






























































































































































System Administration and Maintenance 

System Administration Menus 

Release 4.0 introduces enhancements to the System Administration Menus 
(accessed through the sysadm command) that make the interface simpler in 
design and easier to use. 

UNIX System V Release 4 5-31 



Networking 

Early networking capabilities in the UNIX system consisted of the uucp net­
working package, included in the Basic Networking Utilities (BNU) package in 
UNIX System V. uucp networks provide queued point-to-point communication 
between computers over standard telephone lines. A uucp client process 
queries a database for address and routing information, in this case, a telephone 
number, and calls a remote system. 

In the 1970s, the Advanced Research Project Agency (now the Defense 
Advanced Research Project Agency, DARPA) developed TCP lIP, sometimes 
called the DARPA Internet protocol suite. TCP lIP was designed to be a set of 
mid-level communications protocols for use with the ARPANET wide-area 
packet-switching data communications network (a network that grew to include 
hundreds of nodes throughout the United States). In the late 1970s, the Univer­
sity of California at Berkeley included an implementation of TCP lIP in its UNIX 
Software Distribution. 

Building on the BSD innovations in UNIX system networking, SunOS intro­
duced an implementation of a Remote Procedure Call (RPC) facility, along with 
a file distribution service called Network File System (NFS). RPC is a mechan­
ism that allows a local process to invoke a procedure residing on a remote sys­
tem. NFS is an application that provides transparent file sharing among com­
puters of different architectures. 

The thrust in recent years has been to develop interfaces that allow network 
applications to be independent of network media and protocols. In 1982, BSD 
introduced a networking interface called Sockets. In Release 3, UNIX System V 
introduced STREAMS-another solution to the same problems Sockets sought to 
address. STREAMS is a mechanism that supports modular development of net­
work protocols and device drivers. 

Release 3 also introduced the Transport Level Interface (TLI), a protocol­
independent programming interface to networking protocols, and the listener, a 
program that listens for requests for service from remote machines. Also 
appearing for the first time in Release 3 was Remote File Sharing (RFS), a net­
work application that allows systems to share files transparently across a net­
work connection. 

Release 4.0 extends AT&T's commitment to networking, as well as to the 
unification of the various commercial implementations of the UNIX system, by 
incorporating many of the networking features of BSD and SunOS into UNIX 
System V. These features are: 

5-32 Migration Guide 



Networking 

• Sockets compatibility library 

• inetd 

• Network File System (NFS) 

• Remote Procedure Call (RPC) 

• External Data Representation (XDR) 

• TCP lIP (networking protocols) 

In addition to supporting BSD and SunOS features, Release 4.0 introduces the 
following new features: 

• Network Selection 

• Name-to-Address Mapping 

• Service Access Facility 

All of the Release 4.0 networking features are described in the remainder of this 
section. 

Sockets 

Sockets is a network interface used widely in BSD systems and in derivative 
operating systems such as SunOS. It is functionally similar to the Transport 
Level Interface (TLI) provided in UNIX System V. . 

Sockets is provided as a compatibility library in Release 4.0 so that existing 
Sockets applications can migrate easily to UNIX System V. To run on UNIX Sys­
tem V, Sockets applications must be recompiled and relinked to the sockets 
library in Release 4.0. 

TLI remains the SVID-defined networking interface. Programmers are 
encouraged to write new applications using the TLI rather than Sockets. 

For more information about the Sockets procedure calls supported in Release 
4.0, see the Programmer's Guide: Networking Interfaces. 

UNIX System V Release 4 5·33 



Networking 

TCP/IP Protocols and Commands 

The development of TCP lIP networking began in 1969 and has grown to 
become the de facto non-proprietary standard for interconnecting computers of 
different types. It has been widely implemented on many classes of machines 
from PCs to mainframes and on both wide and local area network media. 

