
Burroughs~

PRICED ITEM

Printed in U.S. America July 1977 5001290

Burroughs ~

B 6800 System

......... RE~•cr ... AN•. A. K.crc ·~ c IVll-'I Ul-'L

Copyright© 1977, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Printed in U.S. America July 1977 5001290

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However. no responsibility. financial
or otherwise. is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/ or additions.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, P.O. Box 4040, El Monte, California 91734,
Attn: Pubiications Department, TIO-West.

B 6800 System Reference Manual

LIST OF EFFECTIVE PAGES

Issue Page Issue Page

Title . Original 7-1 thru 7-33 Original
ii Original 7-34 . Blank
iii . Original 8-1thru8-15 Original
iv . Blank 8-16 Blank
v thru xx.ii . Original 9-1thru9-4 Original
1-1 thru 1-31 Original 10-1 thru 10-8 Original
1-32 . Blank 11-1 thru 11-23 Original
2-1 thru 2-39 Original 11-24 Blank
2-40 . Blank 11-25 thru 11-34 . Original
3-1 thru 3-18 Original 12-1 thru 12-8 Original
4-1 thru 4-55 Original 13-1 thru 13-7 Original
4-56 . Blank 13-8 Blank
5-1thru5-3 Original A-1 thru A-5 Original
5-4 Blank A-6 Blank
5-5 thru 5-67 Original B-1 thru B-6 Original
5-68 Blank C-1 thru C-2 Original
5-69 thru 5-76 Original D-1 thru D-2 Original
6-1thru6-8 Original Index-1 thru Index-14 Original

5001290 iii

Section

2

5001290

B 6800 System Reference Manual

INTRODUCTION

SYSTEM DESCRIPTION
Generai
Scope of This Manual .

TABLE OF CONTENTS

B 6800 Hardware System Organization
B 6800 System Hardware Module Organization .
B 6800 Module Interfaces
B 6800 Central Processing Unit Cabinet
Data Processor Module
Multiplexor Module (IO Processor) . .
Memory Control Module
B 6800 Maintenance Display Processor
Display Control Logic
B 6800 Central Power Supply Cabinet
B 6800 Peripheral Control Cabinet . .

B 6800 System Peripheral Controls .
B 6800 Memory Cabinets . .

B 6800 Operators Display Console
B 6800 Optional Up.its .

DATA REPRESENTATION
General
Internal Character Codes
Number Bases ., . . .
Number Conversion . .

Decimal to Nondecimal
Nondecimal to Decimal
Nondecimal to Nondecimal

Word Types and Physical Word Layouts .
Character Type Words . .
Operands

Single Precision Operand .
Double Precision Operand .
Logical Operands .

Data Descriptors .
Step Index Words
Software Words .
Indirect Reference Words
Program Control Words .
Mark Stack Control Words
Interrupt Parameter Words

Pl Parameter
P3 Parameter . .
P2 Parameter . .

Return Control Words
Program Words (Code Words)
Program Segments and the Segment Descriptor .
Top of Stack Control Words

Page

xx.i

1-1
1-1
1-1
1-1
1-5
1-5
1-7
1-8
1-9

1-10
1-12
1-17
1-17
1-18
1-18
1-21
1-25
1-30

2-1
2-1
2-3
2-3
2-6
2-6
2-6
2-7

2-10
2-10
2-10
2-12
2-13
2-15
2-15
2-18
2-19
2-20
2-23
2-25
2-26
2-27
2-28
2-28
2-32
2-34
2-36
2-37

v

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

3 STACK AND REVERSE POLISH NOTATION 3-1
The Stack 3-1

General . 3-1
Base and Limit of Stack 3-2
Bi-Directional Data Flow in the Stack 3-2

Stack Push Down . 3-2
Stack Push Up . 3-2

Double Precision Stack Operation 3-3
Top-of-Stack Register Conditions 3-3
Stack Adjustments 3-3
Data Addressing 3-5

Data Descriptor 3-5
Presence Bit 3-5
Index Bit 3-5

Invalid Index 3-5
Valid Index 3-5
Read-Only Bit 3-6
Copy Bit 3-6

Reverse Polish Notation 3-6
General 3-6
Simplified Rules for Generation of Polish String 3-6
Polish String 3-8
Rules for Evaluating a Polish String . 3-8
Simple Stack Operation 3-8
Program Structure in Local Memory 3-11
Local Memory Area Allocation 3-12
Stack-History and Addressing-Environment Lists 3-12
Mark Stack Control Word Llnkage 3-12
Stack Deletion 3-12
Relative-Addressing . 3-12

