.4399Nn493d OgNl

3AINO S.43SN

e
o
=
-
-]
=
-

BORLAND




Turbo Debugger®

User’s Guide

Version 1.0

Copyright® 1988
All rights reserved

Borland International

1800 Green Hills Road

P.O. Box 660001

Scotts Valley, CA 95066-0001



This manual was produced with
Sprint® The Professional Word Processor

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks
or registered trademarks of their respective holders.
Copyright® 1988 Borland International.

Printed in the US.A.

1098765



Table of Contents

Introduction 1
Hardware and Software Requirements ...............coovviiiivnn... 1
ANoteonTerminology ............c.iiiiiiiiiiiiiiiiii e 2
What'sintheManual ........... ... ..o il 2
Borland’s No-Nonsense License Statement ........................... 4
How toContact Borland ............. ..o, 5
Chapter 1 Getting Started 7
The Turbo Debugger Package ..................oooiiiiiiiiia.., 7
The Distribution Disks .............. .o 7
TheREADMEHFile ... 8
The HELPME!DOCHFile .........ccoiiiiiiiiiiiiiiiiiiiiia... 9
Installing Turbo Debugger............. ..., 9
Install Turbo Debugger on a Hard Disk System ..................... 9
Install Turbo Debugger on a Floppy Disk System ................... 9
The TD.OVLFIle ...oooiiii i 10
Unarchiving Example Files ............... ...l 10
The INSTALL /B Command-LineOption .................... ..., 11
Hardware Debugging . ...t 11
Where to NOW? ..ot i 12
Programmers Learning a Turbo Langauge ........................ 12
Programmers Already Using a Turbo Language ................... 12
Chapter 2 Debugging and Turbo Debugger 13
WhatIsDebugging? ....... ..o 13
IsThereaBug? ...ttt it 14
WhereIsIt? ... e 14
WhatIsIt? ... 14
5T LT 14
What Turbo Debugger CanDoforYou ...........covvviiiniin.s. 15
What Turbo Debugger Won't Do .................oooiiiiiia, 16
How Turbo Debugger Does It ............ ...t 16
The Turbo Debugger Advantage ............ccooiiiiiiiiiiiiiinn, 17
UsingtheMainMenus ........... ..ottt 17
Knowing WhereIt's At ... 18
Local MeNUS . ..o vvti i e i 19
History Lessons .........ooiiiuiiiiiiiiiiiii i, 21
Making Macros .........ooiiiiiii it 23
Window Shopping ......c.viiiiiiii i 23



Windows fromtheViewMenu ........ccoiiiiiiiiiiiinnenn. 23

Inspector Windows ... 27

The Active Window ...t 27
Window Hopping . ... 28
Resizing and Saving Windows ..................ooiiiiia 29
GettingHelp ......ccoiiiiiiiii i 30
OnlineHelp ... 31
TheBottomLine ........ ..o 31
Chapter 3 Getting Started: A Quick Example 33
TheSample Programs ..ot 33
Using Turbo Debugger ..., 35
TheHelpLine ... 35
The WINdOws ..o vv i e e 35
Using the C Sample Program ................coooiiiiiiiiiiiian, 36
Setting Breakpoints in the C Demo Program ...................... 38
UsingWatches ......... ... o 38
Examining Simple C Data Objects ...........covviiiiiiinnninn... 39
Examining Compound C Data Objects ................. ...t 41
ChangingCDataValues ..............coooiiiiiiiiiiiiiiiin., 41
Using the Pascal Sample Program ............ooviiiiiiiiinnenn... 43
Setting Breakpoints in the Sample Pascal Program ................. 44
Using Watches ........ ... .o 45
Examining Simple Pascal Data Objects ........................... 45
Examining Compound Data Objects inPascal ..................... 47
Changing Pascal Data Values .................oooiiiiiiiina., 47
Chapter 4 Starting Turbo Debugger 49
Preparing Programs for Debugging ..................... ... oL 50
Preparing Turbo CPrograms .................oooiiiiniina... 50
Preparing Turbo Pascal Programs ...................... ... ... 50
Preparing Turbo Assembler Programs ......................... 51
Preparing Microsoft Programs ................coviiiiiiinan. 51
Running Turbo Debugger ..ottt 51
Command-Line Options ..ot 52
The < Option ...t 52
The-dOptions ...t 53

e (62 53

AP 53

e 53
The-hand-20ptions ............cooiiiiiiiiiiiiiiiiiiiinnn, 53

The 40pton ....ooii 53
The-1Opton ...vvii 54
The-mOption ... 54
The—cOption.......c.ooiiiiii 54



e S 54

SIP N 55

e £ 55
The-sOptions ...t 55

T8 e i e 55

=S 55
The-—vOptions .........oo il 55
4SS 56

2 L S 56

VD e 56
Configuration Files .......... ... i 56
TheOptions Menu ... .. ... i 56
LanguageCommand .............c.ooiiiiiiiiiiiiiiiii 57
MacrosCommand ...t 57
Create ... e 57
StopRecording ............ciiiiiiiiiii 58
REMOVE .\ttt e e 58
Delete All ... e 58
Environment Command ..............ooiiiiiiiii i 58
IntegerFormat ......... .. ... 58
Display Swapping . .......oouiiiiiii 59
SCreen Size ......viniii i 59
TabSize ... 59
Path for SourceCommand . ...t 60
Arguments Command ...t 60
Save Options Command ..........ooiiiiiiiiiiiiiiiiien ... 60
Restore Options Command ... ... 60
Running DOS While in Turbo Debugger ............................ 61
Returning to DOS ..o i e 61
Chapter 5 Controlling Program Execution 63
Examining the Current ProgramState ................... ... ... 64
The Variables Window ........... ..o, 64
The Global Pane LocalMenu . ...........oooviiiiiiiiiineen. 66
Inspect ... 67
Change ... ..ot e 67

The StaticPaneLocalMenu ................ ..o, 67
Inspect ...ooi e 68
Change ....ooiiiiiiiii i e 68

The Stack Window ...ttt 68
The Stack Window LocalMenu ...................oooinet. 69
Inspect ..ot e 70
Locals ...t e 70

The Origin LocalMenu Command . ..............cooiiii ... 71



Viewing Execution Status: The Get Info Command ................ 71

TheRUNMenu ....ooviiii e 73
Run [F9] . . e 73
ProgramReset [CIr-F2] ... 74
GotoCursor [F4] .....ooenii 74
TraceInto [F7] ... 74
StepOvVer[F8] .....ovviiiiiiii 74
Exectute TO[AFI] o vvvee ittt et eiieennnens 75
UntilReturn [AF-F8] ..o 75
Animate [AIFF4] ... 75
Instruction Trace [A-F7] ..o 75

Interrupting Program Execution .............. ...l 76

Ctrl-Break . ... e e 76
Terminating Your Program ........... ..ot 76
Restarting a Debug Session ............. ...l 77

Reloading Your Program .............cciiiiiiiiiiiiiiiiiina, 77

Keystroke Recording and Playback ................ccooviinain. 77

Loading a New ProgramtoDebug ...........cooviiiiiiiini e, 78

Changing the Program Arguments ...............c.oiiiiiia... 79

Chapter 6 Examining and Modifying Data 81

TheDataMenu ...t 82
Inspect ..o 82
Evaluate/Modify ...t 83

Note for C Programmers ............ccoieinieaniieennanann.. 83
Watch ..o 84
FunctionReturn............oooiiiiiiiiiiiiiiiii i, 84

Pointing at Data Items in Source Files ....................... ... ... 84

The Watches Window ..., 85

The Watches Window Local Menu ..o, 86

Watch. ..o 87
Edit ..o 87
Remove ... ..o e 87
Delete All ..ot i e 87
Inspect .. .ooi 88
Change .....iiitii i e 88

Inspector Windows ....... ... 88

C Data Inspector Windows ............coiiiiiiiiiiiiiiiin., 89

Scalars ... 89
Pointers . .....ooeiiii e e 90
ATTays .« e e 91
Structureand Union ... 92
Function ... 93

Pascal Data Inspector Windows ..................coooiiiiiiaL. 94

Scalars ... e 94



ATTays ..o e 96
RECOTdS .\t 97
Procedures and Functions ................oooiiiiiiiiiii 98
Assembler Data Inspector Windows ................ ..o, 99
Scalars ... e 99
Pointers ......ovviiii i 100
ATTaYS .« ottt e 101
Structureand Union .......o.oviiiii i 102

The Inspector Window Local Menu ..., 103
Range ... e e 104
Change ..... ..o 104
Inspect ... 105
Descend ......iiiii e 105
New EXpression. ...t 105
Chapter 7 Breakpoints 107
The Breakpoints Menu .......... ... i 108
Toggle ... oo e 109

At 109
Changed Memory Global... ...t 109
Expression True Global... ............ ...t 110
Delete All .. ... 110
Scope of Breakpoint Expressions .................ooiiiiiiiiia 110
The Breakpoints Window ............ ...l 110
The Breakpoints Window LocalMenu .......................... 111
Set Action ... ..o e 112
Break ... .o 113

LOg e 113
Execute ...... ... .. 113
Condition ..... ... 114
AlWays ... 114
Changed Memory... . ...ttt 114
ExpressionTrue ...............o i 115
Hardware ....... ... i 115
PassCount... ... .ot 115
Enable/Disable ......... ... . i 115
Add... ..o 116
Global ... 116
RemMOve .. ..o 116
Delete Al ...... .o e 117
Inspect .. ..o e 117
TheLog Window ... 117
The Log Window LocalMenu ..., 119
OpenlogFile... ... ... i 119



CloseLogFile .......oooiiiiiiiiiiiiiiii i, 120

Logging ..ot e e 120
Add Comment ......covviiii i e 120
EraseLog ... 120
Simple Breakpoints . ...t 120
Conditional Breakpoints and Pass Counts ......................... 121
Global Breakpoints ..........ccoouiiiiiiiiiii i 121
Breaking for Changed Data Objects ..., 122
Logging Variable Values ..............cciiiiiiiiiiiiii... 123
Executing Expressions ............c.oiiiiiiiiiiiiiiiiii i 123
Chapter 8 Examining and Modifying Files 125
Examining Program Source Files ................ ... ... il 125
The Module Window ... 126
The Module Window LocalMenu ...l 127
Inspect ... 128
Watch. ..o 128
Module ... ..o 129

File .o 129
Previous ...t e 129
Line . 129
Search ... ... i 129
NeXt oot 130
Origin ...t 130
GOtO v e e 130
Edit ... 131
Examining Other Disk Files ..., 131
TheFileWindow ... 131
The File Window LocalMenu ..o, 132
GOtO e e 133
Search ...t 133
NEXE .« ottt e e e 134
Display As . ...oiiii i e 134

File ..o 134
Edit oo 135
Chapter 9 Expressions 137
Choosing the Language for Expression Evaluation .................. 138
Code Addresses, Data Addresses, and Line Numbers ............... 138
Accessing Symbols outside the Current Scope ...................... 138
Scope Override Syntax ..........c.ooiiiiiiiiiiii ., 139
Implied Scope for Expression Evaluation ........................ 140
ByteLists .......ooieiii 141
CEXPressSions . .o vvv vttt ittt 141
CSymbols.........oooviiiiiiiiiii.., e 141

Vi



C Register Pseudovariables ................. ... ..o il 142

C Constants and Number Formats .............................. 143

C Character Strings and Escape Sequences ....................... 143

C Operators and Operator Precedence .......................... 144
Executing C Functions in Your Program ......................... 145

C Expressions with Side Effects ...................... ... ... 146
CKeywordsand Casting ............. ..o, 146
Pascal EXpressions .............oiiiiiiiiiiiiiiiiiiiiiiiiii 147
Pascal Symbols ......... ... 147
Pascal Constants and Number Formats .................ooooaat. 147
Pascal Strings ..o 148
Pascal Operators . ....... ...ttt 148
Calling Pascal Functions and Procedures ........................ 149
Assembler Expressions ...l 149
Assembler Symbols . .......... ... o oo 149
Assembler Constants ...t i 150
Assembler Operators ..........ooiiiiiiiiiiiiiiiiii i 150
FormatControl ......... ... i 151
Chapter 10 Assembler-Level Debugging 153
When Source Debugging Isn’t Enough ................. ... ... ... 153
The CPUWINdOW . ..ottt e 154
TheCodePane.............. .. i 156
The Disassembler .............cooiiiiiiiiiiiiiiiiiiiiii i, 157
The CodePaneLocal Menu ............. ... ... oot 157
GOt . ot 158
Origin ... 158
FolloW .. o e e e 159
Caller ... 159
Previous ... e 159
Search ... ... oo 159
Mixed ... ..o 160
New CSIP ..o e 160
Assemble ........ . 161

4 161
InByte ... 162
OutByte ... ..o 162
ReadWord ... 162
WriteWord ... 162

The Register Pane Local Menu ................ ... il 162
Increment ... ... e 163
Decrement ...ttt 163
2RO t it e e 163
Change ... 163
Registers 32-bit .......... ... i i 164



The Flags Pane Local Menu ...........covviiiiiiiiiiiiiiinnnn, 164

Toggle ..o e e 165
TheDataPane .........coiviiiiiiiiiiiiiiiniiiiiiiiiiiieann 165
The Data Pane Local Menu ............ccoiviiiiiiiiiniiinnnnnn. 165
GO0ttt e 166
Search ....oiiii i e 166
NEXt o e 166
Change ......iiii i e e 167
FOLlOW oot e 167
LongFollow ..o 167
Previous ... e 167
Display As ...t 167
Byte ..o 168

WOrd ..o e 168

LOMg et e 168
Comp . e 168

Float. ... e 169

Real ..o e 169
Double. ... ..o e 169
Extended ... e 169

BlOCK oo e 169
Clear ... e e 170

MOVe . e 170

St 170

Read ... e 170

Write .. e 171

The Stack Pane LocalMenu . .............ooooiiiiiiiiiiiiae, 171
0 (o 171
Origin ... 172
Follow ... 172
Previous ... e 172
Change ... 172

The Assembler . ... ..ottt e e 172
Operand Address Size Overrides ................. ..., 173
Memory and Immediate Operands ........................... 173
Operand Data Size Overrides ................ ... oo, 174
String Instructions ......... ..o o i 174
The Dump Window ... 174
The Registers Window .............. ... i, 175
Turbo C Code Generation ............cccoiiiiiiiiiiiiiiiiennna.. 175
Chapter 11 The 80x87 Coprocessor Chip and Emulator 177
The 80x87 Chip vs. Emulator ............... ... il 177
The Numeric Processor Window ..., 178
The 80-Bit Floating-Point Registers ............................. 179

viii



The Status Bits . ..oovvviii ittt i it it ettt e 179
The Control BitS . .. cv vttt e ettt e e cieeeeenns 179
The Register Pane LocalMenu ..................oiiiiieina... 180
4=, o T APt 180
Empty oo e 180
Change ... ..o 180

The Status Pane Local Menu ..........coiiiiiiiiiniiinnennnn. 181
Toggle ... 181

The Control Pane LocalMenu ..., 182
Toggle .o 182
Chapter 12 Command Reference 183
HotKeys ... e e 183
Commands fromthe MainMenuBar ..................cccoiiun... 185
The Flle Menu . ...ttt ettt ie i ieeiannnn 185
TheView Menu ... ...ttt i et ittt ieieaenn 185
The RUNMeNU . ..ottt it e et et ittt cienennn 186
The Breakpoints Menu ...t 186
TheData Menu .....cooiiiiiiiiiiiiii ittt it iiieianennens 186
The Window Menu .......oiiiiiiiiii ittt it tiieiienennens 186
TheOptionsMenu ..., 187
The Local MenuCommands .........c.coviiiiinirneririinennnennn. 187
The Breakpoints Window LocalMenu .......................... 188
The CPUWINdow Menus ..........coviiiiiiiiiinininnnnennnn. 189
The CodePaneLocalMenu ..........ccoiiiiiiiiiiininnnnnn, 189

The DataPaneLocalMenu .........ccciiiiiiiinenneennenn. 189

The Stack PaneLocalMenu ...............ooviiiiiiinnn... 190

The Register Pane LocalMenu .......................ooLL. 190

The Flags PaneLocalMenu .................. ..ot 191
TheFile Window Menu .........ciiiiiiiiiiiiiiiiiiiiniaennn 191
The Log WindowMenu .............. ..o, 191
The Module Window Menu ..........cciiiiiiiiiiiiiininnnnnns 191
The Numeric Processor WindowMenus ..................cooun.. 192
The Register Pane LocalMenu ...................coooveae, 192

The Status Pane LocalMenu ............ccoviviiveninnnnn.. 192

The ControlPane LocalMenu . .............coviivnieon.... 192

The Stack Window Menu ........ ..ottt iiiiiiiieiiiniennnn. 193
The Variables WindowMenus ..............ccciiviiineninnnn... 193
The Global Symbol Pane LocalMenu ....................... 193

The Local Symbol Pane LocalMenu ...............coueee.. 193

The Watches Window Menu .........coviiiiviiiniinneiennnnnn 193
The Inspector Window Local Menu ................ .o, 194
B oY o =TT 194
|5 T ) i D < A 195
Commands in Prompt Boxes ............cooiiiiiiiiiiiiiiiiin.. 196



Window Movement Commands .......ccoviiiiireeneneennannnn. 196

Wildcard Search Templates ...............oiiiiiiiiiiii ... 197
FileLists .....ooiiei i 197
Complete MenuTree ..........coiiiiiiiiiiiiiiiiiiiiiiiiinen.., 198
Chapter 13 How to Debug a Program 203
When Things Don"t Work .........cooiiiiiiiiiiiiiiiiiiiinn, 203
Debugging Style .........coiiiiiiiiiiii i 204
Runthe WholeThing ..., 204
Incremental Testing ... 205
Types Of BUgS ..ottt e 205
C-Specific Bugs ... ..vvuiinii i 205
Using Uninitialized Auto-Variables ........................... 206
Confusing=and == ........ciiiiiiiiiiiiiiiiiiiiiiiiiii 206
Confusing Operator Precedence ..................oooviina... 206
Bad Pointer Arithmetic................oooiiiiiiii i 207
Unexpected Sign Extension ...t 207
Unexpected Truncation .............cooiiiiiiiiiiiiiiin.... 207
Superfluous Semicolon ......... ... 208
Macros with Side Effects .............. ..o, 208
Repeated Auto-VariableNames .....................coouet 208
Misuse of Auto-Variables ....................o ool 209
Undefined Function Return Value .................. . ... 209
Misuse of Break Keyword ............. ...l 209
CodeHasNoEffect.............oooiiiiiiiiiiii 210
General Bugs .......coiiiiiiiiiiiiiii i e 210
Hidden Effects ... 210
Assuming Initialized Data ....................oooiiiiL L 211
Not Cleaning UpWhenDone ..............oooiiiiiiiiin., 211
Fence-PostErrors ...........c.ooiiiiiiiiiiiiiiiiiiiiii., 211
Pascal-SpecificBugs ............ooiiiiiiiiiiii i 212
Uninitialized Variables ... 212
Dangling Pointers ... 212
Scope Confusion ........ ..ot 213
Superfluous Semicolons ...l 214
Undefined Function Return Value .................... ... ... 215
Decrementing Word or Byte Variables ......................... 216
Ignoring Boundary or Special Cases ...................oooune 216
Range Errors ...... ..ot 217
Assembler-SpecificBugs ........... ..o 218
Forgetting toReturnto DOS ... 218
Forgetting a RET Instruction ............... ..., 218
Generating the Wrong Typeof Return......................... 219
Reversing Operands .......... ..ot 219
Forgetting the Stack or Reserving a Too-Small Stack ............. 219



Calling a Subroutine That Wipes Out Needed Registers ......... 220

Using the Wrong Sense for a Conditional Jump ................. 220
Forgetting about REP String Overrun ......................... 220
Relying on a Zero CX to Cover a Whole Segment ............... 220
Using Incorrect Direction Flag Settings ........................ 221
Using the Wrong Sense for a Repeated String Comparison ....... 221
Forgetting about String Segment Defaults ..................... 221
Converting Incorrectly from Byte to Word Operations ........... 221
Using Multiple Prefixes ..., 222
Relying on the Operand(s) to a String Instruction ............... 222
Wiping Out a Register with Multiplication ..................... 222
Forgetting That String Instructions Alter Several Registers .. ..... 222
Expecting Certain Instructions to Alter the Carry Flag ........... 223
Waiting Too Long to UseFlags .......................ooai... 223
Confusing Memory and Immediate Operands .................. 223
Causing Segment Wraparound ..o, 223
Failing to Preserve Everything in an Interrupt Handler .......... 223
Forgetting Group Overrides in Operands and Data Tables ....... 224
Accuracy Testing ... 224
Testing Boundary Conditions and Limiting Cases ................ 224
Erroneous DataInput ... 224
Empty Datalnput ... 225
Debugging as Part of Program Design............................. 225
The Sample Debugging Session .................. ... 225
C Debugging Session ..........c.ciiiiiiiiiiiiiiiii i 226
Looking fOr EXTOrs . .....ooviii i 226
Deciding Your Planof Attack ............... ... .o 227
Starting Turbo Debugger ..., 227
Inspecting ..o 228
Eureka! ... . 229
Pascal Debugging Session ...l 230
Looking for Errors .. .....ovviiii i 230
Deciding Your Plan of Attack ................ ... 231
Starting Turbo Debugger ..............oooiiiii i, 232
Inspecting ... 233
Watches . ... 235
JustOneMoreBug... ...ttt 235
Chapter 14 Virtual Debugging on the 80386 Processor 237
Equipment Required for Virtual Debugging ....................... 237
Installing the Virtual Debugger Device Driver...................... 238
Starting the Virtual Debugger .............. ..., 238
Differences between Normal and Virtual Debugging ................ 240
TD386 Error Messages ........ovvviriiiriniiinenneenineneannnns 240
TDH386.SYS Error Messages .. .....oovriiriiniiinniennninnnnns 241

xi



Appendix A Command-Line Options

Appendix B Turbo Debugger Utilities
CodeView to Turbo Debugger Symbol Table Converter .............
Running fromDOS ...
Error Messages .........ouuiiiiiiniiiiiniiiniinieeiinneeeanns
Remote File Transfer Utility ...........c.ooiiiiiiiiiiiiiii...
Starting TDRF from the DOS Command Line ....................
TDRF Command-LineOptions ............coooiiiiiiiiiinnn,
TDRF Remote File Transfer Utility ............................
TDRFCommands ........ouviiuiinneinriniiinenininnennnnn.
TDRFMeESSa8ES « v oo vvviiiieetiiiiieiiieiiiieeiiannnnnns
Symbol Table Stripping Utility .............coooiiiiiiiiiiiiii,
TDSTRIP Command Line ...........cooiiiiiiiiiiiiii.,
TDSTRIP Error Messages . ......ovviveennieieeneaiennneenennnns.
TDMAPULlity ..o
TDPACK Utility ..ovieiiiiii i
TDUMP ULty ..ottt
TDUMP Syntax ...ovvutiiiiiiiiiiiiiii i iiininneens
TDUMPOPHONS ..ottt as
The-aand-a7Options ..........ccoiiiiiiiiiiiiiinnn,
The-e,—el,and —erOptions ..........ooiiiiiiiiiiiine ..,
The-hOption ...t
The-1Option ....oviiini i
The-oOption ......coviiiiiiiii
The—vOption .....cooiiiiiiiiiii i
The TDNMI Utility .......oviiiiiiii e

Appendix C Technical Notes

Changed Load Address and FreeMemory ..............oovinininn,
Crashing theSystem .......... ... ...
Tracing through DOS and Process ID-Switching ....................
Using the 8087/80287 Math Coprocessor and Emulator ..............
Interrupts Used by Turbo Debugger ................... ...l
Debugging Using INT3and INT1 ..........coovviiiiiiiinna....
Display-Saving and Mode-Switching .................. ...l
Memory Consumption .........oiiiiiii ittt
EMSSupport ..o s
Interrupt Vector Saving and Restoring ................. ... ... ...

Appendix D Inline Assembler Keywords

Appendix E Customizing Turbo Debugger

Running TDINST ..ottt i
Setting the Screen Colors ........ovviniiiiiiiiiiiiiiiiiniennn
Setting Turbo Debugger Display Parameters .......................

Xii



The Beginning Display Option ...........c.coiviiiiiiiiiiiiin, 274

The User Screen Updating Option ...l 274
Display Swapping Option .........ooiviiiiiiii i, 275
The Integer Format Option ..o, 276
The Log List Length Option ...t 276
The Tab Column Width Option ..o, 276
The Maximum Tiled Watch Option ................... ..o 276
The Screen Lines Option ..., 276
The Fast Screen Update Option ..........cooviiiiiiiiiinn... 277
Permit 43-/50-LineMode ...........coiiiiiiiiiiiiiiiie, 277
Complete GraphicsSave .............ciiiiiiiii i, 277
Setting the Turbo Debugger Options ..., 277
The EditorOption ........ ... 278
The Source Directories Option ..., 278
The Turbo Directory Option .......... ...t 278
The KeysOption ... 279
The Prompting Options ............ciiiiiiiiiiiiiiiiaan. 279
OSShell Swap Size .....ooviniin i 280
Remote Debugging ......... ... i 280
Remote Debugging ...t 280
POrt . 280
Speed ... e 280
Language .........oiiiiii e 281
The Ignore Case Option ..., 281
The Change Process IDOption ..., 281
The Use Expanded Memory Option ..............oooiiiiiiias, 281
The NMI Intercept Option . ..., 281
Command-Line Options and Installation Equivalents ............... 282
Quitting the Program .............. i 282
Appendix F Hardware Debugger Interface 285
80386 Hardware Device Driver .............ociiiiiiiiiiiii s, 285
Setting Hardware Breakpoints ............... .. ..., 286
Hardware Conditions Permitted with TDH386.5YS ................. 286
Breakpoints Window Hardware Conditions Menu .................. 287
Hardware Debugger Overview ...............coiiiiiiiiiia... 289
Device Driver Interface ............ .. oL 290
INIT Commandcode =0 ........cooiiiiiiiiiiiiianiinnnn, 290
READ Commandcode=4 ..........coooiiiiiiiiniinann, 290
READNOWAIT Command code=5 .............c.oouin... 290
READSTATUS Command code=6 .........c.coovvviiinen... 290
READFLUSH Commandcode=7 ............c.oiiviinnn... 290
WRITE Commandcode=8 ..........ooiiiiiiiiiiiiiinn, 291
WRITEVERIFY Command code=9 ................ooooal 291
WRITESTATUS Command code =10 ...............coonan. 291

Xiii



WRITEFLUSH Command code=11 .............c.oiua...
Command Blocks Sent to Device Driver .........................
Install vectors (code 0) ........ouiiniiiiiiiiiiiiiiiinea

Set a hardware breakpoint (code4) .........................
Clear a hardware breakpoint (code5) .......................

Set I/O board base address (code 9) ....................o..t.
Status Blocks Returned by Device Driver ..........................
Get hardware capabilities (code 1) ................ ... ...,

Set a hardware breakpoint (code4) .........................
Recursive entry (code -2) .......oovuiiiiiiiiiiiiiiiiinin,
Device Driver Call into Turbo Debugger.........................

Appendix G Remote Debugging
Setting Up a Remote Debugging System ...........................
Remote Software Installation ............ ..o
Starting theRemote Link ...,
Starting Turbo Debugger on the Remote Link ....................
About Loading the Program to the Remote System..............
TDREMOTE Command-Line Options ................. ... .0,
Remote Debugging Sessions ..........cooiiiiiiiiiiiiiiiiiii...
TDREMOTE MeSSages . ......ouviiiiiiinniiinieniinneannneanns
Getting It AlltoWork ...

Appendix H Prompts and Error Messages

Prompts ..o e

Error Messages .........ooiiiiiiiiiiiiiiiiiii i
Fatal Errors . ... .o
Error Messages ..........oiuuiiiiiiiiiiiiiiiiiiii i

Information Messages .........oviiiiiiiiiiiiriiittiiiiiiiiiea,

Appendix I Using Turbo Debugger with Different Languages

Turbo CTips ..ot e
Compiler Code Optimizing ...........coiiiiiiiiiiiiiiiina...
Accessing PointerData ...
Stepping Through Complex Expressions ........................

Turbo Assembler Tips .........ccoiiiiiiiiiiiiiiiiiiii i,
Looking at Raw HexData ....................oooiiiiiil,
Source-Level Debugging ............. ... ... ol
Examining and Changing Registers .................... ... ...

Turbo Pascal Tips ......coviviiiiiiiiiii i i
Stepping through InitializationCode ...............c.oooiiiiiit,
Stepping through Exit Procedures ................ ..ot
Constants .......c.oitiiiii e
String and Set Temporarieson theStack .............. ... .. ...,
Clever Typecasting ........coiuiiiiiiiiiiiiiiii it

Xiv



CPU Window Tips for Pascal
Appendix J Glossary

Index

..................................



List of Figures

Figure 2.1: Pull-Down vs. Pop-UpMenus ............................ 21
Figure 2.2: A History Listina Prompt Box ................coiiiinan, 22
Figure 2.3: Can You Spot the Active Window? ........................ 28
Figure 2.4: The Normal ReferenceLine .............................. 31
Figure 2.5: The Reference Line with AltPressed ....................... 31
Figure 2.6: Typical Reference Line with Ctr/Pressed ................... 32
Figure 3.1: The Startup Screen Showing TCDEMO .................... 34
Figure 3.2: The Program Stops after Returning from Function showargs .37
Figure 3.3: A BreakpointatLine43 .................. ...l 38
Figure 3.4: A Variable in the Watches Window ....................... 39
Figure 3.5: An Inspector Window ...t 40
Figure 3.6: Inspecting aStructure .............. ... .ol 41
Figure 3.7: The Change Command Prompt ........................... 42
Figure 3.8: The Program Stops after Returning from a Procedure.......... 43
Figure 3.9: A Breakpointat Line 120 ............. ... ...l 44
Figure 3.10: A Pascal Variable in the Watches Window ................. 45
Figure 3.11: An Inspector Window .................oooiiiiiins, 46
Figure 3.12: Inspecting a Structure ............. ... ...l 47
Figure 3.13: The Change Command Prompt .......................... 49
Figure4.1: TheOptionsMenu ..., 57
Figure 5.1: The Variables Window .............. ... ..o, 64
Figure 5.2: The Global Pane Local Menu ............................. 67
Figure 5.3: The Static Pane Local Menu ................. ...l 67
Figure 5.4: The Stack Window ............. ..ot 69
Figure 5.5: The Stack Window LocalMenu ............... ... ..ol 70
Figure 5.6: The File Get InfoCommand .............................. 71
Figure5.7:TheRunMenu ........... ... oo, 73
Figure6l:TheDataMenu ........... ..., 82
Figure 6.2: The Watches Window ...t 85
Figure 6.3: The Watches Window LocalMenu ........................ 87
Figure 6.4: A Scalar Inspector Window ................. ...t 90
Figure 6.5: A C Pointer Inspector Window ........................... 91
Figure 6.6: A C Array Inspector Window ............................ 92
Figure 6.7: A C Structure or Union Inspector Window ................. 93
Figure 6.8: A C Function Inspector Window . ...................... ... 94
Figure 6.9: A Pascal Scalar Inspector Window ........................ 96
Figure 6.10: A Pascal Pointer Inspector Window ...................... 96
Figure 6.11: A Pascal Array Inspector Window ....................... 97
Figure 6.12: A Pascal Record Inspector Window ...................... 98

XVi



Figure 6.13: A Pascal Procedure Inspector Window ................... 99

Figure 6.14: An Assembler Scalar Inspector Window ................. 100
Figure 6.15: An Assembler Pointer Inspector Window ................ 101
Figure 6.16: An Assembler Array Inspector Window ................. 102
Figure 6.17: An Assembler Record Inspector Window ................ 103
Figure 6.18: The Inspector Window Local Menu ..................... 104
Figure 7.1: The Breakpoints Menu ................. ...t 109
Figure 7.2: The Breakpoints Window ................... .. ..o . 111
Figure 7.3: The Breakpoint Window LocalMenu ..................... 112
Figure 7.4: The Set ActionMenu .............. ..., 113
Figure 7.5: The Condition Menu .......... ... .. oot 114
Figure 7.6: The Log Window .............. ...l 118
Figure 7.7: The Log Window LocalMenu ........................... 119
Figure 8.1: The Module Window . .......... ..., 126
Figure 8.2: The Module Window Local Menu ....................... 128
Figure8.3: The File Window ........... ... ...t 131
Figure 8.4: The File Window Showing Hex Data ..................... 132
Figure 8.5: The File Window LocalMenu ........................... 133
Figure 10.1: The CPUWIndow ..........coiiiiiiiiiiiiiiii .. 154
Figure 10.2: The Code Pane LocalMenu .................... ... ..., 158
Figure 10.3: The I/OMenu ..ottt 161
Figure 10.4: The Register Pane Local Menu ......................... 163
Figure 10.5: The Flags Pane LocalMenu ......................o... 164
Figure 10.6: The Data Pane LocalMenu ............................ 166
Figure 10.7: The Display AsMenu .............coooiiiiiiiii ... 168
Figure 10.8: TheBlock Menu ............ .. oot e. 170
Figure 10.9: The Stack Pane LocalMenu ...............coooiieon.. 171
Figure 11.1: The Numeric Processor Window ........................ 178
Figure 11.2: The Register Pane LocalMenu ......................... 180
Figure 11.3: The Status Pane Local Menu ....................oooeee. 181
Figure 11.4: The Control Pane LocalMenu .......................... 182
Figure 12.1: The File, View,and RunMenus ......................... 199
Figure 12.2: The Breakpoints, Data, and Window Menus .............. 200
Figure 12.3: The OptionsMenu . .......... ..ot 201
Figure E.1: Customizing Window Colors ........................... 273
Figure E.2: Customizing Display Parameters ........................ 274
Figure E.3: Customizing the Options .......................... ..., 278



List of Tables

Table 12.1: The Function Key and Hot Key Commands ............... 184
Table A.1: Turbo Debugger Command-Line Options ................. 243
Table D.1: 8086/80186/80286 Instruction Mnemonics . ................ 268
Table D.2: 8087 /80287 Numeric Processor Instruction Mnemonics ..... 269
Table D.3: CPURegisters ..........ccovuiiiiiiiiiiiiiiiiiiiiieinn, 269
Table D.4: Special Keywords .........c.oiiiiiiiiiiiiiniinen... 269
Table D.5: 80387 Registers ...........cooiiiiiiiiiiiiiiii ... 269
Table D.6: 80386 Instruction Mnemonics ........covvvenennnnnnnn. 270
Table D.7: 80387 Instruction Mnemonics .. .......coovviiiineenn... 270

xviil



Turbo Debugger is a state-of-the-art, source-level debugger designed for
Borland Turbo language programmers and programmers using other
compilers who want a more powerful debugging environment.

Multiple, overlapping windows and a combination of pull-down and pop-
up menus provide a fast, interactive user interface. An online context-
sensitive help system provides you with help during all phases of
operation.

Here are just some of its features:

m uses expanded memory specification (EMS) to debug large programs
m full C expression evaluation

m full Pascal expression evaluation

m full assembler expression evaluation

m reconfigurable screen layout

m assembler/CPU access when needed

m powerful breakpoint and logging facility

m keystroke recording (macros)

m uses remote system to debug huge programs

m supports 80386 and other vendor’s debugging hardware

Hardware and Software Requirements

Turbo Debugger runs on the IBM PC family of computers, including the XT
and AT, the PS/2 series, and all true IBM compatibles. DOS 2.0 or higher is
required and at least 384K of RAM. It will run on any 80-column monitor,
either color or monochrome. We recommend a hard disk, although a two-
floppy disk drive will work fine as well.

Turbo Debugger does not require an 8087 math coprocessor chip.

To use Turbo Debugger with Borland products, you must be using Turbo
Pascal 5.0 or later, Turbo C 2.0 or later, or Turbo Assembler 1.0 or later. You
must have already compiled your source code into an executable (.EXE file)

Introduction 1



with full debugging information turned on before debugging with Turbo
Debugger.

Note that when you run Turbo Debugger, you'll need both the .EXE file and
the original source files available. Turbo Debugger searches for source files
first in the directory the compiler found them in when it compiled, second
in the directory specified in the Options/Path for Source command, third
in the current directory, and fourth in the directory the .EXE file is in.

A Note on Terminology

For convenience and brevity, we use a couple of terms in this manual in
slightly more generic ways than usual. These terms are module, function,
and argument.

A module in this manual refers to what is usually called a module in C and
in assembler, but also refers to what is called a unit in Pascal.

Similarly, a function in this manual refers to both a C function and to what
is known in Pascal as a subprogram (or routine), which encompasses both
functions and procedures. In C, a function can return a value (like a Pascal
function) or not (like a Pascal procedure). (When a C function doesn’t
return a value, it’s called a void function.) In the interest of brevity, we often
use function in a generic way to stand for both C functions and Pascal
functions and procedures—except, of course, in the language-specific areas
of the manual.

Finally, the term argument is used interchangeably with parameter in this
manual. This applies to references to command-line arguments (or
parameters), as well as to arguments (or parameters) passed to procedures
and functions.

What's in the Manual

Here is a brief synopsis of the chapters and appendixes in this manual:

Chapter 1: Getting Started describes the contents of the distribution disk
and tells you how to load Turbo Debugger files into your system. It also
gives you advice on which chapter to go to next, depending on your level
of expertise.

Chapter 2: Debugging and Turbo Debugger explains the Turbo Debugger
user interface, menus, and windows, and shows you how to respond to
prompts and error messages.

2 Turbo Debugger User’s Guide



Chapter 3: Getting Started: A Quick Example leads you through a sample
session—using either a Pascal or C program—that demonstrates many of
the powerful capabilities of Turbo Debugger.

Chapter 4: Starting Turbo Debugger shows how to run the debugger from
the DOS prompt, when to use command-line options, and how to record
commonly used settings in configuration files.

Chapter 5: Controlling Program Execution demonstrates the various ways
of starting and stopping your program, as well as how to restart a session
or replay the last session.

Chapter 6: Examining and Modifying Program Data explains the unique
capabilities Turbo Debugger has for examining and changing data inside
your program.

Chapter 7: Breakpoints introduces the concept of actions, and how they
encompass the behavior of what are sometimes referred to as breakpoints,
watchpoints, and tracepoints. Both conditional and unconditional actions
are explained, as well as the various things that can happen when an action
is triggered.

