UN iSYS A Series
ALGOL

Programming
Reference Manual

Volume 1: Basic
Implementation

Release 3.9.0 Saptenber 1991

U S America
Priced Item 3600 0098-000

UNISYS A Series
ALGOL

Programming
Reference Manual

Volume 1: Basic
Implementation

Copyright © 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0 September 1991

U S America
Priced Item 8600 0098-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 19 Morgan,
Irvine, CA 92718.

Page Status

Page Issue
iii -000
iv Blank
v through xxxi -000
XXXii Blank
XXXiii -000
XXXIV Blank
XXXV -000
XXXVi Blank
1-1 through 1-6 -000
2-1 through 2-14 -000
3-1 through 3-123 -000
3-124 Blank
4-1 through 4-172 -000
5-1 through 5-76 -000
6-1 through 6-46 -000
7-1 through 7-7 -000
7-8 _ Blank
8-1 through 8-20 -000
9-1 through 9-108 -000
A-1 through A-4 -000
B-1 through B-10 -000
C-1 through C-20 -000
D-1 through D-8 -000
Glossary-1 through 12 -000
Bibliography—1 through 2 -000
Index—1 through 26 -000

Unisys uses an 11-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has a suffix of —000. A suffix of —130 designates the
third update to revision 1. The third digit (2) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

8600 0098-000 iii

8600 0098-000

About This Manual

Purpose

Scope

This language reference manual provides the programmer with information on the
language components, declarations, statements, expressions, and program units of
Unisys Extended ALGOL.

Unisys Extended ALGOL is a high-level, structured programming language designed for
A Series systems. Unisys Extended ALGOL has provisions for communication between
programs and input/output (I/O) devices, the editing of data, and the implementation of
diagnostic facilities for program debugging.

The fundamental constituents of ALGOL are the language components. These are the
building blocks of the language and include, among other things, letters, digits, and
special characters such as the semicolon (;).

At alevel of complexity higher than language components are declarations, statements,
and expressions. These are the building blocks of ALGOL programs. A declaration
associates identifiers with specific properties. For example, an identifier can be
associated with the properties of a real number. A statement indicates an operation to
be performed, such as the assignment of a numerical value to an array element or the
transfer of program flow to a location in the program out of the normal sequence. An
expression describes operations that are performed on specified quantities and return a
value. For example, the expression SQRT(100) returns 10.0, the square root of 100.

At the highest level are program units. A program unit is any group of ALGOL
constructs that can be compiled as a whole by the ALGOL compiler. An ALGOL
program is, by definition, a program unit.

To assist application programmers in using ALGOL, the programming reference material
is divided into two volumes. Volume 1 contains the Unisys Extended ALGOL developed
for general use. Volume 2 contains extensions to ALGOL that are intended for specific
products.

Audience

8600 0098-000

This manual is intended for the applications programmer or systems analyst who is
experienced in developing, maintaining, and reading ALGOL programs.

About This Manual

Prerequisites

To use this manual, a programmer should be familiar with the general concepts of
ALGOL programming or of another high-level structured programming language, such
as Pascal.

How to Use This Manual

This manual contains reference information for each ALGOL feature, which can be
accessed either through the index or the table of contents. Cross references are
provided within each section. Declarations, statements, expressions, functions, and
compiler control options are each presented in alphabetical order within their sections.

This manual also describes the language components and programs units of Unisys
Extended ALGOL. Unless otherwise stated, the word ALGOL refers to Unisys
Extended ALGOL.

Organization

Vi

The earlier sections describe the fundamentals of ALGOL: the structure of programs
and the basic components of the language. The middle chapters describe the major
constructs of ALGOL: declarations, statements, and expressions. The later chapters
describe topics related to compiling ALGOL programs, and interfaces between ALGOL
and other facilities such as libraries. The appendixes contain reference information
about reserved words and about the format used internally to store data.

The manual contains the following sections and appendixes, supplemented by a glossary,
a bibliography, and an index.

Section 1. Program Structure

This section defines the basic structure of an ALGOL program and the scope of
variables.

Section 2. Language Components

This section defines the most elemental constructs in the ALGOL language.

Section 3. Declarations

This section defines the constructs that establish data structures in an ALGOL program
and associate identifiers with those data structures. These constructs are ordered
alphabetically by declaration name.

Section 4. Statements

This section defines the constructs that describe operations to be performed in an
ALGOL program. These constructs are ordered alphabetically by statement name.

8600 0098-000

About This Manual

Section 5. Expressions and Functions

This section defines the constructs used to describe operations that are performed on
specified quantities and return a value. The first part of the section describes the types
of expressions. These types are ordered alphabetically by expression name. The second
part of the section describes functions that are intrinsic to ALGOL. These functions are
ordered alphabetically by their names.

Section 6. Compiling Programs

This section describes the various input and output files used by the ALGOL compiler
and the compiler control options that control the compiler’s processing of ALGOL source
input.

Section 7. Compile-Time Facility

This section describes how ALGOL source data can be compiled conditionally and
iteratively.

Section 8. Library Facility

This section describes library creation, use, sharing, and initiation.

Section 9. Internationalization

This section includes a general introduction to internationalization concepts and a
summary of CENTRALSUPPORT library procedures. Each internationalization
function entry point, with its parameters and results, is presented in alphabetical order.
A list of error messages and values ends the section.

Appendix A, Run-Time Format-Error Messages

This appendix interprets the error numbers given at run time when an error occurs in a
READ or WRITE statement.

Appendix B. Reserved Words

This appendix lists the identifiers that need not be declared in an ALGOL program
before they are used, if they appear in recognized contexts.

Appendix C. Data Representation

This appendix describes the internal form of the various operands, the descriptor, the
pointer, and the various character sets.

Appendix D. Understanding Railroad Diagrams

This appendix describes how to read and understand the various elements of railroad, or
syntax, diagrams that appear in the manual.

8600 0098-000 Vii

About This Manual

Related Product Information

viii

A Series ALGOL Programming Reference Manual, Volume 2: Product
Interfaces (form 8600 0734)

This manual describes the extensions to the Extended ALGOL language that allow
application programs to use the Advanced Data Dictionary System (ADDS), the
Communications Management System (COMS), the Data Management System IT
(DMSII), the Screen Design Facility Plus (SDF Plus), or the Semantic Information
Manager (SIM). This manual is written for programmers who are familiar with Extended
ALGOL programming language concepts and terms.

A Series ALGOL Test and Debug System (TADS) Programming Guide
(form 1169539)

This guide describes the features of ALGOL TADS, an interactive tool used for testing
and debugging ALGOL programs and libraries. ALGOL TADS allows the programmer
to monitor and control the execution of programs under test and examine the data at any
given point during program execution. This guide is written for programmers who are
familiar with ALGOL programming language concepts and terms.

A Series Binder Programming Reference Manual (form 8600 0304)

This manual describes the functions and applications of the Binder, an efficiency tool that
reduces the need to recompile an entire program when only a portion of the program

has been modified. This manual is written for programmers who are familiar with
programming language concepts and terms.

A Series CANDE Operations Reference Manual (form 8600 1500)

This manual describes how CANDE operates to allow generalized file preparation and
updating in an interactive, terminal-oriented environment. This manual is written for a
wide range of computer users who work with text and program files.

A Series Distributed Systems Service (DSS) Operations Guide
(form 8600 0122)

This guide describes the capabilities and features of DSS Services. It is intended for
system operators, system administrators, and general computer users.

A Series Editor Operations Guide (form 8600 0551)

This guide describes the operation of the Editor, an interactive tool for creating

and modifying text and program files. This guide is written for experienced and
inexperienced users who are responsible for creating and maintaining text and program
files.

A Series File Attributes Programming Reference Manual (form 8600 0064).
Formerly A Series I/O Subsystem Programming Reference Manual

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need
to understand the functionality of a given attribute. The A Series I/O Subsystem
Programming Guide is a companion manual.

8600 0098-000

About This Manual

A Series IO Subsystem Programming Guide (form 8600 0056). Formerly
A Series IO Subsystem Programming Reference Manual

This guide contains information about how to program for various types of peripheral
files and how to program for interprocess communication, using port files. This guide is
written for programmers who need to understand how to describe the characteristics of
afile in a program. The A Series File Attributes Programming Reference Manual is a
companion manual.

A Series Menu-Assisted Resource Control (MARC) Operations Guide
(form 8600 0403)

This guide provides an overview of MARC, a description of the menu structure, and
information on how to use help text, commands, security features, and Communications
Management System (COMS) windows from MARC. The guide also explains how to
run programs from MARC, how to customize MARC to meet user needs, and how to
use MARC in a multinational environment. This guide is written for a wide audience,
ranging from experienced system administrators to end users with no previous
knowledge of MARC or A Series systems.

A Series Message Translation Utility (MSGTRANS) Operations Guide
(form 8600 0106). Formerly A Series Message Translation Utility Operations
Guide

This guide describes how to use the Message Translation Utility (MSGTRANS) to
translate compiled program messages from any natural language to any other natural
language. It provides complete instructions for running and using the screen and batch
interfaces of MSGTRANS. This guide is written for programmers and translators who
create and translate program messages in a Multilingual System (MLS) environment.

A Series MultiLingual System (MLS) Administration, Operations, and
Programming Guide (form 8600 0288)

This guide describes how to use the MLS environment, which encompasses many Unisys
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in

a multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and

user interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers who
wish to create customized application systems.

A Series System Architecture Reference Manual, Volume 2 (form 5014954)

This manual describes and defines the architecture used in A Series data processing
system products. It describes operating system concepts and requirements. It is written
for personnel developing programs to run on A Series systems.

A Series System Commands Operations Reference Manual (form 8600 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and
administrators.

8600 0098-000 ix

About This Manual

A Series System Software Utilities Operations Reference Manual
(form 8600 0460)

This manual provides information on the system utilities, such as DCSTATUS,
FILECOPY, and DUMPALL. This manual is written for applications programmers and
operators.

A Series Task Attributes Programming Reference Manual (form 8600 0502)

This manual describes all the task attributes available on A Series systems. It also gives
examples of statements for reading and assigning task attributes in various programming
languages.

A Series Work Flow Language (WFL) Programming Reference Manual (form
8600 1047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

X 8600 0098-000

Contents

Section 1.

Section 2.

Section 3.

8600 0098-000

About This Manual .

................................

Program Structure

Program Unit

................................

Elements of an ALGOL Program..

Scope

Local Identifiers i,
Global Identifiers ii i

Language Components

Basic Symbol
Identifier

NumberRanges
Compiler Number Conversion

Exponents
Remark
String Literal

................................

CharacterSize
StringCode
Stringlength,
BCLStringst i
ASCIIStringsccii i e e

Quotation

Mark. ..o i e e e

DollarSign . . . oo e

Declarations

ARRAY Declaration

LONG AIays ...ttt ittt e e e et
OWN AITays . o v vt ettt e e e et e e ee e

Identifiers

Array Classot e e e

Bound Pai
Origi

rlist. ...
nal and Referred Arrays

Dimensionality
Array Row Equivalence
ArrayRow ... i .

Row

Selectoroi il e

Examples of ARRAY Declarations
ARRAY REFERENCE Declaration.

Identifiers

o

ONNNO O

|

l\)l\)l\)ll\)l\)l\)l\)
= b s
BWWwWwwmMNN

3-1

3-2
3-2
3-3
3-4
3-5
3-5
3-5
3-6
3-7
3-7
3-8
3-9

Xi

Contents

LowerBounds, 3-9
Examples of ARRAY REFERENCE Declarations 3-9
BOOLEAN Declaration, 3-10
EquationPart i .. 3-10
Boolean Simple Variable Values 3-10
Examples of BOOLEAN Declarations 3-11
COMPLEX Declarationc.ciiiiinnnn. 3-11
Complex Variables 3-11
Examples of COMPLEX Declarations 3-12
DEFINE Declaration 3-12
Formal Symbol Part 3-13
Define Invocation i, 3-13
Examples of DEFINE Declarations 3-17
DIRECT ARRAY Declaration 3-17
Declaring Direct Arrays o iiiiinnnnn 3-18
Examples of DIRECT ARRAY Declarations 3-18
DOUBLE Declaration 3-19
Declaration of Simple Variables 3-19
Examples of DOUBLE Declarations 3-19
DUMP Declaration e, 3-20
ControlPart 3-20
Label Identifier 3-21
Label Identifier with Label Counter Modulus 3-21
Label Identifier with Dump Parameters 3-21
Label Identifiers with Label Counter Modulus and
Dump Parameters 3-21
FormofOutput i i 3-22
Examples of DUMP Declarations 3-22
EVENT and EVENT ARRAY Declarations 3-23
Event Designator. - 3-24
Examples of EVENT and EVENT ARRAY Declarations . 3-25
EXPORT Declaration. 3-25
Library Entry Point Types and Parameters.......... 3-26
Conditions in Which Errors Can Occur 3-27
Examples of EXPORT Declarations 3-28
FILE Declaration, 3-28
Identifiers.t e 3-29
Attribute Specifications 3-29
Examples of FILE Declarations 3-30
FORMAT Declaration 3-31
In-OutPart..........ccoiiiiiiiiiiinn, 3-31
FormatPart i, 3-31
Simple String Literal 3-33
RepeatPart 3-34
EditingPhrases.iv i iiiiininnns 3-35
Variable Editing Phrases. 3-36
Editing Phrase Letters 3-37
A and C Editing Phrase Letters 3-37
D Editing Phrase Letter 3-40
E Editing Phrase Letter 3-42
F Editing Phrase Letter 3-42
G Editing Phrase Letter 3-43

Xii 8600 0098-000

Contents

8600 0098-000

H and K Editing Phrase Letters
| Editing Phrase Letter

J Editing Ph

rase letter.

L Editing Phrase Letter
O Editing Phrase Letter
R Editing Phrase Letter
S Editing Phrase Letter
T Editing Phrase Letter
U Editing Phrase Letter
V Editing Phrase Letter
X Editing Phrase Letter
Z Editing Phrase Letter

Editing Modifiers

P Editing Modifier,

$ Editing Modifier o .

Examples of FORMAT Declarations
FORWARD REFERENCE Declaration

Order of Referencing .

Examples of FORWARD REFERENCE Declarations . . .

INTEGER Declaration
Equation Part

Examples of INTEGER Declarations

INTERRUPT Declaration
Interrupting a Program

Examples of INTERRUPT Declarations.

LABEL Declaration
Using Label Identifiers

.......................

Examples of LABEL Declarations.

LIBRARY Declaration
Library Attribute Specifi

.......................

cations

Examples of LIBRARY Declarations

LIST Declaration
List Elements

Examples of LIST Declarations

MONITOR Declaration
Monitor Elements . ..

.......................

Monitor Element as a Simple Variable
Monitor Element as a Label Identifier.........
Monitor Element as an Array Identifier

Examples of MONITOR
OUTPUTMESSAGE ARRAY Decla

Output Message

Translators’ Help Text

Declarations
ration

Examples of OUTPUTMESSAGE ARRAY Declarations .

PICTURE Declaration
String Literals
Introduction
Introduction Codes . .

Characters Used by Picture Symbols
Flip-Flops Used by Picture Symbols

Character Fields
Picture Skip Characters

3-43
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-55
3-56
3-56
3-56
3-57
3-57
3-58
3-58
3-58
3-59
3-59
3-60
3-60
3-61
3-61
3-61
3-62
3-62
3-63
3-64
3-65
3-65
3-66
3-67
3-67
3-68
3-68
3-69
3-69
3-70
3-71
3-73
3-73
3-74
3-75
3-76
3-76
3-77
3-77
3-77
3-78

Xiii

Contents

Xiv

ControlCharacters., 3-78
Single PictureCharacters 3-78
PictureCharacters 3-79
Examples of PICTURE Declarations 3-81
POINTER Declaration 3-83
OWNPointers. i i it i s 3-83
Lex Level RestrictionPart. 3-83
Examples of POINTER Declarations. 3-84
PROCEDURE Declaration 3-86
Identifiers. ot e 3-87
Formal ParameterPart 3-87
Specification. i 3-89
Procedure Reference Array Specification. 3-91
ProcedureBody 3-91
Dynamic Procedure Specification. 3-92
Library Entry Point Specification 3-92
Allowed Formal and Actual Parameters 3-93
Parameter Matching 3-93
Array Parameters 3-93
Procedure Reference Array Parameters........ 3-95
Procedure Parameters 3-95
Simple Variable Parameters 3-96
String Parameters 3-98
File Parameters. 3-98
Other Types of Parameters 3-98
Examples of PROCEDURE Declarations 3-99
PROCEDURE REFERENCE ARRAY Declaration 3-101
Placement of Procedure Reference Arrays. 3-102

Example of PROCEDURE REFERENCE ARRAY
Declaration. i, 3-103
REAL Declaration 3-103
Declaration of Simple Variables 3-103
Examples of REAL Declarations 3-104
SIMPLE VARIABLE Declaration. 3-105
STRING Declaration 3-105
STRINGTYpPE . . vt oo i e i e e e 3-106
Examples of STRING Declarations 3-106
STRING ARRAY Declaration 3-107
String Array Typeot e 3-107
Examples of STRING ARRAY Declarations 3-107
SWITCHFILE Declarationccovvnnnn 3-108
SwitchFile Listo i, 3-108
Example of SWITCH FILE Declaration 3-109
SWITCH FORMAT Declaration. 3-109
Switch FormatList 3-110
Examples of SWITCH FORMAT Declarations. 3-110
SWITCH LABEL Declaration 3-111
Switch Label List, 3-111
Examples of SWITCH LABEL Declarations 3-112
SWITCH LIST Declarationt 3-112
List Designator, 3-112
Example of SWITCH LIST Declaration 3-113

8600 0098-000

Contents

Section 4.

8600 0098-000

TASK and TASK ARRAY Declarations 3-113

Task and Task Array Designator. 3-114

Examples of TASK and TASK ARRAY Declarations. ... 3-114

TRANSLATETABLE Declaration 3-115

Translation Specifier 3-115

Translate TableIndexing oo 3-116

Examples of TRANSLATETABLE Declarations 3-117

TRUTHSET Declaration. 3-118

Membership Expression 3-118

TruthSetTest 3-119

Examples of TRUTHSET Declarations 3-120

VALUE ARRAY Declaration 3-121

Constants. i, 3-122

Example of VALUE ARRAY Declaration 3-123
Statements

ACCEPT Statement. 4-1

ACCEPT Parametersccvvivivnennnn. 4-1

Examples of ACCEPT Statement 4-2

ASSIGNMENT Statement 4-3

Arithmetic Assignment 4-3

Arithmetic Variable 4-4

Arithmetic Type Transfer Variable 4-4

Arithmetic Attribute, 4-6

Arithmetic Update Assignment 4-7

Examples of Arithmetic Assignment.......... 4-8

Array Reference Assignment 4-8

Array Reference Variable P 4-8

Array Designator 4-9

Examples of Array Reference Assignment 4-10

Boolean Assignment 4-10

Boolean Variables 4-10

Boolean Attributes. 4-11

Boolean Update Assignment. 4-12

Examples of Boolean Assignment 4-12

Complex Assignmentoy 4-12

Complex Update Assighnment 4-13

Examples of Complex Assighment 4-13

Mnemonic Attribute Assignment 4-13

Pointer Assignment i 4-14

Pointer Variable 4-14

Examples of Pointer Assignment 4-14

Procedure Reference Array Assignment 4-15

Procedure Reference Array Element 4-15

Example of Procedure Reference Array Assignment 4-16

String Assignment i e 4-16

String Concatenation Operator 4-17

Examples of String Assignment 4-17

Task Assignment it 4-18

ATTACH Statement o, 4-19

XV

Contents

Attachmentof Interrupts 4-19
Examples of ATTACH Statement 4-19
AWAITOPEN Statement 4-20
PARTICIPATE Option oo e e 4-21
CONNECTTIMELIMIT Optiont 4-21
Examples of AWAITOPEN Statement 4-21
CALL Statement i iiiinnnnn. 4-22
Coroutinesoo it 4-22
Example of CALL Statement 4-23
CANCEL Statement s, 4-23
Delinking a Library from a Program 4-23
Example of CANCEL Statement 4-24
CASE Statement. i, 4-24
Unnumbered Statement List 4-24
Numbered Statement List 4-25
Examples of CASE Statement 4-26
CAUSE Statement 4-26
Causesof Events. 4-26
Examples of CAUSE Statement 4-27
CAUSEANDRESET Statement 4-27
Relationship to CAUSE Statement............... 4-27
Examples of CAUSEANDRESET Statement......... 4-28
CHANGEFILE Statement.......... et 4-28
Directory Element 4-29
Example of CHANGEFILE Statement 4-30
CHECKPOINT Statementc0vviun. 4-30
DispositionOption. it 4-31
RestartingaJob 4-32
LOCKING . .ottt e e e 4-34
Rerunning Programs 4-35
Example of CHECKPOINT Statement............. 4-35
CLOSE Statement. i 4-35
CLOSEOptionso vt i it i e i e 4-36
PORTCLOSEOptiono vii i i 4-37
Examples of CLOSE Statement 4-38
CONTINUE Statement0viiiuinn 4-39
Coroutingsoov it i 4-39
Examples of CONTINUE Statement 4-40
DEALLOCATE Statement. 4-40
Deallocationwith Arrays 4-40
Examples of DEALLOCATE Statement 4-41
DETACH Statement vt 4-41
Detaching Interrupts it 4-41
Example of DETACH Statement 4-41
DISABLE Statement ot 4-42
Disabling Interrupts 4-42
Examples of DISABLE Statement 4-42
DISPLAY Statement, 4-42
Pointer and String Expressions 4-43
Examples of DISPLAY Statement................ 4-43
DOStatement i 4-43
Evaluation of Boolean Expression 4-43

Xvi 8600 0098-000

Contents

8600 0098-000

Examples of DO Statement.

ENABLE Statement ..

Enabling Interruptso oL
Examples of ENABLE Statement

ERASE Statement. . ..
EVENT Statement ...
EXCHANGE Statement

Conditions for Execution of the EXCHANGE Statement
Examples of EXCHANGE Statement

FILL Statement
Initialization

Examples of FILL Statement

FIX Statement

FOR-DOLOOP. ...t o it
FOR-STEP-UNTILLoopo
FOR-STEP-WHILE Loop.oovuv
FOR-WHILELoOp . oo vt i e
Examples of FOR Statement

FREE Statement.

..............................

FREE Statement as a Boolean Function
Examples of FREE Statement

FREEZE Statement. . .

..............................

FREEZE Statements in Library Procedures
Examples of FREEZE Statement

GO TO Statement
Bad GO TO

Examples of GO TO Statement

I/O Statement.
Normal |/O .
Direct I/O . .
IF Statement
Forms of the

..............................
..............................

IF Statement

Examples of IF Statement.

INTERRUPT Statement

INVOCATION Statement

LIBERATE Statement .

Execution of Implicit CAUSE Statement
Examples of LIBERATE Statement.

LOCK Statement
Lock Options

Examples of LOCK Statement

MERGE Statement . . .

MergeOptionst
Example of MERGE Statement
MESSAGESEARCHER Statement
Finding a Requested Message.
MESSAGESEARCHER Statement as an Arithmetic

Function

4-44
4-44
4-44
4-45
4-45
4-46
4-46
4-47
4-47
4-47
4-48
4-48
4-49
4-49
4-49
4-50
4-51
4-51
4-51
4-52
4-53
4-54
4-55
4-55
4-55
4-56
4-56
457
4-57
4-58
4-58
4-58
4-59
4-59
461
461
4-62
4-63
463
463
4-64
4-64
4-64
464
4-65
4-65
4-65
466
466
4-67

Xvii

Contents

Example of MESSAGESEARCHER Statement 4-68

MLSACCEPT Statement 4-68
MLSACCEPT Used for Data Input 4-68
MLSACCEPT Used as a Boolean Function 4-69
Additional MLSACCEPT Options 4-69
Example of MLSACCEPT Statement 4-69

MLSDISPLAY Statement 4-70

MLSTRANSLATE Statement 4-71
MLSTRANSLATE Options.o vvn... 4-71
MLSTRANSLATE as an Arithmetic Function 4-72

MULTIPLE ATTRIBUTE ASSIGNMENT Statement 4-73
AssignmentofValues. 4-73
Examples of MULTIPLE ATTRIBUTE ASSIGNMENT

Statement e 4-73

ONStatement 4-74
Enabling ON Statements 4-74
FaultListo 4-74
Fault Information Part 4-75
Fault Stack History 4-76
FaultAction i, 4-77
Disabling ON Statement. 4-77
Examples of ON Statement. 4-78

OPEN Statement, 4-79
OPENOptions i iien 4-79
Examples of OPEN Statement. 4-80

POINTER Statement 4-81
POINTER StatementOptions 4-81
Temporary Storage, 4-81

Stack-Source-Pointer 4-82
Stack-Destination-Pointer. 4-82
Stack-Auxiliary-Pointer. 4-82
Stack-Integer-Counter 4-83
Stack-Test-Character 4-83
Stack-Source-Operand 4-83

PROCEDURE INVOCATION Statement 4-83
Calling Procedures with Parameters 4-84
Examples of PROCEDURE INVOCATION Statement . . 4-85

PROCEDURE REFERENCE ARRAY Statement 4-85
Using Procedure Reference Arrays 4-85
Example of PROCEDURE REFERENCE ARRAY

Statement i i, 4-86

PROCESS Statement 4-87
Initiation of an Asynchronous Process 4-87
Critical BIoCKottt it i i e e 4-87
Examples of PROCESS Statement 4-88

PROCURE Statement 4-88
Testing the Available State e 4-88
Sharing Resources Among Programs 4-89
Examples of PROCURE Statement 4-89

PROGRAMDUMP Statement 4-89
PROGRAMDUMP Optionscvu... 4-90
Programdump Destination Options 4-91

Xviii 8600 0098-000

Contents

Relation to OPTION Task Attribute 4-92
Retrieval of Binding Information 4-92
Examples of PROGRAMDUMP Statement 4-92
READ Statement 4-93
FilePart i 4-94
I/O Option or CarriageControl 4-94
Subfile Specification, 4-95
Core-to-CorePart 4-96
Core-to-Core Blocking Part 4-97
Formatand ListPart 4-98
FormattedRead 4-98
BinaryRead i 4-99
ArrayRowRead 4-100
Action Labels or Finished Event 4-101
Data Format for Free-field Input 4-102
Free-field DataFormat 4-102
Fields ... i 4-103
Unquoted String 4-103
Number........ ... i, 4-103

Quoted String 4-104

HexString 4-104

Slash (/). ..o 4-104

Asterisk (*).o oot 4-104
Examplesof Fields 4-104

Examples of READ Statement. 4-106
REMOVEFILE Statement. 4-107
DirectoryElement 4-107
REMOVEFILE Statement as a Boolean Function 4-107
Family Substitution 4-107
Example of REMOVEFILE Statement 4-107
REPLACE Statement 4-108
Source PartList, 4-108
Source Part Combinations 4-111
String Literal Source Parts 4-111
<stringliteral> 4-112

<string literal> FOR <arithmetic expression> .. 4-113
<string literal> FOR <arithmetic expression>

WORDS.........ciiii i 4-114
Arithmetic Expression Source Parts 4-115
<arithmetic expression> 4-115
<arithmetic expression> FOR <arithmetic
EXPreSSION= i i i e, 4-116
<arithmetic expression> FOR <arithmetic
expression>WORDS. 4-116
<arithmetic expression> FOR <arithmetic
expression>DIGITS 4-117
<arithmetic expression> FOR * DIGITS....... 4-118
<arithmetic expression> FOR <arithmetic
expression>SDIGITS 4-118
<arithmetic expression> FOR * SDIGITS...... 4-119
<arithmetic expression> FOR <count part>
NUMERIC i 4-119

8600 0098-000 Xix

Contents

<arithmetic expression> FOR * NUMERIC 4-120
Pointer Expression (<source>) Source Parts 4-121
<source> FOR <arithmetic expression> 4-121

<source> FOR <arithmetic expression> WORDS 4-121
<source> FOR <arithmetic expression> WITH

<translatetable>.................... 4-122
<intrinsic translate table> 4-122
<translate table identifier> 4-122
<subscripted variable> 4-123
<source> WITH <picture identifier> 4-123
Source Parts with Boolean Conditions 4-123
<source> WHILE <relational operator>
<arithmetic expression> 4-124
<source> UNTIL <relational operator>
<arithmetic expression> 4-124
<source> WHILE IN <truth set table> 4-125
<source> UNTIL IN <truth set table> 4-125
<source> FOR <count part> WHILE <relational
operator> <arithmetic expression> 4-125
<source> FOR <count part> UNTIL <relational
operator> <arithmetic expression> 4-126
<source> FOR <count part> WHILE IN <truth
settable> 4-126
<source> FOR <count part> UNTIL IN <truth
settable> 4-127
OtherSourceParts 4-127
<pointer-valued attribute> 4-127
‘ <stfing expression> 4-128
Examples of REPLACE Statement 4-128
REPLACE FAMILY-CHANGE Statement 4-129
Specification of Valid Stations 4-130
Examples of REPLACE FAMILY-CHANGE Statement .. 4-130
REPLACE POINTER-VALUED ATTRIBUTE Statement 4-130
Specification of the Simple Source. 4-131
Examples of REPLACE POINTER-VALUED ATTRIBUTE
Statement i e 4-132
RESET Statement. i 4-132
WAIT and WAITANDRESET Statements. 4-133
Examples of RESET Statement 4-133
RESIZE Statement 4-133
Array Row Resize Parameters 4-134
Special Array Resize Parameters 4-136
Multidimensional Array Designator 4-137
Event Array Designator 4-137
String Array Designator 4-137
Run-Time Error Messages.oovvvnnenn... 4-137
Examples of RESIZE Statement. 4-138
RESPOND Statement ot 4-139
RESPOND Statement Options. 4-140
Examples of RESPOND Statement 4-140
REWIND Statement, 4-141
Effects on Designated Files 4-141
Example of REWIND Statement 4-141

XX 8600 0098-000

Contents

8600 0098-000

RUN Statement
Initiating Procedures

Examples of RUN Statement

SCAN Statement i
Scan Part Combinations

Scan Parts Without CountParts

WHILE <relational operator> <arithmetic
EXPrESSION™> . . . it
UNTIL <relational operator> <arithmetic

EXPreSSION™> i e

WHILE IN <truthsettable>

UNTIL IN <truthsettable>...............

Scan Parts with CountParts
FOR <count part> WHILE <relational operator>

<arithmetic expression>

FOR <count part> UNTIL <relational operator>

<arithmetic expression>

FOR <count part> WHILE IN <truth set table>

FOR <count part> UNTIL IN <truth set table> .

Examples of SCAN Statement

SEEK Statement. i
SEEK Statement as a Boolean Function

- Example of SEEK Statement

SET Statement
SET Statement Options

Examples of SET Statement

SORT Statement. i,
Output Option. . .o v oo i e
InputOption i

Numberof Tapes. i

Compare Procedureo v iin i iiinnennn
RecordLength

Size Specifications. o

Restart Specifications

Arraysin Sort Procedures oL

Examples of SORT Statement

SPACE Statement. i
SPACE Statement as a Boolean Function

Examples of SPACE Statement
SWAPStatement
Variable Type Matching

Example of SWAP Statement

THRU Statement i,
Value of the Arithmetic Expression

Examples of THRU Statement

WAIT Statement i,
WAIT Statement Options

Examples of WAIT Statement
WAITANDRESET Statement

WAITANDRESET Statement as an Arithmetic Function

Examples of WAITANDRESET Statement

WHEN Statementt

4-145

4-145
4-145
4-146
4-146
4-146
4-147
4-147
4-147
4-147
4-148
4-148
4-148
4-149
4-150
4-150
4-151
4-151
4-152
4-154
4-154
4-155
4-155
4-155
4-156
4-156
4-156
4-158
4-158
4-158
4-159
4-159
4-160
4-161
4-161
4-162
4-162

XXi

Contents

Characteristics of the Time Option. 4-162

Examples of WHEN Statement 4-163

WHILE Statement vt 4-163
Execution of the WHILE Statement 4-163

Examples of WHILE Statement 4-164
WRITEStatement., 4-164
Write FilePart. i 4-165

<|/O option or carriage control> 4-165

Write Subfile Specification 4-166
FormatandListPart 4-167
FormattedWrite 4-167

BinaryWrite i 4-167

Array RowWrite 4-168

Free-FieldPart 4-169

Example of Free-Field Part 4-170

Action Labels or Finished Event 4-170

Examples of WRITE Statement 4-171

ZIP Statement 4-171
ZIPWITH <array row>o ii i i i it 4-172

ZIP WITH <filedesignator>................... 4-172

Examples of ZIP Statement 4-172

Section 5. Expressions and Functions

EXPressionsttt 5-1
Arithmetic Expressionc.cciiivn. 5-2
Precision of Arithmetic Expressions 5-2
ArithmeticOperators 5-3
Precedence of Arithmetic Operators 5-4

Types of Resulting Values 5-5

Arithmetic Primaries 5-6

Bit Manipulation Expression 5-8
Concatenation Expression. 5-8
Partial Word Expression 5-11
Boolean Expression i e 5-12
Operators in Boolean Expressions 5-12
Logical Operators 5-13

ISand ISNT Operators 5-13

Relational Operators 5-14
Precedence in Boolean Expressions 5-14
Boolean Primaries 5-15
Boolean Value. 5-16

Arithmetic Relation 5-16

Complex Relation 5-16
StringRelation 5-17

Pointer Relation 5-17

String Expression Relation 5-18

Table Membership. 5-19
CaseExpressionciiiiiinninnnnnas 5-20
Complex Expression. e 5-21
Conditional Expressionot 5-23

XXii 8600 0098-000

Contents

8600 0098-000

Designational Expression . .’

Function Expression. .

Arithmetic Function Designator

Boolean Function

Designator

Complex Function Designator
Pointer Function Designator
String Function Designator

Pointer Expression . . .
String Expression . . .
Intrinsic Functions

Intrinsic Names by Type Returned
Arithmetic Intrinsic Names

Boolean Intrinsic
Complex Intrinsic

Names
Names

Pointer Intrinsic Names
String IntrinsicNames
Intrinsic Function Descriptions

ABS Function . .
ACCEPT Stateme

)

ARCCOS Function .. .o o v i e i e e

ARCSIN Function

......................

ARCTAN Functiono v i i i
ARCTANZ2 Functiono v i i i i i
ARRAYSEARCH Function

ATANH Function

AVAILABLE Functiono v n
BOOLEAN Function.o v in

CABS Function .
CCOS Function .
CEXP Function .

.......................

CHANGEFILE Statement
CHECKPOINT Statement
CHECKSUM Function

CLN Function . .

CLOSE Statement
COMPILETIME Function
COMPLEX Functiono
CONJUGATE Function

COS Function . .
COSH Function .
COTAN Function
CSIN Function .
CSQRT Function
DABS Function .

.......................

DALPHAFunctionivi i iin i

DAND Function.

DARCCOS Functioncovviv i,
DARCSINFunctiono,
DARCTAN Function
DARCTAN2 Function.o\

5-24
5-25
5-26
5-26
5-26
5-27
5-27
5-27
5-30
5-33
5-33
5-33
5-36
5-36
5-36
5-36
5-37
5-37
5-37
5-37
5-37
5-37
5-37
5-38
5-39
5-39
5-39
5-39
5-39
5-39
5-39
5-40
5-40
5-40
5-40
5-40
5-41
5-41
5-41
5-41
5-41
5-41
5-42
5-42
5-42
5-42
5-42
5-43
5-43
5-43
5-43
5-43

Xxiii

Contents

DECIMAL Functionovvvnn.. D 543

DELINKLIBRARY Function 5-44
DELTAFunction, 5-44
DEQVFunctioncovviiinvnnnennnn. 5-44
DERF Function 5-45
DERFCFunction, 5-45
DEXPFunction 5-45
DGAMMA Function, 5-45
DIMP Functiont 5-45
DINTEGER Function 5-46
DINTEGERT Function 5-46
DLGAMMA Function 5-46
DLNFunction......... ..., 5-46
DLOGFunction v i iii i i i e 5-47
DMAX Function..........coivivnnan.. 5-47
DMINFunctiono, 5-47
DNABS Function.o, 5-47
DNORMALIZE Functionovvuvns. 5-47
DNOTFunction. ..., 5-47
DORFunction.coiiiviinn. 5-48
DOUBLE Function. 5-48
DROPFunction.c i, 5-48
DSCALELEFT Function [5-49
DSCALERIGHT Function 5-49
DSCALERIGHTT Function 5-50
DSIN Function i 5-50
DSINH Function oo, 5-50
DSQRTFunctioncvvieii e 5-50
DTANFunction i 5-50
DTANH Function. i i et 5-50
ENTIER Function 5-51
ERF Function, 5-51
ERFCFunction, 5-51
EXPFunction i, 5-52
FIRSTFunction.......... ..., 5-52
FIRSTONE Functionot 5-52
FIRSTWORD Functioncovv vt 5-52
FIXStatement. . ..ot vt ieeenenn 5-53
FREE Statement 5-53
GAMMAFunctionciiivin, 5-53
HAPPENED Function. 5-53
HEAD Function. i, 5-53
IMAG Function 5-54
INTEGER Function 5-54
INTEGERT Function 5-55
LENGTH Function.cviiiivvnn, 5-55
LINENUMBER Function. 5-55
LINKLIBRARY Function 5-55
LISTLOOKUP Function.covvvnnt 557
LNFunction 5-57
LNGAMMA Function oot 5-57
LOG Functionovviivnnn. e 5-58

XXiv 8600 0098-000

Contents

MASKSEARCH Function 5-58
MAX Function. ii i it i i 5-58
MESSAGESEARCHER Statement 5-58
MIN Function i iii i, 5-58
MLSACCEPT Statement 5-59
MLSTRANSLATE Statement 5-59
NABS Function 5-59
NORMALIZE Function 5-59
OFFSET Function v 5-59
ONESFunction 5-59
OPEN Statement. 5-60
POINTER Function 5-60
POTFunction ...t 5-61
PROCESSID Functionccoevvvn... 5-62
RANDOM Function v 5-62
READ Statement. 5-62
READLOCK Function covviivn .. 5-62
REAL Functiono .. 563
REMAININGCHARS Function 5-63
REMOVEFILE Statement 5-64
REPEAT Function, 5-64
SCALELEFT Function.o 5-64
SCALERIGHT Function 5-65
SCALERIGHTF Function. 5-65
SCALERIGHTT Function.covvn. 5-65
SECONDWORD Functionoovvviennn 5-66
SEEK Statement 5-66
SETACTUALNAME Functionovvvn 5-66
SIGN Function 5-67
SINFunction 5-67
SINGLE Function v 5-67
SINHFunction 5-67
SIZEFunction.........oii i 5-68
SPACE Statement 5-68
SQRT Functiono iv it i e 5-68
STRING Function 5-68
TAILFunction........... . 5-70
TAKE Function i, 5-71
TANFunction v 5-71
TANH Function.o v 5-71
TIMEFunctioncoiiiiiiiinnnn 5-71
TRANSLATE Functioncvvvivnn.n 5-75
VALUE Functioniviivin . 5-75
WAIT Statement 5-76
WAITANDRESET Statement 5-76
WRITE Statement 5-76

Section 6. Compiling Programs

Files Used bythe Compiler 6-1
InputFiles i, 6-3

8600 0098-000 XXV

Contents

CARDFilecoiviiiiiiiiiiiiinn 6-3
SOURCEFileo 6-3
INCLUDEFilesovv it 6-4
HOSTFile i 6-4
INFOFileo 6-4
OutputFiles i, 6-4
CODEFile ... vttt iee e 6-4
NEWSOURCE File.ovvt 6-5
LINEFile e 6-5
ERRORSFilecviiiiiiie . 6-5
XREFFILEFile....... .ot 6-6
INFOFilecii i 6-6
Source Record Format 6-6
Compiler Control Options 6-7
CompilerControlRecords 6-7
Option Descriptions it 6-12
ASCIIOption.o 6-12
AUTOBIND Optiono 6-13
BCLOption i 6-14
BEGINSEGMENT Optionovvu... 6-14
BINDOption.oviiiii.., 6-15
BINDEROptionccciivnnn.. 6-15
CHECKOption ..., 6-15
CODEOptionovvv i i 6-16
DONTBIND Optioncvviiiii i 6-16
DUMPINFOOptioncoviininn . 6-16
ENDSEGMENT Option.ovuns. 6-17
ERRLISTOption ..., 6-17
EXTERNAL Optionccivnnn. 6-17
FORMAT Option, 6-18
GOTOOption.civiiiiiiii e 6-18
HOST Option, 6-18
INCLNEW Optionoiiii i n 6-19
INCLSEQOptionovvviiiiin i 6-19
INCLUDE Option. iei e 6-19
INITIALIZEOption oo i i i 6-21
INSTALLATION Option.cv e vv v 6-21
INTRINSICS Option oo v i i i s 6-21
LEVELOption........... ... 6-22
LIBRARYOption o i ii i 6-22
LIMIT Option or ERRORLIMIT Option 6-22
LINEINFOOptionccovvinnnn. 6-23
LISTOptioncciiiiiiinnnnn. 6-23
LISTDELETED Optioncvvvnnn. 6-23
LISTINCLOption., 6-24
LISTOMITTED Optioncovvvivin e 6-24
LISTPOptioncciiiviiiiinnnn. 6-24
LOADINFOOption.ovvviiiiinnnnnn 6-24
MAKEHOST Optioncoiiiinn 6-26
MCPOptionoiiiiii i 6-28
MERGEOption, 6-28
NEWOption.coviiiiiinnn., 6-29

XXVi 8600 0098-000

Contents

NEWSEQERR Option. 6-29
NOBCLOptioncciviiinnnnnn. 6-29
NOBINDINFOOption.ovvv it 6-30
NOSTACKARRAYS Option 6-30
NOXREFLIST Option 6-30
OLDRESIZEOption, 6-31
OMITOptiono, 6-31
OPTIMIZE Option i i i 6-31
PAGEOption i, 6-31
PARAMCHECK Optiono e s 6-32
PURGEOptiono 6-32
SEGDESCABOVE Optioncovvit 6-32
SEGSOption i 6-32
SEPCOMPOption, 6-33
SEQOption 6-34
SEQERROption it 6-35
SEQUENCE BASE Option.ov vt 6-35
SEQUENCE INCREMENT Option 6-35
SHARING Option it it 6-35

DONTCAREt 6-36

PRIVATE i 6-36

SHAREDBYALL 6-36

SHAREDBYRUNUNIT 6-36
SINGLEOptionot 6-36
STACKOption. vv vt 6-37
STATISTICS Option .« ..« vt i e s 6-37
STOPOptionot 6-38
TADSOptionot i 6-38
TARGET Option, 6-39
TIMEOption. 6-41
USEOptiono, 6-41
USEROption 6-41
VERSION Option. . ..o ovv i i e e e e 6-42
VOIDOption.ttt 6-43
VOIDTOptionov vt s 6-43
WARNSUPROptionovv.. .. 6-43
WRITEAFTER Option.o iv et 6-44
XDECS Option ... vvvviiiinininennnn. 6-44
XREFOption.coiviiiin... 6-44
XREFFILES Option 6-46
XREFSOption. i i i 6-46
SOptON ... e 6-46

Section 7. Compile-Time Facility

Compile-Time Variable, 7-1
Compile-Time Identifier. 7-2
Compile-Time Statements 7-2
BEGINStatement, 7-3
DEFINE Statementt 7-3
FORStatement 7-3

8600 0098-000 XXvii

Contents

Xxviii

Section 8.

Section 9.

IFStatement. i 7-4
INVOKE Statement 7-4
LET Statement iiienn. 7-4
THRU Statement 7-5
WHILE Statement 7-5
Extension to the Define Declaration 7-5
Compile-Time Compiler Control Options 7-6
CTLISTOption ...t 7-6
CTMONOption.oi it e 7-6
CTTRACEOptionviiiiiiiiin s 7-6
LISTSKIPOption . . oo oo e i e e e e e e e e e s 7-6
Library Facility
Operating the Components of the Library Facility 8-1
Library Programs.o e 8-1
CallingProgramst i i e 8-2
Library Directories and Templates 8-2
Library Initiationo ... 8-3
Linkage Provisions.cvii i 8-4
Discontinuing Linkage, 8-5
ErrorHandling iy 8-5
Creating Libraries 8-6
Referencing Libraries 8-7
Library Attributes 8-7
Entry Point Type Matching 8-10
ParameterPassing.y 8-11
Library Examples e e 8-12
Library: OBJECT/FILEMANAGER/LIB. 8-12
Calling Program #1...... e 8-14
Library: OBJECT/SAMPLE/LIBRARY 8-15
Library: OBJECT/SAMPLE/DYNAMICLIB 8-16
CallingProgram #2, 8-18
Library: MCPSUPPORT oo i i e 8-19
Internationalization
Accessing the Internationalization Features. o-1
Using the Ccsversion, Language, and Convention
Default Settings 9-2
Understanding the Hierarchy for Default Settings o-3
Understanding the Components of the MLS Environment 9-3
Coded Character Sets and Ccsversions 9-4
Mapping Tablesut. 9-5
DataClassesciviiiievnnrennns 9-6
Text Comparisonsccovvininenns 9-6
Providing Support for Natural Languages o-7
Creating Messages for an Application Program . . o-8
Creating Multilingual Messages for Translation . . o-8
8600 0098-000

Contents

8600 0098-000

Providing Support for Business and Cultural

Conventions

Using the Date and Time Features.
Using the Numeric and Currency Features
Using the Page Size Formatting Features

Summary of CENTRALSUPPORT
Library Calls

Parameter Categories .

Input Parameters

Input Parameters

Library Procedures.

.......................

with Type Values

Output Parameters

Result
Procedure Descriptions
CCSINFO

.......................

CCSTOCCS_ TRANS TABLE .. \ovvvereeennnn..
CCSTOCCS TRANS TABLE ALTvvevnn.n.
CCSTOCCS TRANS TEXT © .\ vvieeeeaennn
CCSVSN NAMES NUMS. ... ovveneraennns.

CENTRALSTATUS . . .
CNV.ADD

CNV_CONVERTCURRENCY STAR
CNV_CONVERTDATE STAR.,
CNV_CONVERTNUMERIC STAR
CNV_CONVERTTIME STARot

CNV_CURRENCYEDIT

CNV_CURRENCYEDITTMP

CNV_DELETE......
CNV_DISPLAYMODEL
CNV_FORMATDATE .

.......................

CNV_FORMATDATETMPot

CNV_FORMATTIME .

CNV_FORMATTIMETMPt

CNV_FORMSIZE
CNVINFO........
CNV_MODIFY.
CNV_NAMES
CNV_SYMBOLS

CNV_SYSTEMDATETIMEot v i
CNV_SYSTEMDATETIMETMP ouut

CNV_TEMPLATE ...
CNV_VALIDATENAME

COMPARE_TEXT USING_ORDER_INFO

GET CS_MSG.. ...

MCP_BOUND_LANGUAGES
VALIDATE_NAME_RETURN_NUM
VALIDATE_NUM_RETURN_NAME

VSNCOMPARE_TEXT
VSNESCAPEMENT . .

VSNGETORDERINGFOR ONE_TEXT.............

VSNINFO.........
VSNINSPECT_TEXT .
VSNORDERING_INFO

XXiX

Contents

VSNTRANSTABLEt 9-98
VSNTRANS TEXT ..ot ii i iie i e 9-100
VSNTRUTHSET et 9-102
Explanationof ErrorValues 9-104

Appendix A. Run-Time Format-Error Messages

FreefieldInput i A-1
Formatted OQutputttt A-1
FormattedInput A-2

Appendix B. Reserved Words

Reserved Words List B-2
Reserved Words by Type B-6
Type 1l ReservedWords oot B-6
Type2 ReservedWords iii i B-7
Type3 ReservedWordst B-10

Appendix C. Data Representation

Field Notation C-1
Character Representation C-1
Character Values and Graphics C-4
Default Character Type. oo i i i i e Cc-12
Signs of Numeric Fields C-14
One-Word Operand.0 s C-14
RealOperand C-14
IntegerOperandiiiiieinnnnnn C-15
BooleanOperandcccivvienennn C-16
Two-WordOperand. i iiiiinnnennnn C-17
Double-Precision Operand C-17
ComplexOperandccciiiiiinnnns C-19
Type Coercion of One-Word and Two-Word Operands C-19
Data Descriptors and Pointer C-20

Appendix D. Understanding Railroad Diagrams

What Are Railroad Diagrams? D-1

Constantsand Variables D-2

Constraints.t iii e D-2

Following the Paths of a Railroad Diagram D-5

Railroad Diagram Examples with Sample Input D-6

GloSSarY e 1

XXX 8600 0098-000

Contents

8600 0098-000 XXXi

XXXii 8600 0098-000

4-1.
4-2.
4-3.
4-4,
4-5,
4-6.
4-7.

5-1.
5-2.

5-3.
5-4.

c-10.

8600 0098-000

Translate Table Indexing it i i e e e
Truth Set Test oo e

DO-UNTILLOOP « v vttt vt e e ittt ettt e e e e
FOR-DO Loop........... e e e e
FOR-STEP-UNTILLOOD . ..ttt i i e e e e i e
FOR-STEP-WHILE LOOP .+« v o e e et e e e e e e
FOR-WHILE LOOp .« v v vt et e e
THRU LOOD .o vttt e e e e e e e
WHILE-DO LOOP .« v v oo e e e e e e

Exponentiation: Meaning of Y**Z
Mathematical Notation,
Types of Values Resulting from Arithmetic Operations
Results of Logical Operatorst

Compiler Files . ..o i i i e e e e e e e e
Parameter Passing Rules0,

Field Notation, [28:5] i i i e
EBCDIC Characters (8-bit Fields)
ASCIl Characters (8-bit Fields)
BCL Characters (6-bit Fields)
Hexadecimal Characters (4-bit Fields)
Real Operand i i i i e et
Integer Operand it e e
Boolean Operand ittt i e e e
First Word, Double PrecisionOperand
Second Word, Double PrecisionOperand,

Railroad Constraintscv it ittt e it e e

8-11

C-1
C-2
C-3
C-3
Cc-4
C-14
C-15
C-16
C-17
Cc-18

Xxxiii

XXXiv 8600 0098-000

8600 0098-000

Array Parameters e e
Procedure Reference Array Parameters.
Procedure Parametersttt
Simple Variable Parameters i
String Parameters e e
File Parameterso it i it e e e e

Functional Grouping of CENTRALSUPPORT Library Procedures
Error Results for Internationalization

XXXV

XXXVi

8600 0098-000

Section 1
Program Structure

Program Unit

A program unit is a group of ALGOL constructs that can be compiled as a whole. The
following diagram shows the elements that can be included in an ALGOL program.

<program unit>

block . |
—<compound statemen§>_—|
-<level 2 procedure

.

[separate ;;rocedure>-J—-E .
L<global par‘t>J H

<block>

— BEGIN —<declaration list>— ; —<statement 1ist>— END ——]

<declaration list>

—L<dec1 ar;tion | - |

<statement list>

—E<state|;1ent |

<compound statement>

— BEGIN —<statement 1ist>— END !

<level 2 procedure>

—-<procedure declaration |

<global part>

— [—<declaration list>—] I

<separate procedure>

—<procedure declaration i

8600 0098-000

1-1

Program Structure

Elements of an ALGOL Program

The simplest valid ALGOL program is a BEGIN/END pair. The BEGIN/END pair

can enclose a list of declarations, a list of modules, or a list of statements. If the
BEGIN/END pair is preceded by a procedure heading, the entire program is a procedure,
which can be typed or untyped and can have one or more parameters.

Program units can be blocks, compound statements, level 2 procedures, or separate
procedures that have a lexical (lex) level of three or greater and that can have global
declarations.

A block is a statement that groups one or more declarations and statements into a logical
unit by using a BEGIN/END pair. A compound statement is a statement that groups
one or more statements into a logical unit by using a BEGIN/END pair. A compound
statement is a block without any declarations.

The definitions of a compound statement and a block are recursive: both compound
statements and blocks are made, in part, of statements. A statement can itself be a

compound statement or a block.

The structures of compound statements and blocks are illustrated in the following:

Compound Statements

BEGIN BEGIN
<statement>; <statement>;
<statement>; <statement>;
BEGIN
<declaration>;
. BEGIN
<statement>; <statement>;
END <statement>;
END;
END;
<statement>;
END
8600 0098-000

Program Structure

Blocks

BEGIN
<declaration>;
<declaration>;

<declaration>;
<statement>;
<statement>;

<statement>;
END

BEGIN
<declaration>;
<declaration>;
<statement>;
BEGIN

<declaration>;
<statement>;

END;

BEGIN
<statement>;
<statement>;
<statement>;

END;

END

A program unit that is a separate procedure is typically bound to a host program to

produce a more complete program.

The <global part> construct allows global identifiers to be referenced within a separate
procedure. Any program unit that has a global part is valid only for binding to a host.

A program unit can be preceded, but not followed, by a remark.

A compound statement is executed in-line and does not require a procedure entrance
and exit. A block, however, is executed like a procedure and requires a procedure
entrance and exit. Entering a block requires extra processor resources; entering a

compound statement does not.

Examples

Compound Statement

BEGIN

DISPLAY("HI THERE");

DISPLAY ("THAT'S ALL FOLKS");
END.

Block
BEGIN
REAL X;
X := 100;
END.

8600 0098-000

Program Structure

Level 2 Procedure

PROCEDURE S;

BEGIN

REAL X;

X := SQRT(4956);
END.

Separate Procedure with Global Part

[REAL S;

ARRAY B[@:255];

FILE LINE;]

REAL PROCEDURE Q3

BEGIN
Q := S*B[4];
WRITE(LINE,/,"DONE");

END.

According to the syntax, the last statement of a block or compound statement is not
followed by a semicolon (;). However, in the above examples (and throughout this
manual), the last statement is always followed by a semicolon. This is valid because the
statement before the END is the null statement.

Scope

The scope of an identifier is the portion of an ALGOL program in which the identifier can
successfully be used to denote its corresponding values and characteristics.

In one part of an ALGOL program, an identifier can be used to denote one set of values
and characteristics, while in another part of the program, the same identifier can be used
to denote a different set of values and characteristics.

For example, in one block the identifier EXAMPLE IDENT can be declared as a REAL
variable. That is, the identifier can be used to store single-precision, floating-point
arithmetic values. Such an identifier could be assigned the value 3.14159. In another
block of the same program, EXAMPLE _IDENT can be declared as a STRING

variable. In this block, EXAMPLE IDENT could be assigned the value ALGOL IS A
HIGH-LEVEL, BLOCK-STRUCTURED LANGUAGE.

Although EXAMPLE IDENT can be of type real and of type string in the same program,
within a specific block EXAMPLE IDENT has only one type associated with it. In
general, the scope of an identifier is always such that within a given block, the identifier
has associated with it at most one set of values and characteristics.

The scope of an identifier is described by rules that define which parts of the program
are included by the scope, which parts of the program are excluded by the scope, and the
requirements for uniqueness placed on the choice of identifiers. These general rules are
described as follows.

8600 0098-000

Program Structure

Local Identifiers

An identifier that is declared within a block is referred to as local to that block. The
value or values associated with that identifier inside the block are not associated with
that identifier outside the block. In other words, on entry to a block, the values of local
identifiers are undefined; on exit from the block, the values of local identifiers are lost.
An identifier that is local to a block is global to blocks occurring within the block. When a
block is exited, identifiers that are global to that block do not lose the values associated
with them. The properties of global identifiers are described more completely below.

Global Identifiers

An identifier that appears within a block and that is not declared within the block, but
is declared in an outer block, is referred to as global to that block. A global identifier
retains its values and characteristics as the blocks to which it is global are entered and
exited.

As the following program illustrates, an identifier can be local to one block but global to
another block.

BEGIN
FILE PRTR(KIND = PRINTER);
REAL A;
A := 4.2 @ -1; % FIRST STATEMENT OF OUTER BLOCK
BEGIN
LIST L1 (A);
INTEGER A;
LIST L2 (A);
A := 33 % FIRST STATEMENT OF INNER BLOCK
WRITE (PRTR, */, L1);
WRITE (PRTR, */, L2);
END; % OF INNER BLOCK
A := A*A;
WRITE (PRTR, */, A);
END. % OF PROGRAM

In the preceding example, the identifier A that is declared REAL is global to the inner
block. The A declared as type INTEGER in the inner block is local to the inner block, so
when the inner block is exited, the integer A and its value, 3, are lost. Within the scope
of integer A, a reference to A is a reference to the integer A, not to the global, real A. At
the time the declaration for list L1 is compiled, the declaration for local A has not been
seen, so list L1 contains the global, real A. However, the list L2 contains the local, integer
A. The A referenced in the outer block is the A that was declared REAL and assigned
the value 4.2 @ -1. The result of the first WRITE statement is A=0.42. The result

of the second WRITE statement is A=3. The result of the third WRITE statement is
A=0.1764, which equals 4.2 @ -1 * 4.2 @ -1.

Global identifiers are used in inner blocks for the following reasons:

e To carry values that have been calculated in an outer block into the inner block
e To carry a value calculated inside the block to an outer block

8600 0098-000 1-5

Program Structure

e To preserve a value calculated within a block for use in a later entry to the same
block

e To transmit a value from one block to another block that does not contain and is not
contained by the first block

1-6 8600 0098-000

Section 2
Language Components

Language components are the building blocks of ALGOL. They consist of basic symbols,
such as digits and letters, and symbol constructs, which are those groups of basic symbols
that are recognized by the ALGOL compiler.

<language component>

——I:<basic symbo1l
<symbo]l cons,’cr‘u<:t>—-I

<symbol construct>

<define invocation

<identifier>
<number>

<remark>

<reserved word>———
<string literal>

Basic symbols, identifiers, numbers, remarks, and string literals are described under
separate headings in this section.

Because the define invocation is closely linked to the DEFINE declaration, the define
invocation is explained under “DEFINE Declaration” in Section 3, “Declarations.”

Reserved words are described and listed in Appendix B, “Reserved Words.”

Basic Symbol

<basic symbol>
letter I
E<d1’ git>———
<delimiter>—

<letter>

Any one of the uppercase (capital) letters A through Z.

<digit>

Any one of the Arabic numerals 0 through 9.

8600 0098-000 2-1

Language Components

<delimiter>

<bracket
E<operator'>—
space>——

<bracket>

L LB ——

<parameter delimiter>

—)"<letter string>"(

<letter string>

Any character string not containing a quotation mark (").

<operator>

<arithmetic operator
<logical operator>—M—————
relational operator>———
<string concatenation operator>—

&

<arithmetic operator>

<logical operator>

NOT
AND
OR

!
EQV
IMP

8600 0098-000

Language Components

<relational operator>

<string relational operator i
IS
ISNT

<string relational operator>

LEQ |
<= —q
LSS —
< —

EQL —

[
v

[
)
m

o
|

I
\'
i

<string concatenation operator>

C o |

<space>

&

—L<singl e space¥|— |

<single space>
One blank character.

Only uppercase letters are permitted. Lowercase letters are specifically disallowed.
Individual letters do not have particular meanings except as used in pictures and
formats.

Digits are used to form numbers, identifiers, and string literals.

Delimiters include operators, spaces, and brackets. An important function of these
elements is to delimit the various entities that make up a program. Each delimiter

has a fixed meaning, which, if not obvious, is explained in this manual in the syntax of
appropriate constructs. Basic symbols that are words, such as some delimiters and
operators, are reserved for specific use in the language. A complete list of these words,
called reserved words, and details of the applicable restrictions are given in Appendix B,
“Reserved Words.”

Reserved words and basic symbols are used, together with variables and numbers, to
form expressions, statements, and declarations. Because some of these constructs place
programmer-defined identifiers next to delimiters composed of letters, these identifiers
and delimiters must be separated. Therefore, a space must separate any two language
components of the following forms:

8600 0098-000 2-3

Language Components

e Delimiter composed of letters

e Identifier

e Boolean value

e Unsigned number

Aside from these requirements, the use of a space between any two language

components is optional. The meanings of the two language components are not affected
by the presence or absence of the space.

Identifier

<identifier>

—<letter |
|—L/62\ <letter |

_E<digit>~—

Identifiers have no intrinsic meaning. They are names for variables, arrays, procedures,
and so forth. An identifier must start with a letter, which can be followed by any
combination of letters, digits, and underscore characters ().

The scopes of identifiers are described in Section 1, “Program Structure.”
Examples

Valid Identifiers

A

I

B5

YSQUARE

EQUITY

RETURN_RATE

D2R271GL

TEST_1
Invalid Identifiers Reason
1776 Does not begin with a letter.
2BAD Does not begin with a letter.
$ $ is not an allowed character.'
XY “."" is not an allowed character.
NET GAINS Blank spaces are not allowed.
NO. “." is not an allowed character.
_TEST Does not begin with a letter.
BEGIN Reserved word.

2-4 8600 0098-000

Language Components

Number

<number>

—l—-————j—<unsigned number |
<sign>

<sign>

+
L. '
<unsigned number>

<decimal number B {
<exponent part>—
<exponent part

<decimal number>

<unsigned integer |
1:<dec1'ma1 fraction>—

<decimal fraction

<unsigned integer>

.
— L digit

€

<decimal fraction>

— . —<unsigned integer |

<exponent part>

— 0 <integer
T e i

<integer>

——L———T<uns1‘gned integer i
<sign>

No space can appear within a decimal number. All numbers that do not contain the
double-precision exponent delimiter “@@” are considered to be single-precision

numbers. :
Examples
Unsigned Integers Decimal Fractions Decimal Numbers
5 5 69.
69 .69 .546

continued

8600 0098-000 2-5

Language Components

continued
Unsigned Integers Decimal Fractions Decimal Numbers
.013 3.98
25
Integers Exponent Parts Unsigned Numbers
1776 @8 99.44
-62256 @-06 @-11
+548 @+54 1354.543@48
@@16 .1864@4
Valid Numbers
a
+545627657893
1.75@-46
-4.31468
-02
.375
Invalid Numbers Reason
50 00.5@8 8 Blank spaces are not allowed.
1,505,278 Commas are not allowed.
@63.4 Exponent part must be an integer.
1.667E-01 0 E is not allowed for exponent part.

Number Ranges

The sets of numbers that can be represented in ALGOL are symmetrical with respect to
zero; that is, the negative number corresponding to any valid positive number can also be
expressed in the language and the object program.

The largest and smallest integers and numbers that can be represented are as follows
(decimal versions are approximate):

e Any integer between plus and minus 549755813887 = 8**13-1 =
4"007FFFFFFFFF", inclusive, can be represented in integer form.
e For single-precision numbers:

— The largest, positive, normalized, single-precision number that can be
represented is 4.31359146674@68 = (8**13 - 1) * 8**63 = 4"IFFFFFFFFFFF".

— The smallest, positive, normalized, single-precision number that can be
represented is 8.75811540204@-47 = 8**(-51) = 4"3F9000000000".

e Zero and numbers with absolute values between the largest and smallest values
given above can be represented as single-precision real numbers.

