
,0 e Sf Distriblltion (' d Priced Item
Printed in U.S
April 1986 .A.

Burroughs

1170057

Burroughs cannot accept any financial
responsibilit:les that may be the result

or other
of your use

including
damages.
by this

of this information or software material,
direct, indiJ~ect, special or consequential
There are no \'iarranties extended or granted
document or software material.

You should be very careful to ensure that the use of
this softwarc~ material and/or information complies
with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Comments or suggestions regarding this document
should be submitted on a Field Communication Form
(FCF) with ~he Class specified as "2" (System
Software), the Type specified as "1" (F.T.R.), and
the Product specified as the seven-digit form number
of the manual (for example, "1170057").

i

\ielcome to A Series systems! Whether you have already acquired or are
considering acquiring an A Series system, Burroughs wants you to
understand all the many advantages and features of these systems.
Burroughs A Series systems offer a complete environment to meet your
information management needs, an environment that provides for
information processing, control, and accessibility. You should be aware
of what is available in this environment in order to tailor a system for
your specific uses and to achieve maximum productivity.

To help you become aware of what you need to know, Burroughs has
produced the "Introduction to A Series systems." This is the manual to
read first. It presents an overview of A Series systems and acts as a
central source of information for the systems.

Because this manual covers so many individual subjects, it is not
possible to discuss each one in depth. You can find more information in
the sources mentioned in the text and in the A Series manuals published
by Burroughs. The "Where to Find More Information" section describes
the documentation available and how to order it.

~IBO SHOULD READ THIS KANUAL

If you are a new A S.~ries system customer, are considering acquiring a
system, or just want a general introduction to A Series systems, then
you should read this manual. In addition, because the A Series systems
are functionally compatible with the B 5000/B 6000/B 7000 computer
systems, anyone wanting an introduction to those systems should read
this manual.

You do not need any prior knowledge of Burroughs systems to understand
the information in the manual, but you should have a basic grasp of
elementary computer concepts. Each section of the manual addresses a
specific audience, and the presentation of the material in some sections
assumes that you have read prior sections. The following paragraphs
explain more about the use of the manual.

ii
INTRODUCTION TO A SERIES SYSTEMS

The manual is structur,=d so that you can select and read only the'
sections that apply to your needs.

The first three secti01s of the manual are
A Series systems. T1ey should be read
systems or to A Series systems.

a general introduction to
by anyone new to Burroughs

Section 1, "What's in~n A Series System," introduces A Series systems
and describes the cjmplete package that you get when you acquire a
system. Section 2, "Virtual Memory, Stacks, and Other System Concepts,~
gives you a short history of Burroughs large systems and explains:
concepts that form the building blocks for A Series systems. Section 3,
"A User' s Vie~1 of System Functions," presents the system according to
its use and as seen by the different types of users.

The next four sections are designed to help users find guidance on
particular subjects. For maximum benefit, you should read Sections 1,
2, and 3 before reading these sections.

Section 4, "Planning fjr Effective Operations," is directed to system
administrators and operators who are responsible for planning and
implementing the initial and day-to-day operations of the system.
Section 5, "Programming on A Series Systems," is written for both
experienced and inexp=rienced programmers and explains issues that
influence program effi:iency.

"If You Have a Problem," Section 6, is for all users and explains what
to do and where to go for help when the unexpected happens. Section 7,
"Where to Find More Information," also for all users, lists available
manuals by subject ~rea, briefly describes them, and tells you how to
order them.

The following ta.ble sunmarizes which sections each kind of user should
read.

IF YOU ARE

A customer

A MIS manager or other
company manager

An operator

A programmer

A system administrator

About This Manual

THESE SECTIONS ARE OF
PRIMARY INTEREST TO YOU

1, 2, 3, 6, 7

1, 2, 3, 6, 7

1, 2. 3, 4, 6, 7

1. 2. 3, 5, 6, 7

All sections

iii

.1

CONTENTS

WHAT'S IN AN A SERIES SYSTEK
A SERIES SYSTEM HARDWARE

Processor Subsystem.
Memory Subsystem
Input/Output (I/O) Subsystem.
Maintenance Subsystem. .
Updating Equipment

A SERIES SYSTEM SOFTWARE • . .
Essential System Software.
Optional System Software
Updating System Software

SYSTEM DOCUMENTATION . .
Printed Documentation. . .
On-line Documentation.

SUPPORT FOR BURROUGHS SYSTEMS ..
Hardware Equipment Support .
Software Products Support ..

VIRTUAL MEMORY, STACKS, AND OTHER SYSTEM CONCEPTS ..
HOW THE SOFTWARE IS ORGANIZED. • .

System Software.
Productivity Software ..
Application Software

LANGUAGES. . . .
TASKS AND JOBS . . .
MULTIPROGRAMMING AND MULTIPROCESSING
STACKS AND PROCESSES
VIRTUAL MEMORY . . .
INTERACTIVE AND BATCH PROGRAMS .
LIBRARIES. ~ . . .
CONFIGURATION, RECONFIGURATION, AND SOFT CONFIGURATION
A SHORT HISTORY OF BURROUGHS SYSTEMS

A USER'S VIEW OF SYSTEM FUNCTIONS ...
Menu-Assisted Resource Control (MARC) ..
MESSAGE CONTROL SYSTEMS

Communications Management System (COMS) .
Command AND Edit (CANDE) Language.

PROGRAMMING LANGUAGES.
Standard Languages ~ . • .
Combining Programs in Different Languages ..

JOB AND TASK MANAGEMENT ...
Controlling Jobs And Tasks .
Billing
Tasking
Restarting Jobs.

FILE MANAGE]~ENT.
File Types and Names
File Structure

1
3
4
4
5
6
6
8
8
9

11
13
13
14
15
15
16

19
19
20
22
23
24
25
27
29
31
33
34
36
37

41
41
43
44
46
49
49
51
52
53
54
54
55
56
56
58

v

vi

Disk File M2.intenance.
The DUMPALL File Maintenance Utility .
Cataloging . . .
Files on Tape. .

DATA MANAGEMENT ..
Data Managen~nt System II
DataAid

(DMSII) .

58
59
60
61
62
62
63

Extended Retrieval with Graphic Output (ERGO). 63
64
65

Advanced Dat.a Dictionary System (ADDS)
DM Interpreter
Database Cer·tification (DBCERTIFICATION) 66

66
67
67
68
68
72
74
75
76
78
79
79
80
80
83
84
85
85
87
87
89
90
94
97
98

The DB MONI'l'OR Utility
The DBANALYZER Utility
The INQUIRY Utility.•..

DATA COMMUNIC~TIONS
Data Communjcations Hardware.
Data Communjcations Software.
Data Communjcations Utilities

BURROUGHS NET~'ORK ARCHITECTURE (BNA)
How It Work~
Using BNA.

OPERATIONAL I~TERFACE. .
Direct Entry of System Commands ..

SECURITY
Software Access Control.
Network Security . .
Compiler Security.

INPUT/OUTPUT SUBSYSTEM .
Physical I/C
Logical I/O.
Input/Output Operations
File Attributes

DISK SUBSYSTEM
Mirrored Disk. . .

PRINT SYSTEM
Controlling the Print System .

INTRINSICS ANI: LIBRARIES · . 100
SORT Intrinsic 101

SYSTEM PERFORMANCE MONITORING. 102
System Management Facility II (SMFII). 102
The BARS Utility 105
LOGGER and LOGANALYZER 105
The SUSPENDER Utility. 106
The Utilization Command ..
ODT Commands
GETSTATUS. SETSTATUS. and SYSTEMSTATUS .
The MARC Menu System .

SOFT RECONFIGURATION . .

· . 106
. 107

. . . 108
108
109

ASD Extended Memory ..
Memory Partitioning.
Sharing of I/O Subsystems.
The Configuration File . .
The Configuration Utility.

. 109
. . . • . • . • . . . 110

· . III
• • • • . 112

. 113

4
4.1

4.2

!5
!S .1

!3.2

!3.3

Reconfiguring the System

PLANNING FOR EFFECTIVE OPERATIONS. •
INITIAL PLANNING . . .

SYSTEM CONFIGURATION
PROGRESSION AND CONVERSION
PROGRESSION FROM BURROUGHS SYSTEMS . .

PLANNING FOR BASIC SYSTEM OPERATION ..
BASIC SYSTEM INITIALIZATION ...
AFTER COLD START •
SOFTWARE CONFIGURATION . •

ASD Systems Memory Management ..
ASN and GLOBAL/Tightly-Coupled Systems .
Setting Memory Factors . . • .
Setting System Options

vii

· 113

• 115
· 115
• 115
· 116
· 117
· 118
· 118

· . 120
· . 121
· . 121

. 121
. 122

· 124
Setting Up User Identification 125
Setting Up Security.•. · 125
Distributing Files on Disk • 126
Setting Up Supervisor Programs · 127
Setting Up Job Queues. 128
Setting Up Data Communications 128
Setting Up a Multilingual System 131

PLANNING DAY-·TO-DAY OPERATIONS 132
KEEPING RECORDS
MONITORING SYSTEM PERFORMANCE. .
MANAGING JOBS. .
MAINTAINING DISK FILES
MANAGING BACKUPS . . .

PLANNING FOR EXCEPTIONAL OPERATIONS.
MEMORY DUMPS
RECONFIGURING THE SYSTEM
UPDATING THE SOFTWARE.
PTD CONFIDENCE AND DIAGNOSTIC TESTING. .

PROGRAMMING ON A SERIES SYSTEMS. •
PROGRESSION AND CONVERSION .

AVAILABLE TOOLS
CONVERSION OF PROGRAMS . .
CONVERSION OF DATA

PROGRAM INITIALIZATION, RECOVERY, AND RESTART.
APPLICATION PROGRAM INITIALIZATION . .
RECOVERY AND RESTART

Interactive Programs . . .
Batch Programs and Jobs ..

SUPERVISOR PROGRAMS.
ONGOING CONSIDERATIONS

DESIGN OF PROGRAMS .
File and Data Structure.
The Effect of Program Structure.
General Practice
Program Maintenance.

PROGRAM DEVELOPMENT
APPLICATION PROGRAM MANAGEMENT .

· 132
· 134
· 135
· 137
· 138
· 139

. . . 139
· 140
· 141
· 142

• 143
· 143
· 143
· 144
· 145

· . 146
· 146
· 147
· 147
· 148
· 149
· 150

· . 150
· 150
· 152
· 153
· 154

· . 155
· 157

viii

5.4

6

7

Code File Cc,mpatibili ty. . .
Distributio~ of Files

CONTROLLING P~~OGRAM CHANGES. .
TESTING

EXCEPTIONAL SITt'ATIONS
NEW RELEASES . .
DEIMPLEMENTATI0N OF OLD FEATURES .

IF YOU HAVE A P'~OBLEM ••
DEFINING THE PROBLEM .

Make Quick Checks ..
Ask Basic Questions
Break the Problem Down

WHERE TO GO FeR HELP
Hardware Prcblems
Software Prcblems
User Groups

REPORTING SYSTEM PROBLEMS AND SUGGESTIONS ..
General Protlems
Data Communications Problems .
Data Management Problems . .
Compiler Problems.
ComplE~ting Field Communication Forms (FCFs).

WHERE TO I;'IND MORE INFORKATION ••
DOCUMENTATION LISTED BY SUBJECT. .

Database Management ..
Data Communications .. .
Languages
Message Control Systems ..
Multilingual Capabilities Management
Opera t ions
Performance Monitoring .
peripherals
programming Productivity Aids ..
ProgrE~ssion. . .
Reference Cards.
System Software.

DOCUMENTATION l.ISTED ALPHABETICALLY ..
HOW TO ORDER DJCUMENTATION

Domestic (United States) Customers.
International Customers.

DOCUMENTATION :ONVENTIONS.
How to Read ~ Railroad Diagram
Constants. . .
Variables.
Required Ite:ns and Punctuation .
Optional Items .
Loops. . .

GLOSSARY ••

INDEX • • •

· . 157
· • 158
· . 159
· . 160
· . 161

· 161
· . 163

165

· . 166
· • 166
· . 167
· . 168

170
170
170

· . 171
174

· . 174
175
176

· . 176
177

• • 185
... 185

· . 185
· . 186

· 186
· 186
· 187
· 187
" 187

· '. 187
· ., 188
· .. 188
· " 188

188
189
203

. . . . 203
203

· . 204
· . 204
· • 205

. .. ' 206
207

. ... 207
· . 208

• • 213

23·3

1

1 WHAT'S ~ AR A SERIES SYSTEM

The A Series systems are the newest members of the Burroughs family of
computer systems. With the A Series systems, Burroughs continues its
commitment to provide sophisticated, easy-to-use, cost-effective, and
compatible hardware and software. These systems offer additional
features and enhanced performance while maintaining compatibility with
the Burroughs B 5000/B 6000/B 7000 Series systems. Current users of the
B 5000, B 6000, and B 7000 Series can grow into the A Series to obtain
more features and performance without undergoing a conversion. The
A Series systems support a full line of mainframe computers, general­
and specific-purpose terminals, printers, document processors, and data
storage devices.

Large-scale A Series configurations can act as central systems, managing
on-line networks and large integrated databases. Smaller configurations
can also act as central systems and, in addition, serve decentralized
data processing needs by providing high levels of computer power at
regional or departmental sites for transaction processing, data
communications, and terminal network control.

The A Series systems provide state-of-the-art hardware technology in
systems that span a wide range of operating power. A Series systems are
designed to efficiently execute high-level languages like COBOL rather
than low-level assembly or machine languages. The user can achieve the
high productivity of third- and fourth-generation tools without
sacrificing performance.

Through the use of advanced network and data management products, users
can, with minimum effort, produce transaction-oriented data management
systems and extensive on-line communication networks.

Burroughs A Series systems offer a complete package:

o Hardware eqUipment

o System software to run that eqUipment

o Documentation for both hardware and software

o Support services to help you obtain the optimum use of your
system

2
INTRODUCTION TO A SERIES SYSTEMS

The remainder of this s~ction describes, at an overview level t the
complete package that you receive. For more detailed descriptions.
refer to the section "A User's View of System Functions" for software
and to the section "If ~ou Have a Problem" for support services. If you
need answers to specifi: questions not covered by this manual. consult
your Burroughs support)r sales representative.

3
What's in an A Series System

!~ SERIES SYSTEM HARDWARE

'rhe hardware equipment for A Series systems is modular, to allow maximum
~9ase and freedom of system expansion. The hardware and software
together adjust system operation to efficiently use whatever hardware
modules are available. This system-wide adjustment means the hardware
configuration can change without requiring that application software or
the operating system be changed or recompiled.

Each A Series system
modules in order to
following modules:

o Processor

o Memory

requires a
function.

o Input/output (I/O)

o Maintenance subsystem

Additional processor, memory, and
minimum configuration to increase
performance. The total number of
system depends on the type of
needs of the particular user site.

minimum configuration of hardware
This configuration consists of the

I/O modules can be added to the
capacity and capability and to enhance
modules of each type in any particular
A Series system and the memory and I/O

In addition to the mInImum configuration modules, a selection of
peripheral devices is available to customize the system to the needs of
E?ach site. These devices include peripherals such as hard disk drives,
terminals, magnetic tape drives, card handlers, printers. and data
communications equipment.

110st peripheral devices used on any A Series system are compatible with
all other A Series systems, B 7900 systems, and in some instances. with
peripherals currently used on other Burroughs systems.

\vithin the hardware system, one or more hardware modules of a particular
type comprise a functional subsystem. The following topics explain the
purpose and responsibilities of each subsystem.

4
IN~?RODUCTION TO A SERIES SYSTEMS

Processor SubsYstem

The processor subsystem consists of a series of processors that operate
together to execute application and system programs. To be executed,
programs must be translated into the particular instruction set
understood by the processors. In the past, this instruction set was
hard-wired into the machine that executed the task. It thus was a part
of the hardware and not easily changed. On current systems, the
instruction set is a program in the low-level machine that executes the
application and systE!ms program. Therefore it can be treated in much
the same manner as any system program. Programs for this low-level
machine are known as firmware, and the code that makes up the program is
known as microcode.

On the A Series system~:, most of the firmware is initially loaded into
the system from a portable medium, such as tape or a floppy diskette,
and stored on a hard djsk. These firmware programs are in the form of
object code. Firmware cannot be programmed or modified by customers.

Memory Subsystem

The memory subsystem provides storage and handles all transfers of data
between main memory and the main processor. This subsystem consists of
one or more memory control units and memory storage units, plus the
memory interface, whict may be part of a control unit.

Also within the memory subsystem is error detection and correction
circuitry, which can correct any single-bit errors with no degradation
in system performance. The logging of these correctable memory errors
allows minor hardware problems to be caught before they have an adverse
effect on the system.

A Series memory is comFosed of 6-byte (48-bit) words. Systems with the
Master Control Program/Advanced Systems (MCP/AS) operating system can
have up to 4 bil~"ion wcrds (24 billion bytes) of directly addressable
memory, depending on their hardware. Such a large amount of memory is
made available by the Actual Segment Descriptor (ASD) memory subsystem,
implemented by the MCP/AS.

5
What's in an A Series -System

The term "ASD" refers to the Actual Segment Descriptor that identifies
locations in memory. The ASD memory architecture supports a single
large memory structure that requires no partitioning. The ASD's
architectural design is organized as a monolithic storage area totally
available to all processors in the system. All allocated memory areas
are accessed and controlled through a central structure called the
Actual Segment Descriptor (ASD) table. The ASD table is a central
repository of information for all memory in use by the system.

"ASD Extended Memory" in the section "A User's View of System Functions"
explains how the ASD system works. The manual "Memory Subsystem
Overview" provides more detailed information.

The memory architecture is different for systems running the MCP (not
the MCP/AS). On smaller systems (those with up to six million bytes of
memory), the entire memory is visible to all programs. The user need
not be concerned with partitioning the memory system. To allow more
than six million bytes, a partitioning mechanism called Address Space
Number (ASN) is used. This scheme increases the physical memory
available to all programs beyond the architectural maximum. "Memory
Partitioning" in the section "A User's View of System Functions"
explains how the ASN scheme works.

On some A Series systems, processor performance is enhanced through the
use of data or code cache memory. A cache is a small component of
memory used to store the contents of recently referenced memory
locations. When a read request is received, the system checks the cache
first for the data. Because cache memory access is much faster than
main memory access, the read request is completed in less time if the
data is found in the cache. Burroughs has optimized the memory design
of A Series systems so that, today, the vast majority of all memory
accesses can be serviced from a cache.

JnputLOutput iILQl Subsystem

The input/output (I/O) subsystem manages all transfers of information
between the operating system and peripheral devices. It consists of a
series of specialized processors that are responsible for performing the
rictual transfers.

I/O operations are initiated by the operating system, but, once started,
continue under the control of these specialized processor modules. This
system of coordinated activities of multiple, independent hardware
modules can be thought of as a form of distributed processing within
Hach A Series system. Because the operating system shares control of
I/O operations, multiple simultaneous I/O operations are possible and
are a normal part of system operation.

6

IN1RODUCTION TO A SERIES SYSTEMS

The peripheral dE~vices are connected to the system and controlled
through Data Link Processors (DLPs), specialized processors that perform
the peripheral-dependent functions required for I/O operations. Each
DLP contains microcoded programs that accommodate the unique
characteristics of the type of peripheral device it controls. A
standard DLP exists for each type of peripheral device supported by
A Series systems.

Kaintenance Subsystem

The maintenance subsystem serves multiple purposes. It is the interface
through which the 0Ferator controls the hardware when the hardware
system is to be initialized, configured, or halted, or when system
software is to be loaded for the first time.

The maintenance subsystem is also a means to diagnose hardware problems.
Through this subsystem, an operator can load diagnostic code and
standalone programs from the storage devices and run this software to
test the components of the system.

The remote support system is connected to the hardware through the
maintenance subsystem. Remote support enables system problems to be
diagnosed through specialized programs run from a Burroughs central
support center. Thus, when technical personnel arrive at a site, they
can fix the problem efficiently with minimal loss of system time.

UpdatinE Equipment

As part of an ongoing effort to further enhance performance and
maintainability, Burroughs, from time to time, initiates design changes
to the hardware equipment. These are known as Engineering Changes, and
are provided to field engineers as Logic Improvement Notices (LINs) or
Reliability Improvement Notices (RINs). A LIN describes a functional
change that affects the operation of the product and is required for all
applicable hardware. A RIN describes a change that improves the
reliability of a produ8t, but does not affect its functional operation.
The change described by a RIN can normally be implemented on an
as-needed basis and generally is not mandatory.

LINs and RINs can be installed independently. However, on A Series
systems, they are usually combined into an Engineering Release Level
(ERL) that can be installed as a kit. So as to minimize disruption to
the system, LINs, RI~s, and kits are usually incorporated into the
system during preventive maintenance periods.

What's in an A Series System

On occasion, Burroughs issues firmware update releases.
are handled in the same manner as software releases
that an operator load the files from the release
appropriate disk or into the appropriate controller.
are discussed later in this section.

7

These releases
and require only
media onto the

Software releases

8
INTRODUCTION TO A SERIES SYSTEMS

A SERIES SYSTEM SOFTWAJm

Essential System[Software

System software perfl)rms overall control, traffic-directing, and
housekeeping function:3 for the hardware and software in the system.
Certain system softwarl~ is essential for the operation of the system;
the essential softwa:~e is marketed under the title of the System
Software Facility (SSF). Other system software is optional and can bEl

ordered at any time when an installation needs the special functions
they perform.

The System Software Facility product contents vary by system. but
typically consist of the following programs:

o The operating system, either the Master Control Program (MCP) or
the Master Control Program/Advanced Systems (MCP/AS). The MCP/AS
implements the Actual Segment Descriptor (ASD) extended memory
(available for !;ingle-processor A 3, dual-processor A 3. A 9, and
A 10 systems).

o Work Flow Language (WFL), to construct jobs that compile or run
programs on A Snries systems

o System librariE~s, to supply necessary and frequently
routines

used

o The ALGOL compL.er, to compile ALGOL programs and changes to
system software

o The DCALGOL COmI)iler, to compile changes to the system software
written in DCALGOL

o The NEWP compilE~r, to compile changes to the MCP and other system
software

o The Binder program, to bind separately compiled subprograms to
produce an execl~table program

o The System Management Facility II (SMFII), to evaluate system
performance

o MARC (Menu-Asslsted Resource Control),
interface to thE' computer system

a modifiable menu

o PRINTS (Print System), deals with the output of files to printing
devices such as image printers and line printers

o Other products, depending on the type of system

9
What's in an A Series System

The section "A User's View of System Functions" explains these programs
and their functions in greater detail.

pptional System Software

Optional system software perform special functions that may not be
needed on all systems. These programs can be ordered at any time. In
the following list, the programs are grouped by functional area. When
you are ready to order any of these software products, consult your
Burroughs representative for prerequisites or concurrent product
requirements. The section "A User's View of system Functions" explains
many of these products in greater detail.

~Iessage Control Systems

Message Control Systems (MCSs) are transaction-oriented interfaces to
the computer system that support various forms of data communications
processing.

o
o
o
o
o

COMS
CANDE
GEMCOS
RJE
X25

(Communications Management System)
(Command AND Edit language)
(GEneralized Message COntrol System)

(Remote Job Entry)

Language Compilers

0 APL/700 and APLB
0 BASIC
0 COBOL(68) and COBOL74
0 FORTRAN(66) and FORTRAN77
0 Pascal
0 PL/I
0 RPGII
0 Sort
0 DCALGOL

10
IW~RODUCTION TO A SERIES SYSTEMS

Productivity Aid~

o TADS (Test And Debug System) - a high-level debugging aid.
versions are available for ALGOL. COBOL74 , and FORTRAN77

o DES (Data Entry System) - a tool for large-volume data entry

TADS

o DTS (Data Trans::er system) a facilitator of data transfer
between intelligent workstations and mainframes

o IDE (Intelligen;: Distr i buted Edi tor) - an environment for program
development on :Lntelligent workstations

o INFOVIEW (tm)*
windowing facil:L ty

a workstation/host system interface and

o LINC II (Logic and Information Network Compiler II) - a program
generator

o Editor - a text entry and manipulation program

o ADDS (Advanced Data Dictionary System)
interactively d(~signing and defining databases

o COMS (Communications Management System)
monitor for transaction processing

o ERGO (Extended Retrieval with Graphic Output)
retrieval and graphic display of information

a

a system for

communications

a program for

o IDC (InteractivH Datacomm Configurator) - a utility for on-line
definition of a data communications network

o SDF (Screen Des:Lgn Facility) - a tool for creating screens

o MLS (MultiLinguill System) - a system for developing and accessing
output messages, on-line help text, and menu screens in different
natural languag(~s, such as English, French, and Spanish

o Utili ty program::; - programs that perform frequently needed tasks
such as compal"ing files, merging patch files, and generating
printouts of fi..es

* INFOVIEW is a tradeloark of Burroughs Corporation.

11
What's in an A Series System

Information Management Systems

o ADDS (Advanced Data Dictionary system)
o DMSII (Data Management System II)
o DMSII - Inquiry
o Data Base Analyzer
o Data Base Monitor
o Data Dictionary
o DM Interpreter
o DB Certification
o ERGO (Extended Retrieval with Graphic Output)
o TPS (Transaction Processing System)

Network Management

o BNA (Burroughs Network Architecture) - for distributed processing

o NDLII (Network Definition Language II) - for terminal network
support

o DATACOMINFO File - contains a complete description of the
datacomm configuration

o IDC (Interacttve Datacomm Configurator)

Reporting Systems

REPORTER III and On-Line REPORTER III - tools for retrieving,
analyzing, and reporting information from a database

Updating System Software

Updates to system software products are made in the form of periodic
software releases. Updates for major changes in the capability or
design of the product are called Mark releases; updates for minor
changes such as problem remedies are called support releases. Each
release is identified by a three-part release level number, such as
3.6.0. When a major change to a product is made, the level number
increases by 0.1.0; in this case, 3.6.0 becomes 3.7.0. For minor
changes between major releases, the level number increases by 0.0.1; for
example, 3.6.0 becomes 3.6.1.

After the Mark release, support releases will be provided periodically.

12
INTRODUCTION TO A SERIES SYSTEMS

Each software rE?lease is referred to as the "Mark X.X.X" release, WherE?
"X.X.X" is thE~ level number. At times, releases may be identified as
"Mark X. X" ra thE~r than "Mark X. X. X", as in "the Mark 3.6 release. " In
this case, the reference includes the level 3.6.0 release and all
support releases after it, up to, but not including. the level 3.7.0
release.

When the software displays the release level, it may show it as a number
slightly different from the official release level for that software;:
for example, 35.270 rather than 3.5.3. The "different" number reflects a
Burroughs internal release level for that particular software. These
numbers are retained to allow precise identification of the content of
the software for coordination of releases and for problem reporting.

When you purchase or lease a Burroughs system, you receive written
notices of new releases. Updates are sent on machine-readable media
compatible with your system. You are charged for the media, at the
current price, plus shipping costs. If you want updates on disk packs,
you may supply your own pack and eliminate the media charge. However. a
handling charge is added to the mailing costs.

Because system software products are used in a wide variety of
circumstances, users of these products occasionally encounter situations
that cause a software fault. When a fault does arise, Burroughs may
issue a software source patch to correct or avoid it. Source code
patches require recompilation of the affected program.

Patches are issued either in printed form or on computer-readable media.
Occasionally, in critical situations, personnel at a support center
issue a patch over the telephone as a temporary solution.

13
What's in an A Series System

SYSTEM DOCUMEHTATIO~

Printed Documentati()n

Customers of Burroughs equipment and software products can choose from a
complete range of supporting publications. These publications include
manuals, guides, ancl technical information documents, such as Flashes
and Technical Information Papers (TIPS). The section "Where to Find
More Information" lists and describes the manuals and guides available.

A core group of manuals and guides arrives with the system. These
documents contain information needed to start the system and install the
software. The documents are shipped in the same boxes as the software.

All other documentation is available through the Literature Distribution
Center in Detroit. The Customer Technical Publications Catalog lists
the publications available to Burroughs customers. It is available free
of charge from your Burroughs representative or from the Literature
Distribution Center. When you request a catalog, also ask for a supply
of the form for ordering documents, No. 3020003. The catalog contains
instructions for using this form.

1Nhen you order software, you receive one copy of each of the manuals
associated with the software. If you want additional copies, they can
be ordered from the Literature Distribution Center.

Technical information documents provide timely solutions to software
problems and keep customers current on the status of software
corrections and updates. They are issued as needed and serve as
temporary documentation until formal changes to product documentation
are made.

o Flashes are used to communicate either information about a patch
or procedural advice for resolving software product problems.

o Technical Information
technical
procedures.

information
Papers

about
(TIPS) are used

installation
to

or
communicate
operational

o Product Support Information Manuals inform users of the status of
Burroughs software. They include new software features and their
availability dates, new publications. an index of software
Flashes, and a listing of known software problems and qualified
solutions. A separate version of this manual is available for
each product family. Refer to the Customer Technical
Publications Catalog for ordering information.

14
INTRODUCTION TO A SERIES SYSTEMS

On-line Documentation

In addition to printed publications, on-line documentation, in the form
of help text. is available for certain Mark 3.6 and later software
products. This on-line documentation is an integral part of the
software products. and is accessed while using the products.

Help text is information explaining how to perform the tasks on a menu
and how to fill in t.he fields on a screen. It also defines the terms
shown on the screen. ~'wo levels of help information are available. The
first level consists of one or two lines displayed on the product screen
you are currently viE!wing. The second level is a more detailed
explanation of the SClme item and is displayed on a specially formatted
Help screen. From thi~; Help screen. you can return to the product
screen or view additional help information.

15
What's in an A Series System

SUPPORT FOR BURROUGIISSYSTEMS

Support for Burroughs systems is divided into two general areas:
hardware equipment support and software products support.

,Hardware Equipment ~;upport

Hardware eqUipment support is both internal and external to the system.
Internally, hardware designed specifically for maintenance is resident
in the system and in each system module. This hardware, together with
specialized software, makes up the maintenance subsystem, which can
operate independently of the operating system. Through this subsystem,
system status can bE~ monitored, and diagnostic testing of the eqUipment,
to the circuit board level, can be implemented. Results of this
monitoring and testing are then used by external support personnel for
both preventive and remedial maintenance of the equipment.

Externally, support is provided by field engineering personnel at
customer sites and from Customer Service Centers (CSCs). Burroughs CSCs
are regional servicE~ centers staffed by highly trained engineers who
can. from the center. diagnose and isolate problems occurring at a
customer site. This diagnosis is accomplished by establishing a
communications link with the customer's system. running diagnostic
programs. log analysis. and examining the status of certain hardware and
software on that system.

Hardware equipment service is provided by Burroughs on a contractual or
on an as-needed basis. Refer to the "Customer Guide to Burroughs
Services and Support" or your Burroughs representative for details of
the maintenance plans available.

If you are a domestic (United States) customer with a Product Support
Agreement (PSA) and have an equipment problem, call the Customer Service
Center on the toll-free number listed on the sticker on your equipment.
These centers are in operation 24 hours a day, seven days a week. For
all other domestic customers, contact your Burroughs service
representative, as stated in your service agreement.

16
INTRODUCTION TO A SERIES SYSTEMS

Burroughs offers a coml=,lete set of services to support the software
products it sells.

There are five levels cf system software support available; the level
suited to your site tepends in part on the technical knowledge of your
staff. When you purchase your software, your Burroughs representative
will discuss with you the levels available for it.

For domestic (United States) customers, the
services offered includes the following
offered at every level.

full range of chargeable
items. Not all items are

o Telephone assistance for

Operational questions and
associated

Software product information

problems that

Problem identification, advice, and follow-up

Arrangement for on-site service

o On-site service for

are software

Fault isolation, problem detours, fault report preparation

Installation of new software release levels

Extended day and holiday coverage, plus continuous on-site
coverage

o In-house analysis of fault reports, including responses and fixes

o New software releases, with remedial changes when applicable

17
What's in an A Series System

Reporting of software problems is the responsibility of the customer.
(This applies to domestic customers only.) When a system is delivered, a
supply of Field Communication Forms (FCFs) accompanies it. These forms
are used to express comments about Burroughs products and report
noncritical software-related problems to the Burroughs support centers.
The section "If You Have a Problem" tells you how to fill out the forms.

In time-critical situations, telephone or Telex should be used to report
problems. Often, this is followed up by use of an FCF. When reporting
problems by telephone, first contact the Customer Service Center (CSC).

For application program support, Burroughs provides special toll-free
Action lines. Th(~se lines tie in directly to the CSCs, each of which
specializes in selected application lines of business. See your
Burroughs system or marketing representative for the telephone numbers
and contract fee for this service.

19

~ VIRTUAL MEMORY, STACKS, AND OTHER SYSTEM CONCEPTS

To fully understand A Series systems. you need to be
certain concepts that form the building blocks for these
section gives you an overview of those concepts. To help
concepts in perspective. the section ends with a short
evolution of large systems at Burroughs.

HOW THE SOFTWARE IS ORGANIZED

familiar with
systems. This
you place the
history of the

Software for A Series systems can be thought of as being structured in
three functional layers. as shown in the following figure.

20
INTRODUCTION TO A SERIES SYSTEMS

The first or foundation layer performs overall system control and
so-called "housHkeeping" functions, and is known as system software.
This software consists of the operating system, which can be either the
Master Control Program/Advanced Systems (MCP/AS) or the Master Control
Program (MCP), the system utilities, and the language compilers.

The second layer. productivity software, consists of tools that help to
minimize the time and cost of information retrieval and program
development, change, and maintenance.

The third or top layer is application software, which can be
special-purpose programs written by users or industry-specific programs
supplied by Burroughs to perform frequently needed jobs.

_System Software

system software determines how much of a hardware system's potential
power is usable. Because the A Series hardware is designed to implement
high-level languages, the system software, written in the high-level
languages NEWP and ALGOL, can make full use of the power of the
hardware. This, in turn, allows users to take maximum advantage of the
system's potential.

There are two operating systems available to the A Series systems--the
MCP/AS and the MCP.

MCP/AS is a new Burroughs operating system that can be used instead of
the standard MCP. MCP/AS implements the Actual Segment Descriptor (ASD)
extended memory sYBtem which allows MCP/AS to directly address over
4 billion words, (24 billion bytes) of main memory, more memory than was
previously addressable on any Burroughs system.

MCP/AS provides all thE MCP features and is the operating system of
choice for most A SEries systems. MCP/AS implementation requires no
program modification or recompilation, provided programs were recompiled
under Release 3.4.1 or later, and Data Management System II (DMSII)
databases have been updated to Release 3.5 or later.

Unless otherwise specified, descriptions of MCP features in this manual
also apply to MCP/AS.

21
Virtual Memory. Stacks, and Other System Concepts

The MCP makes multiprogramming and multiprocessing a practical reality
by automatically making optimum use of all system resources.
l1ultiprogramming enables the system to run many jobs simultaneously.
l1ultiprocessing is a state in which two or more processors in the same
system run under the control of a single operating system. The MCP
continually and dynamically assigns memory, manages input/output
functions, schedules waiting jobs, communicates with the operator, logs
system use, loads programs as needed, manages mass storage allocation,
and supervises many other functions. Despite the complexity of the
tasks it performs, the MCP remains efficient and easy to use.

The system utilities are programs that perform particular operations
such as copying files, creating reports about files, creating
guardfiles, and other functions. Utilities increase productivity by
saving system users the task of writing programs to perform these
housekeeping chores.

'l'he programming language compilers provided by A Series systems
translate the source language programs written in high-level languages
into machine-language programs (object code) that can be read and
executed by the hardware.

22
INTRODUCTION TO A SERIES SYSTEMS

Productivity Software

Productivity software is an integrated set of tools to aid both
information retrieval from the computer system and development of
transaction-procE~ssing application programs. These tools are
sophisticated YE~t easy to use, and accommodate varying levels of user
experience. Productivity software makes it unnecessary for users to
design applications around physical considerations such as database
organization, network management, and program design--users are free to
concentrate on the business function the application performs. This
results in reduced development and maintenance costs and more efficient
system utilization by programs.

Productivity software includes the following products. Many of these
products are described more fully in the section "A User's View of
System Functions."

o InterPro (tm)* - Interactive Productivity Series, a synergistic
family of software facilities to create new products and enhance
existing ones. The following products are in the InterPro (tm)
Series.

ADDS Advanced Data
database design and
information entities

Dictionary
definition,

System, for interactive
plus management of all

COMS - Communications Management System, a user-extendible
system for handling transaction processing

ERGO - Extended Retrieval with Graphic Output, a tool for
retrieval and graphic display of information

IDC - Interactive Datacomm Configurator, an on-line tool for
defining and modifying a data communications network

MARC - Menu-Assisted Resource Control, a modifiable menu
interface to the computer system

SDF - Screen Design Facility, for creating screens for on-line
application systems

a TADS - Test And Debug System, a high-level debugging aid for
ALGOL, COBOL74, and FORTRAN77

a BPS - Business Planning System, a business planning and analysis
tool

* InterPro is a trademark of Burroughs Corporation.

23
Virtual Memory. Stacks, and Other System Concepts

o DMSII - Data Management System II. a multidimensional data
management system

o DTS - Data Transfer System, for automatic transfer of data
between a mainframe and an intelligent workstation

o Editor - a text entry and manipulation system

o Host-Link - a tool for expansion of the capabilities of the
ET2000 intelligent workstation

o INFOVIEW (tm) - a workstation/host system interface and windowing
facility

o IDE - Intelligent Distributed Editor, for program development on
intelligent workstations

o LINC II - Logie and Information Network Compiler II, a tool that
uses English-like terminology to generate custom programs

o REPORTER III and On-Line REPORTER III report preparation
programs that also retrieve and analyze the information

Application Software

Burroughs offers a large library of industry-specific application
programs for:

general business
manufacturing
health care
education
commercial banking

thrift industry
wholesale/distribution
transportation
government
science/engineering

Because of the large amount of application software available, it is
impractical to present an exhaustive list here. Your Burroughs
representative has a complete listing of available programs.

24
IHTRODUCTION TO A SERIES SYSTEMS

LANGUAGES

Burroughs offers a se:Lection of high-level computer languages for use in
writing various typHS of programs. An assembler (machine level)
language is neither nHeded nor provided, because the hardware has been
designed for the effi(~ient execution of high-level language programs.

The languages can be loosely
languages, problem-oriented
languages.

divided into three groups:
la,nguages, and the ALGOL

commercial
family of

The commercial languages (all industry standard languages) and their
general categories Of use are the following:

o APL/7QQ and APLB - numerical analysis applications
o BASIC - general applications
o COBOL(68) and COBOL74 - business applications
o FORTRAN(66) and FORTRAN77 - scientific applications
o Pascal - general applications
o PL/I - combina<:ions of scientific and business applications
o RPGII - business applications

The ALGOL family of languages includes the following:

o ALGOL

o NEWP

- for !:;ystem level and application programs

- for ~:;ystem level and application programs, as wE~ll as
impl'~menting operating systems, system libraries, and
util:L ties

o DCALGOL - for :Lmplementation and control of data communications
and other programs that need access to the operating
systl~m interface

The problem-oriented .Languages have specialized uses:

o DASDL - for d(~scribing the characteristics of a database

o NDLII - for g(~nerating a network control program for
data communications

o Sort - for qnick sorting of files

o WFL for managing the flow of tasks and jobs in the system

25
Virtual Memory, Stacks, and Other System Concepts

A task is a single, complete unit of work performed by the system.
Examples of tasks are compiling or executing a program or copying a file
from one disk to another. Tasks are initiated by a job, by another
task, or directly by the user.

