
Inside the

-#!---

INSIDE THE

BUTTERFLY PLUS

October 28, 1987

Copyright © 1987 BBN Advanced Computers Inc.
ALL RIGHTS RESERVED

RELEASE LEVEL

This manual conforms to the Beta Test version of the Butterfly Plus
Parallel Processor released October, 1987, and Version 4.0 of the
Chrysalis operating system.

NOTICE

BBN Advanced Computers Inc. (BBNACI) has prepared this manual
for use by B BN customers, personnel, and licensees. The
information contained herein is the property of BBNACI. The
contents of this manual may not be reproduced in whole or, in part,
nor used other than as allowed in the terms and conditions of sale of
this manual.

The information in this manual is subject to change_without notice,
and should not be construed as a commitment by BBNACI. BBNACI
assumes no responsibility for any errors that appear in this
document.

Butterfly and Chrysalis are trademarks ofBBN Advanced Computers
Inc.

UNIX is a trademark of Bell Laboratories, Inc.
4.2BSD is a trademark of the Trustees of the University of
California.
Multibus is a trademark of Intel Inc.
VMEbus is a trademark of Motorola Semiconductor Products, Inc.
Scheme and The X Window System are trademarks of
Massachusetts Institute of Technology.
Ethernet is a trademark of Xerox Corp.
VAX is a trademark of Digital Equipment Corp.
Lisp Mach_ine is a trademark of Symbolics, Inc.

Preface

This manual describes the theory of operation of the Butterfly P /us
system. It provides detailed descriptions of the important components of
the system, including the Processor Node, Butterfly Switch, Multibus
Adapter, and VMEbus Adapter circuit cards, as well as an introduction to
the overall design of the system. The manual also contains an
introductory Chrysalis programming chapter to allow the reader a glimpse
of the Butterfly Plus programming environment. This manual assumes that
the reader is an engineer or programmer, sufficiently knowledgeable in the
area of parallel processors.

iii

Contents

Chapter 1 Butterfly Plus Overview

Architectural Features
System Components

Butterfly Plus Card Cage
Multibus Card Cage
Processor Node
Main Memory
Switch Card
Clock Card

Input/Output Capabilities
Butterfly Plus 1/0 Link
Multibus Adapter Card
Multibus RAMboot Card
Multibus Ethernet Controller Card
VME Interface

System Reset
Packaging

Chapter 2

Processing Elements
Processor

The Processor Node

Floating Point Coprocessor
Memory Management Unit
Address Decoding
Processor Node Functions
Interru.pt System 0 ••••••••••••••••••••• , •••• -••••••••••••••••••••••••••••••

Processor Node Controller

1-2
1-3
1-6
1-7
1-7
1-9

1-11
1-12
1-13
1-14
1-14
1-15
1-16
1-16
1-18
1-19

2-2
2-3
2-3
2-4
2-5
2-5
2-7
2-7

v

Contents Inside the Butterfly Plus

PNC Bitslice Processor
Control Store and Microcode Sequencer .. .
Microcoded Special Functions .. .
Micro interrupt Requirements .. .
Real time Clock and Timer .. .

Switch Interface .. .
Switch Receiver Micromachine .. .
R · c· ·to t. eceiver ircui pera ion
Switch Transmitter Micromachine
T an ·tt c· ·t o n· r srm er ircui per a on :

Bootstrap EPROM .. .
Diagnostic UART .. .
USO Bootstrap Debugger

Chapter 3 The Butterfly Plus Switch

Alternative Switch Structures ..•.
Characteristics of a Butterfly Plus Switch .. .
Butterfly Plus Switch Operation

Handling Contention ~ .. .
Error Detection and Handling ~~.:
Block Transfers
Routing Decisions
B.d. n· al C · t. i 1rec on ommunica ion
Conflict Resolution Strategies
Parallel Data Paths .. .
Alternate Paths and Extra Columns .. .

Speed Issues in Switch Design
Dead States and Flow Control .. ; ..
Switch Design Summary .. .
Switch Node Implementation

vi

2-9
2-10
2-10
2-11
2-12
2-12
2-13
2-14
2-16
2-17
2-20
2-20
2-21

3-6
3-10
3-11
3-12
3-13
3-14
3-15
3-17
3-19
3-22
3-22
3-25
3-26
3-28
3-29

Inside the Butterfly Plus Contents

Chapter 4 The Multibus Adapter

Null Switch Interface
Watchdog Timer
Host and Console UARTs
EPRO M
Multibus Data Transfers

Multibus Access to Butterfly Plus Memory
Butterfly Plus Access to Multibus Data .. .

The Multibus Adapter Pipeline ~
Pipelined Writes to the Butterfly Plus
Pipelined Reads from the Butterfly Plus
Multibus Data Transfer Timing .. .

Posting Events from the Multibus .. .
Servicing Multibus Interrupt Requests

Programming the Interrupt Vector RAM

Enabling Multibus Interrupts .. .
" Multibus Memory Management
LOCK Signal and Jumper Settings ~
Installing the Multibus Adapter
Multibus Adapter Register Summary ;:

Chapter 5 The VME Interface

4-3
4-4
4-4
4-8

4-10
4-11
4-12
4-14
4-15
4-15
4-18
4-18
4-20
4-22
4-24
4-24
4-26
4-28
4-30

Overview of the VME Interface 5-2
Performarice ... 5-2
Architecture ... 5-3

VME Node Controller 5-4
LED Indicators 5-6
Power Switch and Connectors 5-8
Jumpers 5-9
DIP Switch Settings ... 5-9

VME Bus Adapter ... 5-10
VME Interface as Bus Requester ~.. 5-13
Configuration on the VMEbus ... 5-14

VME Interface as Arbiter .. 5-14
VME Address Space 5-14

Address Tran.slati.on 5-14
Bank 0 Memory ... 5-15

vii

Contents Inside the Butterfly Plus

..... ·· Control Registers
VME Interrupt Requests ..
The VMEbus ...

VME Address Modifier ...
The VME Interface as a VMEbus Device
Butterfly Plus and VMEbus Block Transfers
VME Data Alignment ...

Programming the VME Interface
VME Node Controller and Port Numbering
Subroutine Access Method
Mapping Method ... ·····················

Interrupts .. ···························
Requesting VMEbus Interrupts
Handling VMEbus Interrupts
VME Interface Control Registers
Parallel Transfers for Higher Bandwidth
Library Routines and the Server Process
Disk Data Transfer Example

..

List of Calls ·················

Chapter 6 Programming the Butterfly Plus

Chrysalis Operating System
Application Libraries
Server Functions
Kernel Functions
Multiprogramming Support
Multi-User Support
Memory Management
Synchronization Primitives
Input/Output Support

Software Development Environments
Cooperating Sequential Processes
The Uniform System

viii

Programming With Butterfly Plus Scheme
The RAMFile System

5-16
5-21
5-21
5-21
5-22
5-24
5-26
5-27
5-29
5-30
5-31
5-33
5-34
5-34
5-35
5-35
5-36
5-36
5-37

6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-5
6-6
6-6
6-7
6-7

6-15
6-18

Inside the Butterfly Plus Contents

Appendix A PNC Microcode Functions

Block Transfer Facility
Posting Events
Dual Queue Functions .. .
Interrupt Control Register
Atomic Clear-th.en-Add .. :
Local Bank 0 Memory Access , .. .
0th.er Kernel Functions

Enqueue, Dequeue, Push, and Remove :
Clear-Then-XOR and Clear-Then-Add .. .
The misc Register
Interprocessor Interrupts and Resets
PNC Status Register .. .

Processor Node Number
PNC Writable Control Store Control .. .
Real-Time Clock .. , ..
Interval Timer
Diagnostic UART
Local Memory Control Registers ; .. .

Appendix B Physical Memory Map

Figures

1-1
1-2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
2-4
3-1
3-2
3-3

Butterfly Plus System Diagram
Processor Node
Switch Card :
Multibus Adapter Card
VME Node Contro Iler .. .
VME Bus Adapter Card .. .
Processor Node Block Diagram .. .
PNC Block Diagram
Switch Receiver Block Diagram
Switch Transmitter Block Diagram .. .
16-Port, 8-Node Switch .. .
A Packet Moves through an 8-Node Switch
Switch for a 64.-Processor Butterfly Plus

A-1
A-3
A-5
A-9

A-11
A-12
A-12
A-13
A-14
A-14
A-14
A-15
A-16
A-17
A-18
A-18
A-18
A-19

1-4
1-8

1-12
1-15
1-17
1-18
2-1
2-8

2-15
2-18

3-2
3-3
3-5

ix

Contents Inside the Butterfly Plus

3-4
3'-5
3'--6
]';..7

J-8
3-9
3-10
3-11
3-12
3-13
3-14
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
6-2

Common Bus
CrossbaI' S wit:ch
Divided Crossbar Switch .. .
Serial Decision Neiw-ork .. .
Butterfly Plus Switch as a Cylinder .. .
Switch as a Channel betw"een Processor Nodes
Secondary Blockage in the Switch
Effects of Switch Failure ~
Alternate Paths through a Switch .. .
Deadlock in a Switch ·
Base 4 Switch Node 1/0 Diagram
UART Interrupt Control Register
UART Interrupt Vector Register .. .
EPROM Data and Control Register Bit Layout
Reading the EPROM
Writing th.e EPROM
Butterfly Plus and Multibus Address Maps under Chrysalis ... :~
Pipeline Empty Multibus Read
Pipeline Full Multibus Read
Multibus Adapter Interrupt Status Register Bit Map
Multibus Adapter Interrupt Vector RAM Bit Map ... ~
Mapping Multibus Addresses onto the BIOLINK ··
Multibus Adapter Misc Register Bit Map
VME Interface Block Diagram
VME Node Controller Block Diagram
VME Node Controller Layout
VME Node Controller Front Edge .. .
VME Node Controller Jumper Positions
VME Bus Adapter Block Diagram
VME Bus Adapter Card Layout
VME Bus Adapter Jumper Positions
Butterfly Plus Programming Environment
Butterfly Plus Task Generator

Tables

1-1
1-2
3-1

x

Minimal Butterfly Configuration Guide
Butterfly Plus Product Specification
Switch Bandwidth versus Message Size

3-6
3-8
3-9

3-16
3-18
3-19
3-20
3-23
3-24
3-27
3-30
4-6
4-6
4-9
4-9

4-10
4-14
4-16
4-17
4-21
4-23
4-25
4-27

5-4
5-5
5-6
5-7
5-9

5-10
5-12
5-13
6-2

6-13

1-4
1-20
3-25

Inside the Butterfly Plus Contents

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
5-1
5-2
5-3
6-1
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10

UART Control Register Addresses FFF7DOOO
EPROM Data and Control Register (FFF7D022) Layout
Multibus Data Transfer Timing
Multibus Adapter Interrupt Status Register Layout FFF7D028
Multibus Adapter Interrupt Vector RAM Layout FFF7FOOO
Vector RAM Programming Example
Segment Attribute Tag Values ;
Multibus Adapter Misc Register (FFF7D026) Layout
Multibus P2 Connector Pin Assigrunents
Multibus Adapter Control Registers :
VME Node Controller LED Indicators
DIP Switch Settings .. .
Chrysalis VME Interface Access Methods
Atomic Memory Operations
p_state Bits .. .
Dual Queue Functions in PNC Microcode
Dual Queue Return Codes .. _.
q_flags Bits .. .
Interrupt Control Register Bit Assignments
Interrupt Register Functions
Microcode Functions ... _. ·--··
PNC Status Register (PNCsRC at FFF75000) Layout
PNC Writable Control Store Control Registers
Memory Control Registers .. .

4-7
4-8

4-18
4-21
4-23
4-24
4-25
4-27
4-29
4-30

5-8
5-10
5-29

6-6
A-4
A-6
A-7
A-8

A-10
A-10
A-13
A-16
A-18
A-19

xi

Chapter 1

Butterfly Plus Overview

The Butterfly Plus parallel processor is a powerful, modular computer system
composed of. multiple processors and memory modules connected by a high
performance network interconnect. Each processor, along with an associated
memory module, occupies one circuit card called a processor node. All pro
cessor nodes in a Butterfly machine are identical; all connect to the Butterfly
Plus switch in the same way and can work together interchangeably to run an
application program. The Butterfly Plus is a multiple instrtiction, multiple
data stream (MIMD) machine in which each processor can execute an indepen
dent program on local or shared memory data.

Collectively, the memory modules of all the processor nodes form the shared
memory of the machine. Although each memory module is local to one par
ticular processor node, any processor can access the local memory of any
other processor by using the Butterfly Plus switch to make remote memory
references. Special circuitry in each processor node interprets ordinary
memory references as either local or remote memory references, as appropri
ate. The switch can complete a remote memory reference within a maximum
of a few microseconds, regardless of where the data resides.

The distributed, shared memory architecture of the Butterfly Plus, together
with the firmware and software of the Chrysalis operating system, provides a
program execution environment in which tasks can be distributed among pro
cessors regardless of where the task data is located. The Butterfly Plus can be
programmed in several different ways. Processors can be dedicated to indivi
dual tasks, as in a realtime system, or used as a pool of interchangeable

1-1

Butterfly Plus Overview Inside the Butterfly Plus

computing resources that are allocated to tasks dynamically. Interprocessor
communication can occur through shared memory, with one processor writing
data for another processor to read, or through message passing. The Chrysalis
operating system and its associated set of programming languages, tools, and
utilities support various different styles of parallel processing. The system
software includes complete facilities for developing and debugging parallel
programs.

ARCHITECTURAL FEATURES

The Butterfly Plus parallel processor has several important architectural
features. Most importantly, the Butterfly Plus is an .MIMD computer, able to
execute multiple instruction streams on multiple data elements. The Butterfly
Plus also has tightly coupled processors that allow for extensive interproces
sor communications. In addition to these features, the Butterfly Plus architec
ture is flexible and expandable, and demonstrates a high degree of homo
geneity and reliability.

Program instructions normally reside in the local memory of the processor
that executes the instructions. As a result, each processor independently exe
cutes its own sequence of instructions on separate data in MIMD fashion,
allowing programmers to structure programs and data in ways that are natural
and efficient for their applications. The architecture supports a variety of
software structures and allows Butterfly Plus systems to be used in a wide
range of applications.·

The processors in the Butterfly Plus are tightly coupled by the interconnect
network, the Butterfly Plus switch. Tight coupling permits efficient interpro
cessor communication and gives each processor equal access to the global
memory. As a result, programming is simplified, without sacrificing perfor
mance, by allowing programmers to organize data without undue concern for
which memory module stores which part of the data. Program references to
remote memory take only slightly longer to complete than references to local
memory. Many applications achieve best performance when their data is
scattered unifonnly throughout the machine.

The Butterfly Plus is expandable over a wide range of configurations. Each
processor node added to a Butterfly configuration contributes an increment of
processing power, memory, and switch bandwidth. A Butterfly Plus system

1-2

Inside the Butterfly Plus Butterfly Plus Overview

can be configured with up to 256 processors to match the computational
power needs of a particular application. Although the number of components
increases with expansion, the complexity and cost of the interconnect network
always remain at an acceptable level.

.
The Butterfly Plus is a homogeneous multiprocessor where each processor
node is the same as every other. The uniformity of the Butterfly Plus architec
ture simplifies programming, since programmers need not allocate certain
tasks to specific processors. Programmers can also write application software
without concern for the number of processors that will he available to run the
program. Such application software has several advantages. It can be
developed and tested on small, inexpensive configurations, then run on larger,
operational machines. Also, if the resource demands of an application exceed
the capacity of its current Butterfly configuration, the application can be
moved to a larger, more powerful Butterfly configuration and run without
reprogramming. Application software written in this way improves overall
system reliability and availability, since it can run on configurations reduced
by missing or failed components.

The Butterfly Plus architecture is relatively insensitive to component failures,
resulting in a reliable system. The machine can operate despite the absence of
one or more of its processor nodes. A 128-processor machine can still run at
approximately 98% of its capacity, for example, even after three of its proces
sors are removed.

SYSTEM COMPONENTS

Butterfly Plus system components occupy from one to six freestanding 80-
inch high racks in which circuit cards, card cages, and peripheral devices are
mounted. Racks have hinged doors both at the front, for access to the circuit
cards, and at the rear, for access to the power distribution and cooling sys
tems. Three types of card cages can be installed inside the rack. Butterfly
card cages hold processor nodes, VME nodes, switch cards, and clock cards.
Multibus card cages hold standard Multibus cards, and VME card cages hold
standard VME cards. Figure 1-1 illustrates a block diagram of the Butterfly
Plus sys~em. Every Butterfly Plus system ha,s at least one Butterfly card cage
and one Multibus card cage. Larger systems ~ave several Butterfly card cages
but rarely require a second Multibus card cage. The VME card cage is always
optional. Table 1-1 lists the minimal number of circuit cards and card cages

1-3

Butterfly Plus Overview Inside the Butterfly Plus

required for various system configurations. Some Butterfly Plus
configurations may require more cards and card cages than are listed.

-- .. -... ---.. -----.. ,
MULTIBUS •

I
I
I
I
I
I

• •
I
I

CARD CAGE

RAM BOOT
CARD

MULTIBUS
ADAPTER

EniERNET
CONTROL

CARD

----- ----
FRONT END EniERNET

SYSTEM

~ ... -----------
' VME CARD CAGE :

• •
VMEBUS
ADAPTER
CARD ' • •

' ' .
~--------·--:

Figure 1-1

VMENODE
CONTROL
CARD

Butterfly Plus System Diagram

1-4

BIOLINK

• --'

G
G
G

-

Add processor
nodes as

needed

8
-------------------_R~~li:_c~s_o.:i~ c:r ~~o y~o:e_5!o!s __ :

BUTTERFLY
SWITCH

G
8
G
G

Get four
megabytes of

memory with
each processor

Inside the Butterfly Plus Butterfly Plus Overview

Table 1-1
Minimal Butterfly Configuration Guide

Racks Processor Butterfly Switch Clock
Nodes Card Cages Cards Cards

1 1-16 1 1 0
17-32 2 4 1

2 33-48 3 6 3
49-64 4 8 3

3 65-80 5 10 4
81-96 6 12 4

4 97-112 7 14 5
113-128 8 16 5

4 129-144 11 22 8
145-160 12 24 8

4 161-176 12 24 9
177-192 13 26 9

5 193-208 14 28 10
209-224 14 28 10

6 225-240 15 30 11
241-256 16 32 11

A power distribution unit at the bottom of each Butterfly rack accepts 5-wire,
3-phase, 208-volt AC power from the wall outlet and distributes this AC power
to the main Butterfly power supply, located at the top of the cage. This main
power supply rectifies the 3-phase AC power and distributes the resulting
unregulated DC power to the individual power converters located on every
processor node and switch card. Aside from the main AC power distribution
cable that carries 3-phase AC power to the main power supply, the power dis
tribution unit has six 120-volt AC outlets from which peripherals mounted in
the rack can draw AC power. Three neon lamps on the top of the power distri
bution unit indicate the state of the three phases of AC power. A central cir
cuit breaker enables and disables AC power to the rack.

1-5

Butterfly Plus Overview Inside the Butterfly Plus

Bwtterfly Plus Card Cage

A Butterfly Plus card cage normally holds three types of circuit cards: proces
sor nodes and clock cards, which mount vertically in the lower portion of the
card cage, and switch cards, which mount horizontally at the top of the card
cage. (An optional VME node replaces one or two of the processor nodes
when a VME card is installed in the rack.) A rack normally holds up to two
Butterfly card cages, each with 18 vertical slots and two horizontal slots. The
horizontal slots accept only switch cards. The clock card, if present, must
occupy the rightmost vertical slot. Up to 16 processor nodes normally occupy
all but one of the remaining vertical slots.

The Butterfly card cage has an integral main power supply that accepts 3-
phase AC power from the power distribution unit at the bottom of the rack and
supplies unregulated DC power to the individual switching power supplies on
each processor node, switch, and clock card. It also has an upper and lower
fan bank for cooling, each with its own filter.

The Butterfly card cage has two AC circuit breakers and five DC circuit break
ers. The two AC circuit breakers are located at the rear of the Butterfly card
cage, above the lower fan assembly. The one on the left is a 4-handle breaker
and the one on the right is a 3-handle breaker. The 3-handle-breaker protects
against current faults in either of the two cooling fan assemblies and trips the
4-handle circuit breaker when it detects a fault. If the 3-handle breaker is not
in its on (up) position, the 4-handle breaker cannot be turned on. The 4-
handle breaker detects current overloads on each of the three AC power phases
and also detects ripple and phase faults.

The five DC circuit breakers are arranged in a row along the top of the front
panel of the Butterfly card cage, between the processor nodes (installed verti
cally in card cage slots) and the lower Butterfly Plus switch card (installed
horizontally in card cage slots). These breakers detect current or power
cabling faults in the unregulated DC power that the DC power supply at the top
of the cage provides to the Butterfly circuit cards. Each DC circuit breaker is a
20-ampere magnetic breaker that can power down a string of four processor,
clock, or switch cards, allowing these cards to be removed without powering
down the entire card cage.

1-6

Inside the Butterfly Plus Butterfly Plus Overview

A Butterfly Plus is shipped with its processor nodes already installed in the
Butterfly card cage and secured by a shipping bracket to prevent accidental
slipping. This shipping bracket may be left in place or removed upon arrival.

Multibus Card Cage

A Multibus card cage has nine horizontal slots. There are always at least
three circuit cards in the first Multibus card cage: the Butterfly Plus Multibus
adapter, which must occupy the topmost slot, a RAMboot card, and an Ether
net controller card. The lowest slot in the Multibus card cage cannot be occu
pied by a Multibus device requesting to be a master, and is generally kept
empty.

Below the Multibus card cage is the Ethernet fantail, a narrow panel mounted
horizontally, with cutouts for various types of cable connectors. The Multibus
Ethernet controller card attaches to a DB-15 connector on the lefthand side of
the fantail via a cable. Adjacent to the DB-15 Ethernet connector are two RS-
232 host and console terminal ports. The UARTs of the Multibus adapter card
connect to these two· RS-232 connectors. The Ethernet fantail also provides a
second Ethernet cable connector and a second pair of host and console termi
nal ports for use if a second Multibus card cage is needed. A bank of four
additional RS-232 ports on the righthand side of the Ethernet fantail includes a
pair of console and host ports on the left and right of the bank. These two
ports terminate cables that attach to any processor node's diagnostic UART in
the rack via that processor node's J4 connector. The middle two RS-232 con
nectors in this bank of four are unused, as are the two banks of RS-449 con
nectors. The Butterfly Plus needs only the ground, transmit data, and receive
data signals on its RS-232 serial lines, all of which are standard DCE connec
tions that accept male DB-25 connectors.

Processor Node

A Butterfly Plus can have up to 256 processor nodes. Each processor node is
a single circuit card with the following components:

• MC68020 microprocessor with MC68881 floating point coprocessor and
MC68851 paged memory management unit (PMMU)

• Four megabytes of main memory with memory controller

1-7

Butterfly Plus Overview
Inside the Butterfly Plus

• 128-kilobytes of programmable read only memory (EPROM)

• Address decoding logic

• Processor node controller (PNC)

• Dual UART

• l/O bus adapter

• Interface to the Butterfly Plus switch

• Switching power supply.

These processor node components communicate with one another over a fast
internal bus. Figure 1-2 shows the processor node.

switch mode

MC68851 PAGED MEMORY
MANAGEMENT UNIT

Figure 1-2
Processor Node

1-8

JMP1 o selects cache
disable when installed

4 MEGABYTES MAIN MEMORY

.'°5RS

MC68881 FLOATING POINT COPROCESSOR

MC68020 MICROPROCESSOR

Inside the Butterfly Plus Butterfly Plus Overview

The MC68020 microprocessor is the main processing unit of a processor node.
Associated with each MC68020 is an MC68881 floating point coprocessor.
Paged memory management is provided by an MC6885 l. These three chips,
combined with the address decoding logic, make up the primary computa
tional elements of a processor node.

Main Memory

Each processor node has four megabytes of semiconductor dynamic random
access memory (DRAM) for local and remote memory accesses. The four
megabyte memory bank serves as the local memory of its processor node,
which accesses that memory directly over a fast local bus. Any processor
node in the system can remotely access the local memory of any other proces
sor node by using the Butterfly Plus switch. Together, all the processor node
memories make up the shared memory of the Butterfly Plus.

Circuitry in each processor node monitors the high-order physical address bits
during a memory reference to determine whether the memory access is local
or remote. If the high-order address bits match the processor number, the
access is a local one and can be made directly. without involving the switch.
If these address bits differ from the processor number, the access is a remote
one and must be made through the switch. From the vie\vpoint of a program
running on one processor, the only difference between references to local
memory on its own processor node and references to remote memory on other
processor nodes is that remote references take slightly longer to complete.
Typical memory reference instructions that access local memory take about
one microsecond. Those accessing remote memory take about five
microseconds. Speeds of the processors, memories, and switch are balanced
to let the system work efficiently in a wide range of configurations. The
memory bandwidth is 102-Megabytes-per-second.

1-9

Butterfly Plus Overview Inside the Butterfly Plus

Every local memory access takes three cycles. The first cycle latches the
memory address and type of operation (e.g., read, word write, byte write).
During a write operation, the new memory data is latched during the second
cycle, thereby freeing the rest of the processor node to perform some other,
unrelated operation during the third cycle. During a read operation, the
memory returns the data to the processor node during the third cycle, leaving
the rest of the processor node free to perform other work during the second
cycle. The rest of the processor node is occupied during only two-thirds of.
the time it takes to access the memory.

Each four megabyte memory module has 36 one megabit DRAM chips organ
ized into four banks of 8-bit bytes with one parity bit. A one megabit
dynamic memory chip is a 1024 x 1024 array of binary cells. The memory
controller selects particular cells by asserting first a 10-bit row address,
derived from the low-order address bits, and then a 10-bit column address,
derived from the high-order bits.

Memory cycles are pipelined to maximize performance. When a processor
begins to execute a memory reference instruction, the memory controller
starts a memory cycle by strobing in the row address even before the memory
reference is fully decoded. If the address decoding logic finds that the address
is not a memory location, the memory controller aborts its cycle without ever
strobing in the column address.

Byte parity provides single bit error detection to protect main memory data.
When data is written into memory, a parity bit is calculated and stored with
each byte. After the data is read back from memory, its parity bits are again
calculated and compared with the stored parity bits. If they differ, a processor
level 6 interrupt is requested.

1-10

Inside the Butterfly Plus Butterfly Plus Overview

Switch Card

Switch cards combine the technique~ of packet switching and sorting net
works to establish communication paths between processor nodes. Besides
routing data, switch cards also distribute clock and system reset signals to the
processor nodes. The switch operates much like a packet switched network,
formatting requests to read or write memory locations into data packets, then
routing them directly from the processor node that initiated the request to the
processor node where the data resides. Like most packet switched networks,
the Butterfly Plus switch can establish and hold many .different communica
tion paths simultaneously. Every processor node can read or write a memory
location through the switch-all at the same time-and provided that these
simultaneous memory accesses do not conflict with one another, all can be
performed in parallel within the same time it would take one processor to read
only one memory location. Named after the fast Fourier transform butterfly,
which it resembles, the Butterfly Plus switch can be expanded to accommo
date up to 256 processors.

Conceptually, the switch consists of an array of switch nodes that connect to
one another and to the processor nodes. Each input to a switch node is driven
by the output from a processor node or another switch node. Similarly. each
output from a switch node in tum drives a processor node or .. another switch
node. The switch logic uses sophisticated mechanisms for routing, timing,
flow control, and collision resolution to transport packets reliably from switch
node to switch node.

Physically, the switch is made up of switch· cards plus the cables that connect
the switch cards to one another and to the processor nodes. One or two switch
cards can mount directly into the Butterfly card cage horizontal slots just
above the processor node vertical slots. A switch card contains eight com
plete switch nodes, each with four inputs and four outputs, arranged in two
columns of four nodes. A metal panel mounted at the front of each switch
card has 32 connectors, 16 for input to the four switch nodes in the first
column and 16 for output from the four switch nodes in the second column. A
Butterfly Plus system with up to 16 processors needs one switch card, which
implements a 2-column switch. Butterfly Plus systems with from 17 to 32
processors need four switch cards connected in pairs to implement a 4-column
switch. Larger systems extend the 4-column switch by adding two additional
switch cards for every 16 processors. Systems can be typically configured
with extra switch nodes to provide alternate paths between processor nodes.

1-11

Butterfly Plus Overview

Figure 1-3 shows the Butterfly Plus switch card.

MASTER/SLAVE CLOCK SELECTOR JUMPER

Figure 1-3
Switch Card

Clock Card

Inside the Butterfly Plus .

RESET SWITCH

The Butterfly Plus is a fully synchronous machine in which all processor
nodes use the same clock source. Systems with up to 16 processors use the
single switch card clock as their system clock source. They do not need
separate clock cards. Systems with more than 16 processors need a separate
clock card and use the switch to distribute the system clock signal from this
central source. The clock card occupies the rightmost slot of a Butterfly card
cage. The Butterfly Plus clock card can operate as either a master or a slave.

1-12

Inside the Butterfly Plus Butterfly Plus Overview

As master, it transmits a differential, emitter coupled logic signal, derived
from an onboard oscillator, through the four connectors near the top of the
card. The system reset signal, activated by the toggle switch near the top of
the card, is distributed along with the clock signal. The four connectors mate
with mass terminated cables that carry the clock and reset signals throughout
the Butterfly Plus. One clock card can supply clock and reset signals to up to
four switch cards (i.e., two Butterfly card cages), which then redistribute these
signals to their attached processor nodes.

When operating as a slave, the clock card receives syste·m clock and reset sig
nals from a master clock card through a connector on the front edge of the
card, regenerates them, and passes them through its four output connectors.
Systems with more than 32 processors have more than four switch cards and
therefore require more than one clock source. Master and slave clock and
reset signals are distributed through a hierarchical tree of clock cards in these
larger configurations. The root clock card operates as master and sources the
clock signals used by the next level of clock cards. Remaining clock cards
operate as slaves, accepting signals from the previous level in the tree of clock
cards and passing them on to the next level. Systems with 33-64 processors
use a 2-level tree, and those with more than 64 processors use a 3-level tree.

There are two LEDs and a master reset toggle switch at the top of every clock
card. The master reset switch asserts a system reset signal that resets every
processor node. The red LED is lit to indicate that a system reset is in pro
gress. The green LED is lit to indicate that power is applied.

INPUT/OUTPUT CAPABILITIES

The Butterfly Plus parallel processor supports two types of I/O devices: Mul
tibus peripherals and VMEbus peripherals. The Multibus adapter card occu
pies the topmost slot in a Multibus card cage housed inside a Butterfly rack. It
communicates with the chosen processor node (designated as the king node)
via a ribbon cable that attaches to the I/0 connector at the bottom of the pro
cessor node. The VME interface consists of two cards, one that fits into a VME
card cage inside a Butterfly rack and one that replaces a processor node in one
of the Butterfly card cage slots. Two ribbon cables connect these two VME
interface cards, and another set of cables attaches the VME interface card in
the Butterfly card cage to the Butterfly Plus switch.

1-13

Butterfly Plus Overview Inside the Butterfly Plus

Bµ.tterfly Plus 1/0 Link

Multibus 1/0 devices communicate with a processor node via a synchronous
bus, called the Butterfly Plus I/O link (BIOLINK), that attaches the Multibus
adapter to the processor node. Using the BIOLINK, a Butterfly Plus processor
can access memory on the Multibus. The Butterfly Plus processor can also
read or write the control registers and data registers of Multibus peripheral
devices. On the other hand, a Multibus device can read or write the four
megabytes of memory on the processor node to which the Multibus adapter is
attached; it can issue an MC68020 interrupt request and supply an interrupt
acknowledge response word to the Butterfly Plus processor; and it can also
execute special multiprocessing functions on the processor node to which it is
attached.

Multibus Adapter Card

The Multibus adapter contains the circuitry for connecting a Butterfly Plus
processor node to 1/0 cards that conform to the IEEE 796 (Multibus) stahdard.
The Multibus adapter is a printed circuit card that occupies the top slot in the
Multibus card cage and attaches to the processor node I/0 connector via a rib
bon cable. The !vlultibus adapter supports local data transfers, event posting,
and interrupt processing. Each Multibus interrupt request" level can be
mapped into one of two processor interrupts. Multibus interrupts can be indi
vidually enabled, and there is a general interrupt disable feature.

Two Multibus cards are included in every Butterfly Plus parallel processor:
The RAMboot card (a Micro Memory MM-90000 Dynamic RAM Memory
Module) and the Ethernet Controller Card (an Excelan EXOS 301 Ethernet
Front-End Processor). Both of these Multibus cards are off-the-shelf IEEE-

796 compatible. Both can occupy any slot in the Multibus card cage except
for the top slot, which holds the Multibus adapter card, and the bottom slot,
which cannot be occupied by a Multibus master. Figure 1-4 shows the Mul
tibus adapter card.

1-14

Inside the Butterfly Plus Butterfly Plus Overview

Figure 1-4

Multibus Adapter Card

Multibus RAMboot Card

The Multibus RAMboot Card is a DRAM memory that stores the operating sys
tem and other program code needed to perform a Butterfly Plus system reset
as quickly as possible when necessary. Provided with one megabyte of
memory, the RAMboot card can be expanded to four megabytes by filling
empty chip sites on newer boards.

1-15

Btitterfly Plus Overview Inside the Butterfly Plus

Multibus Ethernet Controller Card

The Multibus Ethernet controller card is an IEEE 802.3 local area network
controller that interlaces the Butterfly Plus parallel processor· to an Ethernet
(version l or version 2) or other IEEE 802.3 local area network. The Ethernet
controller card attaches to the local area network via a DB-15 conneotor on the
Ethernet fantail, which allows the connection of a customer-supplied Ethernet
transceiver. The processor node communicates with the Ethernet card via
supplied control and data registers. It supports the industry standard TCP/IP
protocol using the Ethernet controller card.

VME Interface

The VME interlace supports high speed I/0 devices whose bandwidth require
ments exceed the I/O capacity of a processor node. With this interface, many
industry standard, high bandwidth devices, such as frame grabbers, can inter
face to the Butterfly Plus efficiently. The VMEbus is a 32-bit bus with a peak
data transfer rate of 40-megabytes-per-second and a typical data transfer rate
approaching 20-megabytes-per-second.

The VME interface transfers data directly to and from the Butterfly Plus switch
without passing the data through a processor node, as does the Multibus
adapter. Direct attachment of the VME interface to the switch has several
advantages. With the VME interlace attached directly to the switch, I/0
transfers can be spread across memory on many processor nodes, thereby
reducing the load on any particular memory module. Also, the 20-megabyte
per-second nominal bandwidth of the VMEbus far exceeds the: I/0 bandwidth.
Attaching the VME interlace directly to either one or two switch ports allows
the bandwidth of the connection between the Butterfly Plus switch and the
VMEbus to be scaled up to about 20-megabytes. Physically, the VMEbus inter
face consists of two circuit cards connected by a cable up to 20 feet long. One
of these, the VME Bus Adapter, is a double height VME card that plugs directly
into the VME card cage. The other, the VME Node Controller, generally
replaces two processor nodes in the Butterfly card cage and has four connec
tors that attach via ribbon cables to two separate ports on a Butterfly Plus
switch card. Logically, the VME interlace contains two complete interlaces to

. the Butterfly Plus switch, an interlace to the VMEbus, and a microengine that
translates between VMEbus transactions and Butterfly Plus switch messages.

1-16

Inside the Butterfly Plus Butterfly Plus Overview

Figure 1-5 shows the VME Node Controller and Figure 1-6 shows the VME
Bus Adapter card"

DIP SWITCHES

Figure 1-5

VME Node Controller

1-17

Butterfly Plus Overview Inside the Butterfly Plus

VMEBUS CONNECTOR

EBUS CONNECTOR

Figure 1-6
VME Bus Adapter Card

SYSTEM RESET

A Butterfly Plus reset can occur when the system reset switch is activated,
when a restart message is received from another processor, when one of the
power supplies detects that the power bus input voltage is too low, or when
circuitry on the processor node detects an abnormal condition that can impair
proper functioning of the board. In systems with up to 16 processors, the sys
tem reset switch is located on the Butterfly Plus switch card. In systems with
17-32 processors, the reset switch is located on the clock card. The system
reset switch for machines with more than 32 processors is the reset switch on
the master clock card, which generally occupies the rightmost slot in the

1-18

Inside the Butterfly Plus Butterfly Plus Overview

lower Butterfly card cage of the second to last rack (i.e., the rack to the right
of the leftmost rack). Operating the system reset switch initializes all proces
sor nodes and switch nodes without clearing main memory. Except for the
fact that memory data is preserved, a system reset has the same effect on the
processor nodes and the switch as a momentary power outage. Toggling the
system reset switch also resets the Multibus card cage. However, it does not
reset the VMEbus.

PACKAGING

A 128-processor Butterfly Plus system, including the Multibus and VMEbus
cages, occupies four Butterfly racks, each 36 inches deep by 24 inches wide
by 80 inches high. Allow 40 inches by 100 inches of floor space for each
Butterfly rack. This provides sufficient clearance to open the front and back
doors, which are 19 inches wide. An additional 24 inches is required for the
machine to be serviced.

The Butterfly Plus switch can be configured to provide any level of bandwidth
needed for the machine. Alternate switch paths can be provided to reduce
vulnerability to single point failures and potential contention. A 16-processor
system uses a 1-card switch, for example, and a 64-processor system uses a
switch distributed over eight cards.

1-19

Butterfly Plus Overview Inside the Butterfly Plus

Table 1-2 lists the specifications for the Butterfly Plus.

Table 1-2
Butterfly Plus Product Specification

Power Requirements

Operating Temperature

Humidity

1-20

AC Plug

AC

NEMA L21-30

5-wire, 3-phase power
at 208 volts

Per Processor Node 65 watts
Dissipation

Power Dissipation for 1450 watts
16-Node System

Power Dissipation for 3275 watts
32-Node System

20 -40°C

409f to 70% relative
humidity, non
condensing

Chapter 2

The Processor Node

A Butterfly Plus parallel processor can have up to 256 processor nodes con
nected by the Butterfly Plus switch. Each processor node contains an
MC68020 microprocessor, MC68881 floating point coprocessor, MC68851
paged memory management unit, four megabytes of main me~ory, an

· AM2901 bitslice processor used as the processor node controller (PNC), an I/O

bus adapter, a UART that drives the serial lines to the host and console diag
nostic terminals, a bootstrap EPROM, and an interface to the switch. A local
bus connects all of these various processor node elements, providing flexible
control and minimal complexity. Figure 2-1 is a block diagram of the proces
sor node.