Chapter 8: Examining and Modifying Source Files describes how to
examine and change program source files, as well as how to examine and
modify arbitrary disk files, either as text or binary data.

Chapter 9: Expressions describes the syntax of C, Pascal, and assembler
expressions accepted by the debugger, as well as the format control
characters used to modify how an expression’s value is displayed.

Chapter 10: Assembler-Level Debugging explains how to view or change
memory as raw hex data, how to use the built-in assembler and dis-
assembler, and how to examine or modify the CPU registers and flags.

Chapter 11: The 8087/80287 Math Coprocessor Chip and Emulator
discusses how to examine and modify the contents of the floating-point
hardware or emulator.

Chapter 12: Command Reference is a complete listing of all main menu
commands and all local menu commands for each window type.

Chapter 13: How to Debug a Program is an introduction to strategies for
effective debugging of your programs.

Chapter 14: Virtual Debugging on the 80386 Processor describes how you
can take advantage of the extended memory and power of an 80386
computer by letting the program you're debugging use the full address
space below 640K, as if no debugger were loaded.

Introduction 3



Appendix A: Command-Line Options is a summary of all the command-
line options that are completely described in Chapter 4.

Appendix B: Turbo Debugger Utilities describes how to use the utilities
provided with the debugger. The utility programs include a program
allowing CodeView executables to be used with Turbo Debugger, and
several others that affect the debugging information appended to .EXE files.
There is also a utility called TDUMP that lets you display the component
parts of any file.

Appendix C: Technical Notes is for experienced programmers. It describes
implementation details of Turbo Debugger that explain how it interacts
with both your program and with DOS.

Appendix D: Inline Assembler Keywords lists all instruction mnemonics
and other special words used when entering inline 8086/80286 instructions.

Appendix E: Customizing Turbo Debugger explains how to use the
installation program (TDINST) to customize screen colors and change
default options.

Appendix F: Hardware Debugger Interface describes how to write device
drivers to work with Turbo Debugger.

Appendix H: Prompts and Error Messages lists all the prompts and error
messages that can occur, with suggestions on how to respond to them.

Appendix I: Using Turbo Debugger with Different Languages provides
several tips when you're debugging programs written in C, assembler, or
Pascal.

Appendix J: Glossary is an alphabetical list of commonly used terms in this
manual along with short definitions.

Borland’s No-Nonsense License Statement

This software is protected by both United States copyright law and
international treaty provisions. Therefore, you must treat this software just
like a book with the following single exception: Borland International
authorizes you to make archival copies of Turbo Debugger for the sole
purpose of backing up your software and protecting your investment from
loss.

By saying, “just like a book,” Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another so long as there is no possibility of
its being used at one location while it’s being used at another. Just like a

4 Turbo Debugger User’s Guide



book that can’t be read by two different people in two different places at
the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland’s
copyright has been violated.)

How to Contact Borland

The best way to contact Borland is to log on to Borland’s Forum on
CompuServe: Type G0 BOR from the main CompuServe menu and choose
“Enter Language Products Forum” from the Borland main menu. Leave
your questions or comments there for the support staff to process.

If you prefer, write a letter with your comments and send it to:

Technical Support Department
Borland International
1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

You can also telephone our Technical Support department at (408) 438-5300.
Please have the following information handy before you call:

m product name and version number
m computer make and model number
m operating system and version number

lnfroducﬁoh 5



Turbo Debugger User’s Guide



Getting Started

The Turbo Debugger Package

Your Turbo Debugger package consists of three distribution disks and the
Turbo Debugger User’s Guide (this manual). The distribution disk contains all
the programs, files, and utilities needed to debug programs written in
Turbo C, Turbo Assembler, Turbo Pascal, and any program written with a
Microsoft compiler. The Turbo Debugger package also contains
documentation on subjects not covered in this manual.

The User’s Guide provides a subject-by-subject introduction of Turbo De-
bugger’s capabilities and a complete command reference.

Before we get you started using Turbo Debugger, you should make a
complete working copy of the distribution disk, then store the original disk
in a safe place. Use the original distribution disk as your backup only and
run Turbo Debugger off of the copy you've just made—it’s your only back-
up in case anything happens to your working files.

If you are not familiar with Borland’s No-Nonsense License Statement,
now’s the time to read the agreement in the introduction and mail your
filled-in product registration card. This enables you to be notified of
updates and new products as they become available.

The Distribution Disks

When you install Turbo Debugger on your system, you copy files from the
distribution disk to your working floppies or to your hard disk. The

Chapter 1, Getting Started 7



distribution disk is not copy protected, and you do not need to run any
installation programs. The distribution disks are formatted for double-
sided, double-density disk drives and can be read by IBM PCs and close
compatibles.

The following files are on the distribution disks:

TD.EXE Turbo Debugger

TD.OVL The overlay file containing the menu system
TDINST.EXE Turbo Debugger installation program
TDHELP.TDH  Turbo Debugger help file

README.COM Program to read the update file README

README Last-minute information

TDH386.5YS The 80386 hardware device driver

TD386.EXE The program you use for virtual debugging
TDNMI.COM A utility that enables the handler for Periscope I boards
TDRF.EXE The Remote File Transfer untility program
TDREMOTE.EXE The program you use for remote debugging

TDSTRIP The Symbol Table Stripping utility

TDUMP.EXE A generic module disassembler utility
TDCONVRT.EXE A utility to convert CodeView programs to Turbo

format
TDMAP A utility to append .MAP file information onto .EXE files
TDPACK A utility to reduce the size of the debugging information
in .EXE files
TCDEMO.* The C demo program you use in the tutorial
TCDEMOB.* The buggy C demo program discussed in Chapter 13
TPDEMO.* The Pascal demo program you use in the tutorial
TPDEMOB.* The buggy Pascal demo program discussed in Chapter
13
The README File

It is very important that you take the time to look at the README file on
the Installation Disk before you do anything else with Turbo Debugger.
This file contains last-minute information that may not be in the manual. It
also lists every file on the distribution disks, with a brief description of
what each one contains.

To access the README file, insert the Installation Disk in Drive A, switch
‘to Drive A by typing A: and pressing Enter, then type README and press Enter
again. Once you are in README, use the Up and Down arrow keys to scroll
through the file. Press Esc to exit.

8 Turbo Debugger User’s Guide



The HELPME!.DOC File

Your Installation Disk also contains a file called HELPME!.DOC, which
contains answers to problems that users commonly run into. Consult it if
you find yourself having difficulties. Among other things, the
HELPME!.DOC file deals with:

m Screen output for graphics and text based programs.

m Executing other programs while you are still using the debugger.
m Breaking out of a program.

m The syntactic and parsing differences between Turbo Debugger and the
Turbo languages.

s Debugging multi-langtiage programs with Turbo Debugger.
m Tandy 1000A, IBM PC Convertible, or NEC MultiSpeed, and the NMI.

Installing Turbo Debugger

The Installation Disk contains a program called INSTALL.EXE that will
assist you with the installation of Turbo Debugger 1.0. There are two
options for installation:

Install Turbo Debugger on a Hard Disk System

INSTALL will copy all Turbo Debugger files onto your hard disk and put
them into subdirectories. The default subdirectories are

Turbo Debugger Directory: CA\TD
Example Subdirectory: CA\TD

By default, all files from the distribution disks are placed in the Turbo
Debugger Directory. If you would rather separate the examples programs
into their own subdirectory as well, edit the default example files path
before selecting START INSTALLATION.

Install Turbo Debugger on a Floppy Disk System

This option builds a working set of four Turbo Debugger disks will work
on a two drive system. Be sure to have four formatted disks ready before
you start. INSTALL builds the following disks for you:

Chapter 1, Getting Started Q



Program Disk ~ Turbo Debugger main program (TD.EXE), README
and README.COM, Turbo Debugger customization
program (TDINST.EXE), and the HELPME!.DOC and
MANUAL.DOC files.

Work Disk Turbo Debugger working overlay file (TD.OVL) and
help file (TDHELP.TDH).

Utilities Disk Turbo Debugger utilities (TDSTRIP, TDRF.EXE,
TDUMP.EXE, TDCONVRT.EXE, TDMAP, TDPACK).

Examples Disk  Example programs for use with Turbo Debugger.
To start the installation, change your current drive to the one that has the
INSTALL program on it and type INSTALL. You will be given instructions in

a box at the bottom of the screen for each prompt. For example, if you will
be installing from drive A, you would enter

A:
INSTALL

You should read the README file to get further information about Turbo
Debugger after you do the installation.

Note: For a list of all the command-line options available for
INSTALL.EXE, enter the program name followed by -h:

INSTALL -h

The TD.OVL File

Turbo Debugger consists of an executable program, TD.EXE, and an
overlay file, TD.OVL, which contains the menu system and must be
available to TD whenever you use the menus. Both files are required. If you
are installing Turbo Debugger on a hard disk system, INSTALL will put
them in the same directory.

If you are installing on a two-floppy system, INSTALL will put the overlay
file (TD.OVL) and the help file (TDHELP.TDH) on one diskette and
TD.EXE on another diskette.

Unarchiving Example Files

The Turbo Debugger UTILITIES/EXAMPLES distribution disk contains
several files with an .ARC file extension: TDEXAMPL.ARC,
TAEXMPL1.ARC, and TAEXMPL2.ARC. These files contain several other

10 Turbo Debugger User’s Guide



files that have been compressed and placed inside an archive. You can
dearchive them yourself by using the UNPACK.COM utility.

For example, entering

unpack tdexampl

unpacks all the files stored in the TDEXAMPL.ARC archive into the current
directory.

INSTALL gives you a choice of copying the .ARC files intact or dearchiving
and copying all of the individual files onto your hard disk during the
installation process. Note that INSTALL does not unpack the
TAEXAMPL1.ARC, TAEXAMPL2.ARC, or CHAPXMPL.ARC files from the
UTILITIES/EXAMPLES disk. These files contain example programs for the
TURBO ASSEMBLER.

The INSTALL /B Command-Line Option

If you have difficulty reading the text displayed by the INSTALL program,
it accepts an optional /B command-line parameter that forces it to use black
and white (BW80) mode:

a:install /B

Specifying the /B parameter may be necessary if you are using an LCD
screen or a system that has a color graphics adapter and a monochrome or
composite monitor.

Hardware Debugging

If you are running on an 80386 system, you can install the TDH386.5YS
device driver supplied with Turbo Debugger. This device driver will vastly
speed up breakpoints that watch for changed memory areas.

Copy this file to the directory where you keep your device drivers and put
a line in your CONFIG.SYS file that loads the driver, such as

DEVICE = \SYS\TDH386.SYS

The next time you boot up your system, Turbo Debugger will be able to
find and use this device driver.

See Appendix F for complete information on this device driver interface.

Chapter 1, Getting Started n



Note: If you have a hardware debugging board (such as Atron, Periscope,
and so on), you may be able to use the board with Turbo Debugger. Check
with the vendor of your board for its compatibility with Turbo Debugger.

Where to Now?

Now that you've loaded all the files, you can start learning about Turbo De-
bugger. Since this user’s guide is written for two types of users, different
chapters of the manual may appeal to you. The following roadmap will
guide you.

Programmers Learning a Turbo Langauge

If you are just starting to learn one of the languages in the Turbo family,
you will want to be able to create small programs using it before you learn
about the debugger. What better way to learn how to use the debugger than
to have a real live problem of your own to track down! After you have
gained a working knowledge of the language, work your way through
Chapter 3, “Tutorial,” for a quick tour of the major functions of Turbo De-
bugger. There you'll learn enough about the features you'll need to debug
your first program; we’ll go into the debugger’s more sophisticated
capabilities in a later chapter.

Programmers Already Using a Turbo Language

If you are an experienced Turbo family programmer, you can learn about
the exciting new features of the Turbo Debugger user interface by reading
Chapter 2. If it suits your style, you can then work through the tutorial or, if
you prefer, move straight on to Chapter 4, “Starting Turbo Debugger.” For
a complete rundown of all commands, turn to Chapter 12, “Command
Reference.”

12 Turbo Debugger User’s Guide



Debugging and Turbo Debugger

There once was a man who believed he never made mistakes. But he was
wrong. And that’s why we have debuggers.

The simple truth is that no one’s perfect; we all make mistakes. Whether it’s
while doing simple things like walking or complicated things like
programming, we all stumble sometimes.

When it comes to programming, stumbling can become a way of life. Very
few programmers can ever write an error-free program the first time out
the gate. That’s nothing to be ashamed of or surprised at. But stumbling
also implies picking yourself up off the floor and trying again, and again,
and maybe again. In programming parlance, that’s debugging.

What Is Debugging?

Debugging is the process of finding and then correcting errors (“bugs”) in
your programs. It’s not unusual to spend more time on finding and fixing
bugs in your program than writing the program in the first place.
Debugging is not an exact science; often the best debugging tool you have
is your own mind. Nonetheless, there is some advice that can be offered
(see Chapter 13), and the process can be broadly divided into four steps:

1. Realizing you have an error
2. Finding where the error is

3. Finding the cause of the error
4. Fixing the error

Chapter 2, Debugging and Turbo Debugger 13



Is There a Bug?

The first step can be really obvious. The computer freezes up (or “hangs”)
whenever you run it. Or perhaps it “crashes” in a shower of meaningless
characters. Sometimes, however, realizing you have a problem is not so
obvious. The program might work fine until you enter a certain number
(like 0 or a negative number) or until you examine the output closely. Only
then might you notice that the result is off by a factor of .2 or that the
middle initials in a list of names are wrong.

Where Is It?

The second step is sometimes the hardest: isolating where the error occurs.
Let’s face it, you simply can’t keep the entire program in your head at one
time (unless it’s a very small program indeed). You're best approach is to
divide and conquer—break up the program into parts and debug them
separately. Structured programming is perfect for this type of debugging.

What Is It?

The third step, finding the cause of the error, is probably the second-
hardest part of debugging. Once you've discovered where the bug is, it’s
usually somewhat easier to find out why the program is misbehaving. For
example, if you’'ve determined the error is in a procedure called
PrintNames, you have only to examine the lines of that procedure instead of
the entire program. Even so, the error can be elusive and may need a bit of
experimenting to track down.

Fixing It

The final step is fixing the error. Armed with your knowledge of the
program language and knowing where the error is, you squash the bug.
Now you run the program again, wait for the next error to show up, and
start the debugging process again.

Many times this four-step process is accomplished when you are writing
the program itself. Many errors of syntax, for example, prevent your
programs from compiling until they’re corrected. The Borland language
products have built-in syntax-checkers that inform you of these types of
errors and allow you to fix them on the spot.

14 Turbo Debugger User’s Guide



But other errors are more insidious and subtle. They lie in wait until you
enter a negative number, or they’re so elusive you're stymied. That’s where
Turbo Debugger comes in.

What Turbo Debugger Can Do for You

With the standalone Turbo Debugger, you have access to a much more
powerful debugger than exists in your language compiler. (Adding such a
feature-full debugger to the program itself would make it too big.)

You can use Turbo Debugger with any program written in C, Pascal, or
assembly language using the Borland Turbo products or those from other
language manufacturers. (You need to use a conversion utility that we
supply before you debug a program written in a Microsoft language,
however.) You can also debug any program created with another
manufacturer’s language product, but you'll be restricted to debugging on
the assembly level—unless you use the TDMAP utility described in
Appendix B.

You can use Turbo Debugger to help with the two hardest parts of the
debugging process: finding where the error is, and finding the cause of the
error.

Turbo Debugger helps you overcome these debugging hurdles by virture of
its extensive abilities to slow down program execution and to examine the
state of the program at any given spot. You can even test new values of
variables to see how they affect your program. This ability translates
specifically into tracing, stepping, viewing, inspecting, changing, and
watching.

Tracing You can execute your program one line at a time.

Stepping You can execute your program one line at a time but step
over any procedure or function calls. If you're sure your
procedures and functions are error-free, stepping over

them speeds up debugging.

Viewing You can have Turbo Debugger open a special window to
show you a dozen different things: variables, their
values, breakpoints, the contents of the stack, a log, a
data file, a source file, CPU code, memory, registers,
numeric processor info, or program output.

Inspecting You can have Turbo Debugger delve deeper into the
workings of your program and come up with the
contents of complicated data structures like arrays.

Chapter 2, Debugging and Turbo Debugger 15



Changing You can replace the current value of variable either
globally or locally with a value you specify.

Watching You can isolate program variables and keep track of
their changing values as the program progresses.

You can use these powerful tools to dissect your program into discrete
chunks, confirming that one chunk works before moving to the next. In this
way, you can beaver through the program, no matter how large or
complicated, until you find where that bug is hiding. Maybe you’ll find
there’s a function that inadvertently reassigns a value to a variable, or
maybe the program gets stuck in an endless loop, or maybe it gets pulled
into an unfortunate recursion. Whatever, the problem, Turbo Debugger
significantly helps you find where it is and what’s at fault.

What Turbo Debugger Won’t Do

With all the features built into Turbo Debugger, you might be thinking that
it’s got it all. In truth, Turbo Debugger has at least three things it won’t do
for you:

m Turbo Debugger does not have a built-in editor to change your source
code. Most programmers have their favorite editor and are comfortable
with it; it would be a waste of memory to include one with Turbo
Debugger. You can, however, easily transfer control to your text editor by
choosing the local Edit command from a File window (more on local
commands in a minute). Turbo Debugger uses the editor you specified
with the TDINST installation program.

m Turbo Debugger cannot recompile your program for you. You need the
original program compiler (like Turbo Pascal or Turbo C) to do that.

m Turbo Debugger will not take the place of thinking. When debugging a
program, your greatest asset is simple thought. Turbo Debugger is a
powerful tool, but if you use it mindlessly, it’s unlikely it will save you
time or effort.

How Turbo Debugger Does It

Here’s the really good news: Turbo Debugger gives you all this power and
sophistication while also being easy—dare we say intuitive—to use.

Turbo Debugger accomplishes this artful blend of power and ease by
offering an exciting user interface (UI). The next section examines the
advantages of Turbo Debugger’s revolutionary UL

16 Turbo Debugger User’s Guide



The Turbo Debugger Advantage

Once you start using Turbo Debugger, we think you'll be totally addicted
to it. Turbo Debugger has been especially designed to be as easy and
convenient as possible. To achieve this goal, Turbo Debugger sports these
powerful features:

m Convenient and logical pull-down menus.

m Context-sensitive pop-up menus throughout the product, which
practically do away with memorizing and typing commands.

& When you do need to type, Turbo Debugger keeps a list of the text
you've typed in similar situations. You can choose from these “history
lists,” edit the text, or type in new text.

m Full macro control to speed up series of commands and keystrokes.
s Convenient, complete window management.
m Access to several types of online help.

The rest of this chapter discusses these six facets of the Turbo Debugger UI.

Using the Main Menus

As with many Borland products, Turbo Debugger has a convenient system
of menus accessible from a menu bar running along the top of the screen.
The main menu bar is always available, no matter which window is
“active” (that is, which window has a cursor in it). There are pull-down
menus available for each item on the menu bar.

There are three ways to go to the menus on the main menu bar:

m Press F10 and then cursor to the desired menu and press Enter.

m Press F10and then press the first letter of the menu name (F, V, R, B, D, W,
0).

m Press Alt plus the first letter of any main menu command (F, V, R, B, D, W,
0) to activate the specified command menu. For example, anywhere in
the system, Al-F takes you to the File menu.

You press Esc to leave the menu bar without choosing a command.
To move around inside a menu off the main menu bar:

m Press Esc to exit a menu. As long as you aren’t in a second-level menu,
you'll return to the previously active window.

m Press F10 from within any menu level to return to the previously active
window.

Chapter 2, Debugging and Turbo Debugger 17



m Use the Rightand Left arrow keys to move from one pull-down menu to
another.

m Use the Home and Endkeys to go to the first and last menu items,
respectively.

Some commands in the main menus have shortcut key commands, also
known as hot keys. Where applicable, the appropriate hot key appears to the
right of the menu command.

Figures 12.1, 12.2, and 12.3 in Chapter 12 show the complete pull-down
menu tree for Turbo Debugger. Table 12.1 on page 184 lists all the hot keys.
For a summary of all the commands available in Turbo Debugger, refer to
Chapter 12.

Knowing Where It’s At

In addition to the convenient system of Borland pull-down menus, the
Turbo Debugger advantage consists of a powerful feature that lessens
confusion and reduces the learning curve by actually reducing the number
of menus.

To understand this feature, you need to realize that first and foremost,
Turbo Debugger is a context-sensitive program. Turbo Debugger keeps
tabs on exactly what window you have open, what text is selected, and
which part of the window your cursor is in (that is, which “pane”). In other
words, it knows precisely what you're looking at and where the cursor is
when you choose a command. And it uses this information when it
responds to your command. Let’s take an example to illustrate this
fundamental point.

Suppose your Pascal program has a line like this:
MyCounter[TheGrade] := MyCounter[TheGrade] + 1;

As you’ll discover when you work with Turbo Debugger, getting
information on data structures is easy; all you do is press Ctrl-/ (to Inspect
it). When the cursor is at myCounter, Turbo Debugger shows you
information on the contents of the entire array variable. But if you were to
select (that is, highlight) the whole array name plus the index and then
press Ctrl-l, the debugger would know that you wanted to inspect one
member and would show you only the member.

You can “tunnel” down to finer and finer program detail in this way.
Pressing Ctrl-/ while examining an array gives you a look at a particular
member.

18 Turbo Debugger User’s Guide



This sort of context-sensitivity makes Turbo Debugger extremely easy to
use. It saves you the trouble of memorizing and typing complicated strings
of menu commands or arcane command-line switches. You simply move to
the item you want to examine (or select it using the Ins key) and then
invoke the command (Ctrl- for Inspect, for example). Turbo Debugger
always does its best on delivering the goods for the particular item.

This context-sensitivity, which makes life easy for the user, also makes the
task of documenting commands difficult. This is because Ctrl-/, for example,
in Turbo Debugger does not have a single result; instead, the outcome of a
command depends on where your cursor is or what text is selected.

Local Menus

Another aspect of Turbo Debugger’s sensitivity to context is in its use of
pop-up menus specific to the occasion.

Pop-up menus in Turbo Debugger are called “local” to remind you that
they are tailored to the particular spot your cursor happens to be. It’s
important not to confuse pop-up (local) menus with pull-down (global)
menus (which were discussed on page 17). Compare the following two
lists:

Chapter 2, Debugging and Turbo Debugger 19



Pull-Down (Global) Menus

® Pull-down menus are those that you access by pressing F10 and using the
arrow keys or typing the first letter of the menu name.

m The pull-down menus are always available and visible on the menu bar
at the top of the screen.

m Their contents never change.
m Some of the menu commands have hot key shortcuts that are available
from any part of Turbo Debugger.

Pop-Up (Local) Menus

m You call up a pop-up menu by pressing Alt-F10 or Ctrl-F10.

m The placement and contents of the menu depends on what text is
selected or where your cursor is.

m The contents of pop-up menus can change. (Even so, it’s important to
realize that many of the local commands appear in almost all of the local
menus so that there’s a predictable core of commands from one to the
other.) Even the results of like-named commands can be different,
depending on the context.

m Every command on a pop-up has a hot key shortcut consisting of
pressing Cirl plus the first letter of the command.

Because of this arrangement, a hot key, say Ctr-S, might mean one thing
in one context but quite another in another. (As mentioned earlier,
though, there is still a consistency across the pop-up menus of a core of
commands. For example, the Goto command and the Search command
always do the same thing, even when they are invoked from different
panes.)

20 Turbo Debugger User’s Guide



Here is a composite screen shot of both kinds of menus (when actually
working in Turbo Debugger, however, you could never have both types of
menus showing at the same time):

File Run  Breakpoints Data Window Options
frocule: : 162 L
type
Parm| Stac <--a pull-down menu
Parm| Log
Pa| Matches a pop-up (local) menu
Ne| Variables |
end; ( Module... Al1t-F3 v
var File...
Head| CPU H
i : | Dump Watc
s : | Registers
begin | Numeric processor Module
gead User screen Alt-F5 File...
or
begi| Another Previous
meter } Line...
s := ParamStr(i); Search...
if MaxAvail < SizeOf (ParmRec) + Length(s))| Next oom on heap? }
begin Origin
Goto...
l-Hatcbes Edit ————Z-I

F1-Help Esc-Abort

Figure 2.1: Pull-Down vs. Pop-Up Menus

From a user’s standpoint, local menus are a great convenience. All possible
command choices relevant to the moment are laid out at a glance. This
prevents you from trying to choose inappropriate commands and keeps the
menus small and uncluttered.

History Lessons

Menus and context-sensitivity comprise just two aspects of the convenient
user interface of Turbo Debugger. Another habit-forming feature is the
“history list.”

Conforming to the philosophy that the user shouldn’t have to type more
than absolutely necessary, Turbo Debugger remembers whatever you enter
into prompt boxes and displays that text whenever you call up the box
again.

For example, if you search for the function called ReturnOnlnvestment, you
would typically have to type in all or part of that word. Then suppose you
needed to search for a variable called myPercentage. When you see the

Chapter 2, Debugging and Turbo Debugger 21



prompt box this time, you'll notice that the text ReturnOnInvestment appears
in the box. When you search for another text string, both previously
entered strings appear in the box. The list keeps growing as you continue to
use the Search command.

The search prompt box might look like this:

File View Run Breakpoints Data Window Options
setrightcol();

setleftcol();

}displayscreen(NOUPDATE);

break;

case HOMEKEY :

currow = curcol = leftcol = toprow = 0;
setrightcol();

setbottomrond; Enter search strin
i7sp]ayscreen (NOUPDATE) T —
break; nitcolortable

case ENDKEY : input
rightcol = curcol = lastcol; toprow
currow = bottomrow = lastrow; cell
settoprow(); L
setleftcol();

setrightcol();
displayscreen(NOUPDATE);

I—Hatches

F1-Help <--Select Esc-Abort

n

Figure 2.2: A History List in a Prompt Box

You can use this history list as a shortcut to typing by using the arrow keys
to select any previous text and then press Enter to start the search. If you use
an unaltered entry from the history list, the entry moves to the top of the
list. You can also edit text (use the arrow keys to insert the cursor into the
highlighted text then edit as normal using Del or Backspace). For example,
you can select myPercentage and change it to hisPercentage rather than
typing in the entire text. If you start to type a new item when an entry is
highlighted, you will overwrite the highlighted item. The first item in a
search list is always the word the cursor is on in the Module window.

The debugger lists the last ten responses unless you tell it otherwise. (You
can change its size using the TDINST program.)

Turbo Debugger keeps a separate history list for most prompt boxes. That
way, the text you enter for searching for text does not clutter up the box for,
say, going to a particular label or line number.

22 Turbo Debugger User’s Guide



Making Macros

Macros are simply keystroke shortcuts that you define. You can define any
series of Turbo Debugger commands and keystrokes to a single key, for
“playback” whenever you want.

To create a macro, press F10 to activate the menu bar, press O to select the
Options menu, and choose Macros from the Options menu. At this point,
you have a choice of four commands: Create, Remove, Delete All, and Stop
Recording. Choose Create; Turbo Debugger prompts you for a key to save
the upcoming macro to. Press a little-used or easily remembered key (for
example, Shift-F1 for “rerunning a program”). Now go through all the steps
and commands you want to save to that key. To end the recording session,
press the newly defined macro key again (Shiff-F1, for example), or press Alf—.

Whenever you find yourself repeating a series of steps, say to yourself,
“Couldn’t I be using a macro for this?” For example, do you find yourself
resizing and moving windows a lot depending on whether a program has
many comments extending to the right margin? If so, create a macro that
makes the Module window half-wide (save it as Shift-F2, for half) and make
another macro that makes it full size (save it as Shift-F3, for full). Now you
can toggle easily from one to the other as needed.

Window Shopping

Lots of programs do windows nowadays, but Turbo Debugger does them
better. Turbo Debugger displays all information and data in menus (local
and global), prompt boxes (which you type into), and windows. There are
many types of windows depending on what sort of information that’s in it.
You open and close all windows using menu commands (or hot key
shortcuts for those commands). Most of Turbo Debugger’s windows come
from the pull-down View menu (there are 12 types of windows found
there). There is another class of window called the Inspect window, which
is opened by choosing Data/Inspect or by choosing Inspect from many of
the local pop-up menus.

Windows from the View Menu

Here is a list of the 12 types of windows you can open by choosing
commands from the View menu. You close these windows by pressing F3
or by choosing Window/Close. If you unintentionally close a window,
choose Window/Undo Close to reopen it (with its contents exactly as they

Chapter 2, Debugging and Turbo Debugger 23



were when you closed it). You can recover only the last-closed window in

this way.

Module window

Watches window

Breakpoints
window

Stack window

Log window

24

Displays the program code that you're debugging. You
can move around inside the module and examine data
and code by “pointing” at program variable names
with the cursor and issuing the appropriate local menu
command.

You will probably spend more time in Module
windows than in any other type, so take the time to
learn about all the various local menu commands for
this type of window.

You can also press All-F3 to open the Module window.
(Chapter 8 details the Module window and its
commands.)

Displays variables and their changing values. You add
a variable to the window by pressing Ctr-W when your
cursor is on the variable.

Displays the breakpoints you have set. A breakpoint
defines a location in your program where something is
meant to happen, such as your program stopping so
you can examine the state of the world. (Turbo De-
bugger’s breakpoints encompass all the functionality of
what are usually referred to as breakpoints,
watchpoints, and tracepoints.)

You can use this window to modify, delete, or add
breakpoints. (See Chapter 7 for a complete description
of this type of window and how breakpoints work.)

Displays the current state of the stack. You can get
further information on any function or procedure
name in the stack by cursoring to it and “inspecting” it
by pressing Crl-I.

By placing the cursor at one of the functions or
procedures in the list, you can examine either its local
variables or the type of the arguments it was called
with. (Chapter 5 provides more information on the
Stack window.)

Displays the contents of the message log. The log
contains a scrolling list of messages and information
generated as you work in Turbo Debugger. The log
contains such things as why your program stopped,

Turbo Debugger User’s Guide



Variables window

File window

CPU window

the results of breakpoints, and the values of structures
you saved in the log.

This window lets you look back into the past and see
what led up to the current state of affairs. This can be
really handy after a frenzied run of looking here,
looking there, until finally you say, “How the dickens
did I get here?” (Chapter 7 tells you more about the
Log window.)

Displays all the variables accessible from that spot in
your program. The left pane has global variables; the
right pane shows local variables, if any.

This window can be helpful when you want to find a
function or variable that you know begins with, say,
“abc,” but when you can’t remember its exact name.
You can look in the global symbol pane and quickly
find what you want. (Chapter 5 describes the Variables
window in more detail.)

Displays the contents of a disk file. You can view the
file either as raw hex bytes or as ASCII text. You can
search for specific text or bytes sequences, as well as
directly patch any part of the file on disk. Press F2 to
open a File window.

This is handy if you are debugging a program that uses.
disk files, and you wish to alter the program’s behavior

by changing the contents of one of its files. You can also

correct a mistake in the contents of a file, or examine a

file produced by a program to make sure the contents

are correct. (You can learn more about the File window

in Chapter 8.)

Displays the current state of the central processing
unit. This window has five panes: one that contains
disassembled machine instructions, one that shows hex
data bytes, another displays a raw stack of hex words,
another lists the contents of the CPU registers, and one
that indicates the state of the CPU flags.

The CPU window is useful when you want to watch
the exact sequence of instructions that make up a line
of source code or the bytes that comprise a data
structure. If you know assembler code, this can help
locate some types of subtle bugs. You do not need to
use this window to debug the majority of programs.

Chapter 2, Debugging and Turbo Debugger 25



Dump window

Registers window

Numeric
Processor window

User Screen
window

26

(Chapter 10 discusses the CPU window and
assembler-level debugging.)

Displays a raw display of an area of memory. You can
view the data as characters, hex bytes, words, double
words, and all the floating-point formats. (This
window is the same as the Data pane of a CPU
window.) You can use it when you want to look at
some raw data but don’t care about the rest of the CPU
state. The local menu has commands to let you modify
the displayed data, change the format in which you
view the data, and manipulate blocks of data.

See Chapter 10, which discusses assembler debugging,
for more information on how to use this window.

Displays the contents of the CPU registers and flags.
This window has two panes, which are the same as the
registers and flags panes of a CPU viewer. Use this
window when you want to look at the contents of the
registers but don’t care about the rest of the CPU state.
You can change the value of any of the registers or flags
through commands in the local menu.

Chapter 10, which discusses assembler debugging, has
more information on how to use this window.

Displays the current state of the math coprocessor. This
window has three panes: one pane that shows the
contents of the floating-point registers, one that shows
the status flag values, and one that shows the control
flag values.

This window can help you diagnose problems in pro-
grams that use floating-point numbers. You need to
have a fair understanding of the inner workings of the
math coprocessor in order to really reap the benefits of
this window. (See Chapter 11 for more information
about using the Numeric Processor window.)

Shows you your program’s output screen. The screen
you see is exactly the same as the one you would see if
your program was running directly from DOS and not
under Turbo Debugger.

You can use this window to check that your program is
at the place in your code you expect it to be, as well as
to verify that it is displaying what you want on the

Turbo Debugger User’s Guide



screen. Alt-F5 is the shortcut. After viewing the User
Screen window, press any key to go to the debugger
screen.

You can also open duplicates of three types of windows—CPU, File, and
Module—by choosing View/Another. This allows you to keep track of
several disparate areas of assembly code, different files the program uses or
generates, or several distinct programs modules at once.

Don’t be alarmed if Turbo Debugger opens one of these windows all by
itself. It will do this in some cases in response to a command. (For example,
if you choose to view your source file while you're in a Code pane, Turbo
Debugger automatically opens a CPU or Module window.)

Inspector Windows

An Inspector window displays the current value of a selected variable. This
type of window is never split into panes. Usually, you close this window by
pressing Esc. If you’ve opened more than one Inspector window in
succession, as often happens when you examine a complex data structure,
you can remove all the inspectors in one swoop by pressing F3 or using the
Window/Close command.

You can open an Inspector window to look at an array of items or at the
contents of a variable or expression.

An Inspector window adapts to the type of data being displayed. It can
display simple scalars (int, float, and so on), as well as pointers, arrays,
records, structures, and unions. Each type of data item is displayed in a
way that closely mimics the way you are used to seeing it in your pro-
gram’s source code.

Note that unlike windows from the View menu, you can create additional
Inspector windows simply by choosing the Inspect command again. (You
can create additional Module, File, or CPU windows only by choosing
View/Another.)

The Active Window

Even though you can have many windows open in Turbo Debugger at the
same time, only one window can be active. You can spot the active window
by the following criteria:

m The active window has a double line around it, not a single line.
m The active window’s title is highlighted.

Chapter 2, Debugging and Turbo Debugger 27



m The active window is the one with the cursor or highlight bar in it.
m If your windows are overlapping, the active window is the topmost one.

When you issue commands, enter text, or scroll, you affect only the active
window, not any other window that might be showing or open.

File View Run Breakpoints Data Window Options READY
Module: MCPARSER File: MCPARSER.PAS 431 1
Counter : Word;
begin Breakpoints 4
Accepted := False; MCALC. 24 Breakpoint
TokenError := False; MCALC.138 Always
MathError := False; Enabled
IsFormula := False;
Input := UpperCase(S),
StackTop s= 0CPU 80286 -3
FirstToken.St|MCPARSER.431: =0
FirstToken.Va| cs:0ED9°mov  byte ptr [01A0],00 bx 395E |z=1
Push(FirstTok|MCPARSER.432: MathError := False; cx 0000 s=0
TokenType := | cs:0EDE mov  byte ptr [019F],00 dx 5CF9 |o=0
repeat MCPARSER.433: IsFormula := False; si 3C9C p=1
case Stack[| cs:0EE3 mov  byte ptr [01A1],00 di 3A70 |a=0
0, 9, 12.|MCPARSER.434: Input := Upper(:ase(s). bp 3B7C i=1
if "Toke| cs:OEE8 Tea di, [bp- 10] sp 396C |d=0
i
Watches: 2. 07 P | ss:396E 91F3
Changed False : BOOLEAN | OF $5:396CPF7D2
Ch '/' : CHAR
CheckBreak False ¢ BOOLEAN

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F1-TracemF'8":Step F8-Run F10-Menu —

Figure 2.3: Can You Spot the Active Window?

Window Hopping

You can make any of the first nine open windows the active one by pressing
Alt in combination with the number of the window, which appears in the
upper right corner of the window. (Usually, the Module window is
window 1 and the Watches window is window 2. Whatever window you
open after that will be window 3, and so on.) If you press Alt-2, for example,
to make the Watches window active, any commands you choose will affect
that window and any variables that might be in it.

To see a list of all open windows, press Alf-0. Turbo Debugger displays a
normal pop-up menu of the open windows for you to select one. Press Enter
and the selected windows becomes the active one.

You can also press F6 to cycle through the windows in turn. This is handy if
an open window’s number is covered so you don’t know what shortcut key
to press to make it active.

28 Turbo Debugger User’s Guide



If a window has panes—areas of the window designated for distinct types
of data—you can move from one pane to another by pressing Tab or Shift-
Tab, or by choosing Window/Next Pane Cycle. The most pane-ful window
in Turbo Debugger is the CPU window, which has five panes.

As you hop from pane to pane, you'll notice that sometimes a blinking
cursor appears in the pane while other times a highlight bar appears
instead. If a cursor appears, you move around the text using standard
keypad commands. (PgUp, Ctrl-Home, and Ctrl-PgUp, for example move the
cursor up one screen, to the top of pane, or to the top of the list,
respectively.) You can also use Wordstar-like shortcuts for moving around
in the pane. Refer to Table 12.1 and Table 12.1 in Chapter 12 for lists of
keystroke commands in panes.

If there’s a highlight bar in a pane instead of a cursor, you can still use
standard keypad movement keys to get around, but a couple of special
keystrokes also apply. In alphabetical lists, for example, you can “select by
typing.” As you type each letter, the highlight bar moves to the first item
starting with the letters you’ve just typed. The position of the cursor in the
highlighted item indicates how much of the name you have already typed.
Once the highlight bar is on the desired item, your search is complete. This
incremental searching or “select by typing” minimizes the number of
characters you must type in order to choose an item from a list.

Once an item is selected (highlighted) from a list, you can press Alt-F10 or
Ctrl-F10 to choose a local command relevant to it. In many lists, you can also
just press Enter once you have selected an item. This acts as a shortcut to one
of the commonly used local menu commands. The exact function of the
Enter key in these cases is described in the reference section starting on page
187.