Base of Address Level Segment 3-13
Absolute Address Conversion . 3-13
Multiple Variables with Common Address Couples. 3-13
Address Environment Defined 3-15
Mark Stack Control Word Linkage 3-15

Stack History Summary 3-17
Multiple Stacks and Reentrant Code 3-17

Level Definition 3-17
Reen trance 3-17
Job-Splitting 3-17
Stack Descriptor 3-17
Stack Vector Descriptor 3-18
Presence Bit Interrupt 3-18

4 MAJOR REGISTERS AND CONTROL PANELS 4-1
Display Panels 4-1

Programmers Display Panel 4-1
System Control Panel 4-1
Status D~splay Panel 44

vi

Section

4

5

5001290

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

MAJOR REGISTERS AND CONTROL PANELS (Cont)

Register Di$play Panei . . .
Maintenance Display Panel

Maintenance Display Registers
Display Panel One, Page Zero Logic Signals
Display Panel One, Page One Logic Signals
Display Panel One, Page Two Logic Signals
Display Panel One, Page Three Logic Signals .
Panel 1, Page 4 Logic Signals
Panel 1, Page 5 Logic Signals
Panel 2, Page 0 Logic Signals
Display Panel Two, Page One Logic Signals
Display Panel Two, Page Two Logic Signals
Display Panel Two, Page Three Logic Signals
Panel 2, Page 4 Logic Signals
Panel 2, Page 5 Logic Signals
Display Panel Three, Page Zero Logic Signals
Display Panel Three, Page One Logic Signals .
Display Panel Three, Page Two Logic Signals
Panel 3, Page 3 Logic Signals
Panel 3, Page 4 Logic Signals
Panel 3, Page 5 Logic Signals
Panel 4, Page 0 Logic Signals
Display Panel Four, Page One Logic Signals
Panel 4, Page 2 Logic Signals
Panel 4, Page 3 Logic Signals
Panel 4, Page 4 Logic Signals
Panel 4, Page 5 Logic Signals

Maintenance Processor Control Panel and Display
Maintenance Processor Programmers Display Keyboard
Logic Indicator Lamps

SYSTEM CONCEPT
General
Data Processor

Operator Families
Program Controller

Look Ahead Logic
Integrated Circuit (IC) Memory
Address Adder and Residue Test Logic

Transfer Controller
Stack Registers
Internal Data Transfer Section
Mask and Steering
Mask and Steering Example
Stack Controller

Page

4-10
4-11
4-11
4-27
4-27
4-28
4-29
4-29
4-31
4-33
4-33
4-34
4-36
4-37
4-38
4-39
4-40
441
442

4-44
446
447
4-48
4-48
449
4-49

4-49
4-52
4-55

5-1
5-1
5-1
5-1
5-2
5-5
5-5
5-7
5-7
5-7
5-8
5-8
5-8

5-10

vii

Section

5

viii

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

SYSTEM CONCEPT (Cont)

Arithmetic Controller .
Exponent and Mantissa Adders

Interrupt Controller
Interrupt Parameters
Syllable Dependent Interrupts
Memory Protect Interrupt .

Invalid Operand Interrupt .
Divide by Zero Interrupt .
Exponent Overflow and Underflow Interrupt
Invalid Index Interrupt . .
Integer Overflow Interrupt
Bottom of Stack Interrupt
Presence Bit Interrupt . .
Special Consideration-Presence Bit Interrupts
Data-Dependent Presence Bit Interrupt
Procedure-Dependent Presence Bit Interrupt .
Program Restart
Sequence Error Interrupt . . .
Segmented Array Interrupt
Programmed Operator Interrupt .
Interval Timer Interrupt
Stack Overflow Interrupt .
Confidence Error Interrupt

Operator Independent Interrupts
External Interrupts

I/O Finish, Data Communications, and Status Change Interrupts
Alarm Interrupts

Loop Interrupts
Memory Address Interrupts
Scan Bus Parity Interrupts .
Invalid Address-Local Interrupts .
Stack Underflow Interrupts . .
Invalid Program Word Interrupts.
Memory Address Residue Interrupts
Read Data Multiple Error Interrupts
Invalid Address-Global Interrupts
Global Memory Not Ready Interrupts .
Scan-In Information Error Interrupts
Scan-Out Error Interrupts . . .