The TCP lIP Internet package in UNIX System V Release 4.0 is a comprehensive 
implementation of the DARPA protocols, supporting the DARPA commands 
and popular BSD networking commands. It is compatible with the DARPA 
package implemented on BSD systems, as well as any implementation conform­
ing to DARPA standards. 

UNIX System V implements the protocol suite under the STREAMS networking 
architecture. This means that all user programs written to TLI run over TCP lIP 
without modification. It also means that system-provided networking services, 
such as the RFS and NFS file sharing utilities, run on the TCP lIP protocols. 

For more information about the TCP/IP Internet package, see the Network User's 
and Administrator's Guide. 

inetd 

inetd is a BSD network port monitor that originated in BSD UNIX systems. A 
port monitor is a program that performs server-side connection management. 
When a connection request arrives over the network, the port monitor spawns 
the server and passes the network connection to it. 

inetd handles both connection and connectionless requests from remote sys­
tems on a network using TCP or UDP protocols. 

For more information about inetd, see the Network User's and Administrator's 
Guide and the inetd(1M) manual page. 

5-34 Migration Guide 



Networking 

Network File System 

The Network File System (NFS) is a facility for sharing files in a heterogeneous 
environment of machines and operating systems. Sharing is accomplished by 
mounting a remote file system, then reading or writing files in place. Users are 
able to access the files they want without knowing the network address of the 
data. To the user, all NFS-mounted file systems look like private disks; there 
are no apparent differences between reading or writing a file on a local disk, 
and reading or writing a file on a disk in the next building. 

NFS was designed as a network service, and not as a distributed operating sys­
tem. It is able to support distributed applications without restricting the net­
work to a single operating system. 

For more information about Network File System, see the Network User's and 
Administrator's Guide. 

Remote Procedure Call 

The RPC library implements a published, industry standard protocol that can be 
used on many different types of computers running different operating systems. 
It provides a mechanism that makes it possible for the syntax and semantics of 
the local procedure call model to be used to invoke a process on another com­
puter. 

The RPC library uses External Data Representation (XDR) to encode data passed 
from one computer to another so that a computer can call a procedure on 
another computer running a different operating system. (The XDR library is 
described later in this section.) 

The RPC library allows server programs to become building blocks that can be 
used to create more complex applications. A server might provide a service to 
clients by calling other servers, each of which would perform a single operation 
toward the accomplishment of a multi-step task. The process is much like using 
program modules to create larger programs, but with the added flexibility that 
the modules are bound dynamically at run time and can be shared and distri­
buted. 

UNIX System V Release 4 5-35 



Networking 

RPC service is implemented over the Transport Level Interface (TLI), which 
gives it transport protocol independence and allows it to run unchanged over 
different networks conforming to the Transport Provider Interface. 

For more information about RPC, see the Programmer's Guide: Networking Inter­
faces. 

External Data Representation 

Data is represented in different ways on different computers and in different 
programming languages. When data needs to be exchanged between two com­
puters, these differences must be reconciled. 

External Data representation (XDR) is one specification of a standard representa­
tion for data types. It is defined independently of any specific hardware, 
operating system, or programming language. 

XDR takes care of problems with data byte ordering, data type size, and data 
representation by specifying what they should be. A program needs to translate 
between its internal representations and the XDR standards when it communi­
cates with other computers. 

Network Selection 

Network Selection is a feature that helps applications select a network to use for 
communication. Users can specify their preference in an environment variable, 
NETPATH. The system administrator can set a default NETPATH for login, 
which users can override or append to as necessary. Applications have the 
option of using the network specified by the user in NETP A TH, or selecting a 
network based on other application-specific criteria. 

The benefit of Network Selection is that a network selection no longer needs to 
be embedded in the application code. This allows the application to run without 
change on different systems connected to different networks. 

Network Selection allows a system to have a different list of networks for dif­
ferent applications. It also allows applications to connect to a number of dif­
ferent networks until it finds one that meets its service requirements and per­
mits the connection. 

5-36 Migration Guide 



Networking 

For more information about Network Selection, see the System Administrator's 
Guide and the Programmer's Guide: Networking Interfaces. 