Finally, a number of panes let you start typing a new value or search string
without choosing a command first. This usually applies to the most
frequently used command in a pane or window—like Goto in a Module
window, Search in a File window, or Change in a Registers window.

Resizing and Saving Windows

When Turbo Debugger makes a new window, it appears near the current
cursor location and has a default size suitable for the specified window.
You can use the Window/Move/Resize command to adjust the size or
location of the window. After choosing this command, your active window
border changes to a single-line border. You then use the arrow keys to
change the placement and size of the window on your screen. Press Enter

Chapter 2, Debugging and Turbo Debugger 29



when you're satisfied with its position. Pressing Scroll Lock is a shortcut for
the Move/Resize command.

If you want to quickly enlarge (or then reduce) a window, you can press F5
to “zoom” or “unzoom” it.

You can also use the Options/Save Options command to save a specific
window configuration once you have the screen arranged the way you like.
The screen will then appear that way each time you start Turbo Debugger
from DOS, if the configuration was saved to a file called TDCONFIG.TD.
This is the only configuration file that is loaded automatically when Turbo
Debugger is loaded. Other configurations (saved in other files) can be
loaded by using the Options/Restore Options command, if this
configuration was saved to TDCONFIG.TD.

Getting Help

As you've seen, Turbo Debugger goes out of its way to make debugging
easy for you. It requires a minimum of remembering obscure commands, it
keeps lists of what you do type in case you want to repeat them, it lets you
define macros, and it offers incredible control of windows. Even so, Turbo
Debugger is a sophisticated program with lots of features and commands.
To avoid potential confusion, Turbo Debugger offers the following help
features:

m A highlighted activity indicator in the upper right corner always displays
the current activity. For example, if your cursor is in a window, the
activity indicator read READY; if there’s a menu visible, it reads MENU;
when at a prompt box, it reads PROMPT. If you ever get confused about
what’s happening in Turbo Debugger, look at the activity indicator for
help. (Other possibilities for the activity indicator are MOVE/RESIZE,
MOVE, and ERROR.)

m Remember that the active window is always topmost and has a double
line around it.

® You can access an extensive context-sensitive help system by pressing F1.

m The bottom line of the screen always offers a quick reference summary of
keystroke commands. The line changes as the context changes and as you
press Shift, Alt, or Ctrl.

For more information on the last two avenues for help, read the following
sections.

30 Turbo Debugger User’s Guide



Online Help

Turbo Debugger, like other Borland products, gives context-sensitive
onscreen help at the touch of a single key. Help is available anytime you're
within a menu or window, as well as when an error message or prompt is
displayed.

Press F1 to bring up a Help window showing information pertinent to the
current context. Some help screens contain highlighted keywords that
allow you to get additional help on that highlighted item. Use the arrow
keys to move to any keyword and then press Enter to get to that item’s
screen. You can use the Home and End keys to go to the first and last key-
words on the screen, respectively.

If you want to return to a previous Help screen, press Alf-F1. From within
the Help system, use PgUp to scroll back through the last 20 help screens.
PgDn only works when you’re in a group of context-related screens. To
access the Help Index, Press F1 from within the Help system. To exit from
Help, press Esc.

The Bottom Line

Wherever you're in Turbo Debugger, a quick reference help line appears at
the bottom of the screen. This line provides at-a-glance keystroke command
help for your current context.

The normal bottom (reference) line shows the commands performed by the
function keys, and looks like this:

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 2.4: The Normal Reference Line

If you hold down the Alt key for a second or two, the commands performed
by the Alt function keys are displayed.

Alt: F2-Bkpt at F3-Mod F4-Anim F5-User F6-Undo F7-Instr F8-Rtn F9-To F10-Local

Figure 2.5: The'Reference Line with Alt Pressed

Chapter 2, Debugging and Turbo Debugger 31



If you hold down the Ctrl key for a second or two, the commands performed
by the Ctrl letter keys are displayed. This help line changes depending on
the current window and current pane, and it shows the single-keystroke
equivalents for the current local menu. If there are more local menu
commands than can be described on the bottom line, only the first keys are
shown. You can view all the available commands on a local menu by
pressing Alt-F10 or Ctrl-F10 to pop up the entire menu.

Ctrl: I-Inspect W-Watch M-Module F-File P-Previous L-Line S-Search N-Next

Figure 2.6: Typical Reference Line with Ctl Pressed

32 Turbo Debugger User’s Guide



Getting Started: A Quick Example

If you are itching to use Turbo Debugger and aren’t the sort of person to
work through the whole manual first, this chapter gives you enough
knowledge to debug your first program. Once you've learned the basic
concepts described here, the well-integrated, intuitive user interface and
context-sensitive help system allow you to learn as you go along.

This chapter leads you through all of Turbo Debugger’s basic features.
After describing the sample programs—one in C and another in
Pascal—provided on the distribution disk, it shows you how to

m run and stop the program

m examine the contents of program variables

m look at complex data objects, like arrays and structures

m change the value of variables

The Sample Programs

The sample programs (TCDEMO.C for C, TPDEMO.PAS for Pascal),
introduce you to the two main things you need to know to debug a pro-
gram: how to stop and start your program, and how to examine your pro-
gram’s variables and data structures. The programs themselves are not
meant to be terribly useful: Some of their code and data structures exist
solely to show you Turbo Debugger’s capabilities. (For example, each
shows you how to access command-line parameters, even though they’re
not really used for anything.)

Chapter 3, Getting Starfed: A Quick Example 33



Each demo program lets you type in some lines of text, then counts the
number of words and letters that you entered. At the end of the program,
each displays some statistics about the text, including the average number
of words per line and the frequency of each letter.

Make sure that your current directory contains the two files needed for the
tutorial. For the C example, you’ll need TCDEMO.C and TCDEMO.EXE;
for the Pascal example, you need TPDEMO.PAS and TPDEMO.EXE.

To start the C program, enter
TD TCDEMO

To start the Pascal program, enter
TD TPDEMO

Turbo Debugger loads the demo program and positions the cursor at the
start of the program.

File View Run Breakpoints Data Window Options
Module: TCDEMO File: TCDEMO.C 31 1
static void showargs(int argc, char *argv[]);

/: program entry point

P int main(int argc, char **argv) {
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nlines = 0;
nwords = 0;
totalcharacters = 0;
showargs (argc, argv);
while %readalineﬁ 1= 0) {
wordcount = makeintowords (buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines++;

N

I—Hatc.‘....

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 3.1: The Startup Screen Showing TCDEMO

This screen consists of the main menu line, the Module and Watches
windows, and the help line.

To exit from the tutorial at any time and return to DOS, press Alt-X. If you
get hopelessly lost while following the tutorial, press Cir-F2 to reload the
program and start at the beginning. However, Ctrl-F2 doesn’t clear
breakpoints or watches; you'll have to use Al-F L to do that.

34 Turbo Debugger User’s Guide



Press F1 whenever you need help about the current window, command,
prompt, or error message. You can learn a lot by working your way
through the menu system and pressing F1 at each command to get a
summary of what it does.

Using Turbo Debugger

The top line of the screen shows the main menu bar. To pull down a menu
off of it, press either the F10 key or the Alt key in combination with the first
letter of one of the menu names.

Press F10 now. Notice that the cursor disappears from the Module window,
and the File command on the main menu becomes highlighted. The bottom
line of the screen also changes to show you which keys you can use in the
File menu; in this case, only the F1 (Help) and Esc (Abort) keys appear.

Use the arrow keys to move around the menu system. Press Down arrow to
pull down the menu for the highlighted item on the main menu.

Press Esc to move back through the levels of the menu system. When just
one menu item on the main menu is highlighted, pressing Esc returns you
to the Module window, with the main menu no longer active.

The Help Line

The bottom line of the screen shows relevant function keys and what they
do. This line further changes depending on what you are entering (menu
commands, a response to a prompt, and so on). Hold Alf down for a second
or two, for example. Notice that the bottom line changes to show you the
function keys you can use with Alt.

Now press Ctrl for a second. The commands shown on the bottom line are
the shortcuts to the local menu commands for the current pane (area of the
window). They change depending on which pane of which sort of window
you are currently in. More about these later.

The Windows

The window area takes up most of the screen. This is where you examine
different parts of your program by viewing it through different windows.

The display starts up with two windows: a Module window and the
Watches window. Until you open more windows or adjust these two, they

Chapter 3, Getting Started: A Quick Example 35



remain tiled. This means they fill the entire screen without overlapping.
New windows automatically overlap existing windows until you move
them.

Notice that the Module window has a double-line border and a highlighted
title. This means it is the active window. You use the cursor keys (the arrow
keys, Home, End, PgUp, and so on) to move around inside the active window.
Press F6 to switch to another window. Do that now. The Watches window
becomes active, with a double-line border and a highlighted title.

Use the View menu command from the main menu bar to create new
windows. Press Af-V to pull down the View menu, then press S to open a
Stack window. The View menu disappears, and the Stack window pops up
on top of the Module window.

To remove the active window, press F3. Do that now. The Stack window
disappears.

Turbo Debugger stores the last-closed window so you can recover it if you
need to. If you accidentally close a window, press Alf-W to open the Window
menu. Press U to choose the Undo Close command. The Stack window
reappears. You can also press Alf-F6 to recover the last-closed window.

The Window menu contains the commands that let you adjust the
appearance of the windows you already have on the screen. You can both
move the window around the screen and change its size. (You can use Scroll
Lock to do this too.)

Press Alt-W M (to display the Window menu and then choose the Move/
Resize command) and use the arrow keys to reposition the active window
(the Stack window) on the screen. Hold Shift down and use the arrow keys
to adjust the size of the window. Press Enter when you have defined a new
size and position that you like.

Now, to prepare for the next section, remove the Stack window by pressing
F3. Depending on whether you’'ve loaded the C or Pascal demo program,
you should continue with the next section (for the C sample) or move to the
Pascal section starting on page 43.

Using the C Sample Program

The filled arrow (») in the left column of the Module window shows where
Turbo Debugger stopped your program. Since you haven’t run your pro-
gram yet, the arrow is on the first line of the program. Press F7 to trace a
single source line. The arrow and cursor are now on the next executable
line.

36 Turbo Debugger User’s Guide



Look at the right margin of the Module window title. It shows the line that
the cursor is on. Move the cursor up and down with the arrow keys and
notice how the line number in the title changes.

As you can see from the Run menu, there are a number of ways to control
the execution of your program. Let’s say you want to execute the program
until it reaches line 38. First, position the cursor on line 38, then press F4.
This will run the program up to (but not including) line 38. Now press F7,
which executes one line of source code at a time; in this case, it executes line
38, a call to the function showargs. The cursor will immediately jump to
line 150, where the definition of showargs is found. Continuing to press F7
will step you through the function showargs and then return you to the
line following the call—line 39. If you had pressed F8 instead of F7 on line
38, the cursor would have gone directly to line 39 instead of to the function.
F81is similar to F7in that it executes functions, but it doesn’t enter them.

File View Run Breakpoints
Module: TCDEMO File: TCDEMO.C 39
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

Data Window Options REA?Y

nlines = 0;

nwords = 0;

totalcharacters = 0;

showargs (argc, argv);

> while (readaline(} 1= 0)

wordcount = makeintowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines+;

printstatistics(nlines, nwords, totalcharacters);
return(0);

}

/* make the buffer into a 1ist of null-terminated words that end in

[Natcuu.

Alt: F2-Bkpt at F3-Mod F4-Anim F5-User F6-Undo F7-Instr F8-Rtn F9-To

n

Figure 3.2: The Program Stops after Returning from Function showargs

To execute the program until a specific place is reached, you can directly
name the function or line number, without moving the cursor to that line in
a source file and then running to that point. Press Al-F9 to specify a label to
run to. A prompt box appears. Type readaline and press Enter. The program
runs, then stops at the beginning of function readaline (line 141).

Chapter 3. Getting Started: A Quick Example 37



Setting Breakpoints in the C Demo Program

Another way to control where your program stops running is with
breakpoints. The simplest way to set a breakpoint is with the F2 key. Move
the cursor to line 43 and press F2. Turbo Debugger highlights the line,
indicating there is a breakpoint set on it.

File View Run Breakpoints Data Window Options m
Module: TCDEMO File: TCDEMO.C 41
unsigned int nlines, nwords, wordcount;

unsigned long totalcharacters;

nlines = 0;

nwords = 0;

totalcharacters = 0;

showargs (argc, argv);

> while %readalineg 1= 0) {

wordcount = makeintowords (buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines+;

printstatistics(nlines, nwords, totalcharacters);
return(0);

}

/* make the buffer into a list of null-terminated words that end in

ratch::

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

n

Figure 3.3: A Breakpoint at Line 43

Now press F9 to execute your program without interruption. The screen
switches to the program’s display. The demo program is now running and
waiting for you to enter a line of text. Type abc, a space, def, and then press
Enter. The display returns to the Turbo Debugger screen with the arrow on
line 43, where you set a breakpoint that has stopped the program.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

Using Watches

The Watches window at the bottom of the screen shows the value of
variables you specify. For example, to watch the value of the variable
nwords, move the cursor to the variable name on line 41 and press Ctr-W.
This is the shortcut for the local menu command Alt-F10 W.

38 Turbo Debugger User’s Guide



File View Run Breakpoints
Module: TCDEMO File: TCDEMO.C 39
nwords = 0;
totalcharacters = 0;
showargs (argc, argv);
» while (readaline(} != 0) {
wordcount = makeintowords (buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines+;

Data Window Options

}
printstatistics(nlines, nwords, totalcharacters);
return(0);

}

/* make the buffer into a 1ist of null-terminated words that end in
: in two nulls, squish out white space

static int makeintowords(char *bufp) {
unsigned int nwords;

n

atches
nwords unsigned int 2 (0x2) ]
F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 3.4: A Variable in the Watches Window
nwords now appears in the Watches window at the bottom of the screen,

along with its type (unsigned int) and value. As you execute the program,
Turbo Debugger updates this value to reflect the variable’s current value.

Examining Simple C Data Objects

Once you have stopped your program, there are a number of ways of
looking at data using the Inspect command. This very powerful facility lets
you examine data structures in the same way that you visualize them when
writing a program.

The Inspect commands (in various local menus and in the Data menu) let
you examine any variable you specify. Suppose you want to look at the
value of the variable nlines. Move the cursor so it is under one of the letters
in nlines and press Ctrl-l. An Inspector window pops up.

Chapter 3. Getfing Started: A Quick Example 39



File View Run Breakpoints Data Window Options
Module: TCDEMO File: TCDEMO.C 41 1:
nwords = 0;
tgtalchafacters = 0;
showargs (argc, argy);
» whﬂerireadaline'(? 1= 0) {
wordcount = makeintowords(buffer);
nwords += wordcount;
Inspecting nlines ]fer);

Register
} unsigned int 0 (0x0
printsta

return(0) ;

ters);

/* make the buffer into a list of null-terminated words that end in
: in two nulls, squish out white space

static int makeintowords(char *bufp) {
unsigned int nwords;

n

atches:
nwords unsigned int 0 (0x0) ]

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 3.5: An Inspector Window

The first line tells you that the compiler has optimized this variable by
placing it in a CPU register. You need not worry about where the variable is
actually stored—Turbo Debugger takes care of everything, letting you refer
to all your data exactly as shown in your program. The second line shows
you what type of data is stored in nlines (it’s a C unsigned int). To the right
is the current value of the variable.

Now, having examined the variable, press Esc to close the Inspector
window. You can also use F3 to remove the inspector, just like any other
window.

Let’s review what you actually did here. By pressing Ctrl, you took a short- -
cut to the local menu commands in the Module window. Pressing /
specified the Inspect command.

To examine a data item that is not conveniently displayed in the Module
window, press Alt-D I. A prompt box appears, asking you to enter the
variable to inspect. Type letterinfo and press Enfer. An inspector appears,
showing the values of the letterinfo array elements. The title of the
inspector shows the name of the data you are inspecting. The first line
under the title is the address in main memory of the first element of the
array letterinfo. Use the arrow keys to scroll through the 26 elements that
make up the letterinfo array. The next section shows you how to examine
this compound data object.

40 Turbo Debugger User’s Guide



Examining Compound C Data Objects

A compound data object, such as an array or structure, contains multiple
components. Move to the fourth element of the letterinfo array (the one
indicated by [3]). Press Alf-F10 to bring up the local menu for the Inspector
window, then press / to choose the Inspect command. A new inspector
appears, showing the contents of that element in the array. This inspector
shows the contents of a structure of type linfo.

File View Run Breakpoints Data MWindow Options
Module: TCDEMO File: TCDEMO.C 91 e
letterindex = toupper(*bufp) - 'A'; /* 0-based index
if (first) {

letterinfo[letterindex].firstletter++;
-Inspecting letterinfo
@5A51:08F4

H /* count the

}
P IR I nspecting Tetterinfol3 45 a word of this leng
bufp++; | IGLERENE

count

0x
return(charcount |{|firstletter 0 (ox1)

>}
/:/disp]ay all the stati

[Hatche:

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

struct linfo

nN

Figure 3.6: Inspecting a Structure

When you place the cursor over one of the member names, the data type of
that member appears in the bottom pane of the inspector. If one of these
members were in turn a compound data object, you could issue an inspect
command and dig down further into the data structure.

Press F3 to remove both Inspector windows and return to the Module
window. (F3 is a convenient way of removing several inspectors at once. If
you had pressed Esc, only the latest inspector would have been deleted.)

Changing C Data Values

So far, you’ve learned how to look at data in the program. Now, let’s change
the value of data items.

Chapter 3. Getting Started: A Quick Example 4]



Use the arrow keys to go to line 37 in the source file. Place the cursor at the
variable totalcharacters and press Ctrl-/ to inspect its value. With the Inspector
window open, press Alt-F10 to bring up the Inspector’s local menu. Press C
to choose the Change option. (You could also have done this directly by
pressing Cirl-C.) A prompt appears, asking for the new value.

File View Run Breakpoints Data Window Options
-Module: TCDEMO File: TCDEMO.C 37 1
nlines = 0;
nwords = 0;

totalcharacters = 0;
Inspecting totalcharacters
85/ .

[AOE3 R ds (buffer);

Range. .. Is += analyzewords(buffer);
FrEnter new value for unsigned lon
totalcharacters+4 g]characters):

} New expression... |

-0~

/* make the buffer into a l1ist of null-terminated words that end in
: in two nulls, squish out white space

static int makeintowords(char *bufp) {

l-uatches 2~|

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 3.1: The Change Command Prompt

At this point, you can enter any C expression that evaluates to a number.
Type totalcharacters+4 and press Enter. The value in the inspector now
shows the new value, 10L (0xA).

To change a data item that isn’t displayed in the Module window, press Aft-
D E. A prompt box appears, in which you enter the name of the variable to
change. Type argc and press Enter, then press Tab twice to move to the line
labeled New Value. Type 123 and press Enter. The integer result (second
line) will change to int 123 (0x7B).

That’s a quick introduction to using the Turbo Debugger with a Turbo C
program. For a more extensive walk-through, take a look at Chapter 13’s
sample debugging session—it uses a “buggy” version of this program.

42 Turbo Debugger User’s Guide



Using the Pascal Sample Program

The filled arrow (») in the left column of the Module window shows where
Turbo Debugger stopped your program. Since you haven’t run your pro-
gram yet, the arrow is on the first line of the program. Press F7 to trace a
single source line. The arrow and cursor are now on the next line.

Look at the right margin of the Module window title. It shows the line that
the cursor is on. Move the cursor up and down with the arrow keys and
notice how the line number in the title changes.

To make the program execute until it reaches line 222, move the cursor to
that line and then press F4. TPDEMO will prompt you to enter a string.
Type a few keystrokes, then press Enter. Now, with the cursor still on line
222, press F7 to execute another single line of source code. Since the line
you executed is a call to a different procedure, the arrow now appears on
the first line of the function ProcessLine. Press Alt-F8 to make the program
stop when ProcessLine returns. This command is very useful when you
want to jump past the end of a function or procedure.

File View Run Breakpoints
Module: TPDEMO File: TPDEMO.PAS 223
while Buffer <> '' do
begin
ProcessLine(Buffer);
»  Buffer := GetLine;
end;
ShowResults;
ParmsOnHeap;
end.

Data Window Options m

n

I—Hatchc.

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 3.8: The Program Stops after Returning from a Procedure

To execute the program until a specific place is reached, you can directly
name the function or line number, without moving the cursor to that line in
a source file and then running to that point. Press Alt-F9 to specify a label to

Chapter 3, Getting Started: A Quick Example 43



run to. A prompt box appears. Type GetLine and press Enter. The program
runs, then stops at the beginning of function GetLine.

Setting Breakpoints in the Sample Pascal Program

Another way to control where your program stops running is with
breakpoints. The simplest way to set a breakpoint is with the F2 key. Move
the cursor to line 120 and press F2. Turbo Debugger highlights the line,
indicating there is a breakpoint set on it.

File View

lun Break:oints Data Window Options REA?Y

HordLen Hord.

begin { ProcessLine }
?nc(nunLines).

while i< Length(S) do
begin
Skip non-letters }
wh}le((; <= Length(S)) and not IsLetter(S[i]) do
nc

{ Find end of word, bump letter & word counters }
WordLen := 0;
ghile (i <= Length(S)) and IsLetter(S[i]) do
egin

Inc(NumLetter
[Hatchcs

Inc(LetterTable[UpCase(S[i])] Count);
F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

N

Figure 3.9: A Breakpoint af Line 120

Now press F9 to execute your program without interruption. The screen
switches to the program’s display. The demo program is now running and
waiting for you to enter a line of text. Type abc, a space, def, and then press
Enter. The display returns to the Turbo Debugger screen with the arrow on
line 120, where you set a breakpoint that has stopped the program.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

44 Turbo Debugger User’s Guide



Using Watches

The Watches window at the bottom of the screen shows the value of
variables you specify. For example, to watch the value of the variable
NumWbords, move the cursor to the variable name on line 143 and press Ctrl-
W. This is the shortcut for the local menu command Alt-F10 W.

File View Run Breakpoints Data MWindow Options m
Module: TPDEMO File: TPDEMO.PAS 143
Inc(LetterTable Up ase .Count);

if WordLen = 0 t { bump counter }
I?ggLetterTable[UpCase(S[i])] .FirstLetter);
Inc
Inc(WordLen);
end;

{ Bump word count info }
if WordLen > 0 then

begin
Inc(NumWords) ;
if WordLen <= MaxWordLen then
Inc(WordLenTable[WordLen]);

end;
end; { while }
end; { ProcesslLine }

function GetLine : BufferStr;

latches
[:umﬂords 2 ($2) : WORD ]

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

n

Figure 3.10: A Pascal Variable in the Watches Window

NumWbrds now appears in the Watches window at the bottom of the screen,
along with its type (word) and value. As you execute the program, Turbo
Debugger updates this value to reflect the variable’s current value.

Examining Simple Pascal Data Objects

Once you have stopped your program, there are a number of ways of
looking at data using the Inspect command. This very powerful facility lets
you examine data structures in the same way that you visualize them when
writing a program.

The Inspect commands (in various local menus and in the Data menu) let
you examine any variable you specify. Suppose you want to look at the
value of the variable NumLines. Move the cursor back to line 120 so it’s

Chapter 3, Geftting Started: A Quick Example 45



under one of the letters in NumLines and press Ctri-l. An Inspector window
pops up-

File View Run Breakpoints Data MWindow Options ﬂﬂP]
Module: TPDEMO File: TPDEMO.PAS 120 :
i : Integer;
WordLen : Word;

begin { P L
B A il

(IS [nspecting NumLines
L1 1R1(165920:003C
be?i ORD :

while (i <= Length(S)) and not IsLetter(S[i]) do
Inc(i);

{ Find end of word, bump letter & word counters }
WordLen := 0;
while (i <= Length(S)) and IsLetter(S[i]) do

begin
Inc(NumLetters);
Inc(LetterTable[UpCase(S[i])].Count);

N

atches
rl:umuords 2 ($2) : WORD
F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 3.11: An Inspector Window

The first line tells you the variable name; the second line shows its address
in memory. The third line tells you what type of data is stored in NumLines
(it’s a Pascal word) and displays the current value of the variable.

Now, having examined the variable, press Esc to close the Inspector
window. You can also use F3 to remove the inspector, just like any other
window.

Let’s review what you actually did here. By pressing Ctrl, you took a short-
cut to the local menu commands in the Module window. Pressing /
specified the Inspect command.

To examine a data item that is not conveniently displayed in the Module
window, press Alt-D I. A prompt box appears, asking you to enter the
variable to inspect. Type LetterTable and press Enter. An inspector appears,
showing the value of LetterTable. Use the arrow keys to scroll through the
26 elements that make up LetterTable. The title of the inspector shows the
name and type of the data you are inspecting, exactly as the declaration for
this data appears in the source file. The next section shows you how to
examine this compound data object.

46 Turbo Debugger User’s Guide



Examining Compound Data Objects in Pascal

A compound data object, such as an array or structure, contains multiple
components. Move to the fourth element of the LetterTalk array (the one
indicated by ['D’]). Press Alt-F10 to bring up the local menu for the Inspector
window, then choose the Inspect command. A new Inspector window
appears, showing the contents of that element in the array. This inspector
shows the contents of a record of type LInfoRec.

File View Run Breakpoints Data Window Options |]ﬂp
Module: TPDEMO File: TPDEMO.PAS 120 7
i : Integer;
WordLen : Word; Inspecting LetterTable————
85920:0058
begin { ProcessLine } ‘A’
> Inc(lltnLines). 'g‘
i 1. e
while | <= Length(S) do 'D']
be Inspecting LetterTable[
? Skip non-letters } 85920:0064 ]
while (i <= Length(S)) and notlj|COUNT
Inc(i); FIRSTLETTER
{ Find end of word, bump letter|irecord LINFOREC
WordLen := 0;

:hi}e (i <= Length(S)) and IsLetter(S[i]) do
egin

Inc(NumLetters);

Inc LetterTabletUpCase(S[i])] Count);

n

atches:
NumWords 2 ($2) : WORD
F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 3.12: Inspecting a Structure

When you place the cursor over one of the member names, the data type of
that member appears in the bottom pane of the inspector. If one of these
members were in turn a compound data object, you could issue an inspect
command and dig down further into the data structure.

Press F3 to remove both Inspector windows and return to the Module
window. (F3 is a convenient way of removing several inspectors at once. If
you had pressed Esc, only the topmost inspector would have been deleted.)

Changing Pascal Data Values

So far, you've learned how to look at data in the program. Now, let’s change
the value of data items.

Chapter 3, Getting Started: A Quick Example 47



Use the arrow keys to go to line 102 in the source file. Place the cursor at the
variable called NumLetters and press Ctrl-l to inspect its value. With the
Inspector window open, press Alt-F10 to bring up the Inspector’s local
menu. Press C to choose the Change option. (You could also have done this
directly by pressing Ctrl-C.) A prompt appears, asking for the new value.

File View Run Breakpoints Data Window Options
Module: TPDEMO File: TPDEMO.PAS 102 14

procedure Init;

begin
NumLines := 0; NumWords := 0; NumLetters := 0;

FillChar(LetterTable, SizeOf(L AL ILTLIRIATIa]
Fil1Char(WordLenTable, SizeOf (J{{KFFARNLY
Writeln(‘Enter a string to pro , 6 ($6

end; { Init } Range. .. I

procedure ProcessLine(var S : Buf En%er new va!ue !or NumLetters : LONGINT]

[NumLettersM
function IsLetter(ch : Char) : Bo
begi

n
IsLetter := UpCase(ch) in ['A'.l
end; { IsLetter }

New expression... |

var
i : Integer;

atches
NumWords 2 ($2) : WORD

F1-Help <!-Select Esc-Abort

n

Figure 3.13: The Change Command Prompt

At this point, you can enter any Pascal expression that evaluates to a
number. Type NumLetters+4 and press Enter. The value in the Inspector
window now shows the new value, 10.

To change a data item that isn’t displayed in the Module window, press Alf-
D E. A prompt box appears, in which you enter the name of the variable to
change. Type NunLines and press Enter. The result is displayed in the middle
pane. Press Tab twice, then type 123 and press Enter. This will set the vari-
able NumLines equal to 123.

Well, that wraps up our quick intro to using Turbo Debugger with a Turbo
Pascal program. Chapter 13 offers a more extensive debugging sample.

48 Turbo Debugger User’s Guide



Starting Turbo Debugger

To debug a program with Turbo Debugger, you simply type 10 and the
name of the program, and press Enter. Turbo Debugger then loads and runs
your program, displaying its source code so you can step through your
program statement by statement.

Note: The overlay file, TD.OVL, which contains the menu system, must be
available when you load TD. If it is not, an error message will appear,
warning you that it cannot be loaded.

Note: If you are running on a two-floppy system, INSTALL has put the
overlay file (TD.OVL) and the help file (TDHELP.TDH) on one diskette and
TD.EXE on another diskette. To start Turbo Debugger, you insert the disk
containing TD.EXE and type 0 and your program name on the command
line. Turbo Debugger will prompt you to insert the diskette containing the
overlay file. Once you have inserted the overlay diskette, don’t remove it
for the remainder of your debugging session.

If you've run your program from the DOS prompt and noticed a bug while
using it, you have to exit from your program and load it under the de-
bugger first.

This chapter tells you how to prepare programs for debugging. We show
you how to start Turbo Debugger from the DOS command line and tailor
its many command-line options to suit the program you are debugging. We
explain how to make these options permanent in a configuration file. You
also learn how to run a DOS command processor from within a Turbo De-
bugger session and, finally, how to return to DOS when you are done.

Chapter 4, Starting Turbo Debugger 49



Preparing Programs for Debugging

When you compile and link with one of Borland’s Turbo languages, you
should tell the compiler to generate full debugging information. If you have
compiled your program’s object modules without any debugging
information, you must recompile all its modules to have full source de-
bugging capabilities throughout your program. You can generate debug
information only for specific modules, but it can be annoying later to enter
a module that doesn’t have any debug information available. We suggest
recompiling all modules—unless you’re not using EMS, need memory
space, and are sure the code in certain modules works.

Preparing Turbo C Programs

If you're using the Turbo C integrated environment (TC), specify
Standalone in the Debug/Source Debugging option before you compile
your source modules.

If you're using the standalone compiler (TCC), specify the -v command-
line option.

If you're using TLINK as a standalone linker, you must use the /v option to
append debugging information at the end of the .EXE file.

You may also want to make sure optimizing is disabled. Either don’t use
the —-O option or specify —O- to turn off the -O in your TURBOC.CFG file.
This eliminates the few occasions when Turbo Debugger appears to skip
over lines of source code when you're stepping through a program.

Preparing Turbo Pascal Programs

First, be aware that you need version 5.0 or later of Turbo Pascal. Earlier
versions do not have the ability to bundle debugging information into the
.EXE file so that Turbo Debugger can use it.

If you're using the Integrated Environment (TURBO.EXE), you must go to
the Debug menu and change the Standalone Debugging setting to on. Turn
Options/Compiler/Debug Information on. If you want to be able to
reference local symbols (any declared within procedures and functions),
you must either set the Options/Compiler/Local Symbols selection to 0On,
or put the {$L+} directive at the start of your program. You can then
compile your program.

50 Turbo Debugger User’s Guide



If you're using the command-line version (TPC.EXE), you must compile
using the /v command-line option. Debug information and local symbols
are, by default, generated. If you don’t want them, you can use /$
command-line options to disable them.

Preparing Turbo Assembler Programs

When using Turbo Assembler, specify the —zi command-line option to get
full debugging information.

When linking your program with TLINK, use the /v option to append de-
bugging information at the end of the .EXE file.

Preparing Microsoft Programs

See Appendix B of this book for information about how to use the utility

program TDCONVRT.EXE, which converts CodeView executable pro-
grams to Turbo Debugger format.

Running Turbo Debugger

To run Turbo Debugger, type 10 at the DOS prompt, followed by an
optional set of command-line arguments, and press Enter. Command-line
arguments can include the name of the program to debug and debugger
options.

If you simply type ™ Enter, Turbo Debugger loads and uses its default
options.
Note: The overlay file TD.OVL must be available for TD to call upon for its
menus and help windows.
The generic command-line format is

TD [options] [progname [progargs]]

The items enclosed in brackets are optional; if you include any, type them
without the brackets. Progname is the name of the program to debug. You
can follow a program name with arguments. Here are some example
command lines:

Chapter 4, Starting Turbo Debugger 51



Command Action

td -sc progl a b Starts the debugger with —sc option and loads program
progl with two command-line arguments, 2 and b.

td prog2 -x Starts the debu}glger with default options and loads pro-
gram prog2 with one argument, —x.

To use Turbo Debugger with Borland products, you must be using Turbo
Pascal 5.0 or later, Turbo C 2.0 or later, or Turbo Assembler 1.0 or later. You
must have already compiled your source code into an executable (.EXE file)
with full debugging information turned on before debugging with Turbo
Debugger.

Note that when you run Turbo Debugger, you’ll need both the .EXE file and
the original source files available. Turbo Debugger searches for source files
first in the directory the compiler found them in when it compiled, second
in the directory specified in the Options/Path for Source command, third
in the current directory, and fourth in the directory the .EXE file is in.

Command-Line Options

All command-line options start with a hyphen (-) and are separated from
the TD command and each other by at least one space. You can explicitly
turn a command-line option off by following the option with another
hyphen. For example, —vg- turns off a complete graphics save. You can do
this if an option has been permanently enabled in the configuration file.
You can modify the configuration file by using the TDINST configuration
program described in Appendix E.

The following describes all available command-line options; Appendix A
has an easy-to-use list of these command-line options.

The -c Option

This option loads the specified configuration file. A space cannot exist
between —c and the file name.

If the —c option isn’t included, TDCONFIG.TD is loaded if it exists.

Here’s an example:

TD -cMYCONF.TD TCDEMO

52 Turbo Debugger User’s Guide



This loads the configuration file MYCONF.TD and the source code for
TCDEMO.

The —d Options

All -d options affect the way in which display updating will be performed.

—do

Runs the debugger on your secondary display. View your program’s screen
on the primary display, and run the debugger on the secondary one.

__dp

The default option for color displays. Shows the debugger on one display
page, and the program being debugged on another, minimizing the time it
takes to swap between the two screens. You can only use this option on a
color display, since only these displays have multiple display pages. You
can’t use this option if the program you are debugging uses multiple
display pages itself.

—ds

The default option for monochrome displays. Maintains a separate screen
image for the debugger and the program being debugged by loading the
entire screen from memory each time your program is run or the debugger
restarted. This is the most time-consuming method of displaying the two
screen images, but works on any display hardware and with programs that
do unusual things to the display.

The -h and -? Options

Display a screenful of help that describes Turbo Debugger’s command-line
syntax and options.

The —i Option

Enables process ID switching. Don’t use this option when debugging inside
DOS or when DOS system calls are active. See Appendix C for more
technical information on this feature. You needn’t be concerned with this
option when debugging most programs.

Chapter 4, Starting Turbo Debugger 53



The -1 Option

Forces startup in assembler mode, showing CPU viewer. Doesn’t execute
compiler startup code.

The -m Option

Sets the working heap to n Kbytes, where the syntax is
-mn

A space cannot exist between the -m option and the size of the heap. Here
is an example:

TD -m64 TCDEMO.EXE

The default size is 40K; the high boundary is 64K. Specifying a value larger
than 64K may cause unexpected results. If you need memory, use this
option to reduce the amount of heap Turbo Debugger uses. Use this option
also to increase the amount of heap when you debug small programs. This
option lets Turbo Debugger store transient information, such as command
history lists.

Note: If you specify a heap size of 0 with the -n command-line option (-m0),
Turbo Debugger will use the maximum that it’s able to use, 64K.
The —c Option

The syntax is
-cfilename

Tells Turbo Debugger to use filename as the configuration file.

The -r Options
All -r options affect the remote debugging link.

-t

Enables debugging on a remote system over the serial link. Uses the default
serial port (COM1) and speed (115 Kbaud), unless you have changed them
with TDINST.

54 Turbo Debugger User’s Guide



-rp N
Sets the remote link port to port N. N can be 1 or 2 to indicate COM1 or
COM2, respectively.

s N

Sets the remote link speed. N can be 1 for 9600 baud, 2 for 40 Kbaud, or 3
for 115 Kbaud.

The -s Options

All -s options affect the way Turbo Debugger handles source code and pro-
gram symbols.

—SsC

Ignores case when you enter symbol names, even if your program has been
linked with case sensitivity enabled.

Without the —sc option, Turbo Debugger will ignore case only if you've
linked your program with the “case ignore” option enabled.

Note: This option has no effect if you're debugging a Turbo Pascal program
(because Turbo Pascal is always case-insensitive).

—sd
Sets one or more source directories to scan for source files; the syntax is
-sddirname

To set multiple directories, use the —sd option repeatedly—only one
directory name can be specified with each -sd option. Directories are
searched in the order specified. dirname can be a relative or absolute path
and can include a disk letter. If the configuration file specifies any
directories, the ones specified by the —sd option are added to the end of that
list.

The —v Options

All -v options affect how Turbo Debugger handles the video hardware.

Chapter 4, Starting Turbo Debugger 55



Saves complete graphics image on program screen. Requires an extra 8K of
memory, but can debug programs that use certain graphics display modes.
Try this option if your program’s graphics screen becomes corrupted when
running under Turbo Debugger.

-on

43/50 line display not allowed. Specifying this option saves some memory.
Use this if you're running on an EGA or VGA and know you won’t switch
into 43- or 50-line mode once Turbo Debugger is running.

Enables the EGA palette save.

Configuration Files

Turbo Debugger uses a configuration file to override built-in default values
for command-line options. You can use TDINST to set the default options
that will apply when there is no configuration file and to build the
configuration file.

Turbo Debugger looks for the configuration file TDCONFIG.TD first in the
current directory, next in the TURBO directory set up with the TDINST
installation program, and then in the directory that contains TD.EXE. If you
are running on DOS version 2, the debugger won’t look for TDCONFIG.TD
in the TD.EXE directory.

If the debugger finds a configuration file, the settings in that file override its
built-in defaults. Any command-line options that you supply when starting
Turbo Debugger from DOS will override those default option values and
any values in TDCONFIG.TD.

Appendix E describes how to use the installation program to create
configuration files.