2-6 8600 0098-000

Language Components

e For double-precision numbers:

— The largest, positive, normalized, double-precision number that can be
represented is 1.94882838205028079124467@@29603 = (8**13 - 8**(-13)) *
8**32767 = 4A"1FFFFFFFFFFFFFFFFFFFFFFE".

— The smallest, positive, normalized, double-precision number that can be
represented is 1.9385458571375858335564@@-29581 = 8**(-32755) =
4"3F9000000000FF8000000000".

e Zero and numbers with absolute values between the largest and smallest values
given above can be represented as double-precision numbers.

Compiler Number Conversion

The ALGOL compiler can convert into internal format a maximum of 24 significant
decimal digits of mantissa in double precision. The effective exponent, which is the
explicit exponent value following the “@@” sign minus the number of digits to the right
of the decimal point, must be less than 29604 in absolute value. For example, the final
fractional zero cannot be specified in the smallest, positive, normalized, double-precision
number shown above: -29581 — (23 fractional digits) = —-29604. Leading zeros are not
counted in determining the number of significant digits. For example, 0.0002 has one
significant digit, but 1.0002 has five significant digits.

The compiler accepts any value that can be represented in double precision (not more
than 24 significant decimal digits) as an unsigned number. If this unsigned number does
not contain an exponent part with “@@” (specifying a double-precision value), then the
single-precision representation of that value is used. If the value represented by the
significant digits of such an unsigned number, when disregarding the placement of the
decimal point, is greater than 549755813887, then some precision is lost if the unsigned
number is converted to single precision.

Exponents

The exponent part is a scale factor expressed as an integer power of 10. The exponent
part @@ <integer> signifies that the entire number is a double-precision value.

If the form of the unsigned number used includes only an exponent part, a decimal
number of 1 is assumed. For example, @-11 is interpreted as 1@-11.

Remark

<remark>

end remark !
<comment remarE::{
<escape remark

8600 0098-000 2-7

Language Components

<end remark>

Any sequence of letters, digits, and spaces not containing the reserved words END,
ELSE, or UNTIL.

<comment remark>

— COMMENT —<comment characters>— ; |

<comment characters>

Any sequence of EBCDIC characters not containing a semicolon (;).

<escape remark>

— % —<escape text |

<escape text>
Any sequence of EBCDIC characters.

Remarks are provided as methods of inserting program documentation throughout an
ALGOL source file.

The end remark can follow the language component END. The compiler recognizes the
termination of the end remark when it encounters one of the reserved words END,
ELSE, or UNTIL, or any nonalphabetic, nonnumeric EBCDIC character. Defines are not
expanded within an end remark.

The comment remark is delimited by the word COMMENT at the beginning and a
semicolon (;) at the end. The comment remark can appear between any two language
components except within editing specifications.

Because remarks, string literals, and define invocations are language components, a
comment remark is not recognized within a string literal, a define invocation, or another
remark. Comment remarks can contain the dollar sign ($), but the comment remark
must not contain a dollar sign as the first nonblank character on a source record. Ifa
dollar sign is the first nonblank character on a source record, the compiler interprets the
source record as a compiler control record.

The percent sign (%) preceding escape text in an escape remark can follow any language
component that is not contained in editing specifications. The escape remark begins
with the percent sign and extends to the beginning of the sequence number field of the
record. The compiler does not examine the escape remark. When the percent sign that
precedes an escape remark is encountered, the compiler skips immediately to the next
record of the source file before continuing the compilation.

2-8 8600 0098-000

Language Components

Examples
The following program illustrates some syntactically correct uses of the remark.

BEGIN
FILE F(KIND=PRINTER COMMENT;);
FORMAT COMMENT; FMT COMMENT; (A4,16);
PROCEDURE P(X,COMMENT;Y,Z);

REAL X,Y COMMENT; ,Z; % PERCENT SIGN CAN BE USED HERE
X =Y + COMMENT; Z; % HERE TOO

IF COMMENT; 7 > 5 THEN
WRITE (F,<"0K">);
IF 4 COMMENT; > 2 THEN
WRITE (F,<"0K">);
IF 8 > 5 THEN
WRITE COMMENT; (F,<"0K">);
END OF PROGRAM.

The following program illustrates some invalid uses of the remark.

BEGIN
FILE F(KIND=PRINTER);
FORMAT FMT(13,F18.3 COMMENT; ,A4);
ARRAY A[#:99];
REAL X;
FORMAT ("ABC", % CANNOT BE USED. "DEE");
WRITE (F,<"INVALID USE" COMMENT;>);
REPLACE POINTER(A) BY "ABCD COMMENT;EFGHIJ";
X := "AB,COMMENT;C";
COMMENT CANNOT BE USED HERE COMMENT; EITHER;
END.

String Literal

<string literal>

&.

—L<s1'mp1e string Titeral 1 f

<simple string literal>

—r——<binary code>— " —<binary string>— " |
F<quaternary code>— " —<quaternary string>— " ——
—<octal code>— " —<octal string>— " —
-<hexadecimal code>— " —<hexadecimal string>— " —

" —<EBCDIC string>— "

—<EBCDIC code
-<BCL code>— " —<BCL string>— "
L-<ASCII code>— " —<ASCII string>— "

8600 0098-000 2.9

Language Components

<binary code>

1 I
10 —
12 —
120
13 —
130
14 —
140
16 —
160 —|
17 —
170
18 —|
189 —!

<binary string>

N .
L1

_l 1

<quaternary code>

2 i
— 20
— 24
— 240
— 260 —
— 270 —
L 280

<quaternary string>
P— |
1
2
3
<octal code>
3 |
30
36
360

<octal string>

—L<octal character I =

2-10 8600 0098-000

Language Components

<octal character>

NOOTERWN =X

<hexadecimal code>

<hexadecimal string>

—L<hexadecima1 character | |

<hexadecimal character>

MMOOTITOONIINLRWN R

Y A I O A

FTTTTTTTTTTTTT

<EBCDIC code>

C 3, '

<EBCDIC string>

.

any <EBCDIC character> except quotation mark —]————(

<EBCDIC character>

Any one of the 256 possible EBCDIC characters.

8600 0098-000 2-11

Language Components

<BCL code>

C &, '

<BCL string>

—<EBCDIC string !

<ASCII code>

C 2 !

<ASCII string>

.

any <ASCII character> except quotation mark —]————l

<ASCII character>

Any one of the 128 possible ASCII characters.

Character Size

Strings can be composed of binary (1-bit) characters, quaternary (2-bit) characters, octal
(8-bit) characters, hexadecimal (4-bit) characters, BCL (6-bit) characters, ASCII (7-bit
in 8-bit format) characters, or EBCDIC (8-bit) characters. The word formats of various
character types are described under “Character Representation” in Appendix C “Data
Representation.”

String Code

2-12

The string code determines the interpretation of the characters between the quotation
marks (") of a string literal. The string code specifies the character set and, for strings

of less than 48 bits, the justification. The first digit of the string code specifies the
character set in which the source string is written. The next nonzero digit (if any)
specifies the internal character size of the string to be created by the compiler. If no
nonzero digit is specified, the internal size is the same as the source size. If the internal
size is different from the source size, the length of the string must be an integral number
of internal characters. For example, the string literal 48"C1C2C3C4" is an EBCDIC
string expressed in terms of hexadecimal characters.

If the string literal contains fewer than 48 bits, a trailing zero in the string code specifies
that the string literal is to be left-justified within the word and that trailing zeros are to
fill out the remainder of the word.

If the string literal contains fewer than 48 bits, the absence of a trailing zero in the string

code specifies that the string literal is to be right-justified within the word and that
leading zeros are to fill out the remainder of the word.

8600 0098-000

Language Components

If the string literal contains 48 or more bits, the presence or absence of a trailing zero in
the string code has no effect.

If the string code is not specified, the source string and the internal representation of
the string are of the default character type. For more information, refer to “Default
Character Type” in Appendix C, “Data Representation.”

String Length

The maximum length permitted for a simple string literal is 256 characters; the
maximum length permitted for a string literal is 4095 characters. However, when a
string literal is used as an arithmetic primary, it must not exceed 48 bits in length.

Internally, a string literal of 48 bits or less is represented in the object code as an 8-bit,
16-bit, or 48-bit literal. A string literal more than 48 bits long is stored in a pool array
created by the compiler. An internal pointer carries the character size and address of the
string within the pool array.

BCL Strings

BCL strings can contain any EBCDIC character. However, any EBCDIC character that

does not have a BCL equivalent is translated by the compiler into a BCL question mark
(36"14").

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor; such as a BCL string literal more than 96 bits long,
causes the program to get a compile-time warning message.

ASCII Strings

The ASCII string code can be used only with ASCII strings composed entirely of
characters that have corresponding EBCDIC graphics. This is because the compiler
recognizes only ASCII characters that have corresponding EBCDIC graphics.

The compiler translates each ASCII character into an 8-bit character. The rightmost
seven bits are the ASCII representation of that character; the leftmost bit is 0.

ASCII characters that are not in the EBCDIC character set must be written as a
hexadecimal string in which each pair of hexadecimal characters represents the internal
code of one ASCII character, right-justified with a leading 0 bit.

Quotation Mark

The quotation mark (") can appear only as the first character of a simple string literal.
Strings with internal quotation marks must be broken into separate simple strings

by using three quotation marks in succession. For example, the string literal "ABC"
represents the string "ABC, and the string literal "A""BC" represents the string A"BC.

8600 0098-000 2-13

Language Components

Dollar Sign
String literals can contain the dollar sign ($). The dollar sign must not be the first

nonblank character on a source record. If a dollar sign is the first nonblank character on
a source record, the compiler interprets the source record as a compiler control record.

2-14 8600 0098-000

Section 3
Declarations

A declaration associates certain characteristics and structures with an identifier. In
an ALGOL program, every identifier must be declared before it is used. The compiler
ensures that subsequent usage of an identifier in a program is consistent with its
declaration.

In this section, the ALGOL declarations are listed and discussed in alphabetical order. In
many cases, the entire syntax diagram for a declaration is divided into smaller segments,
and each segment is discussed in turn. Each declaration is accompanied by examples of
its use.

ARRAY Declaration

An ARRAY declaration declares one or more identifiers to represent arrays of specified
fixed dimensions. After an array has been declared in an ARRAY declaration, values
can be stored in and retrieved from the elements of the array by the use of subscripted
variables, which contain the array identifier and a subscript list.

<array declaration>

ARRAY >
L LONG dL OWN i |—<array c]ass>J

&

H)

—,
e—Tr—q'dentifm [—<bound pair Tist>—] |

1
<array row equivalence 1

LONG Arrays

The LONG specification affects only array rows. It specifies that the array is not to be
paged regardless of its length. The length of most LONG arrays is limited by the length
of an overlay row that the operating system has been configured to use. Attempting to
allocate, or to use the RESIZE statement to create, an array larger than the limit causes
termination of the program at run time.

Normally, an array row longer than a certain threshold is automatically subdivided, or
segmented, at run time into pages. Each page is of a fixed length, except the last, which
can be shorter. The page size is a property of the machine on which the program is run;
it is always a power of two and is never less than 256 words. The paging threshold is
maintained by the operating system on which the program is run. The operating system
enforces a limit on the size of a LONG array; the maximum length of an array is 2**20-1
words, and it is never less than max(page_size,1024) words.

The array size at which an array row is automatically paged can be changed with the
system command SEGARRAYSTART. For more information on the SEGARRAYSTART

8600 0098-000 3-1

Declarations

command, see the A Series System Commands Operations Reference Manual. Arrays
smaller than 1024 words are never paged.

When LONG specification is designated, the maximum size of an array row is
determined by the overlay row size of the system, which is specified at cold-start time.

OWN Arrays

If an OWN array is declared, the array and its contents are retained on exit from the
block in which the array is declared and are available on subsequent reentry into the
block.

OWN arrays are allocated only once, regardless of the number of times entry is made
into the block in which the array is declared. If the OWN array is declared with
variable bounds, these bounds are evaluated once when the array is allocated, and the
affected dimension retains these bounds for the remainder of the program execution.
For information on resizing the array, refer to “RESIZE Statement” in Section 4,
“Statements.”

An OWN array remains unreferenced from the time the program begins execution until
the first execution of a statement that references the array is encountered. Once such a
statement is encountered, the array is referenced, or touched for the remainder of the
program execution.

An array that is not an OWN array remains unreferenced from the time the program
enters the block in which the array is declared until the first execution of a statement
that refers to the array. Once such a statement is encountered, the array is touched
until the program exits the block.

Arrays not declared as OWN arrays are deallocated on exit from the block in which they
are declared and are reallocated on every entry into the block in which the arrays are
declared.

Identifiers

<array identifier>

An identifier that is associated with an array in an ARRAY declaration.

<character array identifier>

An array identifier, array reference identifier, direct array identifier, or value array
identifier that is declared with a character type.

<word array identifier>

An array identifier, array reference identifier, direct array identifier, or value array
identifier that is declared with a word type.

8600 0098-000

Declarations

Array Class

<array class>

—[<word type {
<character type>J

<word type>

BOOLEAN]
COMPLEX —
DOUBLE —
INTEGER —
REAL —

<character type>

ASCIT |
BCL ——
EBCDIC —
HEX ——

Arrays declared in the same ARRAY declaration are of the same array class. If the
array class is omitted, a REAL array is assumed. Arrays not declared with a character
type are called word arrays. Arrays declared with a character type are called character
arrays. Word and character arrays can be passed as parameters and used as array rows.
Character arrays can be used as simple pointer expressions.

For character arrays, the actual storage area allocated is the number of whole words
sufficient to contain the specified number of characters. The last portion of the

last word in the storage area can be referenced by using pointer operations, even if
this portion is beyond the valid subscript range. For example, if array A is declared
EBCDIC ARRAY AJ0:3], the characters corresponding to A[4] and A[5] can be
referenced by using a pointer operation.

Note: The BCL character type is not supported on all A Series systems.
The appearance of a BCL construct that can cause the creation of a
BCL descriptor; such as a BCL array, causes the program to get a
compile-time warning message.

Element Width

The element width of an array is the number of bits used to contain each element of the
array. The element width is determined by the array class, as follows:

Array Class Element Width

DOUBLE, COMPLEX 96 bits (double word)
INTEGER, REAL, 48 bits (single word)
BOOLEAN

EBCDIC, ASCII 8 bits (6 characters per word)
BCL 6 bits (8 characters per word)
HEX 4 bits (12 characters per word)

8600 0098-000 3-3

Declarations

Within the operating system, arrays are manipulated by means of descriptors; each
descriptor specifies an element width appropriate to the array class. Single-word and
double-word descriptors are used for word arrays; 4-bit, 6-bit, and 8-bit descriptors are
used for character arrays.

Note: 6-bit descriptors (BCL) are not currently supported.

Because complex and double array elements are composed of two 48-bit words, the two
words are allocated contiguously. The layout of a complex array is as follows: the real
part of the first element, the imaginary part of the first element, the real part of the
second element, the imaginary part of the second element, and so on. Similarly, the
layout of a double array is as follows: the first word of the first element, the second word
of the first element, the first word of the second element, the second word of the second
element, and so on.

For information on the internal representation of double and complex operands, refer to
“Two-Word Operand” in Appendix C, “Data Representation.”

Bound Pair List

3-4

<bound pair list>

€ ’
—L<bound pair |

<bound pair>

—<lower bound>— : —<upper bound —]

<lower bound>

—<arithmetic expression]

<upper bound>

—<arithmetic expression !

The subscript bounds for an array are given in the first bound pair list following the
array identifier. The bound pair list gives the lower and upper bounds of all dimensions,
in order from left to right. In all cases, upper bounds must not be less than their
associated lower bounds.

Arithmetic expressions used as array dimension bounds are evaluated once (from left
to right) on entering the block in which the array is declared. These expressions can
depend only on values that are global to that block or passed in as actual parameters.
The results of the arithmetic expressions are evaluated as integers. Arrays declared in
the outermost block must use constant bounds or constant expression bounds.

The maximum value of lower bound is 131,071; the minimum value of lower bound is
-131,071.

8600 0098-000

Declarations

Original and Referred Arrays

Every array identifier that is declared with a bound pair list is an original array, which is
distinct from all other original arrays.

There are three other ways to associate an identifier with an array: array row
equivalence, array reference assignment, and array specification in a PROCEDURE
declaration. In each of these cases, the identifier refers to the same data as an original
array. Such an identifier is called a referred array. An array row equivalence or array
reference assignment can cause an array identifier of one array class to refer to data in
an original array of another array class.

Dimensionality

The dimensionality (number of dimensions) of an original array is the number of bound
pairs in the bound pair list with which the array is declared. Arrays cannot have more
than 16 dimensions.

The size (number of elements) of each dimension of an array declared with a particular
bound pair is given by the following expression:

<upper bound> - <lower bound> + 1

The maximum size of a dimension is 2%*20-1 elements.

Array Row Equivalence

<array row equivalence>
—<identifier>— [—<lower bound>—] — = —<array row>——mM————|

An array row equivalence causes the declared array identifier to refer to the same data
as the specified array row. That array row can be an original array or another referred
array. The declared identifier is an equivalent array.

The size of the declared array is determined by the size and element width of the array
row and the element width for the array class of this declaration. For example, assume
that Sa and Wa are the size and element width of the array row, and that Wea is the
element width for the equivalent array. The size of the equivalent array, Sea, is then the
following:

Sea := (Sa * Wa) DIV Wea

Because of the truncation implicit in the DIV operation, Sea * Wea might be less than
Sa * Wa. In this case, indexing the equivalent array by Sea + <lower bound> causes
an invalid index fault. Nevertheless, pointer operations that use the equivalent array
can access the entire area of memory allocated to the original array to which the array
identifier ultimately refers; the memory area can hold more than Sea elements of width
Wea.

8600 0098-000 3-5

Declarations

The array row equivalence enables the program to reference the same array row with
two or more identifiers. Each identifier can reference the same data with different

type, character type, or lower bound specifications. For example, in the following
program, both I[2] and R[0] contain the value 25.0 after the assignment I/2] : = 25.234 is
executed. However, after the assignment R/0] : = 25.234 is executed, both I[2] and R[0]
contain the value 25.234.

BEGIN
REAL ARRAY R[@:9];
INTEGER ARRAY I[2] = R; % Array row equivalence. The INTEGER
% array I refers to the same data as
% the REAL array R.
I[2] := 25.234;
R[@] := 25.234;
END.

The array row equivalence part cannot appear in an ARRAY declaration that declares an
OWN array. For example, the following declaration is invalid:

OWN ARRAY A[0] = B

An array declared with an array row equivalence part is an OWN array if and only if the
array to which it is equated is an OWN array.

Note: There are subtle restrictions on the correct declaration and use of an
array row equivalence in which the array row of the declaration is
a row of an array reference, because the default state of an array
reference variable is uninitialized.

If the array reference is one-dimensional and has the same element width as the new
array, then the two identifiers become synonyms. Whenever the array reference variable
is assigned a value, the equivalent array describes the same data.

If the array reference is multidimensional and/or has a different element width than the
new array, the array row equivalence is established from the value of the array reference
variable at the time the program enters the block containing the array row equivalence
declaration. Later assignments to the array reference variable do not affect the array
row equivalence. Therefore, in order for the declaration to be useful, the array reference
variable must have been declared and initialized in a scope global to the block declaring
the array row equivalence.

Array Row

<array row>

—E<one-dimensiona1 array nameJ !
<array name>—<row selector

An array row is a one-dimensional array designator.

3-6 8600 0098-000

Declarations

<one-dimensional array name>

An <array name > whose identifier was declared with one dimension.

<array hame>

<array identifier |
E§<direct array identifier>——

<array reference identifier>—
<value array identifier>——

Row Selector

<row selector>

— [

*__] |

—J;<subscript>~— , —J—J

<subscript>

—<arithmetic expression i

A row selector is the limiting case of a subarray selector, with only one asterisk.

Examples of ARRAY Declarations

The following example declares DOG, a four-dimensional array made up of
6 *26 *7* 13 = 14196 integer elements:

INTEGER ARRAY DOG[@:5,8:25,1:7,4:16]

The following example declares STUB, a one-dimensional OWN array made up of 10 real
elements:

OWN REAL ARRAY STUB[@:9]

The following example declares two real arrays: GROUP_REAL, which is a
one-dimensional array, and CAD, which is a two-dimensional array:

REAL ARRAY GROUP REAL[@:17], CAD[408:50@,1:50]

The following example declares the EBCDIC array GROUP_EBCDIC. Array row
equivalence causes GROUP_EBCDIC to refer to the same data as the previously
declared real array GROUP_REAL. Note that the element width of GROUP_REAL is
48 bits, whereas the element width of GROUP_EBCDIC is 8 bits. This means that a
reference to a single element in GROUP_REAL refers to 48 bits, and a reference to a
single element in GROUP_EBCDIC refers to 8 bits.

EBCDIC ARRAY GROUP_EBCDIC[@] = GROUP_REAL[*]

8600 0098-000 3-7

Declarations

The following example declares XRAY, a one-dimensional array. Because no array class
is specified, the array class XRAY is of type REAL. The lower bound is the integerized
value of X + Y + Z, and the upper bound is the integerized value of 3 * A + B.

ARRAY XRAY [X+Y+Z:3%A+B]

The following example declares BIG_ARRAY, a one-dimensional array made up of 10,000
Boolean elements. Because BIG_ARRAY is declared a LONG array, the array is not
paged (segmented). Because it is not paged, the array occupies 10,000 contiguous words
in memory.

LONG BOOLEAN ARRAY BIG_ARRAY[@:9999]

The following example declares SEGARRAY, a one-dimensional array made up of 50,001
real elements. Because SEGARRAY is not declared a LONG array and the array row is
longer than 1024 words, SEGARRAY is automatically divided at run time into segments
that are 256 words long.

ARRAY SEGARRAY [#:50000]
The following example declares C, a two-dimensional array made up of 3 * 61 = 183
complex elements. Note that the element width of a complex array is 96 bits (two

words).

COMPLEX ARRAY C[@:2,0:60]

ARRAY REFERENCE Declaration

3-8

An ARRAY REFERENCE declaration is used to establish an array reference variable.
The array reference assignment statement can then be used to assign an array or part of
an array to this variable.

<array reference declaration>

ARRAY — REFERENCE o
L DIRECT J |—<arr‘ay c1alss>—I

&

—

->——L<i dent%f;r:J— [—<lower bounds>—] |

Following an array reference assignment, any subsequent use of the array reference
identifier acts as a reference to the array assigned to it. For more information on array
reference assignment, see “Array Reference Assignment” in Section 4, “Statements.”

If the array class is not specified as COMPLEX, the array reference variable can be
declared as DIRECT. This declaration enables the array reference variable to be used in
direct I/O operations.

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a BCL array reference, causes the program to get a
compile-time warning message.

8600 0098-000

Declarations

If an array class is not specified, a REAL array is assumed.

Identifiers

<array reference identifier>

An identifier that is associated with an array reference in an ARRAY REFERENCE
declaration.

<direct array reference identifier>

An identifier that is associated with an array reference that is declared as DIRECT in an
ARRAY REFERENCE declaration.

Lower Bounds

<lower bounds>

<.

’
—L<constant arithmetic expression | |

The number of dimensions of the array reference variable is determined by the number
of lower bounds in its declaration. No more than 16 dimensions are allowed. For more
information on lower bounds, see “ARRAY Declaration” earlier in this section.

The initial state of an array reference variable is uninitialized. Any attempt to use an
uninitialized array reference variable as an array results in a fault at run time.

Examples of ARRAY REFERENCE Declarations

The following example declares REFARRAY, an array reference variable with a lower
bound of 3. Because an array class is not specified, REFARRAY is a real array reference
variable.

ARRAY REFERENCE REFARRAY[3]
The following example declares DIRREFARRAY, a direct, real array reference variable
with a lower bound equal to the value of N. Because this array reference variable is
declared to be DIRECT, it can be used in direct I/O operations.

DIRECT ARRAY REFERENCE DIRREFARRAY[N]
The following example declares two complex array reference variables. CREFlisa
one-dimensional array reference variable with a lower bound of 0 (zero), and CREF2 is

three-dimensional with lower bounds of 0, 10, and 10.

COMPLEX ARRAY REFERENCE CREF1[@], CREF2[@,10,10]

8600 0098-000 3.9

Declarations

BOOLEAN Declaration

A BOOLEAN declaration declares simple variables that can have Boolean values of
TRUE or FALSE.

<Boolean declaration>

———— BoOLEAN -L-E<identifier ' |
OWN <equation par“c>—J

A simple variable declared with the OWN specification retains its value when the
program exits the block in which the variable is declared. The value of that variable is
again available when the program reenters the block in which the variable is declared.

<Boolean identifier>

An identifier that is associated with the BOOLEAN data type in a BOOLEAN
declaration.

Equation Part

<equation part>

—<identifier>— = —<identifier |

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier. This action is called address
equation. An identifier can be address-equated only to a previously declared local
identifier or to a global identifier. The first identifier must not have been previously
declared within the block of the equation part. An equation part is not allowed in the
global part of a program.

Address equation is allowed only among INTEGER, REAL, and BOOLEAN variables.
Because both identifiers of the equation part have the same address, altering the value
of either variable affects the value of both variables. For more information, see “Type
Coercion of One-Word and Two-Word Operands” in Appendix C, “Data Representation.”

The OWN specification has no effect on an address-equated identifier. The first
identifier of an equation part is declared with the OWN specification only if the second
identifier of the equation part is also declared with the OWN specification.

Boolean Simple Variable Values

3-10

The TRUE or FALSE value of a Boolean simple variable and the value of any other
Boolean operand depend only on the low-order bit (bit zero) of the word. Each of the
48 bits of a Boolean simple variable contains a Boolean value that can be interrogated or
altered by using the partial word part or concatenation.

When a Boolean simple variable is allocated, it is initialized to FALSE, a 48-bit word with
all bits equal to 0 (zero).

8600 0098-000

Declarations

Refer to Appendix C, “Data Representation,” for additional information on the internal
structure of a Boolean operand as implemented on A Series systems.

Examples of BOOLEAN Declarations

The following example declares BOOL as a Boolean simple variable.

BOOLEAN BOOL
The following example declares DONE and ENDOFIT as Boolean simple variables.
Because they are declared as OWN, these simple variables retain their values when the
program exits the block in which the simple variables are declared.

OWN BOOLEAN DONE, ENDOFIT
The following example declares FLAG and BINT as Boolean simple variables, and
address-equates BINT to the previously declared simple variable INTGR. The variables
BINT and INTGR share the same address.

BOOLEAN FLAG, BINT = INTGR

COMPLEX Declaration

A COMPLEX declaration declares a simple variable that can have complex values.

<complex declaration>

< ’
—E——j— COMPLEX <identifier !
OWN

<complex identifier>

An <identifier > that is associated with the COMPLEX data type in a COMPLEX
declaration.

Complex Variables

Complex variables allow for the storage and manipulation of complex values in a
program. The interpretation of complex values is the usual mathematical one. The real
and imaginary parts of complex values are always stored separately as single-precision
real values.

Because a real value is a complex value with an imaginary part equal to 0 (zero), the set
of real values is a subset of the set of complex values. Therefore, arithmetic values can
be assigned to complex variables, but complex values cannot be assigned to arithmetic
variables.

8600 0098-000 3-11

Declarations

A simple variable declared to be OWN retains its value when the program exits the block
in which it is declared. The value of that variable is again available when the program
reenters the block in which the variable is declared.

Refer to Appendix C, “Data Representation,” for additional information on the internal
structure of a complex operand as implemented on A Series systems.

Examples of COMPLEX Declarations

The following example declares C1 and C2 as complex simple variables.

COMPLEX C1, C2
The following example declares CURRENT, VOLTAGE, and AMP as complex simple
variables. Because they are declared as OWN, these simple variables retain their values

when the program exits the block in which the simple variables are declared.

OWN COMPLEX CURRENT, VOLTAGE, AMP

DEFINE Declaration

3-12

The DEFINE declaration causes the compiler to save the specified text until the
associated define identifier is encountered in a define invocation. At that point, the
saved text is retrieved and compiled as if the text were located at the position of the
define invocation.

<define declaration>

e tH]
— DEFINE —<definition>— |

<definition>

—<identifier

= —<text>— # ———————|
L<foar'ma1 symbol pan‘1:>—J

<define identifier>

An identifier that is associated with text in a DEFINE declaration.

<text>
Any sequence of valid characters not including a free number sign (#) character.

Text is bracketed on the left by the equal sign (=) and on the right by the number

sign (#). The equal sign is said to be matched with the number sign. The text can be
any sequence of characters not containing a free number sign. A free number sign is one
that is not in a string literal, not in a remark, and not matched with an equal sign in a
define declaration within the text. The compiler interprets the first free number sign

as signaling the end of the text. That is, the first free number sign is matched with the
equal sign that started the text.

8600 0098-000

Declarations

Compiler control records occurring within the text are processed normally if the dollar
sign ($) is in column 1 or 2. If the dollar sign is in column 3 or beyond, a syntax error is
generated whenever the define is invoked.

Formal Symbol Part

<formal symbol part>

(—E—<forma1 ;ymb01>J—) |
—|: [—L<forma1 ;::ymbob—l—] J

<formal symbol>

—<identifier |

A define has two forms: simple and parametric. These forms are readily differentiated
because parametric defines have a series of parameters (called formal symbols) enclosed
in matching parentheses or brackets. The parentheses and the brackets have identical
meanings.

The formal symbols constitute the essential part of a parametric define. Formal symbols
function similarly to the formal parameters of a PROCEDURE declaration. When a
parametric define is invoked, wherever formal symbols appear in the text, a substitution
of the corresponding closed text of the define invocation is made before that part of the
text is compiled. References to formal symbols cannot appear outside the text of the
corresponding parametric define. No more than nine formal symbols are allowed in a
parametric define.

Define Invocation

A define invocation causes a define identifier to be replaced by the text associated with
the define identifier.

<define invocation>

L ces |
—<define identifier Cectunt toxt part>J i

<actual text part>

(-—E<actua'| "text>—) |
—[[i-<axc’cua11 text>——] -J

The parentheses and the brackets have identical meanings. These symbols are used
when a parametric define is invoked.

8600 0098-000 3-13

Declarations

3-14

<actual text>

Program text that cannot contain mismatched or unmatched parentheses, brackets, or
quotation marks, or any comma outside of these bracketing symbols.

The invocation of a parametric define causes the actual text to be substituted into the
positions in the text designated by the proper formal symbol.

The actual text need not be simple. As an example, assume you are using the following
DEFINE declaration:

DEFINE FORJ(A,B,C) = FOR J := A STEP B UNTIL C #

For this declaration, the following applies:
Define Invocation Expands to
FORJ(0,B*3,MAX(X,Y,Z)) FOR J := 0 STEP B*3 UNTIL MAX(X,Y,Z)
The actual text can be empty in a define invocation. In this case, all occurrences of the
corresponding formal symbol in the text are replaced by no text. For example, assume
you are using the following DEFINE declaration:
DEFINE F(M, N) = M + N #

For this declaration, the following applies:

Define Invocation Expands to Syntactically Correct
R:=F(, 1); R:= +1; Yes
R:=F(2,); R:=2+; No

A define identifier cannot be invoked as a part, rather than the whole, of a language
component such as a string literal or a number. For example, assume you are using the
following declarations:

EBCDIC STRING S;
DEFINE EBCDIC_STR = 8 #;

For these declarations, the following two statements are not interpreted by the compiler
to be equivalent:

Statement Syntactically Correct
S : = EBCDIC_STR"'ABC"; No
S := 8"ABC"; Yes

The invocation of define EBCDIC_STR is interpreted by the compiler as a whole
language component, specifically a number, and not as an EBCDIC code preceding a
quoted EBCDIC string. Thus, it appears that a number is being assigned to a string
variable, which is illegal, and the compiler flags the statement with a syntax error.

8600 0098-000

Declarations

As a further example, assume you are using the following declarations:

REAL R;
DEFINE ITEM = 15 #;

For these declarations, the following applies:

Statement Legal
R := ITEM; Yes
R := ITEM.30; No, because it is equal to R : =(15).30;, which is illegal.

In the following instances, the appearance of a define identifier does not cause the define
to be expanded:

e Defines are not expanded in an end remark, a comment remark, or an escape
remark.

e Defines are not expanded within quoted strings. For example, assume you are using
the following declaration:

DEFINE ONE = THE FIRST #;

For this declaration, the string ONE WEEK is not equivalent to the string THE
FIRST WEEK.

¢ Defines are not expanded within identifiers. For example, assume you are using the
following declaration:

DEFINE A = PREFIX #;

For this declaration, the identifiers A B and ABC are not expanded to PREFIX B
and PREFIXBC.

e Define identifiers are not always expanded when they occur in declarations. If
the define identifier occurs in a position where an identifier can appear, the define
identifier is not expanded. If the define identifier occurs in a position where an
identifier is not expected, the define identifier is expanded. The following examples
illustrate this rule:

DEFINE A = ARRAY #;
A B[2:10];
REAL A B[@:10];

A is expanded.

A can be interpreted as an identifier
in a REAL declaration. A is not
expanded. A syntax error results.

A is expanded.

A O° OF oF oF

EBCDIC A B[2:14];

e A define identifier is not expanded either in the format part of a FORMAT
declaration or in the editing specifications of a READ statement or WRITE
statement. Furthermore, if a FORMAT declaration or editing specifications are
located within the text of a parametric define, they cannot reference the formal
symbols of that define.

8600 0098-000 3-15

Declarations

e A define identifier is not expanded when used in place of a file or task attribute
mnemonic. Refer to the A Series File Attributes Programming Reference Manual
for file attribute mnemonics and the A Series Work Flow Language (WFL)
Programming Reference Manual for task attribute mnemonics. In the following
example, the define identifiers are not expanded in the FILE declaration or in the
VALUE function:

DEFINE NEVERUSED = NEWTASK #,
PRINTER = REMOTE #;

FILE F(KIND = PRINTER); % INTERPRETED AS PRINTER,
NOT REMOTE

o°

T.STATUS := VALUE(NEVERUSED);

o

INTERPRETED AS NEVERUSED,
NOT NEWTASK

Q\°

If the ALGOL compiler encounters a syntax error while compiling the combination of the
text, actual text part, and formal symbol part at the occurrence of a define invocation,
some or all of the expanded define is given along with the appropriate error message.

To avoid problems with expanding a define, particularly when an expression is passed
in as actual text, each occurrence of a formal symbol in the text of a parametric define
should be enclosed in parentheses. For example, consider the following program:

BEGIN
BOOLEAN BOOL;
DEFINE
LOGIC1(A,B) = A AND B #,
LOGIC2(A,B) = (A) AND (B) #;
BOOL := LOGICI(TRUE OR TRUE, FALSE); % INVOCATION OF LOGICI
BOOL := LOGIC2(TRUE OR TRUE, FALSE); % INVOCATION OF LOGIC2
END.

o

The assignment of a value to BOOL differs, depending on whether you invoke LOGIC1
or LOGICZ, as shown in the following table:

Invocation Evaluates As Value Assigned to BOOL
LOGIC1 BOOL := TRUE OR (TRUE AND FALSE); TRUE
LOGIC2 BOOL := (TRUE OR TRUE) AND (FALSE); FALSE

Passing an updating expression to a parametric define should be done cautiously.
Multiple uses of the corresponding formal symbol cause multiple updates. For example,
assume you are using the following DEFINE declaration:

DEFINE Q(E) = E + 2 * E #

For this declaration, the following applies:
Define Invocation Expands to
QX :=X+ 1) Xi=X+14+2*X:=X+1

3-16 8600 0098-000

Declarations

Examples of DEFINE Declarations
The following example declares BLANKIT as a define identifier:
DEFINE BLANKIT = REPLACE POINTER(LINEOUT) BY " " FOR 22 WORDS #

Where BLANKIT appears as an allowable define invocation, it is expanded to the
following when the program is compiled:

REPLACE POINTER(LINEOUT) BY " " FOR 22 WORDS #
The following example declares SEC as a define identifier with a formal symbol X:
DEFINE SEC(X) =1 / COS(X) #

If SEC(N) appears as an allowable define invocation, it is expanded to the following when
the program is compiled:

1/ COS(N)

The following example declares LENGTH as a define identifier with two formal symbols,
XandY

DEFINE LENGTH(X,Y) = SQRT(X**2 + Y**2)4

If LENGTH(3,4) appears as an allowable define invocation, it is expanded to the
following when the program is compiled:

SQRT(3%*2 + 4*%2)

DIRECT ARRAY Declaration

A DIRECT ARRAY declaration declares arrays that can be used in direct I/O operations.

<direct array declaration>

ARRAY >
L OWN i |—<array c'lass>—J

€ £l
-)——EL<1'dentif-1'e:—_—l— [—<bound pair 1ist>—] |
<

direct array row equivalence> |

— DIRECT

<.

<direct array identifier>

An identifier that is associated with a direct array in a DIRECT ARRAY declaration.

<direct array row equivalence>

—<identifier>— [—<lower bound>—] — = —<direct array row>—— —]

8600 0098-000 3-17

Declarations

<direct array row>

___[:<one-dimensiona1 direct array nalme>J |
<direct array name>—<row selector

<one-dimensional direct array name>

A direct array name whose identifier is declared with one dimension.

<direct array name>

—E<dir‘ect array identifier 1
<direct array reference 1'dent1’f1'er‘>J

Declaring Direct Arrays

A direct array can be a word array or a character array. Direct arrays of type COMPLEX
are not allowed.

Note: The BCL character type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a direct BCL array, causes the program to get a
compile-time warning message.

A direct array can be used in any way that a nondirect array can be used. However,
arbitrary use of direct arrays instead of normal arrays can seriously degrade overall
system efficiency.

The dimensionality of a direct array is the number of bound pairs in its declaration. No
more than 16 dimensions are allowed.

Note: There are subtle restrictions on the correct declaration and use
of a direct array row equivalence in which the array row of the
declaration is a row of an array reference, because the default state of
a direct array reference variable is uninitialized.

For more information on the OWN specification, array class, bound pair list, lower
bound, and row selector, see “ARRAY Declaration” earlier in this section. For
information on the direct array reference identifier, see “ARRAY REFERENCE
Declaration” earlier in this section.

A direct array has attributes that can be programmatically interrogated and altered
before, during, and after an actual I/O operation that uses the array.

Because a direct array can be used in performing direct I/O operations, a direct array is
automatically unpaged (nonsegmented). For more information on direct I/O operations,
see “I/O Statement” in Section 4, “Statements.”

Examples of DIRECT ARRAY Declarations

3-18

The following example declares DIRARY, a one-dimensional direct array. Because no
array class is specified, the array class of DIRARY is of type REAL.

8600 0098-000

Declarations

DIRECT ARRAY DIRARY[@:29]
The following example declares the direct integer array DIREQVARAY. Array row
equivalence causes the array DIREQVARAY to refer to the same data as the previously
declared direct real array DIRARY.

DIRECT INTEGER ARRAY DIREQVARAY[5] = DIRARY

DOUBLE Declaration

A DOUBLE declaration declares simple variables that can have double-precision values
(that is, 96-bit arithmetic entities).

<double declaration>

e Ll
DOUBLE —<ident] fier>—. '

|:()WN Bl

<double identifier>

An identifier that is associated with the DOUBLE data type in a DOUBLE declaration.

Declaration of Simple Variables
A simple variable declared to be OWN retains its value when the program exits the
block in which the variable is declared. That value is again available when the program
reenters the block in which the variable is declared.
When a double-precision simple variable is allocated, it is initialized to a double-precision
0 (zero), which is two 48-bit words with all bits equal to zero. Refer to Appendix

C, “Data Representation,” for additional information on the internal structure of a
double-precision operand as implemented on A Series systems.

Examples of DOUBLE Declarations
The following example declares DUBL, a double-precision simple variable.
DOUBLE DUBL

The following example declares three double-precision variables: BIGNUMBER,
GIGUNDOUS, and DUBLPRECISION.

DOUBLE BIGNUMBER, GIGUNDOUS, DUBLPRECISION

8600 0098-000 3-19

Declarations

DUMP Declaration

The DUMP declaration allows the display of the values of selected items during the
execution of a program.

<dump declaration>

— DUMP —L<fi1e identifier>— (——<dum;; list>—) —<control part>—‘——1

<dump list>

<simple variable I !
<array identifier;—_—!
<label identifier

The file identifier specifies the name of the file to which the displayed information is to
be written, and the dump list specifies the items whose values are to be displayed. The
following types of variables and arrays must not appear in the dump list:

e Arrays with multiple dimensions
e Character arrays
e String variables

e String arrays

Control Part

<control part>

—<Tabel identifier> '
I-—<1abe:1 counter modul us>—l E<dump pznr‘amete1r‘s>—l I

<label counter modulus>

— : —<unsigned integer |

<dump parameters>

|—<1abe1 counter‘>—-I I—-<bounds palrt>—J

<label counter>

—<simple variable |

<bounds part>
, —<lower limit B —]
I ,» —<upper Timit>—
s — » —<upper limit:

3-20 8600 0098-000

Declarations

<lower limit>

1

—<arithmetic expression

<upper limit>

—<arithmetic expression |

The control part determines when the items are to be displayed. The control part can be
just a label identifier or it can have a combination of components.

Label Identifier

If the control part is simply a label identifier, the items in the dump list are dumped
each time program execution encounters the statement labeled by the specified label
identifier.

Label Identifier with Label Counter Modulus

If a label counter modulus appears, the items in the dump list are dumped every

<label counter modulus> times that the statement labeled by the label identifier is
encountered. For example, if N is the label counter modulus and E is the number of
times that the labeled statement has been encountered, then the items in the dump list
are dumped whenever E MOD N is equal to 0 (zero).

Label Identifier with Dump Parameters

Dump parameters are used to restrict the dumping to a specified range of encounters.
All three parameters (the label counter, the lower limit, and the upper limit) are optional.

If a label counter is given, this variable is used to count the number of times that

the labeled statement has been encountered. The specified variable is incremented
automatically each time the labeled statement is encountered; changing the value of this
variable elsewhere in the program affects the dumping process.

The items in the dump list are dumped when the number of times the labeled statement
is encountered (or the value of the label counter variable, if specified) is greater than or
equal to the lower limit and less than or equal to the upper limit. If the lower limit is not
specified, it has a default value of 0 (zero). If the upper limit is not specified, it has a
default value of infinity (no limit).

Label Identifiers with Label Counter Modulus and Dump Parameters

When both a label counter modulus and dump parameters are specified, both the
modulus check and the range check are performed. The items in the dump list are
dumped when all the following conditions are true for the number of times that the
labeled statement has been encountered (or the value of the label counter variable, if
specified):

8600 0098-000 3-21

Declarations

e The number is greater than or equal to the lower limit and less than or equal to the
upper limit.

e The number is evenly divisible by the label counter modulus.

Form of Output

The information produced when a dump occurs depends on the declared types of the
items to be dumped. When a dump occurs, the 1-character to 6-character symbolic name
of each item in the dump list is produced, along with the following information:

For dumped simple variables,

e If the simple variable is of type REAL or DOUBLE, a real value is printed - for
example, R = .10000000000 or DUBL = 0.0.

e If the simple variable is of type INTEGER, an integer value is printed - for example,
I=2

e If the simple variable is of type BOOLEAN, the Boolean value is printed - for
example, BOOL = .FALSE..

e If the simple variable is of type COMPLEX, it is printed as a pair of numbers.
The format consists of a left parenthesis, the real part in REAL format, a comma,
the imaginary part in REAL format, and a right parenthesis - for example,
COMP = (3.0000000000, 5.0000000000).

For dumped arrays,
e Ifthe array is of type REAL, each element is printed as if the value were operated on

by an R editing phrase. For more information, see “FORMAT Declaration.”

e Ifthe array is of type BOOLEAN, the value of each element is shown as .TRUE. or
FALSE..

e If the array is of type INTEGER, each element is printed as an integer value.

e Ifthe array is of type COMPLEX, each element is printed in the form used
for complex variables - for example, CA = (2.0000000000, 3.0000000000),
(5.0000000000, 7.0000000000).

A dumped label shows the number of times execution control has passed the specified
label - for example, L2 = 3.

Examples of DUMP Declarations

3-22

The following example dumps the value of variable A to a file named FYLE each time the
statement labeled LBL is encountered during execution of the program.

DUMP FYLE (A) LBL
The following example dumps the values of I, INFO, and INDX to a file named PRNTR

when the statement labeled NEXT is encountered. A label counter, DMPCOUNT,
counts the number of times the statement labeled NEXT is encountered. Dumps occur

8600 0098-000

Declarations

until the value of DMPCOUNT exceeds DPHIGH. Note that when a label counter is
specified, the counter can also be altered elsewhere in the program.

DUMP PRNTR (I,INFO,INDX) NEXT (DMPCOUNT, ,DPHIGH)

The following example dumps the values of X, Y, ARRAYV, and COUNTER to a file
named FID. Because a label counter modulus of 3 is specified, a dump of these items
occurs only every third time the label LOUP is encountered during execution of the
program.

DUMP FID (X,Y,ARRAYV,COUNTER) LOUP : 3

The following example dumps the values of A, B, LBL1, and ARRAYV to a file named
LP. Because a label counter modulus of 5 is specified, a dump of these items occurs

only every fifth time the label AGAIN is encountered during execution of the program.
Dumps are further restricted to those times when the label counter TALY has a value
between 20 and 50, inclusive. Because the dump occurs each time TALY MOD 5 = 0,
dumps occur when TALY has the values 20, 25, 30, 35, 40, 45, and 50. Note that TALY
can be altered elsewhere in the program.

DUMP LP (A,B,LBL1,ARRAYV) AGAIN : 5 (TALY,24,58)

EVENT and EVENT ARRAY Declarations

An event provides a means to synchronize simultaneously executing processes. An event
can be used either to indicate the completion of an activity (for example, the completion
of a direct I/O read or write operation) or as an interlock between participating programs
over the use of a shared resource.

<event declaration>

€ >
— EVENT ——[—<i dentifier

4

<event identifier>

An identifier that is associated with an event in an EVENT declaration.

<event array declaration>

&
s

— EVENT — ARRAY ——L <ident}fier>—L [—<bound pair Tist>—] ——|

<event array identifier>
An identifier that is associated with an event array in an EVENT ARRAY declaration.

An event array is an array whose elements are events. An event array can have no more
than 16 dimensions.

8600 0098-000 3-23

Declarations

Events can be used synchronously by explicitly testing the state of an event at various
programmer-defined points during execution, or the events can be used asynchronously
by using the software interrupt facility.

Events have two Boolean characteristics, happened and available. Each characteristic
can be either TRUE or FALSE. Language constructs such as the SET, RESET, and
CAUSE statements can be used to change the happened state of an event. The
HAPPENED function returns the value of the happened state of an event. The FIX,
FREE, and LIBERATE statements can be used to change the available state of an event.
The AVAILABLE function returns the available state of an event.

The initial available state of an event is TRUE (available), and the initial happened
state of an event is FALSE (not happened). For more information on events, refer to
“Event Statement” in Section 4, “Statements.” For more information on interrupts,
refer to “INTERRUPT Declaration” later in this section. For more information on the
AVAILABLE function and the HAPPENED function, see Section 5, “Expressions and
Functions.”

Event Designator

3-24

An event designator represents a single event. An event array designator represents an
array of events.

<event designator>

<event identifier

<_ ’
<event array identifier>— [—£—<subscri;2;:1— 1 4
<event-valued file attribute
<event-valued task attribute

~ <event-valued file attribute>

—<file designator>— . —<event-valued file attribute name>————]

<event-valued file attribute name>

ALGOL supports all file attributes and file attribute values described in the A Series File
Attributes Programming Reference Manual.

<event-valued task attribute>
—~<task designator>— . —<event-valued task attribute name>——]

<event-valued task attribute name>

EXCEPTIONEVENT
L ACCEPTEVENT — '

8600 0098-000

Declarations

<event array designator>

. P I
—-<event array identifier |—<subar‘?‘ay se'lectoY‘>J |

Examples of EVENT and EVENT ARRAY Declarations
The following example declares an event, FILEA.
EVENT FILEA

The following example declares an event array, SWAPPEE, which can store up to six
events.

EVENT ARRAY SWAPPEE[@:5]

EXPORT Declaration

The EXPORT declaration declares procedures in a library program to be entry points
into that library. A procedure that is declared as an entry point into a library can be
accessed by programs external to the library.

<export declaration>

— EXPORT —L<export object specificat%on | |
l——<expor‘t opt’ions>J

<export object specification>

——E<procedure identifier >
<procedure reference array ident1’f1’er>J

L AS —<EBCDIC string 1iteral>—

<export options>

— (— LINKCLASS — = PROTECTED) |
T<1’nteger>j— I

<EBCDIC string literal>

.

" —<EBCDIC string>— " |

<EBCDIC code>—

48 " —<hexadecimal string>— " ——
480

28 " —<quaternary string>— " ——
280 j

18 " —<binary string>— "
180 :l

All procedures to be exported must be declared before the appearance of the EXPORT
declaration and must be declared in the same block as the EXPORT declaration.

8600 0098-000 3-25

Declarations

To provide a library object with a security level, the object can be exported with a linkage
class assigned to it. The linkage class of the user program, which is assigned by the
system, is matched to the linkage class of the exported object on a per object basis to
determine if visibility is allowed to the calling program. The PROTECTED linkage class
provides the highest level of security. The values 0 through 15 can be assigned. The
default linkage class is 0, which provides the lowest level of security.

A procedure reference array can be exported. Any type or parameters allowed for an
exported procedure can be reference by an exported procedure reference array.

A program becomes a library by exporting procedures and then executing a FREEZE
statement. The code file for that program contains a structure called a library directory,
which describes the library and its entry points. The directory’s description of an entry
point includes the entry point’s name, a description of the procedure’s type, if any, and
descriptions of its parameters.

When a program calls a library entry point, the description of the entry point in the
library template of the calling program is compared to the description of the entry point
of the same name in the library directory of the library. If the called entry point does not
exist in the library or if the two entry point descriptions are not compatible, a run-time
error is given and the calling program is terminated.

The name given to an exported entry point in a library directory is the procedure
identifier from the EXPORT declaration, unless an AS clause appears, in which case the
name is given by the EBCDIC string literal.

The EBCDIC string literal in the AS clause cannot contain any leading, trailing, or
embedded blanks and must be a valid identifier. A valid identifier is defined to be
any sequence of characters beginning with a letter and consisting of letters, digits,
hyphens (-), and underscores ().

Library Entry Point Types and Parameters

3-26

A library entry point can be any of the following:

e ASCII string procedure

e Boolean procedure

¢ Complex procedure

e Double procedure

¢ EBCDIC string procedure

o Hexadecimal string procedure
e Integer procedure

e Real procedure

e Untyped procedure

The parameters to a library entry point can be any of the following types:

8600 0098-000

Declarations

e ASCII character array

e ASCII string variable or array

e Boolean variable or array

¢ Complex variable or array

e Double variable or array

e EBCDIC character array

o EBCDIC string variable or array

e Event variable or array

o File

o Hexadecimal character array

e Hexadecimal string variable or array

e Integer variable or array

e Pointer

e Real variable or array

o Task variable or array

A parameter to a library entry point can also be a formal procedure with the above
restrictions on its type and parameters. The formal procedure must be fully specified,

that is, the <formal parameter specifier > construct of the PROCEDURE declaration
must be used.

Conditions in Which Errors Can Occur

Alibrary can export a procedure that is declared to be an entry point in yet another
library. When a program calls this entry point, the template of the library to which the
procedure is declared to belong is searched for an entry point with the same name as
that of the called entry point in the directory for this library. For example, assume the
following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L;
EXPORT LIBPROC;

When another program calls entry point LIBPROC of this library, the template for
library L is searched for an entry point named LIBPROC. When found, the entry point
LIBPROC of library L is then called.

On the other hand, assume the following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L;
EXPORT LIBPROC AS "P";

Another program calls entry point P of this library, and the template for library L is
searched for an entry point named P, If it is found, that entry point is called. If that

8600 0098-000 3-27

Declarations

entry point is not found, a run-time error is given and the calling program is terminated.
In either case, procedure LIBPROC of library L is not executed. For more information
on libraries, refer to Section 8, “Library Facility.”

A library entry point must not declare any OWN arrays. An attempt to execute a library
entry point that declares an OWN array results in a run-time error.

If a library exports a procedure reference array, a program importing that procedure
reference array can access the procedures in that library. A program cannot assign
into an element of an imported procedure reference array. If such an assignment is
attempted, a compile-time or run-time error occurs.

Programs that export procedure reference arrays cannot be used for binding.

Examples of EXPORT Declarations

The following example declares the procedure EXPROC as an entry point in a library
program.

EXPORT EXPROC

The following example declares the procedure PROCL1 as an entry point in a library
program.

The name exported for this procedure is LIBPROCS; consequently, a program calls
PROCI in this library by using the name LIBPROCS3.

EXPORT PROC1 AS "LIBPROC3"
The following example declares the procedure reference arrays PRA1 and PRA2 and the
procedure PROCID as entry points in a library program. The procedure reference array
PRAZ2 is exported with the name PROCREF; consequently, a program must use the
name PROCREF to call PRA2.

EXPORT PRA1l, PROCID, PRA2 AS "PROCREF"

FILE Declaration

3-28

A FILE declaration associates a file identifier with a file and assigns values to the file
attributes of the file.

<file declaration>

Tomeer T HE
DIRECT

s L identifier . ’ - ' |
(—<attribute specifications>—)

8600 0098-000

Declarations

Identifiers

<file identifier>

An identifier that is associated with a file in a FILE declaration.

<direct file identifier>
An identifier that is associated with a file declared as DIRECT in a FILE declaration.

If DIRECT is specified, the file is declared as a direct file to be used for direct I/O.

Attribute Specifications

<attribute specifications>

&

<arithmetic attribute specification =
<Boolean attribute specification
<pointer attribute specification>—————
<translate-table attribute specification>-

L (—<attribute parameter list>—) l

<arithmetic attribute specification>

—~<arithmetic-valued file attribute name>— = >

->~[<arithmet1'c expression = |
<mnemonic file attribute value>

<Boolean attribute specification>

—<Boolean-valued file attribute name N]
= —<Boolean expression>

<pointer attribute specification>

—<pointer-valued file attribute name>— = —E<pointer expresim—%
<string literal

<translate-tabie attribute specification>

—<translate-table-valued file attribute name>— = -

»——~<translate table identifier |
—E<intr1'ns1'c translate tab1e>—I

<attribute parameter list>

&

—L<constant,number‘ 1 |

8600 0098-000 3-29

Declarations

<arithmetic-valued file attribute name>
<Boolean-valued file attribute name>
<pointer-valued file attribute name>
<translate-table-valued file attribute name>
<mnemonic file attribute value>

ALGOL supports all file attributes and file attribute values described in the A Series File
Attributes Programming Reference Manual.

The attributes for a particular file need not be specified in the FILE declaration.
Attributes can be assigned values by using an appropriate assignment statement, the
multiple attribute assignment statement, a compile-time or run-time file equation, or the
I/O subsystem, which is the default option. Refer to the A Series Work Flow Language
(WFL) Programming Reference Manual for the file equation syntax.

Although the syntax allows more than one file identifier to precede the optional attribute
specifications, only the identifier immediately before the attribute specifications is

assigned the specified file attribute values. The other identifiers are assigned default file
attribute values.

For example, the result of the following declaration is that the KIND attribute of file C

is assigned the value DISK, and the KIND attributes of files A and B are assigned the

default value for the KIND attribute, which might or might not be the value DISK.
FILE A,B,C(KIND=DISK)

For more information on file attributes and their default values, refer to the A Series
File Attributes Programming Reference Manual.

A Boolean-valued file attribute whose name appears in a Boolean attribute specification
without the = <Boolean expression > part is assigned the value TRUE.

A translate table identifier assigned to a translate-table-valued file attribute name must
have been declared previously and must reference the first (or only) translate table
declared in that particular TRANSLATETABLE declaration.

Attribute parameters are allowed in FILE declarations and MULTIPLE ATTRIBUTE
ASSIGNMENT statements. In a FILE declaration, the attribute specifications cannot
reference the file identifier of the file being declared. For example, the following is not
valid:

FILE F(MAXRECSIZE=99, BLOCKSIZE=F.MAXRECSIZE*19)

Examples of FILE Declarations
The following example declares a file named F.

FILE F

3-30 8600 0098-000

Declarations

The following example declares a file named NEWFILE. This FILE declaration is
the first step in creating a new disk file with the title DATA on a pack named PACK.
Synchronized output, which is useful for auditing and recovery, will be performed.

FILE NEWFILE(KIND=DISK, MAXRECSIZE=14, BLOCKSIZE=428, NEWFILE,

FILEUSE=0UT, AREAS=20, AREASIZE=45@, SYNCHRONIZE=OUT,
TITLE="DATA ON PACK.");

The following example declares a file, SCREEN_OUTPUT, to be a remote file. Typically,
using this declaration in conjunction with a WRITE statement allows a program to write
to a computer terminal.

FILE SCREEN_OUTPUT (KIND=REMOTE)

FORMAT Declaration

A FORMAT declaration associates a format identifier with a set of editing specifications.
These editing specifications can then be used in READ and WRITE statements.

<format declaration>

— FORMAT —<in-out part>—L<format’part | |

In-Out Part

The in-out part affects the processing of simple string literals appearing in the editing
specifications. If the in-out part of a FORMAT declaration is designated as OUT or
unspecified (in which case OUT is assumed), simple string literals appearing in the
editing specifications of the format are read-only. If the in-out part is designated as IN,
such simple string literals are read-write. For more information, refer to “Simple String
Literal” later in this section.

<in-out part>
1
C
ouT

Format Part

<format part>

——-<1'dentif1'er‘>—|: (—<editing specifications>—) T |
< —<editing specifications>— >

<format identifier>

An identifier associated with a set of editing specifications in a FORMAT declaration.

8600 0098-000 3-31

Declarations

<editing specifications>

&

;0
] simple string Titeral -

/ T editing phrase
—<repeat panr‘t>J (—<editing specifications>—) —|

L[

<repeat part>

. . |
——E<gns1gned integer | |

The editing specifications that appear in FORMAT declarations can be used in READ
and WRITE statements to format, respectively, the input and output data.

Define identifiers, remarks, and formal symbols of parametric defines cannot be used in
formats.

A format identifier can be referenced in a READ statement, WRITE statement, or
SWITCH FORMAT declaration. In general, a list is referenced in READ and WRITE
statements to indicate a series of data items, specified by the list, along with the
formatting action, specified by the format, to be performed on each of the data items.

Editing phrases in the editing specifications are separated by a comma (), a slash (/),

or a series of slashes. A slash indicates the end of a record. On input, any remaining
characters in the current record are ignored when a slash is encountered in the editing
specifications. On output, the construction of the current record is terminated and any
subsequent output is placed in the next output record when a slash is found in the
editing specifications. Multiple slashes can be used to skip several records of input or
to generate several blank records on output. The final right parenthesis or right angle
bracket (>) of the editing specifications also indicates the end of the current record.

A carriage control action occurs each time a slash appears in the editing specifications. If
a core-to-core part is specified in the file part of a READ statement, a slash is ignored.

Example of Editing Specifications

BEGIN
FILE READER (KIND=READER),
LINE (KIND=PRINTER);
REAL A,B;
FORMAT FMT(I2,/,12);
READ (READER, FMT,A,B) ;
WRITE(LINE,FMT,A,B);
WRITE(LINE [SKIP 1],FMT,A,B);
END.

3-32 8600 0098-000

Declarations

Assume that the following two input records are used:

1234
5678

Using these two input records, this program produces the following output:

12
56
12

[skip to channel 1]
56

If all editing specifications have been used before the list of data items is exhausted, a
carriage control action occurs, and the editing specifications are reused. If the list of data
items is exhausted before all the editing specifications have been used, the I/O operation
is complete and the remaining editing specifications are ignored.

Simple String Literal

The presence of a simple string literal in the editing specifications indicates that the
characters enclosed in quotation marks are to be used as the data. A simple string literal
does not require a corresponding list element.

To enable more efficient handling of string literals in formats, 1-bit, 2-bit, and 7-bit
strings are not allowed. The lengths of 3-bit and 4-bit strings must be a multiple of 2,
to facilitate packing into 6-bit or 8-bit characters, respectively. BCL string literals are
encoded as BCL characters, not as EBCDIC characters.

If no string code appears in a string literal, the default character type is used. The
default character type can be designated by the compiler control options ASCIT and
BCL. If no such compiler control option is used, the default character type is EBCDIC.
For more information, refer to “Default Character Type” in Appendix C, “Data
Representation.”

8600 0098-000 3-33

Declarations

Example of Simple String Literal

Assume you are using the following statements:

WRITE (LINE,<4"C1C2",8"ABC">);
$ SET BCL
WRITE(LINE,<3"646566" ,6"HIJ">);

These statements produce the following output:

ABABC
UVWHIJ

‘When a simple string literal appears in editing specifications, only the first digit of the
string code is used; if a second or third digit appears, a warning is given at compilation
time.

Simple string literals appearing in editing specifications can be read-only or read/write,
depending on the in-out part specified in the FORMAT declaration. If the in-out part is
IN, simple string literals appearing in the editing specifications are read-write, and the
format can be used in both READ statements and WRITE statements. When a format
used in a READ statement is declared with an in-out part of IN and contains a simple
string literal in the editing specifications, then data is read into the memory location of
the simple string literal over the original value.

The number of characters read always equals the length of the simple string literal as

it is defined in the FORMAT declaration. When the format is used in a subsequent
WRITE statement, the new data is written to the output record. If the in-out part

is OUT or unspecified (in which case OUT is assumed), any simple string literals
appearing in the editing specifications are read-only. Any attempt to change the value of
a read-only simple string literal by using that format in a READ statement results in a
run-time error.

Repeat Part

3-34

The repeat part indicates the number of times an editing phrase or editing specifications
are repeated. If the repeat part is unspecified, a value of 1 is assumed. A repeat part
value greater than 4029 results in a syntax error.

Editing specifications and their corresponding repeat parts can be nested. For example,
assume you are using the following WRITE statement:

WRITE(F,<2(2(213))>,INT1,INT2,INT3,INT4,INT5,INT6,INT7,INT8)
The first repeat part indicates that the editing specifications (2(2I3)) are to be repeated
twice, the second repeat part indicates that the editing specifications (2I3) are to be

repeated twice, and the third repeat part specifies that the editing phrase I3 is to be
repeated twice, causing the editing phrase I3 to be used a total of eight times.

8600 0098-000

Declarations

The following examples show the correct syntax of repeat parts:

3F10.4
3(6/)
3(3A6,3(/112) /)

Editing Phrases

<editing phrase>

L]

<field width

CX=-ErR"RTO>TOm

FTTTTTTTTI

v J L<field width .