A job is one or morE~ related tasks grouped together, as shown in the
following example. Suppose you want to compile and run an application
program and then view the output from the program; the system will
perform the following tasks to perform this job:

1. Compile the program.

2. Execute the program.

3. Print the program output.

(PROGRAM COMPILER

TASK 1 TASK 2

PRINT
RESULTS

TASK 3

~~------------~--------------~I
JOB

26
INTRODUCTION TO A SERIES SYSTEMS

Together, these three tasks constitute a job. For a relatively simple
job like this, you '~ould very likely use a terminal to enter the
sequence of commands on'~ at a time, particularly if you don't do it very
often. However, for more complicated or repetitious jobs. waiting at
the terminal for a task to finish so that you can start the next task
would be a waste of time. For these situations, it would be
advantageous to enter all of the commands at once. as a job. and have
the job execute independently while you work on something else.

A Series systems allow :fOU to do just that. through the use of Command
AND Edit (CANOE) lan;uage and Work Flow Language (WFL) commands and
statements. When you a:~e using CANOE. you can start a job through entry
of jus t one command. "DO myf i Ie" . CANOE then executes the sequence of
CANOE commands contained in that file.

WFL is a true programming language and has its own compiler that
produces a code file "lsed in running the job. Programs written in WFL
to execute jobs are bot:1 brief and straightforward. because the A Series
operating system automa:ically performs functions that on other vendor's
systems must be explicitly requested through complex job control
statements. For freqlently run jobs, you can store the WFL statements
in a file and initiate ::he entire job with one command.

27
Virtual Memory, Stacks, and Other System Concepts

MULTIPROGRAHMING ~ MULTIPROCESSING

Multiprogramming and multiprocessing allow the system to make more
efficient use of both processors and memory to significantly increase
performance.

Multiprogramming means that the system has the ability to run many
programs concurrently. Each program has the use of the processor for a
limited period of time, often referred to as a time slice, to perform
one task or part of a task. When that program reaches the end of its
allocated time slice or is unable to proceed (for example, if it must
wait for an I/O operation), the processor switches to another program.

I:LAPSED TIME ------------------------------------1

F)ROGRAM AI]-----t r---- - - -- - - - -t ... ___ -...It---

PROGRAM B - - - - --c:::--=--r- - -- - - - -f I- -----

PROGRAM C - - - - - -- - - - - - - -1 ___ 1- - -1 ________ ,..,j1- ----

INDICATES ACTUAL USE OF PROCESSOR

INDICATES TIME SPENT WAITING,OR PERFORMING
INPUT/OUTPUT OPERATIONS

In this manner, a program keeps getting processor time until it finishes
execution. This constant switching between various programs means the
processor does not waste time waiting for I/O operations to complete,
and, by using what could be wasted time, it can give each program the
illusion that it has uninterrupted use of the processor.

:28
INTRODUCTION TO A SERIES SYSTEMS

Multiprocessing means that two or more processors in the same system are
running under the control of a single operating system, the Master
Control Program (MCP). In Burroughs systems, multiprocessing enhances
multiprogramming, so sGveral programs can execute simultaneously. This
results in better utili:~ation of memory and faster throughput on the
system.

ELAPSED TIME

PROGRAM A C=-=::J- - -I ••• --. •• ..- - -
PROGRAM B -c:=::r- - --.
PROGRAM C - - - --•••••• -1 ____ 1- - --e

INDICATES ACTUA L. USE OF PROCESSOR 1

INDICATES ACTUAL. USE OF PROCESS9R 2

INDICATES TIME SPENT WAITING, OR PERFORMING
INPUT/OUTPUT OP(:RATIONS

29
Virtual Memory, Stacks, and Other System Concepts

~rACKS AND PROCESSES

A single instance of running a program is known as a process. While a
process runs, the system temporarily assigns to it a set of sequential
locations in memory known as a stack. In the stack, the system stores
the data, references to code and data, and the history for the process.

A system uses many stacks, but a processor is associated with only one
stack at a time. If there are several processors in a system, at any
moment each one is associated with a different stack. However, the
stacks for many different processes can exist simultaneously. A
processor can switch between stacks, performing part of a process each
time it is associated with that process's stack. If a process initiates
other processes, they can be linked so that they can share data.

The system originally determines the size of the stack needed for the
execution of a program from calculations made by the compiler and stored
with the program object code. If a program should need more stack space
during execution, the system dynamically increases the stack size. Each
time a program is executed, the system changes the size designation in
the object code file to more closely reflect the stack size actually
used, so that memory efficiency improves with each run.

Stack architecture allows easy implementation of the important features
of A Series systems, such as virtual memory, dynamic allocation of
rE~sources, block-structured languages (Pascal, ALGOL), intertask
communication and data sharing, and libraries. These features in turn
make it easier for programmers to structure and write programs.

Implementation of these features is easy because A Series architecture
aJ.lows the code and data for a program to be separated and placed
anywhere in memory and on disk. ThE~ code and data are thus in separate
sE~gments but are linked to the stack by pOinters called descriptors.
There is a descriptor for each code and data segment, and they tell the
system the location and size of the segment. If a required segment is
on disk, the system brings it into memory_

30
INTRODUCTION TO A SERIES SYSTEMS

STACK ELEM!:NTS
CAN CONT AltJ
DATA, OR BE
POINTERS TO
AREAS OF
MEMOR Y OR DISK

STACK

DATA

DATA

•
•
•

MAIN MEMORY

.. - DISK

This segmentation of code and data. linkage of segments to the stack.
and swapping in and out of memory of segments means memory can be
managed efficiently. Programs can be organized into logical tasks
rather than constrained by fixed page sizes. These logical tasks can
also be added to program libraries to be used by other programs.

31
Virtual Memory, Stacks, and Other System Concepts

VIRTUAL KEKORY

Virtual memory is a system technique that treats disk storage space as
an extension of main memory, giving the appearance of a larger main
memory than actually exists. With virtual memory, programmers can write
programs that are independent of memory size restrictions--a program
could require more physical memory than a system contains, yet run on
that system.

To implement virtual memory, Burroughs compilers automatically divide
programs into variable-length code and data segments. The size of each
segment is determined by the logical structure of the individual
program, rather than by using a "one size fits all" segment size.

COMPILER

fllROGRAM COMPI LED
INTO OBJECT CODE

OBJECT CODE DIVIDED INTO
VARIABLE-LENGTH SEGMENTS

When the system executes a program, it brings in only those code and
data segments that it needs at that moment for efficient execution. The
other segments remain on disk unt:ll the program requires them. When the
system finishes with a data segment, it writes that segment back to disk
only if the data might have changed. Code segments do not need to be
written back to disk because their contents cannot change. If a
segment's memory space is then needed for some other use, the system
frees that area of memory.

32
INTRODUCTION TO A SERIES SYSTEMS

An executing program or task has descriptors in its working area (stack)
pointing to each segment of code or data. Descriptors are words of a
particular format that reference the size, status, and locations of
segments in memory. The use of descriptors allows data and code to be
located anywhere in memcry. Space in memory for segments can then be
allocated dynamically as needed.

STACK

• MAIN MEMORY • ..
SIMPLE VARIABLES

DATA 2 ARE STORED VARIABLE
ON THE STACK

DATA PROCEDURE 3

DATA DESCRIPTORS DESCRIPTOR
POINT TO DATA
STRUCTURES DATA PROCEDURE 2

DESCRIPTOR

SEGMENT -
DESCRIPTOR

SEGMENT AT ANY GIVEN i'NSTANCE,
OESCR IPTORS SEGMENT· THE MCP DECIDES WHER E
POINT TO DESCRIPTOR ~

CODE AND DATA SEGMENTS

PROGRAM CODE ~ RESIDE, EITHER IN MAIN

SEGMENT· c::>~ MEMORY OR ON DISK

DESCRIPTOR ~
• DATA 1 • •

PROCEDURE 1

The advantages of virtual memory include the following:

o Less memory space per program execution

o More tasks running concurrently

o Increased system throughput

o Simplified program creation

33
Virtual Memory, Stacks, and Other System Concepts

Il~TERACTlVE AND BATCE(PROGRAKS

Programs can be roughly divided into two categories: interactive and
batch. In an interactive program, the user gives commands or responses
in a stepwise manner to queries from the system or program in order for
a job to proceed. In a batch program, the system starts a job, and it
proceeds without any user intervention.

The A Series Master Control Program (MCP) makes no discernible
d:Lstinction between these two types of jobs. In fact, a single program
can and may need to switch categories many times during its execution.
One advantage of the Burroughs operating system is that it can run both
batch and interactive jobs efficiently at the same time.

34
INTRODUCTION TO A SERIES SYSTEMS

LIBRARIES

Through the Master Control Program (MCP), programs on A Series systems
can access files of predefined routines (sequences of instructions)
known as libraries. A library is generally a collection of named,
related routines, su:h as data conversion routines or mathematical
functions, that can be shared by many programs on a system. Library
routines are designe,j to be called by programs to perform common
functions and thus si~plify program creation and maintenance. For
example, a library misht consist of routines that format program output
for use on check.s. Ea,:h routine would produce output in a different
format, customized for a special type of check.

Libraries differ from~egular programs in that the start of each routine
forms an entry poin: into the library. This means a library can be
entered at several POi:1ts, whereas a regular program is always entered
at one point, the b'~ginning. Library routines can call other library
routines. In fact, a I:::hain of library linkages can be circular; thus, a
library can referencl~ itself, either directly or indirectly. through a
chain of library refen~nces.

LIBRARY 1

~ ROUTINE X

h

~ ROUTINE Y

----,

~

h

ENTRY POINTS.

EXIT POINTS 0

LIBRARY 2

ROUTINE Z

35
Virtual Memory, Stacks, and Other System Concepts

Some typical examples of the routines that form libraries are the
following:

o FORTRAN formatting functions

o Data calculation routines

o Terminal formatting procedures

o Database transaction handlers

Burroughs supplies a set of libraries known as system libraries that
p4~rform many MCP-related functions considered intrinsic to the system,
such as mathematical and formatting functions. System libraries are
global; that is, they are available to all users in the system. Users
can develop libraries, which can be either global to the system, local
to the user who implements them, or specific to a particular
user-created program. Library access can be controlled through the
normal file access restrictions provided by the system.

For information on implementing libraries, see the "Libraries" section
of the "System Software Utilities Reference Manual."

36
INTRODUCTION TO A SERIES SYSTEMS

CONFIGURATION, RECONF I GURATI ON , AND SOFT CONFIGURATION

A configuration is the processor, memory, I/O devices, peripherals, and
other hardware resources that together form a system. To configure a
system means to allocate these resources. Because information about thE?
way these resources are allocated is needed by the system, the
information is stored in a special configuration file accessed during
initialization.

For A Series systems with the MCP/AS ASD extended memory, memory is
managed as a single monolithic area. Under a monolithic memory
architecture, the operating system works with a single memory area
available to all processors and programs in the system. ASD does not
require memory partitioning.

For A Series systems controlled by the MCP, configuration information
optionally consists of memory partitioning and I/O subsystem
(peripheral) sharing of information. Two or more cooperating A Series
systems can share an I/O subsystem and/or peripherals to reduce the
total number of peripherals required to satisfy the peak needs of thE~

individual systems. For systems connected to shared peripherals, a
configuration file should be used to avoid possible contention between
systems for the peripherals. However, for a standard, single-processor
system without shared peripherals, use of a configuration file by thE~

site is unnecessary.

Soft configuration refers to the ability to allocate and later
reallocate hardware resources to the configuration through software.
Through soft configuration, you can initially configure and later
reconfigure resources through creation and modification of a
configuration file and through associated operator commands.,
Configuring your system is a three-step process that involves building a
configuration file, running the SYSTEM/CONFIGURATOR utility, and issuing
an Opera tor Di splay Terminal (ODT) command or us ing the SYSTEM/LOADE1<
utility to configure the system.

The section "A User's View of System Functions" contains a more detailed
explanation of the soft configuration process.

37
Virtual Memory, Stacks, and Other System Concepts

~ SHORT HISTORY OF BURROUGHS SYSTEMS

The current Burroughs A Series systems architecture is the result of a
refinement of the architecture of the revolutionary B 5500 systems
introduced in 1961. Prior to that time, most commercially produced
computers were based on the stored program computer conceived by John
von Neumann in 1946. The B 5500 retained the stored program computer
concept but incorporated a number of radically different innovations.

The B 5500 was the first commercial computer system specifically
designed to support high level, block-structured languages. The process
of designing a system with this goal in mind led to innovations in the
hardware and software. Among these were the following:

o Stack architecture, for
block-structured languages

fast and easy execution of

o Reentrant (nonmodifiable) code, to allow several programs to use
the same code simultaneously

o Descriptors, to allow references to data to exist independently
from the actual data

o Disk files, to allow random access to code and data on a disk

o Disk directories, to allow access to specific files on a disk

o A separate data communications processor, to ease the processing
load on the main processor

o Virtual memory, to make programs independent of memory size

o Modular hardware architecture, to allow hardware modules to be
added to or deleted from the system without any program changes

38
INTRODUCTION TO A SERIES SYSTEMS

Some of these ideas were natural consequences of the· others; for
example, the use of array descriptors in a stack indirectly led to the
first commercial use of virtual memory. An array descriptor describes
the location of an array in memory outside the stack. If an array could
be located outsidE~ of the program stack, but pointed to by a descriptor
in the stack, then other parts of a program could be located elsewhere
too. This led to segmentation of programs, and with segmented programs,
only the part of the program actually executing needed to be in memory.
The other parts could be kept in storage until needed. This reasoning,
in turn, led to the treatment of disk storage space as an extension of
main memory, hence virtual memory.

This explanation is simplified for brevity, but illustrates the
continuing goal of Burroughs systems architecture, to make execution of
high-level language programs as fast and as efficient as possible.

Since the B 5500, Burroughs has continually refined and built on that
architecture to increase the speed and efficiency of program execution.
The B 6700 used the same general architecture as the B 5500, but
improved the implementation of it. On the B 6700, Burroughs implemented
the following:

o Programmable data communications processors, to allow the use of
otherwise impossible or impractical protocols

o Full employment cf a block-structured addressing environment,
which allows address space to be spread over several stacks

o Tagged memory, tc distinguish code from data and descriptors and
to provide overwrite protection

o Nesting of code tlocks, with variables visible to all lower
levels of the blccks

o Support of multiFrocess job families, including the introduction
of the "cactus stack," which is a main process stack with
multiple associated stacks

The B 7000 series of computers introduced pipelined processing to large
systems to further sFeed processing. Pipelined processing involves
beginning an instruction sequence before a prior sequence has finished.

39
Virtual Memory, Stacks, and Other System Concepts

The B 7900 provides separate address space for data and code. To be
able to address each memory position and to make effective use of the
B 7900's large memory capacity, Burroughs devised Address Space Number
(ASN) memory. Because the system contains more physical memory than the
addressing mechanism can address, memory can be divided into address
spaces of up to one million words each, the maximum that can be
addressed. Each address space is the memory that a task can access for
execution and comprises a shared and a local component. The shared
component is cornmon to all address spaces and exists so that tasks can
share code and data. The local component is unique to the address space
and is identified by an Address Space Number (ASN). The sizes of both
the shared and the local components are dynamically controlled by the
system administrator through system software.

SHARED COMPONENT

Burroughs newest systems, the A Series systems, provide users with the
option to run under a new operating system, the Master Control
Program/Advanced Systems (MCP/AS). MCP/AS, which provides all the
features of the MCP, initiates a new generation of system software that
complements the A Series architecture.

MCP/AS features a significant new form of memory management, the Actual
Segment Descriptor (ASD) extended memory system.

40
I1TRODUCTION TO A SERIES SYSTEMS

The introduction of tte ASD extended memory system, which is capable of
directly addressing up to 4 billion words (24 billion bytes) of main
memory (actual memory is machine-dependent), has made it feasible to
directly address more' memory than ever before possible on any Burroughs
system.

ASD represents an upward evolution of the memory architecture of the
Burroughs mainframes. In spite of this major change in the architecture
of the Burroughs machines, the ASD system maintains object code
compatibility with all previous large systems.

The ASD memory management system supports a single large memory
structure that reqLires no partitioning. Because memory is not
partitioned, programs are fully visible to one another while executing.
In addition, the Mep can address very large amounts of memory. All
allocated memory areas are accessed and controlled through a central
structure called the Actual Segment Descriptor (ASD) table. The ASD
table points to all lc,cations in memory, virtual or physical.

The A Series systems incorporate the latest hardware technology to
reduce the physical size of the machines while increasing processing
power. These systems have the full functionality of previous large
systems, plus menu-driven user/system communication. For instance, thl~

A 3 has all of the po~er of the B 5900 in a small package compatible
with office environrr,ents. The A 9 introduced the Multiple Logical
Processor (MLP), which multiprocesses and multiprograms hardware
instructions (operators) for greater execution speed.

41

1 A USER'S VIEW OF SYSTEM FUNCTIONS

This section discusses A Series systems as seen by you, the user. It
cuts across traditional hardware and software boundaries to give you an
overview of the system by broad functional areas. The purpose of this
section is to give you an understanding of each area and of the parts of
the system that affect that area. If you want more detailed information
about an area, you can find it in the related documentation listed at
the conclusion of each discussion.

}!lenu-Assisted Resource Control (1lAR~

~[enu-Assisted Resource Control (MARC) is a menu- and command-driven
interface to Burroughs A Series systems. It was developed for systems
operators, customers, and programmers of the system, and runs under the
Communications Management System (CaMS) message control system.

MARC supports the following functions:

o Burroughs Network Architecture (BNA) operator interface

o Operator Display Terminal (ODT) commands (those subsequent to
system initialization)

o CaMS control commands

o All Work Flow Language (WFL) commands

o Some system utilities

o Print System (PrintS) and Remote Print System (ReprintS)

o Mirrored Disk

o On-line help text

o On-site modification of screens

o Multiple versions of screens and help text

o Different natural-language versions

You can use MARC in three modes: menu, command, and tasking. The
different modes are available to allow MARC to serve all levels of
users, novice to expert, consistently and simultaneously.

42
IN'~RODUCTION TO A SERIES SYSTEMS

In menu mode, MARC presents you with menus containing tasks and
functions from which you choose the desired actions.
directly to the menu you want by entering the menu name,
reach the menu by moving through the menu structure.
needs more information for the desired action, it prompts

You can go
or you can

If the system
you for the

specific items. ThiB mode eliminates the need to know an operations
language in order to operate the system.

In command mode, you can bypass the menus and enter commands directly.
This mode saves time for those familiar with the commands.

In tasking mode, you can initiate and track tasks through MARC. Tasking
mode is entered automatically when menu selections or WFL commands
require it.

MARC can be used in several different natural languages simultaneously,
allowing each user to work in a separate language. The menus and
screens in the menugraph, including messages and help information, may
be translated into different languages by your vendor before you receive
the software. If not, there are special utilities designed for that
purpose: the Message Translation Utility, the Interactive Menugraph
Generator (IMG), the Eciitor, and the Help Utility. The "MultiLingual
System (MLS) User's Guide" explains how to translate items and when to
use each utility.

Programmers and operators can modify the MARC menus and forms to suit
the needs of their systems and of individual users and programs. Menu
selections can be added or deleted, and new menus can be created,
provided they use available commands. MARC also supports the creation
of new commands via thE~ "Directive" facili ty. In addi tion, a si te can
have several different sets of menus, called menugraphs, on a system and
switch between them.

MARC provides on-line help information for each selection on the
Burroughs-supplied menus. Users can access the help information by
pressing a single function key. Through the Help Utility, programmers
can modify existing help text and can write additional help text for any
new menus and menu selpctions added. The "Help Utility User's Guide"
explains how to do thi~;.

Security supporting MA~~C incorporates all of the system security and
COMS security featurE's, including the log-on procedure. See the
"Security" topic in thjs section for a description of system security.

43
A User's View of System Functions

]!ESSAGE CONTROL SYSTEKS

A Message Control System (MCS) controls the flow of messages between
terminals, application programs, and the operating system. In this
context, a message is a transmitted series of words or symbols intended
to convey information to or from the system, and thus includes most user
communications with a computer system. In this communications
«~nvironment, an MCS performs these additional major functions:

o Logical control of stations to provide security and secondary
error handling

o Program initiation and control

o Dynamic reconfiguration of the network, to add, remove, and
reassign stations and to swap communications lines

An MCS-can be general, so that it can be used for a number of different
functions and by all system users, or it can be specific and be designed
to serve specialized users and functions.

!(efer to the "Menu-Assisted Resource Control (MARC) User's Guide" for
complete information on MARC.

SYSTEM
~------------------------

MCS DATACOMM
SUBSYSTEM

44
IN~'RODUCTION TO A SERIES SYSTEMS

Communications Kanagemnnt System (COliS)

The Communications Management System (COMS) is a general MCS that
supports a network of Ilsers and provides ~hem with a consistent, on-line
interface to the systerl. COMS is partially integrated into the MCP,
which enhances its ability to efficiently handle a high volume of
transactions from mul t:.ple programs, stations. and remote files.

COMS performs the following functions:

o Accepts input fl"Om a station and returns output to that station
or to a designated destination

o Checks the security level of messages and treats them according
to an installat~.on-defined security scheme

o Routes messages by transaction codes to, from, and between
programs

o Processes messages, if required, before sending them to or from a
program

o Ini tiates transclction programs

o Performs synchronized recovery with Data Management System II
(DMSII) and the Transaction Processing System (TPS)

o Manages and handles errors for the data communications network

COMS is modular and de~;igned to be customized to suit the needs of
individual systems. I'rom the COMS package. you select only the modules
needed for your system. If desired, you can add user-written modules to
perform site-specific: functions. This modularity keeps software
overhead to a minimum \'7hile providing the capabili ties required by your
system.

During a COMS session. each authorized user can have multiple "windows"
into the system. Ec.ch window acts as a virtual terminal and provides
access to a separatE' program or MCS. You can use the windows
concurrently, and swjtch from window to window as desired. Through
windows, COMS supports access to other MCSs such as CANDE. GEMCOS, and
user-defined MCSs.

45
A User's View of System Functions

COMS defines the following windows at system initialization:

o MARC window. This window, which is always in operation in COMS,
provides access to the Menu-Assisted Resource Control (MARC)
program. One of the functions of the MARC program is to handle
network and session control, and provide requested information
and system messages for COMS.

o Utility window. This window provides access to the COMS utility,
a utility used to define and change specifications in the tables
of the COMS configuration file on-line.

o CANDE window. This window provides access to the Command And
Edit (CANDE) program, if you have CANDE on your system.

o GEMCOS window. This window provides access
Message Control System (GEMCOS), if you
system.

to the Generalized
have GEMCOS on your

COMS provides two types of security:

1. Access security, which comprises the following:

COMS network access, to control who can log on to COMS

COMS stat.ion access, to control who can log on to individual
stations

COMS window access, to control which windows each user can
access

2. Process security, which controls the types of transactions
allowed for each user or program

During installation, the system administrator defines a COMS security
scheme for the system. Up to 32 security categories can be assigned to
programs, stations, usercodes, windows, and transaction codes. COMS
automatically checks security at each stage of message handling, and
r~?jects any message that does not have the proper security level. Users
can augment COMS security by adding security checking routines to
application programs and pre- and postprocessing programs.

Synchronized recovery is a COMS f~nction that completes any in-process
transactions to a database after an abnormal termination of a program
interacting with the database or after loss of the system. It ensures
that all transactions that were in progress at the time of stoppage are
completed. COMS resubmits the transactions in the same order in which
they were originally submitted by the program or programs.

46
INTRODUCTION TO A SERIES SYSTEMS

To define the operation of the CaMS system or change that definition
on-line, you use the CaMS Utility. This utility operates in interactive
(menu) or batch (command) mode and updates the CaMS configuration file.
The configuration file stores the information needed to operate and
maintain the system and includes routing, processing, security checking,
program initiation, and recovery information.

CaMS is available in three versions:

o Kernel MeS, which provides remote file handling, but no access to
the CaMS Utility for tailoring the CaMS environment

o CaMS (Entry), which provides the basic functions excluding only
transaction-based routing and synchronized recovery

o CaMS, which provides the full features of the system

The following documentation explains CaMS in detail.
the Capabilities Manual first.

You should read

o Communications Management System (CaMS) Capabilities Manual

o Communications Management System (CaMS) Planning and Installation
Manual

o Communications Management System (CaMS) Operator's Guide

o Communications Management System (CaMS) Programmer's Guide

o Communications ~anagement System (CaMS) Migration Guide

Command AND Ed! t, (CAND:n Language

The Command AND Edi t U~ANDE) language is a time-sharing MCS designed to
simplify communicatio1 during the creation and execution of programs.
CANDE provides a singl l?, complete environment from which you can edit
files and manage pro~rams. Through CANDE, users can interact with and
control programs while the programs are executing.

CANDE allows you to d~,elop and test programs in an on-line, real-time
environment. It reduces programming overhead by supplying tools to
perform functions that would otherwise require user-written programs.

47
A User's View of System Functions

Through CANDE, users can perform the following tasks:

o Create and prepare data and program files

o Compile and execute programs

o Edit and maintain files

o Control access to the system and to files

o Obtain information about jobs, the network, and other terminals

o Dynamically alter the system to meet new requirements

You access these functions through CANDE commands. CANDE restricts
access to commands concerning system operation and security by requIrIng
that those commands come from stations (terminals) with "control" status
or from Operator Display Terminals. A system administrator normally
gives control status only to those' stations that are used to monitor and
regulate CANDE activity.

Access to the system via CANDE is restricted through the use of a
usercode, password, and, optionally, an accesscode and password
preassigned by the system administrator. You begin a session by
entering that usercode, password, and accesscode. During the session,
the system logs the tasking commands issued and optionally prints the
log and all print jobs when the session ends. This log can be used for
accounting and tracking purposes.

CANDE contains a set: of commands for the editing of text records in
files. Through these commands you can change, insert, delete, move,
find, and replace tE?Xt wi thin your workf ile. When you "get" or "make" a
file during your CANDE session, CANDE creates a workfile that is a copy
of the source file but entirely separate from it. You can edit this
workfile, test the effect of the changes, and edit and test multiple
times without changing the original source file. The source file is not
changed until you save the workfile.

INTF~OUCTION TO A SERIES SYSTEMS

To protect against the loss of data if the system should go down, CANOE
continually saves the changes made to a workfile during a session.
These changes are stored in a special CANOE file on disk. Certain
edi ting commands, SUCII as move, insert, replace, and merge, cause the
workfile to be updated tmmediately. Other editing commands cause CANOE
to accumulate several records, then update the special file. By using
the special file when tIle system resumes operation, CANOE can create a
recovery file containiIlg the workfile, including the changes made to it
during the interrupted ~;ession.

The following documentation explains CANDE in greater detail.

o CANDE Operations Manual

o CANOE Reference }~nual

49
A User's View of System Functions

PROGRADIING LANGUAGES

Standard Languages

Because programming languages are the principal means of performing work
on a computer, standards have been developed for them to increase the
portability of programs from one system to another. Frequently, a
company will add extensions to a standard language to expand the
language's usefulness and to simplify using special capabilities of the
hardware.

Most of the languages supplied by Burroughs conform to international
standards, when they exist, or to American National Standards Institute
(ANSI) standards. If there are extensions or exceptions to the standard
in the Burroughs implementation of the language, they are usually noted
as such in the reference manual.

The following paragraphs describe the standard high-level languages for
A Series systems and list the associated manuals. Acronyms used in the
descriptions are:

ANSI - American National Standards Institute

ISO - International Standards Organization

ALGOL - ALGOrithmic Language. The extended ALGOL Burroughs offers is
designed for the communication of algorithms or procedures to Burroughs
systems and is used for applications and systems programming. ALGOL is
based on the "Revised Report on the Algorithmic Language ALGOL 60"
(Communications of the ACM, Vol. 6, No.1; January, 1963). The manual
for this language is the "ALGOL Reference Manual."

BASIC - Beginners All-purpose Symbolic Instruction Code. BASIC is a
general-purpose language based on the ANSI X3.60-1978 standard for
BASIC. The manual for this language is the "BASIC Language Reference
Manual."

COBOL74 - COmmon Bustness Oriented Language. COBOL is designed for the
implementation of business-oriented data processing programs. COBOL74
conforms to ANSI standard X3.23-l974. The manual for this language is
the "COBOL ANSI-74 Reference Manual."

50
IN'rRODUCTION TO A SERIES SYSTEMS

COBOL(68) - COmmon Bus.lness Oriented Language. COBOL(68)
the COBOL standard 4~stablished by the Conference On
Languages (CODASYL). The manual for this language is
Reference Manual."

conforms to
Data Systems

the "COBOL

DCALGOL - Data Communlcations ALGOL.
implementation and control of a data
accessing privileged system functions
management functions. The manual for
Reference Manual."

DCALGOL is intended for the
communications system and for

other than privileged data
this language is the "DCALGOL

FORTRAN(66) and FORTRA1~77 - FORmula TRANslation. FORTRAN was designed
for scientific applica":ions. FORTRAN(66) is compatible with FORTRAN IV,
H level, and contains ANSI X3.9-l966 Standard FORTRAN as a subset.
FORTRAN77 conforms to ANSI Standard X3.9-l978. The manual for
FORTRAN(66) is the "FORTRAN Reference Manual" and for FORTRAN77 is the
"FORTRAN77 Reference Manual."

NDLII - Network Defini':ion Language II. NDLII is for the definition and
implementation of da1:a communications networks through generation of a
Network Control Program. This language was created by Burroughs. The
manual for this language is the "Network Definition Language II (NDLII)
Reference Manual."

NEWP - NEW Programming language. NEWP is a variation of ALGOL and i.s
used to write the operating system and system utility programs. NEWP
can also be used for applications programming. The manual for NEWP is
the NEWP Document on the Mark 3.6.0 Documents tape.

Pascal - Pascal is a b:_ock-structured, general-purpose language. Pascal
implementation is ba!;ed on the ANSI/IEEE 770X3.97-l982 and to ISO 7185
Level O. The manual for this language is the "Pascal Reference Manual."

PL/I - Programming Language One. PL/I is
that conforms to ANSI Standard X3.74-l98l.
is the "PL/I Reference Manual."

a general-purpose language
The manual for this language

51
A User's View of System Functions

RPGII - Report Program Generator II. RPGII is a language for accessing
and processing data and specifying the type and format of reports to
generate using this data. The documents for this language are the
following:

o Report Program Generator (RPG) Reference Manual

o Report Program Generator (RPG) Debugging Template

Sort - The Sort language was created by Burroughs for the writing of
programs that sort and merge files. The manual for this language is the
"Sort Reference Manual."

WFL - Work Flow Language. WFL is Burroughs' high-level.
block-structured language used for constructing jobs that run tasks and
control their execution. WFL includes variables. expressions and
flow-of-control statements that offer the programmer a wide range of
capabilities with regard to task control. The manual for this language
is the "Work Flow Language (WFL) Reference Manual."

Combining Programs ill Different Languages

On A Series systems, programs and subprograms written in different
languages can be bound together to produce one executable program. This
feature allows standard procedures, such as mathematical functions, to
be written only once yet used by all applications on the system. The
procedure is compiled separately and later bound to a compiled program,
in the same or another language, that references that procedure. The
program that accomplishes this is the Binder. The "Binder Reference
Manual" explains the program and the acceptable language combinations.

52
INTRODUCTION TO A SERIES SYSTEMS

A task is a single, conplete unit of work performed by the system, and a
job is one or more rE!lated tasks that are grouped together. Tasks are
usually programs or subroutines that a job uses to accomplish its
purpose.

A program written in WFL is referred to as a job. During execution, a
job normally execute~; as a task with its own code file. A WFL job can
initiate other tasks, such as compilations and executions of user
programs.

The execution and flow of jobs and tasks in a system can be handled and
monitored by the Work Flow Management system. This system gives the
system administrator o'~rall control of the installation's work flow,
particularly control of billing, execution priorities, and resource
sharing.

The Work Flow ManagemeIlt system includes the following program modules:

1. The Master COIltrol Program (MCP),
compiler and then processes the
compiler

which initiates the WFL
code file generated by the

2. The WFL compL.er, which compiles the control language used for
job control

3. The CONTROLLEI~, whi ch manages
scheduling queues for the
Managemen t sy~; tern

the
jobs

display
provided

routines and the
by the Work Flow

You can create a job ~7
language called WFL.

writing a program in a high-level control
WFL is not a substitute for regular application

languages but is used :.n addition to them.

53
A User's View of System Functions

Controlling Jobs Ang Tasks

You can control jobs and tasks through WFL statements, through the
assignment of task attributes, through the establishment of job queues
and assignment of jobs to them, and through assignment to memory
subsystems. If you do not need this level of control, jobs and tasks
can be handled automatically by the operating system (MCP). All that
you need to do is compile or execute a program through CANDE.

WFL statements are used to start jobs, to manage files, to control the
flow of tasks within a job, and to pass parameters to tasks.

Task attributes are the mechanisms used to specify and examine the
characteristics of a task. Included in the attributes are some optional
ones that tell the MCP how system resources are to be allocated for this
task. These resources include execution priority, I/O time, processor
time, tapes allowed, and lines printed.

Job queues are waiting lines for jobs submitted for processing. They
are a means of controlling the amount of each system resource a given
job can use and the execution priority of the job. Job queues are
defined when the system is first initialized. They are independent of
one another but can be assigned relative priorities. All WFL jobs go
through job queues.

An individual job queue can place limits on the amount of certain system
resources a job from that queue can use. A job can specify resource
amounts up to an absolute limit, or can omit the specifications and use
the default limits of the queue. When the system administrator defines
a job queue, he or she also gives it a MIXLIMIT. which is the number of
jobs and tasks from that queue that can be executing at any given time.
If the creator of the job does not assign it to a job queue, the MCP
places it into the highest-numbered queue allowed by the job's
attributes or into a site-designated default queue.

Subsystems are memory environments created when memory is physically
partitioned by Global Memory or Address Space Number (ASN). The system
automatically distributes tasks to memory subsystems, but you can
override this distribution by specifying, through a task attribute or
job queue, which subsystem to use.

54
INTRODUCTION TO A SERIES SYSTEMS

Billing

Billing for jobs can be handled by the JOBFORMATTER program.
JOBFORMATTER reads .lnformation from the job logs, formats that
information, and prints it. If jobs and costs are to be tracked,
Burroughs supports an optional billing support library,
SYSTEM/BILLING/SUPPORT, to which JOBFORMATTER passes the logged
information. This lib:~ary contains dummy procedures that you customize
to suit your needs. Th.~ library procedures can pass information back to
JOB FORMATTER to print along with the job summary.

Every job and task is identified by a mix number, a unique number
assigned by the systl~m when the job is submitted for processing. All
subsequen t commands conl~erning that job, and all logged inf orma t ion
about the jOb, use the mix number.

JOBFORMATTER creates a Jrinter backup file that can be printed locally
or at the remote locati,)n.

'l'aslting

Tasking refers to the process of running multiple tasks concurrently or
consecutively and coordinating the execution of those tasks through
communication between t1e task and the job that initiated it.

WFL jobs can initiate a task as a synchronous taSk, one that runs
separately from the job and that must finish before the job can
continue. For concurrent execution of tasks, tasks can be run
asynchronously, meaning that the job does not wait for them to finish in
order to continuE'. WFL contains commands to allow tasks within a job to
run asynchronously anj to cause a job to wait if necessary until a
certain condition is met.

Jobs and tasks communic~te through the passing of parameters and through
the use of task variables. The task variable gives the job or WFL user
access to the values of the task's attributes at any time bE~fore,

during, or after the execution of that task. By reading these
attributes, the job or user can make deCisions concerning which of
several possible paths the job should take.

55
A User's View of System Functions

R.estarting Jobs

If jobs are interrupted by a system failure, the system, by default,
automatically restarts jobs at the last point where no task was running.
However, the WFL programmer can override the default and control how and
where the jobs restart.

Some application languages permit stops in a program, called
checkpoints, for the system to save information regarding the state of
the program at that point. This information consists of everything the
system needs to know to resume execution of the program.

If the program must be restarted, the user can restart it at a
checkpoint instead of at the beginning. WFL provides a command that
directs the system to restart the program at a particular checkpoint.

56
INTRODUCTION TO A SERIES SYSTEMS

FILE IlANAGEIlENT

Effective management of files implies, first of all, that files be
distinguishable from e~ch other and, second, that they can be handled as
groups as well as individually. Therefore, a key to effective
management is a file-naming scheme that allows easy identification and
grouping of files. An~ther key is ease of manipulation and tracking of
files.

Individual disk files ~re known to users and to the system by a
multipart file name followed by a family name. (A family is a disk or
group of disks with a common name.) The file name indicates which
usercode a filE' is stJred under and the name that identifies that file.
The family name specifies the physical disk family on which that file is
stored. When you access a file, you identify it as "file name ON family
name" .

The disk file na.me contains from 1 to 12 parts separated by slashes.
Each part consists of from 1 to 17 alphanumeric characters, hyphens, and
underscores, or consists of a quoted string up to 17 characters long.
The first part of a file name can be either a usercode in parentheses or
an asterisk (*), indic~ting that the file has no associated usercode.
If the first part is a user code or asterisk. it is not followed by a
slash. The following ~xamples show possible valid combinations of filE!
and family names.

(PAYROLL)WERZLY/CHECK/PRINTING ON ACCOUNTING

(BUDGET)MONTi12/CHANGES/BY/DEPARTMENT ON CONTROLLER

*PATIENT/WEE:ZLY/CHARGES2 ON HOSPITAL

A file name with the 1,iSt part or parts replaced by an equal sign is
referred to as a directory name. A directory is a list of files
organized into a hiera~chy according to similarities in their names.
Files are grouped tog.?ther in a directory if their first name constants
and associated usercod·?s are identical up to a slash or a right
parenthesis and if tley are on the same family (the family is the last
part of their names). Thus. if you have files Al and A2. although the
first parts, "A". a:~e identical. "1" and "2" are not. so these file~:

will not be grouped in the "A" directory. However. suppose you have the
following files:

(USERl)MONTH./END/PRELIM
(USERl)MONTH/END/FINAL

A User's View of System Functions

(USERl)MONTH/ESTIMATE
(USERl)BUDGET/FINAL/VERSION
(USERl)BUDGET/MONTHLY

57

\vhen the files are organized into a directory hierarchy~ the names are
listed in the directory in the following manner:

(USERl)
MONTH

END
PRELIM
FINAL

ESTIMATE
BUDGET

FINAL
VERSION

MONTHLY

'l'he first three files are in the directory "(USERI)MONTH", and the last
two are in the directory "(USERl)BUDGET". The first two files are also
in the directory "(USERl)MONTH/END", and can be thought of as forming
one branch of "(USERl)MONTH", while the file "(USERl)MONTH/ESTIMATE"
forms the other branch.

Directories allow you to apply certain commands or statements available
in the system, such as "PD (USERl)MONTH/= ... " or "COPY(USERl)= ... ", to
all the files in a directory.

You can specify a file name without a usercode or family name or both.
The system automat:lcally adds your usercode and aSSigned family name
when it searches for the file or when you create the file. If it cannot
find the file under your usercode, it searches for it among the files
without a usercode, those starting with an asterisk (*).

Tape files have two-level file names. The first name is the volume name
for the reel or reels of tape in the tape set, and the last name is the
unique file identifier. Each part of the name can contain from 1 to 17
alphanumeric characters, hyphens, and underscores.

Printer and punch files contain program or system output and are written
to disk or tape for later transfer to the designated peripheral. You
can let the system name and manage these files automatically, or you can
name the files yourself and store them under your own usercode, using
the rules for disk or tape file naming.

58
INTRODUCTION TO A SERIES SYSTEMS

A remote file is a meaLS of passing information between a program and a
remote device, such as a terminal, and is used by most interactive
programs. The program writes data to and receives data from the remote
file, treating it a~ it would treat a local peripheral. The file is
attached to the remote device by the Message Control System, and can be
attached to multiple stations simultaneously for multiuser programs.
Remote files are named following the conventions for disk file names.

Port files permit direct communication between programs,
programs running on different systems connected through
Network Architecture (lINA). Port files are named using the
for disk files.

including
Burroughs

conventions

File Structure

A Series systems support many different kinds of file structures,
including variable- ilnd fixed-length records and blocked and unblocked
files. Blocked files ilre those in which a number of physically adjacent
records are transferred to or from the file as a group in order to
reduce transfer time. Access to the records in files can be sequential
(and also indexed) 01" random, using record numbers or keys and reading
the files forward or bclckward. The user has control over the size of
records, blocks, and files, and describes these and other
characteristics of a f:.le to the system thiough file attributes. See
"Input/Output Subsystem" later in this section for more information on
file attributes.