The Options Menu

This Options menu lets you set or adjust a number of parameters that
control the overall appearance and operation of Turbo Debugger. The

56 Turbo Debugger User’s Guide



following sections describe each menu command, and where appropriate
refer you to other sections of the manual where you can find more details.

File View Run Breakpoints Data Window [iEﬂ;]

ENRE rsttoken; Language Source
char accepted = FALSE; acros

char copy[80]; Environment

Path for source...
error = FALSE; Arguments...
isformula = FALSE; Save options...
input = copy; Restore options...
strupr(strcpy(copy, s));
stacktop = -1;

P firsttoken.state = 0;
firsttoken.x.value = 0;
push(&firsttoken);
sokentype = nexttoken();

0

{
switch (stack[stacktop].state)

Watches

firsttoken.state char 'G' 71 (0x47)
stacktop int -1 (OXFFFF)

input char * ds:FF16 "123.45"

Fl-Help Esc-Abort

n

Figure 4.1: The Opfions Menu

Language Command

Chapter 9 describes how to set the current expression language and how it
affects the way you enter expressions.

Macros Command

This command displays another menu that lets you define new keystroke
macros or delete ones that you have already assigned to a key. It has the
following commands:

Create
Starts recording keystrokes that will be assigned to a key (for example, Alt-
M). You are first prompted for the key to assign the keystrokes to. You then

type the keystrokes that you want to record. These keystrokes will be acted
upon by Turbo Debugger exactly as if you are not recording a macro. To

Chapter 4, Starting Turbo Debugger 57



begin a recording session, select Option/Macro/Create. You will be
prompted for the key you want to assign the macro to. The message
Recording is displayed in the upper right-hand corner of the screen while
the recording session is in progress.

Once you have finished recording keystrokes, you must issue the F10/
Options/Macros/Stop Recording command or its shortcut, Alt-hyphen. You
may also press the key you assigned the macro to (Alt-M) once more.

While the macro is recording, the mesage Recording is displayed in the
upper right-hand corner of the screen.

Alt-= is a shortcut for starting to record a macro.

Stop Recording
Stops recording keystrokes that will be assigned to a key. Use this

command after issuing the F10/Options/Macros/Create command to
assign keystrokes to a key.

Alt-hyphen is a shortcut for ending a macro.

Remove

Removes a macro assigned to a single key. You will be prompted to press
the key whose macro you want to delete.

Delete All

Removes all keystroke macro definitions and restores all keys to have the
meaning that they originally had.

Environment Command

This command displays a menu that lets you set several options to control
the apperance of the Turbo Debugger display. It has the following options:

Integer Format

This option lets you cycle among three display formats for displaying
integers:

58 Turbo Debugger User’s Guide



Decimal Shows integers as ordinary decimal numbers.

Hex Shows integers as hexadecimal numbers, displayed in a
format appropriate to the current language.

Both Shows integers as both decimal numbers and as hex
numbers in parentheses after the decimal value.

Display Swapping
The Display Swapping option lets you cycle among three ways of

controlling how your program’s and Turbo Debugger’s screens get
swapped back and forth. The three setting are

None Don’t swap between the two screens. Use this option if
you're debugging a program that does not do any
output to the display.

Smart Only swap to the user screen when display output may

occur. Turbo Debugger will swap the screens any time
that you step over a routine, or if you execute and
instruction or source line that appears to read or write
video memory. This is the default option.

Always Swap to the user screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to the
screen. If you select this option, the screen will flicker
every time you step your porgram, since Turbo De-
bugger’s screen will be replaced for a short time with
your program’s screen.

Screen Size
Use this option to determine whether Turbo Debugger’s screen will use the

normal 25-line display or the 43 or 50-line display available on EGA and
VGA display adapters.

Tab Size

This option lets you set how many columns each tab stop will occupy. You
can reduce the tab column width to see more text in source files that have a

Chapter 4, Starting Turbo Debugger 59



lot of code indented with tabs. You can set the tab column width from 1 to
32.

Path for Source Command

Sets the directories that Turbo Debugger will search for your source files.
See Chapter 8 where the Module window is discussed for more
information on this option.

Arguments Command

Lets you set new command-line arguments for your program. This is
discussed more in Chapter 5.

Save Options Command

Saves your current options to a configuration file on disk. This saves:

W your macros

m the current window layout

m pane formats

m all settings made in the Options menu

Turbo debugger allows you to save your options in three ways:

All Saves all settings made in the Options menu, including
windows and macros

Layout Saves only the windowing layout

Macros Saves only the currently defined macros

Restore Options Command

Restores your options from a disk file. You can have multiple configuration
files, containing different macros, window layouts, etc. You must specify an
option file that was created by the Save options command.

60 Turbo Debugger User’s Guide



Running DOS While in Turbo Debugger

When debugging a program, you sometimes need to use another program
or utility. Do this via File/OS Shell.

When you start the DOS command processor, the program you are de-
bugging is swapped to disk if necessary. This allows you to perform DOS
commands even while debugging a program that takes all of available
memory. Of course, this means that there may be a few seconds of delay
while your program is being swapped to and from the disk.

When you have finished issuing commands to DOS, type EXIT to return to
your debugging session.

Returning to DOS

You can end your debugging session and return to DOS at any time by
pressing Alt-X. You can also choose File/Quit.

All the memory initially allocated to the program being debugged is freed.
If the program you are debugging allocates memory via the DOS block
memory allocation routines, that memory is also freed.

Chapter 4, Starting Turbo Debugger 61



62

Turbo Debugger User’s Guide



Controlling Program Execution

When you debug a program, you usually execute portions of your program
and check that it behaves correctly at a stopping point. Turbo Debugger
gives you many ways to control your program’s execution. You can

m execute single machine instructions or single source lines

m skip over calls to functions or procedures

m “animate” the debugger (perform continuous tracing)

m run until the current function or procedure returns to its caller
m run to a specified location

m continue until a breakpoint is reached

A debugging session consists of alternating periods when either your pro-
gram or the debugger is running. When the debugger is running, you can
cause your program to run by choosing one of the Run menu’s command
options or pressing its hot key equivalent. When your program is running,
the debugger starts up again when either the specified section of your pro-
gram has been executed, you interrupt execution with a special key
sequence, or Turbo Debugger encounters a breakpoint.

This chapter shows you how to examine the state of your program
whenever the debugger is in control. We teach you various ways to execute
portions of your program and also show you how to interrupt your pro-
gram while it’s running. Finally, we list the ways you can restart a de-
bugging session, both with the same program and with a different pro-

gram.

Chapter 5, Controlling Program Execution 63



Examining the Current Program State

The “state” of your program consists of the following elements:

m its DOS command-line arguments

m the stack of active functions or procedures

m the current location in the source code or machine code
m the reason the debugger stopped your program

m the value of your program data variables

See Chapter 6 for more information on how to examine and change the
values of your program data variables. The following sections explain the
Variables window, Stack window, the local menus of the Global and Static
panes, the Origin command, and the Get Info command.

The Variables Window

This window shows you all the variables (names and values) that are
accessible from the current location in your program. Use this to find
variables whose names you can’t remember how to spell. You can then use
the local menu commands to further examine or change their values. You
can also use this window to examine the variables local to any function that
has been called.

64 Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options
Module: MCUTIL File: MCUTIL.C 360 14

deletecell(curcol, currow, UPDATE);
value = parse(s, &attrib);

P> switch(attrib)
(@ Variables

call_movetext ©534A:6B35 | value 123.45
a/l_movmem ©534A:6BD5|allocated 49 (0x31)
i}l name ds:044C "Turbo C MicroCalc jattrib 1 (0x1)
_nexttoken ©534A:0562 s ds:FFB2 “123.45"
bf| "nocursor 8192 (0x2000)
[} normvideo 7777
ajl_oldcursor 2828 (0xBOC
bfl_open ©534A:6C5F
cat
allocated = allocformula(curcol, currow, s, value);
break;
} /* switch */
Watches 2
stacktop int 1 (0x1)
s char * ds:FF82 "123.45"

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 5.1: The Variabies Window

Note: When debugging a Turbo Pascal program, the right pane will display
the symbols of the current code segment and IP registers (CS:IP), which
always point to the current location in the program. Also, the variables
won't be arranged alphabetically.

You open a Variables window by choosing View/Variables at the main
menu; otherwise, from anywhere else you can either press F10 to get to the
main menu or Alf-V to get to View, then choose Variables from the View
menu. Variables windows have two panes. The Global pane (on the left)
shows all the global symbols in your program. The Static pane (on the
right) shows all the static symbols in the current module, which is the
module containing the current program location (CS:IP), and all the
symbols local to the current function. Both panes show the name of the
variable at the left margin and its value at the right margin. If Turbo De-
bugger can’t find any data type information for the symbol, it displays four
question marks (????) as shown in Figure 5.1.

As with all local menus, press Alt-F10 to pop up the Global pane’s local
menu. If Control key shortcuts are enabled, you can press Ctrl with the first
letter of the desired command to access the command.

If your program contains functions that perform recursive calls, or you
wish to view the variables local to a function that has been called, you can
examine the value of a specific instance of a function’s local data. First
create a Stack window with View/Stack, then move the highlight to the

Chapter 5, Controlling Program Execution 65



desired instance of the function call. Next, press Alt-F10 and choose Locals.
The Static pane of the Variables window then shows the values for that
specific instance of the function.

The Global Pane Local Menu

This local menu consists of two commands: Inspect and Change.

File View Run Breakpoints Data Window Options w

rModule: MCPARSER File: MCPARSER.PAS 437 1
FirstToken : TokenRec;
Accepted : Boolean;
Counter : Word;

begin
Accep {EIRERIER 3
Token|[MCUTIL.EXISTS ©595F : 0D3A| STACKTOP 0 ($0)
MathE[IMCVARS.LETTERS ['A'..'Z','a'..'|TOKENTYPE 9 ($9)
IsFor|[MCVARS.CELL ((ni1,nil,nil,ni1,n|MATHERROR False
Input |MCVARS .CURCELL nil|TOKENERROR False
Stack||[MCVARS.FORMAT ((‘B',‘'B','B','B"'|ISFORMULA False
First|[MCVARS .COLWIDTH (#10,#10,#10,#1| INPUT '123.45'
L GIEY31 MCVARS . COLSTART L#14,724, ' "I '123.45"
Push( coL 1) |ATT 8224 ($2020)
Token

repeat ﬁ;é‘;'l
case kTop] .State of

0, 9, 12..16, 20 : begin

Watches 2:
Input '123.45" : string[79]
TokenError False : boolean

Fl-Help Esc-Abort

Figure 56.2: The Global Pane Local Menu

Inspect

Opens an Inspector window that shows you the contents of the currently
highlighted global symbol. See Chapter 6 for more information on how
inspector windows behave.

If the variable you want to inspect is a name of a routine, you will be shown
the source code for that function, or if there is no source file, a CPU
window will show you the disassembled code.

If the variable you inspect has a name that is superseded by a local variable
with the same name, you will see the actual value of the global variable, not
the local one. This behavior is slightly different than the usual behavior of
Inspector windows, which normally show you the value of a variable from
the point of view of your current program location. The different behavior

66 Turbo Debugger User’s Guide



gives you a convenient way of looking at the value of global variables
whose names are also used as local variables.

Change

Changes the value of the currently selected (highlighted) global symbol to
the value you enter at the prompt. Turbo Debugger performs any necessary
data type conversion exactly as if the assignment operator for your current
language had been used to change the variable. See Chapter 9 for more
information on assignment and data type conversion.

You can also change the value of the currently highlighted symbol by
simply starting to type a new value. When you do this, the same prompt
box appears as if you had first specified the Change command.

The Static Pane Local Menu

Press the Alt-F10 key combination to pop up the Static pane’s local menu; if
Control key shortcuts are enabled, use the Cirl key with the first letter of the
desired command to access the command.

The Static pane has these two local menu commands: Inspect and Change.

File View Run Breakpoints Data Window Options IIIER]?

Module: MCPARSER File: MCPARSER.PAS 437 :
FirstToken : TokenRec;
Accepted : Boolean;
Counter : Word;

Q

#20 20 ($14)|POP 05779:0542

MathE MCVARS OLDMODE 7 ($7) |GOTOSTATE ©5779:0574
IsFor([MCVARS .UMENUSTRI®*'Recalc, Formul|SHIFT 85779:0781
Input|{MCVARS . UCOMMANDSTRING 'RF* |REDUCE ©85779:07D2
Stack||DOS.MSDOS @5A3C:0000(STACK (('P*,0,30036,25202, urbo
First|DOS. INTR @5A3C:0008|CURTOKEN (#31,0, 30036 25202 ur

P First|{DOS.FINDFIRST ©5A3C:006C | LIS 50
Push([|DOS. FINDNEXT ©5A3C:00AA 9 9

Token !Fm’
repeat ange

case Stack[StackTop] State of
0, 9, 12..16, 20 : begin

Watches 2
Input '123.45"' : STRING[79]
TokenError False : BOOLEAN

F1-Help Esc-Abort

Figure 5.3: The Static Pane Local Menu

Chapter 5, Confrolling Program Execution 67



Inspect

Opens an Inspector window that displays the contents of the currently
highlighted module’s local symbol. See Chapter 6 for more information on
how inspectors behave.

Change

Changes the value of the currently selected (highlighted) local symbol to
the value you enter at the prompt. Turbo Debugger performs any data type
conversion necessary, exactly as if the assignment operator for your current
language had been used to change the variable. See Chapter 9 for more
information on assignment and data type conversion.

You can also change the value of the currently highlighted symbol by
simply starting to type a new value. When you do this, the same prompt
box appears as if you had first specified the Change command.

The Stack Window

You create a Stack window with F10/View/Stack. The Stack window lists
all the active functions or procedures. The most recently called routine is
displayed first, followed by its caller and the previous caller, all the way
back to the first function or procedure in the program (the main program in
Pascal; in C programs, usually the function called main()). For each
procedure or function, you see the value of each parameter it was called
with.

68 Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options m
Module: MCPARSER File: MCPARSER.C 430 9
push(&curtoken);
} /* reduce */

double parse(char *s, int *att)
/* Parses the string s - ret NTH
y the attribute in att: TEX|RESCHEITYATHIZII)

4aring, and puts

_act(ds:FF82
—getinput (49
struct TOKENREC firsttoken; || run(
char accepted = FALSE; “main(1,ds:FFEB)

char copy[80];

error = FALSE;
isformula = FALSE;
input = copy;

» strupr(strcpy(copy, s));
stacktop = -1;
firsttoken.state = 0;

I-Hatche: ZJ

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 5.4: The Stack Window

Press Alt-F10 to pop up the Stack window local menu or press Ctr/ with the
first letter of the desired command to directly access the command.

The Stack Window Local Menu

This local menu has two commands: Inspect and Locals.

Chapter 5, Controlling Program Execution 69



File View Run Breakpoints Data Window Options ﬁﬁq]

Module: MCPARSER File: MCPARSER.C 430 -
push(&curtoken) ;
} /* reduce */

double parse(char *s, int *att

/* Parses the string s - ret
o the attribute in att: TEX|| parse(ds:FF82,ds:FF72)

4aring, and puts

—act(ds:FF82
“getinput (49
struct TOKENREC firsttoken;|l run()
char accepted = FALSE;
char copy[80];
error = FALSE; Locals

:sfognula = FALSE;

nput = copy;

P strupr(strcpy(copy, s));
stacktop = -1;
firsttoken.state = 0;

I-Hatche:

Alt: F2-Bkpt at F3-Mod F4-Anim F5-User F6-Undo F7-Instr F8-Rtn F9-To

n

Figure 5.5: The Stack Window Local Menu

Inspect

Opens a Module window positioned at the active line in the currently
highlighted function. If the highlighted function is the top (most recently
called) function, the Module window shows the current program location
(CS:1P). If the highlighted function is one of the functions that called the
most recent function, the window is positioned on the line in the function
that will be executed after the called function returns.

You can also invoke this command by pressing Enter once you have the
highlight bar positioned over a function.

Locals

Opens a Variables window that shows the symbols local to the current
module, as well as the symbols local to the currently highlighted function.
If a function calls itself recursively, there are multiple instances of the
function in the Stack window. By positioning the highlight bar on one
function, this command lets you look at the local variables in that instance
of the function.

70 Turbo Debugger-User’s Guide



The Origin Local Menu Command

The Module window and the Code pane of a CPU window both have an
Origin command on their local menu. The Origin command positions the
cursor at the current program location (CS:IP). This is very useful when you
have been looking at your code and want to get back to where your pro-
gram stopped.

Viewing Execution Status: The Get Info Command

[EAB Vview Run_ Breakpoints Data Window Options
@ i
Load... , char **argv) {
Change dir... |int nlines, nwords, wordcount;
mﬁ_ long totalcharacters;

Program: c:\tcdemo.exe
Status : Stopped at _main

Mem:
DOS : 61Kb DOS : 0Kb
Debugger : 249Kb Debugger : 32Kkb |s(buffer);
Symbols : 1Kb Program : 0Kb
Program : 84Kb Available: 992Kb |zewords(buffer);
Available: 242Kb

User interrupts: 00h 02h totalcharacters);

DOS version : 3.10
Breakpoints : Software

7-9-1988 12:45p

~-Help Esc-Abort

n

F

-

Figure 5.6: The File Get Info Command

You can choose File/Get Info to look at memory usage and to determine
why the debugger gained control. This and other information appears in a
box that disappears with your next keystroke:
m The name of the program you're debugging
m A description of why your program stopped
m The amount of memory used by DOS, Turbo Debugger, and your pro-
gram
m If you have EMS memory, its usage appears to the right of main memory
usage

Chapter 5, Controlling Program Execution 71



m A list of interrupts intercepted by the program you are debugging
m The DOS version you're running

m Whether breakpoints are handled entirely in software or if they have
hardware assistance

Here are the messages you will see on the second line, describing why your
program stopped:

Stopped at __

Your program stopped as the result of a Run/Execute To, Run/Go to
Cursor, or Run/Until Return command completing. This status line also
displays when your program is first loaded, and the compiler startup code
in your program has been executed to put you at the start of your source
code.

No program loaded

You started Turbo Debugger without any program. You cannot execute any
code until you either load a program or assemble some instructions using
the Assemble local menu command in the Code pane of a CPU window.

Control Break
You interrupted execution of your program with Ctrl-Break after you
reconfigured the Break key to something else.

Trace
You executed a single source line or machine instruction with F7 or F10/
Run/Trace.

Breakpoint at __

Your program encountered a breakpoint that was set to stop your program.
The text after “at” is the address in your program where the breakpoint
occurred.

Terminated, exit code __

Your program has finished executing. The text after “code” is the numerical
exit code returned to DOS by your program. If your program does not
explicitly return a value, a garbage value may be displayed. You cannot run
your program until you reload it with F70/Run/Program Reset.

Loaded

You loaded Turbo Debugger and specified a program and the option that
prevents the compiler startup code from executing. No instructions have
been executed at this point, including those that set up your stack and
segment registers. This means that if you try to examine certain data in
your program, you may see incorrect values.

72 Turbo Debugger User’s Guide



Step
You executed a single source line or machine instruction, skipping function

calls, with F8 or F10/Run/Step.

Interrupt
You pressed the interrupt key (usually Ctr-Break) to regain control. Your pro-
gram is immediately interrupted and the debugger restarted.

The Run Menu

The Run menu has a number of options for executing different parts of
your program. Since you will use these options frequently, they are all
available on function keys.

File View [MM} Breakpoints Data MWindow Options
1
name I_EI
page | Program reset trl-
title| Go to cursor F4
Trace into F?
cr equ Step over F8
f equ Execute to... Alt-F9
Until return Alt-F8
cseg segme| Animate Alt-F4
Instruction trace Alt-F7

assum

hello proc far
> mov dx,seg text

mov ds,dx

mov dx,offset text
mov ah,9

int 21h

mov ah,4ch

n

l-Hatcl‘.e:

Fl-Help Esc-Abort

Figure 56.7: The Run Menu

Run [F9]
Runs your program at full speed. Control returns to the debugger when
one of the following events occurs:

m your program terminates
m a breakpoint with a break action is encountered
m you interrupt execution with Ctrl-Break

Chapter 5, Controlling Program Execution 73



Program Reset [Cirl-F2]

Reloads the program you're debugging from disk. Use this when you've
executed “too far,” that is, passed the place where a bug occurred.

If you're in a Module or CPU window, the display won’t return to the start
of the program. Instead, you'll stay exactly where you were when you
chose the Program Reset command. If you chose the Program Reset
command because you just executed one source statement more than you
intended, you can position the cursor up a few lines in you source file and
press F4 to run to that location.

Go to Cursor [F4]

Executes your program until the line that the cursor is on in the current
Module window or CPU window Code pane. If the current window is a
Module window, the cursor must be on a line of source code inside a
function.

Trace Into [F7]

Executes a single source line or machine instruction. Usually, a single
source line is executed. If the current line contains any procedure or
function calls, Turbo Debugger traces into that routine. However, if the
current window is a CPU window, only a single machine instruction is
executed.

Step Over [F8]

Executes a single source line or machine instruction, skipping over any
procedure or function call(s). This usually executes a single source line.
However, if the current window is a CPU window, only a single machine
instruction is executed.

If you step over a single source line, Turbo Debugger treats any function or
procedure call(s) in that line as part of the same line, so you don’t end up at
the start of one of those functions. Instead, you end up at the next line in
the current routine or at the previous routine that called the current one.

If you step over a single machine instruction, Turbo Debugger treats certain
instructions as a single instruction, even when they cause multiple
instructions to be executed. Here is a complete list of the instructions Turbo
Debugger treats as single instructions:

74 Turbo Debugger User’s Guide



CALL Subroutine call, near, and far

INT Interrupt call

LOOP Loop control with CX counter
LOOPZ Loop control with CX counter
LOOPNZ Loop control with CX counter

Also stepped over are REP, REPNZ, or REPZ followed by CMPS, CMPSB,
CMPSW, LODSB, LODSW, MOVS, MOVSB, MOVSW, SCAS, SCASB,
SCASW, STOS, STOSB, STOSW.

Execute To [Alt-FI]

Executes your program until the address you specify at the prompt is
reached. The address you specify may never be reached if a breakpoint
action is encountered first or you interrupt execution.

Until Return [Alt-F8]

Executes until the current function returns to its caller. This is useful in two
circumstances: when you have accidentally executed into a function or
procedure that you are not interested in with F10/Run/Trace instead of
F10/Run/Step, or when you have determined that the current function
works to your satisfaction, and you don’t want to slowly step through the
rest of it.

Animate [All-F4]

Performs a continuous series of Trace commands, updating the screen after
each one. This lets you watch the current location in your source code and
see the values of variables changing. You can interrupt this command by
pressing any key.

After activating Alt-F4, you will be prompted for a time delay between
successive traces. The time delay is measured in tenths of a second; the
default is three.

Instruction Trace [All-F7]

Executes a single instruction. Use this when you want to trace into an
interrupt, or when you're in a Module window and you want to trace into a

Chapter 5, Confrolling Program Execution 75



procedure or function that’s in a module with no debug information (for
example, a library routine).

Since you will no longer be at the start of a source line, this command
usually places you in a CPU window.

Interrupting Program Execution

With interactive programs, the quickest way to get to a specific place in
your program is sometimes to simply run it, interact with it until it gets to
the desired part of the code, and then interrupt execution. This is parti-
cularly true if the piece of code you want to examine is called several times
before the one time of particular interest to you.

You may also want to interrupt program execution when, for some
unexpected reason, control does not return to the debugger. This can
happen when a piece of code contains an infinite loop: You expect a piece of
code to be executed, so you set a breakpoint action, but the code is never
reached.

Ctrl-Break

This key combination will almost always interrupt your program and
return control to the debugger. This key combination takes effect as soon as
the key is pressed, so you can sometimes appear to be in an unexpected
piece of code. This code could be the ROM keyboard BIOS if your program
is waiting for a keystroke, or at any instruction in the loop being executed.
Ctrl-Break is unable to override the following two conditions—if either of
these conditions occur, you will need to reboot your system:

m You are stuck in a loop with interrupts disabled.

m The system has crashed due to execution of erroneous code.

If you are debugging a program that needs to act upon the Ctrl-Break key
combination itself, you can change the interrupt key. Use the TDINST

installation program to change this key. You can set the interrupt key to be
any normal key pressed in combination with Ctrl.

Terminating Your Program

When your program terminates and exits back to DOS, the debugger
regains control. It displays a message showing the exit code that your pro-

76 Turbo Debugger User’s Guide



gram returned to DOS. Once your program terminates, you cannot use any
of the Run menu options until you reload the program with Run/Program
Reset.

The segment registers and stack are usually not correct when your program
has terminated, so do not examine or modify any program variables after
termination.

Restarting a Debug Session

Turbo Debugger has several features that make restarting a debug session
as painless as possible. When debugging a program, it’s easy to go just a
little too far, overshooting the real cause of the problem. What you want to
do then is restart debugging, but suspend execution before the last few
commands that caused you to miss the problem that you wanted to
observe.

Most debuggers force you to manually type in what could be a very long
sequence of commands to get back to the place where the error occurred.
Turbo Debugger has the powerful capability to record the keystrokes that
made up the last session and to replay them on demand.

It also lets you reload your last program from disk, with its previous DOS
command-line arguments.

Reloading Your Program

To reload the program you were debugging, press F10/Run/Program
Reset. Turbo Debugger reloads the program from disk, with any data you
may have added since you last saved to disk. This is the safest way to
restart a program. Restarting by executing at the start of the program can
be risky, since many programs expect certain data to be initialized from the
disk image of the program. Note that Program Reset leaves breakpoints
and watches intact.

Keystroke Recording and Playback

You can use the keystroke macro facility to record keystroke sequences that
you use frequently. When debugging, you often repeat the same sequence
of commands to get to a certain place in your program. This can be very
tedious.

Chapter 5, Controlling Program Execution 77



To get around this problem, you can define a keystroke macro that records
all the keys you press from when you first start the debugger up until you
have your program in the desired state. At that point, you can stop
recording keystrokes. If you have to get back to the same place in your pro-
gram, all you have to do is replay the keystroke macro.

You can’t use this technique to record keystrokes that must be typed to
your program. You can only record Turbo Debugger command keystrokes.

To record your entire session, the first thing you must do after starting
Turbo Debugger from DOS is to define a keystroke macro. Choose
Options/Macros/Create to do this. You’ll be prompted to press a key to
assign the keystroke macro to. Choose a key that hasn’t been assigned to a
function yet, such as Shift and one of the Function keys, say Shift-F1. Now
take your program to its point of crashing. At that point, stop recording the
keystroke macro by choosing Macros/Stop Recording. Now save the
macro to disk by choosing the Options/Save Options command. Continue
running your program. After your program crashes, and you have
reloaded it and Turbo Debugger, you can simply press Shift-F1 to restart the
program.

If your program requires you to type things to get to the next part of the
recorded command sequence, you still have to enter those keystrokes
manually. For programs that do not require you to enter anything, this
keystroke-recording mechanism can completely automate the restarting
procedure, saving many keystrokes.

Note: When a macro is saved to a configuration file, the configuration of
the total environment is saved, including opened view windows and
zoomed windows. Thus if you record a macro that opens a view window
and don’t close the window before saving it, the next time you restore that
configuration file, the window will be automatically opened without
executing the macro.

Loading a New Program to Debug

You load a new program to debug with F10/File/Load. You can use DOS-
style wildcards to get a list of file choices or type a specific file name to
load.

If you press Enter after the prompt appears, a list of all the .EXE files in the
current directory will be displayed. Move the highlight bar to the file you
want to load and press Enter.

78 Turbo Debugger User’s Guide



If, instead, you type in the name of the file you want to load, the highlight
bar will move to the file that begins with the first letter(s) you typed. When
the bar is positioned on the file you want, press Enter.

You can supply arguments to the program to debug by placing them after
the program name, exactly as you would at the DOS prompt:

myprog a b ¢

This loads program MyProg with three command-line arguments, namely,
a,b,and c. ;

Changing the Program Arguments

If you forgot to supply some necessary arguments to your program when
you loaded it, you can use the F10/Options/Arguments command to set or
change the arguments. Enter new arguments exactly as you would
following the name of your program on the DOS command line.

Once you have entered new arguments, Turbo Debugger asks you if you
want to reload your program from disk. You should usually answer Yes,
since for most programs, the new arguments will only take effect when you
first load the program.

Chapter 5, Controlling Program Execution 79



80

Turbo Debugger User’s Guide



Examining and Modifying Data

Turbo Debugger provides a unique and intuitive way to peruse your pro-
gram’s data. Inspectors let you examine your data as it appears in your
source file. You can “follow” pointers, scroll through arrays, and see
structures, records, and unions exactly as you wrote them. You can also put
variables and expressions into the Watches window, where you can watch
their values as your program executes.

This chapter presumes you understand the various data types that can be
used in the language you're using (C, Pascal, or assembler). If you are fairly
new to a language and have not yet explored all its data types, this chapter
can still give you valuable information about the basic data types (char, int,
integer, boolean, real, and so on). When you have delved into the more
involved data types (pointers, records, structs, unions, and so on), return to
this chapter to learn more about looking at them with Turbo Debugger.

This chapter shows you how to examine and modify variables in your pro-
gram. First, we explain the Data command and its options. We then discuss
how you can modify program data by evaluating expressions that have
side effects. Next, we show you how to point directly at data items in your
source modules. We introduce the Watches window and, finally, describe
the way that the basic data types of each language appear in inspectors.

If you want to examine or modify arbitrary blocks of memory as hex data
bytes, refer to Chapter 10, which covers assembler-level debugging.

Chapter 6, Examining and Modifying Data 81



The Data Menu

The Data menu lets you choose how to examine and change program data.
You can evaluate an expression, change the value of a variable, and open
inspectors to display the contents of your data.

File View Run Breakpoints [Ef¥ Window Options Ii]E]]F
Module: OVRDEMO File: OVRDEMO.PAS
uses lmm
Overlay, Crt, OvrDemol, OvrDemo| Evaluate/modify... Ctrl-F4

Watch... Ctrl1-F7
(io OvrDemol} { | Function return
{$0 OvrDemo2}

P begin
TextAttr := White;

CirScr;
OvrInit('OVRDEMO.OVR'); { init overlay system, reserve heap space
if OvrResult <> 0 then ‘

begin
WriteIn('Overlay error: ', OvrResult);
Halt(1);
end;
repeat
Writel;
Write2;

[Hatche:

Fl-Help Esc-Abort

n

Figure 6.1: The Data Menu

Inspect

Prompts you for the variable that references the data you wish to inspect,
then opens an Inspector window that shows the contents of the program
variable or expression. You can enter a simple variable name or a complex
expression, as long as that expression references a memory location and
doesn’t just evaluate to a constant.

If the cursor is in a Text pane when you issue this command, the prompt
automatically contains the variable at the cursor, if any. If you select an
expression (using Ins), the prompt contains the selected expression.

Inspector windows really come into their own when you want to examine a
complicated data structure, such as an array of structures or a linked list of
items. Since you can inspect items within an Inspector, you can “walk”
through your program’s data structures as easily as you scroll through
your source code in a Module window.

82 Turbo Debugger User’s Guide



(See the “Inspectors” section later in this chapter for a complete description
of how Inspector windows behave.)

Evaluate/Modify

Prompts you for the expression to evaluate, then evaluates it, exactly as the
compiler would. See Chapter 9 for a complete discussion of expressions.

If the cursor is in a Text pane when you issue this command, the prompt
automatically contains the variable at the cursor, if any. If you mark an
expression using Ins, the prompt is initialized to the marked expression.

Remember that you can add a format control string after the expression
that you want to watch. See Chapter 9 for a discussion of format control.
This is useful when you want to watch something but have it displayed in a
format other than Turbo Debugger’s default display mode for the data
type.

The prompt box has three panes. You type the expression you want to
evaluate in the top pane. The pane has a history list, just like other input
prompts. The middle pane displays the result of evaluating your
expression. The bottom pane is an input area where you can enter a new
value for the expression. If the expression can’t be modified, this pane reads
“Cannot be changed” and you can’t move your cursor to that pane.

You move between the panes using the Tab and Shift-Tab keys, just as in
other windows that have panes. Your entry in the Evaluate or New entry
pane takes effect when you press Enter. Pressing Esc while inside any pane
removes the prompt box.

Turbo Debugger displays the result in a format suitable for the data type of
the result. To display the result in a different format, put a comma (,)
separator, then a format control string after the expression. Chapter 9
describes the format control string in more detail.

When you type the name of just one of your program variables, Turbo De-
bugger displays its value. If you want a quick look at the value, this is more
convenient than opening an inspector, looking at the value, and then
deleting the inspector. You can also use this command as a simple
calculator by using numbers as operands instead of program variables.

Note for C Programmers

The C language has a feature called expressions with side effects that can be
powerful and convenient, as well as a source of surprises and confusion.

Chapter 6, Examining and Modifying Data 83



An expression with side effects alters the value of one or more variables or
memory areas when it is evaluated. For example, the C increment (++) and
decrement (- -) operators and the assignment operators (=, +=, and so on)
have this effect. If you execute functions in your program within a C
expression (for example, myfunc(2)), note that your function can have
unexpected side effects.

If you don’t intend to modify the value of any variable but merely want to
evaluate an expression containing some of your program variables, don’t
use any of the operators that have side effects. On the other hand, side
effects can be a quick and easy way to change the value of a variable or
memory area. For example, to add 1 to the value of your variable named
count, evaluate the C expression count++.

Watch
Prompts you for an expression to watch, then places the expression or pro-
gram variable on the list of variables displayed in the Watches window.

If the cursor is in a Text pane when you issue this command, the prompt
automatically contains the variable at the cursor, if any. If you select an
expression (using Ins), the prompt contains the selected expression.

Function Return
Shows you the value the current function is about to return. You can only
use this command when the function is about to return to its caller.

The return value is displayed in an Inspector window, so you can easily
examine return values that are pointers to compound data objects.

This command prevents you from having to switch to a CPU window to
examine the return value that is placed in the CPU registers.

Pointing at Data Items in Source Files

Turbo Debugger has a powerful mechanism to relieve you from always
typing in the names of program variables that you wish to inspect. From
within any Module window, you can place the cursor anywhere within a
variable name and use the local menu Inspect command to create an
inspector window showing the contents of that variable. You can also select
an expression to inspect by pressing Ins and using the cursor keys to

84 Turbo Debugger User’s Guide



highlight it before choosing the Inspect command. See Chapter 8 for a full
discussion of using Module windows.

The Watches Window

The Watches window lets you list variables and expressions in your pro-
gram whose values you wish to track. You can watch the value of simple
variables, such as integers, and also watch the contents of complex data
items, such as arrays. In addition, you can watch the value of a calculated
expression that does not refer directly to a memory location, for example,
x*y+4.

File View Run Breakpoints Data Window Options READY
Module: TCDEMO File: TCDEMO.C 35 1
unsigned long totalcharacters;

0:

nlines
nwords
totalcharacters =0;
showargs (argc, a v)
while ‘ireadahne 1= 0) {
wordcount = makeintowords (buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);

| nlines+;
4 printstatistics(nlines, nwords, totalcharacters);

return(0);
ﬂ%m —2:
wordcount unsigned int 8 (0x8)
wordcounts unsigned int [10] {1,2,4,6 1 .0.0.0}
letterinfo struct linfo [26] {{4, 2} {1,1},{0,0}, {1 1},{7,0 ,2},{2,0},{5,0}
nlines*nwords unsigned int 34 (0x22
totalcharacters unsigned long 66L (Ox4.

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.2: The Watches Window

Choose View/Watches to create a Watches window. It shows a list of
variables or expressions whose values you want to watch. For each item,
the variable name or expression appears to the left and its data type and
value to the right. Compound values (like arrays and structures) appear
with their values between braces ({}) for C programs, and between
parentheses for Pascal programs. If there isn’t room to display the entire
name or expression, it is truncated and a bullet (*) indicates the omission.

When you enter an expression to be watched, feel free to use variable
names that are not yet valid because they are in a function that has not yet

Chapter 6, Examining and Modifying Data 85



been called. This lets you set up a watch expression before its scope
becomes active. (See Chapter 9 for a complete discussion of scopes and
when a variable or parameter is valid.) This is the only situation in Turbo
Debugger where you can enter an expression that cannot be immediately
evaluated.

This means that if you mistype the name of a variable, the mistake won't be
detected because Turbo Debugger assumes it is the name of a variable that
will become available as your program executes.

Unless you use the scope-overriding mechanism discussed in Chapter 9,
Turbo Debugger evaluates expressions in the Watches window in the scope
of the current location where your program is stopped. Hence, expressions
in the Watches window have the same value as if they appear in your pro-
gram at the place where it is stopped. If a watch expression contains a
variable name that is not accessible from the current scope—for example, if
it’s private to another module—the value of the expression is undefined
and is displayed as four question marks (?77?).

The Watches Window Local Menu

As with all local menus, press Alt-F10 to pop up the Watches window local
menu. If you have Control key shortcuts enabled, press Ctrl with the first
letter of the desired command to access the command.

86 Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options MENU
Module: TCDEMO File: TCDEMO.C 35 1
unsigned long totalcharacters;

nlines = 0;

nwords = 0;

totalcharacters = 0;

showargs (argc, a v)

while (readaline() != 0)
wordcount = makeintowords (buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines+;

}
| 2 printstatistics(nlines, nwords, totalcharacters);

returnl——————-—l
wgcount Remove unsigned int 8 (0Ox8) B

wordcounts Delete all junsigned int {10] (1,2,4,6,1,1,2,0,0,0)
letterinfo stru ({8,2},(1,1},{0,0),{1,1}.(7,0}.(2,2}.{2,0} (5,0}

e [uns igned int 34 (0x22 i
totalcharacters | Change unsigned long 66L (0x4

Fl-Help Esc-Abort

Figure 6.3: The Watches Window Local Menu

Watch

Prompts you for the variable name or expression to add to the list in the
Watches window. It is added to the beginning of the list.

Edit

Lets you edit the expression in the Watches window. You can change the
watch that’s there or enter a new one.

You can also invoke this command by pressing Enter once you've positioned
the highlight bar over the watch you want to change.

Remove

Removes the currently selected item from the Watches window.

Delete All

Removes all the items from the Watches window. Use the Watch command
to view more variables. This command is useful if you move from one area

Chapter 6, Examining and Modifying Data 87



of your program to another, and the variables you were watching are no
longer relevant.