. <decimal places>

- S —<scale factor

[<editing modifiers— |- E
F
R
I <field width
g J

D §—<fie1d width>— . <decimal places> —

7 —<field width
L . <decimal places> —

<field width>

—E<5nsi gned integer T |

<decimal places>

—E<l;ms1 gned integer T |

<scale factor>

<integer>
L achiien '

<editing modifier>

- b
/1\- $

8600 0098-000 3-35

Declarations

Field Width

The field width specifies, in characters, the width of the field to be read or written.
Because the field width specifies the entire length of the field to be used, if the <decimal
places> variable is also specified, the field width value must allow for the number of
decimal places requested plus one for the decimal point. Any field width value greater
than 4029 results in a syntax error. Field width is covered further in the discussions of
the individual editing phrase letters.

Decimal Places

The decimal places value specifies the number of characters following the decimal point
in the field that are to be read or written. On input, the <decimal places> variable can
be overridden by an explicit decimal point. A decimal places value greater than 4029
results in a syntax error. The decimal places value is covered further in the discussions
of the individual editing phrase letters.

Variable Editing Phrases

3-36

A variable editing phrase is one that is not fully specified at compilation time. The
format is processed from left to right at run time. If the letter V is encountered in an
editing phrase, the next list element is accessed to provide an editing phrase letter.

For more information, refer to “V Editing Phrase Letter” later in this section. If an
asterisk (*) is encountered as the repeat part, field width, decimal places, or scale factor,
then the next list element is accessed to provide an integer value for that specification.
In addition to the list elements to be read or written, the I/O list must contain one

list element for each V editing phrase letter and asterisk encountered in the editing
specifications. The WRITE statements in the following examples use asterisks as both
repeat parts and field widths to produce varying I editing phrases.

Examples of Variable Editing Phrases

WRITE(F, <I*>, IWIDTH, A);
WRITE(F, <3I*>, IWIDTH, A, B, C);
WRITE(F, <3(I*)>, IWIDTH1, A, IWIDTH2, B, IWIDTH3, C);

IREPEAT1 := 1;
IREPEAT2 := 2;
WRITE(F, <2(X1,*I*)>, IREPEAT1, IWIDTH1, A,

IREPEAT2, IWIDTH2, B, C);

When an asterisk is used as the repeat part, the number of repetitions performed
depends on the value supplied by the list element. If the value of the list element is
greater than 0 (zero), that number of repetitions is performed; if the value is equal to
0, an unlimited number of repetitions are performed. If the value is less than 0, no
repetitions are performed, and control passes to the next editing phrase.

When an asterisk is used for the field width of an editing phrase, the actual width of
the field depends on the value supplied by the list element. If the value of the list
element is greater than 0 (zero), that value is used as the width of the field. If the value
of the list element is less than or equal to 0, no editing is performed, the list elements

8600 0098-000

Declarations

corresponding to the editing phrase are skipped, and control passes to the next editing
phrase.

Editing Phrase Letters

Every valid path through the editing phrase syntax requires an editing phrase letter
that specifies how the data being read or written is to be edited. The editing phrase
letters are as follows: A,C,D,E, FG, H,LLJ,K,L,O, R, S, T, U, V, X, or Z. An editing
phrase that contains the editing phrase letter A is called an A editing phrase, an editing
phrase that contains the editing phrase letter C is called a C editing phrase, and so

on. Descriptions of the editing specified by each editing phrase letter are arranged in
alphabetical order in the following paragraphs.

For ease of explanation, lowercase letters are used hereafter to refer to the values for
the repeat part, field width, and decimal places as follows:

Letter Meaning

r <repeat part>

w <field width>

d <decimal places>

A list element of type COMPLEX is always edited as if it were two list elements of type
REAL.

In the examples in the following sections, the lowercase letter b is used to denote a blank
character.

A and C Editing Phrase Letters

The editing phrase letters A and C are used when reading or writing alphanumeric data.
Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN,
POINTER, and STRING.

When A is used, characters are read from, or written to, the word starting at the
rightmost position. If Cis used, the starting character position is the leftmost one.

The default character type applies to list elements other than pointers. For more
information, refer to “Default Character Type” in Appendix C, “Data Representation.”
The default character type allows BCL data to be read from or written to an EBCDIC file
(and vice versa) with any translation necessary to preserve character data.

For example, assume you are using the following program:

BEGIN
FILE F(KIND=PRINTER, INTMODE=EBCDIC);
WRITE(F, <A3>, 8"ABC");
$ SET BCL
WRITE(F, <A3>, 6"ABC");

END.

8600 0098-000 3-37

Declarations

3-38

This program produces the following output:

ABC
ABC

In the explanations of the editing phrase letters A and C, the letter Q is used.

The value of Q is derived from the following table:

Default Character Type

BCL EBCDIC
Single Precision 8 6
Double Precision 16 12

If the list element is of the following form, then the value of the arithmetic expression is
used as the value of Q:

<pointer expression> FOR <arithmetic expression>

On input, w characters are transferred from the input record to the pointer-designated
location or string variable. On output, w characters are transferred from the
pointer-designated location or string variable to the output record. The character size
used is that of the pointer or string variable.

Input

On input, the editing phrase letters A and C specify that w characters of data are to be
read from the input record and assigned to the corresponding list element.

For the editing plirase letter A, if w is greater than or equal to Q, the rightmost Q
characters of the input field are transferred to the list element. If w is less than Q, then
w characters of the input field are transferred right-justified to the list element. The
unused high-order bits of the list element are set to 0 (zero).

The action specified by the editing phrase letter C is identical to that specified by the
editing phrase letter A except that characters are read to the leftmost portion of the
word.

The following are input examples for the A and C editing phrase letters:

8600 0098-000

Declarations

Default Character Editing
Type External String Phrase Internal Value
8-bit ABCDEFGHIJKL A9 8"DEFGHI"
6-bit ABCDEFGHIJKL A9 6"BCDEFGHI"
8-bit AbCbEbGbIbK A4 4"0000"8"AbCb"
6-bit ABCDEFGHIJKL A4 6"0000ABCD"
6-bit or 8-bit ABCDEFGHIJKL Al2 ABCDEFGHIJKL
(pointer as list element)
8-bit ABCDEFGHIJKL Al2 4"0000"8"ABCDEFGHIKL"
(8-bit pointer FOR 14)
6-bit ABCDEFGHIJKL Al2 6"JKL"
(6-bit pointer FOR 3)
8-bit ABCDEFGHIJKL C9 8"DEFGHI"
6-bit ABCDEFGHIJKL Cc9 6"BCDEFGHI"
8-bit ABCD Cc4 8"ABCD"4"0000"
6-bit ABCDEFGHIJKL Cc4 6"ABCD0000"
8-bit ABCDEFGHIJKL C12 8"ABCDEFGHIJKL"4"0000"
(8-bit pointer FOR 14)
6-bit ABCDEFGHIJKL C12 6"JKL"
(6-bit pointer FOR 3)

The editing phrase letters A and C do not round values before assigning them to a list
element. Therefore, a list element of type INTEGER is not necessarily assigned an
integer value. If w is greater than 4, the exponent field of the list element is affected;
the result can be a noninteger value. The data representations of real and integer
operands are discussed in Appendix C, “Data Representation.”

Output

On output, the editing phrase letters A and C specify that the value of the corresponding
list element is to be written as a character string to an output field that is w characters

wide.

For the editing phrase letter A, if w is greater than or equal to Q and the list element is
not a pointer expression, the Q characters of the list element are written right-justified
with blank fill to the output field. If w is less than Q, the rightmost w characters of the
list element are written to the output field. If the character size is 8 bits and any of the
character fields in the word contain bit patterns that do not correspond to an EBCDIC

graphic, then question marks (?) are written to those positions.

The action specified by the editing phrase letter C is identical to that specified by the
editing phrase letter A except that characters are written from the leftmost portion of

the list element.

8600 0098-000

3-39

Declarations

The following are output examples for the A and C editing phrase letters:

Default Character Editing
Type External String Phrase Internal Value
8-hit 8'DEFGHI" A9 bbbDEFGHI
6-bit 6"BCDEFGHI" A9 bBCDEFGHI
8-hit 4"0000000000"8"A" A4 77A
6-bit 6"0000ABCD" A4 ABCD
8-bit 8"ABCDEFG" All bbbbABCDEFG
(8-bit pointer FOR 7)
6-bit 6"ABCDEFG" A4 DEFG
(6-bit pointer FOR 7)
8-bit 8'DEFGHI" Cc9 bbbDEFGHI
6-bit 6"BCDEFGH!" Cc9 bBCDEFGHI
8-bit 8'ABCD"4"0000" C5 ABCD?
6-bit 6"ABCD0000" C4 ABCD
8-bit 8'ABCDEFG" Cl1 bbbbABCDEFG
(8-bit pointer FOR 7)
6-bit 6"ABCDEFG" C4 ABCD
(6-bit pointer FOR 7)

D Editing Phrase Letter

The editing phrase letter D is used for reading or writing floating-point values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter D specifies that w characters of input data are to be read,
converted to a real value, and assigned to the corresponding list element. The input
data must be in the form of a data number; otherwise, a data error is returned. A data
number is defined syntactically as follows:

<data number>

|:<S'i gn>_—] l

3-40

<decimal number:

<data exponent part

I—<daL'ca1 exponent part>—

8600 0098-000

Declarations

<data exponent part>

D <integer |
-id |

e

<sign>—<unsigned integer

The position of the decimal point in the internal value is determined by its position in
the input data or by the value of d. If a decimal point appears in the input data, that
position is used for the internal value. If no decimal point appears in the input data, one
is assumed to be d places to the left of the D, E, at sign (@), plus sign (+), or minus sign
(-) indicating the beginning of the exponent field. If no decimal point appears in the
input data and an exponent is not present, a decimal point is assumed to be d places to
the left of the right edge of the input field.

For example, if the editing phrase D7.2 is used to read the data number 10005.0, the
resulting internal value is 10005.0. However, if the same editing phrase is used to read
the data number 10005, the resulting internal value is 100.05.

The value of w must be greater than or equal to the value of d. Blanks are interpreted
as zeros.

The following are input examples for the D editing phrase letter:

External String Editing Phrase Internal Value
bbbbbb25046 Di1.4 +2.5046
bbbbb25.046 D11.4 +25.046
-bb25046E-3 D11.4 -0.0025046
—-bbb25046-3 D11.4 -0.0025046
bb250.46D-3 D11.4 +0.25046
bbb250.46-3 D11.4 +0.25046
b-b25.04678 D11.4 -25.04678
Output

On output, the editing phrase letter D specifies that the value of the corresponding

list element is to be converted to a string of characters that expresses the value in
exponential notation. The string is written right-justified with blank fill to a field w
characters wide. The value of the mantissa is rounded to the number of decimal places
specified by d before it is written.

The value of w must be greater than or equal to d + 7. This width allows for a
4-character exponent part, a decimal point, a digit preceding the decimal point, and a
sign. If w is less than d + 7, the field is filled with asterisks (*).

The editing phrase letter D always uses four or seven characters to represent the

exponent of the list element being written. The magnitude of the exponent determines
in which syntactic form the exponent is expressed:

8600 0098-000 3-41

Declarations

Magnitude of Exponent Form

4-character D+xx or D-XX (where ABS(XX) <= 99)

4-character +XXX or -XXX (where 100 <= ABS(XXX) <= 999)
7-character g;g(ng%XX or D-XXXXX (where 1000 <= ABS(XXXXX) <=

The following are output examples for the D editing phrase letter:

Internal Value Editing Phrase External String
+36.7929 D13.5 bb3.67929D+01
-36.7929 D12.5 -3.67929D+01
-36.7929 D11.5 Fhkkkkkkikk
+36.7929 D10.5 Fhkkk kR Ak
1.234@@-73 D14.5 bbb1.23400D-73
-789@@1234 D15.3 bb-7.890D+01236
6.54@@321 D9.2 b6.54+321

E Editing Phrase Letter
The action specified by the editing phrase letter E is identical to that specified by the
editing phrase letter D except that the letter E, when used for output, indicates the
beginning of the exponent in the output string.

The following are output examples for the E editing phrase letter:

Internal Value Editing Phrase External String
+36.7929 E13.5 bb3.67929EbO1
-36.7929 E12.5 -3.67929Eb01

F Editing Phrase Letter

The editing phrase letter F is used when reading or writing floating-point values. Valid
list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter F is identical to that specified
by the editing phrase letter D.

3-42 8600 0098-000

Declarations

Output

On output, the editing phrase letter F specifies that the value of the corresponding
list element is to be converted to a string of characters that expresses the value in
simple decimal notation. The string is written right-justified with blank fill to a field
w characters wide. The value of the list element is rounded to the number of decimal
places specified by d before it is written.

The value of w must be greater than or equal to d + 1. When a program writes negative
values, w must also allow for the minus sign (-). The field contains asterisks (*) if the

value to be written requires a field wider than w characters.

The following are output examples for the F editing phrase letter:

Internal Value Editing Phrase External String
+36.7929 F7.3 b36.793
+36.7934 F9.3 bbb36.793
-0.0316 F6.3 -0.032

0.0 F6.4 0.0000

0.0 F6.2 bb0.00
+579.645 F6.2 579.65
+579.645 F4.2 whkk
-579.645 F6.2 Fhkkkk

G Editing Phrase Letter

If used to read a BCL file, the editing phrase letter G specifies that eight 6-bit characters
of the input data are to be skipped. If used to write to a BCL file, the editing phrase
letter G specifies that eight BCL zeros are to be written to the output record.

If used to read an EBCDIC file, the editing phrase letter G specifies that six 8-bit
characters of the input data are to be skipped. If used to write to an EBCDIC file, the
editing phrase letter G specifies that six EBCDIC zeros are to be written to the output
record.

H and K Editing Phrase Letters
The editing phrase letters H and K are used when reading or writing hexadecimal and
octal values, respectively. Valid list elements are of type INTEGER, REAL, DOUBLE,
COMPLEX, and BOOLEAN.

In the following explanation of the H and K editing phrase letters, the letter Q is used.
The value of Q is derived from the following table:

8600 0098-000 3-43

Declarations

Editing Phrase Letter

H K
Single Precision 12 16
Double Precision 24 32

Input

The editing phrase letter H specifies that w characters of input data are to be read,
converted to a hexadecimal value, and assigned to the corresponding list element.

The editing phrase letter K specifies that w characters of input data are to be read,
converted to an octal value, and assigned to the corresponding list element. When

the letter H is specified, the input data must consist of only characters from the set of
hexadecimal characters, the blank, or the minus sign (). When K is specified, the input
data must consist of only characters from the set of octal characters, the blank, or the
minus sign (-). If other characters are used, a data error is returned. Leading, trailing,
and embedded blanks are interpreted as zeros. If a minus sign appears in the input
string, the value 1 is assigned to bit 46 of the list element (bit 46 of the first word of a
double-precision list element).

If w is less than or equal to Q, the value is stored right-justified in the storage location.
Both words of a double-precision variable are included. Unused high-order bits are set to
0 (zero). If w is greater than Q, the leftmost w — @ characters must be blanks, zeros, or
minus signs; otherwise, a data error is returned.

The following are input examples for the H and K editing phrase letters:

Editing
External String Phrase Internal Value
6F H2 4"00000000006F"
1FFFFFFFFFFF H12 4"1FFFFFFFFFFF"
-16 H3 4"'400000000016"
1234b568 H8 4'000012340568"
FFCb H4 4"00000000FFCO"
00C1C2C3C4C5C6 H14 4'C1C2C3C4C5C6"
-ABCD H5 4"40000000000000000000ABCD"
(double precision)
123456789ABCDEF H15 4"000000000123456789ABCDEF"
(double precision)

continued

8600 0098-000

Declarations

continued
Editing
External String Phrase Internal Value
16 K2 3"0000000000000016"
1777777777777777 K16 3'1777777777777777"
-16 K3 3'2000000000000016"
1234b56 K7 3"0000000001234056"
77b K3 3"0000000000000770"
-567 K4 3'20000000000000000000000000000567"
(double precision)
1234567654321234567 K19 3'00000000000001234567654321234567"
(double precision)
Output

On output, the editing phrase letter H specifies that the value of the corresponding list
element is to be converted to a string of hexadecimal characters. The editing phrase
letter K specifies that the value of the corresponding list element is to be converted to a
string of octal characters. The output string is written right-justified with blank fill to

a field w characters wide. If w is less than Q, only the contents of the rightmost w * 4
bits (when H is used) or w * 3 bits (when K is used) of the list element are converted. A
double-precision list element is treated as 96 contiguous bits. The output string does not

contain an explicit sign.

The following are output examples for the H and K editing phrase letters:

Editing

Internal Value Phrase External Value

4"0000E5551010" H5 51010

4"0000E5551010" H12 0000E5551010

4"0000E5551010" H16 bbbb0000E5551010

8"123456" H12 F1F2F3F4F5F6

4'000000000000000012345678 H4 5678

(double precision)

8"123456789bbb" H24 F1F2F3F4F5F6F7F8F9404040

(double precision)

3'0005677701234445" K5 34445

continued

8600 0098-000 3-45

Declarations

continued
Editing
Internal Value Phrase External Value
3"0005677701234445" K16 0005677701234445
3"0005677701234445" K18 bb0005677701234445
3"0000000000000000000000001234567" K4 4567
(double precision)

| Editing Phrase Letter

3-46

The editing phrase letter I is used when reading or writing integer values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter I specifies that w characters of input data are to be read,
converted to an integer value, and assigned to the corresponding list element. The

data must be in the form of an ALGOL integer; otherwise, a data error is returned.
Blank characters are interpreted as zeros. The magnitude of the value that can be read
depends on the type of the list element.

The following are input examples for the I editing phrase letter:

External String Editing Phrase Internal Value

567 K} +567

bb-329 16 -329

-bbbb27 17 27

27bbb 15 +27000

b-bb234 17 -234
Output

On output, the editing phrase letter I specifies that the value of the corresponding list
element is to be converted to a character string in the form of an ALGOL integer. The
string is written right-justified with blank fill to a field w characters wide. The value of
the list element is rounded to an integer before it is written as output data.

Negative values are written with a minus sign (-); nonnegative values are written
without a sign.

8600 0098-000

Declarations

If the value of the list element requires a field larger than w, then w asterisks (*) are
written.

The following are output examples for the I editing phrase letter:

Internal Value Editing Phrase External String
+23 14 bb23

-79 14 b-79

+67486 15 67486
-67486 15 Fkkdk

+978 11 *

0 13 bb0

+3.6 12 b4

J Editing Phrase Letter

The editing phrase letter J is used when reading or writing integer values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter J is identical to that specified
by the editing phrase letter 1.

Output

On output, the editing phrase letter J specifies that the value of the corresponding list
element is to be converted to a character string in the form of an ALGOL integer. The
string is written to a field equal in width to the length of the string. The value of the list
element is rounded to an integer before it is written.

Negative values are written with a minus sign (-); nonnegative values are written
without a sign.

If w is less than the number of characters required to express the value of the list
element, w asterisks (*) are written.

The following are output examples for the J editing phrase letter:

8600 0098-000 3-47

Declarations

Internal Value Editing Phrase External String
+23 J5 23

-23 J5 -23

+233 J3 233

-233 J3 Hhk

0 J3 0

3.14,-12 2J10 3-12

L Editing Phrase Letter

3-48

The editing phrase letter L is used when reading or writing Boolean values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter L specifies that w characters of input data are to be read,
converted to one of the Boolean values TRUE or FALSE, and assigned to the
corresponding list element. If the first nonblank character of the input data is the letter
T, then bit 0 (zero) of the list element is assigned the value 1; otherwise, bit 0 is assigned
the value 0 (zero). All other bits in the list element are assigned the value 0 (zero). An
all-blank field yields the value FALSE. If the list element is a double-precision variable,
the first word is assigned a value according to the rules just described, and the second
word is set to 0 (zero).

The following are input examples for the L editing phrase letter:

External String Editing Phrase Internal Value

T L1 TRUE (4"000000000001")

bbF L3 FALSE (4'000000000000")

bbbTRU L6 TRUE (4"000000000001")

b L1 FALSE (4"000000000000")

T L1 TRUE (4"000000000001000000000000")
(double precision)

Output
On output, the editing phrase letter L specifies that TRUE is to be written to the output

record if bit 0 (zero) of the corresponding list element equals 1, and the letter L specifies
that FALSE is to be written if bit 0 (zero) of the corresponding list element equals the

8600 0098-000

Declarations

number 0. If w is less than 5, the first w characters of TRUE or FALSE are written. If
w is greater than 4, TRUE or FALSE is written right-justified with blank fill.

The following are output examples for the L editing phrase letter:

Internal Value Editing Phrase External String
0 L6 bFALSE

1 L5 bTRUE

2 L4 FALS

3 L3 TRU

4 L2 FA

O Editing Phrase Letter

The editing phrase letter O is used when data is to be read or written without editing.
Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN,
and POINTER.

In the following explanation of the editing phrase letter O, the letter Q is used. The
value of Q is derived from the following table:

Precision Pointers
Single Double 4-bit 6-bit 8-bit
BCL 8 16 12 8 6
EBCDIC 6 : 12 12 8 6

Input

The editing phrase letter O specifies that the input data is to be assigned to the
corresponding list element without editing. Q characters of input data are read, unless
the corresponding list element is of the following form:

<pointer expression> FOR <arithmetic expression>

When the list element is of this form, the value of Q and the value of the arithmetic
expression are compared, and the lesser value is the number of characters read.

8600 0098-000 3-49

Declarations

Output

On output, the editing phrase letter O writes the value of the list element as an
unedited string of characters. Q characters are written to the output record unless the
corresponding list element is of the following form:

<pointer expression> FOR <arithmetic expression>

When the list element is of this form, the value of Q and the value of the arithmetic
expression are compared, and the lesser value is the number of characters written.

Example of Input and Output

The following example shows the use of the editing phrase letter O:

BEGIN
FILE TD(KIND=REMOTE,MYUSE=10);
REAL R;

READ(TD, <0>, R);
WRITE(TD, <0>, R);
END.

Input and output data for this example are as follows:

Input Output
A A
ABCDEFGH ABCDEF

R Editing Phrase Letter

3-50

The editing phrase letter R is used when reading or writing real values and can be used
with the editing phrase letter S. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter R is identical to that specified
by the editing phrase letter D except when the letter R is immediately preceded by an S
editing phrase.

Output

On output, the editing phrase letter R specifies that the value of the corresponding list
element is to be converted to a string that expresses the value in either simple decimal
or exponential notation.

In general, if w is greater than or equal to the number of characters required to express
the value of the list element using simple decimal notation, then simple decimal notation
is used. Ifw is less than the number of characters required to express the value using

simple decimal notation and greater than or equal to the number of characters required

8600 0098-000

Declarations

to express the value using exponential notation, then exponential notation is used. If w
is less than the number of characters required to express the value using exponential
notation, the field is filled with asterisks (*).

Examples of Input and Output

List Element Editing
External Input String Type Phrase External Output String
-.333333bb REAL R10.4 bbb-0.3333
-.333333bb DOUBLE R10.4 bbb-0.3333
-.333333bb INTEGER R10.4 bbbb0.0000
3333.333E2 DOUBLE R10.4 3.3333D+05
3333.333E2 INTEGER R10.4 3.3333E+05
~.333bbbbb REAL R10.9 Fkdkdk ok k ko
—.333bbbbb INTEGER R10.9 .000000000
333.333E2b DOUBLE R10.4 3.3333D+22
bbbbbbbbbbbbb1.23D12 REAL R20.4 bb1230000000000.0000
bbbbbbbbbb1.23D12345 DOUBLE R20.4 bbbbbbb1.2300D+12345
bbbb4.3@68 REAL R10.4 4.3000E+68

S Editing Phrase Letter
The editing phrase letter S is used with an R editing phrase to provide a scale factor.
If the next editing phrase in the editing specifications does not contain the editing phrase
letter R, the S editing phrase is ignored. When more than one S editing phrase appears

in the editing specifications, each subsequent S editing phrase takes precedence over the
preceding one.

Input

On input, the value of the input data corresponding to the subsequent R editing phrase
is divided by the following number before the input data value is assigned to the list
element:

19 ** <scale factor>

The following are input examples for the S editing phrase letter:

8600 0098-000 3-51

Declarations

External String Editing Specifications Internal Value

bbbb10000. $2,R10.2 100.0

bbbbbb5.41 S1,R10.2 0.541

bbbbbb05.5 S§1,R10.2 0.55

bbb5.01521 $-1,R10.2 50.1521

bbbbbbb541 S1,R10.2 0.541
Output

On output, the value of the list element corresponding to the subsequent R editing
phrase is multiplied by the following number before the list element value is written to
the output field:

19 ** <scale factor>

The following are output examples for the S editing phrase letter:

Internal Value Editing Specifications External String
100.0 $2,R10.2 bb10000.00
0.54 S1,R10.2 bbbbbb5.40
0.0056 S1,R10.2 bbbbbb0.06
1.55 S-1,R10.2 bbbbbb0.16

T Editing Phrase Letter

The editing phrase letter T specifies that the buffer pointer is to be moved to character
position w of the input or output record. The value of w must be greater than 0 (zero); if
w is equal to 0, the buffer pointer is moved to the first character position in the record.
No list element corresponds to this editing phrase letter.

Input Examples
Editing
External String Specifications Internal Value
012345678910111213 T13,13 111
012345678910111213 T1,14 123

continued

3-52 8600 0098-000

Declarations

continued
Editing
External String Specifications Internal Value
012345678910111213 T15,14 1213
ABCDEFGHIJKLMNOPQR T8,A6 HIJKLM
Output Example
BEGIN

FILE DCOM(KIND=REMOTE,MYUSE=IO0);

ARRAY A[@:9];

WRITE(DCOM, <T11,13,T1,I3>, 123, 456); % WRITE STATEMENT 1

WRITE(DCOM, <T4,A3,T1,A2>, "ABC", "DE"); % WRITE STATEMENT 2
END.

This program produces the following output:

WRITE statement 1: b456bbbbbb123
WRITE statement 2: DEbABC

U Editing Phrase Letter
The editing phrase letter U specifies that output data is to be edited as best suits the

type of the corresponding list element. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX, and BOOLEAN, STRING, POINTER.

Input

The editing phrase letter U is not implemented for input.

Output

On output, real, integer, and double-precision list elements are written using a format
that combines readability with maximum numerical significance. Boolean values are
written as T or F and occupy one character position in the record. String literals are
treated as real values. If the number of characters required to express the list element
is greater than the number left in the current record, the output is placed in the next
record.

If w is specified and the number of characters required to express the list element is
greater than w, the field is filled with asterisks (*).

If d is specified and d is greater than w, then d — w leading blanks are inserted in the
value that is written to the list element before the field is written.

8600 0098-000 3-53

Declarations

Thus, when the editing phrase letter U is used, the number of characters actually
written cannot be less than d and can be greater than w.

The following are output examples for the U editing phrase letter:

Internal Value Editing Phrase External String
-123.4567 u -123.4567
789 u 789
1.5@@275 u10 1.5D+275
1234567 us 1.2+6

1 U10.4 bbb1

123.456 U10.4 123.456

1 U5.8 bbbbbbb1
123.456 U5.8 bbb123.5

V Editing Phrase Letter

The editing phrase letter V allows the type of editing to be specified at run time. The
rightmost character of the first word of the next list element (or, if the list element is a
pointer, the character pointed at) provides the editing phrase letter to be used to edit
the data. Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX,
BOOLEAN, and POINTER.

The editing phrase letter extracted from the list element is a 6-bit character if the
default character type is BCL; otherwise, the letter is an 8-bit character.

Example of V Editing Phrase Letter

In the following program, FMT1 in the first READ statement evaluates to R8.2 and
corresponds to the list element A; FMT2 in the WRITE statement evaluates to 2A6 and
corresponds to the list elements A and I; and FMTS3 in the second READ statement
evaluates to 2E10.4 and corresponds to the list elements A and B.

3-54 8600 0098-000

Declarations

REAL A,B;
INTEGER I;

FORMAT FMT1(V8.2),
FMT2(2V*),
FMT3 (*V*.*)

READ (KARD,FMT1,"R",A) ;

B := 4"C1";
WRITE(LINE,FMT2,B,6,A,1);

I := 4"C5";

READ (KARD,FMT3,2,1,10,4,A,B);

For more information, see “Variable Editing Phrases” earlier in this section.

X Editing Phrase Letter
On input, the editing phrase letter X specifies that w characters of input are to be
skipped. On output, the editing phrase letter X specifies that w blanks are to be written.
No list element corresponds to this editing phrase letter.

Z Editing Phrase Letter

The editing phrase letter Z is used when reading or writing real values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the editing phrase letter Z selects one of the editing phrase letters D, I, or L to
specify the editing action, depending on the type of the corresponding list element, as
shown in the following table:

Type Editing Phrase
REAL or DOUBLE Dw.d
INTEGER Iw
BOOLEAN Lw
Output

The output string has a length of w characters regardless of the value or type of the list
element being written. For Boolean list elements, Lw is used. For integer list elements,

8600 0098-000 3-55

Declarations

Iw is used. For real or double-precision list elements, editing with D, E, or F editing
phrase letters is performed depending on the type of the list element and the magnitude
of its value.

The following are output examples for the Z editing phrase letter:

Internal Value Editing Phrase External String
1.23@@250 212.6 1.230000+250
1 Z5.1 bbbb1

12345 Z5.1 12345

12 Z8.7 bbbbbb12
12345.678 Z210.4 1.2346E+04
12 Z10.4 bbbbbbbb12
12345678 726 ko

1234 Z6 bb1234

Editing Modifiers

Editing modifiers can be used to modify the editing performed by the editing phrase
letters D, E, F 1, J, R, and Z. Editing modifiers are valid only for output.

P Editing Modifier

The P editing modifier specifies that a comma (,) is to be inserted immediately to the left
of every third digit left of the decimal point.

$ Editing Modifier

The $ editing modifier specifies that a dollar sign ($) is to be inserted immediately to the
left of the output string.

Examples of P and $ Editing Modifiers

Internal Value Editing Phrase External String
17.347 $F10.2 bbbb$17.35
-1234567 PI10 -1,234,567
-1234567 P$z15.2 bbbb$-1,234,567
1234567.11111 PF15.5 1,234,567.11111

continued

3-56 8600 0098-000

Declarations

continued
Internal Value Editing Phrase External String
1234567.1234 $PR15.5 bbb$1.23457E+06
1234567.1234 $PR15.0 bbbb$1,234,567.

Examples of FORMAT Declarations

The following examples illustrate the FORMAT declaration syntax:
FORMAT HDG("THIS REPORT SHOULD BE MAILED TO ROOM W-252")
FORMAT IN EDIT(X4, 2I6, 5E9.2, 3F5.1, X4)

FORMAT IN F1(A6, 5(X3, 2E198.2, 2F6.1)),
F2(A6, G, A6)

FORMAT OUT FORM1(X56, "HEADING", X57),
FORM2 (X1g, 4A6 / X7, 5A6 / X2, 5A6)

FORMAT FMT1(*I*)

FORMAT FMT2(*V*.*)

FORWARD REFERENCE Declaration

The FORWARD REFERENCE declaration enables the ALGOL compiler to handle
situations in which two procedures, two interrupts, or two switch labels make references
to each other. Normally, a procedure, interrupt, or switch label must be declared before
it can be used in a program. However, if two such entities make reference to each other,
regardless of which procedure, interrupt, or switch label is declared first, the body of the
procedure, interrupt, or switch label contains a reference to an undeclared entity.

The FORWARD REFERENCE declaration enables the compiler to recognize such
entities before they have been declared in full. When a procedure is declared in full, the
declaration must match the FORWARD REFERENCE declaration in its type. Also, if
there are parameters, these must also match the FORWARD REFERENCE declaration
in number and type.

<forward reference declaration>

<forward procedure declaration>——

<forward interrupt declaration |
_Eforward switch label declaration>—

8600 0098-000 3-57

Declarations

<forward interrupt declaration>

— INTERRUPT —<interrupt identifier>— ; — FORWARD !

<forward procedure declaration>

PROCEDURE —<procedure heading>— ; —m8M8M8 —>

|—<procedure 1:ype>—J
-— FORWARD !

<forward switch label declaration>

— SWITCH —<switch label identifier>— FORWARD |

Order of Referencing
Assume two procedures, PROC_ONE and PROC_TWO, make references to each other,
and PROC_ONE appears before PROC_TWO in the source code. Before PROC_ONE is
declared, the following FORWARD REFERENCE declaration must appear:
PROCEDURE PROC_TWO; FORWARD

When PROC_ONE calls PROC_TWO, the compiler recognizes the second procedure.
Later in the program, the second procedure, PROC TWO, is declared in full.

Similar methods are used for mutually referencing interrupts and mutually referencing
switch labels.

Examples of FORWARD REFERENCE Declarations

The following example declares a forward reference to a switch label named SELECT.
Later in the program, SELECT must be declared in full.

SWITCH SELECT FORWARD

The following example declares a forward reference to an integer procedure named
SUM. Later in the program, SUM must be declared in full, and its parameters must be
the same in number and type as in this FORWARD REFERENCE declaration.

INTEGER PROCEDURE SUM(A,B,C);
VALUE A,B;
INTEGER A,B;
REAL C;
FORWARD

INTEGER Declaration

An INTEGER declaration declares simple variables that can have integer values, that is,
arithmetic values that have exponents of 0 (zero) and no fractional parts.

3-58 8600 0098-000

Declarations

<integer declaration>

&

—[T INTEGER <identifier - | |
OWN <equation part>

<integer identifier>

An identifier that is associated with the INTEGER data type in an INTEGER
declaration.

A simple variable declared to be OWN retains its value when the program exits the block
in which the variable is declared, and that value is again available when the program
reenters the block in which the variable is declared.

When an arithmetic value is assigned to an integer simple variable, the value is rounded
to an integer, if possible, before it is stored in the simple variable.

When an integer simple variable is allocated, it is initialized to 0 (zero) (a 48-bit word
with all bits equal to zero).

See Appendix C, “Data Representation,” for additional information on the internal
structure of an integer operand as implemented on A Series systems.

Equation Part

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier. This action is called address
equation. An identifier can be address-equated only to a previously declared local
identifier or to a global identifier. The first identifier must not have been previously
declared within the block of the equation part. An equation part is not allowed in the
global part of a program.

Address equation is allowed only between INTEGER, REAL, and BOOLEAN variables.
Because both identifiers of the equation part have the same address, altering the value
of either variable affects the value of both variables. For more information, see “Type
Coercion of One-Word and Two-Word Operands” in Appendix C, “Data Representation.”

The OWN specification has no effect on an address-equated identifier. The first

identifier of an equation part is OWN only if the second identifier of the equation part is
OWN.

Examples of INTEGER Declarations
The following example declares INDEX as an integer simple variable.
INTEGER INDEX

The following example declares COUNT, VAL, and NOEXPONENT as integer simple
variables.

8600 0098-000 3-59

Declarations

INTEGER COUNT,VAL,NOEXPONENT
The following example declares SAVEVALUE and MAX as integer simple variables.
Because they are declared to be OWN, these simple variables retain their values when
the program exits the block in which the simple variables are declared.

OWN INTEGER SAVEVALUE,MAX
The following example declares INT and CAL as integer simple variables, and
address-equates INT to the previously declared simple variable BOOL. The variables
INT and BOOL share the same address.

INTEGER INT = BOOL, CAL

INTERRUPT Declaration

The INTERRUPT declaration declares an interrupt and associates an unlabeled
statement with it.

<interrupt declaration>

— INTERRUPT —<identifier>— ; —<unlabeled statement |

<interrupt identifier >

An identifier that is associated with an interrupt in an INTERRUPT declaration.

Interrupting a Program

3-60

An interrupt provides a method of forcing a process to depart from its current point
of control and to execute the unlabeled statement that the INTERRUPT declaration
associates with the interrupt.

After executing the unlabeled statement associated with an interrupt, a program usually
returns to its previous point of control. However, the program does not return to this
point if a GO TO statement is executed within the unlabeled statement and the specified
designational expression references a statement outside of the unlabeled statement.

Once an interrupt is declared, it is enabled until it is explicitly disabled with the
DISABLE statement. The DISABLE statement can temporarily render the associated
interrupt ineffective. The ENABLE statement is used to reenable a disabled interrupt.

For an interrupt to be used, the interrupt identifier must be attached to an event
through the ATTACH statement. An interrupt can be detached from an event through
the DETACH statement.

An INTERRUPT declaration can be thought of as describing an unlabeled statement,

which can be a block, that is automatically entered on the occurrence (CAUSE) of an
event. The operating system ensures that when a program is executing the unlabeled

8600 0098-000

Declarations

statement associated with an interrupt, all other interrupts are queued until the
program exits the unlabeled statement.

For more information, refer to “ATTACH Statement,” “DETACH Statement,”
“DISABLE Statement,” and “ENABLE Statement” in Section 4, “Statements.”

Examples of INTERRUPT Declarations

The following example declares ERR to be an interrupt and associates with it the
statement GO TO ABORT.

INTERRUPT ERR; GO TO ABORT

The following example declares BLOCK1 to be an interrupt. When BLOCK1 is invoked,
two messages are displayed. Because a GO TO statement does not occur within the
declaration, after the interrupt code is executed, the program continues from the point
at which the interrupt occurred.

INTERRUPT BLOCK1;
BEGIN
DISPLAY ("ERROR");
DISPLAY (" INTERRUPT BLOCK1 OCCURRED");
END

LABEL Declaration

A LABEL declaration declares each identifier in the declaration to be a label.

<label declaration>

(- Ed
— LABEL —L<ident]fier

<label identifier>

An identifier that is associated with a label in a LABEL declaration.

Using Label Identifiers

Label identifiers can be used as the targets of GO TO statements and as labels in READ
and WRITE statements.

A label identifier must appear in a LABEL declaration within the innermost block in
which the label identifier is used to label a statement.

8600 0098-000 3-61

Declarations

Examples of LABEL Declarations

The following example declares START as a label.
LABEL START
The following example declares ENTER, EXIT, START, and LOOP as labels.

LABEL ENTER,EXIT,START,LOOP

LIBRARY Declaration

3-62

The LIBRARY declaration declares a library identifier and specifies values for the library
attributes associated with the library. The library identifier can be used by a program to
access entry points in the library.

<library declaration>

— LIBRARY J—<Hb|r'ar'y speéification |

<library specification>

—<identifier >
L (<library attribute specifications>) i

|—<Hbrary object declaration 'I1's’c>J

<library identifier>
An identifier that is associated with a library in a LIBRARY declaration.

The LIBRARY declaration appears in a program that accesses a library. The LIBRARY
declaration can be used to assign values to the library attributes of a library. Ina
program that calls a library, the library identifier also appears in the PROCEDURE
declarations for the library entry points.

Libraries can be declared in any block of a user program. The library and its entry
points are valid within the scope of the block; when the block is exited, the linkage to the
library is broken, and the count of the library users is decremented.

Section 8, “Library Facility,” contains extended examples of libraries and programs that
use libraries, as well as information about library attributes, library linkage, and library
usage in general.

Programs that declare procedure reference arrays as library objects cannot be used for
binding.

8600 0098-000

Declarations

Library Attribute Specifications

<library attribute specifications>

<.

-J—E<str'1'ng or pointer 'Iibrary’attribute specm—‘—{
<mnemonic library attribute specification

<string or pointer library attribute specification>

—<string- or pointer-valued library attribute name>— = ——M88M8M8¥
+—<EBCDIC string literal |

<string- or pointer-valued library attribute name>

FUNCTIONNAME I
INTNAME
LIBPARAMETER —

TITLE

<mnemonic library attribute specification>

—<mnemonic-valued Tibrary attribute name>— = >

s—<mnemonic library attribute value |

<mnemonic-valued library attribute name>

— LIBACCESS |

<mnemonic library attribute value>

BYFUNCTION |
BYTITLE —
BYINITIATOR —

<library object declaration list>

i |
|—<1 ibrary object attri butes>J

] I

— [—L<Hbrary object declaration

<library object declaration>

—<procedure reference array declaration |

<library object attributes>
— (— ACTUALNAME — = —<EBCDIC string literal>—) |

The FUNCTIONNAME attribute specifies the system function name used to find the
object code file for the library. For example, GENERALSUPPORT is a system library
function name.

8600 0098-000 3-63

Declarations

When a value is assigned to the TITLE attribute, the EBCDIC string literal must be
a properly formed file title as defined in the A Series Work Flow Language (WFL)
Programming Reference Manual, and must have a period (.) as its last nonblank
character within the quotation marks.

When a value is assigned to the INTNAME attribute, the EBCDIC string literal can have
leading blanks and must have a period as its last character. The sequence of characters
beginning with the first nonblank character up to, but not including, the next blank or
period constitutes the INTNAME and must be a valid identifier. A valid identifier is
defined to be any sequence of characters beginning with a letter and consisting of letters,
digits, hyphens (-), and underscores (). Blanks can be present between the INTNAME
and the period.

Specification of the TITLE and INTNAME attributes is optional; by default, the library
identifier being declared is used for the TITLE and INTNAME. If the INTNAME is
given and the TITLE is not, the INTNAME is also used for the TITLE.

The EBCDIC string literal assigned to the LIBPARAMETER attribute is used as a
parameter to a selection procedure during dynamic library linkage.

For information on LIBACCESS, see Section 8, “Library Facility.”

A PROCEDURE REFERENCE ARRAY declaration that appears in a LIBRARY
declaration can be either the local or the global form of the declaration; that is, either
NULL or EXTERNAL can appear at the end of the declaration. However, only the lower
bound is required. If an upper bound is given, it is ignored. The procedure reference
array is said to be imported from the library.

The handling of a procedure reference array that is declared to be a library object is
comparable to the handling of a procedure that is declared to be a library entry point.
For more information, see “PROCEDURE Declaration” later in this section.

Examples of LIBRARY Declarations

3-64

The following example declares a reference to the library LIB that is to be referenced by
the title OBJECT/LIBRARY.

LIBRARY LIB(TITLE="OBJECT/LIBRARY.");

The following example declares a reference to the library L, from which the procedure
reference array REFID is to be imported. The procedure reference array is exported
from the library as PROCREF.

LIBRARY L [PROCEDURE REFERENCE ARRAY REFID @] (I);
VALUE I; INTEGER I;
EXTERNAL (ACTUALNAME="PROCREF")];

The following example declares a reference to the library LIB, from which the procedure
reference arrays PAl and PA2 are imported.

8600 0098-000

Declarations

LIBRARY LIB [REAL PROCEDURE REFERENCE ARRAY PA1[0:10];
NULL;
PROCEDURE REFERENCE ARRAY PA2[0:3,@:18] (R,B);
REAL R;
BOOLEAN B;
NULL T3

LIST Declaration

A LIST declaration associates an ordered set of list elements with a list identifier. The
list identifier is used in a READ statement or WRITE statement to indicate which
entities are to be read or written.

<list declaration>

«.

B
<.

— LIST —L<identifier‘>— (J_Ij'di;t e]ement>—|—) L—
*

<list identifier>

An identifier that is associated with a set of list elements in a LIST declaration.
Although the syntax of the READ statement and WRITE statement allows the list
elements to be listed within the statement itself, a LIST declaration provides a way to

associate a list identifier with a specific group of list elements.

A simple complex expression or complex value appearing in a list is considered to be a
pair of real values: the first value is the real part of the complex value, and the second is

the imaginary part.

List Elements

<list element>

——<simple arithmetic expression |
—<simple Boolean expression
—<simple complex expression
—<pointer expression

L FOR —<arithmetic expression>—

—<string expression
—<array row

— [J—<11’st efement>—L]
— D0 —<1ist element>— UNTIL —<Boolean expression>—

—<iteration clause>—<list element
—<if clause>—<list element

L ELSE —<1ist element>—

L<case head>— (—L<h‘st element>—L)

8600 0098-000 3-65

Declarations

<iteration clause>

FOR —<variable>— := —L<for Tist element>— DO |
THRU —<arithmetic expression>— D0 ———
WHILE —<Boolean expression>— DO

List elements of the following form enable the user to specify the number of characters
to be read to or written from the pointer-specified location:

<pointer expression> FOR <arithmetic expression>

An array row appearing in a list is interpreted as a sequence of variables of the same
type as that of the array. A complex array row is considered to be a real array row
containing the real and imaginary parts of the complex values in the following order: the
real part of the first element, the imaginary part of the first element, the real part of the
second element, the imaginary part of the second element, and so on.

A string variable is a valid list element for editing phrase letters A, C, and U and for
free-field formatting. For more information on free-field formatting, see “READ
Statement” in Section 4, “Statements.”

A string variable acts in the same manner as <pointer expression> FOR <arith-
metic expression > when used with the A, C, and U editing phrases. For more
information about the A, C, and U editing phrases, refer to “PFORMAT Declaration”
earlier in this section.

Asterisks (*) prefixed to list elements have meaning only for free-field output; they are
ignored for other types of I/O operations. An asterisk prefixed to a list element causes
the text of the list element and an equal sign (=) to be written to the left of the edited
value of the list element.

Examples of LIST Declarations

3-66

The following example declares L1 as a list identifier for the list consisting of X, Y, the
array row A[4,*], and B[2], B[3], B[4], and B[5].

LIST L1 (X,Y,A[4,*],FOR I := 2 STEP 1 UNTIL 5 DO B[I])
This list identifier might appear in a WRITE statement such as the following:
WRITE (LP_OUT,//,L1);

The following example declares ANSWERS and RESULTS as two list identifiers with
associated list elements.

LIST ANSWERS (P + Q,Z,SQRT(R)),
RESULTS (X1,X2,X3,X4/2)

The following example declares LIST3 as a list identifier with an associated list consisting

of nested FOR clauses indexing array A. This list identifier can be used in a READ
statement to read the specified elements of array A.

8600 0098-000

Declarations

LIST LIST3 (FOR I := @ STEP 1 UNTIL 1@ DO
FOR J := £,3,6 DO
A[1,J])

MONITOR Declaration

The MONITOR declaration designates items to be monitored during execution of the
program and the method by which the items are monitored. The MONITOR declaration
is used when diagnostic information is needed.

<monitor declaration>
— MONITOR =3

.

s—L—<file identifier> (—L<monitor element>—) —
L 1'er>_—I

<procedure identif

Each time an identifier designated as a monitor element is used in one of the ways
described in this section, the identifier and its current value are written to the file or
passed as parameters to the procedure specified in the MONITOR declaration.

The monitor action does not occur within procedures that are declared before the
MONITOR declaration is encountered. Monitoring of a variable in the monitor list does
not occur if this identifier is passed as an actual parameter to a call-by-name formal
parameter that is modified within the procedure. In addition, the control variable in a
FOR statement cannot be monitored. The monitor action does not occur when a value
changes as the result of a READ statement or a REPLACE statement.

When a procedure identifier is specified in the MONITOR declaration, printing of the
monitor element must be performed by the procedure. Also, the monitoring procedure

performs the specified operations depending on the values passed to it.

For a debugging feature, refer to “TADS Option” in Section 6, “Compiling Programs.”

Monitor Elements

<monitor element>

<simple variable !
E<subscr1’ pted variable>—

<label identifier>——
<array identifier>——

The diagnostic information produced depends on the forms of the monitor elements.
When the LINEINFO compiler control option is TRUE and a file identifier is specified
in the MONITOR declaration, a stack number, an at sign (@), a code address, and a
sequence number are printed in front of the symbolic name of the monitor element
(for example, 0143 @ 003:0003:4 (00007000)). Diagnostic information is given for the
specified monitor elements as follows:

8600 0098-000 3-67

Declarations

e If the monitor element is a simple variable or a subscripted variable, the symbolic
name and the previous and new values of the variable are printed (for example,
B =0:=13).

e If the monitor element is a label identifier, the symbolic name of the label is shown
(for example, LABEL L).

e If the monitor element is an array identifier, the symbolic name of the array, the
subscript of the element, and the previous and new values of the changed array
element are printed (for example, A/12] =0:=12).

If the monitor element is to be assigned a value, this assignment must be done by the
monitoring procedure. This value also can be assigned to the procedure value to be
used, for example, in evaluating the remainder of an expression in which the assignment
is embedded. In the example under “Monitor Element as an Array Identifier,” the
assignment statement NAME : = MON : = VAL, allows the subsequent use of the value
assigned to the monitor element.

Monitor Element as a Simple Variable

When the monitor element is a simple variable, the format of the monitoring procedure
must be as follows:

REAL PROCEDURE MON(NAME,VAL,SPELL);

The procedure must be of the same type as the monitor elements. The procedure must
have three parameters:

e The first parameter, NAME, is a call-by-name parameter of the same type as the
monitor element. The parameter NAME is passed a reference to the monitor
element, and it is normally used to store the value of the second parameter, VAL.

e The second parameter, VAL, is also of the same type as the monitor element, but it is
a call-by-value parameter and is passed the new value to be assigned to the monitor
element.

e The third parameter, SPELL, must be a call-by-value real variable that is passed the
name of the monitor element as a string of characters. Only the first six characters
of the symbolic name are passed to this formal parameter. If the symbolic name is
less than six characters long, it is left-justified, and trailing blanks are added, up to
six characters.

Monitor Element as a Label Identifier

3-68

When the monitor element is a label identifier, the format of the monitoring procedure
must be as follows:

PROCEDURE MON(SPELL) 3
The procedure must be untyped and must have only one parameter. This parameter is a

call-by-value real variable that is passed the first six characters of the symbolic name. If
the symbolic name is less than six characters long, it is left-justified, and trailing blanks

8600 0098-000

Declarations

are added, up to six characters. The monitoring procedure could compare this name to
the symbolic names in the monitor list in order to identify a particular label.

Monitor Element as an Array Identifier

When the monitor element is an array identifier, the declaration of the monitoring
procedure must be as follows:

REAL PROCEDURE MON(D1,...,Dn,NAME,VAL,SPELL);

The parameters D1 through Dn of the procedure are index parameters that are passed
the subscripts for each dimension of the array element that is modified. There must
be as many index parameters as the array has dimensions. Each index parameter is a
call-by-value integer. The last three parameters are the same as in the simple variable
form, except that NAME and VAL are simple variables of the same type as the array.

The value being assigned to the array element also can be assigned to the procedure
value to be used, for example, in evaluating the remainder of an expression that contains
the array element.

The following procedure can be used to monitor a two-dimensional real array so that the
values in the array never become negative:

REAL PROCEDURE MON(D1,D2,NAME,VAL,SPELL);
VALUE D1,D2,VAL,SPELL;
REAL NAME,VAL;
REAL SPELL;
INTEGER D1,D2;
BEGIN
IF VAL < @ THEN
GO TO ERROREXIT
NAME := MON := VAL
END;

s % BAD GO TO
RETURN VALUE FOR FURTHER USE

Q\o

.
.
H]

The following statements are equivalent to each other, where A is monitored by MON.
A is a two-dimensional array declared in the same program where the monitoring
procedure MON is declared. The first assignment statement assigns 4 to A[L,J], as does
the second statement because inside the procedure MON the fourth parameter (VAL) is
assigned to the 3rd parameter (NAME).

B := A[I,J] := 4;

B := MON(I,J,A[I,J],4,"A");

Examples of MONITOR Declarations

The following example declares the simple variable A to be a monitor element. When A
is used, monitoring information on A is written to file FYLE.

MONITOR FYLE (A)

8600 0098-000 3-69

Declarations

In the following program, simple variable I, array MON1, subscripted variable MON2[1],
and label FINISH are monitored.

109 BEGIN

200

390 FILE TERMOUT(KIND=REMOTE);
46 INTEGER I

500 LABEL FINISH;

680 ARRAY MON1[g:3],

700 MON2[9:3] ;
800 MONITOR TERMOUT (I,MONI1,MON2[1],FINISH);
900

1000 I := 27;
1166 MON1[@] :
1208 MON2[g] := 23;

130 MON2[1] := MON1[@] * 2;
1498 GO TO FINISH;

1500 FINISH:

1609 END.

I;

When the program is executed, the following output is written to the terminal:

2148 @ 003:000E:4 (00001000) I =g:=27 (4" 20000000001B")
0148 @ 903:0013:4 (00001100) MON1 [0]=0:=27 (4"00000000901B")
0148 @ 003:0020:4 (00001300) MON2 [1]=0:=54 (4"000000022036")
0148 @ 003:0024:4 (000P1500) LABEL FINISH

OUTPUTMESSAGE ARRAY Declaration

An OUTPUTMESSAGE ARRAY declaration declares output message arrays. An
output message array contains output messages to be used by the MultiLingual System
(MLS). For a description of how to use these arrays, refer to “MESSAGESEARCHER
Statement” in Section 4, “Statements.”

<output message array declaration>

— OUTPUTMESSAGE — ARRAY —L—<output message array>— |

<output message array>

—<identifier>— () |

&

—L—<output mes;age part>—l—

<output message array identifier>

An identifier that is associated with an output message array in an OUTPUTMESSAGE
ARRAY declaration.

3-70 8600 0098-000

Declarations

<output message part>

—<language name >
|—<trans1ators' help ’cex’c>—J l—<ccsver‘sion name>—I

- () I
-—[—<output l;tessage>J——

<language name>

—<Jetter |
|—L/ 16\——<1 ette£>_—|—L
—E<di git

<ccsversion name>

—<letter |
|—L/16\ <1 ette£>_—l—L
—E<di git

<translator’s help text>

— < —<EBCDIC string constant>— > |

The OUTPUTMESSAGE ARRAY declaration is part of the ALGOL interface to the
MultiLingual System (MLS), which enables the user to access system messages in
various natural languages, that is languages used by humans rather than machines.

Each output message array identifier must be unique throughout the entire program.
This requirement is an exception to the description of the scope of identifiers given in
Section 1, “Program Structure.”

The cesversion name identifies the cesversion to be associated with the messages
contained in the output message array. This information is used during translation

of the declared output messages by the MLSTRANSLATE statement to provide
case-insensitivity. If unspecified, the associated ccsversion becomes the internationalized
system default collating sequence.

Output Message

<output message>

output message number >
|—<trans'lators' help text>—] P s

<.

> C - O output message segment:l—l—{
<translators' help 'l:ext>J <translators' help text

<output message number>

—-<unsigned integer: |

8600 0098-000 3-71

Declarations

<output message segment>

<EBCDIC string constant |
<hexadecimal string constant>——
<output message parameter>———

<output message case expression>—
EMPTY

<output message parameter>

— < —<output message parameter number: >

3. |
L s DECIMALPOINTISCOMMA I
—[:I—I:/I\— DECIMALPOINTIS ——<panctuation 1itera1>————::]—J——
/1\— THOUSANDSEPARATORIS —<punctuation literal

<output message parameter number>

—<unsigned integer |

<output message case expression>

— CASE — < —<output message parameter number>— > — 0F — BEGIN —>

+—L—<output messa’e case part I END |
P g p |_’_l 1

<output message case part>

.

——I—I:<output message parameter va]ue>—T— : | >
/1\- ELSE

>]

.

J—]:<outpu’c message segment:j—l—
<translators' help text

<output message parameter value>

<hexadecimal string constant>—

—E<EBCDIC string constant —
EMPTY

An output message number must be less than 8 digits long. For each output message
part, the output message number must uniquely identify an output message. For
example, a number is assigned to one and only one output message segment, and each
output message segment has only one number assigned to it.

An output message parameter number represents a parameter to be substituted into
the message when the MESSAGESEARCHER statement is executed. The number
identifies which parameter is to be substituted. The output message parameters are
numbered consecutively from 1 through n, where n is the number of parameters in the
output message.

3-72 8600 0098-000

Declarations

DECIMALPOINTISCOMMA indicates that any decimal point (.) appearing in the
preceding output message parameter number is changed to a decimal comma (,). In
addition, all commas are changed to decimal points. DECIMALPOINTIS < punctuation
literal > causes any decimal points appearing in the parameter value to be changed to
the specified character. THOUSANDSEPARATORIS < punctuation literal > causes any
commas appearing in the parameter value to be changed to the specified character.

A slash (/) causes both a carriage return character (48"0D") and a line feed character
(48"25" to be inserted into the completed output message.

If an output message case expression does not contain an ELSE clause and no case exists
for the value of the output message parameter, then the result of the output message
case expression is a null string and an error result is returned with the completed output
message. The program requesting the output message can determine whether or not
the partially formed output message should be used.

When multiple output message parts occur within the same output message array, they
define the same output messages for different languages. Multiple output message
arrays can be used to define different groups of output messages.

Defines are expanded within an OUTPUTMESSAGE ARRAY declaration.

Translators’ Help Text

The translators’ help text is displayed by the Message Translation Utility (MSGTRANS)
when an output message is being translated. For more information on the MSGTRANS,
refer to the A Series Message Translation Utility MSGTRANS) Operations Guide. The
translators’ help text can occur before or after an output message segment or an output
message number. If translators’ help text needs to appear with all output messages

in the language, then the translators’ help text is placed after the language name and
before the left parenthesis.

Examples of OUTPUTMESSAGE ARRAY Declarations

In the following example, the output message array ERRORS shows an
OUTPUTMESSAGE ARRAY declaration with the same output messages in two
languages. The language of the user and the output message number determine the
output message that is selected from this array.

OUTPUTMESSAGE ARRAY ERRORS (
ENGLISH (
10 = "POSITIVE INTEGER EXPECTED.",
20 = "TOO MANY PARAMETERS."
)s
FRANCAIS (
10 = "DEMANDE UN ENTIER POSITIF.",
20 = "TROP DE PARAMETRES."

))s

8600 0098-000 3-73

Declarations

In the following example, the output message array SUMMARY shows an
OUTPUTMESSAGE ARRAY declaration with parameters. The first parameter value

is not used as part of the message, but rather to select among case alternatives. The
second and third parameters are conditionally inserted into the message, based on the
value of the first parameter. Note that both the second and third parameters are not
necessarily used. When the message is given in the language FRANCAIS, decimal points
in the values of parameters 2 and 3 are changed to decimal commas.

OUTPUTMESSAGE ARRAY SUMMARY (
ENGLISH (
100 =
"THIS PROGRAM IS TO BE EXECUTED WITH "
CASE <1> OF
BEGIN
"1": "MAX PROCESSING TIME " <2> " SEC.",
"2": "MAX I/O TIME " <3> " SEC.",
"3": "MAX PROCESSING TIME " <2> " SEC., MAX "
"I/0 TIME " <3> " SEC."
END
)s

FRANCAIS (
100 =
"CE PROGRAMME DOIT S'EXECUTER EN MOINS DE "
CASE <1> OF
BEGIN
"1": <2, DECIMALPOINTISCOMMA>
" SEC. DE CALCUL.",
"2": <3, DECIMALPOINTISCOMMA> " SEC. D'E/S.",
"3": <2, DECIMALPOINTISCOMMA>
" SEC. DE CALCUL ou "
<3, DECIMALPOINTISCOMMA> " SEC. D'E/S."
END

))s

PICTURE Declaration

3-74

The PICTURE declaration declares pictures that are used in REPLACE statements to
perform general editing of characters.

<picture declaration>

— PICTURE —L<identifier>— (~—<picture>—) — |

<picture identifier>

An identifier that is associated with a picture in a PICTURE declaration.

8600 0098-000

Declarations

<picture>

——I—<picture symbol I

<picture symbol>

<string literal |
<introduction
<picture skip T

<repeat part value>——
<control character
<single picture character
<picture character

I-—<r‘epeat part value>—

A picture is used in a REPLACE statement to perform generalized editing functions as
characters are transferred from a source location to a destination. The following editing
operations can be performed:

e Unconditional character moves

e Moves of characters with leading 0 (zero) editing

e Moves of characters with leading 0 (zero) editing and floating character insertion

e Moves of characters with conditional character insertion

e Moves of characters with unconditional character insertion

e Moves of only the numeric parts of characters

e Forward and reverse skips of source characters

e Forward skips of destination characters

e Insertion of an overpunch sign on the previous character

A picture consists of a named string of picture symbols enclosed in parentheses. The

picture symbols specify the editing to be performed and can be combined in any order to
perform a wide range of editing functions.

One value array, also called an edit table, is generated for each PICTURE declaration;
therefore, for run-time efficiency, all pictures should be collected under a single
PICTURE declaration.

String Literals

If a string literal appears in a picture, the string is inserted into the destination. If
the destination is EBCDIC, the string is inserted unchanged. If the destination is
hexadecimal, only the numeric fields of the string characters are inserted into the
destination.

8600 0098-000 3-75

Declarations

Introduction

<introduction>

—[<1' ntroduction code>—<new character !

4 —<introduction code>—[—/2\-—<hexadec1'ma1 char‘acter>—‘—

<introduction code>

cCoO=ZZ0Ow

<new character>

<letter>

<digit

<single space>————
<special new character>—

<special new character>

Any of the following special characters:

Introduction Codes

3-76

The introduction codes can be used to change the implicit characters used by some of the
picture symbols. The <introduction> construct specifies the new character to be used.
If two hexadecimal characters are used to specify the new character, they are assumed to
represent a single EBCDIC character.

Introduction
Code

B

Action

Specifies the zero character to be used by D, E, F, and Z. The default
zero character is the blank character.

Specifies the nonzero character to be used by D. The default nonzero
character is the comma (,).

Specifies the minus character to be used by E, R, and S. The default
minus character is the hyphen (-).

Specifies the insert character to be used by |. The default insert character
is the period (.).

Specifies the plus character to be used by E, R, and S. The default plus
character is the plus sign (+).

Specifies the dollar character to be used by F and J. The default dollar
character is the dollar sign ($).

8600 0098-000

Declarations

Characters Used by Picture Symbols

Certain picture symbols implicitly define characters to be inserted into the destination.
These characters are referred to as the insert character, zero character, nonzero
character, minus character, plus character, and dollar character.

The insert character is the character inserted into the destination by the picture
symbol I. It is, by default, the period (.), and it can be changed by the introduction
code N.

The zero character is used by the picture symbol D, and by the picture symbols E, F
and Z for leading zero replacement. It is, by default, the blank character, and it can be
changed by the introduction code B.

The nonzero character is used by the picture symbol D. It is, by default, the comma (,),
and it can be changed by the introduction code C.

The minus character is used by the picture symbols E, R, and S. The default minus
character is the hyphen (-), and it can be changed by the introduction code M.

The plus character is used by the picture symbols E, R, and S. The default plus character
is the plus sign (+), and it can be changed by the introduction code P.

The dollar character is used by the picture symbols F and J. The default dollar character
is the dollar sign ($), and it can be changed by the introduction code U.

Flip-Flops Used by Picture Symbols

Two hardware flip-flops affect the operation of certain picture symbols: the float flip-flop
(FLTF) and the external sign flip-flop (EXTF).

The value of FLTF affects the function performed by the picture symbols D, E, E, J, R,
and Z. FLTF is set to 0 (zero) at the beginning of every picture. The picture symbols
E, E and Z can change the value of FLTF to 1, and the picture symbols J, R, and D
unconditionally assign the number 0 to FLTFE.

The value of EXTF affects the function performed by the picture symbols E, E, J, Q,

R, and S. EXTF is not assigned a value by the REPLACE statement that is using the
picture; EXTF remains in the state in which it was left after the most recent operation
that affected it. For example, a REPLACE statement of the following form sets EXTF
to reflect the sign of the first arithmetic expression: the number 1 if the arithmetic
expression is positive, and the number zero if it is negative.

