacc grammar. The description 
file contains the following: 

9-4 ANSI C and Programming Support Tools 



Basic Features 

··············~····BsLl~.l.~···!il~···;~···~··~····o~············· 
. ? FILF.S-::1;!~j:::;:1a::; ~.c Jld7·c·\·.· · 

· ~ .;.)llafu,o~,oiniiic.p·fiJ,!i.11.!) \ > 
··.·• ·•··. · .. ·.· •··· < .· d<)B,}'~ ;er lfr.lllll ,o 
~A > <····· .•...•. ·. I.nl'r•· +.tfu~ '.'.'P ·· ..•.. 

. CP.C.iiGs •.;. --0 •·••• •.•. 
Li;>;.._ ip>·····.··.· 

.... ·:-·. ·.-::-···-:····.·.":-: ... ·.-:·.".-.::-:::··:·:::· .. ::· ... · .. 

·•·•·.· ~{ $<~s>···· <·· <> .·.· ... • ...... . 
. }(C(:;l $(~) ~ ~ $(bBJEcrS) ,$ (Llllf.S) .. 

@s.l.~ maJr.8 .· / . . . . . . . . . . . . . . . . . . . . . . 
. .. . . .. . . . .. ...... . . .. .. . . 

~·!~$) i defs;h > .·.· . 
. ·.·.·.··.·.· .. ·····.·.· .. ·.·.· .. ·.·.· ... 

aj.~n,ip: \ . 
.. < < ~# ~.!) 9;i;;illl;c··· .. ·. 

···/••".'<iU•················· . ·.· ·.··.···.·.·.··.··.· .. ·.·.· ·.·.·.·.·.·.·.·.·.·.·.·.··· ...• ~~i~i.L<·· > .. 

/ • ) •.•·.·········· .•. ·.::-.·.s•.,~.··ze· •. ·.··-.> .... ··.··.> ..... ••• 1· •. u··.······.··.•~ ....... 1.· ....... ·.••.·········· ".•••·.••,.-.. ·k·.·••e•·.· ..•••.••••.•....•.•..•.•. ••.y ·.·•.·.·.········( ·.· ••.•• .. • .. •.•.• .....••.•.. . :;/::;. :) ::::.:::::/: :: ~ • WIU\CS ._. MM• ••-
... · ... · ·.·. . . •· ····~•·•~•• ,us3(l>fo/~ 't xin ll!ll1t11 ·• .. 
( lin~: · .d(l~ys.c 400~.c i11&S.~ lilain.c nd$Q.c griun;c •.••••••••.•. 

$<l'·nrr> dosya~c d~~c tilea.c tn&k,ciilliac.o\· 
··.·.·-:.·· :-:·.···:- .· -:······. -:-:-:-::-· .-:-:-:-: ... : ......... . 

\l.JJ;• •.• 
0 

f ~~·.f~l:·that ~ ~t-()~~tit /<•·•· 
··.···· ........ ·.·.· ..... · .· <• wij;h re$#1: to •pri?lt" fg~. 
>pr~t( $(~SI> 
/ /.pr$?j$(LP) 

· .• ··•·• · •·. • ·•·•·····•·••····· ...••• •.touch· print 

The make program prints out each command before issuing it. 

The following output results from entering the command make in a directory 
containing only the source and description files: 

make 9-5 



Basic Features 

The last line results from the size make command. The printing of the com
mand line itself was suppressed by the symbol @ in the description file. 

9-6 ANSI C and Programming Support Tools 



Description Files and Substitutions 

The following section will explain the customary elements of the description file. 

Comments 

The comment convention is that the symbol t and all characters on the same 
line after it are ignored. Blank lines and lines beginning with tare totally 
ignored. 

Continuation Lines 

If a noncomment line is too long, the line can be continued by using the symbol 
\, which must be the last character on the line. If the last character of a line is 
\, then it, the new-line, and all following blanks and tabs are replaced by a sin
gle blank. Comments can be continued on to the next line as well. 

Macro Definitions 

A macro definition is an identifier followed by the symbol =. The identifier 
must not be preceded by a colon ( : ) or a tab. The name (string of letters and 
digits) to the left of the= (trailing blanks and tabs are stripped) is assigned the 
string of characters following the = (leading blanks and tabs are stripped). The 
following are valid macro definitions: 

2 = xyz 
abc = -11 -ly -lm 
LIBES = 

The last definition assigns LIBES the null string. A macro that is never expli
citly defined has the null string as its value. Remember, however, that some 
macros are explicitly defined in make's own rules. (See Figure 9-2 at the end of 
the chapter.) 

make 9-7 



Description Flies and Substitutions 

General Form 

The general form of an entry in a description file is 

target1 [ target2 ... ] : [ : ] [ dependent1 ... ] [ ; commands] [ t ... ] 
[ \t commands] [# ... ] 

Items inside brackets may be omitted and targets and dependents are strings of 
letters, digits, periods, and slashes. Shell metacharacters such as * and ? are 
expanded when the commands are evaluated. Commands may appear either 
after a semicolon on a dependency line or on lines beginning with a tab 
(denoted above as \ t) immediately following a dependency line. A command 
is any string of characters not including t, except when t is in quotes. 

Dependency Information 

A dependency line may have either a single or a double colon. A target name 
may appear on more than one dependency line, but all of those lines must be of 
the same (single or double colon) type. For the more common single colon case, 
a command sequence may be associated with at most one dependency line. If 
the target is out of date with any of the dependents on any of the lines and a 
command sequence is specified (even a null one following a semicolon or tab), it 
is executed; otherwise, a default rule may be invoked. In the double colon case, 
a command sequence may be associated with more than one dependency line. 
If the target is out of date with any of the files on a particular line, the associ
ated commands are executed. A built-in rule may also be executed. The double 
colon form is particularly useful in updating archive-type files, where the target 
is the archive library itself. (An example is included in the "Archive Libraries" 
section later in this chapter.) 

9-8 ANSI C and Programming Support Tools 



Description Flies anq Substitutions 

Executable Commands 

If a target must be created, the sequence of commands is executed. Normally, 
each command line is printed and then passed to a separate invocation of the 
shell after substituting for macros. The printing is suppressed in the silent 
mode (-s option of the make command) or if the command line in the descrip
tion file begins with an @ sign. make normally stops if any command signals an 
error by returning a nonzero error code. Errors are ignored if the -i flag has 
been specified on the make command line, if the fake target name . IGNORE 
appears in the description file, or if the command string in the description file 
begins with a hyphen (-). If a program is known to return a meaningless 
status, a hyphen in front of the command that invokes it is appropriate. 
Because each command line is passed to a separate invocation of the shell, care 
must be taken with certain commands (cd and shell control commands, for 
instance) that have meaning only within a single shell process. These results are 
forgotten before the next line is executed. 

Before issuing any command, certain internally maintained macros are set. The 
$@ macro is set to the full target name of the current target. The $@ macro is 
evaluated only for explicitly named dependencies. The $? macro is set to the 
string of names that were found to be younger than the target. The $? macro is 
evaluated when explicit rules from the makefile are evaluated. If the com
mand was generated by an implicit rule, the $<macro is the name of the related 
file that caused the action; and the $ * macro is the prefix shared by the current 
and the dependent file names. If a file must be made but there are no explicit 
commands or relevant built-in rules, the commands associated with the name 
. DEFAULT are used. If there is no such name, make prints a message and 
stops. 

In addition, a description file may also use the following related macros: $ (@D) , 
$ (@F), $ (*D), $ (*F), $ (<D), and$ (<F) (see below). 

make 9-9 



Description Flies and Substitutions 

Extensions of$*,$@, and$< 

The internally generated macros$•,$@, and$< are useful generic terms for 
current targets and out-of-date relatives. To this list is added the following 
related macros: $ (@D), $ (@F), $ (*D), $ (*F), $ (<D), and $ (<F). The D refers 
to the directory part of the single character macro. The F refers to the file name 
part of the single character macro. These additions are useful when building 
hierarchical makefiles. They allow access to directory names for purposes of 
using the cd command of the shell. Thus, a command can be 

cd $(<0); $(MAKE) $(<F) 

Output Translations 

The values of macros are replaced when evaluated. The general fonn, where 
brackets indicate that the enclosed sequence is optional, is as follows: 

$(macro [ :string1= [string2]]) 

The parentheses are optional if there is no substitution specification and the 
macro name is a single character. If a substitution sequence is present, the value 
of the macro is considered to be a sequence of "words" separated by sequences 
of blanks, tabs, and new-line characters. Then, for each such word that ends 
with string1, string1 is replaced with string2 (or no characters if string2 is not 
present). 

This particular substitution capability was chosen because make usually con
cerns itself with suffixes. The usefulness of this type of translation occurs when 
maintaining archive libraries. Now, all that is necessary is to accumulate the 
out-of-date members and write a shell script that can handle all the C language 
programs (that is, files ending in . c). Thus, the following fragment optimizes 
the executions of make for maintaining an archive library: 

9·10 

$(LIB) : $(LIB) (a. o) $(LIB) (b. o) $(LIB) (C. 0) 

$(CC) -c $(CFLAGS) $(?:.o=.c) 
$(AR) $(ARFLAGS) $(LIB) $? 
rm $? 

ANSI C and Programming Support Tools 



Description Flies and Substitutions 

A dependency of the preceding form is necessary for each of the different types 
of source files (suffixes) that define the archive library. These translations are 
added in an effort to make more general use of the wealth of information that 
make generates. 

Recursive Makefiles 

Another feature of make concerns the environment and recursive invocations. If 
the sequence $ (MAKE) appears anywhere in a shell command line, the line is 
executed even if the -n flag is set. Since the -n flag is exported across invoca
tions of make (through the MAKEFLAGS variable), the only thing that is executed 
is the make command itself. This feature is useful when a hierarchy of 
makefiles describes a set of software subsystems. For testing purposes, make 
-n can be executed and everything that would have been done will be printed 
including output from lower-level invocations of make. 

Suffixes and Transformation Rules 

make uses an internal table of rules to learn how to transform a file with one 
suffix into a file with another suffix. If the -r flag is used on the make com
mand line, the internal table is not used. 

The list of suffixes is actually the dependency list for the name . SUFFIXES. 
make searches for a file with any of the suffixes on the list. If it finds one, make 
transforms it into a file with another suffix. Transformation rule names are the 
concatenation of the before and after suffixes. The name of the rule to 
transform a . r file to a . o file is thus . r. o. If the rule is present and no expli
cit command sequence has been given in the user's description files, the com
mand sequence for the rule . r . o is used. If a command is generated by using 
one of these suffixing rules, the macro $*is given the value of the stem (every
thing but the suffix) of the name of the file to be made; and the macro $< is the 
full name of the dependent that caused the action. 

The order of the suffix list is significant since the list is scanned from left to 
right. The first name formed that has both a file and a rule associated with it is 
used. If new names are to be appended, the user can add an entry for 
. SUFFIXES in the description file. The dependents are added to the usual list. 

make 9-11 



Description Files and Substitutions 

A . SUFFIXES line without any dependents deletes the current list. It is neces
sary to clear the current list if the order of names is to be changed. 

Implicit Rules 

make uses a table of suffixes and a set of transformation rules to supply default 
dependency information and implied commands. The default suffix list (in 
order) is as follows: 

.o Object file 

.c C source file 

.c- SCCS C source file 

.y yacc C source grammar 

.y- secs yacc c source grammar 

.1 lex C source grammar 

.1- SCCS lex C source grammar 

.s Assembler source file 

.s- SCCS assembler source file 

.sh Shell file 

.sh- SCCS shell file 

.h Header file 

.h- SCCS header file 

.f FORTRAN source file 

. f- SCCS FORTRAN source file 

.c C ++ source file 

.c- SCCS C ++ source file 

.Y yacc C ++ source grammar 

9-12 ANSI C and Programming Support Tools 



Description Flies and Substitutions 

. Y- SCCS yacc C++ source grammar 

. L lex C++ source grammar 

. L- SCCS lex C++ source grammar 

Figure 9-1 summarizes the default transformation paths. If there are two paths 
connecting a pair of suffixes, the longer one is used only if the intermediate file 
exists or is named in the description. 

Figure 9-1: Summary of Default Transformation Path 

.o 

.c ·Y .1 .s .f .c 

A A 
.y .1 .Y .L 

If the file x. o is needed and an x. c is found in the description or directory, the 
x. o file would be compiled. If there is also an x . 1, that source file would be 
run through lex before compiling the result. However, if there is no x . c but 
there is an x. 1, make would discard the intermediate C language file and use 
the direct link as shown in Figure 9-1. 

It is possible to change the names of some of the compilers used in the default 
or the flag arguments with which they are invoked by knowing the macro 
names used. The compiler names are the macros AS, cc, c++c, F77, YACC, and 
LEX. The command 

$ make CC=newcc 

will cause the newcc command to be used instead of the usual C language com
piler. The macros CFLAGS, YFLAGS, LFLAGS, ASFLAGS, FFLAGS, and 

make 9-13 



Description Flies and Substitutions 

c++FLAGS may be set to cause these commands to be issued with optional 
flags. Thus 

$ make CFLAGS=-g 

causes the cc command to include debugging information. 

Archive Libraries 

The make program has an interface to archive libraries. A user may name a 
member of a library in the following manner: 

projlib(object.o) 

or 

projlib ( (entry_pt)) 

where the second method actually refers to an entry point of an object file 
within the library. (make looks through the library, locates the entry point, and 
translates it to the correct object file name.) 

To use this procedure to maintain an archive library, the following type of 
makefile is required: 

projlib:: projlib(pfilel.o) 
$(CC) -c $(CFLAGS) pfilel.c 
$(AR) $(ARFLAGS) projlib pfilel.o 
rm pfilel.o 

projlib:: projlib(pfile2.o) 
$(CC) -c $(CFLAGS) pfile2.c 
$(AR) $(ARFLAGS) projlib pfile2.o 
rm pfile2.o 

and so on for each object. This is tedious and error prone. Obviously, the com
mand sequences for adding a C language file to a library are the same for each 
invocation; the file name being the only difference each time. (This is true in 
most cases.) 

The make command also gives the user access to a rule for building libraries. 
The handle for the rule is the . a suffix. Thus, a . c . a rule is the rule for com
piling a C language source file, adding it to the library, and removing the . o 
file. Similarly, the . y. a, the . s . a, and the . 1 . a rules rebuild yacc, assembler, 

9-14 ANSI C and Programming Support Tools 



Description Flies and Substitutions 

and lex files, respectively. The archive rules defined internally are . c. a, 
. c-. a, . f. a, . f-. a, and . s-. a. (The tilde(-) syntax will be described 
shortly.) The user may define other needed rules in the description file. 

The above two-member library is then maintained with the following shorter 
makefile: 

projlib: projlib(pfilel.o) projlib(pfile2.o) 
@echo projlib up-to-date. 

The internal rules are already defined to complete the preceding library mainte
nance. The actual . c . a rule is as follows: 

.c.a: 
$(CC) -c $(CFLAGS) $< 
$(AR) $(ARFLAGS) $@ $*.o 
rm -f $*.o 

Thus, the$@ macro is the .a target (projlib); the$< and$* macros are set to 
the out-of-date C language file, and the file name minus the suffix, respectively 
(pfilel. c and pfilel). The $< macro (in the preceding rule) could have 
been changed to$*. c. 

It is useful to go into some detail about exactly what make does when it sees 
the construction 

projlib: projlib(pfilel.o) 
@echo projlib up-to-date 

Assume the object in the library is out of date with respect to pfilel. c. Also, 
there is no pfilel. o file. 

1. make projlib. 

2. Before makeing projlib, check each dependent of projlib. 

3. projlib(pfilel. o) is a dependent of projlib and needs to be 
generated. 

4. Before generating projlib(pfilel. o), check each dependent of 
projlib(pfilel. o). (There are none.) 

5. Use internal rules to try to create projlib(pfilel. o). (There is no 
explicit rule.) Note that projlib(pfilel. o) has a parenthesis in 
the name to identify the target suffix as . a. This is the key. There is 
no explicit . a at the end of the projlib library name. The 

make 9-15 



Description Flies and Substitutions 

6. 

parenthesis implies the . a suffix. In this sense, the . a is hard-wired 
into make. 

Break the name projlib(pfilel. o) up into projlib and 
pfilel. o. Define two macros, $@ (projlib) and 
$* (pfilel). 

7. Look for a rule . X. a and a file $*. X. The first . X (in the 
. SUFFIXES list) which fulfills these conditions is . c so the rule is 
. c. a, and the file is pfilel. c. Set $< to be pfilel . c and execute 
the rule. In fact, make must then compile pfilel. c. 

8. The library has been updated. Execute the command associated with 
the pro j lib : dependency, namely 

@echo projlib up-to-date 

It should be noted that to let pfilel. o have dependencies, the following syn
tax is required: 

projlib(pfilel.o): $(INCDIR)/stdio.h pfilel.c 

There is also a macro for referencing the archive member name when this form 
is used. The $%macro is evaluated each time $@ is evaluated. If there is no 
current archive member, $%is null. If an archive member exists, then$% evalu
ates to the expression between the parenthesis. 

Source Code Control System File Names 

The syntax of make does not directly permit referencing of prefixes. For most 
types of files on UNIX operating system machines, this is acceptable since nearly 
everyone uses a suffix to distinguish different types of files. SCCS files are the 
exception. Here, s . precedes the file name part of the complete path name. 

To allow make easy access to the prefix s . the symbol - is used as an identifier 
of SCCS files. Hence, . c- . o refers to the rule which transforms an SCCS C 
language source file into an object file. Specifically, the internal rule is 

.C"".O: 

9-16 

$(GET) $(GFLAGS) $< 
$(CC) $(CFLAGS) -c $*.c 
rm -f $*.c 

ANSI C and Programming Support Tools 

• 'I 



Description Files and Substitutions 

Thus, - appended to any suffix transforms the file search into an SCCS file 
name search with the actual suffix named by the dot and all characters up to 
(but not including) - . 

The following SCCS suffixes are internally defined: 

.c- .sh- .c-

.y- .h- .Y-

.1- . f- .L-

.s-

The following rules involving SCCS transformations are internally defined: 

c-· .s-.s: c-· 
.c-.c: .s-.a: .c-.c: 
.c-.a: .s-.o: .c-.a: 
.c-.o: .sh-: .c-.o: 
.y-.c: .sh-.sh: .Y-.C: 
.y-.o: .h-.h: .Y-.o: 
.y-.y: f-· .Y-.Y: 
.1-.c: .f-.f: .L-.C: 
.1-.o: .f-.a: .L-.o: 
.1-.1: .f-.o: .L-.L: 
s-· 

Obviously, the user can define other rules and suffixes that may prove useful. 
The - provides a handle on the SCCS file name format so that this is possible. 

The Null Suffix 

There are many programs that consist of a single source file. make handles this 
case by the null suffix rule. Thus, to maintain the UNIX system program cat, a 
rule in the makefile of the following form is needed: 

.c: 
$(CC) -o $@ $(CFLAGS) $(LDFLAGS) $< 

In fact, this . c: rule is internally defined so no makefile is necessary at all. 
The user only needs to enter 

$ make cat dd echo date 

make 9-17 



Description Files and Substitutions 

(these are all UNIX system single-file programs) and all four C language source 
files are passed through the above shell command line associated with the . c : 
rule. The internally defined single suffix rules are 

.c: .sh: f-· 
c-· .sh-: .C: 

. s: .f: c-· 
s-· 

Others may be added in the makefile by the user. 

Included Files 

The make program has a capability similar to the #include directive of the C 
preprocessor. If the string include appears as the first seven letters of a line in 
a makefile and is followed by a blank or a tab, the rest of the line is assumed 
to be a file name, which the current invocation of make will read. Macros may 
be used in file names. The file descriptors are stacked for reading include files 
so that no more than 16 levels of nested includes are supported. 

SCCS Makefiles 

Makefiles under SCCS control are accessible to make. That is, if make is typed 
and only a file named s. makefile or s. Makefile exists, make will do a get 
on the file, then read and remove the file. 

Dynamic Dependency Parameters 

A dynamic dependency parameter has meaning only on the dependency line in 
a makefile. The$$@ refers to the current "thing" to the left of the : symbol 
(which is$@). Also the form$$ (@F) exists, which allows access to the file part 
of $@. Thus, in the following: 

cat: $$@. c 

the dependency is translated at execution time to the string cat . c. This is use
ful for building a large number of executable files, each of which has only one 

9-18 ANSI C and Programming Support Tools 



Description Files and Substitutions 

source file. For instance, the UNIX system software command directory could 
have a makefile like: 

CMOS = cat dd echo date cmp comm chown 

$(CMOS) : $$@. c 
$(CC) $(CFLAGS) $? -o $@ 

Obviously, this is a subset of all the single file programs. For multiple file pro
grams, a directory is usually allocated and a separate makefile is made. For 
any particular file that has a peculiar compilation procedure, a specific entry 
must be made in the makefile. 

The second useful form of the dependency parameter is $ $ ( @F) . It represents 
the file name part of $$@. Again, it is evaluated at execution time. Its useful
ness becomes evident when trying to maintain the /usr/include directory 
from makefile in the /usr/src/head directory. Thus, the 
/usr/src/head/makefile would look like 

INCDIR = /usr/include 

INCLUDES = \ 
$(INCDIR)/stdio.h \ 
$(INCDIR)/pwd.h \ 
$(INCDIR)/dir.h \ 
$(INCDIR)/a.out.h 

$(INCLUDES): $$(@F) 
cp $? $@ 
chmod 0444 $@ 

This would completely maintain the /usr/include directory whenever one of 
the above files in /usr/src/head was updated. 

make 9-19 



Command Usage 

The make command description is found under make in Section 1 of the 
Programmers Reference Manual. 

The make Command 

The make command takes macro definitions, options, description file names, 
and target file names as arguments in the form: 

$ make [ options ] [ macro definitions and targets ] 

The following summary of command operations explains how these arguments 
are interpreted. 

First, all macro definition arguments (arguments with embedded= symbols) are 
analyzed and the assignments made. Command line macros override 
corresponding definitions found in the description files. Next, the option argu
ments are examined. The permissible options are as follows: 

-i 

-s 

-r 

-n 

-t 

-q 

-p 

9-20 

Ignore error codes returned by invoked commands. This mode is 
entered if the fake target name . IGNORE appears in the description 
file. 

Silent mode. Do not print command lines before executing. This 
mode is also entered if the fake target name . SILENT appears in the 
description file. 

Do not use the built-in rules. 

No execute mode. Print commands, but do not execute them. Even 
lines beginning with an @ sign are printed. 

Touch the target files (causing them to be up to date) rather than 
issue the usual commands. 

Question. The make command returns a zero or nonzero status code 
depending on whether the target file is or is not up to date. 

Print out the complete set of macro definitions and target descrip
tions. 

ANSI C and Programming Support Tools 



Command Usage 

-k Abandon work on the current entry if something goes wrong, but 
continue on other branches that do not depend on the current entry. 

-e Environment variables override assignments within makefiles. 

-f Description file name. The next argument is assumed to be the name 
of a description file. A file name of - denotes the standard input. If 
there are no -f arguments, the file named makefile, Makefile, 
s .makefile, ors .Makefile in the current directory is read. The 
contents of the description files override the built-in rules if they are 
present. 

The following two fake target names are evaluated in the same manner as flags: 

. DEFAULT If a file must be made but there are no explicit com
mands or relevant built-in rules, the commands associ
ated with the name . DEFAULT are used if it exists. 

.PRECIOUS Dependents on this target are not removed when quit 
or interrupt is pressed. 

Finally, the remaining arguments are assumed to be the names of targets to be 
made and the arguments are done in left-to-right order. If there are no such 
arguments, the first name in the description file that does not begin with the 
symbol . is made. 

Environment Variables 

Environment variables are read and added to the macro definitions each time 
make executes. Precedence is a prime consideration in doing this properly. The 
following describes make's interaction with the environment. A macro, 
MAKE FLAGS, is maintained by make. The macro is defined as the collection of 
all input flag arguments into a string (without minus signs). The macro is 
exported and thus accessible to recursive invocations of make. Command line 
flags and assignments in the makefile update MAKEFLAGS. Thus, to describe 
how the environment interacts with make, the MAKEFLAGS macro (environment 
variable) must be considered. 

make 9-21 



Command Usage 

When executed, make assigns macro definitions in the following order: 

1. Read the MAKEFLAGS environment variable. If it is not present or 
null, the internal make variable MAKEFLAGS is set to the null string. 
Otherwise, each letter in MAKEFLAGS is assumed to be an input flag 
argument and is processed as such. (The only exceptions are the -f, 
-p, and -r flags.) 

2. Read the internal list of macro definitions. 

3. Read the environment. The environment variables are treated as 
macro definitions and marked as exported (in the shell sense). 

4. Read the makefile(s). The assignments in the makefile(s) over
ride the environment. This order is chosen so that when a 
makefile is read and executed, you know what to expect. That is, 
you get what is seen unless the -e flag is used. The ...-e is the input 
flag argument, which tells make to have the environment override 
the makefile assignments. Thus, if make -e is entered, the vari
ables in the environment override the definitions in the makefile. 
Also MAKEFLAGS overrides the environment if assigned. This is use
ful for further invocations of make from the current makefile. 

It may be dearer to list the precedence of assignments. Thus, in order from 
least binding to most binding, the precedence of assignments is as follows: 

1. internal definitions 

2. environment 

3. makefile(s) 

4. command line 

The -e flag has the effect of rearranging the order to: 

1. internal definitions 

2. makefile(s) 

3. environment 

4. command line 

This order is general enough to allow a programmer to define a makefile or 
set of makefiles whose parameters are dynamically definable. 

9-22 ANSI C and Programming Support Tools 



Suggestions and Warnings 

The most common difficulties arise from make' s specific meaning of depen
dency. If file x. c has a 

finclude "defs.h" 

line, then the object file x. o depends on defs. h; the source file x. c does not. 
If defs. his changed, nothing is done to the file x. c while file x. o must be 
recreated. 

To discover what make would do, the -n option is very useful. The command 

$ make -n 

orders make to print out the commands that make would issue without actually 
taking the time to execute them. If a change to a file is absolutely certain to be 
mild in character (adding a comment to an include file, for example), the -t 
(touch) option can save a lot of time. Instead of issuing a large number of 
superfluous recompilations, make updates the modification times on the affected 
file. Thus, the command 

$ make -ts 

(touch silently) causes the relevant files to appear up to date. Obvious care is 
necessary because this mode of operation subverts the intention of make and 
destroys all memory of the previous relationships. 

make 9-23 



Internal Rules 

The standard set of internal rules used by make are reproduced below. 

Figure 9-2: make Internal Rules 

9-24 ANSI C and Programming Support Tools 



Internal Rules 

Figure 9-2: make Internal Rules (continued) 

make 9-25 



Internal Rules 

Figure 9-2: make Internal Rules (continued) 

(continued on next page) 

9-26 ANSI C and Programming Support Tools 



Internal Rules 

Figure 9-2: make Internal Rules (continued) 

make 9-27 



Internal Rules 

Figure 9-2: make Internal Rules (continued) 

9-28 ANSI C and Programming Support Tools 



Figure 9-2: make Internal Rules (continued) 

make 

$(GET) $ (GFLl\GS) $< 
$(YACC) . $ (YFLAGS) $•. Y 

$ (C+t<:) $ (C++FLllGS) -c y. tab. c 
rm·-f y.tab.c $•.Y 

mv y.tab.o .S•~o 

$(LEX) $(I.FLAGS) $< 

mv lex.yy.c $@ 

$ (GFLl\GS) $< 

$(GET) $ (GFLl\GS) 

$ (I,EX). $ (;LFLAGS) $* • L 

$(C-HC) $(C++FLAGS) ':CC lex.yy.c 

Internal Rules 

9-29 









1 Q SCCS 

Introduction 

Basic Usage 
Terminology 
Creating an SCCS File with admin 
Retrieving a File with get 
Recording Changes with delta 
More on get 
The help Command 

Delta Numbering 

SCCS Command Conventions 
x.files and z.files 
Error Messages 

SCCS Commands 
The get Command 

• ID Keywords 
• Retrieval of Different Versions 
• Retrieval With Intent to Make a Delta 
• Undoing a get -e 
• Additional get Options 
• Concurrent Edits of Different SID 
• Concurrent Edits of Same SID 
• Keyletters that Affect Output 

Table of Contents 

10-1 

10-2 
10-2 
10-2 
10-3 
10-4 
10-5 
10-6 

10-7 

10-10 
10-10 
10-11 

10-12 
10-13 
10-14 
10-14 
10-16 
10-17 
10-18 
10-18 
10-21 
10-22 



Table of Contents 

The delta Command 1 o-23 
The admin Command 10-26 
Creation of SCCS Files 1 o-26 

• Inserting Commentary for the Initial Delta 10-27 
• Initialization and Modification of SCCS File Parameters 10-28 

The prs Command 10-29 
The sact Command 1 o-31 
The help Command 10-31 
The rmdel Command 10-31 
The cdc Command 10-32 
The what Command 10-33 
The sccsdiff Command 1 o-34 
The comb Command 10-34 
The val Command 10-35 
The vc Command 1 o-36 

SCCS Files 1 o-37 
Protection 10-37 
Formatting 10-38 
Auditing 10-39 

II ANSI C and Programming Support Tools 



Introduction 

The Source Code Control System, SCCS, is a a set of programs that you can use 
to track evolving versions of files, ordinary text files as well as source files. 
SCCS takes custody of a file and, when changes are made, identifies and stores 
them in the file with the original source code and/ or documentation. As other 
changes are made, they too are identified and retained in the file. 

Retrieval of the original or any set of changes is possible. Any version of the 
file as it develops can be reconstructed for inspection or additional modification. 
History information can be stored with each version: why the changes were 
made, who made them, and when they were made. 

This chapter covers the following topics: 

• the basics of creating, retrieving, and updating an SCCS file; 

• delta numbering: how versions of an SCCS file are named; 

• SCCS command conventions: what rules apply to SCCS commands; 

• SCCS commands: the 14 SCCS commands and their more useful argu
ments; 

• SCCS files: protection, format, and auditing of SCCS files. 

SCCS 10-1 



Basic Usage 

Several terminal session fragments are presented in this section. Try them all. 
The best way to learn SCCS is to use it. 

Terminology 

A delta is a set of changes made to a file under SCCS custody. To identify and 
keep track of a delta, it is assigned an SID (SCCS IDentification) number. The 
SID for any original file turned over to SCCS is composed of release number 1 
and level number 1, stated as 1.1. The SID for the first set of changes made to 
that file, that is, its first delta, is release 1 version 2, or 1.2. The next delta 
would be 1.3, the next 1.4, and so on. More on delta numbering later. At this 
point, it is enough to know that by default SCCS assigns SIDs automatically. 

Creating an SCCS File with admin 

Suppose you have a file called lang that is simply a list of five programming 
language names: 

c 
PL/I 
FORTRAN 
COBOL 
ALGOL 

Custody of your lang file can be given to SCCS using the adrnin (for adminis
ter) command. The following creates an SCCS file from the lang file: 

$ adrnin -ilang s.lang 

All SCCS files must have names that begin with s., hence s. lang. The -i 
keyletter, together with its value lang, means adrnin is to create an SCCS file 
and initialize it with the contents of the file lang. 

The adrnin command replies 

No id keywords (cm7) 

This is a warning message that may also be issued by other SCCS commands. 
Ignore it for now. Its significance is described later under the get command in 

10-2 ANSI C and Programming Support Tools 



Basic Usage 

the section "SCCS Commands." In the following examples, this warning mes
sage is not shown although it may be issued. 

Remove the lang file. It is no longer needed because it exists now under SCCS 
as s.lang. 

$ nn lang 

Retrieving a File with get 

The command 

$ get s.lang 

retrieves the latest version of s . lang and prints 

1.1 
5 lines 

This tells you that get retrieved version 1.1 of the file, which is made up of five 
lines of text. 

The retrieved text is placed in a new file called lang. That is, if you list the con
tents of your directory, you will see both lang and s. lang. 

The get s. lang command creates lang as read-only and keeps no information 
regarding its creation. Because you are going to make changes to it, get must 
be informed of your intention to do so. This is done as follows: 

$ get -e s.lang 

get -e causes SCCS to create lang for both reading and writing (editing). It 
also places certain information about lang in another new file, called p. lang, 
which is needed later by the delta command. Now if you list the contents of 
your directory, you will see s . lang, lang, and p. lang. 

get -e prints the same messages as get, except that the SID for the first delta 
you will create also is issued: 

SCCS 

1.1 
new delta 1.2 
5 lines 

10-3 



Basic Usage 

Change lang by adding two more programming languages: 

SNOBOL 
ADA 

Recording Changes with delta 

Next, use the delta command as follows: 

$ delta s.lang 

delta then prompts with 

comments? 

Your response should be an explanation of why the changes were made. For 
example, 

added more languages 

delta now reads the file p. lang and determines what changes you made to 
lang. It does this by doing its own get to retrieve the original version and 
applying the diff command (described in Section 1 of the User's Reference 
Manual), to the original version and the edited version. Next, delta stores the 
changes in s . lang and destroys the no longer needed p. lang and lang files. 

When this process is complete, delta outputs 

1.2 
2 inserted 
0 deleted 
5 unchanged 

The number 1.2 is the SID of the delta you just created, and the next three lines 
summarize what was done to s. lang. 

10-4 ANSI C and Programming Support Tools 



Basic Usage 

More on get 

The command 

$ get s.lang 

retrieves the latest version of the file s . lang, now 1.2. SCCS does this by start
ing with the original version of the file and applying the delta you made. If 
you use the get command now, any of the following will retrieve version 1.2: 

$ get s.lang 
$ get -rl s.lang 
$ get -rl.2 s.lang 

The numbers following -r are SIDs. When you omit the level number of the 
SID (as in get -rl s. lang), the default is the highest level number that exists 
within the specified release. Thus, the second command requests the retrieval of 
the latest version in release 1, namely 1.2. The third command requests the 
retrieval of a particular version, in this case also 1.2. 

Whenever a major change is made to a file, you may want to signify it by 
changing the release number, the first number of the SID. This, too, is done 
with the get command: 

$ get -e -r2 s.lang 

Because release 2 does not exist, get retrieves the latest version before release 2. 
get also interprets this as a request to change the release number of the new 
delta to 2, thereby naming it 2.1 rather than 1.3. The output is 

1.2 
new delta 2.1 
7 lines 

which means version 1.2 has been retrieved, and 2.1 is the version the delta 
command will create. If the file is now edited - for example, by deleting 
COBOL from the list of languages - and delta is executed 

$ delta s.lang 
comments? deleted cobol from list of languages 

you will see by delta's output that version 2.1 is indeed created: 

SCCS 10-5 



Basic Usage 

2.1 
0 inserted 
1 deleted 
6 unchanged 

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another new 
release can be created in a similar manner. 

The help Command 

If the command 

$ get lang 

is now executed, the following message will be output: 

ERROR [lang] : not an SCCS file (col) 

The code col can be used with help to print a fuller explanation of the mes
sage: 

$ help col 

This gives the following explanation of why get lang produced an error mes
sage: 

col: 
"not an SCCS file" 
A file that you think is an SCCS file 
does not begin with the characters "s.". 

help is useful whenever there is doubt about the meaning of almost any SCCS 
message. 

10-6 ANSI C and Programming Support Tools 



Delta Numbering 

Think of deltas as the nodes of a tree in which the root node is the original ver
sion of the file. The root node is normally named 1.1 and deltas (nodes) are 
named 1.2, 1.3, etc. The components of these SIDs are called release and level 
numbers, respectively. Thus, normal naming of new deltas proceeds by incre
menting the level number. This is done automatically by SCCS whenever a 
delta is made. 

Because the user may change the release number to indicate a major change, the 
release number then applies to all new deltas unless specifically changed again. 
Thus, the evolution of a particular file could be represented by Figure 10-1. 

Figure 10·1: Evolution of an SCCS Fiie 

This is the normal sequential development of an SCCS file, with each delta 
dependent on the preceding deltas. Such a structure is called the trunk of an 
SCCS tree. 

There are situations that require branching an SCCS tree. That is, changes are 
planned to a given delta that will not be dependent on all previous deltas. For 
example, consider a program in production use at version 1.3 and for which 
development work on release 2 is already in progress. Release 2 may already 
have a delta in progress as shown in Figure 10-1. Assume that a production 
user reports a problem in version 1.3 that cannot wait to be repaired in release 
2. The changes necessary to repair the trouble will be applied as a delta to ver
sion 1.3 (the version in production use). This creates a new version that will 
then be released to the user but will not affect the changes being applied for 
release 2 (i.e., deltas 1.4, 2.1, 2.2, etc.). This new delta is the first node of a new 
branch of the tree. 

Branch delta names always have four SID components: the same release number 
and level number as the trunk delta, plus a branch number and sequence 
number. The format is as follows: 

release . level . branch . sequence 

SCCS 10-7 



Delta Numbering 

The branch number of the first delta branching off any trunk delta is always 1, 
and its sequence number is also 1. For example, the full SID for a delta branch
ing off trunk delta 1.3 will be 1.3.1.1. As other deltas on that same branch are 
created, only the sequence number changes: 1.3.1.2, 1.3.1.3, etc. This is shown in ~ 
Figure 10-2. 

Figure 10·2: Tree Structure with Branch Deltas 

The branch number is incremented only when a delta is created that starts a 
new branch off an existing branch, as shown in Figure 10-3. As this secondary 
branch develops, the sequence numbers of its deltas are incremented (1.3.2.1, 
1.3.2.2, etc.), but the secondary branch number remains the same. 

10-8 ANSI C and Programming Support Tools 



Delta Numbering 

Figure 10-3: Extended Branching Concept 

The concept of branching may be extended to any delta in the tree, and the 
numbering of the resulting deltas proceeds as shown above. SCCS allows the 
generation of complex tree structures. Although this capability has been pro
vided for certain specialized uses, the SCCS tree should be kept as simple as 
possible. Comprehension of its structure becomes difficult as the tree becomes 
complex. 

SCCS 10-9 



SCCS Command Conventions 

SCCS commands accept two types of arguments, keyletters and file names. 
Keyletters are options that begin with a hyphen(-) followed by a lowercase 
letter and, in some cases, a value. 

File and/or directory names specify the file(s) the command is to process. Nam
ing a directory is equivalent to naming all the SCCS files within the directory. 
Non-SCCS files and unreadable files in the named directories are silently 
ignored. 

In general, file name arguments may not begin with a hyphen. If a lone hyphen 
is specified, the command will read the standard input (usually your terminal) 
for lines and take each line as the name of an SCCS file to be processed. The 
standard input is read until end-of-file. This feature is often used in pipelines. 

Keyletters are processed before file names, so the placement of keyletters is arbi
trary - they may be interspersed with file names. File names, however, are 
processed left to right. Somewhat different conventions apply to help, what, 
sccsdiff, and val, detailed later under "SCCS Commands." 

Certain actions of various SCCS commands are controlled by flags appearing in 
SCCS files. Some of these flags will be discussed, but for a complete description 
see the admin page in Section 1 of the Programmer's Reference Manual. 

The distinction between real user (see passwd in Section 1 of the User's Reference 
Manual) and effective user will be of concern in discussing various actions of 
SCCS commands. For now, assume that the real and effective users are the 
same - the person logged into the UNIX system. 

x.files and z.files 

All SCCS commands that modify an SCCS file do so by first writing and modi
fying a copy called x. file. This is done to ensure that the SCCS file is not dam
aged if processing terminates abnormally. x. file is created in the same directory 
as the SCCS file, given the same mode (see chmod, described in Section 1 of the 
User's Reference ManuaO, and is owned by the effective user. It exists only for 
the duration of the execution of the command that creates it. When processing 
is complete, the contents of s . file are replaced by the contents of x. file, where
upon x. file is destroyed. 

10-10 ANSI C and Programming Support Tools 



SCCS Command Conventions 

To prevent simultaneous updates to an SCCS file, the same modifying com
mands also create a lock-file called z . file. z . file contains the process number of 
the command that creates it, and its existence prevents other commands from 
processing the SCCS file. z . file is created with access permission mode 444 
(read-only for owner, group, and other) in the same directory as the SCCS file 
and is owned by the effective user. It exists only for the duration of the execu
tion of the command that creates it. 

In general, you can ignore these files. They are useful only in the event of sys
tem crashes or similar situations. 

Error Messages 

secs commands produce error messages on the diagnostic output in this for
mat: 

ERROR [file] : message text (code) 

The code in parentheses can be used as an argument to the help command to 
obtain a further explanation of the message. Detection of a fatal error during 
the processing of a file causes the SCCS command to stop processing that file 
and proceed with the next file specified. 

SCCS 10-11 



SCCS Commands 

This section describes the major features of the fourteen SCCS commands and 
their most common arguments. Full descriptions with details of all arguments 
are in the Programmer's Reference Manual. 

Here is a quick-reference overview of the commands: 

get retrieves versions of SCCS files. 

unget 

delta 

admin 

prs 

sact 

help 

rmdel 

cdc 

what 

sccsdif f 

comb 

val 

vc 

10-12 

undoes the effect of a get -e prior to the file being deltaed. 

applies deltas (changes) to SCCS files and creates new ver
sions. 

initializes SCCS files, manipulates their descriptive text, and 
controls delta creation rights. · 

prints portions of an SCCS file in user-specified format. 

prints information about files that are currently out for edit
ing. 

gives explanations of error messages. 

removes a delta from an SCCS file - allows removal of del
tas created by mistake. 

changes the commentary associated with a delta. 

searches any UNIX system file(s) for all occurrences of a spe
cial pattern and prints out what follows it - useful in 
finding identifying information inserted by the get com
mand. 

shows differences between any two versions of an SCCS file. 

combines consecutive deltas into one to reduce the size of an 
SCCS file. 

validates an SCCS file. 

a filter that may be used for version control. 

ANSI C and Programming Support Tools 



The get Command 

The get command creates a file that contains a specified version of an SCCS file. 
The version is retrieved by beginning with the initial version and then applying 
deltas, in order, until the desired version is obtained. The resulting file, called a 
g-file (for gotten), is created in the current directory and is owned by the real 
user. The mode assigned to the g-file depends on how the get command is 
used. 

The most common use of get is 

$ get s.abc 

which normally retrieves the latest version of s . abc from the secs file tree 
trunk and produces (for example) on the standard output 

1.3 
67 lines 
No id keywords ( cm7) 

meaning version 1.3 of s. abc was retrieved (assuming 1.3 is the latest trunk 
delta), it has 67 lines of text, and no ID keywords were substituted in the file. 

The g-file, namely, file abc, is given access permission mode 444 (read-only for 
owner, group, and other). This particular way of using get is intended to pro
duce g-files only for inspection, compilation, or copying, for example. It is not 
intended for editing (making deltas). 

When several files are specified, the same information is output for each one. 
For example, 

$ get s.abc s.xyz 

produces 

s.abc: 
1.3 

SCCS 

67 lines 
No id keywords (cm7) 

s.xyz: 
1. 7 
85 lines 
No id keywords ( cm7) 

10-13 



SCCS Commands 

ID Keywords 

In generating a g-file for compilation, it is useful to record the date and time of 
creation, the version retrieved, the module's name, and so on in the g-file itself. 
This information appears in a load module when one is eventually created. 
SCCS provides a convenient mechanism for doing this automatically. 
Identification (ID) keywords appearing anywhere in the g-file are replaced by 
appropriate values according to the definitions of those ID keywords. The for
mat of an ID keyword is an uppercase letter enclosed by percent signs (%). For 
example, 

%!% 

is the ID keyword replaced by the SID of the retrieved version of a file. Simi
larly, %H% and %M% are the date and name of the g-file, respectively. Thus, exe
cuting get on an SCCS file that contains the PL/I declaration 

DCL ID CHAR(lOO) VAR INIT('%M% %I% %H%'); 

gives (for example) the following: 

DCL ID CHAR(lOO) VAR INIT('MODNAME 2.3 07/18/85'); 

When no ID keywords are substituted by get, the following message is issued: 

No id keywords ( cm7) 

This message is normally treated as a warning by get although the presence of 
the i flag in the SCCS file causes it to be treated as an error. For a complete list 
of the keywords provided, see the get page in Section 1 of the Programmer's 
Reference Manual. 

Retrieval of Different Versions 

The version of an SCCS file that get retrieves by default is the most recently 
created delta of the highest numbered trunk release. However, any other ver
sion can be retrieved with get -r by specifying the version's SID. Thus, 

$ get -rl.3 s.abc 

retrieves version 1.3 of s. abc and produces (for example) on the standard out
put 

1.3 
64 lines 

10-14 ANSI C and Programming Support Tools 

I~ 



SCCS Commands 

A branch delta may be retrieved similarly, 

$ get -rl.5.2.3 s.abc 

which produces (for example) on the standard output 

1.5.2.3 
234 lines 

When a SID is specified and the particular version does not exist in the SCCS 
file, an error message results. 

Omitting the level number, as in 

$ get -r3 s.abc 

causes retrieval of the trunk delta with the highest level number within the 
given release. Thus, the above command might output 

3.7 
213 lines 

If the given release does not exist, get retrieves the trunk delta with the highest 
level number within the highest-numbered existing release that is lower than the 
given release. For example, assume release 9 does not exist in file s. abc and 
release 7 is the highest-numbered release below 9. Executing 

$ get -r9 s.abc 

might produce 

7.6 
420 lines 

which indicates that trunk delta 7.6 is the latest version of file s. abc below 
release 9. Similarly, omitting the sequence number, as in 

$ get -r4.3.2 s.abc 

results in the retrieval of the branch delta with the highest sequence number on 
the given branch. (If the given branch does not exist, an error message results.) 
This might result in the following output: 

SCCS 

4.3.2.8 
89 lines 

10-15 



SCCS Commands 

get -t will retrieve the latest (top) version of a particular release when no -r is 
used or when its value is simply a release number. The latest version is the 
delta produced most recently, independent of its location on the SCCS file tree. 
Thus, if the most recent delta in release 3 is 3.5, 

$ get -r3 -t s.abc 

might produce 

3.5 
59 lines 

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the 
same command might produce 

3.2.1.5 
46 lines 

Retrieval With Intent to Make a Delta 
get -e indicates an intent to make a delta. First, get checks the following: 

• The user list to determine if the login name or group ID of the person 
executing get is present. The login name or group ID must be present for 
the user to be allowed to make deltas. (See "The admin Command" for a 
discussion of making user lists.) 

• The release number (R) of the version being retrieved to determine if the 
release being accessed is a protected release. That is, the release number 
must satisfy the relation 

floor is less than or equal to R, 
which is less than or equal to ceiling 

Floor and ceiling are flags in the SCCS file representing start and end of 
the range of valid releases. 

• R is not locked against editing. The lock is a flag in the SCCS file. 

• Whether multiple concurrent edits are allowed for the SCCS file by the j 
flag in the SCCS file. 

10-16 ANSI C and Programming Support Tools 



SCCS Commands 

A failure of any of the first three conditions causes the processing of the 
corresponding SCCS file to terminate. 

If the above checks succeed, get -e causes the creation of a g-file in the current 
directory with mode 644 (readable by everyone, writable only by the owner) 
that is owned by the real user. If a writable g-file already exists, get terminates 
with an error. This is to prevent inadvertent destruction of a g-file being edited 
for the purpose of making a delta. 