Inspect

Opens an Inspector window to show you the contents of the currently
highlighted item in the Watches window. If the item is a compound object
(array, record, or structure), this allows you to view all its elements, not just
the ones that fit in the Watches window. (The section “Inspectors” on page
88 explains all about Inspector windows.)

Change

Changes the value of the currently highlighted item in the Watches window
to the value you enter at the prompt. If the current language you are using
permits it, Turbo Debugger performs any necessary type conversion exactly
as if the appropriate assignment operator (= or :=) had been used to change
the variable. See Chapter 9 for more information on the assignment
operator and type conversion (casting).

Inspector Windows

An Inspector window displays your program data appropriately,
depending on the data type you're inspecting. Inspector windows behave
differently for scalars (for example, char or int), pointers (char * in C, A in
Pascal), arrays (long x[4], array [1..10] of word), functions, structures,
records, unions, and sets.

The Inspector window lists the items that make up the data object being
perused. The title of the window shows the data type of the inspected data
and its name, if there is one.

The first item in an Inspector window is always the memory address of the
data item being inspected, expressed as a segment:offset pair, unless it has
been optimized to a register.

To examine the contents of an Inspector window as raw data bytes, select
the View/CPU command while you're in the Inspector window. The CPU
window will come up with the data pane positioned to the data displayed
in the Inspector window. You can return to the Inspector window by
closing the window with the Window/Close command (or F3).

88 Turbo Debugger User’s Guide



The following section describes the different Inspector windows that can
appear for each of the languages supported by Turbo Debugger: C, Pascal,
and assembler. The language being used dictates the format of the
information displayed in Inspector windows. Data items and their values
always appear in a format similar to the way they were declared in the
source file.

Remember that you don’t have to do anything special to cause the different
Inspector windows to appear. The right one appears automatically,
depending on the data you're inspecting.

C Data Inspector Windows

Scalars

Scalar Inspector windows show you the value of simple data items, such as

char x = 4;
unsigned long y = 123456L;

These Inspector windows only have a single line of information following
the top line that describes the address of the variable. To the left appears
the type of the scalar variable (char, unsigned long, and so forth), and to
the right appears its present value. The value can be displayed as decimal,
hex, or both. It's usually displayed first in decimal, with the hex values in
parentheses (using the standard C hex prefix of 0x). Use TDINST to change
how the value is displayed.

If the variable being displayed is of type char, the character equivalent is
also displayed. If the present value does not have a printing character
equivalent, use the backslash (\) followed by a hex value to display the
character value. This character value appears before the decimal or hex
values.

Chapter 6. Examining and Modifying Data 89



File View Run Breakpoints Data Window Options |ﬂ@
Module: TCDEMO File: TCDEMO.C 40 :
int main(int argc, char **argv) {
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nlines = 0;

nwords = 0;
tota]characters = 0;
showar?s(argc. a v).

while (readaline() != 0) {
wordcount = makeintowords (buffer);
» Inspecting wordcount
@5A51:FFCO (buffer);
unsigned int 6 (0x6
printstatistics(nlines, nwords, totalcharacters);
Watches
letterinfo struct linfo [26] {{3,2},{0,0},{0, 0} {1 1},(8,0},{3,3},{1,0}.{4, 1}
nwords unsigned int 17 ( 5
nlines unsigned int 2 (0x2)
totalcharacters unsigned long 62L (Ox3E)

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.4: A Scalar Inspector Window

Pointers

Pointer Inspector windows show you the value of data items that point to
other data items, such as

char *p = "abc";
int *ip = 0;
iat **ipp = ¢ip;

Pointer Inspector windows usually have a top line that contains the address
of the variable, followed by a single line of information .

To the left appears [0], indicating the first member of an array. To the right
appears the value of the item being pointed to. If the value is a complex
data item such as a structure or an array, as much of it as possible will be
displayed, with the values enclosed in braces ({ and }).

If the pointer is of type char and appears to be pointing to a null-terminated
character string, more information appears, showing the value of each item
in the character array. To the left in each line appears the array index ([1],
[2], and so on), and the value appears to the right as it would in a scalar
Inspector window. In this case, the entire string is also displayed on the top
line, along with the address of the pointer variable and the address of the
string that it points to.

90 Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options ﬂﬂ?
Module: TCDEMO File: TCDEMO.C 85 4
charcount = 0;
while (*bufp != 0) {
char first = 1;
int wordlen = 0;
> while (*bufp != 0) {

32d index

n' 110 (Ox6E)(;
‘o' 111 (Ox6F)

EZ} ‘w' 119 (0x77)
3 *\x00' 0 (0x00) flunt the
char *
}

Watches 2
letterinfo struct linfo [26] {{3,2},{0,0},{0,0},{1,1},{8,0},{3,3},{1,0},{4,1}
nwords 1M

nlines 77?

totalcharacters 77?7

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.5: A C Pointer Inspector Window

Arrays

Array Inspector windows show you the value of arrays of data items, such
as

long threed[3] (4] (5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each line appears
the array index of the item. To the right appears the value of the item being
pointed to. If the value is a complex data item such as a structure or array,
as much of it as possible will be displayed, with the values enclosed in
braces ({and }).

Chapter 6, Examining and Modifying Data 91



File View Run Breakpoints Data Window Options
Module: TCDEMO File: TCDEMO.C 91 14

first = 03
> letterinfo[letterindex].count++; /* count the
Inspecting letterinfo ;
B5A51:08F4
[0] {3,2}
} [1} {0,0}
wordcoun|{[2 {0.0} of this leng
} bufp++; (I[3] 1,1}
return(charcount ‘5‘ Eg.!g
[e] {0,0}
/:/display all the statifstruct linfo
Watches 2:
letterinfo struct linfo [26] {{3,2},{(0,0},{0,0},{1,1},{13,1},(2,1},{0,0},{6,1
letterindex unsigned int 5 (0x5)
charcount unsigned long 7L (0x7)
wordlen int 0 (0x0)

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.6: A C Array Inspector Window

Structure and Union

Structure and union Inspector windows show you the value of the
members in your structure and union data items, for example,

struct date
int year;
char month;
char day;

} today;

union {
int small;
long large;
} holder;

These Inspector windows have another pane below the one that shows the
values of the members. This additional pane shows the data type of the
member highlighted in the top pane.

92 Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options
Module: TCDEMO File: TCDEMO.C 117 14
printf("Total number of lines = %d\n", nlines);
printf("Total word count = %d\n*, nwords).
printf("Average number of words per line = %g\n", averagelen
for (n = 0; n < LETTERSINALPHABET; n++) {
count = IR RIATIL]. count;
if (count > 0 i

printf("'%c'||@5A51:095C t
'A' + n, coflcount 3 (0x3)(;
}
» for (n = 0; n < MAXWORDLENGT

count = wordcounts[nliunsigned int
if (count > 0) {

if (count == 1)
printf(“There is 1 word");

else
printf("There are %d words", count);
rWatches -2
letterinfo struct linfo [26] {{3 2},{1,1},(0,0},{1,1},{15,1},(3,1},{0,0},(7,1
charcount Tong 97L (0x61)
n unsigned int 26 (0x1A)

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.7: A C Structure or Union Inspector Window

Structures and unions appear the same in Inspector windows. The title of
the Inspector window tells you whether you are looking at a structure or a
union. These Inspector windows have as many items after the address as
there are members in the structure or union. Each item shows the name of
the member on the left and its value on the right, displayed in a format
appropriate to its C data type.

Function
Function Inspector windows show the return type of the function as part of

the title. Each parameter a function is called with appears after the memory
address at the top of the list.

Chapter 6, Examining and Modifying Data 93



File View Run Breakpoints Data Window Options ﬂm
Module: TCDEMO File: TCDEMO.C 77
*writep++ = 0;
return(nwords) ;

/* analyze the words in the buffer
: there is a null between each word and two nulls at the end

static long analyzewords(char *bufp) {
M3 F Inspecting analyzewords ol
unsi |8554A: 024

ha
ohari

whilj{long ()

int wordlen = 0;
while (*bufp 1= 0) {

Watches: 2
letterinfo struct linfo [26] {{(3,2},{1,1},{0,0},{1,1},({15,1},{3,1},{0,0},{7,1
charcount long 97L (0x61)

n unsigned int 26 (Ox1A)

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.8: A C Function Inspector Window

Function Inspector windows give you information about the calling
parameters, return data type, and calling conventions for a function, for
example,

static int near pascal readit (char *buf, imt count) {
}

char *nexterror(int errnum) {
}

Pascal Data Inspector Windows

Scalars

Scalar Inspector windows show you the value of simple data items, such as

var
X : integer;
Y : longint;

These Inspector windows only have a single line of information following
the top line that describes the address of the variable. To the left appears
the type of the scalar variable (byte, word, integer, longint, and so forth),
and to the right appears its present value. The value can be displayed as

94 Turbo Debugger User’s Guide



decimal, hex, or both. It's usually displayed first in decimal, with the hex
values in parentheses (using the Turbo Pascal hex prefix of $). You can use
TDINST to change how the value is displayed.

If the variable being displayed is of type char, the character equivalent is
also displayed. If the present value does not have a printing character
equivalent, use a # followed by a number to display the character value.
This character value appears before the decimal or hex values.

File View Run Breakpoints Data Window Options m
Module: TPDEMO File: TPDEMO.PAS 134 1
{ Find end of word, bump letter & word counters }
WordLen := 0;
:hile (i <= Length(S)) and IsLetter(S[i]) do
egin
Inc(NumLetters);
Inc(LetterTable[UpCase(S[i])}].Count);
if WordLen = 0 then { bump counter }
J§* Inspecting WordLen rstletter);
Inc(|@595A: 3EFQ
Inc|i{LY 2 (%2 H
» end;
{ Bump word count info }
if WordLen > 0 then
rWatches 2-
S 'Here is another line to build up the statistics for the demo try' : STRING
NumLetters 43 ($2B) : LONGINT
i 8 ($8) : INTEGER
WordLen 2 ($2) : WORD

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

~ Figure 6.9: A Pascal Scalar Inspector Window

Pointers

Pointer Inspector windows in a Pascal program show you the value of data
items that point to other data items, such as

var
IP : “integer;
LP : “"pointer;

Pointer Inspector windows usually only have a single line of information
following the top line that describes the address of the variable. To the left
appears [1], indicating the first member of an array. To the right appears the
value of the item being pointed to. If the value is a complex data item such
as a record or an array, as much of it as possible will be displayed, with the
values enclosed in parentheses.

Chapter 6, Examining and Modifying Data 95



You will also get multiple lines if you opened the Inspector window and
issued the Range local command and specified a count greater than 1.

File View Run Breakpoints Data Window Options m
Module: TPDEMO File: TPDEMO.PAS 188- B
New(Temp); § { another Parm record }
> string + length byte }
initialize 1ist pointer }
Tai1~.Next := Temp; { add to end }
Tail := Temp; update tail pointer }
end; { for }
{ Dump 1ist }
Watches 21
‘c:\td\tpdemo.exe' : STRING
NumLetters 89 ($59) : LONGINT
i 0 ($0) : INTEGER
WordLen 77?7

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.10: A Pascal Pointer Inspector Window

Arrays

Array Inspector windows in Pascal programs show you the value of arrays
of data items, such as

var
A : array(l..10,1..20] of integer;
B : array[l..50] of boolean;

There is a line for each member of the array. To the left on each line appears
the array index of the item and to the right is its present value. If the value
is a complex data item such as a record or an array, as much of it as possible
will be displayed, with the values enclosed in parentheses.

You can use the Range command to examine a portion of an array. This is
useful if the array has a lot of elements and you want to look at something
in the middle of the array.

96 Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options ﬁﬂ?
Module: TPDEMO File: TPDEMO.PAS 217 1

end;
Writeln; Inspecting LetterTable
end; { ParmsOnHeap } 65920:0058 ]
begin { program } ['s* (1,1
Init; 'c! (2,0)
Buffer := GetlLine; ‘! 3,2)
while Buffer <> '' do 'E! 12,0)
begin 'F! 2,2)
ProcessLine(Buffer); ‘G 0.0;
Buffer := Getline; 'H! (5,1
end; ['r'l (8,2)
ShowResults;
garmsOnHeap; array ['A'..'Z'] of record LINFOREC
end.
Watches 2:
S ‘c:\td\tpdemo.exe' : STRING
NumLetters 89 ($59) : LONGINT
i 0 ($0) : INTEGER
WordLen 777?

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.11: A Pascal Array Inspector Window

Records

Record Inspector windows in Pascal programs show you the value of the
fields in your records, for example,

record
year : integer;
month : 1..12;
day : 1..31;
end

These Inspector windows have another pane below the one that shows the
values of the fields. This additional pane shows the data type of the field
highlighted in the top pane.

Chapter 6, Examining and Modifying Data 97



File View Run Breakpoints Data Window Options
Module: TPDEMO File: TPDEMO.PAS 217 1

end;
Writeln; rInspecting LetterTable———————3;
end; { ParmsOnHeap } ©5920:0058
['A'] (5.23
begin { program } Inspecting LetterTable['A’] R
Init; 85920:0058 ].
Buffer := GetLine; COUNT 5 ($5)(,
;:1}15 Buffer <> '! do FIRSTLETTER 2 ($2)]2,0)
gin ’
ProcessLine(Buffer); record LINFOREC ,0)
Buffer := GetLine; 1)
end; ['rl (8,2)
ShowResults;
ParmsOnHeap; record LINFOREC
end.
rWatches 2
S 'c:}td\tpdemo.exe' : STRING
NumLetters 89 ($59) : LONGINT
i 0 ($0) : INTEGER
WordLen 1777

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.12: A Pascal Record Inspector Window

Procedures and Functions

Procedure and Function Inspector windows in Pascal programs give you
information about the calling parameters and return data type for a
procedure or function, for example,

function times2plus(a: integer, b: longint): longint
begin

times2plus :=a * 2 + b;
end;
procedure
swap(var a,b : integer);
var

temp := a;

a :=b;

b := a;
end;

98 Turbo Debugger User’s Guide



File View Run Breakpoints Data MWindow Options
rModule: TPDEMO File: TPDEMO.PAS 108 1

procedure ProcessLine(var S : BufferStr)
Inspecting ProcessLine
function I{/®548A:048B6
begin
P> Isletter
end; { is1|[PROCEDURE

var
i : Integer;
WordLen : Word;

.
.
1

begin { ProcessLine )
Inc(NumLines);

while i <= Length(S) do
begin
? Skip non-letters }

Ivﬂatc.“.e:

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

n

Figure 6.13: A Pascal Procedure Inspector Window

Assembler Data Inspector Windows

Scalars

Scalar Inspector windows in assembly language programs show you the
value of simple data items, such as

VARL DW 93
MAGIC DT 4.608
BIGNUM DD 123456

These Inspector windows only have a single line of information following
the top line that describes the address of the variable. To the left appears
the type of the scalar variable (byte, word, dword, qword, and so forth),
and to the right appears its present value. The value can be displayed as
decimal, hex, or both. It's usually displayed first in decimal, with the hex
values in parentheses (using the standard assembler hex postfix of h). You
can use TDINST to change how the value is displayed.

Chapter 6, Examining and Modifying Data 99



File View Run Breakpoints Data Window Options READY

Module: hello File: hello.asm 31 1
mov ah,4ch
mov al,00h
int 21h
hello endp
cseg ends

dseg segment para 'DATA'

text db ‘Hello World',cr,1f
db l‘l
textptr dw text
count dd 12h
Inspecting count,
85, 20010
dword 18L (12h ]e'

n

rlatches

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.14: An Assembler Scalar Inspector Window

Pointers

Pointer Inspector windows in assembler programs show you the value of
data items that point to other data items, such as

X DW 0
XPTR DW X
FARPTR DD X

Pointer Inspector windows usually only have a single line of information
following the top line that describes the address of the variable. To the left
appears [0], indicating the first member of an array. To the right appears the
value of the item being pointed to. If the value is a complex data item such
as a struc or array, as much of it as possible will be displayed, with the
values enclosed in braces ({ and }).

If the pointer is of type byte and appears to be pointing to a null-terminated
character string, more information appears, showing the value of each item
in the character array. To the left in each line appears the array index ([1],
[2], and so on), and the value appears to the right as it would in a scalar
Inspector window. In this case, the entire string is also displayed on the top
line, along with the address of the variable and the address of the string
that it points to.

100 Turbo Debugger User's Guide



You will also get multiple lines if you opened the Inspector window with a
Range local command and specified a count greater than 1.

File View Run Breakpoints Data Window Options ﬂﬂiﬂ
Module: hello File: hello.asm 14 .
Inspecting textptr; :
hello proc far 853CC:000E : ds:0000 [hello.text 3“
mov dx,seg text 'H' 72 (48h
mov ds,dx 1] ‘e' 101 (65h)
mov dx,offset text 2 '1' 108 (6Ch)
> mov ah,9 3 *1' 108 (6Ch)
int 21h 4 ‘o' 111 (6Fh
mov ah,4ch 5] 't 32 (20n
mov al,00h 6} ‘W' 87 (57h)
int 21h 7 ‘o' 111 (6Fh)
hello endp 8] ‘r' 114 (72h)
9] ‘1' 108 (6Ch)
cseg ends [10] 'd' 100 (64h)
11] *\x0D* 13 (0Dh)
[12] '\xOA' 10 (0Ah)
dseg segment para 'DATA'
byte ptr
text db 'Hello World',cr,1f

n

[Hatche.

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.16: An Assembiler Pointer Inspector Window

Arrays

Array Inspector windows in assembler programs show you the value of
arrays of data items, such as

WARRAY DW 10 DUP (0)
MSG DB “"Greetings"“,0

There is a line for each member of the array. To the left on each line appears
the array index of the item and to the right is its present value. If the value
is a complex data item such as a struc, as much of it as possible will be
displayed, with the values enclosed in braces.

You can use the Range local command to examine a portion of an array.
This is useful if the array has a lot of elements and you want to look at
something in the middle of the array.

Chapter 6, Examining and Modifying Data 101



File View

mov
mov
mov
> mov
int
mov
mov
int

hello proc

hello endp
cseg ends

Run  Breakpoints
Module: hello File: hello.asm 13
cseg segment para public 'CODE’

assume cs:cseg,ds:dseg,ss:stack

far
dx,seg text

Window Options

e

6
‘1' 108 (6Ch§
'1' 108 (6Ch)

byte [11]

N

rdatc.‘.c.

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Structure Inspector windows in assembler programs show you the value of
the fields in your strucs and unions, for example,

X STRUC
MEM1 DB
MEM2 DD
X ENDS
ANX X

Y UNION
ASBYTES DB
ASFLT DT
Y ENDS

AY Y

102

Structure and Union

<1,ANX>

10 DUP (?)
?

<2,1.0>

Figure 6.16: An Assembler Array Inspector Window

Turbo Debugger User’s Guide

These Inspector windows have another pane below the one that shows the
values of the fields. This additional pane shows the data type of the field
highlighted in the top pane.



File View Run Breakpoints Data Window Options
Module: hello File: hello.asm 22 14
hello proc far Inspecting stats 3q
mov dx,seg text 653CC:0014
mov ds,dx X £ 5|
mov dx,offset text y '-' 45 (2Dh)
mov ah,9 width 1047 (417h)
> int  2lh Tength 512390L (7D186h)
mov ah,4ch
mov al,00h struc values
int 21h
hello endp
cseg ends
dseg segment para 'DATA'
Watches: 2
textptr byte ptr ds:0000 [hello.text] “Hello World"
ah byte '\x09' 9 (09h)

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 6.17: An Assembler Record Inspector Window

The Inspector Window Local Menu

The commands in this menu give the Inspector window its real power. By
choosing the Inspect local menu command, for example, you create another
Inspector window that lets you go into your data structures. Other
commands in the menu let you inspect a range of values and inspect a new

variable.

Press Alt-F10 to pop up the Inspector window local menu. If you have
control key shortcuts enabled, press Ctrl with the first letter of the desired

command to access the command.

Chapter 6, Examining and Modifying Data

103



File View Run Breakpoints Data MWindow Options
rModule: hello File: hello.asm 22 1;

hello proc far
mov dx,seg text 39
mov ds,dx
mov dx,offset text "H'
mov ah,9 01 (65h
> int 2l IGTTTIPR 05 (6Ch)
mov ah,4ch ange... 08 (6Ch)
mov al,00h
int 21h |l Inspect
hello endp Descend —_—
New expression...
cseg ends
dseg segment para 'DATA'
Watches 2
textptr byte ptr ds:0000 [hello.text] "Hello World"
ah byte *\x09' 9 (09h)

F1-Help Esc-Abort

Figure 6.18: The Inspector Window Local Menu

Range

Sets the starting element and number of elements that you want to display.
Use this command when you are inspecting an array and you only want to
look at a certain subrange of all the members of the array.

If you have a long array, and want to look at a few members near the
middle, use this command to open the Inspector window at the array index
that you want to examine.

This command is particularly useful in C where you often declare a pointer
to a data item—like “char *p”—but what you really meant was that p
pointed to an array of characters, not just a single character.

Change

Changes the value of the currently highlighted item to the value you enter
at the prompt. If the current language permits it, Turbo Debugger performs
any necessary casting exactly as if the appropriate assignment operator had
been used to change the variable. See Chapter 9 for more information on
the assignment operator and casting.

104 Turbo Debugger User’s Guide



Inspect

Opens a new Inspector window that shows you the contents of the
currently highlighted item. This is useful if an item in the Inspector
window contains more items itself (like a structure or array), and you wish
to see each of those items.

If the current Inspector window is inspecting a function, issuing the Inspect
command will show you the source code for that function.

You can also invoke this command by pressing Enter after highlighting the
item you wish to inspect.

You can return to the previous Inspector window by pressing Esc to close
the new Inspector window. If you are done inspecting a data structure and
want to remove all the Inspector windows, use the Window/Close
command or its shortcut, F3.

Descend

This command works like the Inspect local menu command except that
instead of opening a new Inspector window to show the contents of the
highlighted item, it puts the new item in the current Inspector window.
This is like a hybrid of the New Expression and Inspect commands.

Note: Once you have descended into a data structure like this, you can’t go
back to the previous unexpanded data structure. Use this command when
you want to work your way through a complicated data structure or long
linked list, but you don’t care about returning to a previous level of data.
This helps reduce the number of Inspector windows on the screen.

New Expression
Prompts you for a variable name or expression to inspect, without creating
another Inspector window. This lets you examine other data without

having to put more Inspector windows on the screen. Use this command if
you are no longer interested in the data in the current Inspector window.

Chapter 6, Examining and Modifying Data 105



106 Turbo Debugger User’s Guide



Breakpoints

Turbo Debugger uses the single concept of “breakpoint” to describe the de-
bugger functions usually referred to as breakpoints, watchpoints, and
tracepoints.

Traditionally, breakpoints, watchpoints, and tracepoints are defined like
this: A breakpoint is a place in your program where you wish execution to
stop so that you can examine program variables and data structures. A
watchpoint causes your program to be executed one instruction or source
line at a time, watching for the value of an expression to become true. A
tracepoint causes your program to be executed one instruction or source line
at a time, watching for the value of certain program variables or memory-
referencing expressions to change.

Turbo Debugger unifies these three concepts by defining a breakpoint in
three parts:

& the location in the program where the breakpoint occurs

m the condition under which the breakpoint is triggered

m what happens when the breakpoint is triggered

The “location” can be either a single location in your program or it can be

global, where the breakpoint can occur at any source line or instruction in
your program.

The “condition” can be

m always
® when an expression is true
m when a data object changes value

Chapter 7, Breakpoints 107



A “pass count” can also be specified, which requires “condition” to be true
a certain number of times before the breakpoint can be triggered.

The “what happens” can be one of these:

m stop program execution (a breakpoint)
m log the value of an expression
m execute an expression (splice code)

In this chapter, we'll show you how Turbo Debugger breakpoints give you
more power and flexibility than traditional breakpoints, watchpoints, and
tracepoints. You’ll learn about the Breakpoints window and the Log
window, about how to set simple breakpoints, conditional breakpoints, and
breakpoints that log the value of your program variables, and finally, how
to set breakpoints that watch for the exact moment when a program
variable, expression, or data object changes value.

Many times, you just want to set a few simple breakpoints, so that if your
program reaches any one of these locations, it stops. You can set or clear a
breakpoint at any location in your program by simply placing the cursor on
the source code line and pressing the F2 key. You can also set a breakpoint
on any line of machine code by pressing F2 when you are pointing at an
instruction in the Code pane of a CPU window. There is no limit to the
number of breakpoints you can set.

The Breakpoints Menu

You can access the global Breakpoints menu at any time by pressing the Alf-
B hot key.

108 Turbo Debugger User’s Guide



File View Run Data MWindow Options MENU
Module: MCUTIL File: 1

unction WordToStri |[REETLE F2

var t... Alt-F
S : String[5]; Changed memory global...

begin Expression true global...
Str(Num:Len, S); | Delete all

WordToString := S
end; { WordToString }

function RealToString;
var

S : String[80];
b

egin
Str(Num:Len:Places, S);
RealToString := S;
end; { RealToString }

function AllocText;
var

IJdatches

Fl-Help Esc-Abort

N

Figure 7.1: The Breakpoints Menu

Toggle

Sets or clears a breakpoint at the currently highlighted address in a Module
window or CPU window Code pane. The hot key is F2.

At...

Sets a breakpoint at a specific location in your program. You will be
prompted for the address at which to set the breakpoint. Alt-F2 is the
shortcut.

Changed Memory Global...

Sets a breakpoint that’s triggered when an area of memory changes value.
You will be prompted for the area of memory to watch. For more
information, see the Changed Memory command in “The Breakpoint
Window Local Menu” section later in this chapter.

Chapter 7, Breakpoints 109



Expression True Global...
Sets a breakpoint that is triggered when the value of an expression you
supply becomes true. You will be prompted for the expression. For more

information, see the Condition Expression True command in “The Break-
point Window Local Menu” section later in this chapter.

Delete All

Removes all the breakpoints you have set.

Scope of Breakpoint Expressions

Both the action that a breakpoint performs and the condition under which
it is triggered can be controlled by an expression you supply. That
expression is evaluated using the scope of the address at which the break-
point is set, not at the scope of the current location the program is stopped
at. This means that your breakpoint expression can only use variable names
that are valid at the address in your program where you set the breakpoint,
unless you use scope overrides. See Chapter 9 for a complete discussion of
scopes.

If you use variables that are local to a routine as part of an expression, that
breakpoint will execute much more slowly than a breakpoint that uses only
global or module local variables.

The Breakpoints Window

You create a Breakpoints window by choosing the View/Breakpoints main
menu command. What this does is give you a way of looking at and
adjusting the conditions that trigger a breakpoint. You can use this window
to add new breakpoints, delete breakpoints, and adjust existing break-
points.

110 Turbo Debugger User’s Guide



File View Run Breakpoints Data

Module: MCALC File: MCALC.PAS 122

Window Options

14

end; { Run}

» begin
CheckBreak := False;
SetColor(TXTCOLOR).

3a

WriteXY (MSGHEAD|IMCALC. 128
SetColor (PROMPT |[MCOMMAND .136
¥WriteXY (MSGKEYP|[MCPARSER.330
GotoXY (80, 25);([MCDISPLY.118
Ch := GetKey;
ClrScr;

Breakpoint
Data changed "CheckBreak" ©5c95:c740
Enabled

Initvars;

Changed := False;

RedrawScreen;

if (ParamCount > 0) then
LoadSheet (ParamStr(1));

I—Hatch;:

n

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 7.2: The Breakpoints Window

Breakpoint windows have two panes. The left pane (breakpoint list) shows
a list of all the addresses at which breakpoints are set. The right pane
(breakpoint detail) shows the details of the currently highlighted break-
point in the left pane. Only the breakpoint list pane has a local menu, which

you can get to by pressing Alt-F10.

The Breakpoints Window Local Menu

The commands in this menu let you add new breakpoints, delete existing
breakpoints, or change how a breakpoint behaves.

Alt-F10 pops up the Breakpoint window local menu. If you have Control-key
shortcuts enabled, press Ctrl with the first letter of the desired command to

access the command directly.

Chapter 7, Breakpoints

11



File View Run Breakpoints Data Window Options
Module: MCALC File: MCALC.PAS 122 1
end; { Run }
P begin
CheckBreak := False;
SetColor(TXTCOLOR);
CirScr; Breakpoints 3
SetColor (MSGHEA(|Global 1 Log "CheckBreak"
WriteXY (MSGHEAD Always
SetColor (PROMPT|| ————————— | Enabled
WriteXY (MSGKEYP
GotoXY(80, 25); ondition
Ch := GetKey; Pass count...
ClrScr; Enable/disable
Initvars;
Changed := False| Add...
RedrawScreen; Global
if (ParamCount >| Remove
LoadSheet(Para| Delete all
Inspect
.

I-Hatches

Fl-Help Esc-Abort

Figure 7.3: The Breakpoint Window Local Menu

Set Action

Allows you to define what happens when the breakpoint is triggered. This
command pops up the menu shown in Figure 7 4.

112

Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options
Module: MCALC File: MCALC.PAS 122 1
end; { Run}

» begin
CheckBreak := False;
SetColor(TXTCOLOR);
ClrScr;
SetColor (MSGHEA
WriteXY (MSGHEAD
SetColor(PROMPT
MriteXy (MSGKEYP

Log “CheckBreak"

oba
MCALC. 128 Always

Enabled

GotoXY(80, 25);
gl §= GetKey; Break

rScr; Log...
Initvars: | I
Changed := False
RedrawScreen; Global
if (ParamCount >| Remove

LoadSheet(Para| Delete all

Inspect
[Hatches

F1-Help Esc-Abort

n

Figure 7.4: The Set Action Menu

Break

Causes your program to stop when the breakpoint is triggered. The Turbo
Debugger screen will be redisplayed and you can enter commands to look
around at your program’s data structures.

Log

Causes the value of an expression to be recorded in the Log window. You
are prompted for the expression whose value you wish to log. Be careful
that the expression doesn’t have any unexpected side effects. See Chapter 9
for a description of expressions and side effects.

Execute

Causes an expression to be executed. You are prompted for the expression.
The expression should have some side effect, such as setting a variable to a
value. This option can act as a “code splice,” letting you insert an
expression that will execute before the code in your program at the current
line number.

Chapter 7, Breakpoints 113



Condition

Allows you to control the conditions under which the breakpoint is
triggered. This command pops up the menu shown in Figure 7.5.

35

Breakpoint
Data changed "CheckBreak" ©5c95:c740
Enabled

Module: MCALC File: MCALC.PAS 122.
GotoXY(80, 25); I

end; { Run }
P begin

CheckBreak := False;

Ch := GetKey; Always

Cirscrs fLChangec nerory

Initvars; Expression true...
Changed := False|| Hardware
RedrawScreen;
Delete all I

File View Run Breakpoints Data Window Options EEEI;I
SetColor(TXTCOLOR) ;
ClrScr;
SetColor (MSGHEA || L EI-EY N’
WriteXY (MSGHEAD
SetColor(PROMPT(|| Set action
Wr1teXY (MSGKEYP
if (ParamCount >

LoadSheet(Para| Inspect
I—Hatc::::
F1-Help Esc-Abort

n

Figure 7.5: The Condition Menu

Always

Indicates that no additional conditions need be true before the breakpoint is
triggered.

Changed Memory...

Watches a memory variable or object and allows the breakpoint to be
triggered if the object changes. You are prompted for an expression
referencing the object you wish to watch, and the number of objects to
watch. The total number of bytes in the memory area is the size of the
object that the expression references times the number of objects. For
example, if you used C to enter

(long)a,4

the area watched for change would be 16 bytes long, since a long is 4 bytes
and you said to watch four of them.

114 Turbo Debugger User’s Guide



If you attach this condition to a global breakpoint, your program will
execute much more slowly, since the memory area will have to be checked
for change after every source line has been executed. If you’ve installed a
hardware debugger device driver, changed memory breakpoints may
become much faster. If a changed memory breakpoint has hardware
assistance, an asterisk (*) will appear after the breakpoint name in the left
pane. You can expect then that the breakpoint will not slow down your pro-
gram’s execution.

By setting this condition on a breakpoint at a specific address, you do not
incur the speed penalty of the global breakpoint, and you can still check the
variable each time a specific line of code is executed.

Expression True

Allows the breakpoint to be triggered when an expression becomes true
(nonzero). You are prompted for the expression to evaluate each time the
action is encountered.

Hardware

Causes the breakpoint to be triggered by the hardware-assisted device
driver. Use this menu either if you have a 386 system and are using the
TDH386.SYS device driver, or if you have a hardware debugger board
installed in your system and the board vendor supplies a Turbo Debugger
device driver.

Appendix F discusses the hardware debugger interface and the options
available under this menu.

Pass Count...

Sets the number of times the action must be encountered before it is
triggered. The Pass Count command is decremented only when the
condition attached to the breakpoint is true. This means that if you set a

pass count as well as a condition, it causes the breakpoint to be triggered
the nth time that the condition is true.

Enable/Disable

Enables or disables the currently highlighted breakpoint. This command
acts as a toggle, switching between enabled and disabled each time you use

Chapter 7, Breakpoints 116



it. A disabled breakpoint is “invisible” until you enable it again; it behaves
as if it was deleted.

This command is useful if you have defined a complex breakpoint that you
don’t want to use just now, but will want to use again later. This saves you
from having to delete the breakpoint, and then reenter it along with its
conditions and action.

Add...

Adds a breakpoint to the list of breakpoints. You are prompted for the
address in your program where the breakpoint will occur. If you wish to set
a global action that occurs at every program line, use the Global command
from this menu.

You can also add a breakpoint by simply starting to type the address at
which you want to set it. A prompt box will appear just as if you had
invoked the Add command.

Once you’ve added the breakpoint, you can use the other local menu
commands to modify its behavior. When you first add a breakpoint, it has a
pass count of 1, its condition is set to always occur, and the action is to
break (stop) your program.

Global

Adds a global breakpoint to the list of breakpoints. A global action will
occur on every source line or instruction. Use a global breakpoint when you
want to find out exactly when a variable changes or when some condition
becomes true.

Global breakpoints slow down the execution of your program by a large
amount. However, they can be very convenient for finding where your pro-
gram is “bashing” some data.

After adding the global breakpoint, you must set a condition that will
trigger the global breakpoint.

Remove

Removes the currently highlighted breakpoint.

116 Turbo Debugger User’s Guide



Delete All

Removes all breakpoints, both global and those set at specific addresses.
You will have to set more breakpoints if you want your program to stop
when encountering a breakpoint.

Inspect

Shows you the source code line or assembler instruction corresponding to
the currently highlighted breakpoint item. If the breakpoint is set at an
address that corresponds to a source line in your program, a Module
window will be opened and set to that line. Otherwise, a CPU window will
be opened, with the Code pane set to show the instruction at which the
breakpoint is set.

You can also invoke this command by pressing Enter once you have the
highlight bar positioned over a breakpoint.

The Log Window

You create a Log window by choosing the View/Log command. This
window lets you review a list of significant events that have taken place in
your debugging session.

Chapter 7, Breakpoints 117



File View Run Breakpoints Data Window Options READY|
Module: MCINPUT File: MCINPUT PAS 68 1
begin
Ins := True;
ChangeCursor
CPos := Succ

repeat
GotoXY(l S||AH #2 2 ($02) : BYTE
»  write(S, ''[[Changed True : BOOLEAN
GotoXY (CPos[ScreenRows + 5 25 ?19) : WORD
Ch := GetKe[[Currow 1 ($1) : WORD
case Ch of [|FormDisplay False : BOOLEAN

HOMEKEY :l|; Check next run of program for value of CurCol
ENDKEY : |f; This will show were a problem might exist

INSKEY :
Watches 2
AH #2 2 ($02) : BYTE
Changed True : BOOLEAN
ScreenRows + 5 25 ?19) : WORD
Currow 1 ($1) : WORD
FormDisplay False : BOOLEAN

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 7.6: The Log Window

Log windows show a scrolling list of the lines output to the window. If
more than 50 lines have been written to the log, the oldest lines are lost
from the top of the scrolled list. To adjust the number of lines, use either a
command-line option at startup or permanently change the number using
the installation program (TDINST). You can preserve the entire log,
continuously writing it to a disk file, by using the Open Log File local menu
command.

Here’s a list of what can cause lines to be written to the log:

m Your program stops at a location you specified. The location it stops at is
recorded in the log.

m You issue the Add Comment local menu command. You are prompted
for a comment to write to the log.

m A breakpoint is triggered that logs the value of an expression; this value
is put in the log.

m You use the Window/Dump Pane To Log command (from the main
menu bar) to record the current contents of a pane in a window.

118 Turbo Debugger User’s Guide



The Log Window Local Menu

The commands in this menu let you control writing the log to a disk file,
stopping and starting logging, adding a comment to the log, and clearing
the log.

Alt-F10 pops up the Log window local menu. If you have Control-key
shortcuts enabled, pressing Ctrl and the first letter of the desired command
accesses the command directly.

File View Run Breakpoints Data Window Options [ﬂﬂil
-Mogu'l:: MCINPUT File: MCINPUT.PAS 68 B
egin

Ins := True; K%} 4
e a (5 reakpoint at MCALC. 116 |
CPos := Succ(|[At MCINPUT.124 Changed = True : BOOLEZ

SetColor (Whit|{Breakpoin

repeat Watches Open log file...
GotoXY(1, S{AH Close log file #2 2 ($02) : BYTE
> write(S, '*[Changed True : BOOLEAN
GotoXY (CPos||ScreenRow| Add comment... 25 ($19) : WORD
Ch := GetKe||Currow Erase log 1 ($1) : WORD
case Ch of |[FormDispl False : BOOLEAN

HOMEKEY :||; Check next run of program for value of CurCol
ENDKEY : ||; This will show were a problem might exist

INSKEY :
Watches 2:
AH #2 2 ($02) : BYTE
Changed True : BOOLEAN
ScreenRows + 5 25 ($19) : WORD
Currow 1 ($1) : WORD
FormDisplay False : BOOLEAN

F1-Help Esc-Abort

Figure 7.7: The Log Window Local Menu

Open Log File...

Causes all lines written to the log to also be written to a disk file. You are
prompted for the name of the file to write the log to.

When you open a log file, all the lines already displayed in the log
window’s scrolling list are written to the disk file. This lets you open a disk
log file after you see something interesting in the log that you want to
record to disk.