88020
PROCESSOR

AND
68881

COPROCESSOR

Figure 2-1

68851
MEMORY

MANAGEMENT
UNIT

SPECIAL
FUNCTION
DECODER

32·b1Dab1Bus

BOOTSTRAP DUAL PROCESSOR
EE PROM UART NODE

CONTROLLER

Conlrol

Processor Node Block Diagram

4-MEGABYTE
RANDOM
ACCESS
MEMORY

MEMORY
CONTROLLER

BIOllNK
ADAPTER

SWITCH
INTERFACE

2-1

The Processor Node Inside the Butterfly Plus

Each processor node consists of one 12 by 18 inch printed circuit card with an
onboard switching power supply. Four cable connectors on the card edge pro
vide unregulated DC power (upper, 5-wire connector), transmit and receive
channels to the switch (the transmit connector is nearest to the power connec
tor), and a BIOLINK channel that attaches to the Multibus adapter (the largest
connector). A fifth connector, the J4 connector located near the card edge at
the comer of the card, attaches to the dual UART for use by diagnostics.

Each processor node has four LEDs and one toggle p9wer switch. The top
LED is red and is controlled by software. The remaining three LEDs are green

- - -and -are coritrolfed oyliardware. The red LED comes on at power up, or when
ever the processor node is reset, to indicate that the processor node is running
its power-up diagnostic tests. When the processor node completes its built-in
diagnostic test, the red LED turns off to indicate that the processor node is now
functioning properly. If the red indicator flashes or stays lit continuously, the
card is probably faulty and must be checked.

The second LED is green and lights up when the processor node on-board
power supply or regulator generates +5 volts of DC power. There can be live
DC power on the processor node even if this green indicator light is off. Unre
gulated DC power might still be supplied from the power connector and distri
buted across the circuit card.

The third and forth LEDs are green and light up to indicate that a message is
either being sent to the switch or being received from the switch, respectively.

PROCESSING ELEMENTS

The primary functional subsystem of a processor node is its processing ele
ments group consisting of the main processor and floating point coprocessor,
the paged memory management unit, the address decoding logic, and an
arbiter for the processor node's internal bus. The MC68020 main processor
and the MC68881 floating point coprocessor both run at their maximum rated
speed of 16.MHz.

2-2

Inside the Butterfly Plus The Processor Node

Processor

All Butterfly Plus application programs run on the MC68020 processor with
MC68881 floating point coprocessor. These processing elements combine
state-of-the-art technology and advanced circuit design techniques to achieve
an architecturally advanced processing unit. The primary features of the
MC68020 include:

• 32-bit data and address registers

• 16-gigabyte direct addressing range

• A wide variety of instruction types

• Five data types

• Memory mapped I/O for accessing peripheral devices through the main
memory address space

• 14 memory addressing modes.

Refer to the Motorola MC68020 32-Bit Microprocessor User's Manual,
-Second Edition for further information.

Floating Point Coprocessor

The MC68881 floating point coprocessor implements the full IEEE 754
specification for floating point arithmetic. It uses the short (32-bit), long (64-
bit), and extended (80-bit) number formats and implements microcoded
square root, trigonometric, logarithmic, and transcendental functions. Since
the MC68881 uses the MC68020 coprocessor facility, hardware floating point
operations can be invoked by executing ordinary MC68020 instructions. The
major features of the MC68881 floating processor include:

• Eight general purpose floating point data registers, each supporting a full
80-bit extended precision real number format

• A 67-bit arithmetic .unit for fast calculation with intermediate precision
greater than the extended precision fonnat

• A 67-bit barrel shifter for fast shifting operations

• 46 instructions, including 35 arithmetic operations

2-3

The Processor Node Inside the Butterfly Plus

• Support for trigonometric and transcendental functions

• Seven data types and 22 constants

• Virtual memory and virtual machine operations

• Instruction execution is fully concurrent with the main processor.

Refer to the Motorola MC68881 Floating-Point coprocessor User's Manual,
First Edition for further information.

MEMORY MANAGEMENT UNIT

The MC68851 paged memory management unit supports the paged virtual
memory of the MC68020. It translates the virtual addresses used by the pro
cessors into the physical addresses used by the PNC, memory, switch, and bus
adapters. At the start of a memory read or write, the memory management
unit receives a 32-bit virtual address from the MC68020 processor. It uses
page descriptors stored ~n its address translation cache to translate this 'virtual
address into a ·32-bit physical address. The MC68851 also handles all access
privilege checking and allows reprogramming of access privileges during
operation. Refer to Appendix B, "Physical Memory Map",_ for a physical
memory address table.

All Butterfly Plus components except the MC68020 processor and MC68881
floating point coprocessor use physical memory addresses. A 32-bit Butterfly
Plus physical address is formatted as an 8-bit processor node number fol
lowed by the 24-bit local address of a location in the four megabyte memory
module of that processor node. The processor and floating point coprocessor
use virtual addresses, and since these are the two processing elements that
execute most program instructions, virtual addresses are the only addresses
that normally concern a programmer. The main distinction between physical
and virtual addresses is that the physical address of a location is the same on
all processor nodes, whereas virtual addresses can differ from one process to
the next.

The operating system establishes the layout of the virtual address space.
Since pages are an integral power of two in size, the low-order bits of a virtual
address are identical to the low-order bits of the corresponding physical
address. By convention, the text segment of a Chrysalis program usually
starts at 40000 and the data segment usually starts at 20000. This is not a

2-4

Inside the Butterfly Plus The Processor Node

requirement of the system, but merely a convention. The upper 16-megabytes
of the virtual memory address space (addresses Ox.FFOOOOOO to Ox.FFFFFFFF)
are reserved as· a special function subspace used to access certain memory
mapped devices such as EPROM and UART, PNC special functions and other
microcoded control functions, and Multibus 1/0 address space and memory.
Referenc_es to the special function subspace are translated into physical
addresses within the memory management unit, which generates a 32-bit phy
sical address if the access is allowed.

ADDRESS DECODING

Not all memory reference instructions access memory; some access memory
mapped circuits that respond to memory reference instructions but do not
necessarily store data. In general, the processors and other programmable
components on a processor node can make four types of memory references:

• Dialog between the MC68020 processor and either the MC68851 page?
memory management unit or the MC68881 floating point coprocessor

• Auxiliary system functions, such as executing ·code from EPROM,
configuring main memory, downloading microcode to the writable control
store of the processor node controller, or using the diagnostic UART serial
channels to communicate with the host and console terminals

• Local memory access

• Any activity mediated by the processor node controller, including remote
memory access; reading or writing Multibus memory or 1/0 device registers
over the BIOLINK; and special functions like block transfer from one pro
cessor node to another, atomic queuing operations, and event posting.

PROCESSOR NODE FUNCTIONS

A processor node can perform many operations at the same time. As an
example, one processor node can execute all of the following operations
simultaneously:

• Add two integers in the MC68020 processor

• Divide two real numbers in the MC68881 floating point coprocessor

2-5

The Processor Node Inside the Butterfly Plus

• Receive a message from a different processor node

• Send one word of a block of data to a different processor node

• Arbitrate a Multibus device request to access Butterfly Plus memory.

In high-throughput _environments these multiple concurrent operations are
both normal and desirable. The processor node provides adequate communi
cation bandwidth between the various autonomous hardware resources while
controlling their interactions. In addition to these c~nventional computer
functions, a parallel processing architecture requires many special functions
that the MC68020 processor does not provide. These special processor node
functions include:

• A 32-bit time-of-day clock and timer, capable of interrupting the processor,
for scheduling timed or delayed events

• DRAM refresh logic

• Conversion of remote memory references to switch messages

• Block memory transfer between processor nodes

• Remote restart of processor nodes from other processor nod~s

• Interprocess communication among multiple processor nodes

• Message timeout handling for transmissions and solicited replies

• Processor interrupt acknowledgement and interrupt vector handling

• Error reporting of timeouts, checksum errors, and parity errors

• Event posting for the operating system

• Power fail interrupt and power-up sequence generation

• Interaction with I/0 device controllers when performing direct memory
access and special functions

• Process scheduling.

However, most of these special functions are implemented by microcode in
the processor node controller; the remainder are implemented by the operating
system.

2-6

Inside the Butterfly Plus The Processor Node

INTERRUPT SYSTEM

The MC68020 responds to seven levels of prioritized, vectored interrupt
requests. Level 7, the interrupt request level with highest priority, is the only
level that is not maskable. When an interrupt is requested, the interrupt sys
tem software uses ':lfl interrupt vector supplied by the requestor to find the
address of the appropriate interrupt service routine. Multiple interrupt
requests can be pending simultaneously at all priority levels. Interrupt
requests below a certain priority level can be masked off and ignored. The
highest priority interrupt request triggers an interrupt if interrupts are enabled
at that priority level. The highest priority element requesting an interrupt at
that level then supplies an 8-bit interrupt vector to the processor.

The Butterfly Plus allocates the seven interrupt request levels, from highest to
lowest priority, as follows:

Level 7:
Level 6:
Level 5:
Level 4:
Level 3:
Level 2:
Level 1:

PNC and switch errors and power failure
Memory parity error and diagnostic UART

EPROM based debugger (USD) interrupt request
High priority Multibus device interrupt request
Low priority Multibus device interrupt request
Interval timer interrupt request
Scheduler interrupt (process scheduler request).

PROCESSOR NODE CONTROLLER

The processor node controller (PNC) consists of four basic subsystems. These
include a microcode sequencer, a static RAM control store, an interrupt service
routine address generator, and a bitslice processor. The main processing unit
of the PNC is the AM2901 bitslice processor, which controls the various pro
cessor node resources and performs those functions that, because of
throughput or indivisibility requirements, cannot be performed by the
MC68020 processor. Microcode for the AM2901 is stored in an EPROM, from
which it is downloaded into a 4096-word array of 64-bit static RAM control
store. The AM2911 microsequencer controls the flow of the microprogram
guided by the microcode. Figure 2-2 is a block diagram of the PNC showing
its main components and how they interact.

2-7

The Processor Node

CONTROL STORE ADDRESS BUS

MICROCODE
SEQUENCER

Figure 2-2
PNC Block Diagram

4096WORDS
OF 64-BIT

STATIC RAM
CONTROL

STORE

AM2901
BITSLICE

PROCESSOR

DATA BUS

Switch Interface
and Biolink Adapter

Inside the Butterfly Plus

INTERRUPT
SERVICE
ROUTINE
ADDRESS

GENERATOR

Control lines to
other processor
node resources

The PNC performs certain operations that greatly extend the parallel process
ing capability of the MC68020 processor. These include a suite of atomic
arithmetic and logical operations, queuing primitives, operations that imple
ment an event handling mechanism, and a process scheduler that works with
the queuing and event handling mechanisms to provide efficient communica
tion and synchronization between application software modules. Many of
these PNC special functions manipulate data, and it is important to perform
them in a way that prevents other processors from accessing the data while it
is being used. Because the PNC controls all memory references made by
either its own MC68020 processor or any remote processor node via the
switch, it ensures that these special functions are indivisible or atomic.

2-8

Inside the Butterfly Plus The Processor Node

The PNC also has two independent finite state machines, which work together
with the AM2901 bitslice processor. The two finite state machines, called the
switch receiver and the switch transmitter, manage the switcli interface to
handle incoming and outgoing messages.

The PNC regulates all Butterfly Plus switch transactions .. It initiates all mes
sages sent over the Butterfly Plus switch and processes all messages received
from the switch.

The Butterfly Plus switch interface transfers message requests and replies
between the processor node and the switch. Its two finite state machines have
their own independent connectors on the processor node board. The switch
interface communicates with the rest of the processor node through a pair of
dual port memories. When a message is sent out across the switch, the mes
sage data is loaded into appropriate locations in the transmitter dual port
memory, and the output finite state machine is notified. When a message
comes in from the switch, the input finite· state machine deposits it 'in the
receiver dual port memory and notifies the processor node controller.

PNC Bitslice Processor

The Ai.\:12901 bitslice processor allows the PNC to perform arithmetic and logi
cal operations, including conditional microcode branches. The 4096-word
array of 64-bit microcode resides in a static RA.i\11 control store during execu
tion. Every 125 nanoseconds a microcode sequencer feeds selected control
store bits into a pipeline register. The next microinstruction is then fetched
from the control store in parallel with execution of the current microinstruc
tion. The microcode is stored in EPROM and downloaded to the static RAM
microstore, where it can be overwritten by the operating system if required.
Distinctive characteristics of the bipolar AM2901 bitslice processor are:

• 17 registers, each 16 bits wide, used for temporary calculation and data
storage, and as permanent, fast access variables for timers, status flags, and
pointers and counters for direct memory access

• 8-function arithmetic and logic unit (ALU)

• Dual-address architecture allowing simultaneous access to two working
·registers

2-9

The Processor Node Inside the Butterfly Plus

• Flexible data source selection, which allows ALU data to be selected from
five source ports, giving a total of 203 source operand pairs for every ALU

function

• Left and right 16-bit rotates

• Carry, zero, and negative status flags for controlling conditional branches.

Refer to the Advanced Micro Devices Bipolar Microprocessor Logic and
lnte1face Data Book for further information.

Control Store and Microcode Sequencer

The 12-bit control store address is sourced by a conventional microprogram
sequencer when its code is in the process of perlorming a microinterrupt ser
vice routine. If the code is just about to begin a microinterrupt service rou
tine, its address is sourced by the microinterrupt service routine address gen
erator. The microprogram sequencer is implemented using the AM2911
microsequencer, augmented by two multiplexers that allow 2-condition, 4-
way branching. Microsequencer features include a pushdown stack for saving
up to four return addresses, and an internal address register for storing the
addresses of commonly used routines.

The microsequencer allows the microcode to branch unconditionally, call and
return from subroutines, or branch conditionally on the state of various flags
and signals. Microprograms run at one of two execution levels. Dispatch
level is reserved for microcode functions that respond to requests from the
local processor, such as reading the realtime clock. initiating a block transfer,
or referencing a Multibus address. Interrupt level is used for microcode func
tions that handle requests from the switch receiver and transmitter, direct
memory access requests, and the interval timer.

Microcoded Special Functions

The PNC also operates the Butterfly Plus switch, and is responsible for all
interactions with the switch interlace. These interactions take many forms.
The simplest occurs when the processor accesses a word of memory on
another processor node. The PNC notes that the memory reference is a remote
one, places the remote processor node number and memory address in the
switch transmitter's dual port RAM, and tells the transmitter to begin the

2-10

Inside the Butterfly Plus The Processor Node

transaction. While the message is en route and the processor is held in a wait
state, the PNC can service direct memory access requests or other microinter
rupts. When the message reaches the destination processor node, the remote
PNC completes the memory reference and, if the access was a read, sends
back a reply message. The reply returns to the originating node, and the value
of the referenced memory location is returned to the processor just as though
it had performed a local memory reference. Because the hardware is heavily
overlapped, this entire remote memory reference occurs in five microseconds
under normal loads.

In addition to single word transfers, a PNC can transfer blocks of memory
between any two processor nodes in the machine. Block transfers occur at
high speed, limited only by the bandwidth of the switch port (about 32-
megabits-per-second) and the bandwidth of the memory module (about 102-
megabits-per-second). Note that this is not the aggregate bandwidth of the
Butterfly Plus; it is only the bandwidth of one processor node.

The PNC also performs a variety of indivisible primitive operations. For
example, the PNC can post events without using any system locks. The pro
cessor tells the PNC to post an event by writing the address of a parameter
block into a special memory location that traps to the microcode. Writing the
address of a parameter block into a memory location is a general mechanism
used by such functions as block transfer, enqueue, and the like. It causes the
PNC to send a special message to the destination node that specifies the loca
tion of the data structure associated with an event. The PNC at the destination
node stops all other memory references and updates the event data structure.
If the process that owns the posted event needs to run immediately, the desti
nation PNC also invokes the process scheduler on that node. Other special
functions implemented by the PNC include a realtime clock, an interval timer,
indivisible mask-and-add-to-memory instructions, and dual queue functions.
The operating system uses PNC primitives like these to build higher level syn
chronization primitives such as locks, semaphores, barriers, and monitors.
Appendix B, "PNC Microcode Functions", describes the PNC special functions
in detail.

Microinterrupt Requirements

Most processor node functions involve a sequence of transfers from one inter
nal bus element to another, and all activate bus element control lines. Each

2-11

The Processor Node Inside the Butterfly Plus

processor node function occurs when the PNC executes the appropriate
sequence of microinstructions from its control store. Certain data transactions
required during processor node functions must be performed as quickly as
possible. The delay when a processor reads or writes its local memory, for
example, has a dramatic impact on system performance. Other transactions
can take somewhat longer to complete. Direct memory access operations that
transfer data across the BIOLINK always require low latency. Memory
refresh, in contrast, can tolerate a relatively long delay. Switch transactions
have various timing requirements, depending on the priority of the message
that initiated the transaction. ·

The microinterrupt driven PNC architecture is ideal for implementing func
tions with diverse timing requirements because low-priority functions can be
kept pending while the PNC attends to higher priority tasks. Microinterrupt
requests are issued to initiate processor node functions. Special circuitry
locates the address of the microinterrupt service routine that performs the
highest priority function among those with pending requests. Once PNC

microinterrupts are enabled, that service routine begins executing almost
immediately. Other microinterrupt requests remain active until the higher
priority function has been performed.

Realtime Clock and Timer

The PNC maintains a 32-bit realtime clock and a 16-bit interval timer, each
with 62.5-microsecond resolution. The maximum timer interval is about four
seconds and the realtime clock period is somewhat greater than 74 hours. The
interval timer issues a level-2 interrupt request when it reaches zero. It is then
reset to request another interrupt about four seconds later. This is normally
subsequently changed by the system level 2 interrupt handler.

SWITCH INTERFACE

The Butterfly Plus switch interface connects the processor node to the switch
and is controlled by the PNC. All message transactions between a processor
and a memory module on a different processor node-or between one proces
sor and another-travel through the switch interface. Two finite state
machines make up the switch interface: the switch receiver and the switch
transmitter.

2-12

Inside the Butterfly Plus The Processor Node

Switch Receiver Micromachine

The PNC uses one of its independent micromachines, the switch receiver, to
accept incoming messages. The switch receiver communicates with the PNC

via various control signals and a 16-word dual port memory, called the
Rx.RAM, which is divided into two independent request and acknowledgement
buffers. These two input buffers are provided primarily to prevent deadlock.
One of these, the request buffer, accepts messages that require the processor
node to send a reply; the other, the acknowledgement buffer, holds answers or
reply messages that can be processed without using the switch. The receiver
examines each incoming message and either places the message in one of the
two input buffers or rejects it. Only one message at a time can enter the
receiver, but a message of one type can be held in the RxRA.M while a message
of the other type is received. A special restart message is accepted even if
both switch receiver buffers are full, but all other messages are rejected if the
appropriate buffer has not yet been emptied. For example, if a message is a
read request, and the input buffer for messages requiring a reply is full, the
message is rejected.

Request messages include all query messages and some control messages.
Acknowledgement messages include the remaining control messages plus all
informational messages. The restart control message needs no processor node
resources and is always processed immediately by the receiver itself, without
intervention by the PNC, and before the restart takes effect. Request messages
do not generate a PNC micro~nterrupt until the transmitter acknowledgement
buffer is available, and therefore are not processed by the PNC until then. The
request buffer becomes available as soon as the PNC reads the incoming mes
sage, but the acknowledgement buffer is only released when the response to
the previous request message is completely processed. Acknowledgement
messages are less complex, since the PNC can process them immediately.

While processing a request message, the PNC may need to transmit one or
more acknowledgement messages, which are of two types. Reply messages
are sent in direct response to query messages. Informational messages, in
contrast, are unsolicited by their recipient. At the receiver both message types
go into the acknowledgement buffer, which has two sections, the header sec
tion and the· first in, first out (FIFO) section. Messages held in these buffers
can be short, using only the header area; long, using both the header and the
FIFO area; or of variable length, using the FIFO dynamically. Variable length
messages are used only during block transfer transactions.

2-13

The Processor Node Inside the Butterfly Plus

Two input bllffers are provided primarily to prevent deadlock. Assembled in
one buffer are those message types (request messages) that require the proces
sor node to send out a reply message. Assembled in the other are answer or
reply messages that can be processed without using the switch. The receiver
examines each incoming message and either places the message in one of the
two input buffers or rejects it. Message rejection occurs when some resource
needed to assemble the message is currently in use. If the message is a read
request, for example, and the input buffer for messages requiring a reply is
full, the message is rejected. A restart message cannot be rejected.

Receiver Circuit Operation

Figure 2-3 is a block diagram of the switch receiver, which has four parts:

• A finite state machine controlled by ROM and programmable logic array
firmware

• A set of line drivers and receivers that convert from transistor-to-transistor
logic (TTL) to emitter coupled logic (ECL)

• A 16-word dual port memory with 16 bits per word

• A checksum generator.

2-14

Inside the Butterfly Plus

Figure 2-3

Receiver
Control

PLA

Receiver
Control
Store

Synchronous
Register

To PNC Interrupt
PLA

Header
Checksum
Register

Switch Receiver Block Diagram

The Processor Node

Frame Reject
Data Null Data Hold

Checksum
Pl.A

Checksum
Register

Microcode From PNC

Switch Data
Input

Register

Data Delay
Register

A Port A
Control

B

16 x 16-Bit
DualPort RAM

(Rx RAM)

-----9'! Control Port B

PNC Data Bus

To PNC__.

The switch receiver is implemented as a microcoded finite state machine, an
approach that allows a variety of message formats and makes it easy to syn
chronize the receiver and the PNC. More importantly, the state machine
approach frees the PNC to perform other functions while a received message is
being assembled. It also allows recognition of a restart message without PNC
intervention. The state machine drives the register control and state update
logic. It consists mainly of a programmable logic array that sources the
address lines of a ROM control store and runs at the same clock frequency as
the PNC. The balanced differential ECL line drivers and receivers have a com
mon mode noise rejection of at least one volt to facilitate grounding and
reduce intercable crosstalk. All communications between Butterfly Plus
switch nodes-and between processor nodes and switch nodes-use bal
anced, ECL-compatible signal protocols.

The RxRAM dual port memory allows the receiver to assemble a message in
one of its input buffers while the PNC accesses data from the other buffer dur
ing the same microstep. The receiver collects incoming messages from the
Butterfly Plus switch and assembles them into an RxRAM input buffer.

2-15

The Processor Node Inside the Butterfly Plus

Sometime during message assembly, the receiver requests microinterrupt ser
vice from the PNC. In the resulting interrupt service routine, the PNC uses the
message type from the input buff er to decide what to do with the input buffer
data.

1\tfessage checksums are calculated by a programmable logic array that can
either load the 4-bit contents of the header checksum register (which is loaded
by the processor) into the checksum register, or update the checksum register
with the data from the switch output port.

If a restart message arrives, the receiver checks a 16-bit password and, if it is
correct, issues a restart to the rest of the processor node. Receipt of a restart
message generally indicates that a program on the node sending the restart has
determined the processor node receiving the restart to be in a state where all
other means of communication with it have failed. Since there are few
software failures that prevent one processor node from communicating with
another, the Chrysalis operating system determines whether a h~dware
failure has occurred via the start-up code or a user-invoked program (such as
restart). The advantage of having the receiver interpret the restart message is
that only a small section of the circuitry is involved in initializing all of the
components of a processor node, including the switch receiver._

Switch Transmitter Micromachine

The PNC uses another independent micromachine, the switch transmitter, to
send messages.. Like the switch receiver, the transmitter communicates with
its PNC via various control signals and a 16-word dual port memory, called the
TxRAM, which is divided into two independent buffers. One of these, the
request buffer, initiates new transactions; the other, the acknowledgement
buffer, sends secondary messages in response to messages entering from the
switch. Only one type of message (e.g., request or acknowledgement) can be
sent at any one time. While one message is being sent, however, a message of
the other type can be assembled and stored in the TxRAM.

From the transmitting processor node point of view, there are two kinds of
request messages: query messages, which always wait for the destination pro
cessor node to return a reply message, and control messages, which do not
wait. The PNC sets a return address register in its microinterrupt system and
enables a microinterrupt at the end of transmission. For control messages, it

2-16

Inside the Butterfly Plus The Processor Node

also releases the processor. In either case, the PNC then sets a timer and
returns to its idle loop.

Transmitter microcode is responsible for getting a message to its destination,
if possible. Before it can start sending a message, the transmitter might have
to finish sending an earlier acknowledgement message. The transmitter will
randomly select the request message buffer or the acknowledge message
buffer to send next, if both contain unsent messages. When it becomes avail
able, the transmitter then tries to send the current message. If the message is
rejected, the transmitter automatically tries one of its alternate output paths.
When sending a block transfer data message, the receiver can hold off the
transmitter on a byte-by-byte basis once the message header is accepted. The
transmitter appends a checksum to the end of the message.

Once a message is completely sent, the transmitter stops, requests a PNC

microinterrupt at the address specified in the return address register, and then
marks the request buffer as being available. The PNC resets the tim~r and
microinterrupt request, and, if a reply message is expected, sets the timer and
return address register to wait for the reply message. If the timer runs out, the
PNC timer routine causes the transmitter to abort, notes the error, and simu
lates a transmitter completion. If the processor is waiting for a reply, this
timeout causes a bus error.

Transmitter Circuit Operation

Figure 2-4 is a block diagram of the switch transmitter, which has four parts:

• A set of ECL to TTL line drivers and receivers

• A 16-word dual-port memory with 16 bits per word

• A checksum generator and data multiplexer

• A finite state machine controlled by ROM and a programmable logic array.

2-17

The Processor Node

Figure 2-4

Transmitter
Control

PLA

Transmitter
Control
Store

Synchronous
Register

To PNA Interrupt
Pl.A

Data Bus

Path Enable
Register

Inside the Butterfly Plus

----- A Port A
Microcode From PNC Control

B
...-------Control

Checksum
Register

Data/Checksum
Pl.A

Reject Frame
Hold Null Data

16 x16-Bit
Dual Port RAM

(TxRAM)

PcirtB

Switch Data
Output

Register

Data

Switch Transmitter Block Diagram

The transmitter is structurally similar to the receiver. The PNC can gate one of
the 16-bit words onto the data bus and load the low and/or high bytes of any
word. Only 12 of the 16 RAM words are used for the two output buffers, so
four words of temporary storage are added to the PNC resources. The switch
data originates in a programmable logic array that provides the various
sources (e.g., zero, RAM data, shifted Tx.RAM data, alternate path routing,
checksum, and ones). Part of the programmable logic array also handles
alternate path selection.

All switch transactions origin~te in the MC68020 processor and are initiated
by microcode in the PNC. In general, switch transactions between two proces
sor nodes occur as follows. Initially, one PNC se!lds a message to anotJier
PNC. If the PNC receiving the message has a full request buffer, it cannot.ack
nowledge the receipt of this message until after the request buffer is empty.
While waiting for its request buffer to empty, the PNC that received the

2-18

Inside the Butterfly Plus The Processor Node

message can service microinterrupts from other sources. (However, the
MC68020 processor of this PNC remains idle.) Once the request buffer is
empty, the PNC that received the message builds an acknowledgement mes
sage in its TxRAM and signals the transmitter to send this message to the PNC

that originally sent the message. The PNC is uninterruptable while it builds its
acknowledgement message. Therefore, it can begin to send this message
before it is fully assembled.

Each time the PNC assembles a message in the transmitter request or ack
nowledgement output buffers, it initializes one of two timeout counters to
detect deadlock. The memory refresh service routine decrements both
counters every 62.5 microseconds. If the request timeout counter reaches
zero while the processor is waiting for a reply, the transmitter request buffer is
released, an error flag in the PNC status register is set, and the processor is
given a bus error. Once a query request message is completely sent, a PNC

microinterrupt routine resets the request timeout counter while waiting for the
reply. If the processor is waiting for a reply that fails to arrive in the a,llotted
interval, an error flag is set in the PNC status register, and the processor is
given a bus error. If the acknowledgement timeout counter reaches zero, a
flag is set in the PNC microinterrupt control register and the transmitter ack
nowledgement buffer is released with no further direct action. -Thus, if a tran
saction involves sending several acknowledgement messages (e.g., in a block
transfer), an attempt is made to send all of them even if some of them time
out.

Because long messages improve switch bandwidth-utilization, the transmitter
uses an output FIFO. The output FIFO allows the transmitter state machine to
begin sending a message even before the first data byte is loaded. This tech
nique greatly reduces the delay normally encountered in store-and-forward
techniques. The two flow control lines required for the receiver input FIFO

now also provide flow control on the transmit side. Hence, when the PNC

becomes so busy (e.g., responding to I/0 controller access requests to local
memory and/or servicing the receiver) that the transmitter output FIFO

becomes empty, the transmitter simply asserts the flow control line that indi
cates that the current nibble should be ignored. Eventually the PNC becomes
available and completes transmission of the message. The transmit FIFO is
four words long. It is only used for block transfer messages.

2-19

Th• Processor Node Inside the Butterfly Plus

The transmitter has two output buffers to improve PNC bandwidth utilization
and, assure fairness, which becomes an issue when a processor node must
transmit both a request and a reply message at the same time. Providing two
output buffers also streamlines interactions with the PNC. When the PNC has
data to be sent stored in its output buffer, it sets a flipflop in the transmitter,
telling the transmitter that the corresponding output buff er is not empty.
When the transmitter is in idle state, which occurs after transmission of a mes
sage or when a rejection is sensed, it tests the flipflop and begins sending the
message. At the end of transmission, the transmitter clears the flipflop, ena
bling the PNC to assemble another message. The transmitter has full responsi
bility for retransmission on rejection, checksum generation, and alternate path
selection. If neither output buffer is empty, the transmitter alternates their
transmission-upon-rejection responses randomly, guaranteeing proper arbitra
tion.

BOOTSTRAP EPROM

The EPROM consists of up to 128-kilobytes of erasable, programmable, read
only memory that stores microcode for immediate bootstrap upon power up.
In addition to the bootstrap, other programs such as the bootstrap debugger
and some diagnostics also reside in the EPROM. The microcode is down
loaded to the PNC static RA..\t1 microstore for the immediate execution of
instructions when power is applied. The 128-kilobytes of EPROM are located
in two 27512-type devices. \Vhen the code is downloaded from the EPROM to
the PNC microstore, it can be used as is or reprogrammed.

The EPROM resides in two different areas of the memory map. Normally, it
lies between FFCOOOOO and FFFDFFFF of the virtual memory special func
tion subspace. The first 64-kilobytes of EPROM is also aliased between physi
cal addresses xxOOOOOO and xxOOFFFF of the supervisor program space. This
allows the MC68020 to fetch a reset vector from the first eight bytes of the
EPROM. Excluding the supervisor program space, accesses to this physical
address range reference the lowest segment 64-kilobytes of main memory.

DIAGNOSTIC UART

The UART is a dual channel RS-232 serial port transceiver chip used for diag
nostic 1/0 without PNC intervention. A special cable interfaces the UART by
attaching the J4 connector near the comer of the processor node to the RS-232

2~20

Inside the Butterfly Plus The Processor Node

host and console ports on the Ethernet fantail. The UART consists of an
SCN2681 (with a counter/timer module), an MC140456 serial line driver and
receiver, and a 3.6864-MHz crystal to provide the time base. It supports serial
channels operating at up to 19 ,200 baud. The SCN2681 interface consists of
several 1-byte registers addressed on consecutive word boundaries. The auxi
liary function control logic acknowledges 1-word transfers to the MC68020
processor for UART accesses. The UART interrupts the MC6~020 at level 6.
Refer to the Signetics SCN2681 data sheet for programming information. This
data sheet may be found in the Signetics MOS Microprocessor Data Manual
1983.

USO BOOTSTRAP DEBUGGER

Along with the power up bootstrap, the EPROM also stores a simple debugger
program, called USO, for bootstrap diagnostics. Access to USO is available
through either the diagnostic UART host and console serial ports or the Mul
tibus Adapter host and console serial ports on the Ethernet fantail. 11\e host
serial port cable connects to the host computer and the console serial port
cable connects to a terminal: Although only one processor node at a time can
be cabled to the fantail host and console ports for debugging, the USO running
on that processor node can be used to examine the state of any .other processor
node in the system. USO also allows a simple downloading protocol followed
by the Chrysalis bid utility.

USO is stored in EPROM. It provides power up diagnostics and simple debug
ging options. At power up, each processor node's low-level USO starts
immediately and runs from EPROM. It lights the red LED on the processor
node and performs some basic memory and processor diagnostics. If the
diagnostics fail, the red LED remains on; otherwise, it goes out after the power
up diagnostics complete. Because it is interrupt driven, USO can also be used
to examine the state of a running program. Refer to the Chrysalis
Programmer's Manual for further details about USO.

2-21

Chapter 3

The Butterfly Plus Switch

The Butterfly Plus switch implements fast, reliable, and economical commun
ication among processors. It is a collection of switching nodes, configured as
a serial decision network, which interconnects processor nodes and gives each
processor equal access to the shared global memory. It supports reading and
writing memory on remote processor nodes, block transfer of memory data
between processor node memories, special atomic functions of the operating
system, and processor node reset.

Each Butterfly Plus switching node is a 4-input, 4-output switching element
implemented by a custom VLSI chip. Eight VLSI switch chips are packaged on
a single printed circuit card to produce a 16-input, 16-output switch module
that occupies a horizontal slot at the top of the Butterfly card cage. The eight
switching nodes on a switch card are logically arranged in two columns of
four nodes each, as shown in Figure 3-1. A 3 by 19 inch panel mounted at
the front of each switch card provides input and output connections for up to
16 processor nodes. A switch card can be used by itself in a 16-processor
Butterfly Plus, or it can be cabled together with other switch cards to form the
switch for a larger machine.

3-1

The Butterfly Plus Switch Inside the Butterfly Plus

Figure 3-1
16-Port, 8-Node Switch

The 32 connectors on a 16-input, 16-output switch card attacn to cables that
carry signals to and from processor nodes, other switch nodes, and the
optional VMEbus adapter. Onboard clock and reset logic are included for sys
tems that require only one switch card. A rocker switch on the righthand side
of the switch card panel activates the reset logic. A red LED beneath this
rocker switch comes on briefly when the rocker switch is toggled. A green
LED to the left of the reset switch comes on to indicate that regulated DC

power is applied to the switch. In systems with more than one switch card,
the switch card accepts external system clock and reset signals through a 16-
pin connector on its front panel.

3-2

Inside the Butterfly Plus The Butterfly Plus Switch

A path through the switch connects each processor node to every other pro
cessor node. Each path through the Butterfly Plus switch is four bits wide.
These 4-bit nibbles move from one switching node to the next on each clock
tick. Switch operation is similar to that of a packet switching network. The
switching nodes use packet address bits to route a packet through the switch
from a source processor node to a destination_ processor node. Each switching
node uses two bits of the packet address to select one of its four output ports.
Figure 3-2 shows a packet in transit through a 16-input, 16-output switch like
the one shown in Figure 3-1.

0 0

4 4

8 8

12 12

1

5 Data 1110 01 5

9 ~
13 , , 13

2 00 2

6

10 2,~
14 Data 14

3 3

i i
1 , -.. , ,
15 15

Figure 3-2
A Packet Moves through an 8-Node Switch

3-3

The Butterfly Plus Switch Inside the Butterfly Plus

To send a message to node 14, node 5 builds a packet containing the 4-bit
address of node 14 (binary 1110), followed by the message data, then sends
the packet into the switch. The first switching node strips the two least
significant address bits (binary 10) off of the packet and uses these two bits to
route the remainder of the packet out of its port 2 (binary 10). The next
switching node strips off the next two address bits (binary 11) to switch the
packet out of its port 3 (binary 11) to _node 14. The structure of the switch
network ensures that packets with binary address 1110 will always be routed,
with the same number of steps, to node 14, regardless of which processor.
node sent them.

The Butterfly Plus switch expands easily as processors are added to the sys
tem. By adding additional rows and columns of switch nodes, the 16-
processor switch can be expanded to handle more processors. For example,
the number of connected processors can be quadrupled to 64, as shown in Fig
ure 3-3, by connecting two additional switch node columns and enough rows
to accommodate 48 more processors. The complexity of the switch (as,meas
ured by the number of switch elements or the number of signal paths) for an
:\"-processor system grows as :\"log4:\". · For large configurations this is
significantly less than other switch designs (e.g., the :\"2 elements that a full
crossbar switch would require). At the usual 8-MHz clock. frequency, each
path through the switch supports interprocessor data transfers at a bandwidth
of 32-megabits-per-second. Thus, a switch for a 16-processor system has a
maximum bandwidth of 512-megabits-per-second, and a switch for a 64-
processor system, such as the one shown in Figure 3-3, has a maximum
bandwidth of 2,048-megabits-per-second.

3-4

Inside the Butterfly Plus

Figure 3-3

.. __ The Butterfly Plus Switch

.. ..
Alllr-L_J------i. _ _J-~

..
••
u
Cl

"--' . .. '-- "
, 1---' OI

" 71 ..
1,-L__J-----;__j-R

.. ..
IC

"'
'---' '-- 1C

"' IC

, L-......1 DC

""
"' IC

"'

Switch for a 64-Processor Butterfly Plus

3-5

The Butterfly Plus Switch Inside the Butterfly Plus

ALTERNATIVE SWITCH STRUCTURES

There are many forms of multiprocessors and many types of switches in the
parallel processing industry. In general, there are three ways to connect the
processors and memory modules of a parallel processor system:

• Common bus

• Crossbar switch

• Butterfly switch.

Of the three communication switches, the simplest is the common bus, or
singly connected switch. This is the standard data bus concept used in
numerous minicomputer architecture systems. It connects every processor

. and every memory module along one bus (see Figure 3-4). Other structures
that provide the same interconnect concept include the ring, the Ethernet, and
broadcast channels.

CONTROL
(OPTIONAL)

Figure 3-4
Common Bus

p ••• • ••

The common bus architecture presents a simple, inexpensive communication
structure where all the processor and memory modules provide the bus driver,
receiver, transmitter, and arbiter circuitry. All communication flows through
this one path. The processors and memory modules share the path according
to some protocol (e.g. time division multiplexing or arbitration). In some sys
tems, there can be more than one path for reliability or bandwidth reasons, but

3-6

Inside the Butterfly Plus The Butterfly Plus Switch

in general this number is small. The addition of more buses impacts each of
the connected elements, which then must have an arbitrary fanout. The com
mon bus is efficient and cost effective for a simple computer system with a
relatively small number of processors (20 to 30 processors). This structure
expands smoothly, since its cost goes up linearly with the number of elements
it connects. However, as the needs for large numbers of parallel processors
increase, the complexity of the bus system also increases. Faster buses wiH
require more hardware on each processor module, resulting in increasingly
complex processor circuitry. When the number of elements exceeds the
necessarily finite bandwidth of the pathway, the common bus structure is no
longer usable.