Any ID keywords appearing in the g-file are not replaced by get -e because the 
generated g-file is subsequently used to create another delta. Replacement of ID 
keywords causes them to be permanently changed in the SCCS file. Because of 
this, get does not need to check for their presence in the g-file. Thus, the mes
sage 

No id keywords (cm7) 

is never output when get -e is used. 

In addition, get -e causes the creation (or updating) of the p. file that is used to 
pass information to the delta command. 

The following 

$ get -e s.abc 

produces (for example) on the standard output 

1.3 
new delta 1.4 
67 lines 

Undoing a get -e 
There may be times when a file is retrieved accidentally for editing; there is 
really no editing that needs to be done at this time. In such cases, the unget 
command can be used to cancel the delta reservation that was set up. 

SCCS 10-17 



secs Commands 

Additional get Options 

If get -r and/ or -t are used together with -e, the version retrieved for editing 
is the one specified with-rand/or -t. 

get -i and -x are used to specify a list of deltas to be included and excluded, 
respectively (see the get page in the Programmer's Reference Manual for the syn
tax of such a list). Including a delta means forcing its changes to be included in 
the retrieved version. This is useful in applying the same changes to more than 
one version of the SCCS file. Excluding a delta means forcing it not to be 
applied. This may be used to undo the effects of a previous delta in the version 
to be created. 

Whenever deltas are included or excluded, get checks for possible interference 
with other deltas. Two deltas can interfere, for example, when each one 
changes the same line of the retrieved g-file. A warning shows the range of lines 
within the retrieved g-file where the problem may exist. The user should exam
ine the g-file to determine what the problem is and take appropriate corrective 
steps (edit the file if necessary). T get -i and get ~ should be used w•h exlreme care. 

get -k is used either to regenerate a g-file that may have been accidentally 
removed or ruined after get -e, or simply to generate a g-file in which the 
replacement of ID keywords has been suppressed. Ag-file generated by get -k 
is identical to one produced by get -e, but no processing related to p. file takes 
place. 

Concurrent Edits of Different SID 

The ability to retrieve different versions of an SCCS file allows several deltas to 
be in progress at any given time. This means that several get -e commands 
may be executed on the same file as long as no two executions retrieve the same 
version (unless multiple concurrent edits are allowed). 

The p. file created by get -e is created in the same directory as the SCCS file, 
given mode 644 (readable by everyone, writable only by the owner), and owned 
by the effective user. It contains the following information for each delta that is 
still in progress: 

10-18 ANSI C and Programming Support Tools 



SCCS Commands 

• the SID of the retrieved version 

• the SID given to the new delta when it is created 

• the login name of the real user executing get 

The first execution of get -e causes the creation of p .file for the corresponding 
SCCS file. Subsequent executions only update p. file with a line containing the 
above information. Before updating, however, get checks to assure that no 
entry already in p. file specifies that the SID of the version to be retrieved is 
already retrieved (unless multiple concurrent edits are allowed). If the check 
succeeds, the user is informed that other deltas are in progress and processing 
continues. If the check fails, an error message results. 

It should be noted that concurrent executions of get must be carried out from 
different directories. Subsequent executions from the same directory will 
attempt to overwrite the g-file, which is an SCCS error condition. In practice, 
this problem does not arise since each user normally has a different working 
directory. See ''Protection" in the section "SCCS Files" for a discussion of how 
different users are permitted to use SCCS commands on the same files. 

Figure 10-4 shows the possible SID components a user can specify with get 
(left-most column), the version that will then be retrieved by get, and the result
ing SID for the delta, which delta will create (right-most column). In the table 

• R, L, B, and S mean release, level, branch, and sequence numbers in the 
SID, and m means maximum. Thus, for example, R.mL means the max
imum level number within release R. R.L.(mB+l).1 means the first 
sequence number on the new branch (i.e., maximum branch number plus 
1) of level L within release R. Note that if the SID specified is R.L, R.L.B, 
or R.L.B.S, each of these specified SID numbers must exist. 

• The -b keyletter is effective only if the b flag (see admin in Section 1 of 
the Programmer's Reference Manual) is present in the file. An entry of -
means irrelevant. 

• The first two entries in the left-most column apply only if the d (default 
SID) flag is not present. If the d flag is present in the file, the SID is inter
preted as if specified on the command line. Thus, one of the other cases 
in this figure applies. 

SCCS 10-19 



SCCS Commands 

• R.1 (the third entry in the right-most column) is used to force the creation 
of the first delta in a new release. 

• hR (the seventh entry in the fourth column) is the highest existing release 
that is lower than the specified, nonexistent release R. 

Figure 10-4: Determination of New SID 

SID -b Key- SID SID of Delta 
Specified Letter Other Retrieved To be Created 

in get Used Conditions by get by delta 

none no R defaults to mR mR.mL mR.(mL+l) 

none yes R defaults to mR mR.mL mR.mL.(mB+ 1).1 

R no R>mR mR.mL R.1 

R no R=mR mR.mL mR.(mL+l) 

R yes R>mR mR.mL mR.mL.(mB+ 1).1 

R yes R=mR mR.mL mR.mL.(mB+l).1 

R R< mRand R hR.mL hR.mL.(mB+l).1 
does not exist 

R Trunk successor R.mL R.mL.(mB+l).1 
number in 
release> R 
and R exists 

R.L no No trunk R.L R.(L+l) 
successor 

R.L yes No trunk R.L R.L.(mB+ 1).1 
successor 

R.L Trunk successor R.L R.L.(mB+ 1).1 
in release ;:::: R 

R.L.B no No branch R.L.B.mS R.L.B.(mS+ 1) 
successor 

10-20 ANSI C and Programming Support Tools 



secs Commands 

Figure 10-4: Determination of New SID (continued) 

SID -b Key- SID SID of Delta 
Specified Letter Other Retrieved To be Created 

in get Used Conditions by get by delta 

R.L.B yes No branch R.L.B.mS R.L.(mB+l).l 
successor 

R.L.B.S no No branch R.L.B.S R.L.B.(S+ 1) 
successor 

R.L.B.S yes No branch R.L.B.S R.L.(mB+l).1 
successor 

R.L.B.S Branch successor R.L.B.S R.L.(mB+l).l 

Concurrent Edits of Same SID 

Under normal conditions, more than one get -e for the same SID is not permit
ted. That is, delta must be executed before a subsequent get -e is executed 
on the same SID. 

Multiple concurrent edits are allowed if the j flag is set in the SCCS file. Thus: 

$ get -e s.abc 
1.1 
new delta 1.2 
5 lines 

may be immediately followed by 

$ get -e s.abc 
1.1 
new delta 1.1.1.1 
5 lines 

without an intervening delta. In this case, a delta after the first get will pro
duce delta 1.2 (assuming 1.1 is the most recent trunk delta), and a delta after 
the second get will produce delta 1.1.1.1. 

SCCS 10-21 



SCCS Commands 

Keyletters that Affect Output 

get -p causes the retrieved text to be written to the standard output rather 
than to a g-file. In addition, all output normally directed to the standard output 
(such as the SID of the version retrieved and the number of lines retrieved) is 
directed instead to the standard error. get -pis used, for example, to create a 
g-file with an arbitrary name, as in 

$ get -p s . abc > arbitrary file name 

get -s suppresses output normally directed to the standard output, such as the 
SID of the retrieved version and the number of lines retrieved, but it does not 
affect messages normally directed to the standard error. get -sis used to 
prevent nondiagnostic messages from appearing on the user's terminal and is 
often used with -p to pipe the output, as in 

$ get -p -s s.abc I pg 

get -g suppresses the retrieval of the text of an SCCS file. This is useful in 
several ways. For example, to verify a particular SID in an SCCS file 

$ get -g -r4.3 s.abc 

outputs the SID 4.3 if it exists in the SCCS file s. abc or an error message if it 
does not. Another use of get -g is in regenerating a p. file that may have been 
accidentally destroyed, as in 

$ get -e -g s.abc 

get -1 causes SCCS to create 1. file in the current directory with mode 444 
(read-only for owner, group, and other) and owned by the real user. The 1. file 
contains a table (whose format is described on the get page in the Programmer's 
Reference Manual) showing the deltas used in constructing a particular version of 
the SCCS file. For example 

$ get -r2.3 -1 s.abc 

generates an 1. file showing the deltas applied to retrieve version 2.3 of s. abc. 
Specifying p with -1, as in 

$ get -lp -r2.3 s.abc 

causes the output to be written to the standard output rather than to 1.file. get 
-g can be used with -1 to suppress the retrieval of the text. 

10-22 ANSI C and Programming Support Tools 

• 



SCCS Commands 

get -m identifies the changes applied to an SCCS file. Each line of the g-file is 
preceded by the SID of the delta that caused the line to be inserted. The SID is 
separated from the text of the line by a tab character. 

get -n causes each line of a g-file to be preceded by the value of the %M% ID 
keyword and a tab character. This is most often used in a pipeline with grep, 
described in Section 1 of the User's Reference Manual. For example, to find all 
lines that match a given pattern in the latest version of each SCCS file in a direc
tory, the following may be executed: 

$ get -p -n -s directory I grep -pattern 

If both -m and -n are specified, each line of the g-file is preceded by the value of 
the %M% ID keyword and a tab (this is the effect of -n) and is followed by the 
line in the format produced by -m. 

Because use of -m and/or -n causes the contents of the g-file to be modified, 
such a g-file must not be used for creating a delta. Therefore, neither -m nor -n 
may be specified together with get -e. See the get page in the Programmer's 
Reference Manual for a description of other options. 

The delta Command 

The delta command is used to incorporate changes made to a g-file into the 
corresponding SCCS file - that is, to create a delta and, therefore, a new ver
sion of the file. 

The delta command requires the existence of p. file (created by get -e). It 
examines p. file to verify the presence of an entry containing the user's login 
name. If none is found, an error message results. 

The delta command performs the same permission checks that get -e per
forms. If all checks are successful, delta determines what has been changed in 
the g-file by comparing it with its own temporary copy of the g-file as it was 
before editing. This temporary copy is called d. file and is obtained by perform
ing an internal get on the SID specified in the p. file entry. 

The required p. file entry is the one containing the login name of the user exe
cuting delta, because the user who retrieved the g-file must be the one who 
creates the delta. However, if the login name of the user appears in more than 
one entry, the same user has executed get -e more than once on the same 

secs 10-23 



SCCS Commands 

SCCS file. Then, delta -r must be used to specify the SID that uniquely 
identifies the p.file entry. This entry is then the one used to obtain the SID of 
the delta to be created. 

In practice, the most common use of delta is 

$ delta s.abc 

which prompts 

comments? 

to which the user replies with a description of why the delta is being made, 
ending the reply with a new-line character. The user's response may be up to 
512 characters long with new-lines (not intended to terminate the response) 
escaped by backslashes(\). 

If the SCCS file has av flag, delta first prompts with 

.MRs? 

(Modification Requests) on the standard output. The standard input is then 
read for MR numbers, separated by blanks and/or tabs, ended with a new-line 
character. A Modification Request is a formal way of asking for a correction or 
enhancement to the file. In some controlled environments where changes to 
source files are tracked, deltas are permitted only when initiated by a trouble 
report, change request, trouble ticket, and so on, collectively called MRs. 
Recording MR numbers within deltas is a way of enforcing the rules of the 
change management process. 

delta -y and/or -m can be used to enter comments and MR numbers on the 
command line rather than through the standard input, as in 

$ delta -y"descriptive comment" -m"mrnuml mrnum2" s.abc 

In this case, the prompts for comments and MRs are not printed, and the stan
dard input is not read. These two keyletters are useful when delta is executed 
from within a shell procedure. Note that delta -mis allowed only if the SCCS 
file has a v flag. 

No matter how comments and MR numbers are entered with delta, they are 
recorded as part of the entry for the delta being created. Also, they apply to all 
SCCS files specified with the delta. 

10·24 ANSI C and Programming Support Tools 



SCCS Commands 

If delta is used with more than one file argument and the first file named has a 
v flag, all files named must have this flag. Similarly, if the first file named does 
not have the flag, none of the files named may have it. 

When delta processing is complete, the standard output displays the SID of the 
new delta (from p. file) and the number of lines inserted, deleted, and left 
unchanged. For example: 

1. 4 
14 inserted 
7 deleted 
345 unchanged 

If line counts do not agree with the user's perception of the changes made to a 
g-file, it may be because there are various ways to describe a set of changes, 
especially if lines are moved around in the g-file. However, the total number of 
lines of the new delta (the number inserted plus the number left unchanged) 
should always agree with the number of lines in the edited g-file. 

If you are in the process of making a delta and the delta command finds no ID 
keywords in the edited g-file, the message 

No id keywords (cm7) 

is issued after the prompts for commentary but before any other output. This 
means that any ID keywords that may have existed in the SCCS file have been 
replaced by their values or deleted during the editing process. This could be 
caused by making a delta from a g-file that was created by a get without -e (ID 
keywords are replaced by get in such a case). It could also be caused by 
accidentally deleting or changing ID keywords while editing the g-file. Or, it is 
possible that the file had no ID keywords. In any case, the delta will be created 
unless there is an i flag in the secs file (meaning the error should be treated as 
fatal), in which case the delta will not be created. 

After the processing of an SCCS file is complete, the corresponding p. file entry 
is removed from p. file. All updates to p. file are made to a temporary copy, 
q. file, whose use is similar to that of x. file described under "SCCS Command 
Conventions." If there is only one entry in p. file, then p. file itself is removed. 

In addition, delta removes the edited g-file unless -n is specified. For example 

$ delta -n s.abc 

will keep the g-file after processing. 

SCCS 10-25 



SCCS Commands 

delta -s suppresses all output normally directed to the standard output, other 
than comments? and MRs?. Thus, use of -s with -y (and/or -m) causes delta 
neither to read from the standard input nor to write to the standard output. 

The differences between the g-file and the ct.file constitute the delta and may be 
printed on the standard output by using delta -p. The format of this output is 
similar to that produced by d.iff. 

The admin Command 

The admin command is used to administer SCCS files - that is, to create new 
SCCS files and change the parameters of existing ones. When an SCCS file is 
created, its parameters are initialized by use of keyletters with admin or are 
assigned default values if no keyletters are supplied. The same keyletters are 
used to change the parameters of existing SCCS files. 

Two keyletters are used in detecting and correcting corrupted SCCS files (see 
"Auditing'' in the section "SCCS Files"). 

Newly created SCCS files are given access permission mode 444 (read-only for 
owner, group and other) and are owned by the effective user. Only a user with 
write permission in the directory containing the SCCS file may use the admin 
command on that file. 

Creation of SCCS Files 

An SCCS file can be created by executing the command 

$ admin -ifirst s.abc 

in which the value first with -i is the name of a file from which the text of 
the initial delta of the secs file s. abc is to be taken. Omission of a value with 
-i means admin is to read the standard input for the text of the initial delta. 

The command 

$ admin -i s.abc < first 

is equivalent to the previous example. 

10-26 ANSI C and Programming Support Tools 



SCCS Commands 

If the text of the initial delta does not contain ID keywords, the message 

No id keywords (cm7) 

is issued by admin as a warning. However, if the command also sets the i flag 
(not to be confused with the -i keyletter), the message is treated as an error and 
the SCCS file is not created. Only one SCCS file may be created at a time using 
admin -i. 

admin -r is used to specify a release number for the first delta. Thus: 

admin -ifirst -r3 s.abc 

means the first delta should be named 3.1 rather than the normal 1.1. Because 
-r has meaning only when creating the first delta, its use is permitted only with 
-i. 

Inserting Commentary for the Initial Delta 

When an SCCS file is created, the user may want to record why this was done. 
Comments (admin -y) and/or MR numbers (-m) can be entered in exactly the 
same way as with delta. 

If -y is omitted, a comment line of the form 

date and time created YY/MM/DD HH:MM:SS by logname 

is automatically generated. 

If it is desired to supply MR numbers (admin -m), the v flag must be set with 
-f. The v flag simply determines whether MR numbers must be supplied when 
using any SCCS command that modifies a delta commentary in the SCCS file 
(see sccsfile in Section 4 of the Programmer's Reference Manual). An example 
would be 

$ admin -ifirst -mmrnuml -fv s.abc 

Note that -y and -m are effective only if a new SCCS file is being created. 

SCCS 10-27 



SCCS Commands 

Initialization and Modification of SCCS File Parameters 

Part of an SCCS file is reserved for descriptive text, usually a summary of the 
file's contents and purpose. It can be initialized or changed by using admin -t. 

When an SCCS file is first being created and -t is used, it must be followed by 
the name of a file from which the descriptive text is to be taken. For example, 
the command 

$ admin -ifirst -tdesc s.abc 

specifies that the descriptive text is to be taken from file desc. 

When processing an existing SCCS file, -t specifies that the descriptive text (if 
any) currently in the file is to be replaced with the text in the named file. Thus: 

$ admin -tdesc s.abc 

specifies that the descriptive text of the SCCS file is to be replaced by the con
tents of desc. Omission of the filename after the -t keyletter as in 

$ admin -t s.abc 

causes the removal of the descriptive text from the SCCS file. 

The flags of an SCCS file may be initialized or changed by admin -f, or deleted 
by admin -d 

SCCS file flags are used to direct certain actions of the various commands. (See 
the admin page in the Programmer's Reference Manual for a description of all the 
flags.) For example, the i flag specifies that a warning message (stating that 
there are no ID keywords contained in the SCCS file) should be treated as an 
error. The d (default SID) flag specifies the default version of the SCCS file to 
be retrieved by the get command. 

admin -f is used to set flags and, if desired, their values. For example 

$ admin -ifirst -fi -fmmodname s . abc 

sets the i and m (module name) flags. The value modname specified for them 
flag is the value that the get command will use to replace the %M% ID keyword. 
(In the absence of the m flag, the name of the g-file is used as the replacement for 
the %M% ID keyword.) Several -f keyletters may be supplied on a single admin, 
and they may be used whether the command is creating a new SCCS file or pro
cessing an existing one. 

10-28 ANSI C and Programming Support Tools 



SCCS Commands 

admin -d is used to delete a flag from an existing SCCS file. As an example, 
the command 

$ admin -dm s. abc 

removes the m flag from the SCCS file. Several -d. keyletters may be used with 
one admin and may be intermixed with -f. 

SCCS files contain a list of login names and/ or group IDs of users who are 
allowed to create deltas. This list is empty by default, allowing anyone to create 
deltas. To create a user list (or add to an existing one), admin -a is used. For 
example, 

$ admin -axyz -awql -a1234 s.abc 

adds the login names xyz and wql and the group ID 1234 to the list. admin -a 
may be used whether creating a new SCCS file or processing an existing one. 

admin -e (erase) is used to remove login names or group IDs from the list. 

The prs Command 

The prs command is used to print all or part of an SCCS file on the standard 
output. If prs -d is used, the output will be in a format called data 
specification. Data specification is a string of SCCS file data keywords (not to 
be confused with get ID keywords) interspersed with optional user text. 

Data keywords are replaced by appropriate values according to their definitions. 
For example, 

: I: 

is defined as the data keyword replaced by the SID of a specified delta. Simi
larly, : F: is the data keyword for the SCCS filename currently being processed, 
and : c: is the comment line associated with a specified delta. All parts of an 
SCCS file have an associated data keyword. For a complete list, see the prs 
page in the Programmer's Reference Manual. 

There is no limit to the number of times a data keyword may appear in a data 
specification. Thus, for example, 

$ prs -d.":I: this is the top delta for :F: :I:" s.abc 

may produce on the standard output 

SCCS 10-29 



SCCS Commands 

2.1 this is the top delta for s.abc 2.1 

Information may be obtained from a single delta by specifying its SID using prs 
-r. For example, 

$ prs -d":F:: :I: conment line is: :C:" -rl.4 s.abc 

may produce the following output: 

s.abc: 1.4 comment line is: THIS IS A COMMENT 

If -r is not specified, the value of the SID defaults to the most recently created 
delta. 

In addition, information from a range of deltas may be obtained with -1 or -e. 
The use of prs -e substitutes data keywords for the SID designated with -r 
and all deltas created earlier, while prs -1 substitutes data keywords for the 
SID designated with -r and all deltas created later. Thus, the command 

$ prs -d:I: -rl.4 -e s.abc 

may output 

1.4 
1.3 
1.2.1.1 
1.2 
1.1 

and the command 

$ prs -d:I: -rl.4 -1 s.abc 

may produce 

3.3 

10-30 

3.2 
3.1 
2.2.1.1 
2.2 
2.1 
1.4 

ANSI C and Programming Support Tools 

• 



SCCS Commands 

Substitution of data keywords for all deltas of the SCCS file may be obtained by 
specifying both -e and -1. 

The sact Command 

sact is a special form of the prs command that produces a report about files 
that are out for edit. The command takes only one type of argument: a list of 
file or directory names. The report shows the SID of any file in the list that is 
out for edit, the SID of the impending delta, the login of the user who executed 
the get -e command, and the date and time the get -e was executed. It is a 
useful command for an administrator. 

The help Command 

The help command prints information about messages that may appear on the 
user's terminal. Arguments to help are the code numbers that appear in 
parentheses at the end of SCCS messages. (If no argument is given, help 
prompts for one.) Explanatory information is printed on the standard output. 
If no information is found, an error message is printed. When more than one 
argument is used, each is processed independently, and an error resulting from 
one will not stop the processing of the others. For more information, see the 
help page in the Programmer's Reference Manual. 

The rmdel Command 

The rmdel command allows removal of a delta from an SCCS file. Its use 
should be reserved for deltas in which incorrect global changes were made. The 
delta to be removed must be a leaf delta. That is, it must be the most recently 
created delta on its branch or on the trunk of the SCCS file tree. In Figure 10-3, 
only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed. Only after they are removed 
can deltas 1.3.2.1 and 2.1 be removed. 

To be allowed to remove a delta, the effective user must have write permission 
in the directory containing the SCCS file. In addition, the real user must be 
either the one who created the delta being removed or the owner of the SCCS 
file and its directory. 

SCCS 10-31 



SCCS Commands 

The -r keyletter is mandatory with mdel. It is used to specify the complete 
SID of the delta to be removed. Thus 

$ mdel -r2.3 s.abc 

specifies the removal of trunk delta 2.3. 

Before removing the delta, rmdel checks that the release number (R) of the 
given SID satisfies the relation 

floor is less than or equal to R, 
which is less than or equal to ceiling 

Floor and ceiling are flags in the SCCS file representing start and end of the 
range of valid releases. 

The z:mdel command also checks the SID to make sure it is not for a version on 
which a get for editing has been executed and whose associated delta has not 
yet been made. In addition, the login name or group ID of the user must 
appear in the file's user list (or the user list must be empty). Also, the release 
specified cannot be locked against editing. That is, if the 1 flag is set (see admin 
in the Programmer's Reference Manual), the release must not be contained in the 
list. If these conditions are not satisfied, processing is terminated, and the delta 
is not removed. 

Once a specified delta has been removed, its type indicator in the delta table of 
the SCCS file is changed from D (delta) to R (removed). 

The cdc Command 

The cd.c command is used to change the commentary made when the delta was 
created. It is similar to the mdel command (e.g., -r and full SID are neces
sary), although the delta need not be a leaf delta. For example, 

$ cd.c -r3.4 s.abc 

specifies that the commentary of delta 3.4 is to be changed. New commentary is 
then prompted for as with delta. 

The old commentary is kept, but it is preceded by a comment line indicating 
that it has been superseded, and the new commentary is entered ahead of the 
comment line. The inserted comment line records the login name of the user 
executing cdc and the time of its execution. 

10-32 ANSI C and Programming Support Tools 



SCCS Commands 

The cdc command also allows for the insertion of new and deletion of old MR 
numbers with the ! symbol. Thus 

cdc -rl. 4 s. abc 
MRs? rnrnum3 ! mrnuml (The MRs? prompt appears only 

if the v flag has been set.) 
comments? deleted wrong MR no. and inserted correct MR no. 

inserts mrnum3 and deletes mrnuml for delta 1.4. 

The what Command 

The what command is used to find identifying information in any UNIX system 
file whose name is given as an argument. No keyletters are accepted. The what 
command searches the given file(s) for all occurrences of the string@(#), which 
is the replacement for the %Z% ID keyword (see the get page in the 
Programmer's Reference Manual). It prints on the standard output whatever fol
lows the string until the first double quote("), greater than symbol(>), 
backslash ( \ ), new-line, null, or nonprinting character. 

For example, if an secs file called s. prog. c (a c language source file) contains 
the following line 

char id[]= "%W%"; 

and the command 

$ get -r3.4 s.prog.c 

is used, the resulting g-file is compiled to produce prog.o and a.out. Then, the 
command 

$ what prog.c prog.o a.out 

produces 

prog.c: 
prog.c: 3.4 

prog.o: 
prog.c: 3.4 

a.out: 
prog.c: 3.4 

SCCS 10-33 



SCCS Commands 

The string searched for by what need not be inserted with an ID keyword of 
get; it may be inserted in any convenient manner. 

The sccsdiff Command 

The sccsdiff command determines (and prints on the standard output) the 
differences between any two versions of an SCCS file. The versions to be com
pared are specified with sccsdiff -r in the same way as with get -r. SID 
numbers must be specified as the first two arguments. The SCCS file or files to 
be processed are named last. Directory names and a lone hyphen are not 
acceptable to sccsdiff. 

The following is an example of the format of sccsdiff: 

$ sccsdiff -r3.4 -rS.6 s.abc 

The differences are printed the same way as by diff. 

The comb Command 

The comb command lets the user reduce the size of an SCCS file. It generates a 
shell procedure on the standard output, which reconstructs the file by discard
ing unwanted deltas and combining other specified deltas. (It is not recom
mended that comb be used as a matter of routine.) 

In the absence of any keyletters, comb preserves only leaf deltas and the 
minimum number of ancestor deltas necessary to preserve the shape of an SCCS 
tree. The effect of this is to eliminate middle deltas on the trunk and on all 
branches of the tree. Thus, in Figure 10-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would 
be eliminated. 

Some of the keyletters used with this command are: 

comb -s 

comb -p 

10-34 

This option generates a shell procedure that produces a 
report of the percentage space (if any) the user will save. 
This is often useful as a preliminary check. 

This option is used to specify the oldest delta the user wants 
preserved. 

ANSI C and Programming Support Tools 



SCCS Commands 

comb -c This option is used to specify a list (see the get page in the 
Programmer's Reference Manual for its syntax) of deltas the 
user wants preserved. All other deltas will be discarded. 

The shell procedure generated by comb is not guaranteed to save space. A 
reconstructed file may even be larger than the original. Note, too, that the 
shape of an SCCS file tree may be altered by the reconstruction process. 

The val Command 

The val command is used to determine whether a file is an SCCS file meeting 
the characteristics specified by certain keyletters. It checks for the existence of a 
particular delta when the SID for that delta is specified with -r. 

The string following -y or -rn is used to check the value set by the t or rn flag, 
respectively. See admin in the Programmer's Reference Manual for descriptions of 
these flags. 

The val command treats the special argument hyphen differently from other 
secs commands. It allows val to read the argument list from the standard 
input instead of from the command line, and the standard input is read until an 
end-of-file (control-d) is entered. This permits one val command with dif
ferent values for keyletters and file arguments. For example, 

$ val -
-ye -mabc s.abc 
-mxyz -ypll s.xyz 
control d 

first checks if file s. abc has a value c for its type flag and value abc for the 
module name flag. Once this is done, val processes the remaining file, in this 
case s.xyz. 

The val command returns an 8-bit code. Each bit set shows a specific error (see 
val in the Programmer's Reference Manual for a description of errors and codes). 
In addition, an appropriate diagnostic is printed unless suppressed by -s. A 
return code of 0 means all files met the characteristics specified. 

SCCS 10-35 



SCCS Commands 

The vc Command 

The vc command is an awk-like tool used for version control of sets of files. 
While it is distributed as part of the SCCS package, it does not require the files 
it operates on to be under SCCS control. A complete description of vc can be 
found in Section 1 of the Programmer's Reference Manual. 

10-36 ANSI C and Programming Support Tools 



SCCS Files 

This section covers protection mechanisms used by SCCS, the format of SCCS 
files, and the recommended procedures for auditing SCCS files. 

Protection 

SCCS relies on the capabilities of the UNIX system for most of the protection 
mechanisms required to prevent unauthorized changes to secs files - that is, 
changes by non-SCCS commands. Protection features provided directly by 
SCCS are the release lock flag, the release floor and ceiling flags, and the user 
list. 

Files created by the admin command are given access permission mode 444 
(read-only for owner, group, and other). This mode should remain unchanged 
because it (generally) prevents modification of SCCS files by non-SCCS com
mands. Directories containing SCCS files should be given mode 755, which 
allows only the owner of the directory to modify it. 

SCCS files should be kept in directories that contain only SCCS files and any 
temporary files created by SCCS commands. This simplifies their protection and 
auditing. The contents of directories should be logical groupings - subsystems 
of the same large project, for example. 

SCCS files should have only one link (name) because commands that modify 
them do so by creating and modifying a copy of the file. When processing is 
done, the contents of the old file are automatically replaced by the contents of 
the copy, whereupon the copy is destroyed. If the old file had additional links, 
this would break them. Then, rather than process such files, SCCS commands 
would produce an error message. 

When only one person uses SCCS, the real and effective user IDs are the same; 
and the user ID owns the directories containing SCCS files. Therefore, SCCS 
may be used directly without any preliminary preparation. 

When several users with unique user IDs are assigned SCCS responsibilities (on 
large development projects, for example), one user - that is, one user ID -
must be chosen as the owner of the SCCS files. This person will administer the 
files (use the admin command) and will be secs administrator for the project. 
Because other users do not have the same privileges and permissions as the 
SCCS administrator, they are not able to execute directly those commands that 
require write permission in the directory containing the SCCS files. Therefore, a 

SCCS 10-37 



SCCS Files 

project-dependent program is required to provide an interface to the get, 
delta, and, if desired, :rmdel and cdc commands. 

The interface program must be owned by the SCCS administrator and must 
have the set-user-ID-on-execution bit on (see chmod. in Section 1 of the User's 
Reference Manual). This assures that the effective user ID is the user ID of the 
SCCS administrator. With the privileges of the interface program during com
mand execution, the owner of an SCCS file can modify it at will. Other users 
whose login names or group IDs are in the user list for that file (but are not the 
owner) are given the necessary permissions only for the duration of the execu
tion of the interface program. Thus, they may modify SCCS only with delta 
and, possibly, :rmdel and cdc. 

Formatting 

SCCS files are composed of lines of ASCII text arranged in six parts as follows: 

Checksum a line containing the logical sum of all the characters 
of the file (not including the checksum line itself) 

Delta Table 

User Names 

Flags 

Descriptive Text 

Body 

information about each delta, such as type, SID, date 
and time of creation, and commentary 

list of login names and/ or group IDs of users who are 
allowed to modify the file by adding or removing del
tas 

indicators that control certain actions of SCCS com
mands 

usually a summary of the contents and purpose of the 
file 

the text administered by SCCS, intermixed with inter
nal SCCS control lines 

Details on these file sections may be found on the sccsfile page in Section 4 of 
the Programmer's Reference Manual. The checksum line is discussed below under 
"Auditing." 

10-38 ANSI C and Programming Support Tools 



SCCS Files 

Since SCCS files are ASCII files they can be processed by non-SCCS commands 
like ed., grep, and cat. This is convenient when an SCCS file must be modified 
manually (a delta's time and date were recorded incorrectly, for example, 
because the system clock was set incorrectly), or when a user wants simply to 
look at the file. 

v Extreme care should be exercised when modifying SCCS files with non-
SCCS commands. 

Auditing 

When a system or hardware malfunction destroys an SCCS file, any command 
will issue an error message. Commands also use the checksum stored in an 
SCCS file to determine whether the file has been corrupted since it was last 
accessed (possibly by having lost one or more blocks or by having been 
modified with ed). No SCCS command will process a corrupted SCCS file 
except the admin -h or -z, as described below. 

SCCS files should be audited for possible corruptions on a regular basis. The 
simplest and fastest way to do an audit is to use admin -h and specify all SCCS 
files: 

admin -h s . filel s . file2 ... 

or 

admin -h directoryl directory2 ... 

If the new checksum of any file is not equal to the checksum in the first line of 
that file, the message 

corrupted file (co6) 

is produced for that file. The process continues until all specified files have 
been examined. When examining directories (as in the second example above), 
the checksum process will not detect missing files. A simple way to learn 
whether files are missing from a directory is to execute the ls command period
ically, and compare the outputs. Any file whose name appeared in a previous 
output but not in the current one no longer exists. 

secs 10-39 



SCCS Flies 

When a file has been corrupted, the way to restore it depends on the extent of 
the corruption. If damage is extensive, the best solution is to contact the local 
UNIX system operations group and request that the file be restored from a 
backup copy. If the damage is minor, repair through editing may be possible. 
After such a repair, the admin command must be executed: 

$ admin -z s . file 

The purpose of this is to recompute the checksum and bring it into agreement 
with the contents of the file. After this command is executed, any corruption 
that existed in the file will no longer be detectable. 

10-40 ANSI C and Programming Support Tools 







11 lex 

Introduction 11-1 

Generating a Lexical Analyzer Program 11-2 

Writing lex Source 11-5 
The Fundamentals of lex Rules 11-5 

• Regular Expressions 11-5 
• Operators 11-6 
• Actions 11-9 

Advanced lex Usage 11-11 
• Some Special Features 11-12 
• lex Routines 11-14 
• Definitions 11-17 
• Start Conditions 11-19 
• User Routines 11-20 

Using lex with yacc 11-22 

Miscellaneous 11-25 

Summary of Source Format 11-26 

Table of Contents 





Introduction 

lex is a software tool that lets you solve a wide class of problems drawn from 
text processing, code enciphering, compiler writing, and other areas. In text 
processing, you might check the spelling of words for errors; in code encipher
ing, you might translate certain patterns of characters into others; and in com
piler writing, you might determine what the tokens (smallest meaningful 
sequences of characters) are in the program to be compiled. The task common 
to all these problems is lexical analysis: recognizing different strings of charac
ters that satisfy certain characteristics. Hence the name lex. 

You don't have to use lex to handle problems of this kind. You could write 
programs in a standard language like C to handle them, too. In fact, what lex 
does is produce such C programs. (lex is therefore called a program genera
tor.) What lex offers you, once you acquire a facility with it, is typically a fas
ter, easier way to create programs that perform these tasks. Its weakness is that 
it often produces C programs that are longer than necessary for the task at hand 
and that execute more slowly than they otherwise might. In many applications 
this is a minor consideration, and the advantages of using lex considerably 
outweigh it. 

lex can also be used to collect statistical data on features of an input text, such 
as character count, word length, number of occurrences of a word, and so forth. 
In the remaining sections of this chapter, we will see 

• how to generate a lexical analyzer program 

• how to write lex source 

• how to translate lex source 

• how to use lex with yacc 

lex 11-1 



Generating a Lexical Analyzer Program 

lex generates a C language scanner from a source specification that you write 
to solve the problem at hand. This specification consists of a list of rules indi
cating sequences of characters - expressions - to be searched for in an input 
text, and the actions to take when an expression is found. We'll show you how 
to write a lex specification in the next section. 

The C source code for the lexical analyzer is generated when you enter 

$ lex lex.l 

where lex .1 is the file containing your lex specification. (The name lex .1 is 
conventionally the favorite, but you may use whatever name you want. Keep in 
mind, though, that the . 1 suffix is a convention recognized by other UNIX sys
tem tools, in particular, make.) The source code is written to an output file 
called lex. yy. c by default. That file contains the definition of a function called 
yylex () that returns 1 whenever an expression you have specified is found in 
the input text, 0 when end of file is encountered. Each call to yylex () parses 
one token (assuming a return); when yylex () is called again, it picks up where 
it left off. 

Note that running lex on a specification that is spread across several files 

$ lex lexl.l lex2.l lex3.l 

produces one lex. yy. c. Invoking lex with the -t option causes it to write its 
output to stdout rather than lex. yy. c, so that it can be redirected: 

$ lex -t lex.l > lex.c 

Options to lex must appear between the command name and the file name 
argument. 

The lexical analyzer code stored in lex. yy. c (or the . c file to which it was 
redirected) must be compiled to generate the executable object program, or 
scanner, that performs the lexical analysis of an input text. The lex library 
supplies a default main() that calls the function yylex (), so you need not sup
ply your own main () . The library is accessed by invoking the -11 option to 
cc: 

$ cc lex.yy.c -11 

11-2 ANSI C and Programming Support Tools 



Generating the Scanner 

Alternatively, you may want to write your own driver. The following is similar 
to the library version: 

extern int yylex(); 

int yywrap () 

main() 
{ 

return (1); 

while (yylex ()) 

We'll take a closer look at the function yywrap () in the "lex Routines" section 
below. For now it's enough to note that when your driver file is compiled with 
lex.yy.c 

$ cc lex.yy.c driver.c 

its main() will call yylex () at run time exactly as if the lex library had been 
loaded. The resulting executable reads stdin and writes its output to stdout. 
Figure 11-1 shows how lex works. 

lex 11-3 



Generating the Scanner 

Figure 11-1: Creation and Use of a Lexical Analyzer with lex 

lex 
lexical 

lex analyzer 
source 

code 

c 
compiler 

input 
lexical output: 

text 
...,,.. analyzer ...,,.. tokens, 

program text, etc. 

11-4 ANSI C and Programming Support Tools 



Writing lex Source 

lex source consists of at most three sections: definitions, rules, and user-defined 
routines. The rules section is mandatory. Sections for definitions and user rou
tines are optional, but if present, must appear in the indicated order: 

definitions 
%% 
rules 
%% 
user routines 

The Fundamentals of lex Rules 

The mandatory rules section opens with the delimiter %%. If a routines section 
follows, another %% delimiter ends the rules section. The %% delimiters must be 
entered at the beginning of a line, without leading blanks. If there is no second 
delimiter, the rules section is presumed to continue to the end of the program. 
Lines in the rules section that begin with white space and that appear before the 
first rule are copied to the beginning of the function yylex (), immediately 
after the first brace. You might use this feature to declare local variables for 
yylex(). 

Each rule consists of a specification of the pattern sought and the action(s) to 
take on finding it. The specification of the pattern must be entered at the begin
ning of a line. The scanner writes input that does not match a pattern directly 
to the output file. So the simplest lexical analyzer program is just the beginning 
rules delimiter, %%. It writes out the entire input to the output with no changes 
at all. Typically, the rules are more elaborate than that. 

Regular Expressions 
You specify the patterns you are interested in with a notation called a regular 
expression. A regular expression is formed by stringing together characters 
with or without operators. The simplest regular expressions are strings of text 
characters with no operators at all: 

apple 
orange 
pluto 

These three regular expressions match any occurrences of those character strings 

lex 11-5 



Writing lex Source 

in an input text. If you want to have the scanner remove every occurrence of 
orange from the input text, you could specify the rule 

orange 

Because you specified a null action on the right with the semicolon, the scanner 
does nothing but print out the original input text with every occurrence of this 
regular expression removed, that is, without any occurrence of the string 
orange at all. 

Operators 
Unlike orange above, most of the expressions that we want to search for cannot 
be specified so easily. The expression itself might simply be too long. More 
commonly, the class of desired expressions is too large; it may, in fact, be 
infinite. Thanks to the use of operators - summarized in Figure 11-2 below -
we can form regular expressions to signify any expression of a certain class. 
The + operator, for instance, means one or more occurrences of the preceding 
expression, the ? means 0 or 1 occurrence(s) of the preceding expression (which 
is equivalent, of course, to saying that the preceding expression is optional), and 
* means 0 or more occurrences of the preceding expression. (It may at first 
seem odd to speak of 0 occurrences of an expression and to need an operator to 
capture the idea, but it is often quite helpful. We will see an example in a 
moment.) So m+ is a regular expression that matches any string of ms: 

mmm 
m 
mmmmm 

and 7* is a regular expression that matches any string of zero or more 7s: 

77 
77777 

777 

The empty third line matches simply because it has no 7s in it at all. 

The I operator indicates alternation, so that ab I cd matches either ab or ed. 
The operators { } specify repetition, so that a { 1, 5} looks for 1 to 5 occurrences 
of a. Brackets, [], indicate any one character from the string of characters 
specified between the brackets. Thus, [dgka] matches a single d, g, k, or a. 
Note that the characters between brackets must be adjacent, without spaces or 

11-6 ANSI C and Programming Support Tools 



Writing lex Source 

punctuation. The "operator, when it appears as the first character after the left 
bracket, indicates all characters in the standard set except those specified 
between the brackets. (Note that I, { } , and " may serve other purposes as 
well; see below.) Ranges within a standard alphabetic or numeric order (A 
through Z, a through z, 0 through 9) are specified with a hyphen. [a-z], for 
instance, indicates any lowercase letter. Somewhat more interestingly, 

[A-Za-z0-9*&#] 

is a regular expression that matches any letter (whether upper or lowercase), 
any digit, an asterisk, an ampersand, or a sharp character. Given the input text 

$$$$?? ????!!!*$$ $$$$$$&+====r--t (( 

the lexical analyzer with the previous specification in one of its rules will recog
nize *, &, r, and t, perform on each recognition whatever action the rule 
specifies (we have not indicated an action here), and print out the rest of the 
text as it stands. If you want to include the hyphen character in the class, it 
should appear as the first or last character in the brackets: [ -A-Z] or [A-Z-] . 

The operators become especially powerful in combination. For example, the 
regular expression to recognize an identifier in many programming languages is 

[a-zA-Z] [0-9a-zA-Z]* 

An identifier in these languages is defined to be a letter followed by zero or 
more letters or digits, and that is just what the regular expression says. The 
first pair of brackets matches any letter. The second, if it were not followed by 
a *,would match any digit or letter. The two pairs of brackets with their 
enclosed characters would then match any letter followed by a digit or a letter. 
But with the *, the example matches any letter followed by any number of 
letters or digits. In particular, it would recognize the following as identifiers: 

e 
not 
idenTIF.IER 
pH 
EngineNo99 
R2D2 

Note that it would not recognize the following as identifiers: 

not idenTIFIER 
Stimes 
$hello 

lex 11-7 



Writing lex Source 

because not_ idenTIFIER has an embedded underscore; 5times starts with a 
digit, not a letter; and $hello starts with a special character. 

A potential problem with operator characters is how we can specify them as 
characters to look for in a search pattern. The last example, for instance, will 
not recognize text with a * in it. lex solves the problem in one of two ways: 
an operator character preceded by a backslash, or characters (except backslash) 
enclosed in double quotation marks, are taken literally, that is, as part of the 
text to be searched for. To use the backslash method to recognize, say, a * fol
lowed by any number of digits, we can use the pattern 

\*[l-9]* 

To recognize a \itself, we need two backslashes: \ \. Similarly, "x\*x" 
matches x*x, and "y\"z" matches y"z. Other lex operators are noted as they 
arise in the discussion below. lex recognizes all the C language escape 
sequences described in "Source Files and Tokenization" in Chapter 3. 

11-8 ANSI C and Programming Support Tools 



Writing lex Source 

Figure 11·2: lex Operators 

Expression 
\x 
"xy" 
[xy] 
[X-Z] 
["X] 

"x 
<y>x 
x$ 
x? 
X* 

x+ 
x{m, n} 

xxlyy 
XI 
(X) 

x/y 
{XX} 

Actions 

Description 
x, if x is a lex operator 
xy, even if x or y are lex operators (except \) 
x or y 
x, y, or z 
any character but x 
any character but new-line 
x at the beginning of a line 
x when lex is in start condition y 
x at the end of a line 
optional x 
0, 1, 2, ... instances of x 
1, 2, 3, ... instances of x 
m through n occurrences of x 
either xx or yy 
the action on x is the action for the next rule 
x 
x but only if followed by y 
the translation of xx from the definitions section 

Once the scanner recognizes a string matching the regular expression at the start 
of a rule, it looks to the right of the rule for the action to be performed. You 
supply the actions. Kinds of actions include recording the token type found and 
its value, if any; replacing one token with another; and counting the number of 
instances of a token or token type. You write these actions as program frag
ments in C. An action rriay consist of as many statements as are needed for the 
job at hand. You may want to change the text in some way or simply print a 
message noting that the text has been found. So, to recognize the expression 
Amelia Earhart and to note such recognition, the rule 

"Amelia Earhart" printf("found Amelia"); 

would do. And to replace in a text lengthy medical terms with their equivalent 
acronyms, a rule such as 

lex 11·9 



Writing lex Source 

Electroencephalogram printf("EEG"); 

would be called for. To count the lines in a text, we need to recognize the ends 
of lines and increment a linecounter. As we have noted, lex uses the standard 
C escape sequences, including \n for new-line. So, to count lines we might 
have 

\n lineno++; 

where lineno, like other C variables, is declared in the definitions section that 
we discuss later. 

Input is ignored when the C language null statement ; is specified. So the rule 

[ \t\n] 

causes blanks, tabs, and new-lines to be ignored. Note that the alternation 
operator I can also be used to indicate that the action for a rule is the action for 
the next rule. The previous example could have been written: 

" " 
\t 
\n 

with the same result. 

The scanner stores text that matches an expression in a character array called 
yytext []. You can print or manipulate the contents of this array as you like. 
In fact, lex provides a macro called ECHO that is equivalent to printf ("%s", 
yytext). We'll see an example of its use in the "Start Conditions" section 
below. 

Sometimes your action may consist of a long C statement, or two or more C 
statements, and you must (or for style and clarity, you choose to) write it on 
several lines. To inform lex that the action is for one rule only, simply enclose 
the C code in braces. For example, to count the total number of all digit strings 
in an input text, print the running total of the number of digit strings, and print 
out each one as soon as it is found, your lex code might be 

\+?[1-9]+ { digstrngcount++; 
printf ("%d" ,digstrngcount); 
printf("%s", yytext); } 

This specification matches digit strings whether they are preceded by a plus 
sign or not, because the ? indicates that the preceding plus sign is optional. In 
addition, it will catch negative digit strings because that portion following the 

11-10 ANSI C and Programming Support Tools 



Writing lex Source 

minus sign will match the specification. The next section explains how to distin
guish negative from positive integers. 

Advanced lex Usage 

lex provides a suite of features that let you process input text riddled with 
quite complicated patterns. These include rules that decide what specification is 
relevant when more than one seems so at first; functions that transform one 
matching pattern into another; and the use of definitions and subroutines. 
Before considering these features, you may want to affirm your understanding 
thus far by examining an example that draws together several of the points 
already covered: 

%% 
-[0'-9)+ 
\+1[0-9]+ 
-o. [0-9]+ 
rail [ \t)+road 
crook 
funC!tion 
G[a-zA-ZJ* 

printf ("negative integer•) : 
priritf <"positive integer"); 
printf("negative fraction, no whole numJ;ier part"); 
printf("railroad is one ~ord"); 
printf("Here's a cr<iok"); 
subprogcount++; 
( printf("may have a G )lord here:'l<s", yytext); 

Gstririgcount ++; • • J 

The first three rules recognize negative integers, positive integers, and negative 
fractions between 0 and -1. The use of the terminating + in each specification 
ensures that one or more digits compose the number in question. Each of the 
next three rules recognizes a specific pattern. The specification for railroad 
matches cases where one or more blanks intervene between the two syllables of 
the word. In the cases of railroad and crook, we could have simply 
printed a synonym rather than the messages stated. The rule recognizing a 
function simply increments a counter. The last rule illustrates several points: 

lex 

• The braces specify an action sequence that extends over several lines. 