REPLACE <destination> BY <arithmetic expression>
FOR <arithmetic expression> DIGITS

Character Fields

Pictures can act on both EBCDIC and hexadecimal characters. In the descriptions of the
picture symbols, the term numeric field is used to mean either an entire hexadecimal

8600 0098-000 3-77

Declarations

character or the rightmost four bits of an EBCDIC character. The term zone field is used
to mean the leftmost four bits of an EBCDIC character.

Picture Skip Characters

<picture skip characters>

C27 !

<repeat part value>

— (—<unsigned integer>—) |

The picture skip characters are described in the following table. If a repeat part value
is given with the picture symbol, then this unsigned integer indicates the number of
characters that are to be skipped in the source. If no repeat part value is given, one
character is skipped in the source.

Character Action

> The source pointer is skipped forward (to the right) the specified number
of characters.

< The source pointer is skipped backward (to the left) the specified number
of characters.

Control Characters

<control character>

C 97 !

The control characters are described in the following table.

Character Action

Q If the value of EXTF is 1, a 4"D" character is inserted into the zone field
of the preceding destination character. If the value of EXTF is O, the
destination character is not altered. The destination pointer must be
EBCDIC, and it is left pointing to the same character that it was pointing
to before the Q action was taken.

FLTF is unconditionally assigned the value 0.

Single Picture Characters

<single picture character>
J 1
C&]
S

The single picture characters are described in the following table.

3-78 8600 0098-000

Declarations

Character Action

J If the value of FLTF is O, the dollar character is inserted into the
destination. If the value of FLTF is 1, no character is inserted, and the
destination pointer is not advanced. FLTF is then assigned the value 0. If
the destination is hexadecimal, only the numeric field of the dollar
character is inserted.

R If the values of FLTF and EXTF are 0, the plus character is inserted into
the destination. If FLTF is O and EXTF is 1, the minus character is
inserted into the destination. If FLTF is 1, no character is inserted, and
the destination pointer is not advanced. FLTF is then assigned the value
0. If the destination is hexadecimal, only the numeric field of the plus or
minus character is inserted.

S If EXTF is 1, the minus character is inserted into the destination;
otherwise, the plus character is inserted into the destination. The
destination must be EBCDIC.

Picture Characters

<picture character>

o >

ONX+—=TIMm

The picture characters are described in the following table. If a repeat part value
is given with the picture symbol, then the unsigned integer in the repeat part value
specifies the number of characters to be skipped, inserted, or transferred from the
source to the destination. If no repeat part value is given, one character is skipped,
inserted, or transferred from the source to the destination.

Character Action

A The specified number of characters are transferred from the source to the
destination. If the destination is hexadecimal, only the numeric fields of
the characters are transferred.

D If the value of FLTF is 0, the specified number of zero characters are
inserted into the destination. If FLTF is 1, the specified number of
nonzero characters are inserted into the destination. If the destination is
hexadecimal, only the numeric field of the zero or nonzero character is
inserted.

continued

8600 0098-000 3-79

Declarations

continued
Character Action
E For the specified number of source characters, the following action takes

place. While the value of FLTF is 0 and the numeric field of the source
character is 4"0", the zero character is inserted into the destination. If
the destination is hexadecimal, only the numeric field of the zero
character is inserted. If the value of FLTF is O and the numeric field of
the source character is not equal to 4'0", several things happen. If EXTF
is 0, the plus character is inserted into the destination. If EXTF is 1, the
minus character is inserted into the destination. If the destination is
hexadecimal, only the numeric field of the plus or minus character is
inserted. The numeric field of the source character is transferred to the
destination, with a zone field of 4"F" if the destination is EBCDIC. FLTF is
assigned a value of 1. While FLTF is 1, the numeric field of the source
character is transferred to the destination, with a zone field of 4"F" if the
destination is EBCDIC.

F For the specified number of source characters, the following action takes
place. While the value of FLTF is O and the numeric field of the source
character is 4"0", the zero character is inserted into the destination. If
the destination is hexadecimal, only the numeric field of the zero
character is inserted. If FLTF is O and the numeric field of the source
character is not equal to 4"0", several things can happen. The dollar
character is inserted into the destination. If the destination is
hexadecimal, only the numeric field of the dollar character is inserted.
The numeric field of the source character is transferred to the
destination, with a zone field of 4"F" if the destination is EBCDIC. FLTF is
assigned a value of 1. While FLTF is 1, the numeric field of the source
character is transferred to the destination, with a zone field of 4'F" if the
destination is EBCDIC.

| The specified number of insert characters are inserted into the
destination. If the destination is hexadecimal, only the numeric field of
the insert character is inserted.

X The destination pointer is skipped forward (to the right) the specified
number of characters.

zZ For the specified number of source characters, the following action takes
place. While the value of FLTF is O and the numeric field of the source
character is 4"0", the zero character is inserted into the destination. If
the destination is hexadecimal, only the numeric field of the zero
character is inserted. If the value of FLTF is 0 and the numeric field of
the source character is not equal to 4"0", the numeric field of the source
character is transferred to the destination, with a zone field of 4"F" if the
destination is EBCDIC. FLTF is assigned a value of 1. While FLTF is 1,
the numeric field of the source character is transferred to the destination,
with a zone field of 4"F" if the destination is EBCDIC.

9 If the source and destination are both EBCDIC, the numeric fields of the
specified number of characters are transferred from the source to the
destination with zone fields of 4"F". If the source and destination are
both hexadecimal, the specified number of characters are transferred
from the source to the destination.

3-80 8600 0098-000

Declarations

Examples of PICTURE Declarations

The following picture transfers five characters from the source to the destination:
PICTURE NUM (ZZZZ9)

The first four characters are transferred with leading zero replacement; that is, leading
zeros are transferred to the destination as the zero character, which is a blank character
by default. The fifth character is not replaced by the zero character. If the source and
destination are EBCDIC, digits are transferred as digits, but other characters have
their zone field replaced by 4"F", turning them into digits. If the source and destination
are hexadecimal, only the numeric field of the zero character is transferred to replace
leading zeros. The following table gives some sample results of this picture.

Source Destination
8"00000" 8'0"
8'00500" 8" 500"
8'00356" 8" 356"
8"0ABCD" 8" 1234"
4'00000" 4"00000"
4'00500" 4'00500"
4'00356" 4"00356"
4"0ABCD" 4"0ABCD"

The following picture transfers nine characters from the source to the destination and
inserts one character into the destination, yielding 10 characters in the destination:

PICTURE USECS (ZZZI1999999)

The first three characters from the source are transferred to the destination with
leading zero replacement. Then the insert character, which is a period (.) by default, is
inserted into the destination. Six characters are then transferred from the source to the
destination with no leading zero replacement. The following table gives some sample

results of this picture.
Source Destination
8"000000000" 8" .000000"
8"356000012" 8"356.000012"
8'005123400" 8" 5.123400"
8'150000376" 8"150.000376"

The following picture transfers six characters from the source:
PICTURE TIMENOW (N: " " 9(2) I 9(2) I 9(2))
The introduction code N causes the insert character to be the colon (:). The string

literal " " causes the blank character to be inserted into the destination. The first
and second source characters are transferred to the destination without leading zero

8600 0098-000 3-81

Declarations

3-82

replacement, the insert character is inserted into the destination, the third and fourth
source characters are transferred to the destination, the insert character is inserted, and
the fifth and sixth source characters are transferred to the destination. The destination
receives a total of nine characters. The following table gives some sample results of this
picture.

Source Destination

8'000000" 8" 00:00:00"
8'123456" 8" 12:34:56"
8'000523" 8" 00:05:23"
8'150007" 8" 15:00:07"

The following picture transfers 11 characters from the source to the destination,
formatting the information into a table:

PICTURE TABLE ("1983 = " F(4) X(2) "1984 = " :F(4) X(2)
"CHANGE = " :E(3) "%")

First, the string 1983 = is inserted into the destination. Then four characters are
transferred from the source to the destination, with leading zero replacement and a
dollar sign ($) inserted in front of the first nonzero character. Then the destination
pointer is advanced two characters, and the string 1984 = is inserted into the
destination. The colon (:) control character causes leading zero replacement to be
restored. Four characters are transferred from the source to the destination with
leading zero replacement and a dollar sign ($) inserted in front of the first nonzero
character. The destination pointer is advanced two characters, and the string
CHANGE = is inserted into the destination. Again, the colon is used to restore
leading zero replacement. Then three characters are transferred from the source to
the destination with leading zero replacement and a plus sign (+) or a minus sign (-)
inserted in front of the first nonzero character, depending on the value of EXTF. Finally,
the string % is inserted into the destination. A total of 42 destination characters are
produced by this picture.

The following table gives some sample results of this picture. In the table, it is assumed
that the destination area was filled with blanks before the picture was used, and that
EXTF was properly set up to reflect the sign of the change value.

Source Destination

8'00035000420020" 8'1983 = $35 1984 = $42 CHANGE = +20%"
8'00110003680235" 8'1983 = $110 1984 = $368 CHANGE = +235%"
8"02246021060006" 8'1983 = $2246 1984 = $2106 CHANGE = -6%"
8'00089000350061" 8'1983 = $89 1984 = $35 CHANGE = -61%"

8600 0098-000

Declarations

POINTER Declaration

The POINTER declaration declares a pointer. A pointer can represent the address of a
character position in a one-dimensional array or an array row. Therefore, the point is
said to point to a character position.

<pointer declaration>

T om T POINTER
OWN

sl <identifier . ’ | |
<lex level restriction pa1r‘1t>J

<pointer identifier>
An identifier that is associated with a pointer in a POINTER declaration.
The POINTER declaration establishes each identifier in the list as a pointer identifier.

The following declaration, for example, declares PTS, PTD, SOURCE, and DEST to be
pointers:

POINTER PTS,PTD,SOURCE,DEST

Pointers are initialized through the use of a pointer assignment statement or the update
pointer construct. Any attempt to use a pointer before it is initialized results in a fault at
run time.

OWN Pointers

A pointer declared to be OWN retains its value when the program exits the block in
which the pointer is declared, and that value is again available when the program
reenters the block in which the pointer is declared.

OWN pointers can be assigned only to global arrays or OWN arrays declared within the
scope of the pointer. This restriction applies because the pointer is not deallocated when
the block in which it is declared is exited. If an OWN pointer were assigned to a local
array, then when the block in which the pointer is declared is reentered, the pointer
could contain a reference to an array that has been deallocated.

Lex Level Restriction Part

<lex level restriction part>
— FOR pointer identifier |
_E:array identifier‘>————-] I

A global pointer pointing to a local array would access an invalid portion of memory if the
local array is deallocated. To avoid this situation, any construct that could result in a

8600 0098-000 3-83

Declarations

pointer pointing to an array declared at a higher lexical (lex) level than that at which the
pointer is declared is disallowed by the compiler. Such an assignment is called an up-level
pointer assignment.

An explicit up-level pointer assignment such as the following results in a syntax error,
because the locally declared array LOCALARRAY might be deallocated, leaving the
global pointer GLOBALPOINTER pointing at an invalid memory location:

GLOBALPOINTER := POINTER(LOCALARRAY)

A potential up-level pointer assignment such as the following also results in a syntax
error, because the local pointer LOCALPOINTER can point to a locally declared array:

GLOBALPOINTER := LOCALPOINTER

Of course, LOCALPOINTER can point to an array declared at a lex level equal to or less
than that at which GLOBALPOINTER is declared (in which case up-level assignment
would not occur). However, because there is no way for the compiler to determine where
LOCALPOINTER will be pointing when the assignment is executed, such potential
up-level pointer assignments are not allowed.

The lex level restriction part causes assignments to the declared pointer to be restricted
so that the pointer can be used to assign values to pointers declared at lower lex levels.
The lex level restriction part specifies that, for up-level pointer assignment checking, the
compiler is to treat the pointer being declared as if it were declared at the same lex level
as the pointer or array whose identifier follows the FOR. For example, the following
declaration declares a pointer LOCALPOINTER that can point only to arrays declared at
lex levels equal to or less than the lex level at which GLOBALPOINTER is declared:

POINTER LOCALPOINTER FOR GLOBALPOINTER
Because assignments to LOCALPOINTER are restricted by the lex level restriction part
in the preceding declaration, an assignment such as the following one cannot result in an
up-level pointer assignment, and therefore is allowed by the compiler:

GLOBALPOINTER := LOCALPOINTER

The lex level restriction part is not allowed in the formal parameter part or the global
part of a PROCEDURE declaration.

Examples of POINTER Declarations

3-84

In the following example, program 1 and program 2 are nearly identical. The

only difference is found in the POINTER declaration at line 1000. In program 1,
LOCALPOINTER is declared without a lex level restriction part, and the potential
up-level pointer assignment at line 1200 of program 1 causes a syntax error. In

program 2, LOCALPOINTER is declared with the lex level restriction part FOR
GLOBALARRAY2, so the pointer assignment at line 1200 of program 2 cannot be an
up-level pointer assignment and does not cause a syntax error. However, the restrictions
imposed by the lex level restriction part cause a syntax error at line 1300 of program 2,
where no error occurred in program 1.

8600 0098-000

Declarations

100 %5%%%%%%%%% %% %% % %% %% %% %6 %6666 %6 %6 %666 %6 %%
200 %%%%%%%%%%%%%% PROGRAM 1 %%°%%%%%%%%"%%%"%
300 %6%%%%%%%%%%% %% %% %% % % % %6 %%6% %% %6 %% %5 6% %6 %6 % %%
49@ BEGIN

500 POINTER GLOBALPOINTER;

600 ARRAY GLOBALARRAY1,

700 GLOBALARRAY2[9:9] ;

8pa GLOBALPOINTER := POINTER(GLOBALARRAY1);
900 BEGIN

1009 POINTER LOCALPOINTER;
11008 ARRAY LOCALARRAY[@:9];
1208 GLOBALPOINTER := LOCALPOINTER;

1300 LOCALPOINTER := POINTER(LOCALARRAY);
1400 END;

158@ END

100 %6%%%%% %% %%% 6% %% %% %% 6% %% %6 % 6% %6 %6 % %6 %6 % %6 % %6 %%
200 %%%%%%%%%%%%%% PROGRAM 2 %%%%%%%%%%%%%%"%
300 %6%%%%%% %% 5% 6% %% 5% 6% %6 %6 %6 % %5 %66 % %6 % %6 5% %6 %% %6 %
499 BEGIN

500 POINTER GLOBALPOINTER;

600 ARRAY GLOBALARRAY1,

700 GLOBALARRAY2[@:9] ;

804d GLOBALPOINTER := POINTER(GLOBALARRAY1);
900 BEGIN

1000 POINTER LOCALPOINTER FOR GLOBALARRAYZ;
1100 ARRAY LOCALARRAY[@:9];

1200 GLOBALPOINTER := LOCALPOINTER;

1309 LOCALPOINTER := POINTER(LOCALARRAY);
1400 END;

15@@ END.

g

C

g

Cd

e

0

N

0

e

°

0,
0

N

LEX LEVEL 2

LEX LEVEL 3

SYNTAX ERROR

LEX LEVEL 2

LEX LEVEL 3

SYNTAX ERROR

As the following example illustrates, a call-by-name formal pointer parameter cannot
be assigned the value of any pointer other than itself, because there is no way for the

compiler to determine the lex level of the actual pointer parameter passed to the

call-by-name formal pointer parameter.

8600 0098-000

3-85

Declarations

BEGIN

POINTER P1, P2; % LEX LEVEL 2

ARRAY A[@:9];

PROCEDURE P(PTRA, PTRB);

POINTER PTRA, PTRB;
BEGIN
PTRA := PTRA + 3; % 0K
REPLACE PTRA:PTRA BY PTRB:PTRB FOR 5; % 0K
PTRA := PTRB; % SYNTAX ERROR
PTRA := P2; % SYNTAX ERROR
PTRB := POINTER(A); % SYNTAX ERROR
REPLACE PTRA:PTRB BY "X"; % SYNTAX ERROR
END;

P2 := POINTER(A);

P(P1, P2);

END.

As the following example illustrates, to prevent up-level pointer assignments that can
result from separate compilation of procedures with global parts, a pointer declared in
the global part cannot be assigned the value of any pointer other than itself.

[POINTER PTRA,PTRB;]
PROCEDURE P;

BEGIN

ARRAY A[@:9];

PTRA := PTRA + 2; % 0K
PTRA := POINTER(A); % SYNTAX ERROR -- THIS IS AN
% UP-LEVEL POINTER ASSIGNMENT.
PTRA := PTRB; % SYNTAX ERROR -- THE LEX LEVELS
% OF PTRA AND PTRB ARE NOT KNOWN,
% SO THIS IS A POTENTIAL UP-LEVEL
% POINTER ASSIGNMENT.
END.

PROCEDURE Declaration

A PROCEDURE declaration defines a procedure and associates a procedure identifier
with it. The procedure can then be invoked by using the procedure identifier.

<procedure declaration>

T PROCEDURE —=<procedure heading>— ; —— >
<procedure t,ype>—-J

s—<procedure body |

<procedure type>

type]
STRING —| '

L<string type>~——|

3-86 8600 0098-000

Declarations

<procedure heading>

—<identifier |
L<forma parameter p&ur‘t>——J

A procedure becomes a function by preceding the word PROCEDURE with a procedure
type and by assigning a value (the result to be returned by the procedure) to the
procedure identifier somewhere within the procedure body. This kind of procedure

is referred to in ALGOL as a typed procedure. For examples of typed procedures,

see procedures RESULT, HEXPROC, MATCH, and MUCHO under “Examples of
PROCEDURE Declaration” later in this section. A typed procedure can be used either
as a statement or as a function. When used as a statement, the returned result is
automatically discarded.

If the <string type> variable is not specified in the <procedure type> construct in the
declaration of a string procedure, then the string procedure is of the default character
type. The default character type can be designated by the compiler control options
ASCII and BCL. If no such compiler control option is used, the default character type is

EBCDIC. For more information, refer to “Default Character Type” in Appendix C, “Data
Representation.”

Identifiers

<procedure identifier>

An identifier that is associated with a procedure in a PROCEDURE declaration.

<string procedure identifier>

An identifier that is associated with a procedure that is declared a string procedure in a
PROCEDURE declaration.

Formal Parameter Part

<formal parameter part>

— (—<formal parameter list>—) — ; >

I—<va1 ue panr"c>—I

[specifit’:ation | |

l—-<r‘efer‘ence par"t>J

<reference part>

€ ’
— REFERENCE —L<identifm— : |

8600 0098-000 3-87

Declarations

3-88

<formal parameter list>

’-(——<];arameter delimiter>—]
—L—<formal parameter I

<formal parameter>

—<identifier !

<value part>

€ ’
— VALUE —J-—<identifm ; |

The formal parameter part lists the items to be passed in as parameters when the
procedure is invoked. A formal parameter part is optional. Every formal parameter for a
procedure must appear in a specification.

For maximum efficiency, as many formal parameters as possible should be call-by-value,
and each specified lower bound should have a value of 0 (zero).

The formal parameter specifier causes the compiler to generate more efficient code

for passing procedures as parameters. When a procedure is declared FORMAL, the
compiler checks the parameters of the actual procedure passed to it at compilation time;
otherwise, the parameters are checked at run time. If FORMAL is specified, the formal
procedure is called a fully specified formal procedure.

To ensure that a parameter is passed call-by-reference, the parameter name must
appear in the <reference part> of the parameter description. Constants and arithmetic
expressions cannot be passed to parameters whose name appears in the reference part.

If a formal parameter is call-by-reference and the actual parameter being passed to it is
itself a parameter and is call-by-name, then evaluation of the call-by-name parameter
is done in order to generate the call-by-reference parameter. This ensures that any
expressions evaluated due to an accidental entry generated for the call-by-name
parameter are evaluated only once for the call-by-reference parameter.

The value part specifies which formal parameters are to be call-by-value. When a
formal parameter is call-by-value, the formal parameter is assigned the value of the
corresponding actual parameter when the procedure is invoked. Thereafter, the formal
parameter is handled as a variable that is local to the procedure body. That is, any
change made to the value of a call-by-value formal parameter has no effect outside the
procedure body.

For more information on < parameter delimiter >, see Section 2, “Language
Components.”

Only arithmetic, Boolean, complex, designational, pointer, and string expressions can be
passed as actual parameters to call-by-value formal parameters. These expressions are
evaluated once before entry into the procedure body.

Formal parameters not listed in the value part are call-by-name, except for string
parameters and file parameters. Wherever a call-by-name formal parameter appears in

8600 0098-000

Declarations

the procedure body, the formal parameter is, in effect, replaced by the actual parameter
itself and not by the value of the actual parameter. A call-by-name formal parameter is
essentially global to the procedure body, because any change made to its value within the
procedure body also changes the value of the corresponding actual parameter outside the
procedure body. If the formal parameter is a complex call-by-name parameter and the
actual parameter is not of type COMPLEX, an assignment within the procedure body to
the formal parameter causes the program to discontinue with a fault.

An expression can be passed as an actual parameter to a call-by-name formal parameter.
This situation results in a thunk, or accidental entry. A thunk is a compiler-generated
typed procedure that calculates and returns the value of the expression each time the
formal parameter is used. This situation can be time-consuming if the formal parameter
is repeatedly referenced. In addition, a fault occurs if an attempt is made to store into
that parameter.

The default mode of passing a string is call-by-reference instead of call-by-name. Any
string expression can be passed to a call-by-reference string formal parameter. When

a string variable or a subscripted string variable is passed as an actual parameter to a
call-by-reference string formal parameter, a reference to the actual string is passed. If
the value of the formal parameter is changed within the procedure body, the actual string
is also changed.

If any other form of string expression is passed as an actual parameter to a
call-by-reference string formal parameter, the string expression is evaluated once at
the time the expression is passed, and a reference to the value of the expression is
passed to the called procedure. This value can be altered by the called procedure.
However, any change in the value of the formal parameter within the procedure body
has no effect outside the procedure body. A string expression cannot be passed as an
actual parameter to a call-by-name parameter of a procedure in a PROCESS or CALL
statement.

Specification

<specification>

€ >
<specif1’er‘>—[—<1’dentifier |

raentit 1
<procedure specification
<array specification

<procedure reference array specification>-

8600 0098-000 3-89

Declarations

3-90

<specifier>

—— EVENT

T FILE ————
— DIRECT

— FORMAT
— LABEL
— LIST
— PICTURE
— POINTER

STRING —

<string type>J
— SWITCH

T T SWITCH FILE —
— DIRECT

L SWITCH FORMAT
— SWITCH LIST

L TASK
—<type

<procedure specification>

PROCEDURE —<identifier

l—<pr‘ocedur‘e type>—]

3.

|—<for‘ma] parameter specifier‘>—‘

<formal parameter specifier>

() s — FORMAL
L—<1°or‘maﬂ parameter p<‘:nr‘t>—I

<array specification>

€ E
B ARRAY ——L<1'dent1' fier
<array type>—'

9— [—<Tower bound list>—]

<array type>

——<array class
— DIRECT

|—<array class>—
— EVENT

STRING —

—<string type>—I
- TASK

<lower bound list>

—L<specif1'ed 1c,>wer bound I

<specified lower bound>

<
_E lnteger I

8600 0098-000

Declarations

An array specification must be provided for every formal array. The array specification
indicates the number of dimensions in the formal array and indicates the lower bound for
each dimension.

If the specified lower bound is an integer, then the corresponding dimension of the
formal array equals that integer. An asterisk (*) used as a specified lower bound
indicates that the corresponding dimension of the formal array has a lower bound that is
passed to the procedure with the actual array.

Array rows that are passed as actual parameters to procedures have their subscripts

evaluated at the time of the procedure call, rather than at the time the corresponding
formal array is referenced.

Procedure Reference Array Specification

<procedure reference array specification>

PROCEDURE — REFERENCE — ARRAY —<identifier>—

|—<procedure type>——]
+— [—<lower bound 1ist>—] —<formal parameter specifier>—

A procedure reference array specification must have a formal parameter specifier.

If a program is a procedure, parameters can be passed to it. If the procedure is
initiated through CANDE (which passes only one parameter, a quoted string), then the
formal parameter must be declared as a real array with an asterisk lower bound. If
the procedure is initiated through Work Flow Language (WFL), a formal parameter

for a string actual parameter must be declared as a real array with an asterisk lower
bound. Both CANDE and WFL pass strings as arrays. For more information, refer to
the EXECUTE ¢ommand in the A Series CANDE Operations Reference Manual and the
RUN statement in the A Series Work Flow Language (WFL) Programming Reference
Manual. When the program is initiated, the array is allocated the minimum number of
words needed to contain the string plus at least one null character (48"00"), which is
appended to the end of the string.

Procedure Body

<procedure body>

<unlabeled statement |
EXTERNAL
<dynamic procedure specification>——

library entry point spec~if1’c::1t1’cm>J

Procedures can be called recursively; that is, inside the procedure body, a procedure can
invoke itself.

The procedure body EXTERNAL is used to declare a procedure that is to be bound in to

the program (as opposed to actually appearing within the program) or that is an external
code file to be invoked. An attempt to invoke a procedure that is declared external but

8600 0098-000 3-91

Declarations

has not been bound in nor associated with an external code file results in a run-time
error.

Dynamic Procedure Specification

<dynamic procedure specification>

— BY CALLING —<selection procedure identifier |

<selection procedure identifier>

—<procedure identifier |

A dynamic procedure specification is used in a library program to declare a procedure
that is to be exported dynamically. Such a procedure is also called a by-calling procedure.
For more information on by-calling procedures, refer to Section 8, “Library Facility.”

The by-calling procedure cannot be declared FORWARD and cannot be a separately
compiled procedure. Also, the by-calling procedure cannot be referenced directly in the
library program that declares it.

A selection procedure identifier must specify an untyped procedure with two parameters.
The first parameter must be a call-by-value EBCDIC string. The second parameter
must be a fully specified untyped procedure with one parameter that is a task. When
the operating system invokes this selection procedure, the task variable passed to its
procedure parameter must already be associated with a library that has been processed
using this task variable.

Library Entry Point Specification

« 3-92

<library entry point specification>

— LIBRARY —<library identifier >

L (— ACTUALNAME — = — <EBCDIC string literal> —) -

A library entry point specification declares a procedure to be an entry point in the library
known to this program by the library identifier. The procedure cannot be declared
FORWARD or EXTERNAL.

If a program declares a library and entry points in that library, the object code file

for the program contains a structure called a library template, which describes the
library and its declared entry points. Each declared library has one template. The
template description of an entry point includes the entry point name, a description of the
procedure type, and descriptions of the entry point parameters.

When a library entry point is called, the entry point description in the library template of
the calling program is compared to the entry point description of the same name in the
library directory associated with the referenced library. Refer to “EXPORT Declaration”
earlier in this section for a discussion of library directories. If the entry point does not
exist in the library or if the two entry point descriptions are not compatible, then a
run-time error is given and the program is terminated.

8600 0098-000

Declarations

The name given for an entry point in a library template is the procedure identifier in
the entry point declaration, unless an ACTUALNAME clause appears, in which case
the name is given by the EBCDIC string literal. The EBCDIC string literal in the
ACTUALNAME clause must not contain any leading, trailing, or embedded blanks and
must be a valid identifier, that is, any sequence of characters beginning with a letter and
consisting of letters, digits, hyphens (-), and underscores ().

Allowed Formal and Actual Parameters

All parameters can be declared to be call-by-name or, in the case of strings,
call-by-reference. The following types of parameters also can be declared to be
call-by-value:

o ASCII string

¢ Boolean simple variable

e complex simple variable

e double simple variable

e EBCDIC string

¢ hexadecimal string

e integer simple variable

e label

e pointer

e real simple variable

e string

Parameter Matching

Array Parameters

If a formal parameter is an array, the actual parameter passed to that formal array must
be an array designator that has the same number of dimensions as the formal array.

The types of actual arrays that can be passed to formal arrays are listed in Table 3-1.

Table 3-1. Array Parameters

Formal Parameters Allowed Actual Parameters

ASCII array ASCII array
ASCII value array

ASCI! string array ASCII string array

continued

8600 0098-000 3-93

Declarations

Table 3-1. Array Parameters (cont.)

Formal Parameters

Allowed Actual Parameters

BCL array

Boolean array

Complex array

Direct ASCII array

Direct BCL array

Direct Boolean array
Direct double array
Direct EBCDIC array
Direct hexadecimal array
Direct integer array
Direct real array

Double array

EBCDIC array

EBCDIC string array
Event array

Hexadecimal array
Hexadecimal string array

Integer array
Real array

Task array

BCL array
BCL value array

Boolean array
Direct Boolean array
Boolean value array

Complex array
Complex value array

Direct ASCII array

Direct BCL array

Direct Boolean array
Direct double array
Direct EBCDIC array
Direct hexadecimal array
Direct integer array
Direct real array

Double array
Direct double array
Double value array

EBCDIC array
EBCDIC value array

EBCDIC string array
Event array

Hexadecimal array
Hexadecimal value array

Hexadecimal string array

Integer array

Real array

Direct integer array
Direct real array
Integer value array
Real value array

Task array

3-94

8600 0098-000

Declarations

Procedure Reference Array Parameters

If a formal parameter is a procedure reference array, the actual parameter passed to that
formal procedure reference array must be a procedure reference array designator that
has the same number of dimensions as the formal procedure reference array.

The following must also be true:
e The actual procedure reference array designator must have the same number of

parameters as the formal procedure reference array.

e Fach parameter of the actual procedure reference array designator must have the
same type as the corresponding parameter in the formal procedure reference array.

e Each parameter of the actual procedure reference array designator must be passed
in the same manner (call-by-name or call-by-value) as the corresponding parameter
in the formal procedure reference array.

The types of procedure reference array designators that can be passed to formal
procedure reference arrays are listed in Table 3-2.

Table 3-2. Procedure Reference Array Parameters

Formal Parameter Allowed Actual Parameters

ASCII string procedure reference array ASCII string procedure reference array
designator

Boolean procedure reference array Boolean procedure reference array designator

Complex procedure reference array Complex procedure reference array designator

Double procedure reference array Double procedure reference array designator

EBCDIC procedure reference array EBCDIC procedure reference array designator

Hexadecimal procedure reference array Hexadecimal procedure reference array
designator

Integer procedure reference array Integer procedure reference array designator

Real procedure reference array Real procedure reference array designator

Untyped procedure reference array Untyped procedure reference array designator

Procedure Parameters

If a formal parameter is a procedure, the actual parameter passed to that formal
procedure must be the identifier of a procedure for which the following is true:

o The actual procedure has the same number of parameters as the formal procedure.

e Each parameter of the actual procedure must have the same type as the
corresponding parameter in the formal procedure.

8600 0098-000 3-95

Declarations

e Each parameter of the actual procedure must be passed in the same manner
(call-by-name or call-by-value) as the corresponding parameter in the formal
procedure.

The types of the procedures that can be passed to formal procedures are listed in

Table 3-3.
Table 3-3. Procedure Parameters

Formal Parameter Allowed Actual Parameters
ASCII string procedure ASCII string procedure

ASCII string procedure reference array element
Boolean procedure Boolean procedure

Boolean procedure reference array element
Complex procedure Complex procedure

Complex procedure reference array element
Double procedure Double procedure

Double procedure reference array element
EBCDIC string procedure EBCDIC string procedure

EBCDIC string procedure reference array element
Hexadecimal string procedure Hexadecimal string procedure

Hexadecimal string procedure reference array element
Integer procedure Integer procedure

Integer procedure reference array element
Real procedure Real procedure

Real procedure reference array element
Untyped procedure Untyped procedure

Untyped procedure reference array element

Simple Variable Parameters

The types of actual parameters that can be passed to formal parameters that are simple
variables are listed in Table 3-4.

3-96 8600 0098-000

Declarations

Table 3-4. Simple Variable Parameters

Formal Parameter

Allowed Actual Parameters

Boolean simple variable
(call-by-name or call-by-value)

Complex simple variable
(call-by-name or call-by-value)

Double simple variable
(call-by-name)

Double simple variable
(call-by-value)

Integer simple variable
Real simple variable
(call-by-name)

Integer simple variable
Real simple variable
(call-by-value)

Boolean identifier
Boolean procedure identifier
Boolean expression

Complex identifier

Double identifier

Integer identifier

Real identifier

Complex procedure identifier
Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double precision)
Complex expression

Double identifier

Double procedure identifier
Arithmetic expression
(double precision only)

Double identifier

Integer identifier

Real identifier

Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double precision)

Integer identifier

Real identifier

Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single precision only)

Double identifier

Integer identifier

Real identifier

Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double precision)

8600 0098-000

3-97

Declarations

String Parameters

The types of actual parameters that can be passed to formal parameters that are strings

are listed in Table 3-5.
Table 3-5. String Parameters
Formal Parameter Allowed Actual Parameters
ASCII string ASCII string identifier
(call-by-reference or call-by-value) ASCII string procedure identifier
ASCII string expression
EBCDIC string EBCDIC string identifier
(call-by-reference or call-by-value) EBCDIC string procedure identifier
EBCDIC string expression
Hexadecimal string Hexadecimal string identifier
(call-by-reference or call-by-value) Hexadecimal string procedure identifier
Hexadecimal string expression

File Parameters

The types of actual parameters that can be passed to formal parameters that are files are
listed in Table 3-6.

Table 3-6. File Parameters

Formal Parameter Allowed Actual Parameters
Direct file Direct file identifier
Subscripted direct switch file identifier
Direct switch file Direct switch file identifier
File File identifier

Subscripted switch file identifier

Switch file Switch file identifier

Other Types of Parameters

The types of actual parameters that can be passed to formal parameters that are not
arrays, procedures, simple variables, strings, or files are listed in Table 3-7.

3-98 8600 0098-000

Declarations

Table 3-7. Other Types of Parameters

Formal Parameter Allowed Actual Parameters

Event Event identifier
An element of an event array
File identifier.event-valued file attribute name
Subscripted switch file identifier.event-valued file attribute name

Format Format identifier
Subscripted switch format identifier

Label Label identifier
(call-by-name) Subscripted switch identifier
(call-by-value) Designational expression
List List identifier

Subscripted switch list identifier
Picture Picture identifier
Pointer (call-by-name) Pointer identifier
Pointer (call-by-value) Pointer identifier

Pointer expression
Switch label Switch label identifier
Switch format Switch format identifier
Switch list Switch list identifier
Task Any task designator

Examples of PROCEDURE Declarations

The following examples show how the procedure body of a procedure can vary in
complexity from a simple unlabeled statement to a block.

The following example declares SIMPL to be an untyped procedure with no parameters.
The body of SIMPL is a single statement.

PROCEDURE SIMPL;
Xi=X+1

The following example declares TUFFER to be an untyped procedure with one
parameter, PARAM, which is a call-by-value real variable. The body of TUFFER consists

of a single statement.

PROCEDURE TUFFER(PARAM) ;
VALUE PARAM;
REAL PARAM;

X := X + PARAM

8600 0098-000 3-99

Declarations

3-100

In the following example, procedure RESULT is a typed procedure that returns a real
value. The value to be returned is assigned to the procedure identifier by the following
assignment:

RESULT := X + PARAM;

RESULT has two parameters, a call-by-name real variable and a file.

REAL PROCEDURE RESULT (PARAM,FYLEIN);
REAL PARAM;
FILE FYLEIN;

BEGIN

RESULT := X + PARAM;

END

The following example declares HEXPROC to be a typed procedure that returns a
hexadecimal string value. The value to be returned is assigned to the procedure
identifier in the assignment that makes up the body of HEXPROC.

HEX STRING PROCEDURE HEXPROCj;
HEXPROC := 4"123"

The following example declares MATCH to be a typed procedure that returns a Boolean
value. MATCH has three parameters that are all call-by-value integer variables.

BOOLEAN PROCEDURE MATCH(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;

MATCH := A=B OR A=C OR B=C

The following example is a FORWARD PROCEDURE declaration for the procedure
FURTHERON. For more information, refer to “FORWARD REFERENCE Declaration”
earlier in this section.

PROCEDURE FURTHERON;
FORWARD

The following example declares MUCHO to be a double-precision procedure with three
parameters. DBL1 is a call-by-name double-precision variable, DBL2 is a call-by-value
double-precision variable, and BOOL is a call-by-value Boolean variable. The body of
MUCHO is a block.

8600 0098-000

Declarations

DOUBLE PROCEDURE MUCHO(DBL1,DBL2,BOOL);
VALUE DBL2,BOOL;
DOUBLE DBL1,DBLZ;
BOOLEAN BOOL;
BEGIN
REAL LOCALX,LOCALY;

MUCHO := DOUBLE(LOCALX,LOCALY);
END OF MUCHO

The following example declares GETDATA to be a by-calling procedure. The selection
procedure is SELECTDATASOURCE. GETDATA has one parameter, a one-dimensional
real array, A, with an asterisk lower bound, meaning that the lower bound is to be passed
as a parameter.

PROCEDURE GETDATA(A) ; % BY-CALLING PROCEDURE
ARRAY A[*];
BY CALLING SELECTDATASOURCE

The following example declares NUMRECORDS to be an entry point in the library
DATAHANDLER. The entry point is exported from DATAHANDLER with the name
COUNTRECS, but will be called NUMRECORDS in this program.

INTEGER PROCEDURE NUMRECORDS(TYPE); % LIBRARY ENTRY POINT
VALUE TYPE;
INTEGER TYPE;

LIBRARY DATAHANDLER (ACTUALNAME="COUNTRECS")

PROCEDURE REFERENCE ARRAY Declaration

The PROCEDURE REFERENCE ARRAY declaration declares a procedure reference
array, which is a structure that allows a group of like procedures to be treated as a
single entity. A procedure in the group can be invoked by referencing an element of the
procedure reference array.

<procedure reference array declaration>

——E<'Ioca1 procedure reference array declaration |
<global procedure reference array dec'laxr‘a\tion>—I

<local procedure reference array declaration>

PROCEDURE — REFERENCE — ARRAY —<identifier>—

|—<p1r‘ocedur'e t,ype>J

9— [—<bound pair list>—] ; — NULL —

|—<forma1 parameter part>—]

8600 0098-000 3-101

Declarations

<procedure reference array identifier>

An identifier that is associated with a procedure reference array in a PROCEDURE
REFERENCE ARRAY declaration.

<global procedure reference array declaration>

T PROCEDURE — REFERENCE — ARRAY —<identifier>—
<procedure ’cype>—-l

[<bound pair list] H -
—E<'I ower bound Hst>—J l—<1’or‘ma'| parameter panr't>J ’

2— EXTERNAL |

<procedure reference array designator>

—<procedure reference array identifier —]

L<subar‘r‘aly selector>—|

<procedure reference array row>

£

—<procedure reference array identifier . .
<row selector

<procedure reference array element>

6 i
—<procedure reference array identifier>— [—L<subscr1’pt—>—|—] —

Placement of Procedure Reference Arrays

3-102

A procedure reference array is an array of references to procedures of identical type and
parameters. An element of a procedure reference array can appear in the following
places:

e On either side of a procedure reference array assignment.

e Asa primary in an expression, if the procedure reference array has a type associated
with it.

¢ In a PROCEDURE REFERENCE ARRAY statement.

e Asa formal or actual parameter.

e Asan object exported by, or imported from, a library in a LIBRARY declaration. For

more information, see “LIBRARY Declaration” earlier in this section.

Before an element of a procedure reference array can be used as a parameter, as a
primary, or in a PROCEDURE REFERENCE ARRAY statement, it must be initialized
in a procedure reference array assignment. A procedure assigned to the element must
have had its parameters declared explicitly.

A procedure reference array can appear in the formal parameter part of a PROCEDURE
declaration or of another PROCEDURE REFERENCE ARRAY declaration. A formal
parameter that is a procedure reference array must be declared FORMAL so that all of
its parameters are checked at compilation time.

8600 0098-000

Declarations

A procedure reference array element can be passed as an actual parameter to a formal
procedure that is of the same type and that has the same parameter descriptions.

A local PROCEDURE REFERENCE ARRAY declaration cannot appear in the global

part of a program unit. A global PROCEDURE REFERENCE ARRAY declaration can
appear in the global part of a program unit or in a LIBRARY declaration.

Example of PROCEDURE REFERENCE ARRAY Declaration

The following example declares a 10-element procedure reference array, each element
of which references a procedure of type INTEGER with two parameters. The first
parameter is a call-by-value integer simple variable, and the second is an untyped
procedure reference array with a lower bound of 0 (zero) and no parameters.

INTEGER PROCEDURE REFERENCE ARRAY REFARRAY[1:10] (Q,R);
VALUE Q;
INTEGER Q;
PROCEDURE REFERENCE ARRAY R[] ();
FORMAL;

NULL

REAL Declaration

A REAL declaration declares simple variables that can have real values, that is,
arithmetic values that have exponents and fractional parts.

<real declaration>

REAL [identiﬁ!er | |
L OWN il |—<equalt1'on par‘t>—J I

<real identifier>

An identifier that is associated with the REAL data type in a REAL declaration.

Declaration of Simple Variables
A simple variable declared to be OWN retains its value when the program exits the block
in which the variable is declared, and that value is again available when the program
reenters the block in which the variable is declared.

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier.

For more information on < equation part >, see “BOOLEAN Declaration” earlier in this
section.

8600 0098-000 3-103

Declarations

This action is called address equation. An identifier can be address-equated only to a
previously declared local identifier or to a global identifier. The first identifier must not
have been previously declared within the block of the equation part. An equation part is
not allowed in the global part of a program unit.

Address equation is allowed only between integer, real, and Boolean variables. Because
both identifiers of the equation part have the same address, altering the value of either
variable affects the value of both variables. For more information, see “Type Coercion of
One-Word and Two-Word Operands” in Appendix C, “Data Representation.”

The OWN specification has no effect on an address-equated identifier. The first
identifier of an equation part is OWN only if the second identifier of the equation part is
OWN.

If a real or integer value is assigned to a real variable, it is stored as is into the variable.
If a double-precision value is assigned to a real variable, it is rounded to single precision

before it is stored in the variable.

When a real simple variable is allocated, it is initialized to 0 (zero), which is a 48-bit word
with all bits equal to 0.

See Appendix C, “Data Representation,” for additional information on the internal
structure of a real operand as implemented on A Series systems.

Examples of REAL Declarations
~ The following example declares INDX, X, Y, and TOTAL as real variables.

REAL INDX,X,Y,TOTAL
The following example declares CALC, INDEX, and VALU as real variables. CALC is
address-equated to the simple variable BOOL, and VALU is address-equated to the
simple variable INTR. According to this declaration, CALC and BOOL share the same
address, and VALU and INTR share the same address.

REAL CALC = BOOL, INDEX, VALU = INTR
The following example declares DISTANCE and REALINDEX as real variables. Because
these variables are declared to be OWN, the variables retain their values when the

program exits the block in which they are declared.

OWN REAL DISTANCE, REALINDEX

3-104 8600 0098-000

Declarations

SIMPLE VARIABLE Declaration

A SIMPLE VARIABLE declaration declares simple variables that can be used in a
manner appropriate to the specified type.

<simple variable declaration>

<Boolean declaration !

<complex declaration>—
<double declaration>—
integer declaration>—
<real declaration>——

Type-transfer functions can be used, as can the equation part construct, to perform
operations on a variable other than those that are valid for the type of the variable.

Each type of simple variable is used as follows:

Type
BOOLEAN

COMPLEX

DOUBLE

INTEGER

REAL

Meaning/Description

Boolean values. A Boolean variable is a one-word variable in which the
Boolean value (TRUE or FALSE) depends on the low-order bit (bit zero) of
the word. The use of partial word parts and concatenation enables all 48
bits to be tested or manipulated as needed.

Complex values. A complex variable consists of two real variables in which
the first variable contains the real part and the second variable contains the
imaginary part.

Double-precision arithmetic values. A double-precision variable is a
two-word variable.

Integer arithmetic values. An integer value is one that has an exponent of
0 (zero) and no fractional part. Integer variables are one-word variables.

Real arithmetic values. A real value is one that can have an exponent and a
fractional part. Real variables are one-word variables.

See Appendix C, “Data Representation,” for more information regarding the internal
structure of each type of simple variable as implemented on A Series systems.

STRING Declaration

A STRING declaration declares simple variables to be strings. Strings allow storage and
manipulation of character strings in a program.

<string declaration>

I—<stri ng type>J

8600 0098-000

e—, I
STRING —J:—<identi fier |

3-105

Declarations

<string type>

<string identifier>

An identifier that is associated with the STRING data type in a STRING declaration.

STRING Type

The type STRING is a structured data type that contains characters of only one
character type.

A string has two components: contents and length. No trailing blanks or null characters
are added to a string; therefore the length of a string is exactly the number of characters
stored in the string. The maximum string length allowed is 2**16-2 characters.

All strings declared in a STRING declaration are of the same string type. If no string
type is specified in the STRING declaration, then the default character type is used.
If the default character type in this case is BCL, a syntax error is given. The default
character type can be designated by the compiler control options ASCII and BCL. If
no such compiler control option is designated, the default character type is EBCDIC.
For more information, refer to “Default Character Type” in Appendix C, “Data
Representation.”

The number of strings that can be declared in a program is limited by the operating
system to 500. If this limit is exceeded, the message STRING POOL EXCEEDED is
given.

Examples of STRING Declarations

3-106

The following example declares S1, S2, and S3 as string simple variables of string type
ASCII. S1, S2, and S8 contain ASCII characters.

ASCII STRING S1,S2,S3

The following example declares S5, S6, S7, and S8 as string simple variables of string
type EBCDIC. These strings contain EBCDIC characters.

EBCDIC STRING $5,S6,S7,S8
The following example declares S9 as a string simple variable. Because no string type is
specified, the default character type is used. This character type is EBCDIC unless the
compiler control option ASCII is TRUE, in which case the string type is ASCII, or the
compiler control option BCL is TRUE, in which case the string type is BCL. If the default
character type is BCL, this declaration is given a syntax error.

STRING S9

8600 0098-000

Declarations

STRING ARRAY Declaration

A STRING ARRAY declaration declares string arrays. A string array is an array that has
string elements.

<string array declaration>

STRING — ARRAY >

I—<s'cr‘1' ng type>J

.

>
&.

»—-—l;<ident%f;;;;:1— [—<bound pair Tist>—]]

<string array identifier>

An identifier that is associated with a string array in a STRING ARRAY declaration.

<string array designator>

—-<string array identifier T N Toet .| |
<subarray selector

String Array Type

All string arrays declared in a STRING ARRAY declaration are of the same string type.
If no string type is specified, the default character type is used. If the default character
type in this case is BCL, a syntax error is given. The default character type can be
designated by the compiler control options ASCII and BCL. If no such compiler control
option is used, the default character type is EBCDIC. For more information, refer to
“Default Character Type” in Appendix C, “Data Representation.”

The restrictions that apply to arrays also apply to string arrays. For more information on
bound pair lists, subarray selectors, and arrays, see “ARRAY Declaration” earlier in this
section.

Examples of STRING ARRAY Declarations

The following example declares SA, SB, and SC as one-dimensional arrays of strings,
each with a lower bound of 0 and an upper bound of 10. Because no string type is
specified, the default character type is used. This character type is EBCDIC unless the
compiler control option ASCII is TRUE, in which case the string type is ASCII, or the
compiler control option BCL is TRUE, in which case the string type is BCL. If the default
character type is BCL, this declaration is given a syntax error.

STRING ARRAY SA,SB,SC[9:10]
The following example declares ESA, ESB, and ESC as arrays of strings. The string type
is EBCDIC, so each is an array of EBCDIC strings. ESA is one-dimensional and has a

lower bound of 1 and an upper bound of 15. Arrays ESB and ESC are two-dimensional
arrays with lower bounds of 0 and upper bounds of 10 for both dimensions.

8600 0098-000 3-107

Declarations

EBCDIC STRING ARRAY ESA[1:15], ESB, ESC[0:18, 9:18]

SWITCH FILE Declaration

A SWITCH FILE declaration associates an identifier with a list of file designators. Any
of these file designators can later be referenced by using the identifier and a number
corresponding to the position of the file designator in the list.

<switch file declaration>

= Y

_T—_l_ SWITCH — FILE —<identifier>— :=
DIRECT

s—<switch file Tist —

<switch file identifier>

An identifier that is associated with a switch file list in a SWITCH FILE declaration.

<direct switch file identifier>

An identifier that is associated with a switch file list in a DIRECT SWITCH FILE
declaration.

<switch file list>

—J—<fi'|e des%gnator I |

<file designator>

<file identifier |
<direct file identifier: :]
Eswitch file identifier>——j— —<subscript>—]
direct switch file identifier

Switch File List

An integer index is associated with each file designator in the switch file list. The
indexes are 0, 1, 2, and so on through N-1, where N is the number of file designators in
the list. These indexes are obtained by counting the file designators in order of their
appearance in the list. A file designator in the list can be referenced by subscripting
the switch file identifier with a subscript whose value is equal to the index of the file
designator.

If a subscript to a switch file identifier yields a value outside the range of the switch file
list (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the switch file list are evaluated at the time of the SWITCH FILE
declaration.

3-108 8600 0098-000

Declarations

A switch file can reference itself in the switch file list, in which case a stack overflow
might occur when the program is executed. For example, assume a switch file is declared
as the following:

SWITCH FILE SF := F1, F2, SF[N]
If N equals 2, the subscripted switch file identifier SF[N] references itself indefinitely.

The switch file list of a switch file that is not designated as DIRECT can contain only
file designators that are not DIRECT, and the switch file list of a switch file that is
designated DIRECT can contain only file designators that are DIRECT.

Example of SWITCH FILE Declaration

The following example declares CHOOSEUNIT to be a switch file identifier with

a list of three file designators. CHOOSEUNIT[0] evaluates to file CARDOUT,
CHOOSEUNIT(1] evaluates to file TAPEOUT, and CHOOSEUNIT[2] evaluates to file
PRINTOUT.

SWITCH FILE CHOOSEUNIT :=
CARDOUT,
TAPEOUT,
PRINTOUT;

WRITE (CHOOSEUNIT[@], 14, A[*]); % WRITES TO CARDOUT
WRITE (CHOOSEUNIT[1], 14, A[*]); % WRITES TO TAPEOUT
WRITE (CHOOSEUNIT[2], 14, A[*]); % WRITES TO PRINTOUT

SWITCH FORMAT Declaration

A SWITCH FORMAT declaration associates an identifier with a list of items
representing editing specifications. Any of these items and the associated editing
specifications can later be referenced by using the identifier and a number corresponding
to the position of the item in the list.

<switch format declaration>
— SWITCH — FORMAT —<identifier>— := —<switch format list>———|

<switch format identifier>

An identifier that is associated with a switch format list in a SWITCH FORMAT
declaration.

<switch format list>

—L<switch format segment I i

8600 0098-000 3-109

Declarations

<switch format segment>

<format designator: i
E (—<editing specifications>—)
< —<editing specifications>— >

<format designator>

<format identifier: : |
I:<swit<:h format identifiers— [—<subscript>—] l

Switch Format List

An integer index is associated with each switch format segment in the switch format

list. The indexes are 0, 1, 2, and so on through N-1, where N is the number of switch
format segments in the list. These indexes are obtained by counting the switch format
segments in order of their appearance in the list. A switch format segment in the list can
be referenced by subscripting the switch format identifier with a subscript whose value is
equal to the index of the switch format segment.

If a subscript to a switch format identifier yields a value outside the range of the switch
format list (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the switch format list are evaluated at the time the subscripted switch
format identifier is encountered.

A switch format can reference itself in the switch format list, in which case a stack
overflow might occur when the program is executed. For example, assume a switch
format is declared as the following:

SWITCH FORMAT SF := FMT1, FMT2, SF[N]

If N equals 2, the subscripted switch format identifier SF[N] references itself
indefinitely.

A simple string literal in a SWITCH FORMAT declaration is always read-only if the
switch format segment in which it appears consists of editing specifications rather than a
format designator.

Examples of SWITCH FORMAT Declarations

3-110

The following example declares SF to be a switch format identifier with a switch format
list of four sets of editing specifications. The editing specifications (X78, 12), for example,
can be referenced as SF[2].

SWITCH FORMAT SF := (A6, 314, I2, X60),
(14, X2, 214, 312),
(x78, 12),
(x2)

I O° OF o°
W N =

8600 0098-000

Declarations

The following example declares SWHFT to be a switch format identifier with a switch
format list of three format designators. SWHFT|[0] evaluates to format FMT1,
SWHFT[1] to FMT2, and SWHFT[2] to FMT3.

SWITCH FORMAT SWHFT := FMT1,FMT2,FMT3

SWITCH LABEL Declaration

A SWITCH LABEL declaration associates an identifier with a list of designational
expressions, which are expressions that evaluate to labels. Any of these designational
expressions can later be referenced by using the identifier and a number corresponding
to the position of the designational expression in the list.

<switch label declaration>

— SWITCH —<identifier>— := —<switch label list |

<switch label identifier>

An identifier that is associated with a switch label list in a SWITCH LABEL declaration.

<switch label list>

€ 3
——I—<designationa1 expression | |

Switch Label List

An integer index is associated with each designational expression in the switch label list.
The indexes are 1, 2, 3, and so on through N, where N is the number of designational
expressions in the list. These indexes are obtained by counting the designational
expressions in order of their appearance in the list. A designational expression in the list
can be referenced by subscripting the switch label identifier with a subscript whose value
is equal to the index of the designational expression.

Note that the indexing of a switch label list begins at 1.

If a subscript to a switch label identifier yields a value outside the range of the switch
label list (that is, less than 1 or greater than N), the statement using the switch label is
not executed, and control proceeds to the next statement. Typically, the next statement
is a specification of some form of error handling.

The designational expressions in a switch label list are evaluated at the time the
subscripted switch label identifier is encountered.

A switch label can reference itself in the switch label list, in which case a stack overflow
might occur when the program is executed. For example, assume a switch label is

declared as the following:

SWITCH SW := L1, L2, L3, SW[N]

8600 0098-000 3-111

Declarations

If N equals 4, the designational expression SW[N] references itself indefinitely.

Examples of SWITCH LABEL Declarations

The following example declares CHOOSEPATH to be a switch label identifier with labels
L1, L2, L3, and L4 in the switch label list. CHOOSEPATH][1] evaluates to label L1,
CHOOSEPATH]2] to L2, and so on.

SWITCH CHOOSEPATH := L1,L2,L3,L4

The following example declares SELECT to be a switch label identifier with labels
START and ERRORI1 and designational expression CHOOSEPATH][2] in the switch
label list. Note that from the previous SWITCH LABEL declaration, CHOOSEPATH][2]
evaluates to L2; therefore, SELECT[3] evaluates to L2.

SWITCH SELECT := START, %1
ERROR1, % 2
CHOOSEPATH[2] % 3

SWITCH LIST Declaration

A SWITCH LIST declaration associates an identifier with a list of list designators. Any
of these list designators can later be referenced by using the identifier and a number
corresponding to the position of the list designator in the list.

<switch list declaration>

— SWITCH — LIST —<identifier>— := J—<1ist des%gnatorg————ﬁ

<switch list identifier>

An identifier that is associated with a list of list designators in a SWITCH LIST
declaration.

<list designator>

—E<'I1'st identifier |
<switch 1ist identifier>— [—<subscript>—] il

List Designator

3-112

An integer index is associated with each list designator in the declaration. The indexes
are 0, 1, 2, and so on through N-1, where N is the number of list designators in the
declaration. These indexes are obtained by counting the list designators in order of

their appearance in the declaration. Any of these list designators can be referenced by
subscripting the switch list identifier with a subscript whose value is equal to the index of
the list designator.

8600 0098-000

Declarations

If a subscript to a switch list identifier yields a value outside the range of the list of list
designators (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the list of list designators are evaluated at the time the subscripted
switch list identifier is encountered.

A switch list can reference itself in the list of list designators, in which case a stack
overflow might occur when the program is executed. For example, assume a switch list is
declared as the following:

SWITCH LIST SL := L1, L2, SL[N]

If N equals 2, the subscripted switch list identifier SL[N] references itself indefinitely.

Example of SWITCH LIST Declaration

The following example declares NUMVARIABLES to be a switch list identifier and
associates four list designators with it. NUMVARIABLESI[0] evaluates to the list
NOVARS, NUMVARIABLES[1] evaluates to ONEVAR, and so on.

SWITCH LIST NUMVARIABLES := NOVARS, % @
ONEVAR, %1
TWOVARS, % 2
THREEVARS % 3

TASK and TASK ARRAY Declarations

The TASK and TASK ARRAY declarations are used to declare tasks and task arrays,
which can then be associated with a process or coroutine. Task attributes can be used to
control or to contain information about the process or coroutine.

<task declaration>

— 7AsK —L<ident} fiers_] |

<task identifier>

An identifier that is associated with a task in a TASK declaration.

<task array declaration>

&

e »
— TASK — ARRAY ——L<identifm— [—<bound pair list>—] ——

<task array identifier>

An identifier that is associated with a task array in a TASK ARRAY declaration.

8600 0098-000 3-113

Declarations

A task array is an array whose elements are tasks. A task array can have no more than
15 dimensions.

Task and Task Array Designator

<task designator>
——<task identifier ?
€ t
—<task array identifier>— [—I—<SubSCY‘iPt—>—L 1 -
— MYSELF
— MYJOB

&.

LT . —<task-valued task attribute name>—|—

<task-valued task attribute name>

EXCEPTIONTASK |
L pARTNER —— 1 '

<task array designator>

—<task array identifier l—<subar'ray weloctor] |

A task designator represents a single task. A task array designator represents an array
of tasks. MYSELF is the task designator for the currently running program. MYJOB is
the task designator for the currently running job.

When a process or coroutine is invoked, a task can be associated with it. For example,

a task designator can appear in a CALL statement, PROCESS statement, or RUN
statement. Task attributes can be assigned values by the program to control the process
or coroutine, and the program can interrogate the values of task attributes as the
process or coroutine executes.

Attributes associated with a task designator can be assigned values or interrogated in a
program by specifying the task designator and the appropriate task attribute names in
assignment statements.

For information on processes and coroutines, see “CALL Statement,” “PROCESS
Statement,” and “RUN Statement” in Section 4, “Statements.” For more information
on assigning and interrogating task attributes, see the <arithmetic task attribute >

construct under “Arithmetic Assignment,” the <Boolean task attribute > construct
under “Boolean Assignment” and “Task Assignment” in Section 4, “Statements.”

Examples of TASK and TASK ARRAY Declarations
The following example declares PROCESSTASK to be a task identifier.

TASK PROCESSTASK

3-114 8600 0098-000

Declarations

The following example declares CHILDREN as a one-dimensional task array with a
lower bound of 0 (zero) and an upper bound of LIM. The CHILDREN task array might
be used to store the tasks associated with a group of processes and coroutines initiated
by a program.

TASK ARRAY CHILDREN[@:LIM]

TRANSLATETABLE Declaration

The TRANSLATETABLE declaration defines one or more translate tables. Usedina
REPLACE statement, a translate table indicates translations to be performed from one
group of characters to another group of characters.

<translate table declaration>

— TRANSLATETABLE -—L<trans1ate table element>— |

<translate table element>

—<identifier>— (J—<t1r‘ans]antion’specif1‘e\r‘>—|—) |

<translate table identifier>

An identifier that is associated with a group of one or more translation specifiers in a
TRANSLATETABLE declaration.

Translation Specifier

<translation specifier>

—E<sour‘ce characters>— TO0 —<destination characters T |
<translate table identifier

<source characters>

—E<str'i ng literal |
<character set>——J

<character set>
ASCII |
BCL —°
EBCDIC —|
HEX ——

<destination characters>

string literal |
E:character set>
<special destination character>—

8600 0098-000 3-115

Declarations

<special destination character>
A string literal that is 1 character long.

Specifying a character set is equivalent to specifying all the characters in that set, in
ascending binary sequence. The length of a character set is equal to the total number of
characters in the set.

A string literal specifies all the characters in the string literal. The length of a string
literal is equal to the number of characters in the string literal in terms of the largest
character size specified by the string literal.

A translation specifier is enclosed in parentheses, and each succeeding translation
specifier overrides the previous translation specifiers.

Within a single translate table, all source character sizes and all destination character
sizes must be the same, although the character sizes of the source and destination parts
need not be the same.

The number of destination characters must equal the number of source characters,
unless the special destination character is used or unless a character set is used for both
the source characters and the destination characters. If the special destination character
is used, all the source characters are translated to the special destination character.

Every translate table has a default base in which all source characters are translated to
characters with all bits equal to 0 (zero). This means that all source characters that

do not appear in the TRANSLATETABLE declaration are translated to the character
whose binary representation had all bits equal to 0 (zero).

The use of a character set for both the source and destination parts invokes a standard
table from the operating system and provides a way of obtaining a legitimate base on
which additional translation specifiers can be used, if desired, to override certain parts of
the standard table. The use of a translate table identifier as a translation specifier can
also be used to provide a base.

When string literals of equal length are used for the source and destination parts,
translation is based on the corresponding positions of the source and destination
characters, from left to right.

Translate Table Indexing

3-116

The size of a translate table is determined by the size of the source characters (the
characters to be translated): 4-bit characters require a 4-word table; 6-bit characters
require a 16-word table; 7-bit and 8-bit characters require a 64-word table. A translate
table is a one-dimensional read-only array.

Each word in a translate table (Figure 3-1) has its low-order 32 bits divided into four
8-bit fields, numbered 0 to 3 from left to right. The high-order 16 bits are all zeros.

When a character is to be translated, the binary representation of the character is
divided into two parts: a word index and a field index. The field index consists of the

8600 0098-000

Declarations

two low-order bits; the word index consists of the remaining high-order bits. The word
index designates the word in the translate table in which the field index designates the
character into which the source character is to be translated.

The diagram below shows indexing for the translation of a to A that would result from
the following declaration:

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC,
"abcdefghijkimnopqrstuvwxyz" to
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

7 6 5 4 3 2 1]

Binary representation of

1 () () () () () C) 1 character to be translated:

(EBCDIC)
N A /
\V NV
WORD INDEX FIELD INDEX
Binary representation of
new value for
EMPTY FIELD @ FIELD 1 FIELD 2 FIELD 3
[47:16] [31:8] [23:8] [15:8] [7:8]
A A A A A
/ NV " A% VvV \
/

47 43 39 35 131 O27 123 O19 115 Oll 1 7 O 3
j¥e)
| NI
[N-a]

— a6| 42| 38| 34 Osz Ozs 1, OlB 1y Ow 1, 0 2

2 9

<

@7‘, 45 41 37 33 029 025 O21 Ol7 013 1 9 O 5 1 1
o=
=2

= . 44 49 36 32 028 024 OZE 116 012 O 8 O 4 1 [4]

Figure 3-1. Translate Table Indexing

Examples of TRANSLATETABLE Declarations

The following example translates the letters L to G, E to O, A to L, and D to D. All other
characters are translated to the character whose binary representation has all bits equal
to 0 (zero). Both the source and the destination characters are of the default character

type.
TRANSLATETABLE ALCHEMY ("LEAD" TO "GOLD")

The following example translates all EBCDIC characters to themselves except for the
lowercase letters, which it translates to uppercase letters.