General Control Interrupts
Read Data Single Error Interrupts
Read Data Retry Interrupts .
Read Data Check Bit Interrupts
Address Retry Interrupts

Hardware Interrupts

Page

5-10
5-10
5-10
5-10
5-14
5-15
5-15
5-15
5-16
5-16
5-17
5-17
5-17
5-18
5-18
5-18
5-18
5-18
5-19
5-20
5-20
5-21
5-21
5-21
5-21
5-22
5-22
5-23
5-23
5-23
5-24
5-24

. 5-24
5-24
5-25
5-25
5-25
5-25
5-26
5-26
5-26
5-27
5-27
5-27
5-28

Section

5

5001290

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

SYSTEM CONCEPT (Cont)

PROM Card Parity Interrupts
RAM Card Parity Interrupts
Bus Residue Interrupts . .
Adder Residue Interrupts .
Compare Residue Interrupts

String Operators
Memory Controller . . .
Control State/Normal State

Multiplexor Function . . .
Data Processor Scan-In Functions to the Multiplexor
Data Processor Scan-Out Functions to the Multiplexor
Data Processor Scan-Out Functions to External Subsystems .
Multiplexor Scan-In Functions

Interrogate Peripheral Status Multiplexor Function
Interrogate IO Path Multiplexor Function
Read Time of Day Multiplexor Function . .
Read Interrupt Register Multiplexor Function
Interrogate Unit Type Multiplexor Function .
Interrogate IO Path Address Multiplexor Function .
Read Processor Time Counter Multiplexor Function
Read Scratch Pad Word Muitiplexor Function . .
Interrogate IO Path Address Override Multiplexor Function
Read Interrupt Literal Multiplexor Function
Read Interrupt Mask Multiplexor Function

Multiplexor Scan-Out Functions
Set Time of Day Multiplexor Function
Set Interrupt Mask Multiplexor Function .
Set Pseudo Busy Multiplexor Function

Software Aspects of IO Operations in the B 6800 System
Ready Status
Status Change
Input Output Operations . . .

IO Device Numbering System
Initiate Input Output Operation .

IIOWD Format
IOAD Format
IOCW Format

Scratch Pad Memory
Data Buffer Logic
OP Code and Variant Character Generator
Status Vector Control Circuits

Memory Organization . . .
System Memory Interface

Channel A Memory Requestor
Memory Error Detection and Correction

Page

5-28
5-28
5-29
5-29
5-29
5-30
5-30
5-31
5-31
5-31
5-33
5-35
5-35
5-35
5-35
5-37
5-38
5-39
5-39
5-42
5-43
5-45
5-45
5-45
5-45
5-46
5-46
5-46
5-46
5-50
5-52
5-53
5-53
5-54
5-56
5-56
5-56
5-58
5-60
5-61
5-62
5-63
5-64
5-64
5-69

ix

Section

5

6

7

x

SYSTEM CONCEPT (Cont)

Memory Retry
Global Memory
Scan Bus Operations

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Channel B Memory Requestor
Memory Storage Unit Port Interface

Local Memory Port Interface Control Logic . .
Scan Bus Port Interface Control Logic .

Memory Tester Logic .

PROGRAM OPERATORS
General
Syllable Addressing and Syllable Identification

Syllable Format and Addressing .
P and T Registers .
Operation Types

Name Call
Value Call
Operators

PRIMARY MODE OPERATORS
General
Arithmetic Operators .

Add (ADD) 80
Subtract (SUBT) 81 .
Multiply (MULT) 82
Extended Multiply (MULX) 8F
Divide (DIVD) 83
Integer Divide (IDIV) 84 . .
Remainder Divide (RDIV) 85
lntegerize, Truncated (NTIA) 86
Integerize, Rounded (NTGR) 87

Type-Transfer Operators
Set to Single-Precision, Truncated (SNGT) CC
Set to Single-Precision, Rounded (SNGL) CD
Set to Double-Precision (XTND) CE

Logical Operators
logical AND (LAND) 90 .
Logical OR (LOR) 91 . .
Logical Negate (LNOT) 92
Logical Equivalence (LEQV) 93 .
Relational Operators
Greater Than (GRTR) 8A . . .
Greater Than or Equal (GREQ) 89
Equal (EQUL) SC
Less Than or Equal (LSEQ) 8B
Less Than (LESS) 88
Not Equal (NEQL) 8D . . .