• Its action uses the lex array yytext [],which stores the recognized 
character string. 

11-11 



Writing lex Source 

• Its specification uses the * to indicate that zero or more letters may follow 
the G. 

Some Special Features 
Besides storing the matched input text in yytext [], the scanner automatically 
counts the number of characters in a match and stores it in the variable 
yyleng. You may use this variable to refer to any specific character just placed 
in the array yytext []. Remember that C language array indices start with 0, 
so to print out the third digit (if there is one) in a just recognized integer, you 
might enter 

[1-9]+ {if (yyleng > 2) 
printf("%c", yytext[2]); 

lex follows a number of high-level rules to resolve ambiguities that may arise 
from the set of rules that you write. In the following lexical analyzer example, 
the "reserved word" end could match the second rule as well as the eighth, the 
one for identifiers: 

11-12 

·. ;EltUJ:ll(ll'l; .· ·. • ... 
/ .X"etux:l'l.(J;>~):· / 

··.··•· ~tti:rn (REI/ERSE); :retuitl (LOOP}; ·• • . 
( tok.val .. put_in..:_tabi(>i 
tjltu:<n ( IIENTIFIER) ; . I 
I tolwal.- pµt_in:tal>~O( 
r.;.tuitl(~l; I . .. 
·ftokval• ~; •••..... · 
ietl.ll:ll. (MJ:TaoP) ;. l .. ... . .... 

t•tokVl!ll -· Ml:Nmi; 
~tv.tn (AIU'.J.'liOPU •·· I .· 

ANSI C and Programming Support Tools 



Writing lex Source 

lex follows the rule that, where there is a match with two or more rules in a 
specification, the first rule is the one whose action will be executed. By placing 
the rule for end and the other reserved words before the rule for identifiers, we 
ensure that our reserved words will be duly recognized. 

Another potential problem arises from cases where one pattern you are search
ing for is the prefix of another. For instance, the last two rules in the lexical 
analyzer example above are designed to recognize > and >=. If the text has 
the string >= at one point, you might worry that the lexical analyzer would 
stop as soon as it recognized the >character and execute the rule for >, rather 
than read the next character and execute the rule for >=. lex follows the rule 
that it matches the longest character string possible and executes the rule for 
that. Here the scanner would recognize the >= and act accordingly. As a 
further example, the rule would enable you to distinguish + from ++ in a C 
program. 

Still another potential problem exists when the analyzer must read characters 
beyond the string you are seeking because you cannot be sure that you've in 
fact found it until you've read the additional characters. These cases reveal the 
importance of trailing context. The classic example here is the DO statement in 
FORTRAN. In the statement 

DO 50 k = 1 , 20, 1 

we cannot be sure that the first 1 is the initial value of the index k until we 
read the first comma. Until then, we might have the assignment statement 

DOSOk = 1 

(Remember that FORTRAN ignores all blanks.) The way to handle this is to use 
the slash, I, which signifies that what follows is trailing context, something not 
to be stored in yytext [], because it is not part of the pattern itself. So the 
rule to recognize the FORTRAN DO statement could be 

DO/([ ]*[0-9]+[ ]*[a-zA-Z0-9]+=[a-zA-Z0-9]+,) 
printf("found DO"); 
} 

Different versions of FORTRAN have limits on the size of identifiers, here the 
index name. To simplify the example, the rule accepts an index name of any 
length. See the "Start Conditions" section below for a discussion of lex's simi
lar handling of prior context. 

lex 11-13 



Writing lex Source 

lex uses the $ symbol as an operator to mark a special trailing context - the 
end of a line. An example would be a rule to ignore all blanks and tabs at 
the end of a line: 

\t]+$ 

which could also be written: 

\t]+/\n 

On the other hand, if you want to match a pattern only when it starts a line or a 
file, you can use the " operator. Suppose a text-formatting program requires 
that you not start a line with a blank. You might want to check input to the 
program with some such rule as 

" [ ] printf ("error: remove leading blank"); 

Note the difference in meaning when the "operator appears inside the left 
bracket, as described in the "Operators" section above. 

lex Routines 

Some of your action statements themselves may require your reading another 
character, putting one back to be read again a moment later, or writing a char
acter on an output device. lex supplies three macros to handle these tasks -
input(), unput (c), and output (c), respectively. One way to ignore all 
characters between two special characters, say between a pair of double quota
tion marks, would be to use input () , thus: 

\" while (input() != '"'); 

Upon finding the first double quotation mark, the scanner will simply continue 
reading all subsequent characters so long as none is a double quotation mark, 
and not look for a match again until it finds a second double quotation mark. 
(See the further examples of input() and unput (c) usage in the "User Rou
tines" section below.) 

By default, these routines are provided as macro definitions. To handle special 
1/0 needs, such as writing to several files, you may use standard 1/0 routines 
in C to rewrite the functions. Note, however, that they must be modified con
sistently. In particular, the character set used must be consistent in all routines, 
and a value of 0 returned by input () must mean end of file. The relationship 
between input() and unput (c) must be maintained or the lex lookahead 
will not work. 

11-14 ANSI C and Programming Support Tools 



Writing lex Source 

If you do provide your own input(), output (c), or unput (c), you will 
have to write a #undef input and so on in your definitions section first: 

#undef input 
#undef output 

#define input () . . . etc. 
more declarations 

Your new routines will replace the standard ones. See the ''Definitions" section 
below for further details. 

A lex library routine that you may sometimes want to redefine is yywrap () , 
which is called whenever the scanner reaches end of file. If yywrap () returns 
1, the scanner continues with normal wrapup on end of input. Occasionally, 
however, you may want to arrange for more input to arrive from a new source. 
In that case, redefine yywrap () to return 0 whenever further processing is 
required. The default yywrap () always returns 1. Note that it is not possible 
to write a normal rule that recognizes end of file; the only access to that condi
tion is through yywrap () . Unless a private version of input () is supplied, a 
file containing nulls cannot be handled because a value of 0 returned by 
input () is taken to be end of file. 

There are a number of lex routines that let you handle sequences of characters 
to be processed in more than one way. These include yymore (), yyless (n), 
and REJECT. Recall that the text that matches a given specification is stored in 
the array yyt ext [ J • In general, once the action is performed for the 
specification, the characters in yytext [ J are overwritten with succeeding char
acters in the input stream to form the next match. The function yymore () , by 
contrast, ensures that the succeeding characters recognized are appended to 
those already in yytext [ J. This lets you do one thing and then another, when 
one string of characters is significant and a longer one including the first is 
significant as well. Consider a language that defines a string as a set of charac
ters between double quotation marks and specifies that to include a double quo
tation mark in a string it must be preceded by a backslash. The regular expres
sion matching that is somewhat confusing, so it might be preferable to write: 

lex 11-15 



Writing lex Source 

\" [""] ... 
if (yytext[yyleng-1] 

yymore (); 
else 
. . . nonnal processing 
} 

, \ \,) 

When faced with the string "abc\ "def", the scanner will first match the char
acters "abc\, whereupon the call to yymore () will cause the next part of the 
string "def to be tacked on the end. The double quotation mark terminating 
the string should be picked up in the code labeled "normal processing." 

The function yyless (n) lets you specify the number of matched characters on 
which an action is to be performed: only the first n characters of the expression 
are retained in yytext []. Subsequent processing resumes at the nth+ 1 char
acter. Suppose you are again in the code deciphering business and the idea is 
to work with only half the characters in a sequence that ends with a certain one, 
say upper or lowercase z. The code you want might be 

[a-yA-Y]+[Zz] { yyless(yyleng/2); 
... process first half of string ... } 

Finally, the function REJECT lets you more easily process strings of characters 
even when they overlap or contain one another as parts. REJECT does this by 
immediately jumping to the next rule and its specification without changing the 
contents of yytext [] . If you want to count the number of occurrences both of 
the regular expression snapdragon and of its subexpression dragon in an 
input text, the following will do: 

snapdragon 
dragon 

{countflowers++; REJECT;} 
countmonsters++; 

As an example of one pattern overlapping another, the following counts the 
number of occurrences of the expressions comedian and diana, even where 
the input text has sequences such as comediana .. : 

comedian 
diana 

{comiccount++; REJECT;} 
princesscount++; 

Note that the actions here may be considerably more complicated than simply 
incrementing a counter. In all cases, you declare the counters and other neces
sary variables in the definitions section commencing the lex specification. 

11·16 ANSI C and Programming Support Tools 



Writing lex Source 

Definitions 

The lex definitions section may contain any of several classes of items. The 
most critical are external definitions, preprocessor statements like #include, 
and abbreviations. Recall that for legal lex source this section is optional, but 
in most cases some of these items are necessary. Preprocessor statements and C 
source code should appear between a line of the form % { and one of the form 
% } • All lines between these delimiters - including those that begin with white 
space - are copied to lex. yy. c immediately before the definition of 
yylex (). (Lines in the definition section that are not enclosed by the delimiters 
are copied to the same place provided they begin with white space.) The 
definitions section is where you would normally place C definitions of objects 
accessed by actions in the rules section or by routines with external linkage. 

One example occurs in using lex with yacc, which generates parsers that call 
a lexical analyzer. In this context, you should include the file y. tab. h, which 
may contain #defines for token names: 

%{ 
#include "y.tab.h" 
extern int tokval; 
int lineno; 
%} 

After the % } that ends your #include's and declarations, you place your 
abbreviations for regular expressions to be used in the rules section. The abbre
viation appears on the left of the line and, separated by one or more spaces, its 
definition or translation appears on the right. When you later use abbreviations 
in your rules, be sure to enclose them within braces. Abbreviations avoid need
less repetition in writing your specifications and make them easier to read. 

As an example, reconsider the lex source reviewed at the beginning of this sec
tion on advanced lex usage. The use of definitions simplifies our later refer
ence to digits, letters, and blanks. This is especially true if the specifications 
appear several times: 

lex 11-17 



Writing lex Source 

11-18 ANSI C and Programming Support Tools 



Writing lex Source 

Start Conditions 

Some problems require for their solution a greater sensitivity to prior context 
than is afforded by the "operator alone. You may want different rules to be 
applied to an expression depending on a prior context that is more complex 
than the end of a line or the start of a file. In this situation you could set a flag 
to mark the change in context that is the condition for the application of a rule, 
then write code to test the flag. Alternatively, you could define for lex the dif
ferent "start conditions" under which it is to apply each rule. 

Consider this problem: copy the input to the output, except change the word 
magic to the word first on every line that begins with the letter a; change 
magic to second on every line that begins with b; change magic to third 
on every line that begins with c. Here is how the problem might be handled 
with a flag. Recall that ECHO is a lex macro equivalent to pr int f ( 11 %s 11 , 

yytext): 

To handle the same problem with start conditions, each start condition must be 
introduced to lex in the definitions section with a line reading 

%Start name1 name2 ... 

where the conditions may be named in any order. The word Start may be 
abbreviated to s or s. The conditions are referenced at the head of a rule with 
< > brackets. So 

<name1 >expression 

lex 11·19 



Writing lex Source 

is a rule that is only recognized when the scanner is in start condition name1. 
To enter a start condition, execute the action statement 

BEGIN name1; 

which changes the start condition to name1. To resume the normal state 

BEGIN O; 

resets the initial condition of the scanner. A rule may be active in several start 
conditions. That is, 

<name1 , name2, name3> 

is a legal prefix. Any rule not beginning with the <>prefix operators is always 
active. 

The example can be written with start conditions as follows: 

User Routines 

You may want to use your own routines in lex for much the same reason that 
you do so in other programming languages. Action code that is to be used for 
several rules can be written once and called when needed. As with definitions, 
this can simplify the writing and reading of programs. The function 
put_ in_ tab! () , to be discussed in the next section on lex and yacc, is a 
good candidate for the user routines section of a lex specification. 

Another reason to place a routine in this section is to highlight some code of 
interest or to simplify the rules section, even if the code is to be used for one 
rule only. As an example, consider the following routine to· ignore comments in 
a language like C where comments occur between I* and *I: 

11·20 ANSI C and Programming Support Tools 



Writing lex Source 

There are three points of interest in this example. First, the unput (c) macro 
(putting back the last character read) is necessary to avoid missing the final I if 
the comment ends unusually with a **I. In this case, eventually having read a 
*, the scanner finds that the next character is not the terminal I and must read 
some more. Second, the expression yytext [yyleng-1] picks out that last 
character read. Third, this routine assumes that the comments are not nested. 
That is indeed the case with the C language. 

lex 11-21 



Using lex with yacc 

If you work on a compiler project or develop a program to check the validity of 
an input language, you may want to use the UNIX system tool yacc (Chapter 
12). yacc generates parsers, programs that analyze input to insure that it is 
syntactically correct. lex often forms a fruitful union with yacc in the com
piler development context. Whether or not you plan to use lex with yacc, be 
sure to read this section because it covers information of interest to all lex pro
grammers. 

As noted, a program uses the lex-generated scanner by repeatedly calling the 
function yylex () . This name is convenient because a yacc-generated parser 
calls its lexical analyzer with this very name. To use lex to create the lexical 
analyzer for a compiler, you want to end each lex action with the statement 
return token, where token is a defined term whose value is an integer. The 
integer value of the token returned indicates to the parser what the lexical 
analyzer has found. The parser, called yyparse () by yacc, then resumes 
control and makes another call to the lexical analyzer when it needs another 
token. 

In a compiler, the different values of the token indicate what, if any, reserved 
word of the language has been found or whether an identifier, constant, arith
metic operator, or relational operator has been found. In the latter cases, the 
analyzer must also specify the exact value of the token: what the identifier is, 
whether the constant is, say, 9 or 888, whether the operator is +or *,and 
whether the relational operator is =or >. Consider the following portion of 
lex source (discussed in another context earlier) for a scanner that recognizes 
tokens in a "C-like" language: 

11-22 ANSI C and Programming Support Tools 



Using lex with yacc 

> ... > •••••.••••.••••.. 

. tjt:Uit:i cat:Giw> ; 
rebu:n (END) i . 

. <·· .. ···.·.· . ,· .. 
• ~l;urn (1111:µ.E) ; 
···:r:etµrn(J:f~;· 
:r;eturn (PJIO(AGI;:) 

:r;etllrn~J . ···.· ...... ·.· ... ·.·· .. · 

.ret#ri (l:.Oa? > :. .... . .·· . 
.. ···.·•.···•·• f t:QltY11l ... put,:).ti_t:abll); ••.•• 
. \ Xeturn (J:I)EN'iiIFI?> i ( / 

. •·•·••·••·• !e::i~i"~ttel>l (): 
/ !e:::~~~~fFi > ......... /···~=~~~;}<•·· 

•·.·•·.· •·. <• t~Qk:'Vai • ~~·· ·•·.··•· .. · . ··.·••····. ·. >• :r:et:um<~P.J .. >. > .. 
·<······ </ ··j tOkiril.l ~ ~; .. ...... .. . ...... . 

:r;el;iµ:n~); .. ) / . •.. ···• 

Despite appearances, the tokens returned, and the values assigned to tokval, 
are indeed integers. Good programming style dictates that we use informative 
terms such as BEGIN, END, WHILE, and so forth to signify the integers the 
parser understands, rather than use the integers themselves. You establish the 
association by using tdefine statements in your parser calling routine in C. 
For example, 

#define BEGIN 1 
tdefine END 2 

#define PLUS 7 

If the need arises to change the integer for some token type, you then change 
the #define statement in the parser rather than hunt through the entire pro
gram changing every occurrence of the particular integer. In using yacc to 
generate your parser, insert the statement 

tinclude "y.tab.h" 

in the definitions section of your lex source. The file y. tab. h, which is 
created when yacc is invoked with the -d option, provides tdefine 

lex 11-23 



Using lex with yacc 

statements that associate token names such as BEGIN, END, and so on with the 
integers of significance to the generated parser. 

To indicate the reserved words in the example, the returned integer values 
suffice. For the other token types, the integer value of the token type is stored 
in the programmer-defined variable tokval. This variable, whose definition 
was an example in the definitions section, is globally defined so that the parser 
as well as the lexical analyzer can access it. yacc provides the variable 
yylval for the same purpose. 

Note that the example shows two ways to assign a value to tokval. First, a 
function put_ in_ tabl () places the name and type of the identifier or con
stant in a symbol table so that the compiler can refer to it in this or a later stage 
of the compilation process. More to the present point, put_in_tabl O assigns 
a type value to tokval so that the parser can use the information immediately 
to determine the syntactic correctness of the input text. The function 
put_in_tabl () would be a routine that the compiler writer might place in the 
user routines section of the parser. Second, in the last few actions of the exam
ple, tokval is assigned a specific integer indicating which arithmetic or rela
tional operator the scanner recognized. If the variable Pl.US, for instance, is 
associated with the integer 7 by means of the #define statement above, then 
when a +is recognized, the action assigns to tokval the value 7, which indi
cates the +. The scanner indicates the general class of operator by the value it 
returns to the parser (that is, the integer signified by ARITHOP or RELOP). 

In using lex with yacc, either may be run first. The command 

$ yacc -d grammar.y 

generates a parser in the file y. tab. c. As noted, the -d option creates the file 
y. tab. h, which contains the #define statements that associate the yacc
assigned integer token values with the user-defined token names. Now you can 
invoke lex with the command 

$ lex lex.! 

then compile and link the output files with the command 

$ cc lex.yy.c y.tab.c -ly -11 

Note that the yacc library is loaded (with the -ly option) before the lex 
library (with the -11 option) to insure that the supplied main() will call the 
yacc parser. 

11-24 ANSI C and Programming Support Tools 



Miscellaneous 

Recognition of expressions in an input text is performed by a deterministic finite 
automaton generated by lex. The -v option prints out for you a small set of 
statistics describing the finite automaton. (For a detailed account of finite auto
mata and their importance for lex, see the Aho, Sethi, and Ullman text, Com
pilers: Principles, Techniques, and Tools, Addison-Wesley, 1986.) 

lex uses a table to represent its finite automaton. The maximum number of 
states that the finite automaton allows is set by default to 500. If your lex 
source has a large number of rules or the rules are very complex, this default 
value may be too small. You can enlarge the value by placing another entry in 
the definitions section of your lex source as follows: 

%n 700 

This entry tells lex to make the table large enough to handle as many as 700 
states. (The -v option will indicate how large a number you should choose.) If 
you have need to increase the maximum number of state transitions beyond 
2000, the designated parameter is a, thus: 

%a 2800 

Finally, check the Programmer's Reference Manual for a list of all the options 
available with the lex command. 

lex 11-25 



Summary of Source Format 

• The general form of a lex source file is 

definitions 
%% 
rules 
%% 
user routines 

• The definitions section contains any combination of 

o definitions of abbreviations in the form 

name space translation 

o included code in the form 

%{ 
C code 
%} 

o start conditions in the form 

Start name1 name2 

o changes to internal array sizes in the form 

%x nnn 

where nnn is a decimal integer representing an array size and x 
selects the parameter as follows: 

p positions 
n states 
e tree nodes 
a transitions 
k packed character classes 
o output array size 

• Lines in the rules section have the form 

expression action 

11-26 ANSI C and Programming Support Tools 



lex 

Summary of Source Format 

where the action may be continued on succeeding lines by using braces to 
delimit it. 

• The lex operator characters are 

II \ [ ] A - ? . * I ( ) $ I { } <> + 

• Important lex variables, functions, and macros are 

yytext [] array of char 
yyleng int 
yylex () function 
yywrap () function 
yyrnore () function 
yyless (n) function 
REJECT macro 
ECHO macro 
input() macro 
unput (c) macro 
output (c) macro 

11-27 









12 yacc 

Introduction 

Basic Specifications 
Actions 
Lexical Analysis 

Parser Operation 

Ambiguity and Conflicts 

Precedence 

Error Handling 

The yacc Environment 

Table of Contents 

12-1 

12-4 
12-6 
12-9 

12-12 

12-17 

12-22 

12-28 

12-31 



Table of Contents ----------------------

II 

Hints for Preparing Specifications 
Input Style 
Left Recursion 
Lexical Tie-Ins 
Reserved Words 

Advanced Topics 
Simulating error and accept in Actions 
Accessing Values in Enclosing Rules 
Support for Arbitrary Value Types 
yacc Input Syntax 

Examples 
1. A Simple Example 
2. An Advanced Example 

12-33 
12-33 
12-33 
12-34 
12-36 

12-37 
12-37 
12-37 
12-39 
12-41 

12-44 
12-44 
12-47 

ANSI C and Programming Support Tools 



Introduction 

yacc provides a general tool for imposing structure on the input to a computer 
program. When you use yacc, you prepare a specification that includes 

• a set of rules to describe the elements of the input; 

• code to be invoked when a rule is recognized; 

• either a definition or declaration of a low-level scanner to examine the 
input. 

yacc then turns the specification into a C language function that examines the 
input stream. This function, called a parser, works by calling the low-level 
scanner. The scanner, called a lexical analyzer, picks up items from the input 
stream. The selected items are known as tokens. Tokens are compared to the 
input construct rules, called grammar rules. When one of the rules is recog
nized, the code you have supplied for the rule is invoked. This code is called 
an action. Actions are fragments of C language code. They can return values 
and make use of values returned by other actions. 

The heart of the yacc specification is the collection of grammar rules. Each rule 
describes a construct and gives it a name. For example, one grammar rule 
might be 

date month name day year 

where date, month_ name, day, and year represent constructs of interest; 
presumably, month_name, day, and year are defined in greater detail else
where. In the example, the comma is enclosed in single quotes. This means 
that the comma is to appear literally in the input. The colon and semicolon 
merely serve as punctuation in the rule and have no significance in evaluating 
the input. With proper definitions, the input 

July 4, 1776 

might be matched by the rule. 

The lexical analyzer is an important part of the parsing function. This user
supplied routine reads the input stream, recognizes the lower-level constructs, 
and communicates these as tokens to the parser. The lexical analyzer recognizes 
constructs of the input stream as terminal symbols; the parser recognizes con
structs as nonterminal symbols. To avoid confusion, we will refer to terminal 
symbols as tokens. 

yacc 12-1 



Introduction 

There is considerable leeway in deciding whether to recognize constructs using 
the lexical analyzer or grammar rules. For example, the rules 

month name : 'J' 'a' 'n' 
month name : 'F' 'e' 'b' 

month name : 'D' 'e' 'c' 

might be used in the above example. While the lexical analyzer only needs to 
recognize individual letters, such low-level rules tend to waste time and space, 
and may complicate the specification beyond the ability of yacc to deal with it. 
Usually, the lexical analyzer recognizes the month names and returns an indica
tion that a month_ name is seen. In this case, month_ name is a token and the 
detailed rules are not needed. 

Literal characters such as a comma must also be passed through the lexical 
analyzer and are also considered tokens. 

Specification files are very flexible. It is relatively easy to add to the above 
example the rule 

date month'/' day'/' year 

allowing 

7/4/1776 

as a synonym for 

July 4, 1776 

on input. In most cases, this new rule could be slipped into a working system 
with minimal effort and little danger of disrupting existing input. 

The input being read may not conform to the specifications. With a left-to-right 
scan, input errors are detected as early as is theoretically possible. Thus, not 
only is the chance of reading and computing with bad input data substantially 
reduced, but the bad data usually can be found quickly. Error handling, pro
vided as part of the input specifications, permits the reentry of bad data or the 
continuation of the input process after skipping over the bad data. 

In some cases, yacc fails to produce a parser when given a set of specifications. 
For example, the specifications may be self-contradictory, or they may require a 
more powerful recognition mechanism than that available to yacc. The former 
cases represent design errors; the latter cases often can be corrected by making 
the lexical analyzer more powerful or by rewriting some of the grammar rules. 

12-2 ANSI C and Programming Support Tools 



Introduction 

While yacc cannot handle all possible specifications, its power compares favor
ably with similar systems. Moreover, the constructs that are difficult for yacc 
to handle are also frequently difficult for human beings to handle. Some users 
have reported that the discipline of formulating valid yacc specifications for 
their input revealed errors of conception or design early in program develop
ment. 

The remainder of this chapter describes the following subjects: 

• basic process of preparing a yacc specification 

• parser operation 

• handling ambiguities 

• handling operator precedences in arithmetic expressions 

• error detection and recovery 

• the operating environment and special features of the parsers yacc pro
duces 

• suggestions to improve the style and efficiency of the specifications 

• advanced topics 

In addition, there are two examples and a summary of the yacc input syntax. 

yacc 12-3 



Basic Specifications 

Names refer to either tokens or nonterminal symbols. yacc requires token 
names to be declared as such. While the lexical analyzer may be included as 
part of the specification file, it is perhaps more in keeping with modular design 
to keep it as a separate file. Like the lexical analyzer, other subroutines may be 
included as well. Thus, every specification file theoretically consists of three sec
tions: the declarations, (grammar) rules, and subroutines. The sections are 
separated by double percent signs(%%; the percent sign is generally used in 
yacc specifications as an escape character). 

A full specification file looks like 

declarations 
%% 
rules 
%% 
subroutines 

when all sections are used. The declarations and subroutines sections are optional. 
The smallest legal yacc specification might be 

%% 
S .. . , 

Blanks, tabs, and new-lines are ignored, but they may not appear in names or 
multicharacter reserved symbols. Comments may appear wherever a name is 
legal. They are enclosed in /* and * /, as in the C language. 

The rules section is made up of one or more grammar rules. A grammar rule 
has the form 

A : BODY ; 

where A represents a nonterminal symbol, and BODY represents a sequence of 
zero or more names and literals. The colon and the semicolon are yacc punc
tuation. 

Names may be of any length and may be made up of letters, periods, under
scores, and digits although a digit may not be the first character of a name. 
Uppercase and lowercase letters are distinct. The names used in the body of a 
grammar rule may represent tokens or nonterminal symbols. 

12·4 ANSI C and Programming Support Tools 



Basic Specifications 

A literal consists of a character enclosed in single quotes. As in the C language, 
the backslash is an escape character within literals. yacc recognizes all the C 
language escape sequences described in the section "Source Files and Tokeniza
tion" of Chapter 3. For a number of technical reasons, the null character should 
never be used in grammar rules. 

If there are several grammar rules with the same left-hand side, the vertical bar 
can be used to avoid rewriting the left-hand side. In addition, the semicolon at 
the end of a rule is dropped before a vertical bar. Thus the grammar rules 

A B c D 

A E F 
A G 

can be given to yacc as 

A B c D 

E F 
G 

by using the vertical bar. It is not necessary that all grammar rules with the 
same left side appear together in the grammar rules section although it makes 
the input more readable and easier to change. 

If a nonterminal symbol matches the empty string, this can be indicated by 

epsilon : 

The blank space following the colon is understood by yacc to be a nonterminal 
symbol named epsilon. 

Names representing tokens must be declared. This is most simply done by 
writing 

%token namel name2 name3 

and so on in the declarations section. Every name not defined in the declara
tions section is assumed to represent a nonterminal symbol. Every nonterminal 
symbol must appear on the left side of at least one rule. 

Of all the nonterminal symbols, the start symbol has particular importance. By 
default, the symbol is taken to be the left-hand side of the first grammar rule in 

yacc 12-5 



Basic Specifications 

the rules section. It is possible and desirable to declare the start symbol expli
citly in the declarations section using the %start keyword: 

%start symbol 

The end of the input to the parser is signaled by a special token, called the end
marker. The end-marker is represented by either a zero or a negative number. 
If the tokens up to but not including the end-marker form a construct that 
matches the start symbol, the parser function returns to its caller after the end
marker is seen and accepts the input. If the end-marker is seen in any other 
context, it is an error. 

It is the job of the user-supplied lexical analyzer to return the end-marker when 
appropriate. Usually the end-marker represents some reasonably obvious I/O 
status, such as end of file or end of record. 

Actions 

With each grammar rule, you can associate actions to be performed when the 
rule is recognized. Actions may return values and may obtain the values 
returned by previous actions. Moreover, the lexical analyzer can return values 
for tokens if desired. 

An action is an arbitrary C language statement and as such can do input and 
output, call subroutines, and alter arrays and variables. An action is specified 
by one or more statements enclosed in { and } . For example, 

and 

A ' (' B ')' 

hello ( 1, "abc" ) ; 

xxx yyy zzz 

(void) printf ("a message \n") ; 
flag = 25; 

are grammar rules with actions. 

12·6 ANSI C and Programming Support Tools 



Basic Specifications 

The $ symbol is used to facilitate communication between the actions and the 
parser, The pseudo-variable $$represents the value returned by the complete 
action. For example, the action 

$$ ... 1; 

returns the value of one; in fact, that's all it does. 

To obtain the values returned by previous actions and the lexical analyzer, the 
action can use the pseudo-variables $1, $2, ... $n. These refer to the values 
returned by components 1 through n of the right side of a rule, with the com
ponents being numbered from left to right. If the rule is 

A B C D 

then $2 has the value returned by c, and $3 the value returned by D. The rule 

ex.pr '(' ex.pr ')' 

provides a common example. One would expect the value returned by this rule 
to be the value of the ex.pr within the parentheses. Since the first component of 
the action is the literal left parenthesis, the desired logical result can be indi
cated by 

ex.pr '(' ex.pr ')' 

$$ = $2 ; 

By default, the value of a rule is the value of the first element in it ($1). Thus, 
grammar rules of the form 

A B 

frequently need not have an explicit action. In previous examples, all the 
actions came at the end of rules. Sometimes, it is desirable to get control before 
a rule is fully parsed. yacc permits an action to be written in the middle of a 
rule as well as at the end. This action is assumed to return a value accessible 
through the usual $ mechanism by the actions to the right of it. In tum, it may 
access the values returned by the symbols to its left. Thus, in the rule below the 
effect is to set x to 1 and y to the value returned by C: 

yacc 12-7 



Basic Specifications 

A B 

$$ = 1; 

c 

x = $2; 
y = $3; 

Actions that do not terminate a rule are handled by yacc by manufacturing a 
new nonterminal symbol name and a new rule matching this name to the empty 
string. The interior action is the action triggered by recognizing this added rule. 
yacc treats the above example as if it had been written 

$ACT /* empty */ 

A 

$$ = 1; 

B $ACT C 

x = $2; 
y = $3; 

where $ACT is an empty action. 

In many applications, output is not done directly by the actions. A data struc
ture, such as a parse tree, is constructed in memory and transformations are 
applied to it before output is generated. Parse trees are particularly easy to con
struct given routines to build and maintain the tree structure desired. For 
example, suppose there is a C function node written so that the call 

node( L, nl, n2 ) 

creates a node with label Land descendants nl and n2 and returns the index 

12-8 ANSI C and Programming Support Tools 



Basic Specifications 

of the newly created node. Then a parse tree can be built by supplying actions 
such as 

expr expr '+' expr 

$$ = node ( '+', $1, $3 ) ; 

in the specification. 

You may define other variables to be used by the actions. Declarations and 
definitions can appear in the declarations section enclosed in % { and % } . These 
declarations and definitions have global scope, so they are known to the action 
statements and can be made known to the lexical analyzer. For example: 

%{ int variable = O; %} 

could be placed in the declarations section making variable accessible to all of 
the actions. You should avoid names beginning with yy because the yacc 
parser uses only such names. Note, too, that in the examples shown thus far all 
the values are integers. A discussion of values of other types is found in the 
section "Advanced Topics" below. Finally, note that in the following case 

%{ 

%} 

int i; 
printf("%}"); 

yacc will start copying after % { and stop copying when it encounters the first 
% } , the one in printf () . In contrast, it would copy % { in printf () if it 
encountered it there. 

Lexical Analysis 

You must supply a lexical analyzer to read the input stream and communicate 
tokens (with values, if desired) to the parser. The lexical analyzer is an integer
valued function called yylex () . The function returns an integer, the token 
number, representing the kind of token read. If there is a value associated with 
that token, it should be assigned to the external variable yylval. 

yacc 12-9 



Basic Specifications 

The parser and the lexical analyzer must agree on these token numbers in order 
for communication between them to take place. The numbers may be chosen by 
yacc or the user. In either case, the :fl:define mechanism of C language is used 
to allow the lexical analyzer to return these numbers symbolically. For example, 
suppose that the token name DIGIT has been defined in the declarations section 
of the yacc specification file. The relevant portion of the lexical analyzer might 
look like 

to return the appropriate token. 

The intent is to return a token number of DIGIT and a value equal to the 
numerical value of the digit. You put the lexical analyzer code in the subrou
tines section and the declaration for DIGIT in the declarations section. Alterna
tively, you can put the lexical analyzer code in a separately compiled file, pro
vided 

• you invoke yacc with the -d option, which generates a file called 
y. tab. h that contains #define statements for the tokens, and 

• you :fl: include y. tab. h in the separately compiled lexical analyzer. 

12-10 ANSI C and Programming Support Tools 



Basic Specifications 

This mechanism leads to clear, easily modified lexical analyzers. The only pit
fall to avoid is using any token names in the grammar that are reserved or 
significant in C language or the parser. For example, the use of token names 
if or while will almost certainly cause severe difficulties when the lexical 
analyzer is compiled. The token name error is reserved for error handling 
and should not be used naively. 

In the default situation, token numbers are chosen by yacc. The default token 
number for a literal character is the numerical value of the character in the local 
character set. Other names are assigned token numbers starting at 257. 

If you prefer to assign the token numbers, the first appearance of the token 
name or literal in the declarations section must be followed immediately by a 
nonnegative integer. This integer is taken to be the token number of the name 
or literal. Names and literals not defined this way are assigned default 
definitions by yacc. The potential for duplication exists here. Care must be 
taken to make sure that all token numbers are distinct. 

For historical reasons, the end-marker must have token number 0 or negative. 
You cannot redefine this token number. Thus, all lexical analyzers should be 
prepared to return 0 or a negative number as a token upon reaching the end of 
their input. 

As noted in the previous chapter, lexical analyzers produced by lex are 
designed to work in close harmony with yacc parsers. The specifications for 
these lexical analyzers use regular expressions instead of grammar rules. lex 
can be used to produce quite complicated lexical analyzers, but there remain 
some languages that do not fit any theoretical framework and whose lexical 
analyzers must be crafted by hand. 

yacc 12-11 



Parser Operation 

yacc turns the specification file into a C language procedure, which parses the 
input according to the specification given. The algorithm used to go from the 
specification to the parser is complex and will not be discussed here. The parser 
itself, though, is relatively simple and understanding its usage will make treat
ment of error recovery and ambiguities easier. 

The parser produced by yacc consists of a finite state machine with a stack. 
The parser is also capable of reading and remembering the next input token, 
called the lookahead token. The current state is always the one on the top of 
the stack. The states of the finite state machine are given small integer labels. 
Initially, the machine is in state 0 (the stack contains only state 0) and no looka
head token has been read. 

The machine has only four actions available: shift, reduce, accept, and 
error. A step of the parser is done as follows: 

1. Based on its current state, the parser decides if it needs a look-ahead 
token to choose the action to be taken. If it needs one and does not have 
one, it calls yylex () to obtain the next token. 

2. Using the current state and the lookahead token if needed, the parser 
decides on its next action and carries it out. This may result in states 
being pushed onto the stack or popped off of the stack and in the looka
head token being processed or left alone. 

The shift action is the most common action the parser takes. Whenever a 
shift action is taken, there is always a lookahead token. For example, in state 
56 there may be an action 

IF shift 34 

which says, in state 56, if the lookahead token is IF, the current state (56) is 
pushed down on the stack, and state 34 becomes the current state (on the top of 
the stack). The lookahead token is cleared. 

The reduce action keeps the stack from growing without bounds. reduce 
actions are appropriate when the parser has seen the right-hand side of a gram
mar rule and is prepared to announce that it has seen an instance of the rule 
replacing the right-hand side by the left-hand side. It may be necessary to con
sult the lookahead token to decide whether or not to reduce. In fact, the default 
action (represented by . ) is often a reduce action. 

12-12 ANSI C and Programming Support Tools 



Parser Operation 

reduce actions are associated with individual grammar rules. Grammar rules 
are also given small integer numbers, and this leads to some confusion. The 
action 

reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule 

A x y z 

is being reduced. The reduce action depends on the left-hand symbol (A in 
this case) and the number of symbols on the right-hand side (three in this case). 
To reduce, first pop off the top three states from the stack. (In general, the 
number of states popped equals the number of symbols on the right side of the 
rule.) In effect, these states were the ones put on the stack while recognizing x, 
y, and z and no longer serve any useful purpose. After popping these states, a 
state is uncovered, which was the state the parser was in before beginning to 
process the rule. Using this uncovered state and the symbol on the left side of 
the rule, perform what is in effect a shift of A. A new state is obtained, pushed 
onto the stack, and parsing continues. There are significant differences between 
the processing of the left-hand symbol and an ordinary shift of a token, how
ever, so this action is called a goto action. In particular, the lookahead token is 
cleared by a shift but is not affected by a goto. In any case, the uncovered 
state contains an entry such as 

A goto 20 

causing state 20 to be pushed onto the stack and become the current state. 

In effect, the reduce action turns back the clock in the parse, popping the 
states off the stack to go back to the state where the right-hand side of the rule 
was first seen. The parser then behaves as if it had seen the left side at that 
time. If the right-hand side of the rule is empty, no states are popped off the 
stacks. The uncovered state is in fact the current state. 

The reduce action is also important in the treatment of user-supplied actions 
and values. When a rule is reduced, the code supplied with the rule is executed 
before the stack is adjusted. In addition to the stack holding the states, another 
stack running in parallel with it holds the values returned from the lexical 

yacc 12·13 



Parser Operation 

analyzer and the actions. When a shift takes place, the external variable 
yyl val is copied onto the value stack. After the return from the user code, the 
reduction is carried out. When the goto action is done, the external variable 
yyval is copied onto the value stack. The pseudo-variables $1, $2, and so on 
refer to the value stack. 

The other two parser actions are conceptually much simpler. The accept 
action indicates that the entire input has been seen and that it matches the 
specification. This action appears only when the lookahead token is the end
marker and indicates that the parser has successfully done its job. The error 
action, on the other hand, represents a place where the parser can no longer 
continue parsing according to the specification. The input tokens it has seen 
(together with the lookahead token) cannot be followed by anything that would 
result in a legal input. The parser reports an error and attempts to recover the 
situation and resume parsing. The error recovery (as opposed to the detection 
of error) will be discussed later. 

Consider 

%token DING DONG DELL 
%% 
rhyme sound place 

sound DING DONG 

place DELL 

as a yacc specification. When yacc is invoked with the -v (verbose) option, 
a file called y. output is produced with a human-readable description of the 
parser. The y. output file corresponding to the above grammar (with some 
statistics stripped off the end) follows. 

12-14 ANSI C and Programming Support Tools 



state l 

state 2 

atate 3 

state 4 

atate 5 

atate 6 

yacc 

$accept : _rhyme $end 

DING llh:Ltt 3 
. error 

xnyire goto l 
sound goto 2 

$accept 

Send accept 
. error 

rhyme souiid_place 

DELL shift 5 
• error 

place goto 4 

sound 

llONG !lh:Ltt 6 
. error 

rhyme sound place.:.. 

reduce l 

place DELL_ (3) 

OlNG DONG_ 

DOK!uce 2 

Parser Operation 

(2) 

12-15 



Parser Operation 

The actions for each state are specified and there is a description of the parsing 
rules being processed in each state. The _ character is used to indicate what 
has been seen and what is yet to come in each rule. The following input 

DING DONG DELL 

can be used to track the operations of the parser. Initially, the current state is 
state 0. The parser needs to refer to the input in order to decide between the 
actions available in state 0, so the first token, DING, is read and becomes the 
lookahead token. The action in state 0 on DING is shift 3, state 3 is pushed 
onto the stack, and the lookahead token is cleared. State 3 becomes the current 
state. The next token, DONG, is read and becomes the lookahead token. The 
action in state 3 on the token DONG is shift 6, state 6 is pushed onto the 
stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 
6, without even consulting the lookahead, the parser reduces by 

sound DING DONG 

which is rule 2. Two states, 6 and 3, are popped off the stack, uncovering state 
O. Consulting the description of state 0 (looking for a goto on sound), 

sound goto 2 

is obtained. State 2 is pushed onto the stack and becomes the current state. 

In state 2, the next token, DELL, must be read. The action is shift 5, so state 
5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead 
token is cleared. In state 5, the only action is to reduce by rule 3. This has one 
symbol on the right-hand side, so one state, 5, is popped off, and state 2 is 
uncovered. The goto in state 2 on place (the left side of rule 3) is state 4. 
Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by 
rule 1. There are two symbols on the right, so the top two states are popped 
off, uncovering state 0 again. In state 0, there is a goto on rhyme causing the 
parser to enter state 1. In state 1, the input is read and the end-marker is 
obtained indicated by $end in the y. output file. The action in state 1 (when 
the end-marker is seen) successfully ends the parse. 

You might want to consider how the parser works when confronted with such 
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, 
and so on. A few minutes spent with this and other simple examples is repaid 
when problems arise in more complicated contexts. 

12-16 ANSI C and Programming Support Tools 



Ambiguity and Conflicts 

A set of grammar rules is ambiguous if there is some input string that can be 
structured in two or more different ways. For example, the grammar rule 

expr expr , _, expr 

is a natural way of expressing the fact that one way of forming an arithmetic 
expression is to put two other expressions together with a minus sign between 
them. Unfortunately, this grammar rule does not completely specify the way 
that all complex inputs should be structured. For example, if the input is 

expr expr expr 

the rule allows this input to be structured as either 

expr expr expr 

or as 

expr expr expr 

The first is called left association, the second right association. 

yacc detects such ambiguities when it is attempting to build the parser. Given 
the input 

expr expr expr 

consider the problem that confronts the parser. When the parser has read the 
second expr, the input seen 

expr expr 

matches the right side of the grammar rule above. The parser could reduce the 
input by applying this rule. After applying the rule, the input is reduced to 
expr (the left side of the rule). The parser would then read the final part of the 
input 

expr 

and again reduce. The effect of this is to take the left associative interpretation. 

Alternatively, if the parser sees 

expr expr 

it could defer the immediate application of the rule and continue reading the 
input until 

expr expr expr 

yacc 12-17 



Ambiguity and Conflicts 

is seen. It could then apply the rule to the rightmost three symbols, reducing 
them to expr, which results in 

expr expr 

being left. Now the rule can be reduced once more. The effect is to take the 
right associative interpretation. Thus, having read 

expr expr 

the parser can do one of two legal things, shift or reduce. It has no way of 
deciding between them. This is called a shift-reduce conflict. It may also 
happen that the parser has a choice of two legal reductions. This is called a 
reduce-reduce conflict. Note that there are never any shift-shift conflicts. 

When there are shift-reduce or reduce-reduce conflicts, yacc still pro
duces a parser. It does this by selecting one of the valid steps wherever it has a 
choice. A rule describing the choice to make in a given situation is called a 
disambiguating rule. 

yacc invokes two default disambiguating rules: 

1. In a shift-reduce conflict, the default is to do the shift. 

2. In a reduce-reduce conflict, the default is to reduce by the earlier 
grammar rule (in the yacc specification). 

Rule 1 implies that reductions are deferred in favor of shifts when there is a 
choice. Rule 2 gives the user rather crude control over the behavior of the 
parser in this situation, but reduce-reduce conflicts should be avoided when 
possible. 

Conflicts may arise because of mistakes in input or logic or because the gram
mar rules (while consistent) require a more complex parser than yacc can con
struct. The use of actions within rules can also cause conflicts if the action must 
be done before the parser can be sure which rule is being recognized. In these 
cases, the application of disambiguating rules is inappropriate and leads to an 
incorrect parser. For this reason, yacc always reports the number of shift
reduce and reduce-reduce conflicts resolved by rules 1 and 2 above. 

In general, whenever it is possible to apply disambiguating rules to produce a 
correct parser, it is also possible to rewrite the grammar rules so that the same 
inputs are read but there are no conflicts. For this reason, most previous parser 
generators have considered conflicts to be fatal errors. Our experience has 

12-18 ANSI C and Programming Support Tools 



Ambiguity and Conflicts 

suggested that this rewriting is somewhat unnatural and produces slower 
parsers. Thus, yacc will produce parsers even in the presence of conflicts. 

As an example of the power of disambiguating rules, consider 

stat IF ' (' 
IF ' (' 

cond ')' 
cond ')' 

stat 
stat ELSE stat 

which is a fragment from a programming language involving an if-then-else 
statement. In these rules, IF and ELSE are tokens, cond is a nonterminal 
symbol describing conditional (logical) expressions, and stat is a nonterminal 
symbol describing statements. The first rule will be called the simple if rule 
and the second the if-else rule. 

These two rules form an ambiguous construction because input of the form 

IF Cl IF C2 Sl ELSE S2 

can be structured according to these rules in two ways 

IF Cl 
{ 

IF C2 
Sl 

ELSE 
S2 

or 

IF Cl 
{ 

IF C2 
Sl 

ELSE 
S2 

where the second interpretation is the one given in most programming 
languages having this construct; each ELSE is associated with the last preceding 
un-ELSE'd IF. In this example, consider the situation where the parser has 
seen 

IF Cl IF C2 Sl 

yacc 12-19 



Ambiguity and Conflicts 

and is looking at the ELSE. It can immediately reduce by the simple if rule to 
get 

IF Cl stat 

and then read the remaining input 

ELSE S2 

and reduce 

IF Cl stat ELSE S2 

by the if-else rule. This leads to the first of the above groupings of the 
input. 

On the other hand, the ELSE may be shifted, S2 read, and then the right-hand 
portion of 

IF Cl IF C2 Sl ELSE S2 

can be reduced by the if-else rule to get 

IF Cl stat 

which can be reduced by the simple if rule. This leads to the second of the 
above groupings of the input, which is usually the one desired. 

Once again, the parser can do two valid things - there is a shift-reduce 
conflict. The application of disambiguating rule 1 tells the parser to shift in this 
case, which leads to the desired grouping. 

This shift-reduce conflict arises only when there is a particular current input 
symbol, ELSE, and particular inputs, such as 

IF Cl IF C2 Sl 

have already been seen. In general, there may be many conflicts, and each one 
will be associated with an input symbol and a set of previously read inputs. 
The previously read inputs are characterized by the state of the parser. 

The conflict messages of yacc are best understood by examining the -v out
put. For example, the output corresponding to the above conflict state might be 

12-20 ANSI C and Programming Support Toots 



Ambiguity and Conflicts 

23: shift-;r:educe conflict (slli!t 45, reduce 18) on ELSE 

state 23 

stat IF ( cond stat - (18) 
stat IE' ( cone! stat_ELSE stat 

ELSE shift 45 
reduce 18 

where the first line describes the conflict - giving the state and the input sym
bol. The ordinary state description gives the grammar rules active in the state 
and the parser actions. Recall that the underscore marks the portion of the 
grammar rules that has been seen. Thus in the example, in state 23, the parser 
has seen input corresponding to 

IF cond stat 

and the two grammar rules shown are active at this time. The parser can do 
two possible things. If the input symbol is ELSE, it is possible to shift into state 
45. State 45 will have, as part of its description, the line 

stat IF cond stat ELSE stat 

because the ELSE will have been shifted in this state. In state 23, the alterna
tive action (specified by . ) is to be done if the input symbol is not mentioned 
explicitly in the actions. In this case, if the input symbol is not ELSE, the parser 
reduces to 

stat IF ' (' cond ')' stat 

by grammar rule 18. 

