EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4, EISA System Configuration

EISA provides a mechanism for automatic configuration of expansion boards and
the system board. The EISA configuration mechanism consists of the following
components:

. A software utility to configure the system board and expansion boards

. A software interface to the configuration utility that Configuration File
Extensions can use to control and customize the configuration process

. Configuration files that accompany the software utility
. Configuration files that accompany the system board and expansion boards
. Nonvolatile memory for storing configuration information

. A mechanism to save and restore a backup copy of the system configuration
information

. BIOS routines to read and write contents of nonvolatile memory

. Automatic detection and initialization of expansion boards by the system ROM
power-up routine

. 1024-byte 1/0O address space for each EISA expansion board (slot-specific)

Expansion board manufacturers include a configuration file (also referred to as a
CFG file) with each EISA expansion board, and optionally, with switch-programmable ISA
products. The configuration utility, which is provided by the system manufacturer, uses the
information contained in the contiguration files to determine a conflict-free configuration
of the system resources. The configuration utility stores the configuration and initialization
information into nonvolatile memory and saves a backup copy on diskette. The system
ROM power-up routines use the initialization information to initialize the system during
power-up, and device drivers use the configuration information to configure the expansion
boards during operation.

294 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.1 Devices Supported by Automatic Configuration

EISA systems provide automatic configuration for expansion boards plugged into
the expansion bus, peripheral devices built into the system board, and software drivers that
use system resources, such as an expanded memory (LIM EMS) emulator. The following
information provides an overview of the mechanism used for automatic configuration of
the devices.

4.1.1 Expansion Boards

Expansion boards install into EISA and ISA bus connectors. Each bus connector is
referred to as a slot. The bus connectors are numbered sequentially from 1 to "n" (with 15

as a maximum "n"). For example, an EISA system with 7 bus connectors has slots
numbered from slot 1 to slot 7.

4111 EISA Expansion Boards

Each EISA slot has I/O address decoding hardware that provides the installed
expansion board with a unique, 1024 byte, slot-specific I/O address space. EISA expansion
boards use the slot-specific 1/O address space for I/O registers (i.e., configuration and
operational registers). The EISA system ROM uses configuration information from
nonvolatile memory to initialize the configuration registers during power-up.

Refer to the section entitled Expansion Board Address Decoding and the one
entitled System Board Slot-Specific 1/O, of this specification for detailed information on
the slot-specific I/O ranges.

An EISA expansion board must contain a readable product ID and must support the
expansion board control bits ENABLE and IOCHKERR. Refer to the section entitled
Expansion Board Control Bits and the one entitled EISA Product Identifier of this
specification for detailed information.

41.1.2 ISA Expansion Boards

The EISA configuration utility also aids in configuration of ISA expansion boards
that provide a configuration file. The utility uses the information from the configuration
file to determine the correct switch and jumper settings and 1/0 port initializations for ISA
expansion boards. The configuration utility displays the proper switch and jumper settings
to the user.

ISA initialization and operational registers must occupy the ISA compatible
expansion board I/O space (100h-3FFh). ISA systems do not support the EISA slot-
specific I/O ranges. The EISA system ROM power-up routines automatically initialize the
ISA registers that are specified in the configuration file.

4.1.2 System Board
Peripherals integrated onto the system board require automatic configuration

support similar to expansion board peripherals. System board peripherals can be designed
to use EISA slot-specific I/O ranges and the ISA system board I/O range.

Revision 3.10 295

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC,

4.1.21 System Board Peripherals That Use Slot-Specific I/O Space

A system board peripheral that uses slot-specific I/O is functionally similar to an
expansion bus periEheral, but it is integrated onto the system board rather than installed in
a bus connector. EISA automatic configuration treats the system board peripheral as an
expansion board peripheral, except that it is referenced as an "embedded device."

4.1.2.2 System Board Peripherals That Use System Board I/O Space

System board peripherals that use ISA expansion board I/O space (100h-3FFh) can
be treated as "virtual devices." The configuration utility stores the configuration and
initialization information for "virtual devices" in nonvolatile memory during configuration.
The system ROM automatically initializes the virtual device during power-up.

41.3 Software Drivers That Require System Resources

Software drivers that require system resources (i.e., memory allocation) are also
treated as "virtual devices." Twoexamples include, a software driver that emulates
exganded memory (LIM EMS) requires memory allocation for the page frame, or a
SO twfare driver that requires a buffer which memory allocation to store data during a data
transfer.

296 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.2 Configuration Utility

The EISA system manufacturer is responsible for supplying a configuration utility.
The configuration utility uses configuration files to resolve conflicts in assignment of system
resources such as interrupt levels and DMA channels. The configuration utility also
extracts initialization information that is used for system board and expansion board
initialization. The information is stored in nonvolatile memory and a backup is saved on
diskette.

The type of nonvolatile memory and method of writing the data is not included in
the EISA standard and is determined by the system manufacturer. The system
manufacturer also provides BIOS routines to initialize the expansion boards with the
information stored in nonvolatile memory. The BIOS routines also read configuration
information from nonvolatile memory for device drivers and other system software.

All references to the configuration utility included in this specification refer to the
configuration utility available from Micro Computer Systems, Inc. of Irving, Texas.

The configuration utility is used to configure an EISA computer. The configuration
process provides the following functions:

. Read and parse configuration files
. Automatically allocate resources to create a conflict-free system

J Saves, configuration to diskette, which allows a common configuration to be
ported to other similarly-configured machines

. Write configuration information into nonvolatile memory

System board and expansion board products can include CFG File Extensions that
extend the capabilities of the configuration utility and customize the configuration process.
For example, a CFG File Extension can be used to detect options installed on an expansion
board, to accept and process user input (other than menu selections), or to write
configuration information to non-EISA nonvolatile memory.

Revision 3.10 297

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.3 Configuration Files

The configuration files contain the expansion board ID, system resource
requirements and initialization information for system board or expansion board devices.

The initialization information provides data for power-up initialization. The
configuration utility stores the appropriate 1/O port initialization information in
nonvolatile memory. The system ROM reads the information from nonvolatile memory
during power-up and initializes the I/O ports.

System resource requirements include memory, I/O ports, interrupts, and DMA
channels. The configuration utility verifies that system resource selections do not conflict
with resource allocations already selected for other devices. The configuration utility then
stores the appropriate system resource information in nonvolatile memory. The system
ROM reads the information from nonvolatile memory during power-up and initializes the
devices and expansion boards.

A device driver can use a BIOS routine Call to determine the proper expansion
board initialization and to determine the system resource configuration.

A software driver can use the BIOS routines to identify the functions of expansion
devices and the resources allocated to the devices. The driver can determine the contents
of each slot, its functions, the initialization information, and the system resources allocated
for each function.

4.3.1 Configuration File Extensions

System board and expansion board products can include CFG File Extensions (also
called overlay files,) that customize the configuration process. 2

CFG File Extensions can be used to determine the installed hardware by reading
from the hardware registers or other means. For example, the overlay may detect the
presence of floating point coprocessors, disk drives (and determine drive type), or total
amount of memory installed on a memory expansion board.

The overlay can control the configuration of a system board or expansion board. It
can access the hardware, provide the user interface and process the user-specified
configuration selections. Or the overlay can provide a limited set of configuration services
and rely on the configuration utility to perform its normal functions.

Interaction between the configuration utility and the CFG File Extension is specific
to the utility. _Therefore, the CFG file extension must be written such that it uses the
calling conventions and interface handling routines recognized by the utility.

2 A specification for CFG File Extensions is available from Micro Computer Systems, Inc. of Irving, TX. It describes
overlays specific to the utility that allow system manufacturers to customize the configuration process.

298 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.3.2 Expansion Board ldentifier (Product ID)

The expansion board identifier (product ID) is a unique product identification code
that can be read by the system ROM or other software to identify or locate an expansion
board. Information that can be combined in an expansion board ID includes the
manufacturer's ID, product number and revision level. e exact method for selecting an
expansion board ID is described in the section entitled, Product Identifier (ID).

EISA expansion boards must contain a readable product ID. The power-up routines
use the ID to determine the slot in which the expansion board is installed. The expansion
board is then programmed by the system ROM with the configuration parameters that are
stored in nonvolatile memory.

ISA expansion boards should have a product ID provided in the configuration file.
The product ID may or may not be readable. An expansion board ID is recommended for
ISA expansion boards since it can be stored in nonvolatile memory with other
manufacturer-specified information, such as the initialization information and resource
requirements. The data stored in nonvolatile memory can then be accessed by software
drivers to determine the expansion board configuration.

4.3.3 I/0 Port Initialization Information

The configuration file contains I/O port initialization information necessary to
configure an expansion board. The I/O port initialization information specifies the 1/O
port addresses and values for each alternative configuration.
4.3.4 System Resource Requests

~ Devices that require system resources include the resource request in the
configuration file. The CFG file can contain requests for the following system resources:

. Memory--the amount of memory supported, starting address, whether it is
writable or cacheable, and initialization parameters required

° I/0 ports-port addresses and initialization parameters required

. Interrupts--interrupts supported, whether the interrupt can be shared, whether
it is edge- or level-sensitive, and any initialization parameters required

. DMA channels--the choice of DMA channels, whether the channel can be

shared, the channel's data size, the channel'’s cycle timing, and any initialization
parameters required

Revision 3.10 299

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.4 Configuration File Filenames

The filename of an EISA or ISA configuration file consists of an exclamation point
followed by the product ID and a filename extension, CFG. The exclamation point must
be included as the initial character of all CFG filenames. Valid filenames have the
following format:

'ACE1234.CFG 'XYZ5678.CFG 'ABC0000.CFG

The filename convention is the same for a system board, expansion board,
embedded device or virtual device. For example, an expansion board with a product ID of
ACEO0101 has a configuration file named !ACE0101.CFG.

The expansion board manufacturer should ensure that the configuration file
filename is updated to reflect revisions to the expansion device. For example, a product
with an ID of ACE101 may have a configuration file named !ACE(0101.CFG. A
subsequent revision of the product would have an ID of ACE102. Therefore, the
configuration file should be named !ACE(0102.CFG. This ensures that the appropriate
CFG file is loaded for the device.

The configuration utility includes a mechanism to manage duplicate IDs. For
example, the configuration files for two expansion boards with ID ACE1234 installed in the
same system could be renamed when copied to the configuration diskette: the first
configuration file detected is copied to 'ACE1234.CFG the second configuration file
detected is copied and renamed from 'ACE1234.CFG to 1ACE1234.CFG. The next one is
renamed to 2ACE1234.CFG.

300 Revision 3.10

- =~

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.5 The Configuration Procedure
EISA system configuration requires the following hardware and software:

An EISA computer system

The EISA system board configuration file

The configuration utility

Optionally, EISA expansion boards and configuration files
Optionally, ISA expansion boards and configuration files
EISA or ISA Configuration File Extensions (where needed)

The following procedure describes an example configuration process for an EISA
system with EISA and ISA expansion boards. This example configuration requires a
bootable EISA computer with a display, keyboard and floppy diskette attached.

Start the procedure with the computer power switch "OFF."

Install EISA boards in the computer to allow "automatic detection” of the devices.
Insert the configuration utility diskette.

Turn the computer power switch "ON," booting from the configuration utility diskette.

Use the configuration utility commands to copy each configuration file and CFG File
Extension to the configuration utility diskette. The configuration utility automatically
renames the CFG files from expansion boards with duplicate IDs.

Let the configuration utility automatically select a conflict-free configuration. The
user may override the automatic selections.

Set the switches on ISA expansion boards to the positions indicated by the
configuration utility.

Turn the computer power switch "OFF" and install the ISA expansion boards in the
expansion slots as indicated by the configuration utility.

Remove the configuration utility diskette.

Turn the computer power switch "ON" to the configured system, booting from the
normal boot device (for example, the fixed disk).

Incorporate the software options into the operating system startup files as indicated
by the configuration utility. The startup files can execute programs that require
command line parameters (for example, /s, /g). The contiguration utility indicates
the proper parameters. For example, the configuration utility lists entries for the
CONFIG.SYS and AUTOEXEC.BAT files of an MS-DOS operating system.

Reboot the system.

4.5.1 Configuration File Syntax

The following sections specify the syntax conventions used in this document and for
configuration files.

Revision 3.10 301

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.5.2 Symbol Conventions
The configuration file syntax uses the following special symbols.
{} Empty braces indicate a null value.

\ The backslash within a text field identifies an embedded character. Embedded
characters include the \t for up to an 8-space tab (or to the next tab stop), \n
for a line feed, \" for quotation marks, and \\ for a backslash.

\t Embeds a tab within text.
Tab stops are: 1,9, 17, 25, 33, ...

\n Replaces \n with a carriage return, line feed. The configuration utility
automatically wraps text at the right margin to the next line (word wrap) for
free-form text fields.

\" Embeds a quotation mark character within text that has quotation marks
delimiting the entire field.

\\ Embeds a \ (backslash) character within text.

Information enclosed in quotation marks is free-form ASCII text. The text can
contain embeqldgd characters, including tabs and line feeds. Quotation marks
can be used within a text field by entering a \".

The dash (hyphen) separates the minimum and maximum values in a range.

| The vertical bar is equivalent to an OR statement. Items separated by a vertical
bar (|) indicate that only one of the items is allowed.

space A blank space is equivalent to an AND statement. Information separated by a
space indicates all items are included. The space serves to group items of an
inclusive list. For example, the statement (x and y) or (y and z) is denoted:

xylyz

; The semicolon precedes comments in the configuration file. The configuration
utility ignores text that follows the semicolon (up to the end of the line).

302 Revision 3.10

4.5.3

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Numerical Value Conventions

Numerical values within a configuration file must adhere to the following

conventions:

4.5.4

All numerical values are assum.e‘d to be decimal unless otherwise indicated.
Decimal values can include a trailing d or D.

Binary port values must be written with the MSBit on the left and may include
a trailing b or B. A"1" or "0"in a bit position indicates the bit value.

Decimal fractions are not allowed.

Address values may be expressed as megabyte (indicated by an M suffix),
kilobyte (indicated by a K suffix), or byte (no suffix). Values for megabytes or
kilobytes must be given in decimal units but cannot include a trailing d or D.
FI%rd example, two kilobytes can be represented either by 2K or 2048d, but not by
2Kd.

Hexadecimal values must include a trailing h or H. In the case of hexadecimal
values that begin with an alpha character, such as C68h, the value must also
have a leading 0 (zero). And when noting slot-specific EISA port addresses, the
value must be preceded by a 0Z (zero Z). For example, slot-specific port C80h
would be represented as 0ZC80h.

Anx in a binary value indicates the bit is not used or a don't care.

An r in a binary value indicates the hardware register must be read and the
actual bit value masked into the "r" bit position.

An n in a binary value for a tripole jumper indicates the jumper is not installed.

Keyword and Field Specification Conventions

Within this document the following conventions are followed when describing the

configuration file.

Value

{}

List

Rangelist

Valuelist

indicates that an ASCII string or number is required in this field; any
numerical unit format can be entered for a value.

may be selected to indicate that none of the resource selections are
used.

indicates that a set of resource selections can be included in the field,
each delimited vertical bar ([, logical OR).

indicates that a set of resource address range selections or lists can be
included in the field, each delimited by a vertical bar (|, logical OR).

indicates that a set of values can be included in the field, each
delimited by a vertical bar (|, logical OR).