Page

5-71
5-71
5-71
5-72
5-72
5-74
5-75
5-76

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-4
6-7

7-1
7-1
7-1
7-1
7-2
7-2
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-4
7-5
7-5
7-5
7-5
7-5
7-5
7-5
7-6
7-7
7-7
7-7
7-7
7-7

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

7 PRIMARY MODE OPERA TORS (Cont)

S001290

Branch Operators
Branch False (BRFL) AO
Branch True (BRTR) Al
Branch Unconditional (BRUN) A2 . .
Dynamic Branch False (DBFL) A8
Dynamic Branch True (DBTR) A9
Dynamic Branch Unconditional (DBUN) AA
Step and Branch (STBR) A4

Universal Operators
No Operation (NOOP) FE
Conditional Halt (HALT) DF . .
Invalid Operator (NVLD) FF .

Store Operators
Store Destructive (STOD) BB
Store Non-Destructive (STON) B9 .
Overwrite Destructive (OVRD) BA .
Overwrite Non-Destructive (OVRN) BB

Stack Operators
Exchange (EXCH) B6
Delete Top of Stack (DLET) BS . .
Duplicate Top of Stack (DUPL) B7 .
Push Down Stack Registers (PUSH) B4

Literal Call Operators . .
Lit Call Zero (ZERO) BO
Lit Call One (ONE) Bl .
Lit Call B Bits (LTB) B2
Lit Call 16 Bits (LT 16) B3 .
Lit Call 4B Bits (LT 48) BE. .

Make Program Control Word (MPCW) BF.
Index and Load Operators

Index (INDX) A6
Index and Load Name (NXLN) AS .
Index and Load Value (NXL V) AD .
Load (LOAD) BD .

Scale Operators
Scale Left (SCLF) CO . . .
Dynamic Scale Left (DSLF) C 1
Scale Right Save (SCRS) C4 .
Dynamic Scale Right Save (DSRS) CS . .
Scale Right Tru,ncate (SCRT) C2
Dynamic Scale Right Truncate (DSRT) C3
Scale Right Final (SCRF) C6
Dynamic Scale Right Final (DSRF) C7
Scale Right Rounded (SCRR) CB . .
Dynamic Scale Right Round {DSRR) C9 .

7-7
7-7
7-B
7-8
7-8
7-8
7-8
7-8
7-9
7-9
7=9
7-9
7-9
7-9
7-9
7-9

7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-13

xi

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

7 PRIMARY MODE OPERATORS (Cont)

Bit Operators
Bit Set (BSET) 96
Dynamic Bit Set (DBST) 97
Bit Reset (BRST) 9E
Dynamic Bit Reset (DBRS) 9F
Change Sign Bit (CHSN) 8E

Transfer Operators
Field Transfer (FLTR) 98 . .
Dynamic Field Transfer (DFTR) 99
Field Isolate (ISOL) 9A
Dynamic Field Isolate (DISO) 9B
Field Insert (INSR) 9C
Dynamic Field Insert (DINS) 9D

String Transfer Operators
Transfer Words, Destructive (TWSD) D3
Transfer Words, Update (TWSU) DB . .
Transfer Words, Overwrite Destructive (TWOD) D4
Transfer Words, Overwrite Update (TWOU) DC.
Transfer While Greater, Destructive (TGTD) E2 . .
Transfer While Greater Update (TGTU) EA . . .
Transfer While Greater or Equal, Destructive (TGED) El.
Transfer While Greater or Equal, Update (TGEU) E9
Transfer While Equal, Destructive (TEQD) E4 . . .
Transfer While Equal, Update (TEQU) EC
Transfer While Less or Equal, Destructive (TLED) E3 .
Transfer While Less or Equal, Update (TLEU) EB
Transfer While Less, Destructive (TLSD) EO . . .
Transfer While Less, Update (TLSU) E8
Transfer While Not Equal, Destructive (TNED) ES .
Transfer While Not Equal, Update (TNEU) ED .
Transfer Unconditional, Destructive (TUND) E6
Transfer Unconditional, Update (TUNU) EE
String Isolate (SISO) DS

Compare Operators
Compare Characters Greater, Destructive (CGTD) F2 .
Compare Characters Greater, Update (CGTU) FA . .
Compare Characters Greater or Equal, Destructive (CGED) Fl .
Compare Characters Greater or Equal, Update (CGEU) F9
Compare Characters Equal, Destructive {CEQD) F4 . . .
Compare Characters Equal, Update (CEQU) FC
Compare Characters Less or Equal, Destructive (CLED) F3 .
Compare Characters Less or Equal, Update (CLEU) FB
Compare Characters Less, Destructive (CLSD) PO . . .
Compare Characters Less, Update (CLSU) P8
Compare Characters Not Equal, Destructive (CNED) PS .
Compare Characters Not Equal, Update (CNEU) FD . .