Once again, notice that the numbers following shift commands refer to other 
states, while the numbers following reduce commands refer to grammar rule 
numbers. In the y. output file, rule numbers are printed in parentheses after 
those rules that can be reduced. In most states, there is a reduce action possi
ble, and reduce is the default command. If you encounter unexpected 
shift-reduce conflicts, you will probably want to look at the -v output to 
decide whether the default actions are appropriate. 

yacc 12-21 



Precedence 

There is one common situation where the rules given above for resolving 
conflicts are not sufficient. This is in the parsing of arithmetic expressions. 
Most of the commonly used constructions for arithmetic expressions can be 
naturally described by the notion of precedence levels for operators, together 
with information about left or right associativity. It turns out that ambiguous 
grammars with appropriate disambiguating rules can be used to create parsers 
that are faster and easier to write than parsers constructed from unambiguous 
grammars. The basic notion is to write grammar rules of the form 

expr expr OP expr 

and 

expr UNARY expr 

for all binary and unary operators desired. This creates a very ambiguous 
grammar with many parsing conflicts. You specify as disambiguating rules the 
precedence or binding strength of all the operators and the associativity of the 
binary operators. This information is sufficient to allow yacc to resolve the 
parsing conflicts in accordance with these rules and construct a parser that real
izes the desired precedences and associativities. 

The precedences and associativities are attached to tokens in the declarations 
section. This is done by a series of lines beginning with the yacc keywords 
%left, %right, or %nonassoc, followed by a list of tokens. All of the tokens 
on the same line are assumed to have the same precedence level and associa
tivity; the lines are listed in order of increasing precedence or binding strength. 
Thus 

%left I+' I _I 
%left I*' 1 /' 

describes the precedence and associativity of the four arithmetic operators. + 
and - are left associative and have lower precedence than *and /,which are 
also left associative. The keyword %right is used to describe right associative 
operators. The keyword %nonassoc is used to describe operators, like the 
operator . LT . in FORTRAN, that may not associate with themselves. That is, 
because 

A .LT. B .LT. C 

is illegal in FORTRAN, . LT. would be described with the keyword %nonassoc 
in yacc. 

12-22 ANSI C and Programming Support Tools 



As an example of the behavior of these declarations, the description 

might be used to structure the input 

a 

as follows 

b c * d e f * g 

a = ( b = ( ( (c * d) - e) - (f * g) ) ) 

Precedence 

in order to achieve the correct precedence of operators. When this mechanism 
is used, unary operators must, in general, be given a precedence. Sometimes a 
unary operator and a binary operator have the same symbolic representation 
but different precedences. An example is unary and binary minus. 

Unary minus may be given the same strength as multiplication, or even higher, 
while binary minus has a lower strength than multiplication. The keyword 
%prec changes the precedence level associated with a particular grammar rule. 
%prec appears immediately after the body of the grammar rule, before the 
action or closing semicolon, and is followed by a token name or literal. It 
causes the precedence of the grammar rule to become that of the following 
token name or literal. For example, the rules 

yacc 12-23 



Precedence 

might be used to give unary minus the same precedence as multiplication. 

A token declared by %left, %right, and %nonassoc need not, but may, be 
declared by %token as well. 

Precedences and associativities are used by yacc to resolve parsing conflicts. 
They give rise to the following disambiguating rules: 

1. Precedences and associativities are recorded for those tokens and literals 
that have them. 

2. A precedence and associativity is associated with each grammar rule. It 
is the precedence and associativity of the last token or literal in the body 
of the rule. If the %prec construction is used, it overrides this default. 
Some grammar rules may have no precedence and associativity associated 
with them. 

3. When there is a reduce-reduce or shift-reduce conflict, and either 
the input symbol or the grammar rule has no precedence and associa
tivity, then the two default disambiguating rules given in the preceding 
section are used, and the conflicts are reported. 

4. If there is a shift-reduce conflict and both the grammar rule and the 
input character have precedence and associativity associated with them, 
then the conflict is resolved in favor of the action - shift or reduce 
- associated with the higher precedence. If precedences are equal, then 
associativity is used. Left associative implies reduce; right associative 
implies shift; nonassociating implies error. 

12·24 ANSI C and Programming Support Tools 



Precedence 

Conflicts resolved by precedence are not counted in the number of shift
reduce and reduce-reduce conflicts reported by yacc. This means that 
mistakes in the specification of precedences may disguise errors in the input 
grammar. It is a good idea to be sparing with precedences and use them in a 
cookbook fashion until some experience has been gained. The y. output file is 
useful in deciding whether the parser is actually doing what was intended. 

To illustrate further how you might use the precedence keywords to resolve a 
shift-reduce conflict, we'll look at an example similar to the one described in 
the previous section. Consider the following C statement: 

if (flag) if (anotherflag) x = 1; 
else x = 2; 

The problem for the parser is whether the else goes with the first or the 
second if. C programmers will recognize that the else goes with the second 
if, contrary to to what the misleading indentation suggests. The following 
yacc grammar for an if-then-else construct abstracts the problem. That is, 
the input iises will model the C statement shown above. 

yacc 12-25 



Precedence 

When the specification is passed to yacc, however, we get the following mes
sage: 

conflicts: 1 shift/reduce 

The problem is that when yacc has read iis in trying to match iises, it has 
two choices: recognize is as a statement (reduce), or read some more input 
(shift) and eventually recognize ises as a statement. 

One way to resolve the problem is to invent a new token REDUCE whose sole 
purpose is to give the correct precedence for the rules: 

12-26 ANSI C and Programming Support Tools 



ttoken SIMPLE IF 
tnonassoc REDUCE 
%nonassoc ELSE 
n 

: SJM'LE 
Jif_stmnt 

;:. IF stmnt \prec REDUCE 
I printf("simple if"); I 

I W stront ELSE . stmnt 

Precedence 

Since the precedence associated with the second form of if_stmnt is higher 
now, yacc will try to match that rule first, and no conflict will be reported. 

Actually, in this simple case, the new token is not needed: 

%nonassoc IF 
%nonassoc ELSE 

would also work. Moreover, it is not really necessary to resolve the conflict in 
this way, because, as we have seen, yacc will shift by default in a shift
reduce conflict. Resolving conflicts is a good idea, though, in the sense that 
you should not see diagnostic messages for correct specifications. 

yacc 12-27 



Error Handling 

Error handling is an extremely difficult area, and many of the problems are 
semantic ones. When an error is found, for example, it may be necessary to 
reclaim parse tree storage, delete or alter symbol table entries, and/ or, typically, 
set switches to avoid generating any further output. 

It is seldom acceptable to stop all processing when an error is found. It is more 
useful to continue scanning the input to find further syntax errors. This leads to 
the problem of getting the parser restarted after an error. A general class of 
algorithms to do this involves discarding a number of tokens from the input 
string and attempting to adjust the parser so that input can continue. 

To allow the user some control over this process, yacc provides the token 
name error. This name can be used in grammar rules. In effect, it suggests 
where errors are expected and recovery might take place. The parser pops its 
stack until it enters a state where the token error is legal. It then behaves as 
if the token error were the current lookahead token and performs the action 
encountered. The lookahead token is then reset to the token that caused the 
error. If no special error rules have been specified, the processing halts when an 
error is detected. 

"• 

In order to prevent a cascade of error messages, the parser, after detecting an 
error, remains in error state until three tokens have been successfully read and 
shifted. If an error is detected when the parser is already in error state, no mes
sage is given, and the input token is quietly deleted. 

As an example, a rule of the form 

stat error 

means that on a syntax error the parser attempts to skip over the statement in 
which the error is seen. More precisely, the parser scans ahead, looking for 
three tokens that might legally follow a statement, and starts processing at the 
first of these. If the beginnings of statements are not sufficiently distinctive, it 
may make a false start in the middle of a statement and end up reporting a 
second error where there is in fact no error. 

Actions may be used with these special error rules. These actions might attempt 
to reinitialize tables, reclaim symbol table space, and so forth. 

Error rules such as the above are very general but difficult to control. Rules 
such as 

stat error 

12-28 

I • I , 

ANSI C and Programming Support Tools 



Error Handling 

are somewhat easier. Here, when there is an error, the parser attempts to skip 
over the statement but does so by skipping to the next semicolon. All tokens 
after the error and before the next semicolon cannot be shifted and are dis
carded. When the semicolon is seen, this rule will be reduced and any cleanup 
action associated with it performed. 

Another form of error rule arises in interactive applications where it may be 
desirable to permit a line to be reentered after an error. The following example 

input : error '\n' 

(void) printf ("Reenter last line: " ) ; 

input 

$$ $4; 

is one way to do this. There is one potential difficulty with this approach. The 
parser must correctly process three input tokens before it admits that it has 
correctly resynchronized after the error. If the reentered line contains an error 
in the first two tokens, the parser deletes the offending tokens and gives no 
message. This is clearly unacceptable. For this reason, there is a mechanism 
that can force the parser to believe that error recovery has been accomplished. 
The statement 

yyerrok ; 

in an action resets the parser to its normal mode. The last example can be 
rewritten as 

input : error '\n' 

yyerrok; 
(void) printf("Reenter last line: "); 

input 

$$ = $4; 

yacc 12-29 



Error Handling 

As previously mentioned, the token seen immediately after the error symbol 
is the input token at which the error was discovered. Sometimes this is inap
propriate; for example, an error recovery action might take upon itself the job of 
finding the correct place to resume input. In this case, the previous lookahead 
token must be cleared. The statement 

yyclearin ; 

in an action will have this effect. For example, suppose the action after error 
were to call some sophisticated resynchronization routine (supplied by the user) 
that attempted to advance the input to the beginning of the next valid state
ment. After this routine is called, the next token returned by yylex () is 
presumably the first token in a legal statement. The old illegal token must be 
discarded and the error state reset. A rule similar to 

stat error 

could perform this. 

resynch(); 
yyerrok 
yyclearin; 

These mechanisms are admittedly crude but do allow for a simple, fairly effec
tive recovery of the parser from many errors. Moreover, the user can get con
trol to deal with the error actions required by other portions of the program. 

12·30 ANSI C and Programming Support Tools 



The yacc Environment 

You create a yacc parser with the command 

$ yacc qrammar.y 

where grammar. y is the file containing your yacc specification. (The . y 
suffix is a convention recognized by other UNIX system commands. It is not 
strictly necessary.) The output is a file of C language subroutines called 
y. tab. c. The function produced by yacc is called yyparse (), and is 
integer-valued. When it is called, it in turn repeatedly calls yylex (), the lexi
cal analyzer supplied by the user (see ''Lexical Analysis" above), to obtain input 
tokens. Eventually, an error is detected, yyparse () returns the value 1, and 
no error recovery is possible, or the lexical analyzer returns the end-marker 
token and the parser accepts. In this case, yyparse () returns the value 0. 

You must provide a certain amount of environment for this parser in order to 
obtain a working program. For example, as with every C language program, a 
routine called main () must be defined that eventually calls yypar se () . In 
addition, a routine called yyerror () is needed to print a message when a syn
tax error is detected. 

These two routines must be supplied in one form or another by the user. To 
ease the initial effort of using yacc, a library has been provided with default 
versions of main () and yyerror () . The library is accessed by a - ly argu
ment to the cc command. The source codes 

and 

main() 
{ 

return (yyparse()); 

# include <stdio.h> 

yyerror(s) 
char *s; 

(void) fprintf(stderr, "%s\n", s); 

show the triviality of these default programs. The argument to yyerror () is a 
string containing an error message, usually the string syntax error. The 
average application wants to do better than this. Ordinarily, the program 

yacc 12-31 



The yacc Environment 

should keep track of the input line number and print it along with the message 
when a syntax error is detected. The external integer variable yychar contains 
the lookahead token number at the time the error was detected. This may be of 
some interest in giving better diagnostics. Since the main () routine is prob
ably supplied by the user (to read arguments, for instance), the yacc library is 
useful only in small projects or in the earliest stages of larger ones. 

The external integer variable yydebug is normally set to 0. If it is set to a 
nonzero value, the parser will output a verbose description of its actions includ
ing a discussion of the input symbols read and what the parser actions are. It is 
possible to set this variable by using sdb(l). 

12-32 ANSI C and Programming Support Tools 



Hints for Preparing Specifications 

This part contains miscellaneous hints on preparing efficient, easy to change, 
and clear specifications. The individual subsections are more or less indepen
dent. 

Input Style 

It is difficult to provide rules with substantial actions and still have a readable 
specification file. The following are a few style hints. 

1. Use all uppercase letters for token names and all lowercase letters for 
nonterminal names. This is useful in debugging. 

2. Put grammar rules and actions on separate lines. It makes editing easier. 

3. Put all rules with the same left-hand side together. Put the left-hand side 
in only once and let all following rules begin with a vertical bar. 

4. Put a semicolon only after the last rule with a given left-hand side and 
put the semicolon on a separate line. This allows new rules to be easily 
added. 

5. Indent rule bodies by one tab stop and action bodies by two tab stops. 

6. Put complicated actions into subroutines defined in separate files. 

Example 1 below is written following this style, as are the examples in this sec
tion (where space permits). The central problem is to make the rules visible 
through the morass of action code. 

Left Recursion 

The algorithm used by the yacc parser encourages so called left recursive 
grammar rules. Rules of the form 

name name rest of rule 

match this algorithm. Rules such as 

list item 
list 

yacc 

, , , item 

12-33 



Hints for Preparing Specifications 

and 

seq item 
seq item 

frequently arise when writing specifications of sequences and lists. In each of 
these cases, the first rule will be reduced for the first item only; and the second 
rule will be reduced for the second and all succeeding items. 

With right recursive rules, such as 

seq item 
item seq 

the parser is a bit bigger; and the items are seen and reduced from right to left. 
More seriously, an internal stack in the parser is in danger of overflowing if an 
extremely long sequence is read (although yacc can now process very large 
stacks). Thus, you should use left recursion wherever reasonable. 

It is worth considering if a sequence with zero elements has any meaning, and if 
so, consider writing the sequence specification as 

seq /* empty */ 
seq item 

using an empty rule. Once again, the first rule would always be reduced 
exactly once before the first item was read, and then the second rule would be 
reduced once for each item read. Permitting empty sequences often leads to 
increased generality. However, conflicts might arise if yacc is asked to decide 
which empty sequence it has seen when it hasn't seen enough to know! 

Lexical Tie-Ins 

Some lexical decisions depend on context. For example, the lexical analyzer 
might want to delete blanks normally, but not within quoted strings, or names 
might be entered into a symbol table in declarations but not in expressions. 
One way of handling these situations is to create a global flag that is examined 
by the lexical analyzer and set by actions. For example, 

12-34 ANSI C and Programming Support Tools 



Hints for Preparing Specifications 

specifies a program that consists of zero or more declarations followed by zero 
or more statements. The flag dflag is now 0 when reading statements and 1 
when reading declarations, except for the first token in the first statement. This 
token must be seen by the parser before it can tell that the declaration section 
has ended and the statements have begun. In many cases, this single token 
exception does not affect the lexical scan. 

This kind of backdoor approach can be elaborated to a noxious degree. 
Nevertheless, it represents a way of doing some things that are difficult, if not 
impossible, to do otherwise. 

yacc 12-35 



Hints for Preparing Specifications 

Reserved Words 

Some programming languages permit you to use words like if, which are nor
mally reserved as label or variable names, provided that such use does not 
conflict with the legal use of these names in the programming language. This is 
extremely hard to do in the framework of yacc. It is difficult to pass informa
tion to the lexical analyzer telling it this instance of if is a keyword and that 
instance is a variable. You can make a stab at it using the mechanism described 
in the last subsection, but it is difficult. 

12-36 ANSI C and Programming Support Tools 



Advanced Topics 

This part discusses a number of advanced features of yacc. 

Simulating error and accept in Actions 

The parsing actions of error and accept can be simulated in an action by 
use of macros YYACCEPT and YYERROR. The YYACCEPT macro causes 
yyparse () to return the value 0; YYERROR causes the parser to behave as if 
the current input symbol had been a syntax error; yyerror () is called, and 
error recovery takes place. These mechanisms can be used to simulate parsers 
with multiple end-markers or context sensitive syntax checking. 

Accessing Values in Enclosing Rules 

An action may refer to values returned by actions to the left of the current rule. 
The mechanism is simply the same as with ordinary actions, $ followed by a 
digit. 

yacc 12-37 



Advanced Topics 

In this case, the digit may be 0 or negative. In the action following the word 
CRONE, a check is made that the preceding token shifted was not YOUNG. Obvi
ously, this is only possible when a great deal is known about what might pre
cede the symbol noun in the input. Nevertheless, at times this mechanism 
prevents a great deal of trouble especially when a few combinations are to be 
excluded from an otherwise regular structure. 

12-38 ANSI C and Programming Support Tools 



Advanced Topics 

Support for Arbitrary Value Types 

By default, the values returned by actions and the lexical analyzer are integers. 
yacc can also support values of other types including structures. In addition, 
yacc keeps track of the types and inserts appropriate union member names so 
that the resulting parser is strictly type checked. The yacc value stack is 
declared to be a union of the various types of values desired. You declare the 
union and associate union member names with each token and nonterminal 
symbol having a value. When the value is referenced through a $ $ or $n con
struction, yacc will automatically insert the appropriate union name so that no 
unwanted conversions take place. 

There are three mechanisms used to provide for this typing. First, there is a 
way of defining the union. This must be done by the user since other subrou
tines, notably the lexical analyzer, must know about the union member names. 
Second, there is a way of associating a union member name with tokens and 
nonterminals. Finally, there is a mechanism for describing the type of those few 
values where yacc cannot easily determine the type. 

To declare the union, you include 

%union 

body of union 

in the declaration section. This declares the yacc value stack and the external 
variables yylval and yyval to have type equal to this union. If yacc was 
invoked with the -d option, the union declaration is copied into the y. tab . h 
file as YYSTYPE. 

Once YYSTYPE is defined, the union member names must be associated with 
the various terminal and nonterminal names. The construction 

<name> 

is used to indicate a union member name. If this follows one of the keywords 
%token, %left, %right, and %nonassoc, the union member name is associ
ated with the tokens listed. Thus, saying 

%left <optype> '+' , _, 

yacc 12-39 



Advanced Topics 

causes any reference to values returned by these two tokens to be tagged with 
the union member name optype. Another keyword, %type, is used to associ
ate union member names with nonterminals. Thus, one might say 

%type <nodetype> expr stat 

to associate the union member nodetype with the nonterminal symbols expr 
and stat. 

There remain a couple of cases where these mechanisms are insufficient. If 
there is an action within a rule, the value returned by this action has no a priori 
type. Similarly, reference to left context values (such as $0) leaves yacc with 
no easy way of knowing the type. In this case, a type can be imposed on the 
reference by inserting a union member name between < and > immediately 
after the first $. The example below 

rule aaa 

$<int val>$ 3; 

bbb 

fun( $<intval>2, $<other>O ); 

shows this usage. This syntax has little to recommend it, but the situation arises 
rarely. 

A sample specification is given in Example 2 below. The facilities in this subsec
tion are not triggered until they are used. In particular, the use of %type will 
tum on these mechanisms. When they are used, there is a fairly strict level of 
checking. For example, use of $nor $$ to refer to something with no defined 
type is diagnosed. If these facilities are not triggered, the yacc value stack is 
used to hold ints. 

12-40 ANSI C and Programming Support Tools 



Advanced Topics 

yacc Input Syntax 

This section has a description of the yacc input syntax as a yacc specification. 
Context dependencies and so forth are not considered. Ironically, although 
yacc accepts an LALR(l) grammar, the yacc input specification language is 
most naturally specified as an LR(2) grammar; the sticky part comes when an 
identifier is seen in a rule immediately following an action. If this identifier is 
followed by a colon, it is the start of the next rule; otherwise, it is a continuation 
of the current rule, which just happens to have an action embedded in it. As 
implemented, the lexical analyzer looks ahead after seeing an identifier and 
decides whether the next token (skipping blanks, new-lines, comments, and so 
on) is a colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns 
IDENTIFIER. Literals (quoted strings) are also returned as IDENTIFIERs but 
never as part of C_IDENTIFIERs. 

yacc 12-41 



Advanced Topics 

12-42 

I* e111?t:Y •I 
.defs.def 

def STAR'!' IDENTU'lER 
UNION 

Copy union definitian to output 

Copy Ccode to output file 

.. Rcmu. 
.~·tag nlist 

rlil'Ord TOKEN 

I LEFT 

I RIGH'f 
I NONASSOC 
I 'l'n'E 

tag empty! union taq is optional •/ 
'<' IOJ!:NTIF'.!ER '>' 

nlist nmno 
I nlist nrnno 
1. nl.bt '. '. omno 

mnno IDENTIFIER /Oc Note: literal illegal with % type */ 
I . IDEN'l'lF!ER ~ • /.0 Note: iliegal with ~ type •/ . 

I• rule section •/ 

rules 

Pile 

(continued on next page) 

ANSI C and Programming Support Tools 



Advanced Topics 

yacc 12-43 



Examples 

1. A Simple Example 

This example gives the complete yacc applications for a small desk calculator; 
the calculator has 26 registers labeled a through z and accepts arithmetic 
expressions made up of the operators +, -, *, /, %, &, I, and the assignment 
operators. 

If an expression at the top level is an assignment, only the assignment is done; 
otherwise, the expression is printed. As in the C language, an integer that 
begins with 0 is assumed to be octal; otherwise, it is assumed to be decimal. 

As an example of a yacc specification, the desk calculator does a reasonable 
job of showing how precedence and ambiguities are used and demonstrates sim
ple recovery. The major oversimplifications are that the lexical analyzer is much 
simpler than for most applications, and the output is produced immediately line 
by line. Note the way that decimal and octal integers are read in by grammar 
rules. This job is probably better done by the lexical analyzer. 

12-44 ANSI C and Programming Support Tools 



yacc 

%{ 
f include <stdio.Ii> 
f include <ctype.h> 

int regs [26]; 
int base; 

'I} 

%start list 

%token DIGIT LET'l'l!;R 

%left 'I' 
\left , &' 

%left '+' ,._, 
\left I*' .I/'. I \I 

%left UMINUS /• suppliefl precedence to+ unaxy minus •I 

list /• Mi>tY. •/ 
list stat· '\n' 
list error ' \n' · 

yyerrok; 

stat expr 

LETTER • .. • expr 

regs [$1] - $3; 

expr '{' expr ')' 

$$ ... $2; 

e<CPr '+• e:xpr 

$$ .. $1 + $3; 

Examples 

(continued on next page) 

12-45 



Examples 

number 

12-46 

$$ .. ; $l l .$3; 
} 

I exp '·%' expr 
I 

l 
I eicp,r .. ,,, exp;r; 

I. 
$$ - $i & $3; 

expr. ' J ' e;q>r 

$$ ~ $1 J$3; 

} 

I .·LETTER 

L 

):.>' 

1. 

ANSI C and Programming Support Tools 



I• beginning of s\lbroutines :iection •/ 

int yyl~( ) /• l~cal analyt1is :<Qut:Lne •/ 
{ I• Zliltum Ui".l.'m for lowercase letter, •/ 

/'" yy1va1 • O through 25 •/ 
!• returns DIGIT for digit, yylval • 0 through 9 •I 
I• all other character:i are retuzned. imllediately •/ 

int c; 
/•skip blank:i•/ 

while ((C • getchar()) ••' ') 

I• c i:i now nonblank •/ 

if (!slower (c)) 
{ 

yylval - c - 'a'; 
retum (U!!TTER) ; 

if (iSdigit(C)) 

I 

I 
tetw:n (c); 

:yylval ··.c - 'O'; 
retw::n (DIGIT) ; 

2. An Advanced Example 

Examples 

This section gives an example of a grammar using some of the advanced 
features. The desk calculator in Example 1 is modified to provide a desk calcu
lator that does floating point interval arithmetic. The calculator understands 
floating point constants, and the arithmetic operations +, -, *, /,and unary 
-. It uses the registers a through z. Moreover, it understands intervals writ
ten 

(X, Y) 

where Xis less than or equal to Y. There are 26 interval valued variables A 
through Z that may also be used. The usage is similar to that in Example 1; 

yacc 12-47 



Examples 

assignments return no value and print nothing while expressions print the 
(floating or interval) value. 

This example explores a number of interesting features of yacc and C. Inter
vals are represented by a structure consisting of the left and right endpoint 
values stored as doubles. This structure is given a type name, INTERVAL, by 
using typedef. The yacc value stack can also contain floating point scalars 
and integers (used to index into the arrays holding the variable values). Notice 
that the entire strategy depends strongly on being able to assign structures and 
unions in C language. In fact, many of the actions call functions that return 
structures as well. 

It is also worth noting the use of YYERROR to handle error conditions - divi
sion by an interval containing 0 and an interval presented in the wrong order. 
The error recovery mechanism of yacc is used to throw away the rest of the 
offending line. 

In addition to the mixing of types on the value stack, this grammar also demon
strates an interesting use of syntax to keep track of the type (for example, scalar 
or interval) of intermediate expressions. Note that scalar can be automatically 
promoted to an interval if the context demands an interval value. This causes a 
large number of conflicts when the grammar is run through yacc: 18 shift
reduce and 26 reduce-reduce. The problem can be seen by looking at the 
two input lines. 

2.5 + (3.5 - 4.) 

and 

2.5 + (3.5, 4) 

Notice that the 2.5 is to be used in an interval value expression in the second 
example, but this fact is not known until the comma is read. By this time, 2.5 is 
finished, and the parser cannot go back and change its mind. More generally, it 
might be necessary to look ahead an arbitrary number of tokens to decide 
whether to convert a scalar to an interval. This problem is evaded by having 
two rules for each binary interval valued operator - one when the left operand 
is a scalar and one when the left operand is an interval. In the second case, the 
right operand must be an interval, so the conversion will be applied automati
cally. Despite this evasion, there are still many cases where the conversion may 
be applied or not, leading to the above conflicts; They are resolved by listing 
the rules that yield scalars first in the specification file; in this way, the conflict 

12-48 ANSI C and Programming Support Tools 



Examples 

will be resolved in the direction of keeping scalar valued expressions scalar 
valued until they are forced to become intervals. 

This way of handling multiple types is instructive. If there were many kinds of 
expression types instead of just two, the number of rules needed would increase 
dramatically and the conflicts even more dramatically. Thus, while this example 
is instructive, it is better practice in a more normal programming language 
environment to keep the type information as part of the value and not as part of 
the grammar. 

Finally, a word about the lexical analysis. The only unusual feature is the treat
ment of floating point constants. The C language library routine atof () is 
used to do the actual conversion from a character string to a double-precision 
value. If the lexical analyzer detects an error, it responds by returning a token 
that is illegal in the grammar, provoking a syntax error in the parser and thence 
error recovery. 

yacc 12-49 



Examples 

12-50 ANSI C and Programming Support Tools 



Examples 

yacc 12-51 



Examples 

12-52 ANSI C and Programming Support Tools 



Examples 

yacc 12-53 



Examples 

(continued on next page) 

12-54 ANSI C and Programming Support Tools 



Examples 

yacc 12-55 









1 3 Object Files 

Introduction 
File Format 
Data Representation 

Program Linking 
ELF Header 

• ELF Identification 
• ELF Header Flags (382 Computer-Specific) 
• ELF Header Flags (6386 Computer-Specific) 

Section Header 
• Special Sections 

String Table 
Symbol Table 

• Symbol Values 
Relocation 

• Relocation Types (382 Computer-Specific) 
• Relocation Types (6386 Computer-Specific) 

Program Execution 
Program Header 

• Base Address 
• Segment Permissions 
• Segment Contents 
• Note Section 

Program Loading (Processor-Specific) 
Program Interpreter 
Dynamic Linker 

• Dynamic Section 
• Shared Object Dependencies 
• Global Offset Table (Processor-Specific) 

Table of Contents 

13-1 
13-2 
13-3 

13-4 
13-4 
13-7 
13-10 
13-11 
13-12 
13-20 
13-23 
13-24 
13-29 
13-30 
13-32 
13-35 

13-39 
13-39 
13-42 
13-43 
13-44 
13-45 
13-47 
13-51 
13-52 
13-53 
13-58 
13-60 



Table of Contents 

II 

• Procedure Linkage Table (Processor-Specific) 
• Lazy Symbol Binding 
•Hash Table 
• Initialization and Termination Functions 

13-62 
13-66 
13-67 
13-69 

ANSI C and Programming Support Tools 



Introduction 

This chapter describes the executable and linking format (ELF) of the object files 
produced by the C compilation system. The first section, "Program Linking," 
focuses on how the format pertains to building programs. The second section, 
"Program Execution," focuses on how the format pertains to loading programs. 
For background, see the "Link Editing" section in Chapter 2. 

There are three main types of object files. 

• A relocatable file holds code and data suitable for linking with other object 
files to create an executable or a shared object file. 

• An executable file holds a program suitable for execution; the file specifies 
how exec() creates a program's process image. 

• A shared object file holds code and data suitable for linking in two contexts. 
First, the link editor processes the shared object file with other relocatable 
and shared object files to create another object file. Second, the dynamic 
linker combines it with an executable file and other shared objects to 
create a process image. 

Programs manipulate object files with the functions contained in the ELF access 
library, libelf. Subsection 3E of the Programmer's Reference Manual describes 
its contents. 

Object Files 13-1 



Introduction 

File Format 

As indicated, object files participate in program linking and program execution. 
For convenience and efficiency, the object file format provides parallel views of 
a file's contents, reflecting the differing needs of these activities. The figure 
below shows an object file's organization. 

Figure 13·1 : Object Fiie Format 

Linking View Execution View 
ELF header ELF header 

Program header table Program header table 
optional 

Section 1 
... Segment 1 

Section n 
... Segment 2 

. . . . .. 
Section header table Section header table 

optional 

An ELF header resides at the beginning and holds a "road map" describing the 
file's organization. Sections hold the bulk of object file information for the link
ing view: instructions, data, symbol table, relocation information, and so on. 
Descriptions of special sections appear in the first part of this chapter. The 
second part of this chapter discusses segments and the program execution view 
of the file. 

A program header table, if present, tells the system how to create a process image. 
Files used to build a process image (execute a program) must have a program 
header table; relocatable files do not need one. A section header table contains 
information describing the file's sections. Every section has an entry in the 
table; each entry gives information such as the section name, the section size, 
and so forth. Files used during linking must have a section header table; other 
object files may or may not have one. 

13·2 ANSI C and Programming Support Tools 



Introduction 

Although the figure shows the program header table immediately after the 
ELF header, and the section header table following the sections, actual files 
may differ. Moreover, sections and segments have no specified order. Only 
the ELF header has a fixed position in the file. 

Data Representation 

As described here, the object file fonnat supports various processors with 8-bit 
bytes and 32-bit architectures. Nevertheless, it is intended to be extensible to 
larger (or smaller) architectures. Object files therefore represent some control 
data with a machine-independent format, making it possible to identify object 
files and interpret their contents in a common way. Remaining data in an object 
file use the encoding of the target processor, regardless of the machine on which 
the file was created. 

Figure 13-2: 32-Blt Data Types 

Name Size Alignment Purpose 
Elf32 Ad.cir 4 4 Unsigned program address -
Elf 32 Half 2 2 Unsigned medium integer 
Elf32 Off 4 4 Unsigned file offset -
Elf32 Sword 4 4 ·Signed large integer -
Elf32 Word 4 4 Unsigned large integer -
unsigned char 1 1 Unsigned small integer 

All data structures that the object file format defines follow the "natural" size 
and alignment guidelines for the relevant class. If necessary, data structures 
contain explicit padding to ensure 4-byte alignment for 4-byte objects, to force 
structure sizes to a multiple of 4, and so forth. Data also have suitable align
ment from the beginning of the file. Thus, for example, a structure containing 
an Elf32 _ Addr member will be aligned on a 4-byte boundary within the file. 
For portability reasons, ELF uses no bit-fields. 

Object Flies 13·3 



Program Linking 

This section describes the object file information and system actions that create 
static program representations from relocatable files and shared objects. 

ELF Header 

Some object file control structures can grow, because the ELF header contains 
their actual sizes. If the object file format changes, a program may encounter 
control structures that are larger or smaller than expected. Programs might 
therefore ignore "extra" information. The treatment of "missing'' information 
depends on context and will be specified when and if extensions are defined. 

Figure 13-3: ELF Header 

13-4 

fdef ine EI NIDENT 

typedef struct { 
unsigned char 
Elf32 Half 
Elf32 Half 
Elf32 Word 
Elf32 Addr 
Elf32 Off 
Elf32 Off 
Elf32 Word 
Elf32 Half 
Elf32 Half 
Elf32 Half 
Elf32 Half 
Elf32 Half 
Elf32 Half 

Elf32_Ehdr; 

16 

e_ident[EI_NIDENT]; 
e_type; 
e_machine; 
e_version; 
e_entry; 
e_yhoff; 
e_shoff; 
e_flags; 
e_ehsize; 
e_yhentsize; 
e_yhnum; 
e_shentsize; 
e_shnum; 
e_shstrndx; 

ANSI C and Programming Support Tools 



e ident 

e_type 

e machine 

Object Flies 

Program Linking 

The initial bytes mark the file as an object file and provide 
machine-independent data with which to decode and interpret 
the file's contents. Complete descriptions appear below, in 
"ELF Identification." 

This member identifies the object file type. 

Name Value Meaning 
ET NONE 0 No file type -
ET REL 1 Relocatable file 
ET EXEC 2 Executable file -
ET DYN 3 Shared object file 
ET CORE 4 Core file -
ET LOPROC OxffOO Processor-specific 
ET HIPROC Oxffff Processor-specific 

Although the core file contents are unspecified, type ET_CORE 
is reserved to mark the file. Values from ET_LOPROC through 
ET_HIPROC (inclusive) are reserved for processor-specific 
semantics. Other values are reserved and will be assigned to 
new object file types as necessary. 

This member's value specifies the required architecture for an 
individual file. 

Name Value Meaning 
EM NONE 0 No machine 
EM M32 1 AT&T WE 32100 
EM SPARC 2 SPARC 
EM 386 3 Intel 80386 -
EM 68K 4 Motorola 68000 -
EM 88K 5 Motorola 88000 -
EM 860 7 Intel 80860 -

Other values are reserved and will be assigned to new 
machines as necessary. Processor-specific ELF names use the 
machine name to distinguish them. For example, the flags 
mentioned below use the prefix EF _; a flag named WIDGET for 
the EM_XYZ machine would be called EF XYZ WIDGET. 

13-5 



Program Linking 

e version This member identifies the object file version. 

Name 
EV NONE 
EV CURRENT 

Value 
0 
1 

Meaning 
Invalid version 
Current version 

The value 1 signifies the original file format; extensions will 
create new versions with higher numbers. The value of 
EV_ CURRENT, though given as 1 above, will change as necessary 
to reflect the current version number. 

e _entry This member gives the virtual address to which the system first 
transfers control, thus starting the process. If the file has no 
associated entry point, this member holds zero. 

e_phoff This member holds the program header table's file offset in 
bytes. If the file has no program header table, this member 
holds zero. 

e shoff This member holds the section header table's file offset in bytes. 
If the file has no section header table, this member holds zero. 

e_flags This member holds processor-specific flags associated with the 
file. Flag names take the form EF _machine _flag. See "ELF 
Header Flags" for flag definitions. 

e ehsize This member holds the ELF header's size in bytes. 

e_phentsize This member holds the size in bytes of one entry in the file's 
program header table; all entries are the same size. 

e _phnum This member holds the number of entries in the program 
header table. Thus the product of e _phentsize and e _phnum 
gives the table's size in bytes. If a file has no program header 
table, e _phnum holds the value zero. 

e shentsize This member holds a section header's size in bytes. A section 
header is one entry in the section header table; all entries are 
the same size. 

13-6 ANSI C and Programming Support Tools 



e shnum 

e shstrndx 

Program Linking 

This member holds the number of entries in the section header 
table. Thus the product of e _ shentsize and e _ shnum gives 
the section header table's size in bytes. If a file has no section 
header table, e_shnum holds the value zero. 

This member holds the section header table index of the entry 
associated with the section name string table. If the file has no 
section name string table, this member holds the value 
SHN _ UNDEF. See "Section Header" and "String Table" below 
for more information. 

ELF Identification 

As mentioned above, ELF provides an object file framework to support multiple 
processors, multiple data encodings, and multiple classes of machines. To sup
port this object file family, the initial bytes of the file specify how to interpret 
the file, independent of the processor on which the inquiry is made and 
independent of the file's remaining contents. 

The initial bytes of an ELF header (and an object file) correspond to the 
e ident member. 

Figure 13-4: e_ldent[] Identification Indexes 

Name Value Purpose 
EI MAGO 0 File identification 
EI MAGl 1 File identification 
EI MAG2 2 File identification 
EI MAG3 3 File identification 
EI CLASS 4 File class 
EI DATA 5 Data encoding 
EI VERSION 6 File version 
EI PAD 7 Start of padding bytes 
EI NIDENT 16 Size of e _ ident [ ] 

Object Files 13-7 



Program Linking 

These indexes access bytes that hold the following values. 

EI MAGO to EI MAG3 

EI CLASS 

EI DATA 

13-8 

A file's first 4 bytes hold a "magic number," identifying the file 
as an ELF object file. 

Name Value Position 
ELFMAGO Ox7f e_ident[EI_MAGO] 
ELFMAGl , E' e_ident[EI_MAGl] 
ELFMAG2 'L' e_ident[EI_MAG2] 
ELFMAG3 , F' e_ident[EI_MAG3] 

The next byte, e_ident [EI_CLASS], identifies the file's class, or 
capacity. 

Name 
ELFCLASSNONE 
ELFCLASS32 
ELFCLASS64 

Value 
0 
1 
2 

Meaning 
Invalid class 
32-bit objects 
64-bit objects 

The file format is designed to be portable among machines of 
various sizes, without imposing the sizes of the largest machine 
on the smallest. Class ELFCLASS32 supports machines with 
files and virtual address spaces up to 4 gigabytes; it uses the 
basic types defined above. 

Class ELFCLASS64 is reserved for 64-bit architectures. Its 
appearance here shows how the object file may change, but the 
64-bit format is otherwise unspecified. Other classes will be 
defined as necessary, with different basic types and sizes for 
object file data. 

Byte e_ident [EI_DATA] specifies the data encoding of the 
processor-specific data in the object file. The following encod
ings are currently defined. 

ANSI C and Programming Support Tools 



EI VERSION 

EI PAD 

Name 
ELFDATANONE 
ELFDATA2LSB 
ELFDATA2MSB 

Value 
0 
1 
2 

Program Linking 

Meaning 
Invalid data encoding 
See below 
See below 

More information on these encodings appears below. Other 
values are reserved and will be assigned to new encodings as 
necessary. 

Byte e _ ident [EI_ VERSION] specifies the ELF header version 
number. Currently, this value must be EV_CURRENT, as 
explained above for e _version. 

This value marks the beginning of the unused bytes in 
e_ident. These bytes are reserved and set to zero; programs 
that read object files should ignore them. The value of EI_PAD 
will change in the future if currently unused bytes are given 
meanings. 

A file's data encoding specifies how to interpret the basic objects in a file. As 
described above, class ELFCLASS32 files use objects that occupy 1, 2, and 4 
bytes. Under the defined encodings, objects are represented as shown below. 
Byte numbers appear in the upper left comers. 

Encoding ELFDATA2LSB specifies 2' s complement values, with the least 
significant byte occupying the lowest address. 

Figure 13-5: Data Encoding ELFDATA2LSB 

OxOl~ 

Ox0102 lo 02 11 01 
I 

Ox010203041° 04 11 03 12 02 13 01 

Object Files 13-9 



Program Linking 

Encoding ELFDATA2MSB specifies 2's complement values, with the most 
significant byte occupying the lowest address. 

Figure 13·6: Data Encoding ELFDATA2MSB 

OxOl~ 

Ox0102 I 0 01 11 02 I 
Ox01020304 I 0 01 11 02 12 03 13 04 

ELF Header Flags (382 Computer-Specific) 

For file identification in e_ident, the WE 32100 requires the following values. 

Figure 13·7: WE 32100 Identification, e_ldent 

Position 
e_ident[EI_CLASS] 
e_ident[EI_DATA] 

Value 
ELFCLASS32 
ELFDATA2MSB 

Processor identification resides in the ELF header's e machine member and 
must have the value 1, defined as the name EM_M32.-

The ELF header's e_flags member holds bit flags associated with the file. 

13·10 ANSI C and Programming Support Tools 



Program Linking 

Figure 13-8: Processor-Specific Flags, e _flags 

EF M32 MAU 

Name Value 
EF M32 MAU Oxl 

If this bit is asserted, the program in the file must execute on a 
machine with a Math Acceleration Unit. Otherwise, the pro
gram will execute on a machine with or without a MAU. 

ELF Header Flags (6386 Computer-Specific) 
For file identification in e_ident, the 6386 computer requires the following 
values. 

Figure 13-9: 6386 Computer Identification, e_ldent 

Position 
e_ident[EI_CLASS] 
e_ident[EI_DATA] 

Value 
ELFCLASS32 
ELFDATA2LSB 

Processor identification resides in the ELF header's e machine member and 
must have the value 3, defined as the name EM_386. 

The ELF header's e_flags member holds bit flags associated with the file. The 
6386 computer defines no flags; so this member contains zero. 

Object Flies 13·11 



Program Linking 

Section Header 

An object file's section header table lets one locate all the file's sections. The 
section header table is an array of Elf32_Shdr structures as described below. 
A section header table index is a subscript into this array. The ELF header's 
e _ shoff member gives the byte offset from the beginning of the file to the sec
tion header table; e _ shnum tells how many entries the section header table con
tains; e_shentsize gives the size in bytes of each entry. 

Some section header table indexes are reserved; an object file will not have sec
tions for these special indexes. 

Figure 13-10: Special Section Indexes 

Name Value 
SHN UNDEF 
SHN LORESERVE 
SHN LOPROC 
SHN HIPROC 
SHN ABS 
SHN COMM:>N 
SHN HIRESERVE 

0 
OxffOO 
OxffOO 
Oxfflf 
Oxfffl 
Oxfff2 
Oxffff 

SHN UNDEF This value marks an undefined, missing, irrelevant, or other
wise meaningless section reference. For example, a symbol 
"defined" relative to section number SHN UNDEF is an 
undefined symbol. 

13-12 

Although index O is reserved as the undefined value, the section header 
table contains an entry for index 0. That is, if the e shnum member of the 
ELF header says a file has 6 entries in the section header table, they have 
the indexes 0 through 5. The contents of the initial entry are specified later 
in this section. 

ANSI C and Programming Support Tools 



SHN LORESERVE 

Program Linking 

This value specifies the lower bound of the range of 
reserved indexes. 

SHN _ LOPROC through SHN _HIPROC 

Values in this inclusive range are reserved for processor
specific semantics. 

SHN ABS This value specifies absolute values for the corresponding 
reference. For example, symbols defined relative to section 
number SHN ABS have absolute values and are not affected 
by relocation. 

SHN CGMJN 

SHN HIRESERVE 

Symbols defined relative to this section are common sym
bols, such as FORTRAN CGMJN or unallocated C external 
variables. 

This value specifies the upper bound of the range of 
reserved indexes. The system reserves indexes between 
SHN_:..LORESERVE and SHN_HIRESERVE, inclusive; the values 
do not reference the section header table. That is, the sec
tion header table does not contain entries for the reserved 
indexes. 

Sections contain all information in an object file except the ELF header, the pro
gram header table, and the section header table. Moreover, object files' sections 
satisfy several conditions. 

• Every section in an object file has exactly one section header describing it. 
Section headers may exist that do not have a section. 

• Each section occupies one contiguous (possibly empty) sequence of bytes 
within a file. 

• Sections in a file may not overlap. No byte in a file resides in more than 
one section. 

• An object file may have inactive space. The various headers and the sec
tions might not "cover'' every byte in an object file. The contents of the 
inactive data are unspecified. 

Object Files 13-13 



Program Linking 

A section header has the following structure. 

Figure 13-11: Section Header 

sh name 

sh_type 

sh_flags 

sh addr 

sh offset 

13-14 

typedef struct 
Elf32 Word 
Elf32 Word 
Elf32 Word 
Elf32 Addr 
Elf32 Off 
Elf32 Word 
Elf32 Word 
Elf32 Word 
Elf32 Word 
Elf 32 Word 

Elf32_Shdr; 

sh_name; 
sh_type; 
sh_flags; 
sh_addr; 
sh_offset; 
sh_size; 
sh_link; 
sh_info; 
sh_addralign; 
sh_entsize; 

This member specifies the name of the section. Its value is an 
index into the section header string table section (see "String 
Table" below), giving the location of a null-terminated string. 

This member categorizes the section's contents and semantics. 
Section types and their descriptions appear below. 

Sections support 1-bit flags that describe miscellaneous attri
butes. Flag definitions appear below. 

If the section will appear in the memory image of a process, 
this member gives the address at which the section's first byte 
should reside. Otherwise, the member contains 0. 

This member's value gives the byte offset from the beginning 
of the file to the first byte in the section. One section type, 
SHT _ NOBITS described below, occupies no space in the file, 
and its sh_ offset member locates the conceptual placement 
in the file. 

ANSI C and Programming Support Tools 



Program Linking 

sh size This member gives the section's size in bytes. Unless the sec
tion type is SHT_NOBITS, the section occupies sh_size bytes 
in the file. A section of type SHT_NOBITS may have a non
zero size, but it occupies no space in the file. 

sh link This member holds a section header table index link, whose 
interpretation depends on the section type. A table below 
describes the values. 

sh info This member holds extra information, whose interpretation 
depends on the section type. A table below describes the 
values. 

sh _addralign Some sections have address alignment constraints. For exam
ple, if a section holds a doubleword, the system must ensure 
doubleword alignment for the entire section. That is, the 
value of sh _addr must be congruent to 0, modulo the value 
of sh_addralign. Currently, only 0 and positive integral 
powers of two are allowed. Values 0 and 1 mean the section 
has no alignment constraints. 

sh entsize Some sections hold a table of fixed-size entries, such as a sym
bol table. For such a section, this member gives the size in 
bytes of each entry. The member contains 0 if the section does 
not hold a table of fixed-size entries. 

A section header's sh_type member specifies the section's semantics. 

Figure 13-12: Section Types, sh_ type 

Name Value 
SHT NULL 0 
SHT PROGBITS 1 
SHT SYMl'AB 2 
SHT STRTAB 3 
SHT RELA 4 
SHT HASH 5 
SHT DYNAMIC 6 
SHT NOTE 7 
SHT NOBITS 8 

Object Files 13-15 



Program Linking 

Figure 13·12: Section Types, sh_ type (continued ) 

SHT NULL 

Name Value 
SHT REL 9 
SHT SHLIB 10 
SHT DYNSYM 11 
SHT LOPROC Ox70000000 
SHT HIPROC Ox7fffffff 
SHT LOUSER Ox80000000 
SHT HIUSER Oxffffffff 

This value marks the section header as inactive; it does not 
have an associated section. Other members of the section 
header have undefined values. 