Disk File Maintenance

Disk file maintenance, sometimes referred to as "library maintenance,"
consists of those functions that add or delete files and modify their
names or security. ThHse functions are performed on either system or
user files.

You perform file maintE?nance through the following Work Flow Language
(WFL) statements:

o CHANGE

o COPY-ADD

Th._s statement changes the names of files on disk.

COPY copies disk files to and from disk and tape.
Di !;k files copied to tape are bi t-for-bi t images of
the disk and thus are different from files created
expressly for tape. ADD copies a disk file to a
de!;tination if a file with the same name does not
already exist on the destination.

o REMOVE

o SECURITY

59
A User's View of System Functions

This statement removes files from a disk.

This statement changes the access security of a file
on disk.

You can access these same functions interactively through CANDE commands
~li th the same names. See the "CANDE Reference Manual" for information
on the use of the commands.

Execution of these statements is restricted by file access security;
thus, if you are a nonprivileged user, you cannot perform these
functions on a particular disk file unless the security attributes of
that file allow you the use of that function.

The file maintenance commands are described in detail in the "Work Flow
Language (WFL) Reference Manual."

~~he DUMPALL File Maintenance Utilit~

DUMPALL is a generalized file maintenance utility used primarily for
transfer of files from one medium to another. DUMPALL also generates
listings of files and controls the movement of files from tapes.

Using this utility, you can copy any kind of file from any medium to any
other medium. DUMPALL accepts standard or nonstandard tape labels or
unlabeled tapes. Tape files created by DUMPALL from disk files are
bit-for-bit disk images.

60
INTRODUCTION TO A SERIES SYSTEMS

Input to DUMPALL consists of one or more utility commands that allow you
to do the following oparations:

o List the attribltes of a file or files

o Concatenate fil'as or parts of files

o Copy one or multiple input files to one or multiple output files
on the same or .jifferent devices

o Display a file:>r a tape in hexadecimal, EBCDIC, and other
formats

o Print a file in one of several formats

o Test a file for I/O errors

The "System Software Utilities Reference Manual" describes the operation
of the DUMPALL utility.

Cataloging

Protecting information stored on disk files is a major concern of any
computer installation. To achieve adequate protection, an installation.
will make copies of di3k files on magnetic tape for storage at the sitE'
and in secure locatil)ns away from the site. However, keeping track of
the copies and differe:1t versions of the files may get complicated. To
track the copies, you can run Burroughs A Series systems with an.
optional feature called cataloging.

Cataloging has two mai:1 purposes:

1. To provide thl? means for finding a file or archived copy of a
file

2. To track the ,;enerations of a file

The different copies of a file are referred to as generations.
Cataloging keeps track of the different generations and of the copies of
each generation. You are allowed to have from four to seven different
generations and up to two copies of each generation. When you access a
cataloged file, the sy!;tem uses the catalog to locate the file. It
gives you the residHnt copy of the file unless the USECATALOG file
attribute is TRUE, in 'vhich case it gives you the latest generation
unles s you reques t oth(~rwi se.

61
A User's View of System Functions

Using cataloging to automate your handling of duplicated files involves
a tradeoff. File search is slower, because extra disk I/O operations
must occur for every opening or closing of a file. Disk space is also
required to hold information about nonresident copies.

For more information on Cataloging, see the "Disk Subsystem Software
Overview" manual.

Magnetic tape is used as a medium in its own right and as a way to
archive or transport disk file images.

A Series I/O subsystems accept either labeled or unlabeled magnetic
tapes. Tape labels are special records at the start, end, and between
the files of a reel of tape that provide d~tails about the files stored
on the tape. The I/O subsystem recognizes and reads all standard
Burroughs tape labels, including those from medium and small systems.
The subsystem also reads the following labels:

o All ANSI Level 2 standard labels

o IBM 360-format labels

In addition, the subsystem can handle unlabeled tapes. These require
operator intervention to assign files to a tape on a specific unit.

The I/O subsystem wr1tes ANSI standard labels when creating a labeled
tape. Only the f1rst and last parts of a file's name are used in the
name of a file in the tape label, to conform to an ANSI requirement for
two parts in the file name. Thus, if a file name was A/B/C/D, the name
stored in the tape label would be A/D. ANSI also requires that the
first part of the name be the same for all files on the tape; in other
words, the files must be in the same directory.

The I/O subsystem supports multiple files on a single tape and one file
split across multiple tapes. Also supported are multifile, multireel
tapes, with files split across reels as necessary.

)
,/

62
INTRODUCTION TO A SERIES SYSTEMS

DATA MANAGEKENT

Data Management System II (DRSII)

A database management 3ystem is a specialized system software package
used to describe a database, maintain the relationships between the
various data elements, and access the information in the database.
Burroughs Data Managf~ment System II (DMSII) supplies all of these
functions and more to allow users to obtain information where and when
it is needed. In addi~ion, DMSII supports multiple databases and allows
them to be accessed simultaneously from on-line time sharing, batch, and
remote-jab-entry environments.

DMSII centralizes manai~ement of information. Data file structures and
interrelationships arl? described only once to the system; users and
programs can then add, update, and retrieve data without concern for
data placement, organization, or access methods. The database
administrator uses the Advanced Data Dictionary System (ADDS) to create
the physical database by describing the database structures and elements
to the system. From these structures and elements, the database
administrator creates logical databases that control which of the
structures can be accessed and how they can be used.

DMSlI databases can be described, initialized, accessed, loaded, and
reported against in a simplified way through DataAid. DataAid,
described later in this section, works in conjunction with ADDS and
Extended Retriever with Graphic Output (ERGO).

Users can inquire about, add, modify, and delete
DMSII database by w;ing the ERGO program,
section. ERGO has Cl menu-assisted interface
inexperienced and experienced users.

data items within a
described later in this

to accommodate both

Recovery of a database must occur anytime processing is halted
abnormally. Recovery means reconstructing the database and ensuring
that no partially-comp:.eted transactions are left in it. This involves
undoing the most recent changes and notifying programs where to restart
processing. Within DM~;}I, recovery is comprehensive.

63
A User's View of System Functions

For audited databases, recovery occurs automatically the next time the
database is accessed. (An audited database is one for which a record of
all changes and events is kept.) You can also initiate recovery manually
by running the RECOVERY program. For unaudited databases, you must
reload the database files and control file from a backup dump and
reprocess the input.

Along with the basic facilities just described, DMSII is totally
integrated with a number of utility modules for accessing information,
modifying information, determining database integrity, and analyzing
database status and structure. The following paragraphs briefly
describe these utilities and tell where to find more detailed
information.

DataAid

DataAid is an interactive, menu-driven system that simplifies the
overall process of describing, initializing, loading, and accessing a
DMSII database. DataAid is complemented by on-line documentation.

If you have to describe a new database, DataAid transfers you to ADDS.
When the definition stage is complete, DataAid monitors the generation
of the database software modules and the database initialization. In
the following stage, DataAid automatically transfers you to ERGO where
you can load the database through the ERGO update feature, and then
develop reports from the database. DataAid also initiates and tracks
the dump, copy, and recovery functions of the database, if requested.

DataAid simplifies the changes users most commonly make to databases.
It does not attempt to present a complete interface to the operational
capabilities of DMSII.

For details, refer to the "DMSII DataAid User's Guide."

;Extended Retrieval ~'ith Graphic Output (ERGO)

Extended Retrieval with Graphic Output (ERGO) is a program used to
retrieve data from a DMSII database and produce reports from that data,
to display informati,on graphically, and to relate and format data. At
the option of the si,te management, ERGO can also be used to modify, add,
or delete records from a database.

64
IN1RODUCTION TO A SERIES SYSTEMS

ERGO has an extensive capability for data manipulation through built-in
mathematical and statistical functions. Its report capability includes
tabular and stat:istical formats, data extraction to both flat files and
B 20 workstations, plus a variety of graphic formats: discrete and
continuous plot graphs, bar graphs, kiviat diagrams, and histograms.
You can use standard report formats included in ERGO or define your own
formats through control of over 50 variables.

ERGO is designed for both inexperienced and experienced users. A
menu-assisted interface prompts the user through the processing of a
request. In addition, help information is available for any command or
data item. If desirEd, experienced users can bypass the menus by
entering direct commancs.

ERGO allows you to join data sets and access up to five DMSII databases
and 10 conventional files in a single session. Also available are
search and sort mechanisms, parameters for data selection, and extensive
mathematical capabilities. Finished reports can be directed to a disk
file, a printer, a B 2C workstation running Data Transfer System (DTS),
or one or more terrrinals. For more information on ERGO, see the
following manuals:

o Extended Retrieval with Graphic Output (ERGO) Capabilities Manual

o Extended Retrieval with Graphic Output (ERGO) User's Guide

Advanced Data Dietionary System (ADDS)

The InterPro (tm) Advanced Data Dictionary System (ADDS) is a software
tool that provides centralized storage and retrieval of data definitions
that are used in application programs and DMSII databases. These data
definitions describe most elements of information on a system, including
DMSII database dE~finitions, Screen Design Facility (SDF) screen formats,
COBOL74 file structures, and other collections of records. ADDS data
definitions can be included in application programs and can be used to
automatically generate DMSII databases.

ADDS allows you to define processes. which can be procedures, job
streams, manual preparation procedures. or any user-defined entity. A
process is a structure that describes or models a logical view of the
relationships that exist between different parts of a system. Processes
make it possible to document the flow of a total system and inquire
against it for reporting.

65
A User's View of System Functions

ADDS makes it possible to eliminate inconsistencies and redundancies in
data and to control additions, changes, and deletions. ADDS is a
multiuser system that manages all concurrent retrieval and modification,
thus ensuring data definition integrity.

You communicate with ADDS through menus, through which you define,
modify, and retrieve data, plus obtain reports on the use and structure
of the data within the dictionary. There are two levels of security to
prevent unauthorized access to data: system security, for controlling
system access, and ADDS security, for controlling access to individual
data items. For more information about ADDS, refer to the following
manuals:

o Advanced Data Dictionary System (ADDS) Capabilities Manual

o Advanced Data Dictionary
Operations Manual

System (ADDS) Installation

o Advanced Data Dictionary System (ADDS) User's Guide

;OM Interpreter

and

DM Interpreter provides direct access to DMSII databases through
application languages that do not have DMSII extensions. This interface
leliminates the need both for special DMSII statements in programs and
for prior knowledge of database operations. The primary requirement for
using DM Interpreter is that the application language must support
libraries.

DM Interpreter is a dynamic run-time interface that allows an
application program to be compiled before the databases it uses are
created. This is possible because an application program never directly
accesses the database but instead calls the DM Interpreter library,
which is tailored to particular databases when the library is compiled.
Parameters that describe the types of operations to be performed on the
database are specified when the application program is run. Thus
changes to the database do not normally require changes to the
application programs.

'rhe "DMSII Interpretive Interface User's
information about DM Interpreter.

Manual" contains more

66
IN~~RODUCTION TO A SERIES SYSTEMS

Database Certification (DBCERTIFICATION)

The utility program Database Certification (DBCERTIFICATION)
the integrity of a DMSII database. It provides three
certification:

determines
levels of

1. Physical intE~grity. The utility ensures that a file is
physically intact and accessible, and isolates any problems at
the data block level.

2. Internal, intrafile integrity. The utility verifies that data
in a single structure is consistent, and that storage control
and int·ernal control information are valid.

3. InterstructurE' integrity.
relationships between
(crossc:heckinf:) .

The
data

utility
structures

verifies
are

that
correct

This utility can be uSE-d interactively or in batch mode. You can select
which structures in thE- database to verify and which tests to perform at
each of the three levels.

For more information about this utility, see the "DMSII Data Base
Certification Software Operation Guide."

The DB HONITOR Utility

DB MONITOR is an interactive program that provides database status and
statistics information and permits changes to database options and
parameters. The status and statistics information can be for the entire
database or for selEcted structures of the database, and includes the
following:

o The number of users

o Whether users are updating information or making inquiries

o The number of transactions

o Overlay rates

o The number of reads and writes performed

The "DMSII Utilities and Operations Guide" contains more information
about DB MONITOR.

67
A User's View of System Functions

DBANALYZER is a software tool that analyzes the logical and physical
structure of a database and provides reports that a database manager can
use to modify, tune, reorganize, and document the database. DBANALYZER
describes the structures in the database and their interrelationships,
analyzes the database file, and provides information about how the files
are referenced. The program does not, however, allow a user to examine
the contents of the database, so it does not compromise database
security.

You can use DBANALYZER interactively or in batch mode. Simple commands
control the scope and depth of each analysis and allow you to direct the
output to a terminal or a printer.

See the "DMSII Utilities and Operations Guide" for more information
about DBANALYZER.

l'he INQUIRY Utility

DMSII INQUIRY is an interactive utility program for examining or
modifying data in a DMSII database. INQUIRY was designed to allow users
relatively unfamiliar with database concepts to easily and effectively
access and use database information. Through this utility you can:

o Examine the contents or the description of a database

o Modify, create, or delete records within a database

o Generate reports from the database

o Extract information from the database and place it in a standard
file

You generate an INQUIRY program by running the BUILDINQ program and
answering a short series of prompts in which you specify which database
you want to access and which operations you want to perform. From your
answers, the utility creates a program that you then run. Both program
generation and execution can be performed in either interactive or batch
mode.

For more information about INQUIRY, see the "DMSII Inquiry Software
Operation Guide."

68
IN~'RODUCTION TO A SERIES SYSTEMS

DATA COKMUNICATIONS

The Data Communication~: Subsystem is the communications link between all
remote devices. such as other hosts and terminals. and the central
system. The Data Comrunications Subsystem serves as the transport
mechanism for other communications networks. The following description
assumes you have at lecLst an elementary knowledge of data communications
theory.

Data Communications Hardware

The Data Communication~: Subsystem is microprocessor-based and modular in
design. It off-lor:Lds communications functions from the central
processor and distributes them among specialized processors--the Network
Support Processor (NS!». the Line Support Processor (LSP). and the Data
Communications Data Link Processor (DC-DLP). The NSP and LSP are
programmable and capable of implementing many different communications
protocols. The DC-DLP is preprogrammed with selected protocols.

The low-level interfbce to the datacomm lines is a bit- or
character-oriented devj.ce known as a Line Adaptor (LA) . Each LSP can be
connected to from one to four Quad Line Adaptors (QLAs). (A QLA is a
set of four line adaptors on one circuit board.) The DC-DLP contains
four single line adaptors.

The following illustration shows the flow of messages through the
datacomm subsystem.

A User's View of System Functions

DATACOMM NETWORK

----------.------------------------

HOST

THE DCC ROUTES
INFORMATION TO
APPLICABLE MCS

REFORMATS CHARACTERS
INTO MESSAGES; ALSO
HANDLES MAJORITY OF
DATA LINK AND LINE
DISCIPLINE DETAILS

CONTROLS DATACOMM
SUBSYSTEM. THE LINKS
AND LINE DISCIPLINE

CONTAINS
INFORMATION

ACCUMULATES
CHARACTERS
FOR THE LSP

ON CONFIGURATIONS
OF DEVICES IN
DATACOMM NETWORK

69

70
INTRODUCTION TO A SERIES SYSTEMS

Messages are entered at the remote device, where the firmware translates
them for bit-bY'-bit transmission over the datacomm line. If the device
is located at a distance from the host, a modem plus telephone line is
used to connect to the Line Adaptor (LA). Otherwise, a direct
connection is used.

The message flows throl.gh the Quad Line Adaptor (QLA), which is the
electrical interface between the communications line and the Line
Support Processor (LSP~. The QLA accumulates characters for transfer to
the LSP.

The LSP is the connect jon between the QLA
Processor (NSP), and handles the majority
discipline control de'tails for the NSP.

and
of

The

the Network Support
data link and line
LSP reformats the

characters it receives into messages, because from this point on data is
sent as messages rather than as bits or characters. This message-level
transfer reduces the nL.mber of interrupts and allows more information to
be transferred at a tinle.

The NSP controls the datacomm subsystem, the links, and line discipline.
By performing these functions, it allows the central processor to use
processing cycles for message processing rather than datacomm
"housekeeping." The host loads the user-specified line control
algorithms (routines) into the NSP and, through the NSP, loads the line
adaptor control routines into the LSP. The line control routines
provide services to user programs such as handling line errors and error
recovery. The NSP is a data link processor and is treated as a
peripheral by the system.

The DC-DLP combines the functions of the NSP and LSP. It has dedicated
protocols such as the Burroughs poll-select and teletype protocols. It
has the advantages of speed and lower cost, but lacks the flexibility
and programmability cf the LSP/NSP combination. Functionally, the
system treats a DC-DLP as an NSP and identifies both as NSPs: NSPs I
through 4 are NSPs with LSPs attached, and NSP 5 is a DC-DLP.

The messages between the NSP and the central processor flow through the
Message-Level Interface (MLI) of the I/O Base Module to the mainframe
I/O subsystem, as shown in the following figure. From this point on,
software takes over.

A User s Functions ' View of System

ETWORK DATACOMM N

HOST

ROUTES
THE ~<JATION TO
INFOICABLE MCS APPL

BIT-BY-BIT
TRANSMISSION

-----.--------------------------------.---------------------------

MBINES THE
CO CTIONS OF
FUN SP
THE QLA. L •
AND THE NSP

CONTAINS ON

INFORM~~IURATIONS
ON CON IN
OF DEVICES NETWORK
DATACOMM

71

72
IN'l'RODUCTION TO A SERIES SYSTEMS

Data Communications Software

Interactive Datacomm Configurator (IDC)

Data communications net.works are defined and maintained through the
Interactive Datacomm Configurator (IDC), a menu-driven utility. This
utility modifies the dCltacomm information file to reflect the current
datacomm network. IDC requires minimal knowledge of data
communications, yet al2.ows the definition of complex networks containing
user-defined protocols and terminals.

IDC accepts standard and user-developed protocols. Burroughs supports
industry-standard protocols and supplies them plus example definitions
for lines and stations in the SYSTEM/DATACOMINFO file supplied with the
software. The defin:.tions can serve as models for new lines and
stations to be added to a configuration.

IDC allows you to perfc)rm certain updates to the datacomm configuration
currently running on the system. This ability means that you can make
changes, such as adding and moving lines and stations, or test new
algorithms and editors without having to interrupt the functioning of
your datacomm network.

The DATACOMINFO file contains a complete description of the
configuration, including algorithms. editors, and translate tables. IDC
modifies the configuration by causing the DATACOMMINFO file to be
updated.

An optional capability of IDC, the DataComm Processor (DCP) to Network
Support Processor (NSP~ configuration conversion aid. is an interactive,
menu-driven utility thilt allows you to transform the configuration
section of a DCP datacomm network to the configuration section of an NSP
datacomm network. The configuration conversion is designed for the
A Series systems, ':he B 5900, B 6900, B 7900 systems, and for
TD-compatible terminals. Refer to the "DataComm Processor (DCP) to
Network Processor (NSP) Configuration Conversion Aid" manual for more
information.

To allow for flexibili·:y, the datacomm subsystem accepts specialized,
user-developed protocols. Users develop protocols by writing and
compiling NDLII progrmns (see below) and then adding the resultant
object program to the network configuration through IDC. For more
information on IDC, sel~ the "Interactive Datacomm Configurator (IDC)
User's Guide."

73
A User's View of System Functions

Network Definition Language II (NULII)

Network Definition Language II (NDLII) is a high-level language for
developing user-written line protocols. An NDLII program contains a
network description and the tables and code for NSPs and LSPs. You
would use NDLII when you want to use a nonstandard protocol on your
datacomm network. Once the protocol is defined, you can incorporate it
into the network using IDC. You can also use NDLII to generate a full
network description and then later use IDC to modify that description.
The "Network Definition Language (NDLII) Reference Manual" explains
NDLII.

How the Data Communications Software Works

Messages come from the I/O subsystem to the Data Communications
Controller (DCC). The DCC is a procedure of the MCP, and one copy of it
is initiated for each NSP in the network. The DCC monitors NSP
activity, decodes incoming messages and routes them to the appropriate
MCS or application program, and formats outgoing messages.

Each DCC copy has information about the NSP it controls and about the
devices attached to that NSP. It obtains this information at
initialization time through calls to the Data Communications Support
Library. The library contains routines to access the DATACOMINFO file,
which stores all information about the configuration of the devices in
the datacomm network.

The DCC routes any information from the datacomm system, such as status
information, to the applicable MCS. The MCS that receives the message
is a special purpose program, usually written in DCALGOL. DCALGOL is an
extension of ALGOL that contains statements for creating messages,
moving them in and out of queues, and creating, combining, or changing
queues. It is a powerful language that also contains features for the
development of internal system software. See the "DCALGOL Reference
Manual" for information about the language and about writing an MCS.

74
INTRODUCTION TO A SERIES SYSTEMS

pata Communications Utilities

Four utility programs aid in monitoring and analyzing a datacornm
network. The programs and their functions are as follows.

o DCAUDITOR

0 NDLIIANALYZER

o NSPDUMPANALYZER

o DCSTATUS

This utility prints monitored NSP traffic.
It can print all traffic or selected classes.
such as messages. errors. or trace messages.

This utility aids in the writing and
debugging of NDLII algorithms and ed:i tors.
It combines information from the Network
Information File and an NSP dumpfile to
produce information concerning the status of
an NDLII process. The "Network Definition
Language II (NDLII) Reference Manual"
describes the operation of this utility.

This utility produces formatted listings of
NSP memory dumps.

This utility tells you the current status of
the datacornm network by producing an analysis
of the state of the datacomm tables
maintained by the MCP and the datacomm
subsystem. The "System Software Support
Reference Manual" describes this utility.

75
A User's View of System Functions

BURROUGHS NETWORK ARCHITECTURE (BNA)

Burroughs Network Architecture (BNA) allows the connection of multiple.
independent Burroughs computer systems into a network. The purpose of
this network is to give the user in a distributed processing environment
the same type of access to remote resources he or she has to local
resources.

BNA gives the user. including programs, the ability to

o Access files and databases on other hosts

o Transfer files between systems

o Share resources on other systems

o Execute and control jobs on other systems

o Communicate with users and programs on other systems

o Transfer datacomm stations to other systems

Although a BNA network can be composed of different types of Burroughs
systems, all of the networks have the following characteristics:

o All systems in the network are cooperating peers regardless of
size.

o Control is distributed evenly among all systems.

o The routing algorithm responds automatically to changes in the
network configuration and characteristics.

o The user interfaces are a simple extension of normal operations.

76
INTRODUCTION TO A SERIES SYSTEMS

This explanation assum4~S you have at least an elementary knowledge of
data communications.

In a BNA network, each system. called a host, supports its own users and
one or more connectio:1S to other hosts. Each connection point is known
as a node and is identified by a unique node address. Nodes within the
same site can be conn8cted through direct hardware links. More distant
nodes are connected by dedicated (leased) or switched pOint-to-point
telephone lines or ',y public data networks that support the X.25
interface.

Nodes directly connect,~d to each other are known as neighbor nodE~s. A
node communicates with its neighbor through a station, which is thE'
equipment and programs that send, receive, and control the messages and
message flow. ENA su~~orts four types of stations:

1. Burroughs Data Link Control (BDLC), for switched and dedicated
lines

2. X.25, the CClTT standard interface to a Public Data Network

3. Inter-System <::ontrol (ISC), for direct hardware connections

4. Global Memory, for pre-A Series systems with *GLOBAL tm Memory

Non-neighbor nodes can communicate because their messages are routed
from neighbor to neighbor through the network. Routing tables at eact
node keep track of the most efficient route to any other node. ThesE'
tables change dynamically as nodes or links are added to or deleted from
the network, or when t1e physical characteristics of any node or link
change.

* "GLOBAL" is a tr·'l.demark of Burroughs Corpora t ion.

77
A User's View of System Functions

For control purposes, each host is equal and has equal responsibility
for running the network. As each node becomes active in the network, it
establishes physical connections with neighboring nodes, then logical
connections to all nodes, through a series of greeting messages and
routing information exchanges.

A host has complete control over which of its resources are available to
network users, and can selectively allow or deny resource use to
individual hosts, programs, or users. There are two types of access
control: node and host, and individual user. Node and host access
control is achieved through validation and authentication. The
validation process controls which hosts and nodes are allowed access,
and authentication verifies that a host or node is what it claims to be.

BNA
STATIONS

78
INTRODUCTION TO A SERIES SYSTEMS

Individual user access control is through use of a hostname/usercode
pair for log-on to c remote host. Once the hostname/usercode pair is
verified, the remote heist drops the hostname portion and treats the
usercode as if it ~'ere a local usercode. This treatment requires
coordination of usercocles across the network to avoid duplication on any
host. However, a prE-assigned local alias for the usercode can be used
after verification to r'emove the necessity for this coordination.

BNA provides the optiorl of logging specific events for such purposes as
billing, scheduling, reporting, performance monitoring, testing, and
maintenance. This log~:ing is in addition to any other system logging.
The types and frequency of logging are specified by the user.

BNA is functionally divided into two major levels: Host Services and
Network Services. Host Services is the "upper" level and provides the
services associated wit.h a host, such as access to remote hosts and file
transfer. Host Services can be viewed as an extension of the operating
system.

Network Services is thE' "lower" level and provides the physical and
logical connections between nodes for transporting data and messages.
Network Services can be' thought of as the transporting mechanism for
Host Services.

Existing application programs usually require no modification to run on
BNA. Such programs Ccln access remote resources through the use of file
equation statements at run time. In addition, there are BNA extensions
to high-level langua~:es to allow interprogram communication between
different systems. BNll task and file attributes, control statements,
and Operator Display Terminal (ODT) commands are used to control the
network and to request services at remote hosts in a manner similar to
local service requests.

The manuals that descr:be BNA are the following:

o Burroughs Network Architecture (BNA) User's Guide

o Burroughs Network Architecture (BNA) Program Agent User's Guide

79
A User's View of System Functions

OPERATIONAL INTERFACE

On a mainframe computer system, an operator must be able to

o Display information concerning the system

o Initialize the running environment, including data
communications, networks, and so on

o Start utility programs

o Execute controlled dumps

o Perform many other essential system functions

On A Series systems, these functions are easy and efficient to perform.
Because of carefuJ. ergonomic design, the operating system supports
operation of the system by people with varying levels of expertise. For
an expert in certain types of operations, a fast, efficient command
interface, the Operator Display Terminal (ODT), is provided. For those
less expert in any area, a menu-driven interface called Menu-Assisted
Resource Control (MARC) is provided. An operator can use either
interface interchangeably and concurrently.

'Wi thin MARC there are two ways to communicate: through the menus and
forms and through direct entry. MARC menus and forms guide the user
through command entry, making it unnecessary to learn system commands.
Direct entry requires some knowledge of operational commands, and is
accomplished through ODT mode on an ODT or through MARC command mode on
either an ODT or an end-user terminal.

;Direct Entry of System Commands

You can enter system commands directly through an ODT or through MARC on
4~ither an ODT or an end-user terminal. A few system commands are
privileged and can be entered only through an ODT. However, all
commands entered through MARC are subjected to security checking.

In normal ODT mode, an ODT is a privileged device, meaning that commands
E~ntered through it have privileged status. In addition, anyone using an
ODT can enter commands without logging on to the system and without
entering them under a usercode.

Other features of ODT mode include direct entry of Work Flow Language
I[WFL) commands and immedia te execution of certain of those commands.
The "Operator Display Terminal (ODT) Reference Manual" describes the
syntax and use of system commands.

80
INTRODUCTION TO A SERIES SYSTEMS

SECURITY

Security for a computer system comes through controlling the access to
that system--to the system as a whole and to its component parts.
Access control can be fhysical~ as in computer room~ tape library~ and
terminal access, or can be through software. Control of physical access
is determined for an individual site by that site's management~

preferably during the initial planning stage. Control through software
is optional. Burroughs supplies the means of software control, but each
system administrator can choose whether to implement all of it~ selected
parts, or none.

Software Access Control

For A Series systems, there are three types of software access control:
user, system, and file.

User Access

User access is controlled through usercodes, passwords, and access
codes. A unique usercode can be used to identify each user who is
allowed access to the system. Because the usercode is at times
displayed on various output media, it is public. However. a password~
known only to the individual person, can be used to validate the
identity of the user and prevent unauthorized use of the usercode.

The usercode has two purposes:

1. To identify the user for system access and for logging and
accounting purposes

2. To identify the user's files for security control and for
normal owner access

A usercode can have up to 15 passwords associated with it. This allows
several users to have the same usercode yet use different passwords to
gain access to the system. This is helpful when a group of people. such
as an accounting department, need to access the same secured files. A
password cornmon to all can quickly become cornmon knowledge outside the
department through inadvertent slips. Also, when one person leaves the
department and his password must be changed for security reasons, the
other department members need not learn a new password.

81
A User's View of System Functions

In order to perform certain necessary system functions, such as
archiving files on a daily basi$, someone must be able to access files
that are normally secured and access privileged system functions. To
allow this access, the system administrator can designate a few selected
users as being "privileged." A privileged user can access any files and
run any programs on the system, regardless of the file security
designation. For accountability purposes, it is strongly recommended
that the smallest possible number of persons be given privileged status.

The Menu-Assisted Resource Control (MARC) interface has two levels of
privileged status, Systemuser and Privilegeduser. A Systemuser has
operator privileges and capabilities and has access to functions that
affect system operation. A Privilegeduser has access to privileged
functions and secured files. Having Systemuser status does not make a
user code privileged, and vice versa, but a usercode can be designated as
both Privilegeduser and Systemuser.

Programs also can be marked as privileged, meaning that the programs
have the same status as a privileged user and can access all files and
privileged system functions. The PP (Privileged Program) ODT command is
used to give a program privileged status. Nonprivileged users can run
these programs if they are specifically given permission to do so
through file security.

Accesscodes provide an additional level of user security. They are
similar to usercodes, have one associated password, and are used as a
second log-on procedure after the usercode/password log-on. Accesscodes
are also used for additional file security.

Usercodes, passwords, and accesscodes are created through the MAKEUSER
utility, which builds a minidatabase, the USERDATAFILE. This file
contains all the needed information about system users. Only privileged
users can access the utility to create or change the file. The MU (Make
User) ODT command is an alternative way of adding or changing usercodes;
its use is optional and can be restricted. Information about the
l'lAKEUSER utility is in the "System Software Utilities Reference Manual"
and about the MU command is in the "Operator Display Terminal (ODT)
:Reference Manual."

82
INTRODUCTION TO A SERIES SYSTEMS

System Access

System access is cont:~olled through log-on procedures. Loggi,ng on
involves entering a uSI?rcode and. optionally. a password in order to use
the system. This may ~e done interactively or. in batch mode. through a
job statement. Whethe:~ or not the log-on procedure is required is up to
the individual site. a:1d within that site's system. to the message
control programs in ~se. For example, CANDE requires all users to log
on, while RJE gives thl? system operator the option of omitting the
log-on procedure.

An important exception to the log-on procedure involves Operator Display
Terminals (ODTs). The:~e terminals accept input without requiring a user
to log on to the system. For this reason. physical access to an ODT may
need to be restricted.

File Access

File access is control.Led by file attributes, through which the owner of
the file defines the .Level of security each file is to have. The owner
can specify who can access the file and the type of access each user can
have. The file security attributes are SECURITYTYPE, SECURITYUSE,
SECURITYGUARD. and SEN!)1TIVEDATA.

SECURITYTYPE specifies who, other than the file owner, can access the
file. This attribute can have the following values:

o PRIVATE

o PUBLIC

o GUARDED

0 CONTROLLED

On:_y the owner and privileged users can access the
fL_e.

Any user can access the file.

On:_y those users and programs listed in the guard
fL.e can access the file. The owner and privileged
USE~rs are excluded from this restriction. The guard
fL.e is explained below.

On~.y those users listed in the guard file, including
thE! owner if he or she is nonprivileged, can access
thE! file. Users can be identified by accesscode in
addition to user code or program name. Privileged
USE~rs are exempt from this restriction.

83
A User's View of System Functions

SECURITYUSE defines how a file protected by security can be used.
attribute has the possible values of SECURED, IN, OUT, or 10.

This

o SECURED

o IN

o OUT

o 10

For data files, no access is allowed. Secured code
files can be executed only. The file cannot be read
or written to.

The file can only be read (data files) or executed
(code files).

The file can only be written to.

Code files can be read and executed. Data files can
be read and written to.

SECURITYGUARD names the guard file to be used if the file's security
type is GUARDED or CONTROLLED. The guard file contains the names of the
users and programs that can access the file and their respective access
rights. Users are identified by usercodes and optionally, by
accesscodes; programs are identified by file name and family name. Both
users and programs can be further restricted to access only when running
certain programs or when running under certain user codes , respectively.

The MCP checks the guard file whenever a nonprivileged user or program
attempts to open the file. To create a guard file, use the GUARDFILE
utility, described in the "System Software Utilities Reference Manual."

SENSITIVEDATA provides access security after a file is removed from a
disk pack. When the value of this attribute is TRUE, the MCP overwrites
the removed file's disk area with an arbitrary pattern before the disk
area is returned to the system for reallocation. This prevents
subsequent users of that area from reading any of the file's data that
might have been left in that space. The SENSITIVEDATA attribute should
be reserved for high security files because it can slow down I/O
operations.

Network Security

Burroughs Network Architecture (BNA) has a distributed approach to
security. In a BNA network, each host (Burroughs computer system)
operates independently of the other hosts and controls its own
resources. A host governs remote user access by maintaining a list of
allowable remote usercode/hostname pairs in its USERDATAFILE. Each
request for service from a remote user is checked against this list and
subjected to the same degree of security checking as local requests.

84
INTRODUCTION TO A SERIES SYSTEMS

In addition to user, system, and file access control, the host also
controls access to ~uch resources as processor time, peripheral use,
file storage space, anc access to system functions. Changes to access
privileges can be expanded or revoked at any time without notifying
other hosts in the net~urk.

Compiler Security

Three of the specialized languages offered by Burroughs--DCALGOL,
DMALGOL, and NEWP--contain language extensions that allow a program to
access internal system functions and data files. These extensions,
essential because of the specialized uses of the languages, mean the
compilers for these lar.guages might be a problem for system security.

A user does not need pr'ivileged status to use these compilers, unless
the compilers have beer, secured at that site. Programs generated by the
compilers and not giver, privileged status will run as long as they do
not try to access privileged system functions or files. However, if
they are given privjleged status, the programs can access some
privileged MCP functioLs.

The NEWP compiler cf,ecks the "safety" to the system of program
statements as it gener'ates object code. If it finds unsafe statements,
it compiles the program but marks it as unsafe. This in turn causes the
system to refuse to execute the program, unless the program is one
installed by a system operator, such as a new MCP, system library, or a
standalone program slLch as the LOADER. Unsafe statements are those
tha t, if incorrectly uE:ed, mi gh t cause a program to acces s memory areas
outside the program's normal addressing environment or that would cause
the system to halt. Tbe MCP and certain system libraries are the only
routinely executed programs marked unsafe by NEWP.

To prevent any security problems from arising, you may want to limit
access to the DMALGClL compiler. This can be accomplished in several
ways:

1.

2.

By limiting the number of privileged users on the system to
very small. controlled group and by physically removing
compiler from the system, returning it only long enough
perform scheduled compilations, and then removing it again

By designating the compiler files as GUARDED or CONTROLLED
using a guard file to list the persons who can access them

a
the
to

and

85
A User's View of System Functions

JNPUT/OUTPUT SUBSYSTEM

The input/output (I/O) subsystem manages all transfers of information
between system and application software and peripheral devices. The
flow of information through the subsystem can be viewed on two levels:
the physical and the logical. The physical level handles the movement
of data and control information to and from the peripheral devices and
includes all physical devices involved in that movement. The logical
level structures the data for transmission and manipulates the structure
so that data is delivered in the desired quantities. The following
pages discuss I/O first from a physical, then a logical viewpoint.

Physical I/O

On Burroughs A Series systems, each central processor has an associated
Message-Level Interface Processor (MLIP). The MLIP handles I/O
operations for the MCP, accepting I/O requests from it and returning the
resulting information to it. The MLIP communicates with the I/O
subsystem through a Message-Level Interface (MLI), which is connected to
an I/O base, as shown in the following diagram. The connection between
the MLIP and MLI is made through one or more MLIP ports.

HOST BASE

r.c:=~~~~~:::::::~ TO OTHER
.,) BASES

HOST MU

Each I/O base contains one or more Data Link Processors (DLPs), which
function as peripheral controllers. PT-DLP handles both the printer and
the tape drive; disks have different DLPs, depending on the type of disk
used. Network Support Processors (NSPs) and Line Support Processors
(LSPs) are programmable DLPs that provide data communications services.
A DLP can be connected to a peripheral directly. to a peripheral
controller, or, if an NSP, to another base.

86
INTRODUCTION TO A SERIES SYSTEMS

A base is connected to an MLI through a Distribution Card (DC). There
can be as many as six of these cards, allowing access from six different
hosts. A host is any module that has an MLI port, such as an A 9
processor or an NSP. Additional bases can be attached to a host MLI
port through use of a Line Expansion Module (LEM).

Bases with more than one Distribution Card must have a Path Selection
Module (PSM) to resolve priority and route data from each DLP to the
appropriate host. A base also contains a Base Control Card (BCC), to
identify and control access to the base and to the DLPs in the base, and
a Maintenance Card (MC), to connect the base to the maintenance test
bus.

~] AllOWS ACCESS FROM
HOST; CAN HAVE UP TO
SIX DCs FOR SIX HOSTS --.-----.