7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-lS
7-lS
7-lS
7-lS
7-16
7-16
7-16
7-16
7-16
7-16
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-18
7-18
7-18
7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7.20

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

7 PRIMARY MODE OPERATORS (Cont)

8

5001290

Edit Operators
Table Enter Edit, Destructive (TEED) DO
Table Enter Edit, Update (TEED) D8 . .
Execute Single Micro, Destructive (EXSD) D2
Execute Single Micro, Update (EXSU) DA .
Execute Single Micro, Single Pointer Update (EXPU) DD

Pack Operators
Pack, Destructive (PACD) DI .
Pack, Update (P ACU) D9 . .

Input Convert Operators . . .
Input Convert, Destructive (ICVD) CA
Input Convert, Update (ICVU) CB . .
Read True False Flip-Flop (RTFF) DE
Set External Sign (SXSN) D6
Read and Clear Overflow Flip-Flop (ROFF) D7

Subroutine Operators . . .
Value Call (VALC) 00 =*3F
Name Call (NAMC) 40 ==* 7F
Exit Operator (EXIT) A3 .
Return Operator (RETN) A 7 .
Enter Operator (ENTR) AB .
Evaluate (EVAL) AC
Mark Stack Operator (MKST) AE
Stuff Environment (STFF) AF .
Insert Mark Stack Operator (IMKS) CF

Enter Vector Mode Operators
Vector Mode Enter Multiple (VMEM) E7
Vector Mode Enter Single (VMES) EF . .

VARIANT MODE OPERATION AND OPERATORS .
General

Escape to 16-Bit Instruction (VARI) 95
Variant Mode Operators

Set Two Singles to Double (JOIN) 9542
Set Double to Two Singles (SPLT) 9543
Idle Until Interrupt (IDLE) 9544
Set Interval Timer (SINT) 9545 (Control State Operator)
Enable External Interrupts (EEXI) 9546 .
Disable External Interrupts (DEXI) 9547 .
Scan Operators

Scan In (SCNI) 954A . .
Read Time-Of-Day Clock
Read Interrupt Mask. .
Read Interrupt Register
Read Interrupt Literal .
Interrogate Peripheral Status

7-20
7-20
7-21
7-21
7-21
7-21
7-21
7-21
7-22
7-22
7-22
7-23
7-23
7-23
7-23
7-23
7-23
7-26
7-26
7=26
7-26
7-26
7-26
7-31
7-31
7-31
7-31
7-31

8-1
8-1
8-1
8-1
8-1
8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-2
8-2
8-2
8-3
8-3

xiii

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

8 VARIANT MODE OPERATION AND OPERATORS (Cont)

.xiv

Interrogate Peripheral Unit Type
Interrogate IO Path
Interrogate IO Path Address . .
Interrogate IO Path Address Override
Read Scratch Pad Word
Read Processor Time Counter

Scan Out (SCNO) 954B
Set Time of Day
Set Interrupt Mask .
Set Pseudo Busy . .
Initiate IO Device (Control State Only)
Initiate IO Device Path Address . . .
Initiate IO Device Path Address Override

Read Processor Identification (WHOI) 954E . .
Occurs Index (OCRX) 9585
Integerize, Rounded, Double-Precision (NTGD) 9587 . .
Leading One Test (LOG2) 958B .
Normalize (NORM) 958E
Move to Stack (MYST) 95AF
Read Compare Flip-Flop (RCMP) 95B3
Set Tag Field (ST AG) 95B4 .
Read Tag Field (RTAG) 95B5
Rotate Stack Up (RSUP) 95B6
Rotate Stack Down (RSDN) 95B7
Read Processor Register (RPRR) 95B8
Set Processor Register (SPRR) 95B9
Read With Lock (RDLK) 95BA .
Count Binary Ones (CBON) 95BB .
Load Transparent (LODT) 95BC
Linked List Lookup (LLLU) 95BD .
Masked Search for Equal (SRCH) 95BE
Unpack Absolute, Destructive (UABD) 95D 1
Unpack Absolute, Update (UABU) 95D9 .
Unpack Signed, Destructive (USND) 95DO .
Unpack Signed, Update (USNU) 95D8
Transfer While True, Destructive (TWTD) 95D3
Transfer While True, Update (TWTU) 95DB . .
Transfer While False, Destructive (TWFD) 95D2
Transfer While False, Update (TWFU) 95DA,
Translate (TRNS) 95D7
Scan While Greater, Destructive (SGTD) 95F2
Scan While Greater, Update (SGTU) 95F A .
Scan While Greater or Equal, Destructive (SGED) 95Fl
Scan While Greater or Equal, Update (SGEU) 95F9
Scan While Equal, Destructive (SEQD) 95F4
Scan While Equal, Update (SEQU) 95FC