Revision 3.10 303

textlist

Switchlist

Jumperlist

Bitlist

parameterlist

(]
CAPS

italic

ASCII text

(Optional)

304

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

indicates that a set of ASCII values can be included in the field; the
textlist must be contained within double quotes, with each string
delimited by a space.

indicates that a set of switches can be included in the field, each
delimited by a space. A switchlist can also comprise a range of
switches.

indicates that a set of jumpers can be included in the field, each
delimited by a space. A jumperlist can also comprise a range of
jumpers.

indicates that a set of bit positions can be included in the field. A
bitlist can also comprise a range of bits.

indicates that a set of ASCII values can be included in the description
field of a software statement; the parameterlist must be contained
within double quotes, with each string delimited by a vertical bar
(], logical OR).

Items within square brackets are optional.

Keywords are indicated by all capital letters. For example, BOARD,
ID, NAME, and COMMENTS are keywords and are indicated by all
capitals.

Italic text used in the syntax provides descriptive information about
the indicated field. For example, names, values, lists and ranges are
indicated by italic text.

ASCII characters 20-255h are valid for fields that require ASCII text.
Null strings are allowed.

When used within a statement title, indicates that the statement

prov;’des additional information, but is not required in the
configuration file.

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6 Configuration File Format

A configuration file consists of a board identification block, one or more
initialization information blocks, and one or more function statement blocks. The
configuration file begins with a board identification block, which provides the name and ID
of the board as well as slot information. The initialization information blocks include the
values to initialize I/O ports and for ISA boards, information about jumper and switch
settings. The function statement blocks specify the resource requirements of the functions
of the board. Additionally, CFG files for system boards may include a system description
block (following the board identification block), which icludes information specific to the
system board.

Every configuration file must include the board identification block. The
initialization information blocks and function statement blocks are optional, but must be
included to utilize automatic configuration.

The configuration file has the following structure:

Board Identification Block

Board Identification and Slot Information
[System Description Block]
[Initialization Information Block

1/0 port requests

Switch and jumper settings

Software initialization information]
[Function Statement Block

Configuration Selections

[Resource requirements]]

[Function Statement Block
Configuration Selections
[Resource requirements])

4.6.1 Board Identification Block

Each configuration file must begin with a board identification block. Four required
fields must be included in the board identification block to provide the basic ID
requirements of the board; optional fields can be included to provide additional board

identification information.

~ System boards require special configuration files and are covered in the section
entitled, System Board Configuration File.

Revision 3.10 305

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The board identification block has the following format.

BOARD
ID = "7-character ID" :Product ID
NAME = "descriptive name"
MFR = "manufacturer name"
CATEGORY = "3-character category"
[SLOT = ISA8|ISA16|ISA8OR16|OTHER | EISA| VIR |[EMB[(n)] [,"text"]...]

LENGTH = value] ;In millimeters

AMPERAGE = value] ;SV current used, in mA

SKIRT = YES | NOJ

READID = YES | NOJ ;:Readable product ID
[BUSMASTER = value ;Maximum acceptable latency (inus)

IOCHECK = VALID | INVALID]

[DISABLE = SUPPORTED | UNSUPPORTED)]
COMMENTS = "general information")

HELP = "help information"]

BOARD Statement (Required)

Syntax:
BOARD

The BOARD statement identifies the beginning of the Board Identification Block.

ID Statement (Required)

Syntax:
ID = "7-character ID"

The ID statement contains the seven-character expansion board ID. The ID is the
uncompressed, ASCII representation of the product ID (see the section entitled,
EISA Product Identifier, for information on compressed IDs). The seven-character
ID consists of a three-character manufacturer code, a three-character hexadecimal
product identifier, and a one character hexadecimal revision number. For example,
the second revision of an expansion board manufactured by the ACME board
company might have an uncompressed ID such as ACE0102.

NAME Statement (Required)

Syntax:
NAME = "descriptive name"

The NAME statement contains text that identifies the product. Part numbers and

other information may also be included. The NAME text field can contain up to 90 ASCII
characters.

306 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

MFR Statement (Required)

Syntax:
MFR = "manufacturer name"

The MFR statement contains a text field that identifies the board manufacturer.
The MFR text field can contain up to 30 ASCII characters.
CATEGORY Statement (Required)

Syntax:
CATEGORY = "3-character category”

The CATEGORY statement contains a 3-character text field (use uppercase for
consistency) that identifies the board's functional category. The configuration utility
displays the CATEGORY text field (in upper case) during system configuration.

The CATEGORY statement must use one of the following categories:

COM = communications device NPX = numeric coprocessor

KEY = keyboard OSE = operating system/environment
MEM = memory board OTH = other

MFC = multifunction board . PAR = parallel port

MSD = mass storage device PTR = pointing device

NET = network board SYS = system board

VID = video board

SLOT Statement (Optional)

Syntax:
SLOT = value [,"text"]...

The SLOT statement identifies the type of slot in which the expansion board can be
installed. Options that can be entered in the value field include: ISAS8, ISA16, ISASOR16,
EISA, VIR, EMB(n), OTHER, and at a text string If the SLOT statement is omitted, the
default is ISA16. For expansion devices that occupy physical slots (ISA8, ISA16,
ISA80R16, EISA, and OTHER), the value entered in the SLOT field is the actual size of
the board's card edge. For example, an expansion board with an 8-bit card edge is set to
SLOT = ISAS, an expansion board with a 16-bit card edge is set to SLOT = ISA16, and so
oln. ISA80OR16 is provided for 16-bit expansion boards that can also operate in an 8-bit
slot.

A text string can be included with the slot statement following the value field. More
than one text strin§ can be included. Each text string must be enclosed in double quotes.
The text is typically used to describe the slot. For example: SLOT=EISA,"MEMORY"
could be used to describe an EISA slot reserved for a memory expansion board.

ISA8
This entry specifies an 8-bit ISA expansion board (fits in any slot of correct length).

Revision 3.10 307

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ISA16
This entry specifies a 16-bit ISA expansion board (fits in an EISA or 16-bit slot of
correct length).

ISA8OR16 _
This entry specifies an ISA expansion board configurable as 8- or 16-bit (fits in any
EISA or ISA slot of correct length).

EISA
This entry indicates an EISA expansion board that requires a correct length EISA slot
(fits in EISA slot only).

EMB((n)]
This entry indicates a system board peripheral that uses slot-specific 1/O space
(embedded device). The slot-specific I/O range used determines the "n." The
configuration utility searches for the device by checking the embedded device IDs if
the "n" is omitted. The embedded devices are numbered sequentially from "y+1" (y
equals the number of expansion bus connectors) to 15.

The system board configuration registers use the slot-specific 1/O space, slot number
0, and are addressed as embedded device 0, EMB(0).

VIR
This entry indicates a virtual device. Virtual devices do not have slot-specific I/O or
a readable ID. This entry is included for virtual devices so the configuration utility
can perform conflict resolution and drivers can obtain configuration information
regarding the devices. Any peripheral, device or software that needs a configuration
file and 1s not covered by the other device types can be specified as a virtual device.
Virtual devices are assigned numbers from 16 to a maximum of 64.

OTHER
This entry identifies a vendor-specific expansion slot.
LENGTH Statement (Optional)

Svntax:
[(LENGTH = value]

. The LENGTH statement specifies the length of the board in millimeters (a decimal
integer). The LENGTH statement does not apply to embedded devices or virtual devices.

Expansion boards should include a LENGTH statement. The configuration utility

cannot optimize the slot allocation if expansion boards do not specify length. If the
LENGTH statement is omitted the configuration utility defaults to 330.

308 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

The AMPERAGE statement, when included in the board identification block,
specifies the maximum amount of continuous 5V current (in milliamps) required by the
base configuration of the expansion board. Installable options can specify additional SV
current requirements with an AMPERAGE statement in the CHOICE Statement Block
(described later in this specification). The AMPERAGE statement does not apply to
embedded devices or virtual devices.

Devices that require +5 volt power should include an AMPERAGE statement.
The configuration utility cannot perform an accurate power usage verification if expansion
boards do not specify their power requirement. If the AMPERAGE statement is omitted,
the configuration utility defaults to AMPERAGE = 0.

SKIRT Statement (Optional)

Syntax:
[SKIRT = YES | NOJ

The SKIRT statement indicates the presence of a drop-down skirt. (A drop-down
skirt is an extended lower portion of an 8-bit expansion board that prevents installation into
a 16-bit slot.) The default is NO.

READID Statement (Optional)

Svntax:
[READID = YES | NO]

READID specifies whether or not the expansion board has an ID that can be read
from the EISA ID registers. The default value is NO.

BUSMASTER Statement (Optional)

Syntax:
[BUSMASTER = value)

The board identification block may include a BUSMASTER statement to identify
the expansion board as a bus master and to specify the maximum acceptable latency. The
latency value is a specification of the worst case acceptable time (in microseconds) from
the bus master bus request to the bus grant. The configuration utility assumes an
expansion board is not a bus master if the BUSMASTER statement is omitted.

Revision 3.10 309

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

IOCHECK Statement (Optional)

Syntax:
[IOCHECK = VALID | INVALID]

IOCHECK is an optional statement that indicates support of the EISA expansion
board control register IOCHKERR bit. VALID indicates that the expansion board
responds to reads of its IOCHKERR bit. INVALID indicates that the expansion board
does not respond to reads of the IOCHKERR bit. The default is VALID.

DISABLE Statement (Optional)

Syntax:
[DISABLE = SUPPORTED | UNSUPPORTED]

DISABLE is an optional statement that indicates support of the EISA expansion
board control register ENABLE bit. SUPPORTED indicates that the expansion board can
be disabled by clearing the ENABLE bit. UNSUPPORTED indicates that the expansion
board cannot be disabled by clearing the expansion board control register ENABLE bit.
The default is SUPPORTED.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "general information”]

The COMMENTS statement provides information about the expansion board. The
configuration utility displays the contents of the COMMENTS text field in a window at
least 40 characters wide. This COMMENTS text field can contain up to 600 ASCII
characters.

HELP Statement (Optional)

Syntax:
[HELP = "help information")

The HELP statement provides information about the expansion board if the user
requests help during the configuration. The configuration utility displays the HELP
information in a window at least 40 characters wide. The HELP text field can contain up
to 600 ASCII characters.

310 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example Board Identification Block

The following example illustrates a board identification block for a multifunction
board.

BOARD
ID = "ACE0102" :Revision 02
NAME = "EISA Multifunction Board"
MFR = "ACME Inc."

CATEGORY = "MFC" ;Multifunction board
SLOT = EISA :Requires EISA slot
LENGTH = 330 ;Full length board
AMPERAGE = 3000 ;3000 mA max current draw
SKIRT = NO

READID = YES
COMMENTS = "The EISA Multifunction Board provides
an asynchronous communication port,
a parallel port, a game port and
4 megabytes of memory. "
HELP = "The EISA Multifunction Board supports
full automatic configuration.
You may want to select the expanded
memory configuration instead of taking
the default, which is extended memory. "

The SKIRT and length statements could be omitted from this board identification
block, since the specified values equal the default value.
4.6.2 Initialization Information Block

The initialization information block consists of one or more of the following
statement blocks:

I/O port initialization statement block

Switch configuration statement block

Jumper configuration statement block

Software initialization statement block
' All expansion boards that require configuration must provide an initialization
information block (IIB) in the configuration file. (A shorthand method described in the
I/O Port INIT statement discussion in the section entitled INIT Statements, can be
substituted for certain IIBs.)

4.6.2.1 1/0 Port Initialization Statement Block

The 1/O Port Initialization statement block begins with the IOPORT(i) statement.
The syntax of the 1/O port initialization statement block is:

IOPORT(i) = address ;1/O port address
[SIZE = BYTE | WORD | DWORD)] ;Number of bits in 1/O port
[INITVAL = [LOC(bitlist)] valuelist) :Initialization value

Revision 3.10 311

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

IOPORT(i) Statement (Required)

Syntax:
IOPORT(i) = address

The IOPORT(i) statement specifies the address of an 1/O port. Each I/O port
must have a separate IOPORT(i) statement with a different identifier, "i". The "I" can be

any positive integer value from 1 to 32767. Resource and initialization statements use the
IOPORT(i) to specify I/O port addresses.

See the "PORTVAR(j) Variable" section for an alternative method of specifying the
I/0 port address.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE | WORD | DWORD)]

The SIZE statement specifies the number of bits in the 1/O port. The defanlt is
BYTE.

INITVAL Statement (Optional)

Svntax:
[INITVAL = (LOC(bitlist)] valuelist]

The INITVAL statement specifies the source of the values written to an
initialization port.

The valuelist portion specifies the source of each bit of a binary value. An "r"in a bit
position indicates the bit value must be read from the port. An "x" in a bit position
indicates the configuration utility determines the bit value based on the selected
configuration. A "1" or "0" in a bit position indicates the bit is reserved and must be
initialized to the specified value. The valuelist must be in MSBit to LSBit order.

The INITVAL statement may include the LOC(bitlist) string to reference individual
bits. The bitlist contains a list or range of bit positions. The elements of the bitlist must be
in MSBit to LSBit order. The following example illustrates valid INITVAL syntax.

INITVAL = 0000111100001111b ‘WORD port
INITVAL = 00001111b ;BYTE port
INITVAL = LOC(7-0) 001100rr ;Byte port with "r" bits
INITVAL = LOC(7-2) 001100 ;Byte port (range)
INITVAL = LOC(76 1 0) 0011 ;4 bits specified

312 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example 1/0 Port Initialization Statement Block

The following example illustrates an I/O port initialization statement block. The
two most significant bits are read from the 1/O port, the next two bits are "1" and "0"
respectively, and the four least significant bits are determined by the configuration utility.

IOPORT(1) = 3F8h ;1/O port address
INITVAL = rr10xxxxb ;Bit pattern
4.6.2.2 Switch Configuration Statement Block

The switch configuration statement block begins with the SWITCH(i) statement.
The syntax of the switch configuration statement block is:

SWITCH(i) = value ;Number switches in set
NAME = "switch name or description”
STYPE = DIP | ROTARY | SLIDE ;Type of switch
[VERTICAL = YES | NOJ ;Switch orientation
[REVERSE = YES | NOJ ;Switch numbering scheme
LABEL = LOC(switchlist) textlist] ;Switch labels
INITVAL = LOC(switchlist) valuelist) ;Switch settings
FACTORY = LOC(switchlist) valuelist) ;Factory setting
COMMENTS = "configuration comments"]
HELP = "configuration help information"]

SWITCH(i) Statement (Required)

Syntax:
SWITCH(i) = value

The SWITCH(i) statement specifies the number of switch positions in a set. Each
set of switches must have a separate SWITCH(i) statement with a different identifier, "i".
The "i" can be any positive integer value from 1 to 32767. The maximum number of

switches is "16" for all switch types. Value indicates the number of switches in the switch
block.

NAME Statement (Required)

Syntax:
NAME = "switch name or description"

The NAME statement contains the switch name as it is designated in the user
documentation. The name can be up to 20 characters long.

Revision 3.10 313

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

STYPE Statement (Required)

Syntax:
STYPE = DIP | ROTARY | SLIDE

The STYPE statement designates the type of switch as DIP, ROTARY, or SLIDE.
A DIP switch is a set of switches, each having an "ON" and "OFF" position. A ROTARY
switch is a set of switches with a rotating selector that can be set to one switch position. A
SLIDE switch is a set of switches arranged linearly with a slide mechanism that can be set
to one switch position. All switches within the set are numbered beginning with 1.

VERTICAL Statement (Optional)

Syntax:
[VERTICAL = YES | NOJ

The VERTICAL statement indicates the orientation of the switch on the expansion
board. Refer to the figure below for an illustration of switch orientation. The VERTICAL
statement defaults to "NO."