SHT PROGBITS The section holds information defined by the program, whose 
format and meaning are determined solely by the program. 

SHT SYMI'AB and SHT DYNSYM 
These sections hold a symbol table. Currently, an object file 
may have only one section of each type, but this restriction 
may be relaxed in the future. Typically, SHT_SYMI'AB pro
vides symbols for link editing, though it may also be used for 
dynamic linking. As a complete symbol table, it may contain 
many symbols unnecessary for dynamic linking. Conse
quently, an object file may also contain a SHT _DYNSYM sec
tion, which holds a minimal set of dynamic linking symbols, 
to save space. See "Symbol Table" below for details. 

' 
SHT STRTAB The section holds a string table. An object file may have 

SHT RELA 

13-16 

multiple string table sections. See "String Table" below for 
details. 

The section holds relocation entries with explicit addends, 
such as type Elf32_Rela for the 32-bit class of object files. 
An object file may have multiple relocation sections. See 
"Relocation" below for details. 

ANSI C and Programming Support Tools 



SHT HASH 

SHT DYNAMIC 

SHT NOTE 

SHT NOBITS 

SHT REL 

SHT SHLIB 

Program Linking 

The section holds a symbol hash table. Currently, an object 
file may have only one hash table, but this restriction may be 
relaxed in the future. See "Hash Table" in the second part of 
this chapter for details. 

The section holds information for dynamic linking. 
Currently, an object file may have only one dynamic section, 
but this restriction may be relaxed in the future. See 
"Dynamic Section" in the second part of this chapter for 
details. 

The section holds information that marks the file in some 
way. See "Note Section" in the second part of this chapter 
for details. 

A section of this type occupies no space in the file but other
wise resembles SHT_PROGBITS. Although this section con
tains no bytes, the sh_ offset member contains the concep
tual file offset. 

The section holds relocation entries without explicit addends, 
such as type Elf32 _Rel for the 32-bit class of object files. 
An object file may have multiple relocation sections. See 
''Relocation" below for details. 

This section type is reserved but has unspecified semantics. 

SHT_LOPROC through SHT_HIPROC 
Values in this inclusive range are reserved for processor
specific semantics. 

SHT LOUSER This value specifies the lower bound of the range of indexes 
reserved for application programs. 

SHT HIUSER This value specifies the upper bound of the range of indexes 
reserved for application programs. Section types between 
SHT_LOUSER and SHT_HIUSER may be used by the applica
tion, without conflicting with current or future system
defined section types. 

Object Files 13-17 



Program Linking 

Other section type values are reserved. As mentioned before, the section header 
for index 0 (SHN _ UNDEF) exists, even though the index marks undefined section 
references. This entry holds the following. 

Figure 13-13: Section Header Table Entry: Index 0 

Name Value Note 
sh name 0 No name 
sh_type SHT NULL Inactive 
sh_flags 0 No flags 
sh addr 0 No address 
sh offset 0 No file offset 
sh size 0 No size 
sh link SHN UNDEF No link information 
sh info 0 No auxiliary information 
sh_addralign 0 No alignment 
sh entsize 0 No entries 

A section header's sh_flags member holds 1-bit flags that describe the 
section's attributes. Defined values appear below; other values are reserved. 

Figure 13-14: Section Attribute Flags, sh_flags 

Name Value 
SHF WRITE 
SHF ALLOC 
SHF EXECINSTR 
SHF MASKPROC 

Oxl 
Ox2 
Ox4 

OxfOOOOOOO 

If a flag bit is set in sh_ flags, the attribute is "on" for the section. Otherwise, 
the attribute is "off" or does not apply. Undefined attributes are set to zero. 

SHF WRITE The section contains data that should be writable during pro
cess execution. 

13-18 ANSI C and Programming Support Tools 



Program Linking 

SHF ALLOC The section occupies memory during process execution. 
Some control sections do not reside in the memory image of 
an object file; this attribute is off for those sections. 

SHF EXECINSTR The section contains executable machine instructions. 

SHF MASKPROC All bits included in this mask are reserved for processor
specific semantics. 

Two members in the section header, sh link and sh_ info, hold special infor
mation, depending on section type. 

Figure 13-15: sh_link and sh_lnfo Interpretation 

sh_type sh link sh info 

SHT DYNAMIC The section header index of 0 -
the string table used by 
entries in the section. 

SHT HASH The section header index of 0 -
the symbol table to which 
the hash table applies. 

SHT REL The section header index of The section header index of 
SHT RELA the associated symbol table. the section to which the -

relocation applies. 

SHT SYMl'AB The section header index of One greater than the sym-
SHT DYNSYM the associated string table. bol table index of the last 

local symbol (binding 
STB_LOCAL). 

other SHN UNDEF 0 -

Object Files 13-19 



Program Linking 

Special Sections 

Various sections hold program and control information. Sections in the list 
below are used by the system and have the indicated types and attributes. 

Figure 13-16: Special Sections 

Name Type Attributes 
.bss SHT NOBITS SHF ALLOC + SHF WRITE 
.comment SHT PROGBITS none 
.data SHT PROGBITS SHF ALLOC + SHF WRITE 
.datal SHT PROGBITS SHF ALLOC + SHF WRITE 
.debug SHT PROGBITS none 
.dynamic SHT DYNAMIC SHF ALLOC + SHF WRITE 
.dynstr SHT STRTAB SHF ALLOC 
.dynsym SHT DYNSYM SHF ALLOC 
.fini SHT PROGBITS SHF ALLOC + SHF EXEC INSTR 
.got SHT PROGBITS see below 
.hash SHT HASH SHF ALLOC 
.init SHT PROGBITS SHF ALLOC+SHF EXEC INSTR 
.interp SHT PROGBITS none 
.line SHT PROGBITS none 
.note SHT NOTE none 
.plt SHT PROGBITS see below 
.relname SHT REL see below 
.relaname SHT RELA see below 
.rodata SHT PROGBITS SHF ALLOC 
.rodatal SHT PROGBITS SHF ALLOC 
.shstrtab SHT STRTAB none 
.strtab SHT STRTAB see below 
.symtab SHT SYM!'AB see below 
.text SHT PROGBITS SHF ALLOC + SHF EXECINSTR 

. bss This section holds uninitialized data that contribute to the 
program's memory image. By definition, the system initializes 
the data with zeros when the program begins to run. The section 
occupies no file space, as indicated by the section type, 
SHT NOBITS. 

13·20 ANSI C and Programming Support Tools 



Program Linking 

. comment This section holds version control information . 

. data and . datal 

.debug 

.dynamic 

.dynstr 

.dynsym 

.fini 

.got 

.hash 

.init 

These sections hold initialized data that contribute to the 
program's memory image. 

This section holds information for symbolic debugging. The con
tents are unspecified. 

This section holds dynamic linking information. See the second 
part of this chapter for more information. 

This section holds strings needed for dynamic linking, most com
monly the strings that represent the names associated with sym
bol table entries. See the second part of this chapter for more 
information. 

This section holds the dynamic linking symbol table, as "Symbol 
Table" describes. See the second part of this chapter for more 
information. 

This section holds executable instructions that contribute to the 
process termination code. That is, when a program exits nor-
mally, the system arranges to execute the code in this section. 

This section holds the global offset table. See "Global Offset 
Table" in the second part of this chapter for more information. 

This section holds a symbol hash table. See "Hash Table" in the 
second part of this chapter for more information. 

This section holds executable instructions that contribute to the 
process initialization code. That is, when a program starts to run, 
the system arranges to execute the code in this section before cal
ling the main program entry point (called main for C programs) . 

. interp This section holds the path name of a program interpreter. See 
''Program Interpreter" in the second part of this chapter for more 
information . 

. line This section holds line number information for symbolic debug
ging, which describes the correspondence between the source pro
gram and the machine code. The contents are unspecified. 

Object Flies 13·21 



Program Linking 

.note 

.plt 

This section holds information in the format that ''Note Section" 
in the second part of this chapter describes. 

This section holds the procedure linkage table. See "Procedure 
Linkage Table" in the second part of this chapter for more infor-
mation . 

. relname and . relaname 
These sections hold relocation information, as "Relocation" below 
describes. If the file has a loadable segment that includes reloca
tion, the sections' attributes will include the SHF _ ALLOC bit; other
wise, that bit will be off. Conventionally, name is supplied by the 
section to which the relocations apply. Thus a relocation section 
for . text normally would have the name . rel. text or 
.rela.text . 

. rodata and . rodatal 
These sections hold read-only data that typically contribute to a 
non-writable segment in the process image. See "Program 
Header'' in the second part of this chapter for more information . 

. shstrtab This section holds section names . 

. strtab This section holds strings, most commonly the strings that 
represent the names associated with symbol table entries. If the 
file has a loadable segment that includes the symbol string table, 
the section's attributes will include the SHF _ ALLOC bit; otherwise, 
that bit will be off . 

. symtab This section holds a symbol table, as "Symbol Table" below 
describes. If the file has a loadable segment that includes the 
symbol table, the section's attributes will include the SHF_ALLOC 

bit; otherwise, that bit will be off . 

. text This section holds the "text," or executable instructions, of a pro
gram. 

Section names with a dot (.) prefix are reserved for the system, although appli
cations may use these sections if their existing meanings are satisfactory. Appli
cations may use names without the prefix to avoid conflicts with system sec
tions. The object file format lets one define sections not in the list above. An 
object file may have more than one section with the same name. 

13-22 ANSI C and Programming Support Tools 



Program Linking 

Various sections hold program and control information. Both the 3B2 and the 
6386 computers use the sections in the list below, with the indicated types and 
attributes. 

Figure 13·17: Special Sections, .got and .pit 

Name Type Attributes 
. got SHT PROGBITS SHF _ALLOC + SHF _WRITE 
. plt SHT PROGBITS SHF ALLOC + SHF EXECINSTR 

. got This section holds the global offset table. See "Global Offset 
Table" in the second part of the chapter for more information . 

. plt This section holds the procedure linkage table. See "Procedure 
Linkage Table" in the second part of this chapter for more infor
mation. 

String Table 

String table sections hold null-terminated character sequences, commonly called 
strings. The object file uses these strings to represent symbol and section names. 
One references a string as an index into the string table section. The first byte, 
which is index zero, is defined to hold a null character. Likewise, a string 
table's last byte is defined to hold a null character, ensuring null termination for 
all strings. A string whose index is zero specifies either no name or a null 
name, depending on the context. An empty string table section is permitted; its 
section header's sh size member would contain zero. Non-zero indexes are 
invalid for an empty string table. 

A section header's sh name member holds an index into the section header 
string table section, as designated by the e _ shstmdx member of the ELF 
header. The following figures show a string table with 25 bytes and the strings 
associated with various indexes. 

Object Flies 13-23 



Program Linking 

Figure 13-18: String Table 

Index +O +1 +2 +3 +4 +5 +6 +7 +8 +9 
0 

10 

20 

\0 
i 
\0 

n 
a 
\0 

a rn 
b 1 
x x 

Figure 13-19: String Table Indexes 

Index 
0 
1 
7 

11 
16 
24 

e 
e \0 
\0 

String 
none 
name. 
Variable 
able 
able 
null string 

\0 
a 

v a r 
b 1 e 

As the example shows, a string table index may refer to any byte in the section. 
A string may appear more than once; references to substrings may exist; and a 
single string may be referenced multiple times. Unreferenced strings also are 
allowed. 

Symbol Table 

An object file's symbol table holds information needed to locate and relocate a 
program's symbolic definitions and references. A symbol table index is a sub
script into this array. Index 0 both designates the first entry in the table and 
serves as the undefined symbol index. The contents of the initial entry are 
specified later in this section. 

13-24 ANSI C and Programming Support Tools 



Program Linking 

Name Value 
STN UNDEF 0 

A symbol table entry has the following format. 

Figure 13-20: Symbol Table Entry 

st name 

typedef struct 
Elf32 Word 
Elf32 Addr 
Elf32 Word 
unsigned char 
unsigned char 
Elf32 Half 

Elf32_Sym; 

st_name; 
st_value; 
st_size; 
st_info; 
st_other; 
st_shnd.x; 

This member holds an index into the object file's symbol string 
table, which holds the character representations of the symbol 
names. If the value is non-zero, it represents a string table 
index that gives the symbol name. Otherwise, the symbol table 
entry has no name. 

External C symbols have the same names in C, assembly code, and object 
files' symbol tables. 

st value 

st size 

Object Files 

This member gives the value of the associated symbol. 
Depending on the context, this may be an absolute value, an 
address, and so forth; details appear below. 

Many symbols have associated sizes. For example, a data 
object's size is the number of bytes contained in the object. 
This member holds 0 if the symbol has no size or an unknown 
size. 

13-25 



Program Linking 

st info 

st other 

st shndx 

This member specifies the symbol's type and binding attributes. 
A list of the values and meanings appears below. The follow
ing code shows how to manipulate the values. 

#define ELF32_ST_BIND (i) ( (i) »4) 
#define ELF32_ST_TYPE (i) ( (i) &Oxf) 
#define ELF32_ST_INFO (b, t) (( (b) <<4)+ ((t) &Oxf)) 

This member currently holds 0 and has no defined meaning. 

Every symbol table entry is "defined" in relation to some sec
tion; this member holds the relevant section header table index. 
Some section indexes indicate special meanings. 

A symbol's binding determines the linkage visibility and behavior. 

Figure 13·21: Symbol Binding, ELF32_ST_BIND 

STB LOCAL 

STB GLOBAL 

STB WEAK 

13-26 

Name Value 
STB LOCAL 0 
STB GLOBAL 1 
STB WEAK 2 
STB LOl?ROC 13 
STB Hil?ROC 15 

Local symbols are not visible outside the object file containing 
their definition. Local symbols of the same name may exist in 
multiple files without interfering with each other. 

Global symbols are visible to all object files being combined. 
One file's definition of a global symbol will satisfy another file's 
undefined reference to the same global symbol. 

Weak symbols resemble global symbols, but their definitions 
have lower precedence. 

ANSI C and Programming Support Tools 



Program Linking 

STB _ LOPROC through STB - HIPROC 
Values in this inclusive range are reserved for processor-specific 
semantics. 

Global and weak symbols differ in two major ways, as described in ''Multiply 
Defined Symbols" in Chapter 2. 

• When the link editor combines several relocatable object files, it does not 
allow multiple definitions of STB_GLOBAL symbols with the same name. 
On the other hand, if a defined global symbol exists, the appearance of a 
weak symbol with the same name will not cause an error. The link editor 
honors the global definition and ignores the weak ones. 

• When the link editor searches archive libraries, it extracts archive 
members that contain definitions of undefined global symbols. The 
member's definition may be either a global or a weak symbol. The link 
editor does not extract archive members to resolve undefined weak sym
bols. Unresolved weak symbols have a zero value. 

In each symbol table, all symbols with STB_LOCAL binding precede the weak 
and global symbols. As "Section Header" above describes, a symbol table 
section's sh_info section header member holds the symbol table index for the 
first non-local symbol. 

A symbol's type provides a general classification for the associated entity. 

Figure 13-22: Symbol Types, ELF32_ST_TYPE 

Name 

Object Flies 

STT NOTYPE 
STT OBJECT 
STT FUNC 
STT SECTION 
STT FILE 
STT LOPROC::: 
STT HIPROC 

Value 
0 
1 
2 
3 
4 

13 
15 

13-27 



Program Linking 

STT NOTYPE The symbol's type is not specified. 

STT OBJECT The symbol is associated with a data object, such as a variable, 
an array, and so forth. 

STT FUNC The symbol is associated with a function or other executable 
code. 

STT SECTION The symbol is associated with a section. Symbol table entries of 
this type exist primarily for relocation and normally have 
STB - LOCAL binding. 

STT FILE Conventionally, the symbol's name gives the name of the 
source file associated with the object file. A file symbol has 
STB _LOCAL binding, its section index is SHN _ABS, and it pre
cedes the other STB _LOCAL symbols for the file, if it is present. 

STT _ LOPROC through STT _ HIPROC 

Values in this inclusive range are reserved for processor-specific 
semantics. 

Function symbols (those with type STT_FUNC) in shared object files have special 
significance. When another object file references a function from a shared 
object, the link editor automatically creates a procedure linkage table entry for 
the referenced symbol. Shared object symbols with types other than STT _FUNC 
will not be referenced automatically through the procedure linkage table. 

If a symbol's value refers to a specific location within a section, its section index 
member, st_ shndx, holds an index into the section header table. As the section 
moves during relocation, the symbol's value changes as well, and references to 
the symbol continue to "point" to the same location in the program. Some spe
cial section index values give other semantics. 

SHN ABS 

SHN COMMON 

13-28 

The symbol has an absolute value that will not change because 
of relocation. 

The symbol labels a common block that has not yet been allo
cated. The symbol's value gives alignment constraints, similar 
to a section's sh_addralign member. That is, the link editor 
will allocate the storage for the symbol at an address that is a 
multiple of st_ value. The symbol's size tells how many bytes 
are required. 

ANSI C and Programming Support Tools 



Program Linking 

SHN UNDEF This section table index means the symbol is undefined. When 
the link editor combines this object file with another that 
defines the indicated symbol, this file's references to the symbol 
will be linked to the actual definition. 

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is 
reserved; it holds the following. 

Figure 13·23: Symbol Table Entry: Index O 

Name Value 
st name 0 
st value 0 
st size 0 
st info 0 
st other 0 
st shndx SHN UNDEF 

Symbol Values 

Note 
No name 
Zero value 
No size 
No type, local binding 

No section 

Symbol table entries for different object file types have slightly different 
interpretations for the st_ value member. 

• In relocatable files, st_ value holds alignment constraints for a symbol 
whose section index is SHN caroN. 

• In relocatable files, st_ value holds a section offset for a defined symbol. 
That is, st_ value is an offset from the beginning of the section that 
st shndx identifies. 

• In executable and shared object files, st_ value holds a virtual address. 
To make these files' symbols more useful for the dynamic linker, the sec
tion offset (file interpretation) gives way to a virtual address (memory 
interpretation) for which the section number is irrelevant. 

Although the symbol table values have similar meanings for different object 
files, the data allow efficient access by the appropriate programs. 

Object Files 13-29 



Program Linking 

Relocation 

Relocation is the process of connecting symbolic references with symbolic 
definitions. For example, when a program calls a function, the associated call 
instruction must transfer control to the proper destination address at execution. 
In other words, relocatable files must have information that describes how to 
modify their section contents, thus allowing executable and shared object files to 
hold the right information for a process's program image. Relocation entries are 
these data. 

Figure 13-24: Relocation Entries 

typedef struct { 
Elf32 Addr 
Elf 32 Word 

} Elf32_Rel; 

typedef struct 
Elf32 Addr 
Elf32 Word 
Elf32 Sword 

Elf32_Rela; 

r_offset; 
r_info; 

r_offset; 
r_info; 
r_addend; 

r offset This member gives the location at which to apply the relocation 
action. For a relocatable file, the value is the byte offset from the 
beginning of the section to the storage unit affected by the reloca
tion. For an executable file or a shared object, the value is the vir
tual address of the storage unit affected by the relocation. 

r info This member gives both the symbol table index with respect to 
which the relocation must be made, and the type of relocation to 
apply. For example, a call instruction's relocation entry would 
hold the symbol table index of the function being called. If the 
index is STN_UNDEF, the undefined symbol index, the relocation 
uses 0 as the "symbol value." Relocation types are processor
specific; descriptions of their behavior appear below. When the 
text below refers to a relocation entry's relocation type or symbol 

13-30 ANSI C and Programming Support Tools 



Program Linking 

table index, it means the result of applying ELF32 _ R _TYPE or 
ELF32_R_SYM, respectively, to the entry's r info member. 

#define ELF32_R_SYM(i) ( (i) »8) 
#define ELF32_R_TYPE (i) ((unsigned char) (i)) 
#define ELF32_R_INFO(s,t) (((s)<<S)+(unsigned char) (t)) 

r addend This member specifies a constant addend used to compute the 
value to be stored into the relocatable field. 

As shown above, only Elf32 _ Rela entries contain an explicit addend. Entries 
of type Elf32 _Rel store an implicit addend in the location to be modified. 
Depending on the processor architecture, one form or the other might be neces
sary or more convenient. Consequently, an implementation for a particular 
machine may use one form exclusively or either form depending on context. 

A relocation section references two other sections: a symbol table and a section 
to modify. The section header's sh_ info and sh_link members, described in 
"Section Header" above, specify these relationships. Relocation entries for dif
ferent object files have slightly different interpretations for the r _offset 
member. 

• In relocatable files, r _offset holds a section offset. That is, the reloca
tion section itself describes how to modify another section in the file; relo
cation offsets designate a storage unit within the second section. 

• In executable and shared object files, r _offset holds a virtual address. 
To make these files' relocation entries more useful for the dynamic linker, 
the section offset (file interpretation) gives way to a virtual address 
(memory interpretation). 

Although the interpretation of r _offset changes for different object files to 
allow efficient access by the relevant programs, the relocation types' meanings 
stay the same. 

Object Files 13-31 



Program Linking 

Relocation Types (382 Computer-Specific) 

Relocation entries describe how to alter the following instruction and data fields 
(bit numbers appear in the lower box corners; byte numbers appear in the 
upper box comers). 

Figure 13-25: 382 Computer Relocatable Fields 

lo b32 11 b32 12 b32 13 b32 I 
lo b32 s 11 b32 s 12 b32 s 13 b32 s 

I 

131 
got32 

ol 

b32 This specifies a 32-bit field occupying 4 bytes with arbitrary align
ment. These values use the byte order illustrated below. 

Ox01020304 I 
0 01 1

1 02 12 03 13 04 

b32 S This specifies a 32-bit field occupying 4 bytes with arbitrary align
ment. The "S" in the name indicates the bytes are "swapped." 
These values use the byte order illustrated below. 

Ox01020304 I 
0 04 1

1 03 12 02 13 01 

got32 This specifies a 32-bit field occupying 4 bytes with word alignment. 
These bytes represent values in the same byte order as b32. 

13-32 ANSI C and Programming Support Tools 



Program Linking 

Calculations below assume the actions are transforming a relocatable file into 
either an executable or a shared object file. Conceptually, the link editor merges 
one or more relocatable files to form the output. It first decides how to combine 
and locate the input files, then updates the symbol values, and finally performs 
the relocation. Relocations applied to executable or shared object files are simi
lar and accomplish the same result. Descriptions below use the following nota
tion. 

A This means the addend used to compute the value of the relocatable 
field. 

B This means the base address at which a shared object has been 
loaded into memory during execution. Generally, a shared object file 
is built with a 0 base virtual address, but the execution address will 
be different. See "Program Header'' in the second part of this 
chapter for more information about the base address. 

G This means the offset into the global offset table at which the address 
of the relocation entry's symbol will reside during execution. See 
"Global Offset Table" in the second part of this chapter for more 
information. 

L This means the place (section offset or address) of the procedure link
age table entry for a symbol. A procedure linkage table entry 
redirects a function call to the proper destination. The link editor 
builds the initial procedure linkage table, and the dynamic linker 
modifies the entries during execution. See "Procedure Linkage 
Table" in the second part of this chapter for more information. 

P This means the place (section offset or address) of the storage unit 
being relocated (computed using r_offset). 

s This means the value of the symbol whose index resides in the relo
cation entry. 

A relocation entry's r_offset value designates the offset or virtual address of 
the first byte of the affected storage unit. The relocation type specifies which 
bits to change and how to calculate their values. Because the WE 32100 uses 
only Elf32 _Rel relocation entries, the field to be relocated holds the addend. 
In all cases, the addend and the computed result use the same byte order. 

Object Files 13-33 



Program Linking 

Figure 13-26: 382 Computer Relocation Types 

Name Value Field Calculation 
R M.32 NONE 0 none none 
R M.32 32 1 b32 S +A 
R M.32 32 S 2 b32 s S +A - - -
R M.32 PC32 S 3 b32 s S +A - P - - -
R M.32 GOT32 S 4 b32 s G +A - P - - -
R M.32 PLT32 S 5 b32 s L +A - P -
R M.32 COPY 6 none none -
R M.32 GLOB DAT 7 got32 s - - -
R M.32 JMP SLOT 8 got32 s - - -
R M.32 RELATIVE 9 b32 B+A 
R M.32 RELATIVE S 10 b32 s B+A - - -

Some relocation types have semantics beyond simple calculation. 

R M32 GOT32 s This relocation type resembles R_M32_PC32_S, except it 
refers to the address of the symbol's global offset table 
entry and additionally instructs the link editor to build 
a global offset table. 

R M32 PLT32 S 

R M32 COPY 

R M32 GLOB DAT 

13·34 

This relocation type resembles R_M32_PC32_S, except it 
refers to the address of the symbol's procedure linkage 
table entry and additionally instructs the link editor to 
build a procedure linkage table. 

This relocation type assists dynamic linking. Its offset 
member refers to a location in a writable segment. The 
symbol table index specifies a symbol that should exist 
both in the current object file and in a shared object. 
During execution, the dynamic linker copies data associ
ated with the shared object's symbol to the location 
specified by the offset. 

This relocation type resembles R _ M32 _ 32, except it is 
used to set a global offset table entry to the specified 
symbol's value. The relocation type allows one to 
determine the correspondence between symbols and 

ANSI C and Programming Support Tools 



R M32 JMP SLOT 

R M32 RELATIVE 

R M32 RELATIVE S 

Program Linking 

global offset table entries. The relocated field should be 
aligned on a word boundary. This relocation type does 
not extract the original value of the relocated field to 
use as an addend. 

This relocation type resembles R_M32_GLOB_DAT, except 
it is used for global offset table entries associated with 
the procedure linkage table (see "Procedure Linkage 
Table" in the second part of this chapter). The relo
cated field should be aligned on a word boundary. This 
relocation type does not extract the original value of the 
relocated field to use as an addend. 

This relocation type assists dynamic linking. Its offset 
member gives a location within a shared object that 
contains a value representing a relative address. The 
dynamic linker computes the corresponding virtual 
address by adding the virtual address at which the 
shared object was loaded to the relative address. Relo
cation entries for this type must specify 0 for the sym
bol table index. 

This type is similar to R _ M32 _RELATIVE, except the byte 
order of the relocated field is different. 

Relocation Types (6386 Computer-Specific) 

Relocation entries describe how to alter the following instruction and data fields 
(bit numbers appear in the lower box corners). 

Figure 13-27: 6386 Computer Relocatable Fields 

word32 

Object Flies 13-35 



Program Linking 

word32 This specifies a 32-bit field occupying 4 bytes with arbitrary byte 
alignment. These values use the same byte order as other word 
values in the Intel386 architecture. 

Ox01020304 .... 1 :_1 __ 0_1 _ _.i_2 
__ 0_2 _ _._i 1 __ 0_3 _ _.l_0 

__ 0_4 _ __. 

Calculations below assume the actions are transforming a relocatable file into 
either an executable or a shared object file. Conceptually, the link editor merges 
one or more relocatable files to form the output. It first decides how to combine 
and locate the input files, then updates the symbol values, and finally performs 
the relocation. Relocations applied to executable or shared object files are simi
lar and accomplish the same result. Descriptions below use the following nota
tion. 

A This means the addend used to compute the value of the relocatable 
field. 

B This means the base address at which a shared object has been 
loaded into memory during execution. Generally, a shared object file 
is built with a 0 base virtual address, but the execution address will 
be different. See "Program Header" in the second part of this 
chapter for more information about the base address. 

G This means the offset into the global offset table at which the address 
of the relocation entry's symbol will reside during execution. See 
"Global Offset Table" in the second part of this chapter for more 
information. 

GOT This means the address of the global offset table. See "Global Offset 
Table" in the second part of this chapter for more information. 

L This means the place (section offset or address) of the procedure link
age table entry for a symbol. A procedure linkage table entry 
redirects a function call to the proper destination. The link editor 
builds the initial procedure linkage table, and the dynamic linker 
modifies the entries during execution. See "Procedure Linkage 
Table" in the second part of this chapter for more information. 

13-36 ANSI C and Programming Support Tools 



Program Linking 

P This means the place (section offset or address) of the storage unit 
being relocated (computed using r _offset). 

S This means the value of the symbol whose index resides in the relo
cation entry. 

A relocation entry's r_offset value designates the offset or virtual address of 
the first byte of the affected storage unit. The relocation type specifies which 
bits to change and how to calculate their values. The 6386 computer uses only 
Elf32_Rel relocation entries, the field to be relocated holds the addend. In all 
cases, the addend and the computed result use the same byte order. 

Figure 13·28: 6386 Computer Relocation Types 

Name Value Field Calculation 
R 386 NONE 0 none none 
R 386 32 1 word32 S +A - -
R 386 PC32 2 word32 S +A - P - -
R 386 GOT32 3 word32 G +A - P - -
R_386_PLT32 4 word32 L+A- p 

R 386 COPY 5 none none - -
R 386 GLOB DAT 6 word32 s - - -
R 386 JMP SLOT 7 word32 s - - -
R 386 RELATIVE 8 word32 B +A 
R 386 GOTOFF 9 word32 S + A - GOT - -
R 386 GOTPC 10 word32 GOT + A - P - -

Some relocation types have semantics beyond simple calculation. 

R 386 GOT32 This relocation type computes the distance from the 
base of the global offset table to the symbol's global 
offset table entry. It additionally instructs the link edi
tor to build a global offset table. 

R 386 PLT32 

Object Files 

This relocation type computes the address of the 
symbol's procedure linkage table entry and additionally 
instructs the link editor to build a procedure linkage 
table. 

13-37 



Program Linking 

R 386 COPY 

R 386 GLOB DAT 

R 386 JMP SLOT 

R 386 RELATIVE 

R 386 GOTOFF 

R 386 GOTPC 

13-38 

The link editor creates this relocation type for dynamic 
linking. Its offset member refers to a location in a writ
able segment. The symbol table index specifies a sym
bol that should exist both in the current object file and 
in a shared object. During execution, the dynamic 
linker copies data associated with the shared object's 
symbol to the location specified by the offset. 

This relocation type is used to set a global offset table 
entry to the address of the specified symbol. The spe
cial relocation type allows one to determine the 
correspondence between symbols and global offset table 
entries. 

The link editor creates this relocation type for dynamic 
linking. Its offset member gives the location of a pro
cedure linkage table entry. The dynamic linker 
modifies the procedure linkage table entry to transfer 
control to the designated symbol's address (see "Pro
cedure Linkage Table" in the second part of this 
chapter). 

The link editor creates this relocation type for dynamic 
linking. Its offset member gives a location within a 
shared object that contains a value representing a rela
tive address. The dynamic linker computes the 
corresponding virtual address by adding the virtual 
address at which the shared object was loaded to the 
relative address. Relocation entries for this type must 
specify 0 for the symbol table index. 

This relocation type computes the difference between a 
symbol's value and the address of the global offset 
table. It additionally instructs the link editor to build 
the global offset table. 

This relocation type resembles R_386_PC32, except it 
uses the address of the global offset table in its calcula
tion. It additionally instructs the link editor to build the 
global offset table. 

ANSI C and Programming Support Tools 



Program Execution 

This section describes the object file information and system actions that create 
running programs. Some information here applies to all systems; information 
specific to one processor resides in sections marked accordingly. 

Executable and shared object files statically represent programs. To execute 
such programs, the system uses the files to create dynamic program representa
tions, or process images. 

Program Header 

An executable or shared object file's program header table is an array of struc
tures, each describing a segment or other information the system needs to 
prepare the program for execution. An object file segment contains one or more 
sections, as "Segment Contents" describes below. 

Program headers are meaningful only for executable and shared object files. A 
file specifies its own program header size with the ELF header's eyhentsize 
and eyhnum members (see "ELF Header'' in the first part of this chapter). 

Figure 13-29: Program Header 

p_type 

Object Files 

typedef struct { 
Elf32 Word 
Elf32 Off 
Elf32 Addr 
Elf32 Addr 
Elf32 Word 
Elf32 Word 
Elf32 Word 
Elf 32 Word 

Elf32_Phdr; 

p_type; 
p_offset; 
p_vaddr; 
pyaddr; 
p_filesz; 
p_memsz; 
p_flags; 
p_align; 

This member tells what kind of segment this array element 
describes or how to interpret the array element's information. 
Type values and their meanings appear below. 

13-39 



Program Execution 

p_offset 

p_vaddr 

pyaddr 

p_filesz 

p_memsz 

p_flags 

p_align 

This member gives the offset from the beginning of the file at 
which the first byte of the segment resides. 

This member gives the virtual address at which the first byte of 
the segment resides in memory. 

On systems for which physical addressing is relevant, this 
member is reserved for the segment's physical address. 
Because UNIX System V ignores physical addressing for appli
cation programs, this member has unspecified contents for exe
cutable files and shared objects. 

This member gives the number of bytes in the file image of the 
segment; it may be zero. 

This member gives the number of bytes in the memory image 
of the segment; it may be zero. 

This member gives flags relevant to the segment. Defined flag 
values appear below. 

As "Program Loading" describes later, loadable process seg
ments must have congruent values for p_vaddr and p_offset, 
modulo the page size. This member gives the value to which 
the segments are aligned in memory and in the file. Values 0 
and 1 mean no alignment is required. Otherwise, p_align 
should be a positive, integral power of 2, and p _ vaddr should 
equal p_offset, modulo p_align. 

Some entries describe process segments; others give supplementary information 
and do not contribute to the process image. Segment entries may appear in any 
order, except as explicitly noted below. Defined type values follow; other 
values are reserved for future use. 

Figure 13-30: Segment Types, p_type 

Name Value 
PT NULL 0 
PT LOAD 1 
PT DYNAMIC 2 
PT INTERP 3 

13-40 ANSI C and Programming Support Tools 



Program Execution 

Figure 13-30: Segment Types, p_type (continued) 

PT NULL 

PT LOAD 

PT DYNAMIC 

PT INTERP 

PT NOTE 

Object Files 

Name Value 
PT NOTE 4 
PT SHLIB 5 
PT PHDR 6 
PT LOPROC Ox70000000 
PT HIPROC Ox7fffffff 

The array element is unused; other members' values are 
undefined. This type lets the program header table have 
ignored entries. 

The array element specifies a loadable segment, described by 
p_filesz and p_memsz. The bytes from the file are mapped to 
the beginning of the memory segment. If the segment's 
memory size (p_memsz) is larger than the file size (p_filesz), 
the "extra" bytes are defined to hold the value 0 and to follow 
the segment's initialized area. The file size may not be larger 
than the memory size. Loadable segment entries in the pro
gram header table appear in ascending order, sorted on the 
p _ vaddr member. 

The array element specifies dynamic linking information. See 
"Dynamic Section" below for more information. 

The array element specifies the location and size of a null
terminated path name to invoke as an interpreter. This seg
ment type is meaningful only for executable files (though it 
may occur for shared objects); it may not occur more than once 
in a file. If it is present, it must precede any loadable segment 
entry. See "Program Interpreter'' below for further informa
tion. 

The array element specifies the location and size of auxiliary 
information. See "Note Section" below for details. 

13-41 



Program Execution 

PT SHLIB 

PT PHDR 

This segment type is reserved but has unspecified semantics. 

The array element, if present, specifies the location and size of 
the program header table itself, both in the file and in the 
memory image of the program. This segment type may not 
occur more than once in a file. Moreover, it may occur only if 
the program header table is part of the memory image of the 
program. If it is present, it must precede any loadable segment 
entry. See ''Program Interpreter" below for further informa
tion. 

PT_LOPROC through PT_HIPROC 
Values in this inclusive range are reserved for processor-specific 
semantics. 

Unless specifically required elsewhere, all program header segment types 
are optional. That is, a file's program header table may contain only those 
elements relevant to its contents. 

Base Address 
Executable and shared object files have a base address, which is the lowest virtual 
address associated with the memory image of the program's object file. One use 
of the base address is to relocate the memory image of the program during 
dynamic linking. 

An executable or shared object file's base address is calculated during execution 
from three values: the memory load address, the maximum page size, and the 
lowest virtual address of a program's loadable segment. As "Program Loading" 
later in this chapter describes, the virtual addresses in the program headers 
might not represent the actual virtual addresses of the program's memory 
image. To compute the base address, one determines the memory address asso
ciated with the lowest p_vaddr value for a PT_LOAD segment. One then 
obtains the base address by truncating the memory address to the nearest multi
ple of the maximum page size. Depending on the kind of file being loaded into 
memory, the memory address might or might not match the p_vaddr values. 

13-42 ANSI C and Programming Support Tools 



Program Execution 

Segment Permissions 
A program to be loaded by the system must have at least one loadable segment 
(although this is not required by the file format). When the system creates load
able segments' memory images, it gives access permissions as specified in the 
p_flags member. All bits included in the PF_MASKPROC mask are reserved for 
processor-specific semantics. 

Figure 13-31: Segment Flag Bits, p _flags 

Name Value Meaning 

PF X Oxl Execute 
PF W Ox2 Write 
PF R Ox4 Read 
PF MASKPROC OxfOOOOOOO Unspecified 

If a permission bit is 0, that type of access is denied. Actual memory permis
sions depend on the memory management unit, which may vary from one sys
tem to another. Although all flag combinations are valid, the system may grant 
more access than requested. In no case, however, will a segment have write 
permission unless it is specified explicitly. The following table shows both the 
exact flag interpretation and the allowable flag interpretation. 

Figure 13-32: Segment Permissions 

Flags Value Exact Allowable 
none 0 All access denied All access denied 
PF X 1 Execute only Read, execute 
PF W 2 Write only Read, write, execute 
PF W+PF X 3 Write, execute Read, write, execute - -
PF R 4 Read only Read, execute 
PF R+PF X 5 Read, execute Read, execute 
PF R+PF W 6 Read, write Read, write, execute 
PF R+PF W+PF x 7 Read, write, execute Read, write, execute 

For example, typical text segments have read and execute - but not write - per
missions. Data segments normally have read, write, and execute permissions. 

Object Files 13-43 



Program Execution 

Segment Contents 

An object file segment comprises one or more sections, though this fact is tran
sparent to the program header. Whether the file segment holds one or many 
sections also is immaterial to program loading. Nonetheless, various data must 
be present for program execution, dynamic linking, and so on. The diagrams 
below illustrate segment contents in general terms. The order and membership 
of sections within a segment may vary; moreover, processor-specific constraints 
may alter the examples below. 

Text segments contain read-only instructions and data, typically including the 
following sections described earlier in this chapter. Other sections may also 
reside in loadable segments; these examples are not meant to give complete and 
exclusive segment contents. 

Figure 13-33: Text Segment 

.text 
.rodata 
.hash 

.dynsym 

.dynstr 
.plt 

.rel.got 

Data segments contain writable data and instructions, typically including the 
following sections. 

Figure 13-34: Data Segment 

13-44 

.data 
.dynamic 

.got 

.bss 

ANSI C and Programming Support Tools 



Program Execution 

A PT _DYNAMIC program header element points at the . dynamic section, 
explained in "Dynamic Section" below. The . got and . plt sections also hold 
information related to position-independent code and dynamic linking. 
Although the .plt appears in a text segment above, it may reside in a text or a 
data segment, depending on the processor. See "Global Offset Table" and "Pro
cedure Linkage Table" later in this chapter for details. 

As described in "Section Header" in the first part of this chapter, the . bss sec
tion has the type SHT_NOBITS. Although it occupies no space in the file, it con
tributes to the segment's memory image. Normally, these uninitialized data 
reside at the end of the segment, thereby making p_mamsz larger than 
p _filesz in the associated program header element. 

Note Section 

Sometimes a vendor or system builder needs to mark an object file with special 
information that other programs will check for conformance, compatibility, and 
so forth. Sections of type SHT _NOTE and program header elements of type 
PT_ NOTE can be used for this purpose. The note information in sections and 
program header elements holds any number of entries, each of which is an 
array of 4-byte words in the format of the target processor. Labels appear 
below to help explain note information organization, but they are not part of the 
specification. 

Figure 13-35: Note Information 

namesz and name 

namesz 

descsz 

type 

name 

desc 

The first namesz bytes in name contain a null-terminated character 
representation of the entry's owner or originator. There is no formal 
mechanism for avoiding name conflicts. By convention, vendors use 

Object Flies 13-45 



Program Execution 

their own name, such as "XYZ Computer Company," as the 
identifier. If no name is present, namesz contains 0. Padding is 
present, if necessary, to ensure 4-byte alignment for the descriptor. 
Such padding is not included in namesz. 

descsz and desc 
The first descsz bytes in desc hold the note descriptor. If no 
descriptor is present, descsz contains 0. Padding is present, if 
necessary, to ensure 4-byte alignment for the next note entry. Such 
padding is not included in descsz. 

type This word gives the interpretation of the descriptor. Each originator 
controls its own types; multiple interpretations of a single type value 
may exist. Thus, a program must recognize both the name and the 
type to "understand" a descriptor. Types currently must be non
negative. 

To illustrate, the following note segment holds two entries. 

Figure 13-36: Example Note Segment 

13-46 

namesz 

descsz 

type 

name 

namesz 

descsz 

type 
name 

desc 

+O +1 +2 +3 

7 

0 No descriptor 
1 

x f 
y 

± \ZO f c 0 pad 

7 

8 

3 

x I y I z I 
c l 0 l \0 l pad 

word 0 
word 1 

ANSI C and Programming Support Tools 



Program Execution 

The system reserves note information with no name (namesz==O) and with a 
zero-length name (name [ o] ==' \O') but currently defines no types. All other 
names must have at least one non-null character. 

Program Loading (Processor-Specific) 

As the system creates or augments a process image, it logically copies a file's 
segment to a virtual memory segment. When-and if-the system physically 
reads the file depends on the program's execution behavior, system load, and so 
forth. A process does not require a physical page unless it references the logical 
page during execution, and processes commonly leave many pages unrefer
enced. Therefore delaying physical reads frequently obviates them, improving 
system performance. To obtain this efficiency in practice, executable and shared 
object files must have segment images whose file offsets and virtual addresses 
are congruent, modulo the page size. 

Virtual addresses and file offsets for segments are congruent modulo 8 K 
(Ox2000) or larger powers of 2 for the 3B2 computer and 4 K (OxlOOO) for the 
6386 computer. By aligning segments to the maximum page size, the files will 
be suitable for paging regardless of physical page size. The following examples 
show 8 K alignment. Although this works for both the 3B2 and the 6386 com
puters, it is more strict than necessary for the 6386 computer. 

Object Files 13-47 



Program Execution 

Figure 13-37: Executable File 

File Offset 
0 

File 
ELF header 

Program header table 
Other information 

OxlOO Text segment 
... 

Ox2be00 bytes 
Ox2bf00 Data segment 

... 
Ox4e00 bytes 

Ox30d00 Other information ... 

Figure 13-38: Program Header Segments 

Member Text 
p_type PT LOAD 
p_offset OxlOO 
p_vaddr Ox80000100 
p_paddr unspecified 
p_filesz Ox2be00 
p_memsz Ox2be00 
p_flags PF R+PF X PF - -
p_align Ox2000 

Virtual Address 

Ox80000100 

Ox8002beff 
Ox8002df00 

Ox80032cff 

Data 
PT LOAD 
Ox2bf OO 

Ox8002df00 
unspecified 

Ox4e00 
Ox5e24 

R+PF W+PF X - -
Ox2000 

Although the example's file offsets and virtual addresses are congruent modulo 
the maximum page size for both text and data, up to four file pages hold 
impure text or data (depending on page size and file system block size). 

13-48 ANSI C and Programming Support Tools 



Program Execution 

• The first text page contains the ELF header, the program header table, and 
other information. 

• The last text page holds a copy of the beginning of data. 

• The first data page has a copy of the end of text. 

• The last data page may contain file information not relevant to the run-
ning process. 

Logically, the system enforces the memory permissions as if each segment were 
complete and separate; segments' addresses are adjusted to ensure each logical 
page in the address space has a single set of permissions. In the example above, 
the region of the file holding the end of text and the beginning of data will be 
mapped twice: at one virtual address for text and at a different virtual address 
for data. 

The end of the data segment requires special handling for uninitialized data, 
which the system defines to begin with zero values. Thus if a file's last data 
page includes information not in the logical memory page, the extraneous data 
must be set to zero, not the unknown contents of the executable file. "Impuri
ties" in the other three pages are not logically part of the process image; 
whether the system expunges them is unspecified. The memory image for this 
program follows, assuming 2 KB (Ox800) pages. For simplicity, this example 
illustrates only one page size. A similar figure with 4 KB pages would be 
appropriate for 6386 computers. 

Object Files 13-49 



Program Execution 

Contents 

Figure 13-39: Process Image Segments 

Virtual Address 
Ox80000000 Header padding 

OxlOO bytes 
Ox80000100 Text segment 

... 

Ox2be00 bytes 
Ox8002bf00 Data padding 

OxlOO bytes 

Ox8002d800 Text padding 
Ox700 bytes 

Ox8002df00 Data segment 

... 

Ox4e00 bytes 
Ox80032d00 Uninitialized data 

Ox1024 zero bytes 
Ox80033d24 Page padding 

Ox2dc zero bytes 

Segment 

Text 

Data 

One aspect of segment loading differs between executable files and shared 
objects. Executable file segments typically contain absolute code. To let the 
process execute correctly, the segments must reside at the virtual addresses used 
to build the executable file. Thus the system uses the p _ vaddr values 
unchanged as virtual addresses. 

On the other hand, shared object segments typically contain position
independent code. (For background, see "Link Editing" in Chapter 2.) This lets 
a segment's virtual address change from one process to another, without invali
dating execution behavior. Though the system chooses virtual addresses for 
individual processes, it maintains the segments' relative positions. Because 
position-independent code uses relative addressing between segments, the 

13-50 ANSI C and Programming Support Tools 



Program Execution 

difference between virtual addresses in memory must match the difference 
between virtual addresses in the file. The following table shows possible shared 
object virtual address assignments for several processes, illustrating constant 
relative positioning. The table also illustrates the base address computations. 
Once again, the maximum page size used below is 8 KB; for 6386 computers, 
the calculation would assume 4 KB pages. 

Figure 13-40: Example Shared Object Segment Addresses 

Source Text Data Base Address 
File Ox200 Ox2a400 OxO 
Process 1 Oxc0080200 Oxc00aa400 Oxc0080000 
Process 2 Oxc0082200 Oxc00ac400 Oxc0082000 
Process 3 Oxd00c0200 Oxd00ea400 OxdOOcOOOO 
Process 4 Oxd00c6200 Oxd00f0400 Oxd00c6000 

Program Interpreter 

An executable file may have one PT_INTERP program header element. During 
exec(), the system retrieves a path name from the PT_INTERP segment and 
creates the initial process image from the interpreter file's segments. That is, 
instead of using the original executable file's segment images, the system com
poses a memory image for the interpreter. It then is the interpreter's responsi
bility to receive control from the system and provide an environment for the 
application program. 

The interpreter receives control in one of two ways. First, it may receive a file 
descriptor to read the executable file, positioned at the beginning. It can use 
this file descriptor to read and/ or map the executable file's segments into 
memory. Second, depending on the executable file format, the system may load 
the executable file into memory instead of giving the interpreter an open file 
descriptor. With the possible exception of the file descriptor, the interpreter's 
initial process state matches what the executable file would have received. The 
interpreter itself may not require a second interpreter. An interpreter may be 
either a shared object or an executable file. 