Name-to-Address Mapping 

UNIX System V Release 4.0 networking includes a name-to-address mapping 
mechanism that network clients can use to determine the addresses of servers in 
a network-independent manner. It allows clients to reach servers, even if the 
address on which the server is listening changes. It makes it possible for clients 
to be independent of networking protocols, as long as the network provides a 
transport-level interface. It also allows a client to reach a server through the 
most convenient network. 

A client can identify a server by 

• a service name 
• the name of the host computer on which the service resides 
• the name of the network to be used to reach the host. 

The name-to-address mapping mechanism supports many different look-up 
schemes. The name-to-address daemon receives translation requests from a 
client and uses the /etc/netconfig file to obtain the name of a routine to per­
form the actual translations. 

For more information about name-to-address mapping, see the System 
Administrator's Guide. 

Service Access Facility 

The Service Access Facility (SAF), described earlier in this guide, provides a uni­
form framework for managing external access to the system. The daemon 
processes (port monitors) monitor all access points to the system, including net­
work ports, for connection requests. When a port monitor gets a connection 
request, it invokes the desired service. The SAF makes service access easier to 
manage and enhance. 

For more information, see the System Administrator's Guide. 

UNIX System V Release 4 5-37 



Character-Based User Interfaces 

An earlier release of UNIX System V introduced a high-level language inter­
preter called Form and Menu Language Interpreter (FMLI). FMLI allows 
developers to write user-friendly interfaces to their applications. Release 4.0 
provides extensions to the Form and Menu Language, including a way to inter­
rupt executables, a conditional statement (if-then-else), new built-in functions 
test and expr, and other improvements that give FMLI programmers more 
control over the appearance and behavior of their application interface. 

In addition, Release 4.0 provides enhancements to Framed Access Command 
Environment (FACE), a menu-based interface to UNIX System V. FACE has 
been enhanced to be more consistent with a version developed for UNIX System 
V 386, Release 3.2, and the ease with which applications can be added to FACE 
has been improved. 

For more information about FMLI, see the Programmer's Guide: Character User 
Interfaces (FMU and ETI). For information about FACE, see the User's Guide. 

5-38 Migration Guide 



Graphical User Interface 

As part of the effort to encourage a standardization of the UNIX system, Release 
4.0 offers a device-independent, portable graphical windowing system, called 
Graphical User Interface (GUI). GUI is a versatile, user-friendly software inter­
face, composed of several subsystems, called XWIN, Xll/NeWS@, and OPEN 
LOOJ(TM. Each subsystem has a particular function that extends the capabilities 
of the UNIX operating system. 

XWIN 

The XWIN Graphical Windowing system is a portable window system that 
creates a multi-layered server system on top of the UNIX system. XWIN gives 
the user the ability to create multiple windows on a single display and to run 
different applications in each window. 

XWIN software uses the X protocol for exchanging information between client 
applications and the graphics server, and Xlib (the C language interface) to built 
system functions. The X protocol gives application programs running on dif­
ferent systems the ability to communicate with and use or display results from 
other application windows. 

For information about XWIN, see the Programmer's Guide: XWIN Graphical Win­
dowing System. 

X11/NeWS 

XlI/NeWS is a second windowing system that runs applications written to the 
XII and NeWS protocols. Although the protocols are different, XlI/NeWS pro­
vides an integrated environment in which both are supported, with both work­
ing off a single window manager. 

For information about Xll/NeWS, see the Programmer's Guide: Xll/NeWS Graph­
ical Windowing System. 

UNIX System V Release 4 5·39 



Graphical User Interface 

OPEN LOOK 

OPEN LooKTM defines a standard for the appearance and function of the 
graphical user interface and provides developers with application programmer 
interface (API) toolkits. API toolkits allow developers to manipulate windows 
and window-supported graphics to achieve the standard '1ook and feel" of 
OPEN LOOK GUI applications. Two toolkits are provided as part of OPEN 
LooK-one for writing applications that operate on the XWIN server, and one 
for writing XlI/NeWS applications. 