REVERSE Statement (Optional)

Svntax:
[REVERSE = YES | NOJ

The REVERSE statement specifies the order that a DIP switch is numbered.
REVERSE = YES indicates 1234..., REVERSE = NO indicates ...4321 order. Refer to
the figure below for an illustration of switch numbering. The REVERSE statement
defaults to "NO."

6 1
5 2
4 3
6 54321 123 456 3 4
2 5
REVERSE=NO REVERSE=YES 1 6
VERTICAL=NO VERTICAL=NO
REVERSE=NO REVERSE=YES
VERTICAL=YES VERTICAL=YES

EEEE NN

LOC (switchlist) valuelist

The switch configuration statements LABEL, INITVAL and FACTORY include
the LOC(switchlist) valuelist (or textlist) string to reference individual switches. The
switchlist contains a list or range of switch numbers. The elements of the switchlist must be
in ascending order if REVERSE = YES or descending order if REVERSE=NO. A space
must be included between elements as a delimiter.

314 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The textlist specifies the ASCII switch name and the valuelist specifies the switch
setting for each switch position. The valuelist must use the same order as the switchlist. A
DIP switch can be set for "1" to indicate "ON," "0" to indicate "OFF," or "x" to indicate "don't
care." The dip switch settings are not delimited with a space. The valuelist for a rotary or
slide switch includes a "1" in the position number of the selected position. Zeros fill the
other positions.

The following examples illustrate valid LOC(switchlist) valuelist strings:

REVERSE=YES

INITVAL = LOC(1234) 0011 ;List of DIP switches
REVERSE=NO

INITVAL = LOC(4321) 1100 ;List of DIP switches
REVERSE=YES

INITVAL = LOC(1-4) 0011 ;Range of DIP switches
REVERSE=NO

INITVAL = LOC(4-1) 1100 ;Range of DIP switches
REVERSE=YES

INITVAL = LOC(12 3 4) 00x1 ;DIP switches with a don't care

REVERSE=YES
INITVAL = LOC(1-8) 00010000 ;8-position rotary or slide switch

LABEL Statement (Optional)

Syntax:
[LABEL = LOC(switchlist) textlist]

The LABEL statement specifies labels for individual switches. Each label can
compose up to 10 characters. If the LABEL statement is omitted, the default label is the
switch number (...4321 for normal switches and 1234... for reverse switches). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4-1) "SW1-4""SW1-3""SW1-2" "SW1-1"

INITVAL Statement (Optional)

Syntax:
[(INITVAL = LOC(switchlist) valuelist)

The INITVAL statement specifies the settings for factory-set switches that must not
be changed. If the INITVAL statement is omitted, switch settings are determined by the
confi%uration program or are "don't care." This statement is particularly important for
switches that control undocumented options. The following example illustrates use of the
INITVAL statement:

INITVAL = LOC(432 1) xxx0 ;DIP switch 1 may not be changed

Revision 3.10 315

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FACTORY Statement (Optional)

Syntax:
[FACTORY = LOC(switchlist) valuelist]

The FACTORY statement indicates the factory settings for the switches.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "configuration comments"]

The COMMENTS statement contains information to assist the user in configuring a
switch. The COMMENTS text field can contain a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

HELP Statement (Optional)

Svntax:
[HELP = "configuration help information")

The HELP statement contains information that is displayed to the user if requested.
The HELP text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

Example Switch Configuration Statement Block

The following example illustrates a switch configuration statement block.
INITIALIZATION INFORMATION BLOCK

SWITCH(E) = ;1st switch--8 positions
"SWITCH BLOCK 1"
STYPE = DIP :DIP switch type
VERTICAL = YES ;Vertical orientation
FACTORY = LOC(8 1) 11110000 :Factory setting = 11110000
INITVAL = LOC(8-1) xxxxxxx0 :One réserved switch
SWITCH(2)= 2 ,2nd Switch--2 positions
NAME = "SWITCH BLOCK 2"
STYPE = ;SLIDE switch t
LABEL = LOC(% 1) "IRQ9" "IRQ8" ;Position labels I Q9, IRQ8
FACTORY C(21) 10 ;IRQY Setting’

316 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.2.3 Jumper Configuration Statement Block

The jumper configuration statement block begins with the JUMPER(i) statement.
The syntax of the jumper configuration statement block is:

JUMPERC() = value ;Number of jumpers in set
NAME = "jumper name or description”
JTYPE = INLINE | PAIRED | TRIPOLE ;Type of jumper
VERTICAL = YES | NOJ ;Jumper orientation
REVERSE = YES | NOJ ;Jumper numbering scheme
[LABEL = LOC(jumperlist) textlist] ;ASCII Jumper labels
[INITVAL = LOC(jumperlist) valuelist) ;Jumper settings
[FACTORY = LOC(jumperlist) valuelist] ;Factory setting
COMMENTS = "configuration comments"]
(HELP = "configuration help information")

JUMPER(i) Statement (Required)

Syntax:
JUMPERC(i) = value

The JUMPER(i) statement specifies the number of jumper positions in a set. Each
set of jumpers must have a separate JUMPER(i) statement with a different identifier, i.
The "i" can be any positive integer value from 1 to 32767. The value field has two meanings
here depending on the type of jumper defined. For inline jumpers, value refers to the
number of connections. For tripole and paired jumpers, value refers to the number of
tripoic or paired sets.

NAME Statement (Required)

Syntax:
NAME = "jumper name or description"

The NAME statement contains the jumper name as it is designated in the user
documentation. The description can contain a maximum of 20 characters.

JTYPE Statement (Required)

Syntax:
JTYPE = INLINE | PAIRED | TRIPOLE

The JTYPE statement designates the type of jumper as INLINE, PAIRED, or
TRIPOLE. INLINE jumpers are arranged in a straight line, such that each post can be
connected to an adjacent post. PAIRED jumpers are arranged as a series of double posts,
such that any single pair can be connected across the two posts. TRIPOLE jumpers are
arranged as a series of triple posts, such that the middle post can be connected to either of
the two adjacent posts.

Revision 3.10 317

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following figure illustrates each of the three JTYPEs.

0 o0 oo Paired ©o oo oo Inline

o0 0 o 0 0 REVERSE=NO 1 2 3 4 5 REVERSE=YES
5 4 3 2 1 VERTICAL=NO VERTICAL=NO
o0 oo oo Tripole o ool Tripole

0O 0000 0O 0 0 2

O 0 0 0 0 REVERSE=YES © 0 © 3 REVERSE=YES

1 2 3 4 5 VERTICAL=NO 0 0 0 4 VERTICAL=YES

HEEENE NN

VERTICAL Statement (Optional)

Syntax:
[VERTICAL = YES | NOJ

The VERTICAL statement indicates the orientation of the jumper on the expansion
board. The VERTICAL statement defaults to "NO."

REVERSE Statement (Optional)

Syntax:
[REVERSE = YES | NOJ

The REVERSE statement specifies the order that a jumper is numbered.
REVERSE = YES indicates 1234.., REVERSE = NO indicates ..4321 order. The
REVERSE statement defaults to "NO."

LOC(umperlist) valuelist

The jumper configuration statements LABEL, INITVAL and FACTORY include
the LOC(jumperlist) valuelist string to reference individual jumper positions. The jumperlist
contains a list of jumpers. The valuelist specifies the setting for each jumper. The valuelist
must not be delimited with a space and must use the same order as the jumperlist.

A paired or tripole jumperlist can use a range to indicate the jumpers. The elements
of the jumperlist must be in ascending order if REVERSE = YES, or descending order if
REVERSE=NO. A space must be included between elements as ¢ delimiter.

The jumperlist specifies inline jumpers by indicating the connection between two
posts with a caret. For example, LOC(6"5 473 2"1) specifies the jumpers between posts 6
and S, between posts 4 and 3, and between posts 2 and 1. The elements of the jumperlist
must be in ascending order if REVERSE = YES, or descending order if REVERSE=NO.
A space must be included between elements as a delimiter.

The paired and inline jumper valuelist settings can be indicated as "1" for "ON"
(jumper installed), "0" for "OFF" (jumper not installed), or "x" for "don't care."

318 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A tripole jumper valuelist settings can be indicated as "1" for "ON" (jumper installed
in upper or right position), "0" for "OFF" (jumper installed in lower or left position unless
otherwise marked), "n" for "NONE" (jumper not installed) or "x" for "don't care."

The following examples illustrate valid LOC(jumperlist) valuelist strings:

JTYPE=TRIPOLE
REVERSE=YES

INITVAL = LOC(1234) 0011 ;List of tripole jumpers
JTYPE=PAIRED

REVERSE=NO

INITVAL = LOC(4321) 1100 ;List of paired jumpers

JTYPE=PAIRED
REVERSE=YES

INITVAL = LOC(1-4) 0011 ;Range of paired jumpers
JTYPE=TRIPOLE

REVERSE=NO

INITVAL = LOC(4-1) 1100 ;Range of tripole jumpers

JTYPE=PAIRED
REVERSE=YES
INITVAL = LOC(1-4) x011 ;Range of paired jumpers with "x"

JTYPE=TRIPOLE
REVERSE=YES
INITVAL = LOC(1-4) x011 ;Range of tripole jumpers with "x"

JTYPE=TRIPOLE
REVERSE =YES

INITVAL = LOC(1-4) n011 ;Range of tripole jumpers with "n"
JTYPE=INLINE

REVERSE=NO

INITVAL = LOC(6°54732"1) 101 ;List of inline jumpers

LABEL Statement (Optional)

Syntax:
[LABEL = LOC(jumperlist) textlist]

The LABEL statement specifies labels for individual jumpers. Each label can be
composed of up s10 characters. If the LABEL statement is omitted, the default label is the
switch number (...4321 for normal jumpers and 1234... for reverse jumpers). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4°32"1) "IRQ2" "IRQ3" ;'TRQ2" (473), "IRQ3" (2°1)

Revision 3.10 319

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INITVAL Statement (Optional)

Syntax:
[INITVAL = LOC(jumperlist) valuelist)

The INITVAL statement specifies the settings for factory-set jumpers that must not
be changed. If the INITVAL statement is omitted, jumper settings are determined by the
configuration program are "don't care." This statement is particularly important for
jumpers that control undocumented options andrequire specific settings. The following
example illustrates use of the INITVAL statement:

INITVAL = LOC(4 32 1) 0011 ;Paired (or tripole) jumper settings

FACTORY Statement (Optional)

Syntax:
[FACTORY = LOC(jumperlist) valuelist)

The FACTORY statement indicates the factory settings for the jumpers.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "configuration comments"]

_ The COMMENTS statement contains information to assist the user in configuring a
jumper. The COMMENTS text field can contain a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

HELP Statement (Optional)

Syntax:
(HELP = "configuration help information"]

The HELP statement contains information that is displayed to the user if requested.

The HELP text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

320 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example Jumper Configuration Statement Block
The following example illustrates a jumper configuration statement block.

;INITIALIZATION INFORMATION BLOCK

JUMPER(1) = 5 ;1st set-S positions(6 posts)
NAME = "J101"
JTYPE = INLINE ;Inline jumper type
VERTICAL = YES ;Vertical orientation
LABEL = LOC(6°54°32"1) "Test" "IRQ8" "IRQ9" ;Labels Test, IRQS&, IRQ9
INITVAL = LOC(6"54"32"1) Oxx ;Reserved jumper
FACTORY = LOC(6"54732"1) 001 ;Factory Setting = IRQ9

The configuration utility displays a diagram to illustrate the jumper settings. For
example:

o 6
Test

o 5

o 4
IRQ8

o 3

e 2
IRQ9 |

e 1

J101

46.2.4 SOFTWARE(Initialization) Statement Block (Optional)

Syntax:
SOFTWARE(i) = "description"

The software statement block begins with the SOFTWARE (i) statement. The
syntax of the software configuration statement block is:

*Note: there are no other statements in the block.

The software initialization statement block provides user information and
instructions about software drivers for display during system configuration. The
instructions may, for example, indicate the software options to incorporate into the
operating system startup files or a program that must be executed to initialize an expansion
board. ~The software initialization statement block can include entries for the
CONFIG.SYS and AUTOEXEC.BAT files of an MS-DOS operating system.

The startup files may execute programs that require command line parameters (for
example, /s, /g).

Each software statement must have a separate SOFTWARE(i) statement with a

different identifier, "i." The "i" can be any positive integer value from 1 to 32767. The
description can be a maximum of 600 characters.

Revision 3.10 321

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The configuration utility displays the software description with switch settings and
other configuration information, during system configuration.

See the section on INIT Statements for more details about the software(i)
statement.

4.6.3 FUNCTION Statement Block
A FUNCTION statement block consists of the following statements:

. FUNCTION Statement--identifies the name of the expansion board function
(for example, "Asynchronous communications port").

. TYPE Statement--identifies the function type (for example: a communications
port is type "COM").

. CHOICE = Statements with resource description blocks--identify the
configuration alternatives (i.e., initializations, 1/O ports, interrupts, DMA
channels and memory).

The FUNCTION statement block has the following format:

FUNCTION = "function name"
[TYPE = "function type"]
(COMMENTS = "information"] .
[CONNECTION = "connector orientation and description")
[HELP = “information"]
CHOICE = "configuration name"
[Resource Description Block]
[CHOICE = "configuration name"
Resource Description Block])

[CHbICE = "configuration name"
Resource Description Block)
[SUBFUNCTION STATEMENT BLOCK]

A separate function statement block must be supplied for each function of a
multifunction expansion board. The following example illustrates the two function
statement blocks for an expansion board with a communications port and a parallel port.

FUNCTION = "Asynchronous communications port"
CHOICE = "configuration name"
Resource Description Block
FUNCTION = "Parallel port"
CHOICE = "configuration name"
Resource Description Block

322 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The configuration utility displays the software description with switch settings and
other configuration information, during system configuration.

See the section on INIT Statements for more details about the software(i)
statement.

4.6.3 FUNCTION Statement Block
A FUNCTION statement block consists of the following statements:

. FUNCTION Statement--identifies the name of the expansion board function
(for example, "Asynchronous communications port").

. TYPE Statement--identifies the function type (for example: a communications
port is type "COM").

. CHOICE Statements with resource description blocks--identify the
configuration alternatives (i.e., initializations, I/O ports, interrupts, DMA
channels and memory).

The FUNCTION statement block has the following format:

FUNCTION = "function name"
[TYPE = "function type"]
[COMMENTS = "information"]
[CONNECTION = “connector orientation and description"
[HELP = "information"]
CHOICE = "configuration name"
[Resource Description Block]
[CHOICE = "configuration name"
Resource Description Block)

[CHCICE = "configuration name"
Resource Description Block]
[SUBFUNCTION STATEMENT BLOCK]

A separate function statement block must be supplied for each function of a
multifunction expansion board. The following example illustrates the two function
statement blocks for an expansion board with a communications port and a parallel port.

FUNCTION = "Asynchronous communications port"
CHOICE = "configuration name"
Resource Description Block
FUNCTION = "Parallel port"
CHOICE = "configuration name"
Resource Description Block

322 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FUNCTION Statement (Required)

Syntax:
FUNCTION = "function name"

Each function statement block begins with a function statement that specifies the
function name. The function name consists of free-form ASCII text with a maximum of 100
characters. All function names within a single configuration file must be unique, but
different configuration files can have common %unction names.

The configuration utility displays the function name during configuration, but does
not store it in nonvolatile memory.
TYPE Statement (Optional)

Syntax:
[TYPE = "function type"]

A functions statement block is supplemented with a TYPE statement that identifies
the function type with a three-character ASCII string. The following table identifies
commonly used function types.