Object Files 13-51 



Program Execution 

• A shared object (the normal case) is loaded as position-independent, with 
addresses that may vary from one process to another; the system creates 
its segments in the dynamic segment area used by mmap() and related ser
vices. Consequently, a shared object interpreter typically will not conflict 
with the original executable file's original segment addresses. 

• An executable file is loaded at fixed addresses; the system creates its seg
ments using the virtual addresses from the program header table. Conse
quently, an executable file interpreter's virtual addresses may collide with 
the first executable file; the interpreter is responsible for resolving 
conflicts. 

Dynamic Linker 

When building an executable file that uses dynamic linking, the link editor adds 
a program header element of type PT_ INTERP to an executable file, telling the 
system to invoke the dynamic linker as the program interpreter. exec() and 
the dynamic linker cooperate to create the process image for the program, 
which entails the following actions: 

• Adding the executable file's memory segments to the process image; 

• Adding shared object memory segments to the process image; 

• Performing relocations for the executable file and its shared objects; 

• Closing the file descriptor that was used to read the executable file, if one 
was given to the dynamic linker; 

• Transferring control to the program, making it look as if the program had 
received control directly from exec() . 

The link editor also constructs various data that assist the dynamic linker for 
executable and shared object files. As shown above in "Program Header," these 
data reside in loadable segments, making them available during execution. 
(Once again, recall the exact segment contents are processor-specific.) 

• A . dynamic section with type SHT_DYNAMIC holds various data. The 
structure residing at the beginning of the section holds the addresses of 
other dynamic linking information. 

13-52 ANSI C and Programming Support Tools 



Program Execution 

• The .hash section with type SHT_HASH holds a symbol hash table. 

• The .got and .plt sections with type SHT_PROGBITS hold two separate 
tables: the global offset table and the procedure linkage table. Sections 
below explain how the dynamic linker uses and changes the tables to 
create memory images for object files. 

As explained in "Program Loading" earlier, shared objects may occupy virtual 
memory addresses that are different from the addresses recorded in the file's 
program header table. The dynamic linker relocates the memory image, updat
ing absolute addresses before the application gains control. Although the abso
lute address values would be correct if the library were loaded at the addresses 
specified in the program header table, this normally is not the case. 

If the process environment contains a variable named LD_BIND_NOW with a 
non-null value (see "Checking for Run-Time Compatibility'' in Chapter 2), the 
dynamic linker processes all relocations before transferring control to the pro
gram. For example, all the following environment entries would specify this 
behavior. 

• LD BIND NOW=l 

• LD BIND NOW=on 

• LD BIND NOW=off 

Otherwise, LD_BIND_NOW either does not occur in the environment or has a null 
value. The dynamic linker is permitted to evaluate procedure linkage table 
entries lazily, thus avoiding symbol resolution and relocation overhead for func
tions that are not called. See "Procedure Linkage Table" below for more infor
mation. 

Dynamic Section 

If an object file participates in dynamic linking, its program header table will 
have an element of type PT_DYNAMIC. This "segment'' contains the .dynamic 
section. A special symbol, _DYNAMIC, labels the section, which contains an 
array of the following structures. 

Object Files 13-53 



Program Execution 

Figure 13-41: Dynamic Structure 

typedef struct 
Elf32 Sword d_tag; 
union { 

} d_un; 
} Elf32_Dyn; 

Elf32 Word 
Elf32 Addr 

d_val; 
d_ytr; 

extern Elf32_Dyn _DYNAMIC [] ; 

For each object with this type, d _tag controls the interpretation of d _ un. 

d val 

d_ptr 

These Elf32 _Word objects represent integer values with various 
interpretations. 

These Elf32 _ Addr objects represent program virtual addresses. As 
mentioned previously, a file's virtual addresses might not match the 
memory virtual addresses during execution. When interpreting 
addresses contained in the dynamic structure, the dynamic linker 
computes actual addresses, based on the original file value and the 
memory base address. For consistency, files do not contain relocation 
entries to "correct" addresses in the dynamic structure. 

The following table summarizes the tag requirements for executable and shared 
object files. If a tag is marked "mandatory," then the dynamic linking array 
must have an entry of that type. Likewise, "optional" means an entry for the 
tag may appear but is not required. 

13-54 ANSI C and Programming Support Tools 



Program Execution 

Figure 13-42: Dynamic Array Tags, d_tag 

Name 

DT NULL 
DT NEEDED -
DT PLTRELSZ -
DT PLTGOT -
DT HASH -
DT STRTAB 
DT SYMrAB -
DT RELA -
DT RELASZ -
DT RELAENT 
DT STRSZ -
DT SYMENT 
DT !NIT -
DT FINI 
DT SONAME -
DT RPATH 
DT SYMBOLIC -
DT REL 
DT RELSZ -
DT RELENT -
DT PLTREL 
DT DEBUG -
DT TEXTREL -
DT JMPREL -
DT LOPRCX:: 
DT HIPRCX:: -

DT NULL 

DT NEEDED 

Object Flies 

Value dun Executable Shared Object 

0 ignored mandatory mandatory 
1 d val optional optional -
2 d val optional optional 
3 d_ytr optional optional 
4 d_ytr mandatory mandatory 
5 d_ytr mandatory mandatory 
6 d_ytr mandatory mandatory 
7 d_ytr mandatory optional 
8 d val mandatory optional -
9 d val mandatory optional -

10 d val mandatory mandatory -
11 d val mandatory mandatory 
12 d_ytr optional optional 
13 d_ytr optional optional 
14 d val ignored optional -
15 d val optional ignored 
16 ignored ignored optional 
17 d_ytr mandatory optional 
18 d val mandatory optional -
19 d val mandatory optional -
20 d val optional optional 
21 d_J>tr optional ignored 
22 ignored optional optional 
23 d_ytr optional optional 

Ox70000000 unspecified unspecified unspecified 
Ox7fffffff unspecified unspecified unspecified 

An entry with a DT _NULL tag marks the end of the _DYNAMIC 
array. 

This element holds the string table offset of a null-terminated 
string, giving the name of a needed library. The offset is an 
index into the table recorded in the DT _ STRTAB entry. See 
"Shared Object Dependencies" below for more information 

13-55 



Program Execution 

about these names. The dynamic array may contain multiple 
entries with this type. These entries' relative order is 
significant, though their relation to entries of other types is not. 

DT PLTREISZ This element holds the total size, in bytes, of the relocation 
entries associated with the procedure linkage table. If an entry 
of type DT _ JMPREL is present, a DT _PLTRELSZ must accompany 
it. 

DT PLTGOT This element holds an address associated with the procedure 
linkage table and/ or the global offset table. On the 3B2 and 
6386 computers, this entry's d_ptr member gives the address 
of the first entry in the global offset table. As mentioned 
below, the first three global offset table entries are reserved, 
and two are used to hold procedure linkage table information. 

DT HASH This element holds the address of the symbol hash table, 
described in "Hash Table" below. 

DT STRTAB This element holds the address of the string table, described in 
the first part of this chapter. Symbol names, library names, and 
other strings reside in this table. 

DT SYM!'AB This element holds the address of the symbol table, described in 
the first part of this chapter, with Elf32_Sym entries for the 
32-bit class of files. 

DT RELA This element holds the address of a relocation table, described 
in the first part of this chapter. Entries in the table have expli
cit addends, such as Elf32 _ Rela for the 32-bit file class. An 
object file may have multiple relocation sections. When build
ing the relocation table for an executable or shared object file, 
the link editor catenates those sections to form a single table. 
Although the sections remain independent in the object file, the 
dynamic linker sees a single table. When the dynamic linker 
creates the process image for an executable file or adds a 
shared object to the process image, it reads the relocation table 
and performs the associated actions. If this element is present, 
the dynamic structure must also have DT_RELASZ and 
DT_RELAENT elements. When relocation is "mandatory'' for a 
file, either DT_RELA or DT_REL may occur (both are permitted 
but not required). 

13-56 ANSI C and Programming Support Tools 



Program Execution 

DT RELASZ This element holds the total size, in bytes, of the DT _ RELA relo
cation table. 

DT RELAENT This element holds the size, in bytes, of the DT _ RELA relocation 
entry. 

DT STRSZ This element holds the size, in bytes, of the string table. 

DT SYMENT This element holds the size, in bytes, of a symbol table entry. 

DT INIT This element holds the address of the initialization function, 
discussed in "Initialization and Termination Functions" below. 

DT FINI This element holds the address of the termination function, dis
cussed in "Initialization and Termination Functions" below. 

DT SONAME This element holds the string table offset of a null-terminated 
string, giving the name of the shared object. The offset is an 
index into the table recorded in the DT_STRTAB entry. See 
"Shared Object Dependencies" below for more information 
about these names. 

DT RPATH This element holds the string table offset of a null-terminated 
search library search path string, discussed in "Shared Object 
Dependencies" below. The offset is an index into the table 
recorded in the DT_STRTAB entry. 

DT SYMBOLIC This element's presence in a shared object library alters the 
dynamic linker's symbol resolution algorithm for references 
within the library. Instead of starting a symbol search with the 
executable file, the dynamic linker starts from the shared object 
itself. If the shared object fails to supply the referenced symbol, 
the dynamic linker then searches the executable file and other 
shared objects as usual. 

DT REL This element is similar to DT_RELA, except its table has implicit 
addends, such as Elf32_Rel for the 32-bit file class. If this ele
ment is present, the dynamic structure must also have 
DT RELSZ and DT RELENT elements. 

DT RELSZ This element holds the total size, in bytes, of the DT _REL reloca
tion table. 

Object Flies 13-57 



Program Execution 

DT RELENT 

DT PLTREL 

DT DEBUG 

This element holds the size, in bytes, of the DT _REL relocation 
entry. 

This member specifies the type of relocation entry to which the 
procedure linkage table refers. The d_val member holds 
DT _REL or DT _ RELA, as appropriate. All relocations in a pro
cedure linkage table must use the same relocation. 

This member is used for debugging. 

DT TEXTREL This member's absence signifies that no relocation entry should 
cause a modification to a non-writable segment, as specified by 
the segment permissions in the program header table. If this 
member is present, one or more relocation entries might request 
modifications to a non-writable segment, and the dynamic 
linker can prepare accordingly. 

DT JMPREL If present, this entry's d_ytr member holds the address of relo
cation entries associated solely with the procedure linkage 
table. Separating these relocation entries lets the dynamic 
linker ignore them during process initialization, if lazy binding 
is enabled. If this entry is present, the related entries of types 
DT _PLTRELSZ and DT _ PLTREL must also be present. 

DT _ LOPROC through DT _HIPROC 
Values in this inclusive range are reserved for processor-specific 
semantics. 

Except for the DT_NULL element at the end of the array, and the relative order 
of DT_NEEDED elements, entries may appear in any order. Tag values not 
appearing in the table are reserved. 

Shared Object Dependencies 
When the link editor processes an archive library, it extracts library members 
and copies them into the output object file. These statically linked services are 
available during execution without involving the dynamic linker. Shared objects 
also provide services, and the dynamic linker must attach the proper shared 
object files to the process image for execution. Thus executable and shared 
object files describe their specific dependencies. (For further background, see 
''Link Editing'' in Chapter 2.) 

13-58 ANSI C and Programming Support Tools 



Program Execution 

When the dynamic linker creates the memory segments for an object file, the 
dependencies (recorded in OT_ NEEDED entries of the dynamic structure) tell 
what shared objects are needed to supply the program's services. By repeatedly 
connecting referenced shared objects and their dependencies, the dynamic linker 
builds a complete process image. When resolving symbolic references, the 
dynamic linker examines the symbol tables with a breadth-first search. That is, 
it first looks at the symbol table of the executable program itself, then at the 
symbol tables of the DT_NEEDED entries (in order), then at the second level 
OT_ NEEDED entries, and so on. 

~ Even when a shared object is referenced multiple times in the dependency T list, the dynamic linker will connect the object only once to the process. 

Names in the dependency list are copies either of the DT_SONAME strings or the 
path names of the shared objects used to build the object file. For example, if 
the link editor builds an executable file using one shared object with a 
DT _SON.AME entry of libl and another shared object library with the path name 
/usr/lib/lib2, the executable file will contain libl and /usr/lib/lib2 in its 
dependency list. 

If a shared object name has one or more slash (I) characters anywhere in the 
name, such as /usr/lib/lib2 above or directory/file, the dynamic linker 
uses that string directly as the path name. If the name has no slashes, such as 
libl above, three facilities specify shared object path searching, with the follow
ing precedence. 

• First, the dynamic array tag DT_RPATH may give a string that holds a list 
of directories, separated by colons (: ). For example, the string 
/home/dir/usr/lib:/home/dir2/usr/lib: tells the dynamic linker to 
search first the directory /home/dir/lib, then /home/dir2/usr/lib, 
and then the current directory to find dependencies. 

• Second, a variable called LO_ LIBRARY _PATH in the process environment 
may hold a list of directories as above, optionally followed by a semicolon 
(; ) and another directory list. The following values would be equivalent 
to the previous example: 

Object Files 13-59 



Program Execution 

o LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib: 

o LD_LIBRARY_PATH=/home/dir/usr/lib;/home/dir2/usr/lib: 

o LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:; 

All LD LIBRARY PATH directories are searched after those from 
DT_RPATH. Although some programs (such as the link editor) treat the 
lists before and after the semicolon differently, the dynamic linker does 
not. Nevertheless, the dynamic linker accepts the semicolon notation, 
with the semantics described above. 

• Finally, if the other two groups of directories fail to locate the desired 
library, the dynamic linker searches /usr/lib. 

For security, the dynamic linker ignores environmental search specifications 
(such as LO LIBRARY PATH) for set-user and set-group ID programs. It 
does, however, search-OT_ RPATH directories and /usr/lib. 

Global Offset Table (Processor-Specific) 

Position-independent code cannot, in general, contain absolute virtual addresses. 
Global offset tables hold absolute addresses in private data, thus making the 
addresses available without compromising the position-independence and shara
bility of a program's text. A program references its global offset table using 
position-independent addressing and extracts absolute values, thus redirecting 
position-independent references to absolute locations. 

Initially, the global offset table holds information as required by its relocation 
entries (see "Relocation" in the first part of this chapter). After the system 
creates memory segments for a loadable object file, the dynamic linker processes 
the relocation entries, some of which will be type R__M32_GLOB_DAT or 
R_386_GLOB_DAT referring to the global offset table. The dynamic linker deter
mines the associated symbol values, calculates their absolute addresses, and sets 
the appropriate memory table entries to the proper values. Although the abso
lute addresses are unknown when the link editor builds an object file, the 
dynamic linker knows the addresses of all memory segments and can thus cal
culate the absolute addresses of the symbols contained therein. 

13-60 ANSI C and Programming Support Tools 



Program Execution 

If a program requires direct access to the absolute address of a symbol, that 
symbol will have a global offset table entry. Because the executable file and 
shared objects have separate global offset tables, a symbol's address may appear 
in several tables. The dynamic linker processes all the global offset table reloca
tions before giving control to any code in the process image, thus ensuring the 
absolute addresses are available during execution. 

The table's entry zero is reserved to hold the address of the dynamic structure, 
referenced with the symbol _DYNAMIC. This allows a program, such as the 
dynamic linker, to find its own dynamic structure without having yet processed 
its relocation entries. This is especially important for the dynamic linker, 
because it must initialize itself without relying on other programs to relocate its 
memory image. On the 3B2 and 6386 computers, entries one and two in the 
global offset table also are reserved. "Procedure Linkage Table" below 
describes them. 

The system may choose different memory segment addresses for the same 
shared object in different programs; it may even choose different library 
addresses for different executions of the same program. Nonetheless, memory 
segments do not change addresses once the process image is established. As 
long as a process exists, its memory segments reside at fixed virtual addresses. 

A global offset table's format and interpretation are processor-specific. For the 
WE 32100, an offset into the table is an unsigned value, allowing only non
negative "subscripts" into the array of addresses. 

For the 6386 computer, the symbol _GLOBAL_OFFSET_TABLE_ may be used to 
access the table. 

Figure 13-43: Global Offset Table 

I extern Elf32 _ Add.r _GLOBAL_OFFSET_TABLE_[]; 

The symbol _GLOBAL_ OFFSET_ TABLE_ may reside in the middle of the . got 
section, allowing both negative and non-negative "subscripts" into the array of 
addresses. 

Object Files 13-61 



Program Execution 

Procedure Linkage Table (Processor-Specific) 
Much as the global offset table redirects position-independent address calcula
tions to absolute locations, the procedure linkage table redirects position
independent function calls to absolute locations. The link editor cannot resolve 
execution transfers (such as function calls) from one executable or shared object 
to another. Consequently, the link editor arranges to have the program transfer 
control to entries in the procedure linkage table. On the 3B2 and 6386 comput
ers, procedure linkage tables reside in shared text, but they use addresses in the 
private global offset table. The dynamic linker determines the destinations' 
absolute addresses and modifies the global offset table's memory image accord
ingly. The dynamic linker thus can redirect the entries without compromising 
the position-independence and sharability of the program's text. Executable 
files and shared object files have separate procedure linkage tables. 

Procedure Linkage Table (382 Computer-Specific) 
To illustrate the 3B2 computer procedure linkage table, consider the following 
example. 

Figure 13-44: 382 Computer Procedure Linkage Table 

.PLTO: PUSHW got_ylus_4 
JMP *got _ylus _ 8 
NOP3 
NOP3 

.PLTl: JMP *namel@GOT 
PUSHW &offset 
JMP .PLTO@PC 

.PLT2: JMP *name2@GOT 
PUSHW &offset 
JMP .PLTO@PC 

13-62 ANSI C and Programming Support Tools 



Program Execution 

Following the steps below, the dynamic linker and the program "cooperate" to 
resolve symbolic references through the procedure linkage table and the global 
offset table. 

1. When first creating the memory image of the program, the dynamic 
linker sets the second and the third entries in the global offset table to 
special values. Steps below explain more about these values. 

2. For illustration, assume the program calls namel, which transfers control 
to the label . PLTl. 

3. The first instruction jumps to the address in the global offset table entry 
for namel. Initially, the global offset table holds the address of the fol
lowing PUSHW instruction, not the real address of namel. 

4. Consequently, the program pushes a relocation offset (offset) on the stack. 
The relocation offset is a 32-bit, non-negative byte offset into the reloca
tion table. The designated relocation entry will have type 
R _ M32 _ JMP _SLOT, and its offset will specify the global offset table entry 
used in the previous JMP instruction. The relocation entry also contains a 
symbol table index, thus telling the dynamic linker what symbol is being 
referenced, narrel in this case. 

5. After pushing the relocation offset, the program then jumps to .PLTO, the 
first entry in the procedure linkage table. The PUSHW instruction places 
the value of the second global offset table entry (got ylus _ 4) on the stack, 
thus giving the dynamic linker one word of identifying information. The 
program then jumps to the address in the third global offset table entry 
(gotylus_8), which transfers control to the dynamic linker. 

6. When the dynamic linker receives control, it unwinds the stack, looks at 
the designated relocation entry, finds the symbol's value, stores the "real" 
address for narrel in its global offset table entry, and transfers control to 
the desired destination. 

7. Subsequent executions of the procedure linkage table entry will transfer 
directly to namel, without calling the dynamic linker a second time. That 
is, the JMP instruction at . PLTl will transfer to narrel, instead of "falling 
through" to the PUSHW instruction. 

Object Files 13-63 



Program Execution 

Procedure Linkage Table (6386 Computer-Specific) 

To illustrate the 6386 computer's procedure linkage table, consider the following 
examples. 

Figure 13-45: 6386 Computer Absolute Procedure Linkage Table 

.PLTO: pushl gotylus_4 
jmp *gotylus_B 
nop; nop 
nop; nop 

.PLTl: jmp *namel in GOT 
pushl $offset 
jmp .PLTO@PC 

.PLT2: jmp * name2 in GOT 
pushl $offset 
jmp .PLTO@PC 

Figure 13-46: 6386 Computer Position-Independent Procedure Linkage Table 

.PLTO: pushl 4 (%ebx) 
jmp *8 (%ebx) 
nop; nop 
nop; nop 

.PLTl: jmp *namel@GOT (%ebx) 
pushl $offset 
jmp .PLTO@PC 

.PLT2: jmp *name2@GOT (%ebx) 
pushl $offset 
jmp .PLTO@PC 

13-64 ANSI C and Programming Support Tools 



Program Execution 

As the figures show, the procedure linkage table instructions use different 
operand addressing modes for absolute code and for position-independent 
code. Nonetheless, their interfaces to the dynamic linker are the same. 

Following the steps below, the dynamic linker and the program "cooperate" to 
resolve symbolic references through the procedure linkage table and the global 
offset table. 

1. When first creating the memory image of the program, the dynamic 
linker sets the second and the third entries in the global offset table to 
special values. Steps below explain more about these values. 

2. If the procedure linkage table is position-independent, the address of the 
global offset table must reside in %ebx. Each shared object file in the pro
cess image has its own procedure linkage table, and control transfers to a 
procedure linkage table entry only from within the same object file. Con
sequently, the calling function is responsible for setting the global offset 
table base register before calling the procedure linkage table entry. 

3. For illustration, assume the program calls namel, which transfers control 
to the label . PLTl. 

4. The first instruction jumps to the address in the global offset table entry 
for namel. Initially, the global offset table holds the address of the fol
lowing push! instruction, not the real address of namel. 

5. Consequently, the program pushes a relocation offset (offset) on the stack. 
The relocation offset is a 32-bit, non-negative byte offset into the reloca
tion table. The designated relocation entry will have type 
R_386_JMP_SLOT, and its offset will specify the global offset table entry 
used in the previous jmp instruction. The relocation entry also contains a 
symbol table index, thus telling the dynamic linker what symbol is being 
referenced, nanel in this case. 

6. After pushing the relocation offset, the program then jumps to . PLTO, the 
first entry in the procedure linkage table. The push! instruction places 
the value of the second global offset table entry (got ylus _ 4 or 4 ( %ebx) ) 
on the stack, thus giving the dynamic linker one word of identifying 
information. The program then jumps to the address in the third global 
offset table entry (gotylus_B or 8 (%ebx) ), which transfers control to the 
dynamic linker. 

Object Files 13-65 



Program Execution 

7. When the dynamic linker receives control, it unwinds the stack, looks at 
the designated relocation entry, finds the symbol's value, stores the "real" 
address for namel in its global offset table entry, and transfers control to 
the desired destination. 

8. Subsequent executions of the procedure linkage table entry will transfer 
directly to namel, without calling the dynamic linker a second time. That 
is, the jmp instruction at . PLTl will transfer to namel, instead of "falling 
through" to the push! instruction. 

Lazy Symbol Binding 

The LD_BIND_NOW environment variable can change dynamic linking behavior. 
If its value is non-null, the dynamic linker evaluates procedure linkage table 
entries before transferring control to the program. That is, the dynamic linker 
processes relocation entries of type R_M32_JMP_SLOT or R_386_JMP_SLOT dur
ing process initialization. Otherwise, the dynamic linker evaluates procedure 
linkage table entries lazily, delaying symbol resolution and relocation until the 
first execution of a table entry. 

13-66 

Lazy binding generally improves overall application performance, because 
unused symbols do not incur the dynamic linking overhead. Nevertheless, 
two situations make lazy binding undesirable for some applications. First, 
the initial reference to a shared object function takes longer than subsequent 
calls, because the dynamic linker intercepts the call to resolve the symbol. 
Some applications cannot tolerate this unpredictability. Second, if an error 
occurs and the dynamic linker cannot resolve the symbol, the dynamic linker 
will terminate the program. Under lazy binding, this might occur at arbitrary 
times. Once again, some applications cannot tolerate this unpredictability. 
By turning off lazy binding, the dynamic linker forces the failure to occur dur
ing process initialization, before the application receives control. 

ANSI C and Programming Support Tools 



Program Execution 

Hash Table 

A hash table of Elf32 _Word objects supports symbol table access. Labels 
appear below to help explain the hash table organization, but they are not part 
of the specification. 

Figure 13-47: Symbol Hash Table 

nbucket 
nchain 

bucket [0] 

bucket [nbucket -1] 
chain[O] 

chain [ nchain - 1] 

The bucket array contains nbucket entries, and the chain array contains 
nchain entries; indexes start at 0. Both bucket and chain hold symbol table 
indexes. Chain table entries parallel the symbol table. The number of symbol 
table entries should equal nchain; so symbol table indexes also select chain 
table entries. A hashing function (shown below) accepts a symbol name and 
returns a value that may be used to compute a bucket index. Consequently, if 
the hashing function returns the value x for some name, bucket [x%nbucket] 
gives an index, y, into both the symbol table and the chain table. If the symbol 
table entry is not the one desired, chain [yl gives the next symbol table entry 
with the same hash value. One can follow the chain links until either the 
selected symbol table entry holds the desired name or the chain entry contains 
the value STN UNDEF. 

Object Flies 13-67 



Program Execution 

Figure 13-48: Hashing Function 

13-68 

unsigned long 
elf_hash(const unsigned char *name) 
{ 

unsigned long h = 0, g; 

while (*name) 
{ 

h = (h << 4) + *name++; 
if (g = h & OxfOOOOOOO) 

h "= g >> 24; 
h &= -g; 

return h; 

ANSI C and Programming Support Tools 



Program Execution 

Initialization and Termination Functions 
After the dynamic linker has built the process image and performed the reloca
tions, each shared object gets the opportunity to execute some initialization 
code. These initialization functions are called in no specified order, but all 
shared object initializations happen before the executable file gains control. 

Similarly, shared objects may have termination functions, which are executed 
with the atexit () mechanism after the base process begins its termination 
sequence. (See atexit () in Section 3C of the Programmer's Reference Manual.) 
Once again, the order in which the dynamic linker calls termination functions is 
unspecified. 

Shared objects designate their initialization and termination functions through 
the DT_INIT and DT_FINI entries in the dynamic structure, described in 
"Dynamic Section" above. Typically, the code for these functions resides in the 
. init and . fini sections, mentioned in "Section Header'' in the first part of 
this chapter. 

Although the atexit o termination processing normally will be done, it is not 
guaranteed to have executed upon process death. In particular, the process 
will not execute the termination processing if it calls _exit() or if the pro
cess dies because it received a signal that it neither caught nor ignored. 

Object Files 13-69 









14 Floating Point Operations 

Introduction 14-1 

IEEE Arithmetic 14-2 
Data Types and Formats 14-2 

• Single-Precision 14-2 
• Double-Precision 14-3 

Normalized Numbers 14-3 
Denormalized Numbers 14-4 
Maximum and Minimum Representable Floating Point 

Values 14-4 
Special-Case Values 14-5 
NaNs and Infinities 14-6 
Rounding Control 14-7 
Exceptions, Sticky Bits, and Trap Bits 14-8 
Exception Handling on the 3B2 Computer 14-10 
Exception Handling on the 6386 Computer 14-12 

Conversion Between Binary and Decimal 
Values 14-13 

Single-Precision Floating Point Operations 14-16 
Single-Precision Functions 14-18 

Table of Contents 



Table of Contents 

Double-Extended-Precision 

IEEE Requirements 
Conversion of Floating Point Formats to Integer 
Square Root 
Compares and Unordered Condition 
NaNs and Infinities in Input/Output 

• Conversion to and from Decimal 

14-19 

14-20 
14-20 
14-20 
14-21 
14-21 
14-22 

II ANSI C and Programming Support Tools 



Introduction 

The C compilation system supports the IEEE Standard for Binary Floating Point 
Arithmetic (ANSI/IEEE Standard 754-1985). To support floating point on a 3B2 
computer, a math co-processor is required. A math co-processor is not required 
on the 6386 computer. 

The C compiler uses the IEEE standard single- and double-precision data types, 
operations, and conversions. library functions are provided for further IEEE 
support. 

You will probably not need any special functions to use floating point opera
tions in your programs. If you do, however, you can find information about 
floating point support in this chapter. (For more details on how the C compila
tion system supports the IEEE standard see "IEEE Requirements" in this 
chapter.) 

This chapter contains sections on the following topics: 

• the details of IEEE arithmetic 

• floating point exception handling 

• conversion between binary and decimal values 

• single-precision floating point operations 

• implicit precision of subexpressions 

• IEEE requirements 

If your code depends on a side effect of a floating point operation (such as 
the setting of a trap), note that the optimizer may remove the floating point 
operation if the result of the operation is not used elsewhere. Therefore, 
your process may never see the side effect it depends on. For example, if 
your program depends on a trap resulting from the following operation: 

x =a+ b 

and the operation is removed by the optimizer because the result is not used 
anywhere else, the trap never occurs. 

Floating Point Operations 14-1 



IEEE Arithmetic 

This section provides the details of floating point representation, the environ
ment of the 3B2 computer and the 6386 computer, and exception handling. 
Most users need not be concerned with the details of the floating point environ
ment. 

Some programs that previously dumped core will now proceed using compu
tations with diagnostic values or floating point "infinities." 

The floating point subsystems of the 382 computer and the 6386 computer 
are based on the Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 
Standard 754-1985. For more information about this standard, write to IEEE 
Service Center, 445 Hoes Lane, Piscataway, NJ, 08854, or call (201) 
981-0060 

Data Types and Formats 

Single-Precision 

Single-precision floating point numbers have the following format: 

31 30 23 22 0 
I SIGN I EXPONENT FRACTION 

binary point 

Field Position Full Name 
sign 31 sign bit (O==positive, l==negative) 
exponent 30-23 exponent (biased by 127) 
fraction 22-0 fraction (bits to right of binary point) 

14-2 ANSI C and Programming Support Tools 



IEEE Arithmetic 

Double-Precision 
Double-precision floating point numbers have the following format: 

63 62 52 51 0 
I SIGN I EXPONENT FRACTION 

binary point 

Field Position Full Name 
sign 63 sign bit (O==positive, l==negative) 
exponent 62-52 exponent (biased by 1023) 
fraction 51-0 fraction (bits to right of binary point) 

For the 382 computer, the high-order word is at the low address; for the 
6386 computer, the high-order word is at the high address: 

382 
Computer 

6386 
computer 

Address 

Address 

Normalized Numbers 

63 

I 
0 

31 

I 
3 

32 31 

3 4 

0 63 

I 
0 7 

0 

7 

32 

I 
4 

A number is normalized if the exponent field contains other than all l's or all 
O's. 

The exponent field contains a biased exponent, where the bias is 127 in single
precision, and 1023 in double-precision. Thus, the exponent of a normalized 
floating point number is in the range -126 to 127 inclusive for single-precision, 
and in the range -1022 to 1023 inclusive for double-precision. 

Floating Point Operations 14-3 



IEEE Arithmetic 

There is an implicit bit associated with both single- and double-precision for
mats. The implicit bit is not explicitly stored anywhere (thus its name). Logi
cally, for normalized operands the implicit bit has a value of 1 and resides 
immediately to the left of the binary point (in the 2° position). Thus the implicit 
bit and fraction field together can represent values in the range 1 to 2-T23 

inclusive for single-precision, and in the range 1 to 2-T52 inclusive for double
precision. 

Thus normalized single-precision numbers can be in the range (plus or minus) 
T 126 to (2-T23 ) x 2121 inclusive. 

Normalized double-precision numbers can be in the range (plus or minus) T 1022 

to (2-T52 ) x 21023 inclusive. 

Denormalized Numbers 

A number is denormalized if the exponent field contains all O's and the fraction 
field does not contain all O's. 

Thus denormalized single-precision numbers can be in the range (plus or minus) 
T 126 x Z--22=2-148 to (1-2-22 ) x 2-126 inclusive. 

Denormalized double-precision numbers can be in the range (plus or minus) 
2-1022 x 2-51 =2-1073 to (1-2-51 ) x 2-1022 inclusive. 

Both positive and negative zero values exist, but they are treated the same dur
ing floating point calculations. 

Maximum and Minimum Representable Floating Point 
Values 

The maximum and minimum representable values in floating point format are 
defined in the header file values . h: 

14-4 

#define MAXDOUBLE 
#define MAXFLOAT 
fdef ine MINDOUBLE 
fdef ine MINFLOAT 

l.79769313486231570e+308 
((float)3.40282346638528860e+38) 
4.94065645841246544e-324 
((float)l.40129846432481707e-45) 

ANSI C and Programming Support Tools 



IEEE Arithmetic 

Special-Case Values 

The following table gives the names of special cases and how each is 
represented. 

Value Name Sign Exponent Fraction 
MSB Rest of Fraction 

NaN (non-trapping) x Max 0 Nonzero 
Trapping NaN x Max 1 x 
Positive Infinity 0 Max Min 
Negative Infinity 1 Max Min 
Positive Zero 0 Min Min 
Negative Zero 1 Min Min 
Denormalized Number x Min Nonzero 
Normalized Number x NotMM x 

Key: 

does not matter x 
Max 

Min 

NaN 

NotMM 

maximum value that can be stored in the field (all l's) 

minimum value that can be stored in the field (all O's) 

not a number 

Nonzero 

field is not equal to either Min or Max values 

field contains at least one "l" bit 

MSB Most Significant Bit 

The algorithm for classification of a value into special cases follows: 

If (Exponent==Max) 
If (Fraction==Min) 

Then the number is Infinity (Positive or Negative 
as determined by the Sign bit). 

Else the number is NaN (Trapping if FractionMSB==O, 
non-Trapping if FractionMSB==l). 

Else If (Exponent==Min) 
If (Fraction==Min) 

Floating Point Operations 14-5 



IEEE Arithmetic 

Then the number is Zero (Positive or Negative 
as determined by the Sign bit). 

Else the number is Denormalized. 
Else the number is Normalized. 

NaNs and Infinities 

The floating point system supports two special representations: 

• Infinity - Positive infinity in a format compares greater than all other 
representable numbers in the same format. Arithmetic operations on 
infinities are quite intuitive. For example, adding any representable 
number to infinity is a valid operation the result of which is positive 
infinity. Subtracting positive infinity from itself is invalid. If some arith
metic operation overflows, and the overflow trap is disabled, in some 
rounding modes the result is infinity. 

• Not-a-Number (NaN)- These floating point representations are not 
numbers. They can be used to carry diagnostic information. There are 
two kinds of NaNs: signaling NaNs and quiet NaNs. Signaling NaNs 
raise the invalid operation exception whenever they are used as operands 
in floating point operations. Quiet NaNs propagate through most opera
tions without raising any exception. The result of these operations is the 
same quiet NaN. NaNs are sometimes produced by the arithmetic opera
tions themselves. For example, 0.0 divided by 0.0, when the invalid opera
tion trap is disabled, produces a quiet NaN. 

The header file ieeefp. h defines the interface for the floating point exception 
and environment control. This header defines three interfaces: 

• Rounding Control 

• Exception Control 

• Exception Handling 

14-6 ANSI C and Programming Support Tools 



IEEE Arithmetic 

Rounding Control 

The floating point arithmetic provides four rounding modes that affect the result 
of most floating point operations. (These modes are defined in the header 
ieeefp.h): 

FP RN 
FP RP 
FP RM 
FP RZ 

round to nearest representable number, tie-> even 
round toward plus infinity 
round toward minus infinity 
round toward zero (truncate) 

You can check the current rounding mode with the function 

fp_rnd fpgetround(void); /* return current rounding mode*/ 

You can change the rounding mode for floating point operations with the func
tion: 

fp_rnd fpsetround(fp_rnd); /*set rounding mode, */ 
/* return previous */ 

(fp _ rnd is an enumeration type with the enumeration constants listed and 
described above. The values for these constants are in ieeefp. h.) 

The examples in this section, such as the one directly above, illustrate func
tion prototypes. For information on function prototypes, see "Function 
Definitions" in Chapter 3 of this guide. 

The default rounding mode is round-to-nearest. In C and FORTRAN (F77), 
floating point to integer conversions are always done by truncation, and the 
current rounding mode has no effect on these operations. 

(For more information on fpgetround () and fpsetround () , see the 
fpgetround() manual page in the Programmer's Reference Manual.) 

Floating Point Operations 14-7 



IEEE Arithmetic 

Exceptions, Sticky Bits, and Trap Bits 

Floating point operations can lead to any of the following types of floating point 
exceptions: 

• Divide by zero exception 

This exception happens when a non-zero number is divided by floating 
point zero. 

• Invalid operation exception 

All operations on signaling NaNs raise an invalid operation exception. 
Zero divided by zero, infinity subtracted from infinity, infinity divided by 
infinity all raise this exception. When a quiet NaN is compared with the 
greater or lesser relational operators, an invalid operation exception is 
raised. 

• Overflow exception 

This exception occurs when the result of any floating point operation is 
too large in magnitude to fit in the intended destination. 

• Underflow exception 

When the underflow trap is enabled, an underflow exception is signaled 
when the result of some operation is a very tiny non-zero number that 
may cause some other exception later (such as overflow upon division). 
When the underflow trap is disabled, an underflow exception occurs only 
when both the result is very tiny (as explained above) and a loss of accu
racy is detected. 

• Inexact or imprecise exception 

14-8 

This exception is signaled if the rounded result of an operation is not 
identical to the infinitely precise result. Inexact exceptions are quite com
mon. 1.0 I 3.0 is an inexact operation. Inexact exceptions also occur 
when the operation overflows without an overflow trap. 

ANSI C and Programming Support Tools 



IEEE Arithmetic 

The above examples for the exception types do not constitute an exhaustive 
list of the conditions when an exception can occur. 

The floating point implementation on the 6386 computer includes another 
exception type called "Denormalization exception." This exception occurs 
when the result of an expression is a denormalized number. 

Whenever an exception occurs, a corresponding sticky bit is set (=1) for that 
exception. The sticky bits are all cleared at the start of a process. Individual 
sticky bits are cleared when the corresponding trap is enabled using 
fpsetmask O . Otherwise, the bits are never cleared, but remain set to indicate 
that an exception occurred. 

You can check the status of the sticky bits by using the function 

fp_except fpgetsticky(void); /*return logged exceptions*/ 

fp _except is an integer type that can have any combination of the following 
constant values: 

FP X DZ 
FP X INV 
FP X OFL 
FP X UFL 

FP X IMP 
FP X DNML 

divide-by-zero exception 
invalid operation exception 
overflow exception 
underflow exception 
imprecise (loss of precision) 
denormalization exception (6386 computer only) 

(The hexadecimal values for these constants are in ieeefp. h.) 

You can change the sticky bits by using the function 

fp_except fpsetsticky(fp_except); /*set logged excep- */ 
/* tions, return previous */ 

There is also a trap-enable bit (mask bit) associated with each exception. When 
an exception occurs, if the corresponding trap bit is enabled (=1), a trap occurs. 
When a trap occurs, the result of the operation is not written and a signal is sent 
to the user process. You can check the status of these mask bits by using the 
function 

fp_except fpgetmask(void); /* current exception mask */ 

Floating Point Operations 14-9 



IEEE Arithmetic 

You can also selectively enable or disable any of the exceptions by calling the 
function 

fp_except fpsetma.sk(fp_except); /* set mask, */ 
/* return previous */ 

with appropriate mask values. 

J\J! the exceptions are Ir.asked by default to conform to t.11.e IEEE iequirerr1ents. 

(For more information on fpgetsticky () , fpsetsticky () , fpgetma.sk () , and 
fpsetma.sk (), see the fpgetround () manual page in the Programmer's Reference 
Manual.) 

Exception Handling on the 382 Computer 

If a floating point trap is enabled, your process is signaled when the 
corresponding floating point exception occurs. The UNIX system signals your 
process by sending SIGFPE. If you intend to handle the exception, you must 
include the file ieeefp. h in at least one module of the program and specify a 
handler for SIGFPE. You can specify the handler by calling the signal() rou
tine as follows: 

*include <signal.h> 

extern void myhandler (); 

foo () 
{ 

(void) signal (SIGFPE, myhandler); 

When a trap takes place, the state of the co-processor is saved and the co
processor is re-initialized. This method allows floating point operations within 
a signal handler. 

On the 3B2 computer, when a floating point exception handler is entered, two 
global variables are set: 

14-10 ANSI C and Programming Support Tools 



_fpftype 

_fpfault 

IEEE Arithmetic 

floating point fault type 

_fpftype identifies the primary exception type. Possible 
values for _fpftype are FP_UFLW, FP_DIVZ, INT_DIVZ, etc. 
(See the header file ieeefp. h.) 

pointer to floating point exception structure 

_ fpfault points to a structure that provides all other infor
mation about the floating point operation. The information 
that _fpfault points to includes the type of operation being 
performed, the types and values of the operands, the type of 
a trapped value (if any), and the desired type of the result: 

struct fp_fault { 

} ; 

fp_op operation; 
fp_dunion operand[2]; 
fp_dunion t_value; 
fp_dunion result; 

extern struct fp_fault * _fpfault; 

The operation field identifies the floating point operation that raised the excep
tion. The possible values are included in ieeefp. h. fp _ dunion is a discrim
inated union that contains information about the type and format of the 
operands or result. (For example, fp _dunion contains information on whether 
the operand is in single-precision or double-precision). It also contains the actual 
values. See ieeefp. h for exact definitions of fp _op and fp _ dunion. 

A user handler has the information about the floating point operation, the 
operands, the computed result, and the format in which the result is to be 
returned. The user handler can supply a result (by assignment to 
_fpfault->result) in the right format, and when the handler returns, this 
result is used to complete the floating point operation. If no result is assigned 
by the user handler, a default result of 0.0 is used. 

Floating Point Operations 14-11 



IEEE Arithmetic 

Exception Handling on the 6386 Computer 

~ You cannot perform exception handling on the 6386 computer unless it is T equipped wtth a math co-processor. 

If a floating point trap is enabled, your process is sigrlalcd vv?hen t.'1.e 
corresponding floating point exception occurs. The UNIX system signals your 
process by sending SIGFPE. If you intend to handle the exception, you must 
include the file ieeefp. h in at least one module of the program and specify a 
handler for SIGFPE. You can specify the handler by calling the signal() rou
tine as follows: 

#include <signal.h> 

extern void rnyhandler () ; 

foe () 
{ 

(void) signal (SIGFPE, rnyhandler); 

When a trap takes place, the state of the co-processor is saved and the co
processor is re-initialized. This method allows floating point operations within 
a signal handler. 

The signal handler receives a single argument of type struct _ fpstackfram.e 
(defined in ieeefp. h) that contains the following information on the co
processor state at the time of the exception: program counter, general and float
ing point registers, data address if the floating point operation involved a 
memory location, co-processor status and control registers. This state informa
tion is restored when the signal handler returns, so you can control the state of 
the co-processor by modifying the data contained in the _ fpstackfram.e struc
ture. 

14-12 ANSI C and Programming Support Tools 



Conversion Between Binary and Decimal 
Values 

~ The functionality for conversion between binary and decimal values is not LJ21 available on tho 6386 computer. 

There are four functions in the C library that allow the programmer to convert 
binary values to binary coded decimal (BCD) values, and vice versa. These 
functions are _s2dec (), _d2dec (), _dec2s (),and _dec2d ().They are 
described in this chapter and on the decconv () manual page in the 
Programmer's Reference Manual. 

All of the conversion functions use the following structure found in ieeefp. h: 

typedef struct decimal { /* ascii-decimal floating point 
char •i; /* significand ascii digit string 
char •e; /* exponent ascii digit string 
char sign; /* sign of number 

/* 0 + 
/* 1 

char esign; /* sign of exponent 
/* 0 + 
/* 1 
/* 2 NaN 
/* 3 infinity 

int ilen; /* #digits in signif icand 
int elen; /* #digits in exponent 
} decimal; 

*/ 
*/ 
*I 
*/ 
*I 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*I 
*I 

The _ s2dec () function returns a decimal floating point value, given a pointer to 
a single-precision binary floating point number (float •x) and a precision 
specification (int p). 

void _s2dec (float •x, decimal *d, int p); 

On input, you should set the value of the ilen field (for rounding purposes) in 
the decimal structure to the number of decimal digits to output in the 
significand. If the ilen field is not in the range of 1 to 9, a NaN is returned in 
the esign field. If the input binary value pointed to by x is a NaN or infinity, 
the value returned ind is a NaN or infinity with the appropriate sign. The 
exponential component of the returned decimal value is always two digits. 

Floating Point Operations 14-13 



Conversion Between Binary and Decimal Values 

The parameter p (0 ~ p ~ ilen) specifies how many of the digits in the output 
decimal significand string are to the right of the implicit decimal point. If p is 
out of range, a NaN is returned. 

The _ d.2dec () function works like the _ s2dec () function except that it takes a 
pointer to a double-precision value for x. The ilen field must be in the range 
from 1to17, and the exponential component of the returned decimal is always 
three digits (elen = 3). 

void _d.2dec (double *x, dec.irna.l *d, int p); 

The _dec2s () function returns a single-precision binary floating point value, 
given a decimal value and a precision specification. 

void _dec2s (dec.irna.l *d, float *x, int p); 

The parameter p (0 ~ p ~ ilen) tells how many of the digits in the significand 
string are to the right of an implicit decimal point. 

Because the decimal format can represent a larger range of numbers than the 
binary formats, this conversion may overflow or underflow. Upon overflow or 
underflow, a signed infinity (signed zero) is returned, and the appropriate sticky 
bit is set. 

The significand and exponent strings may contain leading zero characters. But, 
once all leading 0 characters are removed, the significand string should have a 
length between 1 and 9 digits. The exponent string should have a length 
(specified by elen) between 1 and 2 digits. 

The _ dec2d () function is analogous to the _ dec2s () function except that it 
returns a double-precision value. After leading zero characters are removed, the 
significand string should have a length of no more than 17 digits and the 
exponent string should have a length (specified by elen) of no more than three 
digits. 

void _dec2d (dec.irna.l *d, double *x, int p); 

The conversion library functions use the round control, mask, and sticky bits 
just like any other floating point operation. Rounding is performed according to 
the current rounding mode. The default mode is round-to-nearest. 

The conversion functions will set the following sticky bits, if appropriate: 

14-14 ANSI C and Programming Support Tools 



Conversion Between Binary and Decimal Values 

• overflow 

• underflow 

• inexact result 

• invalid operation 

If a trap occurs, the usual trap handling conventions are used. Thus, a trap 
handler that the user may have specified via signal () will also cah::h excep
tions encountered during conversions between binary and decimal values. 
When a trap occurs, the following happens: 

• the global variable_ fpftype will be set to FP _ CONV 

• the global variable _ fpfault will point to the floating point exception 
structure 

• the user's trap handler will be called 

If the conversion was to decimal, the source operand will be either single- or 
double-precision and the intermediate result (the t _value field) will be decimal. 

If the conversion was from decimal, the source operand will be decimal and the 
result type will indicate the size of the expected result (i.e., single or double). 
The t value field will be the same size as the result size unless an overflow or 
underflow occurred. In the case of an overflow or an underflow, an extended 
precision value will be returned with the exponent adjusted by 192 for single
precision or 1536 for double-precision. 

If the trap handler does not supply a return value when a trap occurs, the 
default zero value will be returned. 

Floating Point Operations 14-15 



Single-Precision Floating Point Operations 

The ANSI standard for C has a provision that allows expressions to be evaluated 
in single-precision arithmetic if there is no double (or long double) operand in 
the expression. The C compiler supports this provision. 