Particular implementations of singly connected switches have a number of
disadvantages. Because the pathway bandwidth is severely limited, buses are
hard to expand beyond certain limits, unless they are very carefully designed
for this goal. However, a bus type switch designed to be easily expandable
frequently loses in efficiency. Buses are also hard to debug because ,of the
difficulty in identifying the problem module. Although rings solve efficiency
and debugging problems by effectively splitting up the bus into short pieces,
ring buses consequently have longer delays.

The simplest solution to the problem of the common bus architecture for
parallel processor systems is the crossbar switch, a completely connected
switch. This architecture is basically an extension of the common bus struc
ture. The crossbar switch attempts to reduce the contention found in a com
mon bus architecture by using a separate data bus for every processor and a
separate data bus for every memory module (see Figure 3-5).

3-7

The Butterfly Plus Switch

Figure 3-5
Crossbar Switch

M1

Inside the Butterfly Plus

M2 M3 ··· Mm

The buses for the P processor and \l memory modules cris_scross to form
grids with intersecting processor and memory buses, resulting in a Px \l
crossbar switch. The advantage of the crossbar switch is that it allows all pro
cessors to access memory simultaneously, as long as no memory module is
being accessed by more than one processor. It also provides high potential
bandwidth, since each source has its own private path independent of and in
parallel with any other source. Bus arbitration is also provided in the event of
bus contention. The fundamental disadvantage of the crossbar lies in the
P x "I number of nodes required by an P-processor system. This disadvan
tage results in a system that grows as P2 (for an equal number of processors
and memories) in complexity, configuration size, and cost. As systems get
larger, the cost of the switch tends to dominate the overall system cost.

The serially connected Butterfly Plus switch is a more efficent alternative than
the crossbar switch, and attempts to reduce crossbar switch complexities by
linking multiple crossbar switches as nodes in a treelike or multistage struc
ture. For example, if a large (say 100x100) crossbar switch were divided
into two smaller switches, one 100 by 10, and the other 10 by 100, as shown
in Figure 3-6, this change would reduce the number of crosspoint elements

3--8

Inside the Butterfly Plus The Butterfly Plus Switch

required from 10,000 to 2,000, an 80% savings. Dividing the crossbar, how
ever, introduces sharing of switch paths between sources at a point that is
within the switch rather than only at the destination. As a result, the max
imum potential bandwidth of the switch is reduced by a factor of ten. Inter
connections within the Butterfly Plus switch eliminate the loss of maximum
bandwidth, however, because a vertical cross section anywhere through the
switch always has at least as many paths as there are processors. Also,
although there are slight delays that can be encountered from the cumulative
transit time through the multiple Butterfly switch stages, these delays are
negligible compared to the advantages reaped from the reduction in switch
complexity and size.

1

2

10

PP PPP••• P M •••MMMMM \.. ___ ___ J
y

'------ _____ J
y

100 100

Figure 3-6
Divided Crossbar Switch

Unlike the crossbar switch, which grows as P x M (or P2 for an equal number
of processors and memories), treelike or multistage networks such as the
Butterfly switch connect P processors to P memories at a growth rate of
PlogP. The factor logP, which corresponds to the number of levels in the
basic tree, is the mµnber of stages. The logarithmic base, which corresponds
to tree fan out, is the number of inputs and outputs to each switch node. The
factor of P, corresponding to the number of nodes at the lowest level in the
basic tree, is the number of processors (and memories) in the tree.

3-9

The Butterfly Plus Switch Inside the Butterfly Plus

CHARACTERISTICS OF A BUTTERFLY PLUS SWITCH

The Butterfly Plus switch offers many unique features that distinguish it from
common bus and crossbar interconnects:

• The Butterfly Plus switch is purely a communication medium. There are no
processing elements in the switch. This contrasts with other interconnects
that use networks of processors for both computation and communication .

• Messages passing through the Butterfly Plus switch are independent. No
effort is made to coordinate the messages in the switch; rather, messages
are sent whenever a processor happens to make a remote memory refer
ence. Furthermore, actions of the various processors are not coordinated at
the memory reference level. Thus, no effort need be made to match the
configuration of the switch to the algorithm being executed on the machine .

• The Butterfly Plus switch connects complete processors to the globally
shared memory, not pieces of an arithmetic and logic unit.

• The Butterfly Plus switch is self-routing. Each processor node has orie
switch port through which it sends all transactions, regardless of destina
tion, and another port through which it receives transactions for that node.

• The Butterfly Plus switch is basically serial. Transaction routing decisions
are serial, proceeding from one node to another. Although there is 4-bit
parallelism in the data paths of the switch, this parallelism is explicitly for
the purpose of improving switch performance. Since the data paths are
inherently serial, data streams are supported easily and efficiently .

• The Butterfly Plus switch provides alternate paths so that processors trying
to take the same path will not have to contend for that path. Instead, one of
the processors can be rerouted along an alternate path.

The Butterfly Plus switch offers the following benefits.

Expandability

Routing

~10

New nodes are easy to add, and there are no significant
cost jumps as particular sizes are reached and exceeded.

Routing is s!mple and fixed, without the need for a compli
cated dynamic algorithm.

Inside the Butterfly Plus The Butterfly Plus Switch

Reconfiguration All nodes in the network understand all they need to know
about their connectivity and topology without any external
configuration parameters, such as switches or jumpers.

Homogeneity All switch nodes are identical.

Balance The system is well balanced with no pronounced
bottlenecks, and can be tuned to fit its environment.

Reliability The network operates reliably, even when some of the
switching nodes and/or pathways are. inoperable; a single
defective processor does not impair switch functioning

_ ~ubstantially.

Interface Hardware and software interact easily with the switch.

Like any general purpose data communication structure, the Butterfly Plus
switch provides services such as data connection, addressing, flow control
(i.e., speed matching), and arbitration. It also has important charact~ristics
such as speed, geographic extent, and protocols. Aside from these services
and attributes, the switch is transparent to the rest of the machine.

BUTTERFLY PLUS SWITCH OPERATION

The Butterfly Plus switch performs all communication between processor
nodes. All switch transactions are initiated by one of the processors. When a
processor makes a service request, microinterrupt code in the processor node
controller (PNC) transmits an appropriate message through the switch
transmitter circuit of the requesting processor node. This message is routed
from node to node through the switch until it appears at the switch receiver
circuit in the destination processor node. There the receiver requests a
microinterrupt, and the PNC performs the action specified in the message,
which can include sending one or more additional messages to various other
processors. In some cases the requesting processor waits for one of these
responses to complete the transaction, while in other cases it simply initiates
the transaction and proceeds to its next task immediately. Timers are used to
recover from certain error conditions.

A brief description of a read access to remote memory shows how processor
nodes use the switch. When a processor makes a read reference, the memory
management unit transforms the supplied virtual address into a physical

3-11

The Butterfly Plus Switch Inside the Butterfly Plus

address. If the referenced location is not in memory on its processor node, the
local PNC is addressed, and it sends a packet through the switch, addressed to
the remote processor node, and requests the contents of that physical memory
address. The remote PNC receives the packet, reads the referenced memory
location, and sends a reply packet containing the value back through the
switch to the source processor node. When the local PNC receives the reply, it
satisfies the processor read request with the value obtained from the reply.
The round trip time for a normal remote memory reference is about five
microseconds. In addition to single word transfers, the switch can also
transfer blocks of data efficiently between any pair of processor nodes at its
full 32-megabit-per-second bandwidth .

. .
The Butterfly Plus provides for a variety of message transactions. Each mes
sage includes at least the address of its destination processor, its message
type, some data bytes, and a checksum. There are several different classes of
messages: fixed versus variable length messages, messages initiated by the
processor versus those initiated by other messages, and messages that c~ ini
tiate other messages versus those that do not. The processor node implements
several types of switch transactions: single byte, word, or long word reads and
writes; block transfers; interrupt requests; processor node resets; and a class
of special transactions that includes event synchronization_. queuing and
dequeuing, and similar multiprocessing functions.

Simple memory transactions go into the switch via the paged memory
management unit, which maps ordinary processor memory references .into
physical addresses that refer to specific .memory locations on specific proces
sor nodes accessed via the switch. To the MC68020, remote accesses appear
no different from ordinary local reads. The other types of transactions begin
when a processor stores the address of a parameter block in one of several
special locations whose addresses are decoded by the PNC. Microcode checks
the parameters and sends out the appropriate message. Some transactions
send several messages.

Handling Contention

Because the Butterfly Plus switch eliminates the need for a dedicated path
between each pair of processor nodes, it is possible for two messages simul
taneously passing through the switch to· reach the same switch node and
require the same switch node output port. When contention of this sort

3-12

Inside the Butterfly Plus The Butterfly Plus Switch

occurs, one of the messages is allowed to proceed to its destination and the
other is automatically retransmitted after a short random delay. However,
messages arriving at the same switching element, but not requiring the same
output port, do not collide; they are handled concurrently. A single switching
node can handle as many as four messages simultaneously, provided that each
of the four accesses a different output port.

A switch containing an alternate path between every pair of processor nodes
can be built by adding extra switching nodes. This is typically implemented
in larger configurations to make the switch resilient to switching node
failures. Currently, all systems with 17-128 processors are configured to
have redundant paths. If a switching node on the path between two proces
sors fails, packets are automatically routed along the alternate path. Reduced
switch contention is another benefit of a switch configured with alternate
paths. When contention within a switch having alternate paths requires mes
sage retransmission, an alternate path is used immediately.

Butterfly Plus switches are configured to minimize the likelihood of message
collision. As a result, the transit time through the switch is dominated by the
time required for a message to pass through the switch in a bit-serial fashion,
rather than by contention. The amount of contention is, of course, application
dependent. Contention overhead usually amounts to less than a few percent
(typically 1 % to 5%) of the total application run time in tuned programs.
Most collisions occur at the destination node (memory contention) rather than
in the interior of the switch (switch contention).

Error Detection and Handling

Errors are detected and handled in several ways:

• Each message includes a 4-bit checksum, which is generated and checked
automatically.

• Variable length block transfer data messages include an additional check
sum early in the message,just after the address and length information.

-
• Rejected messages are retried automatically, using the alternate paths cycli-

cally if alternate paths are available.

• Timers detect dead states for all messages and for processors waiting for a
reply.

3-13

The Butterfly Plus Switch Inside the Butterfly Plus

• The application program or operating system can make additional checks as
appropriate.

These facilities detect errors in the receiver, the transmitter, the PNC, the pro
cessor, and the switch itself.

The 4-bit checksum in each message detects most errors, but there remains a
probability of about 6% that any particular error might not be detected. If
errors are frequent, the hardware should be taken out of service and repaired.
Rather than try to retransmit a message with a bad checksum, the checksum
handler declares that the hardware has failed, so that undetected errors are not
introduced into the system. The checksum error handler aborts the transaction
in progress and reports the error to the operating system at the destination
where the error is detected.

A switch with extra columns has alternate addressing paths, which the proces
sor can enable and disable independently. If a switch path fails, the switch
quickly and automatically retries alternate paths for as long as the message
continues to be rejected.

Block Transfers

Although shorter messages reduce problems of switch contention with other
types of messages, thus alleviating certain performance bottlenecks (e.g., spin
locks), long messages have the more important advantages of reduced set-up
time and lower switch overhead. During a block transfer, the originating node
can request transmission of a block of memory data from any node to any
other node. There are no restrictions on the locations of the source, destina
tion, or originating node. The maximum size of a block transfer is 65 ,5 36
bytes. The operating system normally breaks long transfers into a series of
smaller transfers.

The originating processor node becomes free as soon as the block transfer
request has been accepted by the destination processor node; however, .
accesses to either the source or destination processor nodes during the transfer
are likely to be rejected. Direct memory access transactions are not affected
by block transfers, since_ they have higher priority, but computational perfor
mance is reduced in the source and destination processors. In the absence of

3-14

Inside the Butterfly Plus The Butterfly Plus Switch

other activity, a block transfer uses 75% of the total memory bandwidth, leav
ing 25% of normal memory bandwidth for the processor.

Although the pipelined structure of a Butterfly Plus switch favors long mes
sages over short messages, the structure of a tightly coupled multiprocessor
also requires the ability to read and write single words across the switch. As a
result, the hardware supports both single- and multiple-word transfers.

Routing Decisions

In any type of switch, the control circuitry (as opposed to the data) consists of
one or more "switching systems" that route a transaction from a source to a
destination. In a bus system, for example, the arbitration mechanism, along
with various address recognizers and gateable bus drivers, forms the switch
ing system. In a crossbar switch, there are different switching systems for
each destination, all working in parallel.

In a common bus or crossbar system, the actual switching decision for each
individual transaction takes place at only one instant of time. This implies
that each decision must be an :\-way decision, and that the switching system
implementing the decision must have a fanout of:\. There are two problems
in such systems: :\ is large and :\ is not well defined. It is easy to build a
switching node that decides between a small fixed number of alternatives.
When this number gets to be very large and/or variable, the design of the
switching node and the resulting switching system becomes awkward, costly,
and/or slow.

In the Butterfly Plus switch, the switching decisions are not made all at once,
but rather are spread out in time. As the transaction moves towards its desti
nation, it encounters several switching nodes; at each node a decision is made
about its route. Each of the nodes can thus have a very small fanout (e.g.,
two), while still allowing a large and expandable overall system fanout. This
kind. of switching system is known as a serial decision network (see Figure
3-7). A message originating from a processor (P) eventually makes its way to
a memory module (M) after passing through at least three switching nodes. At
each node a decision is made as to which of the two outgoing paths the mes
sage will take.

3-15

The Butterfly Plus Switch Inside the Butterfly Plus

Figure 3-7
Serial Decision Network

A good analogy can be made to a computer network like the ARPANET. Here
the switching nodes are actually computer~, and data paths are coIIlll1unica
tions lines that span large distances. Transactions entering the network con
tain the address of their destination within them. Each switching node routes
each transaction along the best output path to its destination. Fanout from
each individual switch node is small, but the entire network interconnects
hundreds of sources and destinations.

The environment of a single computer, on the other hand, clearly involves a
different set of concerns than does the computer network. For a single
machine, a serial decision network with a simple, regular structure like the
Butterfly Plus switch is more easily implemented. There is no need for ela
borate protocols or complicated schemes for routing and retransmission in this
relatively simple environment. The switching nodes thus become simple dev
ices that need no programmed processor because the necessary algorithms are
easily implemented in dedicated hardware. There is also no need to buffer an
entire message; instead, only a few bits at a time will suffice.

Contents of the transactions is another key difference between a geographi
cally distributed network and a single-machine network. Messages in a geo
graphically distributed network pass between essentially independent comput
ers and therefore each message must contain overhead data to extablish its
context. This can also occur in a single machine if it is structured as a

3-16

..

Inside the Butterfly Plus The Butterfly Plus Switch

collection of loosely coupled processors sending messages to one another. In
a more tightly coupled machine like the Butterfly Plus, messages are the
actual requests by processors to fetch and store the contents of memory loca
tions. A transaction consists simply of an address and some data to write into
that location, or a request to read a particular location, or the contents of a
location being returned to the processor that requested a read. No large over
heads are incurred.

The Butterfly Plus switch design differs from that used in many machines
where a processor establishes a path to memory through available switching,
then holds that path until the memory returns the requested data. In the
Butterfly Plus, each stage of the switch is only busy long enough to pass a
request on to the next stage. Data returning from memory to processor is con
tained in an independent transaction that finds its own way through the net
work. Between the time a data request is made and a reply message returns
the requested data, many otherwise unrelated transactions can travel along the
same path.

Bidirectional Communication

Transactions must flow not only from processors to memories, but also from
memories to processors, as when the results of a memory read are returned to
a processor. One way to implement two-way communication is to superim
pose a second network on the original network to handle the return flows.
The Butterfly Plus switch provides two-way communication by bringing the
stubs on one side of the network around to meet those of the other side. Con
ceptually, the switch appears to be a cylinder, as shown in Figure 3-8. The
processors and memories are located along a line down the side of the
cylinder, sending their outputs to the right and receiving their inputs from the
left. All transactions flow in a counterclockwise direction as viewed from the
top of the cylinder.

3-17

The Butterfly Plus Switch

Figure 3-8

Im ml
10 0

10 0
l0GJ
10 ITl
1~ [!]

1001
1~01
10~1
1001
Im 0 I
1~01
1~01
1001
lrEJ 01
lrEJ m I

Butterfly Plus Switch as a Cylinder

Inside the Butterfly Plus

The processors and memories, which up until this point have been pictured on
opposite ends of the switch, are now next to each other, The next step com
bines a processor and some memory into a processor node. These nodes
interface to switch entry ports. Now the picture looks like Figure 3-9 and the
switch cylinder has become a high-bandwidth communication path between
nodes.

3-18

Inside the Butterfly Plus The Butterfly Plus Switch

Entry Ports

P1

Processing SWITCH
Nodes P2 CYLINDER

• • •
Pn

Figure 3-9
Switch as a Channel between Processor Nodes

Even though the memory is now segmented into a piece in each node, it is all
still globally accessible, and we can ignore the association between the pro
cessor and the memory in the same node. On the other hand_, now that a pro
cessor has some memory within the same node, there is a potential direct path
to that memory without going through the switch. The memory can be used
both as a local and as a common memory, and in fact can be dynamically allo
cated between these uses.

Conflict Resolution Strategies

Conflicts arise when two transactions at a particular switch node want to use
the same exit path. Clearly both of them cannot, so an appropriate strategy
must be chosen to resolve the conflict. One strategy is to let one transaction
wait until the other has completely passed. This simple algorithm is not suit
able for a bidirectional switch, however, since it leads· to deadlock.

3-19

The Butterfly Plus Switch Inside the Butterfly Plus

The Butterfly Plus uses an alternative strategy, which sends the losing mes
sage back to its source and has it retry some time later. If the switch interface
is designed with care, this strategy does not necessarily lead to deadlock. This
strategy also seems to have better performance than the wait strategy because
it reduces the profile of a message. It reduces the number of secondary
conflicts that result from the original conflict.

To clarify the retreat strategy further, see the example in Figure 3-10, and
assume that the simpler wait strategy is being used. Transaction 1 is trying to
get to exit port A via the dotted line. Transaction 2 is trying to use the same
path, however, so transaction 1 is blocked at node B. Transaction 1 must
therefore wait until transaction 2 has passed through. At the same time, tran
saction 3 is trying to get to C via the dashed line. It runs into a conflict at D

with transaction 1. So now transaction 3 must also wait, first until transaction
2 passes, so that transaction 1 can start, and then until transaction 1 goes by.

CONFLICTS

Figure 3·10
Secondary Blockage in the Switch

3-20

F --·

Inside the Butterfly Plus The Butterfly Plus Switch

Since the Butterfly Plus uses a retreating strategy, this type of secondary con
tention is avoided. The blocked message presents a much smaller average
profile and a reduced tendency to obstruct other messages, because it spends
less time actually sitting on the network. The result is an increase in the
overall network bandwidth. Higher bandwidth decreases the average delay of
a transaction significantly, especially when the network is heavily loaded.

In a retreat strategy, a transaction encountering a conflict retreats to its entry
port (is cancelled) and then retries. A retreat is only possible if the tail of the
transaction has not left the entry port; otherwise the retreat path is not known.
Once the head of the transaction reaches the exit port, it can no longer conflict
with another transmission. Therefore, the messages moving through the
Butterfly Plus switch have a minimum time length for the head of a message
to reach the other end of the switch, plus the latency during which the remote
switch interface could reject the message, plus any delay in passing the retreat
signal back to the source.

The retreat strategy offers one other valuable benefit. Because the retreat sig
nal is asserted by the switch interface, a processor node can examine a mes
sage without making a commitment to actually accept it. This feature of the
retreat strategy ultimately leads to a switch interface without oeadlock.

An important system concern is the maximum delay required to send a mes
sage through the switch, which determines the ability to establish timeouts for
lost or incorrect messages. With the wait strategy, the worst case is that all
sources simultaneously address the same destination. With the retreat stra
tegy, on the other hand, there is theoretically no upper limit to the maximum
delay; it is possible, though wildly unlikely, to have a transaction take five
minutes or a week to traverse the interconnect. In reality, problems that might
arise from delayed transactions are circumvented by the Butterfly Plus operat
ing system. If a transaction does not complete within a reasonable time,
timeout logic signals the process that sent the stale transaction.

3-21

The Butterfly Plus Switch Inside the Butterfly Plus

Parallel Data Paths

Parallel data paths improve the bandwidth of a Butterfly Plus switch to max
imize system performance. Parallelism also has the advantage of amortizing
the overhead required for the control portion of the switch. The term thick
ness is a synonym for data parallelism when referring to the dimensions of a
Butterfly Plus switch.

Although it is possible to design switches that permit a transaction to com
plete in only one clock tick, such an approach would. be a design overkill. ·
Large amounts of parallelism become unattractive when the marginal system
advantage of an extra data path becomes less than the marginal increase in the
cost of the switch. A small amount of parallelism, however, can produce a
switch in which one path has a bandwidth of many tens of megabits. The
Butterfly Plus switch implements a 4-bit thick data path, thus achieving an
increase in bandwidth while incurring only a small marginal increase in cost.

Alternate Paths and Extra Columns

To minimize the effect of switch node failures, the Butterfly Plus switch uses
additional switch columns. The failure of an individual switch node can
affect a wedge of switch nodes as well as entry points emanating in both
directions from the failed node (Figure 3-11). If the sources and destinations
connected via the entry points can somehow be isolated in either the left or
right wedge, the rest of the system is still fully connected. The severity of a
failure increases the closer the failed node is to the center of the switching
network. A failure at the periphery of the switch might only take out one or
two processors, not a very serious occurrence in a large system.

3-22

Inside the Butterfly Plus The Butterfly Plus Switch

Failed Switch Element

Lswitch (Shown Flattened Out)

AFFECTED AREAS

Figure 3-11

Effects of Switch Failure

Introducing redundancy makes the Butterfly Plus switch net\\[ork more resi
lient to failures. The addition of some extra colwnns of switching nodes
accomplishes this. The switch thus has multiple paths between each source
and destination pair. Each destination has several addresses, any of which can
be used to reach that destination. This is shown in Figure 3-12. Failure of a
node in the interior of the switch (that is, excluding nodes in the leftmost and
rightmost columns) does not affect the connectivity of the switch. This
increase in reliability has been achieved at the relatively low cost of adding
only one column to the switch.

The extra column is added to the right side of the switch. The additional
column thus has the same connectivity as the column at the far left side of the
switch. A switch node permits a transaction to move from one row of switch
nodes to another. In the Butterfly Plus switch, each column selects an orthog
onal set of such moves. The extra column that has the same connectivity as
another column furnishes an alternate method of providing such motion.
Thus, the best way to protect against the largest number of switch node
failures is to place these two columns as far apart as possible.

3-23

The Butterfly Plus Switch Inside the Butterfly Plus

Switch Nodes Destinations

Figure 3-12
Alternate Paths through a Switch

Alternate message paths increase switch throughput and provide resiliency if
individual switch nodes should fail. The Butterfly Plus uses a combined
hardware and software approach to dealing with these alternate paths through
the switch. At the software level, the alternate paths manifest themselves as
several addresses for any given destination.

At the hardware level, the switch transmitter automatically chooses a new
alternate path for each message transmission. If a transaction fails to reach its
destination, an appropriate address bit is changed and the transaction is sent
again down a different path. Alternate paths are also useful in decreasing the
delay due to conflicts. If a conflict is encountered along one path, the
hardware tries the alternate paths until a clear one is found. To prevent
unworkable paths from being used, a 4-bit path enable register allows the pro
cessor to enable or inhibit one or more of the alternate paths. This register
also ensures that only valid paths are enabled. Alternate paths to a given des-
tination are handled by hardware. -

3-24

Inside the Butterfly Plus The Butterfly Plus Switch

SPEED ISSUES IN SWITCH DESIGN

The bandwidth has a tremendous impact on the speed of a Butterfly Plus
switch. It is a function of several factors:

Switch thickness The bandwidth is linearly related to how many bits
move across the switch during one clock period

Switch clock frequency The bandwidth is linearly related to the switch
clock frequency

Control overhead Each message consists of data bits and control bits,
thus the bandwidth is related to the ratio of data
bits to message bits (i.e., data bits plus control bits)

Ylemory bandwidth If the switch speed is too high, data cannot be writ
ten into or read from the local memory fast enough
to keep the switch path busy and still permit the
local processor an occasional access to its
memory.

The switch clock frequency is limited either by the time it takes to establish a
connection between a switch node input and output port or by the time it takes
to propagate the data to the next switch node. In very large switch
configurations, the propagation time may be larger than the connection time.

The potential bandwidth of 32 MHz is further reduced because not every
switch clock period transfers data. Assuming a switch base of four, with 128
processors and a thickness of four, Table 3-1 shows the reduction in
bandwidth due to the inclusion of control bits in each message for several data
block sizes for the unidirectional switch.

Table 3-1
Switch Bandwidth versus Message Size

Data bits Message size Effective Bandwidth

16 96 5.3 MHz

32 112 9.1 MHz

64 144 14.2 MHz

256 336 24.4 MHz

3-25

The Butterfly Plus Switch Inside the Butterfly Plus

As can be seen, data sent or retrieved from remote memory in multiple word
blocks uses the Butterfly Plus switch more efficiently.

DEAD STATES AND FLOW CONTROL

Most communications systems need flow control to prevent data from being
lost, either initially, while a communications channel is being established, or
later, if some processing element is unable to keep up with the system as a
whole. In the Butterfly Plus switch, two types of flow control are required, .
since either the sending or the receiving PNC might not be able to keep up
with the switch. Introducing flow control mechanisms typically causes the
secondary problem of dead states: system states that persist indefinitely.
Dead states can occur because of either hardware or software malfunctions, or
as the result of design problems. Dead states that result from system design
are termed deadlocks. The switch avoids deadlocks and times out all dead
states caused by user error or hardware problems external to a working pro
cessor node. Most dead states caused by local hardware problems wi,11 also
time out. The occurrence o~ these dead states is reported to the local operat
ing system.

In the Butterfly Plus, dead states can occur for several reaso11s.. Mainly, they
occur-because messages can be rejected due to switch contention (a type of
flow control), and this rejection can lead to dead states when any of the fol
lowing condidons occur:

• The addressed hardware is missing, inoperative, or flooded by some exter
nal malfunction

• The local receiver is malfunctioning or flooded

• The local transmitter or part of the switch is malfunctioning.

Once a message has been accepted, an empty transmitter buffer or a full
receiver buffer can cause nulls to be sent. Hardware malfunctions can simu
late these conditions, causing a dead state. A dead state can occur when a
message requiring a reply is not processed because of a bad checksum or
hardware error.

Two independent timers are used to time out dead states. When a request is
submitted to the transmitter, one timer ensures that the request goes out within
a reasonable period. If a reply is expected, the same timer is used to ensure

3-26

Inside the Butterfly Plus The Butterfly Plus Switch

that it arrives within a reasonable period. A second timer does the same for
the transmission of acknowledgement messages. The timeout intervals are
long enough to make it unlikely that normal switch contention will exceed
them, and yet short enough for the operating system to recover smoothly if
timeouts occur.

Deadlocks are possible whenever a resource is needed to complete a task, but
that resource is already in use and cannot be freed until the task completes. If
a switch interface has only a single input message buffer and a single output
message buffer, a deadlock such as that shown in Figure 3-13 can result from
the following scenario:

1. Both node A and node B send memory request messages to each other
simultaneously (memory request messages expect a reply).

2. After these requests have been processed, but before the replies have been
sent, requests from two other nodes, X and Y, arrive at the inputs.

At this point, the replies in node A and node B cannot be sent because the
receive buffers are occupied by the later requests. Yet, no further processing
of requests can be done to free the receive buffers until the replies have been
sent. The system is locked up. By ensuring that a reply message can always
be sent and accepted, however, deadlock can be avoided. This requires a
mechanism that accepts replies even 'if the receiver buffer is occupied. Pro
viding two input buffers and two output buffers in each processor node, as in
the Butterfly Plus, and adopting rules for how these buffers are used avoids
the problem of deadlock.

RECEIVE REQUEST X

SEND REPLY B

NODE A

Figure 3-13
Deadlock in a Switch

REQUEST Y

REPLY A

NODE B

3-27

The Butterfly Plus Switch Inside the Butterfly Plus

Using two transmit buffers and allocating one exclusively for replies ensures
that a reply can be sent in the first place. After a request is rejected and before
retransmitting the request, the transmitter checks the reply buffer and, if a
reply is present, may (randomly) send it before the request. The level of ran
domness in the switch and a reject retransmission delay randomizer in the
switch interlace transmitter ensure that replies do not repeatedly encounter the
same or other request messages in the switch, thus also avoiding deadlock.

SWITCH DESIGN SUMMARY

In summary, the Butterfly Plus switch has the following characteristics:

Conflict Resolution

Parallel Data Paths

Switch Base

Partial Switches

Long and Short '1essages

Speed

Deadlock

3-28

Uses the retreat strategy.

Data parallelism of four bits.

Uses a base of four.

If the number of processors does pot
match a standard switch size, uses the
next larger size of switch and depopu
late its input ports for better perlor
mance.

Supports both long messages (block
transfers) and short messages (single
word transfers), but breaks long mes
sages into blocks of 256 bytes or less to
keep the latency of short messages low.

Clocks the switch at 8-megabits-per
second for an effective bandwidth of 32
MHz per path; in a switch with 25 6
ports, this implies a maximum aggre
gate data rate of 8-gigabits-per-second.

Avoids by using the retreat strategy in
the switch and by ensuring that the
switch interlace can always accept a
reply.

Inside the Butterfly Plus

Error Control

The Butterfly Plus Switch

The switch itself does not perlorm error
control, but the switch interlaces use
check bits to detect both data errors and
routing errors.

SWITCH NODE IMPLEMENTATION

Each channel through the switch comprises eight pathways, as shown in Fig
ure 3-14. Four data paths, bits 0, 1, 2, and 3, together with one control path,
FRAME, carry signals downstream; one control path, REJECT, carries a signal
upstream. Two other signals, ND and HOLD, provide flow control during
block transfers. Data path signals encode the routing information first, then
the body of data, followed by a checksum, and then padding bits if required.
(Padding might be needed if the message is so short that it would completely
exit the transmitter before a possible REJECT signal could be returned by the
switch.)

The FRA.i'\1E signal in each message defines its head and tail. FRAME is gen
erated by the interlace unit supplying input to each rtode. Headers are used by
the switch node in routing, and are passed downstream from the switch node
in the form of a new FRAME signal to delimit the transmission._ A header con
sists of the routing information, plus the message type, and, if the message is a
request, the source address. As the head enters a node, a crosspoint link is
formed; as the tail leaves the node, the link is broken.

The REJECT signal is generated by any node that is not free to establish the
required link when the message head appears. The signal travels upstream,
effecting a retreat by unlinking all segments of the channel as it goes, then
directing the interface unit to take down the connection and try again later. A
REJECT signal can also be generated by the destination switch interlace to
abort a message in progress.

3-29

The Butterfly Plus Switch

.. • 3
·---+

.. • 2 ·---+

4 •
·---+

4 • 0

·---+ •

Figure 3-14

3

2

0

.. .
·---+ •
.. .
·---+ •
.. .
·---+

.. .
·---+ •

Flow Control

·---+
ND

----+
HOLD ·----

Base 4 Switch Node 1/0 Diagram

Inside the Butterfly Plus

Control Paths .. •
REJECT

FRAME

•
Data Paths

•
0

• 2

3

Circuitry along the buffered FRA.i.\1E pathway detects ~e head.and tail of the
message. The head signal and the routing bits (encoded on data paths 0 and 1
during the leading digit of the message) are sent to the bid priority and
crossbar assignment logic block. Taken together, head and routing bits con
stitute a bid to establish a crossbar link to the designated downstream port.

If the port is available and if no other message with higher priority is simul
taneously bidding for use of the same port, the link is established; the
assigned connection code is latched for the duration of the message, and fed
from there to the crossbar switch to establish the connection. The data and
FRAME signals are then sent through to the downstream port. The FRAME sig
nal is delayed by one clock tick with respect to the data, thus discarding the
old leading digit of the header (i.e., the routing bits). This signal announces to
the bid logic that the port is unavailable to other bidders because there is a
message in transit.

If the port is unavailable at bid time, or if a higher priority bid is simultane
ously being made, a local REJECT signal is returned to the losing bidder's
channel logic, where the signal resets the frame fiipfiops and continues

~30

Inside the Butterfly Plus The Butterfly Plus Switch

upstream in retreat, becoming a downstream REJECT signal at the next node
upstream. Here the signal again clears the frame fiipflops and continues
upstream, traversing one node per clock tick.

3-31

Chapter 4

The Multibus Adapter

The Butterfly Plus Multibus adapter is a printed circuit card that plugs into a
9-slot Multibus card cage and attaches to a Butterfly Plus processor node via
its BIOLil'.'K cable. On the Multibus adapter card edge are a toggle switc;:h and
four connectors. The toggle switch activates a watchdog timer and is nor
mally toggled off (to the right) to prevent the Watchdog Timer from affecting
the Butterfly Plus. The 14-pin connector supplies a system clock for small
Butterfly configurations. The two 26-pin connectors form a null switch inter
face that attaches to the processor node and emulates a 2-column switch for
small Butterfly configurations. The 60-pin connector attaches the Multibus
adapter to the BIOL~!(connector of a processor node.

The Multibus card cage is a 9-slot horizontal card cage that installs directly
into the Butterfly rack. It has a reset switch and a toggle on/off switch on the
right front panel. The reset switch initializes only the Multibus card cage.
There are always a minimum of three cards installed in the first Multibus card
cage: the Multibus adapter card, a RAMboot card, and an Ethernet controller
card. The Multibus Adapter card is always in the topmost slot of the card
cage to accomodate the serial lines. The bottom slot is reserved for slave
boards only. This slot has no connections for interrupt signals.

By communicating with a processor node over its BIOLINK, the Multibus
adapter makes Multibus memory and I/0 devices accessible to the Butterfly
Plus. The Multibus adapter conforms electrically, mechanically, and func
tionally to the IEEE 796 (Multibus) specification with two exceptions: it uses
some of the undefined signals on the Multibus P2 connector, and, when acting

4-1

The Multibus Adapter Inside the Butterfly Plus

as a Multibus slave, it does not always return a data acknowledge signal to the
Multibus master within the IEEE 796 specification of eight microseconds.
Because f>f BIOLINK latency, the Multibus adapter returns data acknowledge
ment signals within 25 microseconds.

The Multibus adapter consists of five independent subsystems:

• A data channel connecting the Multibus to a processor node

• A null switch interface

• A host and console UARTs

• A clock and reset connector

• AnEPROM.

The data channel between the BIOLINK and the Multibus allows the Butterfly
Plus processor node to access memory and I/0 device data on the Multibus,
and allows devices on the Multibus to access local memory on the processor
-node to which the Multibus adapter is attached. Besides transferring data
between the Multibus and a processor node, the adapter also facilitates Mul
tibus interrupt processing by mapping each Multibus interrupt request level
into one of two MC68020 interrupt requests, in either vectored or non
vectored format. Each interrupt request level can be enabled individually, and
there is a general interrupt disable function. The data channel also allows
Multibus devices to post events on the Butterfly Plus.

Three of the five functional subsystems in the Multibus adapter, the null
switch interface, the host and console UARTs, and the clock and reset connec
tor, are used to reduce hardware needs in small Butterfly systems. Each of
these subsections duplicates key functions of certain Butterfly Plus circuit
cards. Butterfly Plus clock cards, switch cards, and the host and console con
nections on the Ethernet fantail all have functional counterparts on the Mul
tibus adapter. In addition, the adapter contains a 2-kilobyte EPROM to provide
configuration information.

Butterfly Plus software controls each subsystem within the Multibus adapter
through a set of memory mapped control registers. Many functions of the
Multibus adapter are implemented by setting and clearing bits in its Misc
Register, which is mapped at FFF7D026 in the Butterfly Plus virtual address
space. The Multibus adapter Misc Register is instrumental in controlling

4-2

Inside the Butterfly Plus The Multibus Adapter

Multibus interrupt requests and memory management functions, as well as
other tasks. A layout of the Misc Register appears later in this chapter in
Table 4-8.

NULL SWITCH INTERFACE

The null switch interface is an independent subsystem within the Multibus
adapter that provides some of the functions of a 2-colurnn Butterfly Plus
switch. This allows development systems with only one processor to operate
without a Butterfly Plus switch card. The null switch interface also generates
its own master clock and reset signals, eliminating the need for a separate
clock card in the Butterfly Plus. The null switch interface connects to a pro
cessor node through its pair of 26-pin switch receiver and transmitter cables.
The transmitter cable connects the leftmost 26-pin connector on the front of
the Multibus adapter card to the switch transmitter port on the processor node.
The receiver cable connects the rightmost 26-pin connector on the Multibus
adapter to the switch receiver port on the processor node.

Even in a 1-processor Butterfly Plus system, the processor still needs to send
messai;res across the switch under certain circumstances. The null switch

'-

interlace allows this by emulating a 2-column switch and p_assing messages
from the switch transmitter to the switch receiver selectively, based upon their
addresses. The null switch does this by stripping off the address bits before
passing the messages to the processor node. It passes only messages
addressed to processor 0. It handles all the communication details of a real
switch, such as deleting the address from the beginning of a message. Mes
sages that are not addressed to processor 0 are ignored. A Butterfly Plus pro
cessor node obtains its master clock and reset signals from a switch card via
its switch receiver and transmitter connectors. The switch card in turn obtains
clock and reset signals from a clock card. In a I-processor system that has no
switch card, the null switch interface supplies master clock and reset signals
to the processor node. The reset signal has two possible sources within the
null switch interface: a pair of pins on the Multibus P2 connector and the
watchdog timer circuit. The reset signal is fed to the transmitter connector of
the null switch interface, where it initiates a power up reset of the processor
node connected to the interface.

4-3

The Multibus Adapter Inside the Butterfly Plus

Two pins on the Multibus P2 connector, pins 11 and 13, control a flipflop that
drives the reset signal. A TTL low signal applied to pin 13 sets the flipflop and
asserts the reset line. A TTL low signal applied to pin 11 resets the flipflop
and inactivates the reset line. Because the flipflop effectively debounces pins
11 and 13, a mechanical switch can be connected to these pins directly.