Commonly Used Function Types

KEY--keyboard PAR--parallel port

MEM--memory board PTR--pointing device

MSD--mass storage device COM--communications port
NET--network adapter VID--video display adapter
NPX--numeric coprocessor SYS--system board

OTH--other OSE--operating system/environment

The TYPE statement should use one of the listed types when applicable. A TYPE
statement can coniain a type not included in the "Commonly Used Function Types" table
above, but all types must be three-character ASCII strings. The type is stored in
nonvolatile memory as upper-case. It should be entered in the configuration file in upper-
case for consistency.

The function type can be supplemented by appending multiple, comma-delimited,
ASCII strings to the initial three-character type. The supplemental type ASCII strings are
not limited to three characters. For example, an asynchronous communications port can
have the following TYPE statement:

TYPE = "COM,ASY"

The configuration utility stores the TYPE statement's ASCII string in nonvolatile
memory during configuration. EISA systems provide a total of 80 bytes of nonvolatile
memory to store the TYPE statement's ASCII string and SUBTYPE statement's ASCII
string. The 80 bytes include the comma and semicolon delimiters between the type and
SUBTYPE string fragments.

A device driver can use the type string to determine the general class of

functionality of a device. The device driver can use the subtype string to determine the
configuration of a device.

Revision 3.10 323

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The resource description block section SUBTYPES are dicussed later in this
specification.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "information"]

A function statement block can include a COMMENTS statement that provides
relevant information about the function. The comment could identify an expansion board
manufacturer and part number, configuration instructions or any other useful information.
The comment consists of free-form ASCII text with a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

The configuration utility displays the comment during configuration when the
function is selected. It does not store the comment in nonvolatile memory.
HELP Statement (Optional)

Syntax:
[HELP = "help information")

The HELP statement contains information that is displayed to the user if requested.
The help text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

CONNECTION Statement (Optional)

Syntax:
CONNECTION = "connector orientation and description”

A configuration file can specify the orientation and description of connectors by
including the CONNECTION statement in the FUNCTION statement block.

The connection string consists of an ASCII string with a maximum length of 40
characters. Typical connection strings include "top," "bottom," "upper,” "lower," "middle,"
etc. The configuration utility includes a command that displays the connection string.

324 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.3.1 CHOICE Statement Block

Each function statement block is accompanied by at least one choice statement
block that specifies the initializations and system resource requirements of a possible
configuration. The configuration utility uses the first choice statement block as the default.
Multiple choice statement blocks are sequentially arranged in the order of preference. The
choice statement block begins with a choice statement that specifies the "name" of the
configuration. A choice statement block has the following syntax:

CHOICE = "configuration name"
[SUBTYPE = "device description"]
[DISABLE = YES | NO'"
[AMPERAGE = value]
[TOTALMEM = rangelist [STEP = valuel]]
Resource Description Block

A communications port, for example, can have the following function statement
block and associated choice statement blocks:

FUNCTION = "Asynchronous Communications Port"
CHOICE = "COM1"
Resource Description Block
CHOICE = "COM2"
Resource Description Block

The system resource requirements (described in the "Resource Description Block"
section) for the named configuration follow the CHOICE statement.

CHOICE Statement (Optional)

Syntax:
CHOICE = "configuration name"

The choice statement block begins with a CHOICE statement that specifies the
"name" of the configuration. The "name" is an ASCII string with a maximum of 90
characters.

. During configuration, the configuration utility displays all CHOICE statement
configuration names for the selected function. The configuration utility does not store the
name in nonvolatile memory.

DISABLE Statement (Optional)

Syntax:
[DISABLE = YES | NOJ

A CHOICE statement can be used to disable the expansion board function. Each
function to be disabled requires a separate DISABLE = YES statement. The default is
DISABLE = NO. The following example illustrates use of the DISABLE = YES
statement.

Revision 3.10 325

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FUNCTION = "Communications Port"
CHOICE = "COMT1"
Resource Description Block
CHOICE = "COM2"
Resource Description Block
CHOICE = "Disable Communications Port"
DISABLE = YES

SUBTYPE Statement (Optional)

Syntax:
[SUBTYPE = "device description"}

Each choice statement block can contain a subtype statement that names the
configuration (with a short mnemonic) associated with the choice. The subtype can be
supplemented by appending multiple, semicolon-delimited, ASCII strings to the initial

subtype.

A device driver can use the SUBTYPE string to determine the configuration of a
device. The device driver may use the type string to determine the general class of
functionality of a device.

A communications port may have SUBTYPE statements as follows:

FUNCTION = "Internal Modem"

TYPE = "COM,ASY,MDM"

CHOICE = "Modem assigned to COM1"
SUBTYPE = "COMT"
Resource Description Block

CHOICE = "Modem assigned to COM2"
SUBTYPE = "COM2"
Resource Description Block

The SUBTYPE should be a short ASCII string. The SUBTYPE string supplements
the type string by identifying the selected configuration (the type string identifies the type
of device). The configuration utility stores the concatenated type and SUBTYPE ASCII
strings, with a semicolon delimiter, in nonvolatile memory during configuration. EISA
systems provide a total of 80 bytes of nonvolatile memory to store the type statement’s
ASCII string and SUBTYPE statement's ASCII string. The 80 bytes include the comma
and semicolon delimiters between type and SUBTYPE string fragments.

326 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

The AMPERAGE statement, when included in the choice statement block, specifies
the maximum amount of continuous SV current (in milliamps) required by the option
specified by the choice statement block. The total 5V current includes the amount
specified in the board identification block plus the amount specified for the selected
options. The AMPERAGE statement does not apply to virtual devices.

TOTALMEM Statement (Optional)

Syntax:
TOTALMEM = rangelist [STEP = value]

A choice statement block can contain a TOTALMEM statement that indicates the
total amount of memory specified by the choice. The TOTALMEM statement is required
for a memory block that can have its allocation split between system memory (SYS) and
expanded memory (EXP).

See the TOTALMEM statement and example in the section entitled, Memory
Description Block, for more detailed information.

4.6.3.2 SUBCHOICE Statement Block

The purpose of the subchoice statement block is to handle resource statement
alternatives that are too complex for individual CHOICE statements (for example, memory
configurations of some memory boards).

A choice statement block can include statements that specify alternative
configurations. A subchoice statement block can use any statement that is valid for a
choice statement block. The subchoice alternatives must be automatically selectable by the
configuration utility with information available from the configuration files. The
configuration utility does not present subchoice alternatives for selection by a user,
although the user can scroll through the resources specified in subchoice statement blocks.

The syntax for the SUBCHOICE statement is shown below:

SUBCHOICE
Resource Description Block

A choice statement block can have as many subchoice statement blocks as needed.
The configuration utility sequentially checks each subchoice resource description block and
selects the first one that does not conflict with other devices in the configuration.

The combination of the choice resource description block and one subchoice
resource description block contains the resource and initialization requirements for the
configuration. The configuration utility includes the choice and the selected SUBCHOICE
resource requirements in the data written to nonvolatile memory for use by the power-up
routines.

Revision 3.10 327

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates a configuration file fragment that specifies a
memory allocation that back fills 128K of memory into the base address range between
512K and 640K if only 512K is installed. The remainder of memory on the expansion
board is allocated to extended memory. The user selects the total amount of memory on
the expansion board and views the subchoice alternatives. The subchoice selection
(between back fill and extended memory) does not require input from the user, since the
amount of base memory installed is available from the configuration file. The subchoice
statement blocks are included in a single choice statement block that is presented to the
user:

CHOICE = "Add Base and Extended Memory"
TOTALMEM = 128K-2048K STEP 128K

; 128K base memory back fill into range 512K-640K
; (512K base memory already installed)

SUBCHOICE

FREE ;128K back fill
MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS

COMBINE ;Extended Memory for the rest
MEMORY = 0K-1920K STEP 128K
ADDRESS = 1M
MEMTYPE = SYS

; No base memory back fill
; (640K base memory already installed)

SUBCHOICE
COMBINE ;All Extended Memory
MEMORY = 128K-2048K STEP 128K
ADDRESS = 1M-16M STEP 128K
MEMTYPE = SYS

328 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selection of the starting address could be presented to the user as a sequence of
CHOICE statements for selection by the user:

; 128K base memory back fill into range 512K-640K
; (512K base memory already installed)

CHOICE = "Add Base and Extended Memory"

TOTALMEM = 128K-2048K STEP 128K

FREE ;128K back fill
MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS

COMBINE ;Extended Memory for the rest
MEMORY = 0K-1920K STEP 128K
ADDRESS = 1M
MEMTYPE = SYS

; No base memory back fill
; (640K base memory already installed)

CHOICE = "Add Extended Memory"

TOTALMEM = 128K-2048K STEP 128K
COMBINE ;All Extended Memory
MEMORY = 128K-2048K STEP 128K
ADDRESS = 1M-16M STEP 128K
MEMTYPE = SYS

The configuration utility presents each named choice to the user for selection. The
user can make the selection or let the configuration utility automatically make the
selection.

SUBCHOICE statements are not appropriate if the user might need to make the
selection. For example, the user may need to select a serial port as COM1 or COM2. The
configuration utility presents the choices to the user, and the user either makes the
selection manually or lets the configuration utility select automatically.

SUBCHOICE Statement (Optional)

Syntax:
[SUBCHOICE]

The subchoice statement block begins with a SUBCHOICE statement. The
SUBCHOICE statement does not have a name field for display, since subchoice statement
blocks are selected automatically by the configuration utility.

SUBFUNCTION Statement Block (Optional)

A function statement block may contain one or more subfunction statement blocks
that specify the configuration information for a set of related components with separate
resource or initialization requirements. A subfunction statement block provides separate
configuration of the function’s components.

Revision 3.10 329

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A subfunction statement block can use any statement that is valid for a function
statement block. The syntax of a subfunction statement block is:

SUBFUNCTION = "function name"
[TYPE = "function type"]
[COMMENTS = "information"]
[CONNECTION = "connector orientation and description”
[HELP = "information"]
CHOICE = "configuration name"
Resource Description Block
[CHOICE = "configuration name"
Resource Description Block]

[CHbICE = "configuration name"
Resource Description Block]

The configuration utility stores the resource and initialization information from
subfunction statement blocks with the function information. Subfunction statement blocks
are not stored as separate functions in nonvolatile memory.

Syntax:
SUBFUNCTION = "name"

The subfunction statement block begins with a subfunction statement that specifies
the name of the configuration. The name is an ASCII string with a maximum of 90
characters.

During configuration, the configuration utility displays all CHOICE configuration
names for the selected subfunction.

The following example illustrates use of subfunction statement blocks to configure
the parity and baud rate for an asynchronous communications port. The example includes
the statement blocks with type and subtype strings. The resource and initialization
statements are omitted for simplicity.

FUNCTION = "1200/2400 Baud Modem"
TYPE = "COM,ASY MDM"
SUBFUNCTION = "Port Address"
CHOICE = "COM1 Serial Port"
SUBTYPE = "COM1"
CHOICE = "COM2 Serial Port"
SUBTYPE = "COM2"
SUBFUNCTION = "Parity Selection" :No SUBTYPE under SF
CHOICE = "ODD"
SUBTYPE = "PARITY=0DD" :SUBTYPE under CHOICE
CHOICE = "EVEN"
SUBTYPE = "PARITY=EVEN"
SUBFUNCTION = "Baud Rate Selection"
CHOICE = "1200 Baud"
SUBTYPE = "BAUD=1200" :SUBTYPE under CHOICE
CHOICE = "2400 Baud"
SUBTYPE = "BAUD =2400"

330 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The tyge/subtype string for the "1200/2400 Baud Modem" function (with COM1,
odd parity and 2400 baud selections) in nonvolatile memory is:

"COM,ASY,MDM;COMI1;PARITY =ODD;BAUD =2400"

The example above used SUBTYPE statements under the CHOICE statements but
not under the SUBFUNCTION statements. The following example illustrates an

alternative method with the SUBTYPE statements under the SUBFUNCTION and the
CHOICE statements:

FUNCTION = "1200/2400 Baud Modem"
TYPE = "COM,ASY,MDM"
SUBFUNCTION = "Port Address"

CHOICE = "COM1 Serial Port"
SUBTYPE = "COM1"
CHOICE = "COM?2 Serial Port"
SUBTYPE = "COM2"
SUBFUNCTION = "Parity Selection”

TYPE = PARITY ;TYPE under SUBFUNCTION
CHOICE = "ODD"
SUBTYPE = "ODD" ; SUBTYPE under CHOICE

CHOICE = "EVEN"
SUBTYPE = "EVEN"
SUBFUNCTION = "Baud Rate Selection"

TYPE = BAUD TYPE under SUBFUNCTION
CHOICE = "1200 Baud"
SUBTYPE = "1200" :SUBTYPE under CHOICE

CHOICE = "2400 Baud"
SUBTYPE = "2400"

The type/subtype string for the "1200/2400 Baud Modem" function (with COM],
odd parity and 2400 baud selections) in nonvolatile memory is:

"COM,ASY ,MDM:COM1,PARITY;ODD,BAUD;2400"

4.6.3.3 GROUP Statement Block

A group statement block may be used to enclose a set of functionstatement blocks
that specify the configuration information for a set of related components with separate
resource or initialization requirements.

Revision 3.10 331

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A set of grouped function statement blocks allows separate configuration of a
function's components. A grouped function statement block can use any statement that is
valid for independent function statement blocks. The syntax of a grouped set of function
statement blocks is:

GROUP = "name"
[TYPE = "type"]

FUNCTION = "name"
[TYPE = "function type"}
[COMMENTS = "information")
(HELP = "information"]
CHOICE = "name"

resource description block

[CHOICE = "name"

resource description Block)

FUNCTION = "name"

[TYPE = "function type"]
[COMMENTS = "information"]
[HELP = "information")
CHOICE = "name"

resource description block

[CHOICE = "name"

resource description block]

FUNCTION = "name"

[TYPE = "function type"]
[COMMENTS = "information"]
[HELP = "information"]
CHOICE = "name”

resource description block

[CHOICE = "name"
resource description block]
FUNCTION = "name"

ENDGROUP

The configuration utility saves the resource and initialization information for each
function specified in the grouped set as a separate function entry in nonvolatile memory.
The group statement block may include a TYPE statement. The group type string
prepends to each TYPE string in the set of grouped function statement blocks. The
configuration utility stores the group type string in nonvolatile memory for a grouped
function statement block that omits the type statement.

Presentation of options during configuration and TYPE string pre%ending in

nonvolatile memory are the only differences between a set of grouped FUNCTION
statement blocks and a set of independent FUNCTION statement blocks.

332 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

GROUP and ENDGROUP Statements (Optional)

Syntax:
[GROUP = "name"]

[ENDGROUP]

A grouped set of function statement blocks begins with the GROUP statement and
ends with an ENDGROUP statement. The group name can be a maximum of 60
characters. Each GROUP statement must have a corresponding ENDGROUP statement.

Example Use of Grouped FUNCTION Statement Blocks

The following configuration file fragment illustrates the use of grouped function
statement blocks that spec1%y the conflguratlon options for a fixed disk controller and disk
drive. For simplicity, the configuration file fragment includes the TYPE and SUBTYPE
statements, but does not include resource or initialization statements. The GROUP
statement block and some function statement blocks have a TYPE statement.