Floating point constants are double-precision, unless explicitly stated to be 
float. For example, in the statements 

float a,b; 

a=b+l.O; 

because the constant 1 . O has type double, b is promoted to double before the 
addition and the result is converted back to float. However, the constant can 
be made explicitly a float: 

a = b + 1.0f; 
or 

a = b + (float) 1.0; 

In this case, the statement can potentially be compiled to a single instruction. 
Single-precision operations tend to be faster than double-precision operations. 

Whether a computation can be done in single-precision is decided based on the 
operands of each operator. Consider the following: 

float s; 
double d; 

d = d + s * s; 

s * sis computed to produce a single-precision result, which is promoted to 
double-precision and added to d. 

The IEEE P854 task force responsible for format independent floating point 
environment issues may disallow the multiplication to be carried in single
precision in this context; a future release of the C compilation system may 
be modified to take that into account. 

Note that using single-precision (as versus double-precision) arithmetic can 
result in loss of precision, as illustrated in the following example. 

float f = 8191.f * 8191.f; /* evaluate as a float */ 
double d = 8191. * 8191. ; · /* evaluate as a double */ 
printf ("As float: %f\nAs double: %f\n", f, d); 

14-16 ANSI C and Programming Support Tools 



Single-Precision Floating Point Operations 

The result is: 

As float: 67092480.000000 
As double: 67092481.000000 

Also, long int variables (same as int) have more precision than float vari
ables. Consider the following example: 

int i, j; 
i = Ox7ffffff; 
j = i * 1. O; 
printf (" j = %x\n", j) ; 
j = i * 1. Of; 
printf("j = %x\n", j); 

The first printf () statement outputs 7ffffff, while the second prints O. The 
second printf () prints 0 because the nearest float to Ox7fffffff has a value 
of Ox80000000. When the value is converted to an integer, the result is 0, and a 
floating point imprecise result exception occurs. A trap occurs if this exception 
was enabled. 

A function that is declared to return a float may actually return either a float 
or a double. If the function declaration is a prototype declaration in which at 
least one of the parameters is float, the function returns a float. Otherwise, 
it returns a double with precision limited to that of a float. (All of this is 
transparent.) For example: 

float retflt(float); 
float retdbll(); 
float retdbl2(int); 

Arguments work as follows: 

double takeflt(float x); 

double takedbl (x) 
float x; 

Floatlng Point Operations 

/* actually returns a float */ 
/* actually returns a double */ 
/* actually returns a double */ 

/* takes a float */ 

/* takes a double */ 

14-17 



Single-Precision Floating Point Operations 

Single-Precision Functions 

The math library (libm) contains single-precision versions of several functions. 
These floating point functions all have names that end inf, take and return 
floats, and do most internal computations in single-precision arithmetic. For a 
complete list of floating point functions in the math library, see "Math Library'' 
in Chapter 2 of this guide. 

Floating point functions in a separate library, libsfm, are also available. This 
special-purpose, single-precision assembly source math library contains the func
tions sinf () , cosf () , tanf () , asinf () , acosf () , atanf () , expf () , logf () , 
loglOf (), powf (), and sqrtf (). The routines in this source library are in-line 
expanded by the optimizer to provide faster execution by reducing the overhead 
of argument passing, function calling and returning, and return value passing. 
The source library is designed for applications that desire an increase in speed 
at the potential cost of size. 

T libsfm should be used only when necessary and with extreme caution. 
This library is a special purpose library that does not do domain reduc
tion or error checking. In other words, these functions never call 
ma.therr (), and arguments are not reduced to be within a finite range. 

DJ libsfm is not available on the 6386 computer. 

er 
In libsfm, inputs to sinf () and cosf () must be in the range: - ; ~ x ~ ; ; 

for tanf (), the range is - ; < x < ; ; for sqrtf (), logf (),and loglOf (), 

inputs must be greater than 0. 

14-18 ANSI C and Programming Support Tools 



Double-Extended-Precision 

The C compiler does not produce code that uses IEEE double-extended-precision 
arithmetic, either for intermediate or final results. All results are computed with 
the precision implicit in their type. 

The proposed ANSI standard for C (X3J11 /88-090) includes a new data type 
called long double, which could possibly map to the IEEE double-extended
precision format. ANSI C does not require a long double to be wider than a 
double. 

The C compilation system handles long double in a limited fashion. When 
you use the -Xe option to the cc command, the compiler treats a long double 
as computationally equivalent to a double. When you use the -Xt or -xa 
options, the compiler treats a long double as an error. 

AT&T intends to fully support long double in the future. However, because 
of compatibility constraints, we recommend that you do not use long 
double as of this issue of C. 

Floating Point Operations 14-19 



IEEE Requirements 

All arithmetic computations generated by the C compiler strictly conform to 
IEEE requirements. The following is a discussion of some topics where the C 
compilation system falls short of completely meeting the ANSI/IEEE Standard 
754-1985 requirements or the spirit of the requirements. 

Conversion of Floating Point Formats to Integer 

IEEE requires floating point to integer format conversions to be affected by the 
current rounding mode. However, the C language requires these conversions to 
be done by truncation (which is the same as round-to-zero). In the C compila
tion system floating point to integer conversions are done by truncation. 

Conversion of floating point numbers to integers should signal integer overflow 
or invalid operation for an overflow condition. In the current implementation 
the integer overflow flag is set, but there is no way to enable the overflow trap. 
Enabling the integer overflow trap would result in a substantial performance 
penalty due to stalled pipeline effects. 

The C compilation system provides the rint () function for IEEE- style conver
sion from floating point to integers. For information on the rint () function, 
see the floor() manual page in the Programmer's Reference Manual. 

Square Root 

IEEE requires the square root of a negative non-zero number to raise invalid 
operation, whereas UNIX system compatibility requires square root to return 0.0 
with errno set to EIXM When you use the -Xt option to the cc command, the 
sqrt () routine in the C compilation system returns 0.0 for negative non-zero 
inputs. Otherwise, the -Xt option operation conforms to IEEE requirements. 
When you use the -xa or -Xe option, the square root of a negative non-zero 
number raises invalid operation and returns a NaN, in strict conformance with 
the IEEE standard. 

14-20 ANSI C and Programming Support Tools 



IEEE Requirements 

Compares and Unordered Condition 

In addition to the usual relationships between floating point values (less than, 
equal, greater than), there is a fourth relationship: unordered. The unordered 
case arises when at least one operand is a NaN. Every NaN compares un
ordered with any value, including itself. 

The C compilation system provides the following predicates required by IEEE 
between floating point operands: 

>= 
!= < 
> <= 

While there is no predicate to test for unordered, you can use isnand () or 
isnanf () to test whether an argument is a NaN. For information on isnand () 
and isnanf () , see the isnan () manual page in the Programmer's Reference 
Manual. 

The relations >, >=, <, and <= raise invalid operation for unordered operands. 
The compiler generated code does not guard against the unordered outcome of 
a comparison. If the trap is masked, the path taken for unordered conditions is 
the same as if the conditional were true, which may result in incorrect behavior. 

For the predicates = and ! =, unordered condition does not lead to invalid 
operation. The path taken for unordered condition is the same as when the 
operands are non-equal, which is correct. 

(a > b) is not the same as ( ! (a <= b) ) in IEEE floating point arithmetic. 
The difference occurs when b or a compares unordered. The C compiler gen
erates the same code for both cases. 

NaNs and Infinities in Input/Output 

The printf () family of functions prints NaNs or infinities. NaNs are printed 
with their diagnostic values. 

Ideally, whatever printf () outputs, scanf () should be able to read using the 
same format. However, scanf () does not recognize NaNs and infinities for 
floating point formats. However, since these special cases serve mostly as diag
nostics for erroneous floating point computation, outputting these cases was 
considered more important than being able to read them. 

Floating Point Operations 14-21 



IEEE Requirements 

Conversion to and from Decimal 

~ The. functionality for conversion between binary and decimal values is not T available on the 6386 computer. 

While IEEE requires functions for converting to and from decimal, it does not 
specify t.11.e format of decimal numbers. The routines on the decconv () manuai 
page provide a common form of binary coded decimal (BCD). 

For C programmers, the printf () and scanf () routines are probably more 
useful. The accuracy of conversion in these routines meets the IEEE require
ments. However, these routines always work in the round-to-nearest mode. 
The current rounding mode has no effect on them. 

14-22 ANSI C and Programming Support Tools 







1 5 m4 Macro Processor 

Overview 15-1 

m4 Macros 15-4 
Defining Macros 15-4 
Quoting 15-5 
Arguments 15-7 
Arithmetic Built-Ins 15-9 
File Inclusion 15-10 
Diversions 15-11 
System Command 15-11 
Conditionals 15-12 
String Manipulation 15-12 
Printing 15-14 

Table of Contents 





Overview 

m4 is a general purpose macro processor that can be used to preprocess C and 
assembly language programs, among other things. Besides the straightforward 
replacement of one string of text by another, m4 lets you perform 

• integer arithmetic 

• file inclusion 

• conditional macro expansion 

• string and substring manipulation 

You can use built-in macros to perform these tasks or define your own macros. 
Built-in and user-defined macros work exactly the same way except that some 
of the built-in macros have side effects on the state of the process. A list of 
built-in macros appears on the m4 page in Section 1 of the Programmer's Refer
ence Manual. 

The basic operation of m4 is to read every alphanumeric token (string of letters 
and digits) and determine if the token is the name of a macro. The name of the 
macro is replaced by its defining text, and the resulting string is pushed back 
onto the input to be rescanned. Macros may be called with arguments. The 
arguments are collected and substituted into the right places in the defining text 
before the defining text is rescanned. 

Macro calls have the general form 

name(arg1, arg2, ... , argn) 

If a macro name is not immediately followed by a left parenthesis, it is assumed 
to have no arguments. Leading unquoted blanks, tabs, and new-lines are 
ignored while collecting arguments. Left and right single quotes are used to 
quote strings. The value of a quoted string is the string stripped of the quotes. 

When a macro name is recognized, its arguments are collected by searching for 
a matching right parenthesis. If fewer arguments are supplied than are in the 
macro definition, the trailing arguments are taken to be null. Macro evaluation 
proceeds normally during the collection of the arguments, and any commas or 
right parentheses that appear in the value of a nested call are as effective as 
those in the original input text. After argument collection, the value of the 
macro is pushed back onto the input stream and rescanned. We'll explain all 
this in more detail below. 

m4 Macro Processor 15-1 



Overview 

You invoke m4 with a command of the form 

$ m4 file file file 

Each argument file is processed in order. If there are no arguments or if an 
argument is a hyphen, the standard input is read. If you are eventually going 
to compile the m4 output, you could use a command something like this: 

$ m4 filel.m4 > filel.c 

You can use the -D option to define a macro on the m4 command line. Sup
pose you have two similar versions of a program. You might have a single m4 
input file capable of generating the two output files. That is, filel.m4 could 
contain lines such as 

if (VER, 1, do _something) 
if (VER, 2, do _something> 

Your makefile for the program might look like this: 

filel.1.c : filel.m4 
m4 -DVER=l filel.m4 > filel.l.c 

filel.2.c filel.m4 
m4 -DVER=2 filel.m4 > filel.2.c 

You can use the -u option to "undefine" VER. If filel .m4 contains 

if (VER, 1, do _something) 
if (VER, 2, do _something) 
ifndef (VER, do _something> 

then your makefile would contain 

15-2 ANSI C and Programming Support Tools 



Overview 

fileO.O.c filel.m4 
m4 -UVER filel.m4 > filel.O.c 

filel.1.c filel.m4 
m4 -DVER=l filel.m4 > filel.1.c 

filel.2.c filel.m4 
m4 -DVER=2 filel.m4 > filel.2.c 

m4 Macro Processor 15-3 



m4 Macros 

Defining Macros 

The primary built-in m4 macro is define (), which is used to define new mac
ros. The following input 

define (name, stuff> 

causes the string name to be defined as stuff. All subsequent occurrences of P.ame 
will be replaced by stuff. The defined string must be alphanumeric and must 
begin with a letter (underscore counts as a letter). The defining string is any 
text that contains balanced parentheses; it may stretch over multiple lines. As a 
typical example 

define (N, 100) 

if (i > N) 

defines N to be 100 and uses the "symbolic constant" Nin a later if statement. 
As noted, the left parenthesis must immediately follow the word define to sig
nal that define() has arguments. If the macro name is not immediately fol
lowed by a left parenthesis, it is assumed to have no arguments. In the previ
ous example, then, N is a macro with no arguments. 

A macro name is only recognized as such if it appears surrounded by non
alphanumeric characters. In the following example 

define (N, 100) 

if (NNN > 100) 

the variable NNN is unrelated to the defined macro N even though the variable 
contains Ns. 

m4 expands macro names into their defining text as soon as possible. So 

define (N, 100) 
define (M, N) 

defines M to be 100 because the string N is immediately replaced by 100 as the 
arguments of define (M, N) are collected. To put this another way, if N is 
redefined, M keeps the value 100. 

15-4 ANSI C and Programming Support Tools 



m4 Macros 

There are two ways to avoid this behavior. The first, which is specific to the 
situation described here, is to interchange the order of the definitions: 

define (M, N) 
define (N, 100) 

Now Mis defined to be the string N, so when the value of Mis requested later, 
the result will always be the value of N at that time (because the M will be 
replaced by N which will be replaced by 100). 

Quoting 

The more general solution is to delay the expansion of the arguments of 
define () by quoting them. Any text surrounded by left and right single quotes 
is not expanded immediately, but has the quotes stripped off as the arguments 
are collected. The value of the quoted string is the string stripped of the quotes. 
So 

define (N, 100) 
define (M, 'N' ) 

defines Mas the string N, not 100. 

The general rule is that m4 always strips off one level of single quotes whenever 
it evaluates something. This is true even outside of macros. If the word 
define is to appear in the output, the word must be quoted in the input: 

'define' = l; 

It's usually best to quote the arguments of a macro to assu:e that what you are 
assigning to the macro name actually gets assigned. To redefine N, for example, 
you delay its evaluation by quoting: 

define (N, 100) 

define ( 'N', 200) 

Otherwise 

define (N, 100) 

define(N, 200) 

m4 Macro Processor 15-5 



m4 Macros 

the Nin the second definition is immediately replaced by 100. The effect is the 
same as saying 

define(lOO, 200) 

Note that this statement will be ignored by m4 since only things that look like 
names can be defined. 

If left and right single quotes are not convenient for some reason, the quote 
characters can be changed with the built-in macro changequote () : 

changequote ( [, ] ) 

In this example the macro makes the "quote" characters the left and right brack
ets instead of the left and right single quotes. The quote symbols can be up to 
five characters long. The original characters can be restored by using 
changequote () without arguments: 

changequote 

undefine () removes the definition of a macro or built-in: 

undefine ( 'N' ) 

Here the macro removes the definition of N. Be sure to quote the argument to 
undefine (). Built-ins can be removed with undefine () as well: 

undefine ('define') 

Note that once a built-in is removed or redefined, its original definition cannot 
be reused. 

Macros can be renamed with defn () . Suppose you want the built-in define () 
to be called XYZ () . You specify 

define (XYZ, defn ('define')) 
undefine ('define' ) 

After this, XYZ () takes on the original meaning of define() . So 

XYZ (A, 100) 

defines A to be 100. 

15-6 ANSI C and Programming Support Tools 



m4 Macros 

The built-in if def () provides a way to determine if a macro is currently 
defined. Depending on the system, a definition appropriate for the particular 
machine can be made as follows: 

ifdef('pdpll', 'define(wordsize,16)') 
ifdef ( 'u3b', 'define (wordsize, 32) ') 

The ifdef () macro permits three arguments. If the first argument is defined, 
the value of ifdef () is the second argument. If the first argument is not 
defined, the value of ifdef () is the third argument: 

ifdef('unix', on UNIX, not on UNIX) 

If there is no third argument, the value of if def () is null. 

Arguments 

So far we have discussed the simplest form of macro processing - replacing 
one string with another (fixed) string. Macros can also be defined so that 
different invocations have different results. In the replacement text for a macro 
(the second argument of its define()), any occurrence of $n is replaced by the 
nth argument when the macro is actually used. So the macro bump () , defined 
as 

define(bump, $1 = $1 + 1) 

is equivalent to x = x + 1 for bump (x) . 

A macro can have as many arguments as you want, but only the first nine are 
accessible individually, $1 through $9. $0 refers to the macro name itself. As 
noted, arguments that are not supplied are replaced by null strings, so a macro 
can be defined that simply concatenates its arguments: 

define(cat, $1$2$3$4$5$6$7$8$9) 

That is, cat (x, y, z) is equivalent to xyz. Arguments $4 through $9 are 
null since no corresponding arguments were provided. 

Leading unquoted blanks, tabs, or new-lines that occur during argument collec
tion are discarded. All other white space is retained, so 

define(a, b C) 

defines a to be b c. 

m4 Macro Processor 15-7 



m4 Macros 

Arguments are separated by commas. A comma "protected" by parentheses 
does not terminate an argument: 

define (a, (b, c)) 

has two arguments, a and (b, c). You can specify a comma or parenthesis as 
an argument by quoting it. 

$ * is replaced by a list of the arguments given to t."1e macro in a subsequent 
invocation. The listed arguments are separated by commas. So 

define (a, 1) 

define (b, 2) 
define(star, '$*') 
star (a, b) 

gives the result 1, 2. So does 

star ('a', 'b') 

because m4 strips the quotes from a and bas it collects the arguments of 
star() , then expands a and b when it evaluates star() . 

$@ is identical to $* except that each argument in the subsequent invocation is 
quoted. That is, 

define (a, 1) 

define (b, 2) 
define(at, '$@') 
at('a', 'b') 

gives the result a, b because the quotes are put back on the arguments when 
at () is evaluated. 

St is replaced by the number of arguments in the subsequent invocation. So 

define(sharp, '$f') 
sharp (1, 2, 3) 

gives the result 3, 

sharp() 

gives the result 1, and 

sharp 

gives the result O. 

15-8 ANSI C and Programming Support Tools 



m4 Macros 

The built-in shift () returns all but its first argument. The other arguments 
are quoted and pushed back onto the input with commas in between. The sim
plest case 

shift(l, 2, 3) 

gives 2, 3. As with $@,you can delay the expansion of the arguments by quot
ing them, so 

define (a, 100) 
define (b, 200) 
shift ('a', 'b') 

gives the result b because the quotes are put back on the arguments when 
shift () is evaluated. 

Arithmetic Built-Ins 

m4 provides three built-in macros for doing integer arithmetic. incr () incre
ments its numeric argument by 1. deer () decrements by 1. So to handle the 
common programming situation in which a variable is to be defined as "one 
more than N" you would use 

define (N, 100) 
define(Nl, 'incr(N)') 

That is, Nl is clefined as one more than the current value of N. 

The more general mechanism for arithmetic is a built-in called eval () , which is 
capable of arbitrary arithmetic on integers. Its operators in decreasing order of 
precedence are 

m4 Macro Processor 15-9 



m4 Macros 

+ - (unary) 

** 
* I % 
+ -

& 

&& 
11 

!= < <= > >= 

Parentheses may be used to group operations where needed. All the operands 
of an expression given to eval () must ultimately be numeric. The numeric 
value of a true relation (like 1 > O) is 1, and false is 0. The precision in 
eval () is 32 bits on the UNIX system. 

As a simple example, you can define M to be 2**N+l with 

define(M, 'eval(2**N+l)') 

Then the sequence 

define (N, 3) 
M(2) 

gives 9 as the result. 

File Inclusion 

A new file can be included in the input at any time with the built-in macro 
include(): 

include <filename) 

inserts the contents of filename in place of the macro and its argument. The 
value of include() (its replacement text) is the contents of the file. If needed, 
the contents can be captured in definitions and so on. 

A fatal error occurs if the file named in include() cannot be accessed. To get 
some control over this situation, the alternate form sinclude () ("silent 
include") can be used. This built-in says nothing and continues if the file 
named cannot be accessed. 

15-10 ANSI C and Programming Support Tools 



m4 Macros 

Diversions 

m4 output can be diverted to temporary files during processing, and the col
lected material can be output on command. m4 maintains nine of these diver
sions, numbered 1 through 9. If the built-in macro divert (n) is used, all sub
sequent output is put onto the end of a temporary file referred to as n. Divert
ing to this file is stopped by the divert() or divert (0) macros, which resume 
the normal output process. 

Diverted text is normally output at the end of processing in numerical order. 
Diversions can be brought back at any time by appending the new diversion to 
the current diversion. Output diverted to a stream other than 0 through 9 is 
discarded. The built-in undivert () brings back all diversions in numerical 
order; undivert () with arguments brings back the selected diversions in the 
order given. Undiverting discards the diverted text (as does diverting) into a 
diversion whose number is not between 0 and 9, inclusive. 

The value of undivert () is not the diverted text. Furthermore, the diverted 
material is not rescanned for macros. The built-in divnum() returns the number 
of the currently active diversion. The current output stream is 0 during normal 
processing. 

System Command 

Any program can be run by using the syscmd () built-in: 

syscmd (date) 

invokes the UNIX system date command. Normally, syscmd () would be used 
to create a file for a subsequent include () . 

To make it easy to name files uniquely, the built-in rnaketernp () replaces a 
string of XXXXX in the argument with the process ID of the current process. 

m4 Macro Processor 15-11 



m4 Macros 

Conditionals 

Arbitrary conditional testing is performed with the built-in ifelse () . In its 
simplest form 

ifelse(a, b, c, d) 

compares the two strings a and b. If a and b are identical, ifelse () returns the 
string c. Otherwise, string d is returned. Thus, a macro called compare () can 
be defined as one that compares two strings and returns yes or no, respec
tively, if they are the same or different: 

define(conq:>are, 'ifelse($1, $2, yes, no)') 

Note the quotes, which prevent evaluation of ifelse () from occurring too 
early. If the final argument is omitted, the result is null, so 

ifelse (a, b, c) 

is c if a matches b, and null otherwise. 

ifelse () can actually have any number of arguments and provides a limited 
form of multiway decision capability. In the input 

ifelse (a, b, c, d, e, f, g) 

if the string a matches the string b, the result is c. Otherwise, if d is the same as 
e, the result is f. Otherwise, the result is g. 

String Manipulation 

The len () macro returns the length of the string (number of characters) in its 
argument. So 

!en (abcdef) 

is 6, and 

len( (a,b)) 

is s. 

15-12 ANSI C and Programming Support Tools 



The substr () macro can be used to produce substrings of strings. So 

substr (s, i, n) 

m4 Macros 

returns the substring of s that starts at the ith position (origin 0) and is n charac
ters long. If n is omitted, the rest of the string is returned. Inputting 

substr ('now is the time', 1) 

returns the following string: 

ow is the time 

If i or n are out of range, various sensible things happen. 

The index(s1, s2) macro returns the index (position) in s1 where the string s2 
occurs, -1 if it does not occur. As with substr (), the origin for strings is 0. 

translit () performs character transliteration and has the general form 

translit (s, f, t) 

which modifies s by replacing any character inf by the corresponding character 
in t. Using input 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding digits. If t is shorter than f, characters 
that do not have an entry in t are deleted. As a limiting case, if t is not present 
at all, characters from fare deleted from s. So 

translit(s, aeiou) 

would delete vowels from s. 

The macro dnl () deletes all characters that follow it up to and including the 
next new-line. It is useful mainly for throwing away empty lines that otherwise 
would clutter up m4 output. Using input 

define (N, 100) 
define (M, 200) 
define (L, 300) 

results in a new-line at the end of each line that is not part of the definition. So 
the new-line is copied into the output where it may not be wanted. When you 
add d.nl () to each of these lines, the new-lines will disappear. Another method 
of achieving the same result is to input 

m4 Macro Processor 15-13 



m4 Macros 

divert (-1) 

define ( ... ) 

divert 

Printing 

The built-in errprint () writes its arguments out on the standard error file. 
An example would be 

errprint('fatal error') 

dumpdef () is a debugging aid that dumps the current names and definitions of 
items specified as arguments. If no arguments are given, then all current names 
and definitions are printed. 

15-14 ANSI C and Programming Support Tools 







A Appendix A: Enhanced asm 
Facility 

Introduction 

Example 
Definition 
Use 

Definition Of Terms 

Detailed Description 
Using asm Macros 
Definition 

• Storage 
• asm Body 

Writing asm Macros 

Table of Contents 

A-1 

A-2 
A-2 
A-2 

A-4 

A-5 

A-5 

A-5 
A-6 
A-7 

A-8 





Introduction 

Although the ability to write portable code is one reason for using the C 
language, sometimes it is necessary to introduce machine-specific assembly 
language instructions into C code. This need arises most often within operating 
system code that must deal with hardware registers that would otherwise be 
inaccessible from C. The asm facility makes it possible to introduce this assem
bly code. 

In earlier versions of C the asm facility was primitive. You included a line that 
looked like a call on the function asm, which took one argument, a string: 

asm("assembly instruction here"); 

Unfortunately this technique has shortcomings when the assembly instruction 
needs to reference C language operands. You have to guess the register or stack 
location into which the compiler would put the operand and encode that loca
tion into the instruction. If the compiler's allocation scheme changed, or, more 
likely, if the C code surrounding the asm changed, the correct location for the 
operand in the asm would also change. That is, you would have to be aware 
that the C code would affect the asm and change it accordingly. 

The new facility is upwardly compatible with old code, since it retains the old 
capability. In addition, it allows you to define asm macros that describe how 
machine instructions should be generated when their operands take particular 
forms that the compiler knows about, such as register or stack variables. 

Although ~his enhanced asm ~acil~y is eas~er to us~ t~an before, you are still 
strongly discouraged from using 1t for routine applications because those 
applications will not be portable to different machines. The primary intended 
use of the asm facility is to help implement operating systems in a clean way. 

The optimizer (cc -0) may work incorrectly on C programs that use the asm 
facility, particularly when the asm macros contain instructions or labels that are 
unlike those that the C compiler generates. Furthermore, you may need to 
rewrite asm code in the future to maximize its benefits as new optimization 
technology is introduced into the compilation system. 

Appendix A: Enhanced asm Faclllty A·1 



Example 

Before we get into the details of the asm facility, let us consider a hypothetical 
example. Imagine a machine with an spl instruction for setting machine inter
rupt priority levels. spl takes one operand, which must be in a register. 
Nevertheless, it would be convenient to have a function that produces in-line 
code to set priority levels, uses the spl instruction, and works with register 
variables or constants. 

Our example consists of two parts, the definition of the asm macro, and its use. 

Definition 

We define an asm macro, which we'll call Sl?L, like this: 

asm void Sl?L(newpri) 
{ 

% reg newpri; 
spl newpri 

% con newpri; 
movw newpri,%r0 
spl %r0 

The lines that begin with % are patterns. If the arguments at the time the macro 
is called match the storage modes in a pattern, the code that follows the pattern 
line will be expanded. 

Use 
The table below shows the (assembly) code that the compiler would generate 
with two different uses of Sl?L. Imagine the following introductory code (along 
with the above definition): 

f() { 

register int i; 

A-2 ANSI C and Programming Support Tools 



Example 

code ... matches ... generates ... 
SPL (i); % reg spl %r8 

SPL(3); % con m:>vw &3,%r0 
spl %r0 

The first use of SPL has a register variable as its argument (assuming that i 
actually gets allocated to a register). This argument has a storage mode that 
matches reg, the storage mode in the first pattern. Therefore the compiler 
expands the first code body. Note that newpri, the formal parameter in the 
definition, has been replaced in the expanded code by the compiler's idea of the 
assembly time name for the variable i, namely %r8. Similarly, the second use 
of SPL has a constant as its argument, which leads to the compiler's choosing 
the second pattern. Here again newpri has been replaced by the assembly time 
form for the constant, &3. 

Appendix A: Enhanced asm Facility A-3 



Definition Of Terms 

The example above introduced several terms that will be used in the description 
that follows. We will define them here. 

asm macro An asm macro is the mechanism by which programs use the 
enhanced asm facility. asm macros have a definition and uses. 
The definition includes a set of pattern/body pairs. Each 
pattern describes the storage modes that the actual arguments 
must rriatch for t.li.e asm macro body to be expanded. The uses 
resemble C function calls. 

storage mode The storage mode, or mode, of an asm macro argument is the 
compiler's idea of where the argument can be found at run 
time. Examples are "in a register'' or "in memory." 

pattern A pattern specifies the modes for each of the arguments of an 
asm macro. When the modes in the pattern all match those of 
the use, the corresponding body is expanded. 

asm macro body The asm macro body, or body, is the portion of code that will be 
expanded by the compiler when the corresponding pattern 
matches. The body may contain references to the formal 
parameters, in which case the compiler substitutes the 
corresponding assembly language code. 

A-4 ANSI C and Programming Support Tools 



Detailed Description 

Using asm Macros 

The enhanced asm facility allows you to define constructs that behave syntacti
cally like static C functions. Each asm macro has one definition and zero or 
more uses per source file. The definition must appear in the same file with the 
uses (or be #included), and the same asm macro may be defined multiply (and 
differently) in several files. 

The asm macro definition declares a return type for the macro code, specifies 
patterns for the formal parameters, and provides bodies of code to expand when 
the patterns match. When it encounters an asm macro call, the compiler 
replaces uses of the formal parameters by its idea of the assembly language 
locations of the actual arguments as it expands the code body. This constitutes 
an important difference between C functions and asm macros. An asm macro 
can thus have the effect of changing the value of its arguments, whereas a C 
function can only change a copy of its argument values. 

The uses of an asm macro look exactly like normal C function calls. They may 
be used in expressions and they may return values. The arguments to an asm 
macro may be arbitrary expressions, except that they may not contain uses of 
the same or other asm macros. 

When the argument to an asm macro is a function name or structure, the com
piler generates code to compute a pointer to the structure or function, and the 
resulting pointer is used as the actual argument of the macro. 

Definition 

The syntactic descriptions that follow are presented in the style used in Chapter 
3, "C Language." The syntactic classes type-specifier, identifier, and parameter-list 
have the same form as in that chapter. A syntactic description enclosed in 
square brackets ( [ ] ) is optional, unless the right bracket is followed by +. A + 
means "one or more repetitions" of a description. Similarly, * means "zero or 
more repetitions." 

Appendix A: Enhanced asm Facility A-5 



Detailed Description 

asm macro: 
asm [ type-specifier ] identifier [ parameter-list ] ) 
{ 

[ storage-mode-specification-line 
asm-body] * 

That is, an asm macro consists uf the keyword asm, rouowea oy what iooKs UKe 
a C function declaration. Inside the macro body there are one or more pairs of 
storage-mode-specification-line(s) (patterns) and corresponding asm-body(ies). If the 
type-specifier is other than void, the asm macro should return a value of the 
declared type. 

storage-mode-specification-line: 
% [ storage-mode [ identifier [ , identifier ]* ] ; ]+ 

That is, a storage-mode-specification-line consists of a single line (no continuation 
with\) that begins with % and contains the names (identifier(s)) and storage 
mode(s) of the formal parameters. Modes for all formal parameters must be 
given in each storage-mode-specification-line (except for error). The % must be 
the first character on a line. If an asm macro has no parameter-list, the storage
mode-specification-line may be omitted. 

Storage 
These are the storage modes that the compiler recognizes in asm macros. 

treg A compiler-selected temporary register. 

ureg A C register variable that the compiler has allocated in a 
machine register. 

reg A treg or ureg. 

con 

mem 

lab 

A-6 

A compile time constant. 

A mem operand matches any allowed machine addressing mode, 
including reg and con. 

A compiler-generated unique label. The identifier(s) that are 
specified as being of mode lab do not appear as formal parame
ters in the asm macro definition, unlike the preceding modes. 
Such identifiers must be unique. 

ANSI C and Programming Support Tools 



error 

asm Body 

Detailed Description 

Generate a compiler error. This mode exists to allow you to flag 
errors at compile time if no appropriate pattern exists for a set 
of actual arguments. 

The asm body represents (presumed) assembly code that the compiler will gen
erate when the modes for all of the formal parameters match the associated pat
tern. Syntactically, the asm body consists of the text between two pattern lines 
(that begin with %) or between the last pattern line and the } that ends the asm 
macro. C language comment lines are not recognized as such in the asm body. 
Instead they are simply considered part of the text to be expanded. 

Formal parameter names may appear in any context in the asm body, delimited 
by non-alphanumeric characters. For each instance of a formal parameter in the 
asm body the compiler substitutes the appropriate assembly language operand 
syntax that will access the actual argument at run time. As an example, if one 
of the actual arguments to an asm macro is x, an automatic variable, a string 
like 4 (%fp) would be substituted for occurrences of the corresponding formal 
parameter. An important consequence of this macro substitution behavior is 
that asm macros can change the value of their arguments. Note that this is dif
ferent from standard C semantics! 

For lab parameters a unique label is chosen for each new expansion. 

If an asm macro is declared to return a value, it must be coded to return a value 
of the proper type in the machine register that is appropriate for the implemen
tation. 

An implementation restriction requires that no line in the asm body may start 
with %. 

Appendix A: Enhanced asm Faclllty A-7 



Writing asm Macros 

Here are some guidelines for writing asm macros. 

1. Know the implementation. You must be familiar with the C compiler and 
assembly language with which you are working. You can consult the 
Application Binary Interface for your machine for the details of function cal
ling and register usage conventions. 

2. Observe register conventions. You should be aware of which registers the 
C compiler normally uses for scratch registers or register variables. An 
asm macro may alter scratch registers at will, but the values in register 
variables must be preserved. You must know in which register(s) the 
compiler returns function results. 

3. Handle return values. asm macros may "return" values. That means 
they behave as if they were actually functions that had been called via the 
usual function call mechanism. asm macros must therefore mimic C's 
behavior in that respect, passing return values in the same place as nor
mal C functions. Note that float and double results sometimes get 
returned in different registers from integer-type results. On some 
machine architectures, C functions return pointers in different registers 
from those used for scalars. Finally, structs may be returned in a 
variety of implementation-dependent ways. 

4. Cover all cases. The asm macro patterns should cover all combinations of 
storage modes of the parameters. The compiler attempts to match pat
terns in the order of their appearance in the a~m macro definition. 

There are two escape mechanisms for the matching process. If the com
piler encounters a storage mode of error while attempting to find a 
matching pattern, it generates a compile time error for that particular asm 
macro call. If the asm macro definition lacks an error storage mode and 
no pattern matches, the compiler generates a normal function call for a 
function having the same name as the asm macro. Note that such a func
tion would have to be defined in a different source file, since its name 
would conflict with that of the asm macro. 

5. Beware of argument handling. asm macro arguments are used for macro 
substitution. Thus, unlike normal C functions, asm macros can alter the 
underlying values that their arguments refer to. Altering argument 
values is discouraged, however, because doing so would make it impossi
ble to substitute an equivalent C function call for the asm macro call. 

A-8 ANSI C and Programming Support Tools 



Writing asm Macros 

6. Try it and see. asm macros are inherently non portable and 
implementation-dependent. Although they make it easier to introduce 
assembly code reliably into C code, the process cannot be made foolproof. 
You will always need to verify correct behavior by inspection. 

7. Debuggers like sdb will generally have difficulty with asm macros. It 
may be impossible to set breakpoints within the in-line code that the com
piler generates. 

8. Because optimizers are highly tuned to the normal code generation 
sequences of the compiler, using asm macros may cause optimizers to 
produce incorrect code. Generally speaking, any asm macro that can be 
directly replaced by a comparable C function may be optimized safely. 
However, the sensitivity of an optimizer to asm macros varies among 
implementations and may change with new software releases. 

Appendix A: Enhanced asm Facility A-9 









B Appendix B: Mapfile Option 

Introduction 

Using the Mapf ile Option 

Mapfile Structure and Syntax 
Segment Declarations 
Mapping Directives 
Size-Symbol Declarations 

Mapping Example 

Mapfile Option Defaults 

Internal Map Structure 

Error Messages 
Warnings 
Fatal Errors 

Table of Contents 

8-1 

8-2 

8-3 
8-4 
8-6 
8-8 

8-9 

8-11 

8-13 

8-17 
B-17 
8-17 





Introduction 

The ELF linker (ld) automatically and intelligently maps input sections from 
object files (. o files) to output segments in executable files (a. out files). The 
mapfile option to the ld command allows you to change the default mapping 
provided by the ELF linker. 

In particular, the mapfile option allows you to: 

• declare segments and specify values for segment attributes such as seg
ment type, permissions, addresses, length, and alignment 

• control mapping of input sections to segments by specifying the attribute 
values necessary in a section to map to a specific segment (the attributes 
are section name, section type, and permissions) and by specifying which 
object file(s) the input sections should be taken from, if necessary 

• declare a global-absolute symbol that is assigned a value equal to the size 
of a specified segment (by the linker) and that can be referenced from 
object files 

The major purpose of the mapfile option is to allow users of ifiles (an option 
previously available to ld that used link editor command language directives) 
to convert to mapfiles. All other facilities previously available for ifiles, other 
than those mentioned above, are not available with the mapfile option. 

When using the mapfile option, be aware that you can easily create 
a. out files that do not execute. Therefore, the use of the mapfile option 
is strongly discouraged. ld knows how to produce a correct a.out 
without the use of the mapfile option. The mapfile option is intended for 
system programming use, not application programming use. 

This appendix describes the structure and syntax of a mapfile and the use of the 
-M option to the ld command. 

Appendix B: Mapflle Option B-1 



Using the Mapfile Option 

To use the mapfile option, you must: 

1. enter mapfile directives into a file (this is your "mapfile") 

2. enter the following option on the ld command line: 

-M mapfile 

mapfile is the file 11ame of t.11e file }'OU produced in step 1. If the niapfile is 
not in your current directory, you must include the full path name; no 
default search path exists. (See the ld manual page for information on 
operation of the ld command.) 

Y The mapfile option ca~ only by used in static m?de. The -dn option must 
accompany the -M option on the ld command line or ld returns a fatal 
error. 

B-2 ANSI C and Programming Support Tools 



Mapfile Structure and Syntax 

You can enter three types of directives into a mapfile: 

• segment declarations 

• mapping directives 

• size-symbol declarations 

Each directive can span more than one line and can have any amount of white 
space (including new-lines) as long as it is followed by a semicolon. You can 
enter 0 (zero) or more directives in a mapfile. (Entering 0 directives causes ld 
to ignore the mapfile and use its own defaults.) Typically, segment declarations 
are followed by mapping directives, i.e., you would declare a segment and then 
define the criteria by which a section becomes part of that segment. If you enter 
a mapping directive or size-symbol declaration without first declaring the seg
ment to which you are mapping (except for built-in segments, explained later), 
the segment is given default attributes as explained below. This segment is then 
an "implicitly declared segment." 

Size-symbol declarations can appear anywhere in a mapfile. 

The following sections describe each directive type. For all syntax discussions, 
the following apply: 

• All entries in constant width, all colons, semicolons, equal signs, and at 
(@) signs are typed in literally. 

• All entries in italics are substitutables. 

• { ... }* means "zero or more." 

• { ... }+ means "one or more." 

• [ ... ] means "optional." 

• section_ names and segment_ names follow the same rules as C identifiers 
where a period (.) is treated as a letter (e.g., . bss is a legal name). 

• section_names, segment_names, file_names, and symbol_names are case sensi
tive; everything else is not case sensitive. 

• Spaces (or new-lines) may appear anywhere except before a number or in 
the middle of a name or value. 

Appendix 8: Mapflle Option 8-3 



Mapfile Structure and Syntax 

• Comments beginning with * and ending at a new-line may appear any
where that a space may appear. 

Segment Declarations 

A segment declaration creates a new segment in the a. out or changes the attri
bute values of an existing segment. (An existing segment is one that you previ
ously defined or one of the three built-in segments described below.) 

A segment declaration has the following syntax: 

segment_name = {segment_attribute_value}*; 

For each segment_name, you can specify any number of segment_attribute_values 
in any order, each separated by a space. (Only one attribute value is allowed 
for each segment attribute.) The segment attributes and their valid values are as 
follows: 

segment_ type: LOAD 
NOTE 

segment flags: ?[R][W][X] 

virtual address: Vnumber 

physical _address: Pnumber 

length: Lnumber 

alignment: Anumber 

There are three built-in segments with the following default attribute values: 

• text (LOAD, ?RX, no virtual_address, physical_address, or length specified, 
alignment values set to defaults per CPU type) 

• data (LOAD, ?RWX, no virtual_ address, physical_address, or length specified, 
alignment values set to defaults per CPU type) 

• note (NOTE) 

ld behaves as if these segments had been declared before your mapfile is read 
in. See the "Mapfile Option Defaults" section below for more information. 

B-4 ANSI C and Programming Support Tools 



Mapfile Structure and Syntax 

Note the following when entering segment declarations: 

• A number can be hexadecimal, decimal, or octal, following the same rules 
as in the C language. 

• No space is allowed between the v, P, L, or A and the number. 

• The segment_type value can be either LOAD or NOTE. 

• The segment_type value defaults to LOAD. 

• The segment _flags values are R for readable, W for writable, and X for exe
cutable. No spaces are allowed between the question mark and the indi
vidual flags that make up the segment _flags value. 

• The segment _flags value for a LOAD segment defaults to RWX. 

• NOTE segments cannot by assigned any segment attribute value other than 
a segment_ type. 

• Implicitly declared segments default to segment_ type value LOAD, 
segment_flags value RWX, a default virtual_address, physical_address, and 
alignment value, and have no length limit. 

ld calculates the addresses and length of the current segment based 
on the previous segment's attribute values. Also, even though impli
citly declared segments default to "no length limit," any machine 
memory limitations still apply. 

• LOAD segments can have an explicitly specified virtual_address value 
and/or physical_address value, as well as a maximum segment length value. 

• If a segment has a segment _flags value of ? with nothing following, the 
value defaults to not readable, not writable and not executable. 

• The alignment value is used in calculating the virtual address of the begin
ning of the segment. This alignment only affects the segment for which it 
is specified; other segments still have the default alignment unless their 
alignments are also changed. 

• If any of the virtual _address, physical _address, or length attribute values are 
not set, ld calculates these values as it builds the a. out. 

Appendix 8: Mapfile Option 8-5 



Mapflle Structure and Syntax 

• If an alignment value is not specified for a segment, it is set to the built-in 
default. (The default differs from one CPU to another and may even 
differ between kernel versions. You should check the appropriate docu
mentation for these numbers). 

• If both a virtual_address and an alignment value are specified for a segment, 
the virtual_ address value takes priority. 

• If a virtual_address value is specified for a segment, the alignment field in 
the program header contains the default alignment value. 

V If a virtual_ address value is specified, the segment is placed at that 
virtual address. For the UNIX system kernel this creates a correct 
result. For files that start via exec O, this method creates an 
incorrect a.out file because the segments do not have correct 
offsets relative to their page boundaries. 

Mapping Directives 

A mapping directive tells ld how to map input sections to segments. Basically, 
you name the segment that you are mapping to and indicate what the attributes 
of a section must be in order to map into the named segment. The set of 
section_attribute_values that a section must have to map into a specific segment is 
called the entrance criteria for that segment. In order to be placed in a specified 
segment of the a.out, a section must meet the entrance criteria for a segment 
exactly. 

A mapping directive has the following syntax: 

segment_name : {section_attribute_value}* [: {file_name}+]; 

For a segment_name, you specify any number of section_attribute_values in any 
order, each separated by a space. (At most one section attribute value is 
allowed for each section attribute.) You can also specify that the section must 
come from a certain . o file(s) via the file_ name substitutable. The section attri
butes and their valid values are as follows: 

B-6 ANSI C and Programming Support Tools 



section name: 

section_ type: 

section __flags: 

Mapflle Structure and Syntax 

any valid section name 

$PROGBITS 
$SYMI'AB 
$STRTAB 
$REL 
$RELA 
$NOTE 
$NOB ITS 

?[[!)A)[[! )W)[[ ! ]X] 

Note the following when entering mapping directives: 

• You must choose at most one section _type from the section_ types listed 
above. The section_ types listed above are built-in types. For more infor
mation on section_types, see Chapter 13, "Object Files." 

• The section _flags values are A for allocatable, w for writable, or X for exe
cutable. If an individual flag is preceded by an exclamation mark (!),the 
linker checks to make sure that the flag is not set. No spaces are allowed 
between the question mark, exclamation point(s), and the individual flags 
that make up the section _flags value. 

• file_ name may be any legal file name and can be of the form 
archive_name(component_name), e.g., /usr/lib/usr/libc.a (printf. o). A 
file name may be of the form *file_name (see next bullet item). Note that 
ld does not check the syntax of file names. 

• If a file_name is of the form *file_name, ld simulates a basename (see 
basename in the User's Manual) on the file name from the command line 
and uses that to match against the mapfile file_ name. In other words, the 
file_ name from the mapfile only needs to match the last part of the file 
name from the command line. (See "Mapping Example" below.) 

• If you use the -1 option on the cc or ld command line, and the library 
after the -1 option is in the current directory, you must precede the 
library with . I (or the entire path name) in the mapfile in order to create 
a match. 

Appendix 8: Mapfile Option 8-7 



Mapfile Structure and Syntax 

• More than one directive line may appear for a particular output segment, 
e.g., the following set of directives is legal: 

Sl : $PROGBITS; 
Sl : $NOBITS; 

Entering more than one mapping directive line for a segment is the only 
way to specify multiple values of a section attribute. 

• A section can match more than one entrance criteria. In this case, the first 
segment encountered in the mapfile with that entrance criteria is used, 
e.g., if a mapfile reads: 

Sl $PROGBITS; 
S2 $PROGBITS; 

the $PROGBITS sections are mapped to segment Sl. 

Size-Symbol Declarations 

Size-symbol declarations let you define a new global-absolute symbol that 
represents the size, in bytes, of the specified segment. This symbol can be refer
enced in your object files. A size-symbol declaration has the following syntax: 

segment_ name @ symbol_ name 

symbol_ name can be any legal C identifier, although the ld command does not 
check the syntax of the symbol_name. 

B-8 ANSI C and Programming Support Tools 



Mapping Example 

Figure B-1 is an example of a user-defined mapfile. The numbers on the left are 
included in the example for tutorial purposes. Only the information to the right 
of the numbers would actually appear in the mapfile. 

Figure B-1: User-Defined Mapflle 

1. elephant : .bss : peanuts.o *popcorn.o; 

2. monkey : $PROGBITS ?AX; 
3. monkey : . bss; 
4. monkey = LOAD V0x80000000 L0x4000; 

5. donkey : . bss; 
6. donkey == ?RX AOxlOOO; 

7. text = VOx80008000; 

Four separate segments are manipulated in this example. The implicitly 
declared segment elephant (line 1) receives all of the . bss sections from the 
files peanuts. o and popcorn. o. Note that *popcorn. o matches any 
popcorn. o file that may have been entered on the ld command line; the file 
need not be in the current directory. On the other hand, if 
/var/tmp/peanuts. o were entered on the ld command line, it would not 
match peanuts.o because it is not preceded by a*· 

The implicitly declared segment monkey (line 2) receives all sections that are 
both $PROGBITS and allocatabl~xecutable (?AX), as well as all sections (not 
already in the segment elephant) with the name .bss (line 3). The .bss sec
tions entering the monkey segment need not be $PROGBITS or allocatable
executable because the section_ type and section _flags values were entered on a 
separate line from the section_name value. (An "and" relationship exists between 
attributes on the same line as illustrated by $PROGBITS "and" ?AX on line 2. An 
"or" relationship exists between attributes for the same segment that span more 
than one line as illustrated by $PROGBITS ?AX on line 2 "or" . bss on line 3.) 