The standard Multibus reset signal, called INIT, does not reset the Multibus
adapter, nor does it cause the adapter. to reset the processor node. The
Butterfly Plus 1/0 system reset signal, called BIORES, does reset the Multibus
adapter, however, and causes the adapter to assert the· Multibus INIT signal.
Multibus resets do not reset the Butterfly Plus.

A connector on the Multibus adapter card can supply system clock and reset
signals to one or two switch cards. This 14-pin clock connector is identical to
the connector on a standard Butterfly Plus clock card. In Butterfly Plus sys
tems with up to 16 processors that require only one switch card, the Multibus
adapter can replace the clock card.

WATCHDOG TIMER

The Multibus adapter contains a watchdog timer, controlled-by a bit in the
Misc Register, that can reset the processor connected to the clock connector.
Once enabled, the watchdog timer activates the reset signal for 500
nanoseconds if register bit 4, the watchdog timer control bit, is not toggled at
least once in about 12 seconds. The watchdog timer is disabled when the
Multibus adapter is reset or power is cycled. It is enabled when the watchdog
timer control bit in the Misc Register is set for the first time. To enable the
watchdog timer, the word OOlOH is ORed into location FFF7D026.
Thereafter, the word OOlOH ·must be XORed into the Misc Register at least
about once every five seconds to prevent the watchdog timer from issuing a
reset. If for some reason the watchdog timer does issue a reset, the toggle
mechanism automatically begins to reXOR the word OOlOH into the Misc
Register every five seconds. A toggle switch on the front of the Multibus
adapter card disables the watchdog timer when toggled to the right.

HOST AND CONSOLE UARTS

The Multibus adapter contains two UARTs, brought out to connectors on the
Ethernet fantail, that allow console terminals, load devices, or a host computer

4-4

Inside the Butterfly Plus The Multibus Ada.pter

to be attached. The host and console UARTs use independent programmable
serial communication channels. Each can interrupt the processor at level 4 on
either transmitter empty or receiver full conditions. These UARTs are nor
mally set to operate at 9600 baud with eight data bits, one stop bit, and no par
ity.

Each of the two UARTs used in the Multibus adapter is an SC2661 enhanced
programmable communication interface (EPCI) that performs full duplex
serial communication in either synchronous or asynchronous format at data
rates up to 19,200 baud. Both UARTs are programmed through a set of six
control registers. The registers have the following structure:

struct UART {

short data ;
short status ;
short mode ;
short command ;
short vector ;
short control ;
;

/* EPCI data register */
/* EPCI status register */
/* EPCI mode control register */
/* EPCI command register */
/* interrupt vector register */
/* interrupt control register */

Each register is 16-bits wide. The high-order byte is undefined on reads and
ignored on writes. The first four registers; the data, status, mode, and com
mand registers, are inside the EPCI. These registers control the baud rate, par
ity, and other aspects of the actual communication. Refer ·t0 the EPCI _data
sheet to initialize and use these registers. The interrupt vector and interrupt
control registers are implemented in the Multibus adapter.

The host and console UARTs use their associated interrupt control register and
interrupt vector register to enable transmitter · and receiver interrupts.
Receiver full and transmitter empty interrupts are individually enabled for
each UART by configuring the appropriate interrupt control register. In each
interrupt control register, bits 15-2 are unused and must be zero, bit 1 is set to
enable transmitter empty interrupts, and bit 0 is set to enable receiver full
interrupts. Figure 4-1 illustrates the bit map for the interrupt control regis
ters.

4-5

The Multibus Adapter

15 14 13 12 11 10 9 8 7 6

Unused. Must be, zeroes

Figure 4-1
_ UART Interrupt Control Register

5 4 3 2 1 0

1
....___.

Inside the Butterfly Plus

Receiver full interrupt enable
Transmitter empty interrupt enable

The interrupt vector registers contain the values supplied to the processor
when it responds to a UART interrupt. In each interrupt vector register, bits
15-8 are unused and must be zero, bits 7-1 are the interrupt vector, and bit 0
is a read-only bit set when there is a receiver interrupt pending. This distin
guishes between receiver and transmitter interrupts during processor 'vector
fetches .. Figure 4-2 illustrates the bit map for the interrupt vector registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused. Must be zeroes Interrupt Vector

.___ Receiver interrupt pending (read only)

Figure 4-2
UART Interrupt Vector Register

The control registers for the host and console UARTs are mapped into the
Butterfly Plus address space beginning at FFF7DOOO, as shown in Table 4-1.

4-6

Inside the Butterfly Plus The Multibus Adapter

Table 4-1
UART Control Register Addresses FFF7DOOO

Address Register

FFF70000 Console Data Register

FFF70002 Console Status/Synch Register

FFF70004 Console Mode Register

FFF70006 Console Command Register

FFF70008 Console Interrupt Vector Register

FFF7DOOA Console Interrupt Control Register

FFF70010 Host Data Register

FFF70012 Host Status/Synch Register

FFF70014 Host Mode Register

FFF70016 Host Command Register

FFF70018 Host Interrupt Vector Register

FFF7001A Host Interrupt Control Register

Host and console UART interrupt requests enter the Butterfty_Plus processor
node at level 4 and always have higher priority than any ~1ultibus interrupt
request. Receiver interrupts have higher priority than transmitter interrupts.
When the PNC responds to a UART interrupt from the Multibus adapter, it
reads the appropriate interrupt vector register and passes the resulting value to
the processor after setting the low-order bit (to distinguish between receiver
and transmitter interrupts).

The processor (and consequently, user software) is effectively insulated from
the interrupt vector fetching process. The PNC detennines where an interrupt
originated and then acquires the correct interrupt vector. For example, the
Multibus adapter can have five separate interrupt requests pending at level 4:
receive and transmit interrupts from both the host and the console, and a Mul
tibus interrupt mapped into level 4. Microcode in the PNC determines the
order in which these interrupts are serviced, while the processor merely
fetches a vector from the PNC. The PNC services l/O interrupts in the follow
ing order:

4-7

The Multibus Adapter Inside the Butterfly Plus

1. Host receiver (highest priority)
2. Console receiver
3. Host transmitter
4. Console transmitter
5. Multibus interrupts mapped into MC68020 interrupt request

level 4
6. Level 4 interrupt requests from other BIOLINK cards
7. Multibus interrupts mapped into MC68020 interrupt request

level 3
8. Level 3 requests from other BIOLINK cards (lowest priority).

EPROM

For applications that require non-volatile storage, the Multibus adapter con
tains a 2-kilobyte EPROM. This EPROM can be used for configuration infor
mation that may be useful after a power outage. User programs can read and
write this EPROM through its address register and its data and control r~gister,
which are mapped into Butterfly Plus address space at FFF7D020 and
FFF7D022, respectively. The reads/write cycle of the EPROMs is about 1,000
read/writes, so diagnostics should be performed carefully to save the EPROM.
The EPROM Address Register is used to drive the address lines of the EPROM.
Although this register is 16 bits wide, only the low-order eleven bits (bits
10-0) are used for the EPROM address. The EPROM Data and Control Register
is used both to supply data to the EPROM and to manipulate its control signals.
Table 4-2 shows the EPROM Data and Control Register format. Figure 4-3
illustrates the bit settings of this register.

Table 4-2
EPROM Data and Control Register (FFF7D022) Layout

Bits Active Level Function

15-12 Unused.

11 high Write data to data holding register.

10 high Strobe data into EPROM.

9 low Read data from EPROM.

8 low Enable EEPROM.

7-0 Data bits 7-0.

4-8

Inside the Butterfly Plus The Multibus Adapter

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused ~ Data bits?- o
Enable EPROM

~ Read data from EPROM

Strobe data into EPROM
!....-- Wnte data to data holding register

Figure 4-3
EPROM Data and Control Register Bit Layout

A program can read and write the EPROM by following the procedures
described in Figures 4-4 (reading an EPROM) and 4-5 (writing an EPROM).

Note that "xx" represents a byte of data.

Program clears EPROM
data and control

registers

Program writes desired
EPROM address (0000

to 07FF to EPROM
address register

Program reads EPROM
data and control register

Figure 4-4
Reading the EPROM

Disables write and strobe lines
and asserts the active-

low and read enable lines

Obtain a byte of data
from the low byte of

the register

4-9

The Multibus Adapter Inside the Butterfly Plus

Figure 4-5

Program writes 0300H to EPROM ' Deactivates all control
data and control register 1---9': lines

Program writes destination address
to EPROM address register

Program writes OBxx to
EPROM data and
control register

1 Program latches data to
1----11~ data holding register and

asserts write signal

Program writes 06xx to EPROM
data and control register

___.: Asserts strobe and
, enables signals

Program writes 0300 to
EPROM data and
control register

Program finishes EPROM
1--...-.1 write cycle and deactivates

control lines -

Writing the EPROM

MULTIBUS DATA TRANSFERS

The Multibus adapter is primarily a communication channel between the Mul
tibus and the BIOLINK. It has a 16-bit data path that supports both word and
byte operations and a typical data transfer rate of two million bytes per
second. A Butterfly Plus longword access to Multibus memory or 1/0 data
takes two Multibus cycles, but is otherwise identical to a 16-bit transfer. The
detailed mechanics of data transfer are transparent to both the Multibus device -
and the Butterfly Plus MC68020 processor. That is, the local memory of the
Butterfly Plus processor node to which the Multibus adapter is attached
appears _to be "on" the Multibus, while Multibus memory or 1/0 device regis
ters appear to be "on" the BIOLINK of the processor node.

4-10

Inside the Butterfly Plus The Multibus Adapter

The adapter maps Multibus addresses to Butterfly Plus physical addresses,
and the processor node maps Butterfly Plus physical addresses to Multibus
addresses. A Butterfly Plus program accesses the Multibus using Butterfly
Plus virtual addresses. The MC6885 l paged memory management unit
translates these virtual addresses into physical addresses. The low-order bits
of a virtual address are generally identical to the low-order bits of the
corresponding physical address. Since Multibus adapter circuitry decodes
only these low-order bits, the distinction between virtual and physical
addresses is usually unimportant if programmers realize that the high-order
bits of a virtual address are established by system software and subject to
change. All addresses cited in this chapter are virtual addresses. To protect
against address mapping changes, programs should reference these addresses
symbolically through use of an operating system header file.

There is a basic byte order incompatibility between the MC68020 processor
and the Multibus. In word-oriented data, the Multibus addressing convention
assumes that the least significant byte is stored at the lower (even nufr\bered)
address and the most significant byte is stored at the higher (odd numbered)
address. The .MC68020 addressing conventions use t~e opposite byte order.
To remedy this problem, the Multibus adapter has a programmable byte swap
ping facility. Du~ing word transfers, when swapping is enabled, the byte
order is reversed on the data bus. During byte transfers the least significant
address bit is inverted. Thus, when swapping is enabled, all even addresses
access odd byte locations and all odd addresses access even byte locations.

Multibus Access to Butterfly Pius Memory

A Multibus device can only access the Butterfly Plus memory of the processor
node to which the Multibus adapter is attached. Multibus devices cannot
access memory on remote processor nodes over the Butterfly Plus switch.
Four types of Multibus access to Butterfly Plus local memory are supported:
word reads, word writes, byte reads, and byte writes. A pipeline register can
be used to reduce BIOLINK bus latency for block transfers that access con
secutive Butterfly Plus memory locations. Multibus devices can also post
events on the local Butterfly Plus node.

The Multibus has 24 address lines, giving it a 16-megabyte address space. By
convention, half of the 16-megabyte Multibus address space is used to map
four megabytes of Butterfly Plus memory in both normal and byte swapped

4-11

The Multibus Adapter Inside the Butterfly Plus

form, leaving eight megabytes of address space for Multibus memory and
memory mapped I/O devices. The Multibus adapter maps Butterfly Plus local
memory (on the processor node to which is attached) directly into the Mul
tibus memory address space at the same physical address. It also maps a byte
swapped version of this same Butterfly Plus memory into the Multibus
memory address space beginning at location 400000H. Therefore, a Multibus
device reading or writing any location between 000000 and 3FFFFF accesses
the word or byte of memory at that physical address on the Butterfly Plus pro
cessor node, and by reading or writing 400000H higher than that location, the
Multibus device will access the same Butterfly Plus ·memory data in byte
swapped form.

Multibus memory mapped I/0 devices are mapped into the Multibus memory
address space between location 800000H and location BFOOOO. The Multibus
adapter maps certain PNC special functions into a 64-kilobyte block of Mul
tibus address space beginning at location BFOOOO for use in posting events on
the Butterfly Plus. The remaining Multibus address space is availaf?le for
Multibus memory devices, such as the Multibus RAMboot and Ethernet cards.
Application programs can alter the standard Multibus address mappings by
changing entries in the adapter's mapping R&\1; however, standard system
software relies on the conventional mapping.

Butterfly Plus Access to Multibus Data

The Butterfly Plus processor node to which a Multibus adapter is attached can
access both memory and I/0 device addresses on the Multibus. Adapter
hardware supports four types of Butterfly Plus access to Multibus memory
directly: word reads, word writes, byte reads, and byte writes. A Butterfly
Plus program can use longword reads and writes to access Multibus memory,
however the Multibus adapter performs these 32-bit accesses in two separate
16-bit Multibus cycles.

Chrysalis maps the 64-kilobyte Multibus I/O address space into Butterfly Plus
virtual address space beginning at address FFE40000; therefore. the MC68020
can access a Multibus I/0 device register by reading or writing the Butterfly
Plus memory location at FFE40000 more than the Multibus I/O register
address. Chrysalis also maps a byte swapped version of this same Multibus
address space beginning at virtual address FFF40000.

4-12

Inside the Butterfly Plus The Multibus Adapter

Usable Multibus memory addresses begin at 800000H, since two copies of
Butterfly Plus memory are mapped into the lower half of the Multibus
memory address space. This 8-megabyte region of Multibus memory address
space is mapped into Butterfly Plus virtual address space beginning at address
FFOOOOO. A portion of the byte swapped version of this same Multibus
memory data can be mapped into Butterfly Plus virtual address space, begin
ning at address FFOOOOOO, by means of the \lap :vIB Swapped call to the - -
Chrysalis operating system. Therefore, the MC68020 can access a Multibus
memory location by reading or writing the Butterfly Plus memory location at
FE800000 more than the Multibus memory address, and it can also obtain the
byte swapped version of this same data after calling \lap_ :\IB _Swapped.
Rather than using the absolute virtual addresses cited here, a program would
invoke the Chrysalis function :\lap :\lB (or :vlap :VIB Swapped) and obtain - - -
a pointer to the Multibus memory data. Figure 4-6 illustrates the Butterfly
Plus and Multibus virtual address maps.

4-13

The Multibus Adapter

FFFFFFFF

FFFD7FFF

FFSOOOOO

FF7FFFFF

FFOOOOOO

Figure 4-6

EPROM

PROCESSOR AND PNC
SPECIAL FUNCTIONS

MULTIBUS MEMORY
SWAPPED
(on demand)

MULTIBUS MEMORY
(unswapped)

TOP 16 MEGABYTES OF
BUTTERFLY PLUS VIRTUAL
MEMORY ADDRESS SPACE

UNDER CHRYSALIS

. -·· .. · ..

..

FFFFFF

.. · .. · .. ·
cooooo
BFFFFF
BFOOOO
BEFFFF

800000

.. . · .. ·· ..
.. ··

•• • 400000
3FFFFF

000000

.

Inside the Butterfly Plus

RAMBOOT CARD

PNC POST EVENT BLOCKS
IN BANK 0 MEMORY

MEMORY MAPPED 1/0

BUTTERFLY PLUS MEMORY
(swapped)

BUTTERFLY PLUS MEMORY
(unswapped)

MULTIBUS MEMORY
ADDRESS SPACE

-

Butterfly Plus and Multibus Address Maps under Chrysalis

THE MULTIBUS ADAPTER PIPELINE

When a Multibus device reads or writes to the BIOLINK, the PNC can take as
long as 25 microseconds to respond. This possible lag in response occurs
because the PNC disables microinterrupts while perfonning certain functions,
some of which-like posting events or scheduling tasks-take many
microseconds to complete. To reduce the effects of this latency, the Multibus
adapter implements a simple pipeline between Multibu~ devices and Butterfly
Plus memory. The pipeline works for both byte and word operations. It is
always active when the Multibus writes to the Butterfly Plus and it can be
selectively enabled or disabled when the Multibus reads from the Butterfly

4-14

Inside the Butterfly Plus The Multibus Adapter

Plus. Misc Register bit 3 (mask value Ox08) is the pipeline enable bit, which
is set to one to enable the pipeline and cleared to zero to disable it. To enable
pipelined reads of Butterfly Plus memory, for example, OR the word value
0008H into location FFF7D026. The pipeline is not used for transfers that
originate at the Butterfly Plus, when the Butterfly Plus reads or writes to the
Multibus.

Pipelined Writes to the Butterfly Plus

When a Multibus device writes a word or byte to Butterfly Plus memory, the
adapter buffers the address and data in its own registers. It then ack
nowledges the transaction to the Multibus device, freeing the Multibus for
another transaction. Meanwhile, the Multibus adapter waits, if necessary, for
the Butterfly Plus to respond, and then completes the transaction.

Pipelined Reads from the Butterfly Plus

When a Multibus device reads a word or byte from Butterfly Plus memory,
the Multibus adapter and the PNC collaborate on a p~efetching scheme, which
assumes that the next address read by a Multibus device will be two greater
than the last address that was read. When the 'pipeline is enable~ during a
Multibus read request to the Butterfly Plus, the Multibus adapter and the PNC

execute one of two sequences, depending on whether the pipeline is full or
empty. (The pipeline is empty after a Multibus reset and after any Multibus
operation except a pipelined read. It is full only after a pipelined read.) If the
pipeline is empty, the Multibus adapter and the PNC execute a preset sequence
whenever a Multibus device reads Butterfly Plus memory. Figure 4-7 illus
trates this sequence in a flowchart.

4-15

The Multibus Adapter

Figure 4-7

Multibus device requests read and
puts address on Multibus

Multibus adapter maps address
and sends it to BIOLINK

PNC returns data through
BIOLINK to Multibus adapter

Multibus cycle ends

PNC increments last address
by two

Multibus stores this new
address

PNC reads data from this address and
sends it to Multibus adapter

Multibus adapter saves data

Pipeline Empty Multibus Read

Inside the Butterfly Plus

, Multibus adapter acknow
ledges transaction

1 PNC sends this address to
Multibus adapter

If the pipeline is full when it is enabled, a preset sequence is performed when
ever a Multibus device reads Butterfly Plus memory. Figure 4-8 illustrates
this sequence in a flowchart.

4-16

Inside the Butterfly Plus

Multibus device requests
read and puts address on

Multibus

Multibus adapter compares
this address to last stored

address

Multibus adapter and
~-_. YES __. PNC events execute

NO

Multibus adapter sends
data and acknowledgement

signal to Multibus

Multibus sends matched
address to PNC

PNC increments address
by two and begins to read

PNC sends new address
and new data to Multibus

adapter

Pipeline is refilled

Figure 4-8

Pipeline Full Multibus Read

"pipeline empty"
procedure

The Multibus Adapter

1 This indicates that ' . ·' the address 1s not
' the word following
I
, the last address
' that was accessed
'

Although pipelining can be enabled or disabled at any time during read opera
tions, the only case where pipelined reads result in a significant savings of
time is on large block transfer operations, where the ratio of address matches
to total accesses is high. If this ratio is not high enough, the pipeline can actu
ally slow down the transfer.

4-17

The Multibus Adapter Inside the Butterfly Plus

Multibus Data Transfer Timing

The amount of time required to perform a Multibus data transfer can vary
widely. Table 4-3 shows the best, worst, and typical total cycle time for each
type of access, measured from the time one access begins until the earliest
time that a subsequent access can begin. The table shows timing for full word
accesses only. Note that byte access takes the same amount of time as word
access, and longword access takes twice as long. The table also shows the
elapsed time from the beginning of an access until data acknowledge is
returned. When a Butterfly Plus node accesses the Multibus, the access cycle·
begins after the processor asserts the address strobe. When a Multibus device
accesses the Butterfly Plus node, the cycle begins after the Multibus device
asserts its bus request line.

Table 4-3
Multibus Data Transfer Timing

Total Cycle Time (µsec) Time to Data Acknowledge

Best Worst Typ. Best Worst Typ.

Butterfly reads Multibus 2.1 20 2.4 2.1 20 2.4

Butterfly writes Multibus 2.4 20 2.7 2.4 20 2.7

Multibus reads Butterfly 1.3 25 1.5 0.9 25 1.0
(without pipeline)

Multibus reads Butterfly 1.3 25 1.5 0.3 0.3 0.3
(with pipeline)

Multibus writes Butterfly 0.8 25 1.0 0.3 0.3 0.3

POSTING EVENTS FROM THE MULTIBUS

Multibus devices can post events on the local Butterfly Plus processor node by
writing to a pre-defined special address in the Multibus memory address
space. Using its mapping RAM, the adapter converts this Multibus address
into a Butterfly Plus physical address, passes it to the PNC, and notifies the
PNC that it is requesting a post event operation (as oppo~ed to a normal
memory access). The PNC uses the Butterfly Plus physical address as a
pointer to the parameter block for the event, and then proceeds to post the data
from the Multibus to this event. When implementing Multibus post event
operations, a Butterfly Plus program should use the following sequence of
operations:

4-18

Inside the Butterfly Plus The Multibus Adapter

1. Allocate and initialize an event block through a call to the Chrysalis
Make_Event function. :\tlake_Event returns an event handle, which
serves as a pointer·to the event block.

2. Create a parameter block for the event. The parameter block has the fol
lowing structure:

struct Event Parameter Block
long Event Handle;
long Post Data;
short Reply_Code;
} ;

By convention, the parameter block should occupy bank 0, the lowest 64
kilobytes of Butterfly Plus physical memory (i.e., the header segment),
which is the only area normally mapped to Multibus address space for this
purpose. The Chrysalis function :Vlake _PNC_ Block can be used to
obtain bank 0 storage space for a parameter block.

3. Pass the address of the parameter block to the Multibus device. The pro
cedure for this depends on which particular device will do the posting.

4. If the parameter block is not in bank 0, the l<?west 64 kilobytes of
Butterfly Plus physical memory, configure the Multibus adapter mapping
RAM location that corresponds to the physical address of the parameter
block. For this location, the segment attribute field must be set to special.
The Butterfly Plus segment field must correspond to bits 21-16 of the
physical address of the parameter block. If necessary, enable the mapping
RAM. Omit this step if the parameter block is in bank 0, which is already
mapped to Multibus address BFOOOO, or if Make_PNC_Block was used
to obtain header block storage space.

Upon receiving the post event request, the PNC checks the parameter block to
ensure that the event handle is valid and that the request is appropriate. If
there are no errors, the PNC writes the data word from the Multibus into the
low-order word of the Post Data field in the parameter block, posts the data
with the event specified by the Event_ Handle, and writes the Reply_ Code
into the parameter block. The following is a programming example for the
posting of events from the Multibus.

char * MB Event () Creates an event for use by a Multibus device.
- Returns the Multibus address to which the

device should write a 0 to cause the post.
{ short tenpsr = entker;

oid pblk;

4-19

The Multibus Adapter

}

char * MB post addr;
pncblock pbp;
pnc_Fb * pb;

pblk = Make PNC Block () ; .
pbp =map oab (pblk,0,0);
pb = & (pbp->pnc blk.post);
pb->p handle= Make Event (0,0,0,0);
pb->p_postdata = <any datum>;
pb->p reply = O;
unmap - oab (pbp) ;
restoreker (terrpsr);
return (((int)pb & Oxffff) OxbfOOOO);

Inside the Butterfly Plus

SERVICING MULTIBUS INTERRUPT REQUESTS

The Multibus adapter can forward Multibus interrupt requests to the MC68020
in the processor node. Software can map each Multibus interrupt request
level separately into either a level 3 or a level 4 Butterfly Plus processor inter
rupt, and assign the priority of Multibus interrupts. Each Multibus interrupt
level can be either vectored or non-vectored. In the case of vectored inter
rupts, the Multibus adapter can perform a 2-cycle interrupt acknowledge
operation on the Multibus and pass the resulting interrupt vector to the PNC.
Each Multibus interrupt level can be individually enabled or disabled, and
there is also a general interrupt disable function.

There are eight Multibus interrupt levels, numbered 0 to 7. The Multibus
adapter contains a user-programmable interrupt vector RAM, which deter
mines the hierarchy of these interrupts and specifies the Butterfly Plus proces
sor interrupt lev,el, if any, that corresponds to each Multibus interrupt level.
The vector RAM uses the eight Multibus interrupt request lines as its address
lines. Every possible combination of interrupt requests selects one location in
the vector RAM. The content of each vector RAM location specifies the
highest priority interrupt request, among those currently active, and deter
mines whether that interrupt request is mapped to MC68020 interrupt level 3
or level 4.

The Multibus adapter requests a Butterfly Plus processor interrupt in two
situations:

• When one or more Multibus interrupt lines become active and select an
interrupt vector RAM location that indicates a level 3 or level 4 Multibus
interrupt request

4-20

Inside the Butterfly Plus The Multibus Adapter

• When one of the UARTs on the Multibus adapter has an interrupt pending.

When the Butterfly Plus processor acknowledges a level 3 or level 4 interrupt
request, the PNC first detennines if it is attached to a Multibus adapter. If so,
the PNC reads the adapter Interrupt Status Register to detennine the contents
of the currently selected interrupt vector RA.Vi location and the status of the
adapter host and console UART. The layout of the Interrupt Status Register is
shown in Table 4-4 and Figure 4-9.

Table 4-4
Multibus Adapter Interrupt Status Register Layout FFF70028

Bit

15-11

10

9

8

7-0

15

Description

Not used.

· Set to one if Multibus interrupts are enabled.

14

Set to one if there is a host UART interrupt pending.

Set to one if there is a console UART interrupt pending.

Interrupt vector RAM contents; indicates Multibus inter-rupt status.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

unused ~nterrupt vector RAM contents

Console UART pending

'-- Host UART interrupt pending
,___ Multibus interrupts enabled

Figure 4-9
Multibus Adapter Interrupt Status Register Bit Map

If either of the two UART interrupt request bits (8 or 9) is set, the PNC services
the UART interrupt first. If there is a pending Multibus interrupt request (bit
10), the PNC examines the interrupt vector RAM to determine which Multibus
interrupt request level initiated the interrupt request. Bits 0 to 7 of the

4-21

The Multibus Adapter Inside the Butterfly Plus

Multibus Adapter Interrupt Status Register indicate to the MC68020 micropro
cessor whether the Multibus adapter wants to interrupt the Butterfly Plus at
level 3 or level 4 (bits 3 or 7), and what Multibus interrupt level is being
invoked at that Butterfly Plus processor level (bits 0 to 2 or bits 4 to 6). The
PNC then takes the Multibus interrupt request level represented by bits 0 to 2
or 4 to 6 and multiplies it times two t.o obtain the index to read one of the
eight 16-bit values from a vector table that begins at FF00005E (symbolic
label BMA _ vec) in Butterfly Plus address space. If this 16-bit value is
nonzero, it is returned to the Butterfly Plus processor as the default interrupt
vector. If the 16-bit value is zero, the PNC instructs the Multibus adapter to
perform an interrupt acknowledge cycle on the Multibus and return the value
obtained. It then passes this value to the Butterfly Plus processor as the inter
rupt vector. If no Multibus device responds to the interrupt acknowledge
cycle, the PNC passes the spurious interrupt vector to the Butterfly Plus pro
cessor. The boot EP,ROM initializes BMA_ VEC to 48H - 4FH.

Programming the Interrupt Vector RAM

The boot EPROM configures the Multibus Adapter so that Multibus interrupt
requests are normally passed to the Butterfly Plus processor as MC68020 level
3 interrupt requests in standard priority sequence (i.e., Multi.bus level 7 inter
rupt requests have highest priority). By changing the adapter's interrupt vec
tor RAM, a program can alter the Butterfly Plus interrupt request level for
Multibus interrupt requests, change the sequence in which Multibus interrupt
requests are forwarded to the MC68020 at that level, and selectively disable
Multibus interrupt requests. The adapter's interrupt vector RAM: begins at
FFF7FOOO in the Butterfly Plus address space. The lower eight bits of an
interrupt vector RAM address correspond exactly to combinations of Multibus
interrupt request lines 7 to 0, where the level 7 request line is the most
significant bit of the address. Each I-byte interrupt vector RAM location has
the layout shown in Table 4-5 and Figure 4-10.

4-22

Inside the Butterfly Plus The Multibus Adapter

Table 4-5
Multibus Adapter Interrupt Vector RAM Layout FFF7FOOO

Bit Description

7 Set to indicate a level 4 interrupt request.

6-4 Specify which currently active Multibus interrupt level has the highest priority at
level 4.

3 Set to indicate a level 3 interrupt.

2-0 Specify which currently active Multibus interrupt level has the highest priority at
level 3.

765 43 2 10

Represent the currently active Multibus interrupt
level that has the highest priority at level 3

Level 3 interrupt request

Represent the currently active Multibus interrupt
level that has the highest priority at level 4

Level 4 interrupt request

Figure 4-10
Multibus Adapter Interrupt Vector RAM Bit Map

As a simple example, assume that only Multibus interrupt request levels l and
2 are in use. These two interrupt request levels together have four possible
states: neither is active, only level l is active, only level 2 is active, or both l
and 2 are active. The four states correspond, respectively, to the four interrupt
vector RAM locations FFF7FOOO, FFF7F002, FFF7F004, and FFF7F006,
which could be programmed as shown in Table 4-6. In this example, both of
the Multibus interrupt request levels were mapped into MC68020 interrupt
request level 3. Vector RAM location FFF7F006, corresponding to both inter
rupts active, gives Multibus level 1 requests priority over Multibus level 2
requests ..

4-23

The Multibus Adapter Inside the Butterfly Plus

Table 4-6
Vector RAM Programming Example

Active Address Level4 Highest at 4 Level3 Highest at 3

(bit 7) (bits 6-4) (bit 3) (bits 2-0)

None FFF?FOOO 0 x 0 x
1 FFF7F002 0 x 1 1

2 FFF7F004 0 x 1 2
1and2 FFF7F006 0 x 1 1

Enabling Multibus Interrupts

Before the Multibus can interrupt the Butterfly Plus processor, Multibus inter
rupts must be explicitly enabled by setting bit 0 in the Multibus Adapter Misc
Register. Clearing Misc Register bit 0 disables ~1ultibus interrupts~ This
interrupt enable bit affects Multibus interrupts only; host and console UART

interrupts are enabled separately. The boot EPROM enables Multibus inter
rupts during initialization.

MULTIBUS MEMORY MANAGEMENT

The Multibus adapter divides the Multibus memory address space into 256
~egments, each 64-kilobytes long. The eight most significant bits of a Mul
tibus physical address specify which segment is being accessed. Each Mul
tibus memory segment can be mapped to access Butterfly Plus physical
memory or left unmapped to access Multibus memory. The Multibus adapter
stores a 2-bit attribute tag for each segment that determines how Multibus
devices access the segment. Table 4-7 shows the four possible values for this
2-bit attribute tag. The bit value column refers to the coding of bits 6 and 7 of
the Multibus mapping RAM.

4-24

Inside the Butterfly Plus

Table 4-7
Segment Attribute Tag Values

Bit Value Code Type

00 0 Normal

01 1 Special

10 2 Swapped

11 3 No Reply

The Multibus Adapter

Description

Multibus devices access Butterfly Plus memory
normally.

Multibus devices access PNC special registers,
potentially invoking a Butterfly special function.

Multibus devices access Butterfly memory, but
the byte order is reversed.

The Multibus adapter will not respond to any
addresses in this segment.

The Multibus adapter performs address mapping by using the eight high-order
Multibus address bits as an index into a 256-byte lookup table called the map
ping RA:.\.1. Each mapping RA:.\.1 entry contains address bits 21-16 of a
Butterfly Plus physical memory segment, along with two bits that indicate the
attribute of the segment. Figure 4-11 diagrams this address translation pro
cess.

Multibus Address BIOLINK Address,

Bns 15-0 Bns 15·0
r

Multibus BIOLINK
BIOLINK Multibus Address .. Mapping RAM Address ..

Address 23 • O Bns23-16 256 Bytes Bns21·16 Address 21 • o

Data15-0 Data15·0

Attribute
(2 Bits)

,,
Multibus BIOLINK

Data Attribute Data Processing
Bits 15-0 ,..

Logic
Bits 15 • 0 ,..

Figure 4-11
Mapping Multibus Addresses onto the BIOLINK

4-25

The Multibus Adapter Inside the Butterfly Plus

User programs running on the processor node to which the Multibus adapter
is attached can access its mapping RAM directly beginning at FFF7EOOO in
Butterfly Plus address space. Each mapping RAM location consists of one
byte with the segment attribute encoded in bits 7 and 6, and with Butterfly
Plus physical address bits 21-16 in bits 5-0.

The eight address bits of a mapping RAM location correspond exactly to the
eight high-order Multibus address bits that select that location. To map Mul
tibus logical segment Ox70000 into Butterfly Plus physical segment Ox20000,
for example, simply write the byte value 02 into location FFF7E007. To swap
the byte order in this segment, write the byte value 82H to this same location.

Although the mapping RA.~ can be read or written at any time, the Multibus
adapter will not respond to Multibus addresses until the mapping RAM is
explicitly enabled by setting bit 1 in the adapter's Misc Register. For exam
ple, to enable the mapping RAM, simply OR the word value 0002H into loca
tion FFF7D026.

The boot EPROM configures and enables the mapping RAM during initializa
tion. Multibus addresses 000000 - 3FFFFF are configured to access the bot
tom four megabytes of the Butterfly local memory, addresses 400000 -
7FFFFF to access the same memory byte swapped, and addresses BFOOOOO -
BFFFFF to access the bottom 64-kilobytes of Butterfly memory in special
function mode. All other Multibus addresses are initialized to "no reply".

LOCK SIGNAL AND JUMPER SETTINGS

Besides controlling the watchdog timer, mapping RAM, Multibus interrupts,
and pipeline, there are two other functions of the Misc Register: enabling the
LOCK signal and reading jumper settings. The LOCK signal is a Multibus con
trol signal that implements indivisible read-modify-write cycles to dual port
RAM. The LOCK signal disables one port of a RAM to aid semaphore signaling
among Multibus masters. (Refer to Section 2.2.2.8 of the IEEE Standard 796-
1983 specification for a detailed description of the LOCK signal.) Bit 2 in the
Misc Register is used to assert the LOCK signal from the processor node. Set
ting this bit to one causes LOCK to be asserted whenever the Butterfly Plus
accesses Multibus addresses: ·clearing the bit to zero disables this function.

4-26

Inside the Butterfly Plus The Multibus Adapter

There are eight jumpers on the Multibus adapter, all reserved for use by appli
cation software, which can read the settings of these jumpers in bits 15-8 of
the Misc Register. Each jumper has a position where the corresponding bit
reads as a one and a position where it reads as a zero.

The remaining bits in the Misc Register are connected to pins on the Multibus
P2 connector. Bits 7, 6, and 5 of the Misc Register are not used. Table 4-8
and Figure 4-12 show the Misc Register layout.

Table 4-8
Multibus Adapter Misc Register (FFF70026) Layout

Bits Function

15-8 Read jumper settings.

7 Spare (P2 connector pin 46).

6 Spare (P2 pin 48).

5 Spare (P2 pin 50).

4 Watchdog Timer Control.

3 Pipeline Read Enable.

2 Assert Multibus LOCK Signal.

1 Mapping RAM Enable.

0 Multibus Interrupt Enable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

read jumper settings
Multibus interrupt enable

mapping RAM enable
assert Multibus LOCK signal

pipeline read enable
watchdog timer control

spare

Figure 4-12
Multibus Adapter Misc Register Bit Map

4--27

The Multibus Adapter Inside the Butterfly Plus

INSTALLING THE MULTIBUS ADAPTER

Before the Multibus adapter card can be installed in the Multibus card cage,
changes must be made to the topmost Multibus P2 connector, the smaller of
the two Multibus backplane connectors. Since the Multibus adapter card must
occupy the top slot in the Multibus card cage, only the P2 connecter in the top
socket, labelled Jl, is modified. To make the change, cut all signal traces
from pins 1 to 50 of the P2 connector on the top (J 1) socket. Pin 1 is the
upper right hand pin when the socket is viewed from the front with the Jl con
nector on top. Odd numbered pins are at the top and even numbered pins are
at the bottom. Thus, all traces to the rightmost 25 pins on the top and the bot
tom of the connector must be cut, leaving only traces to the leftmost five pins. ,
on the top and the bottom. Table 4-9 shows the P2 connector pinout.

4-28

Inside the Butterfly Plus The Multibus Adapter

Table 4-9
Multibus P2 Connector Pin Assignments

Pin Description Pin Description

1 RS-232 host DSR 2 Ground

3 RS-232 host DCD 4 RS-232 host receive data

5 RS-232 host DTR 6 Ground

7 RS-232 host ATS 8 RS-232 host transmit data

9 RS-232 host CTS 10 Ground

11 12

13 14

15 16

17 Ground 18 Ground

19 RS-232 console CTS 20

21 RS-442 - sync clock 22

23 RS-442 + host transmit 24

25 RS-442 + sync clock 26 RS-442 - host transmit

27 28 Ground

29 RS-232 console DCD 30 RS-232 console receive data

31 RS-232 console DTR 32 Ground

33 RS-232 console RTS 34 RS-232 console transmit data

35 RS-442 - console transmit 36 RS-442 - console ext clock

37 RS-442 + console transmit 38 RS-442 - host ext clock

39 RS-442 + console ext clock 40 RS-442 + host ext clock

41 42

43 44

45 46 Misc Register bit 7

47 48 Front panel clock

49 50 Front panel data

51 52

53 54

55 Address bit 22 56 Address bit 23

57 Address bit 20 58 Address bit 21

59 60

4-29

The Multibus Adapter Inside the Butterfly Plus

The standard Multibus adapter configuration requires two cables terminated
with female DB-25 connectors: one for the host UART and one for the console
UART. These connectors attach to the back of the Multibus card cage. Each
cable should be at least three feet long and should have three conductors.
Unterminated ends of the host cable must be wired to the Jl connector in the
Multibus card cage with DB-25 connector pins 2, 3, and 7 attached to Jl con
nector pins 4, 8, and 10, respectively. Pins 2, 3, and 7 of the console cable are
similarly wired to pins 30, 34, and 32 (respectively) of the Multibus Jl con
nector. The other ends of these cables plug into the leftmost RS-232 connec-.
tor slots on the Multibus Ethernet Fantail. ·

MULTIBUS ADAPTER REGISTER SUMMARY

Layouts for the Multibus adapter control registers (Console UART Control
Register, Host UART Control Register, and battery backed-up RAM) are shown
in Table 4-10. An additional control register, the Misc Register, was shown
in Table 4-8.