[PSMJ FOR BASES WITH MORE THAN
ONE DC, ROUTE~ AND
PRIORITIZES DAl A FLOW

TO OTHER

~BASES

~~~~~ 

BASE 

P 
S 
M 

c_,--'----___ -------' 
l HOST MLI 

ODD 
C C L 

P 

FROM ~----_./ 

ANOTHER > HOST ~ _____ _ 

L 
S 
p 

N 
S 
p 

A PROGRAMMABLE DLP. 
FOR DATA COMMUNICATION 
SERVICES 

B 
C 
C 

A PROGRAMMABLE DLP. FOR 
COMMUNICATION TO LSPS. WHICH 
MA Y RESIDE IN OTHER BASES 

M 
C 

IDENTIFIES AND CONTROLS 
ACCESS TO BASE AND DLPs 

CONNECTS TO THE 
MAINTENANCE TEST BUS 

LEM ALLOWS FOR 
ADDITIONAL 
BASES TO BE 
ATTACHED 
TO HOST Mll 

TO OTHER 
BASES 



A User's View of System Functions 

Logical I/O 

The logical I/O subsystem is concerned with structured 
information called files that can be manipulated 
statements. The subsystem includes parts of the 
libraries, and other parts of the software that deal 
operations. 

87 

collections of 
by means of I/O 
MCP, formatting 
with logical I/O 

The logical I/O subsystem presents data at the record level and makes 
operational details about the file system and the I/O subsystem 
transparent to the user program. For certain peripherals such as 
printers, a program can treat the peripheral as a logical file that is 
almost independent of the kind of printer used. The program then 
performs I/O operations to the file rather than to a specific device. 
Details of device control are handled by the physical and logical I/O 
subsystems, and peripheral assignments can be delayed until run time. 
Because of this device independence, changes can be made to the system 
configuration without changing existing programs. 

The I/O subsystem transfers data formatted into two types of structures: 
r4~cords and files. A record is an organized and identifiable set of 
data containing strings of characters, groups of binary words, or both. 
The subsystem moves data in blocks between primary storage and memory, 
but passes data to and from programs one record at a time, moving 
records from memory to the user work area and back. 

To expedite the flow of I/O operations, the I/O subsystem makes use of 
buffers. Buffers are intermediate storage areas controlled by the I/O 
subsystem and used to store data when it is in transit between the 
physical file and the user work area. 

A file is a group of related, ordered records. Most of the communication 
between programs and the subsystem concerns files. Files are both 
physical and logical. A physical file is the file as it is stored on a 
recording medium, such as a disk or tape. It generally has a specific 
structure influenced by the type of medium. A logical file is the file 
as seen by a program. It exists only within that program and has no 
inherent properties until it is associated with a physical file or is 
described by file attributes. The logical file, through file 
attributes, defines the properties of the physical file it creates. 
Multiple logical files can be associated with one physical file, as in a 
database, even when the attributes of the logical files are not 
identical. 



88 
INTRODUCTION TO A SERIES SYSTEMS 

Both the logical file and the physical file have file names. ThE' 
physical (external) fLle name is recorded in a directory for disk files. 
and in a tape label fo:::- tape files. The combined logical and physical 
I/O subsystem maintaLns the disk directory and tape labels, updating 
them as necessary. Th~? logical (internal) file name is a file variable 
declared within a pr~)gram and known only within that program or within 
programs to which it has been passed as a formal parameter. 

The I/O subsystem acts as an intermediary between a logical file and thE' 
associated physical :ile, establishing a connection between the two as 
necessary. When a new logical file is created, the subsystem finds ·and 
provides storage spal~e for the associated physical file or provides. 
access to a requested ](ind of peripheral. 

A file as seen by a pr()gram has a particular structure that depends on 
the format of the rec()rds and the way they are accessed. Records can be 
fixed or variable in It?ngth. The I/O subsystem must know the length of 
a record in order -:0 pass one record at a time to a program. For 
fixed-length records, ':he program directly or indirectly declarE~s the 
length. For variablt?-length records, the length is usually stored in 
some location in the rt?cord or specified in the I/O statement. 

Access to files can be sequential or random. During sequential access, 
records are processed :Ln consecutive order. Random access allows direct 
access to a record without first accessing the preceding records. To 
access a fixed-length record randomly, the logical I/O subsysterr. 
calculates the position of the new record and moves to it. To access a 
variable-length record randomly, the subsystem can use a "key," which is 
a field in the record that can be used to identify that record. A 
separate index associates each key with a pointer to the record's actual 
location. 

COBOL74, RPG, and Pascal files with records sequenced by keys can be 
accessed in both sequential and random modes through use of the system 
library SYSTEM/KEYEDIO. KEYEDIO uses a hierarchy of indexes to locate 
records for both type!; of access. In KEYEDIO files, sequential records 
are not necessarily stored next to each other. Instead the keys are 
indexed in sequential order and used in that order for sequential access 
of the records. A further discussion of KEYEDIO can be found in the 
"System Software Support Reference Manual." 



89 
A User's View of System Functions 

Eile Attributes 

In a multilanguage, multiprogram environment, most files cannot be 
viewed as the simple property of a single program. Because of data 
communications, time-sharing, and database management applications, 
files have become system components often accessed by a wide variety of 
programs. Therefore, it is necessary to have some method of managing 
files that is system wide and language independent. File attributes is 
the method used on Burroughs systems. 

File attributes are control parameters that contain all the information 
the I/O subsystem needs to connect the correct physical file to a 
logical file and to process the file after the connection has been made. 
They are used for the following purposes: 

o To identify a file 

o To indicate file structure 

o To control file access 

o To give the current status of a file 

o To automatically translate the characters in a file 

o To return diagnostic information about attribute consistency and 
about physical I/O operations 

Values for file attributes can be specified in a number of ways. 
Programming languages provide explicit methods through file 
declarations. The I/O subsystem allows dynamic specification of 
attributes when the program is compiled or executed through use of Work 
Flow Language (WFL) file equation statements. In addition, some 
attributes can be changed during program execution either through ODT 
commands or through statements in the program. 

For further information on the I/O subsystem, see the "I/O Subsystem 
RE?ference Manual" and the "Physical I/O Overview" manual. 



90 
IN'PRODUCTION TO A SERIES SYSTEMS 

DISK SUBSYSTEM 

The disk subsystem is one of the most extensively used subsystems. It 
is responsible for ~he movement of data to and from disks and the 
structure and the organization of information on those disks. The 
subsystem consists of ":he following components: 

o The disk or disl~ drive media 

o The disk drive 1lnits 

o The disk drive controller that controls the disk drive units and 
transfers information between the host system and disk drive 
units 

o The I/O controL.er that provides the interface between the host 
system and the disk drive controller 

o The software that controls the structure and operation of the 
disk subsystem and provides the structure for the information 
stored on the d:.sks 

A disk volume or disk I~ck is a data storage medium that consists of a 
circular platter (or circular platters stacked vertically on a central 
spindle) containing magnetic bits of data stored in concentric circles 
called tracks. A d:.sk pack consists of multiple platters stacked 
vertically on a centra~. spindle. For this discussion, the term "disk" 
includes disk packs. 

DISK PACK 

SECTORS ON 
ATRACK 
(180 BYTES LONG) 



91 
A User's View of System Functions 

Data is written to and read from disk volumes on a disk drive that has 
one or more read/write heads. These heads are positioned over the 
desired tracks of the spinning disk so that information can be stored 
and retrieved from those tracks. 

Disk tracks are divided into sectors that are 30 words (180 bytes) long. 
When you create a disk file or add to it, th~ data is stored in one or 
more areas. An area is a contiguous group of sector~ allocated for that 
file when it is crea ted or expanded. An area is al¥so ref erred to as a 
row by the MCP. Areas are defined in terms of logic;el records, while 
rows are defined in terms of sectors. You can control the size of an 
area through the AREALENGTH file attribute and can control the number of 
areas that can be allocated through the AREAS and FLEXIBLE file 
attributes. The system allocates physical disk space for areas when 
they are needed to hold data records written to the file. 

Files on a disk are organized through a flat directory. which is a table 
of contents for the disk that contains critical information about each 
file. The flat directory is also referred to as the system directory. 
Individual file information is stored in disk file headers in the flat 
directory, one for each file. The headers contain the file name. dates 
of creation and modification. the kind of file, access security level. 
file size. record size and structure. and physical location on the disk 
of the areas for the file, plus housekeeping information. 

Disks are organized logically into families. Each family is a disk or a 
collection of disks ~Nith a common name and a common file directory. The 
system treats each family as a single entity and can spread files 
destined for that family across all the members of the family. 

However, the flat directory cannot be spread over the family. The 
family member holding the directory is called the base pack. and 
additional disks added to the family are known as continuation packs. 
Directories can be duplicated on other members of the family, and in 
this case, any of these members can be the base pack. Both types of 
packs are added to the configuration through use of the RC (Reconfigure 
Disk) ODT command. 



INrRODUCTION TO A SERIES SYSTEMS 

The system assigns each member of the family a number, the family index. 
at the time the member is added. If there is a single directory, the 
base pack is assigned family index 001. the first continuation pack is 
002. and so on. If there are duplicate directories, the first family 
member with a director~ that the system encounters is identified as the 
base pack. A program can use the FAMILYINDEX file attribute to 
distribute files or areas of files to particular disks in the family. 

Access to files in the disk subsystem is through a flat directory for 
each family and thrJugh a special access structure for the entire 
system. The flat dire8tory, shown in the following figure, resides on 
the base pack and contains disk file headers for each permanent file on 
the family. However. these disk file headers are not ordered by name. 
Therefore, to locate files quickly, the system uses the special access 
structure. 

FLAT 
DtAECTOAY ,. 

DISK FILE :: HEA.OER 1 

~. 
DISK FILE 

=: HEADER 2 

~. EACH DISK FILE 

~~S 
HEADER POINTS TO 

r--- VARIOUS AREAS ON 

~-
DISK FILE 
HEADER N 

,-

~. 



93 
A User's View of System Functions 

The access structure consists of two parts: the Pack Access Structure 
Table (PAST) and the File Access Structure Table (FAST)t shown in the 
following figure. The PAST contains pointers to the FAST. These 
pointers indicate where in the FAST the entry for a family's files are 
stored. The FAST contains a pointer to each disk file's header in the 
flat directory for that file's family. The system obtains the physical 
address of the file from the disk file header. Using this access 
structure to access files increases system efficiency. 

MCP 

PAST ENTRIES 

LOCATE 
PROPER 
FAMILY ENTRY 

FAST 

LOCATE 
POINTER 
TO DISK 
FILE HE,tI,DER 

FLAT 
DIRECTORY 

1 

FLAT 
DIRECTORY 

2 

READ DISK 
FILE HEADER 

OBTAIN ADDRESSES 
OF DISK AREAS 

ACCESS 

DISK OF 
FAMILY 1 

DISKS OF 
FAMILY 2 

DATA DISKS OF 
FAMILY N 



94 
IN'rRODUCTION TO A SERIES SYSTEMS 

At system initialization time, the system compares the contents of FAST 
with the disk families that are on-line. Anyon-line disk packs missing 
from the FAST are autoInatically added to the FAST by the system. Any 
unvolumed families on the FAST that are no longer on-line are deleted 
from the FAST. Subsequently, when a family is brought on-line or taken 
off-line from the systl~m, the MCP adds or deletes the corresponding file 
entries to or from the access structure. 

Before a disk volume can be used for the first time, two procedures must 
be used to prepare it: the Initialize, Verify, and Relocate (IVR) 
procedure, and the Reconfigure Disk (RC) procedure. Before a disk is 
delivered to a customer, Burroughs uses the IVR procedure to write 
sector boundaries and a label on the disk. At customer sites, the IVR 
procedure should never be used except under the direction of a Burroughs 
field engineer. 

Before your installation uses a disk volume, you must use the RC 
(Reconfigure Disk) ODT command to prepare the disk for system use and to 
assign a family name and serial number to the disk. The RC procedure 
erases all the file~; on a disk and creates a new label and a new 
directory. 

If you want to change the name or serial number of a disk without 
erasing the data on it. use the LB (Relabel Pack) ODT command. 

The system constantly rwnitors the directories for discrepancies and 
automatically attempt~; to eliminate any problems it finds. The MCP 
maintains data integrity by testing all directory records before they 
are used through test~; such as checksum words. If the system detects a 
directory error, it reports the problem with one or more messages and 
then usually attempts ~:ome type of automatic error recovery. To prevent 
any disruption that a directory error might cause, you can set up a 
duplicate directory on another disk in the family. These duplicate 
directories require only a modest amount of extra disk space. Directory 
handling may be slowed slightly because more than one copy of the 
directory must be updat.ed. 

Mirrored Disk" 

On large systems with Ilata Link Processor (DLP)-based I/O, the Mirrored 
Disk feature allows the parallel functioning of two to four disk packs 
so that they are a "mirrored set," that is, exact copies of each other. 



95 
A User's View of System Functions 

By creating and maintaining duplicate copies of important packs, the 
Mirrored Disk feature increases both system availability and data 
integrity. In the event of an error on one mirror, application programs 
using the mirror set proceed normally, and the operator is notified of 
the error. Disk mirroring is totally transparent to application 
programs. 

Mirroring disks also improves I/O throughput on disk subsystems that 
,experience a high ratio of read operations versus write operations. 
Mirrors of existing disks can be created without bringing disks off-line 
or interrupting use by the system. 

The Mirrored Disk feature applies to all supported disk types, except 
head-per-track disks, and can be used with both Cataloging and 
non-Cataloging file systems. "Cataloging" in this section explains the 
Cataloging feature. The "Disk Subsystem Software Overview Manual" 
provides more detailed information. 

No special hardware is required for disk mirroring. Disk units must be 
available, however, to allow for the redundancy. To create mirrored 
disks, you specify which disks are to be mirrored, the number of disks 
in a set, and the number of units on which the mirrored disks are to 
reside. 

Once created, mirrored sets are maintained automatically across system 
interruption. Operator action is required only in certain exception 
conditions. 

You can remove mirrors from any mirrored set, create new mirrors for any 
set while the system is in operation, or move mirrored sets between 
systems and within systems. 

If you select the Mirrored Disk feature for some or all of the disks in 
a system, you must set the MIRRORING option. This done by entering the 
"OP+MIRRORING" command, then Halt/Loading the system to create the 
internal structures needed for mirroring. Thereafter, you can create 
mirrors of existing disks using the "MIRROR CREATE" ODT command. Other 
llIRROR commands will also be valid .. 



96 
IN1'RODUCTION TO A SERIES SYSTEMS 

I/O operations for mirrored disks are handled differently from those for 
nonmirrored disks. Read operations are issued to only one disk within a 
mirrored set. Write <>perations are issued to all disks within a 
mirrored set. 

For more information on the preceding topics and on the disk subsystem, 
see the "Disk Subsysten Software Overview." 



97 
A User's View of System Functions 

PRINT SYSTEM 

The Print System, known as PrintS, is that part of the Master Control 
Program (MCP) and related system software that deals with the output of 
files to peripheral devices such as printers or punches. PrintS has an 
optional part, Remote Print System (ReprintS), that deals with remote 
(datacomm) printers. 

PrintS can be used by users, programmers, operators, and system 
administrators. By using file and task attributes through WFL 
statements, or by entering commands, PrintS allows you to control the 
printer to which the file will be sent, the number of printed copies, 
file security, the backup file title, and other file characteristics. 

ReprintS extends the features of PrintS to include printers at remote 
destinations that are connected to the host computer through datacomm 
lines. All PrintS commands can be used on a remote device in the same 
1Nay they are used on an on-site device. The remote destination must be 
a datacomm station controlled by MARC/COMS. Note that to use ReprintS, 
you must have either COMS or COMS (Entry). 

1~hen you run a program that generates output, the output (or printer 
file) can be either printed on-line or spooled for later printing. The 
file directly routed to the printer, called direct printer file, is 
printed as your program writes each line of output. 

The spooled output is first sent to a disk or tape, creating a backup 
file. Spooling dissociates the creation of output files from the 
delivery of the files, allowing each to proceed at a different pace. 
When spooling is in effect, both the processor and peripherals are used 
more efficiently, because spooling ensures that a peripheral is not tied 
to a job for the job's duration, and a job does not have to wait for a 
peripheral to finish its task. 

A system administrator implements spooling by enabling two system 
options, LPBDONLY and CPBDONLY, that place the system in automatic 
backup mode. When in this mode, the system automatically changes 
printer or punch files to backup files and optionally generates file 
names with a prefix of "BD" for printer files or "BP" for punch files. 



98 
IN~~RODUCTION TO A SERIES SYSTEMS 

Spooling is controlled by PrintS, which consists of utility progra.ms and 
internal routines controlled through ODT (Operator Display Terminal) and 
WFL (Work Flow LanguagB) commands and through file and task attri.butes. 
In addi tion, the Pr :.ntS commands and functions are available through 
MARC (Menu-Assisted ReBource Control) menus. The number of functions 
available to an individual user depends on the privilege level of that 
personis usercode. PrintS is concerned only with spooled output. 
Direct printing or punching bypasess PrintS. 

Once the backup files are created. the Print System routes the backup 
file to a printing device such as a line printer or an image printer. 
Files to be printed can be printed either automatically or manually. 
Automatic printing i~; done through file attributes, which programmers 
can declare in program~; or WFL jobs. Jobs are printed either in 
numerical order by Job number or in order of size, with the smallest 
being printed first. You control which order is in effect through the 
BACKUPBYJOBNR system option. set through the OP (Options) ODT command. 

Manual printing is donp in three ways by means of the PRINT statement: 
users specify the PRINT statement interactively through MARC or CANDE. 
operators use the PRIN~' statement on the ODT, and programmers use it 
through a WFL job. The PRINT statement can override any previously 
declared file attributps. 

For more information, ~;ee the "Printing Utilities User's Guide." 

Controlli.ng the ;Print ~;ystem 

In addition to the commands previously discussed, there are several 
other ODT commands E.nd a utility program used to control the Printing 
System. The commands E.llow you to stop printing of a job, to change the 
order in which jobs print, to substitute backup media, and to force 
printing or punching Of a backup file. The utility allows you to create 
custom character set tEbles for printers. 



99 
A User's View of System Functions 

You can alter the choice of backup media through three commands. 

1. The SB (Substitute Backup) ODT command changes the backup media 
originally specified by the file attribute BACKUPKIND. The SB 
command allows you to adjust workload distribution to 
accommodate current conditions. For instance, if the print 
queue is unusually long, you could send some of the large 
backup files to tape and print them at a later time or on an 
off-line printer. 

2. The OU (Output Unit) ODT command forces a direct printer file 
to a backup file. It is used to respond to an MCP "RSVP" 
message. 

3. The DL (Disk Location) ODT command is used in conjunction with 
the SE command to di rE~ct a backup file to a part i cular di sk 
family. The SB command must list DLBACKUP as the destination 
if the DL command is to bE~ effective. 

A trainid is the name of a character set used by a printer. For a 
printer to use a particular character set, a train table or a translate 
table for that set must reside on the system. The train table equates 
each character in a set to a hexadecimal number, and the translate table 
equates each charactE~r sent to the printer to a hexadecimal number. In 
both tables, the hexadecimal number indicates a position on the printing 
device that corresponds to the desired character. 

In most cases the standard character sets supplied with the system are 
all that a site will need. If nonstandard sets are needed, you use the 
LTTABLEGEN utility to generate custom train or translate tables for 
those sets. To inform the system which trainid to use for a particular 
job, you use the TRAINID backup file attribute. The "System Software 
Site Management Reference Manual" discusses the LTTABLEGEN utility. 

For more details about Print System features and commands, refer to the 
"Print System (PrintS/ReprintS) User's Guide." The "Operator Display 
Terminal (ODT) Reference Manual" provides information on the ODT Print 
System commands. 



100 
INT~ODUCTION TO A SERIES SYSTEMS 

IHTRIHSICS AH12 LIBRARIE~ 

Intrinsics are software routines that perform functions essential to the 
execution of a program. They can be physically separate from a program 
but need to be present in order for that program to execute. Procedures 
that format data or derive square roots are examples of intrinsics. 
Intrinsics were formerly part of the MCP but now, with a few exceptions, 
are grouped into related sets of functions known as system libraries. 

System libraries can be accessed by both system and application 
programs. This run-time access of a library can be thought of as a 
temporary binding of the library to the program. 

Libraries provide a very powerful tool for the development of 
application systems. More than one program can share a given library, 
and a library can call other libraries. An advantage of libraries is 
that program creation and maintenance is simpler, because the program 
structure is more visible. 

Libraries need not be on the same pack as the MCP but can reside on any 
pack in the system, making it easier to distribute the I/O load 
throughout the disks on the system. You are not limited to 
Burroughs-supplied litraries; you can create and use your own libraries 
of procedures. 

A site can creatE~ and install additional intrinsic functions and their 
associated libraries. Function names are associated with library file 
names through thE~ SL (System Li brary) ODT command. You can also use 
this command to remove or display existing functions. 

Burroughs supplies a General Support library with the system. It 
contains commonly used mathematical and I/O formatting intrinsics that 
can be used by programs written in any Burroughs language. This library 
must be present on the system. 



101 
A User's View of System Functions 

~rwo other types of system libraries provided by Burroughs are language 
and communication libraries. Individual language libraries contain 
special routines commonly needed by programs in that language. Examples 
are file and string manipulation, array packing, and run-time error 
handling procedures. Their use enables the compiler to generate shorter 
code for programs. The PL/I Support library must always be present 
because it is used by the General Support library. The libraries for 
other languages must be present when programs in those languages are 
run. 

Communication libraries contain supporting routines for datacomm and for 
products such as BNA, IDC, and CaMS and are supplied with these 
programs. These libraries must be present when the associated products 
are used. 

The "System Software Utilities Reference Manual" contains additional 
information on libraries and how to use them. 

~;ORT Intrinsic 

The SORT intrinsic is a procedure in the MCP that sorts a file or a set 
of records into a single file of ordered records, or merges a set of 
presorted files into a single ordered file. SORT can be called from 
ALGOL, COBOL, COBOL74 , and PL/I programs or from the Sort language. The 
Sort language exists to allow you to sort or merge files through direct 
access to the MCP SORT procedure. Sort programs can be created through 
CANDE or WFL, and can be stored for later use. The "System Software 
Utilities Reference Manual" explains the SORT intrinsic, and the "Sort 
Language Reference Manual" explains the Sort language and programs. 



102 
INT:~ODUCTION TO A SERIES SYSTEMS 

SYSTEM PERFORMANCE MONI'rORING 

Because your installation represents a major investment for your 
organization, you need to determine how your system is used. how it is 
performing. and where cnanges. if necessary. can be made. This type of 
information can be obtained by monitoring the system and system 
performance. The knowledge gained by monitoring also allows you to 
increase or fine-tune performance for maximum efficiency and to detect 
any degradation in performance caused by procedure changes or hardware 
problems. 

On large computer systens like the A Series systems, many factors affect 
system performance. Effective manual monitoring of all of these factors 
would be impossible. so Burroughs provides software and Operator Display 
Terminal (ODT) commands to log, retrieve, display. and print information 
about pertinent events. These tools consist of the following: 

0 The System Management Facility II (SMFII) 

0 The BARS utility 

0 The LOGGER and L8GANALYZER utilities 

0 The SUSPENDER utility 

0 The U (Uti.lization) ODT command 

0 Other ODT commands 

o The internal routines GETSTATUS, SETSTATUS, and SYSTEMSTATUS 

System Management~ Facility IT (SMFII) 

The System Management Facility II (SMFII) is a software system that 
monitors and provides data on four areas of system performance: 

1. Hardware performance 

2. Software performance 

3. Workload characterization 

4. System utilization 



103 
A User's View of System Functions 

SMFII creates and maintains a database composed of statistics on the 
four areas of performance. The collected data is accessed, and reports 
formatted and generated, through the QUERY program. 

SMFII consists of three major components, as shown in the following 
diagram. 

r\ 

r'I.. 

\. 

SITE MANAGEMENT 
SYSTEM 

HARDWARE MODULE 
"' 

--
AVAILABILITY MODULE 

1\ 

SYSTEM RESOURCE 
SYSTEM 

WORKLOAD MODULE 

UTILIZATION MODULE 

--/ 
QUERY 

I 

"' 



104 
INT:~ODUCTION TO A SERIES SYSTEMS 

1. The Site Management System is used for monitoring the operating 
condition of the system's hardware and software components. 
This component contains two modules: 

a. Hardware :nodule--contains information about the occurrence 
and nature of system-detected faults in mainframe and 
peripheral devices detected during normal operation. such 
as I/O errors 

b. Availability module--contains information 
occurrenc~. nature. extent. and resolution of 
interfere with total system use. such as 
malfunctiJns and operations problems 

about the 
events that 

equlpment 

2. The System ResJurce System is used for measuring the system 
workload and utilization of system resources. This component 
also contains two modules: 

a. Workload nodule--contains data about the programs run on 
the system and about user resource demands, such as 
program file access 

b. UtilizatiJn module--contains information about program use 
of hardware and software resources. such as memory 
management and data communication statistics 

3. SMFII/QUERY is used for the analysis of the collected data and 
generation of reports. QUERY accepts report specifications 
from the user. analyzes data. and produces graphic and 
statistical reports in a variety of formats. QUERY can be used 
interactively ~r in batch mode. 

The Site Management System and SMFII/QUERY are released to all customer 
sites as a part of the standard System Software Facility. while the 
System Resource System is a separately priced item. 

Three programs build and maintain the SMFII database: 

1. LOGCONSOLIDATOR. which extracts data from the Sumlog files for 
the Hardware and Workload modules 

2. SAMPLER. which collects real-time performance information from 
the MCP about the use of hardware and software resources. This 
information is for the Utilization module or for direct graphic 
display. 

3. SITEINPUT, which collects data from site personnel for the 
Availability module 



105 
A User's View of System Functions 

You use SMFII by running these data collection programs to build a 
database, then running QUERY to examine and analyze the data. 

Information about SMFII can be found 
Management Manual" and information 
"SMFII Query Program Manual." 

The BARS Utility 

in the "SMFII System Resource 
about QUERY can be found in the 

BARS is a real-time utility program that monitors the system's 
pE~rformance and displays performance statistics as numeric values and 
bar graphs. The items displayed are those concerning current Central 
Processor Unit (CPU), memory, I/O, and disk pack use. The display is 
updated periodically and automatically contains only those items that 
apply to the system on which BARS is running. 

You can select the items to be monitored from a comprehensive list, or 
use the default list supplied with the program. Newly created lists can 
be saved for later reuse. 

You would use BARS when you want to monitor what is happening at the 
moment rather than viewing system history, as with SMFII. You can use 
BARS interactively or in batch mode. In batch mode, the utility writes 
the performance data to the file specified when the utility is started. 
You then provide an application program to view the file contents. BARS 
can be accessed through MARC menus or through CANDE. 

Additional information on BARS can be found in the "System Software Site 
Management Reference Manual." 

LOGGER and LOGANALYZER 

LOGGER and LOGANALYZER are utility programs for examining system log 
files. LOGANALYZER displays all or selected parts of the Sumlog or 
other log files. It does not manipulate the data in any way other than 
formatting it. You would use this utility when you want information on 
a specific job or peripheral unit, or if you want to find out what was 
happening during a specific time period on the system. 

The nature of the system, whether Actual Segment Descriptor (ASD) or 
non-ASD, is stored in the Halt/Load record of the Sumlog. LOGANALYZER 
uses this record to inform the user if the Sumlog came from an ASD 
system or not. Likewise, the Print System also uses this record to print 
this information on the banner page of every printout. 



106 
IN1'RODUCTION TO A SERIES SYSTEMS 

LOGGER generates report.s to aid in the analysis of system performance 
and utilization. It extracts user-selected data from the Sumlog files 
and can summar ize, totcll, average, and sort the data to produce a 
report. LOGGER is lE!sS powerful and flexible than SMFII but is useful 
for producing charging and billing information. Both LOGGER and 
LOGANALYZER are described in the "System Software Site Management 
Reference Manual." 

The SUSPENDER Utility 

The SUSPENDER utility program prevents the system from becoming 
overloaded by running too many non-swappable tasks simultaneously. 
SWAPPER is a facility t.hat allows installations to service users in a 
time-sharing environmpnt. Many tasks compete for a relatively small 
amount of memory in a t.ime-sharing environment. To service all users 
adequately, tas:lts arp swapped from memory to disk when they can no 
longer run or have excpeded a specified time-slice. 

To prevent the system from becoming overloaded, the SUSPENDER utility 
monitors system performance and uses that information to keep running 
statistics on the use clf the processor. The utility suspends tasks when 
the statistics indicatE' that the processor has too much work and resumes 
the tasks when the processor idle time increases. SUSPENDER must be run 
under a privileged l.sercode, and should not be used if the MCP option 
OLAYGOAL is set to a v2.lue greater than O. 

The Utilization 90mmanc[ 

The U (Utilization) 00'1' command displays current statistics on how the 
system is being usee. The display is in two parts. The first part, 
Processing Util.izatior, lists the percentage of time the central 
processor spent perfc,rming each of eight different categories of tasks 
during the last time irterval. The length of the time interval is 
controlled through the SBP (System Balancing Parameters) ODT command. 

The second part, Input/Output Utilization, lists the number and rate of 
user, MCP, datacomm, and total I/O operations, plus the average number 
of I/O interrupts, that occurred during the last time interval. 



107 
A User's View of System Functions 

ODT Commands 

You can use certain aDT commands to monitor system performance. 
Commands such as ADM (Automatic Display Mode), CU (Core Usage), and PER 
(Peripheral Status) provide real-ti~e information about the system. The 
"Operator Display Terminal (aDT) Reference Manual" lists the applicable 
commands in the "Functional Command Groupings" appendix under "Automatic 
Display Mode & aDT Control Commands" and "Job Queue Commands." 



108 
IW~RODUCTION TO A SERIES SYSTEMS 

GETSTATUS. SETSTATUS. !lnd SYSTEMSTATUS 

GETSTATUS and SETSTA'rUS are intrinsic routines within the MCP. 
GETSTATUS retrieves ;Lnformation about the job or task mix, peripheral 
and disk unit status, HCP and configuration status, and the files in the 
disk directories. SET:,TATUS provides the system interface for an object 
program that controls HCP mix, unit, and operational functions. 

Both routines can be called only by a DCALGOL MCS or a DCALGOL user 
program executing unde]- a privileged usercode or with privileged program 
status. An exception ':0 this is the GETSTATUS directory query function. 
It can be used by a nonprivileged user to examine data about files 
accessi ble to that use]-. 

GETSTATUS and SETSTATlJS are used by performance-monitoring utility 
programs such as BA](S and are available for use by sites that want to 
write their own util:Lty programs. The "DCALGOL Reference Manual" 
contains information on these two intrinsics. 

SYSTEMSTATUS is an intrinsic MCP routine that gathers many different 
types of information concerning the activity and environment of the 
system. SYSTEMSTATUS returns groups of related information, locking the 
system while it extracts the data. You would use SYSTEMSTATUS when you 
want comprehensive inf()rmation concerning a particular area of the 
system, such as queue ilnd swapper or hardware configuration information. 
This routine can be ca:~led only from a DCALGOL program with privileged 
program status. The "Systemstatus Reference Manual" describE's this 
intrinsic routine and E?xplains how to use it. 

Many of the performanCE? utili ty programs and functions, including ODT 
command functions, are available through the MARC menu system. The 
actual functions availilble depend on the security status of the usercode 
under which you __ og on. Usercodes wi th both SystemusE'r and 
Privilegeduser status have the most functions available. 



109 
A User's View of System Functions 

SOFT RECONFIGURATIO~ 

The hardware resources used by anyone system are collectively known as 
a configuration. and to configure a system means to allocate these 
resources. Soft reconfiguration refers to the ability to allocate and 
later reallocate hardware resources to the configuration through 
software. 

For A Series systems. soft reconfiguration is concerned with memory 
partitioning and sharing of I/O subsystems. Information concerning 
these areas is placed in a configuration file. which is a dynamic record 
of resource allocation. The system then uses this file to modify system 
tables at initialization or after a Halt/Load operation. 

The following paragraphs describe soft reconfiguration at an overview 
level. For detailed information concerning soft reconfiguration. see 
the "Softconfiguration Document" on the Documents tape. 

,ASD Extended Memory 

The Actual Segment Descriptor (ASD)-based memory subsystem is 
implemented by thE~ MCP/AS operating system and supports a single large 
memory structure that requires no partitioning. ASD extended memory 
architecture permits the memory resource to be increased to as much as 
4 billion words (24 billion bytes) on most systems. 

Memory in the ASD architectural design is organized as a monolithic 
storage area. Since the memory structure requires no partitioning. 
programs have full visibility to each other while executing (they are 
not placed into closed partitions of memory). and the MCP can address 
very large amounts of memory through a table that points to all 
locations in memory. virtual or physical. 

All allocated memory areas are accessed and controlled through a central 
structure called the ASD table. This table. which can contain up to one 
million entries, is a central source of information that defines all 
memory in use by the system. 

ASD memory management is based on a distinction between an "actual 
segment descriptor" and a "virtual segment descriptor." In the context 
of ASD architecture. the term "descriptor" refers to both the data 
descriptor and the segment descriptor. On an ASD system. the descriptor 
is a virtual descriptor because it merely points to the ASD for the 
memory segment it represents. It is the ASD. a multiword structure. 
that contains all information regarding the memory segment. such as its 



110 
INTRODUCTION TO A SERIES SYSTEMS 

memory address, length in words, and the location of its original 
descriptor for the are,!. Instead of an address, the descriptor on an 
ASD machine contains an ASD number. This number is the index into the 
ASD table on which the ASD for the memory segment resides. 

For more information,~efer to the "Memory Subsystem Overview." 

ASD systems support all user software developed for earlier Burroughs 
large systems. Thus, iill programs compiled to run on an A Series system 
with a Mark 3.4.1-or-Iater compiler can run on an ASD system without 
recompilation or progriim change. Databases must be compiled with a Mark 
3.5-or-Iater release 0: DMSII software. 

Burroughs A Series sys':ems using Address Space Number (ASN) architecture 
can be upgraded to ASD architecture through the installation of the 
Master Control Program,'Advanced Systems (MCP/AS) operating system and 
associated microcode. Some systems may require some hardware changes. 

Memory Partitioning 

The addressing mechani!;m in A Series systems wi th the standard MCP can 
address a maximum of 1024K words, but the systems can hold many times 
this amount of memory. To be able to access all of memory, the MCP 
divides memory into address spaces of 1024K words each and assigns each 
address space a unique Address Space Number (ASN). This number allows 
the MCP to address memory locations relative to the address space number 
and thus access all of memory. A program must run entirely within a 
single address space. but more than one program can occupy an address 
space a t any given t imE~. 

Each address space con~;ists of a shared and a local component. The 
shared component is common to all address spaces and exists so that 
tasks can share :::ode and data. The local component is unique to the 
address space and i e ' identified by the ASN. The sizes of both the 
shared and the local components are dynamically controlled through 
statements in the configuration file (described later) and through ODT 
commands. 



111 
A User's View of System Functions 

The size of the shared component is important, because the MCP and most 
MCP functions run in the shared component. If the shared component is 
too small, the MCP will run slowly. If it is too large, the local 
component will be small, possibly causing programs in a local component 
to run slowly. 

A PROGRAM MUST RUN WITHIN 
A SINGLE ADDRESS SPACE; HOWEVER, 
MORE THAN ONE PROGRAM CAN 
BE RUN HERE 

~Sharing of I/O Subsystems 

THE SHARED COMPONENT ALLOWS 
TASKS TO SHARE CODE AND DATA 

I/O subsystems can be shared by several systems through the sharing of 
I/O base modules and peripherals. An I/O base module is the interface 
between peripheral/datacomm devices and one or more host systems. It 
contains the Data Link Processors (DLPs), which connect to and control 
the peripheral devices used by the systems, plus one or more 
distribution cards to connect the hosts to the base. 



112 
IN~'RODUCTION TO A SERIES SYSTEMS 

The Configuration File 

The configuration file is a description of the hardware resources that 
make up a configuration. In this file, you predefine the different 
hardware configuration~; that your system will need. For example, if 
your system is sharing peripherals with another system, you might define 
several configurations. one with all of the peripherals and others with 
only selected peripherals. 

The system manager buL.ds a configuration file by creating a file and 
using the GROUP statenent to place the configuration definitions in the 
file. The GROUP statenent is divided into several sections, two of 
which pertain to A ~;eries systems: the global memory (shared memory) 
section and the periphE!rals section. The global memory section applies 
to non-MCP/AS systems only. 

The global memory sect :.on speci f ies the size of the shared ( global) 
portion of memory on s~'stems with more than l024K words of memory. This 
is stated as the number of 128K pages of memory to use. An address 
space consists of e:.ght pages, so to find the size of the local 
component of eaCh addrE!ss space, the system subtracts the number of 
global pages from 8. 

To find the number of address spaces the system will have, you subtract 
the number of global pages from the total number of pages of memory, and 
divide the result by the number of pages in the local component. 

For example, suppose the total amount of memory in a system is 4096K 
words, which is 32 pages. If you specify a global size of 5 pages, the 
local size is 

8 - 5 3 pages 

The total number of pages is 32, so the number of pages left for local 
memory is 

32 - 5 27 pages 

Divide 27 pages by 3 pages per local to find the number of address 
spaces. 

27 pages / 3 pages per local 9 locals or 9 address spaces 



113 
A User's View of System Functions 

If the number of pages available for local memory had not been evenly 
divisible by 3, thE? last address space would have been smaller than the 
others. This size difference can cause operational inconsistencies if a 
program that normally runs in the larger areas is initiated in the 
smaller area. 

The peripherals section of the configuration file specifies the 
peripherals that can be used by the system. A system will not attempt 
to use any peripheral that is not on the list, even though a physical 
connection exists to that peripheral. This restriction allows physical 
system-to-peripheral connections to remain in place even when an I/O 
base module is being used by another host. 

:The Configuration Utility 

The Configuration utility uses the configuration 
produce the object file that the system uses. 
compiling an application source file to generate 
file. You specify the titles of both the 
configuration files when invoking the utility. 

jReconfiguring the System 

file source code to 
This is analogous to 

an executable object 
input and the output 

Once the configuration file object code file exists, you must inform the 
]~CP of the title. You do this by issuing a CF (Configuration File) ODT 
command and including the object file title in the command. 

To reconfigure the system once the CF command has been issued, issue a 
]<ECONFIGURE (Reconfigure System) ODT command and specify the particular 
configuration wanted. The system will use the information from the new 
configuration file to build or modify the system information tables. 

The configuration can also be modified through the use of the FREE (Free 
lcesource) and ACQUIRE (Acquire RI~source) ODT commands. These commands 