8-3
8-3
8-3
8-3
8-3
8-3
8-3
8-4
8-4
8-4
8-4
8-4
8-5
8-5
8-5
8-5
8-5
8-6
8-6
8-7
8-7
8-8
8-8
8-8
8-8
8-9

8-10
8-10
8-10
8-10
8-11
8-11
8-11
8-11
8-11
8-12
8-12
8-12
8-12
8-12
8-13
8-13
8-13
8-13
8-14
8-14

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page

8 VARIANT MODE OPERATION AND OPERATORS (Cont)

Scan While Less or Equal, Destructive (SLED) 95F3 8-14
Scan While Less or Equal, Update (SLElJ) 95FB 8-14
Scan While Less, Destructive (SLSD) 95FO 8-14
Scan While Less, Update (SLSU) 95F8 8-14
Scan While Not Equal, Destructive (SNED) 95F5 8-14
Scan While Not Equal, Update (SNEU) 95FD 8-15
Scan While True, Destructive (SWTD) 95D5 . 8-15
Scan While True, Update (SWTU) 95DD 8-15
Scan While False, Destructive (SWFD) 95D4 . 8-15
Scan While False, Update (SWFU) 95DC . 8-15

9 EDIT MODE OPERATION AND OPERATORS 9-1
General . 9-1
Edit Mode Operators 9-1

Move Characters (MCHR) D7 9-1
Move Numeric Unconditional (MVNU) D6 9-1
Move With Insert (MINS) DO 9-1
Move With Float (MFLT) DI 9-2
Skip Forward Source Characters (SFSC) D2 . 9-2
Skip Reverse Source Characters (SRSC) D3 9-2
Skip Forward Destination Characters (SFDC) DA 9-2
Skip Reverse Destination Characters (SRDC) DB 9-3
Reset Float (RSTF) D4 9-3
End Float (ENDF) DS . 9-3
Insert Unconditional (INSU) DC 9-3
Insert Conditional (INSC) DD 9-3
Insert Display Sign (INSG) D9 9-3
Insert Overpunch (INOP) D8 9-3
End Edit (ENDE) DE 9-4

10 VECTOR MODE OPERATORS . 10-1
General . 10-1
Limitations of Vector Mode 10-1
Hardware Functions 10-1

Pili11ary Mode Enter Vector Mode Operators 10-2
Enter Vector Mode Operation 10-2
Vector Stack Operators 104
Vector Mode Operator Codes. 10-5

Vector Operators 10-6
Vector Branch and Vector Exit Operators 10-8

11 PERIPHERAL DEVICES AND CONTROLS 11-1
General . 11-1
Typical Input Output Device System Operation. 11-1
Interrupt Stack Parameters 11-3

Pl Parameter 11-3

5001290 xv.

Section

11

12

13

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

PERIPHERAL DEVICES AND CONTROLS (Cont)

P3 Parameter . .
P2 Parameter . .
Peripheral Controls
Peripheral Control Bus
Input Output Device Commands and Result Descriptors .

DATA COMMUNICATIONS SUBSYSTEM
General
Data Communications Processor .
Terminal Devices .
Basic Control
Broadband Control . . .
Data Comm to Disk Control
Store-to-Store Control . .
Adapter Cluster III . . .
Data Communications Subsystem Scan Bus Interface .
Data Communications Subsystem Memory Interface .

B 6800 BUS INTERFACE CONTROL (READER/SORTER SUBSYSTEM)
The BIC Module
BUS Interface Control Scan BUS Interface

Scan Out Functions
Scan In Functions

BUS Interface Control Memory Interface .

APPENDIX A.
APPENDIXB.
APPENDIXC.
APPENDIXD.

OPERA TORS, ALPHABETICAL LIST
OPERA TORS, NUMERICAL LIST
DATA REPRESENTATION ...
B 6700 EBCDIC/HEX CARD CODE

INDEX ...