GROUP = Fixed Disk Drives ;Fixed disk controller group
TYPE = "MSD" ;Prepends to each FUNCTION TYPE
FUNCTION = "Fixed Disk Controller Selection"
TYPE = "DSKCTL"
CHOICE = "Primary Controller"
SUBTYPE = "PRI"
CHOICE = "Secondary Disk Controller"
SUBTYPE = "SEC"
FUNCTION = "Device for Unit 1"
TYPE = "UNIT1"
CHOICE = "Not Installed"
SUBTYPE = "DSKDRV, TYP=00"
CHOICE = "300mb - TYPE 38"
SUBTYPE = "DSKDRV,TYP=38"
CHOICE = "130mb - TYPE 43"
SUBTYPE = "DSKDRV, TYP=43"
FUNCTION = "Device for UNIT 2"
TYPE = "UNIT2"
CHOICE = "Not Installed"
SUBTYPE = "DSKDRV, TYP=00"
CHOICE = "300mb - TYPE 38"
SUBTYPE = "DSKDRV, TYP=38"
CHOICE = "130mb - TYPE 43"
SUBTYPE = "DSKDRV, TYP=43"
ENDGROUP

Revision 3.10 333

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The grouped function statement blocks are stored separately in nonvolatile memory.

The type string for each of the function statement blocks includes the group type string
(prepended to the function type string). Nonvolatile memory contains the following type
strings (assuming the choice selections are: primary controller with a 300 MB drive for
UNIT1 and UNIT2 is not installed).

FUNCTION = "Fixed disk Controller Selection"

TYPE string: MSD,DSKCTL;PRI

FUNCTION = "Device for Unit 1"

TYPE STRING: MSD,UNIT1,DSKDRV, TYP=38

FUNCTION = "Device for Unit 2"

46.4

TYPE string: MSD,UNIT2,DSKDRV, TYP=00

Resource Description Block

A resource description block may accompany each CHOICE statement to identify

the initialization and system resource requirements of the named configuration. The
resource description block can contain any of the following information:

334

DMA Channel Description Block--specifies the choice of DMA channels
supported, whether the channel can be shared, the channel's data size, the
channel's cycle timing, and any initialization necessary

Interrupt Description Block--specifies the choice of interrupts supported,
whether the interrupt can be shared, whether the interrupt is edge or level
sensitive, and any initialization necessary

I/O Port Description Block--specifies the port address, and any initialization
necessary

Memory Description Block--specifies the amount of memory supported, the
starting address, and whether the memory is cacheable it also identifies the
memory as RAM or ROM, defines the memory usage (system, expanded,
virtual or other), and specifies any initialization necessary to configure the
memory

Switch and Jumper Description Blocks--specify the switch and jumper settings
for the configuration

Programmable Port Initialization Block--specifies the initialization for
programmable ports for the configuration

Software Initialization Block--specifies any software initialization necessary

The syntax of a DMA resource description block is as follows:

[DMA = list
[SHARE = YES | NO | "rext"]
[SIZE = BYTE | WORD | DWORD]
[TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]]

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

The syntax of an I/O port resource description block is as follows:

[PORT = list/rangelist [STEP = value [COUNT = VALUE]
[SHARE = YES | NO | "text"]
[SIZE = BYTE | WORD | DWORD]]

The syntax of an interrupt resource description block is as follows:

[IRQ = list
[SHARE = YES | NO | "text"]
[TRIGGER = LEVEL | EDGE]]

The syntax of a memory resource description block is as follows:

[MEMORY = rangelist [STEP = value]
[ADDRESS = rangelist [STEP = valuel]]
[WRITABLE = YES | NOJ
[MEMTYPE = SYS | EXP | VIR | OTH]
(CACHE = YES | NOJ

[SHARE = YES | NO | "fext"]

SIZE = BYTE | WORD | DWORD)]
[DECODE = 20 | 24 | 32]

4.6.4.1 DMA Channel Description Block

A DMA channel description block consists of a group of statements that
specifies the DMA channels required by an expansion board function. The
configuration file can contain a maximum of four D description blocks for any one
function. The syntax of a DMA channel description block is:

DMA = DMA channel number

SHARE =
{51213 BYTE {:WORD ORD]
[TIMING = DEFAULT | ll'YPEA | TYPEB | TYPEC]

An OR operator can be used to separate multxgle DMA channel lists (as
illustrated in the following syntax) if each list supports identical SHARE, SIZE and
TIMING characteristics: :

DMA = value [| value] ...
E-IHARE YES | NO

SIZE BYTEL ORD DWORD
MING = DEFAULT | TYPEA | ’}'YPEB | TYPEC]

Revision 3.11 335

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

Multiple DMA channel description blocks must be used for a function with
multiple DMA channels that have different share, size or timing characteristics, as
illustrated in the following syntax:

DMA = DMA channel number ;1st DMA channel
[SHARE = YES | NO | "text"]

[SIZE = BYTE | WORD | DWORD)]

[TIMING = DEFAULT | PEA | TYPEB | TYPEC]
DMA = DMA channel number ;2nd D channel
[SHARE = YES | NO | "text"]

[SIZE = BYTE | WORD]_l_laWORD]

[TIMING = DEFAULT | PEA | TYPEB | TYPEC]

An expansion board function can request up to four DMA channels. Each
channel selected during system configuration is stored in nonvolatile memory with the
appropriate share, size and timing characteristics.

If the DMA channel is defined as "shared," then it is the responsibility of the
device driver to initialize the DMA Extended Mode and DMA Command Registers
before starting each DMA transfer. The System ROM, in this case, does not initialize
these registers.

The device driver can get the DMA information (shared/not shared) from
nonvolatile memory to decide if it needs to initialize the DMA Extended Mode
Register and DMA Command Register.

If the DMA channel is defined as "not shared,” then the configuration file should
provide initialization values for the DMA Command Registers, and the system ROM
will automatically program the DMA Extended Mode Registers as follows:

DMA Extended Mode Register
DMA channel cycle timing (from DMA data provided in the structure)
DMA data size and addressing mode (from DMA data in the structure)
T-C = 05 set to be output for this channel (ISA default)
Stop Register = disabled (ISA default)

The configuration file should not, in either case, provide initialization values for
the DMA Extended Mode Registers.

DMA Statement (Optional)

Syntax:
DMA = value []| value] ...

The DMA statement marks the beginning of a DMA description block and
specifies the DMA channel number (or list of channels or multiple lists of channels)
supported by the configuration.

336 Revision 3.11

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO | "text"]

The SHARE statement specifies whether the function can share the DMA channel.
The default for SHARE is NO. A text identifier can be specified to indicate that the
function can only share the DMA channel with a device that has a matching identifier. The
identifier can be up to 10 characters.

DMA channels can be shared by two devices that never require the channel
simultaneously. For example, a floppy drive and tape drive attached to the same controller
could share a DMA channel since the floppy drive and tape drive never use the channel at
the same time.

Two devices that may need to transfer data at the same time cannot share a DMA
channel. Two network adapters, for example, would have conflicting requirements for a
single DMA channel.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE | WORD | DWORD]

The SIZE statement indicates the DMA device data transfer width as BYTE,
WORD or DWORD. The default size is BYTE for DMA channels 0-3 and WORD for
channels 4-7.

TIMING Statement (Optional)

Syntax:
[TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]

The TIMING statement indicates the bus cycle type executed by the DMA
controller during the transfer. The default transfer cycle type is default, which is
compatible with ISA DMA devices. Higher performance ISA devices can use type A or
type B for faster transfers. DMA devices that support EISA bus cycles can use type C
(burst) DMA transfers, which provide the highest data transfer rate.

The DMA cycle types and timing are described in section 2 of this specification.

Example DMA Channel Request Block

The ACME tape controller can use DMA channel 3 or 5 and cannot share the
channel. The ACME tape controller uses 16-bit DMA transfers and can support type B
timing. The following diagram illustrates the DMA request block for the ACME tape
controller:

DMA =35
SHARE = NO
SIZE = WORD

TIMING = TYPEB

Revision 3.10 337

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.4.2 Interrupt Description Block

An interrupt descr}ption block consists of a group of statements that specifies the
interrupt requirements of an expansion board. The configuration file can contain a
maximum of seven interrupt description blocks for any one function. The interrupt
description block has the following format:

IRQ = value [| value] ...
[SHARE = YES | NO | "rext"]
[TRIGGER = LEVEL | EDGE]

Multiple interrupt request blocks must be used for a function with multiple
interrupts that have different share and trigger characteristics, as illustrated in the
following syntax:

IRQ = value
[SHARE = YES | NO | "text"!
[TRIGGER = LEVEL | EDGE]
IRQ = value
[SHARE = YES | NO | "text"]
[TRIGGER = LEVEL | EDGE]

“An OR operator can be used to separate multiple interrupts (as illustrated in the
following syntax) if each interrupt supports 1dentical share and trigger characteristics:

IRQ = value [| value] ...
(SHARE = YES [NO | "text"]
[TRIGGER = LEVEL | EDGE]

IRQ Statement (Optional)

Svntax:
IRQ = Interrupt number

The IRQ statement marks the beginning of an interrupt request block and specifies
the interrupt number (or multiple interrupts) supported by the configuration.

Each interrupt selected during system configuration is stored in nonvolatile memory
with the appropriate share and trigger characteristics. The interrupt device driver can
retrieve the interrupt controller initialization information from nonvolatile memory to
determine the method of handling interrupts.

The system ROM automatically determines the 1/O port address and initialization
values and programs the interrupt controller edge/level register. The configuration file
should not provide initialization values for programming the interrupt controller edge /level
register.

338 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO | "text"]

The SHARE statement indicates whether the function can share this interrupt. The
default value for this field is NO. For EISA boards capable of sharing interrupts, this field
should be SHARE = YES. A text identifier can be specified to indicate that the function
can only share the interrupt with a device that has a matching identifier. The identifier can
be up to 10 characters.

TRIGGER Statement (Optional)

Syntax:
[TRIGGER = LEVEL | EDGE]

The TRIGGER statement specifies whether the ROM initializes the interrupt
controller to edge or level triggered. The default is TRIGGER = EDGE. In most cases, if
the SHARE statement is YES, the TRIGGER statement should be set to LEVEL;
however, there are some designs that require shared, edge-triggered interrupts, so a
TRIGGER = LEVEL statement does not necessarily have to follow a SHARE = YES
statement.

Example Interrupt Description Block

The ACME tape controller needs two interrupts. It can use interrupts 12 or 15, but
it cannot share the assigned interrupts. The ACME tape controller needs the chosen
interrupts to be edge triggered. Note that share and trigger fields could be omitted,
because the defaults are used.

IRQ = 12 |15
SHARE = NO
TRIGGER = EDGE

46.4.3 1/0O Port Description Block

An I/O port description block consists of a group of statements that specifies the
I/O ports used by a device. The configuration file can contain a maximum of 20 I/O port
?escription blocks for any one function. The I/O Port Request Block has the following
ormat:

PORT = range/list [STEP = value [COUNT = valuel]]

[SHARE = YES | NO | "rext']
[SIZE = BYTE | WORD | DWORD)]

Revision 3.10 339

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

PORT Statement (Optional)

Syntax:

PORT = list/range [STEP = value [COUNT = valuel]
or

PORT = list

The I/O Port Request Block begins with a PORT statement. The PORT statement
can specify a single address, a list of addresses, or a rangelist that specifies the selections
for the port address.

The STEP parameter that follows the rangelist identifies the address increment of
the port selections. The COUNT parameter specifies the number of ports allocated from
the selected STEP address block. If the COUNT parameter is omitted, the configuration
utility uses a default COUNT value equal to the STEP value. If the STEP parameter is
omitted, the configuration utility allocates the entire range (a COUNT without STEP is
invalid). The following examples illustrate a PORT statement with a rangelist:

;allocates 16 ports: 300h-30Fh
PORT = 300h-30Fh

;allocates 4 ports: 300h-303h or 304h-307h or 308h-30Bh or 30Ch-30Fh
PORT = 300h-30Fh STEP = 4

;allocates 2 ports: 300h-301h or 304h-305h or 308h-309h or 30Ch-30Dh
PORT = 300h-30Fh STEP = 4 COUNT =2
SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO | "text"]

The SHARE statement specifies whether the function can share the requested
ports. The configuration utility uses a default of NO (the port cannot be shared) if the
SHARE statement is omitted. A text identifier can be specified to indicate that the
function can only share the port address with a device that has a matching identifier. The
identifier may be up to 10 characters.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE | WORD | DWORD)]

_ The SIZE statement specifies the size of the 1/O port as BYTE (8-bit), WORD (16-
bit) or DWORD (32-bit). The default size is BYTE.

340 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

46.4.4 Memory Description Block

The memory description block specifies the amount of memory on an expansion
board and its starting address, whether the memory is cacheable, whether it is RAM or
ROM, the type of memory (system, expanded, virtual or other), and initialization
requirements of the memory. The configuration file can contain a maximum of nine
memory description blocks for any one function. The memory request block has the
following format:

MEMORY = list/range [STEP = value]
ADDRESS = rangelist [STEP = valuel]]
WRITABLE = YES | NOJ

MEMTYPE = SYS | EXP | VIR | OTH]
[SIZE = BYTE | WORD | DWORD]
DECODE = 20 | 24 | 32]

CACHE = YES | NOJ

[SHARE = YES | NO | "text"]

MEMORY Statement (Optional)

Syntax:
MEMORY = range [STEP = value]

The MEMORY statement signifies the beginnin% of the memory description block.
The range following the MEMORY statement specifies the minimum and maximum
amount of memory that can be put on the board. Each possible memory configuration can
be listed separately (such as, 1M, 2M, 3M for one to three megabytes) or a minimum-to-
maximum range can be specified (IM-3M). A minimum value of 1K is required and the
minimum-to-maximum range must be at least 1K. The maximum range value is 64
megabytes.

If a range is specified, the STEP field must also be included to define the smallest
increment by which additional memory can be added to the board.

ADDRESS Statement (Optional)

Syntax:
ADDRESS = range [STEP = value)

or
ADDRESS = list

Revision 3.10 341

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The ADDRESS statement specifies the starting address of the memory. The
ADDRESS statement is optional for memory if expanded or other is chosen for the
memory type. The ADDRESS statement is required for system and virtual memory. The
STEP parameter that follows the range identifies the addresses within the range that can be
used as the starting address. The following example illustrates the valid starting address
selections:

MEMORY = 1M
ADDRESS = 1IM-4M STEP = 1M

Starting Ending
Address Address
100000h 1FFFFFh
200000h 2FFFFFh
300000h 3FFFFFh
400000h 4FFFFFh

WRITABLE Statement (Optional)

Syntax:
[WRITABLE = YES | NOJ

The WRITABLE field indicates whether the memory is RAM or ROM; for ROM
this field is NO. The default is YES.

MEMTYPE Statement (Optional)

Syntax:
[MEMTYPE = SYS | EXP | VIR | OTH]

The MEMTYPE field specifies whether the memory is SYStem (base and extended
memory), EXPanded (LIM EMS memory available for use by an expanded memory
manager), or OTHer (address space used for memory mapped 1/O or bank-switched
memory). The default is SYS. VIRtual indicates that the address space is used, but no
physical memory occupies the address (address of a LIM page frame). Accesses to VIR
memory do not generate addresses on the EISA bus. OTH is intended primarily for
memory mapped I/O devices such as network adapters. OTH should include an
ADDRESS statement only if it resides in the physical address space.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE | WORD | DWORD]

The SIZE statement identifies the memory as BYTE (8-bit), WORD (16-bit) or

DWORD (32-bit) memory. The SIZE defaults to DWORD if the SIZE statement is
omitted.

342 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DECODE Statement (Optional)

Syntax:
[DECODE = 20 | 24 | 32]

DECODE is an optional statement that specifies the number of address lines
decoded by a memory expansion board. The default is 32 for all memory boards.

CACHE Statement (Optional)

Syntax:
[CACHE = YES | NOJ

The CACHE statement indicates whether the memory contents can be stored in
cache memory. The memory on a graphics board, for example, generally should not be
stored in a cache memory. The default is NO.

SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO | "text"]

The SHARE statement indicates whether the memory in this space can be shared by
another device. The default is NO. A text identifier can be specified to indicate that the
function can only share the memory address range with a device that has a matching
identifier. The identifier can be up to 10 characters.

TOTALMEM Statement (Optional)

Syntax:
TOTALMEM = list/range [STEP = value]

A choice statement block can contain a TOTALMEM statement that indicates the
total amount of memory specified by the CHOICE. The TOTALMEM statement is
required for a memory block that can have its allocation split between system memory
(SYS), other memory (OTH) and expanded memory (EXP).

~ The TOTALMEM statement can include each possible memory size or provide a
minimum-to-maximum range of possible configurations. A range must include the STEP
keyword to indicate the smallest memory increment that can be added to the memory
board.

Revision 3.10 343

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DECODE Statement (Optional)

Syntax:
[DECODE = 20 | 24 | 32]

DECODE is an optional statement that specifies the number of address lines
decoded by a memory expansion board. The default is 32 for all memory boards.

CACHE Statement (Optional)

Syntax:
[CACHE = YES | NOJ

The CACHE statement indicates whether the memory contents can be stored in
cache memory. The memory on a graphics board, for example, generally should not be
stored in a cache memory. The default is NO.

SHARE Statement (Optional)

Syntax:
[SHARE = YES | NO | "text"]

The SHARE statement indicates whether the memory in this space can be shared by
another device. The default is NO. A text identifier can be specified to indicate that the
function can only share the memory address range with a device that has a matching
identifier. The identifier can be up to 10 characters.

TOTALMEM Statement (Optional)

Syntax:
TOTALMEM = list/range [STEP = value]

A choice statement block can contain a TOTALMEM statement that indicates the
total amount of memory specified by the CHOICE. The TOTALMEM statement is
required for a memory block that can have its allocation split between system memory
(SYS), other memory (OTH) and expanded memory (EXP).

~ The TOTALMEM statement can include each possible memory size or provide a
minimum-to-maximum range of possible configurations. A range must include the STEP
keyword to indicate the smallest memory increment that can be added to the memory
board.

Revision 3.10 343

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.4.5 INIT Statements

INIT statements specify the initializations for alternative configurations. An INIT
statement can be used to 1nitialize any of the following:

DMA

IRQ
PORT
MEMORY

The configuration utility determines the initializations for the selected configuration
and stores them 1n nonvolatile memory. The system ROM power-up routine performs the
initializations.

I/0 Port INIT Statement

Syntax:
INIT = IOPORT(i) [LOC(bitlist)] valuelist

or
INIT = PORTADR (address) [[BYTE| WORD | DWORD) st

The I/O port INIT statement specifies an I/O port and the binary value to write to
the port for the configuration.

The INIT statement can specify the I/O port address, port size, and value directly in
the PORTADR ((address) form of the statement. The default port size is BYTE. This
statement syntax provides a shorthand form of specifying 1/O port values where no
initialization information block is required. When this shorthand format is used, all bits
must be specified with a 1, 0, or r (i.e., x's are not allowed to specify bits in this format).

The INIT statement can also indicate the address with an IOPORT(i) statement
combined with the IOPORT(i) form of the INIT statement. The port size is specified with
the IOPORT(i) statement, not in the INIT statement.

. The list portion specifies the binary values to initialize the port. The values must be
binary.
The INIT statement can include the LOC(bitlist) string to reference individual bits.
The bitlist contains a list or range of bit positions. The elements of the bitlist must be in
MSBit to LSBit order. A space must be included between elements as a delimiter.

INIT = PORTADR(0z800h) WORD 0000111100001111b ;WORD port

INIT = PORTADR(0z800h) 00001111b :Byte port

INIT = PORTADR(0z800h) 001100rr :Byte port with "r" bits
INIT = IOPORT(1)(0z800h) LOC(7-2) 001100 ;Byte port (range)
INIT = IOPORT(2)(0z800h) LOC(7 6 1 0) 0011 ;4 bits specified

INIT = IOPORT(3)(0z800h) 00001111

Revision 3.10 345

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Switch INIT Statement

Syntax:
INIT = SWITCH(i) LOC(switchlist) valuelist

The switch INIT statement specifies the switch positions and the appropriate settin
for the configuration. SWITCH(i) indicates the switch being initialized. LOC(switchlist
valuelist identifies the switch positions and specifies the setting.

The LOC(switchlist) contains a list or range of switch positions. The elements of the
switchliss must be in ascending order if REVERSE=YES, or descending order if
REVERSE =NO. A space must be included between elements as a delimiter.

The valuelist specifies the switch setting for each switch position. The valuelist must
use the same order as the switchlist. A DIP switch can be set for "1" to indicate "ON," or "0"
to indicate "OFF." The dip switch settings are not delimited with a space. The valuelist for
a rotary or slide switch indicates the selected position number by a "1" in the appropriate
bit position.

Jumper INIT Statement

Syntax:
INIT = JUMPERC(i) LOC(jumperlist) valuelist

The jumper INIT statement specifies the jumper positions and the appropriate
setting for the configuration. JUMPER(i) indicates the jumper being Initialized.
LOC(jumperlist) specifies the jumper positions being specified.

The LOC(jumperlist) contains a list of jumper positions. The valuelist specifies the
setting for each jumper position. The valuelist must not be delimited with a space and must
use the same order as the jumperlist.

The jumperlist specifies paired and tripole jumpers by their jumper positions. A
paired or tripole jumperlist can use a range to indicate the jumpers. The elements of the
jumperlist must be in ascending order if REVERSE=YES, or descending order if
REVERSE =NO. A space must be included between elements as a delimiter.

The jumperlist specifies inline jumpers by indicating the connection between two
posts with a caret. For example, LOC(1°2 3°4 5°6) specifies the jumper between posts 1
and 2, between posts 3 and 4, and between posts S and 6. The elements of the jumperlist
must be in ascending order if REVERSE =YES, or descending order if REVERSE=NO.
A space must be included between elements as a delimiter.

Paired and inline jumper valuelist settings can be indicated as "1" for "ON" (jumper
installed), "0" for "OFF" (jumper not installed). The paired jumper settings are not
delimited with a space.

A tripole jumper valuelist settings can be indicated as "1" for "ON" (jumper installed

in upper or right position), "0" for "OFF" (jumper installed in lower or left position) "n" for
jumper not installed. The tripole jumper settings are not delimited with a space.

346 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Software INIT Statement (Optional)

Syntax:
INIT = SOFTWARE() "parameter" [| parameter]...

The software INIT statement specifies the command line parameter that invokes a
software command for the selected configuration. The (i) indicates the SOFTWARE(i)
statement that contains text to display with the parameters. The parameters specify an
ASCII string that appends to a software command, which specified in the SOFTWARE(i)
text. For example, the following configuration file fragment illustrates use of the software
INIT statement and SOFTWARE(i) statement that specify an entry into an MS-DOS
AUTOEXEC.BAT file:

SOFTWARE(1) =
"This example software initialization
statement indicates that the NET.EXE
file with command line parameters must
be placed in the AUTOEXEC.BAT file: \n\n
NET.EXE /I=n /D=n where:"

FUNCTION = "Expanded Memory Allocation"

CHOICE = "4 MB Expanded Memory"
INIT = SOFTWARE(1) "/I=4 /D=3"

Revision 3.10 347

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.5 Resource Group

A resource description block must have one or more group of resource and
initialization statements. The elements of the resource description block are grouped
together based on their interdependence. All resource and initialization statements must
be in a group. The three types of group are:

. LINK groups, in which selection of any one resource in the group determines
the selection of all other resources and initializations in the group.

. COMBINE groups, in which each resource selection is independent, but the
initialization is determined by the combination of resource selections.

. FREE groups, in which each resource selection is independent, and the
initializations are independent of the resource selections.

The groups begin with a keyword (LINK, COMBINE or FREE) and end at the next
group keyword or at the end of the resource description block.

4.6.5.1 LINK Groups

The elements of linked group have a direct relationship with each other. The
selection of one resource determines the other resources in the group and the initialization.
Each statement in a linked group must have the same number of options. If the first option
is chosen for one resource, the configuration utility automatically selects the first option for
the other resource statements and the initialization statements. The syntax of a linked
group is:

LINK
resource statement

resource statement
INIT statement

}Nl T statement

The following example illustrates the use of a linked group that provides selection of
the interrupt or DMA channel. The user (or configuration utility) can select the interrupt
or the DMA channel, but after making the one selection, the other resource and the
initialization must correspond to the same option. An IRQ = 3 selection forces the
configuration utility to select DMA = 2 and IOPORT(1) initialization 00001111b. A
DMA = § selection forces the configuration utility to select IRQ = 4 and IOPORT(1)
initialization 11110000b.

LINK
IRQ =3 | 4
DMA =25
INIT = IOPORT(1) 00001111b | 11110000b

348 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.5.2 COMBINE Groups

The elements of combined groups have an indirect relationship with each other.
Each resource selection is independent, but the initialization is directly determined by the
combination of resource selections. The syntax of a linked group is:

COMBINE
resource statement

resource statement
INIT statement

'INI T statement

The following example illustrates the use of a combined group that provides
selection of a memory size and starting address. The user (or configuration utility) can
select any memory size and starting address, and the configuration utility automatically
selects the initialization that corresponds to the selected memory size and starting address.
The table after the example lists the initialization value for each possible combination.

COMBINE
MEMORY = 4M | 8M ;Memory size
ADDRESS = 1M | 4M ;Starting address
INIT = IOPORT(2) 00001111b | 01001111b | 10001111b | 11001111b

Memory Starting Port
Size Address Initialization
4M IM 00001111b
4M 4M 01001111b
&M 1M 10001111b
&M 4M 11001111b

Revision 3.10 349

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates the use of a combined group in which the starting
address selection and the initialization use a range with a step. gl'he user (or configuration
utility) can select any memory size and starting address, and the configuration utility
automatically selects the initialization that corresponds to the selected memory size and
starting address. The table after the example lists the initialization value for each possible
combination.

COMBINE
MEMORY = 4M | 8M | 12M
ADDRESS = 4M-256M STEP = 4M
INIT = IOPORT(1) 00000000b-10111111b

Memory Starting INIT
Size Address Value
4M 4M 00000000b
4M &M 00000001b
4M 12M 00000010b
4M 16M 00000011b
4M 244M 00111100b
4M 248M 00111101b
4M 252M 00111110b
4M 256M 00111111b
12M 244M 10111100b
12M 248M 10111101b
12M 252M 10111110b
12M 256M 10111111b

The following COMBINE fragment and INIT table illustrates the initialization
value assignment sequence:

COMBINE
RESOURCEI 1
RESOURCE2 1
RESOURCE3 1
INIT = 00001b-1101

2
2
2

3
3
3
1b

350 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INIT | RESOURCEI Part RESOURCE?2 Part RESOURCES3 Part
Value | of Combination of Combination of Combination
00001b| RESOURCEI1 option 1 | RESOURCE2 option 1 | RESOURCES3 option 1
00010b| RESOURCET1 option 1 | RESOURCE2 option1 | RESOURCE3 option 2
00011b| RESOURCET1 option 1 | RESOURCE2 option1 | RESOURCE3 option 3
00100b| RESOURCE1 option1 | RESOURCE?2 option 2 | RESOURCE3 option 1
00101b| RESOURCEI1 option 1 | RESOURCE?2 option 2 | RESOURCE3 option 2
00110b| RESOURCET1 option 1 | RESOURCE2 option2 | RESOURCES3 option 3
00111b| RESOURCE1 option 1 | RESOURCE2 option 3 | RESOURCES3 option 1
01000b| RESOURCET1 option 1 | RESOURCE2 option3 | RESOURCE3 option 2
01001b| RESOURCET1 option 1 | RESOURCE2 option3 | RESOURCES3 option 3
01010b| RESOURCET1 option 2 | RESOURCE2 option 1 | RESOURCES3 option 1
01011b| RESOURCET1 option2 | RESOURCE2 option1 | RESOURCE3 option 2
01100b} RESOURCE!1 option2 | RESOURCE2 option 1 | RESOURCE3 option 3
01101b|{ RESOURCEI1 option2 | RESOURCE2 option2 | RESOURCE3 option 1
01110b| RESOURCET1 option 2 | RESOURCE?2 option2 | RESOURCES3 option 2
01111b} RESOURCEI1 option2 | RESOURCE2 option2 | RESOURCES3 option 3
10000b| RESOURCET1 option 2 | RESOURCE?2 option 3 | RESOURCES3 option 1
10001b| RESOURCEI1 option 2 | RESOURCE?2 option3 | RESOURCE3 option 2
10010b| RESOURCEI1 option2 | RESOURCE2 option3 | RESOURCE3 option 3
10011b| RESOURCET1 option 3 | RESOURCE2 option1 | RESOURCES3 option 1
10100b| RESOURCET1 option 3 | RESOURCE2 option1 | RESOURCE3 option 2
10101b| RESOURCEI1 option 3 | RESOURCE2 option 1 | RESOURCES3 option 3
10110b| RESOURCET1 option 3 | RESOURCE2 option 2 | RESOURCE3 option 1
10111b| RESOURCEI1 option 3 | RESOURCE2 option 2 | RESOURCE3 option 2
11000b} RESOURCET1 option 3 | RESOURCE2 option2 | RESOURCES3 option 3
11001b| RESOURCEI1 option 3 | RESOURCE2 option 3 | RESOURCE3 option 1
11010b| RESOURCET1 option 3 | RESOURCE2 option 3 | RESOURCE3 option 2
11011b| RESOURCEI1 option 3 | RESOURCE2 option 3 | RESOURCE3 option 3
4.6.5.3 Free Groups

The elements of free-form groups have no relationship with each other. Each
resource selection is independent and the initializations are independent of the resource
selections. The syntax of a free-form group is as follows:

FREE

resource statements
INIT statements

Revision 3.10 351

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates the use of a free-form group in which IRQ 2, 3, 4,
or 5 can be selected. The IRQ selection is independent of all other resource declarations.
The example does not include any IRQ initialization.

FREE
IRQ=2|3]4]5

4.6.6 PORTVARY(j) Variable

Syntax:

IOPORT(i) = PORTVAR())
combined with:

Portvar(j) = address

The variable, PORTVAR(j), can be used to modify an IOPORTY(i) address based on
a configuration selection. Each variable must have a separate PORTVAR(j) statement
with a different identifier, "i". The "i" can be any positive integer value from 1 to 32767.
The PORTVARC(j) variable replaces the address portion of the IOPORTY(i) statement. The
configuration utility assigns an address to the IOPORT(i) based on a PORTVAR(j)
assignment statement within a choice or subchoice statement block.

The following configuration file segment illustrates the use of PORTVAR(j) to
initialize a serial port interrupt. The example indicates an initialization value 00000001b is
written to port address 3F9h for a COM1 selection or written to port address 2F%h for a
COM?2 selection. The configuration utility replaces the PORTVAR(3) variable with the
port address (3F9h or 2F9h) based on the CHOICE selected.

IOPORT(1) = PORTVAR(3)
FUNCTION = "Serial Port"
CHOICE = "COM1"
PORTVAR(3) = 3F%h
INIT = IOPORT(1) 00000001b
CHOICE = "COM2"
PORTVAR(3) = 2F%h
INIT = IOPORT(1) 00000001b

352 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.7 System Board Configuration File

System board configuration files must supply additional information not required by
expansion boards to the configuration utility. This information includes the amount of
nonvolatile memory available, the number of expansion slots on the system board, the
power available at each slot, and the size and type of each expansion slot. The system
description block supplies the additional information.