change the current configuration of a system but do not alter the 
defined configuration in the configuration file. The changes from these 
commands remain in effect after a Halt/Load but not after execution of a 
RECONFIGURE command. The FREE and ACQUIRE commands are a more flexible 
~vay to temporarily reconfigure the peripherals on a system, because 
peripherals not listed in the configuration file can be added to the 
system. 





115 

1 PLANNING FOR EFFECTIVE OPERATIONS 

~rhis section discusses operational procedures and issues that you need 
to be aware of and plan for before your system arrives. It is meant to 
be read before you order your system, especially by first-time users of 
A Series systems. The entire section should be read before you start 
planning for your system. 

1~he section is directed to system administrators and users who will be 
performing the functions of system administrators. The information 
presented here is not meant to be a "how to" but is intended to help you 
plan for the initial, day-to-day, and occasional operations performed on 
A Series systems. 

~~ INITIAL PLANNING 

Before you order your system, you need to consider and plan for one and 
possibly two important areas: the configuration of your system, and 
progression from your existing Burroughs system or conversion from a 
non-Burroughs system. 

§YSTEM CONFIGURATION 

Configuring your system involves more than calculating the number of 
devices you need for your anticipated workload. It also involves 
planning for fail-safe operation if this is needed, for emergency 
situations, for equipment maintenance time, and for possible equipment 
malfunctions. 

If fail-safe operation, where the system must run nonstop, is a 
requirement, then you may want to duplicate certain parts of the system, 
such as I/O bases or peripheral equipment. Both the hardware and 
software in A Series systems are designed to support redundant operation 
for all data communication and I/O subsystem components. For example, 
I/O bases can be permanently connected to several systems at one time, 
as can datacomm Network Support Processors. Although only one system at 
a time can use them, these devices can be reconfigured through software 
to serve as alternate communications paths for the other systems as 
needed. Use of these devices by several systems is also a way to 
achieve redundancy and keep costs low. 



116 
INT:~ODUCTION TO A SERIES SYSTEMS 

If a certain type of de"/ice is needed at all times while the syste·m is 
running and cannot be s?ared even for preventive maintenance, you should 
consider ordering a bac~up device for it. Any device critical to the 
functioning of the system at your site is a candidate for duplication. 

Physical access to the system should be considered, as well as security. 
If secured access to the Operator Display Terminal (ODT) is desired, you 
may need to place~ the ODTs in a secured room, away from the rest of the 
system. In that case, you might want to order extra terminals to place 
next to the system. Conversely. you may want to make a terminal and 
printer available for general use, in addition to the assigned 
terminals. You should also consider emergency power supplies if you 
need uninterrupted operation at your site. The emergency system should 
include automatic startup and transfer to the emergency power source. 

PROGRESSION AND ~ONVERSION 

If your site is converting from a non-Burroughs system, you can contract 
for services to assist you in the process. Conversion services are 
determined on an individual basis, depending on the type of system you 
are converting from and the amount of assistance you need. See your 
Burroughs representative for information on conversion. 

Whether your site is progressing from a Burroughs B 1000 or a Burroughs 
B 2000/B 3000/B 4000 Series system, or is converting from a 
non-Burroughs system, you need to plan how to manage your archived 
files. You can follow either of two methods: 

1. Convert the flll-backup, archived files to the new system. 

2. Make ne'IJ. comf'lete backups of your conver ted curren t files 
before you ~tart daily processing on your new system. These 
backups then tecome the basis of your archiving system. 

If you choose to do thE latter, you can convert any prior-format files 
on an as-needed basis. 

If at all possible, YOlo should plan to run the old and new systems in 
parallel for a short time and compare program results. This can help 
ensure that all programs are performing as required. 



117 
Planning for Effective Operations 

])ROGRESSION FROM BURROUGHS SYSTEMS 

A wide range of services are available to you when you progress from a 
Burroughs BlOOD or a B 2000/B 3000/B 4000 Series system to an A Series 
system. These services include requirements definition t education 
courses t software toolst and programming and system consultation. You 
can choose selected portions of these services or contract for the total 
progression effort. 

To help you save time and mInImize costs if your site is handling most 
of the effort t progression software aids are available on order. See 
the "User Guide to BlOOD Progression Aids," obtainable through your 
Burroughs representative t for the software aids available and 
information on how to use them. These aids are for both small and 
medium systems and include file transfer utilities for transferring 
tapes between systems. 

You should also order the "B 1000 Series to A Series Progression Guide." 
This guide discusses the differences between small and A Series systems t 
lists the steps in progression t describes common progression problems 
and solutions t tells you how to transfer files t and describes the steps 
to take after using the software progression tools. 



118 
IN1RODUCTION TO A SERIES SYSTEMS 

4.2 PLANNING FOR BA~,IC SYSTEH OPERATION 

Once you have planned your configuration, you need to plan how to start 
up your system. what system options you are going to use, and how you 
are going to set up security and data communications, manage job flow, 
and distribute file stcrage. 

BASIC SYSTEM INrrIALIZP..TION 

System initialization is a process used to bring a system to a normal 
operating condition and make it available for its intended use. When a 
system is first powered up, the process consists of powering on the 
hardware, including the peripheral devices; loading the microcode, 
controlware, and firmware; loading the Master Control Program (MCP) code 
file and other systEm software into memory; identifying all resources 
and initializing them; and transferring control to the MCP. 

There are three methods used to initialize the system: cold start, cool 
start, and Halt/Load. During all three types of system initialization, 
the system must have access to a copy of the MCP code file to be used, 
either from a systerr tape or from a disk on the system. The cold and 
cool start procedures load that MCP code file onto a disk, designating 
it as the Halt/Load unit, while the Halt/Load procedure uses the MCP 
that is already on the Halt/Load unit. 

The Hal t/Load un j. tis Frepared through the CM (Change MCP) ODT command 
when the system is running under control of the MCP, and through the 
SYSTEM/LOADER program when it is not. The Halt/Load unit has special 
label information in segments a to 27 and contains a pOinter to locate 
the MCP tables for the system. It must contain, at a mInImum, a disk 
label and directory, the MCP code files, bootstrap code, and MCP 
parameter and configuration tables. See the System Software 
Installation Guide for your type of A Series system for detailed 
procedures on creating a Halt/Load unit. 



119 
Planning for Effective Operations 

A cold start is the most comprehensive form of system initialization. 
It may be performed by the field engineer when the system is first 
powered up, depending on the type of system. The system does the 
following during a cold start: 

1. Creates a new disk directory on the Halt/Load unit 

2. Loads a copy of the MCP code file onto the Halt/Load unit 

3. Creates new MCP tables on the Halt/Load unit 

4. Performs a Halt/Load using the new MCP 

Because a cold start creates a new disk directory on the Halt/Load unit, 
all existing files on that disk are erased and must be reloaded if 
needed. In addition, all system information, including all system 
options, reserved units, and configuration information, is erased. 

A cool start causes the system to load a new MCP code file onto the 
Halt/Load unit, update existing MCP tables, and perform a Halt/Load 
using the new MCP. During a cool start, the disk directory is not 
rebuilt and files on the Halt/Load unit are left intact. A cool start 
is used to load a new MCP code file or replace a corrupted MCP code 
file. 

A Halt/Load stops all processing in the system and reloads an 
the MCP code file to main memory from the Halt/Load unit. 
directory remains intact. During a Halt/Load, the system 
following: 

image of 
The disk 

does the 

1. Terminates all jobs and sessions and 
necessary to automatically restart 
jobs and some programs 

stores the information 
Work Flow Language (WFL) 

2. Reloads an image of the MCP code file from the Halt/Load unit 
to main memory 

3. Reinitializes MCP tables with the exception of job management, 
restart, configuration, and parameter information 

Situations that require a Halt/Load are: changing to a new edition of 
the MCP, software and hardware problems that leave the system in a 
"hung" condition. and the occurrence of a fatal memory dump. 



120 
INTRODUCTION TO A SERIES SYSTEMS 

Once initialization i~: complete, there are several tasks you should 
perform before makirlg the system available for general use. The 
following list contains the most commonly needed tasks, but because th4? 
requirements of each ~:ite vary, you may need to add others to the list. 

1. Copy the system files to disk 
libraries. See your Software 

and designate 
Installation 

information c.n how to do these tasks. 

the system 
Guide for 

2. Initialize tte Menu-Assisted Resource Control (MARC) system. 
See your System Software Installation Guide for details. 

3. Create a USEKDATAFILE using the MAKEUSER utility. Be sure to 
assign privileged usercode status to at least one usercode. 
See the "System Software Site Management Reference Manual" for 
the MAKEUSER procedures. 

4. Use the Interactive Datacomm Configurator (IDC) to modify the 
SYSTEM/DATACCMINFO file to reflect your site's datacown 
configuration. First read your System Software Installation 
Guide, then the "Interactive Datacomm Configurator (IDC) User's 
Guide" for instructions. 

5. Set the system time and date through the TR (Time Reset) and DR 
(Date Reset) ODT commands. 

6. Enable or disable system options to customize the system to 
your site. See the OP (Options) ODT command for the list of 
options and how to enable or disable them. 

7. Make a backup Halt/Load unit, using the method described in thE? 
"System Software Installation Guide" for your system. In 
addition, make copies on tape of the USERDATAFILE, the source 
for the configuration file, and the DATACOMINFO file. All of 
these copies are for recovery in the event of system failure. 

See the "System Software Installation Guide" for your system for a morp 
detailed explanation of the initialization procedure. 



121 
Planning for Effective Operations 

SOFTWARE CONFIGURATION 

The next step after planning initialization and the associated tasks is 
to plan the software settings that affect the efficient running of your 
system. These include settings for memory factors, system options, 
security, distribution of files, supervisor programs, job queues, data 
communications, and multilingual capabilities. The MCP and Master 
Control Program/Advanced Systems (MCP/AS) operating systems 
automatically provide complete management of all system resources and 
tasks. 

ASD Systems Memory ~anagement 

Memory management t(~chniques vary depending on the memory architecture 
of the system. Actual Segment Descriptor (ASD) systems manage memory 
areas automatically.. System factors can be adjusted, along with the 
size of the increments of the ASD table. 

The ASD table is thE~ single most important feature of an ASD memory 
subsystem for a user. The number and sizes of ASDs on a system are 
assigned through th:is table. When the number of ASDs on a system is 
changed. the Memory Management Module automatically adjusts the amount 
of memory included in each ASD. 

The "ASD" ODT command allows you to specify the number of ASDs you want 
in the ASD table. The "Operator Display Terminal (ODT) Reference 
Manual" provides information on the syntax for the ASD command. 

ASH and GLOBAL/Tightly-Coupled Systems 

Each of the three methods of memory management for ASN and 
GLOBAL/Tightly-Coupled systems--on demand. working set, and 
SWAPPER--support virtual memory. The SF (Set Factor) ODT command is 
used to set or modify memory management parameters released to these 
three methods. 

The on-demand method of memory management allocates memory as tasks 
require space. If memory areas are not available, as a first choice the 
MCP deallocates and reuses object code areas not currently used. Thus, 
the area does not have to be written to disk. 



122 
INTI~ODUCTION TO A SERIES SYSTEMS 

The working set method of memory management attempts to anticipate 
memory allocation neecls by maintaining a pool of available memory 
through aggressive overlay. This is is invoked when you set parameters 
of the SF (Set Factor) command at the ODT. 

SWAPPER is an independE'nt runner of the MCP initiated by the SW 
(Swapper) ODT command. The SWAPPER method of memory management allows 
you to set aside a port jon of memory called "swap space." Swap space is 
used for time slicing. Time slicing is a technique where each program 
in a mul tiprogramming er:vironment gets control of the MCP for a limi ted 
period of time. Refer to the "Operator Display Terminal (ODT) Reference 
Manual" for a description of the SW command. The section on "SWAPPER" 
in the "System SoftwE.re Support Reference Manual" provides a detailed 
description of SWAPPER. 

f,etting Memory Factors 

'rhe term "memory factors" refers to memory utilization settings that 
control the way the MCP handles virtual memory. A summary of the 
factors is given here. For a detailed discussion, see the "Managing 
Memory" section of the "Memory Subsystem Overview" manual. 

There are four factors that can be set to customize memory use for your 
site: OLAYGOAL, AVAILMIN, FACTOR, and MEM PRIORITY FACTOR. They manage 
memory by controlling the overlaying of programs to disk and suspending 
execution of programs ~hen a percentage of available memory falls below 
a specified limit. 

Factor 1, OLAYGOAL, is the percentage of overlayable memory in the 
system that is to be overlaid every minute. An ideal environment is one 
in which the overlay rate is large enough to force out unused segments 
but not ones being used. On a system where the work load is varied and 
unpredictable, the optimum rate of overlay can be exceeded when the 
total requirements for the currently running tasks are larger than the 
amount of available physical memory. This produces a condition known as 
"thrashing." When a system is thrashing, it is spending an inordinate 
amount of time swapping program segments in and out of memory, causing 
overall performance to degrade to an unacceptable level. 

The architecture of ASD systems and the large amounts of memory present 
makes it less likely that thrashing would cause noticeable problems. 
3ut thrashing can be exp9rienced on both GLOBAL and ASN extended memory 
systems. 



123 
Planning for Effective Operations 

To prevent thrashing, you can set the OLAYGOAL factor to force a 
constant overlay rate. Setting the factor to a value greater than zero 
initiates an MCP procedure, Working Set Sheriff (WSSHERIFF), that 
periodically examines memory and the overlay rate of each task. On ASN 
and GLOBAL/Tightly-Coupled systems, the WSSHERIFF provides the working 
set requirements for each program execution. On ASD systems, WSSHERIFF 
has been modified to work automatically within the ASD Memory Management 
Module. 

WSSHERIFF suspends tasks that exceed the overlay rate (lowest priority 
first) until the overall rate reaches an acceptable level, at which time 
the tasks are reactivated. When the overlay rate is less than the 
specified limit, WSSHERIFF overlays areas until the specified per-minute 
rate is reached. 

Factor 2, AVAILMIN, determines the minimum amount of total memory that 
is to be available at all times. To prevent thrashing, the MCP suspends 
the lowest priority jobs in the mix when the total amount of available 
memory drops below one-half the value of AVAILMIN. Control programs and 
programs that are sorting are not suspended. 

Factor 3, FACTOR, is used to determine if enough memory is available for 
a task to be initiated. The system divides the memory estimate for a 
task by the value of FACTOR to find the amount of memory that must be 
available. When FACTOR has a value greater than 100 percent, the MCP 
assumes it has more memory and thus executes more programs. For 
example, if the core estimate is 5,000 and the value of FACTOR is 
200 percent, the scheduling algorithm uses a core size of 2,500 
(5,000 / 2.00) to check if enough memory is available. Assigning too 
high a value to this factor could lead to thrashing, while assigning too 
Iowa value could slow down the rate of job flow through the system. 

Factor 4, MEM PRIORITY FACTOR, determines the amount of time that data 
belonging to a higher priority program remains in memory before being 
overlaid to make space for a lower priority program. This factor 
protects the program data/code from being overlaid when they have just 
been put into memory. The factor is expressed as a percentage of one 
second per increment of prior:Lty difference. For example, if this 
factor is set to 20 percent and a job of priority 55 acquires an area in 
memory, a job of priority 30 cannot use that area until 5 seconds 
((55-30) x .20) have passed. Assigning a high value to this factor 
slows down the flow of lower priority jobs through the system. 



124 
INTRODUCTION TO A SERIES SYSTEMS 

You set the memory control factors through the SF (Set Factor) ODT 
command. Becausp each site has different requirements, it is impossible 
to give recommended values. However, you can start by assigning Factors 
1, 2, and 4 valups of a percent and Factor 3 a value of 100 percent, and 
then varying the factors one at a time to judge the effect on the 
system. Use System Management Facility II (SMFII) to check the effects. 

Setting System QQtions 

The MCP contains many options that control various system operations. 
Some of these options are set when the MCP is compiled, while others are 
set when the MCP is executing. 

The compile-time options are set when the MCP is compiled by Burroughs 
prior to releaSE' of the system software. Only in rare situations would 
a site need to change these options. You can see which options were 
enabled when your current MCP was compiled by entering the n?WM" command 
through CANDE or choosing the "WM" menu selection through MARC. 

The most important system option is the DIAGNOSTICS option. When this 
option is enabled, the MCP runs in a debugging mode and may execute 
extra code, send a mess~ge to the operator, or cause a dump to occur 
when it encounters preset conditions. Debugging mode requires extra 
overhead and normally is not used by customers unless an unusual 
situation occurs, such~s a problem with new software. For this rpason, 
there are two versions )f the MCP on every system software release tape: 
a regular version, wit1 DIAGNOSTICS disabled, and a diagnostic version, 
with DIAGNOSTICS enablej. 

The run-time options ca1 be set through the OP (Options) ODT command at 
any time while the MCP is executing. Some options, when changed, do not 
take until the next Halt/Load. The option settings are stored on the 
Halt/Load unit. See the "Operator Display Terminal (ODT) Refprence 
Manual" for definitions of the options and an explanation of the 
command. Once you haole decided which options you want to use, it is a 
good idea to store this information either in a supervisor program 
(discussed later in :his section) or in a written log. This is a 
precaution only, becaus,? although cold starts are relatively rare, the 
option selections on th,? Halt/Load unit are erased during a cold start. 



125 
Planning for Effective Operations 

The following list is a suggested starting point for setting the system 
options. You naturally will want to customize the list for your own 
site. The options listed are the ones to be set to "true" or "on." Set 
the remaining options to "false" or "off." 

2 TERMINATE 21 NOSUMMARY 
4 LPBDONLY 24 OKTIMEANDDATE 
5 AUTORM 25 NEWPERETRY 
8 AUTORECOVERY 26 LOGPOSITIONING 

12 AUTODC 27 SERIALNUMBER 
14 CPBDONLY 29 CONTROLOLDWFL 
16 CRUNCH 

~)etting !ffi User Identification 

Various types of information can be associated with each user on the 
system. Users can have a usercode for file ownership, be assigned to a 
disk family, have a default language, (optionally) have charge codes and 
accesscodes, and have any other items required by the site, including 
passwords for security. 

To associate this information with a user, you use the MAKEUSER utility. 
This utility updates a file, the USERDATAFILE, which contains one entry 
for each usercode. MAKEUSER can create a new USERDATAFILE, reinstate an 
old one, or copy, examine, or modify the current file while the system 
is in normal operation. The "System Software Site Management Reference 
}1anual" descr i bes the MAKEUSER uti I i ty. 

~)etting !ffi Security 

If your site chooses to implement security, one of the first things you 
may want to do once your system is up and running is set up the security 
system. If you have not already done so, read the discussion of 
security in the "Functional Areas of the System" section to familiarize 
yourself with the types and implementation of security available. 

You may want to limit physical access to the system or to parts of it, 
E~specially to the Operator Display Terminals (ODTs) and to COMS control 
stations. If you do limit physical access, you can place a terminal and 
printer for general use outside of the computer room and associate them 
with each other through the PA (Peripheral Association) ODT command. 
The printer then receives any output for jobs started from that 
terminal. 



126 
INTRODUCTION TO A SERIES SYSTEMS 

If you are using COMS, you can control access to stations, transaction 
codes (trancodes). c.nd windows, plus you can implement other forms of 
security through appljcation programs. See the "Defining and Using the 
Configuration File" section of the "Communications Management System 
(COMS) Planning and ILstallation Manual" for information on setting up 
security on COMS. 

To control user acces~ to the system through MARC, COMS, or CANDE, run 
the MAKEUSER utility program to create usercodes and passwords and, 
optionally. accesscodes for all users. You can also specify charge 
codes for each usercode, so that system use can be logged for accounting 
purposes. The MAKEUSER utility must be run by a privileged user. It 
can be run through MARC and is described in the "System Software Si tIe 
Management Reference Manual." 

You can limit access to files through the file attributes SECURITYTYPE. 
SECURITYUSE, and SECURITYGUARD. You may want to limit access to certain 
system files. such as the DCALGOL and NEWP compilers. You can designate 
these files as GUARDED or CONTROLLED and use a guard file to designate 
the nonprivileged usercodes, passwords. and accesscodes through which 
they can be accessed. See the "System Software Utilities Reference 
Manual" for information on the GUARDFILE utility. 

Distributing Files on Disk 

You can influence system performance by the placement of various system 
and application files on different families. The MCP allows you to 
select the storage loc~tion for the MCP code file. the swapdisk, system 
libraries, and system files allocated through the DL (Disk Location) OD1~ 

command. Your installation can mix some or all system files with 
application files or c·3.n segregate system files. 

These decisions involv,? tradeoffs. For maximum system performance, the 
ideal would be to sto:-e every system file on a different disk and never 
put any other files on those disks. Obviously. this is not practical. 
When deciding where t() locate files, you need to consider the following 
criteria: 

a System performance (speed) 

o Amount of storage space needed 

o Ease of recovery from damaged files or media 

o The probability that the failure of a single disk will cause a 
service interruption 



127 
Planning for Effective Operations 

The following recommendations summarize the "Disk File Allocation" topic 
in the "Disk Subsystem Software Overview" manual. See that manual for 
an explanation of the reasons for the recommendations. 

1. Segregate static (rarely changed) system and application files 
from dynamic application files by putting them on separate 
families. This groups files that need frequent backups and 
separates them from those that do not, thereby simplifying the 
process. 

2. Group the Halt/Load files and the overlay files together and 
segregate them from all other files. 

3. The Halt/Load family should be a single disk family and should 
not be named DISK or PACK. Reserve the Halt/Load family for 
the essential files: the MCP code file, the SYSTEM/TRAINTABLES 
file, and the overlay files. If your site is short of disk 
space, then place the other system files on this family also. 
Avoid placing application files on this family. 

4. Place the printer or punch backup files on families named DISK 
or PACK. 

Setting ME Supervisor Programs 

A supervisor program is a specially designated code file that is run 
immediately after a Halt/Load. The system automatically enters it in 
the job mix and runs it before all other jobs. You can use a supervisor 
program to automatically perform chores that an operator otherwise would 
have to do. Examples of these chores are checking that system options 
are set correctly, starting any necessary site-specific programs, and 
setting up job queues. A supervisor program typically calls other 
programs to perform these chores and checks that they have been 
performed correctly. 

You designate a code file as a supervisor program through the CS (Change 
Supervisor) ODT command. See the "Operator Display Terminal (ODT) 
Reference Manual" for the format of the command. 



128 
INT:<.ODUCTION TO A SERIES SYSTEMS 

Setting Y.E Job ~eues 

Job queues are waiting Lists from which the MCP selects jobs to enter 
into the mix or the sC:1edule queue. The mix is the list of activE' jobs 
in the system, and the3chedule queue is a list of jobs waiting for 
system resources. Jo')S in the schedule queue enter the mix as soon as 
the resources become available. 

You define job queues through the MQ (Make Queue) ODT command. When 
planning job queues for your system, keep in mind the amount of time a 
job will take. For quick servicing of short jobs. define a queue with a 
relatively high mix 1.Lmit. high priority. and restricted use of system 
resources. Several such queues would greatly speed the turnaround time 
for these jobs. Batch job queues can have a low mix limit and low 
priority, allowing the jobs from those queues to be serviced as 
resources permit. 

Before you set up your job queues, read "Managing Jobs" in this section. 

Setting Y.E Data Communications 

Configuring the data communications portion of a system involves 
determining what phystcal equipment. such as terminals. modems. and 
Network Support Processors (NSPs). your site needs and then using the 
Interactive Datacomm Configurator (IDC) to describe the configuration to 
the system. This procedure is normally handled by the field engineers 
who install the system. 

Start with determining t.ow many Line Support Processors (LSPs) are 
needed. Th is t::1en dE,termines the number of NSPs tha t are needed. In 
determining these numbers. ensure that the configuration does not have 
too many lines pe~ NSP end that the bandpass of the NSP is not exceeded. 
The Data Communications Data Link Processor (DC-DLP), which combines the 
functions of an NSP and an LSP, supports up to four lines of 
communication. One logical NSP and one logical LSP must exist in the 
configuration to represent a DC-DLP. When the field engineer assigns a 
unit number to a DC-DLP. that number is also given to the NSP. The LSP 
is given an unused LSP number. 



129 
Planning for Effective Operations 

The steps in configuring the physical system are the following: 

1. Determine the number of lines you need, and from this determine 
the number of LSPs. 

2. Determine the number of NSPs. 

3. Check the number of lines per NSP. 

4. Check the bandpass per NSP. 

These steps are explained in more detail in the following text. 

1. Determine the number of lines and LSPs. 

First determine the number of lines you need and speed of each 
line. The number of lines an LSP can support is determined by 
the line speed. 

NUMBER OF NUMBER OF POLL 
CONTINUOUS POLL CONTENTION LINES 

LINE SPEED LINES PER LSP PER LSP 

19,200 1 2 
9,600 4 12 
4,800 8 16 
2,400 16 16 

Poll contention means that the LSP waits until a terminal 
requests polling before it initiates the poll sequence. 

2. Determine the number of NSPs (for non-DC-DLP systems). 

Assign up to eight LSPs to each NSP. See steps 3 and 4 for 
line and bandpass limitations. 

3. Check the number of lines per NSP. 

The total number of lines an NSP can support is determined by 
the amount of memory in the NSP and whether or not the lines 
are multidrop lines. 



130 
IHTRODUCTION TO A SERIES SYSTEMS 

256K 
512K 

MAXIMUM MULTIDROP 
LINES 

24 
64 

4. Check the bandpass per NSP. 

MAXIMUM LINES WITH 
1. TERMINAL PER LINE 

48 
128 

The NSP is unaffected by line speeds but is affected by the 
number of messages per second and the total number of 
characters ppr second in those messages. Estimate the maximum 
message traffic and the maximum message size and compare that 
to the NSP bE.ndpass. 

NSP BANDPASS 

25 messages per second 
25,000 characters per second 

When you use DC-DLPs, perform the following steps when configuring the 
physical system: 

1. Determine the number of DC-DLPs needed from the number of lines 
and line speed. 

2. Check the bandpass per DC-DLP. 

These steps are explained in more detail in the following text. 

1. Determine the number of lines needed and the speed of each 
line. The number of lines a DC-DLP can support is determined 
by the line speed. 

38,400 
19,200 

9,600 
4,80C 
2,40C 

NUlffiER OF 
CONTINUOUS POLL OR POLL 

CONTENTION LINES PER DC-DLP 

2 
4 
4 
4 
4 

2. The DC-DLP is affected by the characters per second. Estimate 
the messages traffic in characters per second and compare that 
to the DC-DLP bandpass. 

DC-DLP BANDPASS 

:3,000 characters per second 



131 
Planning for Effective Operations 

Once you have determined the configuration for datacomm, the next step 
is to use the Interactive Datacomm Configurator (IDC) to inform the 
system of the configuration. This requires the hardware addresses for 
the components and normally is taken care of by the field engineers who 
install the system. See the "Interactive Datacomm Configurator (IDC) 
User's Guide" for an explanation of the use of IDC. 

SHtting 1m ~ Multilingual System 

The MultiLingual System (MLS) makes it possible to display output 
mE~ssages , on-line help text, and menu screens in multiple natural 
languages, such as French, English, and Spanish. Each user on the 
system can view the messages in a d:Lfferent language. 

To give computer sites multilingual capability, MLS uses three 
utilities--the Message Translation Utility, the Interactive Menugraph 
Generator (IMG), and the Help Utility. 

The Message Translation Utility translates ALGOL output 
one natural language to other natural languages. 
output messages can then be added to the ALGOL program 
original output messages. 

messages from 
These translated 
containing the 

I~iG provides the tools to customize screens for Menu-Assisted Resource 
Control (MARC) and can be used to translate MARC screens into other 
languages. 

The Help Utility processes on-line help text for several utilities and 
products. 

MARC, although not a part of MLS, is a product that looks for a 
specified language in which to display MARC screens. MARC is the only 
product that integrates all the multilingual features of MLS so that the 
screens, on-line help text, and messages of MARC can be translated and 
retrieved in a specified language. 

For instructions on how to set up a multilingual system, see "The System 
Manager's Guide to the Multilingual System" section of the "MultiLingual 
System (MLS) User's Guide." 



132 
INTRODUCTION TO A SERIES SYSTEMS 

4.3 PLANNING DAY-TO·-DAY OPERATIONS 

Day-to-day operations need as much attention and planning as do startup 
tasks. These operat.Lons include keeping records, moni toring system 
performance, managing jobs, maintaining files, and managing backups. 

KEEPING RECORDS 

A site should maintain records of system activity, performance, use, and 
maintenance. These records are necessary to distribute resources 
effectively, to evaluate system performance, to plan for efficient use, 
both present and future, to bill accounts, and to prevent downtime. 
Records should be kept of the following items: 

1. Log files or Hxtracts for maintenance records 

2. CPU utilizatic)n, on-line response time, and transaction counts 

3. I/O traffic, preferably by unit 

4. Available disk space 

5. Batch throughput 

6. Development activity 

7. Resource use l~ the major categories of users 

8. Overhead, which is computing activity that produces no 
end result but supports the operational environment. 
backup files js one example of overhead. 

9. Equipment fauJts 

visible 
Creating 

10. Any stoppage, such as Halt/Loads, and the reasons for each 

11. Usage time and downtime, with program rerun time recorded where 
meaningful 

12. Trouble reports submitted, changes received and applied, any 
opera t ional dE'tours 

13. Memory dumps 

The system logs !:;ummary information about system activi ty in a protected 
disk file callE?d SUMIOG. This file is created during a cold start and 
is maintained by the MCP, which categorizes information by both major 
and minor type and stores it in the appropriate area of the file. 



133 
Planning for Effective operations 

In addition to the defined major types t a major type is reserved for 
definition and use by each installation. Operators or privileged users 
can enter a comment in the SUMLOG file to indicate the start or end of 
an event t such as a special test. The comment is entered through use of 
the LC (Log Comment) ODT command or the "LC" MARC menu selection. 

The information in the SUMLOG file is used by the System Management 
Facility II (SMFII) to generate and maintain a statistical database on 
system performance. You generate reports from this database through the 
SMFII QUERY program. You can also use the LOGGER and LOGANALYZER 
utilities to view SUMLOG file information and to generate reports on 
selected data. See "System Performance Monitoring" in the section "A 
User's View of System Functions" for information on these programs and 
other performance measuring tools. The "System Software Support 
Reference Manual" contains detailed information about SUMLOG. 

The system automatically starts a new SUMLOG file when the old one is 95 
percent filled. On a busy system t this can take from three to six 
24-hour days. 

NOTE 

Be aware that the old log files are not 
removed by the system and continue to 
accumulate unless specifically removed by 
an operator. 

Therefore t removal of log files is an issue that should be planned 
before your system arrives. 

You may want to set up an archiving system for log files and remove the 
files on a periodic basis. The archiving system can be as complex as 
necessary. However t a simple method is to enter information about the 
files in a log and remove them dailYt using a set of tapes, numbered 1 
to la, that are rotated. The daily log entry contains the tape number, 
the date, and any unusual events that occurred during the day. You may 
also want to print a daily copy of the log, which can done through the 
LOGANALYZER utility. A new log file can be started manually through the 
LR (Log Release) or TL (Transfer Log) ODT commands. 

You can use two system procedures as models for any special log analysis 
programs your site may need: SYSTEM/JOBFORMATTER and SYSTEM/LOGANALYZER. 
Both programs contain log format defines that can be used by an ALGOL or 
DCALGOL program. However, it :Ls possible to report on most log items 
using SMFII. 



134 
INTRODUCTION TO A SERIES SYSTEMS 

:MONITORING SYSTEM PERFORMANCE 

Monitoring performance gives you the information you need to determine 
how your system is actually used, how it is performing, and where 
changes. if necessary, can be made. "system Performance Monitoring" in 
the section "A User'~; View of System Functions" explains the tools 
available for monitoring the performance of the system. 

It is strongly recommended that system monitoring be performed on a 
regular, periodic basjs. with a minimum of several times a week but 
preferably daily. Start. by monitoring daily, then gradually increase 
the time between monjtorings as system use becomes more efficient and 
balanced. However, any time you change the status of the system. for 
example. by add.ing new application programs or changing to a new MCP 
version, you should increase the frequency of monitoring. 



135 
Planning for Effective Operations 

MANAGING JOBS 

Managing the flow of jobs is one of the most important aspects of 
operating a computer system and has a large effect on efficient use of 
the system. If the flow of jobs on your system is predictable and can 
follow a regular timetable, scheduling jobs to gain optimal performance 
from your system is relatively easy. But if the flow of work is random 
and fairly unpredictable, as it typically is for program development, 
you must do more planning to prevent overloading or underutilizing your 
system. 

If you have not read it already, read the discussion of "Job and Task 
Management" in the section "A User's View of System Functions" to gain 
an overview of job management. Managing the flow of jobs on the system 
is accomplished through the Work Flow Management system (optional) and 
through the use of job queues. 

Job queues are a practical way to make large numbers of jobs visible for 
selection by the MCP,. You can define multiple job queues for different 
classes of service and improve turnaround time for short jobs by 
grouping them in the same queue. A job queue has attributes that 
describe the maximum resources that a job from that queue can use: 
priority, I/O time, process time, subspaces, tapes allowed, lines 
printed, wait limit for an event, disk space limit, and maximum active 
time. 

The MCP routes jobs to the appropriate job queues. A job can specify a 
particular queue, and the MCP will put it into that queue. When a job 
specifies resource restrictions, the MCP puts it into the 
highest-numbered queue possible. When no restrictions are specified, 
the MCP puts it into the default job queue and assigns it the default 
restrictions for that queue. If a job does not fit the requirements of 
any job queue, the system terminates the job. 

Jobs are selected from job queues on the basis of the priority and the 
mix limit of the queue. The mix limit is the number of jobs from that 
queue that can be executing at any given time. The system initially 
provides one job queue, queue 0, which has the lowest priority. You can 
modify or delete this queue and add other queues. Note, however, that 
no jobs can be started if there are no job queues. 



136 
INTRODUCTION TO A SERIES SYSTEMS 

For random flow. queues are one of the best ways to prevent overload and 
allocate resources fairly. By using queues effectively, you can group 
jobs by the demands they make on system resources and control resource 
allocation. RE~ad "Setting Up Job Queues" earlier in this sect:Lon for 
information on creating queues. 

The efficient flow of printing jobs is handled through PrintS. Read 
"The Print System" in the section "A User's View of System Functions" 
for information on controlling printing jobs. 

In addition to these methods of handling jobs, you can schedule certain 
jobs or types of jobs for specific times of the day or week. This 
allows you to group jobs that use resources requiring set-up time. One 
way to schedule these jobs is to create job queues specifically for them 
and give these queues a mix limit of O. When you are ready to run the 
jobs, increase the mix limit to 1 or greater. For example, for 
nighttime runs, the mix limit could be 0 during the day and 3 at night. 



137 
Planning for Effective Operations 

l~INTAINING DISK FILES 

Day to day maintenance of disk files involves managing file storage on 
disk. You manage storage by consolidating files, removing permanent 
files no longer needed, and redistributing files to improve system 
performance. 

Consolidating files is necessary when available disk storage space has 
become fragmented into numerous small areas. This condition, known as 
"checkerboarding," often results from constant creation and removal of 
files, especially small ones, on a disk. The total number of available 
sectors may be large, but because the system cannot find free space in 
contiguous sectors, it may not be able to allocate an area for a file. 

You can consolidate files through the SQUASH (Consolidate Disk 
Allocation) ODT command. The squash operation moves file storage areas, 
particularly shorter ones, to available areas. It reduces fragmentation 
but does not completely eliminate it. However, successive squash 
operations can significantly diminish fragmentation. You may want to 
plan to "squash" disKs on a regular basis. 

Permanent files are often created as a byproduct of programs and remain 
on disk after the need for them has expired. Because these files 
decrease available disk space, you may want to create a program that 
searches for and removes the files, and then run the program on a 
regular basis. You can incorporate a call to the FILECOPY utility in 
your program to do the actual search and removal. See the "System 
Software Utilities Reference Manual" for information on this utility. 

Any damaged areas on disk can be removed from the systems table of 
available areas through use of the RES (Reserve) ODT command. You can 
use this command to copy data or code from the damaged area even if 
errors occur during the copy operation. This allows recovery of as much 
information as possible. 

The FILEDATA utility produces a variety of reports that you can use to 
help you plan and implement file maintenance. The reports can give you 
a hierarchical list of files, a map of file storage layout, a 
"checkerboard" report showing file' locations and the space around them, 
the attributes of files, catalog information about files, and a list of 
disk files on a library maintenance tape. In addition, FILEDATA can 
generate a file that can be used for periodic file maintenance. The 
"System Software Utilities Reference Manual" explains how to use 
FILEDATA. 



138 
INTRODUCTION TO A SERIES SYSTEMS 

HANAGING BACKUPS 

Files require some form of backup to guard against loss for any reason. 
At one extreme, a backl~ consists of a direct audit of every change to a 
file. The other extreme is just to make an occasional safety copy of 
the file. 

A tradeoff must be madE' between the cost of backing up a file and the 
cost of recovering the information via audit or other means. Usually 
only updated files are backed up on a daily basis. On a weekly or 
monthly basis, categories of files are backed up to serve as a base for 
recovery. Copies of tt,ese weekly or monthly backups often are stored in 
secure locations awa}' from the site to prevent loss from fire or other 
accidents. 

The management of backlps is a process unique to each site. The 
procedure depends on tte types of files, how often they are changed, and 
how critical the infornation is in each file. A site should plan in 
advance how they arE' going to keep track of backup copies, where the 
copies are to be storec, who is to do the backup operations, and when. 
Backups should be scteduled during periods of light system use. As an 
aid to the backup procEss, A Series systems can be run with Cataloging. 
See "File Management" in the section "A User's View of System Functions" 
for a summary of Cataloging, and see the "Disk Subsystem Software 
Overview" manual for a detailed explanation of it. 

Source code files MUST BE RECOMPILED at least every third major release. 
This is necessary tc allow the compiler/MCP interface to evolve and 
change with each successive release. Therefore, your site should make 
provisions to back up application program source code files and store 
them in a secure place. 

Other files that should be backed up are data files, log files 
(optional), changed application program files, and changeable system 
files, such as the USERDATAFILE, DATACOMINFO file, and the source for 
the configuration file. 



139 
Planning for Effective Operations 

~~.4 PLANNING FOR EXCEPTIONAL OPERATIONS 

Exceptional operations are those that occur infrequently, often on an 
unscheduled basis. You can and should plan for their occurrence so that 
they can be handled as quickly as possible and with minimal impact on 
system operation. 

]!mMORY DUMPS 

If the MCP detects a serious problem, it tries to dump an image of the 
contents of memory to either disk or tape. A memory dump can be fatal 
or nonfatal. A fatal dump results in a Halt/Load, while a nonfatal dump 
does not. 

The MCP automatically initiates the memory dump without any operator 