Table 4-10
Multibus Adapter Control Registers

Offset

FFF?DOOO

FFF7D002

FFF7D004

FFF7D006

FFF7D008

FFF?DOOA

Offset

FFF7D010

FFF7D012

FFF7D014

4-30

Console UART Registers (FFF70000 to FFF7DOOA)

Register

Console Data Register.

Console Status and Synchronization Register.

Console Mode Register.

Console Command Register.

Console Interrupt Vector Register. Bits 15-8 must be zero. Bits
7-1 hold the interrupt vector and bit 0 is set to one if there is a
receiver interrupt pending.

Console Interrupt Control Register. Bits 15-2 must be zero. Bit ·
is set to enable transmitter-empty interrupts. Bit 0 is set to enabl~
receiver-full interrupts.

Host UART Re-gisters (FFF70010 to FFF7001 A)

Register

Host Data Register.

Host Status and Synchronization Register.

Host Mode Register.

Inside the Butterfly Plus The Multibus Adapter

FFF7D016 Host Command Register.

FFF70018 Host Interrupt Vector Register. Bits 15-8 must be zero. Bits 7-1
hold the interrupt vector and bit 0 is set to one if there is a receiver
interrupt pending.

FFF7D01 A Host Interrupt Control Register. Bits 15-2 must be zero. Bit 1 is
set to enable transmitter-empty interrupts. Bit 0 is set to enable
receiver-full interrupts.

Offset

FFF7D020

FFF7D022

Bits

15-11

10

9

8

7

6-4

3

2-0

Bits

7-6

5-0

Mapping RAM Bit Map

EPROM (FFF70020 to FFF70022)

Register

EPROM Address Register. Bits 15-11 are not used. Bits 10-0
hold the EEPROM address.

EPROM Data and Control Register. Bits 15-12 are not used. Bit
11 is set to one to write data to the holding register. Bit 10 is set to
one to strobe data into the EPROM. Bit 9 is cleared to zero to read
data from the EPROM. Bit 8 is cleared to zero to enable the
EPROM. Bits 7-0 hold the EPROM data.

Interrupt Status Register (FFF7D028)

Function

Unused.

Multibus interrupts enabled.

Host interrupt pending.

Console interrupt pending.

Level 4 interrupt pending.

Interrupt with highest priority at level 4.

Level 3 interrupt pending.

Interrupt with highest priority at level 3.

Mapping RAM (OxFFF7EOOO to OxFFF7EOFF)

Function

Segment attribute (00 =normal, 01 =special, 10 =swapped, 11 =
no response).

Butterfly physical address bits 21-16.

7 6 5 4 3 2 1 0

· Butterfly physical
address bits 21 - 16

.___ segment attribute

4-31

The Multibus Adapter Inside the Butterfly Plus

Interrupt Vector RAM (OxFFF7FOOO to OxFFF7FOFF)

Bits

7

6-4

3

2-0

4-32

Function

Level 4 interrupt pending.

Interrupt with highest priority at level 4.

Level 3 interrupt pending.

Interrupt with highest priority at level 3.

Chapter 5

The VME Interface

The Butterfly Plus VME interface attaches a VME card cage to the Butterfly
Plus parallel processor. It consists of two printed circuit cards: a VME Node
Controller, which replaces one or two processor nodes in a Butterfly card
cage; and a VME Bus Adapter, .which im~talls in the VME card cage. Ribbon
cables connect the VME Node Controller to the VME Bus Adapter. The VME
Node Controller has two complete Butterfly Plus switch ports that connect it
directly to the switch. Most of this VMEbus address space is mapped directly
through to devices on the VMEbus.

The VME interface conforms to the IEEE P1014/Dl.2 specifications, which
cover electrical, mechanical, and signal protocol issues. It allows the
Butterfly Plus to access data processing, data storage, and peripheral control
devices on the VMEbus.

The VME interface provides access to a wide variety of VMEbus devices, and
can be used in several different ways. Most especially, the design of the
Butterfly Plus VME interface was directed towards two high bandwidth I/O
paradigms. The first paradigm involves a device such as a graphics display
with a video RAM, and requires the VME interface to move data from the
switch interface into the RAM accessed as part of the VME address spac~. The
second paradigm involves a disk, disk controller, and memory on the VMEbus.
In this example, the VME memory is used as a buffer, and the disk controller
transfers data between the disk and the VME buffer memory. Data transfers
between the VME buffer memory and the Butterfly Plus switch are provided
by the VME interface. The VME interface is used only as a VMEbus master.

5-1

The VME Interface Inside the Butterfly Plus

OVERVIEW OF THE VME INTERFACE

The Butterfly Plus VME interface can be used as a bus master, a restricted bus
arbiter, an interrupt request generator, or an interrupt handler on the VMEbus.
It connects directly to the Butterfly Plus switch, through which all Butterfly
Plus/VME communications are made. The VME interface can transfer data to
or from sequential VME addresses, and it can also transfer successive data
values to or from the same VME address (e.g., to access VME device FIFOs).
The Butterfly Plus VME interface uses full 32-bit data and address transac
tions.

As either an interrupt generator or an interrupt handler, the VME interface sup
ports all seven VME interrupt levels, generating post event messages in
response to VME interrupts. Sent over the Butterfly Plus switch, these mes
sages appear to Butterfly Plus programs as events. The VME interface acts on
messages from the Butterfly Plus requesting:

• Block and 32-bit word transfers between Butterfly Plus and VMEbus
memory

• 16-bit atomic mask-and-add instructions performed on VMEbus memory

• VMEbus interrupt requests

• VME interface reset.

Performance

High 1/0 throughput is a major reason for using the Butterfly Plus VME inter
face. The VMEbus operates up to ten times faster than the Multibus, the other
common bus to which a Butterfly Plus can be attached. The VME interface is
also better able to handle the 4-megabytes per second peak bandwidth of each
Butterfly Plus switch port. The VME interface contains two complete switch
ports, each with average throughput of approximately 3-megabytes-per
second. It achieves about 5 .5-megabytes-per-second of 1/0 bandwidth when
both switch ports are used. Additional VME interfaces can be added for even
higher throughput. The intent of the Butterfly Plus VME interface design w.as
to achieve the highest possible throughput. A minimal amount of considera
tion was given to single-word reads across the VME interface (about 20
microseconds) and single-word writes (about 15 microseconds).

5-2

Inside the Butterfly Plus The VME Interface

Architecture

The Butterfly Plus VME interface consists of two printed circuit cards-a VME
Node Controller and a VME Bus Adapter card-that communicate via an
external bus. The VME Node Controller is a 12 by 18 inch printed circuit card
that fits into a Butterfly card cage, replacing one or two of the Butterfly Plus
processor nodes. It attaches directly to the Butterfly Plus switch via two
cables, if only one switch port is used, or via four cables, when two switch
ports are used. The VME Node Controller contains two complete full duplex
switch interfaces, each with an independent switch receiver and transmitter
and the same two card edge connectors found on a processor node. Attaching
the VME Node Controller to two switch ports nearly doubles the bandwidth of
the data path between the Butterfly Plus and the VMEbus. If higher bandwidth
is not requ~red, the VME Node Controller can attach to only a single Butterfly
Plus switch port. The total number of switch ports used by all VME Node
Controllers and all processor nodes cannot exceed 256. The VME Node Con
troller has an onboard MC68020 processor; writable program memory, i,nclud
ing 128-kilobytes of RAM; and 64-kilobytes of bootstrap EPROM.

The VME Bus Adapter is a 6 by 9 inch, double height VME circuit card that
provides the actual interface between the VME Node Con!roller and the
VMEbus. Installed in a VME card cage that fits inside the Butterfly rack, the
VME Bus Adapter performs mainly as a high speed direct memory access con
troller on the VMEbus. The external bus that connects the VME Node Con
troller in the Butterfly card cage to the VME Bus Adapter in the VME card cage
is a pair of 40-conductor ribbon cables, up to 25 feet long, used as a 40-bit,
partially multiplexed bus. The length of the external bus contributes about
four nanoseconds per foot to the time required to perform a data transfer. Fig
ure 5-1 is a block diagram of the VME interlace.

5-3

The VME Interface

BUTIERFL Y CARD CAGE

--~~~~-.A..--~~~~-
('