Figure

1-1
1-2
1-3
1-4
1-5
i-6
1-7
1-8

1-10

xvi

LIST OF ILLUSTRATIONS

B 6800 Cabinets Sizes
B 6800 System (Minimum Cabinets) Layout.
B 6800 System (Maximum Cabinets) Layout
B 6800 System Module Block Diagram
B 6800 System Busing
Maintenance Display Processor Cabinet
Central Power Cabinet
B 6800 Power Subsystem Distribution Diagram
Peripheral Control Cabinet
Peripheral Control Interface . . .

Page

11-4
11-5
11-7
11-7

11-10

12-1
12-1
12-3
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-7

13-1
13-1
13-1
13-1
13-4
13-6

A-1
B-1
C-1
D-1

Index-I

Page

1-2
1-3
1-4
1-6
1-7

1-13
1-19
1-20
1-21
1-22

Figure

1-11
1-12
1-13
1-14
1-15
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
4-5
4-6
4-7

5001290

B 6800 Memory Cabinet . .
Memory Control Interface Bus
Operators Display Console
Operators System Control Panel
Operators Keyboard·
B 6800 Word Structure
Character and Digit Formats
B 6800 Word Formats . .

B 6800 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

EBCDIC Character Word Format
BCL Character Word Format . .
Hexadecimal Character Word Format
Single Precision Operand Format
Double Precision Operand Format
Data Descriptor Format
Step Index Word Format . . .
Software Control {LINKA) Word
Software Control (MASK) Word
Indirect Reference Word
Program Control Word
Mark Stack Control Word . . .
B 6800 Interrupt Stack Organization
P3 Parameter Configurations . . .
P3 Parameter Contents for IO Finished Interrupt
P2 Parameter Status Change Format
P2 Parameter Result Descriptor Foramt
P2 Parameter Scratch Pad Parity Format
Return Control Word
Segment Descrip~or Word
TOSCW Word Layout .
Program Word Format .
Top-of-Stack and Siack Bounds Registers .
Reverse Polish Notation Flow Chart
Stack Operation
Object Program in Memory
Stack History and Addressing Environment List
Stack Cut-Back Operation on Procedure Exit
A.LGOL Program With Lexicographical Structure indicated .
D Registers Indicating Current Addressing Environment
Addressing Environment Tree of ALGOL Program .
Multiple Linked Stacks
System Control and Display Registers
Programmers Display Panel
System Status Indicator Panel
Maintenance Display (Facing) Panel
Maintenance Display Panel (Cover) .
Maintenance Display Processor Control Panel
Keyboard Pushbuttons and Indicators . . .

Page

1-23
1-24
1-27
1-28
1-29

2-1
2-4
2-5

2-11
2-11
2-11
2-12
2-14
2-16
2-18
2-19
2-20
2-21
2-24
2-25
2-27
2-33
2-34
2-34
2-35
2-35
2-36
2-38
2-38
2-39

3-1
3-7

3-10
3-13
3-14
3-14
3-15
3-16
3-16
3-18

4-2
4-3
4-5

4-12
4-13
4-50
4-53

xvii

Figure

5-1
5c2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
6-1
6-2
6-3
6-4
6-5
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
8-2
8-3
8-4

xviii

B 6800 CPU Organization
B 6800 CPU Block Diagram
Internal Data Transfer Section
Mask and Steering
Hardware Stack Adjustment
Arithmetic Control . . .
Presence Bit Interrupt . .

B 6800 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

B 6800 IO Function Block Diagram
B 6800 Scan-In Function Word .
B 6800 Scan-Out Function Word
Interrogate Peripheral Status
Interrogate IO Path . .
Read Time of Day . .
Read Interrupt Register
Interrogate Unit Type .
Interrogate IO Path Address .
Read Processor Timer .
Read Scratch Pad Word
Read Interrupt Literal
Read Interrupt Mask.
Set Time of Day . .
Set Interrupt Mask . .
Set Pseudo Busy . .
Multiplexer Initiate IO Words Format .
Multiplexor Scratch Pad Memory
Memory Address Decoding
Memory Control Block Diagram
Data Processor to Memory Control Exchange Transfer Paths
Memory Exchange Channel A Functional Block Diagram
Channel B Functional Block Diagram
Program Word
Program Word, Syllable Addressing
Primary Mode Operator Syllable Decode Table
Name Call Operator Function
Value Call Operator Function
Flow of Value Call Operator .
Value Call (Descriptor) Operator
Flow of Exit Operator .
Flow of Return Operator .
Flow of Enter Operator
Flow of Evaluate Operator
Flow of Stuff Environment Operator
WHOI Operator Returned Word . .
Index Controi Word (iCW) and index Word
Top-of-Stack Control Word (TSCW)
Rotate Stack Operations