For information about OPEN LOOK, see the Programmer's Guide: OPEN LOO[(TM 
Graphical User Interface. 

Migration Guide 



Internationalization 

The goal of internationalization is to make it possible for a single program to 
interact with a variety of users, regardless of the language they speak and the 
country in which they reside. 

Features required for internationalization are 

• support for multiple character sets and multi-byte characters 

• a message handling facility 

• support for different national conventions. 

Both ANSI X3.159-1989 and IEEE Std 1003.1 (POSIX) have defined standards for 
international programs. The ANSI C committee has adopted the term '1ocale" 
to refer to a grouping of information that provides behavior dependent on con­
ventions of nationality, culture, and language. 

Release 4.0 implements the ANSI and POSIX standards. It provides the hooks 
necessary for localizing applications, supports multiple locales simultaneously 
on the same system, and allows multiple instances of the same program to 
operate each with different locales. 

The ANSI C draft standard defines the setlocale function, which allows a pro­
gram to specify the locale to be used for all subsequent locale-specific opera­
tions. The set locale function accepts two parameters, an integer indicating 
the locale-dependent operation that is to be affected (category), and the name 
of the locale (locale). Once setlocale returns, any of the operations specified 
in category operate according to the designated locale. The variables that can 
be specified with the category parameter are LC _ALL, LC _COLLATE, LC _ CTYPE, 
LC_MONETARy,LC_NUMERIC,LC_TIME,andLC_MESSAGES. 

(For detailed information about the features described in this section, see the 
Programmer's Guide: System Services and Application Packaging Tools.) 

UNIX System V Release 4 5-41 



Internationalization 

International Character Manipulation 

Internationalization corrects some erroneous assumptions held by many users of 
the ASOI character set-specifically, that a character fits into 7 bits, and that 
"character" and ''byte'' are synonymous. In actuality, a single language charac­
ter may occupy a 7-bit byte (ASCII), an 8-bit byte (European code sets), or a 2-
or 3-byte string (Kanji). In Release 3.1, steps were take to remove assumptions 
from various programs that characters are encoded in 7-bit ASCII. In Release 
4.0, UNIX System V offers full support of multiple code sets. 

Release 4.0 also supports multi-byte characters-the representation used for 
international character sets for performing I/O on characters or strings of char­
acters. The multi-byte representation of a single object may (as its name sug­
gests) occupy multiple bytes and include shift state encodings. Multi-byte char­
acters are represented in C language programs as character arrays. 

In conformance with the ANSI C standard, Release 4.0 includes support for 
wide characters---a new data type that can represent every character in any 
given character set. Wide characters are used in programs to manipulate the 
characters in a file, rather than just the bytes. 

Message Management 

A difficult problem to address when building international applications is the 
problem of conversing with the user in his or her native language. To allow the 
user to input a file name in his or her native language requires the programmer 
to create new routines that prompt the user with the proper native language 
phrase and accept the native language as input. Adding support for a language 
requires finding every locale-dependent area in the code and modifying it to 
invoke native language statements where appropriate. The time required to 
build and maintain such programs is enormous, since each supported language 
requires extensive modifications to the program. 

In order to address the problem of locale-dependent messages, programs need 
to replace references to embedded ASCII strings in program with a call to a 
general purpose text string look-up service. Release 4.0 provides such a look-up 
service in two forms: as a C language function and as an executable command, 
both named gettxt. 

5-42 Migration Guide 



Internationalization 

Given a message identifier, gettxt retrieves the text string associated with that 
identifier. The message database searched by gettxt is determined by the 
current program locale; that is, if the current locale is French, gettxt will 
retrieve the appropriate entry in the French version of the message database. 

Once a program has been converted to use gettxt, providing support for a new 
locale is simply a matter of translating the message database for the program 
into the new language/character set and building the message database with the 
mkmsgs command. 