PORTO
....-

BUTTERFLY
SWTOi

~~~! ... 
(Optional) 

""----... _____ __,) 
y 

BUHERFLY 
SYSTEM 

Figure 5-1 

VNC 

(VMENode 
Controller) 

VME Interface Block Diagram 

VME NODE CONTROLLER 

... -
EBUS 

Inside the Butterfly Plus 

VME CARD CAGE 

--~~~~-)...._-~~~~--
( ' 

VBA ...... (VMEBus ... 
Adapter) 

.. _.,,, 
-..r --

\. 

VMEBUS 

y 

VMESYSTEM 

The VME Node Controller has two ports (0 and 1) that connect to the Butterfly 
Plus switch. Each of these ports has two finite state maGhines, one for 
transmitting to the Butterfly Plus switch and one for receiving from the 
Butterfly Plus switch. The VME Node Controller derives clock and reset sig
nals from its port 0 Butterfly Plus switch connection; therefore, if only one 
Butterfly Plus switch port is connected, it must be port 0. Each finite state 
machine contains a first-in, first-out (FIFO) memory for buffering data. Note 
that the terms transmit and receive, when applied to the finite state machines 
and their FIFOs, are defined relative to the VME Node Controller. For exam
ple, the channel 0 transmit FIFO holds data that the VME Node Controller is 
sending to port 0 of the Butterfly Plus switch. A FIFO bus attaches the four 
FIFOs to the external bus interface, where the ribbon cable to the VME Bus 
Adapter connects. Figure 5-2 is a block diagram of the VME Node Controller. 

5-4 

J 



Inside the Butterfly Plus 

BVME Port 0 
To/From 
Butterfly 
Switch 

BVME Port 1 
To/From 
Butterfly 
Switch 

(optional) 

Figure 5-2 

Clocks, 
Reset 

FIFO 

TXOFSM 

FIFO 

RXO FSM 

FIFO 

TX1 FSM 

FIFO 

RX1 FSM 

VME Node Controller Block Diagram 

FIFO 
BUS 

The VME Interface 

Processor 
Bus 

68020 
Processor 

Memory 
(RAM, 
ROM) 

UART 

EBUS 
Interface 

EBUS 
1---- To/From 

VBA 

Operation of the entire VME interlace is controlled and coordinated by 
firmware stored in read-only memory and executed by the MC68020 processor 
on the VME Node Controller. Random access memory is also available for 
use by the VME Node Controller processor. 

5-5 



The VME Interface Inside the Butterfly Plus 

Internally, the VME Node Controller main bus links the finite state machines, 
the processor, memory, and external bus intetface. There is a diagnostic 
UART on the VME Node Controller main bus for testing and maintenance. 
Figure 5-3 diagrams the physical layout of the VME Node Controller circuit 
card, showing the locations of the jumpers and DIP switch, the onboard 
MC68020 microprocessor, and the diagnostic UART. 

D Power 
Connector 

D SW2 

c:::::J 09 
c:::::J D1 
c:::::J D2 
c:::::J 03 
c:::::J 04 

c:::::J 05 
c:::::J 06 

c::J D7 
c:::::J DS 

J2 

Figure 5-3 

Serial# 

ROM 
Select 

Revision# 

"- JMP3 

~B A 

I • • • I 

Cache Disable 
(Remove in Nonna! 

Operation) 

~ 
JMP1 0 

VME Node Controller Layout 

LED Indicators 

Diagnostic 
UART Enable 

(Install in 
Nanna! 

Operation) 

1 8 

~ 

ON BOARD 

POWER 

SUPPLY 

The front edge of the VME Node Controller has nine LED indicators (two red, 
two amber, and five green), one toggle switch, and seven connectors (see Fig
ure 5-4)~ 

5-6 



Inside the Butterfly Plus 

POWER ON (GREEN) 

SWITCH PORT 0 (RED) 

SWITCH PORT 1 (RED) 

Figure 5-4 
VME Node Controller Front Edge 

PORT 0 TRANSMITTER 

PORTO RECEIVER 

The VME Interface 

Dl is a red LED indicator, driven by bit 2 in the VME Node Controller Misc 
register. It indicates whether switch port 0 was initialized properly. This 
indicator lights up briefly upon power up or reset and turns off when initiali
zation is finished successfully and the port 0 address is discovered. 

D2 is a red LED indicator, driven by bit 3 in the VME Node Controller Misc 
register. It indicates whether switch port 1 was initialized properly. Like D 1, 
it lights up briefly upon power up or reset and turns off when-initialization is 
finished successfully (i.e., the port 1 address is discovered). It stays on if the 
VME Node Controller is attached only to switch port 0. 

D3 and D4 are amber LED indicators, driven by bits 4 and 5, respectively, in 
the VME Node Controller Misc register. They are used by VME interface diag
nostics. 

D5, D6, D7, and D8 are green LED indicators that display the values of the 
switch transmitter and receiver FRAME signals for switch port 0 and switch 
port 1, as shown in Table 5-1. Each LED turns on when the associated signal 
is asserted to indicate that a message is flowing between the VME Node Con
troller and the Butterfly Plus switch. 

. 
09 is a green LED indicator, which lights up to indicate that DC power 1s 
applied at the appropriate voltage level for proper operation. 

5-7 



The VME Interface Inside the Butterfly Plus 

Table 5-1 
VME Node Controller LED Indicators 

LED Frame Signal Indicates a Message 

05 Port 0 transmitter From VME interface to Butterfly 

06 Port 0 receiver From Butterfly to VME interface 

07 Port 1 transmitter From VME interface to Butterfly 

08 Port 1 receiver From Butterfly to VME interface 

Power Switch and Connectors 

A toggle switch, SW2, on the front edge of the VME Node Controller, powers 
up the card by toggling DC power from the Butterfly card cage main power 
supply. The on position is toward the power connector. 

The VME Node Controller has seven connectors on the front edge of the card: 
two pairs of switch transmitter and receiver connectors, two external bus con
nectors, and a power connector. JOA is the switch transmitter connector for 
switch port 0. The \0v1E Node Controller transmits data to the Butterfly Plus 
switch on this connector, and it also receives the system reset signal from the 
switch on this connector. JOB is the switch transmitter connector for switch 
port 1, which is functionally identical to switch port 0, except that transmitter 
port 1 ignores the system reset signal. JOA is always connected, whereas use 
of JOB is optional. 

JlA is the switch receiver connector for switch port 0. The VME interface 
receives data from the Butterfly Plus switch on this connector, and it also 
receives· the system clock signal from the switch on this connector. J1 B is the 
switch receiver connector for switch port 1, which is functionally identical to 
switch port 0, except that receiver port 1 ignores the Butterfly Plus clock sig
nal. JlA is always connected, whereas use of JIB is optional. 

J2A and J2B ar~ two 40-pin connectors for the external bus cable that attaches 
the VME Node Controller to the VME Bus Adapter. 

The power connector supplies unregulated 30-volt DC power to the VME Node 
Controller. The VME Node Controller and its VME Bus Adapter can be 
powered up or down independently. The VME Node Controller responds to 

5-8 



Inside the Butterfly Plus The VME Interface 

Butterfly Plus switch messages even when the VME Bus Adapter is powered 
off; however, it does not respond to the VMEbus unless the adapter is turned 
on. 

Jumpers 

There are three jumpers on the VME Node Controller, positioned as shown in 
Figure 5-5. JMPl is a 2-pin jumper that, when installed, disables the instruc
tion cache in the MC68020 processor. It should be installed only during 
hardware debugging. JMP2 is a 2-pin jumper that, when: removed, disables the 
diagnostic UART oscillator. It is always installed during normal operation. 
JMP3 is a 3-pin jumper that selects the EPROM size. When this jumper is in 
the A position, it selects a 32-k.ilobyte EPROM; when in the B position, it 
selects a 64-k.ilobyte EPROM, the usual size of EPROM. 

JMP1 
(flefault) B 

JMP3 

A .--. 64KEPROM • (Default) 

GJ 

Figure 5-5 

JMP2 
(Default) 

• 

VME Node Controller Jumper Positions 

DIP Switch Settings 

B A .--. 32KEPROM 

KEY 

I .--. I Jumper Installed 

~ Jumper Absent 

There is one switch block, SWl, on the VME Node Controller. Its eight 
switches define a value that can be read from the VME Misc register. 
Switches SWl-1 and SWl-2 are used to indicate the size of the Butterfly Plus 

5-9 



The VME Interface Inside the Butterfly Plus 

switch. Switches SWl-3 through SWl-8 are available to the VNC programmer. 
See Table 5-2 for the correct setting of these switches. 

Table 5·2 
DIP Switch Settings 

SW1-1 SW1-2 SW1·3 through SW1-8 Sets VME Node Controller for 

On On Off 2-column switch 

Off On Off 3-col.umn switch 

On Off Off 4-column switch 

Off Off Off 5-column switch 

VME BUS ADAPTER 

The VME Bus Adapter provides a direct link between the W..1E Node Con
troller and the W..1Ebus. It has one external bus connector that attaches, to the 
VME Node Controller. The following six main elements are included: inter
rupt request generator and handler, VMEbus arbiter, VMEbus requester, 
VMEbus control circuit, direct memory access byte count logic, and direct 
memory access address generator. Figure 5-6 is a block diagram of the VME 

Bus Adapter. 

EBUS 
to/from 
VNC 
Board 

Figure 5-6 

byte count 

VME bus Interrupt 
Handler and 
Generator 

VME bus Arbiter 

VME bus Requester 

VME bus Control 

Address Generator 

VME Bus Adapter Block Diagram 

5-10 

1-----0 f""l-----1 

VME 
bus 



Inside the Butterfly Plus The VME Interface 

The interrupt request generator and handler manage interrupt requests 
directed to, or arriving from, the VMEbus respectively. The VME Bus Adapter 

. can enable interrupt requests from the VMEbus and receive notification when a 
VMEbus interrupt request arrives. It can also generate requests for VMEbus 
interrupts to be handled by other devices on the VMEbus. 

The use of the VMEbus arbiter is optional. It is used only if no other device on 
the VMEbus is acting as the bus arbiter. If the VME Bus Adapter is placed in 
slot 1, the VMEbus arbiter jumpers must be set for operation. If the VME Bus 
Adapter is placed elsewhere in the VMEbus card cage; the VMEbus jumpers 
must be set to disable the arbiter. 

The VMEbus requester, under control of the VME Node Controller firmware, 
requests mastership of the VMEbus. It is a Release When Done REQL'ESTER 

as described by the Motorola VMEbus Specification. 

The address generator and byte count logic are used to transfer data across the 
external bus, between VMEbus memory and VME Node Controller FIFO 

memory, under firmware control. Once the firmware sets up the parameters 
for a DMA transfer, these functional units perform all bus cycling required to 
complete the transfer. Figure 5-7 illustrates the VME Bus Adapter card. 

5-11 



The VME Interface 

EBUS 
Connector 

Oscillator 

D 

Figure 5-7 

Install for normal 
operation 

JMP12 ~ 
L • 1-1 

JMP11 ~ 

Serial # Revision # 

VME Bus Adapter Card Layout 

VMEbus 
Connector 

1 2 3 
JMP8 

JMP7 

JMP6 

JMPS 

JMP4 

JMP3 

• 
• 
• 

• 
• 
• 

• • 
• • 
• • 
• • 
• • 
• • 

JMP1 ~ 
JMP2~ 

Inside the Butterfly Plus 

JMP10 ~ ~ JMP9 

VME bus 
Connector 

There are 12 jumpers on the VME Bus Adapter. See Figure 5-8 for the correct 
placement of these jumpers. Jumpers JMPl and JMP2 can be positioned to dis
able the onboard arbiter and allow the VME Bus Adapter to operate in VME 

card cage positions other than slot 1. Jumpers JMP3 through JMP8 determine 
the bus grant level the VME interface uses, and propagate daisy-chained sig
nals. (See the Motorola VMEbus Specification for details of bus grant opera
tion.) Jumpers JMP9 and JMPlO must be installed at all times. Jumpers JMPl l 
and JMP12 are removed to disable the onboard oscillators that feed the timeout 
counter clock and the finite state machine clock. These jumpers should be 
removed only for testing and must be installed for normal operation. 

5-12 



Inside the Butterfly Plus 

Figure 5-8 

JMP1-JMP2 

H BVME is VME bus Arbiter 
(Default) 

H BVME is not VME bus Arbiter 

JMP3-JMP8 

H Requesting Interrupts On: 

·Level O 

1 2 3 

JMP8Effi] .. 

JMP7 • • • 

JMPS e .... 

JMPS~ .. 
JMP4 

JMP3 

JMP11 •• JMP12 (Defaults) 

JMP11 JMP12 

Level 1 

VME Bus Adapter Jumper Positions 

1 2 3 

~JMP1 
~JMP2 

1 2 3 

~JMP1 
~JMP2 

The VME Interface 

Level2 Level 3 (Default) 

(NOTE: JMP9 and JMP1 O 
Must always be connected 
See the Diagram For JMP11 
andJMP12) 

VME INTERFACE AS BUS REQUESTER 

The VME interface can act as a bus requester (master) on the VMEbus to con
trol the transfer of data on the bus. An important parameter in using any bus 
master device is how long the device can retain bus mastership. Although 
some VME devices release the bus on request from another device, the VME 
interface does not. Once the VME interface acquires the bus, it holds the bus 
until it completes its operation(s) .. However, the number of bus cycles that a 
VME interface retains the bus is the number of bytes in the block, divided by 
four; the maximum time the VME interface can retain bus mastership is 256 

5-13 



The VME Interface Inside the Butterfly Plus 

divided by four, or 64 bus cycles. To attain the role of bus master, a device 
requests control; its request is then arbitrated against any other requests by a 
bus arbiter. The bus arbiter selects one requesting device and grants master
ship. When the VME interface is used in direct access mode, bus mastership is 
released after one bus cycle (read, write, or read-modify-write) is completed. 

CONFIGURATION ON THE VMEBUS 

The Butterfly Plus VME Bus Adapter can reside in any slot of the VMEbus card 
cage. Note that the jumper settings change when the VME is the system 
arbiter. 

VME Interface as Arbiter 

In a VMEbus system, the device occupying slot 1 must contain an arbiter. For 
applications where the VME interface is the only bus master or where it must 
occupy slot 1 of the VME cage, a restricted VME arbiter is provided, This 

·arbiter uses a single-level arbitration scheme and is activated by jumpers 1 
and 2 on the VME Bus Adapter. 

VME ADDRESS SPACE 

Physical memory accessed via the W.IE interface is equally accessible through 
either switch port. The VME interface provides a four megabyte window 
between Butterfly Plus physical address space and VME address space. 

VMEbus memory locations that are addressable by the Butterfly Plus do not 
replace memory on other processor nodes; rather, the VMEbus address space 
augments or extends the existing Butterfly Plus memory. A VME Node Con
troller can be viewed as an unusual processor node that runs no user code and 
whose memory resides in VMEbus devices. 

Address Translation 

When a process running on a Butterfly Plus processor node references a 
remote memory location, the virtual address presented by the remote proces
sor is translated to a 32-bit physical address. The high-order eight bits of the 
physical address specify a switch port and the low-order 22 bits specify an 
offset into the memory which is accessible through that switch port. 

5-14 



Inside the Butterfly Plus The VME Interface 

When the target switch port is connected to a processor node, the 22-bit offset 
specifies a location in the memory of that processor node. When the target 
switch port is connected to a VME Node Controller, a simple mapping scheme 
converts the 22-bit offset into a 32-bit VMEbus address. With this scheme, the 
low-order 16 bits of the 22-bit offset pass directly through to the VMEbus. 
The high-order six bits index a translation table that supplies the high-order 
16 bits of the VMEbus address and the six bits of address modifier required by 
the VMEbus specification. The same translation table is used for both switch 
ports. 

The translation table, comprising 64 mapping registers, divides the four mega
bytes of accessible address space into 64-kilobyte pages that can be located 
anywhere in VME address space. In the simplest case, these pages are mapped 
to a contiguous four megabyte block of VME address space. The address map 
can be altered by changing the addr _map field of the structure 
control_reg_struct in bank 0 memory. Once the mapping is established, 
ordinary move instructions can be used to transfer data. Although th~ VME 
interface address mapping facility can be used to provide access protection, 
mapping is not intended primarily as a protection mechanism. 

Bank O Memory 

Most of the four megabytes of Butterfly Plus address space occupied by the 
VME interface is mapped directly through to devices on the VMEbus. The 
lower 64-kilobytes, however, is bank 0 memory reserved for use by the VME 
interface. Most of bank 0 memory is mapped to RAM on the VME interface 
itself. This RAL\.1 is used for the VME interface control program, interrupt vec
tors, the switch node discovery table, and address mapping tables. Part of the 
bank 0 address space maps control registers that a Butterfly Plus program can 
use to influence operation of the VME interface. 

VME control register space starts at OOOOFEOO in bank 0, filling the last 512 
bytes of the bank. All register offsets are relative to this starting address. 
Registers must be accessed as long operands, using block transfer operations. 
To ensure proper alignment, block transfers that access registers in the VME 
interface must have a starting address and a transfer length that divide evenly 
by four. Any non-aligned access to VME interface registers is ignored. 

5-15 



The VME Interface Inside the Butterfly Plus 

Control Registers 

The bank 0 control registers available to a Butterfly Plus program are laid out 
according to the following structure: 

struct control reg struct{ 
long addr map [ 64] ; -
long rtc;-
long switch timeout; 
long vba tiineout; 
long vba-restart timeout; 
short bxfers[2];-
long rx rm errors[2]; 
long rx-am-errors[2]; 
long tx-rm-timeouts[2]; 
long tx-am-timeouts(2]; 
long vba timeouts; 
long spare [2]; 
long intr event(l6]; 
long transfer ctl; 
long vba int req; 
long jump addr; 
long alt_paths; 
long vba bus timeout; 
} ; - -

/* Butterfly to VMEbus address map */ 
/* realtime clock */ 
/* timeout for switch retransmission */ 
/* timeout for block transfer */ 
/* timeout to restart exteJ:nal bus */ 
/* outstanding block transfers */ 
/* receive request message errors */ 
/* receive answer message errors */ 
/* transmit request message timeouts */ 
/* transmit answer message timeouts */ 
/* no response from adapter to node */ 
/* aligned to end at address 13F */ 
/* event handle for interrupt */ 
/* controls VMEbus access mode */ 
/* controls VME interrupt requests */ 
/* jam into PC of M:68020 on node */ 
/* Butterfly switch alternate paths */ 
/* VMEbus error, arbiter timeouts */ 

The fields in the VME control register structure are as follows: 

•addr map [6-l] 

This field has 64 registers that map bits 16-21 of a Butterfly Plus physical 
address into bits 16-31 of a VMEbus physical address. When the VME inter
face receives a request to read or write VMEbus memory, it generates a 32-bit 
VMEbus address by passing the high-order six bits of the 22-bit Butterfly Plus 
address through the address map table, addr _map, to get the high-order 16 
VME address bits and also 16 bits of address modifier information. Each entry 
in the address map table can be written individually through this set of 64 
registers. 

Bits 0-15 of an address map table entry are the VMEbus address bits 16-31 to 
be used for the access. Bits 16-31 of the entry are the address modifier bits. 
Only seven bits of the address modifier information are used. 

The VME interface initializes the address map to allow VMEbus access and to 
convert the Butterfly Plus addresses OxOlOOOO through Ox3FFFFF to VMEbus 
addresses OxOOOlOOOO through Ox003FFFFF. (Butterfly Plus addresses below 

5-16 



Inside the Butterfly Plus The VME Interface 

OxOlOOOO are the 64-kilobytes of bank 0 memory in the VME interface.) 
Address modifier bits are initialized to reflect Standard addressing of super
visory data. (See the Motorola VMEbus Specification for details.) 

•rte 

The realtime clock on the VMEbus interface is similar to the clocks in each 
Butterfly Plus processor node, but it is not synchronized with them. Each tick 
is four milliseconds. This register is intended for di_agnostic use only. 

•switch timeout 

Writing this register changes the timeout interval for Butterfly Plus· s'witch 
messages. The timeout value specifies the number of 4-millisecond clock 
ticks to wait before timing out. Values of one or two result in unreliable time 
intervals. The default timeout interval value is five ticks, which corresponds 
to 20 milliseconds. A message that times out is discarded. The Chrysalis util
ity program toset sets the switch_timeout value for all VME interfaces,in the 
Butterfly Plus, as well as for all processor nodes. Contention on a VME Node 
Controller where both switch ports are being used for block transfer can result 
in switch timeouts. For this reason, some applications require increasing 
switch_timeout to as much as 100 milliseconds with the toset utility pro
gram. 

• vba timeout 

This register determine~ the number of 4-millisecond clock ticks before a 32-
bit operation on the external bus times out. External bus timeouts should 
occur only as a result of a very slow VMEbus or a hardware failure. The 
default timeout interval is 100 ticks, which corresponds to 0.4 seconds. Upon 
timeout, the VME Node Controller concludes that the VME Bus Adapter is 
powered down or disconnected from the external bus. Its firmware begins 
restart recovery and increments the timeout count in the vba _timeouts regis
ter. 

• vba restart timeout 

This register determines the number of 4-millisecond clock ticks to wait 
before trying to restart a VME Bus Adapter that has timed out. The default 
value is 1250, which corresponds to five seconds. 

5-17 



The VME Interface Inside the Butterfly Plus 

• bxfers[2] 

These registers contain the number of outstanding Butterfly Plus block 
transfers initiated by the VME interface. The value is usually zero. The regis
ters are intended for use only by VME interface firmware. Each switch port 
(0, 1) has a copy of these registers. 

• rx_rm _ errors[2] 
• rx_am_errors[2] 
• tx_rm_timeouts[2] 
• tx _am_ timeouts[2] 

These registers contain the number of receive errors or transmit timeouts 
logged, for request messages or answer messages, as indicated by the register 
name. A program can write a zero to each of these registers to clear them. 
The registers are also cleared to zero by a reset. Each switch port (0, 1) has a 
copy of this set of registers. 

• vba timeouts 

This register contains a count of the number of times the VME Bus Adapter 
failed to perform an order from the VME Node Controller. The value of 
,·ba_timeout determines how long the VME Node Controller will wait before 
giving up and incrementing vba_timeouts. 

• intr _event[16] 

These registers specify an event handle for each distinct type of interrupt. 
Writing the register not only establishes the event handle, but also enables the 
associated interrupt, which remains enabled until the post message has been 
sent and then is disabled automatically. The interrupt can be re-enabled by 
again writing the event handle into the appropriate in tr_ event register. VME 

interface firmware initializes the in tr_ event table to zero (i.e., no event, inter
rupts disabled). 

Application software normally calls the Butterfly Plus operating system to 
obtain an event handle. The event handle in each entry of the in tr_ event 
table is interpreted as follows: Bits 31-24 hold the destination node for post 
messages. Bits 23-16 hold the sequence number. Bits 15-0 hold the object 
header's address. Of the 16 table entries, 10 are currently used. The 
in tr_ event[O] to in tr_ event[ 6] entries correspond to VME interrupt request 

5-18 



Inside the Butterfly Plus The VM E Interface 

levels 1 to 7, respectively. The in tr_ event[7] entry corresponds to the 
VME_ACF AIL interrupt generated as power to the VME system is failing. The 
intr _ event[8] entry corresponds to the VME_RESET interrupt generated when 
the VME system is reset. The in tr_ event[9] entry corresponds to the 
VME_SYSFAIL interrupt generated when the VME system/ail line is asserted. 

•transfer ctl 

Writing this register sets auto-increment, sequential, keepbus, holdbus, reset~ 
and other VMEbus function attributes. The bits in this register are initialized 
to zero unless otherwise specified. Bits 15, 12, 10, and 7 to 0 are set to zero 
and unused. Bit 14, VBA_CTL_KEEP, needs is set high to keep the VMEbus for 
indivisible bus operations. Both VBA_CTL_KEEP and VBA_CTL_HOLD should 
be asserted for read-modify-write operations. For other indivisible opera
tions, assert only VBA_CTL_KEEP. Bit 13, VBA_CTL_ VRST, is set high to 
assert the VME reset line. Bit 11, VBA_CTL_HOLD, is set high to hold the 
VMEbus for read-modify-write cycles. VBA_CTL_HOLD holds the address 
strobe asserted. Bit 9, VBA_CTL_AINC, is set high to enable auto-inctement 
OMA. When this bit is enabled, the VME interface increments the address it 
presents on the VMEbus with each bus cycle, causing successive cycles to 
access successive locations. When this bit is disabled, the address is not 
incremented; this mode can be used to access a FIFO in ·a- device on the 
VMEbus. Bit 9 is initialized to 1. Bit 8, VBA_CTL_SEQ, needs to be set high 
for "sequential" (VMEbus block transfer) access mode. The VME specification 
defines a VMEbus block transfer as an operation in which an address appears 
on the bus only once. The master (VME interface) places the start address on 
the bus at the beginning of the transfer, and then asserts and removes the data 
strobe signal repeatedly. With each cycle, the slave accesses the next address. 
In a VMEbus block transfer, incrementing the address is the responsibility of 
the slave, so the setting of the VBA_CTL_AINC bit is irrelevant. 

evme int req 

Writing this register controls the generation of interrupt requests on the 
VMEbus. The default is no interrupts. Data written to this 32-bit register is 
passed along by the VME interface to the two 7-bit registers of the SCB68154 
interrupt generator chip used on the VME Bus Adapter. This 32-bit register 
has two fields, one to specify the interrupt level and the other to specify the 
interrupt vector. Bits 14-8 are the interrupt request register (RS= 1), and bits 
6-0 are the interrupt vector register (RS= 0), where RS is the register select bit 

5-19 



The VME Interface Inside the Butterfly Plus 

on the SCB68154. Note that the SCB68154 has only a 7-bit data bus connec
tion, and that the least significant bits are aligned. Thus, RO, bit 1 is attached 
to bit 0 of the vme_int_req register, while Rl, bit 1 is attached to bit 8 of the 
vme_int_req register. Refer to a Signetics SCB68154 data sheet for more 
details. 

•jump_addr 

New VME interface control code can be block-transferred into a working VME 
Node Controller. Writing an address to this register tr.ansfers control to that 
address. 

• alt_paths 

These bits specify the use of alternate paths in the Butterfly Plus switch. The 
least significant eight bits of this register set the alternate path bits for the two 
switch ports. The default is to use no alternate paths. Bits 7-4 are the alter
nate path bits 3-0 for switch port 1. Bits 3-0 are the alternate path bits 3-0 
for ,gwitch port 0. 

• vba bus timeout - -
This register determines the timeout intervals for the bus error and bus arbiter 
timers on the VME Bus Adapter. Timeout intervals are specified in mil
liseconds with a minimum value of two and a maximum value of 255. The 
default for each timer is three milliseconds. Although vba timeout 
(described earlier) applies to multiple external bus cycles during a 32-bit 
transfer, vba_bus_timeout applies to each VMEbus cycle individually. A bus 
error timeout, encountered while accessing the VMEbus to satisfy a Butterfly 
Plus read or write, propagates all the way back to the Butterfly Plus program, 
which receives a bus error throw exception. Bits 15-8 are for bus arbiter 
timeout. Bits 7-0 are for bus error timeout. 

5-20 



Inside the Butterfly Plus The VME Interface 

VME INTERRUPT REQUESTS 

The VME interface can act as either an interrupt requester or an interrupt 
handler on the VMEbus. All seven VME interrupt levels are supported, as is 
the VME interrupt vector mechanism. In addition to the seven VME interrupt 
levels, there are three more VME signals that the VME interface treats as inter
rupts on separate levels: VME_ACFAIL, VME_RESET, and VME_SYSFAIL. 
Interrupts on a particular level are accepted only if an event handle has been 
supplied. 

When handling a VME interrupt request, the VME interface uses the interrupt 
request level as an index into a table of Butterfly Plus event handles. The 
VME interface can receive vectored interrupts from the VMEbus and convert 
them into Butterfly Plus post event messages. For applications where high
speed interrupt service is important, interrupt handlers can be written using 
firmware in the VME interface. The Butterfly Plus generates VME interrupt 
requests through the VME interface by sending switch messages to manipulate 
the VME_INT_REQ control register located in bank 0 memory, specifying a 
vector and an interrupt level. 

THE VMEBUS 

The VMEbus is a 32-bit address, 32-bit data, asynchronous bus for connecting 
high performance microprocessor elements together. It is a master/slave bus 
with contention resolution for bus mastership. It offers non-multiplexed 
address and data, vectored interrupts, and direct memory access arbitration, 
all using asynchronous techniques. Top speed of the VMEbus is 40-
megabytes-per-second for 32-bit transfers, although a typical high-speed 
memory card with 200-nanosecond cycle time sustains only 20-megabytes
per-second of bus bandwidth. The ~E interface supports VMEbus block 
transfers, which access a series of contiguous addresses without ever remov
ing the address strobe signal. 

VME Address Modifier 

Standard addresses are 24 bits long, in VME parlance, and extended addresses 
are 32 bits long. Some VMEbus memory cards respond only to one address 
size or the other. The VMEbus also uses a short (16-bit) address that is com
monly used to access memory mapped I/O device registers on VME cards. 

5-21 



The VME Interface Inside the Butterfly Plus 

Besides the address bits themselves, the VMEbus conveys six address modifier 
bits that describe the size of an address and the type of bus access. The six 
address modifier bits represent 64 possible access situations, only some of 
which are defined. Others are reserved or application specific. Of those 
defined, distinctions are made such as to short, standard, or extended address 
length; supervisory or non-privileged context; and block transfer, program 
access, or data access. 

A Butterfly Plus program sets address modifier bits using mapping calls in the 
VME library. The programmer can direct the program to set the address 
modifier bits with Standard Supervisory defaults or with user-defined codes, 
both of which are described in the Motorola VMEbus Specification. 

The VME Interface as a VMEbus Device 

The VMEbus specification defines several types of device behavior. This sec
tion describes which of those device types the VME interface implemef!.ts and 
with which it interacts. 

The VME interface functions only as a VMEbus master, never as a slave. It 
always initiates data transfers, and never responds to transfer requests ini
tiated by other VMEbus devices. If another VMEbus device wants to transfer 
data into Butterfly Plus memory, it can perform one of two things: The 
VMEbus device can request any of the seven VMEbus interrupts, which the 
Butterfly Plus application program receives as an event if the VME interface is 
set up to handle that interrupt request, or it can set a flag in the VMEbus 
memory that the Butterfly Plus application program checks. There is no way 
for a VME device to force the transfer of data to or from Butterfly Plus 
memory without the cooperation of a Butterfly Plus program. The VME inter
face maps part of the VME address space into Butterfly Plus address space, but 
Butterfly Plus address space is never mapped into VMEbus address space. 

A disk controller on a VMEbus typically regulates data flow between a disk 
and a memory, where the disk controller is a VMEbus master and the memory 
is a VMEbus slave. The disk controller cannot transfer data directly between a 
disk and Butterfly Plus memory via the VME interface. Instead, a buffer 
memory on the VMEbus must be used to store the data briefly. Similarly, a 
VME interface cannot transfer data directly between itself and a second VME 
interface even if both are installed on the same VMEbus; a buffer memory 

5-22 



Inside the Butterfly Plus The VME Interface 

must be used in between these interfaces. The use of a buffer memory would 
almost certainly be necessary even if VMEbus masters could access Butterfly 
Plus memory through the switch, since most DMA controllers cannot cope 
with the long access latencies the switch is likely to cause. 

Besides using 32-bit addresses and data, the VME interface can also perform 
individual 8- or 16-bit references to a D16 device, but not 8- or 16-bit block 
transfers. Address modifier bits that the VME interface places on the VMEbus 
are totally programmable, so address modifier requirements of VME devices 
can usually be met. · 

The VMEbus specification defines several types of data transfer: single, block, 
read-modify-write, and unaligned. Of these transfer types, the VME interface 
supports all varieties of single transfers (i.e., byte, word, and longword) and 
unaligned block transfers. (Refer to the section entitled "VME Data Align
ment" for a discussion of how the VME interface handles unaligned data.) The 
VME interface also supports read-modify-write access in byte and word sizes 
only. 

When a VMEbus master wants to access the bus, it functions as a bus reques
ter. Its request is_arbitrated with any other pending bus requests as the arbiter 
selects one requester and grants it use of the bus. The VME interface functions 
as VMEbus requester when it is ready to initiate a data transfer. Jumpers on 
the VME interface allow it to function as a simple arbiter that performs 
single-level arbitration on level three. 

The VMEbus provides seven levels of daisy-chained interrupts. The VME 
interface functions both as a VMEbus interrupt requester and as an VMEbus 
interrupt handler for these interrupts. As an interrupt requester, the VME 
interface requests interrupts, drives the interrupt vector onto the VMEbus if the 
requested interrupt is acknowledged, and passes the interrupt acknowledge 
(IACK) signal along the daisy chain when it is not requesting an interrupt. As 
an interrupt handler, the VME interface prioritizes interrupt requests within its 
assigned group of interrupt request lines, requests use of the data transfer bus 
lines, initiates an IACK cycle when granted the bus, and initiates the appropri
ate interrupt service routine (by posting an event) based on the interrupt level 
received. 

5-23 



The VME Interface Inside the Butterfly Plus 

The VMEbus specification also includes six system utility signals. The VME 
interface monitors and responds to four of these signals: system reset, system 
failure, system clock, and AC fail. The VME interface contains a 16-MHz 
clock that drives the system clock line only if the VME interface is the VME 
system controller (i.e., if the VME Bus Adapter card occupies VMEbus slot 1 
and therefore acts as VMEbus arbiter). The VME interface ignores the VMEbus 
serial data and serial clock signals. 

Butterfly Plus and VMEbus Block Transfers 

The VMEbus specification describes a block transfer as one in which the bus 
master places an address on the bus only once, after which several data 
transfers can occur before the master releases the bus. The master expects the 
slave to increment the current address appropriately each time a data element 
is transferred, so that successive transfers access successive locations. The 
terms block read and block write imply the direction of data flow in a VMEbus 
block transfer. 

A VMEbus block transfer works somewhat differently from a Butterfly Plus 
block transfer. Both the Butterfly Plus and the VMEbus use block transfer to 
reduce the overhead of transferring several pieces of data by packaging them 
into one transaction. As in a VMEbus block transfer, only the starting address 
is sent during a Butterfly Plus block transfer. However, the data in a Butterfly 
Plus block transfer is sent in a data packet, as opposed to the VMEbus 
specification, where each data element in the block is sent one at a time. Data 
sent to or from a VME interface by block transfer through the Butterfly Plus 
switch may or may not be carried forward to the VMEbus by a block transfer 
operation. Also, although the PNC microcode allows the Butterfly Plus switch 
to transfer a block of up to 64 kilobytes, system software by convention usu
ally breaks large block transfers into smaller blocks with no more than 256 
bytes in one switch message. The VME interface can accept a data block of up 
to one kilobyte. 

Two bits in the VME interface, VBA_CTL_SEQ and VBA_CTL_AINC (described 
for transfer _ctl in the section entitled "Control Registers"), control the han
dling of addresses on the VMEbus when transferring a sequence of data. If 
VBA_CTL_SEQ is set to one, the VME interface (acting as VMEbus master) 
expects the slave device to sequence all accesses to its memory. Therefore, if 
VBA_CTL_SEQ is set and the VME interface receives a block transfer message 

5-24 



Inside the Butterfly Plus The VME Interface 

from the Butterfly Plus switch, the data will be transferred using a VMEbus 
block transfer. The Butterfly Plus message can be either a block transfer 
request message, which causes a read from the VMEbus, or a block transfer 
data message, which causes a write to the VMEbus. The VME interface acts on 
each transaction it receives right away, without saving up operations and later 
combining a batch of them into one block transfer. 

If VBA_CTL_SEQ is not set (this is a default setting), the VME interface does 
not expect the VMEbus device to sequence the addresses, and a VMEbus block 
transfer will not be used. This will be true for the majority of the VMEbus 
slave devices. If the VME bus slave device does not sequence the addresses, 
then the VME interface acting as master must do so by placing a new address 
on the VMEbus before each piece of data is transferred. Although the VME 
interface remains bus master until all of the data is transferred (up to the 256 
byte maximum of a Butterfly Plus switch block transfer message), this is not a 
VMEbus block transfer because the address is placed on the bus more than 
once. 

If the VME interface is sequencing the transfer address, the other control bit, 
VBA_CTL_AINC, comes into play. When this bit is set to one (default setting), 
the VME interface increments the address each time it accesses the VMEbus; 
when the bit is cleared zero, the VME interface does not increment the address: 
but instead places the same address on the VMEbus again and again. Incre
menting the address is appropriate when accessing successive memory loca
tions. Retaining the same address is useful for accessing a FIFO in a VMEbus 
device. 

Another aspect of block transfer operations is atormc1ty. An operation is 
atomic or indivisible if the entire operation is guaranteed to complete before 
any other processor or peripheral device can access its intermediate results. A 
common example is an instruction that increments a memory location, which 
is usually implemented as a read-modify-write operation, in which the previ
ous value is read from memory, updated in a register, and then stored back in 
memory. If another processor or device can access the memory location 

·between the reading and the writing, the operation is not atomic_ and presents a 
race condition, sometimes called a multiprocessing hazard, because the 
second device can operate on the data and produce incorrect final results. 

5-25 



The VME Interface Inside the Butterfly Plus 

Block transfers are sometimes used to provide indivisible read or write opera
tions. In the Butterfly Plus switch, a block transfer is indivisible only if it 
consists of eight or fewer bytes of data. When the VME interface performs a 
block transfer on the VMEbus, it does not release bus mastership until the 
transfer is complete. However, this does not guarantee atomicity. In particu
lar, the memory on the VMEbus might be dual-ported to another bus, or it 
might be accessed by some processing unit on the same circuit card as the 
memory. 

In summary, programs perform block transfers for various reasons, generally 
to gain maximum performance, but occasionally for atomicity. To ensure that 
a Butterfly block transfer is performed, the program must call the Chrysalis 
operating system and ask for a block transfer (via block_ copy, Do_ bt, or 
Start_bt). 

VME Data Alignment 

The VME interface reads and writes the VMEbus only in response to messages 
it receives from the Butterfly Plus switch. Except for interrupts, therefore, all 
VME interface activity can be covered by considering each Butterfly Plus mes
sage that causes VMEbus activity. When the VME interface_ receives a write 
byte, write word, or read word message from the Butterfly Plus switch, it per
forms a direct access operation on the VMEbus. A byte oriented direct access 
operation can access any byte address. A word oriented direct access opera
tion can make only word-aligned accesses, since the Butterfly Plus switch 
messages to read or write a word cannot specify an unaligned word address. 
The same is also true for a longword oriented direct access operation. 

The VMEbus interface performs 16-bit, word aligned read-modify-write cycles 
on the VMEbus for mask-then-add messages from the switch. This operation 
is considered a direct access one. This is the only instance when the VME 
interface performs a read-modify-write cycle on the VMEbus. 

When the VME interface receives a Butterfly block transfer message from the 
switch, it generates one or more VMEbus accesses. The VME interface alw~ys 
performs the transfers as efficiently as possible, using unaligned transfers 
where necessary. Each of the three types of VMEbus unaligned transfers is 
generated when needed: the low three bytes of a longword (BYTE0-2), the 
middle two bytes (BYTEl-2), or the high three bytes (BYTEl-3). All VMEbus 

5-26 



.Inside the Butterfly Plus The VME Interface 

slave devices are required to cope with word-aligned transfers, but support for 
unaligned transfers is optional. Either the system must be configured so that 
the Butterfly Plus performs block transfers only to or from devices that sup
port unaligned transfers, or the Butterfly Plus programmer must be careful not 
to perform block transfers that start or end on an odd byte address. 

A programmer may wish to perform a Butterfly block transfer that crosses one 
or more 64-kilobyte boundaries. Neither the Butterfly Plus processor node 
nor the VME interface supports this as a primitive function. In particular, car
ries do not propagate from the VBA_LOW _ADDR register in the VME interface 
into the VBA_HIGH_ADDR register, where the high-order 16 address bits 
presented to the VMEbus originate. Use of normal Chrysalis block transfer 
calls (e.g.Start_bt, Do_bt, or block_cop~·) ensure that block transfers do not 
cross 64-kilobyte boundaries. 

To simplify the design of slave hardware, the current VME specification prohi
bits VMEbus block transfers from crossing any 256-byte boundary. T~is rule 
was not a part of earlier versions of the specification, and many VMEbus dev
ices respond perfectly well to VMEbus block transfers that do cross one ·or 
more 256-byte boundaries. The VME interface does not enforce the prohibi
tion against crossing such boundaries. If the VME card cage_ c_ontains devices 
that rely on block transfers not crossing 256-byte boundaries, it is the 
programmer's responsibility to meet this requirement. Note, however, that 
the VME interface will not normally be operating in block transfer mode (the 
VBA_CTL_SEQ bit is not set for non-block transfers). 

PROGRAMMING THE VME INTERFACE 

The VMEbus software interface is supplied by Chrysalis operating system 
library routines. The VME interface hardware and firmware permit parts of 
the address space of a VMEbus system to appear in the address space seen by 
the Butterfly Plus user program. Data can be transferred in either direction 
between Butterfly Plus memory and VMEbus devices, and from one VMEbus 
device to another, across the VME interface. However, VMEbus devices can
not access Butterfly Plus memory through the VMEbus address space. 

To transfer data, the MC68020 executing a program (or system routines called 
by the program) in a Butterfly Plus processor node generates a request to 
transfer data to or from a particular location. The location is given as a 

5-27 



The VME Interface Inside the Butterfly Plus 

Butterfly Plus virtual address, since the processor executes in virtual address 
space. The Butterfly Plus processor node translates this virtual address into a 
physical address. If the access is a remote one, the processor node sends a 
message through the Butterfly Plus switch requesting access to that remote 
location. This message arrives at the VME interface, which converts the mes
sage address from a Butterlly Plus physical address to a VMEbus physical 
address by means of a mapping table in the interface. The mapping process 
generates not only a 32-bit VMEbus address, but also six address modifier bits 
that describe the access to the VMEbus. (VMEbus address modifier bits are . 
described in the section entitled, "VME Address Modifier".) The VME inter
face next places the address and the modifier bits on the bus, and the access is 
performed. If the access is a write operation, it is now completed. If it is a 
read operation, the requested data is received by the VME interface and 
returned through the Butterfly Plus switch to the processor node that requested 
it. 

As can be seen, VMEbus accesses require addresses to be translated , twice, 
once using the memory management unit in the processor node, and once 
using a mapping register in the VME interface. Mapping registers are limited 
in quantity. The major purpose of the Chrysalis VME interface software is to 
manage these and other limited system resources through-allocation and_ 
release. Also, separate processes can contend for use of the same resource, 
and the VME interface software allocates mapping registers to prevent conflict. 
Chrysalis greatly simplifies the Butterfly Plus system programrner'vs task, 
since library routines handle most of the details of VME interface operation. 

Chrysalis provides two ways to access VME devices: subroutine access and 
mapping. These two are not mutually exclusive, and in fact, the same or dif
ferent processes may freely mix use of the two methods. Both methods 
require the Butterfly Plus to run the VME server process, and any program that 
accesses VME devices to be linked with the VME library routines. Table 5-3 
summarizes the two methods. The subroutine access method is simpler and 
will be described first. 

5-28 



Inside the Butterfly Plus 

Table 5-3 
Chrysalis VME Interface Access Methods 

Function 

Initialization 

in program 

Cause a data 

transfer 

Share resources 

among 

programs 

Release 

resources 

Subroutine 

Access Method 

None needed 

read_ vme_byte, 

read_vme_word, 

read_ vme_long, 

write_ vme_byte, 

write_ vme_ word, 

write_ vme _long, 

cause a single access 

on VMEbus. 

Does not apply 

Does not apply 

The VME Interface 

Mapping Method 

map_ vme allocates and initializes 

resources: mapping registers 

in VMENode 

Controller. 

- any MC68020 instruction, 

e.g., MOVE. 

- block_ copy Chrysalis library 

call, Do_bt, or Start_bt. 

- Atomic_add, .-\tomic_and, 

Atomic_ior, .-\tomic_cTa. 

- not dual queue operations. 

remap_ \·me shares YMJ: 
mapping registers. 

unmap_ vme deallocates 

resources (mapping registers). 

VME Node Controller and Port Numbering 

Calls to the Chrysalis VME interface take an argument, bvme _no, that 
identifies a particular VME interface in the Butterfly Plus and one of the two 
switch ports on that VME interface. At the hardware level, a VME interface is 
identified by the address(es) of the switch port(s) to which it is connected. A 
switch port address can be any number from zero to 255, and can vary when 
the machine is reconfigured. 

Programmers usually prefer to deal with consecutive identification numbers 
that start with zero and do not change when the Butterfly Plus is recabled. 
The Chrysalis VME software provides a numbering scheme that associates 
each VME interface with two consecutive numbers, one for each of its switch 

5-29 



The VME Interface Inside the Butterfly Plus 

ports. Thus, in a Butterfly Plus system with three VME interfaces, bvme nos 
of 0 and 1 correspond to the two switch ports of one VME Node Controller, 2 
and 3 to the ports of another VME Node Controller, and 4 and 5 to the ports of 
the third VME Node Controller. The lower number designates the port that is 
always connected (called "port O" when discussing VME design) and the 
higher number of the pair designates the optionally-connected port (i.e., port 
1) if it is connected, or the always-connected port if the optional port is not 
connected. Thus, a bvme _no of 3 uses the optional switch port of the second 
VME interface, if it is connected, and uses its primary port otherwise. The 
bvme _no parameter is used to select the port both for control actions and for 
actual transfer of data to and from the VMEbus. 

When the Chrysalis VME interface software starts up, it determines (from the 
Chrysalis system) which switch ports are attached to VME interfaces. Because 
this discovery process always scans switch ports in the same order, a VME 
interface always has the same bvme _no, as long as the Butterfly Plus is not 
recabled. 

In some cases, however, the programmer needs to know exactly which 
bvme _no corresponds to which VME interface. In particular, the user must be 
aware that if the Butterfly Plus' s VME interface configuration changes (by 
moving, adding, powering down, or removing VME interfaces), the mapping 
of bvme no's to VME interfaces will change. For those situations in which 
the programmer must identify a particular VME interface, the Chrysalis VME 
interface provides the function: 

int find the node (bvme no) 
-int-bvme_no; -

Subroutine Access Method 

In the subroutine access method, the Butterfly Plus program calls a library 
routine to perform a single access on the VMEbus. Six routines are available, 
supporting read or w~te, and byte, word, or longword data size. For example, 
to read a word, the program calls read_ vme _word. The arguments supplied 
to this call are bvme_no (identifying which VME interface to use), vme_addr 
(the 32-bit VMEbus address to access), and modifier (additional bits placed on 
the VMEbus to describe the transfer). If the operation is a write, the caller also 
supplies the data to be written. Read data is returned as the value of the call. 

5-30 



Inside the Butterfly Plus The VME Interface 

The subroutine access method of reading or writing VMEbus locations is easy, 
and is attractive for making randomly scattered accesses and for occasional 
small transfers such as accessing control registers in VMEbus devices. This 
method incurs the costs of subroutine calling and of setting up the mapping 
register used for the access, however. Faster response is available using the 
mapping method. Also, only the mapping method supports block transfers 
and atomic operations on the VMEbus. 

Mapping Method 

In the mapping method, a Butterfly Plus program calls Chrysalis VME inter
face routines to allocate and initialize VME mapping registers, then uses nor
mal Butterfly Plus programming methods to access the VME address space 
through the window described by the mapping registers. The allocation and 
initialization are slower than the calls of the subroutine access method, but, 
once the window is set up, the mapping method offers significantly higher 
performance. The mapping method also entails calling the interface routines 
to release the mapping registers when the program is through using them. 
The mapping method mimics the Chrysalis primitives :Vlap _Obj, which maps 
a portion of Butterfly Plus memory (a memory object) into the caller's address 
space, and Lnmap _Obj, which removes it. 

The user program calls map_ vme to allocate and initialize memory on its pro
cessor node and mapping registers in the VME Node Controller. The 
map_vme call takes the same bvme_no, vme_addr, and modifier arguments 
used in the subroutine access method described earlier. The map_ vme call 
also requires bfly _seg (the segment of Butterfly Plus virtual address space that 
will become the window into VMEbus address space), and size (the size of the 
window, in bytes). A bfly _seg argument value of zero implies use of the 
highest free segment. The size argument is rounded up to the next 64-kilobyte 