If you want to start a disk log that does not start with the lines already in
the log window, first choose the Erase Log File command before choosing
the Open Log File command.

Chapter 7, Breakpoints 119



Close Log File

Stops writing log lines to the file specified in the Open log file local menu
command, and the file is closed.

Logging

Enables or disables the log, controlling whether anything actually gets
written to the Log window.

Add Comment

Allows you to insert a comment into the log. You are prompted for a line of
text that may contain any characters you desire.

Erase Log

Clears the log list. The Log window will now be blank. This does not affect
writing the log to a disk file.

Simple Breai(points

One of the most common things you’ll want to do when debugging pro-
grams is to cause your program to stop if certain pieces of code are about to
be executed.

There are a number of ways to set a breakpoint action. Each one is
convenient in different circumstances.

mMove to the desired source line in a Module window and issue the
Breakpoints/Toggle command (or press F2). Issuing this command on a
line that already has a breakpoint set causes that breakpoint to be
deleted.

m Move to an instruction in the Code pane of a CPU window and issue the
Breakpoints/Toggle command (or press F2). Issuing this command on a
line that already has a breakpoint set causes that breakpoint to be
deleted.

m Issue the Breakpoints /At command and enter a code address at which to
set a breakpoint.

120 Turbo Debugger User’s Guide



m Issue the Add local menu command from the breakpoint list pane of the
Breakpoint window and enter a code address at which to set a break-
point.

Conditional Breakpoints and Pass Counts

There are many occasions where you do not want a breakpoint to be
triggered every time a certain source statement is executed, particularly if
that line of code is executed many times before the occurrence you are
interested in. Turbo Debugger gives you two ways to qualify when a break-
point is actually triggered: pass counts and conditions.

If you wish to stop your program on the tenth call to a function, you can set
a breakpoint at the start of the function and use the Pass Count local menu
command in the Breakpoint window to set the number of times you want
to skip the breakpoint before it is actually triggered.

If you wish to stop your program at a specific location but only when a
certain condition is true, you can specify an expression using the
Condition/Expression True local menu command. Each time the break-
point is encountered, the expression will be evaluated and if it is true
(nonzero), the breakpoint will be triggered. This can be used in
combination with the pass count to trigger a breakpoint only after the
expression has been true a certain number of times.

You can use the Condition/Changed Memory local menu command to
specify a breakpoint that only occurs after a data item changes value. This
can be a lot more efficient than specifying a global breakpoint that watches
for exactly when something changes. If you only watch for something to
change when a specific source statement is reached, it reduces the amount
of processing Turbo Debugger does in order to detect when the change
occurred.

Global Breakpoints

If you wish to have a breakpoint occur every time a source line or
instruction is encountered, you use global breakpoints. There are a number
of ways to create a global breakpoint, with each method best-suited for a
particular situation:

m Choose the Global local menu command from the action list pane of the
Breakpoint window. Use this method when you want to set a qualifying
condition and/or pass count, or when you want to do something other
than stop when the breakpoint is triggered.

Chapter 7., Breakpoints 121



m Choose the Breakpoints/Changed Memory Global command from the
main menu bar. Use this to stop when an area of memory changes.

m Choose the Breakpoints/Expression True Global command from the
main menu bar. Use this command to stop execution when an expression
becomes true.

When you set a global breakpoint, you usually use the local menu in the
Breakpoint window to modify the condition or the action; otherwise all you
end up with is a breakpoint action that occurs on every source line—just
like using the Run/Trace Into main menu command.

To test your global breakpoints each time a source line is about to be
executed, make sure your current window is not a CPU window when you
restart your program with one of the Run commands from the mainmenu
bar (or their Function key equivalents).

To test your global actions each time a single instruction is executed, make
sure your current window is a CPU window when you restart your pro-

gram.

Breaking for Changed Data Objects

When you want to find out where in your program a certain data object is
being changed, first, set a global breakpoint using one of the techniques
outlined in the previous section. Then you can use the Condition/Changed
Memory local menu command in the detail pane of the Action window.
Enter an expression that refers to the memory area you wish to keep track
of, along with an optional count of the number of objects to track.

Your program will execute slowly when you use this command. You may
want to localize the problem before using this technique to find the exact
location where a data item changes.

If you have installed a hardware device driver, Turbo Debugger will try to
set a hardware breakpoint to watch for a change in the data area. Different
hardware debuggers support different numbers and types of hardware
breakpoints. You can see if a breakpoint has used the hardware by opening
a Breakpoint window with the F10/View/Breakpoints command. Any
breakpoint that is hardware assisted will have an asterisk (*) beside it.
These breakpoints will be much faster than other global breakpoints that
are not hardware assisted.

122 Turbo Debugger User’s Guide



Logging Variable Values

Sometimes, you may find it useful to log the value of certain variables each
time you reach a certain place in your program. (Note: You can only set one
breakpoint per address.) You can log the value of any expression,
including, for example, the values of the parameters a function is called
with. By looking at the log for each time the function is called, you can
determine when it was called with erroneous parameters.

Issue the Set Action/Log command from the Breakpoints window local
menu. You are prompted for the expression whose value is to be logged
each time the breakpoint is triggered. If you wish to log the value of
multiple variables, you must set multiple breakpoints.

Executing Expressions

By executing an expression that has side effects each time a breakpoint is
triggered, you can effectively “splice in” new pieces of code before a given
source line. This is useful when you want to alter the behavior of a routine
to test a diagnosis or bug fix. This saves you from going through the
compile-and-link cycle just to test a minor change to a routine.

Of course, this technique is limited to the insertion of an expression before
an already existing line of code is executed; you can’t use this technique to
modify existing source lines directly.

Chapter 7, Breakpoints 123



124 Turbo Debugger User’s Guide



Examining and Modifying Files

Turbo Debugger treats disk files as a natural extension of the program
you're debugging. You can examine and modify any file on the disk,
viewing it either as ASCII text or as hex data. You can also make changes to
text files using your favorite word processor or text editor, all from within
Turbo Debugger.

This chapter shows you how to examine and modify two sorts of disk files:
those that contain your program source code, and other disk files. First, we
show you how to examine and edit program source files, and then we show
you how to examine and modify other disk files.

Examining Program Source Files

Program source files are your source files that are compiled and that
generate an object module (an .EXE file). You usually examine them when
you wish to look at the behavior or design of a portion of your code. When
debugging, you often need to look at the source code for a function to
verify either that its arguments are valid or that it is returning a correct
value.

As you step through your program, Turbo Debugger automatically
displays the source code for the current location in your program.

Files included in a source file by a compiler directive that generate line #'s
(like #include in C and INCLUDE in assembler) are also considered to be
program source files. You should always use a Module window to look at
your program source files, because this informs Turbo Debugger that the

Chapter 8, Examining and Modifying Files 125



file is a source module. It can then let you do things like set breakpoints or
examine program variables simply by moving to the appropriate place in
the file. These techniques and others are described in the following section.

The Module Window

You create a Module window by choosing the View/Module command
from the main menu bar (or press the shortcut Alt-F3).

File View Run Breakpoints

Data Window Options

struct TOKENREC tokenl, token2;
int counter;

iwitch (reduction)

case 1 :
tokenl = pop();

pop();

token2 = pop();
curtoken.x.value = tokenl.x.value + token2.x.value;
break;

case 2 :

tokenl = pop();

pop();
token2 = pop();

rlatchc:

Fl-Help T!-Move < -Select Letters-Match Esc-Abort

n

Figure 8.1: The Module Window

A list of modules will be displayed from which you can pick the module
you wish to view.

Turbo Debugger will then load the source file for the module that you
select. It searches for the source file in the following places:

1. in the directory where the compiler found the .EXE file

2. in the directories specified by the F10/Options/Path for Source
command or the -sd command-line option

3. in the current directory
4. in the directory that contains the program you’re debugging

126 Turbo Debugger User's Guide



Module windows show the contents of the source file for the module
you’ve selected. The title of the Module window shows the name of the
module you're viewing, along with the source file name and the line
number the cursor is on. An arrow (») in the first column of the window
shows the current program location.

Note that when you run Turbo Debugger, you'll need both the .EXE file and
the original source file available. Turbo Debugger searches for source files
first in the directory the compiler found them in when it compiled, second
in the directory specified in the Options/Path for Source command, third
in the current directory, and fourth in the directory the .EXE file is in.

If the word modified appears after the file name in the title, the file has been
changed since it was last compiled or linked to make the program you are
debugging. This means that the routines in the updated source file may no
longer have the same line numbers as those in the version used to build the
program you are debugging. This can cause the arrow that shows the
current program location to be displayed on the wrong line.

The Module Window Local Menu

The Module window local menu provides a number of commands that let
you move around in the displayed module, point at data items and
examine them, and set the window to display a new file or module. You
will probably use this menu more than any other menu in the debugger, so
you should become quite familiar with its various options.

Use the Alt-F10 key combination to pop up the Module window local menu
or, if you have Control-key shortcuts enabled, use the Ctrl key with the first
letter of the desired command.

Chapter 8, Examining and Modifying Files 127



File View Run Breakpoints Data Window Options
Module: MCALC File: MCALC.C 35 1

do
{ Inspect
» displaycell(curcol, currow, HIGHLIGHT| Watch
curcell = cell[curcol] [currow];
showcelltype();
input = getkey(); File...
switch(input)
Previous
case '/' : Line...
mainmenu() ; Search...
break; Next
case F1 : Origin
recalc(); Goto...
break; Edit
case F2 :
editcell(curcell);
break;

n

I—Hatches

Fl1-Help Esc-Abort

Figure 8.2: The Module Window Local Menu

Inspect

Opens an inspector to show you the contents of the program variable at the
current cursor position. Before issuing this command, you must place the
cursor at one of your program variables in the source file.

You can also use the Ins key to select (highlight) an expression to inspect.
This saves you from typing in an expression that is in plain view in the
source module.

Because this command saves you from having to type in each name you are
interested in, you'll end up using this command a lot to examine the
contents of your program variables.

Watch

Adds the variable at the current cursor position to the Watches window.
This is useful if you want to continuously monitor the value of a variable as
your program executes. Before issuing this command, you must place the
cursor at one of your program variables in the source file.

You can also use the /ns key to mark an expression to watch. This saves you
from typing in an expression that is in plain view in the source module.

128 Turbo Debugger User’s Guide



Module

Allows you to view a different module by picking the one you want from
the list of modules displayed. This command is useful when you are no
longer interested in the current module and you don’t want to end up with
more Module windows on the screen.

If you wish to view more than one module simultaneously, use the View/
Another/Module command from the main menu bar to create another
Module window.

File

Allows you to switch to view one of the other source files that makes up the
module you are viewing. Pick the file that you wish to view from the list of
files presented. Most modules only have a single source file that contains
code. Other files included in a module usually only define constants and
data structures. Use this command if your module has source code in more
than one file.

If you wish to view more than one file simultaneously, either use the View/
Another/Module main menu command to create another Module window,
or use the View/File command to create a File window.

Previous
Returns you to the last source module location you were viewing. You can

also use this command to return to your previous location after you've
issued a command that changed your position in the current module.

Line

Positions you at a new line number in the file. Enter the new line number to
go to. If you enter a line number after the last line in the file, you will be
positioned at the last line in the file.

Search

Searches for a character string, starting at the current cursor position. Enter

the string to search for. If the cursor is positioned over something that looks
like a variable name, the search prompt will come up initialized to that

Chapter 8, Examining and Modifying Files 129



name. Also, if you have marked a block in the file using the Ins key, that
block will be used to initialize the search prompt. This saves you from
typing if what you want to search for is a string that is already in the file
you are viewing.

You can use simple wildcards, with ? indicating a match on any single
character, and * matching 0 or more characters. The search does not wrap
around from the end of the file to the beginning. To search the entire file, go
to the first line by pressing Ctrl-PgUp.

Next

Searches for the next instance of the character string you specified with the
Search command; you can only use this after issuing a Search command.

Sometimes, a search command matches an unexpected string before
reaching the one you really wanted to find. Next lets you repeat the search
without having to reenter what you want to search for.

Origin

Positions you at the module and line number that is the current program
location (CS:IP). If the module you are currently viewing is not the module
that contains the current program location, the Module window will be
switched to show that module. This command is useful after you have
looked around in your code and want to return to where your program is
currently stopped.

Goto

Positions you at any location within your program. Enter the address you
wish to examine; you can enter a line number, a function name, or a hex
address. See Chapter 9 for a complete description of the ways to enter an
address.

You can also invoke this command by simply starting to type the label to go
to. This brings up a prompt box exactly as if you had specified the Label
command. This is a handy shortcut for this frequently used command.

130 Turbo Debugger User’s Guide



Edit

Starts up your choice of an editor so that you can make changes to the
source file for the module you are viewing. You can specify the command
that starts your editor from the installation program TDINST.

Examining Other Disk Files

You can examine or modify any file on your system by using a File
window. You can view the file either as ASCII text or as hex data bytes,
using the Ascii and Hex commands described in later sections of this
chapter.

The File Window

You create a File window by choosing the View/File command from the
main menu bar. You can use DOS-style wildcards to get a list of file choices,
or you can type a specific file name to load.

File View Run Breakpoints Data Window Options ﬂﬂiﬂ
Module: MCALC File: MCALC.C 161 ]

void main(int argc, char *argv[])

{ File c:\tc\dos.h 197 4

winl char _Cdec] peekb  (unsigned segment, unsigned offset);

ini|| void _Cdecl poke (unsigned segment, unsigned offset, int v

ini|| void “Cdecl pokeb (unsigned segment, unsigned offset, char

set| int “Cdecl randbrd (struct fcb *fcb, int rcnt);

set| int “Cdecl randbwr (struct fcb *fcb, int rent);

clrfl void “Cdecl segread (struct SREGS *segp);

wrif| int _Cdecl setblock(unsigned segx, unsigned newsize); ER)
int “Cdecl setcbrk (int cbrkvalue);

wri|| void “Cdec] setdate (struct date *datep);
void _Cdec] setswitchar (char ch);

gotl void “Cdecl settime (struct time *timep);

get|| void “Cdec] setvect (int interruptno, void interrupt (*isr) (

set| void “Cdec] setverify (int value);

clr|| void “Cdecl sleep (unsigned seconds);

inifl void “Cdecl sound (unsigned frequency);

mem

N

I'Hatc.‘::.

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 8.3: The File Window

Chapter 8, Examining and Modifying Files 131



File windows show the contents of the file you've selected. The name of the
file you are viewing is displayed at the top of the window, along with the
line number the cursor is on if the file is displayed as ASCII text.

When you first create a File winauw, the file will appear either as ASCII
text or as hex bytes, depending on whether the file contains what Turbo De-
bugger thinks is ASCII text or binary data. You can switch between ASCII
and hex display at any time using the Display As command described later.

File View Run Breakpoints Data Window Options m
rModule: MCALC File: MCALC.C 161 .

void main(int argc, char *argv([])

( 4
winl{00000: 2f 2a 09 64 6f 73 2e 68 /* dos.h

ini||00008: 0d 0a 0d Oa 09 44 65 66 Def

ini{l00010: 69 6e 65 73 20 73 74 72 1ines str

set/l00018: 75 63 74 73 2c 20 75 6e ucts, un

set[|00020: 69 6f 6e 73 2c 20 6d 61 ions, ma

clr}j00028: 63 72 6f 73 2c 20 61 6e cros, an

wri[|00030: 64 20 66 75 6e 63 74 69 d functi ER)
00038: 6f 6e 73 20 66 6f 72 20 ons for
wri(l00040: 64 65 61 6¢c 69 6e 67 0d dealing
00048: 0a 09 77 69 74 68 20 4d  with M
got[|00050: 53 44 4f 53 20 61 6e 64 SDOS and
get|l00058: 20 74 68 65 20 49 6e 74 the Int
set[l00060: 65 6c 20 69 41 50 58 38 el iAPX8
c1r||00068: 36 20 6d 69 63 72 6f 70 6 microp
ini}j00070: 72 6f 63 65 73 73 6f 72 rocessor
meml

IMatche:

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

n

Figure 8.4: The File Window Showing Hex Data

The File Window Local Menu

The File window local menu has a number of commands for moving
around in a disk file, changing the way the contents of the file is displayed,
and making changes to the file.

Use the Alt-F10 key combination to pop up the File window local menu or, if
you have Control key shortcuts enabled, use the Ctrl key with the first letter
of the desired command.

132 Turbo Debugger User’s Guide



File View Run Breakpoints Data Window Options
Module: MCALC File: MCALC.C 161 14

\{loid main(int argc, char *argv[]) .
mmﬂ&ﬁ“a 64 6 73 Ee 68 /* dos.h )
5

ini |00 Def

ini}|00| Goto 74 72 ines str

set{l00| Search 75 6e ucts, un

set|{00| Next 6d 61 ions, ma

clr(00 61 6e cros, an

CIa 0l Display as (38 74 69 d functi ER)
00| File... 72 20 ons for

wrij00| Edit 67 0d dealing
00 20 4d with M

got||00050: 53 44 4
get|00058: 20 74 6
set/00060: 65 6¢c 2
clr|(00068: 36 20 6
ini[/00070: 72 6f 6
mem

rdatches

F1-Help Esc-Abort

f 53 20 61 6e 64 SDOS and
8 65 20 49 6e 74 the Int
0 69 41 50 58 38 el iAPX8
d 69 63 72 6f 70 6 microp
3 65 73 73 6f 72 rocessor

n

Figure 8.5: The File Window Local Menu

Goto

Positions you at a new line number or offset in the file. If you are viewing
the file as ASCII text, enter the new line number to go to. If you are viewing
the file as hex bytes, enter the offset from the start of the file at which to
start displaying. You can use the full expression parser when entering the
offset. If you enter a line number after the last line in the file or an offset
beyond the end of the file, you will be positioned at the end of the file.

Search

Searches for a character string, starting at the current cursor position. You
are prompted to enter the string to search for. If the cursor is positioned on
something that looks like a symbol name, the search prompt will come up
initialized to that name. Also, if you have marked a block in the file using
the Ins key, that block will be used to initialize the search prompt. This
saves you from typing if what you want to search for is a string that is
already in the file you are viewing. The format of the search string depends
on whether the file is displayed in ASCII or hex.

Chapfter 8, Examining and Modifying Files 133



If the file is displayed in ASCII you can use simple wildcards, with ?
indicating a match on any single character, and * matching 0 or more
characters.

If the file is diplayed in hex, you enter a byte list consisting of a series of
byte values or quoted character strings using the syntax of whatever
language you are using for expressions. See Chapter 9 for complete
information about byte lists.

The search does not wrap around from the end of the file to the beginning.
To search the entire file, go to the first line of the file by pressing Ctrl-PgUp.

You can also invoke this command by simply starting to type the string that
you want to search for. This brings up a prompt box exactly as if you had
specified the Search command.

Next

Searches for the next instance of the character string you specified with the
Search command; you can only use this command after first issuing a
Search command.

This is useful when your Search command didn’t find the instance of the
string you wanted. You can keep issuing this command until you find what
you want.

Display As

Toggles between displaying the file as ASCII text or hex bytes. When you
select ASCII display, the file appears as you are used to seeing it on the
screen in an editor or word processor. If you select Hex display, each line
starts with the hex offset into the file of the bytes on the line. Either 8 or 16
bytes of data are displayed on a line, depending on how wide the pane is.
To the right of the hex display of the bytes, the display character for each
byte appears. The full display character set can be displayed, so byte values
less than 32 or greater than 127 appear as the corresponding display -

symbol.

File

Allows you to switch to view a different file. You can use DOS-style
wildcards to get a list of file choices, or you can type a specific file name to
load. This lets you view a different file without putting a new File window

134 Turbo Debugger User’s Guide



on the screen. If you wish to view two different files or two parts of the
same file simultaneously, issue the View/Another/File command to make
another File window.

Edit

If you are viewing the file as ASCII text, this command lets you make
changes to the file you are viewing by invoking the editor you specified
with the TDINST installation program.

If you are viewing the file as hex data bytes, the debugger does not start
your editor. Instead, you are prompted for the bytes to replace those at the
current cursor position. Enter a byte list, just as if you were entering a list of
bytes to search for; Chapter 9 has a complete description of byte lists.

Chapter 8, Examining and Modifying Files 135



136 Turbo Debugger User’s Guide



Expressions

Expressions can be a mixture of symbols from your program (that is,
variables and names of routines), and constants and operators from one of
the supported languages: C, Pascal, and assembler.

Turbo Debugger can evaluate expressions and tell you their value. You can
also use expressions to indicate a data item in memory whose value you
want to know. You can supply an expression in response to any prompt
that asks for a value or address in memory. (Note that each language
evaluates an expression differently.)

You use the Data/Evaluate/Modify command from the main menu bar to
find the value of an expression you type in. You can also use this command
as a simple calculator, as well as to examine the value of data objects in
your program.

In this chapter, you'll learn how Turbo Debugger chooses which language
to use when evaluating an expression, and how you can make it use a
specific language. We describe the components of expressions that are
common to all the languages, such as source-line numbers and accessing
the processor registers. We then describe the components that can make up
an expression in each language, including constants, program variables,
strings, and operators. For each language, we also list the operators that
Turbo Debugger supports and the syntax of expressions.

For a complete discussion of C, Pascal, and assembler expressions, refer to
your Turbo C Compiler User’s Guide and Reference Guide, the Turbo Pascal
User’s Guide and Reference Guide, or the Turbo Assembler Reference Guide.

Chapter 9. Expressions 137



Choosing the Language for Expression
Evaluation

Turbo Debugger normally determines which expression evaluator and
language to use based on the source file-name extension for the current
module. This is the module where your program is stopped. You can
override this by using the Options/Language command to choose C,
Pascal, or Assembler. If you choose the Source option, expressions are
evaluated according to the source-file language. (If Turbo Debugger can’t
determine the source language, it uses C’s expression rules.)

Usually, you let Turbo Debugger choose which language to use. Sometimes
you may find it useful to explicitly set the language, such as when de-
bugging an assembler module that is called from one of the other
languages. By explicitly setting expression evaluation to use a language,
you can access your data as you refer to it with that language, even though
your current module uses a different language.

Code Addresses, Data Addresses, and Line
Numbers

Normally, when you want to access a variable or name of a routine in your
program, you simply type its name. However, you can also type an expres-
sion that evalutes to a memory pointer, or specify code addresses as
source-line numbers by preceding the line number with a pound sign (),
like #123. The next section describes how to access symbols outside the
current scope.

Accessing Symbols outside the Current Scope

Where the debugger looks for a symbol is known as the “scope” of that
symbol. accessing symbols outside of the current scope is an advanced
concept that you don’t really need to understand in order to use Turbo De-
bugger in most situations.

Normally, Turbo Debugger looks for a symbol in an expression the same
way a compiler would.

For example, C first looks in the current function, then in the current
module for a static (local) symbol, then for a global symbol. Pascal first
looks in the current procedure or function, then in an “outer” subprogram

138 Turbo Debugger User’s Guide



(if the active scope is nested inside another), then in the implementation
section of the current unit (if the current scope resides in a unit), and then
for a global symbol.

If Turbo Debugger doesn’t find a symbol using these techniques, it searches
through all the other modules to try and find a static symbol that matches.
This lets you reference identifiers in other modules without having to
explicitly mention the module name.

If you want to force Turbo Debugger to look elsewhere for a symbol, you
can exert total control over where to look for a symbol name by specifying
a module, a file within a module, and/or a routine to look inside. You can
access any symbol in your program that has a defined value, even symbols
that are private to a function or procedure and have names that conflict
with other symbols.

Scope Override Syntax

No matter what language you're using, you use the same method to
override the scope of a symbol name.

Normally, you use a number sign (#) to separate the components of the
scope. If it’s not ambiguous in the current language, you can also use a
period (.) instead of #, and omit the initial number sign.

The following syntax describes scope overriding (brackets [] indicate
optional items):

[#module(#filename]]#linenumber[#variablename]
or
[#module(#filename]] [#functionname]$variablename

If you don’t specify a module, the current module is assumed. Here are
some examples of valid symbol expressions with scope overrides. There is
one example for each of the legal combinations of elements that you can
use to override a scope.

The first six examples show various ways of using line numbers to generate
addresses and override scopes:

$123 Line 123 in the current module.

$1234myvarl Symbol myvar1 accessible from line 123 of
the current module.

#mymodule#123 Line 123 in module mymodule.

Chapter 9, Expressions 139



#mymodule#1234myvarl Symbol myvarl accessible from line 123 in
module mymodule.

fmymodule#filel#123 Line 123 in source file filel, which is part of
module mymodule.

fmymodule#filel41234myvarl ~ Symbol myvar1 accessible from line 123 in
source file filel, which is part of mymodule.

The next six examples show various ways of overriding the scope of a
variable by using a module, file, or function name:

fmyvar2 Same as myvar2 without the #.

#myfunc#myvar?2 Variable mywvar2 accessible from routine
myfunc

#mymodule#myvar2 Variable myvar2 accessible from module
mymodule

#mymodule#myfuncémyvar?2 Variable myfunc2 accessible from routine
myfunc in module mymodule

fmymodule#file2#myvar2 Variable myvar2 accessible from file2 that is

included in mymodule

fmymodule#file2#myfuncémyvar2 Variable myvar2 accessible from myfunc
defined in file file2 that is included in
mymodule

Turbo Debugger also supports Pascal’s unit override syntax:

unitname.symbolname

Implied Scope for Expression Evaluation

Whenever an expression gets evaluated by Turbo Debugger, it must decide
where in your program the “current scope” is that is used for any symbol
names without an explicit scope override. This is important in many
languages because you can have symbols inside functions or procedures
with the same name as global symbols; Turbo Debugger must know which
instance of a symbol you mean.

Turbo Debugger usually uses the current cursor position as the context for
“deciding” about scope. For example, you can set the scope where an
expression will be evaluated by moving the cursor to a specific line in a
Module window.

This means that if you have moved the cursor off the current line where
your program is stopped, you may get unexpected results from evaluating

140 Turbo Debugger User’s Guide



expressions. If you want to be sure that expressions are evaluated in your
program’s current scope, use the Origin local command in the Module
window to return to the current location in the source code. You can also
set the expression scope by moving around inside the Code pane of a CPU
window, by cursoring to a routine in the Stack window, or by cursoring to a
routine name in a Variables window.

Byte Lists

Several commands ask you to enter a list of bytes. This includes the Search
and Change local commands in the Data pane of the CPU window, as well
as the Search and Change local commands of the File window displaying a
file in hex format.

A byte list can be any mixture of scalar (non-floating point) numbers and
strings, using the syntax of the current language determined by the
Options/Language command. Both strings and scalars use the same syntax
used in expressions. Scalars are converted into a corresponding byte
sequence; for example, a Pascal longint value of 123456 becomes a 4-byte
hex quantity 56 34 12 00.

Language Byte List Hex Data

C “ab” 0x04 “c” 61620463
Pascal ‘ab’#4'c’ 61620463
Assembler 1234 “AB” 34124142

C Expressions

Turbo Debugger supports the complete C expression syntax. An expression
consists of a mixture of symbols, operators, strings, variables, and
constants. Each of these components is described in one of the following
sections.

C Symbols

A symbol is a name for a data item or routine in your program. A symbol
name starts with a letter or underscore (). Subsequent characters in the
symbol may contain the digits 0 through 9, as well as these characters. You
can omit the beginning underscore from symbol names. If you enter a
symbol name without an underscore and that name cannot be found, it is

Chapter 9. Expressions 141



searched for again with an underscore at the beginning. Since the compiler
normally puts an underscore at the start of your symbol names, this saves
you having to remember to add it.

C Register Pseudovariables

Turbo Debugger lets you access the processor registers using the same
technique used by the Turbo C compiler, namely pseudovariables. A
pseudovariable is a variable name that corresponds to a given processor

register.

Pseudovariable Type Register
_AX unsigned int AX
_AL unsigned char AL
_AH unsigned char AH
_BX unsigned int BX
_BL unsigned char BL
_BH unsigned char BH
CX unsigned int CX
_CL unsigned char CL
_CH unsigned char CH
_DX unsigned int DX
_DL unsigned char DL

DH unsigned char DH
Cs unsigned int CS
_DS unsigned char DS
_Ss unsigned char SS
_ES unsigned char ES
_SP unsigned int SP
_BP unsigned char BP
_DI unsigned char DI
_SI unsigned char SI
IP unsigned int instruction pointer

The following pseudovariables let you access the 80386 processor registers:

142

Turbo Debugger User’s Guide



Pseudovariable Type Register

_EAX unsigned long EAX
_EBX unsigned long EBX
_ECX unsigned long ECX
_EDX unsigned long EDX
_ESP unsigned long ESP
_EBP unsigned long EBP
_EDI unsigned long EDI
_ESI unsigned long ESI
_FS unsigned int FS
_GS unsigned int GS

C Constants and Number Formats

Constants can be either floating point or integer constants.

An integer constant is specified in decimal unless one of the C conventions
for overriding this is used:

Format Radix

digits Decimal
Odigits Octal
0Xdigits Hexadecimal
Oxdigits Hexadecimal

Constants are normally of type int (16 bits). If you wish to define a long
(32-bit) constant, you must add an I or L at the end of the number. For
example, 123456L.

A floating-point constant contains a decimal point and may use decimal or
scientific notation, for example,

1.234 4.%e+t11

C Character Strings and Escape Sequences

Strings are a sequence of characters enclosed in quote characters (**). You
can also use the standard C convention of backslash (\) as an escape
character.

Chapter 9. Expressions 143



Sequence Value Character

\\ Backslash

\a 0X07 Bell

\b 0X08 Backspace

\f 0X0C Formfeed

\n 0X0A Newline

\r 0X0D Carriage return
\t 0X09 Horizontal tab
\v 0X0B Vertical tab
\xnn nn Hex bgte value
\nnn nnn Octal byte value

If you follow the backslash with any other character than those listed here,
that character is inserted into the string unchanged.

C Operators and Operator Precedence

Turbo Debugger uses the same operators as C, with the same precedence.
The debugger has one new operator that is not part of the C language set of
operators: the double colon (::). This operator has a higher priority than any
of the C operators and is used to make a constant far address out of the
expression that precedes it and the expression that follows it. For example,

0X1234::0X1000 ES:: BX

The primary expression operators
() [} . -> sizeof

have the highest priority, from left to right. The unary operators
LIS

are of a lower priority than the primary operators but greater than the
binary operators, grouped from right to left. The binary operators have

144 Turbo Debugger User’s Guide



decreasing priority as indicated next; operators on the same line have the
same priority:
highest  */ %
+ —
>> <<
<><=>=

== h:

&

A

|

&&
lowest [

The single ternary operator, ?:, has a priority less than any of the binary
operators.

The assignment operators are all of equal priority below the ternary
operator and group from right to left:

= += - *= /:

o\°

= 5= K= §= = =

Executing C Functions in Your Program

You can call functions from a C expression exactly as you do in your source
code. Turbo Debugger actually executes your program code with the
function arguments that you supply. This can be a very useful way of
quickly testing the behavior of a function you've written. You can
repeatedly call it with different arguments and then check that the returned
value is correct each time.

If your program contains the following function that raises one number to a
power (x¥),

long power(int x, int y) {
long temp = 1;
while (y--)
temp *= X;
return(temp);

}

then the following table shows the result of evaluating calls to this function
with different function arguments:

Chapter 9, Expressions 145



C Expression Result

power(3,2) * 2 18
25 + power(5,8) 390650
power(2) Error (missing argument)

C Expressions with Side Effects

A side effect occurs when you evaluate a C expression that changes the
value of a data item in the process of being evaluated. In some cases you
may want a side effect, using it to intentionally modify the value of a pro-
gram variable. At other times, you want to be careful to avoid them, so it’s
important to understand when a side effect can occur.

The assignment operators (=, +=, and so on) change the value of the data
item described on the left side of the operator. The increment and
decrement (++ and —) operators change the value of the data item that
they precede or follow, depending on whether they are used as prefix or
postfix operators.

A more subtle type of side effect can occur if you execute a function that’s
part of your program. For example, if you evaluate the C expression

myfunc(1,2,3) + 7

your program may misbehave later if myfunc changed the value of other
variables in your program.

C Keywords and Casting

Turbo Debugger lets you cast pointers exactly as you would do in a C pro-
gram. A cast consists of a C data-type declaration between parentheses. It
must come before an expression that evaluates to a memory pointer.

Casts are useful if you wish to examine the contents of a memory location
pointed to by a far address you generated using the double colon (::)
operator. For example,

(long far *)0x3456::0
(char far *) ES:: BX

You can use a cast to access a program variable for which there is no type
information, which happens when you compile a module without

146 Turbo Debugger User’s Guide



generating debugging-type information. Rather than recompiling and
relinking, if you know the data type of a variable, you can simply put that
in a cast before the name of the variable.

For example, if your variable iptr is a pointer to an integer, you can examine
the integer that it points to by evaluating the C expression

*(int *)iptr

You can use the following C keywords when forming casts for Turbo De-
bugger:

char float near
double huge short
enum int struct
far long union
unsigned

Pascal Expressions

Turbo Debugger supports the Pascal expression syntax, with the exception
of string concatenation and set operators. An expression consists of a
mixture of operators, strings, variables, and constants. The following
sections describe each of the components that make up an expresion.

Pascal Symbols

Symbols in Pascal are user-defined names for data items or routines in your
program. A Pascal symbol name can start with a letter (a-z, A-Z) or an
underscore (_). Subsequent characters in the name can contain the digits
(0-9) and the underscore, as well as letters.

Normally, a symbol obeys the Pascal scoping rules, with “nested” local
symbols overriding other symbols of the same name. You can override this
scoping if you wish to access symbols in other scopes. For more details, see
the section “Accessing Symbols outside the Current Scope” on page 138.

Pascal Constants and Number Formats

Constants can be either real (floating point) or integer constants. Negative
constants start with a minus sign (-). If the number contains a decimal point
or an e that introduces an exponent, it is a real number. For example,

123.4 456e34 123.45e-5

Chapter 9. Expressions 147



Integer-type constants are normally decimal, unless they start with a dollar
sign ($) to indicate hexadecimal. Decimal integer constants must be
between -2,137,483,648 and 2,147,483,647. Hexadecimal constants must be
between $00000000 and $FFFFFFFF.

Pascal Strings

A string is simply a group of characters surrounded by single quotes, for
example,

"abc’

You can embed control characters in a string by preceding the decimal
control character value with a #, for example,

Idefl#7lxyzl

Pascal Operators

Turbo Debugger supports all the Pascal expression operators.

The unary operators are of the highest precedence and are of equal priority.

@ Takes address of an identifier
A Contents of pointer

not Bitwise complement

typeid  Typecast

+ Unary plus, positive

- Unary minus, negative

The binary operators are of a lower precedence than the unary operators
and are listed here in decreasing priority:

* / div mod and shl shr
in + - or xor
< <= > >= = <>

The := assignment operator has the lowest precedence; for your
convenience, this returns a value, as in C.

148 Turbo Debugger User’s Guide



Calling Pascal Functions and Procedures

You can reference Pascal functions and procedures in expressions. For
example, assume you have declared a function called HalfFunc that divides
an integer by 2:

function HalfFunc(i:integer) real;

You can then choose the Data/Evaluate/Modify command and call
HalfFunc as follows:

HalfFunc(3)
HalfFunc(10)=HalfFunc(10 div 2)

You can also call procedures, although not in an expression, of course.
When you enter a procedure or function name by itself, Turbo Debugger
reports its address and declaration. To call a function or procedure that has
no parameter, place a set of empty parentheses after the symbol name. For
example,

MyProc () call MyProc
MyProc reports MyProc’s address, etc.
MyFunc=5 compares address of MyFunc to 5

MyFunc () =5 calls MyFunc and compares returned value to 5

Assembler Expressions

Turbo Debugger supports the complete Assembler expression syntax. An
expression consists of a mixture of operators, strings, variables, and
constants. Each of these components is described in this section.

Assembler Symbols

Symbols are user-defined names for data items and routines in your pro-
gram. An assembler symbol name starts with a letter (a-z, A-Z) or one of
these symbols: @ ? _ $. Subsequent characters in the symbol can contain the
digits 0-9, as well as these characters. The period (.) can also be used as the
first character of a symbol name, but not within the name.

The special symbol $ refers to your current program location as indicated
by the CS:P register pair.

Chapter 9, Expressions 149



Assembler Constants

Constants can be either floating point or integer constants. A floating-point
constant contains a decimal point and may use decimal or scientific
notation; for example,

1.234 4.%+11

Integer constants are hexadecimal unless you use one of the assembler
conventions for overriding the radix:

Format Radix

digits Hexadecimal
digitsO Octal
digitsQ Octal
digitsD Decimal
digitsB Binary

You must always start a hexadecimal number with one of the digits 0-9. If
you want to enter a number that starts with one of the letters A-F, you must
first precede it with a zero (0).

Assembler Operators

Turbo Debugger supports most of the assembler operators, listed here in
order of priority:

xxx PTR (BYTE PTR...)
. (structure member selector)
: (segment override)

OR XOR

AND

NOT

EQ NE LT LE GT GE
+ —

* / MOD SHR SHL
Unary + Unary -
OFFSET SEG

O I

Variables can be changed using the = assignment operator, for example,

a = [BYTE PTR DS:4]

150 Turbo Debugger User’s Guide



Format Control

When you supply an expression to be displayed, Turbo Debugger displays
it in a format based on the type of data it is. If you wish to change the
default display format for an expression, place a comma at the end of the
expression, and supply an optional repeat count followed by an optional
format letter. You can only supply a repeat count for pointers or arrays.
Note that if you use a format control on the wrong data type, it has no

effect.
Character Format

c Displays a character or string expression as raw characters.
Normally, nonprinting character values are displayed as some tyge
of escape or numeric format. This option forces the characters to be
displayed using the full IBM display character set.

d Displays an integer as a decimal number.

f#] Displays as floating-point format with the specified number of
digits. If you don’t supply a number of digits, as many as necessary
are used.

m Displays a memory-referencing expression as hex bytes.

md Displays a memory-referencing expression as decimal bytes.

P Displays a raw pointer value, showing segment as a register name
if applicable. Also shows the object pointed to. This is the default if
no format control is specified.

s Displays an array or pointer to array of characters as a quoted
character string. The string is terminated with a null.

xorh Displays an integer as a hex number.