Appendix B: Mapflla Option B-9 



Mapping Example 

The monkey segment is implicitly declared in line 2 with segment_ type value 
LOAD, segment.Jl.ags value RWX, and no virtual_address, physical_address, length or 
alignment values specified (defaults are used). In line 4 the segment_type value of 
monkey is set to LOAD (since the segment_ type attribute value does not change, no 
warning is issued), virtual_address value to Ox80000000 and maximum length 
value to Ox4000 (since the length attribute value changed, a warning is issued). 

Line 5 implicitly declares the dori_k:ey segment. The entra.Tlce criteria is designed 
to route all .bss sections to this segment. Actually, no sections fall into this 
segment because the entrance criteria for monkey in line 3 capture all of these 
sections. In line 6, the segment _flags value is set to ?RX and the alignment value 
is set to OxlOOO (since both of these attribute values changed, a warning is 
issued). 

Line 7 sets the virtual_address value of the text segment to Ox80008000 (no 
warning is issued here). 

The example user-defined mapfile in Figure B-1 is designed to cause warnings 
for illustration purposes. If you wanted to change the order of the directives to 
avoid warnings, the example would appear as follows: 

1. elephant : .bss : peanuts.o *popcorn.o; 

4. monkey = LOAD VOx80000000 LOx4000; 
2. monkey $PROGBITS ?AX; 
3. monkey : . bss; 

6. donkey = ?RX AOxlOOO; 
5. donkey : .bss; 

7. text = VOx80008000; 

This order eliminates all warnings. 

8·10 ANSI C and Programming Support Tools 



Mapfi le Option Def au Its 

The ld command has three built-in segments (text, data, and note) with 
default segment_attribute_values and corresponding default mapping directives as 
described under "Segment Declarations." Even though the ld command does 
not use an actual "mapfile" to store the defaults, the model of a "default 
mapfile" helps to illustrate what happens when the ld command encounters 
your mapfile. 

Figure B-2 shows how a mapfile would appear for the ld command defaults. 
The ld command begins execution behaving as if the mapfile in Figure B-2 has 
already been read in. Then ld reads your mapfile and either augments or 
makes changes to the defaults. 

Y The interp segment, which precedes all others, and the dynamic seg
ment, which follows the data segment, are not shown in Figure 8-2 and 
Figure 8-3 because you cannot manipulate them. 

Figure 8-2: Default Mapfile 

text = LOAD ?RX; 
text : $PROGBITS ?A!W; 

data = LOAD ?RWX; 
data $PROGBITS ?AW; 
data : $NOBITS ?AW; 

note = NOTE; 
note : $NOTE; 

As each segment declaration in your mapfile is read in, it is compared to the 
existing list of segment declarations as follows: 

1. If the segment does not already exist in the mapfile, but another with the 
same segment-type value exists, the segment is added before all of the 
existing segments of the same segment_ type. 

2. If none of the segments in the existing mapfile has the same segment_type 
value as the segment just read in, then the segment is added by 
segment_ type value to maintain the following order: 

Appendix B: Mapfile Option B-11 



Mapflle Option Defaults 

1. INTERP 
2. LOAD 
3.DYNAMIC 
4.NOTE 

3. If the segment is of segment_ type LOAD and you have defined a 
virtual_address value for this LOADable segment; the segment is placed 
before any LOADable segments without a defined virtual_address value or 
with a higher virtual_address value, but after any segments with a 
virtual address value that is lower. 

As each mapping directive in your mapfile is read in, the directive is added 
after any other mapping directives that you already specified for the same seg
ment but before the default mapping directives for that segment. 

B-12 ANSI C and Programming Support Tools 



Internal Map Structure 

One of the most important data structures in the ELF-based ld is the map struc
ture. A default map structure, corresponding to the model default mapfile men
tioned above, is used by ld when the command is executed. Then, if the 
mapfile option is used, ld parses the mapfile to augment and/or override cer
tain values in the default map structure. 

A typical (although somewhat simplified) map structure is illustrated in Figure 
B-3. The "Entrance Criteria" boxes correspond to the information in the default 
mapping directives and the "Segment Attribute Descriptors" boxes correspond 
to the information in the default segment declarations. The "Output Section 
Descriptors" boxes give the detailed attributes of the sections that fall under 
each segment. The sections themselves are in circles. 

Appendix B: Mapfile Option B-13 



Internal Map Structure 

Figure B-3: Simple Map Structure 

Entrance 
Criteria J>PR}f,~'sJ~ 

' 

$NOBITS 
?AW 

$NOTE 

Se~ent text ta 
Attribute LOAD , ____ _.,., LOAD , ____ ......., note 
Descriptors ?RX ?RWX NOTE 

Output Section 
Descriptors 

.aa 
$PROGBITS ~ 

?AWX 

.datal 
$PROGBITS 

?AWX 

NOMATCH
appended 
to end of 
a out 

Sections 
Placed in 
Segments 

ld performs the following steps when mapping sections to segments: 

1. When a section is read in, ld checks the list of Entrance Criteria looking 
for a match. (All specified criteria must match): 

B-14 

• In Figure B-3, for a section to fall into the text segment it must 
have a section_type value of $PROGBITS and have a section_jlags 
value of ?A!W. It need not have the name . text since no 

ANSI C and Programming Support Tools 



Internal Map Structure 

name is specified in the Entrance Criteria. The section may be 
either X or !X (in the section_Jlags value) since nothing was 
specified for the execute bit in the Entrance Criteria. 

• If no Entrance Criteria match is found, the section is placed at 
the end of the a. out file after all other segments. (No program 
header entry is created for this information. See Chapter 13 for 
information on program headers.) 

2. When the section falls into a segment, ld checks the list of existing Out
put Section Descriptors in that segment as follows: 

• If the section attribute values match those of an existing Output 
Section Descriptor exactly, the section is placed at the end of the 
list of sections associated with that Output Section Descriptor. 

For instance, a section with a section_ name value of . datal, a 
section_type value of $PROGBITS, and a section_flags value of ?AWX 
falls into the second Entrance Criteria box in Figure B-3, placing 
it in the data segment. The section matches the second Output 
Section Descriptor box exactly (. datal, $PROGBITS, ?AWX) and is 
added to the end of the list associated with that box. The 
.datal sections from fido.o, rover.a, and sam.o illustrate this 
point. 

• If no matching Output Section Descriptor is found, but other 
Output Section Descriptors of the same section_ type exist, a new 
Output Section Descriptor is created with the same attribute 
values as the section and that section is associated with the new 
Output Section Descriptor. The Output Section Descriptor (and 
the section) are placed after the last Output Section Descriptor of 
the same section_type. The .data2 section in Figure B-3 was 
placed in this manner. 

Appendix B: Mapflle Option B-15 



Internal Map Structure 

• If no other Output Section Descriptors of the indicated 
section_type exist, a new Output Section Descriptor is created and 
the section is placed so as to maintain the following section_ type 
order: 

$DYNAMIC 

$PROGBITS 
$SYMI'AB 
$STRTAB 
$RELA 
$REL 
$HASH 
$NOTE 
$NOB ITS 

The . bss section in Figure B-3 illustrates this point. 

If the input section has a user-defined section _type value 
(i.e. between SHT LOUSER and SHT HIUSER, see the "Sec
tion Header" sect10n of Chapter 13of this guide) it is 
treated as a $PROGBITS section. Note that no method 
exists for naming this section_ type value in the mapfile, but 
these sections can be redirected using the other attribute 
value specifications (section _flags, section_ name) in the 
entrance criteria. 

3. If a segment contains no sections after all of the command line object files 
and libraries have been read in, no program header entry is produced for 
that segment. 

B-16 

Note that input sections of type $SYMTAB, $STRTAB, $REL, and $RELA are 
used internally ~y ld. Directives that refer to these section_ types can only 
map output sections produced by ld to segments. 

ANSI C and Programming Support Tools 



Error Messages 

When using the mapfile option, ld can return the following types of error mes
sages: 

Warnings do not stop execution of the linker nor prevent the linker from 
producing a viable a. out 

Fatal Errors stop execution of the linker at the point at which the fatal error 
occurred 

Either warning: or fatal : appears at the beginning of each error message. 
Error messages are not numbered. 

Warnings 

The following conditions produce warnings: 

• a physical_address or a virtual_address value or a length value appears for 
any segment other than a LOAD segment (the directive is ignored) 

• a second declaration line exists for the same segment that changes an 
attribute value(s) (the second declaration overrides the original) 

• an attribute value(s) (segment_ type and/ or segment _flags for text and 
data; segment_ type for note) was changed for one of the built-in segments 

• an attribute value(s) (segment_type, segment_flags, length and/or alignment) 
was changed for a segment created by an implicit declaration 

Fatal Errors 

The following conditions produce fatal errors: 

• specifying more than one -M option on the command line 

• specifying both the -r and the -M option on the same command line 

• specifying the -M option without the -dn option on the command line 
(-dy is the default; you must specify -dn with the -M option) 

Appendix 8: Mapflle Option 8-17 



Error Messages 

• a mapfile cannot be opened or read 

• a syntax error is found in the mapfile 

' 
. 

. 

. 

ld does not return an error if a file_ name, section_ name, segment_ name 
or symbol_name does not conform to the rules under the "Mapfile 
Structure and Syntax" section unless this condition produces a syntax 
error. For instance, if a name begins with a special character and this 
name is at the beginning oi a directive line, ld returns an error. ii the 
name is a section_name (appearing within the directive) ld does not 
return an error. 

• more than one segment_type, segment_jlags, virtual_address, physical_address, 
length, or alignment value appears on a single declaration line 

• you attempt to manipulate either the interp segment or dynamic seg
ment in a mapfile 

. T The interp and dynami.c segments are special built-in segments 
that you cannot change 1n any way . 

• a segment grows larger than the size specified by a your length attribute 
value 

• a user-defined virtual _address value causes a segment to overlap the previ
ous segment 

• more than one section_ name, section_ type, or section _flags value appears on 
a single directive line 

• a flag and its complement (e.g., A and !A) appear on a single directive line 

B-18 ANSI C and Programming Support Tools 







Glossary 

ANSI 

a.out 

application 

archive 

argument 

Glossary 

ANSI is an acronym for the American National Stan
dards Institute. ANSI establishes standards in the com
puting industry from the definition of ASCII (see below) 
to the measurement of overall datacom system perfor
mance. ANSI standards have been established for the 
Ada, FORTRAN, and C programming languages. 

a. out, historically for "assembler output," is the default 
file name for an executable program produced by the C 
compilation system. 

An application program is a working program in a 
given operating system, that is, an application of that 
system. When the source code for an application pro
gram is portable to another operating system, the pro
gram is an application of that system as well. 

An archive, or statically linked library, is a collection of 
object files each of which contains the code for a func
tion or a group of related functions in the library. When 
you call a library function in your program, and specify 
a static linking option on the cc command line, a copy 
of the object file that contains the function is incor
porated in your executable at link time. For a discus
sion, see "Link Editing" in Chapter 2, and compare 
"shared object." 

You use an argument to pass information to a command 
or a function. A command instructs the operating sys
tem to execute a program. The command is the name of 
the file containing the program. Command line argu
ments are character strings or numbers that follow the 
command, separated from it by a space, or that follow 
another command line argument, separated from it by a 
space. There are two types of command line arguments: 
options and operands. Options, which are immediately 
preceded by a minus sign(-), change the behavior of 
the program. Some options can themselves take argu
ments. Options are also called flags. Operands specify 
files or directories to be operated on by the program. 
So in the command line 

1 



Glossary 

ASCII 

assembler 

2 

$ cc -o hello hello.c 

all the elements after the cc command are arguments. 
cc is the name of the file containing the C compiler pro
gram. The C source file hello . c is its operand. -o is 
an option that tells the compilation system to generate 
an executable program with a name other than a. out. 
hello is a.11 argument to -o that specifies the r1ame of 
the executable program to be created. For a discussion 
of how command line arguments are passed to C pro
grams, see "Passing Command Line Arguments" in 
Chapter 2. 

Function arguments are enclosed in a pair of 
parentheses immediately following the function name. 
The number of arguments can be zero or more; if two or 
more are given, they must be separated by commas and 
the whole list enclosed by parentheses. The formal 
definition of a function describes the number and data 
type of arguments expected by the function. You can 
find formal definitions of the functions supplied with 
the C compilation system in Sections 2 and 3 of the 
Programmer's Reference Manual. 

ASCII is an acronym for the American Standard Code 
for Information Interchange, the standard for data 
representation followed in the UNIX system. ASCII code 
represents 128 upper- and lowercase letters, numerals, 
and special characters as binary numbers. Each 
alphanumeric and special character has an ASCII 
equivalent that is one byte long. 

Assembly language is a programming language that 
uses symbolic names to represent the machine instruc
tions of a given computer. An assembler is a program 
that accepts instructions written in the assembly 
language of the computer and translates them into a 
binary representation of the corresponding machine 
instructions. Because each assembly language instruc
tion usually has a one-to-one correspondence with a 

ANSI C and Programming Support Tools 



buffer 

child process 

command 

compiler 

Glossary 

Glossary 

machine instruction, programs written in assembly 
language are not portable to different machines. 

A buffer is a space in computer memory where data are 
stored temporarily in convenient units for system opera
tions. Buffers are often used by programs such as edi
tors that access and alter text or data frequently. When 
you edit a file, for instance, a copy of its contents are 
read into a buffer; the copy is what you change. For 
your changes to become part of the permanent file, you 
must write the buffer's contents back into the permanent 
file. This replaces the contents of the file with the con
tents of the buffer. When you quit the editor, the con
tents of the buffer are flushed. 

See "fork()." 

A command instructs the operating system to execute a 
program. On the UNIX system, an executable program 
is a compiled and linked program or a shell program. 
The command to execute either is the name of the file 
containing the program. A command line consists of 
the command followed by its arguments, so 

$cc filel.c file2.c 

instructs the operating system to execute the C compiler 
program, which is stored in the file cc, and to use the 
source files filel . c and file2 . c as input. A com
mand line can extend over multiple terminal lines. 

A compiler is a program that translates a source pro
gram written in a higher-level language into the assem
bly language of the computer the program is to run on. 
An assembler translates the assembly language code into 
the machine instructions of the computer. On the C 
compilation system, these instructions are stored in 
object files that correspond to each of your source files. 
That is, each object file contains a binary representation 
of the C language code in the corresponding source file. 
Source file names must end with the characters . c; 
object files take the name of the source file with . o in 
place of . c. The link editor links these object files with 

3 



Glossary 

core image 

data symbol 

debugging 

default 

directory 

dynamic linking 

4 

each other, and with any library functions you have 
used in your source code, to produce an executable pro
gram called a. out by default. The preprocessor com
ponent of the C compiler performs macro expansion, 
conditional compilation, and file inclusion before the 
compiler proper translates C source code into assembly 
language. For a discussion, see "Compiling and Link
ing'' in Chapter 2. 

A core image is a a copy of the memory image of a pro
cess. A file named core is created in your current direc
tory when the UNIX system aborts an executing pro
gram. The file contains the core image of the process at 
the time of the failure. For a discussion, see Chapter 6, 
"sdb." 

A data symbol names a variable that may or may not 
be initialized. Normally, these variables reside in 
read/write memory during execution. Compare "text 
symbol." 

Debugging is the process of locating and correcting 
errors in executable programs. For a discussion, see 
Chapter 6, "sdb." 

A default is the way a program will perform a task in 
the absence of other instructions, that is, in default of 
your specifying something else. 

A directory is a type of file used to group and organize 
other files or directories. A subdirectory is a directory 
that is pointed to by a directory one level above it in the 
file system. A directory name is a string of characters 
that identifies the directory. It can be a simple directory 
name, a relative path name, or a full path name. For a 
discussion, see the User's Guide, Chapter 3, "Using the 
File System." 

Dynamic linking refers to the process in which external 
references in a program are linked with their definitions 
when the program is executed. Fot a discussion, see 
"Link Editing" in Chapter 2, and compare "static link
ing." 

ANSI C and Programming Support Tools 



ELF 

environment 

executable program 

exit() 

expression 

Glossary 

Glossary 

ELF is an acronym for the executable and linking format 
of the object files produced by the C compilation system. 
For a discussion, see Chapter 13, "Object Files." 

An environment is a collection of resources used to sup
port a function. On the UNIX system, the shell environ
ment consists of variables whose values define the way 
you interact with the operating system. The shell 
environment variable $HOME, for example, stands for 
your login directory; $PATH is a list of directories the 
shell will search for executable programs. When you 
log in, the system executes programs that create most of 
the environment variables you need to do your work. 
These variables are stored in /etc/profile, a file that 
defines a common environment for users when they log 
in to the system. You can tailor your environment to 
your own needs by defining and setting variables in the 
file .profile in your login directory. You can also tem
porarily set variables at the shell level. For a discussion, 
see the User's Guide, Chapter 7, "Shell Tutorial." 

On the UNIX system, an executable program is a com
piled and linked program or a shell program. The com
mand to execute either is the name of the file containing 
the program. A compiled and linked program is called 
an executable object file. Compare "object file." 

The exit () function causes a process to terminate. 
exit() closes any open files and cleans up most other 
information and memory used by the process. An exit 
status, or return code, is an integer value that your pro
gram returns to the operating system to say whether it 
completed successfully or not. For a discussion, see 
"How C Programs Communicate with the Shell" in 
Chapter 1. 

An expression is a mathematical or logical symbol or 
meaningful combination of symbols. 

5 



Glossary 

file 

file descriptor 

file system 

filter 

6 

A file is a potential source of input or a potential desti
nation for output; at some point, then, an identifiable 
collection of information. A file is known to the UNIX 
system as an inode plus the information the inode con
tains that tells whether the file is a plain file, a special 
file, or a directory. A plain file contains text, data, pro
grams, or other information that forms a coherent unit. 
A special file is a hardware device or portion thereof, 
such as a disk partition. A directory is a type of file that 
contains the names and inode addresses of other plain, 
special, or directory files. For a discussion, see the 
User's Guide, Chapter 3, "Using the File System." 

A file descriptor is an integer value assigned by the 
operating system to a file when the file is opened by a 
process. 

A UNIX file system is a hierarchical collection of direc
tories and other files that are organized in a tree struc
ture. The base of the structure is the root (/) directory; 
other directories, all subordinate to root, are branches. 
The collection of files can be mounted on a block special 
file. Each file of a file system appears exactly once in 
the inode list of the file system and is accessible via a 
single, unique path from the root directory of the file 
system. For a discussion, see the User's Guide, Chapter 
3, "Using the File System." 

A filter is a program that reads information from the 
standard input, acts on it in some way, and sends its 
result to the standard output. It is called a filter because 
it can be used in a pipeline (see "pipe") to transform the 
output of another program. Filters are different from 
editors in that they do not change the contents of a file. 
Examples of UNIX system filters are sort, which sorts 
the input, and we, which counts the number of words, 
characters, and lines in the input. sort, we, and other 
UNIX system filters are described in Section 1 of the 
User's Reference Manual. 

ANSI C and Programming Support Tools 



flag 

fork() 

header file 

include file 

interrupt 

1/0 

kernel 

Glossary 

Glossary 

See "argument." 

fork() is a system call that splits one process into two, 
the parent process and the child process, with separate, 
but initially identical, text, data, and stack segments. 
fork() is described in Section 2 of the Programmer's 
Reference Manual. 

A header file is a file that usually contains shared data 
declarations that are to be copied into source files by the 
compiler. Header file names conventionally end with 
the characters . h. Header files are also called include 
files, for the C language -#include directive by which 
they are made available to source files. For a discussion, 
see Chapter 2, "C Compilation System." 

See ''header file." 

An interrupt is a break in the normal flow of a system 
or program. Interrupts are initiated by signals gen
erated by a hardware condition or a peripheral device to 
indicate the occurrence of a specified event. When the 
interrupt is recognized by the hardware, an interrupt 
handling routine is executed. An interrupt character is a 
character (normally ASCII) that, when typed on a termi
nal, causes an interrupt. You can usually interrupt UNIX 
system programs by pressing the delete or break keys, 
or by pressing the CTRL and d keys simultaneously. 

1/0 stands for input/output, the process by which infor
mation enters (input) and leaves (output) a computer 
system. For a discussion, see "Standard 1/0" in Chapter 
2. 

The kernel is the basic resident software of the UNIX 
system. The kernel is responsible for most system 
operations: scheduling and managing the work done by 
the computer, maintaining the file system, and so forth. 
The kernel has its own text, data, and stack areas. 

7 



Glossary 

lexical analysis 

library 

link editing 

makefile 

module 

null pointer 

8 

Lexical analysis is the process by which a stream of 
characters (often comprising a source program) is bro
ken up into its elementary words and symbols, called 
tokens. The tokens can include the reserved words of a 
programming language, its identifiers and constants, 
and special symbols such as =, : =, and ; . Lexical 
analysis enables you to recognize, for instance, that the 
stream of characters printf ("hello, world\n"); is a 
series of tokens beginning with printf and not with, 
say, printf ("h. In compilers, a lexical analyzer is often 
called by a syntactic analyzer, or parser, that analyzes 
the grammatical form of tokens passed to it by the lexi
cal analyzer. For discussions, see Chapter 11, "lex," 
and Chapter 12, "yacc." 

A library is a file that contains object code for a group 
of commonly used functions. Rather than write the 
functions yourself, you arrange for the functions to be 
linked with your program when an executable is created 
(see "archive"), or when it is run (see "shared object''). 

Link editing refers to the process in which a symbol 
referenced in one module of a program is connected 
with its definition in another. On the C compilation sys
tem, programs are linked statically, when an executable 
is created, or dynamically, when it is run. For a discus
sion, see "Link Editing" in Chapter 2. 

A makefile is a file that is used with the program make 
to keep track of the dependencies between modules of a 
program, so that when one module is changed, depen
dent ones are brought up to date. For a discussion, see 
Chapter 9, "make." 

A module is a program component that typically con
tains a function or a group of related functions. Source 
files and libraries are modules. 

A null pointer is a C pointer with a value of 0. 

ANSI C and Programming Support Tools 



object file 

optimizer 

option 

parent process 

parser 

path name 

permissions 

pipe 

Glossary 

Glossary 

An object file contains a binary representation of pro
gramming language code. A relocatable object file con
tains references to symbols that have not yet been linked 
with their definitions. An executable object file is a 
linked program. Compare "source file." 

An optimizer improves the efficiency of the assembly 
language code generated by a compiler. That, in turn, 
will speed the execution time of your object code. For a 
discussion, see "Commonly Used cc Command Line 
Options" in Chapter 2. 

See "argument." 

See "fork()." 

A parser, or syntactic analyzer, analyzes the grammati
cal form of tokens passed to it by a lexical analyzer (see 
"lexical analysis"). For discussions, see Chapter 11, 
"lex," and Chapter 12, "yacc." 

A path name designates the location of a file in the file 
system. It is made up of a series of directory names that 
proceed down the hierarchical path of the file system. 
The directory names are separated by a slash character 
(/). The last name in the path is the file. If the path 
name begins with a slash, it is called an absolute, or full, 
path name; the initial slash means that the path begins 
at the root directory. A path name that does not begin 
with a slash is known as a relative path name, meaning 
relative to your current directory. For a discussion, see 
the User's Guide, Chapter 3, "Using the File System." 

Permissions define a right to access a file in the file sys
tem. Permissions are granted separately to you, your 
group, and all others. There are three basic permissions: 
read, write, and execute. For a discussion, see the User's 
Guide, Chapter 3, "Using the File System." 

A pipe causes the output of one program to be used as 
the input to another program, so that the programs run 
in sequence. You create a pipeline by preceding each 
command after the first command with the pipe symbol 

9 



Glossary 

portability 

preprocessor 

process 

regular expression 

routine 

shared object 

10 

(I), which indicates that the output from the process on 
the left should be routed to the process on the right. So 

$ who I we -1 

causes the output of the who command, which lists the 
users who are logged in to the system, to be used as the 
input of the we, or word count, command with the -1 
option. The result is the number of users logged in to 
the system. The who and we commands are described in 
Section 1 of the User's Reference Manual. 

Portability refers to the degree of ease with which a pro
gram can be moved, or ported, to a different operating 
system or machine. 

A preprocessor is a a program that prepares an input 
file for another program. The preprocessor component 
of the C compiler performs macro expansion, condi
tional compilation, and file inclusion. 

A process is an executing program. Every time you 
enter the name of a file that contains an executable pro
gram you initiate a new process. A process ID is a 
unique system-wide number that identifies an active 
process. You can use the ps command, described in 
Section 1 of the User's Reference Manual, to determine the 
process ID of any process currently active on your sys
tem. 

A regular expression is a string of alphanumeric charac
ters and special characters that describes, in a shorthand 
way, a pattern to be searched for in a file. For a discus
sion, see Chapter 11, "lex." 

A routine is another name for a function. 

A shared object, or dynamically linked library, is a sin
gle object file that contains the code for every function 
in the library. When you call a library function in your 
program, and specify a dynamic linking option on the 
cc command line, the entire contents of the shared 
object are mapped into the virtual address space of your 
process at run time. As its name implies, a shared 

ANSI C and Programming Support Tools 



shell 

signal 

source file 

standard error 

standard input 

standard output 

Glossary 

Glossary 

object contains code that can be used simultaneously by 
different programs at run time. For a discussion, see 
"Link Editing'' in Chapter 2, and compare "archive." 

The shell is the UNIX system program that handles com
munication between you and the system. The shell is 
known as a command interpreter because it translates 
your commands into a language understandable by the 
system. A shell normally is started for you when you 
log in to the system. A shell program calls the shell to 
read and execute commands contained in an executable 
file. For discussions, see the User's Guide, Chapter 7, 
"Shell Tutorial," and the sh page in Section 1 of the 
User's Reference Manual. 

A signal is a message you send to a process or that 
processes send to one another. You might use a signal, 
for example, to initiate an interrupt (see above). A sig
nal sent by a running process is usually a sign of an 
exceptional occurrence that has caused the process to 
terminate or divert from the normal flow of control. 

Source files contain the programming language version 
of a program. Before a computer can execute the pro
gram, the source code must be translated by a compiler 
and assembler into the machine language of the com
puter. Compare "object file." 

Standard error is an output stream from a program that 
normally is used to convey error messages. On the 
UNIX system, the default case is to associate standard 
error with the user's terminal. 

Standard input is an input stream to a program. On the 
UNIX system, the default case is to associate standard 
input with the user's terminal. 

Standard output is an output stream from a program. 
On the UNIX system, the default case is to associate 
standard output with the user's terminal. 

11 



Glossary 

static linking 

stream 

string 

syntax 

system call 

text symbol 

user ID 

variable 

12 

Static linking refers to the process in which external 
references in a program are linked with their definitions 
when an executable is created. For a discussion, see 
''Link Editing'' in Chapter 2, and compare "dynamic 
linking." 

A stream is an open file with its associated buffering. 
For a discussion; see "Standard I/O" in Chapter 2. 
Stream also refers to a full duplex processing and data 
transfer path in the kernel that implements a connection 
between a driver in kernel space and a process in user 
space, providing a general input/ output interface for 
user processes. 

A string is a contiguous sequence of characters treated 
as a unit. In C, a character string is an array of charac
ters terminated by the null character, \0. 

Command syntax is the order in which commands and 
their arguments must be put together. The command 
always comes first. The order of arguments varies from 
command to command. Language syntax is the set of 
rules that describes how the elements of a programming 
language may legally be used. 

A system call is a request from a program for an action 
to be performed by the UNIX system kernel. For a dis
cussion, see "System Calls" in Chapter 2. 

A text symbol names a program instruction. Instruc
tions reside in read-only memory during execution. 
Compare "data symbol." 

A user ID is an integer value, usually associated with a 
login name, that the system uses to identify owners of 
files and directories. The user ID of a process becomes 
the owner of files created by the process and by descen
dent processes (see "fork()"). 

In a program, a variable is an object whose value may 
change during the execution of the program or from one 
execution to the next. A variable in the shell is a name 
representing a string of characters. 

ANSI C and Programming Support Tools 



white space 

Glossary 

Glossary 

White space is one or more spaces, tabs, or new-line 
characters. White space is normally used to separate 
strings of characters, and is required to separate the 
command from its arguments on a command line. 

13 









Index 

+ addition operator 3: 37 

& address operator 3: 34 

&=assignment operator 3: 42 

*= assignment operator 3: 42 
+=assignment operator 3: 42 

-= assignment operator 3: 42 

/= assignment operator 3: 42 

<<= assignment operator 3: 42 

3:42 
= assignment operator 3: 42 

>>= assignment operator 3: 42 

"'= assignment operator 3: 42 

I= assignment operator 3: 42 
& bitwise AND operator 3: 39 

"' bitwise exclusive OR operator 3: 40 
I bitwise inclusive OR operator 3: 40 
, comma operator 3: 42 

? : conditional operator 3: 41 
- - decrement operator 3: 35 

I division operator 3: 36 

... ellipsis notation 3: 28 
==equality operator 3: 39 

>= greater or equal operator 3: 39 

>greater than operator 3: 39 

+ + increment operator 3: 35 
* indirection operator 3: 34 

!=inequality operator 3: 39 
<< left shift operator 3: 38 
<= less or equal operator 3: 39 

< less than operator 3: 39 

&& logical AND operator 3: 40 
! logical negation operator 3: 35 

I I logical OR operator 3: 41 
* multiplication operator 3: 36 

- negation operator 3: 34 

- one's complement operator 3: 35 

41= preprocessing operator 3: 12 

Index 

H preprocessing operator 3: 13 

» right shift operator 3: 38 

. structure member operator 3: 42 
-> structure pointer operator 3: 42 
- subtraction operator 3: 37-38 

+ unary plus operator 3: 35 

A 
ad.min(l) 10: 2-3, 12, 26-29, 39-40 

ANSI C 3: 1 (see also C language) 
a.out(4) 2: 4-6 

ar(l) 2: 14 
archive libraries 2: 2-3, 12-32 

creating 2: 14 
implementation 2: 2-3, 21 
linking with 2: 12-19, 31-32 

maintaining 9: 14-16 
argc and argv 1: 5-6, 2: 52-55 

arithmetic conversions 3: 2, 32-33 
arithmetic types 3: 21 
array 

declaration 3: 28 

initialization 3: 45-46 
as(l) 2: 6 

asm 3: 6, A: 1-9 

macros A: 4-7 

usage example A: 2-3 
usage guidelines A: 8-9 

assembler 2: 2,6 
assembly language escapes (see asm) 
i=assert 3: 17-18 

auto 3: 26 

1-1 



Index 

B 
backslash (\) 3: 8 

base address 13: 42 
basic types 3: 21 
bit-fields 3: 22, 5: 4 

break statement 3: 51 
browser (see cscope(l)) 
bus error 6: 1 

c 
C language 1: 4-5, 3: 1-52 

comments 3: 10 

compilation modes and dependen-
cies 3: 1-2. 6-7, 20-21, 31, 38 

constants 3: 6-9 

conversions 3: 2, 31-33 

declarations 3: 21-29 
definitions 3: 29-30 

escape sequences 3: 8 
expressions 3: 33-46 
identifiers 3: 5 

initialization 3: 44-46 

keywords 3: 6 

operators 3: 12-13, 34-43 

phases of translation 3: 3-4 
portability 3: 52 
preprocessing 3: 11-20 
scope 3: 24-25 

statements 3: 47-51 

storage duration 3: 25-26 

string literals 3: 9 
tokens 3: 5-12 
types 3:21-24,27-30 

C library 
linking with 2: 11-14 

partial contents 2: 38-44 

1-2 

standard 1/0 2: 50-55 
cc(l) 2: 1-32 

compilation modes and dependen
cies 3: 1-2, 6-7, 20-21, 31, 38 

creating shared objects 2: 15-16, 23, 
28-29 

debugging option 2: 9, 6: 3 
header search option 2: 8-9 

library linking option 2: 12-20, 
31-32 

library search option 2: 17-20, 32 

optimizing option 2: 1 o 
profiling options 2: 9-10, 7: 2, 4 

program naming option 2: 4 
static linking options 2: 13-14, 

17-19,31-32 
cdc(l) 10: 12, 32-33 

cflow(l) 1: 12 

char 3: 21, 31 

character classification routines 2: 42 
character constants 3: 7-9 

character conversion routines 2: 43 
cof2elf(1) 1: 12 

comb(l) 10: 12, 34-35 

comments 2: 5, 3: 10 

compiler 2: 2-10 (see also C 
language; cc(l)) 

compiler diagnostics 4: 1-133 
error defined 4: 2 

fatal error defined 4: 2 
list of 4: 3-129 

operator names in 4: 2, 130-131 

warning defined 4: 2 
conditional compilation 3: 15-16 
const 2: 25, 3: 22, 27 

constant expressions 3: 43 

constants 3: 6-9 

continue statement 3: 51 

ANSI C and Programming Support Tools 



conversions 3: 2, 31-33 
core(4) 6: 1-6 

cscope(l) 1: 9, 8: 1-27 

command line 8: 3, 15-17 

environment setup 8: 2, 26-27 

environment variable 8: 17-18 
usage examples 8: 2-14, 18-25 

ctrace(l) 1: 12 
cxref(l) 1: 12 

D 
data representation 13: 3 
data segment 2: 2, 22-27 (see also 

object files) 
data types (see C language, types) 
debugger (see sdb(l)) 
declarations 3: 21-29 
4f:define 2: 2, 33, 3: 13-14 
definition, function 3: 29-30 
delta(l) 10: 4, 12, 23-26 
dis(l) 1: 12 

double 3: 21, 32 
do-while statement 3: 49-50 
durnp(l) 1: 12 

dynamic linking 2: 2-3, 10-32 

implementation 2: 2-3, 21-23, 
13: 30-38, 50-69 

E 
ELF 13: 1-69 (see also object files) 
4f:elif 3: 15-16 

ellipsis notation 3: 28 

4f:else 3: 15-16 

else statement 3: 48 
#end.if 3: 15-16 

Index 

enumeration (enum) 3: 24 
envp 1: 6 

4f:error 3: 19 

escape sequences 3: 8 
executable files 2: 4-6, 13: 1 

exit(2) 2: 51-52, 7: 20 

expressions 3: 33-46 
extern 3: 25-26 

F 
fclose(35) 2: 52 

FILE structure 2: 51-52 
float 3: 21, 32 
floating point constants 3: 7 

floating point operations 14: 1-22 

binary-decimal conversion 
14: 13-15, 22 

compares 14: 21 
data representation 14: 2-7 

data types and formats 14: 2 

denormalized numbers 14: 4 

double-extended 14: 19 
double-precision 14: 3 

exception handling 14: 8-12 
exception handling (3B2) 14: 10 

exception handling (6386) 14: 12 

exceptions 14: a 

Index 

floating point to integer conversion 
14: 20 

IEEE requirements 14: 20 
infinities 14: 6 

infinities 1/0 14: 21 

maximum and minimum values 
14:4 

NaNs 14: 6 
NaNs 1/0 14: 21 

1-3 



Index 

normalized numbers 14: 3 
rounding 14: 7 
single-precision 14: 2, 16-18 

single-precision functions 14: 18 
special-case values 14: 5 

square root 14: 20 

sticky bits 14: 8 
trap bits 14: 8 

unordered condition 14: 21 

floating types 
conversion 3: 32 

declaration 3: 21 
fopen(3S) 2: 51-52 

for statement 3: 50 
function declaration 3: 28-29 
function definition 3: 29-30 

function prototypes 2: 36, 3: 25, 28-30 

lint(l) checks for 5: 3, 10 

G 
generic pointer 3: 28 
get(l) 10: 3-6, 12-23 

getc(3S) 2: 52 

getopt(3C) 2: 53, 55 

global symbols 2: 29, 13: 26-27 

goto statement 3: 50 

H 
header files 2: 33-36 

how to include 2: 8-9, 3: 14-15 
lint(l)ing 5: 8-9 

standard place 2: 8-9 
help(}) 10: 6, 12, 31 

hexadecimal escape 3: 8 

1-4 

f:ident 3: 18 
identifiers 3: 5 

f:if 2:2, 3:15-16 
if statement 3: 47 
fifdef 3: 15-16 

ifiles 8: 1 
fifndef 3: 15-16 
#include 2: 2, 8-9, 33-35, 3: 14-15 

incomplete types 3: 28, 30 
initialization 3: 44-46 

input/output 2: 38-39, 50-55 
int 3: 21, 31-33 

integral constants 3: 6- 7 
integral types 

conversion 3: 31-33 

declaration 3: 21 

initialization 3: 44 

K 
keywords 3:6 

L 
lazy symbol binding 13: 66 
ld(l) 2: 6 

LD_BIND NCM 2: 21, 13: 53 
ldd(l) 2: 21 

LD_LIBRARY_PATH 2: 18-20 
LD_RUN PATH 2: 19-20 
lex(l) -1: 10, 11: 1-27 

command line 11: 2-3 

definitions 11: 17-20, 25 

disambiguating rules 11: 13 

how to write source 11: 5-21 

ANSI C and Programming Support Tools 



library 11 : 2- 3, 24 

operators 11 : 6-9 

quick reference 11 : 26- 27 
routines 11: 10, 14-16 
source format 11: 5, 26-27 
start conditions 11 : 19- 20 

use with yacc(l) 11: 17, 22-24, 
12: 1-4, 9-11, 31-32 

user routines 11: 14-15, 20-21 
yylex () 11: 2-3, 22 

lexical analyzer (see lex(l)) 
libraries 2: 2-3, 10-55 

archive 2: 2-3, 12-32 

creating 2: 14-16, 23-29 
libc 2: 11-14, 38-44, 50-55 

libdl 2: 12, 14, 21 

libelf 13: 1 
libgen 2: 48-50 
libm 2: 13-14, 44-47 

linking with 2: 10-32 
lint{l) 5: 9-10 

maintaining 9: 14-16 

naming conventions 2: 31 
shared object 2: 2-3, 11-32, 

13: 30-38, 50-69 

standard place 2: 12-14 

Uine 3: 17 
link editing 2: 2-3, 6-7, 10-32, 

13: 24-38, 50-69 

dynamic 2: 2-3, 10-32, 13: 30-38, 
50-69 

library linking options 2: 12-20, 
31-32 

multiply defined symbols 2: 29-30, 
13:26-27 

quick reference 2: 31-32 

static 2: 2-3, 10-32 

undefined symbols 2: 10 

Index 

lint(l) 1: 8-9, 5: 1-50 

command line 5: 8-10 

consistency checks 5: 3 

filters 5: 10-11 
libraries 5: 9-10 
message formats 5: 2 

messages 5: 17-50 
options and directives 5: 1, 11-16 
portability checks 5: 4-6 
suspicious constructs 5: 6- 7 

local symbols 13: 26-27 

long double 3: 21, 32 

long int 3: 21, 32-33 

lorder{l) 1: 12 
lprof(l) 1: 9, 2: 9-10, 7: 1-31 

cc(l) profiling option 7: 4 
command line 7: 10-19 

default output 7: 12-13 
environment variable 7: 5-9 

highlighting unexecuted lines 
7: 14-15 

merged output 7: 7, 17-19 
summary output 7: 16 
usage examples 7: 22-31 

use with prof(l) 7: 1, 22-28 

lvalues 3: 33 

M 
m4(1) 15: 1-14 

argument handling 15: 7-9 

arithmetic capabilities 15: 9-10 
command line 15: 2-3 

conditional preprocessing 15: 12 

defining macros 15: 4- 7 

file manipulation 15: 10-11 

quoting 15: 5-7 

Index 

1-5 



Index 

string handling 15: 12-14 

macro expansion 3: 13-14 
main function 1: 5, 3: 29 
make(l) 1: 9-10, 9: 1-29 

command line 9: 20-21 

environment variables 9: 21-22 

how to write source 9: 2-11 
macros 9: 4-11, 13, 15-16 

maintaining libraries 9: 14-16 
makefile convention 9: 1 
sample output 9: 5-6 

source format 9: 8 

suffix transformation rules 9: 11-14, 
24-29 

usage example 9: 4-6 
use with SCCS 9: 16-18 

mapfiles B: 1-18 

defaults B: 11 

error messages B: 17 
example B: 9 
map structure B: 13 

mapping directives B: 6 

segment declarations B: 4 
size-symbol declarations B: 8 

structure B: 3 
syntax B: 3 
usage B: 2 

math library 
linking with 2: 13-14 

partial contents 2: 44-47 
mcs(l) 1: 12 

memory, fault 6: 1 

multibyte characters 3: 9 

multiply defined symbols 2: 29-30, 
13: 26-27 

1-6 

N 
nm(l) 1:12, 2:27 

0 
object files 1: 2, 13: 1-69 

base address 13: 42 

data representation 13: 3 
ELF header 13: 4-11 
global offset table 13: 60-61 

hash table 13: 67-68 

lazy symbol binding 13: 66 

libelf 13: 1 
note section 13: 45-47 
procedure linkage table 13: 62-66 
program header 13: 39-47 

program interpreter 13: 51-53 
program linking 13: 4-38 
program loading 13: 47-69 

relocation 13: 30-38, 60 

section alignment 13: 15 
section attributes 13: 18-23 
section header 13: 12-23 
section names 13: 22-23 

section types 13: 15-23 

segment contents 13: 44-45 

segment permissions 13: 43 

segment types 13: 40-42 
string table 13: 23- 24 

symbol table 13: 24-29 

tools for manipulating 1: 12, 13: 1 

octal escape 3: 8 
operators (C language) 3: 34-43 

additive 3: 37-38 

assignment 3: 42 

associativity and precedence 3: 43 
bitwise 3: 38-40 

ANSI C and Programming Support Tools 



cast 3: 36 

comma 3: 42 
conditional 3: 41 
equality 3: 39 
logical 3: 40-41 

multiplicative 3: 36-37 
preprocessing 3: 12-13 
relational 3: 39 

structure 3: 42 
unary 3: 34-36 

optimizer 2: 1 o 
use with sdb(l) 6: 3 

p 
paging 2: 23, 26-28, 13: 47-50 
parser (see yacc(l)) 
pointer 

declaration 3: 27-28 
initialization 3: 44 

portability 3: 52 

lint(l) checks for 5: 4-6 
system calls 2: 44 

position-independent code 2: 23, 
13: 50-58, 60-66 

4f:pragma 2: 30, 3: 18-19 

preprocessing 3: 11-20 
directives 2: 2, 8-9, 3: 12-20 

output 2: 5-6 

predefined names 3: 20 
tokens 3: 11-12 

primary expressions 3: 33-34 
prof(l) 1: 9, 2: 9-10, 7: 1-3 

cc(l) profiling option 7: 2 

command line 7: 2-3 

environment variable 7: 2 

sample output 7: 22, 27 

Index 

use with lprof(l) 7: 22-28 

profilers (see lprof(l); prof(l)) 
prototypes (see function prototypes) 
prs(l) 10: 12, 29-31 

R 
register 3: 26 

Index 

regular expressions 11: 5-9 

relocatable files 2: 11, 13: 1 (see also 
object files) 

relocation 13: 30-38 
3: 36 

return statement 3: 51 
rrnd.el(l) 10: 12, 31-32 

rounding behavior 3: 32 

s 
sact(l) 10: 12, 31 

scalar types 3: 21 
SCCS 1: 10, 10: 1-40 

auditing files 10: 39-40 

changing comments 10: 32-33 

changing file parameters 10: 26, 
28-29 

commands 10: 10-36 
creating files 10: 2-3, 26-29 

file format 10: 38-39 

file protection 10: 37-38 
ID keywords 10: 14 
marking differences 10: 26, 34 

printing files 10: 29-31 
removing versions 10: 31-32 

retrieving files 10: 3-6, 13-23 
updating files 10: 4, 23-26 

usage example 10: 2-6 

1-7 



Index 

use with make(l) 9: 16-18 

version numbering 10: 7-9 
sccsdiff(l) 10: 12, 34 

scope 3: 24-25 
sdb(l) 1: 8-9, 2: 9, 6: 1-22 

cc(l) debugging option 6: 3 
command line 6: 3-4 

displaying files 6: 10-11 

displaying machine language 
6: 16-17 

examining variables 6: 6-10 

printing stack trace 6: 1, 5 
setting breakpoints 6: 1, 12-16 
setting watchpoints 6: 15 
starting live process 6: 12-16 

usage example 6: 18-22 

use with optimizer 6: 3 
use with yacc(l) 12: 32 

shared objects 2: 2-3, 11-32 

creating 2: 15-16, 23 

guidelines for building 2: 24-29 
implementation 2: 2-3, 21-23, 

13: 30-38, 50-69 
linking with 2: 11-20, 31-32 

short int 3: 21, 31 
signed 3: 2, 21, 31-33 
size(l) 1: 12, 2: 22 

sizeof operator 3: 36 

Source Code Control System (see 
SCCS) 

statements 3: 47-51 
static 3: 25-26 

static linking 2: 2-3, 10-32 

implementation 2: 2-3, 21 

stdio. h header file 2: 33, 51 

storage duration 3: 25-26 
strcmp function 2: 35-37 
string. h 2: 35 (see also header 

files) 

1-8 

strings 
constants 3: 9 

literals 3: 9 
routines 2: 35-37, 40-41 

strip{l) 1: 12, 6: 3 

structure (struct) 
declaration 3: 22-23 

initialization 3: 44-45 

switch statement 3: 48-49 
symbolic debugger (see sdb(l)) 
system calls 2: 43-44 

T 
text segment 2: 2, 22-25, 27 (see also 

object files) 
tokens 3: 5-12 

preprocessing 3: 11-12 
trigraph sequences 3: 11 

type conversions 3: 2, 31-33 
type qualifiers 3: 22 

typedef 3: 26, 29 

types 3:21-24, 27-30 

u 
fundef 3: 14 

undefined symbols 2: 10 
unget(l) 10: 12, 17 

union 
declaration 3: 23 

initialization 3: 44 

unsigned 3: 2, 21, 31-33 

/usr 
ccs/lib 2: 12-13 
include 2: 8-9 
lib 2: 12, 19-20 

ANSI C and Programming Support Tools 



v 
val(l) 10: 12, 35 
vc(l) 10: 12, 36 
virtual addressing 13: 47-53 

void 3: 21 

volatile 3: 22 

w 
weak symbols 2: 29-30, 13: 26-27 
what(l) 10: 12, 33-34 

while statement 3: 49 
wide character constants 3: 9 

wide characters 3: 9 

y 
yacc(l) 1: 10, 12: 1-55 

definitions 12: 9-11 

disambiguating rules 12: 17-27 
error handling 12: 28-30 

how to write source 12: 4-9 
library 11: 24, 12: 31-32 
parser actions 12: 12-16 
routines 12: 37 

source format 12: 4 

symbols 12: 4-9 

typing 12: 39-40 

usage examples 12: 41-55 
use with lex(l) 11: 17, 22-24, 

12: 1-4, 9-11, 31-32 

use with sdb(l) 12: 32 

yylex () 12: 31 

yyparse () 12: 31-32 

Index 

Index 

1-9 





ISBN 0-13-933706-7 