boundary. The map_ vme call returns BFL Y _ADDR, the 32-bit Butterfly Plus 
virtual address of the mapped memory block on the VMEbus. This 
BFL Y ADDR value remains valid until an unmap vme call releases the VME - -
Node Controller mapping registers used by map_ vme. 

5-31 



The VME Interface Inside the Butterfly Plus 

After the map_vme call, the programmer uses BFLY_ADDR as the base 
address of a block of memory, size bytes in length, that can be manipulated by 
normal Butterfly Plus operations. This block of memory responds both to 
normal MC68020 instructions such as :\ilOVE, and to Chrysalis functions 
inyoked by the program, such as block transfers and atomic operations. 

Block transfers are typically performed by calling the Chrysalis library rou
tine block_ copy; however, the more basic Chrysalis routines Do_ bt and 
Start_bt are also available. The atomic operations Atomic_add, 
Atomic_and, Atomic_ior, and Atomic_cTa operate ·on VMEbus locations 
through the window just as they do on Butterfly Plus memory locations. They 
are atomic with respect to all VMEbus devices as well as to all processes exe
cuting on the Butterfly Plus. (These atomic operations apply to 16-bit quanti
ties only.) Although most operations work on VME memory just as on 
Butterfly Plus memory, the VME interface and its Chrysalis software do not 
support any dual queue functions to locations on the VMEbus. 

Mapping registers are . allocated on a first come, first served basis by the 
Chrysalis VME server process. A throw exception occurs when mapping 
registers sufficient to service a map vme call are not available. Each VME 
interface has 64 mapping registers, but two of these are reserved, leaving 62 
for allocation to user windows. (Butterfly Plus physical addresses specifying 
mapping register 0 refer to bank 0 memory within the VME Node Controller, 
and cause no activity on the VMEbus. Mapping register 1 is reserved by the 
Chrysalis VME interface software to satisfy subroutine access method calls, 
which never fail from lack of a free mapping register.) 

The Chrysalis VME interface provides a way to share the same window among 
multiple Butterfly Plus processes. The remap_ vme call is like the map_ vme 
call, but instead of using previously free mapping registers, remap_ vme 
searches the mapping registers for one or more that already refer to exactly 
the same window as requested by the bvme_no (exclusive of the port bit), 
vme ~ addr, modifier, and size arguments. If such a mapping register is 
found, a us~ge count for that register is incremented, and the calling process 
shares it with other processes. The BFLY_ADDR returned by remap_vme is 
the same as that returned by map_ vme, and is valid until an unmap _ vme call 
releases the mapping registers. 

5-32 



Inside the Butterfly Plus The VME Interface 

The Chrysalis VME interface software maintains the usage count so that VME 
interface mapping registers are freed only when no processes are using them. 
Processes running on different processor nodes can share mapping registers. 

H the remap_ vme call does not find a block of mapping registers that specify 
the same window as the parameters of the call, a throw exception occurs. 
The programmer may want to reuse mapping registers if there are already 
some covering the needed window, and allocate new mapping registers other
wise. This can be accomplished by putting the remap_ vme call in a catch 
block, and calling map_ vme when a throw occurs: 

catch 
remap vme(parameters); 

onthrow -
when (TRUE) 

map vme(parameters); 
endcatch -

When a process is finished using its window on the VMEbus, it can rele~se the 
mapping registers associated with the window by calling unmap _ vme. This 
permits the re-use of those resources by the same or other processes. VME 
mapping registers are a Butterfly Plus systemwide resource shared among all 
processes. The unmap vme call decrements the usage count (or the mapping - . 

registers, and, if the usage count is zero, deallocates the mapping registers. 

INTERRUPTS 

The Chrysalis VME interface. support for interrupts is independent of the 
method by which VMEbus data is accessed. Just as the same or different 
processes can mix subroutine access method calls, mapping method calls, and 
standard memory accesses, the same or different processes can make calls to 
use the VME interrupt facilities. The VME interface software places no con
straints on the use of VME interrupts. Freedom from constraints also means 
that no protection or interlocking is enforced, so any protection or locking 
required is the programmer's responsibility. The VME interface software does 
not use the VME interrupt facility, so there is no risk of conflict between the 
system software and the application code. · 

5-33 



The VME Interface Inside the Butterfly Plus 

The VME interface can request interrupts on the VMEbus at the request of 
Butterfly Plus processes, and it can also handle VMEbus interrupts generated 
by other VMEbus devices. 

Requesting VMEbus Interrupts 

A Butterfly Plus program generates an interrupt request by calling 
write_ vme_int_req. One argument specifies which ~E interface will gen
erate the interrupt request, and a second argument determines the level of 
interrupt request to generate. The Chrysalis interface software places the 
second argument in the vme int req control register of the VME Node Con
troller, from where VME interface firmware transfers it to the interrupt vector 
register and interrupt request register of an SCB68154, and the chip places the 
interrupt request on the VMEbus. The low-order four bits of the interrupt vec
tor must be 1 for a level 1 interrupt, 3 for a level 2 or 3 interrupt, 5 for a level 
4 or 5 interrupt, or 7 for a level 6 or 7 interrupt. 

A program may need to check on the status of interrupts, particularly to deter
mine whether any are pending. The program obtains the current values of the 
registers in the SCB68154 chip by calling read_vme_int:.._req. For more 
information, refer to a SCB68154 data sheet. 

Handling VMEbus Interrupts 

When an interrupt request appears on the VMEbus (on any of the seven lev
els), or when any of four other conditions arise (see the section entitled "VME 
Interrupts"), the VME interface examines a control register associated with 
that request or condition. If that control register contains zero, no action is 
taken. If the contents are nonzero, the VME interface treats it as an event han
dle to post; the Butterfly Plus process owning that event will receive the event. 
The data posted with the event is the interrupt vector received from the 
VMEbus. The control register is cleared, and, if it was an interrupt request 
that triggered the action, the interrupt is acknowledged on the VMEbus by the 
VME interface. 

5-34 



Inside the Butterfly Plus The VME Interface 

Writing an event handle into a control register both enables the interrupt and 
specifies the event to post; writing zero disables the interrupt. The user's pro
gram can fill one of these registers by calling write_ vme _vector with argu
ments specifying bvme_no (the target VME interface), vme_int_level (the 
interrupt level), and EventHandle (the event handle to post). See the entry 
intr_event in the section entitled "Control Registers" section for the assign
ment of registers to interrupt levels. 

VME Interface Control Registers 

The calls that exercise the VMEbus interrupt system are special cases of 
accessing VME interface control registers. Two low-level routines provide 
access to all the VME interface control registers. read_ vme_special_register 
returns the value in a given control register, and write_ vme_special_register 
writes a value into a control register. Application programs are unlikely to 
need these low-level routines for typical uses of the VME interface. The 
interrupt-related calls simply invoke these register access calls with appropri
ate arguments. 

Parallel Transfers for Higher Bandwidth 

Because the VME interface transfers data through the Butterfly Plus switch, 
higher data transfer rates between the VME and the Butterfly Plus system can 
be achieved if a program uses multiple switch paths in parallel. The two 
switch ports of each VME Node Controller can execute data transfers simul
taneously. A program can establish parallel data transfers between Butte~fly 
Plus nodes and each VME switch port. In addition, if a Butterfly Plus has 
several VME interfaces, they can all operate in parallel. Of course, a single 
VMEbus performs only one transfer at a time, but its bandwidth is greater than 
that of a single Butterfly Plus switch port by a factor of about 5 (in practice) to 
10 (in theory). Chrysalis VME interface software allows application programs 
to perform simultaneous data transfers that achieve significantly higher per
formance. 

5-35 



The VME Interface Inside the Butterfly Plus 

Library Routines and the Server Process 

The Chrysalis VME inte:rface consists of two parts, library routines and a 
server process. The VME library routines must be linked with the user code 
that accesses VMEbus devices; other parts of the user's application do not 
need to be linked with the VME library. When the program makes calls to 
access the VMEbus, these library routines pe:rform what they can by them
selves, and request action from the server process as necessary, such as to 
allocate mapping registers. 

Most library calls entail a call to the server process. The only exceptions are 
calls accessing VME interface special registers, such as calls manipulating the 
VME interrupt system. The library routines maintain a local cache of 
bvme no to switch address correspondence; if a call accessing a VME inter
face special register specifies a bvme _no already in the cache, then no 
interaction with the server occurs. 

Disk Data Transfer Example 

A typical way the VME inte:rface is used is to transfer data from a disk on the 
VMEbus into Butterfly Plus memory. The hardware I/O components include a 
Butterfly Plus system with a VME interface attached to a -VMEbus; on the 
VMEbus are a disk and its controller, and a memory. The following steps 
describe the VMEbus disk transfer process. 

1. The first thing the user program does is set up the transfer. This involves 
three steps. First, single word transfers are used to set up control and 
status registers in the disk controller. Next, the appropriate VME interface 
interrupt register is initialized with an event handle. The user can employ 
a different event handle for each of seven levels of VMEbus interrupts, so 
different interrupt levels generated by the disk controller can be dis
tinguished this way. Finally, the disk transfer is started by sending a go 
command to the disk controller. 

2. The disk controller transfers the data from the disk into the memory on the 
VMEbus. This memory is used as a buffer. 

5-36 



Inside the Butterfly Plus The VME Interface 

3. The disk controller sends a VMEbus interrupt to the VME interface. The 
VME interface acknowledges the interrupt on the VMEbus, and sends a 
post event message through the Butterfly Plus switch to the event owner, 
the user process. The user process receives the event, informing it that the 
data has been transferred as far as the buffer memory. 

4. The user program block-transfers the data from VMEbus memory into 
Butterfly Plus memory (normally by a block_ copy call). The user pro
gram has presumably already "set up a window to the VMEbus memory by 
using the Chrysalis VME interface call map_ vme. 

List of Calls 

The list below summarizes the available calls to the Chrysalis VME interface. 
The arguments accepted by calls to the Chrysalis VME interface library are 
also shown. 

int bvme no 

int vme addr 

int modifier 

Identifier of VME interface and port to use. 

A byte address on the VMEbus. 

The six VMEbus address modifier bits. A value of 0 
defaults to Ox3d, which means standard (24-bit 
address) supervisory data access. This value is 
appropriate for simple memory access. 

byte/word/long value 

int bfly_seg 

int size 

int bfly_addr 

The value to be written to the VME interface or to a 
VMEbus device. 

Desired segment number (0 => use highest free seg
ment). 

Size of block to be mapped, in bytes. 

The Butterfly virtual address (BFL Y _ADDR) returned 
by a previous map_ vme or remap_ vme call. 

int vme int level A VMEbus interrupt level, 1-7. 

EH EventHandle 

char REGISTER 

An event handle to be posted upon VMEbus interrupt. 

The name of a VME interface special register. 

5-37 



The VME Interface Inside the Butterfly Plus 

The symbolic constants valid for the REGISTER argument, as well as the 
throw value (VME_ERR) used by the library when an error occurs, are found 
in the file /usrlbutterjiylchrys/VERSION!includelvme.h. 

The calls: 

byte read vme byte (bvme no, vme addr, modifier) 
word read-vme-word(bvme -no, vme-addr, modifier) 
long read vme long(bvme no, vme addr, mo?-ifier) 

return the specified byte, word, or longword from the specified VMEbus 
address. 

The calls: 

void write vrne byte(bvme no, vme addr, modifier, value) 
void write-vrne-word(bvme-no, vme-addr, modifier, value) 
void write vme long(bvme no, vme addr, modifier, value) 

write the specified byte, word, or longword value into the specified VMEbus 
address. 

After the call: 

BFLY_ADDR rnap_vrne(bvme_no, vme_addr, modifier, bfly_seg, size) 

the value of size will be rounded up to the next 64-kilobyte boundary. This 
call maps the appropriate 64-kilobyte VMEbus block(s) into the Butterfly Plus 
segment(s) specified. It returns the Butterfly Plus virtual address that refer
ences the beginning of the VMEbus block. This address is valid until an 
unmap _ vme() call deallocates the mapping register(s) used by this call. 

The call: 

BFLY_ADDR rernap_vrne (bvme_no, vrne_addr, modifier, bfly_seg, size) 

searches the mapping registers for the map register group that has already 
mapped in the specified block. This block will have been created by a previ
ous call to map_ vme() with exactly the same arguments. The call maps the 
associated VMEbus block(s) into the Butterfly Plus segment(s) specified. It 
returns the Butterfly Plus virtual address that references the beginning of the 
VMEbus block. This address is valid until an unmap _ vme() call deallocates 
the mapping register(s) consumed by this call. 

5-38 



Inside the Butterfly Plus The VME Interface 

The call: 

void unmap_vrne(bvme_no, bfly_addr) 

decrements reference counts and, if necessary, deallocates mapping registers 
used to access VME memory block(s) pointed to by bfly _addr. As a result of 
this call, the VMEbus is removed from the Butterfly Plus address space of the 
process that performs the unmap. 

The call: 

void write_vrne_int_req(bvrne_no, value) 

writes to an SCB68154's interrupt vector and interrupt request registers, caus
ing an interrupt to appear on the VMEbus. Details of appropriate values to 
pass to the SCB68154 can be found in its data sheet. 

The call: 

int read_ -vme _int_ req (bvrne _no) 

reads an SCB68154 's interrupt vector and interrupt request registers, returning 
the values in those registers. 

The call: 
-

void write_vme_vector (bvme_no, vme_int_level, EventHandle) 

writes EventHandle into the register for the VMEbus interrupt level given by 
vme _int_ level. This both specifies the event the VME interface will post 
when that interrupt appears, and enables the handling of that interrupt by the 
VME interface. Writing an EventHandle with a value of zero disables the 
intenupt. 

The call: 

int read_ vme _special_ register (bvme _no, REGISTER) 

returns the value of the specified VME special register. 

The call: 

void write_vrne_special_register(bvrne_no, REGISTER, value) 

writes the specified value into the specified VME special register. 

5-39 





Chapter 6 

Programming the Butterfly Plus 

Several high-level programming languages are used to program the Butterfly 
Plus parallel processor. The overwhelming majority of Butterfly Plus 
software created to date has been written in the C programming language. 
Fortran-77 and Scheme programs have also been developed. All application 
programs _run under the Butterfly Pius's Chrysalis operating system, regard
less of the particular high-level language in which they are coded. This 
chapter provides a brief overview of some of the tools available to program
mers creating applications in the Butterfly Plus environment. 

Programs for the Butterfly Plus are written using a cross compiler and other 
software development tools on a front-end machine. Currently, C and For
tran-77 language development programs run under 4.2BSD UNIX on various 
front-end minicomputer systems, allowing use of the rich set of UNIX 

software tools available. An Ethernet or a serial line connects the ~utterfly 
Plus parallel processor to the front-end. A typical development cycle consists 
of editing, compiling, and linking a program on the front-end, then download
ing, running, and debugging the program on the Butterfly Plus system. A 
source language debugger for the C language runs on the front-end, allowing 
cross-network debugging of programs running on the Butterfly Plus. Figure 
6-1 is a block diagram of a typical software development configuration. 

An interactive command interpreter, called the Butterfly Plus shell, or bshell, 
and a terminal window manager are available to create and run programs on 
the Butterfly Plus parallel processor. The user accesses the system from the 
front-end computer, and the window manager allows rapid switching between 

6-1 



Programming the Butterfly Plus Inside the Butterfly Plus 

the front-end and Butterfly Plus system environments. The bshell allows 
application loading and execution. The window manager allows multiple 
processes to share a terminal for both input and output. It also provides line 
editing and screen management functions, such as cursor positioning. 

HOST FRONTEND COMPUTER 

Used to: 
Edtt Programs 
Compile Programs 
Link Programs 

UNIX Environment 

Used to Run Programs 

bshell 
Window Manager 
Utilities 

Chrysalis Operating System 

BUTIERFL Y PARALLEL PROCESSOR 

Figure 6-1 

Data+ 
Programs 

Lisp Environment 

Symbolics 

ETHERNET 

Remote 
Systems 

INTERNET 

UNIX Environment 

Boot Load Device 
(Macintosh) 

Butterfly Plus Programming Environment 

6-2 



Inside the Butterfly Plus Programming the Butterfly Plus 

CHRYSALIS OPERATING SYSTEM 

The Chrysalis operating system supports applications programs on the 
Butterfly Plus. It provides a familiar, UNIX-like environment that supports 
high-level language programming without restricting users to a single 
language. Chrysalis has several levels. At the highest level are interactive 
utilities for accessing, controlling, and debugging programs on the system. 
These include the interactive command interpreter and window manager, as 
well as utilities for loading and running applications, and determining applica
tion and system status. The lower levels of Chrysalis ar~ called as subroutines 
from the user's program. The higher levels provide interfaces more suitable 
than the lower levels for most user applications, although the lowest levels are 
available if needed. 

Application Libraries 

Application libraries manage many of the details of system resource use, such 
as allocating memory and setting up processes. These libraries also p'rovide 
the interfaces to the rest of the operating system for application programs. 
Currently, the most significant application library in the Chrysalis operating 
system is the Uniform System library, which supports a methodology for pro
gramming the Butterfly Plus. 

The Uniform System creates an environment where all processors share a 
common address space. Under the Uniform System, processes are created on 
as many processors as are available in a Butterfly Plus system configuration. 
Each process runs the user's application tasks on a subset of the data. The 
Uniform System library provides subroutines to efficiently allocate the data 
structures for the problem, then calls upon processors to work on the tasks 
specified by the programmer. Besides the Uniform System library, there are 
other application libraries, including: 

• A buffer management package for communication applications 

• A stream oriented I/O interface, similar to UNIX standard I/O, whose subrou
tines allow applications to receive terminal input and to perform formatted 
output of character strings 

• A library of performance measurement tools oriented toward paraUel appli
cations 

6-3 



Programming the Butterfly Plus Inside the Butterfly Plus 

• The RAMfile System 

• The X Window System. 

Server Functions 

Access to system resources, such as the Ethernet, is provided by server 
processes. The operating system's interprocess communication facilities 
route these requests to the appropriate server processes. Servers can execute 
functions on remote nodes, translate symbolic resource names to addresses, 
and load programs. Additional servers are available as options to support 
remote debugging, to provide remote file access and interface to application 
programs running on front-end machines, and to access networks. Remote 
file access allows users to read and write files on front-end machines. A 
remote procedure call facility allows applications running on the front-ends to 
communicate over the network with programs on the Butterfly Plus system. 

A network server provides an interface to the Ethernet high-speed local area 
networK. and supports TCP/IP, the standard communication protocols for reli
able data transport. Use of TCP/IP also lets other hosts in the DARPA Internet 
access the Butterfly Plus processor through gateways. 

Kernel Functions 

The lowest level of Chrysalis functions is provided by the kernel, a copy of 
which runs on each of the processors of the Butterfly Plus system. The 
kernel's main functions are process support, memory management, primitives 
for parallel processing and interprocess communication, system configuration 
and initialization, and I/0. Some Chrysalis kernel services are written in 
microcode on the processor node controller for speed; most of the rest are 
written in the C language. All Chrysalis kernel functions are called from the 
user's programs as subroutines or macro invocations. 

Multiprogramming Support 

Chrysalis provides multiprogramming via a process scheduler that runs on 
each processor. This allows multiple processes to run on each node, as well 
as concurrently with those on other nodes. 

6-4 



Inside the Butterfly Plus Programming the Butterfly Plus 

Multi-User Support 

Chrysalis provides a multiple user environment on the Butterfly Plus. Each 
user is the exclusive owner of a variable number of processors. A user cannot 
allocate the resources of another user (e.g., allocate memory on a processor 
owned by someone else). However, he or she can use the resource of another 
user if that user allows it. 

Memory Management 

All memory contained on each processor node is controlled through a 
Motorola MC68851 Paged Memory Management Unit (PMMU). The PMMU 

maps virtual address references using 8-kilobyte pages and a segment map
ping granularity of 64-kilobytes. All processors have virtual address spaces 
of 4-gigabytes with page trees that are automatically generated as needed. 
Through this mapping scheme, programs running on a Butterfly Plus proces
sor can reference the memory of any other processor node in the system, as 
well as any I/0 registers and the microcoded kernel functions. Memory pro
tection is enforced on a segment basis with kernel or user mode read, write, 
and execute attributes. Memory mapping is managed by the kernel and can be 
directly controlled by the application program, although mapping is typically 
done by a higher level of system software, such as the applica:tfon libraries. 

Another level of memory management, called object management, is provided 
by the Chrysalis kernel. This level revolves around objects, which are associ
ated with areas of physical memory, or special system data structures such as 
processes and queues. The object system provides processor independent 
identifiers, called object handles, for areas of memory or for these system 
structures. The object handles can be passed among Butterfly Plus processors 
through the interprocess communication facilities. Other Chrysalis kernel 
calls can then map the objects into virtual address space, where the objects 
can be manipulated by programs. 

Synchronization Primitives 

Objects provide many of the primitives for interprocess communication and 
for parallel process synchronization and locking. Two of the most important 
of these primitives are the dual queue and the event. A dual queue is an inter
locked .data queue that can be used as a lock or for passing data, such as object 
handles, between processes. Events cause processes to be either suspended or 

6-5 



Programming the Butterfly Plus Inside the Butterfly Plus 

scheduled to run through wait and post operations. Together, dual queues and 
events are used to build higher level synchronization and interprocess com
munication mechanisms, such as locks, semaphores, and remote procedure 
calls. In addition, a set of microcoded atomic memory operations (adds and 
logical operations) is provided to implement simpler forms of locks and other 
multiprocessor synchronization facilities. Table 6-1 lists the atomic memory 
operations. 

Table 6-1 
Atomic Memory Operations 

Atomic_add 

Atomic_and 

Atomic_cTa 

Atomic_ior 

Indivisibly add to a memory location. 

ilndivisibly AND to a memory location. 

Clear then add to a memory location. 

Indivisibly OR to a memory location. 

Input/Output Support 

The I/0 functions include support for the Multibus and VMEbus hardware 
interfaces, a driver for the Multibus Ethernet controller, TCP/IP, remote file 
access, and asynchronous terminal support. The programmer's interface to 
the I/O system is similar to that of UNIX (open, close, read, write, etc.). 

SOFTWARE DEVELOPMENT ENVIRONMENTS 

The development of parallel processor programming methodologies is an 
active research area. The Butterfly Plus hardware and software environment 
represents an excellent vehicle for pursuing this research. 

To date, three distinct approaches to programming the Butterfly Plus have 
seen widespread use. One approach is based on the notion of cooperating 
sequential processes as described by Dijkstra, Hoare and others. The second 
is the Uniform System approach developed at BBN Laboratories. The Uni
form System approach emphasizes the tasks that comprise an application and 
tends to de-emphasize the notion of processes. The basis of the third 
approach to programming the machine is the Butterfly Plus Scheme imple
mentation. Combinations of two or more of these approaches are possible, as 
are completely diff~rent approaches. 

6-6 



Inside the Butterfly Plus Programming the Butterfly Plus 

The three following sections provide a brief review of the familiar cooperat
ing sequential processes approach, describe the Uniform System approach in 
some depth, and outline the Butterfly Plus Scheme environment. In addition, 
a fourth section describes the RAMFile system, a subroutine library that lets 
applications programmers structure Butterfly Plus memory as if it were an I/O 
file, thus increasing the ease of RAM data access. 

Cooperating Sequential Processes 

To structure an application that uses cooperating sequential processes, the 
programmer decomposes the application into a moderately sized collection of 
loosely coupled processes that exchange control signals or data from time to 
time. Chrysalis supports this programming methodology by providing a set of 
mechanisms for synchronizing and controlling processes and for interprocess 
communication. Using this method to program an application is similar to 
programming a multiprocess application on a uniprocessor based machine. 
The principal difference is that the processes actually run concurrently ,on the 
multiple processors of the Butterfly Plus, ~hereas the processes must run in 
an interleaved fashion on a uniptocessor. Cooperating sequential processes 
often make limited use of shared memory, as well as message passing. 

Communication and networking applications developed at BBN for the 
Butterfly Plus use the cooperating sequential process approach. The Chrysalis 
server functions also use this approach. In the latter case, the cooperating 
processes are the Chrysalis server processes and the application programs that 
call upon the servers. Communication between the application programs and 
the server processes occurs within Chrysalis subroutines. All of this is trans
parent to the application programmer. 

The Uniform System 

The Uniform System approach has proven to be particularly effective for 
applications containing a few frequently repeated tasks, such as those used for 
most scientific computing. It has also been used successfully in applications 
with less homogeneous task strtlctures. 

Beyond the usual concerns of programming, there are two key considerations 
specific to the Butterfly Plus: storage management and processor manage
ment. The goal of storage management is to keep all the memory modules in 

6-7 



Programming the Butterfly Plus Inside the Butterfly Plus 

the machine equally busy, thereby preventing the slowdown that occurs when 
many processors attempt to access a single memory module. The goal of pro
cessor management is to keep all the processors equally busy, thereby 
preventing the inefficiency that occurs when some processors are overloaded 
while others sit idle without work to do. 

Uniform System Memory Management 

The Butterfly Plus switch provides low-delay, high-bandwidth access to all of 
the memory in the machine. To help the programmer take advantage of this 
common memory, the Uniform System implements -a large shared memory for 
application programs, and provides the means to spread application data uni
formly across the memories of the machine. Chrysalis in tum provides 
memory mapping operations that enable processes to manage their address 
spaces, and hence the memory they access. Two or more processes can share 
memory by mapping the same memory module. 

There are two ways to share memory among process~s. One is to isolate 
processes from one another by mapping meinory so that only a relatively 
small subset of each process's address space is accessible to other processes. 
The shared subset of memory can be changed at any time and is often dif
ferent for different groups of processes. Although this method facilitates 
debugging by limiting the number of processes likely to have changed a par
ticular data structure, the Uniform System uses a different approach. Under 
the Uniform System, a single large block of memory is shared by mapping the 
block into the address space of each processor. This method frees the applica
tion programmer from the need to manipulate memory maps, and simplifies 
programming by implementing a large shared address space for application 
programs. Data that must be shared by two or more processors is allocated 
without regard to which processors will be using it. The code, stack, and glo
bal variables local to individual processes are kept locally, and are not fetched 
across the Butterfly Plus switch. 

Collectively, the local memories of all the Butterfly Plus processor nodes form 
the shared memory of the machine. The large shared memory an applicatio~ 
program sees is physically implemented by a collection of separate local 
memories. If all the shared data used by an application were to be physically 
located in a single memory, contention for that memory (as many processors 
attempt to access the data) would force the processors to proceed serially, 

6-8 



Inside the Butterfly Plus Programming the Butterfly Plus 

thereby slowing program execution. Since the aggregate memory bandwidth 
of the machine is very large, slowdowns due to memory contention can be 
reduced by scattering application data uniformly across the physical memories 
of the machine. When many processors access scattered data, their references 
tend to be distributed across the memories, enabling the processors to use the 
full memory bandwidth of the machine. The Uniform System library provides 
a memory allocator that scatters data structures in a way that allows straight
forward addressing conventions. The library also supports a set of more spe
cialized techniques that can be used if the allocator is either inappropriate or 
ineffective. 

To summarize, the Uniform System approach to memory management is 
based on two principles: 

• Use of a single large address space shared by all processes to simplify pro
gramming 

• Scattering application data uniformly across all memories of the mac~ine to 
reduce possible memory contention. 

This memory management strategy has two slight disadvantages because of 
the slower access to remote memory and, to a lesser extent, pecause of possi
ble contention in the switch and at the memories. This results in an increase 
in execution time of about 4% to 8%. The benefit of this memory manage
ment strategy is that the programmer can treat all processors as identical 
workers, each able to do any application task, since each has access to all 
application data. This greatly simplifies programming the machine. 

Uniform System Processor Management 

Optimum utilization of the Butterfly Pius's unique parallel architecture 
requires efficient processor management. Such management requires 
identification of the parallel structure inherent in a chosen algorithm, and con
trol of the processors to achieve the determined parallelism. 

6-9 



Programming the Butterfly Plus Inside the Butterfly Plus 

Determining Parallel Structure 

In many applications the parallel structure is obvious. In others, the structure 
is less clear and may require reworking algorithms. Occasionally, an algo
rithm is inherently serial, and cannot be structured to take advantage of paral
lel processing. The following guidelines will help in optimizing applications 
for the parallel environment. 

• Start with the best existing algorithm. A Butterfly Plus system with p pro
cessors can do no more than speed up an algorithm by a factor of p. Speed
ing up a poor al~orithm may not overcome its inefficiencies. For example, 
it may take an n parallel sort longer to run on a 128-processor Butterfly 
Plus than it takes an n log n sort to run on a single processor. 

• Try to do the same number and kind of steps as the best algorithm. The 
order of steps in an algorithm can often be manipulated to achieve parallel
ism. This procedure may involve adding logic in the form of simple locks 
to ensure the atomicity of selected operations. 

• Look for parallel structure at all levels and in all sizes: the more the better. 
If necessary, the programmer can usually combine small tasks at a later 
stage into larger, more manageable sizes; it is often more difficult to divide 
a task at a later stage into smaller ones. For example, if an application 
requires fast Fourier transformations (FFTs) on many different channels, the 
programmer should plan to exploit both the parallelism inherent in an indi
vidual FFT and the parallelism due to different channels. 

The Butterfly Plus can work very efficiently with individual tasks that are a 
few milliseconds in length; if necessary, it can also work on tasks in the hun
dreds of microseconds. For shorter tasks, various overheads begin to affect 
the quality of the performance. 

There are two strategies for determining the most efficient number of con
current operations to have at any stage in the processing. One strategy recom
mends a relatively static approach. using exactly n concurrent tasks for n pro
cessors. The other strategy recommends using many more than n tasks, typi
cally ten times as many or more. Both strategies attempt to deal with end 
effects; that is, the processor idle time that occurs toward the end of a stage 
when some processors have finished and others are still working. The first 
approach minimizes the effect by explicit construction. Here the programmer 
attempts to manipulate the work so that all processors finish at approximately 

6-10 



Inside the Butterfly Plus Programming the Butterfly Plus 

the same time. The second approach allocates tasks to processors dynami
cally in an attempt to balance the load. As a processor finishes a task, it is 
assigned the "next" task ready for execution. This approach relies on having 
a large number of tasks relative to processors to minimize idle time. Some 
idle time occurs at the end of the problem, but this is generally acceptable 
since it is small relative to the total program execution time. 

The Uniform System encourages the dynamic approach. For many applica
tions the dynamic approach is simpler and more reliable, since it is not neces
sary to know in advance how long an individual piece of work will take. 
Furthermore, it is adaptable to varying numbers of processors and sizes of 
problems. 

Controlling Parallelism: Structuring the Application 

After determining what processing is to occur in parallel, the programmer 
must then manipulate the Butterfly Plus to make this parallelism hflppen. 
There are several ways to do this. The Chrysalis kernel provides a rich collec
tion of relatively low-level operations for starting processes on various pro
cessors and for communicating among them. The Uniform System provides a 
higher level abstraction for managing the processors, one that is natural and 
efficient for a large class of applications. 

The Uniform System treats processors as a group of identical workers, each 
able to do any task. To use the Uniform System, a programmer must structure 
an application into two parts; a set of subroutines that perform various appli
cation tasks, and, one or more "generators" that identify the "next" task for 
execution. 

To illustrate this, consider matrix multiplication as an example. One way to 
structure a matrix multiplication program would be to write a routine that 
computes the dot product of a row and a column, and to ensure that the rou
tine for the dot product task gets called once for each element of the result 
matrix, using the appropriate row and column of the operand matrices as 
parameters. 

6-11 



Programming the Butterfly Plus Inside the Butterfly Plus 

Usually a well designed program is structured as a set of subroutines to 
improve program modularity, whether or not it is intended for parallel execu
tion. There is normally a subroutine for each task type, with each subroutine 
taking arguments that define individual tasks in terms of subsets of the pro
gram data to be operated on. To use the Uniform System, the programmer 
simply ensures that these subroutines correspond to the tasks he wants to do in 
parallel. In the matrix multiplication example, there is a single task type, 
computing dot products, and corresponding to that task type, the dot product 
routine, whose row and column parameters specify particular tasks. 

The second part of the application code comprises one or more subroutines 
able to identify the next task for execution. Such a subroutine is called a gen
erator, since its function is to generate tasks. In a serial program the generator 
function is usually embedded in the control structure of the program (e.g., do 
this, then do that, then do ten of these). For parallel processing under the Uni
form System, the programmer is expected to make generation of the next task 
explicit. In the matrix multiplication example, the task generator woµld be 
responsible for generating a call on the dot product routine for each element in 
the result matrix. 

It is helpful to think of the generator concept in terms of three procedures 
(generator activator, worker procedure, and task generator) and task descrip
tor data structure. Figure 6-2 illustrates how the Butterfly Plus task generator 
works. 

&-12 



Inside the Butterfly Plus Programming the Butterfly Plus 

Worker procedure, a descrip
tion of the problem data, and 

a task generation procedure 

Generator activator procedure 
builds a task descriptor data 

structure 

Task generator is specified by data 
, structure in terms of the worker pro-

1---11.. cedure, problem data, and task 

Generator activator procedure activates 
the generator by making task descriptor 

available to to other processors 

Along with other available processors that will be working 
on parts of the problem, the processor that invoked the 

generator activator uses the task descriptor and task 
generation procedure to make repeated calls on the 

worker procedure, specifying subsets of the data . 
worked upon. 

generation procedure 

Each call of the worker 
procedure is a task 

'--------NO 

Figure 6-2 

YES 

• Processor that activated the generator activator 
continues execution of it.s program. Remaining 

processors find other things to do 

Butterfly Plus Task Generator 

In the matrix multiplication example, the worker procedure is the dot product 
routine, and the data is the operand and result matrices. The dot product 
worker routine is called once for each combination of row and column index; 
these indices are stored in the task descriptor and incremented indivisibly each 
time the task generation procedure is executed by a processor. 

6-13 



Programming the Butterfly Plus Inside the Butterfly Plus 

Conceptually, the generator notion is similar to the various "map" functions 
in the Lisp language. What is unique about the Uniform System is that it 
achieves parallel operation by using pFocessors, as they become available, to 
execute the various calls upon the worker procedure. Task generation and the 
processor management associated with it are implemented in a distributed 
fashion· in the sense that each processor performing tasks participates in their 
generation. 

Often the required generator is quite simple. In the matrix multiplication 
example, where a dot product is computed for every ·element in the result 
matrix, the generator can find the next task by incrementing row and column 
counters that identify the element in the result matrix to be computed next. 
Occasionally a generator must be more complex. A generator that selects the 
next node to process in an alpha-beta tree walk, for example, would rely 
heavily on using the most up to date information about the tree processing 
state. Occasionally a generator involves a simple queue, in which case it 
would operate much like a process scheduler found in many time shariqg sys
tems; the next task for execution would be the one at the front of the queue. 
In general, though, a large number of applications can be constructed from a 
small set of generators. The Uniform System library includes a collection of 
commonly used generators. 

The Uniform System library provides a way to bind task generation pro
cedures to worker procedures. The basis for this binding mechanism is a 
"universal" generator activator procedure. To use this universal generator 
activator procedure directly, application programs specify both a worker pro
cedure and a task generation procedure. The library also includes a set of 
generator activator procedures that embody many commonly used task gen
eration procedures. When an application program calls one of these 
"specific" generator activator procedures, it specifies only the worker pro
cedure. In response, the generator activator passes its associated task genera
tion procedure and a task descriptor to the universal generator activator along 
with the specified worker procedure. 

Often an algorithm requires multiple, perhaps nested, instances of generators. 
As long as the algorithm does not depend on the order of task generation 
among different generators, the programmer is free to make multiple calls to 
task generators to start the system working on all of them at once. H the algo
rithm does depend on the order, the programmer must either provide a task 

6-14 



Inside the Butterfly Plus Programming the Butterfly Plus 

generation procedure to properly answer the question about what to do next, 
or carefully manage the use of existing generator activator procedures to 
ensure that the algorithm's ordering requirements are met. 

The Uniform System approach to processor management offers three impor
tant benefits: 

• The generator mechanism is very efficient. It is implemented using one 
process per processor in a way that ensures no unnecessary context swaps 
occur. Each processor executes a tight loop consisting of "generate next 
task - execute next task." The programmer supplies both the task genera
tion and worker procedures, usually finding an appropriate generator 
activator procedure in the library. Both the task generation and the worker 
procedures execute at the application level. As a result, once a generator 
gains control of a processor, the Chrysalis kernel need not be involved until 
the generator has exhausted all the work it knows how to find . 

• Programs that use the Uniform System task generation mechanism to, 
exploit parallelism are insensitive to the number of processors. It is thus 
possible to debug programs on small configurations and run them on larger 
ones. If an application expands to exceed the capacity of its current 
configuration, it can be moved without modification to a larger one. 
Perhaps more importantly, programs can run on "reduced" configurations 
if necessary, such as when some machine processors have been removed 
for repair . 

• The load can be balanced dynamically. Whenever a processor becomes 
free, a generator identifies the next task to be executed. Since the task gen
eration procedures are supplied by the application programmer, the task 
choice can be based on the current state of the computation and the require
ments of the application. 

Programming With Butterfly Plus Scheme 

Butterfly Plus Scheme provides the Butterfly Plus user with a complete mul
tiprocessor Lisp environment. This environment includes not only Butterfly 
Plus based Lisp language support with extensions for multiprocessing, but 
also many user interface features and program development aids in a Symbol
ics 3600 serving as a front-end system. 

6-15 



Programming the Butterfly Plus Inside the Butterfly Plus 

Butterfly Plus Scheme is a shared memory, multiprocessor Lisp. based on an 
extended version of the C Scheme dialect of the Lisp language. The simpli
city and power of Scheme make it particularly suitable as a testbed for explor
ing parallel symbolic computation. Butterfly Plus Scheme supports the 
evaluation of multiple Lisp expressions simultaneously in the context of a sin
gle, uniformly mapped, global Lisp heap (the space in which all Lisp objects 
reside). 

Rather than implement a loosely coupled set of separate Lisps that communi
cate via some external message passing protocol, we have chosen to capitalize 
on the Butterfly Plus parallel processor's shared memory architecture by pro
viding a single Lisp heap mapped identically by all processors. Data struc
tures of arbitrary complexity are easily communicated from one context to 
another by simply transmitting a pointer rather than by copying the whole data 
structure. This architecture allows any such Lisp object to be shared and 
communicated among any or all Lisp computations (concurrent or otherwise). 

Butterfly Plus Scheme uses the future mechanism as its basic task building 
construct. This construct arranges for the evaluation of an argument expres
sion and returns immediately to the caller, supplying as its result a place 
holder for the ultimate value of the expression. For example,_.~ 

(future <lisp-expression>) 

records the fact that a request has been made for the evaluation of the expres
sion <lisp-expression>, and causes the system to commit resources to that 
evaluation when they become available. Control returns immediately to the 

· caller, returning a new type of Lisp object called an "undetermined future'.." 
The "undetermined future" object serves as a place holder for the value that 
the evaluation of <lisp-expression> will ultimately produce. That place 
holder can be manipulated in standard ways. For example, it can be stored as 
the value of a symbol, made a member of a list, used as a procedural argu
ment, etc. As long as such manipulations do not require the value of the 
future expression before it is available, the process(es) performing the mani
pulations proceed without interruption. Should an attempt be made to refer
ence the value prior to its determination, the referencing process is automati
cally suspended until the value arrives. The future construct is thus a good 
abstraction for the creation of value producing computations and for syn
chronizing the consumers with the producers of valu~s. 

6-16 



Inside the Butterfly Plus Programming the Butterfly Plus 

In addition to future, constructs are available for mutual exclusion, task dis
tribution, user defined scheduling policies, and task cancellation (permitting 
the use of "speculative" computations, whose results may not be usefal, 
depending on the future evolution of the entire algorithm). 

The garbage collector is of the parallel stop~and-copy variety, with pure, con
stant, and collectible spaces. This enables efficient garbage collection and 
caching of code and constant data. The garbage collector distributes noncach
able data items as uniformly as possible, so as to make good use of the 
Butterfly Pius's memory bandwidth, and avoid memory."hot spots." 

Butterfly Plus Scheme User Interface 

User interface and program development facilities reside in a front-end Sym
bolics 3600 series Lisp machine that communicates with the Butterfly Plus 
using standard Internet protocols. These facilities are a combination of 
adapted versions of existing Lisp machine tools and features, such ,as the 
structure inspector and the menu package, together with original software pro
viding 1/0, graphics, and debugging and performance analysis capabilities. 
The interface lets the user control and communicate with tasks running on the 
Butterfly Plus, and provides a continuously updated display of overall system 
status and performance. Special Butterfly Plus Scheme interaction windows 
are provided, associated with tasks running on the Butterfly Plus. These win
dows are easily selected, moved, resized, or folded up into task icons. There 
is also a Butterfly Plus Scheme mode provided for the ZMACS editor, which 
connects the various evaluation commands (e.g., evaluate region) to an 
evaluation service task running in tlie Butterfly Plus Scheme system. Aver
sion of the Lisp machine based structure inspector is also being adapted for 
examining task and data structures on the Butterfly Plus. 

Each task can create an interaction window on the Lisp machine. The first 
time an operation is perlormed on one of the standard input or output streams, 
a message is sent to the Lisp machine and the· associated window is created. 
Output is directed to this window, and input that is typed while the window is 
selected can be read by the task. This multiple window approach makes it 
possible to use standard system utilities like the trace package and the 
debugger. 

6-17 



Programming the Butterfly Plus Inside the Butterfly Plus 

A pane at the top of the screen displays the system state. The system state 
information is collected by a Butterfly Plus process separate from the 
Butterfly Plus Scheme system, but has shared memory access to important 
interpreter data structures. The major feature of this pane is a horizontal rec
tangle broken vertically into slices. Each slice shows the state of a particular 
processor. If the top half of the slice is black, the processor is running; if it is 
gray, the processor is garbage collecting; and if it is white, the processor is 
idle. The bottom half of each slice is a bar graph that shows how much of 
each processor's portion of the heap is in use. The status pane also shows, in 
graphic form, the number of tasks awaiting execution. This display makes 
performance problems like task starvation easy to recognize. It is also possi
ble to display graphs of any of the metering information provided by the 
Butterfly Plus. 

A simple read-eval-print LISP interface is also available to support ASCII ter
minals. 

The RAMFile System 

The Butterfly Plus RAMFile system gives programmers a convenient method 
for using Butterfly Plus memory effectively. The system creates large data 
objects, called RAMFiles, within Butterfly Plus random access memory. The 
objects look like 1/0 files to the programmer, and data stored in the RAMFiles 
can be manipulated using a set of UNIX-like 1/0 primitives. The RAMFile thus 
provides UNIX 1/0 functionality at memory speeds. In addition, the RAMFile 
supports a concurrent read, exclusive write model, enabling user processes to 
exploit parallelism in their 1/0 operations while maintaining data integrity. 