intervention, dumping to the disk file designated through the DN (Dump 
Name) ODT command. If no file is designated, it dumps to tape. If the 
dump went to disk, the MCP attempts to free the disk dump file for 
another dump as quickly as possible by renaming the filled file or 
dumping the file contents to a tape file. The MCP procedure 
DUMPDISKMASTER handles this procedure and issues an RSVP message to the 
operator, who responds with instructions on file disposition. After the 
dump, the MCP resumes normal operations. 

The contents of the dump file are translated into a readable format by 
the DUMPANALYZER utility. The report from the utility is a diagnostic 
tool that can be used for on-site analysis or sent to Burroughs with the 
Field Communication Form (FCF) you use to report the problem. Field 
Communication Forms are explained in the section "If You Have a 
Problem." If you send the dump to Burroughs for analysis, you first must 
run DUMPANALYZER on the file, because the utility must use the MCP code 
file that was running when the dump occurred to correctly convert the 
file contents. 

You should keep a record of all memory dumps, recording when and why 
they occurred. In addition, you may want to keep the dump files, in 
which case you might add them to your file backup system. One method of 
storing dump files is to use a log book to record all dumps and a set of 
numbered tapes to store the dumps for a preset length of time. The 
tapes are rotated and are identified by a simple numbering system. 



140 
INrRODUCTION TO A SERIES SYSTEMS 

A site can control whether or not the system takes memory dumps through 
use of the system rU1-time option NODUMP, set through the OP (Options) 
ODT command. The site also specifies the name of the disk file to hold. 
the dump through the D~ command. 

You can stop a memory jump while it is in progress through the DS 
(Discontinue) ODT conmand and can force a memory dump through the DUMP 
(Dump Memory) ODT comm3.nd or the "??MEMDP" primitive command. See the 
DN, DF (Empty Dumpdisk File), and the CM (Change MCP) ODT commands in. 
the "Operator Display Terminal (ODT) Reference Manual" for morEl 
information on handling memory dumps. 

RECONFIGURING TFlli SYST8M 

If your system has any redundancy in the I/O or datacomm components, you 
need to plan alternati~e configurations of these components to cope with 
any abnormal situations, such as downtime for equipment maintenance or 
malfunction. In addition, if your system shares I/O components with 
another system, you shJuld plan the different configurations possiblE' 
with and without each :omponent. 

You can place these alternative configurations in the configuration file 
ahead of timE' and reconfigure the system through software when 
necessary. See "Soft l(.econfiguration" in the section "A User's vtew of 
System Functions" for information on creating configurations and placing 
them in the configuration file. 



141 
Planning for Effective Operations 

UPDATING THE SOFTWARE 

On a periodic basis, you will receive updated versions of system 
software. You need to plan ahead of time how you are going to integrate 
this software into your system and start using it. You may want to run 
the new software at night or on weekends until it is fully integrated. 

For Mark releases, the software arrives with the "System Software 
Installation Guide" and the "Software Information" documents. The 
"System Software Installation GuidE~" describes the software and the 
major features of the system, and explains how to install the system 
software. "Software Information" contains warnings and precautions 
concerning the system software. 

For support releases, the software arrives with the "Support Release 
Document." This document describes the software, any enhancements or 
changes to the old version, and precautions to take when installing the 
new release. The document also includes packaging, hardware, firmware, 
and documentation information. It is, therefore, very important that 
you read these documents thoroughly before you start integrating the new 
software into your system. 

Of special note is the hardware level information. In order for the new 
version of the system software to run correctly, the hardware must be at 
the correct release level. Check to be sure your site has implemented 
all hardware engineering changes that have been received to date. 



142 
INTRODUCTION TO A SERIES SYSTEMS 

PTD CONFIDENCE ,AND DIAGNOSTIC TESTING 

The Per ipheral 'res t Dr i ver (PTD) is an MCP procedure used to run 
confidence and diai:nostic tests on Data Link Processors (DLPs), 
peripheral devices, arld bad disk files. PTD uses a series of code files 
containing operation codes, one file for each type of DLP and peripheral 
that Burroughs 5uppliE's. Within each code file are numerous individual 
tests, each of which performs an operation appropriate for that device. 
When you use PTD, you can specify the tests you want performed as well 
as which device to te~,t. 

PTD is intended for u~e by Burroughs Field Engineers, but you might use 
PTD under the followirg circumstances: 

o If you buy a djsk pack from a supplier other than Burroughs. 

o 

0 

These packs must be prepared for use by running the Initialize, 
Verify, and Relocate (IVR) program through PTD. 

For confidence testing. 
correct operation. You 

Confidence 
typically 

tests are run to verify 
would run these tests after 

maintenance or repairs are performed on a device or as a regular 
part of a pre\~ntive maintenance program. Some of the tests can 
be performed wtile the device is in use. 

For diagnostic testing. Diagnostic tests are run to detect a 
problem and to find the cause. You would run these tests when an 
intermittent problem (such as a parity error on a tape read 
operation) occurs, and you need to ascertain if the problem is in 
the media or in the device, and just what the problem is. 

The PTD tests are available on a separate tape, PTDTESTS, that also 
includes the user's guide. The tape is available from your local Field 
Engineer. In addition, there is a supplemental document for A Series, 
B 5900, and B 6900 systems, DOCUMENT/PTD, on the DOCUMENTS tape that is 
a part of the system software release package. 



143 

~ PROGRAHKING ON A SERIES SYSTEMS 

This section discusses topics that programmers should be aware of and 
keep in mind when writing programs to run on A Series systems. It is 
directed to both experienced and inexperienced programmers and explains 
issues that influence the efficiency of programs running on A Series 
systems. The discussion assumes that the reader already knows how to 
program and therefore only needs to learn how to program on A Series 
systems. 

5.1 PROGRESSION AND CONVERSION 

Progression and conversion involves defining the differences, if any, 
between the programs and their operational environments on the old and 
the new systems, running programs through filter programs to translate 
language differences, moving programs to the new system, and refining 
the programs to achieve greater efficiency. 

AVAILABLE TOOLS 

When you progress from a Burroughs B 1000 or B 2000/B 3000/B 4000 Series 
system to an A Series system, a range of services are available to you: 
requirements definition, education courses, software tools, and 
programming and system consultation. You can choose some of these 
services or contract for the total effort. 

If your site decides to handle most of the effort, you can order 
progression software aids to help you save time and minimize costs. See 
the "User Guide to 13 1000 Progression Aids," obtainable through your 
Burroughs representative, for the software aids available and 
information on using them. These aids are for both small and medium 
systems and include file transfer utilities for transferring tapes 
between systems. 

In addition, you should order the "B 1000 Series to A Series Progression 
Guide." This guide discusses the differences between small and A Series 
systems, lists the steps in progression, describes common progression 
problems and solutions, tells you how to transfer files, and describes 
the steps to take after using the software progression tools. 

For conversion from non-Burroughs systems, see 
representative for the available conversion aids. 

your Burroughs 



144 
INTRODUCTION TO A SERIES SYSTEMS 

CONVERSION OF PROGRAMS 

There are several tasks you can start well ahead of time, before you 
receive any conversicn documents: locate the source code for your 
application programs, and identify and flag any machine-dependent or 
nonstandard code in the programs. This code must be changed either 
before or after you run the program through the translation tools. On 
future changes to programs, make it a practice to stay as close as 
possible to the standard language. Anything nonstandard can be placed 
into a library or a sefarate module. 

For existing programs. transfer the source code only. 
changes to the source. then recompile the program. 
the object code will run on the current MCP. 

make any needed 
This ensures that 

Some routines, especially small, frequently used ones, can be placed in 
general or specialized libraries for use by all programs on the system. 
This can reduce the si2e of existing and future application programs and 
thereby reduce required disk storage space. 

If at all possible. you should plan to run the old and new systems in 
parallel for a short time and compare program results. This can help 
ensure that all prograrrs are performing as required. 

If some of the programs you are converting are old and have been 
modified numerous tirres, this may be a good time to rewrite them. The 
result can be easier maintenance and greater efficiency when running the 
program. However, unless the rewrite is well managed, it can add risk 
to the conversion schedule. The tradeoffs should be carefully 
considered. 



145 
Programming on A Series Systems 

~::OHVERSION OF DATA 

1Nhen you convert or progress your application software to A Series 
systems, pay special attention to the format of the data. The format 
affects the amount of overhead required to handle the data on the 
system. For example, on numeric string data transferred from 
non-Burroughs systems, if the sign field is not properly positioned, 
more operations may be required to interpret it. (See the reference 
manual for the programming language you are using for information on 
placement of the sign field.) 

There are three levels of data to consider: 

1. The physical level, which is the actual representation of the 
data and includes character sets and character sizes. At this 
level, you need to be sure that the system recognizes the 
format used. 

2. The logical format of the file. The file format on your old 
system may differ from that on your new system. If so, you may 
need to write an extraction program that removes the file from 
the tape record by record and reformats it as it writes it to 
disk. 

3. The format of the transfer tape. It is possible for a file to 
be successfully loaded onto an A Series system yet not be 
usable by that system. This occurs because the file 
information can be read but not interpreted by the system. To 
avoid this problem on transfers between Burroughs systems, use 
the file transfer utility programs supplied by Burroughs. (see 
the section "Transferring Files" in the "B 1000 Series to 
A Series Progression Guide" for specific information on the 
utility programs.) For transfers from non-Burroughs systems, 
use a copy program such as DUMPALL that does not copy the file 
header with the file. DUMPALL creates a new header for the 
file as it is placed on disk. 



146 
INTRODUCTION TO A SERIES SYSTEMS 

5.2 PROGRAM JNITIALIZATION, RECOVERY, AND RESTART 

Because the mechanisms for starting and restarting programs are very 
flexible, you need tc plan which of the available methods you are going 
to use. In addition to the Work Flow Language (WFL), the startup 
mechanisms also include supervisor programs that can start othe~ 

programs after a Halt/Load. 

APPLICATION PROGRAM INITIALIZATION 

The execution of batch application programs on an A Series system is 
normally controlled through the Work Flow Management system. Through 
WFL statements issued to start the job, you can 

o Control multiple programs running asynchronously 

o Define and change the parameters of the program or programs that 
make up the job 

This allows you to use an application as a generic program and customize 
it to fit changing conjitions when it is run. 

There are three kinds 'Jf WFL specifications you can use to affect thE? 
program: task attributes, file equations, and data specifications. Task 
attributes have divers,? functions, such as specifying the priority of 
the program, the us'?rcode it is to run under, and in wha t memory 
subsystem it is to run. File equations are used to substitute different 
files for the files named in the program, such as input and output 
files. Data specifica":ions supply input to those programs that expect 
input from a card ::-eader during execution (that is, programs that 
declare a file with th(~ file attribute KIND equal to READER). 

For more information on the use of WFL specifications for program 
initialization, see thE? "Work Flow Language (WFL) Reference Manual." 



147 
Programming on A Series Systems 

RECOVERY AND RESTART 

An important consideration when you are writing an application program 
is how the program is going to recover and restart if it is interrupted. 
The kind of recovery needed depends on the importance of the 
transactions it is performing and whether it is answering inquiries or 
updating files. 

Interactive Programs 

For interactive programs, the type of recovery you build into your 
program depends on the type of transaction it is processing. 

For simple inquiries, sending a message to the user may be sufficient. 
This message could simply tell the user to repeat the last inquiry. 

For straight data entry programs, you can keep an audit trail or tell 
the users what the last recorded transaction was and direct them to 
re-enter all transactions since that one. 

For programs that randomly update files, you need audit trails 
containing before and after records of each update. However, if you are 
using DMSII, you can have it audit the transactions, sparing you the 
necessity of writing the extra audit code. Recovery from interruptions 
is automatic, so that re-entry of data is unnecessary. 

The "Communications Management System (COMS) Programmer's 
contains information on synchronizing programs with DMSII. 

Guide" 



148 
IN'J'RODUCTION TO A SERIES SYSTEMS 

Batch Programs Q..nd Job~~ 

The system automaticalJy restarts batch jobs if they are interrupted. 
However, through Wor~. Flow Language (WFL) statements, you can control 
how and where in the pr"ogram they restart. 

Some application lani:uages permit stops in a program, called 
checkpoints, for the system to save information regarding the state of 
the program at that pojnt. This information consists of everything the 
system needs to know to resume execution of the program. If the program 
is interrupted and must be restarted, the system can restart it at the 
last checkpoint instE'ad of at the beginning. WFL provides the RERUN 
statement to direct thE' system to restart the program at a particular 
checkpoint. 



149 
Programming on A Series Systems 

~~UPERVI SOR PROGRAMS 

A supervisor program is a specially designated code file that is run 
immediately after a Halt/Load. The system automatically enters it in 
the job mix and runs it before all other jobs. You can use a supervisor 
program to automatically perform chores that an operator would otherwise 
have to do when starting up the system, such as setting up special job 
queues. However, you are not limited to this type of use and can have 
the supervisor program perform any functions wanted and needed by your 
site. 

A supervisor program can send Operator Display Terminal (ODT) commands 
to the MCP and receive the corresponding responses through the DCALGOL 
"DCKEYIN" statement. Any program using this statement must be 
privileged, meaning the program must be run under a privileged usercode 
or be designated a privileged program. 

You designate a program as a supervisor program through the CS (Change 
Supervisor) ODT command. See the "Operator Display Terminal (ODT) 
F~eference Manual" for the forma t of the command. 



150 
INTRODUCTION TO A SERIES SYSTEMS 

5.3 ONGOING CONSIDER~TIONS 

DESIGN OF PROGRAMS 

With the availability of program generator~ such as the Logic and 
Information Compiler (LINC), the most important aspect of program design 
has become the evaluatiJn of the relationships between the data. Good 
program design requir?s that thought be given to the effect of file, 
data, and program structure on the efficiency, maintainability. and 
integrity of the progran. 

File and Data Structure 

File and data structure is concerned with record, block, and area sizes. 
The sizes of these items affect the speed and performance of programs 
and of the system, and the efficient use of storage. 

For the greatest central processor efficiency, the record size should be 
a multiple of the word size, six bytes, because some of the operations 
are more eff icient on w')rds than characters. A useful technique is to 
make the record size larger than initially needed, to allow for future 
expansion. If you have ,~ choice, fixed-length records are normally more 
efficient than variable-length records, because the system can more 
easily manage data stordge and access. 

The system transfers re(:ords to disk in blocks made up of a numbpr of 
records. However, data is stored on disk in segments of 180 bytes, the 
size of one sector. Thl~refore, for minimum disk space waste, the block 
size should be a multip.Le of both 180 bytes and of the record size. For 
example, if the record :3ize is 90 bytes, the lowest block size would be 
180 bytes, or if thl~ record size is 150 bytes, the lowest block size 
would be 900 bytes. 

When a file is read, thl~ system transfers a block from disk into buffers 
in memory. From therl~, the MCP gives the program a particular record. 
If the next record is in the buffer, transfer time is saved. If not, 
another block must b(~ transferred. Therefore, for serially accessed 
files, where records ar(~ used in the order in which they are stored, the 
block size should be large in order to minimize the number of transfers. 
For randomly accessed f:~les, where the next record needed probably is 
not in the buffer, the block size should be small to minimize the amount 
of time spent in transfE~rring a block. 



151 
Programming on A Series Systems 

For files accessed both sequentially and randomly by different programs, 
choose a record size such that a small multiple of it is a multiple of 
lBO. Then use a small block size for random access and a large block 
size for sequential use. For example, a record size of 270 bytes allows 
a small block size of 540 bytes and a large block size of 10,800 bytes. 

Just as records are accumulated into blocks in memory, so blocks are 
accumulated into areas on disk. A file can "own" and occupy multiple 
areas. The file attribute AREALENGTH defines the size of each area, and 
the attribute AREAS defines the number of areas the program needs. The 
following diagram shows the relationship between records, blocks, and 
areas. To simplify the illustration, a smaller than normal record size 
is used. 

RECORD WORD WORD ••• WORD 
1 2 N 

" v ~ 

BLOCK ~ECORD 1 I RECORD 2 1 ... 1 RECORD N 

'-- J 
V" 

AREA BLOCK 1 I BLOCK 2 1 .. ·1 BLOCK N 



152 
IW~RODUCTION TO A SERIES SYSTEMS 

It can be helpful to a site to standardize the size of all areas to 504 
sectors, the area sizH of object files produced by the compilers. This 
can help prevent "checl~erboarding" of the disk, where available disk 
space is fragmented in1:0 areas too small for the file areas. 

Areas are alloca ted on~LY when needed. I f they are too 
wastes time keeping ;:rack of a large number of areas. 
large. space may be wa!,ted, and it will be difficult to 
the required size. 

small, the MCP 
If they are too 
find space of 

When a file reaches th(~ largest size anticipated for it, it is a good 
idea to use the crunch option when the file is made permanent (entered 
into the disk director~'). This option causes unused bloCks in the last 
area of the file to be returned to the available pool for the disk. 

If you are writing programs for database applications, there are several 
sources of information available. See the "Structure Formats and 
Pragmatics" and the "D(~signing DMSII Databases" appendixes in the "DMSII 
DASDL Reference Mannal," and see the "Efficiency Considerations" 
appendix in the "DMSII User Language Interface Software Operation 
Guide." 

The Effect of Program ;;tructure 

The program you write ':0 fulfill an application need can be structured 
as one large or many slnall programs. A single large program centralizes 
the application and minimizes the overhead incurred when starting and 
ending programs, but Inaintenance of the program may be difficult. With 
several small programs, each can execute quickly, and faults in one can 
be isolated from the o~:her programs. Small programs also make it easier 
to balance the load on the system. 

When writing a large program, you have a choice between writing it as 
one large program or \griting it as several smaller programs and binding 
them into one program. You can also choose to use libraries in lieu of 
binding some of the small programs. 



153 
Programming on A Series Systems 

The advantage of using libraries or binding programs is that complex 
data-handling routines needed by many programs can be written only once 
yet used by all programs. The system allows routines written in one 
language to be used by programs in another language, with some 
limitations. These routines can be bound to the program or called 
through library calls during execution. You write a routine in the 
language most suited to the expression of the function it performs; for 
example, COBOL for printing reports or FORTRAN for processing numbers. 

Whether to use libraries or to bind routines depends on the type of 
routine and how it is used. Libraries are good for both single- and 
multifunction procedures, such as currency conversion routines. It is 
slightly more efficient to bind a routine than to place a library call 
to it, but if you change the routine, you must change many different 
programs rather than one library component. In programs containing 
bound routines, the symbol and object files don't match, and you cannot 
use the Test and Debug System (TADS) to test the program. However, 
bound routines can share global data, which must be passed to libraries 
as parameters. 

TADS can be used to test libraries. If a task that calls the library 
also runs with TADS, then that task must have its own remote station or 
COMS window for the test session. 

For more information on libraries and on binding, see the "Libraries" 
slection of the "System Software Ut ili ties Reference Manual" and see the 
"Binder Reference Manual." 

General Practice 

Initialization time for complex databases can be as long as 30 to 40 
seconds. When you have a complex database that is used only a few times 
daily, but the access to it is time critical, consider writing a program 
to open the database at the start of each processing day. This program 
would open the database and keep it open by waiting for a user-defined 
event that never occurs, thus eliminating the initialization for each 
user. 

Small, frequently-used programs. such as a Pascal compiler in a 
university lab, can be kept resident in memory. This decreases 
processor and I/O use when the program is run. A program is made 
resident through the RP (Resident Program) ODT command. 



154 
INTRODUCTION TO A SERIES SYSTEMS 

Program Maintenance 

Maintenance of program:; is an ongoing function that must be planned for 
ahead of time and d4!signed into a program. Maintenance refers to the 
use of diagnostic, checking, or test routines to help programmers remove 
mistakes and errors from a program and produce correct and efficient. 
code. 

You can have two versi()ns of programs, a diagnostic version and a 
regular version, and predefine to the operators the conditions under 
which each one should be used. Also define what output should be saved, 
such as job summaries, to give a history of the program execution. The 
system log files are an excellent source of information, especially for 
tracking what was ha]Jpening on the system when the job was running. In 
addition, you can prin~ the contents of the COMS and DMSII audit files 
if applicable. 



155 
Programming on A Series Systems 

PROGRAM DEVELOPMENT 

Burroughs provides a variety of software tools to aid in the development 
of application programs. These tools are designed to increase 
productivity and be easy to use. Within these tools, there is a 
difference based on the amount of work required to produce the finished 
product and the amount of flexibility the tool allows the programmer. 
The following diagram shows this tradeoff between flexibility and 
productivity. 

MAXIMUM PRODUCTIVITY 

END-USER APPLICATIONS 

END-USER TOOLS 
SPREADSHEETS 
ERGO 

APPLICATION GENERATORS 
LlNC 

DEVELOPMENT AIDS 
SCREEN DESIGN 
DATA DICTIONARY 

ENVIRONMENTAL SOFTWARE 
DMSII. TPS. 
COMS 

HIGH LEVEL LANGUAGES 
COBOL. ALGOL. 

MAXIMUM FLEXABILITY FORTRAN 

J 

REQUIRED KNOWLEDGE 

DATA RELATIONSHIPS 

ALGORITHMS 

BUSINESS MODELS 
DATABASE STRUCTURES 

SOFTWARE ARCHITECTURE 

DATA HANDLING. 
TERMINAL HANDLING 

As programmer productivity increases, the knowledg, {uired to use the 
tools changes. ThE? user is required to have lc~s knowledge of the 
hardware and software architecture of the system and can concentrate on 
knowledge of the problem the application is solving. However, there is 
a decrease in flexibility; the routes available to solve the problem 
become increasingly restricted. 



156 
INTRODUCTION TO A SERIES SYSTEMS 

As an A Series system user, you can choose the level of tools that meet 
your site's particular needs and objectives. See "Productivity 
Software" in the section "Virtual Memory, Stacks, and Other System 
Concepts" for a list of the products available, and see the section "A 
User's View of System Functions" for a more detailed explanation of the 
individual products. 



157 
Programming on A Series Systems 

APPLICATION PROGRAM MANAGEMENT 

For new application programs, major considerations are which language to 
use, which programs to write in-house, and which programs to purchase. 
The type of application or the language preferred by the site usually 
dictates the language used for a program. If you are purchasing general 
application programs, be sure that the version of the language used is 
compatible with A Series systems compilers, so that you can maintain the 
programs. See "Programming Languages" in the section "A User's View of 
System Functions" for the language compiler versions available. 

Programs used frequently by many types of users or for different 
purposes can be made "generic" by use of Work Flow Language (WFL) file 
equations. For example, output file names in a program can be 
represented by a variable that is equated to an actual file name when 
the program is run. This type of file equation allows a program to 
serve many users without being changed constantly. 

Code File Compatibility 

Object code files gE~nerated on B 5900 and B 6900 systems are compatible 
with A Series systems and can execute on them. The B 5900 and B 6900 
systems are part of the processor family of machines called Level 0 
machines. (In this context, "family" is distinct from a machine series 
such as B 5000/B 6000/B 7000.) The A Series systems are in the Level 1 
family of machines. 

The terms "Level 0" and "Levell" are values for the compiler control 
option TARGET. Compilers can generate code that is optimized for a 
specific family of machines and that runs only on that family or a 
limited set of families. You gain performance improvements when you 
compile programs with TARGET set for the family on which the program is 
to run. Therefore, although Level 0 programs execute on Levell 
machines, you may obtain some performance improvements if you recompile 
the Level 0 programs with TARGET equal to Levell when you want to run 
them on Levell machines only. However, the converse is not necessarily 
true, and code files generated for Levell families will not execute at 
all if run on Level 0 machines. 

If you do not specify a value for TARGET, the compiler uses the default 
specification maintained by the MCP. The system default specification 
is to compile code for the machine on which the compiler is running, but 
you can select the MCP default specification through the COMPILERTARGET 
(Set Default TARGET Value) ODT command. 



158 
INTRODUCTION TO A SERIES SYSTEMS 

Distribution of Files 

You can influence back:lp speed for application programs and related data 
files by the locati()n of these files on disk families. The basic 
principle is to group ::iles that change frequently and separatE~ them 
from files that change only occasionally. Depending on the number of 
disk packs and familie:; at your site, place frequently changed files on 
a separate family o:~ at least a separate pack. Avoid placing them on 
families that contain :;ystem files, because this can complicate or 
lengthen the backup process as well as slow execution of programs. Ir, 
addition, keep overla~' packs as clear as possible of application 
programs. If these packs fill up, the system can slow down drastically 
or halt. 



159 
Programming on A Series Systems 

~~ONTROLLING PROGRAM: CHANGES 

You may want to set up procedures to control how changes are made to 
application programs, especially critical programs. On A Series 
systems, you have the ability to develop, test, and review changes to a 
program before actually changing the program. This ability is a part of 
the process of patching, which is a means of making controlled changes 
to a program. Patching has the advantage of allowing you to keep a 
record of changes made to a file. 

There are three ways to handle patching: 

1. Working in patch mode in the Editor 

2. Using the SYSTEM/PATCH utility program 

3. Using the "mark" field in CANDE text files 

The Editor normally runs in merge mode, meaning that changes made to the 
file during the Editor session are merged into the source file when the 
session is ended. In patch mode, you specify two files for an editing 
session: a patch file and a source file. The source file is the file 
you want to change, and the patch file is a work file that contains the 
source file records that are actually changed during the session. 
During a session in patch mode, you edit a copy of the source file. At 
the end of the session. the Editor saves the changed records in the 
patch file, and the source file remains intact. 

You can merge the patch and source files to produce a temporary file 
containing a copy of the source file with the patch applied. This 
temporary file then can be used for review and testing until you are 
satisfied with the changes. Merging is accomplished in one of two ways: 
through the SYSTEM/PATCH utility and through compilers. 

The SYSTEM/PATCH utility has the ability to combine multiple patch files 
into a single file and merge this file with the source file. It also 
can produce a listing comparing the changed records to the original 
records. By inspecting this listing, you can see how your patch affects 
the source file and if there are any conflicts when multiple patches are 
applied. Once you are satisfied, you can run the utility again and make 
the patch permanent. See the "PATCH" section of the "System Software 
Utilities Reference Manual" for complete information on SYSTEM/PATCH. 



160 
INTRODUCTION TO A SERIES SYSTEMS 

Compilers also provide a mechanism to apply patches to software and test 
the resulting code files. Through compiler control options and file 
equation statements, the compiler can be directed to merge the source 
and patch files and compile the resultant file. 

The mark field of files created through CANDE can be used to track 
changes to a file. In a file containing 90-character records, the last 
10 characters are the mark field. This field can be used to indicate 
anything you want, such as the date the record was placed in the source 
file. You can have the Editor automatically change the field through 
use of the MARK command, or you can manually change the mark field 
through the Editor CHANGE command. 

TESTING 

When testing programs that are potentially harmful to the running of the 
system, such as privileged programs, it may be a good idea to test them 
under a nonprivileged usercode. If necessary, you can create temporary 
test files to replace privileged files or functions. 

When testing programs that interact with databases, a safe way to 
proceed is to model the database and use that for testing. You set up 
another database that is logically identical to the database involved in 
the test but is physically smaller. The smaller size helps to shorten 
testing time. See the "Update, Reorganization, and Modeling" section of 
the "DMSII DASDL Reference Manual" for information on modeling 
databases. 

The same idea can be used for testing other large programs. Use a 
logical subset of the program, a skeletal version, that contains all the 
essential functj.ons but not necessarily all the possible data paths. 
Then add other modules or paths as testing proceeds. Also use copies of 
production data when running test programs. 

When testing ALGOL, COBOL74, or FORTRAN77 programs, use the Test And 
Debug System (TADS), an interactive tool for testing programs and 
libraries. Through TAOS you can monitor and control the execution of 
the software and examine or modify the data at any given point during 
program execution. See the "ALGOL Test And Debug System (TADS) User's 
Guide," "COBOL/,4 Test and Debug System (TADS) User's Guide," and 
"FORTRAN77 Test and Debug System (TADS) User's Guide" for instructions 
on the use of TADS. 



161 
Programming on A Series Systems 

~ EXCEPTIONAL pITUATIONS 

Exceptional situations are situations that you need to plan for, but 
that occur infrequently. These include new releases of software, 
progression, adding new features and deimplementing old ones, and 
analyzing memory dumps. 

NEW RELEASES 

On a periodic basis, you will receive updated versions of system 
software. You need to plan ahead of time how you are going to integrate 
these programs into your system and start using them. 

If the changes to the software you are using are relatively minor or if 
the software affects only a minor function, you can probably start 
running it as soon as you load or need it. If the change is substantial 
or is to software critical to system performance, you may want to run 
the software after your normal work day or on weekends to ensure that 
there is no incompatibility with your application programs. 

If you have sent a Field Communication Form (FCF) to Burroughs regarding 
a software problem, and the problem is one that a software patch has 
been written for, Burroughs will send you the patch and a letter of 
lexplanation. The patch usually is to the source code for the affected 
program and must be compiled into your software. It is a good idea to 
monitor the patched system software to see if the patch solves the 
problem. Be sure to report the results to your Burroughs 
representative, because the results are of interest to many users. 

For new releases of the system software, the first thing you should do 
.is read the "System Software Installation Guide" and the "Software 
Information" documents that come with Mark releases, and the "Support 
Release Document" that arrives with the support releases. These 
documents describe the major features of the system software, any 
E?nhancements or changes to the old version, and precautions to take when 
installing the new release. 



162 
IN~~RODUCTION TO A SERIES SYSTEMS 

There are four steps iIlvolved in installing a new release of system 
software on a system. These steps assume that the system is operational 
and is running on a pL.or release. 

1. Load and init:.alize the new MCP and the new system libraries. 

NOTE 

It is vpry important that the MCP and the 
system libraries be the same release 
level. This ensures that the new 
feature~; of the release can run. 

2. Verify system operation by running test programs or the current 
versions of your programs. You may want to use temporary 
copies of your data as a precaution. 

3. Bring up the new compilers. 

4. Recompile the programs that need recompilation and verify that 
the new versic)ns run successfully. 

Source code files MUST BE RECOMPILED every third major release. This is 
necessary to allow thE' compiler/MCP interface to evolve and change with 
each successive releasE'. Therefore, you should make provisions to save 
source code files ar.d set up a schedule for recompilation with each 
major release. As a bonus, you may find that recompiling programs 
sooner than is nece~sary results in additional speed in program 
execution because of fE'atures in the new software or because of compiler 
improvements. 



163 
Programming on A Series Systems 

jDEIIIPLEHENTATION OF OLD FEATURES 

Occasionally old functions and commands are deimplemented by Burroughs. 
These are planned well in advance, and warnings are given to users in 
several ways. 

1. A section of the "Mark 3.6.0 System Software Installation 
Guide" accompanying system software releases lists features 
deimplemented on the present release and features to be 
deimplemented on future releases. When possible, warnings are 
given at least two major releases before the actual 
deimplementation; for example, on Mark 3.6 for Mark 3.8 
deimplementations. 

2. Compilers give warning messages when they encounter features 
scheduled for deimplementation. 

3. The MCP gives run-time warnings when a program contains 
features scheduled for deimplementation. 

The MCP records any run-time deimplementation warnings in the system log 
file or the code file, or both if applicable. The system administrator 
can retrieve all deimplementation warnings by running the LOGANALYZER 
utility with the DEIMPLEMENTATION option. Individual users can view the 
list of warnings recorded for a particular file by using the FILEDATA 
utility with the WARNINGS file attribute or by using the CANDE "LFILES" 
command. 





165 

Q IF YOU HAVE A PROBLEM 

Burroughs performs testing of hardware and. software products to keep 
those products at the highest level of reliability. Typically, more 
than half the total time, effort, and cost of producing a software or 
hardware product is spent testing and debugging. However, you may 
occasionally encounter a failure and it is essential that you 
communicate the problem and the circumstances leading to it to 
Burroughs. 

There also may be times when the system does the unexpected. You might 
see a repeated, momentary interruption, a sudden slowdown of response, 
or even a memory dump. If any of these or other unexpected events do 
occur, there are troubleshooting procedures to follow to find the cause. 
If, after following these procedures, you cannot find the cause and need 
to call for help, Burroughs support: people are available for assistance. 

Burroughs offers different levels of support service, allowing you to 
select the level appropriate to the availability and expertise of your 
staff. See the "Customer Guide to Burroughs Services and Support" for 
detailed information on the available services. 

This section disCUSSE?S how to proceed when the unexpected happens, where 
to get help, and how to report problems. Even -if you yourself would 
rather not get involved in troubleshooting, you can speed up the process 
by knowing what information to have ready and what preliminary things to 
check before calling for help. 

The document "A Customer Guide to Software Reporting" contains 
detailed explanation of the topics discussed in this section. 
section "Where to Find More Information" for information on 
this guide. 

a more 
See the 

ordering 



166 
INTRODUCTION TO A SERIES SYSTEMS 

DEFINING THE PROBLEM 

Communicating informati~n about problems may sound simple, but it can be 
a difficult task no matter how experienced at it you are. Knowing how 
to define the problem can ease the process and allow Burroughs to help 
you quickly and efficiently. 

Ideally, to define 
If this is not 
characteristics of 
your definition be 

the problem, you isolate, reproduce, and identify it. 
possible, your goal becomes to identify the essential 
the problem. In either case, it is important that 
as specific as possible. 

While it is tempting to take short cuts in defining the problem, such as 
using a random approach, experience has shown that a very structured 
approach works best. This approach can be broken into three phases: 

1. Make quick checks. 

2. Ask basic questions. 

3. Break the problem down. 

The purpose of the quick checks is to determine if the problem is being 
caused by hardware or by software. This is necessary because in today's 
integrated computer environment, what appears to be a software problem 
may in fact be a hardware or operational problem. Some of the checks 
may seem obvious. but if you are pressured for time, you might overlook 
the obvious. 

Quick Hardware Checks 

1. Have there been any hardware changes or additions recently? 

2. Are all interface cables installed and secure? 

Quick Operational Checks 

1. Do all units show power on and ready status? 

2. Are all peripheral switches in the proper positions for the 
job/applicaticn? 

3. Is all necessary software installed? 



167 
If You Have a Problem 

4. Are all configuration files resident and do they contain 
correct values? 

5. Are all required files resident? 

6. Ar~ file, path, volume, and family names correct? 

7. Are there sufficient resources to run the job? 

8. Is the security level correct? 

9. Have operational procedures changed recently? 

10. Have new operators been using the system? 

Checking these items often solves the problem. However, if this check 
does not reveal any causes, proceed to phase two. 

~~sk Basic Questions 

At this point, you already should have ruled out hardware and 
operational problems as the cause of the problem. Phase two involves 
asking basic questions about what has changed. This can lead directly 
to the cause of a problem, because problems often appear when change 
occurs. Ask the following basic questions about change: 

1. Has a new maintenance release or patch been installed recently? 

2. Were unique types of data being run at the time the problem 
occurred? 

3. Did the volume of data input change prior to the occurrence of 
the problem? 

4. Has anyone recently modified any of the programs that were 
being run at the time the problem occurred? 

5. Have there been any environmental changes recently? 

6. Have you recently identified a problem in another software 
product? 

7. Were new functions or features being used at the time the 
problem occurred? 

8. Did input parameters or control files change prior to the 
occurrence of the problem? 



168 
INTRODUCTION TO A SERIES SYSTEMS 

If your answer to any of these questions is yes, the problem may be 
related to the change the question identified. If you can, test the 
suspected cause by reversing the change, although this admittedly may 
not be practical. If you feel confident that you have found the 
problem, you are ready to report it. 

At this pOint, try to reproduce the problem. If you can reproduce it, 
try to develop a test case or procedure so that Burroughs service people 
can also reproduce it. 

However, if you still cannot define the problem, proceed to phase three. 

Break. .the Problell~ Down 

Phase three is a bit more complex than phases one and two, becausE~ the 
probable causes are more elusive. To find these causes, you break the 
problem down progressively. First you identify the essential conditions 
of the problem. then you break those conditions down into their 
conditions, and so on, until you can define the problem. 

Identifying the Essential Conditions 

You identify the essential conditions by stating as 
about exactly what happens when the problem occurs. 
answers to the following questions: 

1. When does the problem occur? 

much as possible 
To do this, find 

2. What programs were running when the problem occurred? 

3. What did the operator do just before the problem occurred? 

4. How many users were on-line and what was each dOing just before 
the problem occurred? 

Usually after you have asked these questions, you will find that you 
have many conditions to work with. If you do not have enough 
information. try to duplicate the problem. 



169 
If You Have a Problem 

Now try to narrow down the list of essential conditions by testing the 
conditions on the list. Try various combinations of conditions until 
you are satisfied that you have all of, and only, the essential 
conditions. Start by asking yourself the following questions: 

1. Is the problem likely to be related to all the items in the 
list? 

2. If I drop one or two conditions, does the problem still occur? 

Breaking Down the Essential Conditions 

Once you have reduced the list, break each essential condition down into 
its essential conditions, using the same process. 
the problem defined, test the definition one 
yourself the following questions: 

1. Have I considered all the pertinent data? 

Once you seem to have 
more time by asking 

2. Does the problem always occur when all the essential conditions 
are present? 

When you feel confident the problem is defined, try to reproduce it. If 
it is reproducible, try to develop a test case so Burroughs can see how 
you arrived at your definition. 

If you can't develop a test case, gather the media you think might help 
Burroughs to reproduce the problem. 

DE?fining a problem can be a complex process, and you must use your own 