4.7.1 Board ldentification Block

The board identification block for system boards uses the same syntax as an
expansion board identification block. The CATEGORY statement must equal "sys" and
the SLOT statement must equal EMB(0). The syntax of the board identification block is:

BOARD
ID = "7 character ID"
NAME = "system board product name"
MFR = "system board manufacturer name"
CATEGORY = "SYS"
SLOT = EMB(0)
AMPERAGE = value ;System board +5V current usage in mA

4.7.2 System Description Block

The system description block includes a SYSTEM statement, the amount of
nonvolatile memory, and a description of the available slots. The system description block
follows the board identification block in the configuration file. The syntax of the system
description block is:

SYSTEM
[NONVOLATILE = value] ;Bytes of nonvolatile memory
[AMPERAGE = value] ;Total +5V current (mA) from power supply
[SLOT(1) = ISA8 | ISA16 | EISA | OTH [,"text"] [,"text"]...]
(LENGTH = value]
(SKIRT = YES | NOJ
[BUSMASTER = YES | NOJ

SLOT(n) = ISA8 | ISA16 | EISA | OTH
[LENGTH = value]
[SKIRT = YES | NOJ
SYSTEM Statement (Required,

Syntax:
SYSTEM

The SYSTEM statement identifies the beginning of the system description block.
The SYSTEM statement follows the board identification block in the configuration file.

Revision 3.10 353

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

NONVOLATILE Statement (Optional)

Syntax:
NONVOLATILE = value

The NONVOLATILE statement specifies the total bytes of EISA nonvolatile
memory in the system. The NONVOLATILE statement does not include the 64 bytes of
ISA compatible nonvolatile memory.

The configuration data for one expansion slot, one virtual device or one embedded
device (including the system board--EMB(0)), can use no more than 340 bytes of
nonvolatile memory. A slot with a multifunction expansion board installed can use 340
bytes total for all expansion board functions. EISA systems must support at least 340 bytes
of nonvolatile memory for each expansion slot, plus nonvolatile memory for the system
board functions.

- The system board designer can use the following equation to determine the
minimum amount of EISA nonvolatile memory required:

Nonvolatile Memory =
(Expansion Slots + System Board + Embedded Devices + Virtual Devices) * 340

Where:

Expansion Slots = number of expansion connectors
A whole number between 1 and 15

System Board
EMB(0)--system board

Embedded devices = number of embedded devices on system board
A whole number between
1 and (15 - Physical Slots)

Virtual devices = number of system board virtual devices
Virtual devices > 1

The following example illustrates the nonvolatile memory calculation for a system
board with 1 embedded device, 8 expansion connectors and 2 virtual devices:

Assumptions:

System Board 1
Physical Slots = 8
Embedded devices = 1
Virtual devices = 2

Total = 12

Minimum Nonvolatile Memory = 12 * 340 = 4080 bytes

354 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

An AMPERAGE statement specifies the total amount of +5 volt power (in
milliamps) available to expansion devices installed on the expansion bus.

value = power supply current

4.7.3 SLOT Statement Block (Optional)

Syntax:
SLOT(i) = ISA8 | ISA16 | EISA | OTH [,"text"] [,"text"]...

The SLOT(i) statement is used to specify an expansion slot as 8-bit ISA (ISA8), 16-
bit ISA (ISA16), or 32-bit EISA (EISA). The i represents the slot number.

The SLOT(i) statement does not apply to the system board, embedded devices or
virtual devices, when included as part of the system description block.

LENGTH Statement (Optional)

Syntax:
[LENGTH = value)

A LENGTH statement can accompany a SLOT(i) statement to specify the
maximum length board (a decimal integer in millimeters) that can be installed in the slot.

System boards should include a LENGTH statement. The configuration utility
cannot optimize expansion board slot allocation if system boards do not specify the slot
lengths. If the LENGTH statement is omitted, the configuration utility assumes the
maximum length of 341 millimeters and assigns slot numbers without regard to slot length.

SKIRT Statement (Optional)

Syntax:
[SKIRT = YES | NOJ

Each SLOT(i) statement can also be accompanied by a SKIRT statement that
specifies whether the slot supports a skirted expansion board. The default is YES if the
SLOT(i) statement does not have an accompanying SKIRT statement.

BUSMASTER Statement (Optional)

Syntax:
[BUSMASTER = YES | NO]

The BUSMASTER statement specifies whether an EISA slot accepts a bus master
expansion board. The slot defaults to BUSMASTER = YES if the BUSMASTER
statement is omitted from the slot statement block and the slot is an EISA slot.

Revision 3.10 355

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8 EISA System ROM Operations

EISA system ROM provides the following services to support automatic hardware
configuration:

. The EISA system ROM power-up routines use the configuration information
stored in nonvolatile memory to initialize the system board and expansion
boards.

. The EISA system ROM provides BIOS routines that simplify reading and
writing configuration data in nonvolatile memory.

4.8.1 EISA System ROM BIOS Routine Calls

Two BIOS routines are called by the configuration utility to initialize nonvolatile
memory. One BIOS routine clears configuration information from nonvolatile memory
and the other stores configuration information in nonvolatile memory. The BIOS routines
are part of the INT1S handler and have the following call interface:

Clear Nonvolatile Memory
INT 15h, AH=D8h, AL =02h (or 82h)

Write Nonvolatile Memory
INT 15h, AH=D8h, AL=03h (or 83h)

Device drivers and the power-up BIOS routines use two other BIOS routine to
retrieve configuration information from nonvolatile memory. One BIOS routine returns a
subset of the configuration information stored in nonvolatile memory for one expansion
board. The other routine returns all the configuration information about one expansion
board function. The BIOS routines are called through the INT 15h handler with the
following call interface:

Read slot configuration information
INT 15h, AH=D8h, AL=00h (or 80h)

Read function configuration information
INT 15h, AH=D8h, AL=01h (or 81h)

356 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The BIOS routines are bimodal (real or protected mode) and can be called for
execution as 32- or 16-bit code. Protected mode execution is accomplished by simulating
an INT 15h instruction (push flags, call far) to the address]gointed to by the INT 15h vector
(0000:0054h). If INT 15h no longer points to the system ROM, then the industry standard
entry point for INT 15h, FO00:F859h, can be called directly. The INT 15h BIOS routines
require 1536 bytes allocated from the stack for temporary RAM variables.

Protected mode operating systems that can create a code segment descriptor can
call the INT 15h BIOS routines by creating a descriptor that has a base address of FO000h
and executing a far call to the offset address of the industry standard entry point. The code
segment descriptor must have a limit of FFFFh, and must have 1/O privilege (current
privilege level of code segment being executed must be equal to or less than IOPL). The
code segment descriptor can have a D-bit of Oh (16-bit addressing and operands) or 1h (32-
bit addressing and operands). The address segment D-bit can be set to Oh or 1h (indicating
16- or 32-bit data size) independent of the code segment D-bit setting.

A code segment other than FOO00h may be used as long as it includes the 64 Kbytes
starting at FOOOOh and has 1/O privilege (current privilege level of code segment being
executed must be equal to or less than IOPL).

The INT 15h system ROM BIOS routines adhere to the following conventions:

. Do not perform any segment register-dependent operations (all branch
instructions are relative to the instruction pointer)

. Do not change the segment registers (including the code segment)
. Return to the calling routine with the interrupt flag unmodified
. Do not use privileged instructions (LMSW, LSL, etc.)

. Do not write data using a code segment (CS) override

4.8.1.1 Identify System Board Type

A device driver can identify an EISA system board by detecting the upper case
ASCII string "EISA" at memory address FOOO:FFD9h through FOOO:FFDCh.

Revision 3.10 357

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8.1.2 Read Slot Configuration Information, INT 15h, AH=D8h,
AL=00h (or 80h)

This BIOS routine reads a subset of the configuration information for one expansion
board or the system board from nonvolatile memory. The BIOS routine returns a summary
that includes all functions of the expansion board.

INT 15h, AH=D8h, AL=00h (or 80h)
INPUT:

0D8h

00h %If CS specifies 16-bit addressing)

80h (If CS specifies 32-bit addressing)

Siot Number (including embedded and virtual devices)
0 System board

1 Slot1l
2 Slot2
n Slotn

s

OUTPUT:

= 00h Successful completion (carry flag = 0)
80h Invalid slot number (carry flag = 1)
82h Nonvolatile memory corrupt (carry flag = 1)
83h Empty slot (carry flag = 1)
86h Invalid BIOS routine call (carry flag = 1)
87h Invalid system configuration (carry flag = 1)

358 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AL =
7(6|5(4(13]2[1]|0
L1 Duplicate ID number This nibble indicates which CFG
0000 If no duplicate ID file is loaded when duplicate file

0001 If 1st duplicate ID names are present. (1.e., the first
. is called 'AAAnnnn.CFG; the
. next is IAAAnnnn.CFG, the next

1111 If 15th duplicate ID is 2AAAnnnn.CFG and so on.

Slot type

00=Expansion slot

01=Embedded device

10 =Virtual device

11=Reserved

Product ID

O=readable

1=not readable

Duplicate ID

0=No duplicate ID.

1=Duplicate IDs.

BH = Major revision level of configuration utility
BL = Minor revision level of configuration utility
CH = Checksum (MSByte) of configuration file
CL = Checksum (LSByte) of configuration file
DH = Number of device functions

DL = Combined function information byte

Bit 7. Reserved (0)
Bit 6: Reserved (0)
Bit 5: Slot has one or more port initialization entries
Bit 4: Slot has one or more port range entries
Bit 3: Slot has one or more DMA entries
Bit 2: Slot has one or more interrupt (IRQ) entries
Bit 1: Slot has one or more memory entries
Bit 0: Slot has one or more function type definitions
DI and SI = Four byte compressed ID
DI (Isb) = Byte 0
DI (msb) = Byte 1
SI(Isb) = Byte2
SI (msb) = Byte 3

4.8.1.3 Read Function Configuration information, INT 15h,
AH=0D8h, AL=01h (or 81h)

This BIOS routine reads all the configuration information for one expansion board
function. The BIOS routine transfers the data block that contains the configuration
information for the expansion board function to a table in memory. The BIOS routine
stores the data block at the starting address pointed to by DS:SI. The table's data structure
is defined later in this section.

Revision 3.10 359

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The caller can execute the "Read Slot Configuration Information" BIOS routine to
determine the number of expansion board functions, and execute the "Read Function
Configuration Information" BIOS routine to retrieve the data block for each function. The
BIOS routine retrieves the function data block indicated by the function number in register
CH. The caller can inspect the TYPE and SUBTYPE fields in each data block to identify
the function.

INT 15h, AH=0D8h, AL=01h (or 81h)
INPUT:

0D8h

01h (If CS specifies 16-bit addressing)
81h (If CS specifies 32-bit addressing)
Function number to read (0...n-1)

Slot Number (including embedded and virtual slots)
0 = System Board

1 =Slot1

2 = Slot 2

n = Slotn

DS = Segment for ::turn data buffer

SI = Offset to return data buffer (16-bit call)
ESI = Offset to return data buffer (32-bit call)

R

= 00h Successful completion (carry flag = 0)
80h Invalid slot number (carry flag = 1)
81h Invalid function number (carry flag = 1)
82h Nonvolatile memory corrupt; (carry flag = 1)
83h Empty Slot (carry flag = 1)
86h Invalid BIOS routine call (carry flag = 1)
87h Invalid system configuration (carry flag = 1)

Standard Configuration Data Block Structure
The 320-byte data block pointed to by DS:SI contains the configuration information
for one expansion board function. The field sizes of the data block are fixed sizes. A

configuration file must not specify resources or initializations that cannot fit within this
data structure. The 320-byte data block has the following structure:

360 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID

Byte 0
Bit 7
Bit 6:2
Bit 1:0
Byte 1
Bit 7:5
Bit 4:0
Byte 2
Bit 7:4
Bit 3:0
Byte 3
Bit 7:4
Bit 3:0

Total Bytes = 4
Offset = 00h

Reserved (0)
Character 1
Character 2

Character 2
Character 3

1st hex digit of product number
2nd hex digit of product number

3rd hex digit of product number
1-digit product revision number

1D and Slot Information

Byte 0
Bit 7 -

Bit 6 -

Bit 5:4 -

Bit 3:0 -

Byte 1
Bit 7 -

Bit 6:2 -

Bit1-
Bit O -

Total Bytes = 2
Offset = 04h

0= no duplicate ID is present
1= duplicate is present
0= ID is readable
1= ID is not readable
Slot type
00= expansion slot
01= embedded slot
10= virtual slot
11= reserved
Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

0= configuration is complete

1= configuration is not complete

Reserved (0)

0= EISA IOCHKERR not supported

1= EISA IOCHKERR supported

0= EISA ENABLE not supported (expansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

Revision 3.10

361

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = 2
Offset = 06h
Byte 0 = Minor revision level éO if no CFG File Extensjong
Byte 1 = Major revision level (0 if no CFG File Extension
Selections Total Bytes = 26
Offset = 08h

Byte 0 = 1st Selection
Byte 1 = 2nd Selection

Byte 25 = 26th Selection

Byte 1

Function Information Total Bytes = 1
Offset = 022h
Byte 0 _
Bit 7 - 0= function is enabled
1= function is disabled
Bit 6 - CFG extension Free-form data
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range ent?' s) follows
Bit 3 - DMA ent f{s ollows
Bit2- Interrupt la,) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows
TYPE and SUBTYPE ASCII String Total Bytes = 80
Offset = 023h
Byte 0 = 1st character of ASCII string

2nd character of ASCII string

Byte 79 = 80th character of ASCII string
For examgle, 'CI;YPE = COM,ASY;COM1 produces:

Byte Start of TYPE String
Bvte1 = O

Byte2 = M o)

Byte 3 =, Delimiter for TYPE string fragments
Byte4 = A

Byte S = S _

Byte6 =Y Endof TYPE strm%)
Byte 7 =; Delimiter for SUBTYPE string
Byte 8 = C Start of SUBTYPE string

Byte 9 = O

Byte 10=M _

Byte 11=1 End of SUBTYPE string

Byte 12= 0 Zero fill to end of field

Byte 13= 0

Byte 79= 0

362

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Configuration Total Bytes = 63
Bvie 0 = M . b Offset = 073h
te 0 = Memory configuration byte
y Bit 7 - ry0 = I:g:llst entry
1 = More enfries follow
Bit 6 - Reserved (0)
Bit 5 - 0 = Not shared memory
1 = Shared memory
Bit 4:3 - Memory Type

00 = SYS (base or extended)
01 = EXP (ei(panded)

10 = VIRtua
11 = OTHer
Bit 2 - Reserved (0)
Bit1- 0 = Not Cached
_ 1 = Cached
Bit 0 - 0 = Read Only (ROM)

1 = Read/Write (RAM)
Byte 1 = Memory Data Size
Bit

it 7:4 - Reserved (0)
Bit 3:2 - Decode Size
00 = 20
01 =24
10 = 32
‘ 11 = Reserved (0)
Bit 1.0 Data Size %Access size)
00 = BYT
01 = WORD
10 = DWORD

11 = Reserved (0)

Byte 2 = LSByte Memory start address (divided by 100h)
Byte 3 = Middle Byte Memory start address

Byte 4 = MSByte Memory start address

Byte 5 = LSByte Memory size (bytes divided by 400h)
Byte 6 = MSByte Memory size (0 in this word means 64M)

Interrupt Configuration Total Bytes = 14
Offset = 0B2h
Byte 0
Bit7 - 0 = Lastentry
) 1 = More enfries follow
Bit 6 - 0 = Not Shared
_ 1 = Shared
Bit 5 - 0 = Edge Triggered
_ 1 = Level Triggered
Bit 4 - Reserved (must be 0)
Bit 3:0 - Interrupt (0-F)