In Release 4.0, the directory /usr/lib/locale contains directories for each 
locale that is supported on a particular system. Each directory for a particular 
locale contains a subdirectory for messages, named LC _MESSAGES. 

Release 4.0 provides two tools, mkmsgs and srchtxt, to create and search mes­
sage databases. In addition, Release 4.0 provides the exstr tool for converting 
existing programs to use the message management facilities. 

National Conventions 

National conventions are the rules and formats we observe when we communi­
cate. Different countries and cultures observe different rules; for example, dif­
ferent countries use different calendars and different formats for communicating 
the month, day, year, and time of day. For a program to be "international," it 
must support different calendars and time-of-day calculations, via date/time cal­
culation routines. 

In Release 4.0, existing utilities and interfaces have been modified to support 
both implicit and explicit invocation of different national conventions. 
Specifically, release 4.0 provides 

• a new utility that supports the definition and creation of new collating 
tables, and two new library routines that use the collating table 

• a facility to provide user-definable character classification tables 

• generalized date/time editing functions and separate format specifications 

• an external variable that can be used by various number conversion rou­
tines to edit data in different number formats. 

UNIX System V Release 4 5-43 



C Language 

Most enhancements to the C programming language for this release fall into 
three categories: confonnance with the American National Standards Institute 
(ANSI) X3.159-1989 C language standard; transition to dynamic shared libraries 
from static shared libraries; and transition to ELF (Executable and Linking For­
mat) from COFF (Common Object File Format). 

Other C language enhancements, resulting from internationalization require­
ments, are described under the heading "Internationalization" in this chapter. 

ANSle 

Three options have been added to the C compiler [see cc(1)] to help make the 
transition to ANSI C confonnance [-Xt (transition), -Xa, (ANSI), and -Xc (con­
fonnance)]. These options specify the degree of confonnance ranging from 
older compilation systems to the ANSI C standard. 

The following topics for migrating from non-ANSI to ANSI C code are covered 
in the ANSI C Transition Guide 

• mixing old and new style functions 

• functions with varying arguments 

• promotions: unsigned vs. value 

• tokenization and preprocessing 

• using const and volatile 

• multibyte characters and wide characters 

• standard headers and reserved names 

• internationalization 

• grouping and evaluation in expressions 

• incomplete types 

• compatible and composite types 

5-44 Migration Guide 



C Language 

Dynamic Linking of C Programs 

The C compilation system supports dynamic linking whereby the contents of a 
shared library are mapped into the virtual address space of processes at run 
time. External references in the programs are connected with their definitions 
when the programs are executed. The compilation system provides dynamic 
linking by default. 

As did static shared libraries, dynamic shared libraries save disk storage and 
system process memory by sharing library code at run time. Unlike static 
shared libraries, dynamic shared libraries can be fixed or enhanced without hav­
ing to relink applications that depend on them. Moreover, dynamic shared 
library code is completely compatible with archive library code. Library build­
ers can use the same source files to create archive and shared object versions of 
a library. See chapter 2, "C Compilation System" of the Programmer's Guide: 
ANSI C and Programming Support Tools for a discussion of dynamic linking. 

In this release, C programs can still be linked with existing static shared 
libraries, though you should not rely on this feature being in future releases. 
The mkshlib command (used to create a shared library) is no longer supported. 

COFF to ELF 

A new transparent object file format called ELF (Executable and Linking For­
mat), replaces the old format COFF (Common Object File Format). 

COFF files should be converted to ELF files with the cof2elf command or by 
recompiling the source. Recompilation is preferable because it guarantees that 
executable programs will be compatible with new features in this release. 
(Note, too, that cof2elf discards debugging information.) ELF is described in 
detail in chapter 13, "Object Files," of the Programmer's Guide: ANSI C and Pro­
gramming Support Tools. 

UNIX System V Release 4 5-45 





ISBN 0-13-933821-7 