8600 0098-000 3-117

Declarations

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC,
"abcdefghijklmnopgrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ")

The following example translates all EBCDIC characters to themselves except for the
left parenthesis ((), which is translated to the left square bracket ([).

TRANSLATETABLE PAREN_TO BRACKET (EBCDIC TO EBCDIC, 8" (" TO 8"[")

The following example translates all EBCDIC characters to themselves except for the
digits, which it translates to periods (.).

TRANSLATETABLE NUMBERS_TO_PERIODS (EBCDIC TO EBCDIC,
"@123456789" TO ".")

TRUTHSET Declaration

The TRUTHSET declaration associates an identifier with a set of characters. From the
characters in a TRUTHSET declaration, the compiler builds a truth set table, which is
used in a truth set test to determine whether a given character is a member of that
group of characters. The identifier can then be used in a SCAN statement to scan while
or until any character in the truth set occurs.

The identifier also can appear as a condition in a REPLACE statement, so that
replacement takes place while or until any character in the truth set occurs.

<truth set declaration>

— TRUTHSET J—<iderd:1"f’ie\r‘>— (—<membérsh1’p expression>—) J—I

<truth set identifier>

An identifier that is associated with a membership expression in a TRUTHSET
declaration.

Membership Expression

<membership expression>

AND
<— OR
1
«— IMP
«— EQV

— <membership primary
L nor '

3-118 8600 0098-000

Declarations

<membership primary>

<string literal |
<truth set identifier>

(—<membership expression>—) —
ALPHA
ALPHA6
ALPHA7
ALPHA8

All membership primaries of a membership expression must be of the same character
size (4-bit, 6-bit, 7-bit, or 8-bit); this character size determines the type of the truth

set. The character size of a string literal is determined by the maximum character size
indicated by its component string codes. For more information, refer to “String Literal”
in Section 2, “Language Components.”

A membership expression is evaluated according to the normal rules of precedence
for Boolean operators. This precedence is described under “Boolean Expression” in
Section 5, “Expressions and Functions.”

ALPHA, ALPHAG6, ALPHA7, and ALPHAS are intrinsic truth sets defined as follows:

Truth Set Definition

ALPHAS A truth set that contains the BCL digits and uppercase letters

ALPHA7 A truth set that contains the ASCII digits and uppercase letters

ALPHA8 A truth set that contains the EBCDIC digits and uppercase letters

ALPHA A truth set that contains the digits and uppercase letters of the default
character type

If a default character type is not explicitly specified by the compiler control options
ASCII or BCL, then the default character type is EBCDIC, and ALPHA is the same as
ALPHAS. If the ASCII compiler control option is TRUE, then ALPHA is the same as
ALPHAY. If the BCL compiler control option is TRUE, then ALPHA is the same as
ALPHAG.

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a
BCL descriptor, such as the ALPHAG intrinsic truth set, causes the
program to get a compile-time warning message.

Truth Set Test

From the characters in a TRUTHSET declaration, the compiler builds a truth set table,
which is used in a truth set test to determine whether a given character is a member of
that group of characters.

All truth sets declared by a single TRUTHSET declaration are stored in a single
read-only array. Separate TRUTHSET declarations produce separate read-only arrays.

A truth set test references a bit in the read-only array containing the truth set by

dividing the binary representation of the character being tested into two parts: the
low-order five bits are used as a bit index, and the three high-order bits are used as a

8600 0098-000 3-119

Declarations

word index. If the size of the source character is smaller than eight bits, high-order zero
bits are inserted to make an 8-bit character before the indexing algorithm is used.

The word index selects a particular word in the truth set table. The bit index is then
subtracted from 31, and the result is used to reference one of the low-order 32 bits in the
selected word. If the bit selected by the following expression is equal to 1, the character
is a member of the truth set:

TABLE[CHAR. [7:3]]. [(31-CHAR. [4:5]):1]

Figure 3-2 shows an example of a truth set test. In this example, the referenced bit (13)
is equal to 1; therefore, the test character is a member of the truth set.

7 6 5 4 3 2 1

[S]

Binary representation of

11111111010 1| OF the character: (EBCDIC)

\ /\ /
A4 NV
WORD INDEX BIT INDEX =
31-18 = 13
EMPTY
[47:16] [31:32]
/\ /\
d N/ -\
s
47 43 39 35031127 123 019 115 1111703
L.
(]
—n 46 42 38 34 030 126 122 018 114 11a1602
=2 <
[
o>
°§=E 45 41 37 33 129 125 021 O17 113190501
L 44 40 36 32 128 1240215016 1121804()@

Figure 3-2. Truth Set Test

Examples of TRUTHSET Declarations

3-120

The following example declares T to be a truth set with membership equal to that of
ALPHA. ALPHA consists of all uppercase letters and the digits 0 through 9, in the
default character set.

TRUTHSET T(ALPHA)

The following example declares Z to be a truth set with membership of ALPHAS and the
hyphen (-).

TRUTHSET Z(ALPHA8 OR "-")

8600 0098-000

Declarations

The following example declares NUMBERS to be a truth set with a membership of the
digits 0 through 9 in the default character set.

TRUTHSET NUMBERS ("©123478956")
The following example declares LETTERS to be a truth set with a membership of
ALPHA but not the digits 0 through 9; that is, consisting of the uppercase letters in the
default character set.

TRUTHSET LETTERS(ALPHA AND NOT NUMBERS)
The following example declares three truth sets:

o HEXN, with a membership of the hexadecimal characters 1, 2, and 3
o BCLN, with a membership of the BCL characters 1, 2, and 3
e ASCN, with a membership of the ASCII characters 1, 2, and 3

TRUTHSET HEXN(4"123"), BCLN(6"123"), ASCN(7"123")

VALUE ARRAY Declaration

A VALUE ARRAY declaration declares a read-only, one-dimensional array of constants.

<value array declaration>

VALUE — ARRAY >
L LONG J I-—<ar‘r‘ay cl ass>—J

->—[—<1‘dent1‘ fier>— (—<constant Tist>—) I |

<value array identifier>

An identifier that is associated with a value array in a VALUE ARRAY declaration.

A value array is a one-dimensional, read-only array. An element of a value array is
referenced in the same manner as for any other array; that is, through a subscripted
variable or by using a pointer. However, an attempt to store a value into a value array is
flagged with a compile-time or run-time error.

The lower bound of a value array is 0 (zero).

Normally, a value array longer than 1024 words is automatically paged (segmented) at
run time into segments 256 words long. LONG specifies that the value array is not to be
paged, regardless of its length.

If no array class appears in a VALUE ARRAY declaration, a REAL array is assumed.

8600 0098-000 3-121

Declarations

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a BCL value array, causes the program to get a
compile-time warning message.

Constants

3-122

<constant list>

€ ’
—r—<constant | |

<constant>

<Boolean value |
<number
<constant expression
<string literal
<unsigned integer>— (—<constant list>—) —

<constant expression>

An arithmetic, Boolean, or complex expression that can be entirely evaluated at
compilation time.

Each constant initializes an integral number of words. The number of words initialized
depends on the type of the array and the kind of constant.

Single-precision numbers, single-precision expressions, Boolean values, and Boolean
expressions initialize one word in value arrays other than double or complex value
arrays. In double value arrays, this word is extended with a second word of 0 (zero). In
complex value arrays, this word is normalized and then extended with an imaginary part
of 0 (zero).

Double-precision numbers and expressions are stored unchanged in two words in double
value arrays. In complex value arrays, the value is rounded and normalized to single
precision and then extended with an imaginary part of 0 (zero). For other types of value
arrays, the second word of the double-precision value is dropped and the first word
initializes one word of the array.

Complex expressions can appear only in complex value arrays, and they initialize two
words of the array.

String literals more than 48 bits long initialize as many words as are needed to contain
the string and are left-justified with trailing zeros inserted in the last word, if necessary.
In complex and double value arrays, long string literals can initialize an odd number of
words, causing the following constant to start in the middle of a two-word element of the
array.

String literals less than or equal to 48 bits long are right-justified within one word with
leading zeros, if necessary. This word initializes one word in value arrays other than

8600 0098-000

Declarations

double or complex value arrays. In double value arrays, this word is extended with a
second word of 0 (zero). In complex value arrays, this word is normalized and then
extended with an imaginary part of 0 (zero).

The <unsigned integer> (<constant list >) form of constant causes the values within
the parentheses to be repeated the number of times specified by the unsigned integer.

The operating system overlays value arrays more efficiently than other arrays because
value arrays need not be written to disk when their space in memory is relinquished.

The maximum size of an unpaged value array is 4095 words; the maximum size of a
paged value array is 32,767 words.

Example of VALUE ARRAY Declaration

The following example declares DAYS to be a value array of real elements. DAYS

stores the names of the days of the week, one day name in each two words. The string
FRIDAY, for example, is stored in DAY[8] and DAY[9], and can be retrieved by assigning
a pointer to DAY[8] and using the pointer.

VALUE ARRAY DAYS ("MONDAY ", "TUESDAY "
"WEDNESDAY ", "THURSDAY ",
"FRIDAY ", "SATURDAY "
"SUNDAY ")

8600 0098-000 3-123

3-124 8600 0098-000

Section 4
Statements

Statements are the active elements of an ALGOL program. They indicate an operation
to be performed. Statements are normally executed in the order in which they appear
in the program. This sequential flow of execution can be altered by a statement that
transfers control to another program location. Note that a statement can be null or
empty.

In this section, the ALGOL statements are listed and discussed in alphabetical order. In
many cases, portions of the syntax of a statement are discussed before moving on to the
next syntax segment.

The syntax for any statement is recursive: a statement can be a block or a compound
statement, each of which, in turn, can include statements. For a description of the
syntax of <block> and <compound statement >, see Section 1, “Program Structure.”

Statements can be labeled or unlabeled. A <labeled statement > is of the following
form:

—<Tabel identifier>— : —<statement }

An <unlabeled statement > is any statement that does not contain a label identifier.

ACCEPT Statement

The ACCEPT statement causes the display of a specified message on the Operator
Display Terminal (ODT).

<accept statement>

— ACCEPT — (<pointer expression) |
—E<string variable>—————

<subscripted string variable>—

ACCEPT Parameters

The message displayed on the ODT is designated by the parameter to the ACCEPT
statement. If the parameter is a pointer expression, then the characters to which the
pointer expression points are displayed on the ODT. The pointer expression must point
to EBCDIC characters, and the message to be displayed must be terminated by the
EBCDIC null character (48"00"). Following display of the characters, the program is
suspended until a response is entered at the ODT. The response is placed, left-justified,
with leading blanks discarded and with an EBCDIC null character added at the end, into
the location to which the pointer expression points, and the program continues execution
with the statement following the ACCEPT statement.

8600 0098-000 4-1

Statements

If the parameter to the ACCEPT statement is a string variable or subscripted string
variable, then the contents of the specified string are displayed on the ODT. The string
variable or subscripted string variable must be of type EBCDIC. Following the display of
the characters, the program is suspended until a response is entered at the ODT. The
response is placed in the string variable or subscripted string variable, and the program
continues execution with the statement following the ACCEPT statement.

The ACCEPT statement can be used as a Boolean function. If a response is not
available, the value of the ACCEPT statement is FALSE. If a response is available, the
value of the ACCEPT statement is TRUE, and the response is placed in the specified
location. The program continues execution regardless of the value returned by the
ACCEPT statement.

No more than 430 characters can be displayed by the ACCEPT statement. No more
than 960 characters can be accepted as a response.

The response to the ACCEPT statement can be entered before the actual execution of
that statement. The response can be entered using the AX (Accept) system command.
For more information, refer to the A Series System Commands Operations Reference
Manual.

Examples of ACCEPT Statement

4-2

The following example displays the string of EBCDIC characters in the array Z, from the
beginning of the array to the EBCDIC null character (48"00).

ACCEPT (POINTER(Z,8))

The following example displays the contents of string STR on the ODT. If a response is
available, the string "THANK YOU." is displayed. If no response is available, the string
"PLEASE REENTER." is displayed.

IF ACCEPT(STR) THEN
DISPLAY ("THANK YOU.")
ELSE
DISPLAY ("PLEASE REENTER.")

8600 0098-000

Statements

ASSIGNMENT Statement

The ASSIGNMENT statement causes the item on the right of the assignment operator
(: =) to be evaluated and the resulting value to be assigned to the item on the left of the
assignment operator.

<assignment statement>

<arithmetic assignment J,
<array reference assignment>—————
<Boolean assignment
<complex assignment
<mnemonic attribute assignment>——
<pointer assignment
<procedure reference array assignment>—
<string assignment
<task assignment>

The action of an ASSIGNMENT statement is as follows:

e The location of the target is determined.
e The item following the assignment operator (: =) is evaluated.
e The resulting value is assigned to the target.
The various forms of the ASSIGNMENT statement are called assignments instead
of statements because they can appear both as statements and in expressions. For
example, the following is a statement when it stands alone:
A:=A+1
However, the same construct can be used in an expression, such as in the following:
IF (A := A + 1) > 100 THEN <statement>
Too many arithmetic, Boolean, complex, pointer, or string assignments in one statement
can cause a stack overflow fault in the compiler. The fault can be avoided by breaking
the statement into several separate statements, each containing fewer assignments,

or by increasing the maximum stack size for the program by using the task attribute
STACKLIMIT.

Arithmetic Assignment

An arithmetic assignment assigns the value of the arithmetic expression on the right side
of the assignment operator (: =) to the arithmetic target on the left side.

8600 0098-000 4-3

Statements

<arithmetic assignment>

arithmetic variable >
l L<partia1 word part>—
<

arithmetic type transfer variable>———
arithmetic attribute

->—-|: s= —<arithmetic expression |
<arithmetic update ass~ignment>—J

Arithmetic Variable

The attribute error number returned from the operating system can be captured in the
arithmetic variable.

<arithmetic variable>

—-<variable |

<variable>

—E<simp1 e variable]
<subscripted variabl e>J I

<simple variable>

—<identifier |

<subscripted variable>

€ ’
—<array name>— [—L<subscript—>-—‘—] —]

If the <arithmetic variable> <partial word part> syntax or the <arithmetic
attribute > syntax appears in a statement with multiple assignments, then it must
appear as the leftmost target in the statement. The following examples illustrate this

rule.
Allowed Not Allowed
X[7:8]:=Y:=1 Y:=X[7:8]:=1
F1.MAXRECSIZE := RECLNGTH := 30 RECLNGTH := F1.MAXRECSIZE := 30

An <arithmetic variable> <partial word part> assignment leaves the remainder of
the arithmetic variable unchanged, despite any possible side effects, such as embedded
assignments, in the arithmetic expression.

Arithmetic Type Transfer Variable

<arithmetic type transfer variable>

DOUBLE —— (—<variable>) |
INTEGER — bpartid word part>—I >_I
) —<partial word part

4-4 8600 0098-000

Statements

If the declared type of the target item to the left of the assignment operator (: =) and
the type of the value to be assigned to it are different, then the appropriate implicit type
conversion is performed according to the following rules:

e Ifthe left side is of type INTEGER and the expression value is of type REAL, then
the value is rounded to an integer before it is stored.

o If the left side is of type INTEGER and the expression value is of type DOUBLE,
then the value is rounded to a single-precision integer before it is stored.

e Ifthe left side is of type REAL and the expression value is of type INTEGER, then
the value is stored unchanged.

o Ifthe left side is of type REAL and the expression value is of type DOUBLE, then
the value is rounded to single precision before it is stored.

e Ifthe left side is of type DOUBLE and the expression value is of type INTEGER or
REAL, then the value is converted to double precision by appending a second word of
zero (all bits equal to zero) before it is stored.

The use of an arithmetic type transfer variable causes the value on the right side of the
assignment operator to be stored unchanged into the variable on the left side, regardless
of type. However, if an attempt is made to assign a double-precision value into a
single-precision variable by using the DOUBLE form of the construct, only the first word
of the double-precision value is stored unchanged into the single-precision variable.

For more information, see “Type Coercion of One-Word and Two-Word Operands” in
Appendix C, “Data Representation.”

If more than one assignment operator appears in a single assignment (for example,
A:= B:= C:= 1.414), assignment of values is executed from right to left. If, during
this process, a value is converted to another type so that it can be assigned, then it
remains in that converted form following that assignment; that is, the value does not
resume its original form. For example, assume you are executing the following program:

BEGIN

DOUBLE DBL1, DBL2;

REAL REL1, REL2;

INTEGER INTI;

DBL2:= REL2:= INT1:= REL1:= DBL1:= 1.41421356237309504880100%;
END.

In this program, the variables are assigned the following values:

DBL1 = 1.414213562373095048801
REL1 = 1.41421356237

INT1 =1

RELZ = 1.0

DBL2 = 1.0

8600 0098-000 4-5

Statements

Arithmetic Attribute

<arithmetic attribute>

arithmetic file attribute |
E<arithmetic direct array attribute>—
arithmetic task attribute>——

<arithmetic file attribute>

—<file designator: . =
L—<attri bute parameter specificati on>J

»—<arithmetic-valued file attribute name =

L (—<arithmetic variable>—) l

<attribute parameter specification>

— (—<attribute parameter list>—) |

<attribute parameter list>

< ’
—L<ari thmetic expression |

<arithmetic direct array attribute>

—<direct array row>— . =

+—<arithmetic-valued direct array attribute name |

<arithmetic-valued direct array attribute name>

ALGOL supports all direct array attributes and direct array attribute values described in
the A Series File Aitributes Programming Reference Manual.

<arithmetic task attribute>

—<task designator>— . —<arithmetic-valued task attribute name>———]

<arithmetic-valued task attribute name>

ALGOL supports all task attributes of type real and integer described in the A Series
Task Attributes Programming Reference Manual.

4-6 8600 0098-000

Statements

Arithmetic Update Assignment

<arithmetic update assignment>

—~<update symbols o - - - — |
arithmetic operator>—<arithmetic expression

<update symbols>

—_— 0= . K |
.

The arithmetic update assignment is a shorthand form of assignment that can be used
when the arithmetic target on the left side of the assignment operator also appears in
the arithmetic expression on the right side of the operator. The arithmetic update
assignment form can be specified only following an arithmetic target that does not
contain a partial word part. The asterisk (*) represents a duplication of the item to the
left of the assignment operator. For example, the same results are produced by the
following two assignments:

A=*+1
A:=A+1

The target item is not reevaluated at the appearance of the asterisk. Hence, if I equals
zero initially, the following applies:

Assignment Equivalent Not Equivalent

Bll:=1+1]:=*+1 B[1]l:=B[11+1 B[1]:=B[2] + 1

If the item to the left of the assignment operator is a subscripted variable, it cannot
reference a value array.

If an expression is used as a subscript to a variable, the subscript is evaluated first. In
the following example, the expression used as a subscript [I+ 2] is evaluated first:

A[I+2] := 1 := 19

8600 0098-000 4-7

Statements

Exainples of Arithmetic Assignment
VAL := 7

A[4,5].[30:4]

o
n
>

FYLE.AREAS := 50
FYLE(5) .AREAS := 10
FYLE.SYNCHRONIZE := VALUE(OUT)
DIRARAY.IOCH := 4"1030"
TSK.COREESTIMATE := 10000
NEWARRAY[I] := * + OLDARRAY[I]
ONE := SIN(X := 3)**2 + COS(X)**2

DISTANCE := SQRT(X**2 + Y**2 + 2%*2)

Array Reference Assignment

<array reference assignment>

—<array reference variable>— := —<array designator |

An array reference assignment associates a variable, called an array reference variable,
with an array or a portion of an array. The array reference variable can then be used to
reference the array or array portion.

An array reference assignment generates a copy descriptor of an array or array row.
Typical uses of an array reference assignment include the following:

e To perform more efficiently arithmetic operations on multidimensional arrays (for
example, by extracting a particular row to avoid repeated indexing to the same row)

e For concurrent, but different, uses of the same array (for example, for storing values
of type REAL into an array that is originally declared as Boolean)

Array Reference Variable

<array reference variable>

—<array reference identifier |

The array reference variable cannot be global to the array designator.

4-8 8600 0098-000

Statements

If the array reference variable is declared as DIRECT, then only an array designator for a
direct array can be assigned to it. However, a nondirect array reference variable can be
assigned an array designator for either a direct or a nondirect array.

The dimensionality of the array reference variable and the array designator must be
the same. If both are multidimensional, then the array classes must be compatible.
INTEGER, REAL, and BOOLEAN types are compatible with each other. Other array
classes are compatible only with themselves. If the array reference identifier and the
array designator are both one-dimensional, then they can have any array class.

The size of each dimension of a multidimensional array reference variable is the

same as the size of the corresponding dimension of the array designator. The size of

a one-dimensional array reference variable is determined by the size and element
width of the array designator and the element width for the array class with which the
array reference variable was declared. Let Sa and Wa be the size and element width,
respectively, of the array designator, and let Wr be the element width for the array
reference variable. The size of the array reference variable, Sr, is then the following:

Sr := (Sa * Wa) DIV Wr

Because of the truncation implicit in the DIV operation, Sr * Wr might be less than

Sa * Wa. In this case, indexing the array reference variable by S + LB, where LB is the
lower bound in the ARRAY REFERENCE declaration, causes an invalid index fault.
Nevertheless, pointer operations using the array reference variable can access the entire
area of memory allocated to the original array to which the array designator ultimately
refers; the memory area may hold more than Sr elements of width Wr.

Array Designator

<array designator>

—=<array name |
l—<subar‘ra‘y sel e<:7t:or‘>—J

<subarray selector>

e I l

— [—
JV—<subscr‘ipt>— —]J

The array designator indicates the array or array portion to be associated with the
array reference variable. Following an array reference assignment, the array reference
variable becomes a referred array, describing the same data as the array designator,
which can itself be an original array or another referred array. '

A subarray selector selects part of an array by specifying subscripts for high-order
dimensions and leaving others unspecified. The unspecified dimensions are indicated by
an asterisk (*). The dimensionality of the subarray is the number of asterisks in the
subarray selector.

The total number of subscripts and asterisks in a subarray selector must equal the
dimensionality of the array identifier to which the subarray selector is suffixed. In

8600 0098-000 4-9

Statements

the case of no subscripts, the number of asterisks equals that dimensionality, and the
subarray is the whole array. In all other cases, the subarray selector specifies a subarray

of reduced dimensionality.

For example, assume you are using the following declarations:

ARRAY A[@:9,1:48,0:99];
INTEGER I,J; % (ASSUME @ <= I <= 9 AND 1 <= J <= 48)

" For these declarations, the following applies:

A and A[*,*,*]
A[l,*'*]
All,J,*]

Denote the entire three-dimensional array.
Denotes one of the 10 two-dimensional arrays that constitute A.

Denotes one of the 40 one-dimensional arrays (array rows) that
constitute A[l,*,*1], and one of the 400 one-dimensional arrays that
constitute A.

If the array designator is an uninitialized array reference variable, the array reference
assignment causes the target array reference variable to become uninitialized.

Examples of Array Reference Assignment

BOOLARRAY := REELARRAY

EBCDICARAY := INPUTARAY[*]

SUBARRAY := BIGARRAY[N,*,*

ARAYROW := MULTIDIMARAY[I,J,K,*]

Boolean Assignment

A Boolean assignment assigns the value of the Boolean expression on the right side of
the assignment operator (: =) to the Boolean target on the left side.

<Boolean assignment>

<Boolean variable T
<partial word part>—
<Boolean type transfer variable>———

<Boolean attribute

> 1= —<Boolean expression
L > '

oolean update assignment

Boolean Variables

<Boolean variable>

A <variable> of type Boolean.

4-10

8600 0098-000

Statements

<Boolean type transfer variable>

) i
artial word part>—J
—<partial word part>:

— BOOLEAN — (—<variable

£
If the <Boolean variable> <partial word part> syntax or the <Boolean attribute >
syntax appears in a statement with multiple assignments, then it must appear as the
leftmost target in the statement. The following examples illustrate this rule.

Allowed Not Allowed
X.[7:8]:=Y := FALSE Y := X.[7:8] := FALSE
F1.0PEN := OPENED := FALSE OPENED := F1.0PEN := FALSE

A <Boolean variable> <partial word part> assignment leaves the remainder of
the Boolean variable unchanged, despite any possible side effects, such as embedded
assignments, in the Boolean expression.

Boolean Attributes

<Boolean attribute>

<Boolean file attribute |
EE<Boo1ean direct array attribute>—
<Boolean task attribute>———

<Boolean file attribute>

—<file designator . .
I—<attr1‘ bute parameter specification>—]

s—<Boolean-valued file attribute name =

L (—<arithmetic variable>—) B

The attribute error number returned from the operating system can be captured in the
< arithmetic variable >.

<Boolean direct array attribute>

—<direct array row>— . =

+—<Boolean-valued direct array attribute name |

<Boolean-valued direct array attribute name>

ALGOL supports all direct array attributes and direct array attribute values described in
the A Series File Attributes Programming Reference Manual.

<Boolean task attribute>

—<task designator>— . —<Boolean-valued task attribute name>———|

8600 0098-000 : 4-11

Statements

<Boolean-valued task attribute name>

LOCKED
L taps —J

L

Boolean Update Assighment

<Boolean update assignment>

—<update symbols¥L - —] |
<Boolean operator>—<simple Boolean expression

The Boolean update assignment is a shorthand form of assignment that can be used
when the Boolean target on the left side of the assignment operator (: =) also appears
in the Boolean expression on the right side of the operator. The Boolean update
assignment form can be specified only following a Boolean target that does not contain
a partial word part. The asterisk (*) represents a duplication of the item to the left of

the assignment operator. For example, the following two assignments produce the same
results:

B := * AND BOOL
B := B AND BOOL
The target item is not reevaluated at the appearance of the asterisk.
If the item to the left of.the assignment operator is a subscripted variable, it cannot

reference a value array.

Examples of Boolean Assignment

BOOL := TRUE
BOOLARRAY[N].[3@:1] := Q < VAL
HIGHER := PTR > PTS FOR 6

TAUTOLOGY := * OR TRUE

Complex Assignment

A complex assignment assigns the value of the complex expression on the right side of
the assignment operator (: =) to the complex variable on the left side.

<complex assignment>

—<complex variable := —<complex expression |
<complex update ass1'gnmer|'lt>—J

4-12 8600 0098-000

Statements

<complex variable>

—<variable> |

Complex Update Assignment

<complex update assignment>

—-<update symbols O - — {
<complex operator>—<simple complex expression

The complex update assignment is a shorthand form of assignment that can be used
when the complex variable on the left side of the assignment operator (: =) also appears
in the complex expression on the right side of the operator. The asterisk (*) represents
a duplication of the variable to the left of the assignment operator. For example, the
following two assignments produce the same results:

C:

* + COMPLEX(3,4)

C:

C + COMPLEX(3,4)
The target variable is not reevaluated at the appearance of the asterisk.
If the item to the left of the assignment operator is a subscripted variable, it cannot

reference a value array.

Examples of Complex Assignment
Cl := COMPLEX(8,1.5)

C2 := * + C1/2

Mnemonic Attribute Assighment

A mnemonic attribute assignment assigns a value to the mnemonic-valued library
attribute LIBACCESS.

Refer to “Library Attributes” in Section 8, “Library Facility,” for a description of the
library attribute LIBACCESS.

<mnemonic attribute assighment>

—<mnemonic attribute>— := — VALUE — (=

+—<mnemonic attribute value>—) |

<mnemonic attribute>

—<mnemonic library attribute !

8600 0098-000 4-13

Statements

<mnemonic library attribute>

—<library identifier>— . >

—<mnemonic-valued library attribute name |

<mnemonic attribute value>

—<mnemonic library attribute value |

The following are examples of Mnemonic Attribute Assignment:

L.LIBACCESS := VALUE(BYTITLE)

L.LIBACCESS :

VALUE (BYFUNCTION)

Pointer Assignment

A pointer assignment assigns the pointer on the left side of the assignment operator (:=)
to point to the location in an array indicated by the expression on the right side of the
assignment operator. Such a pointer is then considered initialized and can be used in the
REPLACE and SCAN statements for character manipulation.

<pointer assignment>

—<pointer variab1e>——|: := —<pointer expression !
<pointer update alss1'gnmen1:>—J

<pointer variable >

—<pointer identifier

L

<pointer update assignment>

— |
<update symbols L—<skip>—J {

Pointer Variable
A pointer assignment causes the creation of a pointer variable, or copy descriptor, to
an array. The pointer variable can be set up with the needed character size by using
the POINTER function syntax. For more information, see “POINTER Function” in
Section 5, “Expressions and Functions.”

Examples of Pointer Assignment
The following example assigns a pointer named PTS to point to the EBCDIC
character in the EBCDIC array EBCDICARAY identified by the subscripted variable
EBCDICARAY]I5].

PTS := EBCDICARAY[5]

4-14 8600 0098-000

Statements

The following example assigns a pointer named PTR to point to the leftmost character
position in the first element of the real array REALARAY.

PTR := POINTER(REALARAY)

The following example assigns the pointer PINFO to point to the 17th character position
after the character position pointed to by the pointer PTR.

PINFO := PTR + 17
The following example assigns the pointer POUT to point to the leftmost character
position in the array element identified by INSTUFF[N]. The 4 following the comma
indicates that POUT is a hexadecimal pointer and thus points to hexadecimal characters.

POUT := POINTER(INSTUFF[N],4)

Procedure Reference Array Assignment

A procedure reference array assignment associates a procedure reference with a
procedure reference array element. The element can then be used to refer to the
procedure.

<procedure reference array assighment>

—<procedure reference array element>— := >

NULL I
E<procedur‘e identifiers—
<procedure reference array element>—

Procedure Reference Array Element

If NULL is specified and there is an environment called NULL, then a reference to the
procedure called NULL is assigned. If NULL is specified and there is no environment
called NULL, then a NULL value is assigned to the procedure reference array element.
When a NULL reference is assigned, the previous contents are overwritten with a tag
0 (zero) word. If the procedure reference array element is invoked while it is NULL, a
program interrupt occurs.

The procedure reference array element on the left side of the assignment operator (: =)
and the procedure or procedure reference array element on the right side must be of the
same type and have the same parameter descriptions.

The procedure reference array on the left side of the assignment operator cannot

be global to the procedure or procedure reference array on the right side. If the
procedure reference array element on the left side of the assignment operator is a formal
parameter, a procedure reference array element on the right side can only be another
element of the same procedure reference array that appears on the left side.

A procedure reference array that is declared to be part of a library cannot appear on the

left side of a procedure reference array assignment. An attempt to assign into such a
procedure reference array results in an error at compilation time or at run time.

8600 0098-000 4-15

Statements

If the procedure reference array element on the right side of the assignment operator
is uninitialized, then a later attempt to use the statement on the left side results in an
error.

Example of Procedure Reference Array Assignment
In the following example, P and Q are REAL procedures and RA is a REAL procedure

reference array. Neither B, Q, nor RA have parameters. The program sample assigns
references to elements one through four of the procedure reference array RA.

BEGIN
REAL PROCEDURE P;
BEGIN
REAL A;
A:=T%*T;
P := A;
END;
REAL PROCEDURE Q;
BEGIN
INTEGER A;
A:x=T*T*T;
IF A > 0 THEN
Q :=A
ELSE
Q := -1;
END;
REAL PROCEDURE REFERENCE ARRAY RA[1:14];
NULL;
RA[1] := P; %RA[1] CONTAINS A REFERENCE TO PROCEDURE P

RA[2] := Q;

RA[3] := NULL; %RA[3] CONTAINS A NULL VALUE

RA[4] := RA[3]; %RA[4] CONTAINS A REFERENCE TO RA[3]
END.

String Assignment
A string assignment assigns the string that results from evaluation of the string

expression on the right side of the assignment operator (: =) to the string target on the
left side.

4-16 8600 0098-000

Statements

<string assignment>

—E<str‘ing designator: := 5
<string-valued library «‘;ﬂ:tr"ibute>—J

3. Y

—L<string designator>— := ~|—-|

> string expression>————|
— * —<string concatenation oper‘ator‘>——l
—<string-valued library attribute

<string designator>

<string identifier !
€ ’
E<str1‘ng array identifier>— [-J;-<subscri_|;—t:|— 1 -

<string procedure identifier

The result of the expression on the right side of the assignment operator (:=) must be a
string of the same character type as the declared type of the string designator on the left
side.
Embedded assignment is not allowed. For example, the following is not allowed:
S1 := DROP(S2 := "ABC", 2)

Assignment can be made to a string procedure identifier only within the body of that
string procedure.

String Concatenation Operator
The * <string concatenation operator> form is a shorthand form of assignment that
can be used when the string designator on the left side of the assignment operator also
appears in the expression on the right side of the operator. The asterisk (*) represents a

duplication of the item to the left of the assignment operator. For example, the following
two assignments produce the same results:

S := * CAT "ABC"

S := S CAT "ABC"

Examples of String Assighment
The following example assigns the EBCDIC string ABCD123 to the string variable STRI.
STRI := 8"ABCD123"

The following example assigns the string 1234 (of the default character type) to both of
the string variables S2 and S1.

S1 := 82 := "1234"

8600 0098-000 4-17

Statements

The following example concatenates the string INPUT onto the end of the string stored
in SOUTYI, and then assigns the result to both of the string variables SOUT1 and SOUT.

SOUT := SOUT1 := * CAT "INPUT"
The following example concatenates the string ABC onto the end of the string stored in
SOUT, and this string is then concatenated onto the end of the string stored in SOUT.
The resulting string is assigned to the string variable SOUT.

SOUT := * || SOUT || “ABC"

Task Assignment

4-18

A task assignment associates the task designator on the right side of the assignment
operator (: =) with the task indicated by the expression on the left side.

<task assignment>

—<task designator>— ., —<task-valued task attribute name>— := >

+—<task designator |

For information on task designator and task-valued task attribute name, see “TASK and
TASK ARRAY Declarations” in Section 3, “Declarations.”

The PARTNER task attribute is used in conjunction with the CONTINUE statement.
The following are examples of Task Assignment:

The following example assigns the task TASKIT to the EXCEPTIONTASK attribute of
TISKIT.

TISKIT.EXCEPTIONTASK := TASKIT

The following example assigns the task identified by the task array element
TASKARAY[N] to the EXCEPTIONTASK attribute of TSK.

TSK.EXCEPTIONTASK := TASKARAY[N]

The following example assigns the task COHORT to the PARTNER attribute of
TASKVARB.

TASKVARB.PARTNER := COHORT

The following example assigns the task identified by the task array element
COWORKERS[INDX] to the PARTNER attribute of MYSELF.

MYSELF.PARTNER := COWORKERS[INDX]
The following example assigns the task that is the PARTNER attribute of the task

MYSELFPARTNER to the task that is the EXCEPTIONTASK attribute of the task
MYSELFPARTNER.

8600 0098-000

Statements

MYSELF.PARTNER.EXCEPTIONTASK := MYSELF.PARTNER.PARTNER

ATTACH Statement

The ATTACH statement associates an interrupt with an event so that when the event
is caused, the program is interrupted, and the interrupt code is placed in execution,
provided that the interrupt is enabled.

<attach statement>

— ATTACH —<interrupt identifier>— T0 —<event designator>——

Attachment of Interrupts

Although different interrupts can be simultaneously attached to the same event, a
particular interrupt can be attached to only a single event at any one time. For this
reason, if, at attach time, the interrupt is found to be already attached to an event, then
it is automatically detached from the old event and attached to the new event. Any
pending invocations of the interrupt are lost.

An interrupt can be attached to an event that is declared in a different block. For
example, a local interrupt can be attached to a formal event. Such an attachment can
cause compile-time or run-time up-level attach errors if the block containing the event
can be exited before the block that contains the interrupt is exited.

Event-valued file attributes are allowed. If the file is declared (or specified as a formal
parameter) at least as global as the interrupt, then run-time checking can be bypassed.

However, the operating system can prevent some attachments at run time. For example,
the INPUTEVENT of a remote file is available only after the file has been opened with
an OPEN statement. In the operating system, run-time verification that an interrupt is
not declared more global than the event always fails for attribute events. This causes

a task fatal UP LEVEL ATTACH error. Therefore, a formal parameter event whose
actual parameter is a file attribute cannot be attached nor can an attribute of a formal
parameter file be attached to a global interrupt.

Examples of ATTACH Statement

The following example attaches the interrupt THEPHONE to the event THEBELL.
When THEBELL is caused, the code associated with THEPHONE begins executing.

ATTACH THEPHONE TO THEBELL
The following example attaches the interrupt ANSWERHI to the event
MYSELFEXCEPTIONEVENT. Whenever the task MYSELF undergoes a change in
status, the EXCEPTIONEVENT attribute is caused, and the code associated with
ANSWERHI begins executing.

ATTACH ANSWERHI TO MYSELF.EXCEPTIONEVENT

8600 0098-000 4-19

Statements

AWAITOPEN Statement

4-20

The AWAITOPEN statement is used to await a request for dialog establishment.
Information on networks that support this function can be found in the A Series I/O
Subsystem Programming Guide.

<awaitopen statement>

— AWAITOPEN — (—<awaitopen file part

) —
I—<axwa1i topen opti ons>——’

<awaitopen file part>

—<file designator

L [SUBFILE —<subfile index>—] —

<awaitopen options>

L , —<awaitopen control opti on>:|

3. S5

L, — PARTICIPATE

L - — TRUE
T raLse J

3 |

L , —<connecttimelimit option>——I

<awaitopen control option>

AVAILABLE i

<connecttimelimit option>

— CONNECTTIMELIMIT — = —<arithmetic expression |

The AWAITOPEN statement can be used only when the kind of the file designator is
PORT and only when the SERVICE attribute for the port is set to a network type that
supports this feature.

The subfile index, if present, specifies the subfile that is waiting for dialog establishment.

The AWAITOPEN statement can be used as an arithmetic function. It returns the same
values as the file attribute AVAILABLE. For a description of these values refer to the

A Series File Attributes Programming Reference Manual. If the result of this statement
is not interrogated by the program, the program terminates when the awaitopen action
fails.

The control options AVAILABLE, DONTWAIT, and WAIT are described in the A Series

I/O Subsystem Programming Guide. The control option is used to indicate when control
should be returned to the program. If a control option is not specified, WAIT is assumed.

8600 0098-000

Statements

PARTICIPATE Option

The PARTICIPATE option is used to indicate that the program specifies the option

of accepting or rejecting offers, through the RESPOND statement, when the subfile

is matched to an incoming dialog request. Specifying PARTICIPATE is equivalent to
specifying PARTICIPATE = TRUE. Upon notification of a matching dialog request,
through CHANGEEVENT and FILESTATE attributes, the program can interrogate the
value of attributes, read open userdata, and negotiate the value of negotiable attributes.
The program can then reject or accept an incoming dialog request. For more information
on FILESTATE and CHANGEEVENT attributes, see the A Series File Attributes
Programming Reference Manual. If the PARTICIPATE option is not included, a default
value of FALSE is assumed, and any offer is unconditionally accepted.

CONNECTTIMELIMIT Option

The CONNECTTIMELIMIT option can be used to specify the maximum amount of

time, in minutes, that the system will allow for a successful match with a corresponding
endpoint. The default for this option is an unlimited wait. If the amount specified is
negative, an error result is returned. If the value is zero, there is no time limit on the
wait. If the value is not a single-precision integer, it is integerized. If the FILESTATE of
the port file does not change to an OPENED or OPENRESPONSEPLEASE file state
within the time specified, the AWAITOPEN fails and an implicit CLOSE ABORT is
performed on the subfile.

Examples of AWAITOPEN Statement

The following example indicates that the program is being used to await dialog
establishment on all subfiles of the port file FILEID.

AWAITOPEN (FILEID [SUBFILE 2])

The following example indicates that the program is being used to await dialog
" establishment on subfile I of the port file FILEID.

AWAITOPEN (FILEID [SUBFILE I])
The following example indicates that the program is being used to await dialog
establishment on subfile 1 of port file FILEID. Control is not returned to the program
until the subfile is matched. In addition, the participate option is used to indicate that
the program can accept or reject any offers through the RESPOND statement.
AWAITOPEN (FILEID [SUBFILE 1], WAIT, PARTICIPATE=TRUE)
The following example indicates that the program is being used to await dialog
establishment on subfile N of port file FILEID. The maximum amount of time to wait for
a successful match is set to the result of the arithmetic expression X * 60 + 3).

AWAITOPEN (FILEID [SUBFILE N], CONNECTTIMELIMIT=(X * 60 + 3))

8600 0098-000 4-21

Statements

CALL Statement

The CALL statement initiates a procedure as a coroutine.

<call statement>

— CALL —<procedure identifier .] =
<actual parameter part

»— [—<task designator>—] |

Coroutines

4-22

Initiation of a coroutine consists of setting up a separate stack, passing any parameters
(call-by-name or call-by-value), and beginning the execution of the procedure.

Processing of the initiating program, called the initiator or the primary coroutine, is
suspended.

The called procedure, referred to as the secondary coroutine, cannot be a typed
procedure. If the procedure identifier is a system supplied process, such as an intrinsic,
the library GENERALSUPPORT must be declared using a library entry point
specification. The procedure identifier must be declared in the program or the syntax
error, PROCEDURE MUST BE USER DECLARED, results. The actual parameter
part must agree in number and type with the formal parameter part in the declaration of
the procedure; otherwise, a run-time error occurs.

The task designator associates a task with the coroutine at initiation; the values

of the task attributes of that task, such as COREESTIMATE, STACKSIZE, and
DECLAREDPRIORITY, can be used to control the execution of the coroutine. For

more information about assigning values to task attributes, refer to <arithmetic task
attribute> under “Arithmetic Assignment,” <Boolean task attribute > under “Boolean
Assignment,” and “Task Assignment” earlier in this section.

Every coroutine has a partner task to which control can be passed by using the
CONTINUE statement. The partner task of the secondary coroutine is the initiator by
default but can be changed by assignment to the task-valued task attribute PARTNER
of the task designator. Local variables and call-by-value parameters of the secondary
coroutine retain their values as control is passed to or from the coroutine.

The critical block, described in “PROCESS Statement” later in this section, in the
initiator cannot be exited until the secondary coroutine is terminated. Any attempt

by the initiator to exit that block before the secondary coroutine is terminated causes
the initiator and all tasks it has initiated through CALL or PROCESS statements to be
terminated.

A secondary coroutine is terminated by exiting its own outermost block or by execution
in the initiator of the following statement, where the task designator specifies the task
associated with the secondary coroutine to be terminated:

<task designator>.STATUS := VALUE(TERMINATED)

8600 0098-000

Statements

Note: The CALL statement causes the initiation of a separate stack as
a coroutine. Because of the cost involved, a coroutine should be
established once and then used through CONTINUE statements.
If a CALL statement is used to invoke a procedure, overall system
efficiency is severely degraded. A sitring expression cannot be passed
as an actual parameter to a call-by-name parameter of a procedure in
a CALL statement.

Example of CALL Statement

The following example initiates as a coroutine the procedure COROOTEEN, and passes
the parameters X, Y, 7,and X + Y + Z. COROOTEEN has the task designator T
associated with it.

CALL COROOTEEN(X, Y, 7, X + Y + Z) [T]

CANCEL Statement

The CANCEL statement can be used to delink a library from a program and cause the
library program to thaw (or unfreeze) and resume running as a regular program.

<cancel statement>

— CANCEL — (—<library identifier>—) |

Delinking a Library from a Program

Normally, a library is linked to a program when the program calls one of the library’s
entry points or the LINKLIBRARY intrinsic, and the library is delinked from the
program when the block in which the library is declared is exited. The CANCEL
statement can be used to delink a library before it would normally be delinked.

When a library is canceled, all users of the library are delinked from the library, and
the library thaws and resumes running as a regular program regardless of whether it
is temporary or permanent. Refer to “FREEZE Statement” later in this section for a
discussion of temporary and permanent libraries.

After a program has canceled a library, the program can again link to a new instance of
the library as if for the first time.

Only libraries whose SHARING compiler control option is specified as PRIVATE or
SHAREDBYRUNUNIT can be canceled. If an attempt is made to cancel a library that is
not PRIVATE or SHAREDBYRUNUNTIT, a run-time message is given and the library is
delinked as if DELINKLIBRARY was called.

To delink a program from a library without affecting any other users of the library,

use the DELINKLIBRARY function. For more information, see “DELINKLIBRARY
Function” in Section 5, “Expressions and Functions.”

8600 0098-000 4-23

Statements

For more information on libraries, refer to Section 8, “Library Facility.”

Example of CANCEL Statement

The following example delinks the library LIB from the program.

CANCEL (LIB)

CASE Statement

The CASE statement provides a means of dynamically selecting one of many alternative
statements.

<case statement>

—<case head>—<case body> |

<case head>

— CASE —<arithmetic expression>— OF !

<case body>

— BEGIN <statement list END {
—E<numbered statement 1i st>—J

<numbered statement list>

—L<numbered statement group> ‘ |

<numbered statement group>

—-<number 1ist>—<statement list>

1

<number list>

&

<constant arithmetic expression : I |
L Eise '

Unnumbered Statement List

If the case body contains an unnumbered statement list, then the statement to be
executed is selected in the following manner:

4-24 8600 0098-000

Statements

e The arithmetic expression in the case head is evaluated. If the resulting value is not
an integer, it is integerized by rounding.

e The integer value is used as an index into the list of statements in the case body.
The N statements in the case body are numbered 0 to N-1. The statement
corresponding to the index value is the statement executed. If the index value is less
than zero or greater than N-1, the program is discontinued with a fault.

Numbered Statement List

If the case body contains a numbered statement list, then the statement list to be
executed is selected in the following manner:

e The arithmetic expression in the case head is evaluated. If the resulting value is not
an integer, it is integerized by rounding.

e If the integer value is equal to one of the statement numbers, the statement list
associated with the number is executed.

If the integer value is not equal to any of the statement numbers, then an invalid
index fault occurs unless the word ELSE appears in a number list in the CASE
statement, in which case control is transferred to the statement list following ELSE.

The statement numbers given by the constant arithmetic expressions in the number list

must lie in the range 0 to 1023, inclusive. The word ELSE can appear only once in a
CASE statement.

8600 0098-000 4-25

Statements

Examples of CASE Statement

CASE I OF
BEGIN

STATEMENT @
STATEMENT 1
STATEMENT 2

STATEMENT 3

CASE I OF
BEGIN
1:
2:

.
.

7:

CAUSE Statement

The CAUSE statement activates all tasks that are waiting on the specified event.

<cause statement>

— CAUSE — (—<event designator>—) |

Causes of Events

Normally, the CAUSE statement also sets the happened state of the event to TRUE
(happened). For an explanation of exceptions to this condition, see “WAITANDRESET
Statement” later in this section..

If an enabled interrupt is attached to the event, each cause of the event results in one
execution of the interrupt code.

Activating a task does not necessarily place the task into immediate execution.
Activating a task consists of delinking the task from an event queue (each event has its
own queue) and linking that task in priority order into a system queue called the ready
queue.

4-26 8600 0098-000

Statements

The ready queue is a queue of all tasks that are capable of running. Tasks are taken out
of the ready queue either when a processor is assigned to the task or when the task
must wait for an operation (such as an I/O operation) to complete or for an event to be
caused. A task is placed in execution only when it is the top item in the ready queue and
a processor is available.

When a program causes a happened event, the CAUSE statement is ignored (a no-op

is caused); the system does not remember every cause unless an interrupt is attached

to the event. For more information on events, see “EVENT Statement” later in this
section.

Examples of CAUSE Statement

The following example activates the tasks waiting for the event EVNT.

CAUSE (EVNT)

The following example activates the tasks waiting for the event identified by
EVNTARAY[INDX].

CAUSE (EVNTARAY [INDX])

The following example activates the tasks waiting for a change in the status of the task
TSK.

CAUSE (TSK.EXCEPTIONEVENT)

CAUSEANDRESET Statement

The CAUSEANDRESET statement activates all tasks that are waiting on the specified
event and sets the happened state of the event to FALSE (not happened).

<causeandreset statement>

— CAUSEANDRESET — (—<event designator>—) |

Relationship to CAUSE Statement

This statement differs from the CAUSE statement in that the happened state of the
event is set to FALSE (not happened).

For further information on the relationship between the CAUSEANDRESET statement
and events see the discussion in “CAUSE Statement” earlier in this section.

8600 0098-000 4-27

Statements

Examples of CAUSEANDRESET Statement

The following example activates the tasks waiting for the event EVNT, and sets the
happened state of EVNT to FALSE (not happened).

CAUSEANDRESET (EVNT)

The following example activates the tasks waiting for the event identified by
EVNTARAY[INDX], and sets the happened state of that event to FALSE (not
happened).

CAUSEANDRESET (EVNTARAY [INDX])

The following example activates the tasks waiting for a change in the status of the
task TSK, and sets the happened state of TSK.EXCEPTIONEVENT to FALSE (not
happened).

CAUSEANDRESET (TSK.EXCEPTIONEVENT)

CHANGEFILE Statement

4-28

The CHANGEFILE statement changes the names of files without opening them.

<changefile statement>

— CHANGEFILE — (—=<directory element>— , —<directory element>——>

) I

The CHANGEFILE statement returns a value of TRUE if an error occurs. Error
numbers, stored in field [39:20] of the result, correspond to the causes of failure as
follows:

Value Meaning

10 The first directory element is ih error.
20 The second directory element is in error.
30 File names have not been changed.

File names and directory names must be specified in EBCDIC and must be followed by a
period. All errors in the names are detected at run time.

If a family substitution specification is in effect, the CHANGEFILE statement affects
only the substitute family, not the alternate family.

If a directory name is specified as the source, the names of the files in that directory are
changed according to the following rules:

8600 0098-000

Statements

e If the specified target directory is a new directory, then the names of all the files in
the source directory are changed.

o If the specified target directory is not a new directory, then only files that
do not have corresponding names in the target directory are changed. For
example, the first column below shows file names that exist before the statement
CHANGEFILE("A.","B.") is executed, and the second column shows the file names
resulting from execution of the statement.

Existing Files Resulting Files

A/B/C B/B/C

A/B/D A/B/D

A/C/C B/C/C

B/B/D B/B/D

B/C/D B/C/D
I\iote ttgfxt because the file name B/B/D already exists, the file name A/B/D is not
changed.

e A directory element of the form <file name>/= affects only files in that directory.
It does not affect a file named <file name>.

Directory Element

<directory element>

<pointer expression |
E<array row>————

<string literal>———

A directory element is a file name, a directory name, or both a file name and a
directory name. A directory name references a group of files. For example, the
following files are all in the directory named JAMES. The first six files are in the
directory named (JAMES)OBJECT, and the first five files are in the directory named
(JAMES)OBJECT/TEST. Note that (JAMES)OBJECT/TEST/PRIMES is both a file
name and a directory name.

(JAMES) OBJECT/TEST /COMM
(JAMES)OBJECT/TEST/SORT
(JAMES)OBJECT/TEST/PRIMES
(JAMES) OBJECT/TEST/PRIMES/1
(JAMES)OBJECT/TEST/PRIMES/2
(JAMES) OBJECT/LIBRARY1
(JAMES)MEMO

In the CHANGEFILE statement, the second directory element, the target, designates
the name to which the first directory element, the source, is to be changed. If the change
applies to files on pack, and a family substitution specification is not in effect (either

by default through the USERDATA file or by specification in either CANDE or WFL),
the target must include ON <family name >, and the source must not include a family
name. If a family substitution specification is in effect, ON <family name> is not

8600 0098-000 4-29

Statements

required; if ON <family name> does not appear, the family substitution specification is
used to determine the family on which the files reside.

Example of CHANGEFILE Statement

The following program changes A/B to C/D and then removes C/D.

BEGIN
ARRAY OLD, NEW[@:44];
BOOLEAN B
REPLACE POINTER(OLD) BY 8"A/B.";
REPLACE POINTER(NEW) BY 8"C/D.";
IF B := CHANGEFILE(OLD,NEW) THEN
DISPLAY ("CHANGEFILE ERROR");
IF B := REMOVEFILE(8"C/D.") THEN
DISPLAY ("REMOVEFILE ERROR");
END.

CHECKPOINT Statement

4-30

The CHECKPOINT statement writes to a disk file the complete state of the job at a
specified point. Using the disk file, the job can later be restarted from this point.

<checkpoint statement>

— CHECKPOINT — (—<device>— , —<disposition>—) |

<device>

DISK
DISKPACK —
PACK ——

4

The checkpoint/restart facility can protect a program against the disruptive effects of
unexpected interruptions during the program’s execution. If a halt/load or other system
interruption occurs, a job is restarted either before the initiation of the task that was
interrupted or, if the operator permits, at the last checkpoint, whichever is more recent.
Checkpoint information can also be retained after successful runs to permit restarting
jobs to correct bad data situations.

The device options determine the medium to be used for the checkpoint files.

The CHECKPOINT statement can be used as a Boolean function. An attempted
checkpoint returns a value with the following information:

[8: 1] = Exception bit

[16:18] = Completion code

[25:12] = Checkpoint number

[46: 1] = Restart flag (1 = restart)

8600 0098-000

Statements

In response to the request for a completion code, a program can receive a variety of
messages. See “Restarting a Job” later in this section for a list of the completion codes
and messages.

Disposition Option

<disposition>

LOCK |
L purge J '

The disposition option PURGE causes all checkpoint files to be removed at successful
termination of the job and protects the job against system failures. The LOCK option
causes all checkpoint files to be saved indefinitely and can be used to restart a job even if
it has terminated normally.

‘When a checkpoint is invoked, the following files are created:

¢ The checkpoint file, CP/<JN>/<CPN>, where <JN > is a four-digit job number
and <CPN > is a three-digit checkpoint number. If the PURGE option has been
specified, the checkpoint number is always zero, and each succeeding checkpoint
with PURGE removes the previous file. If the LOCK option is used, the checkpoint
number starts with a value of 1 for the first checkpoint and is incremented by 1 for
each succeeding checkpoint with LOCK. If the two types are mixed within a job, the
LOCK checkpoints use the ascending numbers and the PURGE checkpoints use 0
(zero), leaving files 0 through N at the completion of the job.

e Temporary files, CP/<JN>/T<FN>, where <FN> is a three-digit file number
beginning with 1 and incremented by 1 for each temporary disk or system resource
pack file.

¢ The job file, CP/<JN > /JOBFILE. This file is created under the LOCK option only.

The LOCK and PURGE options are also effective when the task terminates. If the task
terminates abnormally and the last checkpoint has used the PURGE option, then the
checkpoint file (numbered zero) is changed to have the next sequential checkpoint
number, and the job file is created (if necessary). If the job terminates normally and only
PURGE checkpoints have been taken, the CP/<JN > directory is removed.

8600 0098-000 4-31

Statements

Restarting a Job

4-32

A job can be restarted in two ways:

After a halt/load. The system automatically attempts to restart any job that was
active at the time of a halt/load. If a checkpoint has been invoked during the
execution of the interrupted task, then the operator is given a message requiring
a response to determine whether the job should be restarted. The operator can
respond with the system command OK (to restart at the last checkpoint), DS (to
prevent a restart), or QT (to prevent a restart but save the files for later restart if
the job was a checkpoint with PURGE).

By a Work Flow Language (WFL) RERUN statement. A WFL job can be restarted
programmatically by use of the WFL RERUN statement.

The following conditions can inhibit a successful restart:

An invalid usercode
Recompilation of the program since the checkpoint

The operating system has changed since the checkpoint. The restart fails if the
creation time stamp of the operating system that created the checkpoint file does not
match the creation time stamp of the current operating system.

Intrinsics after the checkpoint that are different from the intrinsics before the
checkpoint

The messages in the following list can appear as the result of an attempt to restart.

Restart Messages

RESTART PENDING (RSVP)
MISSING CHECKPOINT FILE

I0 ERROR DURING RESTART
USERCODE NO LONGER VALID
OPERATOR DSED RESTART
OPERATOR QTED RESTART
MISSING CODE FILE

NOT ABLE TO RESTART
INVALID JOB FILE

RESTART AS CP/nnnn

MISSING JOB FILE

8600 0098-000

Statements

FILE POSITIONING ERROR

WRONG JOB FILE

WRONG CODE FILE

BAD CHECKPOINT FILE

BAD STACK NUMBER

WRONG MCP

The following can inhibit a successful checkpoint/restart:

Direct I/O (direct arrays or files)
Datacomm I/O (open datacomm files)
Open Data Management System IT (DMSII) sets

The task being checkpointed must have no tasks initiated through CALL or
PROCESS statements, it must have been initiated by a WFL job, and this WFL job
must not have initiated other tasks that are also running.

ODT files
Duplicated files
Output directly to a printer or card punch (backup files are acceptable)

Checkpoints taken inside sort input or output procedures. The sort intrinsic
provides its own restart capability; for more information, see “SORT Statement”
later in this section.

Checkpoints taken in a compile-and-go program

If a job that produces printer backup files is restarted, the backup files can already have
been printed and removed, and on restart the job requests the missing backup files. In
this situation, when the backup files are requested, the operator must respond with the
system command OF (Optional File). A new backup file is created. Output preceding
the checkpoint is not re-created.

The messages in the following table can appear as the result of a checkpoint/restart.
Error conditions can be handled in a program by checking for them by completion code
number and instructing the program to handle the result.

Checkpoint Message Completion Code
CHECKPOINT#nn 0

INVALID AREA IN STACK

SYSTEM ERROR

BAD IPC ENVIRONMENT

NO USER DISK FOR CP FILE

10 ERROR DURING CHECKPOINT

g W N =

continued

8600 0098-000 4-33

Statements

continued
Checkpoint Message

ROWS IN CP FILE > 1024
DIRECT FILE NOT ALLOWED

TOO MANY TEMPORARY DISK FILES
PAPER TAPE FILE NOT ALLOWED
DUPLICATED FILE NOT ALLOWED

CON FILE NOT ALLOWED

CARD PUNCH FILE NOT ALLOWED
OPEN REVERSED TAPE FILE NOT ALLOWED

DISKHEADER IN STACK
DMS AREA IN STACK
DIRECT ARRAY IN STACK

DIRECT DOPE VECTOR IN STACK

SUBSPACE IN STACK
STACKMARK

SORT AREA IN STACK
REMOTE FILE NOT ALLOWED
ILLEGAL CONSTRUCT
BDBASE ILLEGAL

TEMP FILE ON NAMED PACK

Locking

Completion Code

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

For jobs that take a large number of checkpoints with LOCK, the checkpoint number
counts up to 999 and then recycles to 1 (leaving zero undisturbed). When this recycling
occurs, previous checkpoint files are lost as new ones using the same numbers are

created.

If a temporary disk file is open at a checkpoint, it is locked under the CP directory. If

it is subsequently locked by the program, the name is changed to the current file title.
At restart time, the file is sought only under the CP directory, resulting in a no-file
condition. To avoid this condition, all files that are to be locked eventually should be
opened with the file attribute PROTECTION assigned the value SAVE. To remove the
file, it must be closed with PURGE. True temporary files, which are never locked, do not
have this problem. All data files must be on the same medium as at the checkpoint, but
need not be on the same units or the same locations on disk or disk pack. They must
retain the same characteristics, such as blocking. The checkpoint/restart system makes
no attempt to restore the contents of a file to their state at the time of the checkpoint;
the file is merely repositioned. At this time, volume numbers are not verified.

Note: CANDE and remote job entry (RJE) cannot be used to run a program

with checkpoints. The checkpoints are ignored if used.

4-34

8600 0098-000

Statements

Rerunning Programs

If a rerun is initiated and the job number is in use by another job, a new job number is
supplied, and the CP/<JN > directory node is changed to reflect the new job number.

If a rerun is initiated and the PROCESSID function is used, the value returned by the
function can be different for the restarted job. Refer to “PROCESSID Function” in
Section 5, “Expressions and Functions,” for more information.

When a job is restarted at some checkpoint before the last, subsequent checkpoints

taken from the restarted job continue in numerical sequence from the checkpoint used
for the restart. Previous higher numbered checkpoints are lost.

Example of CHECKPOINT Statement

BOOL := CHECKPOINT(DISK,PURGE)

CLOSE Statement

The CLOSE statement breaks the link between a logical file declared in the program and
its associated physical file, which is the actual file data is sent to or from. For port files, it
is used to close dialogs between processes.

<close statement>

— CLOSE — (—=<close file part = : y .)
, —<close options

<close file part>

<file designator T |
[— SUBFILE —<subfile index>—] :J
<task designator>— . —<file-valued task attribute name

<subfile index>

—<arithmetic expression |

The CLOSE statement can be used as an arithmetic function. For information about
results returned, see the A Series File Attributes Programming Reference Manual.

When no CLOSE option is specified, the CLOSE statement closes the file, depending on
the kind of file, as follows:

Card Output File

A card containing an ending label is punched. The file must be labeled.

8600 0098-000 4-35

Statements

Line Printer File

The printer is skipped to channel 1, an ending label is printed, and the printer is again
skipped to channel 1. The file must be labeled.

Unlabeled Tape Output File

A double tape mark is written after the last block on the tape, and the tape is rewound.

Labeled Tape Output File

A tape mark is written after the last block on the tape; then an ending label is written
followed by a double tape mark, and the tape is rewound.

Disk File
If the file is a temporary file, the disk space is returned to the system.
For all types of files, the I/O unit and the buffer areas are released to the system.

The < subfile index> syntax is used to specify the subfile to be closed.

CLOSE Options

4-36

<close options>

* |

CRUNCH
LOCK
PURGE
REEL
REWIND
<port close option>—

If the asterisk (*) is used and the file is a tape file, the I/O unit remains under program
control, and the tape is not rewound. This construct is used to create multifile reels.

When the asterisk is used on multifile input tapes and the value of the LABEL file
attribute is STANDARD, the CLOSE statement closes the file as follows:

e If the value of the DIRECTION file attribute is FORWARD, the tape is positioned
forward to a point just following the ending label of the file.

e If the value of the DIRECTION file attribute is REVERSE, the tape is positioned to
a point just in front of the beginning label for the file.

e If the end-of-file branch of a READ statement or WRITE statement has been taken,
the CLOSE statement does not position the file.

The close action performed on a single-file reel is the same as that performed on a
multifile reel. The next I/O operation performed on the file must be done in the direction
opposite to that of the prior I/O operations; otherwise, an end-of-file error is returned.

8600 0098-000

Statements

When the asterisk is used and the LABEL file attribute does not have the value
STANDARD, the tape is spaced beyond the tape mark (on input), or a tape mark
is written going forward (on output). The essential difference is that if LABEL is
OMITTEDEQOF, labels are not spaced over, but if LABEL is STANDARD, labels are
spaced over.

The CRUNCH option is meaningful only for disk files. It causes the unused portion of
the last row of disk space, beyond the end-of-file indicator, to be returned to the system.
The file cannot be expanded but can be written inside of the end-of-file limit.