Byte 1 = Reserved (0)

Revision 3.10 363

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description

Byte 0
Bit 7 - 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
Bit 5:3 - Reserved (0)
Bit 2:0 - DMA Channel Number (0-7)
Byte 1
Bit 7:6 - Reserved (0)
Bit 5:4 - DMA Timing

00 - Default (ISA compatible) timing
01 - Type "A" timing
10 - Type "B" timing
11 - BURST (Type "C") timing
Bit 3:2 - Transfer size
00= 8-bit (byte) transfer
01= 16-bit (word) transfer
10= 32-bit (dword) transfer
11= Reserved
Bit 1:0 - Reserved (0)

Total Bytes = 8
Offset = 0COh

Port 1/0 Information

Byte 0
Bit 7 - 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
Bit 5 - Reserved (0)
Bit 4:0 - Number of Ports (minus 1)

00000 = 1 port
00001 = 2 sequential ports

11111 = 32 sequential ports

Byte 1 = LSByte 1/O Port Address
Byte 2 = MSByte I/0O Port address

Total Bytes = 60
Offset = 0C8h

364

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC,

Initialization Data

Byte 0 = Initialization Type

Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6:3 - Reserved (0)
Bit2 - Port value or Mask value

0 - Write value to port
1 - Use mask and value

Bit 1:0 - Type of access
00 - Byte address (8-bit)
01 - Word address (16-bit)
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte of port I/O address

IF Byte 0, Bit 2 = 0 (no mask), THEN
Bit 1:0 = Port width to write
00= Byte 3 = Port value
01= Byte 3 = LSByte of port value
Byte 4 = MSByte of port value
10= Byte 3 = LSByte of Fort value
Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value
11= Reserved
IF Byte 0, Bit 2 = 1 (use mask), THEN
Bits 1:0 = Number of bytes/port value /mask
00= Byte 3 = Port value
Byte 4 = Port mask (byte)
01= Byte 3 = LSByte of port value
Byte 4 = MSByte of port value

10

Byte 3 = LSByte of port value

Byte 4 = 2nd byte onort value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value

Byte 10 = MSByte o
11= Reserved (0)

Byte 5 = LSByte of Port mask (word)
the 6= MSthe of Port mask (word)

Total Bytes = 60
Offset = 0104h

Byte 7 = LSByte of port mask (dword)

Byte 8 = 2nd byte of port mask (dword)

Byte 9 = 3rd byte ofg;ort mask (dword)
ort mask (dword)

Free-form Configuration Data Block Structure

When the Free-form data bit is set in the Function Information byte (bit 6), the 320-

byte data structure has the following specific format.

Revision 3.10

365

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID

Total Bytes = 4
Offset = 00h

Byte 0
Bit 7 Reserved (0)
Bit 6:2 Character 1
Bit 1:0 Character 2
Byte 1
Bit 7:5 Character 2
Bit 4:0 Character 3
Byte 2
Bit 7:4 1st hex digit of product number
Bit 3:0 2nd hex digit of product number
Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number
ID and Slot Information Total Bytes = 2
Offset = 04h
Byte 0
Bit7 - 0= no duplicate ID is present
1= duplicate is present
Bit 6 - 0= ID is readable
1= 1D is not readable
Bit 5:4 - Slot type
00= expansion slot
01= embedded slot
10= virtual slot
11= reserved (0)
Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACEQ105)
0010 = 2nd duplicate (CFG file 2ACEO0105)
1111 = 15th duplicate (CFG file FACEO0105)
Byte 1
Bit7- 0= configuration is complete
1= configuration is not complete
Bit 6:2 - Reserved (0)
Bit1- 0= EISA IOCHKERR not supported
1= EISA IOCHKERR supported
Bit0- 0= EISA ENABLE not supported (expansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)
366 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = 2
Offset = 06h
Byte 0 = Minor revision level 50 if no CFG File Extensjon}
Byte 1 = Major revision level (0 if no CFG File Extension
Selections Total Bytes = 26
Offset = 08h

Byte 0 = 1st Selection
Byte 1 = 2nd Selection

Byte 25= 26th Selection

Function Information Total Bytes = 1
Offset = 022h
Byte 0 .
Bit7- 0= function is enabled
) 1= function is disabled
Bit 6 - CFG extension Free-form data (=1)
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit3 - DMA entr}/]&séfo lows
Bit 2 - Interrupt () entry(s) follows
Bit1- Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows
TYPE and SUBTYPE ASCII String Total Bytes = 80

Offset = 023h
Byte 0 = 1st character of ASCII string
Byte 1 = 2nd character of ASCII string

Byte. 79 = 80th character of ASCII string

Freeform Data Total Bytes = 2 to 205
Offset = 73h
Byte 0 = Length of following data block
Byte 1 = 1st byte of freeform data

Eyte 204 = 204th byte of freeform data

Revision 3.10 367

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

48.1.4 Clear Nonvolatile Memory, INT 15h, AH=D8h, AL=02h (or 82h)

This BIOS routine clears all EISA nonvolatile memory locations. The configuration
utility uses the "Clear Nonvolatile Memory" BIOS routine Call prior to writing
configuration information to nonvolatile memory.

The Clear Nonvolatile Memory BIOS routine does not clear the 64-byte ISA
nonvolatile memory.

INT 15h, AH=D8h, AL=02h (or 82h)

INPUT:

AH = Dg8h

AL = 02h (If CS specifies 16-bit addressing)

AL = 82h (If CS specifies 32-bit addressing)

BH = Configuration utility major revision level

BL = Configuration utility minor revision level
OUTPUT:

AH = 00h Successful completion (carry flag = 0)

84h Error clearing nonvolatile memory (carry flag = 1)
86h Invalid BIOS routine call (carry flag = 1
88h Configuration utility not supported (carry flag = 1)

If 88h is returned in AH, indicating an unsupported revision of the configuration
utility, then the major revision number of the configuration utility that is supported is
returned in AL.

4.8.1.5 Write Nonvolatile Memory INT 15h, AH=D8h, AL=03h (or 83h)

This BIOS routine writes configuration information for one slot into EISA
nonvolatile memory. The "Write Nonvolatile Memory" BIOS routine also computes a CRC
code (or checksum) after each call. The CRC code (or checksum) is a cumulative
calculation that includes all data written to nonvolatile memory since the last "Clear
Nonvolatile Memory" BIOS routine Call.

368 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The Write Nonvolatile Memory BIOS routine does not write to the 64-byte ISA
configuration memory.

INT 15h, AH=D8h, AL=03h (or 83h)

INPUT:

e

mw
m""zt/j;
-

OUTPUT:

D8h -

03h (If CS specifies 16-bit addressing

83h (If CS specifies 32-bit addressing

Length of data structure (CX = 0 indicates empty slot)
Length includes two bytes for configuration file checksum
Segment of data buffer

Offset of data buffer $l6~bit callg

Offset of data buffer (32-bit call

00h Successful completion (carry flag =0)

84h Error writing nonvolatile memory (carry flag = 1)
85h Nonvolatile Memory is full, (carry tlag = 1)

86h Invalid BIOS routine call (carry 1t"lyag =1)

Standard Configuration Data Block Structure

The structure referenced by DS:SI in the Write Nonvolatile Memory BIOS routine
CALL for a slot with a single function has the following format:

Four-Byte Compressed 1D Total Bytes = 4
Byte 0
Bit 7 Reserved (0)
Bit 6:2 Compressed character 1
Bit 1:0 Compressed character 2
Byte 1
Bit 7:5 Compressed character 2
Bit 4:0 Compressed character 3
Byte 2
Bit 7:4 1st hex digit of product number
B 133it 3:0 2nd hex digit of product number
yte
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number
Revision 3.10 369

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ID and Slot Information Total Bytes = 2
Byte 0
Bit 7 - 0= no duplicate ID is present
1= duplicate is present
Bit 6 - 0= ID is readable
1= 1D is not readable
Bit 5:4 - Slot type

00= expansion slot
01= embedded slot
10= virtual slot
11= reserved (0)
Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CF(g filenames
0001 = 1st dupllcate (CFG file 1ACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1

Bit 7 - 0= configuration is complete
1= configuration is not complete

Bit 6:2 - Reserved (0)

Bit1- 0= EISA IOCHKERR not supported
1= EISA IOCHKERR supported

Bit 0 - 0= EISA ENABLE not supported (expansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level ‘ Total Bytes = 2

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

Function Length Total Bytes = 2

Length does not include these two bytes, or the checksum at the end of nonvolatile
memory
Byte 0 = LSB length of following function entry
Byte 1 = MSB length of following function entry

370 | Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections Total Bytes = 2 to 27
Byte 0 = Len, gth of following selections field
1st

Byte 1 = lection
Byte 2 = 2nd Selection

Byte 26 = 26th Selection

Function Information Total Bytes = 1

Byte 0
Bit 7 - 0= function is enabled
1= function is disabled
Bit 6 -CFG extension free-form data
Bit S - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit 3 - DMA entry(s) tollows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 2 to 81
Byte 0 = Length of following ASCII string field

Byte 1 = 1st character of ASCII string
Byte 2 = 2nd character of ASCII string

Byte 80= 80th character of ASCII string

For example, TYPE = COM,ASY;COMI1 produces:
Byte 0 = OCh Length of string field
Byte 1 = C Start of TYPE string

Byte2 = O

Byte3 =M

Byte 4 =, Delimiter for TYPE string fragments
" Byte5 = A

Byte 6 = S

Byte 7 =Y End of TYPE string

Byte 8 = ; Delimiter for SUBTYPE string

Byte 9 = C Start of SUBTYPE string

Byte 10= O

Byte 11=M

Byte 12=1 End of SUBTYPE string

Revision 3.10 371

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Configuration Total Bytes = 7 to 63

Byte 0 = Memory configuration byte
Bit7-0 = Last c:*.ntlgyu
1 = More entries follow
Bit 6 - Reserved (0)
Bit 5 - 0 = Not shared memory
1 = Shared memory
Bit 4:3 - Memory Type
00 = SYStem (base or extended)
01 = EXPanded

10 = VIRtual
11 = OTHer
Bit 2 - Reserved (0)
Bit1- 0 = Not Cached
1 = Cached
Bit O - 0 = Read Only (ROM)

1 = Read/Write (RAM)

Byte 1 = Memory Data Size
Bit 7:4 - Reserved (0)
Bit 3:2 - Decode Size
00 =20
01 =24
10 = 32
11 = Reserved (0)
Bit 1:0 - Data Size (access size)
00 = BYTE
01 = WORD
10 = DWORD
11 = Reserved (0)

Byte 2 = LSByte Memory start address (divided by 100h)
Byte 3 = Middle Byte Memory start address

Byte 4 = MSByte Memory start address

Byte 5 = LSByte Memory size (bytes divided by 400h)
Byte 6 = MSByte Memory size

 Interrupt Configuration Total Bytes = 2 to 14

Byte 0
Bit 7 - 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
BitS 0 = Edge Triggered
1 = Level Triggered
Bit 4 - Reserved (0)
Bit 3.0 - Interrupt (0-F)
Byte 1 = Reserved (0)

372 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description
Byte 0
Bit 7 - 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
Bit 5:3 - Reserved (0)
Bit 2:0 - DMA Channel Number (0-7)
Byte 1
Bit 7:6 - Reserved (0)
Bit 5:4 - DMA Timin

01 - Type "A" timing
10 - Type "B" timing

11 - BURST (Type "C") timing

Bit 3:2 - Transfer size
00= 8-bit (byte) transfer
01= 16-bit gword) transfer

Total Bytes = 2to 8

00 - %)efault (ISA compatible) timing

10= 32-bit (dword) transfer

11= Reserved (0)
Bit 1:0 - Reserved (0)
Port 1/0 Information

Byte 0
Bit 7 - 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
= Shared

Bit 5 - Reserved (0)
Bit 4:0 - Number of Ports (minus 1)

00000 = 1 port
00001 = 2 sequential ports

11111 = 32 sequential ports

Byte 1 = LSByte 1/0 Port Address
Byte 2 = MSByte 1/O Port address

Total Bytes = 3 to 60

Revision 3.10

373

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Initialization Data

Byte 0 = Initialization Type

Bit 7 - 0 = Last entry
1 = More entries follow
Bit 6:3 - Reserved (0)
Bit 2 - Port value or Mask value
0 - Write value to port
1 - Use mask and value
Bit 1:0 - Type of access

00 - Byte address (8-bit)

01 - Word address (16-bit)
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte of port I/O address

If Byte 0, Bit 2 = 0 (no mask), THEN
Bit 1:0 = Port width to write

00= Byte 3 = Port value

01= Byte 3 = LSByte of port value
Byte 4 = MSByte of port value

10= Byte 3 = LSByte of Port value
Byte 4 = 2nd byte of port value
Byte S = 3rd byte of port value
Byte 6 = MSByte of port value

11= Reserved (0)

If Byte 0, Bit 2 = 1 (use mask), THEN
Bits 1:0 = Nuxgber of bytes/port value/mask

Byte 3 = Port value

Byte 4 = Port mask (byte)
01= Byte 3 = LSByte of port value

Byte 4 = MSByte of port value

Byte S = LSByte of Port mask (word)

Byte 6 = MSByte of Port mask (word)
10= Byte 3 = LSByte of Fort value

Byte 4 = 2nd byte of port value

Byte S = 3rd byte of port value

Byte 6 = MSByte of port value

Byte 7 = LSByte of Eort mask (dword)

Byte 8 = 2nd byte of port mask (dword)

Byte 9 = 3rd byte of port mask (dword)

Byte 10= MSByte of port mask (dword)
11= Reserved (0)

374

Revision 3.10

Total Bytes = 4 to 60

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Configuration Data for 2nd function Function length
Configuration Data for 3rd function Function length
Configuration Data for nth function Function length for nth function = 00
Configuration File Checksum Total Bytes = 2
Byte 1 = MSByte of configuration file checksum
Byte 0 = LSByte of configuration file checksum

Free-formConfiguration Data Block Structure

When the free-form data bit is set in the Function Information byte (bit 6), the data
block pointed to by DS:SI has the following specific format.

Four-Byte Compressed ID Total Bytes = 4
Byte 0
Bit 7 Reserved (0)
Bit 6:2 Compressed character 1
Bit 1:0 Compressed character 2
Byte 1
Bit 7:5 Compressed character 2
Bit 4.0 Compressed character 3
Byte 2
Bit 7:4 Ist hex digit of product number
Bit 3:0 2nd hex dlglt of product number
Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number

Revision 3.10 375

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ID and Slot Information Total Bytes = 2
Byte 0
Bit 7 - 0= no duplicate ID is present
1= duplicate is present
Bit 6 - 0= ID is readable
1= ID is not readable
Bit 5:4 - Slot type

00= expansion slot
01= embedded slot
10= virtual slot
11 = reserved (0)
Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CF£ filenames
0001 = 1st duplxcate (CFG file 1ACEQ10S)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1

Bit7 - 0= configuration is complete
1= configuration is not complete

Bit 6:2 - Reserved (0)

Bit 1 - 0= EISA IOCHKERR not supported
1= EISA IOCHKERR supported

Bit 0 - 0= EISA ENABLE not supported (expansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level Total Bytes = 2

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

376 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections Total Bytes = 2 to 27
Byte 0 = Length of following selections field

Byte 1 = 1st Selection
Byte 2 = 2nd Selection

Byte 26 = 26th Selection

Function Information Total Bytes = 1

Byte 0
Bit 7 - 0= function is not disabled
1= function is disabled
Bit 6 -CFG extension free-form data (=1)
Bit S - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit 3 - DMA entry(s) follows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>