judgment to determine how far to break down a problem. If you have 
spent a reasonable amount of time and still do not have the probable 
cause, stop and define the problem in terms of the essential conditions 
you have isolated. Then report the problem and let Burroughs take over 
from there. 



170 
INTRODUCTION TO A SERIES SYSTEMS 

Once you have defined the problem to the best of your ability, the next 
step depends on the type and urgency of the problem. The remainder of 
this section describes the procedure customers within the United States 
should follow. Inte~national customers should consult their Burroughs 
representative because the procedures vary from country to country. 

Hardware Problems 

If you are a domestic I~ustomer and the problem is in the hardware, call 
the Regional Support (:enter, using the toll-free phone number listed on 
a sticker on your equi?ment. Also on the sticker is the serial number, 
called the RESPOND ID, for your system. Have this ID number, as well as 
the serial number of a:1Y other applicable equipment, ready to give to 
the person answering the call. If you need the assistance of a field 
engineer, the center wLII dispatch one to your site. 

If the field engineer needs additional aSSistance, he or she can request 
help from a Remote Support Center. From these centers, 
specially-trained cust()mer support engineers can diagnose and isolate 
problems at the cus~omer's site. The same capabilities and software 
interface to the SyStffiR that are available to the on-site field engineer 
are available to the customer support engineer. A datacomm connection 
to the customer's system enables the support engineer to run diagnostic 
programs, take direc': system readings, and access system files such as 
system logs. 

You can control the amc)unt of access the Remote Support Center has to 
your si te through hardware swi tches, through the datacomm connE'ction, 
and through the softwa)-e security system. Each time the Center accesses 
your system, the engineer must follow a log-on procedure. In addition, 
your site must initiate the datacomm connection. See your field 
engineer for more information on controlling access. 

Software Problems 

If the problem is in tIle software, you can report these problems to the 
Software Support Center by phone or through Field Communications Forms 
(FCFs). The method YOll use depends on the urgency of the problem. The 
FCFs are explained in the topic "Reporting System Problems and 
Suggestions" in this SE?ction. 



171 
If You Have a Problem 

If the problem is one that needs speedy resolution, contact your 
Software Support Center by phone or Telex. Call the number listed in 
your service contract with Burroughs or given to you by your Burroughs 
representative. When calling the center, have the following information 
available: 

o The system serial number (RESPOND ID) and the serial numbers of 
any other applicable equipment 

o The customer name 

o The system software release level 

o The name of the product having the problem 

o A description of the problem 

o The frequency of occurrence 

o The impact of the problem 

o The name and phone number of the person to contact at your site 
for follow-up 

o A listing of the program and other supporting documentation, if 
applicable 

The Support Center will frequently request that you submit an FCF to 
document the problem if it has not been answered or resolved by phone or 
Telex. When you have completed the FCF, forward it to your local 
support organization. The local organization will acknowledge receipt 
of the FCF, and, where possible, propose a detour. It will then forward 
the FCF to the applicable in-house support organization, which will 
assume responsibility for finding a solution. 

1fser Groups 

User groups are a good source of specialized information concerning the 
use of computer systems. There are several groups available worldwide 
for Burroughs system users. 



172 
I~TRODUCTION TO A SERIES SYSTEMS 

CUBE 

CUBE, Incorporated (Cc,operating Users of Burroughs Equipment) is an 
independent association composed of Burroughs customers. The group 
operates as a customer clearinghouse for the exchange of information 
among themselves and with Burroughs. The type of information exchanged 
concerns use of Burrolghs equipment, software products, and services. 

Burroughs supports anc cooperates with CUBE but does not run the 
organization. The grcup conducts its own activities with the assistance 
of a full-time executive secretary who, as required by CUBE by-laws, is 
a Burroughs employee. The other officers are volunteers elected 
annually from the membership. 

The principal activity of CUBE is semiannual conferences for Burroughs 
worldwide customers. These meetings are three to four days long and are 
usually held in April and October in major cities in North America. Tht? 
conferences consist of over 120 separate sessions for presentation of 
papers and for discussions on effective computer management and 
technical hardware and software topics. The speakers may be otheT 
customers, Burroughs representatives, or outside experts. 

In addition, there are displays featuring new product offerings from 
CUBE members and from Burroughs Corporation. Members have the 
opportunity to meet and talk with other users with the same kind of 
Burroughs equipment and from the same or a related line of business. 
Members can also meet both technical and management employees of 
Burroughs Corporation. 

CUBE membership is cpen to employees of any customer or of any 
organization that uses a Burroughs computer system. The system must 
have been identified ty the CUBE executive board as an eligible system. 
Eligible systems currently range from the B 20 to A Series systems. To 
become a member, send your name, company name and mailing address, and 
the name of the Burroughs equipment installed or purchased to: 

CUBE Secretary 
P.O. Box 33053 
Detro:t, MI 48232 

When you are a member, you automatically receive notices of CUBE 
conferences, meeting reports, and education schedules. You maintain 
your membership by attending a conference or by notifying the CUBE 
secretary of your desire to continue. 



173 
If You Have a Problem 

There are no annual dues or fee schedules. CUBE finances all its 
activities from the registration fees charged each participant at the 
conferences. 

International User Groups 

There are many other user groups for international customers of 
Burroughs. For example, ABCU is the European association of Burroughs 
computer users and operates similarly to CUBE. See your Burroughs 
representative for information about joining the user group in your 
area. 



174 
INTRODUCTION TO A SERIES SYSTEMS 

REPORTING SYSTEM PROBLEMS AND SUGGESTIONS 

The Field Cornmun:icatior Form (FCF) is the means by which Burroughs 
customers report problems in and suggest new features and improvements 
to software, hardware, and documentation. The FCF is a six-part form, 
with a key to filling in the form on the back of the last page. 

Each site should maintain a log of FCFs submitted to Burroughs. 
log serves several purfoses: 

This 

1. Shows that a froblem has already been submitted, preventing 
duplication 

2. Identifies FCFs still outstanding 

3. Assists in corrpiling the history of a particular problem 

When your support center receives an FCF, the coordinator assigns a 
unique number to it, places the number on the FCF, and returns a copy to 
the originator. You should use this number to identify the FCF both in 
your log book and in any inquiries regarding the FCF. 

An FCF that suggests additional system capabilities or expresses a 
desire to have the product function differently is called a New Feature 
Suggestion (NFS). 

An FCF that reports a problem is called a Field Trouble Report (FTR). 
If you submit an FTR, it must be accompanied by all relevant 
information, such as program dumps and source listings, that will assist 
Burroughs in investig3ting the problem. All machine-readable media 
except cassettes will be returned if you so request. Each piece of 
media must have a 13bel attached stating that the media is to be 
returned and listing the return address. 

General Problems 

All FTRs submitted s~ould include, either on the FCF or as an 
attachment, the followi~g items: 

1. The release l~lels of the compiler, MCP, and pertinent software 

2. An identificatLon of all local and Burroughs-supplied patches 
in the pertine1t configuration 



175 
If You Have a Problem 

Data Communications Problems 

If you submit an FCF concerning a data communications problem, include 
the following items when available: 

1. A description of the hardware configuration, including the 
processor, Network Support Processors (NSPs), Line Support 
Processors (LSPs), Data Communications Data Link Processor 
(DC-DLP), peripherals, and the network. The network 
description should include a specification for each line, 
showing line speed and if the line is synchronous, 
asynchronous, direct, or modem correct. Also indicate types of 
stations and terminals attached and the make and model of the 
modem. A Network Definition Language II (NDLII) source listing 
can be substituted for all the preceding information if it 
exactly reflects the physical network. 

2. A description of the software used, including the name, release 
level, and version of the network and Message Control System 
(MCS) and generator, if used 

3. An NDLII source listing of the network controller 

4. An MCS source listing or generation listing if a generative MCS 
is used 

5. Any applicable application program source listings 

6. A dump of the MCS at the appropriate point 

7. A trace of the network controller if available 

8. A monitor of messages into and out of the MCS or into and out 
of the line adaptors 

9. An exact description of the symptoms of the problem 



176 
INTRODUCTION TO A SERIES SYSTEMS 

Da ta I!lanagemen t Proble:ns 

If you submit an FTR c'Jncerning a Data Management System II (DMSII) 
product, include whi:hever of the following attachments is applicable. 
In all cases, include any information and material that helps to 
reproduce the problem. 

1. For Data and Structure Definition Language (DASDL) problems: 
Include a program dump of the compiler and a machine-readable 
copy of the D~SDL source. If the problem occurs during an 
update or r,~organize compile, also include the original DASDL 
listings, and the description file (before and after the 
program dump). 

2. For database ~ecovery problems: Include a copy of the audit 
file being lsed at the time of the problem and a program dump 
of the recove~y program. Also include information on the 
reason for ~ecovering, such as Master Control Program (MCP) 
dumps for MCP interrupt recovery and ODT logs pertaining to the 
system halt o~ program abort. 

3. For unexpected DMSII exceptions (LIMITERRORS, DEADLOCK, etc.): 
Include a pro~ram dump at the point of exception, with the Data 
Base Stacks (:JBS) option set, plus a compiler listing of the 
application p~ogram. 

4. For all other DMSII problems: Include MCP dumps and description 
and control files, DASDL listings, and data files, if 
appropriate. 

Compiler Problems 

If you submi t an FTR concerning language compilers, include the' 
following items: 

1. The source program on tape, plus a listing. 
include all copy libraries and included files. 

2. The object code on tape. 

In addition, 

3. If DMSII is involved, a description file and the DASDL source 
program that ;~enerated this description file. 

4. A list of the settings of the compiler control options during 
the compilat.Lon of the source program. If the compiler has 
been recompilHd, include any changes applied and the se·t tings 
of the compiler control options during the compiler 
recompilation. 



177 
If You Have a Problem 

5. The steps to take to reproduce the problem, including input 
data. 

6. A program dump, if the problem results in a fault. 

Completing Field Communication Forms (FCFs) 

The following pages describe how to fill out an FCF. A copy of the form 
is included in this section immediately after the directions. Before 
you start, there are a few general guidelines to keep in mind. 

o Describe the problem concisely and avoid jargon. 

o Report only one problem per FCF. 

o Use the actual FCF form, not a copy or facsimile. 

o Make sure the information on the form is legible (preferably 
typewritten)" 

o Identify all attachments. 

o Include all indicated attachments with the FCF. 

In the following paragraphs, the fields of the FCF are described in the 
order in which you would fill them in. Some of the fields are 
applicable to all types of FCFs, while others are applicable only to 
FTRs. To differentiate these fields, those that are applicable to all 
types of FCFs are marked "All Types", and those that are applicable only 
to FTRs are marked "FTR". 

Support Activity Location 

This field is for Burroughs use only and indicates the Support 
Activity to which the FCF is ultimately forwarded. 

Class (All Types) 

Class indicates the type of product being discussed. Enter "1" for 
hardware, "2" for system software, "3" for application software, or 
"4" for maintenance test routines. 



178 
IN'I'RODUCTION TO A SERIES SYSTEMS 

Type (All Types) 

Type refers to the kind of communication. Enter "1" if you are 
reporting a problem, "2" if you are suggesting a new feature or 
improvement, and "~" if this FCF concerns any other subject. 

Reference" (All Type!::) 

When the Burroughs Support Center receives the FCF. it assigns a 
reference number to it that is cross-referenced to the customer's 
number. When you ~ubmit attachments with an FCF, first obtain a 
reference number from your assigned Support Center and complete this 
field, then mark all attachments with this number. The reference 
number is divided jnto the following parts: 

Dist/Sub/Country 

This number ie.entifies the Burroughs district or subsidiary 
that is submitting the FCF to the Support Activity. 

Branch/Locatton 

This number jdentifies the branch or location within the 
district or slbsidiary (for domestic customers only). 

Unique Seq Id 

This number i~ a unique identification assigned by Burroughs 
for this FCF. 

Product (All Types) 

If this FCF is for a software product, enter the name of the product 
in the first set c·f boxes following the word "Product". Enter only 
one letter per box. If the FCF is for hardware, enter the top unit 
number, right justified, of the equipment. For a new feature 
suggestion, enter the name of the product. For documentation 
suggestions, enter the form number of the document. 

For software products, enter the release level of the product in the 
second set of bcxes on the "Product" line. Right-justify all 
numbers and includE the major release number, the level number 
within that release, and the four-digit patch level number; for 
example, 036 130 0123. The four-digit patch level number (which is 
0123 in this example) is optional. 



179 
If You Have a Problem 

Kep Version (All Types) 

If applicable, enter the style identification (the name MCP) and the 
version number of the MCP being used with the product. For example, 
enter "MCP 036 170 0123". 

Firmware/Other (All Types) 

Enter the style id (name) and complete release level number of the 
firmware or othE~r software product used with the product involved in 
the problem; for example, NSP firmware and level, or compiler and 
level. 

Date Originated (All Types) 

Enter today's date using the MMDDYY format. 

:System Style (All 'I'ypes) 

This field is for the style id of the processor; for example, A9B or 
A3D. 

1lJnit Style (All Types) 

For hardware FTRs, enter the style id of the unit; for example, for 
the Daisy Wheel printer on the A 9, enter "AP1300". For system or 
application software. enter the product style id; for example, for 
ERGO on a B 7000, enter "B7000 ERG". 

Unit Serial # (FTR) 

This field applies to hardware FTRs only. Enter the serial number 
of the equipment having the problem. 

Concise Description (All Types) 

Enter a brief statement of the reason this FCF is being written. 
This statement should be as clear as possible because it becomes 
part of the published description of the FCF. 



180 
INT1WDUCTION TO A SERIES SYSTEMS 

Frequency (FTR.) 

This field applies only to FTRs. Enter "1" if the problem occurred 
once, and enter "2" if it occurred more than once. 

Product Status (FTR) 

Enter the number that corresponds to the current status of the 
product. This field indicates the seriousness of a problem. 

Attachments (FTR) 

Check the boxes tha: indicate the type of attachments you are 
including with this FCF. If there is more than one of a given type, 
pu t the number in t:1e box rather than a check mark; f or example, if 
there are three p:~ogram listings, put the number "3" in box 7. BE 
SURE THAT ALL ATTAC:-iMENTS ARE CLEARLY MARKED WITH THE ASSIGNED 
REFERENCE NUMBER. See "Reference Number" earlier in this 
description. 

Include all informa:ion that contributes to the solution of the 
problem. If the problem is not reproducible, include any 
observations by sit,;? personnel in addition to the system log. If 
the problem is r,;?producible, include a test case, or a procedure 
that demonstrates t1e problem, or both. 

Other types of atta:hments that you should always consider for 
inclusion arE' the f,)llowing: 

1. A full 
occurred, 
to tape 

:nemory 
that 

dump, taken at the time the problem 
has been saved by DUMPANALYZER and copied 

2. A printed trace of the sequence of instructions leading to 
thE' probl:;m 

3. ThE' systen log for the pertinent time period 

4. Program object code in machine-readable form 

5. A program dump 

6. A source listing with cross reference of the programs 
involved in the problem 

7. A copy of the source program in machine-readable form 

8. A copy of the input data, in machine-readable form, that 
leads to the problem 



181 
If You Have a Problem 

9. A copy of the output data demonstrating the results of the 
problem 

10. Any notes, information, and comments by the individual who 
analyzed the problem 

11. A note of any Burroughs reference material, with 
and page numbers, that is inconsistent 
performance of the software 

section 
with the 

R,eproducible (FTR) 

If information being submitted with an FTR enables the problem to be 
reproduced by the' support group, enter "1"; otherwise, enter "2". 

Installation Impact (FTR) 

This field should be a brief statement indicating the effect of the 
problem on your installation. 

P~ertinent Configuration (FTR) 

If the configuration has any effect on the problem, list the 
components and pertinent configuration information here. For 
example: unusual configurations, shared systems, system registers, 
allocation tables, unusual program mixes, and so on. 

System Serial 11 (FTR) 

Enter the serial number of the system. 

Full Description (All Types) 

For FTRs, this field should begin with a clear statement of the 
problem, followed by all relevant information, in detail. Describe 
the circumstances of the problem and the cause, if possible, 
including any possible external causes such as power surges. If 
there is not enough room, attach additional sheets and note this. 

For new feature suggestions 
describe the details of 
welcomes suggestions but 
implementation. 

or 
the 
makE~s 

improvements, 
suggestion. 

use 
Note 

no guarantees 

this field to 
that Burroughs 

concerning their 



182 
IN~'RODUCTION TO A SERIES SYSTEMS 

Heans to Correct/Avoid Problem (FTR) 

Identify the curr"ent means, such as 
procedures, used t.o avoid the problem. 

patches or operational 
For hardware FTRs, list the 

components or part~; used to correct the problem. 

Reviewed By 

This area is for Hurroughs use only. It is completed by the 
Burroughs Support Center that is forwarding this FCF. 

Originator (All Types;' 

The identity of thE' person originating this FCF. 

Installation (All TyPE's) 

The name and location of the customer site (company name), as well 
as the identifying site number assigned by Burroughs. 



183 
If You Have a Problem 

PLEASE PAINT OR TYPE 

IlurrouQhs FIELD COMMUNICAnON FORM TO _--::==-:-=~~~ __ 
.....aRT f/IC'rMTY LOCATlON (See Key on ReYer8e) 

REFERENCE. ,........,---,..--.--, 

D ;=:'.:',:', :=~R I I I I-I I I I I-I I I I I I I D l-H,W. 3-APPUC. 
ClASS' TYPE: 

2-8.8W 4-M.T,R. 
OISTI~Y 8AANCWLOCATlON ~ SEQ 10 

PRODUCT/SOFTWARE STYl£ IOfTOP UNIT./FORM. MARK AEl£ASE Pi'TCWlEVEL 

PRODUCT. I I I I I ill I I I I I I D I I I I I I I I I~TED I I I I I I 1 
MCP. 

VlERSION 
A~IMWARE 
/o1'HER: 

I111III111III1 D I1II1III 
I I I I I I I I I I I I I I I I I I I I I I I I 

I SYSTEM STYlE: -----

UNIT STYl£: _____ _ 

I UNIT SERIAL.: ____ -=:;;:: 

=~IIIIIEHIIIIIIIIIIIIIIIIIIIIIIIIIII 
FREQUENCY' D 1 - ONE TIME OCCURRENCE 

. 2 - MUI.. TtPlE OCCURRENCES 

PAODUCT D 1 - NON-USABLE 
STATUS: 2 - DEGRADED 

3-PROBLEM 
AVOIDED 

AnACHMENTS: 

D1-DUMP 

D 2-TRACE 

D~TA 

D I-OONSOLE PfWITER UST 

D 7-8OUACE LIST WITH XAEF 

D &-OPERATING INSTRUCTIONS 

4 - SYSTEM D 4-08JECT CODE D e-PARTS (LIST PART .'11 
UNAFFECTED D 5-SOURCE MEDIAD OTHEMEMO ___ _ 

5-NlA 

D 
REPAOOUCIBl.E: 

1-YES 2-NO 

NSTAU.ATION IMPACT: _____ , ________________________ _ 

PE:RTNENTOONFIGURATION: ___________________________ _ 

_________________________ SVSTEM SERIAL .: ______ _ 

~u DE~R~: __________________________________ _ 

.. :ANS TO CORRECT/AVOID PAOBLEM: 

RE:vJEWED BY: ORtGWATQR: 

fUIME· _______________ _ NAME: ______________ _ 

A()DRESS _______________ _ COMPANY: _____________ _ 

(PoItaI) 
~ESS _____________________ _ 

(Poetal) 

PC)SITIONn-ITLE' -=::--__ 
TE:LEPHONE NO B .- TEUX NO ___________ _ TELEPHOI\I. E NO. E3 TELEX NO ___________ _ 

INSTALlATION ------NAME--,------
LOCATION 

111111[lllill 
DATE RECEIVED ACKNOWLEDGEMENT DATE 

(SUPPORT ACTIVITY USE ONLy) 

STATUS 0 PRIORITY 

COORD CIJ S. GRP I 
ACTIVITY STATUS D 

l-Development Activity Copy 

D 
I I 

I I I I I I I I I 
CUSTOMER NO. 

I I I I I I I I I 
INTERNAl 10 

3027057 (Rev. 6/81) 





185 

1 WHERE TO FIND MORE INFORKATION 

You can find more information on the subjects discussed in this book in 
the A Series software documentation published by Burroughs. In 
addition, on-line documentation is available when you are using MARC 
(Menu-Assisted Resource Control) to access the system, and when you are 
using software products accessed through standard MARC menus. 

This section lists the available A Series documentation, first by 
subject and then alphabetically. The alphabetical listing includes the 
form number and a brief description of the manual contents. The section 
next explains how to order documentation and the conventions followed by 
A Series documents. 

DOCUMENTATION LISTED BY SUBJECT 

In this part of the section. the manuals are sorted by subject. When 
manuals cover more than one subject. they are listed under the two most 
applicable. 

Database Management 

Advanced Data Dictionary System (ADDS) Capabilities Manual 
Advanced Data Dictionary System (ADDS) Installation and Operations 

Manual 
Advanced Data Dictionary System (ADDS) User's Guide 
DMSII DataAid User's Guide * 
DMSII Data and Structure Definition Language (DASDL) Reference Manual 
DMSII Data Base Certification Software Operation Guide 
DMSII Data Dictionary Reference Manual 
DMSII Inquiry Software Operation Guide 
DMSII Interpretive Interface User's Manual 
DMSII Transaction Processing System (TPS) Programmer's Manual 
DMSII User Language Interface Software Operation Guide 
DMSII Utilities and Operations Guide 
Extended Retrieval with Graphic Output (ERGO) Capabilities Manual 
Extended Retrieval with Graphic Output (ERGO) User's Guide 

*Note: DMSII = Data Management System II 



186 
INTRODUCTION TO A SERIES SYSTEMS 

Data Communications 

Burroughs Network Archj.tecture (BNA) Architectural Description Reference 
Manual 

Burroughs Network Archjtecture (BNA) Network Control Reference Manual 
Burroughs Network Archjtecture (BNA) Program Agent User's Guide 
Burroughs Network Archjtecture (BNA) User's Guide 
DataComm Processor (DCP) to Network Support Processor (NSP) 

Configuration Conver~.ion Aid 
Interactive Datacomm CClnfigurator (IDC) User's Guide 
Network Definition Lanfuage (NDL) Reference Manual 
Network Definition Lanruage II (NDLII) Reference Manual 

Languages 

ALGOL Reference Manual 
APL/700 Installa~ion Manual 
APL/700 User's Reference Manual 
APL/700 Utilities Manual 
APLB User Reference Manual 
BASIC Language Reference Manual 
Binder Reference Manual 
COBOL Reference Manual 
COBOL ANSI-74 Reference Manual 
DCALGOL Reference Manual 
DOCUMENT/DMALGOL 
FORTRAN Reference Manual 
FORTRAN77 Reference Manual 
DOCUMENT/NEWP 
Pascal Reference Manual 
PL/I Reference Manual 
Report Program Generator (RPG) Debugging Template 
Report Program Generator (RPG) Reference Manual 
Sort Language Reference Manual 
Work Flow Language (WFL) Reference Manual 

Message Control Systems 

CANDE Operations Manual 
CANDE Reference Manual 
Communications Management System 
Communications Management System 
Communications Management System 
Communications Management System 
Communications Manageme:1t System 
DiagnosticMCS Reference Manual 

(COMS) 
(COMS) 
(COMS) 
(COMS) 
(COMS) 

Capabilities Manual 
Operator's Guide 
Planning and Installation Manual 
Programmer's Guide 
Migration Guide 

Menu-Assisted Resource (:ontrol (MARC) User's Guide 
Remote Job Entry (RJE) :~eference Manual 



Where to Find More Information 

]!fultilingual Capabilities Management 

Interactive Menugraph Generator (IMG) User's Guide 
Message Translation Utility User's Guide 
MultiLingual System (MLS) User's Guide 

pperations 

A 3 System Software Installation Guide 
A 9 System Software Installation Guide 
A 10 System Software Installation Guide 
13 7900 Systems Capabilities and Features Manual 
13 7900 System Operator's Guide 
l~enu-Assisted Resource Control (MARC) User's Guide 
Operator Display Terminal (ODT) Reference Manual 
Print System (PrintS/ReprintS) User's Guide 
Printing Utilities User's Guide 
Mark 3.6.0 System Software Installation Guide 
Work Flow Language (WFL) Reference Manual 

]?erformance Monitoring 

SMFII Capabilities Manual * 
SMFII Query Program Manual 
SMFII Site Management Manual 
SMFII System Resource Management Manual 
Systemstatus Reference Manual 

*Note: SMFII = System Management Facility II 

peripherals 

INFOVIEW (tm) System Software Operation Guide 
Intelligent Distributed Editor (IDE) Program Development Guide 
Intelligent Laser Printing System Forms Manager User's Guide 
Intelligent Laser Printing System (ILPS) User's Guide 
Workstation Software Operations Guide 

187 



188 
INrRODUCTION TO A SERIES SYSTEMS 

Programming Productivi~ Aids 

ALGOL Test And Debug S~stem (TADS) User's Guide 
Binder Reference Manual 
COBOL ANSI-74 Test and Debug System (TADS) User's Guide 
Editor Capabilities anj Features Manual 
Editor User's Guide 
FORTRAN77 Test and Debug System (TADS) User's Guide 
Help Utility User's Guide 
Intelligent Distributej Editor (IDE) Program Development Guide 
Interactive Menugraph 3enerator (IMG) User's Guide 
Screen Design Facility (SDF) Capabilities Manual 
Screen Design Facility (SDF) User's Manual 

Progression 

BlOOD Series to A Series Progression Guide 

Reference Cards 

APL/700 Operations Carj 

System Software 

Disk Subsystem Softwar? Overview 
I/O Subsystem Referenc? Manual 
Memory Subsystem Overview 
Physical I/O Overview 
System Configuration Glide 
Mark 3.6.0 System SoftNare Installation Guide 
System Software Site M,~nagement Reference Manual 
System Software Support Reference Manual 
System Software Utilities Reference Manual 



189 
Where to Find More Information 

POCUKENTATION LISTEP ALPHABETICALLY 

Each entry in this section includes the publication title. the form 
number. and a brief description of the contents. 

A 2/A 3 System Software Installation Guide - 1170081 

Describes how to initialize and Halt/Load an A 2/A 3 system. 

A 3 Advanced System Software Installation Guide - 1170073 

Describes how to initialize and Halt/Load an A 3 Advanced system. 

A 3 Dual Processor System Software Installation Guide - 1195096 

Describes how to initialize and Halt/Load an A 3 Dual Processor 
system. 

A 3 System Software Installation Guide - 1169679 

Describes how to initialize and Halt/Load an A 3 system. 

A 9 System Software Installation Guide - 1169695 

Describes how to initialize and Halt/Load an A 9 system. 

A 10 System Software Installation Guide - 1169935 

Describes how to initialize and Halt/Load an A 10 system. 

J~dvanced-Data Dictionary System (ADDS) Capabilities Manual - 1180569 

Describes 
Dictionary 
retrieval 
programs. 

the capabilities and benefits of the Advanced Data 
System. ADDS is a tool for the definition, storage, and 

of data definitions for databases and application 



190 
INTRODUCTION TO A SERIES SYSTEMS 

Advanced Data Dictionary System (ADDS) Installation and Operations 
Manual - 1143237 

Provides instructions for the installation and daily operation of 
the Advanced Data Dictionary System. 

Advanced Data Dictionary System (ADDS) User's Guide - 1180551 

Describes how to use the functions of the Advanced Data Dictionary 
System. 

ALGOL Reference Manual - 1169844 

Describes the ALGOL language, including Burroughs extensions for 
communicating between programs and I/O devices, for editing data" 
and for debugging programs. 

ALGOL Test And Debug System (TADS) User's Guide - 1169539 

Describes the use of the Test And Debug System for ALGOL programs. 

APL/700 Installation Manual - 5000805 

Describes the installation of 
language, at user sites. 

APL/700 Operations Card - 5001928 

APL/700, a procedure-oriented 

Describes, in diagram form, the syntax of APL/700 commands. 

APL/700 User's Reference Manual - 5000813 

Describes the synt~x and semantics of APL/700. 

APL/700 Utili tiE!S Manu3.l - 5001910 

Describes the function of and operating procedures for the utilities 
available to APL/700 users. These utilities give the APL/700 user 
access to system features not directly available through the 
language. 



191 
Where to Find More Information 

APLB User Reference Manual - 1182532 

Describes the syntax and semantics of APLB, a language for numerical 
analysis applications. 

B 1000 Series to A Series Progression Guide - 1180595 

Provides instruction and tips for progressing from the Burroughs 
B 1000 Series to the Burroughs A Series and B 5000/B 6000/B 7000 
Series systems. This manual discusses the differences encountered 
when progressing from the small systems to the A Series, describes 
common progression problems and solutions to these problems, and 
gives general information for handling the overall progression 
process. 

BASIC Language Reference Manual - 1182433 

Describes BASIC, a language developed for novice users, and contains 
some information on the computer and the compiler. 

Binder Reference Manual - 5014582 

Provides the Binder syntax and techniques required to 
externally-compiled subprograms to an executable program. 

lBurroughs Network. Architecture (BNA) Architectural Description 
lReference Manual - 1132172 

bind 

Describes Burroughs Network Architecture in depth. The manual 
presents information for network planners and supervisors, 
applications and network systems programmers, and operators. 

lBurroughs Network. Archi tecture (BNA) Network. Control Reference 
]!lanual - 1132180 

Describes the Network Control messages used to configure, control, 
and interrogate BNA Network Services functions. The manual is 
intended for use by programming and operations personnel. 

Burroughs Network. Architecture Version 1 (BNA VI) 
Program Agent User's Guide - 1169653 

Describes the BNA Program Agent feature, which allows a user to 
write a program to issue BNA commands to hosts in a BNA network. 



192 
IW~RODUCTION TO A SERIES SYSTEMS 

Burroughs Network Arch:L tecture Version 1 (BNA VI) User' s Guide - 1169687 

Provides an overviE~w of BNA, installation instructions for A Series 
systems, and the syntax and semantics of the network operation 
commands. 

CANDE Operations Hanual - 1170065 

Contains information about CANDE for those interested in operational 
control of CANDE and its datacomm network, and those interested in 
tailoring CANDE to the specific requirements of an installation. 

CANDE Reference Manual - 1169869 

Describes the crnnmands for CANDE, a time-sharing 
communication and program creation and execution. 

COBOL ANSI-74 Referencc~ Manual - 1169877 

MCS 

Describes COBOL AN!;I-74 as implemented for Burroughs systems. 

COBOL ANSI-74 Test and Debug System (TADS) User's Guide - 1169901 

for 

Describes the basic steps for using COBOL74 Test and Debug System 
(TADS), including preparing a program for testing, creating a test 
environment, initiating a test session, and using the system's 
interactive command.s. 

COBOL Reference Manual - 1169786 

Describes the C0130L(68) language as implemented for Burroughs 
systems. 

Communica tions Manageml?nt System (COMS) Capabili ties Manual - 1180494 

Provides an overview of the features and capabilities of the 
Communications Management System. The intended audience is customer 
executives and data processing administrators. 



193 
Where to Find More Information 

Communications Mana~:ement System (COMS) Operator's Guide - 1154523 

Describes how to use the Communications Management System, including 
detailed instructions for controlling sessions, windows, and the 
network, and procedures for initialization, shutdown, backup, and 
recovery. The intended audience is computer operators. 

Communications Manaf~ement System (COMS) Planning and Installation 
Hanual - 1185238 

Provides information and instructions on planning for and installing 
the Communications Management System. Included are detailed, 
step-by-step instructions for planning and implementing the 
configuration file. The intended audience is analysts who will be 
installing COMS. 

Communications Management System (COMS) Programmer's Guide - 1185303 

Describes the Communications Management System and how to use its 
features when writing applications. Included are details about 
using the DCI library, controlling messages, using the service 
functions, and programming for synchronized recovery. 

Communications Management System (COMS) Migration Guide - 1185337 

Contains information of primary use to system administrators and 
system programmers responsible for their site's progression to the 
3.6 release of COMS. This manual describes the available 
strategies, tools, and methods of evaluation for progression. 

(A) Customer Guide to Burroughs Services and support - 1147394 

Describes Burroughs services available for the support of your 
systems. It is an overview written for information systems and data 
processing managers and other management personnel who have 
responsibility for the planning and overall operations of their data 
processing systems. 

Customer Guide to Software Reporting - 1130838 

Describes the procedure Burroughs systems users should follow to 
resolve problems with software products. 



194 
INTRODUCTION TO A SERIES SYSTEMS 

DataComm Processor (DCP) to Network Support Processor (NSP) 
Configuration Conversion Aid - 1182193 

Describes the interactive, menu-driven utility that allows the 
conversion of the configuration section of a DCP datacomm network to 
the configuration section of an NSP datacomm network. This manual 
also describes the instructions and commands for the conversion 
process. 

DCALGOL R.eferenc:e Manual - 5014574 

Describes the Data Communications ALGOL language, an extension of 
ALGOL designed f:>r the creation and control of data communications 
systems and Master Control Program (MCP) interfaces. 

DiagnosticMCS Reference Manual - 1169596 

Describes the functions 
DCALGOL program for 

and commands of SYSTEM/DIAGNOSTICMCS, a 
the verification and testing of data 

communications subsystems. 

Disk Subsystem Software Overview - 1169992 

Describes th.e conc'=pts and operation of the disk subsystem on 
A Series systems. 

DMSII DataAid User's Gllide - 1180544 

Describes the use o)f DataAid, an interactive menu system that allows 
the description, initialization, loading, and accessing of DMSII 
databases. 

DMSII Data and Structu:re Definition Language (DASDL) Reference 
Manual - 1163805 

Describes DASDL, t:.1e language used by a database administrator to 
describe the physical and logical characteristics of a database. 

DMSII Data Base Certification Software Operation Guide - 1164050 

Describes the use ()f the interactive utility program that determines 
the integrity of a DMSII database. 



195 
Where to Find More Information 

DMSII Data Dictionary Reference Hanual - 1177128 

Describes the functions of the Data Dictionary, a DMSII database 
that contains information about other DMSII databases and 
transaction bases and the programs that reference them. 

D:MSII Inquiry Software Operation Guide - 1164035 

Describes the use of the DMSII INQUIRY system, which is an 
interactive tool for examining information in a DMSII database. 

DlMSII Interpretive Interface User's Manual - 1163813 

Describes the Interpretive Interface, which allows dynamic, run-time 
access to DMSII databases for programming languages that do not have 
DMSII extensions. 

DJ~SII Transaction Processing System (TPS) Programmer's Manual - 1164043 

Describes how to write programs that use the Transaction Processing 
System to handle transactions and to access a database. 

D]~SII User Language Interface Software Operation Guide - 1180536 

Describes the use of the ALGOL, COBOL, RPG, and PL/I language 
extensions in accessing a DMSII database. 

DIISII Utilities and Operations Guide - 1163839 

Describes the function of and operating procedures for utilities 
available to users of the DMSII software. 

Editor Capabilities and Features Manual - 5014400 

Provides an overview of general capabilities, specific features, 
installation information, and reference materials for the Editor. 

Editor User's Guide - 1169976 

Describes the Editor commands for interactive 
modification of program and data files. 

creation and 



IN1'RODUCTION TO A SERIES SYSTEMS 

Extended Retrieval with Graphic Output (ERGO) Capabilities Manual-
1163847 

Provides an overvj.ew of the features and capabilities of the 
Extended Retrieva~. with Graphic Output system, a tool for database 
access and report generation. 

Extended Retrieval with Graphic Output (ERGO) User's Guide - 1164027 

Describes the use, output, and commands of the Extended Retrieval 
with Graphic Output system. 

FORTRAN Reference Hanual - 1182441 

Describes both the programming language accepted by the FORTRAN 
compiler and the various options and control statements used with 
this compiler. 

FORTRAN77 Reference Manual - 1182458 

Describes both the programming language accepted by the FORTRAN77 
compiler and the various options and control statements used with 
this compiler. 

FORTRAN77 Test and Debug System (TADS) User's Guide - 1182490 

Explains the basic steps for using FORTRAN77 TADS. 

Help Utility User's Gu:Lde - 1169570 

Describes how to w,e the Help Utility to produce on-line help text 
for application and system programs. 

INFOVIEW (tm) System Software Operation Guide - 1182482 

Describes the opE?ration of, and the user interfaces to, the 
INFOVIEW (tm) work~;tation environment for ET2000 users. 

Intelligent Distributed Editor (IDE) Program Development Guide - 1182474 

Describes the commands and user interface of the integrated program 
and development E?nvironment, primarily used for FORTRAN77 program 
development. 



197 
Where to Find More Information 

Intelligent Laser Printing System Forms Manager User's Guide - 1169661 

Describes the features and operation of the Forms Manager program, 
which allows the user to define forms for printing on the laser 
printer. 

Intelligent Laser Printing System (ILPS) User's Guide - 1169729 

Describes and provides an installation and operation guide for ILPS, 
an on-line electronic printing subsystem. 

Interactive Datacomm Configurator (IDC) User's Guide - 1169810 

Describes how to use this menu--driven utility to define and maintain 
the configuration of a data communications subsystem. 

J[nteractive Menugraph Generator (IMG) User's Guide - 1169893 

Describes how to use the Interactive Menugraph Generator, which is 
used to design and modify screen menus and forms. 

I/O Subsystem Reference Manual - 1169984 

Describes the Input/Output Subsystem, including file attributes and 
other system facilities concerned with physical and logical I/O 
operations. 

'[emory Subsystem Overview - 1169836 

Provides an overview of memory management, including a discussion of 
relevant concepts and how these concepts are implemented on 
Burroughs systems. 

}!lenu-Assisted Resource Control (MARC) User's Guide - 1169588 

Describes the use of Menu-Assisted Resource 
menu-driven interface and a transaction 
operators of Burroughs systems. 

Control, which is a 
processor for users and 



198 
INTRODUCTION TO A SERIES SYSTEMS 

1Iessage Translation Uti.lity User's Guide - 1169554 

Describes the utili·:y for translating system and error messages: from 
one human language :such as English) to another. 

1IultiLingual System (XL!,) User's Guide - 1169646 

Explains how output messages, on-line help text, and menu screens 
can be developed and accessed in multiple human languages, such as 
French and English. 

Network. Definition Language (NDL) Reference Manual - 1176690 

Explains the language used to describe a data communications network 
physically, logica:_ly, and functionally. (Applies only to B 6800, 
B 7700, and B 7800 !;ystems.) 

Network. Definition Language II (NDLII) Reference Manual - 1169604 

Describes the NDL::I language, which is used to define data 
communications networks in an MLIP environment. (Applies to B 5900, 
B 6900, B 7900, and A Series systems.) 

Operator Display Terminal (ODT) Reference 1Ianual - 1169612 

Describes the commands available to the system operator through the 
Operator Display Terminal (ODT). 

Pascal Reference Manual - 1169851 

Describes the Burroughs implementation of Pascal. 

Physical I/O Overview - 1169943 

Provides a high-levE'l overview of Physical I/O on the MLIP systems 
that support UniverEal I/O (B 5900, B 6900, A 3, A 9, and A 10). 

PL/I Reference Manual - 1169620 

Describes the PL/I compiler and language at an advanced level. 



199 
Where to Find More Information 

Print System (PrintS/ReprintS) User's Guide - 1169919 

Explains the Print System (PrintS) and Remote Printing System 
(ReprintS) and how to use them. 

Printing Utilities User's Guide - 1169950 

Describes the two utilities that are part of the print system: the 
Backup Processor utility and the SYSTEM/BACKUP utility. 

R4~mote Job Entry (RJE) Reference Hanual - 1169828 

Describes the use of the RJE message control system, which allows 
remote use of computer systems. 

RE~port Program Generator (RPG) Debugging Template - 5015019 

Explains how to use the RPG debugging template, a specification 
sheet for writing RPG programs. 

RE~port Program Generator (RPG) Reference Hanual - 1169760 

Describes RPG, a machine-independent language. RPG allows 
applications programmers with a minimal knowledge of the operating 
system to write computer programs. 

Screen Design Facility (SDF) Capabilities Manual - 1180437 

Describes the capabilities and benefits of the Screen Design 
Facility, a tool for creating screens for on-line, transaction-based 
application systems. 

Screen Design Facility (SDF) User's Guide - 1185295 

Provides instructions for using the Screen Design Facility. 

Sl!lFII Capabili ties Manual - 5012032 

Provides an overview of and explains the capabilities of the System 
Management Facility (SMFII). 



200 
IW~RODUCTION TO A SERIES SYSTEMS 

SIIFII Query Program Manual - 5015696 

Describes the functions and use of QUERY, a program used to analyze 
and report on SMFI:: data. 

SIIFII Si te Management Jlanual - 5012016 

Describes and explains how to use the 
SMFII. These modules monitor the 
system's hardware and software. 

Site Management modules of 
operating condition of the 

SKFII System Resource Jlanagement Manual - 5015688 

Describes and explains how to use the System Resource modules of 
SMFII. These modul{~s measure the system workload and the utilization 
of system resource!;. 

Sort Language Referencc~ Manual - 1169794 

Describes the Sort language and how to use it to sort and merge 
files. The manual also describes the compatibility between the 
A Series and B 1000 Series Sort languages. 

System Configuration G1lide - 1169968 

Describes how to control through software the hardware resources 
connected to an A !;eries or B 7900 system. 

Mark 3.6.0 System Softlrlare Installation Guide - 1170040 

Describes informat.~on crucial to the installation of the Mark 3.6 
system software re.L.ease. 

System Software Site Management Reference Manual - 1170008 

Contains information primarily of use to system administrators and 
their operations staff. It describes the software features 
associated with sy!;tem installation and management. 



201 
Where to Find More Information 

8ystem Software Support Reference Hanua1 - 1170016 

Contains detailed information about important system software and 
software operations. It is primarily intended for use by software 
support personnel. 

System Software Utilities Reference Hanua1 - 1170024 

Contains information primarily of use to systems programmers. It 
describes utility programs for performing operations such as 
copying, comparing, and merging files. 

Systemstatus Reference Hanua1 - 1169638 

Explains the SYSTEMSTATUS intrinsic of the Master Control Program 
(MCP). This intrinsic reports on the activity and environment of 
the system. 

Work Flow Language (WFL) Reference Hanua1 - 1169802 

Describes the syntax and semantics of WFL, a language that provides 
programmatic control over the running of tasks. 

DOCU1IENTS ~ 

The files listed below contain documentation information. They are 
released on the DOCUMENTS Tape that comes with your system software and 