If the LOCK option is used, the file is closed. If the file is a tape file, it is rewound, and a
system message is printed that notifies the operator that the reel must be saved. The
tape unit is made inaccessible to the system until the operator readies it manually. If the
file is a disk file, it is kept as a permanent file on disk. The file buffer areas are returned
to the system.

If the PURGE option is used, the file is closed, purged, and released to the system. If the
file is a permanent disk file, it is removed from the disk directory, and the disk space is
returned to the system.

If the REEL option is used, the file must be a multireel tape file. The current reel is
closed, and the next reel is opened. This option is provided primarily for use with direct
tape files, for which the system does not automatically perform reel switching.

If the REWIND option is specified, the file is closed. If the file is a paper tape or
magnetic tape file, it is rewound. For disk files, the record pointer is reset to the first
record of the file. The file buffer areas are returned to the system, and the I/O unit (or
disk file) remains under program control. For paper tape files, the REWIND option can
be used only on input.

All forms of the CLOSE statement that are not appropriate for the type of unit assigned
to the file are equivalent to using the REWIND option. For example, when the asterisk
or the REEL option is specified for a disk file, the result is the same as when the
REWIND option is specified for a disk file.

A CLOSE statement that leaves the disk file under program control is referred to as a
close with retention. For example, a CLOSE statement that designates a disk file and
the asterisk option or the REWIND option is a close with retention.

PORT CLOSE Option

<port close option>

/1\- , — DONTWAIT | R
/1\- , —<closedisposition option>—J

L , —<associateddata option>—l

8600 0098-000 4-37

Statements

<closedisposition option>

— CLOSEDISPOSITION — = T gggg” _ {

<associateddata option>

— ASSOCIATEDDATALENGTH — = —<arithmetic expression>— , —m8M8M8
> ASSOCIATEDDATA — = <array row. —
—E<subscr'1’ pted variable>—
<pointer expression>——
ASSOCIATEDDATA — = —=<string expression>——

The PORT CLOSE option is meaningful only for files for which the KIND file attribute
has the value PORT.

The control option DONTWAIT is used to indicate that control should be returned to
the program as soon as possible. If DONTWAIT is not specified, WAIT is assumed and
control is returned when processing of the CLOSE statement is complete. Refer to the
A Series I/O Subsystem Programming Guide for more information on control options.

The CLOSEDISPOSITION = ORDERLY option and ASSOCIATEDDATA option are
meaningful only for certain port file services. The CLOSEDISPOSITION = ABORT
terminates a dialog immediately. A CLOSEDISPOSITION = ORDERLY steps the
subfile through an orderly termination procedure that involves handshaking between
the two programs. If the file is a port file and the CLOSEDISPOSITION option is

not specified, the ABORT operation is assumed. With an ABORT termination, the
processes must go through their own handshake procedure to ensure no data loss. The
ASSOCIATEDDATA option can be used to send associated data with the subfile close.
If a string expression is specified, the length is calculated automatically and used as the
ASSOCIATEDDATALENGTH value. Otherwise, the ASSOCIATEDDATALENGTH
option specifies how many characters are to be sent. If the ASSOCIATEDDATA

value is of type HEX, the ASSOCIATEDDATALENGTH option indicates the

number of HEX characters, otherwise the number of EBCDIC characters. If the
ASSOCIATEDDATALENGTH value is not a single precision integer it is integerized.

Examples of CLOSE Statement

4-38

In the following example, if FILEID is a temporary disk file, this statement closes the file
and returns the disk space to the system.

CLOSE (FILEID)

The following example closes FILEID and, assuming FILEID is a tape file, positions the
tape according to the description under “CLOSE Options” earlier in this section.

CLOSE (FILEID,*)
The following example closes, purges, and releases FILEID to the system. If FILEID is a
permanent disk file, it is removed from the disk directory and the disk space is returned
to the system.

CLOSE(FILEID,PURGE)

8600 0098-000

Statements

In the following example, assuming FILEID is a multireel tape file, the current reel is
closed, and the next reel is opened.

CLOSE(FILEID,REEL)

The following example closes FILEID and, assuming FILEID is a disk file, returns to the
system the unused portion of the last row of FILEID.

CLOSE (FILEID,CRUNCH)

The following example requests an orderly close on subfile 1 of port file FILEID.
Control is returned to the program as soon as the close has been checked for semantic
consistency, because the DONTWAIT port close option is included.

CLOSE (FILEID [SUBFILE 1], CLOSEDISPOSITION = ORDERLY, DONTWAIT)

The following example requests a close of subfile 1 of port file FILEID. Since the

< closedisposition option> is not specified, a CLOSEDISPOSITION ABORT operation is
performed. Since the <control option> is not specified, WAIT is assumed, and control
is not returned to the file until the close is complete.

The information specified in the < associateddata option> is sent to the correspondent
program during the close process. The length need not be specified because a string
expression is being used.

CLOSE (FILEID [SUBFILE 1], ASSOCIATEDDATA = STRNG)

The following example requests a close of subfile 1 of port file FILEID. During the close
process, 14 characters of data are taken, beginning at the location pointed to by PTR,
and are sent to the correspondent process as associated data.

CLOSE (FILEID [SUBFILE 1], ASSOCIATEDDATALENGTH = 14,
ASSOCIATEDDATA = PTR)

CONTINUE Statement

The CONTINUE statement causes control to pass from the program in which the
statement appears to a coroutine.

<continue statement>

— CONTINUE |
L (—<task designator>—) B I

Coroutines

A coroutine is a procedure that is initiated as a separate task by using a CALL
statement. The caller is referred to as the primary coroutine and the called procedure as
the secondary coroutine.

8600 0098-000 4-39

Statements

Because the execution of CONTINUE statements causes control to alternate between
primary and secondary coroutines, processing always continues at the point where it last
terminated.

The secondary coroutine uses the CONTINUE statement form without the task
designator to pass control back to its partner task, which is the primary coroutine by
default. The task designator is used by the primary coroutine to pass control to the
secondary coroutine associated with that task designator by the CALL statement. For
more information, refer to “CALL Statement” earlier in this section.

Examples of CONTINUE Statement

The following example passes control from this program, a secondary coroutine, to its
partner task, which is, by default, the primary coroutine.

CONTINUE
The following example passes control to the coroutine associated with the task TSK.

CONTINUE(TSK)

DEALLOCATE Statement

The DEALLOCATE statement causes the contents of the specified array row or
procedure reference array row to be discarded and the memory area to be returned to
the system.

Note: The DEALLOCATE statement cannot be used for task arrays.

<deallocate statement>

— DEALLOCATE — (<array row)]
—E<pr‘ocedure reference array r‘ow>—J I

Deallocation with Arrays

When an array row or procedure reference array row is deallocated, it is made not
present (all data is lost). When the array row or procedure reference array row is used
again, it is made present, and each element is reinitialized to 0 (zero) if it is an array row
and to the uninitialized state if it is a procedure reference array row.

Array rows of paged (segmented) arrays and event arrays cannot be deallocated by using
the DEALLOCATE statement.

When a procedure reference array is imported from a library, it cannot be deallocated
using the DEALLOCATE Statement. An attempt to deallocate an imported procedure
reference array results in a compile-time or run-time error.

8600 0098-000

Statements

Examples of DEALLOCATE Statement

The following example discards the contents of ARAY and returns the memory area to
the system. Note that ARAY must be a one-dimensional array or a syntax error results.

DEALLOCATE (ARAY)

The following example discards the contents of the row MATRIXARY[INDX,*] and
returns the memory area to the system.

DEALLOCATE (MATRIXARY [INDX,*])

The following example discards the contents of the procedure reference array row
PROCARRAY[1,*] and returns the memory area to the system.

DEALLOCATE (PROCARRAY[1,*])

DETACH Statement

The DETACH statement severs the association of an interrupt with an event.

<detach statement>

— DETACH —<interrupt identifier J

Detaching Interrupts

Any pending invocations of a detached interrupt are discarded. Detaching an interrupt
that is not attached to an event is essentially a no-operation; no error occurs.

The enabled/disabled condition of an interrupt is not changed by a DETACH statement.
When an interrupt is attached after it has been detached, the enabled/disabled condition
of the interrupt is the same as it was before it was detached. For more information, see
“ATTACH Statement,” “DISABLE Statement,” and “ENABLE Statement” in this
section and “INTERRUPT Declaration” in Section 3, “Declarations.”

Example of DETACH Statement

The following example severs the association between the interrupt THEPHONE and
the event it is attached to.

DETACH THEPHONE

8600 0098-000 4-41

Statements

DISABLE Statement

The DISABLE statement prevents interrupt code from being executed.

<disable statement>

— DISABLE |
|——<1’ nterrupt identifi elr'>J

Disabling Interrupts

A DISABLE statement that does not specify an interrupt identifier is referred toas a
general disable. A general disable has the effect of disabling all the interrupts for the
task. The interrupts whose associated events are caused are placed in an interrupt
queue for the task.

If the DISABLE statement specifies an interrupt identifier, only that interrupt is
disabled. The system queues these interrupts until the interrupt is enabled.

Interrupts are queued to ensure that none are lost during the time they are attached.
Queuing continues until the appropriate ENABLE statement is executed.

Disabling or enabling an interrupt is not affected by whether or not the interrupt is
attached to an event.

For more information, see “ATTACH Statement,” “DETACH Statement,” and
“ENABLE Statement” in this section and “INTERRUPT Declaration” in Section 3,
“Declarations.”

Examples of DISABLE Statement

The following example is a general disable; it disables all interrupts.
DISABLE
The following example disables the interrupt named THEPHONE.

DISABLE THEPHONE

DISPLAY Statement

The DISPLAY statement causes the specified message to be displayed on the Operator
Display Terminal (ODT) and to be printed in the job summary of the program.

<display statement>

— DISPLAY — (—[<pointer expressiob—) |

<string expression

8600 0098-000

Statements

Pointer and String Expressions
The message to be displayed is specified by the pointer expression or the string
expression. If the parameter to the DISPLAY statement is a pointer expression,
execution of the DISPLAY statement causes the characters to which the pointer
expression points to be displayed on the ODT. The pointer expression must point to
EBCDIC characters and the message to be displayed must be terminated by a null
character (48"00").
If the parameter to the DISPLAY statement is a string expression, execution of the
DISPLAY statement causes the contents of the string specified by the string expression
to be displayed on the ODT. The string expression must be of type EBCDIC.

Display messages from programs run in CANDE appear on the user’s terminal if the
MESSAGES option of the CANDE SO command has been specified.

A maximum of 430 characters can be displayed.

Examples of DISPLAY Statement

The following example displays the EBCDIC characters stored in array Q, from the
beginning of the array to the EBCDIC null character (48"00).

DISPLAY (POINTER(Q,8))

The following example displays the string created by concatenating VALUE IS and the
string STR.

DISPLAY("VALUE IS " CAT STR)

The following example displays the string stored in the string variable
MESSAGESTRING.

DISPLAY (MESSAGESTRING)

DO Statement

The DO statement causes a statement to be executed until a specified condition is met.

<do statement>

— DO —<statement>— UNTIL —<Boolean expression |

Evaluation of Boolean Expression

The statement following DO is executed. The Boolean expression is evaluated, and if it
is FALSE, the statement is executed again and the Boolean expression is reevaluated.
This sequence of operations continues until the value of the Boolean expression is
TRUE. At that time, control passes to the statement following the DO statement.

8600 0098-000 4-43

Statements

Note that both <block> and <compound statement> are statements and can be
substituted for <statement>.

Figure 4-1 illustrates the DO-UNTIL loop.

BOOLEAN
EXPRESSION
TRUE

ENTER EXECUTE YES

LooP STATEMENT

TERMINATE
LooP

NO

Figure 4-1. DO-UNTIL Loop

Examples of DO Statement

DO
BEGIN
PTR := *-4;
CTR := *+4;
END

UNTIL PTR IN LOOKEDFOR
DO

J :=J/2
UNTIL BUF[J] < JOB

ENABLE Statement

The ENABLE statement allows interrupt code to be executed.

<enable statement>

— ENABLE |
|—<i nterrupt identifi er~>—) I

Enabling Interrupts

Previously disabled interrupts can be enabled with the ENABLE statement. If the event
associated with the interrupt is caused after an interrupt has been enabled, then the
interrupt code is executed.

An ENABLE statement that does not specify an interrupt identifier is referred toas a

general enable and causes the system to look for, and place in execution, all interrupts
that are in the interrupt queue of the task.

4-44 8600 0098-000

Statements

If the ENABLE statement specifies an interrupt identifier, only that interrupt is enabled.
The system executes all occurrences of the interrupt in the interrupt queue.

Disabling or enabling an interrupt is not affected by whether or not the interrupt is
attached to an event.

For more information, refer to “ATTACH Statement,” “DETACH Statement,” and

“DISABLE Statement” earlier in this section and to “INTERRUPT Declaration” in
Section 3, “Declarations.”

Examples of ENABLE Statement
The following example is a general enable: it enables all previously disabled interrupts.
ENABLE
The following example enables the interrupt named THEPHONE.

ENABLE THEPHONE

ERASE Statement

The ERASE statement removes all records from a file, leaving the attributes of the
file unchanged where possible. The LASTRECORD attribute is set to -1 and all

data are lost. For more information on file attributes, see the A Series File Attributes
Programming Reference Manual.

<erase statement>

— ERASE — (—<file designator>—) —]

The ERASE statement can be used as a Boolean primary. When it is used in this way, it
returns one of the following enumerated results if an error has occurred:

NOTCLOSERETAINED
VALIDONLYFORDISK
DUPLICATEDFILENOTALLOWED
NODISKHEADER
SECURITYERROR
NOTONLYUSEROFFILE
INTERCHANGEFILENOTALLOWED
IADFILENOTALLOWED

In using the ERASE statement, the following requirements must be met:

e The file specified in the ERASE statement must be a local file or a File Transfer,
Access, and Management (FTAM) foreign file and the KIND attribute must be
disk or pack. For more information on FTAM, see the A Series I/O Subsystem
Programming Guide.

e The file must be closed with retention.

8600 0098-000 4-45

Statements

e The open count of the file must be 1.
e The PERMITTEDACTIONS attribute must permit the erase.

o The user must have access to the file.

The user process is discontinued if an error occurs when the ERASE statement is not
used as a Boolean primary.

EVENT Statement

Events have two Boolean characteristics, happened and available. Each characteristic
can be in one of two states: TRUE or FALSE. These states can be changed using event
statements.

<event statement>

——<cause statement |
-<causeandreset statement>—
—<fix statement>———
—<free statement>————
—<liberate statement>——
—<procure statement>———
—<reset statement>—
—<set statement>—————
—<wait statement>————
—<waitandreset statement>—

The happened and available states of an event can be interrogated using the
HAPPENED function and the AVAILABLE function. For more information, see
“AVAILABLE Function” and “HAPPENED Function” in Section 5, “Expressions and
Functions.”

EXCHANGE Statement

The EXCHANGE statement is used to exchange rows between two disk files.

<exchange statement>

— EXCHANGE — (—<file designator>— [—<row/copy numbers>—] >

- , —<file designator>— [—<row/copy numbers>—] —) —M ——|

<row/copy numbers>

—-<row number: |
L s —<copy number‘>——l I

<row number>

—<arithmetic expression !

4-46 8600 0098-000

Statements

<copy number>

—<arithmetic expression |

Conditions for Execution of the EXCHANGE Statement
The two disk files must be closed when the EXCHANGE statement is executed, the two
rows must be the same size, the specified row numbers and the specified copy numbers

must be valid, and the two files cannot be code files of any kind.

Row numbers begin with zero and copy numbers begin with 1. If there are copies of the
file and a copy number is specified, then only the rows of that copy are exchanged.

For the exchange to take place, the referenced files must be closed with retention. For
more information, see “CLOSE Statement” earlier in this section.

If the system detects an error, the exchange is not performed and the program resumes
execution with the next statement. After the program uses the EXCHANGE statement,
the row addresses should be checked by using file attributes to ensure that the exchange
was successfully completed.

Examples of EXCHANGE Statement

The following example exchanges the contents of row ROW6 of FILE1 with the contents
of row ROWO of FILE2.

EXCHANGE (FILE1[ROW6] , FILE2 [ROWS])

The following example exchanges row I of MASTERFYLE with row J of
REBUILTFYLE.

EXCHANGE (MASTERFYLE[I] ,REBUILTFYLE[J])

FILL Statement

The FILL statement fills an array row with specified values. The FILL statement cannot
be used with character arrays.

<fill statement>

— FILL —<array row>— WITH —<value list |

<value list>

—J—<1'm'tia1 "value ' |

8600 0098-000 4-47

Statements

<initial value>

number: I
|:<str‘1'ng literal
<unsigned integer>— (—<value list>—) —

Initialization

Each initial value initializes an integral number of words. The number of words
initialized depends on the type of the array and the kind of initial value.

Single-precision numbers initialize one word in arrays other than double or complex
arrays. In double arrays, this word is extended with a second word of 0 (zero). In
complex arrays, this word is normalized and then extended with an imaginary part of 0
(zero).

Double-precision numbers are stored unchanged in two words in double arrays. In
complex arrays, the value is rounded and normalized to single precision and then
extended with an imaginary part of 0 (zero). For other types of arrays, the second word
of the double-precision value is dropped and the first word initializes one word of the
array.

String literals more than 48 bits long initialize as many words as are needed to contain
the string and are left-justified with trailing zeros inserted in the last word, if necessary.
In complex and double arrays, long string literals can initialize an odd number of words,
causing the following initial value to start in the middle of a two-word element of the
array.

String literals less than or equal to 48 bits long are right-justified within one word with
leading zeros, if necessary. This word initializes one word in arrays other than double or
complex arrays. In double arrays, this word is extended with a second word of 0 (zero).
In complex arrays, this word is normalized and then extended with an imaginary part of
0 (zero).

An initial value of the form <unsigned integer> (<value list>) causes the values in the
value list to be repeated the number of times specified by the unsigned integer.

If the value list contains more values than will fit in the array row, filling stops when the
array row is full.

If the value list contains fewer values than the array row can hold, the remainder of the
array row is left unchanged.

The length of the value list cannot exceed 4095 48-bit words.

Examples of FILL Statement

The following example fills the first 250 words of the one-dimensional array MATRIX
with zeros.

FILL MATRIX[*] WITH 258(@)

4-48 8600 0098-000

Statements

The following example fills the designated row of array GROUP with the value .25, the
string ALGOL right-justified with leading zeroes, the character " right-justified with
leading zeros, and with the string LONGER STRING, which fills two words and part of a
third word. Trailing zeros fill the rest of the third word.

FILL GROUP[1,*] WITH .25, "ALGOL", """, "LONGER STRING"

FIX Statement

The FIX statement examines the available state of an event. After the FIX statement
executes, the available state of the designated event is always FALSE (not available).

<fix statement>

— FIX — (—<event designator>—) |

FIX Statement as a Boolean Function
The FIX statement can be used as a Boolean function. If the available state of the
specified event is TRUE (available), the event is procured, the state is set to FALSE (not
available), and FALSE is returned as the value of the function. If the available state of
the specified event is FALSE (not available), the FIX statement returns TRUE, and the
available state is left unchanged.
The FIX statement is sometimes referred to as the conditional procure function.
When the FIX statement has finished execution, the available state of the event is
FALSE (not available).

Examples of FIX Statement
The following example examines the available state of the event EVNT.

FIX(EVNT)

The following example examines the available state of the event designated by
EVENTARRAY[INDEX].

FIX (EVENTARRAY [INDEX])

The following example examines the available state of event FILELOCK and stores in
GOTIT a value indicating this state.

IF GOTIT := FIX(FILELOCK) THEN...
The following example examines the available state of the task’s EXCEPTIONEVENT.

FIX (MYSELF. EXCEPTIONEVENT)

8600 0098-000 4-49

Statements

FOR Statement

4-50

The FOR statement constructs a loop consisting of one or more statements that are
executed a specified number of times.

<for statement>

— FOR —<variable>— := —L<for‘ list el ement>J— DO —<statement>———|

<for list element>

—<initial part |
|—<i teration par“(:>—J I

<initial part>

—~<arithmetic expression |

<iteration part>

WHILE <Boolean expression>

——[STEP <arithmetic expression> T UNTIL <arithmetic expression> ——]

WHILE <Boolean expression>

The number of times a FOR loop is traversed is determined by a variable, called the
control variable, which is initialized when the FOR statement is first entered, and which
can be updated during each iteration of the loop.

The action of a FOR statement can be described by isolating the following three distinct
steps:

e Assignment of a value to the control variable
e Test of the limiting condition

¢ Execution of the statement following DO

Each type of <for list element > syntax specifies a different process. However, all of
these processes have one property in common: the initial value assigned to the control
variable is that of the arithmetic expression in the <initial part> construct.

The < for list element > construct establishes which values are assigned to the control
variable and which test to make of the control variable to determine whether or not the
statement following DO is executed. When a for-list element is exhausted, the next
for-list element, if any, is evaluated, progressing from left to right. When all for-list
elements have been used, the FOR statement is considered completed, and execution
continues with the statement following the FOR statement. The statement following
DO can transfer control outside the FOR statement, in which case some for-list elements
might not have been exhausted before the FOR statement is exited.

8600 0098-000

Statements

Forms of the FOR Statement

In the following discussion of the various forms of the FOR statement, the letter V
stands for the control variable; AEXP1, AEXP2,... are arithmetic expressions; BEXP is a
Boolean expression; and S1 is a statement.

FOR-DO Loop
Assume that a for-list element consists of only an initial part, such as the following:
FOR V := AEXP1, AEXP2, ... DO
In this case that for-list element designates only one value to be assigned to the control
variable. Because no limiting condition is present, no test is made. After assignment
of the arithmetic expression to the control variable, the statement following DO is

executed, and the for-list element is considered exhausted.

Figure 4-2 illustrates the FOR-DO loop.

ENTER SET INDEX SET INDEX SET INDEX
LOOP TO INITIAL TO SECOND — > T0 FINAL
VALUE VALUE | VALUE
|
|
|
EXECUTE EXECUTE 1 EXECUTE
STATEMENT STATEMENT STATEMENT
TERMINATE
LOoOP

Figure 4-2. FOR-DO Loop

FOR-STEP-UNTIL Loop

Assume a for-list element is of the form <initial part> STEP < arithmetic expression >
UNTIL < arithmetic expression>", such as the following:

FOR V := AEXP1 STEP AEXP2 UNTIL AEXP3 DO
In this case, a new value is assigned to the control variable V before each execution of

the statement following DO. First, the initial value, that of AEXP1], is assigned to the
control variable. After each execution of the statement following DO, the assignment

8600 0098-000 4-51

Statements

V:=V + AEXP2 is performed. Both AEXP2 and AEXP3 are reevaluated each time
through the loop.

A test is made immediately after each assignment of a value to V to determine whether
or not the value of V has passed the value of AEXP3. Whether AEXP3 is an upper or a
lower limit depends on the sign of AEXP2; AEXP3 is an upper limit if AEXP2 is positive
and a lower limit if AEXP2 is negative. If AEXP3 is an upper limit, then V has passed
AEXP3 when the expression V LEQ AEXP3 is no longer TRUE. If AEXP3 is a lower
limit, then V has passed AEXP3 when the expression V GEQ AEXP3 is no longer TRUE.
If V has not passed AEXP3, the statement following DO is executed; otherwise, the
for-list element is exhausted. Figure 4-3 illustrates the FOR-STEP-UNTIL loop.

ENTER
LoOP
SET INDEX INDEX EXECUTE INCREMENT
TO INITIAL PASSED LIMIT STATEMENT INDEX
VALUE VALUE

TERMINATE
Loop

Figure 4-3. FOR-STEP-UNTIL Loop

FOR-STEP-WHILE Loop

4-52

Assume a for-list element is of the form <initial part> STEP < arithmetic expression >
WHILE < Boolean expression >, such as the following:

FOR V := AEXP1 STEP AEXP2 WHILE BEXP DO

In this case a new value is assigned to the control variable V before each execution of the
statement following DO. First, the initial value, that of AEXP1, is assigned to the control
variable. After each execution of the statement following DO, the assignment V : =

V + AEXP2 is performed. AEXP2 is reevaluated each time through the loop. After
each assignment to V, the Boolean expression BEXP is evaluated and, if BEXP is TRUE,
the statement following DO is executed. If BEXP is FALSE, this for-list element is
exhausted. Figure 4-4 illustrates the FOR-STEP-WHILE loop.

8600 0098-000

Statements

ENTER
LOOP

SET INDEX BOOLEAN

70 INITIAL EXPRESSION \ S§2$§ﬁgu% — IN%%&%SFT
VALUE TRUE

TERMINATE
LOOP

Figure 4-4. FOR-STEP-WHILE Loop

FOR-WHILE Loop

Assume the for-list element is of the form <initial part> WHILE < Boolean
expression >, such as the following:

FOR V := AEXP1 WHILE BEXP DO

In this case the control variable V is assigned the value of AEXP1 before each execution
of the statement following DO. AEXP1 is reevaluated for each assignment to V. After
each assignment to V, the Boolean expression BEXP is evaluated. If the value of BEXP
is TRUE, the statement following DO is executed. If the value of BEXP is FALSE, this
for-list element is exhausted. For example, in the following FOR statement if V had the
value zero before execution of this statement, S1 would be executed five times:

FORV := V + 1 WHILE V LEQ 5 DO
S1;

Figure 4-5 illustrates the FOR-WHILE loop.

8600 0098-000 4-53

Statements

ENTER
Loop

ASSIGN VALUE BOOLEAN YES

EXECUTE
T0 CONTROLLED EXPRESSION
VARIABLE TRUE STATEMENT
)
\
TERMINATE
LOOP

Figure 4-5. FOR-WHILE Loop

Examples of FOR Statement

4-54

The following example executes the statement following DO just once, with I assigned
zero.

FORI := @ DO

The following example assigns 1 to elements 0 through 255 of array LOOKEDFOR.

FOR J := @ STEP 1 UNTIL 255 DO
LOOKEDFOR[J] := 1

The following example assigns ITEM to elements 0, 1, 2, 5, 10, 15, 16, and 37 of array
BUFE

FOR INDEX := @, 1, 2, 1@, 15, 37, 5, 16 DO
BUF[INDEX] := ITEM

The following example calls FETCH repeatedly, passing the values 0, 1, 2, 3, 4, 5, 29, and
the values of (47 + 3 * X) where X = 0, 1, 2, and so on, as long as (47 + 3 *X) is less
than LIM.

FOR X := @ STEP 1 UNTIL 5, 29, 47 STEP 3 UNTIL LIM DO
FETCH(X)

The following example calls PANHANDLE and assigns to NEXT values equal to BEG,
BEG + AMT, BEG + 2*AMT, and so on, as long as DONE is FALSE.

FOR NEXT := BEG STEP AMT WHILE NOT DONE DO
PANHANDLE

8600 0098-000

Statements

The following example increments TARGET by the value IX + 7 as long as TARGET is
less than or equal to RANGE.

FOR N := IX + 7 WHILE TARGET LEQ RANGE DO
TARGET := * + N

FREE Statement

The FREE statement sets the available state of the specified event to TRUE (available).

<free statement>

— FREE — (—<event designator>—) |

FREE Statement as a Boolean Function
The FREE statement can be used as a Boolean function that returns FALSE if the
available state of the event is already TRUE (available) and TRUE if the available state
of the event is FALSE (not available). In either case, the available state of the event is
unconditionally set to TRUE (available).

The FREE statement does not activate any task attempting to procure the event, nor
does it activate any task waiting on the event.

Examples of FREE Statement

The following example sets the available state of the event EVNT to TRUE (available).

FREE (EVNT)

The following example sets the available state of the event designated by
EVNTARAY[INDX] to TRUE (available).

FREE (EVNTARAY [INDX])

The following example assigns to WASPROCURED a value indicating the available
state of the event FYLELOCK, and sets the available state of FYLELOCK to TRUE
(available).

IF WASPROCURED := FREE(FYLELOCK) THEN ...

8600 0098-000 4-55

Statements

FREEZE Statement

The FREEZE statement changes the running program into a library.

<freeze statement>

— FREEZE — (PERMANENT) |
TEMPORARY
CONTROL — , —<procedure identifier>—

For more information on < procedure identifier >, see “PROCEDURE Declaration” in
Section 3, “Declarations.”

FREEZE Statements in Library Procedures

4-56

At least one EXPORT declaration must appear in the same block as the FREEZE
statement. The procedures affected by a FREEZE statement are the procedures that
appear in EXPORT declarations in the same block as the FREEZE statement. After the
FREEZE statement is executed, these procedures are library entry points.

The PERMANENT and TEMPORARY specifications of the FREEZE statement
control the permanence of the library. A permanent library remains available until it is
discontinued. A temporary library remains available as long as there are users of the
library. A temporary library that is no longer in use unfreezes (thaws) and resumes
running as a regular program. However, a temporary library does not unfreeze until it
has been referenced at least once. When a library unfreezes, it cannot execute another
FREEZE statement in an attempt to become a library again.

The CONTROL specification of the FREEZE statement controls the nature of the
freeze. The program is set up as a permanent library, but after the freeze operation has
been performed, control is transferred to the specified procedure, known as the control
procedure. The procedure must be untyped and must have no parameters.

Once the control procedure is in control, the library can keep track of the number of its
users through the task attribute LIBRARYUSERS.

The library can unfreeze itself by changing the task attribute STATUS to
VALUE(GOINGAWAY). After this change, the library is equivalent to a thawing library.
When the control procedure is exited, the library unfreezes if there are no users. If
there are users, the library becomes an ordinary library, and a warning message is
issued.

Because a library program initially runs as a regular program, the flow of execution
can be such that the execution of a FREEZE statement is conditional and can occur
anywhere in the outer block of the program.

If a calling program causes a library to be initiated and this library does not execute

a FREEZE statement (if, for example, it was not a library program and thus had no
FREEZE statement), then the attempted linkage to the library entry points cannot be
made, and the calling program is discontinued. For more information on libraries, refer
to Section 8, “Library Facility.”

8600 0098-000

Statements

Examples of FREEZE Statement

The following example transfers control to procedure Z after the freeze operation is
completed. Procedure Z is untyped and has no parameters. The task attribute STATUS
is changed to VALUE(GOINGAWAY) so that the library can unfreeze itself. Once the
control procedure is exited, if there are no users, the library unfreezes. If there are
users, the library becomes an ordinary library, and a warning message is issued.

BEGIN
PROCEDURE X(A,B);

o e e %Procedure to be exported
PROCEDURE Y (P,Q)
.. %Procedure to be exported

PROCEDURE Z;
BEGIN %Control procedure - untyped and no parameters

MYSELF.STATUS := VALUE (GOINGAWAY);
WHILE MYSELF.LIBRARYUSERS GTR 0 DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT);
END;
EXPORT X, Y;
FREEZE (CONTROL,Z) ;
END.
The following example transfers control to the procedure CTRL PROCEDURE after the

freeze operation is completed.

FREEZE (CONTROL,CTRL_PROCEDURE)

GO TO Statement

The GO TO statement transfers control to the statement in the program with the
specified label.

<go to statement>

— GO <designational expression
TToyg s P i

The value of the designational expression specifies the label to which control is
transferred.

Because labels must be declared in the innermost block in which they occur as statement
labels, a GO TO statement cannot lead from outside a block to a point inside that block.
Each block must be entered at the BEGIN so that the declarations associated with that
block are invoked. For more information on labels, refer to “LABEL Declaration” in
Section 3, “Declarations.”

8600 0098-000 4-57

Statements

Bad GO TO

A bad GO TO occurs when a GO TO statement in an inner block transfers control to a
label that is global to that block. A necessary side effect of a bad GO TO is that the block
in which it occurs is exited abruptly and local variables are deallocated immediately.

A bad GO TO requires cutting back the lexical (lex) level to a more global block. To
perform a bad GO TQ, the operating system is invoked to cut back the stack and discard
any locally declared items that occupy memory space outside of the stack, sometimes
referred to as nonstack items, such as files, arrays, and interrupts.

Examples of GO TO Statement

In the following example, control is transferred to the statement with the label LABEL1.
GO TO LABEL1
In the following example, control is transferred to the statement with the label LABEL2.

GO LABEL2

In the following example, control is transferred to the statement with the label
designated by the subscripted switch label identifier SELECTIT[INDX].

GO TO SELECTIT[INDX]

In the following example, if K is equal to 1, control is transferred to the statement with
the label designated by the subscripted switch label identifier SELECT[2]. Otherwise
control is transferred to the statement with the label START.

GO TO IF K=1 THEN SELECT[2] ELSE START

I/0 Statement

An I/O statement causes information to be exchanged between a program and a
peripheral device, and allows the programmer to perform certain control functions.

<I|/0 statement>

—r—<accept statement>— |
—<close statement>—
—<display statement>—
—<lock statement>——
—<open statement>——
—<read statement>——
<rewind statement>—
-<seek statement>——
I-<space statement>—
L<write statement>——

4-58 8600 0098-000

Statements

ALGOL I/O is handled by a part of the operating system called the I/O subsystem.
For more information on the I/O subsystem, refer to the A Series I/O Subsystem
Programming Guide.

The ACCEPT statement and DISPLAY statement are unique in that the file to or
from which data is transferred need not be specified. For more information, refer to
“ACCEPT Statement” and “DISPLAY Statement” earlier in this section.

The remaining I/O statements reference a file that must be declared by the program.
For more information, refer to “FILE Declaration” in Section 3, “Declarations.”

Two distinct methods of I/O are available. The first and typical method is referred to

as normal I/O; the second method is called direct I/O. The major differences between
normal I/O and direct I/O have to do with buffering, the overlap of program execution,
and the overlap of I/O operations. Their effect on a particular I/O statement is presented
in the description of the statement.

Normal 1/O0

Normal I/O is indicated when direct files and direct arrays are not used. Normal I/O
includes many automatic facilities provided by the operating system, such as the
following:

e Buffering: the automatic overlap of program processing and I/O traffic to and from
the peripheral units

e Blocking: more than one logical record per physical block

e Translation as needed between the character set of the unit and that required by the

program

The amount of buffering between the I/O statements and program execution depends on
the number of buffers allocated for the file. Refer to “FILE Declaration” in Section 3,
“Declarations,” for information on how to specify the number of buffers.

In normal I/O, a READ statement causes the automatic testing of the availability of the
needed record. The program is suspended in the READ statement until the record is
actually available for use.

In normal I/O, a WRITE statement transfers the specified data to a buffer; the program
is immediately released to begin execution of the next statement. If all the buffers are

full when the WRITE statement is executed, the program is suspended until a buffer is
available.

Direct 1/0

Direct I/O is indicated when direct files and direct arrays are used.

Direct I/O allows more direct control of the actual I/O operations. In certain situations,
avoiding suspension of the program is desirable. In other situations, nonstandard

8600 0098-000 4-59

Statements

4-60

I/O operations and masking of certain types of error conditions which could arise are
desirable.

When direct I/O is used, the program is responsible for the buffering, blocking, and
translation.

The syntax for a direct read or direct write operation employs the <arithmetic
expression >, <array row> form of <format and list part>. An event designator is the
only allowable form of action labels or finished event for direct I/O. The value of the
arithmetic expression has the following meaning:

Field Contains
[16:17] Number of words to be transferred
[19:3] Number of trailing characters to be transferred

The array row is called the I/O area of the user. A direct array identifier must be used
for the <array name> part in the array row construct. Thus, the following statement
could be used to perform a direct read of 10 words from file FID into direct array A using
the event EVT as the finished event:

READ(FID, 1@, A[*]) [EVT]

The operating system establishes a relationship between the I/O area and the finished
event, if one is specified. Before any subsequent use of the I/O area can be made in
the program, either for calculations or for further I/O, the direct I/O operation must be
finished. The finished event can be inspected by one of the following methods:

e By using the HAPPENED function

e By obtaining the value of the STATE file attribute using the WAIT statement as a
Boolean function and specifying a direct array row as a parameter

e By using the WAIT statement on the event to deactivate the process until the event
is caused

Once the operation has been completed, the happened state of the event should be set
to FALSE (not happened) before reusing it. Refer to “WAIT Statement” later in this
section for more information.

The finished event can be associated with a direct array row that is declared in a
different block. For example, a formal event can be associated with a local array. Such
an association can cause compile-time or run-time up-level event errors if the block
containing the finished event can be exited before the block that contains the direct
array is exited.

In direct I/O, the I/O operations analogous to the SPACE and REWIND statements are
performed as if they were read or write operations, except that the IOCW direct array
attribute is specifically assigned the proper hardware instructions for the operation.

When performing direct I/O with the SPACE operation, the device’s spacing limitation
overrides any user-specified spacing. In the case of a line printer, this limitation is two.

8600 0098-000

Statements

IF Statement

The IF statement causes a statement to be executed or not executed based on the value
of a Boolean expression.

<if statement>

—<if clause>—<statement e -] |
—<statemen

<if clause>

— IF —<Boolean expression>— THEN

Forms of the IF Statement
Assume the IF statement you are using is of the following form:
IF BEXP THEN S1

If the value of the Boolean expression BEXP is TRUE, the statement S1 is executed. If
BEXP is FALSE, then S1 is not executed. In either case, execution continues with the
statement following the IF statement.

Assume the IF statement you are using is of the following form:
IF BEXP THEN S1 ELSE S2

If the value of BEXP is TRUE, the statement S1 is executed and the statement S2 is
ignored. If the value of BEXP is FALSE, then the statement S2 is executed, and S1
is ignored. In either case, execution continues with the statement following the IF
statement.

Note that both block statements and compound statements can be substituted for
< statement > in the IF statement.

IF statements can be nested; that is, the statements following the reserved words THEN
or ELSE (or both) can also be IF statements.

When IF statements are nested, the correct correspondence between the reserved words
THEN and ELSE must be maintained. The compiler matches the innermost THEN

to the first ELSE that follows it and that yields a syntactically correct IF statement.
Consider the following IF statement:

IF BEXP1 THEN IF BEXP2 THEN S2 ELSE S1

The ELSE is paired with the innermost THEN, which is the THEN following BEXP2, as
illustrated in the following:

8600 0098-000 4-61

Statements

IF BEXP1 THEN
IF BEXP2 THEN
S2
ELSE
S1

If the program pairs the ELSE with the THEN following BEXP1, the inner IF statement
must be made a compound statement by using BEGIN and END as follows:

IF BEXP1 THEN
BEGIN
IF BEXP2 THEN
S2
END
ELSE
S1

A GO TO statement can lead to a labeled statement within an IF statement. The
subsequent action is equivalent to the action that would result if the IF statement were

entered at the beginning and evaluation of the Boolean expression caused execution of
the labeled statement.

Examples of IF Statement

4-62

In the following example, if ALLDONE is TRUE, control is transferred to the statement
with the label AWAY. If ALLDONE is FALSE, the statement following the IF statement
is executed.

IF ALLDONE THEN
GO AWAY

In the following example, if the value of X is greater than the value of LIMIT, procedure
ERROR is called. If the value of X is less than or equal to the value of LIMIT, the

value of X is incremented by 1. In either case, execution continues with the statement
following the IF statement.

IF X > LIMIT THEN
ERROR

ELSE
X t=*+1

8600 0098-000

Statements

INTERRUPT Statement

Interrupts provide a way to interrupt a process when a specific event occurs. Interrupt
statements allow interrupts to be attached to and detached from events, and allow
interrupts to be enabled and disabled.

<interrupt statement>

<attach statement !
<detach statement
<disable statement
<enable statement

The ATTACH statement is used to associate an interrupt with an event.

The DETACH statement is used to sever the association between an interrupt and the
event to which it is attached.

The ENABLE statement and DISABLE statement are used to explicitly enable and
disable, respectively, an interrupt.

For more information on interrupts, refer to “INTERRUPT Declaration” in Section 3,
“Declarations.”

INVOCATION Statement

An INVOCATION statement causes a previously declared procedure to be executed as a
subroutine, an asynchronous process, a coroutine, or an independent program.

<invocation statement>

<call statement |
E<procedure invocation statement>—

<process statement>—
<run statement

The CALL statement invokes a procedure to execute as a coroutine. The PROCEDURE
INVOCATION statement invokes a procedure to execute as a subroutine. The
PROCESS statement invokes a procedure to run as an asynchronous process. The RUN
statement invokes a procedure to run as an independent program.

With the exception of the PROCEDURE INVOCATION statement, a separate stack is
initiated and the specified procedure cannot be a typed procedure.

With the exception of the RUN statement, parameters can be call-by-name or
call-by-value. All parameters passed in the RUN statement must be call-by-value.

LIBERATE Statement

The LIBERATE statement activates all tasks waiting on the specified event. It can also
change the happened state of the event to TRUE (happened).

8600 0098-000 4-63

Statements

<liberate statement>

— LIBERATE — (—<event designator>—) |

Execution of Implicit CAUSE Statement

The LIBERATE statement causes the execution of an implicit CAUSE statement for the
specified event. This implicit CAUSE statement can result in a change to the happened
state of the event, if the waiting tasks have used the WAITANDRESET statement. For
more information, refer to “CAUSE Statement” and “WAITANDRESET Statement” in
this section. The available state of the event is set to TRUE (available).

Although all waiting tasks are activated, they are linked into the ready queue in
priority order. At that point, all tasks that were waiting to procure the event are in the

ready queue in priority order. For more information about procuring events, refer to
“PROCURE Statement” later in this section.

Examples of LIBERATE Statement

The following example causes the event ANEVENT and sets its available state to TRUE
(available).

LIBERATE (ANEVENT)

The following example causes the event designated by EVENTARRAY[INDEX] and sets
its available state to TRUE (available).

LIBERATE (EVENTARRAY [INDEX])

LOCK Statement

The LOCK statement causes the specified file to be closed.

<lock statement>

— LOCK — (—<file designator C) i
, —<lock option>J

<lock option>

UN
—[CRUNCH —— |

Lock Options

If the specified file is a tape file, it is rewound and the tape unit is made inaccessible to
the system until the operator readies it again. If the file is a disk file, it is retained as a
permanent file on disk. The file buffer areas are returned to the system.

4-64 8600 0098-000

Statements

A LOCK statement with a lock option performs the same action as a CLOSE statement
that specifies CRUNCH. Whether CRUNCH or an asterisk (*) appears as the lock
option, the action of the LOCK statement is the same. The file must be a disk file. The
unused portion of the last row of disk space, beyond the end-of-file indicator, is returned
to the system. The disk file can no longer be expanded without being copied into a new
file; however, data can be written to existing records.

Examples of LOCK Statement
In the following example, if FILEA is a disk file it is retained as a permanent file.
LOCK (FILEA)

In the following example, the unused portion of the last row of disk file FYLE is returned
to the system.

LOCK (FYLE, CRUNCH)

In the following example, the unused portion of the last row of disk file FYLE is returned
to the system.

LOCK(FYLE, *)

MERGE Statement

The MERGE statement causes data in the specified files to be combined and returned.

<merge statement>

— MERGE — (—<output option>— , —<compare procedure>— , ————>

s—<record length>— , —<merging option list>—) |

<merging option list>

—L<mer‘ging’option 1 |

<merging option>

—<input option

4

Merge Options

The compare procedure determines the manner in which the data is combined. The
output option specifies how the data is to be returned from the merge operation.

The merging option list must contain between two and eight input options, inclusive,
which must be files or Boolean procedures.

8600 0098-000 4-65

Statements

Example of MERGE Statement

The following example merges records from files IN1 and IN2 according to a scheme
given in compare procedure COMP. The merged result is written to file LINEQUT. The
records of IN1 and IN2 have a maximum record size of 14.

MERGE (LINEOUT,COMP,14,IN1,IN2)

MESSAGESEARCHER Statement

4-66

The MESSAGESEARCHER statement returns a completed output message based on
the information passed to it.

<messagesearcher statement>

S

— MESSAGESEARCHER — (—<output message array identifier>— [

arithmetic expression>—] — , —

|—<1anguage specification>— , —'

»—<result pointer>— , —<result Tength
7 I -) |
» —<parameter e'Iement>—|—

<language specification>

—E<string expression . i
<pointer expression>— FOR —<arithmetic expression

<result pointer>

—<pointer expression> i

<result length>

—<variable i

<parameter element>

-——E<str1'ng expression .| |
<pointer expression>— FOR —<arithmetic expression

The output message array identifier indicates the output message array from which the
output message is to be obtained. For more information on output message arrays, see
“OUTPUTMESSAGE ARRAY Declaration” in Section 3, “Declarations.”

The language specification indicates the preferred language for the requested output
message. The language specification must not have a trailing dot.

The arithmetic expression within the square brackets ([]) indicates the output message

number of the message that is to be completed. The arithmetic expression cannot be a
double-precision value.

8600 0098-000

Statements

The result pointer is a call-by-value EBCDIC pointer that points to where the completed
output message is to be stored. An EBCDIC null character (48"'00") is placed after

the last character of the message. The null character is not included in the returned
message length.

The result length is an integer or real variable that is assigned the length of the returned
output message, not counting the null character that is appended at the end.

Finding a Requested Message

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter <1>, the second to parameter <2>, and so on.

The following method is used to find the requested message so that it can be completed.

First, an initial language in which to search for the message must be selected. If a
language specification is given as a parameter to the MESSAGESEARCHER statement,
that language is selected; otherwise, the language in the language specification of the
task requesting the message is used. If the task does not have a language specification,
the system default language is used.

If the requested message cannot be found in the initial language and the initial language
is not the system default language, the message is searched for in the system default
language. If the message still cannot be found, then the message is searched for in

the languages that exist in the specified output message array, beginning with the

first language, the second language, and so on. If none of the languages in the output
message array contains the message, an error message that specifies the message
number is produced in place of the message.

MESSAGESEARCHER Statement as an Arithmetic Function

The MESSAGESEARCHER statement can be used as an arithmetic function that
returns an integer result indicating whether or not the message was successfully found
and formatted. The possible values for this result are as follows:

Value Meaning
1 The message is not in the requested language; it is in MYSELF.LANGUAGE or
SYSTEMLANGUAGE.
0 The message was found and formatted as requested.
-1 Too few parameters were specified.
-2 No matching <output message case part> was found.
-3 The message is in the first available language.
-4 The array row referenced by the result pointer is too small.
-5 The message was not found.
-6 The vers‘ion of the output message array is incompatible with th version of the
operating system.

continued

8600 0098-000 4-67

Statements

continued
Value Meaning
-7 The output message array is in error.
-8 A fault occurred while obtaining the output message.
-9 The length passed with a parameter is too long.
-11 The result pointer has a type that is not valid for the MESSAGESEARCHER

statement.

Example of MESSAGESEARCHER Statement

In the following example, the value of RTN, the returned integer, notes whether or not
the message was successfully found and formatted. ERRORS is the output message
array identifier. The language specification is ENGLISH. POSINTX is the arithmetic
expression. MSG is the result pointer and MSG_LEN is the result length.

RTN := MESSAGESEARCHER (ERRORS ["ENGLISH", POSINTX], MSG, MSG_LEN);

MLSACCEPT Statement

The MLSACCEPT statement either displays or prints a message and causes the
program to wait for input, or it returns a Boolean value indicating whether or not a
message is waiting for the program.

<MLSaccept statement>

— MLSACCEPT — (—<output message array identifier>— [——M8 —
> B] arithmetic expression>—] — , —
<language specification>— ,
»——<pointer expression>— , —<arithmetic variable>—H— , ——
—E<string variable
<subscripted string variable
3 integer variable T) |
<real variable ['-
, —<parameter el ement>j—~

MLSACCEPT Uvsed for Data Input

4-68

When the MLSACCEPT statement is used for data input, it displays a message and
causes the program to wait for input. The message that is displayed is in the output
message array defined by the output message array identifier.

The input text can be entered at an Operator Display Terminal (ODT) or at a user
terminal. If the input text is entered from a user terminal, the user must use the mix
number of the task and be logged on to the usercode that originated the job.

The input text is placed in the specified pointer expression, string variable, or
subscripted string variable. It is placed left-justified with leading blanks discarded.

8600 0098-000

Statements

The integer or real variable returns the length, in characters, of the input text. No
translation is performed on the input text. The program continues execution with the
statement following the MLSACCEPT statement.

MLSACCEPT Used as a Boolean Function

The MLSACCEPT statement can be used as a Boolean function to determine whether
or not a message was entered before the MLSACCEPT statement was executed. Ifa
message was entered, the result returned by the MLSACCEPT statement is TRUE and
the message is placed in the pointer expression, string variable, or subscripted string
variable. If no message was entered, the result is FALSE. In either case, the program
does not wait for input.

Additional MLSACCEPT Options

The language specification defines the language to be used for messages that are
displayed or printed.

The arithmetic expression indicates the output message number of the message to be
displayed or printed. It cannot be a double-precision value.

The arithmetic variable is an integer or real variable that is assigned the length of the
returned response.

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter 1, the second to parameter 2, and so on.

No more than 430 characters can be displayed or printed. A maximum of 960 characters
can be accepted as input. The input response can be entered before the MLSACCEPT

statement is executed.

For additional information on output messages, refer to “MESSAGESEARCHER
Statement” earlier in this section.

Example of MLSACCEPT Statement

In the following example, the message number POSINDX from output message array
ERRORS is displayed in the ENGLISH language. The program waits to accept an input
which, when received, is placed in INPT for length specified by INPT LEN.

MLSACCEPT (ERRORS ["ENGLISH", POSINDX] INPT, INPT_LEN);

8600 0098-000 4-69

Statements

MLSDISPLAY Statement

4-70

The MLSDISPLAY statement displays a message on the Operator Display Terminal
(ODT) and prints the message in the job summary listing.

<MLSdisplay statement>

— MLSDISPLAY — (—<output message array identifier>— [——— >

> B] arithmetic expression>—] ———»
<language specification>— ,

>) I
, —<parameter el ement>—l—

MLSDISPLAY Options

The MLSDISPLAY statement displays the specified message on the ODT and prints the
message between the beginning-of-task (BOT) and end-of-task (EOT) messages on the
job summary listing. If the program that invokes the statement was started with either
the CANDE RUN or START command, and if the MESSAGES option is currently set to
TRUE for the session, the text is also displayed on the user’s terminal.

The output message array identifier indicates the output message array that contains
the message to be displayed.

The language specification defines the language to be used for messages displayed on the
user’s terminal.

The arithmetic expression indicates the message number of the output message to be
displayed. It cannot be a double-precision value.

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter 1, the second to parameter 2, and so on.

No more than 430 characters can be displayed.

For additional information on output messages, refer to “MESSAGESEARCHER
Statement” earlier in this section.

8600 0098-000

Statements

MLSTRANSLATE Statement

The MLSTRANSLATE statement returns an integer value indicating whether or not the
message was successfully found in both the input and output languages. The translated
message is returned to the caller using a pointer parameter.

<mistranslate statement>

— MLSTRANSLATE — (—<output message array identifier— [———

> <output language>—] — , >
'—<1‘nput language>— ,j P gued]

s—<input message>— , —<result message number>— , —<result message>—

) ‘

<input language>
<output language >

—<language specification |

<input message>

—E<str‘ing expression |
<pointer expression>— FOR —<arithmetic express1’on>—I

<result message number>

—<arithmetic variable i

<result message>

—E<r‘esu1t pointer>— , —<result length T |
<string primary

<result pointer>

—<pointer expression i

<result length>

—<arithmetic variable —]
MLSTRANSLATE Options

A message that is used with the MLSTRANSLATE statement must not contain

parameters.

The output message array identifier indicates the output message array from which the
translated message is to be obtained.

The input language indicates the language from which the message is being translated.
If no input language is specified, the language of the task is used as the input language.

8600 0098-000 4-71

Statements

If the input message does not exist in the task language, the system language is used as
the input language. If the input message is still not found, an error is returned. The
input language must not have a trailing period.

The output language indicates the language into which the message is to be translated.
The output language must not have a trailing period.

The input message contains the text to be translated. For the translation to be
successful, the input message must be the same as the message contained in the output
message array, including blanks. However, the translation is not case-sensitive.

The result message number is an integer or real variable that is assigned the message
array index corresponding to the message looked up. This value can be used to acquire
text in the language understood by the program through a MESSAGESEARCHER call.

The result message can be either a pointer/length pair of variables or a string variable,
providing flexibility for the destination of the translated message.

The result pointer is a call-by-value EBCDIC pointer that points to where the translated
message is to be stored. An EBCDIC null character (48"00") is placed after the last
character of the message. The null character is not included in the returned message
length.

The result length is an integer or real variable that is assigned the length of the returned
output message, not counting the null character that is placed at the end.

MLSTRANSLATE as an Arithmetic Function

4-72

The MLSTRANSLATE statement can be used as an arithmetic function that returns an
integer result indicating whether or not the message was successfully found in both the
input and output languages. The possible values for this result are as follows:

Value Meaning
1 The message is not in the requested language. It is in MYSELF.LANGUAGE or

SYSTEMLANGUAGE.

0 The message was found and returned as requested.

-1 The message was not found in the <input language>.

-2 The message was not found in the <output language>.

-3 The requested <output language> does not exist for this output message array.

-4 The array row referenced by the <result pointer> is too small.

-5 The message was not found in any language tried.

-6 The version of the output message array is incompatible with the version of the
operating system.

-7 The output message array is corrupted: cannot obtain output message number
<num>.

-8 A fault occurred while obtaining the output message.

continued

8600 0098-000

Statements

continued
Value Meaning
-9 The length passed with a parameter is too long.

-11 The <result pointer> has a type that is not valid for the MLSTRANSLATE
statement.

-12 The version of the output message array cannot be used for message
translation.

-13 The ccsversion of the input or output language messages is invalid.

MULTIPLE ATTRIBUTE ASSIGNMENT Statement

The multiple attribute assignment statement is used to assign values at run time to one
or more attributes of a specified file.

<multiple attribute assignment statement>

—<file identifier>— (—<attribute specifications>—) ————|

Assignment of Values

If the name of a Boolean file attribute in the attribute specifications is not followed by an
equal sign (=) and a value, it is assigned a value of TRUE; that is, the following attribute
specifications have the same effect as each other:

DEPENDENTSPECS,KIND = DISK

DEPENDENTSPECS = TRUE,KIND = DISK
An assignment specified in a MULTIPLE ATTRIBUTE ASSIGNMENT statement
occurs at run time and overrides any assignment made to the attribute in a FILE
declaration or through file equation.
One intrinsic call is generated to assign all attributes, except when a pointer-valued file

attribute name is assigned a pointer expression. In this case, the compiler generates a
separate intrinsic call for the pointer-valued attribute assignment.

Examples of MULTIPLE ATTRIBUTE ASSIGNMENT Statement
In the following example, at run time the BUFFERS attribute of file AFILE is assigned
the value 3, the INTMODE attribute is assigned EBCDIC, and the KIND attribute is set
to DISK.
AFILE(BUFFERS = 3,INTMODE = EBCDIC,KIND = DISK)
In the following example, at run time the TITLE attribute of file LINE is assigned the

value pointed to by pointer P, and the INTNAME attribute is assigned the value pointed
to by pointer Q.

8600 0098-000 4-73

Statements

LINE(TITLE = P,INTNAME = Q)

ON Statement

The ON statement is used to enable or disable an interrupt for one or more fault
conditions.

<on statement>

—E<enab'l1'ng on statement]
<disabling on s‘l:atement>J

Enabling ON Statements

<enabling on statement>

— ON —<fault list . =
|——<fau1t information par"c>—J L : J

s—<fault action]

The two forms of enabling ON statements are the implicit call and the implicit branch.
The implicit call form causes the fault termination of the block in which it appears. The
implicit branch form permits the block in which it appears to continue to run.

Once an interrupt is enabled, it remains enabled until one of the following conditions
occurs:

e The procedure or block that contains the ON statement is exited.

e The interrupt is explicitly disabled.

e A new interrupt is enabled for the same fault condition.

Whenever the block that contains an ON statement is exited, the interrupt status
(enabled or disabled) for that fault condition reverts to the status it had just before the
block was entered.

No call on the block exit intrinsic is required to deactivate the armed faults for a block.

Each execution of an ON statement adds one stack cell to the block in which it is used.

Fault List
<fault list>
OR —
—E<fau1t name> |
4-74 8600 0098-000

Statements

<fault name>
—— ANYFAULT

r

INVALIDINDEX
INVALIDOP

FTTTTT

— LOOP
— MEMORYPARITY

— SCANPARITY

— ZERODIVIDE

— ASSERTIONFAILURE —
EXPONENTOVERFLOW ——
EXPONENTUNDERFLOW —
INTEGEROVERFLOW ——
INVALIDADDRESS ——

INVALIDPROGRAMWORD —
— MEMORYPROTECT

— PROGRAMMEDOPERATOR —
— STRINGPROTECT

The fault list allows several fault interrupts to be enabled (armed) or disabled (disarmed)
at the same time. When it is used to enable several interrupts, they all use the same
fault action if any of the faults occur. The occurrence of any one of the faults in the

fault list is sufficient to cause transfer of control to the fault action. The fault name

ANYFAULT is used to enable or disable all faults.

Fault Information Part

<fault information part>

— [—|:<fau1t stack history O

: —<fault number

—<fault number:

The fault information part provides access to the stack history at the time of the
occurrence of the fault and to the number corresponding to the fault kind. The fault
number is assigned one of the following values when the corresponding fault occurs:

Value
1

W 0 N G b W N

10
11
12
14
15
16

8600 0098-000

Fault

ZERODIVIDE
EXPONENTOVERFLOW
EXPONENTUNDERFLOW
INVALIDINDEX
INTEGEROVERFLOW
MEMORYPROTECT
INVALIDOP

LOOP

MEMORYPARITY
SCANPARITY
INVALIDADDRESS
STRINGPROTECT
PROGRAMMEDOPERATOR
ASSERTIONFAILURE

continued

4-75

Statements

continued
Value Fault
18 INVALIDPROGRAMWORD

Fault Stack History

<fault stack history>

——E<array row .| -
<pointer expression

<fault number>

Boolean variable !
—<integer variable>—
—<real variable>——

If the fault stack history option is used, a string of EBCDIC characters representing
the stack history is stored into the array row or the array specified by the pointer
expression. The stack history information is always stored as EBCDIC characters
regardless of the character type of the array row or pointer expression.

The format of the stack history is either of the following:
SSS:AAAA:Y, ;SSS:AAAA:Y, ;... ,3SSS:AAAALY.
SSS:AAAA:Y; (DDDDDDDD) , ;. .., ;SSS:AAAA:Y; (DDDDDDDD) .

In these formats, the following applies:

EBCDIC Characters Meaning

SSS A code segment number

AAAA A code word address

Y A code syllable number

1 A blank space

DDDDDDDD A sequence number (present only if the compiler control

option LINEINFO was TRUE during program compilation)

One of these entries is generated for each activation record in the stack when the fault
is encountered. Each entry is followed by a comma (), and the last complete entry

is terminated by a period (.). If the user-specified array is sufficiently long, the entire
stack history is stored. If it is not long enough, then only a portion of the stack history
is stored, with the last complete entry in the array terminated by a period. The code
segment number field, SSS, is expanded to four characters, SSSS, for segment numbers
greater than 4095; that is, for segment numbers whose hexadecimal representation
requires four characters.

The array row or pointer expression that makes up the fault stack history and the
variable that makes up the fault number are evaluated once when the ON statement is

4-76 8600 0098-000

Statements

executed, and not at the time the fault occurs. Thus, in the following ON statement,
array row A[L*] is determined by the value of I at the execution of the ON statement
and not when a ZERODIVIDE fault actually occurs. This determination is also true for
the variables B[J] and J.

ON ZERODIVIDE[A[I,*]:B[J]]: GO TO ERROR_HANDLING

Fault Action

<fault action>

—<statement |

The form of the ON statement that includes a comma, instead of a colon (:), before the
fault action is the implicit call form. With this form of ON statement, when a specified
fault occurs, the program calls the fault action statement as a procedure. If the fault
action statement does a bad GO TO, the fault condition is discarded and the program
continues running.

When a bad GO TO branches to a label outside the block in which the fault occurred, the
block is terminated. When it branches out of the fault action statement into the block in
which the fault occurred, the block continues to run.

If the fault action statement exits without doing a bad GO TO, the fault condition for
which the fault action statement was called still exists. If an ON statement is enabled
for that condition in a more global block, then control is passed to that ON statement;
otherwise, the program is discontinued as a result of that fault.

A GO TO statement cannot be executed from outside the fault action statement to
a label inside the fault action statement. Undefined results occur when a GO TO
statement specifies a label passed as a parameter (a formal label).

The form of the ON statement that includes a colon, instead of a comma, before the
fault action is the implicit branch form of the ON statement. With this form of ON
statement, the program branches to the statement given as the fault action when a
specified fault occurs. The fault condition is discarded, as though it had never happened,
and the program continues execution at the first statement of the fault action. When
there is no branch out of the fault action statement, the program flow continues with the
next statement following it. When the ON statement is in the block in which the fault
occurred, it permits that block to continue to run.

Disabling ON Statement

<disabling on statement>

— ON —<fault Tist !
The disabling ON statement disables or disarms the interrupts corresponding to the

fault names in the fault list. This has the same effect as if none of those interrupts
had been enabled in the block in which it appears. It has no effect, however, on any

8600 0098-000 4-77

Statements

interrupts that were enabled by ON statements in more global blocks, once this block is
exited.

Note: Excessive arming and disarming of faults within a single activation
of the block can cause the stack limit of the program to be exceeded
and the program to be terminated.

Examples of ON Statement

In the following example, if either a divide-by-zero fault or an invalid index fault occurs
at run time, the fault condition is discarded and control transfers to the compound
statement in this ON statement. The stack history information is written to the

array row FAULTARRAY, and the fault number of the fault that occurred is stored in
FAULTNO.

ON ZERODIVIDE OR INVALIDINDEX [FAULTARRAY:FAULTNO]:
BEGIN
REPLACE FAULTARRAY[8] BY FAULTNO FOR * DIGITS;
WRITE(LINE, 22, FAULTARRAY);
REPLACE FAULTARRAY BY " " FOR 22 WORDS;
CASE FAULTNO OF
BEGIN
1: DIVISOR := 1;
4: INDEX := 100;
END;
GO BACK;
END

In the following example, if either of the specified faults occurs at run time, the fault
condition is discarded and control is transferred to the assignment statement in the ON
statement. After execution of the assignment statement, execution continues with the
statement following the ON statement.

ON MEMORYPROTECT OR LOOP: Q := 2

The following example disables the interrupt associated with the exponent underflow
fault.

ON EXPONENTUNDERFLOW % Disabling ON Statement
In the following example, if any fault occurs, the statement HANDLEFAULTS(Z) is
called as a procedure. The stack history information is written to the location indicated
by the pointer expression POINTR + 2, and the fault number of the fault that occurred

is stored in Z.

ON ANYFAULT [POINTR + 2:Z], HANDLEFAULTS(Z)

4-78 8600 0098-000

Statements

OPEN Statement

The OPEN statement causes the referenced file or subfile to be opened.