Chapter 9, Expressions 151



152 Turbo Debugger User’s Guide



10

Assembler-Level Debugging

This chapter is for programmers who are familiar with programming the
80x86 processor family in assembler. You don’t need to use the capabilities
described in this chapter to debug your programs—but there are certain
problems that may be easier to find using techniques discussed in this
chapter.

We'll explain when you might want to use assembler-level debugging.
Then we describe the CPU viewer with its built-in disassembler and
assembler. You then learn how to examine and modify raw hex data bytes,
how to peruse the function calling stack, how to examine and modify the
CPU registers, and finally how to examine and modify the CPU flags.

When Source Debugging Isn’t Enough

Most of the time when you are debugging a program, you refer to data and
code in your program at the source level; you refer to symbol names
exactly as you typed them in your source code, and you proceed through
your program by executing pieces of source code.

Sometimes, however, you can gain insight into a problem by looking at the
exact instructions that the compiler generated, the contents of the CPU
registers, and the contents of the stack. To do this, you need to be familiar
with both the 80x86 family of processors and with how the compiler turns
your source code into machine instructions. Since there are many excellent
books available on the internal workings of the CPU, we won’t go into that
in detail here. You can quickly learn how the compiler turns your source

Chapter 10, Assembler-Level Debugging 153



code into machine instructions by looking at the instructions generated for
each line of source code.

C, for example, lets you write lines of source code that perform many
actions at once. Since the debugger lets you step one source line at a time,
not one C expression at a time, you sometimes want to know the result of
executing a small piece of one source line. By stepping through your pro-
gram one machine instruction at a time, you can examine intermediate
results, although it does require some effort to figure out how the compiler
translated your source statements into machine code.

The CPU Window

The CPU window shows you the entire state of the CPU. You can examine
and change the bits and bytes that make up your program’s code and data.
You can use the built-in assembler in the Code pane to temporarily patch
your program by entering instructions exactly as you would type assembler
source statements. You can also access the underlying bytes of any data
structure, display them in a number of formats, and change them.

File View Run Breakpoints Data Window Options
Module: TPDEMO File: TPDEMO.PAS 137 1
}nc(mllml.ines);
CPU 80286, s:3EF2 = 548A 3
TPDEM0.120: Inc(NumLines); ax 0004 (c=0
¢s:04C4°FF063C00 inc word ptr [TPDEMO.NUM| bx 3EEE z2=0
TPDEMO.121: i :=1; cx 0000 s=|
cs:04C8 C746FE0100 mov word ptr [bp-02],000] M @Y 7] 0=0
PDEMO.122: while 1 <= Lengt| do si 3CEC p=0
¢s:04CD C47E04 les di, [bp+04 di 00CO a=
cs:04D0 268A05 mov al,es:[di bp 3EF4 i=1
cs:04D3 30E4 xor ah,ah sp 3EF0 d=0
cs:04D5 3BA6FE cmp  ax, [bp-02] ds 5920
cs:04D8 7D03 Jnl TPDEMO0.125 (04DD) es 5920
cs:04DA E9BACO Jmp TPDEMO.148 ss 595A
TPDEMO0.125: while (i <= Length(S)) and not IsLetter ;:s 32@
P
ds:0000 00 00 00 00 00 00 00 00
ds:0008 5A 5D 5A 5D 5A 5D 00 00 ss:3EF2 548A
ds:0010 00 00 00 00 00 00 5A 5D ss:3EF0”04C1  [|—
I—Hatc ds:0018 00 00 5A 5D 00 00 00 90 ss:3EEE 0246 —Z-I

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Figure 10.1: The CPU Window

You create a CPU window by choosing the View/CPU command from the
main menu bar. Depending on what you are viewing in the current

154 Turbo Debugger User’s Guide



window, the new CPU window will come up positioned at the appropriate
code, data, or stack location. This provides a convenient method for taking
a “low-level” look at the code, data, or stack location your cursor is
currently on. The following table shows where your cursor will be
positioned when you choose the CPU command:

Current Window CPU Window Pane Positioned At
Stack window Stack Current SS:SP
Module window Code Current CS:IP
Action window Code Action address
Variable window Data* Address of item
Inspector Data Address of item
Breakpoint (if not a Global) Code Breakpoint address

*Code pane, if item in window is a routine.

The line at the top of the CPU window shows what processor type you
have (8086, 80186, 80286 or 80386). CPU windows have five panes. To go
from one pane to the next, press Tab or Shift-Tab. The top left pane (Code
pane) shows the disassembled program code intermixed with the source
lines. The second top pane (Register pane) shows the contents of the CPU
registers. The right pane is the Flags pane, showing the state of the eight
CPU flags. The bottom left pane (Data pane) shows a raw hex dump of any
area of memory you choose. The bottom right pane (Stack pane) shows the
contents of the stack.

In the Code pane, an arrow (») shows the current program location
(CS:AP). In the Stack pane, an arrow (») shows the current stack pointer
(55:5P). You can also directly type over values in the Stack pane.

If the highlighted instruction in the Code pane references a memory
location, the memory address and its current contents are displayed on the
top line of the CPU window. This lets you see both where an instruction
operand points in memory and the value that is about to be read or written
over.

The Flags pane shows the value of each of the CPU flags. The following
table lists the different flags and how they are shown in the Flags pane:

Chapter 10, Assembler-Level Debugging 155



Letter in Pane  Flag Name

Car

Zer:;y

Sign

Overflow

Pari

Auxiliary carry
Interrupt enable
Direction

QP O NN

As with all local menus, pressing Alf-F10 pops up the Code pane local menu
or, if Control-key shortcuts are enabled, the Cirl key with the first letter of
the desired command gets you to the desired command.

In the Code, Data, and Stack panes you can press Ctri-Left arrow and Ctrl-Right
arrow to shift the starting display address of the pane by 1 byte up or down.
This is easier than using the Goto command if you just want to slightly
adjust the display.

The Code Pane

This pane shows the disassembled instructions at an address that you
choose. The Mixed local command toggles between the three ways of
displaying disassembled instructions and source code:

No No source code is displayed, only disassembled
instructions.
Yes Source code lines appear before the first disassembled

instruction for that source line. The pane is set to this
display mode if your current module is a high-level
language source module.

Both Source code lines replace disassembled lines for those
lines that have corresponding source code; otherwise the
disassembled instruction appears. Use this mode when
you're debugging an assembler module and you want to
see the original source code line, instead of the
corresponding disassembled instruction. The pane is set
to this display mode if your current module is an
assembler source module.

The left part of each disassembled line shows the address of the instruction.
The address is displayed either as a hex segment and offset, or with the

156 Turbo Debugger User’s Guide



segment value replaced with the CS register name if the segment value is
the same as the current CS register. If the window is wide enough (zoomed
or resized), the bytes that make up the instruction are displayed. The the
disassembled instruction appears to the right.

The Disassembler

The Code pane automatically disassembles and displays your program
instructions. If an address corresponds to either a global symbol, static
symbol, or a line number, the line before the disassembled instruction
displays the symbol if the Mixed display mode is set to Yes. Also, if there is
a line of source code that corresponds to the symbol address, it is displayed
after the symbol.

Global symbols appear simply as the symbol name. Static symbols appear
as the module name, followed by a # or a period (.), followed by the static
symbol name. Line numbers appear as the module name, followed by a #
or a period (.), followed by the decimal line number.

When an immediate operand is displayed, you can infer its size from the
number of digits: A byte immediate has 2 digits, a word immediate has 4
digits.

Turbo Debugger can detect the 8087/80287/80386/80387 numeric
coprocessor and disassemble those instructions if a floating-point chip or
emulator is present.

The instruction mnemonic RETF indicates that this is a far return
instruction. The normal RET mnemonic indicates a near return.

Where possible, the target of JMP and CALL instructions is displayed
symbolically. If CS:IP is a JMP or conditional jump instruction, an arrow (T
or 1) that shows jump direction will be displayed only if the executing
instruction will cause the jump to occur. Also, memory addresses used by
MOV, ADD, and other instructions display symbolic addresses.

The Code Pane Local Menu

If you don’t come up in the Code pane, use Tab or Shift-Tab to get there. Then
press Alt-F10 to bring up the local menu.

Chapter 10, Assembler-Level Debugging 157



File View Run Breakpoints Data Window Options MEN

FModu]e: TPDEMO File: TPDEMO.PAS 137
}nc(ﬂgmLines);
1= 1;
CPU 80286, sS:3EF2 = 548A: 3
TPDEMO.120: Inc(NumLines); ax 0004 |c=0
¢s:04C4°FF063C00 inc word ptr [TPDEMO.NUM{ bx 3EEE 2=
TPDEMO.121: 1= 1; cx 0000 s=0
¢s:04C8 C746FE0100 word [N dx 5920 0=
TPDEM). 122 ———8 8 8 si 3CEC |{p=0
cs:04CD Iﬁ_ di [bp+04] di 00C0 |a=0
¢s:04D0 rigin al,es:[di] bp 3EF4 i=1
cs:04D3 | Follow h.ah sp 3EF0 d=0
cs:04D5 | Caller ax, [bp-02] ds 5920
cs:04D8 | Previous TPDEMO. 125 (04DD) es 5920
cs:04DA | Search TPDEMO.148 ss 595A
TPDEMO.125( View source gth(S)) and not IsLetter| cs 548A
Mixed Yes ip 04C8
ds :0000 00 00
ds:0008 | New cs:ip 00 00 ss:3EF2 548A
ds:0010 | Assemble... 5A 5D ss:3EFOPO4CT  ||—
rdatc ds:0018 | 1/0 00 90 ss:3EEE 0246 —2~l

F1-Help Esc-Abort

Figure 10.2: The Code Pane Local Menu

Goto

After choosing this command, you're prompted for the new address to go
to. You can enter addresses that are outside of your program, which lets
you examine code in the BIOS ROM, inside DOS, and in resident utilities.
See Chapter 9 for complete information on entering addresses.

The Previous command restores the Code pane to the position it had before
the Goto command was issued.

Origin

Positions you at the current program location as indicated by the CS:IP
register pair. This command is useful when you want to return to where
you started.

The Previous command restores the Code pane to the position it had before
the Origin command was issued.

1568 Turbo Debugger User’s Guide



Follow

Positions you at the destination address of the currently highlighted
instruction. The Code pane is repositioned to display the code at the
address indicated by where the currently highlighted instruction will
transfer control to. For conditional jumps, the address is shown as if the
jump occurred.

This command can be used with the CALL, JMP, conditional jump (JZ, JNE,
LOOP, JCXZ, and so forth) and INT instructions.

The Previous command restores the Code pane to the position it had before
the Follow command was selected.

Caller

Positions you at the instruction that called the current interrupt or
subroutine.

This command won’t always work. If the interrupt routine or subroutine
has pushed data items onto the stack, sometimes Turbo Debugger can’t
figure out where the routine was called from.

The Previous command restores the Code pane to the position it had before
the Caller command was selected.

Previous

Restores the Code pane position to the address before the last command
that explicitly changed the display address. Using the arrow keys and the
PgUp and PgDn keys does not cause the position to be remembered.

When you choose Previous, the Code pane position is remembered so that
repeated use of the Previous command causes the code pane to switch back
and forth between two addresses.

Search

Lets you enter an instruction or byte list that you want to search for. Enter
an instruction exactly as you would when using the Assemble command.

Be careful which instructions you try to search for; you should only search
for instructions that don’t change the bytes they assemble to depending on

Chapter 10, Assembler-Level Debugging 159



where they are assembled in memory. For example, searching for the
following instructions is no problem:

PUSH DX
POP  [DI+4)
ADD  AX,100

but trying to search for the following instructions can cause unpredictable
results:

JE 123
CALL MYFUNC
LooP  $-10

You can also enter a byte list instead of an instruction. See Chapter 9 for
more information on entering byte lists.

Mixed

Toggles between the three ways of displaying disassembled instructions
and source code:

No No source code is displayed, only disassembled
instructions.
Yes Source code lines appear before the first disassembled

instruction for that source line. The pane is set to this
display mode if your current module is a high-level
language source module.

Both Source code lines replace disassembled lines for those
lines that have corresponding source code; otherwise the
disassembled instruction appears.

Use this mode when you are debugging an assembler
module, and you want to see the original source code
line, instead of the corresponding disassembled
instruction. The pane is set to this display mode if your
current module is an assembler source module.

New CS:IP

Sets the program location counter (CS:IP registers) to the currently
highlighted address. When you rerun your program, execution will start at
this address. This is useful when you want to skip over a piece of code
without executing it.

160 Turbo Debugger User’s Guide



Use this command with extreme care. If you adjust the CS:IP to a location
where the stack is in a different state than at the current CS:IP, you will
almost certainly crash your program. Do not use this command to set the
CS:IP to an address outside of the current routine.

Assemble

Assembles an instruction, replacing the one at the currently highlighted
location. You are prompted for the instruction to assemble. See the section
in this chapter called “The Assembler” (page 172) for more details.

You can also invoke this command by simply starting to type the statement
you want to assemble. When you do this, a prompt box will appear exactly
as if you had specified the Assemble command.

I/O

Reads or writes a value in the CPU’s I/O space and lets you examine the
contents of I/O registers on cards and write things to them. It pops up the
menu shown in Figure 10.3.

File View Run Breakpoints Data Window Options m
dule: TPDEMO File: TPDEMO.PAS 137 :
iIm: (NllsmLines) ;
CPU 80286, ss:3EF2 = 548A 3
TPDEMO. 120 ax 0004 |c=0
cs:04C4°| Goto word ptr [TPDEMO.NUM| bx 3EEE |z=
TPDEMO. 121} Origin cx 0000 s=0
Follow [ AR dx 5920 {o=0
PDEMO. Caller t do si 3CEC  |p=0
cs:04CD | Previous di, [bp+04] di 00C0 a=0
¢s:04D0 | Search al,es:[di] bp 3EF4 |i=1
cs:04D3 | View source ah,ah sp 3EF0 d=0
cs:04D5 | Mixed Yes ax, [bp-02] ds 5920
cs:04D8 TPDEM0.125 (04DD) es 5920
cs:04DA | New cs:ip TPDEMO.148 ss 595A
TPDEMO.125]| Assemble... gth(S)) and not IsLetter| cs 548A
ip 04C8
ds:0000 t
ds:0008 5 ss:3EF2 548A
ds:0010 0 ss:3EFOPO4C1  [|—
atc|| ds:0018 0| Read word |00 00 90 sS:3EEE 0246 (—2
[u e | Write word ]

Fl-Help Esc-Abort

Figure 10.3: The I/O Menu

Chapter 10, Assembler-Level Debugging 161



In Byte

Reads a byte from an I/O port. You will be prompted for the I/O port
whose value you wish to examine. Use the Read Word option to read from
a word-sized 1/0 port.

Out Byte

Writes a byte to an I/O port. You will be prompted for the I/O port to write
to and the value you want to write. Use the Write Word option to write to a
word-sized 1/0 port.

Read Word

Reads a word from an I/O port. You will be prompted for the I/O port
whose value you wish to examine. Use the In Byte option to read from a
byte-sized 1/O port.

Write Word

Writes a word to an I/O port. You will be prompted for the I/O port to
write to and the value you want to write. Use the Out Byte option to write
to a byte-sized 1/0 port.

IN and OUT instructions access the I/O space where peripheral device
controllers such as serial cards, disk controllers, and video adapters reside.

Be careful when you use these commands: Some 1/O devices consider
reading their ports to be a significant event that causes the device to
perform some action, such as resetting status bits or loading a new data
byte into the port. You may disrupt the normal operation of the program
you are debugging or the device with indiscriminant use of these
commands.

The Register Pane Local Menu

Press Alt-F10 to pop up the Register pane local menu. Or, if Control-key
shortcuts are enabled, use the Cirl key with the first letter of the desired
command to access the command.

162 Turbo Debugger User’s Guide



File View Run Breakpoints Data MWindow Options

ﬁbdule: TPDEMO File: TPDEMO.PAS 137
> Inc(NumLines);
m 80286 Py — :3EF2 = 54 ——~— 0“
0.120: Inc(NumLines); ax 4 Ic=
cs:04C4 FF063C00 inc  word ptr [TPDEMO.
TPDEMO.121: 1 := 1;
s :04C8°C746FE0100 mov  word ptr [bp-02],| Decrement
TPDEM0.122: while i <= Length(S) do Zero
cs:04CD C47E04 les di, [bp+04 Change
cs:04D0 268A05 mov al,es:[di Registers 32-bit No
cs:04D3 30E4 xor ah,ah
cs:04D5 3BA6FE cmp  ax, [bp-02] ds 5920
cs:04D8 7D03 im TPDEM0.125 (04DD) es 5920
cs:04DA E9BAOO Jmp TPDEMO.148 ss 595A
TPDEM0.125: while (i <= Length(S)) and not IsLetter ¢’:s ggg
p
ds:0000 00 00 00 00 00 00 00 00
ds:0008 5A 5D 5A 5D SA 5D 00 00 ss:3EF2 548A
ds:0010 00 00 00 00 00 00 5A 5D ss:3EFOP04CT  [f—
[Hatc ds:0018 00 00 5A 5D 00 00 00 90 sS:3EEE 0246 -—2]

Fl-Help Esc-Abort

Figure 10.4: The Register Pane Local Menu

Increment

Adds one to the value in the currently highlighted register. This is an easy
way to make small adjustments in the value of a register to compensate for
“off-by-one” bugs.

Decrement

Subtracts one from the value in the currently highlighted register.

Zero

Sets the value of the currently highlighted register to zero.

Change
Changes the value of the currently highlighted register. You are prompted

for the new value. You can make full use of the expression evaluator when
entering a new value.

Chapter 10, Assembiler-Level Debugging 163



You can also invoke this command by simply starting to type the new value
for the register. When you do this, a prompt box will appear exactly as if
you had specified the Change command.

Registers 32-bit

Toggles between displaying the CPU registers as 16-bit or 32-bit values. If
you are running on an 80386 processor, you will usually see 32-bit registers,
unless you use this command to set the display to 16-bit registers. You only
really need to see 32-bit registers if you're debugging a program that uses
the 32-bit addressing capabilities of the 386 chip. If you are debugging an
ordinary program that only uses the normal 16-bit addressing, you can
select 16-bit register display.

The Flags Pane Local Menu

Press Alt-F10 to pop up the Flags pane local menu or, if Control-key
shortcuts are enabled, use the Cirl key with the first letter of the desired
command to access the command.

File View Run Breakpoints Data Window Options
Module: TCDEMO File: TCDEMO.C 41 1
while (readaline() != 0) {
wordcount = makeintowords (buffer);
CPU 80286 s:FFCO = 57B3: 3
TCDEMO#41: nwords += wordcount; ax 0001 l c=
cs:0227 037EFA add  di,[bp-06] bx 0A48
TCDEMO#42: totalcharacters += analyzewords (buffer); cx 0874
cs:022A B87408 mov ax,0874 dx 0A24
cs:022D 50 push ax si 0000 p=0
cs:022E EB7400 call TCDEMO#analyzewords di 0000 a=0
cs:0231 59 pop cx bp FFC6 i=1
cs:0232 0146FC add [bp-04],ax sp FFBC d=0
¢s:0235 1156FE adc [bp-02],dx ds 5A51
TCDEMO#43: nlines++; es 5A51
cs:0238 46 inc si ss 5A51
TCDEMO#39: while (readaline() != 0) { $s gg?A
p C
ds:0000 00 00 00 00 54 75 72 62 Turb
ds:0008 6F 2D 43 20 2D 20 43 6F o-C - Co ss:FFBE 0051
Ll ds:0010 70 79 72 69 67 68 74 20 pyright ss: FFBCPO9BS
r& ds:0018 28 63 29 20 31 39 38 37 (c) 1987 ss:FFBA 0246 —2]

F1-Help Esc-Abort

Figure 10.5: The Flags Pane Local Menu

164 Turbo Debugger User’s Guide



Toggle
Sets the value of the flag to 0 if it was 1, and to 1 if it was 0. The value 0

corresponds to “clear,” and 1 indicates “set.” You can also press Enter to
toggle the value of the currently highlighted flag.

The Data Pane

This pane shows a raw display of an area of memory you’ve selected. The
leftmost part of each line shows the address of the data displayed in that
line. The address is displayed either as a hex segment and offset or with the
segment value replaced with the DS register name if the segment value is
the same as the current DS register.

Next, the raw display of one or more data items is displayed. The format of
this area depends on the display mode selected with the Display As local
menu command. If you choose one of the floating-point display formats
(Comp, Float, Real, Double, Extended), a single floating-point number is
displayed on each line. Byte format displays 8 bytes per line, Word format
displays 4 words per line, and Long format displays 2 long words per line.

The rightmost part of each line shows the display characters that
correspond to the data bytes displayed. Turbo Debugger displays all byte
values as their display equivalents, so don’t be surprised if you see funny
symbols displayed to the right of the hex dump area—these are just the
display equivalents of the hex byte values.

The number of bytes displayed on each line varies with the format set with
the Display As command.

Note: If you use the Data pane to examine the contents of the display
memory, the ROM BIOS data area, or the vectors in low memory, you will
see the values that are there when the program being debugged runs, not
the actual values in memory when Turbo Debugger is running. These are
not the same values that are in these memory areas at the time you look at
them. Turbo Debugger detects when you're accessing areas of memory that
it uses as well, and it gets the correct data value from where it stores the
user program’s copy of these data areas.

The Data Pane Local Menu

Once positioned in the Data pane, press Alt-F10 to pop up the local menu or,
if Control-key shortcuts are enabled, use the Cir/ key with the first letter of
the desired command to access the command.

Chapter 10, Assembler-Level Debugging 165



File View Run Breakpoints Data Window Options

Module: TCDEMO File: TCDEMO.C 41
while (readaline() != 0) {
wordcount = makeintowords(buffer);

ss:FFCO = 57B3 39
DEMO#41: nwords += wordcount; ax 0001 c=0
cs:0227 037EFA add  di,[bp-06] bx 0A4B  [z=0

TCDEMO#42: totalcharacters += analyzewords(buffer); cx 0874 s=0
cs:022A B87408 mov ax,0874 dx 0A24 0=0
cs:022D 50 push ax si 0000 p=
cs:022E EB7400 call TCDEMO#analyzewords di 0000 a=0
cs:0231 59 pop cx bp FFC6 i=1
cs:0232 add [bp-04],ax sp FFBC  [d=0
cs:0235 m? adc  [bp-02],dx ds 5A51

TCDEMO#43:| Searc es 5A51
cs:0238 | Next inc si ss 5A51

TCDEMO#39:| Change ine() !=0) { cs 554A

}——————| Follow ip 021C
ds:FFF8 | Long follow {00 EB 00 ames ¢
ds:0000 | Previous 75 72 62 Turb ss:FFBE 0051

—l| ds:0008 20 43 6F o-C - Co ss: FFBCP09BS
| ds:0010 | Display as |68 74 20 pyright ss:FFBA 0246 ||—2
Block ]

Fl-Help Esc-Abort

Figure 10.6: The Data Pane Local Menu

Goto

Positions you at an address in your data. Enter the new address you wish
to go to. You can enter addresses inside DOS, in resident utilities, or outside
of your program, which lets you examine data in the BIOS data area. See
Chapter 9 for a complete discussion of how to enter addresses.

Search
Searches for a character string, starting at the current memory address as

indicated by the cursor position. Enter the byte list to search for. The search
does not wrap around from the end of the segment to the beginning.

See Chapter 9 for a complete discussion of byte lists.

Next

Searches for the next instance of the byte list you previously specified with
the Search command.

166 Turbo Debugger User’s Guide



Change

Allows you to change the bytes at the current cursor location. If you're over
an ASCII display or the format is byte, you're prompted for a byte list.
Otherwise, you're prompted for an item of the current display type. See
Chapter 9 for a discussion of byte lists.

You can also invoke this command by simply starting to type the new value
or values. This brings up a prompt box exactly as if you had chosen the
Change command.

Follow

Allows you to follow word (near, offset only) pointer chains. The Data pane
is set to the offset specified by the word in memory at the current cursor
location.

Long Follow

Allows you to follow long (far, segment and offset) pointer chains. The
Data pane is set to the offset specified by the two words in memory at the
current cursor location.

Previous

Restores the Data pane address to the address before the last command that
explicitly changed the display address. Using the arrow keys and the Pglp
and PgDn does not cause the position to be remembered.

Turbo Debugger maintains a stack of the last five addresses, so you can
backtrack through multiple uses of the Follow, Long Follow, or Goto
commands.

Display As
Lets you choose how data appears in the Data pane. You can choose

between all the data formats used by C, Pascal, and assembler. You can
choose one of the options from the menu shown in Figure 10.7.

Chapter 10, Assembler-Level Debugging 167



File View Run Breakpoints Data Window Options ﬁﬂm
rl:!dule: TCDEMO File: TCDEMO.C 41 1

wordcount = makeintowords (buffer);
o]
TCDEMO#40: wordcount = makeintowords(buffer); ax 0001 c=0
¢s:021CPB87408 mov  ax,0874 bx 0A4B  |z=0
cs:021F 50 ax cx 0874 s=0
cs:0220 EB33} Goto TCDEMO#makeintowords dx 0A24 |o=0
cs:0223 59 | Search (43 si 0000 p=0
cs:0224 8946 Next [bp-06],ax di 0000 {a=0
TCDEMO#41: nw| Change nt; bp FFC6 i=]
cs:0227 037E( Follow di, [bp-06] sp FFBC  |d=0
TCDEMO#42: to| Long follow |= analyzewords(buffer); ds 5A51
cs:022A B874| Previous ax,0874 es 5A51
Ci0zat t874 e e 3508
cs: yzewords cs
——————| Bloc| - ip 021C
ds:0000 00 OL—Z Long
ds:0008 6F 2D 43 20 2D 20 43| Comp ss:FFBE 0051
ds:0010 70 79 72 69 67 68 74 ;lo‘lut ss:FFBCPO9BS
ea
tches Double 2:
Extended ]

Fl-Help Esc-Abort

Figure 10.7: The Display As Menu

Byte
Sets the Data pane to display as hexadecimal bytes.
This corresponds to the C char data type and the Pascal byte type.

Word

Sets the Data pane to display as word hexadecimal numbers. The 2-byte
hex value is shown.

This corresponds to the C int data type and the Pascal word type.

Long

Sets the Data pane to display as long hexadecimal integers. The 4-byte hex
value is shown.

This corresponds to the C long data type and the Pascal longint type.
Comp

Sets the Data pane to display 8-byte integers. The decimal value of the
integer is shown.

168 Turbo Debugger User’s Guide



This is the Pascal comp (IEEE) data type.

Float

Sets the Data pane to display as short floating-point numbers. The scientific
notation floating-point value is shown.

This is the same as the C float data type and the Pascal (IEEE) single type.

Real

Sets the Data pane to display Pascal’s 6-byte floating-point numbers. The
scientific notation floating-point value is shown.

This is the Pascal real type.

Double

Sets the data pane to display 8-byte floating point numbers. The scientific
notation floating-point value is shown.

This is the same as the C long double data type and the assembler TBYTE
type.

Extended

Sets the data pane to display 10-byte floating-point numbers. The scientific
notation floating-point value is shown.

This is the internal format used by the 80x87 coprocessor. It also
corresponds to the C long double data type and the Pascal (IEEE) extended

type.

Block

Lets you manipulate blocks of memory. You can move, clear and set
memory blocks, and read and write memory blocks to and from disk files.
Block brings up the pop-up menu shown in Figure 10.8.

Chapter 10, Assembler-Level Debugging 169



File View Run Breakpoints Data MWindow Options

Module: TCDEMO File: TCDEMO.C 41
» wordcount = makeintowords (buffer);
ﬁ?@ﬂlﬁﬁﬁﬁ 3
DEMO#40: wordcount = makeintowords(buffer); ax 0001 c=0
cs:021C°B87408 mov ax,0874 bx 0A4B z2=0
cs:021F 50 ax cx 0874 s=0
cs:0220 EB833| Goto TCDEMO#makeintowords dx 0A24 0=0
cs:0223 59 Search cx si 0000 p=0
cs:0224 8946( Next [bp-06],ax di 0000 |a=0
TCDEMO#41: nw| Change nt; bp FFC6 i=1
cs:0227 037E| Follow di, [bp-06] sp FFBC d=0
TCDEMO#42: to| Long follow |[= analyzewords(buffer); ds 5A51
cs:022A B874| Previous ax,0874 es 5A51
cs:022D 50 ax ss 5A51
cs:022E E874| Display as TCDEMO#analyzewords <i:s gggé
— I]Iiililllll P
ds:0000 00 0 2 62 Turb
ds:0008 6F 2D 20 43 6F o-C - Co ss:FFBE 0051
ds:0010 70 79 gve 68 74 20 pyright ss:FFBCPO9BS
t
Watches—————| Read 2
[ Write ]

Fl-Help Esc-Abort

Figure 10.8: The Block Menu

Clear

Sets a contiguous block of memory to zero (0). You will be prompted for the
address and the number of bytes to clear.

Move

Copies a block of memory from one address to another. You will be
prompted for the source address, the destination address, and how many
bytes to copy.

Set

Sets a contiguous block of memory to a specific byte value. You will be
prompted for the address of the block, how many bytes to set, and the
value to set them to.

Read

Reads all or a portion of a file into a block of memory. You will be
prompted first for the file name to read from, then for the address to read it
into, and how many bytes to read.

170 Turbo Debugger User’s Guide



Write

Writes a block of memory to a file. You will be prompted first for the file
name to write to, then for the address of the block to write and how many
bytes to write.

The Stack Pane Local Menu

At the Stack pane, press Alt-F10 to pop up the local menu or, if Control-key
shortcuts are enabled, use the Cirl key with the first letter of the desired
command to access the command.

File View Run Breakpoints Data Window Options WEH;I
-wdule: hello File: hello.asm 39 :
mov dx,offset text .
ello.22: mov dx,offset text ax 0000 c=0
cs:0005Pm0v  dx,0000 bx 0000 |z=0
hello.23: mov ah,9 cx 0000 s=0
¢s:0008 mov ah,09 dx 53CC 0=0
hello ((hello.24: int 21h si 0000 |p=0
cs:000A int 21 di 0000 [a=0
cseg hell0.25: mov ah,4ch bp 0000 i=]
¢s:000C mov ah,4C sp 007E d=0
hello.26: mov al,00h ds 53CC
dseg ¢s:000E mov al,00 es 53BA
hello.27: int 21h ss 53CE
text ¢s:0010 int 21 cs 53CA
cs:0012 add [bx+si],al ip 0005
textptr
count ds:0000 48 65 6C 6C 6F 20 57 6F | ss:0080 52FB W
stats ds:0008 72 6C 64 OD OA 24 00 00 ss:007E 0000 rigin
ds:0010 12 00 00 00 25 2D 17 04 | ss:007C 020 Follow |—
rtatches——- ds:0018 86 D1 07 00 00 00 00 00 55:007APS3CA ar;evious —2
ange I

Fl-Help Esc-Abort

Figure 10.9: The Stack Pane Local Menu

Goto

Positions you at an address in the stack. Enter the new stack address. If you
wish, you can enter addresses outside your program’s stack, although you
would usually use the Data pane to examine arbitrary data outside your
program. See Chapter 9 for information about how to enter addresses.

The Previous command restores the Stack pane to the position it had before
the Goto command was issued.

Chapter 10, Assembler-Level Debugging 171



Origin

Positions you at the current stack location as indicated by the SS:SP register
pair. This command is useful when you want to return to where you
started.

The Previous command restores the Stack pane to the position it had before
the Origin command was issued.

Follow

Positions you at the word in the stack pointed to by the currently
highlighted word. This is useful for following stack-frame threads back to a
calling function.

The Previous command restores the Stack pane to the position it had before
the Follow command was issued.

Previous

Restores the Stack pane position to the address before the last command
that explicitly changed the display address. Using the arrow keys and the
PgUp and PgDn keys does not cause the position to be remembered.

Repeated use of the Previous command causes the Stack pane to switch
back and forth between two addresses.

Change

Lets you enter a new word value for the currently highlighted stack word.

You can also invoke this command by simply starting to type the new value
for the highlighted stack item. When you do this, a prompt box will appear
exactly as if you had specified the Change command.

The Assembler

Turbo Debugger lets you assemble instructions for the 8086, 80186, and
80286 processor and also for the 8087, 80287, and 80387 numeric
COProcessors.

172 Turbo Debugger User’s Guide



When you use Turbo Debugger’s built-in assembler to modify your pro-
gram, the changes you make are not permanent. If you reload your pro-
gram using the Run/Program Reset command, or if you load another pro-
gram using the File/Load command, you’ll lose any changes you’ve
made.

Normally you use the assembler to test an idea for fixing your program.
Once you've verified that the change works, you must go and change your
source code and recompile and link your program.

The following section describes the differences between the built-in
assembler and the syntax accepted by Turbo Assembler.

Operand Address Size Overrides

For the call (CALL), jump (JMP), and conditional jump (JNE, JL, etc.)
instructions, the assembler automatically generates the smallest instruction
that can reach the destination address. You can use the NEAR and FAR
overrides before the destination address to assemble the instruction with a
specific size; for example,

CALL FAR XYZ
jmp NEAR Al

Memory and Immediate Operands

When you use a symbol from your program as an instruction operand, you
must tell the built-in assembler whether you mean the contents of the
symbol or the address of the symbol. If you just use the symbol name, the
assemnbler treats it as an address, exactly as if you had used the assembler
OFFSET operator before it. If you put the symbol inside brackets ([ ]), it
becomes a memory reference. If your program contained the data definition

A DW 4

When you assemble an instruction or evaluate an assembler expression to
refer to the contents of a variable, use the name of the variable alone or
between brackets:

mov dx,a
mov ax, [a]

To refer to the address of the variable, use the OFFSET operator:

mov ax,offset a

Chapter 10, Assembler-Level Debugging 173



Operand Data Size Overrides

For some instructions, you must specify the operand size using one of the
following expressions before the operand:

BYTE PTR
WORD PTR

Here are examples of instructions using these overrides:

add BYTE PTR([si],10
mov WORD PTR([bp+10],99

In addition to these size overrides, you may use the following overrides
when assembling 8087 /80287 numeric processor instructions:

DWORD PTR
QWORD PTR
TBYTE PTR

Here are some examples using these overrides:

fild QWORD PTR[bx]
stp TBYTE PTR[bpt4]

String Instructions

When you assemble a string instruction, you must include the size (byte or
word) as part of the instruction mnemonic. The assembler does not accept
the form of the string instructions that uses a sizeless mnemonic with an
operand that specifies the size. For example, use STOSW rather than STOS
WORD PTRIDII.

The Dump Window

The Dump window shows you raw data dump of any area of memory. It
works exactly like the Data pane in the CPU window.

See “The Data Pane Local Menu” section earlier in this chapter (page 165)
for a description of the contents and local menu for this window.

Typically, you’d use this window when you're debugging an assembler
program at the source level, and you want to take a low-level look at some
data areas. You can use the View/Dump command to make a Dump
window.

174 Turbo Debugger User’s Guide



You can also use this window if you're in an Inspector window, and you
want to look at the raw bytes that make up the object you are inspecting.
Use View/Dump to get a Dump window that’s positioned to that data in
the Inspector window.

The Registers Window

The Registers window shows you the contents of the CPU registers and
flags. It works like a combination of the Registers and Flags panes in the
CPU window.

See “The Register Pane Local Menu” (page 162) and “The Flags Pane Local
Menu” (page 164) sections earlier in this chapter for a description of the
contents and local menus for this window.

Use this window when you're debugging an assembler program at the
source level and want to look at the register values. You can shrink the size
of your Module window and put up a Registers window alongside it.

Turbo C Code Generation

The Turbo C compiler does a number of predictable things when
generating machine code. Once you get familiar with the compiler, you'll
quickly see exactly how the machine instructions correspond to your
source code.

Function return values are placed in the following registers:

Return Type Register(s)
int AX

long DX:AX
float ST(0)
double ST(0)

long double ST(0)

near * AX

far * DX:AX

The compiler places heavily used int and near pointers into registers, first
using the SI register, then using the DI register.

Your auto-variables and function-calling parameters are accessed from
SS:BP.

Chapter 10, Assembler-Level Debugging 175



The AX, BX, CX, and DX registers are not necessarily preserved across
function calls.

Registers are always used as word registers, not as byte registers, even if
you use char data types.

Switch statements can be compiled into one of three forms, depending on
which will produce the most efficient code:

m conditional jumps as if the switch were an if...else chain
® a jump table of code addresses

m a jump table of switch values and code addresses

176 Turbo Debugger User’s Guide



11

The 80x87 Coprocessor Chip and
Emulator

If your program uses floating-point numbers, Turbo Debugger allows you
to examine and change the state of the math coprocessor or software
emulator. This chapter is for programmers who are familiar with the
operation of the 80x87 math coprocessor. You don’t need to use the
capabilities described in this chapter to debug programs that use floating-
point numbers, although some very subtle bugs may be easier to find.

In this chapter, we’ll discuss the differences between the 80x87 chip and the
software emulator. We'll also describe the Numeric Processor window and
teach you how to examine and modify the floating-point registers, the
status bits, and the control bits.

The 80x87 Chip vs. Emulator

Turbo Debugger automatically detects whether your program is using the
math chip or the emulator and adjusts its behavior accordingly.

Note that most programs use either the emulator or the math chip, not both
within the same program. If you have written special assembler code that
uses both, Turbo Debugger won’t be able to show you the status of the
math chip; it will report on the emulator only.

Chapter 11, The 80x87 Coprocessor Chip and Emulator 177



The Numeric Processor Window

You create a Numeric Processor window by choosing the View/Numeric
Processor command from the main menu bar. The line at the top of the
window shows the current instruction pointer, data pointer, and instruction
opcode. The data pointer and instructions pointer are both shown as 20-bit
physical addresses. You can convert these addresses to a segment and offset
form by using the first four digits as the segment value, and the last digit as
the offset value.

For example, if the top line shows IPTR=5A669, you can treat this as the
address 5a66:9 if you wish to examine the current data and instruction in a
CPU window. This window has three panes: The left pane (Register pane)
shows the contents of the floating-point registers, the middle pane (Control
pane) shows the control flags, and the right pane (Status pane) shows the
status flags.