The RAMFile system is implemented as a library of subroutines layered above 
the Chrysalis operating system. These subroutines let users access and mani
pulate Butterfly Plus memory easily. Using a set of RAMFile routines very 
similar to UNIX file 1/0 subroutines, the programmer can call and specify 
operations such as open, read, write, seek, and the like. The routines operate 
on Butterfly Plus random access memory precisely as if Butterfly Plus 
memory were an 1/0 device, such as a disk. The files thus accessed can span 
any number of processor nodes; they need not be limited to a single local or 
remote node. Any Butterfly Plus program can use the RAMFile system. 

6-18 



Inside the Butterfly Plus Programming the Butterfly Plus 

RAMFiles are composed of a number of data segments, or sectors, each the 
same size, that correspond directly to Chrysalis memory objects. These sec
tors are dynamically allocated by the RAMFile system to accommodate user 
write requests. The memory used to house the sectors is reclaimed by the sys
tem after file truncation or deletion. 

There are ten RAMFile routines that can be used as primitives to access 
memory in the RAMFile system. 

RF access 

The RF_ access primitive 'looks at a given RAMFile path and checks to see if 
the specified file is there. In addition, it determines the access characterstics 
of the file (e.g., whether the file may be written to or if it is read-only). 

RF creat 

The RF-creat routine creates a new RAMFile by obtaining the necessary 
memory objects, setting up an object called the RAMFile descriptor, and 
assigning a specified filename. The RF -creat automatically distributes seg
ments of the RAMFile created over as many different processors as it can, thus 

· allowing greater parallelization. In addition to creating a new RAMFile, 
RF_ creat can also be used to rewrite an existing RAMFile. 

RF_open 

The RF _open primitive creates a private copy of the global RAMFile descrip
tor on a local processor node. The RF_ open routine can be run on any 
number of processor nodes, thus allowing .multiple processes to perform 
parallel reads and writes on individual sectors of the RAMFile simultaneously. 
RAMFile system protocols guarantee that competing processes do not access 
the same segment at the same time, thus ensuring data integrity. 

RF read and RF write - -
The RAMFile read and write routines transfer data from and to the specified 
RAMFiles. Sector index and lock tables locate the appropriate portion of the 
RAMFile that the operation is to be performed on, and lock the sector for the 

6-19 



Programming the Butterfly Plus Inside the Butterfly Plus 

duration of the transfer. The system uses the Chrysalis block_ copy call to 
perform the read or write transfer. 

RF lseek 

The RF lseek pnrrut1ve adjusts the current position field of the RAMFile 
descriptor. Current position is stored as a byte offset into the RAMFile. The 
RF _read and RF_ write primitives use the value in the current position field 
to locate exactly where data should be transferred into or out of the file. 

RF close 

The RF _close primitive releases the local process's private copy of the RAM
File descriptor and unmaps the global descriptor object from the local processor 
node. 

R~ _stat, RF _fstat 

The RF _stat and RF _fstat routines obtain information for the programmer. 
RF_ stat obtains information about the specified RAMFile path, such as 
owner's ID, file size and the like. RF _fstat obtains the same kind of informa
tion about an open file referenced by the RAMFile descriptor (such as would 
be obtained by an RF_ open call). 

RF _truncate, RF _ftruncate 

1hese two primitives let the programmer truncate a file in the RAMFile system 
to a specified length. Any data in the file beyond the specified length is lost. 
The only difference between the two routines is that the RF_ ftruncate call 
operates only on files that are open for writing at the time of the call. 

RF unlink 

The RF_ unlink call removes the entry for a specified file and file path from 
the RAMFile directory. All resources associated with the file are reclaimed by 
the system. If the file is still open in any process when the RF _unlink exe
cutes, the directory entry is purged, but the actual resource reclamation is 
delayed until the process closes the file. 

6-20 



Appendix A 

PNC Microcode Functions 

This appendix contains detailed information about the PNC microcode func
tions and registers that, although of little interest to the typical ButterflJ user, 
might prove valuable to programmers who need to understand system c.alls 
and performance issues at the microcode level. Procedures for using the 
block transfer facility, event posting, dual queue handling, and other kernel 
functions all require a program to interact with the processor node controller. 
They sometimes involve the use of special registers that are not normally 
accessed by application programs, and they generally rely on special, low 
level procedures for memory management. Parameter blocks passed to those 
processor node controller functions that require them are normally part of the 
process control block (pnc _pblk) of the calling process. 

BLOCK TRANSFER FACILITY 

The microcoded block transfer capability copies a block of data from one 
location to another, generally for the purpose of moving the data into a 
processor's local memory. The processor invokes this facility by writing the 
physical address of a parameter block with the following format into the loca
tion btran at address FFF70000. 

struct btrctrl 
{ 
char *bt to ; 
short unsigned bt len ; 
char *bt _from ; -

} ; 

/* block transfer control block */ 

/* physical address of destinci.tion */ 
/* length of transfer (bytes minus l) */ 
/* physical address of source */ 

A-1 



PNC Microcode Functions Inside the Butterfly Plus 

A microcode block transfer cannot cross a 64-kilobyte physical address boun
dary. Also, a block cannot be transferred to or from the 1/0 space (including 
Multibus memory) or special function (FP) space. During transfers, a bus 
error will occur if the source processor is disabled or unreachable. On the 
other hand, a disabled or unreachable destination processor, does not generate 
an error. The transfer simply never completes. Higher level software is 
responsible for timing out incomplete transfers. 

There can be one, two, or three processors involved in a block transfer. The 
source and destination processors will be quite busy during the block transfer, 
since in servicing the switch their processor node controllers will try to use 
about three quarters of their total memory bandwidth. I/0 transfers have prior
ity over block transfers, but processor memory access requests do not, so the 
processors run much slower than normal when a block tr an sf er is being per
formed. If the processor that requested the block transfer is not involved in 
passing the data, it simply continues normally (unless it performs another 
switch operation that interacts with the block transfer). Block transfe~ com
pletion can be monitored by testing the memory location bxf ers (FE00004A), 
which contains the number of transfers started from the processor node that 
have not yet completed. 

Because block transfers can use so much switch and processor bandwidth, it is 
important to consider their impact on other switch traffic and system latencies. 
The most common result of excessive contention in the switch is that some 
messages are delayed past the timeouts that normally detect broken or missing 
hardware. These timeouts are currently set to about 10 milliseconds. If they 
are exceeded, level 7 interrupts and possibly bus errors result. A system util
ity program, toset, can be used to modify timeout length. 

A-2 



Inside the Butterfly Plus PNC Microcode Functions 

POSTING EVENTS 

Events are the main process control primitive in the Chrysalis operating sys
tem. Events can be posted to notify a process of some interesting happening 
in the machine. To post an event, the processor writes the physical address of 
a parameter block into P'.\'C post at address FFF78000. The parameter block 
has the following format: 

struct PNC_pb 
{ 
EH 
long 
short bits 
} ; 

p handle ; 
p_postdata ; 
p_reply ; 

/* event handle */ 
/* stored into event block */ 
/* binary reply code */ 

.. 
The event handle designates an event block that can either be in the 
processor's local memory or on another processor node. Switch errors and 
event handles specifying an invalid processor node generate bus errors (as do 
remote read errors). 

The binary reply code in the parameter block reports on the result of the post
ing operation. If the event handle is invalid, the reply code will be either 0100 
(hex) to signal a bad event pointer, or 0200 (hex) to indicate a bad sequence 
number. Otherwise, the reply code is simply the old value of the e _flags byte 
from the event block; that is, bit 0 is set to a value of one if the event was 
already posted or bit 1 is set to a value of one if the event was already posted 
more than once. In addition, bit 2 is set to a value of one if the event cannot 
be posted more than once. The two flags in bits 0 and 1 reflect the state of the 
event block before posting the event. If an event has been posted and cannot 
be posted more than once, any further attempt to post the event will fail, and 
the reply code will have bit 2 set to a value of one along with either bit 0 or bit 
1 set to a value of one, depending on whether the same attempt to post has 
already failed once. Consequently, reply codes up to and including four are 
normal, and reply codes greater than four indicate various error conditions. 

A-3 



PNC Microcode Functions Inside the Butterfly Plus 

The event handling mechanism assumes that the event block and process con
trol block have the following layout. 

struct 
{ 
struct 

char 
char 
char 
char 
long 
PH 
long 

} ; 

EB LOCK 

EBLOCK *e next ; 
e type ; 
e-flags ; 
e spareO ; 
e_seqno ; 
e_prot ; 
e owner ; 
e-data ; 

/* event block 

/* link to next event block 
/* block type BT EVNT = 2 
/* flag bits (see above) 
/* spare byte 
/* block sequence number 
/* protection bits (reserved.) 
/* handle of owning process 
/* data passed with post 

*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

struct PCB /* process control block */ 
{ 
struct PCB *p_next ; /* link to next process block */ 

char p_type ; /* block type */ 
char p state ; /* process state flags */ 
char p spareO ; /* spare byte *I 
char p_seqno ; /* block sequence number */ 
long p_prot ; /* protection bits (reserved) */ 
EH p erreh ; /* error handler event handle */ 

struct q_ctrl *p_que /* current scheduler queue */ 
struct q_ctrl p_eventq ; /* posted event block queue */ 
} ; /* other fields not used by post */ 

Table A-1 lists the values and meanings of the bits in p _state. 

Table A-1 
p_state Bits 

Mnemonic Code Value 

p_frozen 8 

p_run 4 

p_posted 2 

p_onque 1 

Meaning 

Process cannot become runable. 

Process is runable. 

Process is posted. 

Process cannot be put on a scheduler queue now. 

In addition to these data structures, the post event microcode also depends on 
CurQ, a pointer to the currently active scheduler queue, and on the layout of 
the array of scheduler queues, to decide whether to invoke the scheduler. The 
algorithm used to post an event is as follows: 

A-4 



Inside the Butterfly Plus PNC Microcode Functions 

1. Check the block type in the specified event block. 

2. Check the sequence number in the specified event block. 

3. Test whether the event block is already posted; if so set the posted
more-than-once flag, then return the was-posted or the illegal-multiple
post reply. 

4. Set the event-posted flag; store user data in the event block. 

5. Enqueue the event on the owner's event queue. 

6. Set the process-posted flag and the process-on-queue flag. 

7. If the process-on-queue flag was set, return the normal reply. 

8. Compare the priority of the owner's queue with the priority of running
process-queue and set interrupt level 1 if a context switch is needed. 

9. Enqueue the process on the proper scheduler queue. 

10. Return the normal reply. 

For the preceding algorithm to work, both the process and the event (but not 
the poster of the event) must be on the same processor node. Chrysalis 
enforces this by not allowing the disowning of events. 

DUAL QUEUE FUNCTIONS 

Dual queue functions require a parameter block with the following format: 

struct PNC_dqpb /* dual queue handling functions */ 
{ 

QH 
long 
char bits 
char bits 

} ; 

dq_handle ; 
dq_datum ; 
dq_cod.e ; 
dq_flgs ; 

/* queue handle */ 
/* datum or event handle */ 
/*reply code, see dRC ... */ 
/* return code flags, see q_flags */ 

The dq_ handle is always overwritten in one of three ways: by a copy of the 
user data, by the original data itself, or by an event handle extracted from the 
dual queue. If an event handle is returned, the processor can post the event 
immediately, using the same parameter block. 

A-5 



PNC Microcode Functions Inside the Butterfly Plus 

The dual queue can be anywhere in memory, on any processor node. If the 
processor number in the handle is invalid, the resulting switch error will gen
erate a bus error. Dual queue functions include enqueue, dequeue, stack, 
priority-dequeue, fetch (an event), and poll (for data). They are described in 
Table A-2. 

Table A-2 
Dual Queue Functions in PNC Microcode 

Function Name Address Description 

dq_poll · FFF?AOOO Poll dual queue. 

dq_deq FFF7A020 Dequeue from dual queue. 

dq_pdeq FFF7A060 High-priority dequeue. 

dq_fetch FFF7A080 Fetch an event from a dual queue. 

dq_enq FFF7AOAO Enqueue on dual queue. 

dq_stack FFF7AOEO Stack data on dual queue. 

It fa important to distinguish between the enqueue and dequeue functions as 
·requested by the processor, and the Chrysalis system calls using these func
tions. It is also important to distinguish between the dequeue function and the 
queue extract operation. If data is available, the dequeue function invokes the 
extract operation; otherwise dequeue uses the insert operation. The same is 
true for the the enqueue operation, which can perform either an insert or an 
extract. 

Dual queues have two sections, a queue header and a ring buffer. The ring 
buffer can hold either data entries or event handles, or it can be empty. A flag 
bit in the queue header distinguishes data queues from event queues. A queue 
can be frozen by its owner (for debugging purposes, etc.) by setting a flag bit. 
If frozen in this way, all dual queue requests return the "frozen" reply code. 

When dual queues are used as locks, an empty queue represents a free lock. 
To release a lock, the process holding the_ lock performs an enqueue to store 
something on the queue (usually its process handle is stored as a debugging 
aid). Anyone who needs the lock can perform a dequeue to wa_it for the lock, 
or else poll to test the lock without waiting. Setting the lock flag bit limits the 
queue to a maximum of one data entry at a time, and thus prevents inadver
tently freeing a lock more than once. 

A-6 



Inside the Butterfly Plus PNC Microcode Functions 

Table A-3 lists the PNC dual queue return codes. 

Table A-3 
Dual Queue Return Codes 

Return Code Value Type Meaning 

dRC_FRZN 00 Reply Queue is frozen. 

dRC_BQH 01 Error Bad queue handle. 

dRC_SNE 02 Error Sequence number erro(. 

dRC_MUNLK 04 Reply Attempt to perform multiple unlocks (enq). 

dRC_FULL 08 Reply Queue is full (enq/stack/deq). 

dRC_EMPTY 10 Reply Queue is empty (fetch/poll). 

dRC_EXTRT 20 Reply Extracted a queue entry. 

dRC_INSRT 40 Reply Inserted a queue entry. 

The queue header layout is: 

struct DUALQUE 
{ 
struct DUALQUE *q__next ; /* link to next queue header */ 

char q__type ; /* block type BT_DQH = 6 */ 
char q__flags ; /* flag bits (see below) */ 
char q__spareO ; /* spare byte */ 
char q__seqno ; /* block sequence number */ 
long q_prot ; /* protection bits (reserved) */ 
EH q__ ownevnt ; /* owner's event handle */ 
short q__exadd. ; /* extract address */ 
short q__inadd. ; /* insert address */ 
short q__ endadd. ; /* end-of-queue address (last+4) */ 
short q__stadd. ; /* start-of-queue address */ 
char q__sparel ; /* spare byte */ 
char q__queueh ; /* queue address bits 19.16 */ 
long q__lastext ; /* at time of last extract: element 

that would have been inserted *I 
long q__ ext.time ; /* time of last extract */ 
long q__instime ; /* time of last insert */ 

} ; 

Table A-4 lists the values and meanings of the bits in q_ flags. 

A-7 



PNC Microcode Functions 

Table A-4 
q_flags Bits 

Mnemonic Code Value Meaning 

8 Queue is frozen by owner. 

Inside the Butterfly Plus 

q_frozen 

q_lock 4 Queue can have only one data entry. 

2 Must be zero! 

q_events 1 Queue has events (otherwise has data). 

The memory for the ring buffer must fit entirely within a single 64-kilobyte 
physical memory block. The physical address of the first word is stored in 
q queueh and q stadd. Copies of q stadd are stored in q exadd and - - - -
q_inadd. The ring buffer length must be an exact multiple of four bytes. 
q stadd plus the ring length is stored in q endadd. To determine the size of - -
the ring buffer, it is necessary to determine how many objects can be present 
and how many processes can be waiting in the dual queue. The queue must 
be large enough to hold the larger of these two values. Each queue entry is 
four bytes long and space for one entry is unused. As a result, the minimum 
ring length is eight bytes. 

The dual queue algorithm is as follows: 

I. Check the block type in the specified queue header. 

2. Check the sequence number in the specified queue header. 

3. If the dual queue is frozen, return the frozen reply. 

4. Decode the function requested and the queue state to decide whether to try 
to extract an entry or to insert an entry. 

The algorithm to extract an entry is: 

1. If queue is empty, reverse queue state and try to insert instead. 

2. If last entry in ring, reset extract address to start of ring. 

3. Save the user data for debugging purposes. 

4. Extract an entry. 

A-8 



Inside the Butterfly Plus PNC Microcode Functions 

5. Update the time-of-last-extract. 

6. Return entry with the extracted something reply code. 

The algorithm to insert an entry is: 

1. If data queue is not empty and this is a lock, return the multiple unlock 
reply code. 

2. Test if this is a polling or fetch request; if so, return the empty reply code. 

3. Test if inserting at the beginning or end of the queue. 

4. Update the appropriate ring pointer, unless the queue was full; otherwise 
return the queue full reply code. 

5. Insert the user data. 

6. Update the time-of-last-insert. 

7. Return the inserted something reply code. 

INTERRUPT CONTROL REGISTER 

The PNC can issue an MC68020 interrupt request by modifying-bits in the 8-bit 
interrupt control register, INTr. The interrupt control register (INTr) contains 
independent bits, some of which can be set directly by the PNC. Therefore, 
non-interruptable methods for setting and clearing these bits are necessary. 
Table A-5 shows the INTr layout. Table A-6 lists the functions of the inter
rupt control register. 

A~9 



PNC Microcode Functions Inside the Butterfly Plus 

Table A-5 
Interrupt Control Register Bit Assignments 

Bit Name Active Description 

7 nliteLED 'low Red LED on PNC board. 
6· high Stop the switch randomizer clock. 

5 niRS low level 5 interrupt request. 

4 niR2 low Level 2 interrupt request. 

3 niR1 low level 1 interrupt request. 

2 (Reserved) Used by the PNC - do not change. 

1 (Reserved) Used by the PNC- do not change. 

0 niR7 low Level 7 interrupt request. 

Table A-6 
Interrupt Register Functions 

Function Name Address Description 

rdint FFF74000 Read INTr value (Read-Only). 

and int FFF74000 AND to INTr (Write-Only). 

iorint FFF74020 OR to INTr (Write-Only). 

Data written into the variable andint at address FFF74000 is bitwise ANDed 
into the INTr, whereas data written into iorint at address FFF74002 is bitwise 
ORed into the INTr. These functions allow bits to be set or cleared without 
concern for possible errors from interrupt problems. A processor IOR-to
memory instruction would not work since the PNC might modify the INTr 
between the read and rewrite cycles. Both andint and iorint are write-only 
registers. A program can read the INTr by reading rdint at address FFF74000. 
These registers should be accessed as C shorts (16-bits), even though only the 
low byte is used. 

All eight bits are saved in the low-order byte of an ALU register. An attempt 
to read the INTr actually references that register instead. The ALU register is 
also used to restore the real INTr after certain protection-checking functions in 
the microcode. 

A-10 



Inside the Butterfly Plus PNC Microcode Functions 

The microcode reset code turns on the red LED located on the processor node 
card. A ROM bootstrap program, the Ultra-Simple Debugger (USO) turns off 
the light to indicate that the node is in service. If the node goes out of service 
the light will be turned on to indicate which processor node is having the 
problem. 

Bits 1 and 2 are used exclusively by the microcode; do not change them. Bits 
0, 3, 4, and 5 are control interrupts to the processor. If any of these bits are 
cleared, an interrupt is caused on that interrupt level. Except for level 7 inter
rupts, the operating system must logically clear (really set) the appropriate 
interrupt request bit in each interrupt service routine, otherwise the interrupt 
will immediately recur when the routine terminates. Level 7 requests are 
automatically cleared by the PNC (or the processor) just as the interrupt rou
tine is being initiated, thus the level 7 handler must be written to be reentrant. 
Level 7 events occuring while the handler is running will cause nested inter
rupts; otherwise such events might be lost completely. 

Interrupt requests can be lost if a second request occurs before the previous 
request at the same level has been serviced. You are safe if you do not initiate 
any action that can result in an interrupt until you have logically cleared the 
corresponding interrupt bit. 

There is a microcode routine that provides an interrupt vector to the processor 
for all external interrupt conditions. The processor requests a vector for a 
specific interrupt level. Levels 1, 2, 5, 6, and 7 are assigned in the microcode 
to coincide with the processor interrupt auto-vector of the corresponding 
level. Levels 3 and 4 use an interrupt vector provided by an I/0 board (if 
valid, otherwise the auto-vector is used). The full 16-bit interrupt vector sup
plied to the processor is stored by the microcode in the intVEC array in main 
memory, with one entry per interrupt level (1-7). Currently, this array is of 
little interest except for I/0 interrupts. 

ATOMIC CLEAR-THEN-ADD 

The PNC supports a 16-bit clear-then-add-to-memory function, w_hich can be 
used as an atomic add, atomic, and or atomic or function on any 16-bit 
memory location (which must be 16-bit aligned). The function first saves the 
old value of the location (to be returned to the caller as oldvalue), ands the 
mask value to the location, then adds the incr value to the location. All of 

A-11 



PNC Microcode Functions Inside the Butterfly Plus 

these operations are guaranteed to complete before any other memory opera
tions are permitted, and so are atomic. 

The clear-then-add function is triggered by writing the physical address of a 
control block to the location addmem (at location FFF76000). The caller can 
then read the result (previous value of the location) from the oldvalue entry of 
the control block. 

struct PNC am { 
short *am addr; /* physical address of target location */ 
short mask; /* value to and to target location */ 
short incr; /* value to add to target location *I 
short oldvalue; /* previous value of target location */ 
} 

LOCAL BANK 0 MEMORY·ACCESS 

The first 64-kilobytes of local memory are accesible through the PNC at loca
tions FFFOOOOO-FFFOFFFF. Since this memory is accessed through th~ PNC, 
the access time is much slower than normal direct access. This function is 
only present to simplify some difficult problems that occur during power on 
initialization, and should not normally be used otherwise. 

OTHER KERNEL FUNCTIONS 

This section describes PNC microcode functions that support the operating 
system kernel, and involve kernel mode access to control blocks or other data 
located in physical memory in the range 0-64 kilobytes. The manipulation of 
true virtual addresses is not possible in these functions, and only very limited 
error checking is provided. To initiate one of these functions, the supervisor 
provides the 24-bit physical address of a parameter block in local memory via 
a movl instruction. The parameter block can have various formats, depending 
on the function involved. Sometimes results are returned in the parameter 
block, and sometimes various data structures are modified. If errors are possi
ble, error codes are returned in the parameter block. The functions run as 
uninterruptable units, which is their primary reason for existence; their speed 
advantage, though possibly significant, is secondary. Table A-7 lists the 
available functions. The particular function to be performed depends on· 
where the address of the parameter block is stored. The locations are write
only. 

A-12 



Inside the Butterfly Plus PNC Microcode Functions 

Table A-7 
Microcode Functions 

Function Name 

PNC_enq 

PNC_deq 

PNC_push 

PNC_rem 

PNC_cTx 

PNC_cTa 

Address Description 

FFF77000 Enqueue block on the end of a queue. 

FFF77004 Dequeue (pop) block from the beginning 

of a queue. 

FFF77008 Push block onto the beginning of a queue. 

FFF7700C Remove specified block from anywhere 

on a queue. 

FFF77010 Clear-then-XOR specified bits in memory 

word; save old value. 

FFF77014 Clear-then-add specified bits in memory 

word; save old value. 

The PNC microcode occupies approximately 1,200 words of the available four 
kilowords of 64-bit micromemory. The functions described here are the 
lowest level facilities of the processor node. Most of these functions will 
never be invoked by application programmers, who use higher-level operating 
system functions. 

Enqueue, Dequeue, Push, and Remove 

In microcode function control blocks, some parameters are returned by the 
microcode and others are supplied by the caller. The queuing functions 
expect queued items to have the address of the next element on the queue (or 
0 if this is the last element) at byte offset 2, and arbitrary data at offset 4. The 
microcode uses only the word at offset 2. The enqueue and push functions set 
and maintain the contents of that word; dequeue and remove use it, but do not 
modify it. The data in the word at byte offset 0 is established and used only 
by the processor. 

The queue header has the address of the first element on the queue (or 0 if the 
queue is empty) at byte offset 2 and the address (0-FFFF) of the last element 
on the queue (or arbitrary data if the queue is empty) at offset 6. The parame
ter block for the enqueue/push functions has the address of the queue header 
at byte offset 2 and the address of the element to add at offset 6. The 

A-13 



PNC Microcode Functions Inside the Butterfly Plus 

parameter block for the dequeue(pop )/remove functions has the address of the 
queue header at byte offset 4 and returns the address of the element that was 
removed from the queue (or 0 if the queue was empty) at byte offset 6. (For 
remove functions, this address is supplied by the processor, and is cleared if 
the element is not found.) No validity checking is attempted for these param
eters. 

Clear-Then-XOR and Clear-Then-Add 

The PNC clear-then-XOR (P:\C _ cTx) and clear-then-add (P:\C _ cTa) functions 
are used to modify a word in memory and read back the old value at the same 
time. PNC cTx and PNC cTa operate on the first 64-kilobytes of local F8 - -
memory only. Use of these functions avoids problems in handling interrupts. 
The old word is read from memory and stored in the parameter block. Bits 
specified in the parameter block mask word are then cleared from the value of 
the old word, the parameter block data word is XORed (or added) to the result, 
and the word is stored back into memory. Parameter blocks for either of these 
functions contain the address of the word to modify at byte offset 2, a word 
containing the mask of bits to clear at offset 4, and a word containing a mask 
of bits to XOR or add to memory at offset 6. Both functions return the old 
value of the specified word at offset 8. The functions can be used to exchange 
bits, bytes, or entire 16-bit words. They can also be used to XOR, AND, IOR, 
add to memory, etc. 

The misc Register 

The misc register in the PNC has three sections, the local node match register, 
a switch path enable selection section, and a switch message header checksum 
section. Bits 15-8 contain the node number used to match "local" addresses, 
bits 7-4 are used for path enable selection, and bits 3-0 for the header check
sum. The processor can only set this register as a whole - it cannot set one 
field that is independent of the others. The operating system therefore keeps a 
copy for use in updating the fields separately. The misc register is available at 
address FFF72000. 

Interprocessor Interrupts and Resets 

To request a remote processor level 7 interrupt, store the processor number, as 
a byte, into rrint7 (address FFF71000). This operation is not really useful as 

A-14 



Inside the Butterfly Plus PNC Microcode Functions 

a high bandwidth signaling mechanism, since the remote processor's supervi
sor pushdown list could overflow if too many level 7 interrupts arrived at 
once. To request a remote processor level 5 interrupt, store the. processor 
number, as a byte, into rrintS (address FFF71004). To request a remote pro
cessor level 2 interrupt, store the processor number, as a byte, into rrint2 
(address FFF71006). 

To request a remote processor reset, store the processor number, as a byte, 
into rreset (address FFF71002). This method of reset, however, should be 
used only in emergencies, as it will completely invalidate the state of the 
remote processor and its PNC in the course of restarting the remote operating 
system. Although main memory is preserved across the reset, the operating 
system re-initializes parts of memory during the restart; therefore, important 
debugging information can be lost. The reset always succeeds (unless there is 
a hardware malfunction). The identity of the processor that last reset a given 
processor can be read, as a byte, from rrpnn in the processor that was reset 
(address FFF71000). 

PNC Status Register 

The PNC Status Register includes various bits that are useful for diagnosis of 
bus errors, resets, switch errors, etc. All of the bits except P:\C _pwr _low are 
cleared automatically when the PNC status register is read, so they must be 
processed at once. Table A-8 lists the PNC Status Register bit assignments. 
The register is named PNCsRC, and is at location FFF75000. 

When power starts to fail, the processor gets a level 7 interrupt; the handler 
must check P:\C _plvr _int and take appropriate action. A second bit, 
P:\C pwr low, is also set and is not cleared; it prevents multiple level 7 inter-- -
rupts. When the processor has done what it can about the situation, it should 
halt (the way to halt is to make the supervisor push-down list inaccessible, 
then cause a bus error). The microcode will set P:\ C _halt_ reset, clear all the 
other bits, put memory in auto-refresh mode, and start to reset. Reset cannot 
succeed until power is normal again. If power goes all the way down and 
comes back later, the power supply will initiate- a new-power type reset, 
which will clear P1'C halt reset. - -

A-15 



PNC Microcode Functions Inside the Butterfly Plus 

Table A-8 
PNC Status Register (PNCsAC at FFF75000) Layout 

Name Hex Value Description 

PNC _pwr _low 8000 PNC power is low. 

PNC _pwr _int 4000 PNC power just went low. 

Generates a level 7 interrupt request. 

2000 Unassigned. 

PNC _rm Perr _int 1000 Remote memory read reply had an error. 

Generates a level 7 interrupt request. 

PNC_rep_long 0800 Waited too long to receive a reply. 

Generates a bus error. 

PNC_req_long 0400 Waited too long to send a request. 

Generates a bus error. 

PNC_unex_reply 0200 Receiver got an unexpected reply message. 

PNC_ack_hce 0100 Error detected in header checksum. 

PNC_ack_err 0080 Error detected in acknowledgement message. 

PNC_req_err 0040 Error detected in request message. 
-

PNC_vlm_err 0020 Error detected in variable length message, 

0010 Unassigned. 

PNC_unimpl_fnc 0008 Unimplemented misc function. 

PNC_unimpl_int 0004 Unimplemented processor request. 

Generates a bus error. 

PNC _halt_reset 0002 Processor halted, initiating a reset. 

PNC_unspec_int 0001 Unspecified microinterrupt occurred. 

Generates a bus error. 

PROCESSOR NODE NUMBER 

The PNC maintains the processor node number in two different registers. One 
copy of this number is maintained in the upper byte of the misc.register (q.v.), 
which controls which memory accesses are considered to be ''local". The 
other copy is kept in the switch transmit interface, and is the number used in 
sending switch messages. Normally, these two registers must contain the 
same value. The switch interface node number is an 8-bit register called pnn. 

A-16 



Inside the Butterfly Plus PNC Microcode Functions 

It may be read or written at location FFF73000. Correct setting of pnn and 
misc is normally the responsibility of the power on initialization code in the 
boot EPROM. Users should avoid changing these values. (Note that readers of 
pnn should be aware that the C programming language often sign-extends 8-
bit variables, although node numbers are normally considered to be unsigned 
values.) 

PNC WRIT ABLE CONTROL STORE CONTROL 

The PNC microcode control store is downloadable from the MC68020. The 
initial microcode is loaded into the PNC from the boot EPROM by the power up 
initialization code. The operating system may load its own custom version of 
the microcode during system boot. The PNC must be disabled while micro
code is being loaded (this is its state after a reset). To load the PNC micro
code, the following steps must be followed: 

1. Reference PNCOdis to stop the PNC. 

2. Reference PNCOdis to set the load address to 0. 

3. Write the high half (32 bits) of the microcode word to WCShigh. 

4. Write the low half (32 bits) of the microcode word to wcslow. 

5. Reference WCSincr to advance to the next microcode address. 

6. Repeat steps 3-5 until all the microcode has been loaded. 

7. Reference PNCOdis to reset the microcode address to 0 (start location). 

8. Reference PNCenb to enable the PNC, which now starts executing micro
code from location 0. 

Table A-9 lists the PNC writable control store registers. 

A-17 



PNC Microcode Functions Inside the Butterfly Plus 

Table A-9 
PNC Writable Control Store Control Registers 

Name Address Function 

PNCOdis FFF88000 Disables PNC, sets uaddr=O. 

WCSincr FFF88004 Increments uaddr for WCS loading. 

PNCenb FFF88008 Enables PNC (at whatever uaddr was last set). 

WCSlow FFF88010 Write-only low 32-bits of current .uaddr. 

WCShigh FFF88014 Write-only high 32-bits of current uaddr. 

REAL-TIME CLOCK 

The PNC maintains a 32-bit elapsed-time clock on every processor node. This 
clock has a resolution of 62.5 microseconds, and wraps around approximately 
every three days. This clock may be read or written (as a 32-bit qµantity 
only) as rte, at location FFF7BOOO. (Note that setting the real-time clock reli
ably can be difficult. Contact Butterfly Software Support if you need to know 
how to do this correctly. This is normally performed by operating system ini
tialization.) 

INTERVAL TIMER 

The PNC maintains a 16-bit interval timer (related to rte), which is available 
for use by the operating system. Writing to two locations controls the timer: 
writing a 16-bit value to sltime (at location FFF7COOO) sets the interval timer 
to the value, if less than the current remaining time, or does nothing if longer. 
The location iltime (at FFF7C0002) behaves similarly, but will only increase 
the timer value. When the timer expires, the PNC requests a level-2 interrupt 
to the MC68020, and resets the timeout value to its maximum (about 4 
seconds). The timer value is maintained in 62.5 microsecond ticks (as is 
maintained by rte). 

DIAGNOSTIC UART 

The processor node contains a 2681 DUART and RS-232 drivers to communi
cate with a diagnostic console. The address of the DUART is FFF80000, with 
the DUART's 8-bit wide registers being accessed as the upper byte of 

A-18 



Inside the Butterfly Plus PNC Microcode Functions 

successive 16-bit locations. See the Signetics SCN2681 data sheet for pro
gramming information. This data sheet may be found in the Signetics MOS 
Microprocessor Data Manual 1983. 

LOCAL MEMORY CONTROL REGISTERS 

Four local memory control registers are located on each processor node. 
While not controlled by the PNC, these registers are used to control the 
onboard memory. For historical reasons, they are given· as offsets from a base 
location (mer, at FFF84000). Except for MCR_PAR_CLR, the value read or 
written to the location is irrelevant; only the reference to the address is impor
tant. The sign bit of MCR_PAR_CLR is set if the memory system has had a 
parity error since the last MCR_PAR_CLR access. Referencing 
MCR_PAR_CLR resets the parity error latch. The memory system is 
automatically disabled and placed into auto-refresh mode by a node reset. 
The boot EPROM enables the memory system during power-up initialization. 
Table A-10 lists these control registers. 

A-19 





Appendix B 

Physical Mem~~y Map 

Physical addressses on the processor node card are decoded accorded to the 
following table. Note that the signal PA32 is true when bits <31. .. 24> of the 
logical address all ones. 

B-1 



Device Physcial Address Comments 

32 31 ... 24 23 ... 16 15 ... 0 fc<2 ... O> 

Address x x x 3 
Trap 

Interrupt x x x 7 
Acknowledge 

EPROM 0 x 0 6 (supervisor Boot Vector 
program) 

0 xxxxxxxx 00000000 OOxxxxxx xxxxxxxx 

Local RAM 0 pn x !3& !7 

Remote RAM 0 !pn x !3 & !7 

EPROM x FC-FD !3 & !7 PROM 

xxxxxxxx 111111xx xxxxxxxx 
Execution 

xxxxxxxx 

UART x FS ox xx !3 & !7 
xxxxxxxx 11111000 OOxxxxxx xxxrrrrx Registers 

decoded in chip 

Memory Control x FS 1xx.x 13& !7 

Refresh On xxxxxxxx 11111000 01xxxxxx ooxxxxxx 
Read Error xxxxxxxx 11111000 01xxxxxx 01xxxxxx 
Register 
Refresh Off xxxxxxxx 11111000 01xxxxxx 10xxxxxx 

Control Store x FS 2xxx !3& !7 
Zero-Disable xxxxxxxx 11111 Oxx 1 Oxxxxxx xxxOOOxx 
Increment xxxxxxxx 11111 Oxx 10xxxxxx xxx001xx 
Enable xxxxxxxx 111110xx 10xxxxxx xxx010xx 
Write Low xxxxxxxx 11111 Oxx 10xxxxxx xxx100xx 

Write High xxxxxxxx 11111 Oxx 10xxxxxx xxx101xx 
Read Low xxxxxxxx 11111 Oxx 10xxxxxx xxx110xx 

Read High xxxxxxxx 11111 Oxx 10xxxxxx xxx111xx 
PNC Functions x F7 !3& !7 d .. dispatch 

xxxxxxxx xxxx0111 ddddxxxx xxxxxxxx address 

BIO Functions x F6 !3& !7 

xxxxxxxx xxxx0110 xxxxxxxx xxxxxxxx 

Multibus Memory Multibus bits ES 13& 17 
Unswapped 23-16 
Multibus Memory Multibus bits F5 13 & !7 
Swapped 23 -16 

aaaaaaaa xxxs0101 a=aaa aaaaaaaa a .. Multibus 
address 

s .. swap 
Multibus 1/0 
Unswapped x E4 13& 17 

Multibus 110 
Swapped x F4 13& !7 

xxxxxxxx xxxs0100 aaaaaaaa aaaaaaaa a. Multibus 
address 

s-swap 
Local Memory x FO 13& 17 
Banko 

I indicates not used. 



Bibliography 

1. Bipolar Microprocessor Logic and lnte1face Data Book, Advanced Micro 
Devices, Inc. (901 Thompson Place, P.O. Box 453, Sunnyvale, Calif. 
94086, 1981). 

2. Butterfly Parallel Processor Chrysalis Programmer's Manual, Version 
4.0, BBN Advanced Computers Inc. (Cambridge, Mass. 02238, 1987). 

3. EXOS 201 Ethernet Front-End Processor for Multibus Systems Reference 
Manual, Revision B, Excelan, Inc. (2180 Fortune Drive, San Jose, Califor
nia, 95131, 1985). Publication Number: 42000006-00. 

4. Harbison, Samuel P. and Steele, Guy L., Jr. C: a Reference Manual, 
Prentice-Hall, Inc. (Englewood Cliffs, N.J., 07362, 1987). 

5. IEEE P1014/Draft 1.2 and !EC 821 Bus Standards, The Institute of 
Electrical and Electronics Engineers, Inc. (345 East 47th Street, New 
York, NY, 10017, 1983). 

6. IEEE Standard Microcomputer System Bus (!EEE Std 796-1983 ), The 
Institute of Electrical and Electronics Engineers, Inc. 
(345 East 47th Street, New York, NY, 10017, 1983). 

7. Kernighan, Brian W. and Ritchie, Dennis M., The C Programming 
Language, Prentice-Hall, Inc. (Englewood Cliffs, N.J. 07362, 1978). 

8. MC68020 32-Bit Microprocessor User's Manual, Second Edition, 
Prentice-Hall, Inc. (Englewood Cliffs, N.J. 07632., 1985, 1984). 



Bibliography Inside the Butterfly Plus 

9. MC68851 Paged Memory Management Unit User's Manual, First Edi
tion, Prentice-Hall, Inc. (Englewood Cliffs, N.J. 07362, 1986). 

10. MC68881 Floating-Point Coprocessor User's Manual, First Edition, 
Motorola (1985). 

11. MM-9000DIJM, Revision E Users Guide, October 1985, Micro Memory 
Inc. (9540 Vassar Ave., Chatsworth, California, 91311, 1985). 

12. MOS Microprocessor Data Manual 1983, Signetics Corporation (811 East 
Arques Ave., P.O. Box 409, Sunnyvale, Calif. 94086, 1983). 

13. Programming the Butterfly Plus, BBN Advanced Computers Inc. (Cam
bridge, Mass. 02238, 1987). 

14. Steele, Guy L., Jr. Common Lisp: The Language, Digital Press (Bedford, 
Mass. 01730, 1984). 

15. The VMEbus Specification Manual, Revision C.1, October 1985, Second 
Printing, Motorola, ( 1985). 



Index 

A 
access time, memory 1-9 
acknowledgement buffer 2-13, 2-16, 

2-17 
acknowledgement buffer FIFO 2-13 
adapter 

Multibus 5-2 
VME Bus 5-1 
VMEbus 1-13 
Multibus 1-14 
VMEbus 1-16 

address 
EPROM 2-20 
physical and virtual 2-4 
virtual 5-14 

address map 5-16 
address modifier 5-15, 5-16, 5-21, 

5-23, 5-27 
address translation 2-4 
alternate path 3-13, 3-14, 3-24 
alternate paths 5-20 
andint A-9 
application libraries 6-3 
application software 1-3 
architecture 

message passing 1-1 
MIMD 1-2 
homogeneous 1-3 

ARPANET 3-16 
atomic operations 2-8, 5-25 

BBN Advanced Computers Inc. 

B 
backplane, Multibus 4-1 
bandwidth 

memory 1-10 
switch 2-11, 3-4, 3-25 

bank 0 memory 5-15, 5-16, 5-32 
bidirectional communication 3-17 
BIOLINK 1-14, 2-7, 4-1, 4-2, 4-10, 

4-11, 4-14, 4-26 
BIOLINK cable connector 2-2 
bitslice processor 2-7, 2-9 

characteristics 2-9 
block transfer A-1, A-2, 2-19, 3-12, 

3-13, 3-14, 5-2, 5-13, 5-15, 
5-18,5-23,5-24,5-25,5-26, 
5-27, 5-32 

block_copy 5-14, 5-26, 5-27, 5-30, 
5-32, 5-37, 6-19 

bootstrap EPROM 2-20 
bshell 6-1 
buffer 

acknowledgement 2-13, 2-16, 
2-17 

request 2-13, 2-16 
buffer management 6-3 
bus adapter, I/0 1-9 
bus adapter, VME 1-16 
bus error A-2 
Butterfly Plus 1/0 Link 1-14 
Butterfly Plus Scheme 6-16 

lndex-1 



Index 

Bxfers A-2 
byte swapping 4-11 

c 
C programming language 6-1 
card 

switch 1-11 
clock 1-12 

card cage, Multibus 1-7 
catch 5-33 
checksun1 2-16,2-17,3-13,3-14 
Chrysalis 

kernel functions 6-4 
Chrysalis operating systen1 3-14, 

4-5, 5-26, 5-27, 6-3, 6-4, 6-18 
clear-then-add A-14 
clear-then-XOR A-14 
clock 2-6, 5-24 

Il1aster 4-4 
realtin1e 2-10, 2-12, 5-17 
signal 1-12 
slave 1-13 

clock/reset connector 4-3 
colmnn address, men1ory 1-10 
colun1n, switch 1-11, 3-1, 3-14 
communication 

bidirectional 3-17 
communication, interprocessor 1-1, 

1-2 
complexity 3-4 
conflict, switch 3-24 
console port 2-21 
console UART 4-2 
console UART interrupts 4-7 
contention 3-12 
control blocks A-12 
control Il1essages 2-13, 2-16 
control store 2-14 
control_reg_struct 5-16 
cooperating sequential processes 6-6 
coprocessor 

floating point 1-9 
coprocessor, floating point 2-1, 2-3 
coupling, tight 1-2 
cross compiler 6-1 
crossbar interconnect 3-15 
CurQ A-4 

lndex-2 

D 
data 

scattered 6-8 
shared 6-8 

data bus, processor node 2-7 
data segn1ent 2-4 
dead states 3-13, 3-26 
deadlock 3-19, 3-27 

detecting 2-19 
preventing 2-14 
switch 3-26 

debugger, USO 2-21 
dequeue A-6, A-13 
diagnostic, power-up 2-2 
diagnostic self-test 2-2 
diagnostic UART 2-20 
direct Il1en1ory access 2-6, 2-10 
distributed architecture 1-1 
Do_bt 5-14, 5-26, 5-27, 5-30, 5-32 
downloading Il1icrocode 2-20 
dual port memory ~-10, 2-15 
dual queue A-5, A-6, A-7 
Dual queue A-8 
dual queue 6-5 

E 
e_flags A-3 
enhanced programmable cornmunica-

tion interface 4-5 
enqueue A-6, A-13 
error detection 1-10, 3-13 
event A-3, A-5, 4-18 

block 4-18 
handle 4-18, 5-18 
posting 4-18, 5-18 

event block A-3, A-4 
event handle A-3, A-5, 5-16, 5-35 
event mechanism 6-5 
event parameter block 4-19 
event posting A-3, 4-2 
expandable architecture 1-2 
external bus 5-16 

till1eout 5-17 

F 
fantail 

Ethernet 2-20 

BBN Advanced Computers Inc. 



fantail, Ethernet 1-7, 4-2 
fast Fourier transform 3-1 
file access, remote 6-4 
floating point coprocessor 1-9, 2-1, 

2-3 
flow control 3-26 
Fortran 77 6-1 
front-end machine 6-1 
future mechanism 6-16 

G 
garbage collector 6-17 
generator, 

task 6-11 
generator activator procedure 6-14 
generator, task 6-14 
generator, universal 6-14 
global memory 3-1 

H 
handle 

event 5-16 
handle, event 5-35 
heap 6-16 
high-level languages 6-1 
homogeneous architecture 1-2, 1-3 
host and console UART 1-7 
host port 2-21 
host UART 4-2 
host UART interrupts 4-7 

IEEE 1014 specification 5-1 
IEEE 754 specification 2-3 
IEEE 796 standard 1-14, 4-1 
IEEE 802.3 specification 1-16 
indicators, LED 4-26 
Indicators, LED 5-6 
indivisible operations 5-25 
input/output 6-6 
interface, null switch 4-3 
interprocessor communication 1-1, 

1-2 
interrupt A-9, A-14, 2-7 

level 4-20 
level 6 1-10 
maskable 2-7 

BBN Advanced Computers Inc. 

Multibus 4-20 
priority 2-7 
vector 2-7 
VMEbus 5-23 

Index 

interrupt control register A-9 
interrupt request, VME 5-21 
interrupt status register 4-20 
interrupt vector RAM 4-20, 4-22 
interrupt vector register 5-34 
interrupts 4-2 

Multibus 1-14, 4-2 
UART 4-7 
VMEbus 5-33 

interval timer 2-12 
intVEC A-11 
I/0 A-2, 6-6 
I/0 bus adapter 1-9 
1/0 link 1-14 
Itoset utility 5-17 

.J 
jumper settings 4-26 
jumpers, VME Bus Adapter 5-14 

K 
kernel, Chrysalis 6-4 
kernel mode A-12 

L 
languages, high-level 6-1 
LED indicators 2-2, 4-26, 5-6 
Level 5 interrupt A-14 
level 7 interrupt A-2, A-14, A-15 
libraries, application 6-3 
Lisp 6-16 

garbage collector 6-17 
heap 6-16 
language 6-14 

load balancing 6-15 
local area network 1-16 
local memory A-1, 1-2 
local memory access 1-9 

M 
main memory 1-9 
management 

buffer 6-3 

lndex-3 



Index 

memory 6-5, 6-9 
object 6-5 
processor 6-7,6-9 
storage 6-7 
stream 6-3 

manager, window 6-1 
Map_Obj 5-31 
mapping, memory 6-5 
mapping RAM 4-18, 4-19, 4-25, 

4-26 
mapping register 5-28, 5-32, 5-33 
mapping registers 5-15 
map_vme 5-32 
maskable interrupt 2-7 
mask-then-add 5-26 
master 

VMEbus 5-22 
master, clock 1-12, 4-4 
MBA Misc Register 4-26 
MC68020 processor 2-3 
measurement, performance 6-3 
memory 

bank 0 5-15, 5-16 
bankO 5-32 
dual port 2-10, 2-15 
global 3-1 
local -A, A-1, 6-8 
management 6-5 
mapping 6-5 
physical 5-14 
remote access to 1-1 
local 1-2 
main 1-9 
read access to 1-10 
shared 6-8 

memory access, local vs. remote 1-9 
memory management strategy 6-9 
memory management unit 1-9, 2-4, 

')J, "L 1 '"> 

message checksum 2-16, 2-17 
message conflict 3-24 
message passing architecture 1-1 
message, switch 3-11 
message, types of 2-13 
messages 

control 2-16 
query 2-16 

lndex-4 

microcode sequencer 2-10 
microcode subroutines 2-10 
microinterrupt priority 2-12 
micro interrupt service routine 2-10, 

2-12 
microinterrupts 2-11, 2-19 
MIMD architecture 1-1, 1-2 
misc register 

Multibus adapter 4-2, 4-4, 4-26 
Multibus 6-6 

adapter 4-1 
adapter pipeline · 4-14 
card cage 1-7 
adapter 1-13, 1-14 
interrupts 4-2, 4-7 
standard 4-1 

Multibus adapter 5-2 
Multibus adapter Misc Register 4-2 
Multibus P2 connector 4-1, 4-3, 4-4, 

4-27, 4-28 
multiprogramming 6-4 
multi-user capability 6-5 

N 
network, local area 1-16 
node 

processor 1-7 
switch 1-11 

null switch interface 4-1, 4-2, 4-3 

() 

object handle 6-5 
object management 6-5 
operating system 6-3 
orint A-9 

p 

packaging 1-19 
___ 1 __ ..__ - ·~ I ""' A 

pu.\o..A\...L, 3VV .11.\...11 J--t" 

paging 2-4 
parallel program structure 6-10 
parallel programming 6-10 
parallelizing a program 6-10 
parameter block A-5, A-12 
parameter block, event 4-19 
parity, memory 1-9, 1-10 
path, alternate 3-14, 3-24 

BBN Advanced Computers Inc. 



path enable register 3-24 
paths 

alternate 5-20 
PCB A-4 
performance measurement 6-3 
physical and virtual address 2-4 
physical memory 5-14 
PNC A-6, A-9, A-14. A-15 
PNC microcode A-12 
PNC special functions 2-8 
PNC Stat1,1s Register A-15 
PNC status register 2-19 
PNC_cTa A-14 
PNC_cTx A-14 
PNC_pb A-3 
PNC_post A-3 
portability 6-15 
posting events 4-2 
power distribution unit 1-5 
power-up diagnostic test 2-2 
power-up diagnostics 2-20 
priority of interrupt 2-7 
processor 

MC68020 2-3 
number 1-9 

processor management 6-7, 6-9 
processor node 1-7, 4-3, 4-26, 5-14 
Processor node 6-18 
processor node 

connectors 2-2 
processor node controller 1-9, 2-7 
processor node data bus 2-7 
procesure call, remote 6-4 
program development environment 

6-1 
programmable logic array 2-14 
programming, parallel 6-10 
programming tools 6-1 
p_state A-4 
push A-13 

Q 
q_fiags A-7 
quad byte 5-26 
query messages 2-13, 2-16 
queue header A-6, A-7 

BBN Advanced Computers Inc. 

Index 

R 
rack, Butterfly 1-3, 4-1 
RAMFile descriptor 6-19, 6-20 
RAMFile directory 6-20 
RAMfile routines 6-19 
RAMFile System 6-4, 6-18 
reading memory 1-10 
read-only memory 1-9, 2-7, 2-17 
real time clock 2-10, 2-12, 5-17 
receiver micromachine 2-12, 2-13 
receiver, switch 2-2, 2-14 
reliability 1-3 
remote file access 6-4 
remote memory 1-2 
remote memory access 1-1, 1-9 
remote procesure call 6-4 
remove A-13 
request buffer 2-16 
request messages 2-13 
request type buffer 2-13 
reset A-11, A-14, A-15, 1-13, 3-12, 

4-3 
RAMboot card 4-1 
restart 2-15 
restart message 2-16 
ROM 2-7, 2-17 
row address, memory 1-10 
rreset A-15 
rrint5 A-14 
rrint7 A-14 
RS-232 ports 1-7 
RxRAM 2-13, 2-15 

s 
SC02661 4-5 
scattered data 6-8 
scheduler 6-4 
Scheme 6-1 

Butterfly Plus 6-6, 6-15, 6-16 
Lisp 6-16 
User interface 6-1 7 

sequencer, microcode 2-10 
serial clock signal 5-24 
serial data signal 5-24 
serial decision network 3-1, 3-16 
server calls 6-7 
servers 6-4 

lndex-5 



Index 

service routine, microinterrupt 2-12 
shared data 6-8 
shared memory 1-1 
shell 6-1 
signal paths 3-4 
slave, clock 1-13 
slave, VMEbus 5-22 
software 

application 1-3 
special function subspace 2-4 
special functions of the PNC 2-8 
specification, IEEE 1014 5-1 
Start_bt 5-14, 5-26, 5-27, 5-30, 5-32 
status display window 6- l 7 
storage management 6-7 
stream management 6-3 
struct DUALQUE A-7 
struct PCB A-4 
struct PNC_dqpb A-5 
subroutine access 5-28 
subroutines, microcode 2-10 
subspace 0 A-15 
subspace 2 A-12 
subspace, special function 2-4 
swapping, byte 4-11 
switch 

bandwidth 2-11, 3-4, 3-25 
card 1-11 
column 3-14 
complexity 3-4 
deadlock 3-19, 3-26 
interlace 2-12 
message 3-11 
node 3-1, 3-15 
null 4-3 
packet 3-4 
performance 3-14 
receiver 2-2, 2-12 
throughput 3-24 
timeout interval 5-1 7 
transaction 3-11 
transmitter 2-2, 2-12, 2-16 

switch bandwidth 1-2 
switch message, types of 2-13 
switch port number 5-29 
switch receiver 2-14 
Symbolics 3600 6-15, 6-17 

lndex-6 

synchronization primitives 6-5 
system failure signal 5-24 
system reset 1-13 
system reset signal 5-24 

T 
task generator 6-11, 6-14 
TCP/IP 6-4 
terminal window manager 6-1 
text segment 2-4 
throw 5-32, 5-33, 5-37 
tight coupling 1-2 
tightly coupled architecture 1-2 
timeout 

external bus 5-17 
timeout interval 5-17 
timer 2-12 

watchdog 4-4, 4-26 
toset A-2 
transaction, switch 3-11 
translation, address 2-4 
translation table 5-15 
transmitter micromachine 2-12, 2-16 
transmitter, switch 2-2 
tree, clock 1-13 

u 
UART 4-20 

console 4-2 
host 4-2 
host and console 1-7 

UART, diagnostic 2-20 
UART interrupts 4-7 
UARTs 4-4, 4-5 
unaligned transfer 5-26 
Uniform System 6-3, 6-6, 6-7, 6-8 
universal generator 6-14 
Unmap_Obj 5-31 
unmaskable interrupt 2-7 
USO A-11 
USD bootstrap debugger 2-21 

v 
vectored interrupt 2-7 
virtual address 5-14 
virtual and physical-address 2-4 
VME address map 5-16 

BBN Advanced Computers Inc. 



VME bus adapter 1-16 
VME Bus Adapter 5-1 

jumpers 5-14 
VME library routines 5-36 
VME mapping register 5-33 
VME node 1-16 
VME server process 5-36 
VMEbus 6-6 

interrupt 5-23 
interrupts 5-33 

VMEbus adapter 1-13, 1-16 
VMEbus master and slave 5-22 

w 
watchdog timer 4-3, 4-4, 4-26 
window manager 6-1 
window, status display 6-17 
writing memory 1-10 

x 
X Window System, The 6-4 

BBN Advanced Computers Inc. 

Index 

lndex-7 