<open statement>

— OPEN — (—<open file part) |

l—<ope1r1 opti ons>—J

<open file part>

<file designator B |
I [— SUBFILE —<subfile index>—] :i
<task designator>— . —<file-valued task attribute name

The OPEN statement can be used as an arithmetic function. For information on the
values returned, see the A Series File Attributes Programming Reference Manual.

The subfile index specifies the subfile to be opened. For more information on the subfile
index, see “CLOSE Statement” earlier in this section. For more information on the file
designator, see “SWITCH FILE Declaration” in Section 3, “Declarations.” For more
information on the task designator, see “TASK and TASK ARRAY Declarations” in
Section 3, “Declarations.”

OPEN Options

<open options>

L » —<open control op1:1'on>-J L , —<associateddata option>—J
3. |

L , —<connecttimelimit opt1'on>——l

<open control option>

ATEND |
AVAILABLE —
AVAILATEND —
DONTWAIT —|
OFFER
WAIT

If no open control option is specified, the WAIT option is assumed. Any control option
can be used with any type of file. However, DONTWAIT and OFFER are meaningful
only for port files. For other kinds of files, DONTWAIT and OFFER are ignored and
an OPEN with WAIT is performed. With the open control options, the default for the
position parameter is ATFRONT. For the control options WAIT and AVAILABLE, the
position parameter can be set to ATEND by using the ATEND option for WAIT and the
AVAILATEND option for AVAILABLE.

The ASSOCIATEDDATA option and CONNECTTIMELIMIT option are meaningful

only for port files. The ASSOCIATEDDATA option can be used to send associated data
with the OPEN request. If a string expression is specified, the length is automatically

8600 0098-000 4-79

Statements

calculated and used as the ASSOCIATEDDATALENGTH value. Otherwise, the
ASSOCIATEDDATALENGTH option specifies the number of characters to be sent.
If the ASSOCIATEDDATA value is of type HEX, the ASSOCIATEDDATALENGTH
option indicates the number of HEX characters, otherwise the number of EBCDIC
characters. If the ASSOCIATEDDATALENGTH value is not a single-precision
integer, it is integerized. The ASSOCIATEDDATA option is valid only for certain
port file services. For more information on the ASSOCIATEDDATA option and
CONNECTTIMELIMIT option, see “CLOSE Statement” earlier in this section.

The CONNECTTIMELIMIT option can be used to specify the maximum amount of time
(in minutes) that the system will allow for a successful OPEN operation on the subfile.
The default value for this option is to wait indefinitely. If the value specified is negative,
an error result is returned. A value of zero indicates that no time limit is placed on the
wait. If the value is not a single-precision integer, it is integerized.

Examples of OPEN Statement

The following example opens file FILEID. Execution of the program is suspended until
FILEID is open.

OPEN(FILEID)
The following example opens subfile I of port file FILEID and offers it for matching.

Control is returned to the program when it is determined whether the host can be
reached.

OPEN(FILEID[SUBFILE I],OFFER)

The following example opens subfile I of port file FILEID and a dialog request is sent.
The program is suspended until dialog establishment is complete.

OPEN(FILEID[SUBFILE I],WAIT)

The following example opens subfile I of port file FILEID. The AVAILABLE control
option is a nonpreferred way of verifying OPEN WAIT with AVAILABLEONLY

= TRUE. When AVAILABLEONLY = TRUE, the OPEN attempt fails if the
correspondent endpoint cannot be reached immediately. If dialog can currently be
established, the subfile is opened, the result returned by the OPEN statement is 1, and
PROCESSOPEN is called; otherwise, an error result is returned and PROCESSOPEN is
not called.

IF OPEN(FILEID[SUBFILE I],AVAILABLE) = 1 THEN PROCESSOPEN

The following example opens subfile 1 of port file FILEID. The program is suspended
until a dialog is established or until T minutes have elapsed.

OPEN (FILEID [SUBFILE 1], WAIT, CONNECTTIMELIMIT = T)

The following example opens subfile 1 of port file FILEID. When the dialog request is
sent, the information "MYDATA" is sent to the correspondent process as associated data.

8600 0098-000

Statements

OPEN (FILEID [SUBFILE 1], ASSOCIATEDDATA = "MYDATA")

The following example opens subfile I of port file FILEID. Control returns to the
program as soon as the open process has begun, because the DONTWAIT option

is included. When a matching subfile is found, 14 characters of information are
taken, beginning at the location pointed to by PTR; the 14 characters are sent to the
correspondent process as associated data.

OPEN (FILEID [SUBFILE I], DONTWAIT, ASSOCIATEDDATALENGTH = 14,
ASSOCIATEDDATA = PTR)

POINTER Statement

Pointer statements are used to examine, transfer, and edit character data stored in
arrays.

<pointer statement>

<replace statement
E§<rep1ace family-change statement>——

<replace pointer-valued attribute statement>—
<scan statement

POINTER Statement Options

The REPLACE statement can be used to move character data into an array row. Within
a single REPLACE statement, the character data to be moved can be taken from

several sources. Each of these sources can be one of several different types. A source
can be another array row, a string literal, the value of an arithmetic expression, the

value of a string expression, or the value of a pointer-valued attribute. Furthermore,

as the character data is moved from a source to the destination, the characters can be
translated or edited. Also, an arithmetic expression source can be treated as a binary
value and converted into the equivalent decimal number expressed as a string of numeric
characters.

The REPLACE FAMILY-CHANGE statement is the language construct provided to add
datacomm stations to or remove datacomm stations from a family of stations.

The REPLACE POINTER-VALUED ATTRIBUTE statement is the language construct
provided to assign character data to pointer-valued file and task attributes.

The SCAN statement can be used to examine character data located in an array row.

POINTER statements process character data from left to right.

Temporary Storage
Many of the operations performed by POINTER statements require the use of

temporary storage for intermediate results. In describing the actions of a POINTER
statement, a discussion of how this temporary storage is initialized, changed, and

8600 0098-000 4-81

Statements

disposed of is necessary. These discussions use the following names for these temporary
storage locations:

e Stack-source-pointer

e - Stack-destination-pointer

¢ Stack-auxiliary-pointer

e Stack-integer-counter

e Stack-test-character

e Stack-source-operand

The prefix, stack, denotes that none of these parameters correspond to any program
variables. They exist only until execution of the POINTER statement is completed.

The stack-source-pointer, the stack-destination-pointer, and the stack-auxiliary-pointer
have the same internal structure as a pointer variable that can be declared in a program.
These temporary storage locations are initialized either from pointer expressions in the
pointer statement or from previous corresponding temporary storage locations.

Stack-Source-Pointer

The initial value of the stack-source-pointer points to the first source character to be
used by the associated operation. As the execution of the instruction progresses, the
stack-source-pointer is modified to point to each successive source character. When the
operation is complete, the stack-source-pointer points to the first unprocessed character
in the source data (the process is determined by the particular form of the POINTER
statement). This final value can be stored into a pointer variable, or it can be discarded.

Stack-Destination-Pointer

The initial value of the stack-destination-pointer points to the first destination

character position to be used by the associated operation. As the execution of the
operation progresses, the stack-destination-pointer is modified to point to each
successive destination character position. When the operation is complete, the
stack-destination-pointer points to the first unfilled character position in the destination.
If more than one source is to be processed, the stack-destination-pointer value
corresponding to the completed processing of one element in the source list is used as the
initial value for the subsequent source. If no more sources are to be processed, this final
value can be stored into a pointer variable, or it can be discarded.

Stack-Auxiliary-Pointer

The initial value of the stack-auxiliary-pointer points to the first entry in a table of data
to be used by the operation in its execution. This table can be a translate table if the
operation to be performed is extracting characters from the source data, translating the
characters to different characters (possibly containing a different number of bits per
character), and storing the translated characters in the destination. This table can be

a truth set describing a particular set of characters if the operation to be performed

8600 0098-000

Statements

requires a membership test. Finally, this table can be a picture: a table that contains
instructions of a special type describing how the source data is to be edited before being
stored in the destination.

Stack-Integer-Counter

The stack-integer-counter, when required by a POINTER statement, is initialized

by an arithmetic expression supplied in the POINTER statement. The value of this
arithmetic expression is integerized before it is used. The stack-integer-counter has
different meanings depending on the type of POINTER statement involved. In some
cases, the number of characters in a source string to be processed is dictated solely by
this parameter. The number of numeric characters to be placed in the destination while
converting the value of an arithmetic expression to character form is also dictated by the
stack-integer-counter.

In some forms of the POINTER statement, two controlling factors exist that dictate how
many characters are to be processed from a source string. One factor depends on the
source data and is called a condition. The other factor is a maximum count contained in
the stack-integer-counter and is provided by an arithmetic expression in the POINTER
statement. For example, with such a POINTER statement, the following instructions
could be written: Translate characters from the source string to the destination until
either 14 characters have been transferred or a period is encountered in the source
string, whichever comes first. The final value of the stack-integer-counter is available for
storage, or it is discarded.

Stack-Test-Character

The stack-test-character is initialized by an arithmetic expression usually, but

not necessarily, of the form of a single-character string, such as B. Although the
stack-test-character parameter is one entire word of memory that contains the
single-precision value of the arithmetic expression, only the rightmost character position
of the word is used. When a condition employing a relational operator is used in a
POINTER statement, the stack-test-character must contain the character against which
the individual characters in the source string are to be compared.

Stack-Source-Operand
The stack-source-operand is used when the source data is given by the value of an
arithmetic expression rather than a value located in an array row into which the

stack-source-pointer points. The stack-source-operand is initialized by the arithmetic
expression.

PROCEDURE INVOCATION Statement

A procedure invocation statement causes a previously declared procedure to be executed
as a subroutine.

8600 0098-000 4-83

Statements

<procedure invocation statement>

—-<procedure identifier |
I—<actua] parameter part>—,

<actual parameter part>

<.

|-<-—<;’>arameter‘ delimi ter>—‘
—(<actual parameter) {

When a procedure is invoked, program control is transferred from the point of the
PROCEDURE INVOCATION statement to the referenced procedure. When the
procedure is completed, program control is transferred back to the statement following
the PROCEDURE INVOCATION statement, unless a bad GO TO is executed in the
referenced procedure. Bad GO TO statements are described in “GO TO Statement”
earlier in this section.

A typed procedure returns a value. However, when a typed procedure is used in a
PROCEDURE INVOCATION statement, this value is discarded.

Calling Procedures with Parameters

<actual parameter>

—r—<expression |
—<array designator
—<string array designator>———
—<direct file identifier
—<direct switch file identifier>——
—<event designator
—<event array designator
—<file designator
—<switch file identifier
-<format designator
—<switch format identifier>
—<label identifier
—<switch Tabel identifier>
—<1ist designator
I-<switch Tist identifier
—<picture identifier:
—<procedure identifier
—<procedure reference array designator>—
—<procedure reference array element>——
—<task designator:
—<task array designator:

The actual parameter part of a procedure invocation statement must have the same
number of entries as the formal parameter list in the declaration of the procedure.
Correspondence between the actual parameters and formal parameters is obtained

by matching the parameters that occur in the same relative position in the two lists.
Corresponding formal and actual parameters must be of compatible types. Parameters
can be call-by-name or call-by-value.

For more information on procedures and formal parameters, refer to “PROCEDURE
Declaration” in Section 3, “Declarations.”

4-84 8600 0098-000

Statements

If a formal parameter is a call-by-name INTEGER or REAL simple variable, then the
actual parameter can be either an INTEGER or a REAL expression; no type conversion
is performed. If a formal parameter is a call-by-value INTEGER, REAL, or DOUBLE
simple variable, then the actual parameter can be either an INTEGER, a REAL, or

a DOUBLE expression, and automatic type conversion is performed on the actual
parameter at the time the procedure is invoked.

If the formal parameter of a nonformal procedure is a simple variable of type
COMPLEX, then the corresponding actual parameter can be of type INTEGER, REAL,
DOUBLE, or COMPLEX. However, if the COMPLEX formal parameter is call-by-name
and the corresponding actual parameter is not of type COMPLEX, an assignment to that
formal parameter within the procedure body causes the program to be discontinued with
a fault.

The types of actual and formal parameters must match exactly for all cases not

mentioned above. For more information, see “Type Coercion of One-Word and
Two-Word Operands” in Appendix C, “Data Representation.”

Examples of PROCEDURE INVOCATION Statement
The following example invokes the procedure SIMPL, which has no parameters.
SIMPL

The following example invokes the procedure HEAVY and passes it four parameters: X,
Y, the array row A[*], and the expression SQRT(BINGO + BASE).

HEAVY (X,Y,A[*],SQRT (BINGO+BASE))

PROCEDURE REFERENCE ARRAY Statement

A PROCEDURE REFERENCE ARRAY statement causes the procedure referenced
by the specified procedure reference array element to be executed as a procedure
invocation.

<procedure reference array statement>

—<procedure reference array element B o] N t>—] -
<actual parameter par

Using Procedure Reference Arrays

If the procedure reference array element has not been assigned a procedure reference in
a procedure reference array assignment, the program is terminated with the message
INVALID STACK ARGUMENT.

When a typed procedure reference array is used in a PROCEDURE REFERENCE

ARRAY statement, the value returned by the procedure reference array element is
discarded.

8600 0098-000 4-85

Statements

The actual parameter part of a PROCEDURE REFERENCE ARRAY statement must
have the same number of entries as the formal parameter list in the declaration of the
procedure reference array. The formal and actual parameters are compared in the
manner in which the formal and actual parameters are compared in a PROCEDURE
INVOCATION statement. For more information on formal parameters and procedure
reference array elements, see “PROCEDURE REFERENCE ARRAY Declaration” in
Section 3, “Declarations.”

Invoking a procedure through a procedure reference array element in a PROCEDURE
REFERENCE ARRAY statement is equivalent to invoking the procedure directly in a
PROCEDURE INVOCATION statement. For more information, see “PROCEDURE
INVOCATION Statement” earlier in this section.

Example of PROCEDURE REFERENCE ARRAY Statement

The following example assigns a reference to procedure SWAPPER into the first element
of procedure reference array PROCARRAY and then invokes SWAPPER through

PROCARRAY.
BEGIN
REAL
SORTI,
SORT2;
PROCEDURE REFERENCE ARRAY PROCARRAY[#:9] (A,B);
REAL A,B;
NULL;

PROCEDURE SWAPPER(X,Y);
REAL X,Ys
BEGIN
X =2 Y;
END;

PROCARRAY[@] := SWAPPER;
READ (MYFILE,*,SORT1,SORT2) ;
IF SORT2 > SORT1 THEN
PROCARRAY [2] (SORT1,SORT2) ;
END.

4-86 8600 0098-000

Statements

PROCESS Statement

The PROCESS statement initiates a procedure as an asynchronous process.

<process statement>

— PROCESS —<procedure identifier B | .
<actual parameter part

9— [—<task designator>—] !

Initiation of an Asynchronous Process

Initiation of an asynchronous process consists of setting up a separate stack for the
process, passing any parameters (call-by-name or call-by-value), and beginning the
execution of the procedure. The initiating program continues execution, and both the
initiating program and the initiated procedure run in parallel.

The specified procedure cannot be a typed procedure.

If the procedure identifier is a system supplied process, such as an intrinsic, the library
GENERALSUPPORT must be declared using a library entry point specification. The
procedure identifier must be declared in the program or the syntax error PROCEDURE
MUST BE USER DECLARED results.

The actual parameter part must agree in number and type with the formal parameter
part in the declaration of the procedure; otherwise, a run-time error occurs.

The task designator associates a task with the process at initiation; the values

of the task attributes of that task, such as COREESTIMATE, STACKSIZE, and
DECLAREDPRIORITY, can be used to control execution of the process. For information
about assigning values to task attributes, refer to “Task Assignment,” <arithmetic

task attribute > under “Arithmetic Assignment,” and <Boolean task attribute> under
“Boolean Assignment” earlier in this section. Many task attributes can be interrogated
while the process is running.

Critical Block

An asynchronous process depends on its initiator for global variables and call-by-name
actual parameters. Thus, for each process, a critical block is present in the initiator that
cannot be exited until the process is terminated. The critical block is the block of highest
lexical level that contains one or more of the following items:

e The declaration of the procedure itself

e The declarations of the actual parameters passed to the call-by-name formal
parameters

e The declaration of the task designator

e Any compiler-generated code for evaluating arithmetic expressions passed to
call-by-name parameters

8600 0098-000 4-87

Statements

The critical block can be the block that contains the PROCESS statement, the outer
block of the program, or a block in between. An attempt by the initiator to exit the
critical block before the process is terminated causes the initiator and all tasks it has
initiated through CALL or PROCESS statements to be terminated.

A process is terminated by exiting its own outermost block or by execution in the
initiator of the following statement where the task designator specifies the task
associated with the process to be terminated:

<task designator>.STATUS := VALUE(TERMINATED)

Note: A processed procedure must not declare an OWN array or reference
another procedure that declares an OWN array. An attempt to do so
results in a run-time error. A string expression cannot be passed as
an actual parameter to a call-by-name parameter of a procedure in a
PROCESS statement.

Examples of PROCESS Statement

In the following example, the procedure AGENT, which has no parameters, is invoked as
an asynchronous process. The task TSK is associated with the process.

PROCESS AGENT [TSK]
In the following example, the procedure ACHILD is invoked as an asynchronous process
and passed the three parameters OUTARRAY, YOUREVENT[INDX], and COUNT. The
task designated by TSKARAY[INDX] is associated with the process.

PROCESS ACHILD(OUTARRAY,YOUREVENT[INDX],COUNT) [TSKARAY[INDX]]

PROCURE Statement

The PROCURE statement tests the available state of an event.

<procure statement>

— PROCURE — (—<event designator>—) |

Testing the Available State

If the available state of the event is FALSE (not available), the program is suspended
and put in the procure list until some other task executes the LIBERATE statement for
that event. If the available state of the event is TRUE (available), the available state is
set to FALSE (not available), and the program continues execution with the statement
following the PROCURE statement.

8600 0098-000

Statements

Sharing Resources Among Programs

The PROCURE statement provides a means for different programs to share resources.
For example, a convention could be established that a certain shared resource that is
available for use by more than one program is not to be used by a program unless that
program has procured the event that is used as the interlock. When the program has
completed its use of the resource, it should execute a LIBERATE statement on the
event.

Examples of PROCURE Statement
In the following example, if the available state of EVNT is TRUE (available), EVNT is
procured by setting its available state to FALSE (not available). Otherwise, the program
is suspended until EVNT is made available.

PROCURE (EVNT)

In the following example, if the available state of the event designated by
EVNTARAY[INDX] is TRUE (available), then that event is procured by setting its
available state to FALSE (not available). Otherwise, the program is suspended until the
event designated by EVNTARAY[INDX] is made available.

PROCURE (EVNTARAY [INDX])

PROGRAMDUMP Statement

The PROGRAMDUMP statement can be used to generate a program dump. After the
dump is taken, the program continues and executes the next statement.

A program dump is an expanded listing of the internal stack as it existed when the dump

was requested. Several options are available to specify which items of the stack are to be
included in the dump.

<programdump statement>

— PROGRAMDUMP |

L (<programdump t’)ption>————|—-) J
<arithmetic expression>—
<programdump destination>—

The information produced by the PROGRAMDUMP statement is written to the

file specified by the TASKFILE task attribute of the program, unless the TODISK
destination option is specified. See the discussion of the TODISK destination option
later in this section.

8600 0098-000 4-89

Statements

PROGRAMDUMP Options

<programdump option>

ARRAY |
L ARRAYS

L PRESENTARRAY ———
PRESENTARRAYS ——

BASE

CODE

DBS

FILE
FILES
LIBRARIES

ALL

PRIVATELIBRARIES —

The information included in the dump depends on the options specified. If no program
dump options are specified, the stack is dumped according to the specifications in the
task attribute OPTION of the program. The following table describes the results of
specifying each program dump option:

4-90

Option
ARRAY or ARRAYS

PRESENTARRAY or
PRESENTARRAYS

BASE

CODE

DBS

FILE or FILES

LIBRARIES

PRIVATELIBRARIES

ALL

Result

Causes the contents of all arrays declared in the program to be
dumped.

Causes only the arrays in the present state (at the time the program
dump is taken) to be dumped. If the ARRAY or ARRAYS program
dump option is set along with the PRESENTARRAY or
PRESENTARRAYS program dump option, all arrays will be dumped.

Causes the base of the stack to be dumped. The operating system
uses a portion of each stack to contain various words needed to
control, identify, and log the program. If the TODISK option is also
specified, the base of the stack and the program information block
(PIB) are always dumped for any stack dumped.

Causes segment dictionary information to be included in the dump.
The actual code is dumped only for segments that have been
referenced by the program when the program dump occurs. Value
arrays in the segment dictionary are dumped when both the CODE
option and either the ARRAY or ARRAYS option are specified.

Causes the output of database stacks to be dumped.

Causes information about each file declared in the program to be
dumped. For each file, each word of the file information block (FIB)
is separately named and, in some cases, analyzed.

Causes the stacks of all libraries that are being used by the program
to be dumped.

Causes the stacks of all private libraries that are being used by the
program to be dumped.

Equivalent to specifying all the other options. The ALL option has no
effect on the program dump destination. If the TODISK or
TOPRINTER destination options are needed, they must be explicitly
mentioned.

8600 0098-000

Statements

If the arithmetic expression option is used, the value in the arithmetic expression
corresponds to the bit values in the OPTION word. The value of the expression is
interpreted as follows:

Value Meaning

[7:1]1=1 The base of the user stack is dumped.
[8:1]1=1 Array contents are dumped.

[9:1]1=1 The segment dictionary is dumped.
[10:11=1 Files are dumped.

[11:11=1 Present array contents are dumped.
[15:1]1=1 Database stacks are dumped.
[19:11=1 Stacks for libraries that the program is linked to are dumped.
[20:11=1 Stacks for private libraries are dumped.
[23:1]1=1 Destination of the dump is the printer.
[24:1]1=1 Destination of the dump is the disk.

Programdump Destination Options

<programdump destination>

TODISK
L TOPRINTER - _'

When the TODISK option is specified and a program dump is taken, a disk file is
created in a format acceptable to DUMPANALYZER. The listing normally produced by
PROGRAMDUMP is suppressed.

The program dump file name is as follows. The portion of the task name included in the
program dump file name is limited to eight nodes. The date format is YYMMDD, and the
time format is HHMMSS.

PDUMP/<task name>/<date>/<time>/<mix number>

In a program dump to disk, the base of the stack and the PIB are always dumped. All
other program dump option settings work the way they work in a dump to the printer.

If the TODISK option and the TOPRINTER option are set, a program dump to the
printer is taken after the disk file program dump has been produced. The two dumps
might not be identical because the dump to disk has some side effects that might change
the contents of memory.

The current destination option can be overridden by either destination option.

The default destination option is TOPRINTER.

8600 0098-000 4-91

Statements

Relation to OPTION Task Attribute

Options specified in the PROGRAMDUMP statement apply only to the program dump
taken at that time and temporarily override the values specified in the OPTION word of
the program. The bits of the OPTION word are set with the OPTION task attribute for
the program. Refer to the A Series Task Attributes Programming Reference Manual for
information about the OPTION task attribute.

A program dump taken with the PROGRAMDUMP statement has an advantage over a
program dump taken with the OPTION task attribute. A program dump can be taken
with the OPTION task attribute only upon a fault or discontinue condition. A program
dump taken with the PROGRAMDUMP statement can be taken at any time, and the
program can continue after the dump is taken. For example, the PROGRAMDUMP
statement might be useful as part of an ON statement, within an INTERRUPT
statement, or within a piece of newly developed code.

The PROGRAMDUMP statement displays identifier name and compiler class
information along with the stack variables when binding information (bindinfo) is
present in the code file. ALGOL generates binding information by default unless the
program is compiled with the compiler control option NOBINDINFO set to TRUE.

Retrieval of Binding Information

When the BEGINSEGMENT and ENDSEGMENT compiler control options are used, a
situation can occur where the binding information cannot be retrieved. This situation is
related to two factors:

o Two or more variables have the same address. Normally there is no conflict when
this happens because the addresses relate to different code segments.

e Procedures that are encountered between a BEGINSEGMENT and
ENDSEGMENT option are placed in the same code segment.

When these two conditions occur, and multiple variables have the same address within
the same code segment, the compiler cannot retrieve the binding information for those
variables.

Diagnostic and debugging information also can be written to the TASKFILE so that the
program dump and the information can be coordinated.

Examples of PROGRAMDUMP Statement

4-92

The following example analyzes and prints the program stack according to the value of
the OPTION task attribute of the program.

PROGRAMDUMP

The following example analyzes and prints the basic information plus the contents of all
arrays.

PROGRAMDUMP (ARRAYS)

8600 0098-000

Statements

The following example analyzes and prints the contents of arrays, value arrays, the base
of the stack, the segment dictionary, referenced code segments, and files.

PROGRAMDUMP (ARRAYS ,BASE ,CODE, FILE)

The following example analyzes the maximum amount of information about the program
stack. The program dump is written to the printer.

PROGRAMDUMP (ALL, TOPRINTER)

The following example analyzes and prints the program stack according to the value of
DUMPPARAM.

PROGRAMDUMP (DUMPPARAM)

The following example is equivalent to the statement PROGRAMDUMP(FILES). This
statement analyzes and prints the contents of files of the program.

PROGRAMDUMP (@ & 1 [18:1])

Analyzes the basic information plus the contents of all arrays and data base stacks. The
information is written to a disk file.

PROGRAMDUMP (ARRAYS,DBS,TODISK)

The following example analyzes the information specified in the OPTION word of the
program because no program dump option was specified in the statement. The dump is
written first to the disk file and then to the printer file.

PROGRAMDUMP (TODISK,TOPRINTER)

READ Statement

The READ statement allows data to be read from files and assigned to program
variables.

Note: The syntax of the READ statement and the syntax of the WRITE
statement are nearly identical. Differences in the semantics are
discussed following the syntax for each statement.

<read statement>
— READ — (—<file part

) S
[—<for'mat and Tist part>J

l—<aic’cion labels or finished event>J

The action of the READ statement depends on the form of the <file part> element and
on the form of the <format and list part> element.

The READ statement can be used as a Boolean function. When the read operation fails,
the value TRUE is returned. When the read operation succeeds, the value FALSE is

8600 0098-000 4-93

Statements

returned. The READ statement returns a value identical to that returned by the file
attribute STATE. For more information, refer to the discussion of the STATE attribute
in the A Series File Attributes Programming Reference Manual.

File Part

<file part>

<file designator T
I <[/0 option or carriage control>—
<core-to-core part

1

The file part specifies the location of the data to be read.

The file designator specifies the file to be read. For more information on the file
designator, refer to “SWITCH FILE Declaration” in Section 3, “Declarations.”

I/O Option or Carriage Control

4-94

<1/0 option or carriage control>

— [arithmetic expression >
— LINE L s> — SYNCHRONIZE —
I— SKIP
— SPACE ——
— STACKER —
— STATION —
— TIMELIMIT -
— NO
— STOP
I— SYNCHRONIZE
L—<subfile specification

-] —]

If the I/O option or carriage control element is not specified, the record currently
addressed by the record pointer is read, and the record pointer is adjusted to point to the
next record in the file.

If the I/O option or carriage control element is invalid for the physical file associated with
the file designator, it is ignored.

If the I/O option or carriage control element is an arithmetic expression, its value
indicates the zero-relative record number of the record in the file that is to be read. The
record pointer is adjusted to point to the specified record before the read is performed,
and the record pointer is adjusted after the read operation to point to the next record.

If the I/O option or carriage control element is NO, then the record pointer is not
adjusted following the read operation. That is, the record can be read again. This I/O
option or carriage control element has no effect if the KIND attribute of the file being
read is equal to REMOTE.

If the I/O option or carriage control element is of the form [SPACE < arithmetic
expression >], then the number of records specified by the value of the arithmetic

8600 0098-000

Statements

expression are skipped. Spacing is forward if the arithmetic expression has a positive
value and backward if the arithmetic expression has a negative value.

The [TIMELIMIT < arithmetic expression >] construct, which is meaningful only for
remote files, assigns the value of the arithmetic expression to the TIMELIMIT attribute
of the file. Refer to the A Series File Attributes Programming Reference Manual for
information on the TIMELIMIT attribute. The value of this attribute applies to all
subsequent READ and WRITE statements on that file. If the value of the TIMELIMIT
attribute is greater than zero and if no input is received within that number of seconds
(the value can be fractional), then a time-out error is reported.

The [STATION < arithmetic expression >] construct is meaningful only for remote

files. The value of the arithmetic expression is assigned to the LASTSUBFILE attribute
of the file. Refer to the A Series File Atiributes Programming Reference Manual for
information on the LASTSUBFILE attribute.

The [SYNCHRONIZE] construct is meaningful for the WRITE statement only.

Subfile Specification

<subfile specification>

—E<read subfile specification I
<write subfile specif1’ca1t1’on>J

<read subfile specification>

<.

/1\- DONTWAIT ’ . | |
/1\- SUBFILE index>

|—<resu1 t>— l

<result>

—<arithmetic variable |

If the file to be read is a port file (a file for which the KIND attribute is equal to PORT),
an array row read containing a subfile specification must be used. For more information,
refer to “Array Row Read” later in this section.

The subfile specification is meaningful only for port files. It is used to specify the subfile
to be used for the read operation and the type of read operation to be performed.

If the subfile index is used, the value of the subfile index is assigned to the
LASTSUBFILE attribute of the file. It specifies the subfile to be used for the read
operation. If the subfile index is zero, a nonselective read is performed. If the subfile
index is nonzero, then a read from the specified subfile is performed. The result
variable, if any, is assigned the resultant value of the LASTSUBFILE attribute. For
more information on the LASTSUBFILE attribute, refer to the A Series File Attributes
Programming Reference Manual.

If DONTWAIT is specified in a READ statement, and if no input is available, no data is
returned and the program is not suspended.

8600 0098-000 4-95

Statements

Core-to-Core Part

<core-to-core part>

—<core-to-core file part |
|—<conr‘e-to—c01r‘e blocking pau‘t>—l

<core-to-core file part>

array row |
<pointer expression>—
<subscripted variable>—-

If the file part consists of a core-to-core part, then a core-to-core read is performed. A
core-to-core read operation reads from a location in memory, not from a physical device;
therefore, it is much faster than a physical read. Editing is performed exactly as it is
performed when reading from a physical device.

If the core-to-core file part is a hexadecimal, BCL, or EBCDIC array row or pointer,
then the default record size (the number of characters considered to be in the record)
depends on the character size of the array row or pointer and is determined by the
actual length of the designated string.

The maximum size of the core-to-core file part for BCL and hexadecimal arrays is 65,535
words. Core-to-core I/O on BCL and hexadecimal arrays longer than 65,535 words is
permitted only if the core-to-core file part is indexed far enough into the array such that
the length between that point and the end of the array does not exceed 65,535 words.

If an attempt is made to use an array or array segment more than 65,535 words long, a
run-time error occurs.

For single-precision and double-precision array rows or subscripted variables, the default
record size is computed by multiplying the length of the array row (or remaining length
of the array row when a subscripted variable is used) by the number of characters per
word, where characters per word is derived from the following table:

Default Character Type

BCL EBCDIC
Single Precision 8 6
Double Precision 16 12

4-96 8600 0098-000

Statements

Core-to-Core Blocking Part

<core-to-core blocking part>

— (—<core-to-core record size O) 4
, —<core-to-core b]ocking>—]

<core-to-core record size>

—<arithmetic expression i

<core-to-core blocking>

—<arithmetic expression |

To specify a record size smaller than the default size, a value can be provided for
core-to-core record size. This value is in terms of characters. By supplying a value for
core-to-core blocking, the file can be blocked into more records than the default number,
which is one.

With formatted I/O, if the format requires more records than indicated by the
core-to-core blocking value, a run-time error is given. Also, the format can require
more characters than the core-to-core file part contains; this situation also results in a
run-time error. In such cases, the number of characters indicated in the core-to-core
blocking part (this number is computed by multiplying the core-to-core record size by
the core-to-core blocking) can appear to be large enough to satisfy the format, but the
core-to-core blocking part can indicate more characters than the core-to-core file part
actually contains. The core-to-core file part, the core-to-core blocking part, and the
format must be compatible or run-time errors occur.

For example, the following statements result in errors:

BEGIN
ARRAY A[@:9];
REAL B,C;
READ (A(88),<T50,A6,110>,B,C); %
WRITE(A(15,3),<X5,115>,1,2,3);
WRITE(A(20,2) ,<X5,115>,1,2,3)
B :=" ITEM";
WRITE(A(15,4) ,<".",X2,A6,12,X4>,B,1,B,2,B,3,B,4); % Example 4
END.

Example 1
Example 2
Example 3

N o

.

2

The statement labeled “Example 1” in the preceding program results in a run-time error
(format error 217), because the format requires 65 characters, but the file part (array A)
contains only 60 characters.

The statement labeled “Example 2” results in a run-time error (format error 117),
because the format requires 20-character records, but 15-character records were
specified in the blocking part.

The statement labeled “Example 3” results in a run-time error (format error 120),

because the three list elements require three repetitions of the format. Thus, three
records are required, but only two records were specified in the blocking part.

8600 0098-000 4-97

Statements

The statement labeled “Example 4” fills array A with the following EBCDIC data

(“]” denotes the end of the data):

ITEM 1 . ITEM 2 . ITEM 3 . ITEM 4

Format and List Part

<format and list part>

—_, <format designator

L, —<ist
< —<editing specifications>— > T
, —<list>
* , —<list
<free-field par"c>J
<arithmetic expression>— , <array row>

<subscripted variable>—
<pointer expression>——
<string variable>

<string expression>

<list>

&

—EL<1 ist e1 ement
<list desi gnaa'cor‘>—l

<free-field part>

/
Lo« |—<number of col umns>J L / i |——<c01 umn w1'dth>J

<number of columns>

— [—<arithmetic expression>—]

<column width>

— [—<arithmetic expression>—]

The format and list part element indicates the interpretation of the data in the file and

the variables to which the data is assigned.

If the format and list part element does not appear, the input record is skipped.

Formatted Read

4-98

A READ statement that contains a format designator, editing specifications, or a

free-field part is called a formatted read.

A format designator without a list indicates that the referenced format contains a string
literal into which corresponding characters of the input data are to be placed. The string
literal in the FORMAT declaration is replaced by the string literal in the input data.

8600 0098-000

Statements

A format designator with a list indicates that the input data is to be edited according to
the specifications of the format and assigned to the variables of the list.

Editing specifications can appear in place of a format designator and have the same effect
as if they had been declared in a FORMAT declaration and had been referenced through
a format designator. For more information, refer to “FORMAT Declaration” in Section
3, “Declarations.”

On any formatted I/O statement (excluding core-to-core I/O), the number of

characters allowed in the record is determined solely by the value of the file attribute
MAXRECSIZE of the file. If the format requires more characters than are contained in
the record, a format error occurs at run time.

The free-field part is discussed under “Data Format for Free-field Input” later in this
section.

Binary Read
A READ statement of the following form is called a binary read:
READ(<file part>,*,<list>)

An asterisk (*) followed by a list specifies that the input data is to be processed as full
words and assigned to the elements of the list without being edited. The number of
words read is determined by the number of elements in the list or the maximum record
size, whichever is smaller.

When data is read into character arrays, only full words are read. If there is a partial
word left at the end of the data, it is ignored. For example, if A is an EBCDIC array and
FILEID contains the string 12345678, the following statement reads only the characters
123456:

READ(FILEID,*,A)

When a string is read into a string variable using a binary READ statement, the first
word read from the record is assumed to specify the length of the string. This word is
evaluated, and the resulting value is the number of characters read beginning with the
next word of the record. The binary WRITE statement automatically writes a word
of length information before the text of each string variable; therefore, the following
WRITE statement can later be read by the following READ statement:

WRITE(F,*,STR,STRARRAY[5],STR || "ABC")
READ(F,*,STR1,STR2,STRARRAY [@])

For more information, see “Binary Write” under “WRITE Statement” later in this
section.

The results are undefined for binary READ statements that attempt to read data not
containing length information into string variables.

8600 0098-000 4-99

Statements

Array Row Read
A READ statement of any of the following forms is called an array row read:

READ(<file part>,<arithmetic expression>,<array row>)
READ(<file part>,<arithmetic expression>,<subscripted variable>)
READ(<file part>,<arithmetic expression>,<pointer expression>)
READ(<file part>,<arithmetic expression>,<string variable>)

The first three forms of the array row read specify that input data is to be read without
editing and assigned left-justified to the array specified by the array row, subscripted
variable, or pointer expression. The arithmetic expression specifies the number of words
or the number of characters, depending on the value of the FRAMESIZE attribute

for the file, to be read. Refer to the A Series File Attributes Programming Reference
Manual for information on the FRAMESIZE attribute. The number of words or
characters actually read equals whichever of the following values is smallest:

o The MAXRECSIZE attribute of the file being read

e The length of the array row (or portion of the array to the right of where the pointer
expression points or to the right of the element specified by the subscripted variable)

o The absolute value of the arithmetic expression

A READ statement of the following form specifies that input data is to be read without
editing and assigned to the string variable:

READ (<file part>,<arithmetic expression>,<string variable>)

The number of characters read is the smaller of the value of the MAXRECSIZE attribute
of the file being read or of the absolute value of the arithmetic expression. The value of
the arithmetic expression always specifies the number of characters (not words) to be
read.

The following is an example of an array row read:

BEGIN
FILE IN(TITLE="TEST.", UNITS=CHARACTERS, MAXRECSIZE=29);
STRING S1,S2;
READ(IN,15,S1); % READS 15 CHARACTERS INTO S1
READ(IN,5@,S2); % READS 2@ CHARACTERS INTO S2

END.

4-100 8600 0098-000

Statements

Action Labels or Finished Event

<action labels or finished event>
— 1 . =3
+——<eof label -

: <parity error label>
—<eof 1abe1;:| L : <data error label> —
T : : <data error label>
<eof label>

L<event designator

-] ;

<eof label>

—~<designational expression i

<parity error label>

—<designational expression |

<data error label>

—<designational expression |

The action labels or finished event element provides a means of transferring control
from a READ statement, WRITE statement, or SPACE statement when exception
conditions occur. A branch to the eof label takes place when an end-of-file condition
occurs. A branch to the parity error label takes place if an irrecoverable parity error is
encountered. A branch to the data error label takes place if a conflict exists between
the format and the data. If the appropriate label is not provided when an exception
condition occurs, the program is terminated.

The [<event designator >] syntax can be used only for direct I/O. The event is caused
when the I/O operation is finished. For more information, refer to “Direct I/O” under
“I/O Statement” earlier in this section.

Exception conditions occurring during a READ statement can also be handled without
the use of the action labels or finished event syntax. The READ statement can be
used as a Boolean function, and the value returned can be tested to determine if any
exception conditions exist. For more information, refer to the discussion of the STATE
attribute in the A Series File Attributes Programming Reference Manual. When
exception conditions are handled in this manner, the action labels or finished event
syntax cannot be used. The user assumes all responsibility for handling exception
conditions. Core-to-core I/O statements of the following forms cannot be used with the
action labels or finished event syntax and cannot be used as Boolean functions.

READ(<array row>,<arithmetic expression>,<array row>)
WRITE (<array row>,<arithmetic expression>,<array row>)

Attempting to do either results in a syntax error.

8600 0098-000 4-101

Statements

Data Format for Free-field Input

The use of a free-field part element in a READ statement allows input to be performed
with editing but without using editing specifications. The appropriate format is selected
automatically.

On input, only the simplest forms of the free-field part, a single slash (/) or double

slash (//), can be used. These formats allow input from records in the form of free-field
data records. A single slash indicates that data items are delimited by a comma; a double
slash indicates that data items are delimited by one or more blanks.

Free-field Data Format

4-102

The format of a free-field input data record is as follows:
[fierd | !
I—<exp1 icit del 1’m1"ter‘>—J a

<field>

<unquoted string field delimiter: |
number:
<quoted string>— l——<commentar‘y>—
<hex string>——

*

<unquoted string>

Any string not containing an < explicit delimiter >.

<quoted string>

— <EBCDIC string> JI

<hex string>

— 4" —<hexadecimal string>— " |

<commentary>

Any string not containing an < explicit delimiter >.

<field delimiter>

—E<exp1 icit delimiter i
<end-of -1r-ecord>———T

<explicit delimiter>

Comma (,) for the single-slash form or one or more blanks for the double-slash form. An
empty record is not considered an explicit delimiter.

8600 0098-000

Statements

<end-of-record >

The end of the input record.

Each record of free-field input data must be in the form described above.

Empty records are ignored. The commentary option is ignored.

Each field except the slash is associated with the list element to which it corresponds by

position.

Fields

The single-slash format interprets a field that contains only a comma or a comma
preceded by blanks as a null field. Such a field is skipped along with its associated list
element, which is left unaltered.

The different types of fields are described in the following paragraphs.

Unquoted String

If an unquoted string is read into a list element of type string or pointer, all characters
preceding the explicit delimiter (including quotation marks if present) are transferred to
the list element. The end-of-record is not recognized as a delimiter.

If an unquoted string is read into a list element of type string, characters are read until
an explicit delimiter is detected or until the maximum string length (2**5 - 2) is reached.

If an unquoted string is read into a list element of type pointer, characters are read until
an explicit delimiter is detected or until the end of the array is reached.

If an unquoted string is read into a list element of type Boolean, the value TRUE is
assigned to the list element if the first character of the string is T. If the first character is
not the letter T, the value FALSE is assigned to the list element. The unquoted string is
read until a field delimiter is detected.

If an unquoted string is read into a list element of any type other than string, pointer, or
Boolean, it is treated as commentary.

Number

A number that is represented as an integer is treated as type INTEGER unless it is
larger than the largest allowable integer, in which case it is treated as type REAL.
Numbers that contain a decimal fraction are treated as type REAL. However, when the
list element is double precision, results are treated as type DOUBLE. When the field
delimiter is a comma, blanks within numbers are ignored.

Complex values are divided into real and imaginary values. When a complex variable
or complex subscripted variable appears in the list of a free-field READ statement,

8600 0098-000 4-103

Statements

two fields are necessary to complete the read operation. The value in the first field is
assigned to the real part, and the value in the second field is assigned to the imaginary
part.

Quoted String

Hex String

Slash (/)

A quoted string of any length can be read into single-precision or double-precision list
elements. Each single-precision EBCDIC or BCL list element receives six characters or
eight characters, respectively (12 or 16 characters, respectively, for double-precision list
elements), until either the list or the string is exhausted. If the number of characters
in the string is not a multiple of six (for EBCDIC) or eight (for BCL), then the last list
element receives the remaining characters of the string. The string characters are
stored, right-justified, in the list elements.

A hexadecimal string can be read into a single-precision or double-precision list element.
If fewer than 12 hexadecimal digits are read into a single-precision variable (or fewer
than 24 hexadecimal digits into a double-precision variable), the string is stored
right-justified in the variable. If a minus sign precedes the string (for example, —4"A"),
bit 46 of the resulting value is complemented.

The slash field causes the remainder of the current buffer to be ignored. The buffer
following the slash is considered the beginning of a new field. The slash is a field by itself
and must not be placed within another field or between a field and its explicit delimiter.

Asterisk (¥)

The asterisk field terminates the READ statement. The program continues with the
statement following the READ statement. The list element corresponding to the
asterisk remains unchanged, as do any subsequent elements in the list.

Examples of Fields

4-104

1,

2.5, / anything to the right of a slash is ignored

2.48 @ -2, / blanks are ignored if using single-slash editing
34 / two data elements if the delimiter is a blank

3,4, / two data elements if the delimiter is a comma

"THIS IS A QUOTED STRING"

8600 0098-000

Statements

THIS IS AN UNQUOTED STRING AND THE DELIMITER IS A COMMA, 123
THIS-IS-AN-UNQUOTED-STRING-AND-THE-DELIMITER-IS-A-BLANK 456
2.5 ANY COMMENT OR NOTE NOT CONTAINING A COMMA,

4"AB" / A HEX STRING

-4"40000092900A" / BIT 46 IS COMPLEMENTED, THE RESULT = +10

sss / null fields; the three corresponding list elements are
/ skipped with no alteration to their contents.

4, ,5 / null field is ignored

* THIS DATA RECORD TERMINATES THE READ STATEMENT

8600 0098-000 4-105

Statements

Examples of READ Statement

4-106

READ (FILEID)

READ (FILEID,FMT)

READ (FILEID,FMT,LISTID)

READ (FILEID,*,LISTID)

READ (SPOFILE, FMT,A,B,C)

READ (SPOFILE,/,SIZE,LENGTH,MASS)

READ (FILEID,FMT,7,2,A,B,C,ARAY [A] ,B+C,F)
READ(FILEID,/,J,FOR I := @ STEP 1 UNTIL J DO ARRY[I])
READ(FILEID,*,A,B,C,FOR A := B*A STEP C UNTIL J DO ARY[I])
READ(SWFILEID[IF X > N THEN X+N ELSE ©],25,ARRY[2,*])
READ(FILEID,/,SWLISTID[I])

READ (FILEID,FMT,SWLISTID[I])

READ (SPOFILE,SWFMT[16] ,A,B,C)

READ(FILEID,58,STR)

READ(FILEID,/,L,M,N,ARRY[2]) [EOFL]

READ (FILEID[3] [NO]) [:PARL]

READ (SWFILEID[14] [NO] , FMT ,A+EXP(B) ,ARRY[I,J,*]) [:PARSWL[M]]
READ (FILEID[NO] ,SWFMT[6+J],LISTID) [EOFSWL[Q*3]::DATAERRORL]
READ (SWFILEID[A+B] ,*,SWLISTID[2+H/K]) [EOFL:PARL]

READ (FILEID[NO]) [EOFSWL[I]:PARSWL[J]]

READ(FYLE) [EOFL:PARL:DATAERRL]

READ (DIRFYLE) [EVNT]

READ (DIRFYLE,3@,DIRARAY) [EVNT]

8600 0098-000

Statements

REMOVEFILE Statement

The REMOVEFILE statement removes files without opening them.

<removefile statement>

— REMOVEFILE — (—<directory element>—) |

Directory Element

The syntax and semantics of the directory element appear under “CHANGEFILE
Statement” earlier in this section.

If the directory element is a directory name, all files in that directory are removed. If the
directory element is both a file name and a directory name, that file and all files in the
directory are removed.

A directory element of the form <file name > /= removes only files in that directory. It
does not remove a file named <file name>. '

If a pointer expression is used as a directory element, it must point to an array that
contains the name of the file or directory to be removed.

REMOVEFILE Statement as a Boolean Function

The REMOVEFILE statement can be used as a Boolean function, in which case it
returns a value of TRUE if an error occurs. The value in field [39:20] of the result
defines the failure as follows:

Value Meaning
10 File name or directory name is in error.
30 Files have not been removed.

Family Substitution
Family substitution is used if the task has an active family specification and the family
name involved in the REMOVEFILE statement is the target family name that the
FAMILY specification substitutes.
If a family substitution specification is in effect, the REMOVEFILE statement affects
only the substitute family, not the alternate family.

Example of REMOVEFILE Statement

The following statement removes the file MYTEST and, if the remove is successful,
assigns FALSE to the variable BOOL.

BOOL := REMOVEFILE("MYTEST ON PACKFOUR.")

8600 0098-000 4-107

Statements

REPLACE Statement

The REPLACE statement causes character data from one or more sources to be stored

in a designated portion of an array row.

<replace statement>

— REPLACE —<destination>— BY —<source part list

<destination>

pointer expression
L—<update poi nter>—-|

<update pointer>

—<pointer variable>— :

The REPLACE statement stores character data from one or more data sources into

a designated portion of an array row. The array row and the starting character

position within the array row are both determined by the pointer expression

part of the destination syntax. The value of this pointer expression initializes the
stack-destination-pointer. As each character is moved into the destination array row, the
stack-destination-pointer is correspondingly incremented one character position. When
the last character has been stored in the destination array row, the corresponding final
value of the stack-destination-pointer is stored in the pointer variable of the update
pointer, if specified; otherwise, it is discarded. For more information on temporary

storage locations, see “POINTER statement” earlier in this section.

Source Part List

<source part list>

¢

—L<sour‘ce’part I

<source part>

——<string Titeral
L-<unit count>———

—<arithmetic expression

|—<um' t count>—

—<digit convert part
—<numeric convert part
—<source>—<transfer part>-
—<translate part
—<pointer-valued attribute>—m7m7————
L<string expression

<unit count>

— FOR —<arithmetic expression N
WORDS —

4-108

8600 0098-000

Statements

<digit convert part>

—~<arithmetic expression>— FOR —E<ar1'thmetic expr‘ession>j————-->
*

+—— DIGITS {
L sprgrrs J

<numeric convert part>

—<arithmetic expression>— FOR —E<count part>_—|— NUMERIC ————
*

<count part>

arithmetic expression |

l——<residua1 count>J

<residual count>

—<simple variable>— : |

<source>

pointer expression |
I—<updad:e po1'nter>—I

<transfer part>

<unit count |
WITH —<picture identifier>—
<scan part

<scan part>

condition |
L FOR —<count par"c>—I I

<condition>

T WHILE <relational operator>—<arithmetic expression>—|———————-|
UNTIL JIL IN —<truth set table

<truth set table>

<subscripted variable |
<truth set identifier>—
ALPHA
ALPHA6
ALPHA7
ALPHA8

<translate part>

—<source>— FOR —<arithmetic expression>— WITH —<translate table>—|

8600 0098-000 4-109

Statements

<translate table>

subscripted variable |
E<trans1ate table identifief_—J
<intrinsic translate table

<intrinsic translate table>

—— ASCIITOBCL |
— ASCIITOEBCDIC —
ASCIITOHEX ——
BCLTOASCIT —
BCLTOEBCDIC —
BCLTOHEX
EBCDICTOASCII —
EBCDICTOBCL —
EBCDICTOHEX ——
HEXTOASCIT —
HEXTOBCL
HEXTOEBCDIC —-

The source part list consists of one or more source parts. Each source part specifies
source data and the processing to be performed on the data. All the data specified by a
single source part is processed by a single method, but the various source parts of the
source part list can specify a variety of processing methods.

With certain forms of the source part, provisions are made to store the final value of the
stack-source-pointer. With several source parts in a single REPLACE statement, several
final values for the stack-source-pointer arise. Corresponding to these final values

are values of the stack-destination-pointer. These latter values are not accessible to

the programmer but serve as the initial values of the stack-destination-pointer for the
processing of the next source part.

The syntactic construct <source> is the same construct encountered in the SCAN
statement. The source construct contains a pointer expression that initializes the
stack-source-pointer to a particular character position in an array row. The character
size associated with this pointer expression must be the same as that associated with the
pointer expression that initialized the stack-destination-pointer. If the update pointer
option for the source is present, the pointer variable specified by the update pointer is
assigned the final value of the stack-source-pointer for this source part.

The stack-source-pointer and the stack-destination-pointer can both reference the same
array during a REPLACE statement. However, if the stack-source-pointer references
a character position between the initial position of the stack-destination-pointer and
its current position, the result is undefined. For example, the following REPLACE
statement produces an undefined result:

REPLACE POINTER(A)+6 BY POINTER(A) FOR 12
On the other hand, the following REPLACE statement produces a well-defined result:

REPLACE POINTER(A) BY POINTER(A) FOR 12

4-110 8600 0098-000

Statements

Source Part Combinations

The formal syntax of the source part can be reduced to the following combinations:

<string literal>
<string literal> FOR <arithmetic expression>
FOR <arithmetic expression> WORDS

<arithmetic expression>

<arithmetic expression> FOR <arithmetic expression>
FOR <arithmetic expression> WORDS
FOR <arithmetic expression> DIGITS
FOR * DIGITS
FOR <arithmetic expression> SDIGITS
FOR * SDIGITS
FOR <count part> NUMERIC
FOR * NUMERIC

<source> FOR <arithmetic expression>
FOR <arithmetic expression> WORDS
FOR <arithmetic expression> WITH <translate table>

<source> WITH <picture identifier>
<source> WHILE <relational operator> <arithmetic expression>

UNTIL <relational operator> <arithmetic expression>

WHILE IN <truth set table>

UNTIL IN <truth set table>
<source> FOR <count part> WHILE <relational operator>

<arithmetic expression>

<source> FOR <count part> UNTIL <relational operator>

<arithmetic expression>

<source> FOR <count part> WHILE IN <truth set table>
FOR <count part> UNTIL IN <truth set table>

<pointer-valued attribute>
<string expression>
Each of these combinations is discussed in turn in the sections that follow. In all
examples, P and Q are 8-bit pointers and the default character type is EBCDIC.
String Literal Source Parts
A string literal of 96 bits or less is a short string literal. A short string literal is evaluated

at compilation time and stored, left-justified, in a one-word or two-word operand.
Character size information is discarded.

8600 0098-000 4-111

Statements

A string literal of more than 96 bits is a long string literal. A long string literal is
evaluated at compilation time and stored in a portion of an array called a pool array. The
character size and address of the string literal are stored in a pointer called a pool array
pointer.

The compiler calculates the number of characters in a string literal in terms of the
largest character size specified by the string literal. The following are calculations for
various string literals:

String Literal Number of Characters

4'C1" 2

8"AB" 2

48'01" 1

4"01™A" 2 (if the default character type is EBCDIC)

<string literal>
If the source part is a short string literal, it is processed as follows:

1. At compilation time, the number of characters in the string is calculated.

2. At run time, the string literal is stored, left-justified with zero fill, in a one- or
two-word stack-source-operand.

3. The stack-integer-counter is assigned the value for the string length calculated at
compilation time (see step 1).

4. Characters are copied from the stack-source-operand to the destination specified
by the stack-destination-pointer. The stack-integer-counter specifies the number
of characters copied, and the stack-destination-pointer specifies the character size.
If the destination is specified by a non-character array row or array element, the
character size is eight bits.

If the source part is a long string literal, it is processed as follows:

1. At compilation time, the number of characters in the string is calculated.

2. At run time, the stack-source-pointer is assigned the value of the pool array pointer
to the long string literal, which includes the character size and address.

3. The character sizes of the stack-source-pointer and the stack-destination-pointer are
compared. If they are not equal, the program is discontinued with a fault.

4. The stack-integer-counter is assigned the value for the string length calculated at
compilation time (see step 1).

5. The number of characters specified by the stack-integer-counter are copied from the
pool array to the destination specified by the stack-destination-pointer.

Examples of <string literal >

In the following example, the three EBCDIC characters ABC are copied to the
destination pointed to by P.

4-112 8600 0098-000

Statements

REPLACE P BY "ABC"

In the following example, the 20-character EBCDIC string is copied to the destination
pointed to by P. At the end of the statement, P is left pointing to the first character
position after the last character copied.

REPLACE P:P BY "A MUCH LONGER STRING"

In the following example, because the source, a string literal, is only four 4-bit characters
long, it is evaluated as a single word; the character size is not retained. Because

the destination is an 8-bit pointer, and four characters are to be replaced, four 8-bit
characters are copied to the destination. At the end of the statement, the destination
contains 4"12340000", which are the leftmost 32 bits of the stack-source-operand
4"123400000000".

REPLACE P BY 4"1234"

<string literal> FOR <arithmetic expression>
If the source part is a short string literal, it is processed as follows:

1. At compilation time, the string literal is stored in a one- or two-word operand. If
the string literal is less than or equal to 48 bits long, it is stored, left-justified, and
repeated for fill in a one-word operand. If the string literal is more than 48 bits long,
it is stored, left-justified with zero fill, in a two-word operand.

2. At run time, this operand is assigned to the stack-source-operand.

If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The number of characters specified by the stack-integer-counter are copied to the
destination specified by the stack-destination-pointer. If the stack-source-operand
contains fewer than the specified number of characters, it is reused as many times
as necessary. The character size is specified by the stack-destination-pointer. If the
destination is specified by a non-character array row or array element, the character
size is eight bits.

In the following examples, the first column shows a source part, and the second column
shows the resulting string. A question mark (?) represents a null character.

Source Part Result

"A" FOR 20 AAAAAAAAAAAAAAAAAAAA
"AB" FOR 20 ABABABABABABABABABAB
"ABC" FOR 20 ABCABCABCABCABCABCAB
"ABCD" FOR 20 ABCDABABCDABABCDABAB
"ABCDEF" FOR 20 ABCDEFABCDEFABCDEFAB
"ABCDEFGH" FOR 20 ABCDEFGH??7?ABCDEFGH

If the source part is a long string literal, it is processed as follows:

8600 0098-000 4-113

Statements

1. The stack-source-pointer is assigned the value of the pool array pointer to the long
string literal, which includes the character size and address.

2. The character sizes of the stack-source-pointer and the stack-destination-pointer are
compared. If they are not equal, the program is discontinued with a fault.

3. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The number of characters specified by the stack-integer-counter are copied to the
destination specified by the stack-destination-pointer.

The <string literal> FOR <arithmetic expression > syntax is undefined for a long
string literal if the integerized value of the arithmetic expression is greater than the
length of the string literal in characters. For example, the result of the following
statement is undefined:

REPLACE POINTER(A) BY "ABCDEFGHIJKLMNO" FOR 3@

<string literal> FOR <arithmetic expression> WORDS
If the source part is a short string literal, it is processed as follows:

1. At compilation time, the string literal is stored in a one- or two-word operand. If the
string literal is less than or equal to 48 bits long, is stored, left-justified and repeated
for fill, in a one-word operand. If the string literal is more than 48 bits long, it is
stored, left-justified with zero fill, in a two-word operand.

2. At run time, this operand is assigned to the stack-source-operand.

If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The stack-destination-pointer is moved forward, if necessary, to the nearest word
boundary.

5. The number of words specified by the stack-integer-counter are copied from the
stack-source-operand to the destination specified by the stack-destination-pointer. If
the stack-source-operand contains fewer than the specified number of words, it is
reused as often as necessary.

In the following examples, the first column shows a source part, and the second column
shows the resulting string. A question mark (?) represents a null character.

Source Part Result

"ABCD" FOR 2 WORDS ABCDABABCDAB
"ABCDEFGH" FOR 2 WORDS ABCDEFGH????
"ABCDEFGH" FOR 3 WORDS ABCDEFGH???7?ABCDEF

If the source part is a long string literal, it is processed as follows:

4-114 8600 0098-000

Statements

1. The stack-source-pointer is assigned the value of the pool array pointer to the long
string literal, which includes the character size and address.

2. The character sizes of the stack-source-pointer and the stack-destination-pointer are
compared. If they are not equal, the program is discontinued with a fault.

3. If the arithmetic expression yields zero or a positive value, this value is rounded to
an integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The stack-destination-pointer is moved forward, if necessary, to the nearest word
boundary.

5. The number of words specified by the stack-integer-counter are copied from the
stack-source-operand to the destination indicated by the stack-destination-pointer.

The <string literal > FOR <arithmetic expression> WORDS syntax is undefined for
a long string literal if the integerized value of the arithmetic expression is greater than
the length of the string literal in 48-bit words. For example, the result of the following
statement is undefined:

REPLACE POINTER(A) BY "ABCDEFGHIJKLMNO" FOR 6 WORDS

Arithmetic Expression Source Parts

When a string literal is to be interpreted as an arithmetic expression, it must be enclosed
in parentheses. Without the parentheses, the compiler interprets it as a string literal
and generates code or issues syntax errors accordingly. For example the following is an
invalid statement and results in a syntax error:

REPLACE POINTER(A) BY "A" FOR 3 DIGITS
On the other hand, the following statement is valid:

REPLACE POINTER(A) BY ("A") FOR 3 DIGITS

<arithmetic expression>
A source part of this form is processed as follows:

1. The arithmetic expression is evaluated and assigned to a one-word
stack-source-operand.

2. The stack-source-operand is copied once to the destination specified by the
stack-destination-pointer.

The character size of the stack-destination-pointer is irrelevant. This means that it

is not used to determine the default <unit count>, the number of characters to be
transferred. In the absence of a specified unit count part, a default is established based
on a full word of the default character bit size. The default character bit size is eight,
unless otherwise established by the < ASCII option> or <BCL option> compiler
control options.

8600 0098-000 4-115

Statements

Examples of Arithmetic Expression

In the following examples, the first column shows a REPLACE statement, and the
second column shows, in hexadecimal format, the resulting string.

Statement Result

REPLACEP BY 7.5 267800000000
REPLACE P BY 3 000000000003
REPLACE P BY 1.68@@2 248540000000
REPLACE P BY ("A") 0000000000C1

<arithmetic expression> FOR <arithmetic expression>
A source part of this form is processed as follows:

1. The first arithmetic expression is evaluated and assigned to a one-word
stack-source-operand.

2. If evaluation of the second arithmetic expression yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

3. The number of characters specified by the stack-integer-counter are copied from the
stack-source-operand to the destination specified by the stack-destination-pointer.
If the stack-source-operand contains fewer than the specified number of
characters, it is reused as often as necessary. The character size is specified by the
stack-destination-pointer. If the destination is specified by a non-character array
row or array element, the character size is eight bits.

Examples of <arithmetic expression> FOR <arithmetic expression >

The following example copies the character 48"00" to P. The stack-source-operand is
4"000000000003", and the leftmost character of this operand is copied to P.

REPLACE P BY 3 FOR 1

The following example copies the character 48"03" to P.
REPLACE P BY (3).[7:48] FOR 1

The following example copies the EBCDIC character A to P.

REPLACE P BY ("A").[7:48] FOR 1

<arithmetic expression> FOR <arithmetic expression> WORDS

A source part of this form is processed as follows:

4-116 8600 0098-000

Statements

1. If the evaluation of the first arithmetic expression yields a double-precision value,
this double-precision value is assigned to a two-word stack-source-operand.
Otherwise, the value of the first arithmetic expression is assigned to a one-word
stack-source-operand.

2. If evaluation of the second arithmetic expression yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

3. The stack-destination-pointer is moved forward, if necessary, to the nearest word
boundary.

4. The number of words specified by the stack-integer-counter is copied from the
stack-source-operand to the destination specified by the stack-destination-pointer.
If the stack-source-operand is double-precision, it is copied to the destination
one word at a time (first word first, second word second) with TAGs. If the
stack-integer-counter specifies more than one word (when the stack-source-operand
is single precision) or more than two words (when the stack-source-operand is
double precision), then the stack-source-operand is reused until the number of
words specified by the stack-integer-counter has been copied.

Example of <arithmetic expression> FOR <arithmetic expression> WORDS
The following example copies a single-precision zero into every element of array A.

REPLACE POINTER(A) BY @ FOR SIZE(A) WORDS

<arithmetic expression> FOR <arithmetic expression> DIGITS
A source part of this form is processed as follows:

1. The absolute value of the first arithmetic expression is rounded to an integer value,
if necessary, and assigned to the stack-source-operand.

2. If evaluation of the second arithmetic expression yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

3. A string of 12 hexadecimal characters that represents the decimal value of the
stack-source-operand is generated. If the value of stack-source-operand can be
expressed in fewer than 12 digits, the string is filled on the left with zeros.

4. The N rightmost hexadecimal characters, where N is the number specified by the
stack-integer-counter, are copied from this hexadecimal string to the destination. If
the character size of the stack-destination-pointer is four bits, the characters are
copied without change; if it is six or eight bits, the appropriate zone field is supplied.