File View Run Breakpoints Data Window Options
Module: TPDEMO File: TPDEMO.PAS 74 15
AvgWords := NumWords / NumLines

else
AvgWords := 0;
Writeln; 4
Tk M(valid ST(0) 41 im=0 | ie=0
NuflVa 1 dm=0 | de=0
NujlEmpty STfZ) =0 | ze=0
WriteIln('A[|Empty ST 3; om=0 | oe=0
Writeln; ([Empty ST(4 um=1 | ue=0
Empty ST(5) pm=1 | pe=0
{ Dump wor||Empty ST(6) iem=0 | ir=0
Write('Wor(lEmpty ST(7) pc=3 | cc=9
for i :=1 rc=0 | st=2
Write(i: ic=1
Writeln;

Write('Frequency: ');
for i := 1 to MaxWordLen do

rlatche:

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

nN

Figure 11.1: The Numeric Processor Window

The top line shows you information about the last floating-point operation
that was executed. The IPTR shows the 20-bit physical address from which
the last floating-point instruction was fetched. The OPCODE shows the
instruction type that was fetched. The OPTR shows the 20-bit physical
address of the memory address that the instruction referenced, if any.

178 Turbo Debugger User’s Guide



The 80-Bit Floating-Point Registers

The Register pane shows each of the floating-point registers (ST(0) to ST(7))
along with its status (valid /zero/special/empty). The contents are shown
as an 80-bit floating-point number.

If you've zoomed the Numeric Processor window (by pressing F5) or made
it wider by using Window/Move/Resize, you will also see the floating-
point registers displayed as raw hex bytes.

The Status Bits

The following table lists the different status flags and how they appear in

the Status pane:

Name in Pane

Flag Description

ie
de
ze
oe
ue
pe
ir
cc
st

Invalid operation
Denormalized operand
Zero divide

Overflow

Underflow

Precision

Interrupt request
Condition code

Stack top pointer

The Control Bits

The following table lists the different control flags and how they appear in

the Control pane:

Name in Pane

Flag Description

im
dm
zm
om
um
m
iem

pc
rc

ic

Invalid operation mask
Denormalized operand mask
Zero divide mas

Overflow mask

Underflow mask

Precision mask

Interrupt enable mask (8087 only)
Precision control

Rounding control

Infinity control

Chapter 11, The 80x87 Coprocessor Chip and Emulator 179



The Register Pane Local Menu

To bring up the Register pane local menu, press Alt-F10, or use the Cirl key
with the first letter of the desired command to directly access the
command.

File View Run Breakpoints Data Window Options w
Module: TPDEMO File: TPDEMO.PAS 74 "

Avghords := NumWords / NumLines

im=0 | ie=0

dm=0 | de=0

m=0 | ze=0
Writeln('A(|| Empty om=0 | oe=0
Writeln; Change um=1 | ue=0

pm=1 | pe=0
{ Dump wor|Empty ST(6) iem=0 | ir=0
Write('Wor||Empty ST(7) pc=3 | cc=9
fori:=1 rc=0 | st=2

Write(i: ic=1

Writeln;

Write('Frequency: ');
for i := 1 to MaxiWordLen do

l—uatches

F1l-Help Esc-Abort

n

Figure 11.2: The Register Pane Local Menu

Zero

Sets the value of the currently highlighted register to zero.

Empty

Sets the value of the currently highlighted register to empty. This is a
special status that indicates that the register no longer contains valid data.
Change

Loads a new value into the currently highlighted register. You are

prompted for the value to load. You can enter an integer or floating-point
value, using the full C expression parser. The value you enter will

180 Turbo Debugger User's Guide



automatically be converted to the 80-bit temporary real format used by the
numeric processor.

You can also invoke this command by simply starting to type the new value
for the floating-point register. When you do this, a prompt box will appear
exactly as if you had specified the Change command.

The Status Pane Local Menu

Press Tab to move to the Status pane, then press Alf-F10 to pop up the local
menu. (You can also use the Ctrl key with the first letter of the desired
command to directly access the command.)

File View Run Breakpoints Data Window Options

F’odule: TPDEMO File: TPDEMO.PAS 74 g

AvgWords := NumWords / NumLines
else
AvgWords := 0;

Nu Va'lid ST(I) 5
Nul|Empty ST(2)
Writeln('AflEmpty ST(3)

BEi3%%
00000

Writeln; |[Empty ST(4)
25 51
Dump wor|[Empty ST
Write('Wor|Empty ST(7) =9
for i :=1 - =2
Write(i: ic=1 l
Writeln;

Hrite( Frequency ')
for 1 to MaxWordLen do

[ ]

F1-Help Esc-Abort

>

Figure 11.3: The Status Pane Local Menu

Toggle

Cycles through the values that the currently highlighted status flag can be
set to. Most flags can only be set or cleared (0 or 1), so this command just
toggles the flag to the other value. Some other flags have more than two
values; for those flags this command increments the flag value until the
maximum value is reached, and then it sets it back to zero.

You can also toggle the status flag values by pressing Enter.

Chapter 11, The 80x87 Coprocessor Chip and Emulator 181



The Control Pane Local Menu

Again, press Shift-Tab to go to the Control pane, then press Al-F10 to pop up
the local menu. (Alternatively, you can use the Ctr/ key with the first letter of
the desired command to directly access the command.)

File View Run Breakpoints Data Window Options w
Module: TPDEMO File: TPDEMO.PAS 74 4
AvgWords := NumWords / NumLines

else
AvgWords := 0;
Writeln; L 4
Writeln(Nufva 41 im=0 | ie=0
Nuflvalid ST(1) 5 dm=0 | de=
Nuflvalid ST(2) 1.2e+50 =0 | ze=
Writeln('Aflvalid ST(3) 1.234560912 =0 | oe=
Writeln; aﬁe{o g}'(g 0 um=i ue=0
pty pm=
{ Dump wor|lEmpty ST(6 iem=0
Write('Wor|Empty STf?} pc=3 -
for i :=1 rc=0 | st=2
Write(i: ic=1

Writeln;

Write('Frequency: ');
for i := 1 to MaxWordLen do

rdat..l‘...

Fl-Help Esc-Abort

N

Figure 11.4: The Control Pane Local Menu

Toggle

Cycles through the values that the currently highlighted control flag can be
set to. Most flags can only be set or cleared (0 or 1), so this command just
toggles the flag to the other value. Some other flags have more than two
values; for those flags this command increments the flag value until the
maximum value is reached, and then it sets it back to zero.

You can also toggle the control flag values by pressing Enter.

182 Turbo Debugger User’s Guide



12

Command Reference

Now that you’ve read about all the commands, here’s a quick summary.
We'll list and describe

m all the single-keystroke commands available on the function and other
keys

m all the main menu commands and the commands for the local menu of
each window type

m keystrokes used in the two types of panes, when responding to a prompt
for text, and when responding to a prompt for a new window size and
position

Hot Keys

A hot key is a key that performs its action no matter where you are in the
Turbo Debugger environment. Table 12.1 on page 184 lists all the hot keys.

Chapter 12, Command Reference 183



Table 12.1: The Function Key and Hot Key Commands

Key Menu Command Function

F1 Brings up context-sensitive help

F2 Breakpoints/Toggle Sets%rea}i,(point at cursor position

F3 Window/Close Closes current window

F4 Run/Go to Cursor Runs to cursor position

F5 Zooms/unzooms current window

F6 Window/Next Goes to next window

F7 Run/Trace Into Executes single source line or instruction

F8 Run/Step Over Executes single source line or instruction,
skipping calls

F9 Run/Run Runs program

F10 Invokes the main menu bar, takes you out of
menus

At-Fi Brings up last help screen

AR-F2 Breakpoints/ At Sets breakpoint at an address

AI-F3 View/Module Module pick list

Alt-F4 Run/Animate Steps continuously uPdating display

Al-F5 View/User Screen Shows your program’s screen

Al-F6 Window/Undo Close Reopens the last-closed window

Al-F7 Run/Instruction Trace Executes a single instruction

Ar-F8 Run/Until Return Runs until return from function

Ar-F9 Run/Run To Runs to a specified address

Al-F10 Invokes the window local menu

Al-0 Window/Window Pick Displays a list of all open windows

Al-1-9 Switch to numbered window

Al-F Takes you to the File menu

Ar-V Takes you to the View menu

At-R Takes you to the Run menu

A8 Takes you to the Breakpoints menu

At-D Takes you to the Data menu

Al-W Takes you to the Window menu

Al-O Takes you to the Options menu

Alt-X Quits TYurbo Debugger and returns you to
DOS

Alt-= Options/Macros/Create  Defines a keystroke macro

Al-- Options/Macros/ Stop Ends a macro recording

Recording

Ctrl-F2 Run/Program Reset Stops debug session and resets the program
to start again

Ctl-F4  Data/Evaluate Evaluates an expression

Cir-F7  Data/Watch Adds a variable to the Watches window

Cirl-F8  Breakpoints/Toggle Toggles a breakpoint at cursor

Ctr-F9  Run/Run Runs a program

Ctrl-F10 Invokes the window’s local menu

Ctrl-Right arrow Shifts the starting address in a Code, Data, or
Stack pane in a CPU window 1 byte u

Ctrl-Left arrow Shifts the starting address in a Code, Data, or
Stack pane in a CPU window 1 byte down

curl-S Moves left one column

Ctri-D Moves right one column

Ctrl-E Moves up one line

Ctr-X Moves down one line

Cti-R Scrolls up one screen

crl-C Scrolls down one screen

Ctrl-F Moves to next word

184 Turbo Debugger User’s Guide



Table 12.1: The Function Key and Hot Key Commands (continued)

Ctrl-A
Esc

Ins

?_glr’oll-Lock Window /Move/Resize

Shift-Tab
Shift-Arrow key

Moves to previous word

Closes an Inspector window, takes you out
of menus

Starts text block selection (highlight); use
Left arrow and Right arrow to highlight
Moves and resizes windows

Moves cursor to next window pane
Moves cursor to previous window pane
Moves cursor between the panes in a
window. The pane in the direction of the
arrow becomes the active pane.

Commands from the Main Menu Bar

You invoke the main menu bar by pressing the F10 key; you can also go
directly to one of the individual menus by cursoring to the menu title and
pressing Enter or by pressing the first letter of the menu title. You can also
open a menu directly (without first moving to the menu bar) by pressing Alt
in combination with the first letter of the menu name you desire.

The File Menu

Load Loads a new program to debug
Change Dir Changes to new disk and /or directory
Get Info Displays program info

OS Shell Starts a DOS command processor
Quit Returns to DOS

The View Menu

Breakpoints View breakpoints

Stack View function-calling stack

Log View log of events and data
Watches View variables being watched
Variables View global and local variables
Module View program source module

File View disk file as ASCII or hex
CPU View CPU instructions, data, stack
Dump View raw data dump

Registers View CPU registers and flags
Numeric Processor View coprocessor or emulator

Chapter 12, Command Reference 185



User Screen

View your program screen

Another
Module Makes another Module window
Dump Makes another Dump window
File Makes another File window
The Run Menu
Run Runs your program without stopping
Program Reset Reloads current program
Go To Cursor Runs to current cursor location
Trace Into Executes one source line or instruction
Step Over Traces, skipping calls
Execute To Runs to specified address
Until Return Runs until function returns
Animate Continuously steps your program

Instruction Trace

Executes a single instruction

The Breakpoints Menu

Toggle
At

Changed Memory Global
Expression True Global

Toggles breakpoint at cursor

Sets breakpoint at specified address
Sets global breakpoint on memory area
Sets global breakpoint on expression

Delete All Removes all breakpoints

The Data Menu

Inspect Inspects a data object

Evaluate/Modify Evaluates an expression

Watch Adds variable to Watches window
Function Return Inspects current routine’s return value
The Window Menu

Window Pick Pick window from list of open windows
Next Pane Goes to next pane in window
Move/Resize Moves or changes current window size
Close Erases current window

Undo Close Undoes last erase command

186 Turbo Debugger User’s Guide



Dump Pane to Log
Restore Standard
Screen Repaint

Writes current pane to Log window
Standard window layout
Redisplays entire screen

The Options Menu
Language
Source Module Sets expression language from source module
C Uses C for expressions
Pascal Uses Pascal for expressions
Assembler Uses assembler for expressions
Macros
Create Defines a keystroke macro
Stop Recording Ends the recording session
Remove Removes a keystroke macro
Delete All Removes all keystroke macros
Environment
Integer Format Hex/Decimal/Both: Number display format
Display Swapping None/Smart/Always: User screen swapping

Screen Size

mode
25 line/43/50 line: Debugger screen size

Tab Size Tab width when displaying text files
Path for Source Directory list for source files
Arguments Sets program command-line arguments
Save Options Saves options, macros, windows to disk
Restore Options Restores options from disk

The Local Menu Commands

You can invoke the pop-up, or “local,” menu for the current window by
pressing Alt-F10. If Control-key shortcuts are enabled, you can go directly to
one of the individual menu items by pressing the Ctrl key in combination
with the first letter of the item you desire. (You can use the installation pro-
gram TDINST to enable Control-key shortcuts.)

Each type of window (Breakpoint, Module, etc.) and each pane within a window
has a different local menu. The following sections describe the local menu for
each window and pane.

Some panes have shortcuts to commonly used commands on their local
menu. In the following section, these special keys are listed before the
menu commands for the pane to which they apply. In many panes, the Enter
key is a shortcut to examining or changing the currently highlighted item.

Chapter 12, Command Reference 187



The Del key often invokes the local menu command that deletes the
highlighted item. Some panes let you start typing letters or numbers
without first invoking a local menu command. In these cases, the prompt
box for one of the local menu items pops up to accept your input.

The Breakpoints Window Local Menu

The Breakpoints window has two panes, the List pane on the left, and the
Detail pane on the right. Only the List pane has a local menu.

Set Action
Break
Log
Execute
Condition
Always
Changed Memory
Expression True
Hardware
Cycle Type
Read Memory
Write Memory
Access Memory
Input I/O
Output I/O
Both I/0
Fetch Instruction
Address
Above
Below
Range
Not Range
Less or Equal
Greater or Equal
Equal
Unequal
Match All
Data
Above
Below
Range
Not Range
Less or Equal
Greater or Equal

188

Sets breakpoint to stop program
Sets breakpoint to log an expression
Sets breakpoint to execute an expression

Unconditional breakpoint
When memory area changes
When an expression is true

Match memory reads

Match memory writes

Match memory read or write
Match I/0 input

Match I/0 Output

Match I/0 input or output
Match instruction fetch

Match above an address

Match below an address

Match within address range
Match outside address range
Match below or equal to address
Match above or equal to address
Match a single address

Match all but a single address
Match any address

Match above a value

Match below a value

Match within a range of values
Match outside a range of values
Match below or equal to value
Match above or equal to value

Turbo Debugger User’s Guide



Equal Match a single value

Unequal Match all but a single value
Match All Match all values
Pass Count Number of times to skip breakpoint
Enable/Disable Toggles breakpoint enabled
Add Adds a new breakpoint
Global Adds a new global breakpoint
Remove Removes highlighted breakpoint
Delete All Deletes all breakpoints
Inspect Looks at code where this breakpoint is set
The CPU Window Menus

The CPU window has five panes, each with a local menu: the Code pane,
the Data pane, the Stack pane, the Register pane, and the Flags pane.

The Code Pane Local Menu

Goto Displays code at new address

Origin Displays code at cs:ip

Follow Displays code at JMP or CALL target

Caller Displays code at calling function

Previous Displays code at last address

Search searches for instruction or bytes

View Source Switches to Module window

Mixed No/Yes/Both: Mixes source code with dis-

assembly

New CS:IP Sets CS:IP to execute at new address

Assemble Assembles instruction at cursor

I/0
In Byte Reads a byte from an I/0O location
Out Byte Writes a byte to an I/O location
Read Word Reads a word from an I/0O location
Write Word Writes a word to an 1/0 location

Typing any character is a shortcut for the Remove local menu command in
this pane.

The Data Pane Local Menu

Goto Displays data at new address
Search Searches for string or data bytes
Next Searches again for next occurrence

Chapter 12, Command Reference 189



Change
Follow
Long Follow
Previous
Display As
Byte
Word
Long
Comp
Float

Real

Double
Extended

Block
Clear
Move
Set
Read
Write

Changes data bytes at cursor address
Follows near pointer chain

Follows far pointer chain

Displays data at last address

Displays hex bytes

Displays hex words

Displays hex 32-bit long words

Displays 8-byte Pascal comp integers

Displays short (4-byte) floating numbers (Pascal
singles)

Displays 6-byte floating-point numbers (Pascal
reals)

Displays 8-byte floating-point numbers

Displays 10-byte floating-point numbers (C long
double)

Sets memory block to zero
Moves memory block

Sets memory block to value
Reads from file to memory
Writes from memory to file

Typing any character is a shortcut for the Change local menu command in

this pane.

The Stack Pane Local Menu

Goto
Origin
Follow
Previous
Change

Displays stack at new address

Displays data at SS:SP

Displays code pointed to by current item
Restores display to last address

Allows you to edit information

Typing any character is a shortcut for the Change local menu command in

this pane.

The Register Pane Local Menu

Increment
Decrement
Zero

Change
Registers 32-bit

190

Adds one to highlighted register
Subtracts one from highlighted register
Clears highlighted register

Sets highlighted register to new value
No/ Yes: Toggles 32-bit register display

Turbo Debugger User’s Guide



Typing any character is a shortcut for the Change local menu command in
this pane.

The Flags Pane Local Menu
Toggle Sets or clears highlighted flag

Pressing Enter is a shortcut for the local menu command in this pane.

The File Window Menu

The File window shows the contents of the disk file as hex bytes or as a disk
file.

Goto Displays line number or hex offset
Search Searches for string or data bytes
Next Searches again for next occurrence
Display As Ascii/Hex: Set file display mode
File Switches to view new file

Edit Edits file or changed bytes at cursor

Typing any character is a shortcut for the Search local menu command.

The Log Window Menu

The Log window shows messages sent to the log.
Open Log File Starts logging to a file
Close Log File Stops logging to a file
Logging No/ Yes: Toggles logging
Add Comment Writes user comment to log
Erase Log Clears all log messages

Typing any character is a shortcut for the Add Comment local menu
command.

The Module Window Menu

The Module window shows the source file for the program module.

Inspect Shows contents of variable under cursor
Watch Adds variable under cursor to watch list
Module Changes to display different module
File Changes to display different file

Chapter 12, Command Reference 191



Previous Displays last module and position

Line Displays line number in module
Search Searches for text string

Next Searches for next occurrence of string
Origin Displays current program location
Goto Shows source or instructions at address
Edit Starts editor to edit source file

Typing any character is a shortcut for the Goto local menu command.

The Numeric Processor Window Menus

The Numeric Processor window has three panes: The Register pane, the
Status pane and the Control pane.

The Register Pane Local Menu

The following keys are shortcuts to local menu commands in this pane:

Zero Clears the highlighted register
Empty Sets the highlighted register to empty
Change Sets the highlighted register to a value

Typing any character is a shortcut for the Change local menu command in
this pane

The Status Pane Local Menu
The following keys are shortcuts to local menu commands in this pane:
Toggle Cycles through valid flag values

Pressing Enter is a shortcut for the local menu command in this pane.

The Control Pane Local Menu

Toggle Cycles through valid flag values

Pressing Enter is a shortcut for the local menu command in this pane.

192 Turbo Debugger User’s Guide



The Stack Window Menu

The Stack window shows the currently active functions.

Inspect Shows source code for highlighted function
Locals Shows argument types for function

Pressing Enter is a shortcut for the Inspect local menu command.

The Variables Window Menus

The Variables window has two panes, each with a local menu: The Global
Symbol pane and the Local Symbol pane.

The Global Symbol Pane Local Menu

Inspect Shows contents of highlighted symbol
Change Changes value of highlighted symbol

Pressing Enter is a shortcut for the Inspect local menu command in this
pane.

The Local Symbol Pane Local Menu

Inspect Shows contents of highlighted symbol
Change Changes value of highlighted symbol

Pressing Enter is a shortcut for the Inspect local menu command in this
pane.

The Watches Window Menu

The Watches window has a single pane that shows the names and values of
the variables you're watching.

Watch Adds a variable to watch

Edit Lets you edit a variable

Remove Deletes highlighted variable

Delete All Deletes all watch variables

Inspect Shows contents of highlighted variable
Change Changes contents of highlighted variable

The following keys are shortcuts to local menu commands in this window:

Chapter 12, Command Reference 193



Watch
Watch

any character
Enter

The Inspector Window Local Menu

An Inspector window shows the contents of a data item.

Range Selects array members to inspect

Change Changes the value of highlighted item
Inspect Opens new Inspector for highlighted item
Descend Expands highlighted item into this Inspector

New Expression Inspects a new expression in this Inspector

Text Panes

This is the generic name for a pane that displays the contents of a text file.
The blinking cursor shows your current position in the file. The following

table lists all the commands.

Key Function

Ins Marks text block

Up arrow Moves up one line

Down arrow Moves down one line

Right arrow Moves right one column
Left arrow Moves left one column
Ctrl-Right arrow  Moves to next word
Ctrl-Leftarrow ~ Moves to previous word
Home Goes to start of line

End Goes to last character on line
Pglp Scrolls up one screen

PgDn Scrolls down one screen
Cirl-Home Goes to top line of pane
Cirl-End Goes to bottom line of pane
Ctrl-PgUp Goes to first line of file
Ctrl-PgDn Goes to last line of file

If you are not using the Control-key shortcuts, you can also use the
WordStar-style Control keys for moving around a Text pane:

194

Turbo Debugger User’s Guide



Key

Function

Ctrl-S
Ctrl-D
Ctrl-E
Ctrl-X
Ctrl-R
Ctrl-C
Ctrl-F
Ctrl-A

Moves left one column
Moves right one column
Moves up one line
Moves down one line
Scrolls up one screen
Scrolls down one screen
Moves to next word
Moves to previous word

List Panes

This is the generic name for a pane that lists information you can scroll
through. A highlight bar shows your current position in the list. Here’s a
list of all the commands available to you.

Key Function

Up arrow Moves up one item

Down arrow Moves down one item

Home Goes to start of line

End Goes to last character on line

Pglp Scrolls up one screen

PgDn Scrolls down one screen

Ctrl-Home Goes to top line of list pane

Ctrl-End Goes to bottom line of list pane
Ctrl-PgUp Goes to first item in list

Ctrl-PgDn Goes to last item in list

Backspace Backs up one character in incremental match
Letter Incremental search (select by typing)

You can also use the WordStar-style Control keys for moving around a List

pane:
Key Function
Ctrl-E Moves up one line
Ctr-X Moves down one line
Ctrl-R Scrolls up one screen
Ctrl-C Scrolls down one screen

Chapter 12, Command Reference 195



Commands in Prompt Boxes

The following table shows the commands available when you're inside a

prompt box.

Key Function

Up arrow Moves up one history item

Down arrow Moves down one history item

Right arrow Moves right one character

Left arrow Moves left one character

Ctrl-Right arrow Moves to next word

Ctrl-Leftarow ~ Moves to previous word

Home Goes to start of line

End Goes to last character on line

PgUp Scrolls up one screen

PgDn Scrolls down one screen

Ctrl-Home Goes to top line of list pane

Ctrl-End Goes to bottom line of list pane

Cirl-PgUp Goes to first item in list

Ctrl-PgDn Goes to last item in list

Backspace Deletes the character before the cursor

Enter Accepts your input and proceed

Del Deletes the character after the cursor

Esc Cancels the prompt and returns to menu
196 Turbo Debugger User’s Guide



Window Movement Commands

Key Function
Scroll Lock Toggles window-positioning mode
Up arrow Moves window up one line
Down arrow Moves window down one line
Right arrow Moves window right one column
Left arrow Moves window left one column
Shift-Up arrow Resizes window; moves bottom up
Shift-Down arrow  Resizes window; moves bottom down
Shift-Right arrow  Resizes window; moves right side
, toward left
Shift-Left arrow Resizes window; moves left side toward
right
Home oves to left side of screen
End Moves to right side of screen
Pglp Moves to top line of screen
PgDn Moves to bottom line of screen
Enter Accepts current position
Esc Cancels window-positioning command

Wildcard Search Templates

You can use wildcard search templates in two circumstances:

m when entering a file name to load or examine
m when entering a text search expression in a text pane

The ? (question mark) matches any single character in the search ex-
pression. The * (asterisk) matches 0 or more characters in the search
expression.

File Lists

When you are prompted for a file name and you supply one of the
following responses, you will get a file list to pick from:

m a file name containing the * or ? wildcard characters
m a disk drive letter, like C:
m a directory name, like /MYDIR

The list of files has two panes. On the left appears a list of the files in the
directory you specified. On the right appears a list of the directories in the

Chapter 12, Command Reference 197



directory you specified, along with the special entry “..\* indicating the
parent directory. You can use Tab and Shift-Tab to switch between the two
panes, just as with other multi-paned windows.

By pressing Enter while the highlight is on a directory in the right pane, you
switch to that directory. The matching files in that directory then appear in
the left pane.

If you want to enter a new directory or wildcard file name, you can press
Ins and edit or replace the current directory and wildcard mask.

Remember that a file list is like any other list, meaning that you can
incrementally match on a file name by starting to type the name of the file
that you want. When the highlight is over the correct file name, press Enter
to accept the file name.

Complete Menu Tree

Figures 12.1, 12.2, and 12.3 show the complete structure of Turbo De-
bugger’s pull-down menus.

198 Turbo Debugger User’s Guide



File View Run
Load... Breakpoints
Change dir.. Stack
Get info Log
0S shell Watches
Quit Alt-X Variables
Module.. Alt-F3
File..
Program: c:\debug\test CPU
Status Loaded Dump
Registers
———— Memory ----- Numeric processor
DOS . 150Kb User screen Alt-F5
Debugger : 228Kb
symbols : 4Kb Another ™™
Program 256Kb
Available: OKb
Module..
User Interrupts: Dump
File..
DOS version : 3.10
Breakpoints Software
8-15-1988 11 32am
Press any key Run Fo
Program reset Ctrl-F2
Go to cursor F4
Trace into F7
Step over F8
Execute to.. Alt-F9
OUntil return Alt-F8
Animate Alt-F4
Instruction trace Alt-F7

Figure 12.1: The File, View, and Run Menus

Chapter 12, Command Reference

199




Breakpoints Data Window
Inspect..
Evaluate/modify.. Ctrl-F4
Watch.. Ctrl-F7
Function return

Toggle F2
At.. Alt-F2
Changed memory global..
Expression true global..
Delete all

Window pick Alt-0

Next Pane Tab
Move/Resize.. Scrlk
Close F3

Undo close Alt-F6

Dump pane to log
Restore standard
Screen repaint

Figure 12.2: The Breakpoints, Data, and Window Menus

200

Turbo Debugger User’s Guide




Options

Language Source Source module
Macros

Environment C

Path for source.. Pascal
Arguments... Assembler
Save options..

Restore options..

All Create Alt =
Macros Stop recording Alt -
Layout
Remove
Delete all
Integer format Both
Display swapping Smart
Screen size 25
Tab size.. 8
None Decimal
Smart Hex

Always Both

Figure 12.3: The Options Menu

Chapter 13, How to Debug a Program 201



202 Turbo Debugger User’s Guide



13

How to Debug a Program

Debugging is like the other phases of designing and implementing a pro-
gram—part science and part art. There are specific procedures that you can
use to track down a problem, while at the same time, a little intuition goes a
long way toward making a long job shorter.

The more programs you debug, the better you will get at rapidly locating
the source of problems in your code. You will learn techniques that suit you
well, plus learn to correct methods that may cause you problems time and
time again.

Let’s begin by looking at where to start when you have a program that
doesn’t work correctly.

In this chapter, we’ll discuss some different approaches to debugging, talk
over the different types of bugs you may find in your programs, and
suggest some ways to test your program to make sure that it works—and
keeps on working.

When Things Don’t Work

First and foremost, don’t panic! Seldom does even the most expert pro-
grammer write a program that works the first time.

To avoid wasting a lot of time on fruitless searches, try to resist the
temptation to randomly guess where a bug might be. A better technique is
to use a universally tried-and-true technique: divide and conquer.

Chapter 13, How fo Debug a Program 203



Make a series of assumptions, testing each one in turn. For example, you
can say, “The bug must be occurring before function xyz is called,” and
then test your assumption by stopping your program at the call to xyz to
see if there’s a problem. If you do discover a problem at this point, you can
make a new assumption that the problem occurs even earlier in your pro-

gram.

If, on the other hand, everything looks fine at function xyz, your initial
assumption was wrong. You must now modify that assumption to “The
bug is occurring sometime after function xyz is called.” By performing a
series of tests like this, you can soon find the area of code that is causing the
problem.

That’s all very well, you say, but how do I determine whether my program
is behaving correctly when I stop it to take a look? One of the best ways of
checking your program’s behavior is to examine the values of program
variables and data objects. For example, if you have a routine that clears an
array, you can check its operation by stopping the program after the
function has executed, and then examining each member of the array to
make sure that it is cleared.

Debugging Style

Everyone has their own style of writing a program, and everyone develops
their own style of debugging. The debugging suggestions we give here are
just starting points that you can build on to mold your own personal
approach.

Many times, the intended use of a program influences the approach you
take when debugging it. Some programs are for your own use, or will only
be used once or twice to perform a specific task. For these programs, a full
scale testing of all the components is probably a waste of time, particularly
if you can determine the program is working correctly by inspecting its
output. For a program that will be distributed to other people, or that
performs a task whose accuracy is hard to determine by inspection, you
will want your testing program to be far more rigorous.

Run the Whole Thing

For simple or throw-away programs, the best approach is often just to run
it and “see what happens.” If your test case has problems, you can then
step back and run the program with the simplest possible input and then
check the output. You can then move on to testing more complicated input

204 Turbo Debugger User’s Guide



cases until the output is wrong. This will give you a good feeling for just
how much or how little of the program is working.

Incremental Testing

When you want to be very sure that a program is healthy, you must test the
individual routines as well as check that it works as expected for some test
input data. You can do this in a couple of ways: You can test each routine as
you write it by making it part of a test program that calls it with test data,
or you can use the debugger to step through the execution of each routine
when the whole program is finished.

Types of Bugs

Bugs in your program will fall into two broad categories: those peculiar to
the language you're working in (C, Pascal, or assembler), and those that are
common to any programming language or environment.

By making mental notes as you debug your programs, you will learn both
the language-specific constructs you have trouble with, and also the more
general programming errors you make. You can then use this knowledge to
try to avoid making the same mistakes in the future, and to give you a good
starting point when looking for bugs in future programs that you write.

The key point here is to try to understand how each bug is an instance of a
general family of bugs or misunderstandings, and thereby to improve your
ability to write errorless code. After all, it’s better to write bug-free code
than to be really good at finding bugs.

C-Specific Bugs

The Turbo C User’s Guide has a section on pitfalls in C programming, but
what better place to reiterate and expand on those pitfalls than in a lesson
on how to debug.

The Turbo C compiler is very good at finding a number of C-specific bugs
that other compilers do not warn you about. You can save yourself some
debugging time by turning on all the warnings that the compiler is capable
of generating. (See the Turbo C User’s Guide for information on setting these
warnings.)

The following is by no means an exhaustive list of some ways to get in
trouble with C. For some of these errors, the Turbo C compiler issues a

Chapter 13. How to Debug a Program 205



warning message. Remember to examine the cause of any warning
messages because they may be telling you of a bug in the making.

Using Uninitialized Auto-Variables
In C, an auto-variable declared inside a function has an undefined value
until you load it with something:

do_ten_times()
{
int n;
while (n < 10)
{

nt4;
}

This function will execute the while loop an unpredictable number of times
since 7 is not initialized to zero before being used as a counter.

Confusing = and ==
C allows you to both assign a value (=) and test for equality (==) within an
expression; for example,

if (x =y) {

-

This inadvertently loads y into x and performs the statements in the if
expression if the value of y is not zero. You almost certainly meant to say

if (x ==y)

Confusing Operator Precedence

C has so many operators that it is sometimes easy to mix up which ones get
applied first when an expression contains many different ones. One of the
most common combinations to cause grief is the mixture of shift operators
with addition or subtraction. For example,

=3<«1+1

evaluates to 12, not the 7 you might expect if << took place before the +.

206 Turbo Debugger User’s Guide



Bad Pointer Arithmetic

When you start getting fancy with pointers and use them to step through
arrays, be careful of addition and subtraction on pointers. For example,

int *intp;

intp += sizeof(int);
does not do the hoped-for thing: Increment infp to point to the next element
of an integer array. In fact, intp is advanced by two array elements. When
adding to or subtracting from a pointer, C takes into account the size of the
item the pointer is pointing to, so all you have to do to move the pointer to
the next element is say

intpt+t

Unexpected Sign Extension

You must be careful when assigning between integers of different sizes:

int 1 = OXFFFE;

long 1;

1=1;

if (1 & 0X80000000) {
.. /* this DOES get executed */

}

One of C’s strong points can cause you trouble if you are not aware of its
consequences. C lets you assign freely between scalar values (char, int, and
so on). When you copy an integer scalar into a larger one, the sign (positive
or negative) is preserved in the larger scalar by propagating the sign
(highest) bit throughout the high portion of the larger scalar. For example,
an int value of -2 (Oxfffe) becomes a long value of -2 (Oxfffffffe).

Unexpected Truncation

This example is sort of the opposite of the previous one:

int i;

long 1 = 0X10000;
i=1;

while (1 > 0) {

/* this does not get executed */

}

Here, the assignment of 1 to i resulted in the top 16 bits of 1 being truncated,
leaving a value of zero in i.

Chapter 13, How to Debug a Program 207



Superfluous Semicolon

The following code fragment may appear to be fine at first glance:

for (x = 0; x < 10; x++);
{

/* only executed once */

}

Why does the code between the braces execute only once? Closer
inspection reveals a semicolon (;) at the end of the for expression. This
hard-to-find bug causes the loop to execute ten times, but not do anything.
The subsequent block is then executed once. This is a nasty problem
because you can’t find it with the usual technique of examining the
formatting and indenting of code blocks in your program.

Macros with Side Effects

The following problem is enough to make you swear off #define macros for
life:

#define toupper(c) ’'a’<= (c)&&(c)<="z' 2 (c)-'a’'-'A" : (c)
char ¢, *p;
¢ = toupper (*ptt);

Here, p is incremented two or three times, depending on whether the
character is uppercase. This type of problem is very hard to find since the
side effect is hidden within the macro definition.

Repeated Auto-Variable Names

Another hard one to find:

my func ()

{
int n;
for (n =5; n>= 0; n--)
{

int n = 10;

if (n == 0)
{
/* never gets executed */

}
}

208 Turbo Debugger User’s Guide



Here, the auto-variable name 7 is reused in an inner block, hiding access to
the one declared in the outer block. You must be careful when re-using
variable names in this manner. You can get into this type of trouble easier
than you might think, since most programmers use ‘a limited number of
variable names for local loop counters (for example, 7, n, and so forth).

Misuse of Auto-Variables

int *divide by 3(int n)
{

int i;
i=n/3;
return{&i);

}

This function means to return a pointer to the result. The trouble is that by
the time the function returns, the auto-variable is no longer valid and is
likely to have been overwritten by other stack data.

Undefined Function Return Value

If you don’t end a function with the return keyword followed by an
expression, an indeterminate value will be returned. For example,

char *first capital letter(char *p)
{
while (*p)
{
1f ('A' <= *p && *p <= '1")
return(p);
ptti
}

/* oops--nothing returned here */

}

If there are no capital letters in the string, a garbage value is returned. You
should put a return(0) as the last line of this function.

Misuse of Break Keyword

The break keyword only exits from a single level of do, for, switch, or
while:

Chapter 13, How to Debug a Program 209



for (...)
while (...)

if (.0
break; /* we want to exit from for loop */

}

Here, the break only exits from the while loop. This is one of the few cases
where it is vaguely excusable to use the goto statement.

Code Has No Effect

Sometimes a typo results in perfectly compilable source code that doesn’t
do what you want:

a+ b;

Here, the intended line of code was a += b.

General Bugs

The following examples barely scratch the surface of the kinds of problems
you can have in your programs.

Hidden Effects

Sometimes, a call to a function can leave things in an unexpected way:

char workbuf[20];

strepy (workbuf,"all done\n");
convert ("xyz");
printf(workbuf);

convert (char *p) {
strepy (workbuf, p);
while (*p)

}

Here, the correct thing to do would be to have the function use its own
private work buffer.

210 Turbo Debugger User’s Guide



Assuming Initialized Data

Sometimes, you presume that another routine has already set something up
for you:

char *workbuf;
addworkstring(char *s)

{
strcpy (workbuf, s); /* oops */
)

You could code this routine defensively by adding the statement:

if (workbuf == 0) workbuf = (char *)malloc(20);

Not Cleaning Up When Done

This sort of bug can take a long time to finally crash your program by
running out of heap space:

crunch_string(char *p)

{
char *work = (char *)malloc(strlen(p));
strcpy (work, p);

return(p); /* whoops--work still allocated */

}

Fence-Post Errors

These bugs are named after the old brain teaser that goes “If I want to put
up a 100-foot fence with posts every 10 feet, how many fence posts do I
need?” A quick but wrong answer is ten (what about the final post at the
far end?). Here’s a simple example from the world of C programming:

for (n =1; n < 10; ntt)
{

/* oops=-only 9 times */
}

Here you can easily see the numbers 1 and 10, and you think that your loop
will go from one to ten. You'd better make that < into a <= for it to work.

Chapter 13, How to Debug a Program 211



Pascal-Specific Bugs

Because of the strong type- and error-checking features of Pascal, there are
few bugs specific to the language itself. However, since Turbo Pascal gives
you the power to turn off much of that error checking, you can introduce
errors that you might not have otherwise. And-even with Pascal, there are
still ways of getting into trouble.

Uninitialized Variables

Turbo Pascal does not initialize variables for you; you must do it yourself,
either through assignment statements, or by declaring them as typed
constants. Consider the following program:

program Test;
var
I,J,Count : integer;

begin
for I := 1 to Count do begin

J = I*I;
Writeln(I:2,’ ',J:4)
aend
end.

Count has whatever random value occupied its location in memory when it
was created, so you have no idea how many times this loop is going to
execute.

Furthermore, variables declared within a procedure or function are created
each time you enter that routine and destroyed when you exit; you cannot
count on those variables retaining their values between calls to that routine.

Dangling Pointers

Three common errors occur with pointers. First, as mentioned above, don’t
use them before assigning them a value (nil or otherwise). Just like any
other variable or data structure, a pointer is not automatically initialized
just by being declared. It should be explicitly set to an initial value (by
passing it to New or assigning it nil) as s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>