can be printed at your site. The "Mark 3.6.0 System Software 
Installation Guide" provides procedures on how to print these files. 

DOCU1IENT/DHALGOL 

Descr i bes the DMP,LGOL language. 

DOCUKENT/MARK36/S0FTWARE 

Contains the "Mark 3.6.0 System Software Installation Guide," which 
provides information on the installation of the Mark 3.6 system 
software release. 



202 
INTRODUCTION TO A SERIES SYSTEMS 

DOCUlIENT/NEWP 

Describes the difference between NEWP and ALGOL. 

DOCUlIENT/SOFTCONF IGURAT ION 

Describes the soft configuration of A 3, A 9, A 10, B 5900, and 
B 6900 systems. 



203 
Where to Find More Information 

IIOW TO ORDER DOCUMENTATION 

The printed manuals listed above are available for purchase by 
customers. The ordering procedure for them depends on whether you are a 
domestic (United States) or international customer. 

Domestic <United Statesl Customers 

You can order manuals on an individual order basis and on an ongoing, 
subscription basis. The individual order basis means you are requesting 
a one-time-only shipment of the ordered manuals. The subscription basis 
means you also are requesting automatic updates of the Publications 
Catalog and of the manuals. You specify which manuals should be 
automatically updated when you request Customer Subscription Service. 
Use the Subscription Order Form, No. 3028147, to request this service. 

A catalog, "Customer Technical Publications," Form No. 1130010. is 
available to all customers free of charge from a Burroughs 
representative or from the Publication Distribution Center. To order 
any manuals. use Order Form 3020003, also obtainable from the Center or 
your representative. The catalog contains complete instructions on 
filling out this form and the Subscription Order Form. 

Mail manual and subscription orders to: 

Burroughs Corporation 
Publication Distribution Center 
Building 4 
41100 Plymouth Road 
Plymouth, MI 48170 

International Customers 

International customers should place orders with their local Branch, 
Subsidiary, or Distributor's office. 



204 
INTRODUCTION TO A SERIES SYSTEMS 

DOCUMENTATION CONVENTIONS 

An important convention used in the software documentation is the one 
that governs the way commands are presented. This convention is used 
throughout A Series software documentation. 

Commands are made up of a number of components, some required and somE~ 

optional, which must be entered in a particular order. If the correct 
order is not followed, the system rejects the command. In order to 
present the command components in a consistent format and to sho~v their 
correct order, Burroughs uses syntax diagrams. These diagrams, called 
railroad diagrams, graphically describe the command and show which items 
are required and which are optional, the order in which they should 
appear, how often you can repeat them, and any required punctuation. 

The following pages describe the components of railroad diagrams and 
explain how to read them. 

How to Read g Railroad Diagram 

Normally, you read a railroad diagram 
there are some exceptions; in 
right-to-left direction. 

from 
those 

left to right. However, 
cases, arrows indicate a 

If a diagram is too long to fit on one line and must continue on thE~ 

next, a right arrow (» appears at the end of the first line and another 
at the beginning of the next line, like this: 

--------------------) 

)-----------

The end of a railroad diagram is denoted by a vertical bar (I) or 
percent sign (%). The vertical bar means the command can be followed by 
a semicolon and another command. The percent sign means the command 
must be on a line by itself. 



205 
Where to Find More Information 

!;ONSTANTS AND VARIABLES 

Consider a hypothetical command for giving instructions to a house 
painter: 

PAINT 
I I 
1- THE -I 

LIVING ROOM ---<color>--I 
I I 
1- DINING ROOM -I 
I I 
1- BEDROOM -----1 
I I 
I-
I 
1-

BATHROOl1 ---- I 
I 

KITCHEN -----1 

This command tells the painter to paint a designated room in the color 
you specify. 

The example introduces two important features of railroad diagrams: 

Constants 

Variables 

~~onstants 

Constants are items that you cannot vary. You must enter a constant as 
it appears in the diagram, either in full or abbreviated. If you 
abbreviate a constant, you must enter everything that is underlined in 
the railroad diagram, optionally followed by one or more of the 
remaining characters. 

You can recognize constants in railroad diagrams by the fact that they 
are never enclosed in broken brackets. 

In the example, the word PAINT is a constant. You could enter PAINT in 
full or abbreviate it to PAl or PAIN, but not to PA or PAN. If no part 
of the constant is underlined, you cannot abbreviate it at all. 



206 
INrRODUCTION TO A SERIES SYSTEMS 

Variables 

Variables are items th~t you can replace with other data to suit a 
particular situation; that is, you can vary the information you enter in 
place of the variable, subject to rules defined for the particular 
command or statement. 

Variables appear in a ~ailroad diagram enclosed in broken brackets «». 

In the example, <color> is a variable item. If the description of the 
PAINT command define:; the allowable colors as BLUE, GREEN, PINK, and 
YELLOW, you can enter anyone of these in your command. 

FOLLOWING THE PATHS OF A RAILROAD DIAGRAM 

The paths of a railroad diagram 
beginning to end. 'rhey are 
lines. 

lead you 
represented 

through the diagram from 
by horizontal and vertical 

A path shows the allowable syntax. Some diagrams have just onE' path 
that goes from the bel~inning to the end of the diagram. Others contain 
several paths, each cO'7ering a part of the diagram. A path shows which 
items you can include :Ln a command or statement, which you can omit, and 
the number of times YOll can include a particular item or group of items. 

To follow a path throul~h a railroad diagram, you need to understand the 
items you may encounter along the way. These items are 

Required items and punctuation 

Optional items 

Loops 

A description of each :tem follows. 



207 
Where to Find More Information 

,ReQUired Items and I>unctuation 

:Required items and punctuation must be entered in the command or 
statement; you cannot omit them. A required item appears by itself in a 
path (horizontal line). A required item can be either a constant or a 
variable. For example, if a railroad diagram indicates 

-- PAINT -- BEDROOM --<color>--I 

the words PAINT and BEDROOM are required constants, and <color> is a 
required variable. You could correctly enter 

PAINT BEDROOM BLUE 

but not 

PAINT BEDROOM 

because the required item <color> would be missing. 

pptional Items 

Optional items appear one below another in a vertical list. You can 
choose anyone of the items in the list. If the list also contains an 
empty path (all dashes), you can omit the item entirely. An optional 
ttem can be either a variable or a constant. The PAINT command in the 
example contains two lists. The first is 

-----------·--1 
1 1 

1- THE -I 

which gives you two options: 

Enter the constant THE 

Omit it (because there is an empty path) 



208 
IN~'RODUCTION TO A SERIES SYSTEMS 

The second list has five optional constants: 

LIVING ROOM ----- 1 

1 

1- DINING ROOM -
1 

1- BEDROOM -----
1 

1- BATHROOM ----
1 

1- KITCHEN -----

You must enter anyone of the optional items (LIVING ROOM, DINING ROOM, 
BEDROOM, BATHROOM, or KITCHEN) because there is no empty path in this 
list. 

A loop is an item or g)-OUP of items that you can repeat. The number of 
repetitions allowed is controlled by an item called the bridge. 

A loop can span all or part of a railroad diagram. It always consists 
of at least two horizontal lines, one below the other, like this: 

1<------- <return character> ---------1 
1 1 

-----<bridge>--<content of the loop>-------

or 

1<-- <bridge> -- <return character> --I 
1 1 

--------- <content of the loop> -----------

The bridge shows the maximum number of times you can go through the 
loop. The bridge can precede the contents of the loop, or it can precede 
the return character Oll the upper line of the loop to specify the number 
of times the right-':o-left path can be traversed. The bridge, is an 
integer enclosed in sloping lines, / \, for example, /4\. Not all loops 
have bridges. Those that do not can be repeated any number of times. 

The top line is a righ':-to-Ieft path that contains information about 
repeating the loop. TIle return character is the character to use before 
each repetition of the loop (often, a comma). Not all loops contain a 
return character; if none is shown, just enter one or more spaces before 
repeating the loop. 



209 
Where to Find More Information 

The other lines show the content of the loop (the data you enter each 
time you go through the loop). This can be any combination of optional 
items, required items, lists, and even other loops. The content of a 
loop can range from simple (one item), to very complex (many items, 
lists, and loops). 

Example 1. A Simple Loop 

The PAINT command as first shown :Ls of limited usefulness. To tell the 
painter to do several rooms, you need a separate command for each room. 
It would be much easier if you could tell him to do several rooms in one 
command. 

You can do that by making the list of rooms into a loop. 
would then look like this: 

1<---------- , ---------1 
1 1 

-- PAINT -------------/5\--- LIVING ROOM -----<color>--I 
1 1 1 1 

1- THE -I 1- DINING ROOM -I 
1 1 

1- BEDROOM -----1 
1 1 

1- BATHROOM ----I 
1 1 

1- KITCHEN -----1 

The command 

The bridge has a value of 5, so you can go through the loop up to five 
times, for a total of five rooms. The return character is a comma, 
which you must enter before repeating the loop content. 

You can now enter 

PAINT THE LIVING ROOM, BEDROOM, KITCHEN YELLOW 

or 

PAINT DINING ROOM, BEDROOM, BATHROOM BLUE 

or 

PAINT BEDROOM PINK 



210 
INTRODUCTION TO A SERIES SYSTEMS 

or 

PAINT BEDROOU, BATHROOM, BEDROOM, BEDROOM BLUE 

or any other valid comtination. 

This simple loop makes the PAINT command more versatile, but a 
significant drawback remains. Although you can include up to five rooms 
in a command, you cannct specify different colors. 

Example 2. A More Complex Loop 

If the content of the loop were to include the color, you could specify 
a different color for each room. 

1<-------------- , -------------1 
1 1 

-- PAINT --------------/5\--- LIVING ROOM ---<color>----I 
1 1 1 1 

1- THE -I 1- DINING ROOM -I 
1 1 

1- BEDROOM -----1 
1 1 

1- BATHROOM ----I 
1 1 

1- KITCHEN -----1 

The content of the lOaF now conSists of the 

List of optional constants that indicate rooms 

Required variable <color> 

The bridge value is 5, and the return character is a comma. Given this 
railroad diagram, some valid PAINT commands would be 

PAINT THE BEDROOM FINK 

PAINT THE LIVING ReOM BLUE, DINING ROOM GREEN, KITCHEN YELLOW 

PAINT BEDROOM GREE~. KITCHEN BLUE 

and so on. 



211 
Where to Find More Information 

Example 3. Another Loop 

In some bridges an asterisk follows the number. For example, 

1<-/4*\--------- , ---------1 
1 1 

-- PAINT --------------- LIVING ROOM ---<color>----I 
1 1 1 1 
1- THE -I 1- DINING ROOM -I 

1 1 

1- BEDROOM -----1 
1 I 

1- BATHROOM ----I 
1 1 

1- KITCHEN -----1 

The asterisk means you must take the right-to-left path at least once. 
You cannot, for example, enter PAINT BEDROOM BLUE; you must tell the 
painter at least two rooms to paint. The maximum number of rooms to be 
painted is still five: the first time through the loop with up to four 
r1epeti tions. 

A valid form of the command would be 

PAINT BEDROOM BLUE, KITCHEN YELLOW 

Example 4. Another urse of the Bridge 

A bridge can also control the number of times you take an individual 
path within a loop. For example, another command to the painter might 
bE': 

-- WORK -----------------------------1 
1 1 

1 1 < ------------------.- 1 1 

1 1 1 1 

1-----/1\- EVENINGS -----1 
1 1 

1-/1\- WEEKENDS -I 
1 1 

1-/1\- HOLIDAYS -I 



212 
INTRODUCTION TO A SERIES SYSTEMS 

Each bridge /1\ indicates you can take that path once or not at all. 
That is, you can enter each of the items EVENINGS, WEEKENDS, and 
HOLIDAYS once at most. Some valid commands are 

WORK EVENINGS WEEKENDS HOLIDAYS 

WORK WEEKENDS 

WORK HOLIDAYS EVENINGS 

but 

WORK EVENINGS EVENINGS 

is invalid. 

To familiarize you with railroad diagrams, this explanation describes 
the elements of the diagrams and gives a few simplified examples. Some 
of the actual diagrams you will encounter in a book may be considerably 
more complex. 

However, the principles are the same no matter how complex the diagram. 
The more you work ~ith railroad notation, the more easily you will 
understand even the most complex diagrams. 



213 

GLOSSARY 

accesscode 

An identification 
Message Control 
required with the 
usercode/password 
procedure. 

code that can be required when logging on to a 
System (MCS). An associated password is sometimes 
accesscode. An accesscode is subordinate to a 

combination and is used as a second log-on 

Actual Segment Descriptor (ASD) 

A descriptor that points to the location of a data or code item in 
memory or in disk for an ASD system. 

address space 

A division of memory containing all the memory (including code and 
data) accessible by a task. An address space is identified by an 
Address Space Number (ASN) and is composed of the shared (or global) 
memory component and a local component. 

Addres s Space Humber (ASH) 

ADDS 

A term that refers to an address space or a similar type of memory 
organization. 

See "Advanced Data Dictionary System." 

Advanced Data Dictionary System (ADDS) 

A tool for the definition, storage, and retrieval 
definitions for database and application programs. 

application software 

of data 

Programs written to provide specific functions to end-users and to 
solve specific end-user problems. 



214 
INT:~ODUCTION TO A SERIES SYSTEMS 

ASD 

See "Actual Segment Descriptor." 

ASD table 

ASN 

bit 

BNA 

A memory-resident table that contains Actual Segment Descriptors 
(ASDs). One ASD entry exists for each touched descriptor. 

See "Address Space Number." 

The most basic unit of data representation. A bit can be in one of 
two states: OFF, corresponding to a value of binary 0, or ON, 
corresponding to a value of binary 1. 

See "Burroughs Network Architecture." 

Burroughs Network Architecture (BNA) 

The network architecture used on A Series systems to connect 
multiple, independent Burroughs computer systems into a network. 
BNA gives thE~ user the same type of access to remote resources as he 
or she has to local resources. 

byte 

One character, equal to eight consecutive bits. 

CANDE 

See "Command AND Edit language." 



215 
Glossary 

cold start 

A procedure used during system initialization that places the Master 
Control Program (MCP) on disk and in memory. The system 
configuration is also defined to the MCP at this time. A cold start 
removes all files residing on disk. 

Command AND Edit (CANDE) language 

A time-sharing Message Control System (MCS) for communication and 
program creation and execution. 

Communications Management System (COMS) 

A general Message Control System (MCS) that supports a network of 
users and provides them with a consistent, on-line interface to the 
system. 

compiler 

COMS 

A program that translates instructions written in a source language, 
such as COBOL, into machine-executable object code. 

See "Communications Management System." 

configuration file 

A file that lists and describes the hardware resources that make up 
a configuration. The file can contain descriptions of several 
different hardware configurations for a system. 

cool start 

Causes the system to load a new Master Control Program 
the Halt/Load unit, update existing MCP tables. 
Halt/Load using the new MCP. 

(MCP) onto 
and perform a 



216 
INTRODUCTION TO A SERIES SYSTEMS 

core-to-core overlay 

A process the s"{stem uses to free memory space for program 
execution. To mdke enough space, the system moves code and data 
within memory, overlaying existing code as necessary. 

data communications (d3tacomm) 

The transfer of data between a data source and a data sink (two 
computers, or a c~mputer and a terminal) by way of one or more data 
links, according t~ appropriate protocols. 

Data Communicattons Controller (DCC) 

The subset of the Master Control Program (MCP), operating as a group 
of independent tasks, each associated with one Network Support 
Processor (NSP) that is the basic interface between the data 
communications subsystem and the main system. 

Data Communicattons Data Link Processor (DC-DLP) 

A data communications processor that combines the functions of thE~ 

Network Support Processor (NSP) and Line Support Processor (LSP) 
into one physical Data Link Processor (DLP). 

data descriptor 

A one-word item usually located in a stack and is used to point to 
an array of data. 

Data Link Processor (DLP) 

A device that controls the flow of data between the system memory 
and a peripheral or peripheral controller. 

Data Management System II (DMSII) 

A specialized system software package used to describe and access 
information in a database and to maintain relationships between data 
elements. 



217 
Glossary 

Data Transfer System (DTS) 

A software system that provides for the exchange of application data 
between B 20 workstations and Burroughs A Series and 
B 5000/B 6000/B 7000 Series systems. 

DataComm Processor (ncp) 

DCC 

On Multiplexor (MPX) and Input/Output Module (10M) systems (B 6800, 
B 7700, and B 7800 systems), the processor that executes 
instructions compiled from a Network Definition Language (NDL) 
source program to control the data communications network. 

See "Data Communications Controller." 

DC-DLP 

See "Data Communications Data Link Processor." 

DCP 

See "DataCornm Processor." 

directory 

disk 

A table of contents listing the files contained on a device. The 
device is usually a disk or a tape. 

A data storage device consisting of one or more circular platters 
that contain magnetic bits of information stored in concentric 
circles called tracks. 

disk. drive 

The hardware device on which a disk is mounted. The disk drive has 
read/write heads to access the data on the disk so the data can be 
used by the system. 



218 
INTRODUCTION TO A SERIES SYSTEMS 

disk pack 

DLP 

A disk consisting cf multiple platters stacked vertically on a 
central spindle. Data on a disk pack is accessed by movable 
read/write heads. Some disk packs are removable. 

See "Data Link Processor." 

DIIS!! 

See "Data Management System II." 

ERGO 

See "Extended Retrieval with Graphic Output." 

Extended Retrieval with Graphic Output (ERGO) 

A tool for database access and report generation. 

family 

One or more peripheral devices that are logically grouped together 
and treated as a single entity by the system. 

FAST 

See "File Access Structure Table." 

FCF 

See "Field Communic3.tion Form." 

field 

An item within a larger entity that represents a logical piece of 
data. Examples a~e a consecutive group of bytes within a record 
that contains a per30n's name or employee number, or a consecutive 
group of bits withi1 a word. 



219 
Glossary 

Field Communication Form (FCF) 

A six-part form used by Burroughs customers to report problems and 
suggest new features and improvements to software, hardware, and 
documentation. 

Field Trouble Report (FTR) 

An FCF used by Burroughs customers to report a problem. 

l;'ile Access Structure Table (FAST) 

A special file that is part of the access structure the system uses 
to locate disk files. The FAST contains a pointer to each disk 
file's header in the flat directory of each family. 

file attributes 

Parameters that describe the characteristics of a file and 
all the information the system needs to handle the file. 
of file attributes are file name, device type, record size, 
of areas, and date of creation. 

contain 
Examples 

number 

firmware 

FTR 

Programs that are the instruction sets for the computer hardware, 
especially device controllers. 

See "Field Trouble Report." 

~~igabyte 

One billion bytes of memory. 

Halt/Load 

A procedure used to momentarily stop the system and reload the 
Master Control Program (MCP) into memory. 



220 
INTRODUCTION TO A SERIES SYSTEMS 

Halt/Load unit 

The disk drive that contains the currently used Master Control 
Program (HCP). Th,? system loads the MCP from this disk drive at the' 
next Halt/Load operation. 

hexadecimal digit 

A number stored in four consecutive bits. 

IDC 

See "Interactive D,:ltacomm Configurator." 

IMG 

See "In terac t i ve M,?nugraph Genera tor. " 

initialization (system) 

The process of loa,jing the necessary software and firmware to ready 
the system for use. 

input file 

A file used or read by an executing program. 

Input/Output Subsystem 

The hardware and s<)ftware that manages all transfers of information 
between memcry and peripheral devices. 

Interactive Datacomm Configurator (IDC) 

An interactive :)rogram for def ining and maintaining the 
configuration of a data communications subsystem. 

Interactive Menugraph Generator (IMG) 

A software tool fo:~ the design and modification of screen menus and 
forms. 



job 

221 
Glossary 

A specified tas~~ or group of tasks assigned a number and treated as 
a unit of work by the system. 

job queue 

A list of jobs or tasks waiting to be processed. 

library 

A collection of named, related routines, such as data conversion 
routines, stored in a code file and available for use by programs. 

line printer 

A peripheral device that prints text one line at a time, in contrast 
to a page-at-a-time printer. The system printer is usually a line 
printer. 

Line Support Processor (LSP) 

On Message-Level Interface Processor (MLIP) systems, the data 
communications subsystem processor that manages communication with 
the host and initiates processes that control the input of messages 
to and output of messages from data communications lines. 

log file 

A special type of file that contains a record of system activity, 
including system utilization, messages, and peripheral activity. 

logical unit number 

An internal index number used by the Master Control Program (MCP) to 
identify a peripheral device. The number is actually the position 
of information about the device in the various system tables 
containing peripheral information. The logical unit number can 
change from Halt/Load to Halt/Load as the configuration changes and 
the tables are rebuilt. 



222 
IN~~RODUCTION TO A SERIES SYSTEMS 

LSP 

See "Line Support Processor." 

Kaintenance Subsystem 

The software and hardware that serve as the interface between the 
user and the Master Control Program (MCP) when the hardware is to be 
initialized, configured, or halted, or when system software is to be 
initialized for the first time. The subsystem also is the means to 
diagnose hardware and software problems. 

MARC 

See "Menu-Assisted Resource Control." 

Kaster Control Program (KCP) 

An operating system for Burroughs computers. The MCP controls the 
operational environment of the system. 

Kaster Control Program/Advanced Systems (KCP/AS) 

KCP 

An operating system for Burroughs A Series systems. MCP/AS can 
address up to 4 ~:igawords (24 billion bytes) of memory, as well as 
provide all the es~:ential features of the standard MCP. 

See "Master Control Program." 

KCP/AS 

See "Master Control Program/Advanced Systems." 

KCS 

See "Message Contrc,l System." 



223 
Glossary 

media 

A device used to store data, such as a disk pack or a magnetic tape. 

memory 

A temporary storage area wherE~ data and programs are placed while 
being processed. 

memory dump 

A copy of the contents of memory, often referred to as a memory 
image. A memory dump occurs when there is a problem with the system 
and is used to analyze the problem. 

Memory Subsystem 

The subsystem that handles all transfers of data between main memory 
and the main processor. It consists of one or more memory control 
units and memory storage units, plus a memory interface, which may 
be part of the control unit. 

Menu-Assisted Resource Control (MARC) 

A menu-driven interface and transaction processor for users and 
operators of Burroughs systems. 

Message Control System (MCS) 

A software system that controls the flow of messages between 
terminals, application programs, and the Master Control Program 
(MCP). In this context, a message is a transmitted series of words 
or symbols intended to convey information to or from the system. 

:Message-Level Interface (MLI) 

The interface between the host system and the peripheral subsystem. 

lMirrored Disk 

The parallel functioning of two to four disks packs so that they are 
exact copies of each other. 



224 
INTRODUCTION TO A SERIES SYSTEMS 

mix 

The jobs that are currently executing. 

mix number 

ML! 

MLS 

The number by which a task or job is referenced while it is 
executing. 

See "Message-Level Interface." 

See "MultiLingual ~)ystem." 

modem 

A device that converts data from a form compatible with data 
processing (digital) to a form suitable for transmission over a 
communications linl~ (analog), and vice versa. 

monolithic memory 

A memory structure in which memory is seen by hardware and software 
as a single, unifil?d area. 

MultiLingual System (~~S) 

A system for devel,)ping and accessing output messages, on-line help 
text, and menu sc:~eens in mul tiple human languages, such as English 
and Spanish. 

multiprocessing 

Two or more proces;ors in the same system running under the control 
of a single Master Control Program (MCP). 



225 
Glossary 

multiprogramming 

The ability of a system to run many jobs simultaneously. 

NDLII 

See "Network Definition Language II." 

Network. Definition Language II (NDLII) 

A language used to define data communications networks. 
applies to B 5900, B 6900, and A Series systems. 

NDLII 

:Network. Support Processor (NSP) 

A data communications subsystem processor that controls the 
interface between a host system and the datacomm peripherals. It 
executes the code generated by the Network Definition Language 
(NDLII) compiler for line control and editor procedures. 

ltiew Programming Language (NEWP) 

A member of the ALGOL family of languages. NEWP is used for writing 
the operating system (MCP), some libraries, and utility programs. 

]ffiWP 

See "New Programming Language." 

nsp 

See "Network Support Processor .. " 

object code 

Program code that can be executed. Object code is the result of 
compiling source code. 



226 
IN'rRODUCTION TO A SERIES SYSTEMS 

ODT 

See "Operator Display Terminal." 

Operator Display Termi[1al (ODT) 

The terminal used to communicate directly with the Master Control 
Program (MCP) or tle maintenance processor. 

output file 

A file created or Nritten to by an executing program. 

Pack Access Structure rable (PAST) 

A table used by th? system to locate disk families. It contains 
pointers into th? File Access Structure Table (FAST) that indicate 
where the entries for a family's files are stored. 

password 

PAST 

One of a list of n!mes associated with a usercode or accesscode that 
identifies the user as a valid user. A password may be required 
when logging on to a Message Control System (MCS). 

See "Pack. Access Structure Table." 

peripheral device 

A hardware device used for input, output, or file storage. Example~; 

are magnetic tape jrives, printers, and disk drives. 

physical unit number 

The permanent identification for a device by which it is known to 
the system. 



227 
Glossary 

Print System (PrintS) 

The part of the Master Control Program (MCP) and related system 
software that deals with the output of files to printing devices 
such as image printers and line printers. 

PrintS 

See "Print System." 

QLA 

See "Quad Line Adaptor." 

Quad Line Adaptor (QLA) 

A set of four line adaptors on one circuit board. 

queue 

See "job queue." 

n~cord 

A group of logically-related items of data within a file that are 
treated as a unit by the I/O subsystem. A record can also be 
defined as the amount of data read from or written to a file in one 
execution of a read or write statement in a program. 

remote device 

An I/O unit or other piece of equipment that is physically removed 
from the computer center but connected by a communication line. 

rE~mote file 

A file that serves as a means of passing information between a 
program and a remote device, such as a terminal. Most interactive 
programs use a remote file, writing data to it and receiving data 
from it as though it were a local peripheral. 



228 
IN~~RODUCTION TO A SERIES SYSTEMS 

Remote Print System (RHprintS) 

The part of the Pr:~nt System (PrintS) that allows integrated control 
over printing at remote destinations connected to the host computer 
through da tacomm l:Lnes. 

ReprintS 

See "Remote Print ::;ystem." 

schedule queue 

A list of all jobs waiting to enter the mix. 

Screen Design Fa.cility (SDF) 

SDF 

A tool for crea~ing screens 
application systems. 

See "Screen Design Facility." 

for on-line, transaction-based 

sector 

The physical units that disks are divided into. On A Series 
systems, a sector is 30 words, or 180 bytes long. Sectors are also 
referred to as segnents. 

segment 

The physical units that disks are divided into. On A Series 
systems, a sector is 30 words, or 180 bytes long. Segments are also 
referred to as sectors. 

segment descriptor 

A one-word item used to point to a segment of code. 



229 
Glossary 

SKFII 

See "System Management Facility II." 

source code 

A program file containing instructions written in a programming 
language. Source code must bE? translated (compiled) to object code 
before the program can be executed. 

spooling 

8SF 

The process of indirectly sending output files to relatively slow 
peripheral devices such as printers. The output file is logically 
written to the peripheral device, but it actually goes to a tape or 
disk file known as a backup file. The backup file is sent to the 
printer when the job finishes. Spooling allows many users to 
efficiently share peripherals by preventing anyone job from 
monopolizing the peripheral. 

See "System Software Facility." 

stack 

A set of sequential locations in memory assigned to a task for the 
duration of its execution. These locations serve as temporary 
storage for variables, descriptors, and information pertaining to 
the task execution. 

System Management Facility II (SMFII) 

A software system that monitors and provides data on four areas of 
system performance: hardware, software, workload characterization, 
and system utilization. 

system software 

The Master Control Program (MCP) and all other files that are 
necessary for system operation. 



230 
IN1RODUCTION TO A SERIES SYSTEMS 

System Software Facility (SSF) 

The system software essential for the operation of the system. 

tape drive 

An input/output peripheral device that stores data on reels or 
cartridges of magnetic tape. 

task 

A single, complete unit of work performed by the system, such as 
compiling or executing a program or copying a file from one disk to 
another. Tasks are initiated by a job, by another task, or directly 
by a user. 

thrashing 

The state thE~ system is in when the amount of physical memory 
required for effective execution of currently running tasks exceeds 
available memory. Under this condition, the system is constantly 
servicing presence-bit interrupts, because the tasks are continually 
referencing nonpresent memory segments. Thrashing is caused by 
tasks that have inaccurate working-set estimates. (A working set is 
the amount of physical memory required to run a task effectively.) 

track 

unit 

One of the concentric circles on the surface of a magnetic disk on 
which data is stored. 

An individual periFheral device such as a line printer. 

unit number 

The three-digit number assigned by an installation to a particular 
peripheral device and used to identify the device. 



231 
Glossary 

user code 

An identification code used to establish user identity. control 
system and filE~ security. and segregate files. Usercodes can be 
applied to every task, job, session, and file on the system. 

utility program 

A part of the system software that performs commonly used functions 
or basic data handling operations. 

v.irtual memory 

A system technique that treats disk storage space as an extension of 
main memory, giving the appearance of a larger main memory than 
actually exists. 

volume 

A disk, disk pack, or tape reel. 

volume label 

The area on a disk or tape that stores the name and serial number 
assigned to the volume. 

wait queue 

WF'L 

word 

A list of the jobs in the mix that are waiting for resources or for 
an event before proceeding. 

See "Work Flow Language." 

The basic unit of information addressed on A Series systems. On 
Burroughs systems. one word contains 6 bytes. 



232 
IW:'RODUCTION TO A SERIES SYSTEMS 

Work Flow Language (WFL) 

A language used to control the Work Flow Management system, which 
provides control o~'er the running of tasks. 



Index 

ABCU. 173 
Actual Segment Descriptor (ASD) Memory Manager module, 110 
Actual Segment Descriptor (ASD) memory subsystem, 4 

table, 5 
Actual Segment Descriptor (ASD) table, 5 
Actual Segment Descriptor extended memory, 109 
Address Space Number (ASN) memory, 5, 39 
ADDS. See Advanced Data Dictionary System (ADDS) 
Advanced Data Dictionary System (ADDS), 64 
Application software, 23 
Area, 91, 151 

AREAS attribute, 151 
AREASIZE attribute, 151 
effect of size, 152 
size, 152 

ASD, See Actual Segment Descriptor (ASD) memory subsystem 
ASN memory, See Address Space Number (ASN) memory 

Backups 
definition, 138 
managing, 138 

BARS utility, 105 
Batch programs, 33 
Billing, 54 
BNA, See Burroughs Network Architecture (BNA) 
Burroughs Network Architecture (BNA) 

access control, 78 
capabilities, 75 
characteristic~, 75 
how it works, 76 
using BNA, 78 

Cache memory, 5 
CANDE, See Command AND Edit (CANDE) language 
Cataloging, 60 
Checkerboarding, 152 
Checkpoints, 148 
Code file compatibility 

between levels, 157 
TARGET option, 157 

Cold start, 119 
Command AND Edit (CANDE) language 

c a pa b iIi tie s, L;! 6 
recovery, 47 
security, 47 
window, 45 

Communications Management System (COMS) 
capabilities, 44 
recovery. 45 
security, 45 
Utility, 46 

233 



234 
INTRODUCTION TO A SERIES SYSTEMS 

Communications Management System (COMS) (cont.) 
windows, 44 

COMS, See Communications Management System (COMS) 
COMS Utility, 46 
Configuration, 36 
Configuration file, 112 
Configuration Utility, 113 
Configuring the system, 115 
Converting from non-Burroughs systems, 116 
Cool start, 119 
CUBE, 172 

Data communications 
DATACOMINFO file, 72 
hardware 

devices, 68 
message flow, 70 

Interactive Datacomrr Configurator (IDC), 72 
Network Definition language II (NDLII), 73 
setting up a system, 128 
software, 73 
subsystem, 68 
utilities, 74 

Data Communications Data Link Processor (DC-DLP), 70 
Data Link Processor (DLP), 6 
Data Management System II (DMSII) 

Advanced Data Dictionary System (ADDS), 64 
capabilities, 62 
central storage of elata, 64 
data examination, 6~ 

data retrieval, 63 
database certificatjon, 66 
database creation, E,2 

database recovery, (.3 
database statistics, 66 
DB MONITOR utility, 66 
DBANALYZER, 67 
DBCERTIFICATION, 66 
DM Interpreter, 65 
Extended Retrieval ~lith Graphic Output (ERGO), 63 
INQUIRY utility, 67 
language interface, 65 
report generation. E>3 

structure analYSiS, 67 
Database management, 6:~ 

DATACOMINFO file, 72 
Datacornrn, See Data comnunications 
DB MONITOR utility, 66 
DBANALYZER utility. 67 
DBCERTIFICATION, 66 
DC-DLP, See Data Communications Data Link Processor (DC-DLP) 
DCAUDITOR utility. 74 



Index 

DCSTATUS utility, 74 
Deimplementation of system features, 163 
Descriptors, 32 
Disk directory, 91 
Disk families, 91 
Disk file naming, 56 
Disk subsystem 

areas, 91 
base pack, 91 
components, 90 
continuation pack, 91 
disk, 90 
families, 91 
family index, 92 
File Access Structure Table (FAST), 93 
flat directory, 91 
Pack Access Structure Table (PAST), 93 
rows, 91 
sectors, 91 

Distributing files on packs, 126 
DLP, See Data Link Processor (DLP) 
DM Interpreter, 65 
DMSII, See Data Management System II (DMSII) 
Documentation, 185, See also Manuals 

catalog, 13 
distribution, 13 
how to order, 203 
on-line, 14 
printed, 13 

Documentation conventions, 204 
DUMPALL utility, 59 
DUMPANALYZER utility, 139 

ERGO, See Extended Retrieval with Graphic Output (ERGO) 
Extended Retrieval with Graphic Output (ERGO), 63 

Families, 91 
FCF, See Field Communication Form (FCF) 
Field Communication Form (FCF), 174 

filling out, 174 
File attributes, 89 
File equation, 146 
File maintenance, 58, 137 

cataloging, 60 
tape files, 61 

File management 
DUMPALL utility, 59 
file names, 56 
maintenance, 58 

File names 
construction, 56 

235 



236 
INTRODUCTION TO A SERIES SYSTEMS 

File names (cont.) 
disk, 56 

FILEDATA utility, 137 
Files 

access, 88 
attributes, 89 
controlling changes, 159 
crunching, 1~i2 

distributing on disk families, 158 
distributing on packs, 126 
identification, 88 
logical, 87 
maintaining, 137 
naming, 56 
physical, 87 

Filling out a Field Communication Form (FCF), 177 
Flashes, 13 
Flat directory, 91 

GEMCOS, See Generalizej Message Control System (GEMCOS) 
Generalized Message Control System (GEMCOS), 45 

window, 45 
GETSTATUS, 108 
GUARDFILE utility, 83 

Halt/Load, 119 
Hardware 

error detection, 4 
firmware, 4 
input/output (I/O) subsystem, 5 
maintenance subsyst~m, 6 
memory subsystem, 4 
minimum configurati)n, 3 
support, 15 

how to get help. 170 
updating equipment, 6 

Help text, 14 
Hi s tory of Lar ge Sys te:ns, 37 
How to order manuals, .203 
How to use this manual, ii 

I/O blocks, 150 
size, 150 

IDC, See Interactive Da.tacomm Configurator (IDC) 
Initialization 

program, 146 
system, 118 

Input/output (I/O) sub::;ystem 
buffers, 87 
description, 85 



Index 

Input/output (I/O) subsystem (cont.) 
file attributes, 89 
files, 87 
logical I/O, 87 
operations, 87 
physical I/O 

devices, 85 
I/O base, 85 

INQUIRY utility, 67 
Integrating patches, 161 
Interactive Datacomm Configurator (IDC), 72 

DATACOMMINFO file, 72 
Interactive programs, 33 
Intrinsics, 100 

.Job, 25 

.Job management 
billing, 54 
controlling jobs and tasks, 53 
job creation, 52 
managing job flow, 135 
mix number, 54 
restarting jobs, 55 
tasking, 54 
Work Flow Language (WFL), 52 

.Job queues 
capabilities, 53 
setting up, 128 

JOBFORMATTER, 54 

KEYEDIO, 88 

LA, See Line Adaptor (LA) 
Languages 

human, See MultiLingual System (MLS) 
programming, 24 

availability, 49 
combining, 51 
standards, 49 

Libraries, 34 
General Support, 100 
system, 100 
use, 100, 152 

Library maintenance, See File maintenance 
Line Adaptor (LA), 70 
Line Support Processor (LSP), 70 
LOGANALYZER utility, 105 
LOGCONSOLIDATOR, 104 
LOGGER utility, 105 
LSP, See Line Support Processor (LSP) 

237 



238 
INTRODUCTION TO A SERIES SYSTEMS 

Magnetic tape files, 61 
MAKEUSER Utility, 81 
Manuals 

by subject, 185 
data communications, 186 
database management, 185 
languages, 186 
Message Control Systems (MCSs), 186 
multilingual capabilities, 187 
operations, 187 
performance monitoring, 187 
peripherals, 187 
programming productivity aids, 188 
progression, 188 
reference cards, 188 
system software, 188 

by title, 189 
catalog, 203 
how to order 

internationally, 203 
within the Unitej States, 203 

subscription servic=, 203 
MARC, See Menu-Assistej Resource Control (MARC) 
Mark level numbers, 12 
Master Control Program/Advanced Systems (MCP/AS), 4 

operating system, 4 
MCP/AS, See Master Control Program/Advanced Systems (MCP/AS) 
Memory dumps 

DUMPANALYZER utilit1, 139 
handling, 139 
types, 139 

Memory factors, 122 
Memory partitioning, lLO 
Memory subsystem, 4 
Memory utilization set:ings, 122 
Memory, virtual, 31 
Menu-Assisted Resource Control (MARC) 

command mode, 42 
functions. 41 
menu mode, 42 
mul tilingual capabi.Li ties, 42 
on-line help, 42 
tasking mode, 42 
window, 45 

Message-Level Interfac(~ (MLI), 70 
Message-Level Interfac(~ Processor (MLIP), 85 
Mirrored Disk, 94 
Mix number, 54 
Mixlimit, 53 
MLI, See Message-Level Interface (MLI) 
MLIP, See Message-Leve~_ Interf ace Proces sor (MLIP) 
MLS, See MultiLingual Bystem (MLS) 



MultiLingual System (MLS) 
capabilities, 131 
setting up, 131 

Multiprocessing, 28 
:Mul tiprogramming, 27 

Index 

NDLII, See Network Definition Language II (NDLII) 
NDLIIANALYZER utility, 74 
Network Definition Language II (NDLII), 73 
Network Support Processor (NSP), 70 
Networks, 75 
New Feature Suggestion (NFS), 174 
NFS, See New Feature Suggestion (NFS) 
NSP, See Network Support Processor (NSP) 
NSPDUMPANALYZER utility, 74 

DDT, See Operator Display Terminal (ODT) 
On-line documentation, 14 
Operational interface 

capabilities, 79 
direct command entry, 79 
Menu-Assisted Resource Control (MARC), 79 
ODT commands, 79 

Operations 
configuring the system, 115 
converting from non-Burroughs systems, 116 
progressing from Burroughs systems, 117 

Operator Display Terminal (ODT), 79 
Ordering manuals, 203 

PATCH utility, 159 
Patches, 12 

integrating, 161 
Patching programs 

controlling changes, 159 
Editor patch mode, 159 
mark field, 160 
SYSTEM/PATCH utility, 159 

Performance monitoring 
BARS utility, 105 
GETSTATUS, 108 
LOGANALYZER utility, 105 
LOGGER utility, 105 
MARC menu system, 108 
ODT commands, 107 
operating recommendations, 134 
SETSTATUS, 108 
SUSPENDER utility. 106 
System Management Facility II (SMFII), 102 
SYSTEMSTATUS, 108 

239 



240 
INTRODUCTION TO A SERIES SYSTEMS 

Performance monitoring (cont.) 
tools, 102 
Utilization command, 106 

Peripheral Test Dr~ver (PTD) testing, 142 
Planning daily operatiJns, 132 
Port files, 58 
Print System 

controlling the Print System, 98 
LTTABLEGEN utility, 99 
PrintS, 97 
spooling, 97 
trainid. 99 

Print System (PrintS), 97 
ReprintS, 97 

Printer files, 57 
PrintS, See Print System (PrintS) 
Problem solving 

defining the problem, 166 
Field Communi. cation Form (FCF), 174 
obtaining help 

hardware, 170 
software, 170 

reporting problems, 174 
compiler, 176 
data communication, 175 
data management, 176 
filling out an F:F, 177 
general, 174 

Process, 29 
Product Support Information Manuals, 13 
Productivity software, 22 
Program 

conversion, 144 
data conversion, 145 
progression, 143 

Program segments, 31 
Programming, 143 

code compatibility, 157 
controlling changes, 159 
deimplementing features, 163 
design of programs 

effect of structure, 152 
ongoing maintenance, 154 
resident programs, 153 
structure, 150 
using libraries, 153 

development tools, 155 
file distribution on disk, 158 
generic programs, 157 
integrating new releases, 161 
integrating patches, 161 
language choice, 157 
program initialization, 146 



Programming (cont.) 
progression 

data conversion, 145 
manuals, 143 
program conversion, 144 
tools, 143 

recompiling source code, 162 
recovery 

Index 

batch programs and jobs, 148 
interactive programs, 147 

supervisor programs, 14g 
Test And Debug System (TADS), 160 
testing database programs, 160 
testing programs, 160 

Progressing from Burroughs systems, 117 
PTD tests, See Peripheral Test Driver (PTD) testing 

QLA, See Quad Line Adaptor (QLA) 
Quad Line Adaptor (QLA), 70 
QUERY utility, 104 
Queues, See Job queues 

Railroad diagrams 
purpose, 204 
reading diagrams, 204 

Recompiling source code, 138 
Reconfiguration, 36 
Reconfiguring the system, 113 
Record keeping, 132 
Record size, 150 
Release level numbers, 11 
Remote files, 58 
Remote Print System (ReprintS), 97 
Remote Support Center, 15, 170 
Reporting problems, 174 
ReprintS, See Remote Print System (ReprintS) 
Restarting jobs, 55 
Rows, 91 

SAMPLER, 104 
Screen Design Facility (SDF), 64 
SDF, See Screen Design Facility (SDF) 
Sectors, 91 
Security 

compiler, 84 
file access, 82 
network, 83 
privileged programs, 81 
setting up security, 125 
system access, 82 

241 



242 
IN'~RODUCTION TO A SERIES SYSTEMS 

Security (cont.) 
types of control, 80 
user access, 80 

accesscodes, 81 
MAKEUSER Utility, 81 
passwords, 80 
privileged users, 81 
Systemuser, 81 
usercodes, 80 

Segments, 31 
SETSTATUS, 108 
Setting memory factors, 122 
Setting system options, 124 
Setting up data commun.Lcations, 128 
Setting up jobgueues, 128 
Setting up security, 1:~5 

Setting up user identi::ication, 125 
Shorthelp text, 14 
Site Management System. 104 
SITEINPUT, 104 
SMFII, See System Mana;5ement Facility II (SMFII) 
Soft configuration, 36 
Soft reconfiguration 

configuration file, 112 
Configuration Utili·:y, 113 
FREE and ACQUIRE, 1.L3 
I/O subsystem shari:1g, III 
memory partitioning, 110 
on A Series systems. 109 
reconfiguring the s:lstem, 113 

Software 
application, 23 
organization, 19 
Productivity, 22 
support, 16 

how to get help, 170 
system, 20 

Software patches, 12 
Source code 

need to recompile, L62 
Squashing disk space, L37 
SSF, See System Softwa:~e Faci1i ty (SSF) 
Stacks, 29 
Supervisor programs 

creating, 149 
setting up, 127 

Support 
hardware, 15 
software, 16 

SUSPENDER utility, 106 
System initialization. 118 
System Management Faci.Lity II (SMFII), 102 

QUERY Utility, 104 



Index 

System Management Facility II (SMFII) (cont.) 
Site Management System, 104 
System Resource System, 104 

System operation, 118 
System options, 124 
System Resource System, 104 
System software, 20 

essential, 8 
optional, 9 
updating, 11 

System Software Facility (SSF), 8 
SYSTEM/PATCH utility, 159 
SYSTEMSTATUS, 108 

'I'ape files 
naming, 57 
supported types, 61 

Task, 25 
Tasking, 54 
Technical Information Papers (TIPS), 13 
TIPS, See Technical Information Papers (TIPS) 
Trainid, 99 

Updating software, 141 
User groups, 171 

ABCU, 173 
CUBE, 172 

Utilization command, 106 

Virtual memory, 31 

WFL, See Work Flow Language (WFL) 
Work Flow Language (WFL), 52 

job management, 52 
purpose, 51 

243 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243