If the value of the stack-integer-counter is greater than 12, the program is discontinued
with a fault.

8600 0098-000 4-117

Statements

Examples of <arithmetic expression> FOR <arithmetic expression>
DIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part 8-Bit Destination 4-Bit Destination
1234 FOR 6 DIGITS 8"001234" 4'001234"

7.5 FOR 3 DIGITS 8"008" 4'008"

-10 FOR 3 DIGITS 8'010" 4'010"

1234 FOR 3 DIGITS 8'234" 4'234"

<arithmetic expression> FOR * DIGITS

This source part functions similarly to a source part of the following form except that the
stack-integer-counter is assigned a value equal to the minimum number of characters
required to express accurately the value of the stack-source-operand.

<arithmetic expression> FOR <arithmetic expression> DIGITS

Examples of <arithmetic expression> FOR * DIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part 8-Bit Destination 4-Bit Destination
1234 FOR * DIGITS 8"'1234" 4"1234"

7.5 FOR * DIGITS 8'8" 4'8"

-10 FOR * DIGITS 8"'10" 4'10"

<arithmetic expression> FOR <arithmetic expression> SDIGITS

4-118

This source part functions similarly to a source part of the following form except that the
sign of the first arithmetic expression is also recorded.

<arithmetic expression> FOR <arithmetic expression> DIGITS

If the character size of the stack-destination-pointer is four bits, then a 4'D" (1"1101")
character, indicating a negative value, or a 4"C" (1"1100") character, indicating a positive
value, is copied before the first digit. If the character size is eight bits, the zone field

of the rightmost digit is changed to 1"1101" for negative values or 1"1100" for positive
values.

When the character size of the stack-destination-pointer is four bits, the 4"C" or 4"D"
character, indicating the sign of the value, is not counted as a digit.

8600 0098-000

Statements

For example, the statement REPLACE POINTER(A,4) BY -123 FOR 3 SDIGITS yields
D123. Four, not three, characters are copied to the destination.

Strings produced by this form of source part can later be converted to an integer value
with the correct sign using the INTEGER function. For example, the statement in the
above example could be followed by the following statement, after which integer I would
contain the value -123:

I := INTEGER(POINTER(A,4),3)

Examples of <arithmetic expression> FOR <arithmetic expression >
SDIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part 8-Bit Destination 4-Bit Destination
1234 FOR 6 SDIGITS 4'FOFOF1F2F3C4" 4"C001234"
-1234 FOR 6 SDIGITS 4"FOFOF1F2F3D4" 4'D001234"

<arithmetic expression> FOR * SDIGITS

This source part functions similarly to a source part of the following form, except that
the stack-integer-counter is assigned a value equal to the minimum number of characters
required to express accurately the value of the stack-source-operand:

<arithmetic expression> FOR <arithmetic expression> SDIGITS

Examples of <arithmetic expression> FOR * DIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part 8-Bit Destination 4-Bit Destination
1234 FOR * SDIGITS 4'F1F2F3C4" 4'C1234"
-1234 FOR * SDIGITS 4'F1F2F3D4" 4'D1234"

<arithmetic expression> FOR <count part> NUMERIC

A source part of this form is processed as follows:

8600 0098-000 4-119

Statements

1. If the arithmetic expression in the count part yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

2. The first arithmetic expression is evaluated, and an internal procedure is called.
This procedure generates an EBCDIC character string representing the decimal
value of the arithmetic expression as precisely and concisely as possible given the
field width specified by the stack-integer-counter.

3. If the character size of the stack-destination-pointer is eight bits, the string is copied
to the destination without translation. If the character size is six bits, the string
is copied with EBCDIC-to-BCL translation. If the character size is four bits, the
program is discontinued with a fault.

If a residual count does not appear in the count part, the string is copied to the
destination, right-justified with blank fill, in a field with a width equal to the value of the
stack-integer-counter. If a residual count does appear in the count part, the string is
copied to the destination, left-justified, and the simple variable is assigned the difference
between the initial value of the stack-integer-counter and the number of characters
copied.

The form of the decimal representation is determined by the operand type (single or
double precision), whether or not the operand value is an integer, the magnitude of the
operand, the number of significant digits in its decimal representation, and the field
width. The basic rule is that the number is represented as compactly as possible using
integer, simple decimal, or exponential notation, as appropriate.

For example, the following source parts generate the decimal representations shown:

Source Part Decimal Representation
12345678 FOR 8 NUMERIC 12345678

12345678 FOR 6 NUMERIC 1.23+7

123/100 FOR N:6 NUMERIC 1.23(N:=2)

<arithmetic expression> FOR * NUMERIC

This source part functions similarly to a source part of the following form except that no
maximum field width is specified:

<arithmetic expression> FOR <count part> NUMERIC

Thus, the internal procedure that generates the string is allowed to use as many as 36
characters to represent the decimal value of the arithmetic expression.

For example, the following source parts generate the decimal representations shown:

Source Part Decimal Representation
123 FOR * NUMERIC 123
1/3 FOR * NUMERIC 0.3333333333333333333333

4-120 8600 0098-000

Statements

Pointer Expression (<source>) Source Parts

<source> FOR <arithmetic expression>
A source part of this form is processed as follows:
1. The pointer expression in the source is evaluated and assigned to the

stack-source-pointer.

2. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

3. The character sizes of the stack-source-pointer and the stack-destination-pointer
are compared. If they are not equal, the program is discontinued with a fault. If
both the source and the destination are specified by non-character array rows
or array elements, the character size of both the stack-source-pointer and the
stack-destination-pointer is eight bits.

4. The number of characters specified by the stack-integer-counter are copied from the
location specified by the stack-source-pointer to the destination specified by the
stack-destination-pointer.

Example of <source> FOR <arithmetic expression>

In the following example, the 20 EBCDIC characters pointed to by Q are copied to the
location pointed to by P

REPLACE P BY Q FOR 20

<source> FOR <arithmetic expression> WORDS
A source part of this form is processed as follows:
1. The pointer expression in the source is evaluated and assigned to the

stack-source-pointer.

2. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

3. The stack-source-pointer and the stack-destination-pointer are moved forward, if
necessary, to the nearest word boundary.

4. The number of 48-bit words specified by the stack-integer-counter are copied from
the location specified by the stack-source-pointer to the destination specified by the
stack-destination-pointer.

The character sizes of the source and destination pointer expressions are irrelevant.

8600 0098-000 4-121

Statements

Example of <source> FOR <arithmetic expression> WORDS

Both P and Q are advanced to the nearest word boundary, if necessary, and 20 words are
copied from the location pointed to by Q to the location pointed to by P.

REPLACE P BY Q FOR 2@ WORDS

<source> FOR <arithmetic expression> WITH <translate table>

This construct retrieves characters from a source location, translates each character
(through the use of the specified translate table) into a possibly different character with
a possibly different character size, and stores each resulting character in the location
indicated by the stack-destination-pointer.

The value of the pointer expression in the source points to the first character

to be translated. The stack-source-pointer is initialized to this value. The
stack-destination-pointer and the stack-source-pointer need not have the same character
size. Instead, the stack-source-pointer must have a character size equal to that of the
characters being translated, and the stack-destination-pointer must have a character size
equal to that of the resulting translated characters.

The value of the arithmetic expression indicates the number of characters to be
translated and written to the destination. This value is integerized, if necessary, and
assigned to the stack-integer-counter. The stack-auxiliary-pointer is initialized to point
to the first character of the first word of the translate table, and its character size is
absent. Normally, when a pointer is used and its character size is absent, a default value
of six or eight is used, depending on the default character type. However, the character
size of the pointer used to initialize the stack-auxiliary-pointer is irrelevant. The
translate table is not examined sequentially (one character at a time); instead, the data
in the table is accessed by special indexing techniques implemented in the hardware, as
follows:

<intrinsic translate table>

If the translate table is of this form, the stack-auxiliary-pointer is initialized to point to
the appropriate intrinsic translate table. The function of each translate table can be
deduced from its name. For example, the HEXTOEBCDIC table is used to translate
characters from hexadecimal to EBCDIC.

<translate table identifier>

4-122

If the translate table is of this form, a translate table must have been declared in a
TRANSLATETABLE declaration. For a detailed discussion regarding the construction
of a translate table, refer to “TRANSLATETABLE Declaration” in Section 3,
“Declarations.”

8600 0098-000

Statements

<subscripted variable>

If the translate table is of this form, the programmer is responsible for creating a
properly structured translate table that is contained entirely in the array row and

begins with the word in the array row indicated by the subscripted variable. From the
subscripted variable to the end of the array row there must be enough words for the
entire translate table: 4, 16, or 64 words, depending on whether the character type is 4
bit, 6 bit, or 7 or 8 bit, respectively. If there are not enough words for the translate table,
an invalid index error can result at run time. For more information on translate table
indexing, refer to “Translate Table Indexing” under “TRANSLATETABLE Declaration”
in Section 3, “Declarations.”

Examples of <source> FOR <arithmetic expression> WITH < translate
table >

REPLACE POINTER(B,4) BY POINTER(A,8) FOR 2¢ WITH EBCDICTOHEX

A = 8"@9123456789ABCDEFGHIJ"
B = 4"@123456789ABCDEFFFFF"

REPLACE POINTER(B,7) BY POINTER(A,8) FOR 14 WITH EBCDICTOASCII

A = 4"FOF1F2F3FAF5F6F7F8FIC1C2C3CA"
B = 4"3031323334353637383941424344"

REPLACE POINTER(B,8) BY POINTER(A,4) FOR 12 WITH HEXTOEBCDIC

A = 8"012345" = 4"F@F1F2F3F4F5"
B = 8"FOF1F2F3F4F5"

<source> WITH <picture identifier>

The character data specified by the source (which must be a pointer) is processed under
control of the picture specified by the picture identifier. The source and destination
pointers must be 4-bit, 8-bit, or word-oriented. If the source is a word-oriented pointer,
it is changed to a 4-bit pointer if the destination is a 4-bit pointer; otherwise, it is
changed to an 8-bit pointer. If the destination is a word-oriented pointer, it is changed to
a 4-bit pointer if the source is a 4-bit pointer; otherwise, it is changed to an 8-bit pointer.
If neither the source nor the destination pointer is a word-oriented pointer, the source
and destination pointers must either both be 4-bit pointers or both be 8-bit pointers.
Details regarding the formation and action of pictures are described under “PICTURE
Declaration” in Section 3, “Declarations.”

Source Parts with Boolean Conditions

The next eight forms of the source part copy characters from the source to the
destination until a source character fails or passes the specified test. The number of
characters copied can also be limited by an optional count part. For more information on
the use of these Boolean conditions, refer to “SCAN Statement” later in this section.

8600 0098-000 4-123

Statements

In the source parts containing a condition of either of the following forms the source
characters are tested against bits [7:8], [5:6], or [3:4] of the arithmetic expression,
depending on the character size of the source:

WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>

In all cases, the stack-source-pointer is left pointing to the character that failed or passed
the test.

The count part consists of an arithmetic expression and, optionally, a residual count. The
value of the arithmetic expression specifies the maximum number of characters to be
copied. The residual count, when it appears, is a simple variable in which is stored the
difference between the value of the arithmetic expression and the number of source-part
characters copied.

<source> WHILE <relational operator> <arithmetic expression>

The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination as long as source characters pass the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

e The stack-destination-pointer references the first character beyond the end of the
destination array.

o The stack-source-pointer references the first character to fail the test.

e The stack-integer-counter is nonzero.

Example of <source> WHILE <relational operator> <arithmetic
expression >

REPLACE P BY Q WHILE NEQ " "

"LONG STRING"

Q
P = "LONG"

<source> UNTIL <relational operator> <arithmetic expression>

4-124

The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination until a source character passes the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

e The stack-destination-pointer references the first character beyond the end of the
destination array.
e The stack-source-pointer references the first character to pass the test.

o The stack-integer-counter is nonzero.

8600 0098-000

Statements

Example of <source> UNTIL <relational operator> <arithmetic
expression >

REPLACE P BY Q UNTIL = "."

"FILE/TITLE ON PACK.XXX"

Q
P = "FILE/TITLE ON PACK"

<source> WHILE IN <truth set table>

The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination as long as the source characters are members of the
truth set. For further information on truth sets, see “TRUTHSET Declaration” in
Section 3, “Declarations.”

Example of <source> WHILE IN <truth set table >

REPLACE P BY Q WHILE IN ALPHA8

"ABCD1234.56"

Q
P = "ABCD1234"

<source> UNTIL IN <truth set table>
The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination until a source character is encountered that is a

member of the truth set. For further information on truth sets, see “TRUTHSET
Declaration” in Section 3, “Declarations.”

Example of <source> UNTIL IN <truth set table>

REPLACE P BY Q UNTIL IN ALPHAS8

Q=", =*$1234"
P

= u’ *’$u

<source> FOR <count part> WHILE <relational operator> <arithmetic
expression>

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters
are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied as long as the stack-integer-counter is not zero
and the source characters pass the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

8600 0098-000 4-125

Statements

e The stack-destination-pointer references the first character beyond the end of the
destination array.

e The stack-source-pointer references the first character to fail the test.

e The stack-integer-counter is nonzero.

Example of <source> FOR <count part> WHILE <relational operator>
<arithmetic expression >

REPLACE P BY Q FOR N:11 WHILE NEQ " "

"LONG STRING"
= "LONG" (and N = 7)

Q
P

<source> FOR <count part> UNTIL <relational operator> <arithmetic
expression>

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters

are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied until either the stack-integer-counter is zero or a
source character passes the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

e The stack-destination-pointer references the first character beyond the end of the
destination array.
e The stack-source-pointer references the first character to pass the test.

e The stack-integer-counter is nonzero.

Example of <source> FOR <count part> UNTIL <relational operator>
<arithmetic expression >

REPLACE P BY Q FOR N:22 UNTIL = "."

Q
P

"FILE/TITLE ON PACK.XXX"
"FILE/TITLE ON PACK" (and N = 4)

<source> FOR <count part> WHILE IN <truth set table>

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters
are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied as long as the stack-integer-counter is not zero
and the source characters are members of the truth set. For further information on
truth sets, see “TRUTHSET Declaration” in Section 3, “Declarations.”

4-126 8600 0098-000

Statements

Example of <source> FOR <count part> WHILE IN <truth set table>

REPLACE P BY Q FOR N:11 WHILE IN ALPHA8

Q = "ABCD1234.56"
P = "ABCD1234" (and N = 3)

<source> FOR <count part> UNTIL IN <truth set table>

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters

are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied until either the stack-integer-counter is zero or a
source character is a member of the truth set. For further information on truth sets, see
“TRUTHSET Declaration” in Section 3, “Declarations.”

Example of <source> FOR <count part> UNTIL IN <truth set table>

REPLACE P BY Q FOR N:12 UNTIL IN ALPHA8

Q u’ *’$1234u
p=r, *¢v (and N = 4)

Other Source Parts

< pointer-valued attribute>

The string of characters that forms the value of the pointer-valued attribute is copied

to the location indicated by the stack-destination-pointer. The string of characters

is formatted in the destination array row in a form suitable to serve in a replace
pointer-valued attribute statement that assigns a value to the same attribute. The
character string ends with an EBCDIC period (8"."). For example, if P is a pointer
identifier and F1 and F2 are file identifiers, then the following sequence of statements is
valid:

REPLACE P BY F1.TITLE;
REPLACE F2.TITLE BY P;

All pointer-valued attributes have a character size of eight bits. At run time, if the
destination pointer does not also have a character size of eight bits, the program is
discontinued with a fault.

If a pointer-valued attribute appears as the source part in a REPLACE statement, a

call is made on an operating system procedure to perform this part of the REPLACE
statement.

8600 0098-000 4-127

Statements

<string expression>

When a string expression appears as the source part in a REPLACE statement, it is
evaluated and stored in a pool array. The stack-source-pointer is initialized to point
to the first character of the string in the pool array. The entire string is copied to the
destination.

Example of String Expression

The following example copies the EBCDIC string ABCDEFG to the location pointed to

by P

STR

:= "ABCDEFG";

REPLACE P BY STR;

Examples of REPLACE Statement

4-128

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

PTR

PTR:

PTR

PTR

PTR

PTR:

PTR

PTR

PTR:

PTR

BY "A"

PTR BY "*" FOR 75

BY ITEM

BY (4"@3").[7:48] FOR 1
BY " " FOR N WORDS

PTR BY PST FOR 18

BY PST:PST FOR NUM WORDS
BY PINFO WITH PIC

PTR BY PST WHILE NEQ " "

BY PST WHILE IN ALPHA

P BY X FOR * DIGITS

P BY X FOR 5@ NUMERIC

P BY X FOR * NUMERIC

PTR

PTR

PTR:

PTR

BY PST WHILE IN MYTRUTHTABLE
BY PST UNTIL = ","
PTR BY PST:PST UNTIL IN ALPHA8

BY PST FOR THELENGTH WHILE > "@"

8600 0098-000

Statements

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

REPLACE

PTR BY PST FOR LEFT:25 WHILE IN ACCEPTABLE
PTR BY PST FOR 126 UNTIL NEQ " *

PTR BY PST FOR M:N UNTIL IN ALPHA

PTR:PTR BY SUMTOTAL FOR 6 DIGITS, "."

PTR BY FYLE.TITLE

PTR BY PST:PST FOR L WITH XLATTABLE

PTR BY STR

PTR BY SARRAY[4,J]

P BY SI || S2

P BY PTR:PTR FOR 14

P BY TAKE(S,2) || SA[4]

P BY HEAD(S,ALPHA)

REPLACE FAMILY-CHANGE Statement

The REPLACE FAMILY-CHANGE statement adds stations to, or deletes stations from,
the family of an open, remote file.

<replace family-change statement>

— REPLACE —<family designator>— BY —<up or down>—<simple source>—]

<family designator>

—<file designator>— . — FAMILY |

<up or down>

Tt !

<simple source>

—E<string Titeral |
<pointer expr‘ession>J

The file designator specifies the file whose FAMILY file attribute is to be changed. For
more information on the file designator, see “SWITCH FILE Declaration” in Section

3, “Declarations.” If a station is to be added to the family, <up or down> is *+. Ifa
station is to be deleted from the family, <up or down> is *~. The simple source specifies

8600 0098-000

4-129

Statements

the title of the station involved. Because the simple source is a value for a pointer-valued
attribute, its value must end with a period (.). For more specific information, refer to
“REPLACE POINTER-VALUED ATTRIBUTE Statement” later in this section.

Specification of Valid Stations

If the simple source does not reference a valid station title, as specified for the current
network in the Network Definition Language II (NDLII) description, then the
REPLACE FAMILY-CHANGE statement has the following effects:

o <file designator > .FAMILY is unchanged.

o <file designator > .ATTERR is given the value TRUE, and < file designa-
tor > .ATTYPE is set to the appropriate value.

e An appropriate error message is displayed on the Operator Display Terminal (ODT).

e The program continues.

If <up or down> is *— and the simple source specifies a valid station as defined by the
current NDLII description, but the specified station is not currently a member of the
family, then the REPLACE FAMILY-CHANGE statement makes no change to the
specified family. No error condition is indicated (such a situation is not considered to be
an error) and control passes to the next statement of the program.

If, after execution of a REPLACE FAMILY-CHANGE statement, the remote file is
closed with release and later reopened, the family reverts to its NDLII-specified value.
However, if the remote file is closed with retention and later reopened, the family retains
its changed value.

When the REPLACE FAMILY-CHANGE statement is executed, a call is made on an
operating system procedure to perform the desired function.

Examples of REPLACE FAMILY-CHANGE Statement

The following example adds the station with the title "ACCT7" to the family of the
remote file NETWORK.

REPLACE NETWORK.FAMILY BY *+ "ACCT7."

The following example deletes the station with the title given by the pointer
STATIONNAMEPTR from the family of the remote file DATACOLLECTORS.

REPLACE DATACOLLECTORS.FAMILY BY *- STATIONNAMEPTR

REPLACE POINTER-VALUED ATTRIBUTE Statement

The REPLACE POINTER-VALUED ATTRIBUTE statement changes the value of a
pointer-valued attribute.

4-130 8600 0098-000

Statements

<replace pointer-valued attribute statement>

— REPLACE —<pointer-valued attribute>— BY >

+—=<simple source> |
—E<poi nter-valued attri bu'ce>—J

<pointer-valued attribute>

<pointer-valued file attribute !
E<pointer‘-va1 ued task attribute>—
<string-valued library attribute>—

<pointer-valued file attribute>

—=<file designator . >
I——<attr‘ibute parameter specifi cation>—]

s—<pointer-valued file attribute name =

L (—<arithmetic variable>—) l

The attribute error number returned from the operating system can be captured in the
< arithmetic variable>.

<pointer-valued task attribute>

—<task designator>— . —<pointer-valued task attribute name>———]

<pointer-valued task attribute name>

ACCESSCODE |
BACKUPPREFIX —
CHARGECODE —
FILECARDS ——
NAME ————
USERCODE ———

<string-valued library attribute>

—<1ibrary identifier>— . —<string-valued library attribute name>——

When the REPLACE POINTER-VALUED ATTRIBUTE statement is executed, a call is
made on an operating system procedure to perform the desired function.

Specification of the Simple Source

The simple source specifies the string of characters that is to become the new value of
the pointer-valued attribute.

If the simple source is a string literal, the last character of the string literal must be a
period (.). The effective part of the string literal is terminated by the first period in the
string. A maximum string length is associated with each pointer-valued attribute. If the
effective part of the string literal has a string length that is greater than the maximum
length allowed for the pointer-valued attribute, then the new value of the pointer-valued
attribute is the value of the string literal truncated on the right to the required length.

8600 0098-000 4-131

Statements

If the simple source is a pointer expression, the pointer expression must point to the
string of characters that is to become the new value of the pointer-valued attribute.
Starting with the first character pointed to by the pointer expression, characters are
copied as the new value of the pointer-valued attribute until a period is encountered, the
maximum number of characters for the attribute are copied, or the end of the array row
is encountered. The last case results in a run-time error.

If a pointer-valued task attribute is used as the destination and the source is a
pointer-valued attribute, the source attribute and the destination attribute must be the
same attribute. If a pointer-valued file attribute is used as the destination, the source
must be a simple source. If a string-valued library attribute is used as the destination,
the source can be either a simple source or another string-valued library attribute.

Examples of REPLACE POINTER-VALUED ATTRIBUTE Statement

In the following example, the TITLE attribute of file FYLE is assigned
"MASTER/PAYROLL.".

REPLACE FYLE.TITLE BY "MASTER/PAYROLL."

In the following example, the NAME attribute of the task TSK is assigned
"SECOND/STACK.".

REPLACE TSK.NAME BY "SECOND/STACK."

In the following example, the NAME attribute of task T is assigned the value of the
NAME attribute of task TS.

REPLACE T.NAME BY TS.NAME

In the following example, the NAME attribute of the task T'SK is assigned the value of
the NAME attribute of the task TPARTNER.

REPLACE TSK.NAME BY T.PARTNER.NAME
In the following example, the INTNAME attribute of library L is assigned "INTLIB.".
REPLACE L.INTNAME BY "INTLIB."

In the following example, the TITLE attribute of library LIB_A is assigned the value of
the TITLE attribute library LIB B.

REPLACE LIB_A.TITLE BY LIB_B.TITLE

RESET Statement

4-132

The RESET statement sets the happened state of the designated event to FALSE (not
happened).

8600 0098-000

Statements

<reset statement>

— RESET — (—<event designator>—) |

The RESET statement does not change the status of any tasks waiting on the event.

- WAIT and WAITANDRESET Statements
If a RESET statement is used after a WAIT statement to restore the happened state of
an event to FALSE (not happened), a period of time exists during which another task
could cause the event. For this reason, a WAITANDRESET statement might be more
useful than a WAIT statement followed by a RESET statement.
Examples of RESET Statement

The following example sets the happened state of the event EVNT to FALSE (not
happened).

RESET (EVNT)

The following example sets the happened state of the event designated by
EVNTARAY[INDX] to FALSE (not happened).

RESET (EVNTARAY [INDX])

RESIZE Statement

The RESIZE statement modifies the size of the designated array row, subarray, or array.

Note: The RESIZE statement cannot be used for task arrays.

<resize statement>

— RESIZE — (—E<array row resize parameters) |
<special array resize panr‘ameters>—l

The RESIZE statement changes the upper bounds of the appropriate dimensions of an
array. The resize parameters designate the array row or rows to be changed and the
new sizes of those rows.

Note that if the RESIZE statement is used on other than the highest-order dimension of
an array, the array can contain subarrays of different sizes.

When the initial size of an array is to be chosen dynamically by a program, the most
efficient technique is to declare the array with a variable upper bound, the bound being a
global variable or a parameter computed before the procedure or block is entered.

Note: When a procedure reference array is imported from a library, it
cannot be deallocated using the DEALLOCATE statement. An
attempt to deallocate an imported procedure reference array results in
a compile-time or run-time error:

8600 0098-000 4-133

Statements

There are two forms of the RESIZE statement: the <array row resize parameters>
form and the < special array resize parameters> form.

Array Row Resize Parameters

4-134

<array row resize parameters>

——-E<array row T —<new size
<procedure reference array row>

L > RETAIN
_E DISCARD
PAGED

<new size>

—<arithmetic expression |

In this form of RESIZE statement, the first parameter is an array row, a one-dimensional
array whose elements are of some array class: BOOLEAN, COMPLEX, DOUBLE,
INTEGER, REAL, or a character type.

The RESIZE statement causes the size of the designated row to be modified as specified
by the new size. The resize options have the following effects:

Option Effect

DISCARD The current contents of the array row are discarded; the new contents of the
array row are undefined.

RETAIN As much of the current information in the array row is retained as fits in the
new size. If the new size is smaller than the old, data in the lost elements is
discarded. If the new size is larger, the data in the new elements is undefined.

PAGED The resized array is to be a paged (segmented) array. The new paged array is
considered to be touched (referenced) after the resize is complete. PAGED
also implies RETAIN. PAGED is not valid for a procedure reference array row
because a procedure reference array cannot be segmented.

If no third parameter appears, DISCARD is assumed.

RETAIN is typically used for an array being employed as a stack. When the array is not
large enough to accept a push of the next entry, the array can be enlarged without losing
the data already present. If no data has been assigned to the array, or if the old data is
no longer relevant, DISCARD is more efficient for the resize of an array row.

It is possible to resize a referenced paged array if the system is running the operating
system. An array is referenced, or touched, if a statement referring to the array has
been executed in the block. An array row is paged if its declared length exceeds the
array segmentation start size, unless it is declared LONG or DIRECT. The array
segmentation start size is typically 1024 words. The start size can be displayed or set
with the system command SEGARRAYSTART. Note that if an array is initially declared

8600 0098-000

Statements

shorter than the array segmentation start size, then it is unpaged, and resizing it larger
without using the PAGED option does not cause it to become paged.

An array that is initially declared to be shorter than the array segmentation start size
and is, therefore, an unpaged array can be resized to become a paged array by using the
PAGED option. The new paged array is considered to be touched after the resize is
complete.

The PAGED option is useful in cases where the desired size of a paged array is not
known at the time the array is declared. The PAGED option offers an alternative

to declaring an array larger than the array segmentation start size and avoiding
references to the array until the desired size is known. The PAGED option achieves
the same results and makes errors less likely. The only restriction on the use of the
PAGED option is that the new size of the resized array must be larger than the array
segmentation start size.

If the new array row size is less than the old, any pointer variable that now points
beyond the end of the array row is set to the uninitialized state.

The value of the new size is integerized with rounding, if necessary, to specify a new size,
Sn, which is interpreted as a number of elements for the resized array row. If the array
row is an original array, then its size is changed to Sn. If the array row is a referred
array and the original array has a different element size, the original array is resized to
have just enough elements to hold Sn elements of the referred array row.

When an original array is resized, any referred arrays with element widths different
from those of the original array are assigned the size they would have had if the original
array had been declared at its new size and the referred array had been created from the
original by array equivalence or array reference assignment.

When a resize of a referred array causes a resize of an original array, the size calculations
are performed with the element widths Wn for the resized referred array and Wo for the
original array. The new size of the original array, So, is the following:

So := (Sn * Wn + Wo - 1) DIV Wo

So * Wo can exceed Sn * Wn. The new size, Sr; of any referred array with element width
Wr that is based on the resized original array is the following:

Sr := (So * Wo) DIV Wr

Wr is equal to Wn for the explicitly resized referred array, and the net calculation is the
following, which can exceed Sn.

Sr := (((Sn * Wn + Wo - 1) DIV Wo) * Wo) DIV Wn

The explicitly resized array row can be slightly larger than requested, if the original
array has a wider element width. For example, if arrays RA and EA are declared as
follows then EA contains 36 elements:

REAL ARRAY RA[8:5];
EBCDIC ARRAY EA[@] = RA;

8600 0098-000 4-135

Statements

If the statement RESIZE(EA,50,RETAIN) is executed, the original array, RA, is resized
to a new size of 9 words, calculated from the following:

So=(50*8+48 - 1) DIV 48 =9
The actual new size of the referred array, EA, is then 54, calculated from the following:
Sr = (9 * 48) DIV 8 = 54

Because the second calculation truncates, Sr * Wr can be less than So * Wo, just as with
array row equivalence or array reference assignment.

For example, consider the following statement, where H is a hexadecimal array row:
RESIZE(H,29,DISCARD)
The following table shows the size assigned to referred arrays for several combinations of

referred and original classes. The diagonal of the table shows the size assigned to each
original.

Referred
Original Hexadecimal EBCDIC Real Double
Hex 29 14 2 1
EBCDIC 30 15 2 1
Real 36 18 3 1
Double 48 24 4 2
Special Array Resize Parameters
<special array resize parameters>
<multidimensional array designator>— , —<new size>— , —— >
—E<event array designator>———

4-136

<string array designator>———

»— RETAIN |

In this form of RESIZE statement, the first parameter is an array whose elements do not
have an array class. Events and strings are special classes of objects. A multidimensional
array can be considered an array of arrays.

The RESIZE statement sets the size of the parameter array to the new size, unless
the new size is less than the existing size, in which case the RESIZE statement is
ignored and the warning message ATTEMPTED DOWNWARD RESIZE IGNORED is
generated.

8600 0098-000

Statements

If the first parameter includes a subarray selector, the dimension corresponding to the
first asterisk (*) is changed; otherwise, the first dimension of the designated array is
changed. Whenever a higher-order dimension of an array is enlarged, new subarrays are
created with the same dimensions as in the original ARRAY declaration. Any existing
subarrays are unaffected by the resize operation. For example, given the declaration
DOUBLE ARRAY A[1:2,0:5,-4:4] the statement RESIZE(A[1,*,*],8, RETAIN) increases
the size of A[1,*,*] from 6 to 8 (new bound pair = 0:7). The statement causes array
rows A[1,6,*] and A[1,7,*] to be established as one-dimensional double arrays of size 9,
even if all existing rows of A had already been resized to some other size.

Multidimensional Array Designator
A multidimensional array designator is an array designator or a procedure reference
array designator with dimensionality greater than one; that is, a multidimensional array
name or procedure reference array identifier, optionally suffixed by a subarray selector
with at least two asterisks (*).
If the array to be resized is specified by a multidimensional array designator, then the
new subarrays have the same type as the original array; their contents are undefined.
Event Array Designator
If the array to be resized is specified by an event array designator, then enlarging the
low-order dimension creates new events with the happened state equal to FALSE (not

happened) and the available state equal to TRUE (available); existing elements are
unaffected.

String Array Designator

If the array to be resized is specified by a string array designator, then enlarging the
low-order dimension creates new empty strings; existing elements are unaffected.

Run-Time Error Messages

When an illegal resize is attempted on an array, one of the following messages is
displayed at run time:

BAD RESIZE/DEALLOCATE - NOT AN ARRAY

An attempt was made to resize something that is not an array, such as an uninitialized
array reference.

BAD RESIZE/DEALLOCATE - ARRAY NOT MULTI-DIMENSIONAL

An attempt was made to resize a one-dimensional array when a multidimensioned array
was expected.

8600 0098-000 4-137

Statements

BAD RESIZE/DEALLOCATE - RESIZING IMMOVABLE INSTACK ARRAY

An attempt was made to resize an immovable instack array.

BAD RESIZE/DEALLOCATE - RESIZING READONLY ARRAY

An attempt was made to resize a value array.

ILLEGAL DOWNWARD RESIZE ON A PAGED ARRAY
An attempt was made to resize a paged array to a length smaller than its initial length.

A segmented array that has been referenced can be resized only on a system that runs
the operating system.

RESIZE ABORTED - INSUFFICIENT MEMORY

The job performing the resize has been terminated because there is insufficient memory
to complete the resize.

BAD RESIZE/DEALLOCATE - RESIZE PAGED TO INVALID LENGTH

An attempt was made to resize a long array and make it a paged array where the new
size is not greater than the current size.

Examples of RESIZE Statement

4-138

In the following example, the size of one-dimensional array A is changed to NEWSZ, and
the previous contents of A are discarded.

RESIZE(A,NEWSZ,DISCARD)

In the following example, the size of one-dimensional array ARAY is changed to NEWSZ,
and ARAY is changed to a paged array. The contents of ARAY are retained.

RESIZE (ARAY,NEWSZ,PAGED)
In the following example, the size of one-dimensional array INPUTDATA is changed
to equal the value of the MAXRECSIZE attribute of file F. The previous contents of
INPUTDATA are discarded.

RESIZE(INPUTDATA,F.MAXRECSIZE,DISCARD)

In the following example, the size of the specified row of array A is changed to 5, and the
previous contents of that row are discarded. The other rows of A are not affected.

RESIZE(A[2,*],5,DISCARD)

In the following example, the size of one-dimensional array A is increased by 100
elements, and the previous contents of A are retained.

8600 0098-000

Statements

RESIZE(A,SIZE(A)+109,RETAIN)

In the following example, the size of the one-dimensional event array EVENTARRAY is
changed to 20, and the previous contents of the array are retained. Note that RETAIN
must be specified for event arrays.

RESIZE (EVENTARRAY,2d,RETAIN)

In the following example, the size of the second dimension of array STUFF is changed to
M. New array rows are created for the new size of the second dimension. The previous
contents of the array are retained.

RESIZE(STUFF[I,*,*],M,RETAIN)

In the following example, the size of the specified row of array STUFF is changed to N,
and the previous contents of that row are retained.

RESIZE(STUFF[I,J,*],N,RETAIN) % RESIZE an array row

RESPOND Statement

The RESPOND statement is used to enable a program to issue a positive or negative
response to an offer for subfile dialog establishment or a request for orderly termination.
Networks that support this function can be found in the A Series I/O Subsystem
Programming Guide. The program is notified of requests for dialog establishment or
termination through the CHANGEEVENT and FILESTATE attributes.

<respond statement>

— RESPOND — (—<respond file part>— , —<respond options>—) ——]

<respond file part>

—<file designator i
L [SUBFILE —<subfile index>—] —

<respond options>

—<respondtype option
L , —<associateddata op’cion>J

<respondtype option>

REJECTOPEN

— RESPONDTYPE — = ~E ACCEPTOPEN |
ACCEPTCLOSE

The RESPOND statement can be used only when the KIND of the file designator is
PORT and only when the SERVICE file attribute is set to a network type that supports
this feature.

8600 0098-000 4-139

Statements

RESPOND Statement Options

The subfile index, if present, specifies the subfile to which the RESPOND statement
applies. If 0 (zero) is specified, the RESPOND is invoked on all subfiles in a FILESTATE
that are awaiting a response.

The RESPONDTYPE option indicates the type of the response. The type of the
response must be consistent with the FILESTATE. The ACCEPTOPEN and
ACCEPTCLOSE options indicate that a positive response is to be generated and issued
for an open indication or close indication received from the correspondent application.
The REJECTOPEN option indicate that a negative response is to be generated and
issued for an open indication.

The ASSOCIATEDDATA option can be used to send associated data to the
correspondent endpoint with the response. If a string expression is used,

the length of the expression is calculated automatically and used for the
ASSOCIATEDDATALENGTH value. Otherwise, the ASSOCIATEDDATALENGTH
option indicates how many characters are to be sent as the ASSOCIATEDDATA value.

If the ASSOCIATEDDATA value is of type HEX, the ASSOCIATEDDATALENGTH
option indicates the number of HEX characters, otherwise the number of EBCDIC
characters. If the ASSOCIATEDDATALENGTH is not a single-precision integer it is
integerized.

The RESPOND statement can be used as an arithmetic function. It returns the same
values as the file attribute AVAILABLE. For a description of these values, see the

A Series File Attributes Programming Reference Manual. If the result of this statement
is not interrogated by the program, the program terminates if the respond action fails.

Examples of RESPOND Statement

4-140

The following program responds affirmatively to a request to close from the
correspondent endpoint for the subfile of port file FILEID.

RESPOND (FILEID, RESPONDTYPE = ACCEPTCLOSE)

The following program responds to an offer for subfile I on port file FILEID by accepting
the offer.

RESPOND (FILEID [SUBFILE I], RESPONDTYPE = ACCEPTOPEN)

The following program responds to an offer for subfile 1 on port file FILEID by rejecting
the offer. The associated data that is stored in the string STR is sent with the response.

RESPOND (FILEID [SUBFILE 1], RESPONDTYPE = REJECTOPEN,
ASSOCIATEDDATA =STR)

The following program responds to an offer for subfile I on port file FILEID by accepting

the offer. Twelve characters of associated data are taken from the array RA, beginning
at index 0, and are sent with the response.

8600 0098-000

Statements

RESPOND (FILEID [SUBFILE I], RESPONDTYPE = ACCEPTOPEN,
ASSOCIATEDDATALENGTH = 12, ASSOCIATEDDATA = RA [¢])

REWIND Statement

The REWIND statement causes the designated file to be closed and the file buffer areas
to be returned to the system.

<rewind statement>

— REWIND — (—<file designator>—) |

Effects on Designated Files

If the file is a paper tape or magnetic tape file, it is rewound. For disk files, the record
pointer is set to the first record of the file. For more information on the file designator
option, see “SWITCH FILE Declaration” in Section 3, “Declarations.”

Card reader, card punch, and line printer units are released from program control.
When the REWIND statement is used for a magnetic tape file that is positioned past the
first reel of a multireel file, the second and subsequent reels are released from program
control. Other kinds of units remain under program control.

For paper tape files, the REWIND statement can be used only on input.

For random access files, if the file is to be reused immediately, the statement
SEEK(<file designator>[0]) positions the file at its first record while avoiding the

overhead of closing the file and then reopening it. For more information, refer to “SEEK
Statement” later in this section.

Example of REWIND Statement

In the following example, if FILEA is a disk file, the file is closed and the record pointer
is set to the first record of the file. If FILEA is a magnetic tape file, the file is closed and
the tape is rewound.

REWIND (FILEA)

RUN Statement

The RUN statement initiates a procedure as an independent program.

<run statement>

— RUN —<procedure identifier T >
<actual parameter par“l:>——I

s— [—<task designator>—] |

8600 0098-000 4-141

Statements

Initiating Procedures

Initiation of a procedure as an independent program consists of setting up a separate
stack, passing any parameters (call-by-value only), and beginning the execution

of the initiated procedure. For more information on the procedure identifier, see
“PROCEDURE Declaration” in Section 3, “Declarations.”

The initiating program continues execution, and both the initiated procedure and the
initiating program run in parallel. The initiated procedure must be compiled separately
and declared EXTERNAL in the initiating program.

A procedure initiated by a RUN statement, as opposed to a PROCESS statement,

is independent of the initiating program. No critical block exists for the initiated
procedure, and the initiating program can finish processing while the external procedure
continues running.

The contents of the designated task are copied by the operating system so that

the initiated procedure has its own task variable. Before initiation, the values

of the task attributes of the task, such as COREESTIMATE, STACKSIZE, and
DECLAREDPRIORITY, can be used to control the execution of the procedure. For
information about assigning values to task attributes, refer to <arithmetic task
attribute > under “Arithmetic Assignment,” <Boolean task attribute> under
“Boolean Assignment,” and “Task Assignment” earlier in this section. For information
about the task designator, see “TASK and TASK ARRAY Declarations” in Section 3,
“Declarations.”

Because array and file parameters cannot be call-by-value, procedures with array or file
parameters cannot be invoked with a RUN statement. Also, a procedure that hasa
pointer or string as a parameter, whether or not it is specified as call-by-value, cannot be
invoked with a RUN statement.

If the procedure identifier is a system supplied process, such as an intrinsic, the library
GENERALSUPPORT must be declared using a library entry point specification. The
procedure identifier must be declared in the program or the syntax error PROCEDURE
MUST BE USER DECLARED results.

Examples of RUN Statement

4-142

The following example invokes procedure SIMPL, which has no parameters, as an
independent program. The task T'SK is copied by the operating system for SIMPL to
use as its task variable.

RUN SIMPL [TSK]
The following example invokes procedure DOOER as an independent program, passing
the four parameters X, Y, Z, and the string literal "ABCD". Though the value "ABCD"
appears as a string literal, it is passed to a call-by-value REAL parameter. The task
designated by TSKARRAY[INDEX] is used by DOOER as its task variable.

RUN DOOER(X,Y,Z,"ABCD") [TSKARRAY[INDEX]]

8600 0098-000

Statements

SCAN Statement

The SCAN statement examines a contiguous portion of character data in an array row,
one character at a time, in a left-to-right direction.

<scan statement>

— SCAN —<source>—<scan part |

For more information on <source> and <scan part>, see “REPLACE Statement”
earlier in this section.

The source is always a pointer expression, and at the completion of the SCAN statement
the final value of the stack-source-pointer can be stored in a pointer variable.

The scan part is basically a testing operation that determines when the SCAN statement
is to stop. The scan part can specify that scanning is to stop after a given number of
source characters, or when a source character fails or passes a specified test.

The count part is used in a scan part when a limited number of source characters are

to be scanned. A residual count can be used, in which case the value of the remaining
count is stored in the specified simple arithmetic variable at the completion of the SCAN
statement.

The relational operator in the condition option specifies the comparison to be made
between the arithmetic expression and the source characters. The arithmetic expression
can be of any valid form, but most often takes the form of a one-character string literal.

Before the scan operation begins, the arithmetic expression in the condition option is
evaluated and the value of bits [7:8], [5:6], or [3:4] (depending on the character size of
the source pointer) of the arithmetic expression is assigned to the stack-source-operand.

Scan Part Combinations

The formal syntax of the <scan part> can be reduced to the following combinations:

WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>

WHILE IN <truth set table>
UNTIL IN <truth set table>

FOR <count part> WHILE <relational operator> <arithmetic expression>
FOR <count part> UNTIL <relational operator> <arithmetic expression>

FOR <count part> WHILE IN <truth set table>
FOR <count part> UNTIL IN <truth set table>

Each of these combinations is discussed in the following separate sections. Because
all combinations of the SCAN statement begin with <source>, each description of

8600 0098-000 4-143

Statements

a combination begins with the assumption that the stack-source-pointer has been
initialized to the source pointer.

The scan parts that contain a count part examine, or scan, source characters until either
the number of characters specified by the arithmetic expression in the count part have
been examined or a source character fails or passes the test specified by the condition
syntax. The scan parts that do not contain a count part examine source characters

until either a source character fails or passes the test specified by the condition syntax

or the end of the array is reached. If the end of the array is reached, the program is
discontinued with a paged (segmented) array error.

Scan Parts Without Count Parts

WHILE <relational operator> <arithmetic expression>

Characters are scanned as long as they pass the test. For example, the following
statement scans the characters pointed to by P as long as a period (.) is not encountered:

SCAN P WHILE NEQ "."

UNTIL <relational operator> <arithmetic expression>
Characters are scanned until a source character passes the test. For example, the
following statement scans the characters pointed to by P until a blank character is
encountered:

SCAN P:P UNTIL = " "

P is updated to point to the blank character that passed the test.

WHILE IN <truth set table>
Characters are scanned as long as they are members of the truth set. For example, the
following statement scans the characters pointed to by P as long as they are members of
the truth set ALPHAS:
SCAN P:P WHILE IN ALPHA8

P is updated to point to the first character that is not a member of ALPHAS.

UNTIL IN <truth set table>
Characters are scanned until a source character is found that is a member of the truth
set. For example, the following statement scans the characters pointed to by P until a

member of the truth set ALPHAS is encountered:

SCAN P:P UNTIL IN ALPHA8

4-144 8600 0098-000

Statements

P is updated to point to the first character that is a member of ALPHAS.
Scan Parts with Count Parts

FOR <count part> WHILE <relational operator> <arithmetic expression>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character as long as the stack-integer-counter is not zero and a source character
passes the test. For example, the following statement scans the first 20 characters
pointed to by P as long as a period (.) is not encountered:

SCAN P FOR N:2@ WHILE NEQ "."

Because N reflects how many of the 20 characters have yet to be scanned, it can be used
to determine whether a period was encountered and, if so, where the period is.

FOR <count part> UNTIL <relational operator> <arithmetic expression>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character until either the stack-integer-counter is zero or a source character
passes the test. For example, the following statement scans the first N characters
pointed to by P until the first nonblank character is encountered:

SCAN P:P FOR N:N UNTIL NEQ " "

If, when the statement is invoked, the value of N is the number of characters between P
and the end of the array row, then because both P and N are updated in this statement,
at the completion of the statement, N gives the number of characters between the
updated P and the end of the array row.

FOR <count part> WHILE IN <truth set table>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character as long as the stack-integer-counter is not zero and source characters
are members of the truth set. For further information on truth sets, see “TRUTHSET
Declaration” in Section 3, “Declarations.”

For example, the following statement scans the first 20 characters pointed to by P as
long as they are members of the truth set ALPHAS:

SCAN P:P FOR N:2@ WHILE IN ALPHA8
P is updated to point to the first character that is not a member of ALPHAS, or, if all
of the 20 characters scanned are members of ALPHAS, to the character that is 20

characters beyond the initial position of P. N is assigned the number of characters yet to
be scanned.

8600 0098-000 4-145

Statements

FOR <count part> UNTIL IN <truth set table>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character until either the stack-integer-counter is zero or a source character is
a member of the truth set. For further information on truth sets, see “TRUTHSET
Declaration” in Section 3, “Declarations.”

For example, the following statement scans the first 20 characters pointed to by P until a
member of the truth set ALPHAS is encountered:

SCAN P:P FOR 2@ UNTIL IN ALPHA8
P is updated to point to the first character that is a member of ALPHAS, or, if none

of the 20 characters scanned are members of ALPHAS, to the character that is 20
characters beyond the initial position of P.

Examples of SCAN Statement

SCAN PTR WHILE = " "

SCAN PTR UNTIL NEQ 48"@g"

SCAN PTR:PTR WHILE IN ALPHA

SCAN PTR UNTIL IN ALPHA8

SCAN PTR:PTR WHILE IN ACCEPTABLE[]

SCAN PTR FOR 58 WHILE > "Z"

SCAN PTR:PTR FOR X:8@ UNTIL = "."

SCAN PTR FOR RMNDR:96@ WHILE NEQ 48"1D"
SCAN PTR:PTR FOR ZED:ZED WHILE IN ALPHA8

SCAN PTR FOR 8@ UNTIL IN GOODSTUFF[5]

SEEK Statement

4-146

The SEEK statement positions the record pointer for the designated file at the specified
record. This record is read or written by the next serial I/O operation.

<seek statement>
— SEEK — (—<file designator>— [—<record number>—] —) ——

8600 0098-000

Statements

<record number>

—<arithmetic expression |

A serial I/O operation is a READ statement or WRITE statement that does not include a
record number in the record number or carriage control part. The SEEK statement does
not affect any nonserial I/O statements. The value of the record pointer is not saved
when the file is closed.

SEEK Statement as a Boolean Function
The SEEK statement can be used as a Boolean function. When the statement fails,
the value TRUE is returned. When the statement is successful, the value FALSE is
returned. Specifically, the SEEK statement returns a value identical to that returned by
the file attribute STATE. For more information, refer to the discussion of the STATE
attribute in the A Series File Attributes Programming Reference Manual.

The file designator must not reference a direct file or a direct switch file.

When the record number is less than one, the record pointer points at the first record.

Example of SEEK Statement

The following example positions the record pointer of file FILEA to record number
X+ 2*Y

SEEK(FILEA[X+2*Y])

SET Statement

The SET statement sets the happened state of the designated event to TRUE
(happened).

<set statement>

— SET — (—<event designator>—) =

SET Statement Options

For more information on the event designator, see “EVENT and EVENT ARRAY
Declarations” in Section 3, “Declarations.” The SET statement does not activate any
tasks waiting on the event.

To set the happened state of an event to TRUE (happened) and activate the tasks

waiting on the event, use the CAUSE statement. For more information, see “CAUSE
Statement” earlier in this section.

8600 0098-000 4-147

Statements

Examples of SET Statement

The following example sets the happened state of EVNT to TRUE (happened).
SET(EVNT)

The following example sets the happened state of the event designated by
EVNTARAY[INDX] to TRUE (happened).

SET (EVNTARAY [INDX])

SORT Statement

The SORT statement invokes the sort intrinsic, which provides a means for designated
data to be sorted and placed in a file or returned to a procedure.

<sort statement>

— SORT — (—-<output option>— , —<input option>— , >

s—<number of tapes>— , —<compare procedure>— , —<record length>——

>)
I—<size speciﬁcations>—] L—<restar‘t specifications>—'

The data to be sorted is indicated by the input option. The output option indicates
where the sorted data is to be placed. The order in which the data is sorted is
determined by the compare procedure.

Output Option

4-148

<output option>

—l:<f1' le designator |
<output procedure>—-|

<output procedure>

—<procedure identifier |

If a file designator is specified as the output option, the sort intrinsic writes the sorted
output to this file. When sorting is completed, the sort intrinsic closes the file. If the file
is a disk file for which the file attribute SAVEFACTOR has a nonzero value, it is closed
and locked. The output file must not be open when it is passed to the sort intrinsic by
the program.

If an output procedure is specified as the output option, the sort intrinsic calls the output
procedure once for each sorted record and once to allow end-of-output action. This
procedure must be untyped, must not be declared EXTERNAL, and must have two
parameters. The first parameter must be a call-by-value Boolean variable, and the
second parameter must be a one-dimensional array with a lower bound of zero. The
Boolean parameter is FALSE as long as the second parameter contains a sorted record.

8600 0098-000

Statements

When all records are returned, the first parameter is TRUE and the second parameter
must not be accessed.

The following is an example of an output procedure:

PROCEDURE OUTPROC(B,A);
VALUE B;
BOOLEAN B;
ARRAY A[0];
BEGIN
IF B THEN
CLOSE (FILEID,PURGE)
ELSE
WRITE(FILEID,RECSIZE,A[*]);
END OUTPROC;

Input Option

<input option>

—E<f1'1e designator |
<input pr‘ocedur‘e>—J

<input procedure>

—<procedure identifier |

If a file designator is used as the input option, the file supplies input records to the sort
intrinsic. This file is closed after the last record is read. Disk files are closed with regular
close action, and non-disk files are closed with release action. The input file must not be
open when it is passed to the sort intrinsic by the program. The input file cannot be a
file that is declared to be DIRECT.

If an input procedure is used as the input option, the procedure is called to furnish input
records to the sort intrinsic. The input procedure must be a Boolean procedure, must
not be declared EXTERNAL, and must have a one-dimensional array with a lower bound
of zero as its only parameter. This procedure, on each call, either inserts the next record
to be sorted into its array parameter or returns the value TRUE, which indicates the end
of the input data.

When TRUE is returned by the input procedure, the sort intrinsic does not use the
contents of the array parameter and does not call the input procedure again.

The following is an example of an input procedure that can be used when sorting N
elements of array Q:

8600 0098-000 4-149

Statements

BOOLEAN PROCEDURE INPROC(A);
ARRAY A[d];
BEGIN
N := *-1;
IF N GEQ @ THEN
A[@] := Q[N]
ELSE
INPROC := TRUE;
END INPROC;

Note: The sortintrinsic maintains a logical record structure in memory.
Be careful not to exceed the length of the record when manipulating
records; data corruption might occur.

Number of Tapes

<number of tapes>

—<arithmetic expression |

The value of <number of tapes> specifies the number of tape files that can be used, if
necessary, in the sorting process. If the value of the arithmetic expression is zero, no
tapes are used. If the value of the arithmetic expression is between 1 and 3, inclusive,
three tapes are used. If the value of the arithmetic expression is between 3 and 8, the
specified number of tapes are used. If the value of the arithmetic expression is 8 or
more, a maximum of eight tapes are used.

Compare Procedure

4-150

<compare procedure>

—<procedure identifier:

The compare procedure is called by the sort intrinsic to apply the appropriate sort
criteria to a pair of input records. The procedure must be a Boolean procedure, must
not be declared EXTERNAL, and must have exactly two parameters. Each of the
parameters must be a one-dimensional array with a lower bound of zero. Every time two
input records are to be compared, the sort intrinsic calls the compare procedure and
passes the two records to the compare procedure through the array parameters. If the
compare procedure returns TRUE, the record passed to the first array precedes, in the
sorted output, the record passed to the second array. If the compare procedure returns

FALSE, the record passed to the second array precedes the record passed to the first
array.

The following is an example of a compare procedure that can be used to sort arithmetic
data in ascending sequence:

8600 0098-000

Statements

BOOLEAN PROCEDURE CMP(A,B);
ARRAY A,B[@];

BEGIN
CMP := A[@] < B[@];
END CMP;

For alphanumeric comparisons, the following compare procedure can be used to sort data
in ascending sequence:

BOOLEAN PROCEDURE CMP(A,B);
ARRAY A,B[@];

BEGIN
CMP := POINTER(A) LSS POINTER(B) FOR 63
END CMP;

The CMP procedures above return TRUE if the value in A[0] compares as less than the
value in B[0] and return FALSE if the value in A[0] compares as greater than or equal to
the value in B[0]. Therefore, if A[0] is less than B[0], the content of array A is passed to
the output file or procedure before the content of array B, and if A[0] is greater than or
equal to B[0], the content of array B is passed to the output file or procedure before the
content of array A. If either of these compare procedures is used, word zero of the input
records is considered to be the key on which sorting is done.

For the actual comparison, a string relation can be used to compare a string from each
record (according to the EBCDIC collating sequence), or an arithmetic relation can be
used to compare an arithmetic value from each record. The comparison can be done on
one or more fields, called keys, from each record or on the entire record. The manner in
which the comparison is done is specified entirely by the programmer.

Record Length

<record length>

—-<arithmetic expression !

The record length specifies the length, in words or characters (depending on whether
the array parameters of the procedure are word or character arrays, respectively) of
the largest item that is to be sorted. If the value of the arithmetic expression is not
a positive integer, the largest integer that is not greater than the absolute value of
the expression is used; for example, a record length of 12 is used if the expression
has a value of -12.995. If the value of the arithmetic expression is zero, the program
terminates.

Size Specifications

<size specifications>

— , —<memory size> O |
disk sizei:’

, <
_E<pack size

8600 0098-000 4-151

Statements

<memory size>

—<arithmetic expression |

<disk size>

—<arithmetic expression |

<pack size>

— PACK |
|—<ari thmetic expressi on>J

The size specifications allow the programmer to specify the maximum amount of main
memory and disk storage to be used by the sort intrinsic.

The memory size specifies the maximum amount, in words, of main memory that is to be
used. If the memory size is unspecified, a value of 12,000 is assumed.

The disk size specifies the maximum amount, in words, of disk storage that can be used.
If the disk size is unspecified, a value of 600,000 is assumed.

If the pack size is specified, temporary files created by the sort intrinsic have PACK,
instead of DISK, as the value of their FAMILYNAME attribute. For an explanation

of the FAMILYNAME attribute, refer to the A Series File Attributes Programming
Reference Manual. If the arithmetic expression option does not appear in the pack size
element, a value of 600,000 words is assumed.

Restart Specifications

4-152

<restart specifications>

— [— RESTART — = —<arithmetic expression>—] |

The restart specifications allow the sort intrinsic to resume processing at the most recent
checkpoint after discontinuation of a program. The program must provide logic to
restore and maintain variables, arrays, files, pointers, and so forth, which are defined for,
and by, the program. In other words, the program must provide the means to restore
everything that is necessary for the program to continue from the point of interruption.
The restart capability is implemented only for disk sorts.

The sort intrinsic inspects the least significant (rightmost) five bits of the value of the
arithmetic expression in the restart specifications to determine the course of action it
is to take. To control the sort, these bits can be set by the program. The meanings of
these bits are explained in the following table.

8600 0098-000

Statements

Bit

8600 0098-000

Value

Description

The program is restarting a previous sort. The sort intrinsic tries
to open its two disk files and obtain restart information. If it is
successful in obtaining this information, the sort intrinsic tries
to continue from the most recent restart point.

The sort is starting from the beginning. If the sort is restartable,
and previous sort files with identical titles exist, they are
removed and replaced by new sort files.

The program is requesting a restartable sort. The sort intrinsic
saves its two internal files and can be restarted on program
request. If bit 2 is 1, bit 1 is set to 1 by default.

A normal sort is requested, and no sort files are saved (unless
bit 2 is 1, which sets bit 1 to 1 by default).

The program is requesting a restartable sort and desires
extensive error recovery from /O errors. If bit 2 is 1, the sort
intrinsic attempts to backtrack and remerge strings, as
necessary, when /O errors occur during the accessing of either
of the two sort files. To use this option, the program must
provide at least three times as much disk space as required to
contain the input data. If less disk space is provided, the sort
intrinsic emits an error message, changes to restartable-only
mode, and continues the sort without further use of
backtracking capability.

Recovery from internal errors is not requested.

Bit 3 has meaning only if a restartable sort is requested. The
use of this option controls the sort during the stringing phase as
the user input is being read by the sort intrinsic. Use of this bit
determines how the sort restarts (when a restart is requested)
only if the restart occurs while the sort is in the stringing phase.

The program requires that the sort restart at the beginning of
the user input. This restart is the equivalent of starting an
entirely new sort. In case the restarted sort passes from the
stringing phase into the merge phase, it continues from the
merge phase. This bit can be set to 1 during a restart, even if it
is not 1 initially. Once setto 1, it cannot be set to 0 by
subsequent restarts.

The program requires the ability to restart at the last restart
point that occurred during the stringing phase. If the sort is still
in the stringing phase, it skips over the records already
processed and continues from the last restart point. If the sort
is in the merge phase, it continues from the last merge phase
restart point. If bit 3 is 0, the sort is normally less efficient
because more strings are created during the stringing phase.

This bit is reserved for expansion and is not currently used by
the sort intrinsic.

4-153

Statements

Arrays in Sort Procedures

The array parameters used by the input procedure, output procedure, and compare
procedure must be similarly specified. For example, if one procedure declares its
array parameter as an EBCDIC array, then all must declare their array parameters as
EBCDIC arrays.

When character arrays are used in the procedures passed to the sort intrinsic, the record
length parameter is interpreted as a length in characters.

When a pointer expression is used to assign a value to a sort procedure on a non-ASD
system, and the pointer expression points out of the array, it does not cause a segment
array error at run time. This means that you must keep track of the end of the array
within the program to assure the validity of the procedure.

For more detailed information about the sort intrinsic, refer to “SORT” in the A Series
System Software Utilities Operations Reference Manual.

SORT Mode
The combination of the disk size and number of tapes determines the sort mode as
follows:

Number of Tapes Disk Size Sort Mode

NEQO 0 Tape Only

NEQ O NEQ O Integrated-Tape-Disk (ITD)

0 NEQO Disk Only

0 0 Core Only

Examples of SORT Statement

The following example sorts the records of file FILEIN according to compare procedure
COMPARE and writes the sorted data to file FILEQOUT. Three tapes are used in the sort
and the record length is 10.

SORT(FILEOUT,FILEIN,3,COMPARE,19)
The following example sorts the records provided by procedure INPROC according to
compare procedure COMPARER, and writes sorted data out according to procedure
OUTPROC. The number of tapes is given by NUMOFTAPES, and the record size is
given by DSKSZ. A restart specification is given by PARAM.

SORT (OUTPROC, INPROC ,NUMOFTAPES ,COMPARER,DSKSZ) [RESTART = PARAM]

4-154 8600 0098-000

Statements

SPACE Statement

The SPACE statement is used to bypass records in a file without reading those records.

<space statement>

— SPACE — (—<file designator>— , —<arithmetic expression>—) —>

|-—<a<:t1'on labels or finished event>—J

The value of the arithmetic expression determines the number of records to be spaced
and the direction of the spacing. If the value of the arithmetic expression is positive, the
records are spaced in a forward direction; if it is negative, the records are spaced in the
reverse direction.

SPACE Statement as a Boolean Function

The SPACE statement can be used as a Boolean function. When the statement fails,
the value TRUE is returned. When the statement is successful, the value FALSE is
returned. The SPACE statement returns a value identical to that returned by the file
attribute STATE. For more information, refer to the discussion of the STATE attribute
in the A Series File Attributes Programming Reference Manual.

The file designator must not reference a direct file or a direct switch file. For more

information on the file designator see “SWITCH FILE Declaration” in Section 3,
“Declarations.”

Examples of SPACE Statement

The following example spaces file FYLE forward 50 records.

SPACE(FYLE,50)
The following example spaces file FILEID a number of records and a direction given by
the value of N. If an end-of-file condition occurs, the program continues execution with
the statement associated with the label LEOF.

SPACE(FILEID,N) [LEOF]
The following example spaces file FILEID backward 3 records. A value is assigned to B
indicating the success or failure of the spacing. If an end-of-file condition occurs, the

program continues execution with the statement associated with the label LEOF.

B := SPACE(FILEID,-3) [LEOF]

8600 0098-000 4-155

Statements

SWAP Statement

The SWAP statement assigns the value of the variable on the right side of the swap
operator (:=:) to the variable on the left side of the swap operator, and assigns the value
of the variable on the left side of the swap operator to the variable on the right side of
the swap operator.

<swap statement>

<integer variable>— :=: —<integer variable |
<real variable>— :=: —<real variable
<double variable>— :=: —<double variable
<Boolean variable>— :=: —<Boolean variable
<complex variable>— :=: —<complex variable
<array reference variable>— :=: —<array reference variable>—
<pointer variable>— :=: —<pointer variable

<integer variable>

A variable of type INTEGER.

<real variable>

A variable of type REAL.

<double variable>

A variable of type DOUBLE.

Variable Type Matching

The declared types of the variables on either side of the swap operator (:=:) must be
the same. Partial word swaps are not permitted.

Descriptions of the processes of an assignment are found under “ASSIGNMENT
Statement” earlier in this section.

Example of SWAP Statement

This example program uses the SWAP statement to sort a real array.

4-156 8600 0098-000

Statements

BEGIN

FILE REM(KIND=DISK,TITLE="SORT/OUT.",PROTECTION=SAVE);

BOOLEAN SWAP_DONE;

INTEGER I,J;

DEFINE LASTONE = 5;;

INTEGER ARRAY ARY[@:L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>