Page

5-2
5-3
5-9

5-11
5-12
5-13
5-19
5-32
5-33
5-34
5-36
5-37
5-38
5-40
5-41
5-42
5-43
5-44
5-47
5-48
5-49
5-50
5-51
5-55
5-59
5-63
5-65
5-66
5-67
5-70
6-2
6-3
6-4
6-5
6-6

7-24
7-25
7-27
7-28
7-29
7-30
7-32

8-6
8-7
8-8
8-9

Figure

11-1
11-2
11-3
il-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-lS
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-2S
11-26
12-1
13-1
13-2
13-3
13-4
13-S
13-6

Table

2-1
2-2
2-3
2-4
3-1
3-2
4-1
4-2
4-3

S001290

B 6800 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Input-Output Operation Cycles . . .
Finished Interrupt Stack Parameters
B 6800 Peripheral Controls Organization
Supervisory Display Control II IOCW Format
Supervisory Display Control II Result Descriptor Format
Single Line Control IOCW Format
Single Line Control Result Descriptor Format
Card Punch IOCW Format
Card Punch Result Descriptor Format .
Card Reader IOCW Format
Card Reader Result Descriptor Format
Line Printer IOCW Format
Line Printer Result Descriptor Format
Train Printer IOCW Format
Train Printer Result Descriptor Format
Magnetic Tape IOCW Format
Magnetic Tape Result Descriptor Format .
Head Per Track Disk File IOCW Format .
Head Per Track Disk File Result Descriptor Format
Flexible Disk IOCW Format
Flexible Disk Result Descriptor Format
Disk Pack IOCW Format

Disk Pack Result Descriptor Format
SN Disk File IOCW Format
SN Disk File Result Descriptor Format
B 6800 Data Communications Subsystem Block Diagram
BUS Interface Subsystem Modules
BIC Scan-Out Function Word
Set Bounds Registers Data Word
Clear-Load Data Word . .
BIC Scan-In Function Word
Read BIC Status Response

LIST OF TABLES

Decimal Place Values of Digits in Various Number Bases
Address Couple Value Fields
P 1 Parameter Words
Interrupt Procedure Stack Parameter Contents
Evaluation of Polish String A 7 B C + x : =
Description of Stack Operation
B 6800 Maintenance Display Panel Register Selection Positions
Maintenance Display Register Logic Signals for Register 1, Pages 0 (Top), and 1 (Bottom)
Maintenance Display Register Logic Signals for Register 1, Pages 2 (Top), and 3 (Bottom)

Page

11-2
11-4
11-8

11-11
11-12
11-13
11-14
11-lS
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
ll-2S
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34

12-2
13-2
13-3
134
13-S
13-S
13-6

Page

2-8
2-23
2-29
2-31

3-9
3-11
4-14
4-15
4-16

xix

Table

44
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
7-1
1~2

xx

B 6800 System Reference Manual

LIST OF TABLES (Cont)

Maintenance Display Register Logi~ Signals for Register 1, Pages 4 (Top), and 5 (Bottom)
:Maintenance Display Register Logic Signals for Register 2, Pages 0 (Top), and 1 (Bottom)
Maintenance Display Register Logic Signals for Register 2, Pages 2 (Top), and 3 (Bottom)
Maintenance Display Register Logic Signals for Register 2, Pages 4 (Top), and 5 (Bottom)
Maintenance Display Register Logic Signals for Register 3, Pages 0 (Top), and 1 (Bottom)
Maintenance Display Register Logic Signals for Register 3, Pages 2 (Top), and 3 (Bottom)
Maintenance Display Register Logic Signals for Register 3, Pages 4 (Top), and 5 (Bottom)
Maintenance Display Register Logic Signals for Register 4, Pages 0 (Top), and 1 (Bottom)
Maintenance Display Register Logic Signals for Register 4, Pages 2 (Top), and 3 (Bottom)
Maintenance Display Register Logic Signals for Register 4, Pages 4 (Top), and 5 (Bottom)
Relational Operator Indications .
Compare Type Operator Results .

Page

4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26

7-6
7-19

B 6800 System Reference Manual

INTRODUCTION

The B 6800 is a large scale, modular, high-speed data processing system. The B 6800 system consists of from 7, to 9
cabinets, which are joined together to form a single mainframe organization. The leading features of the B 6800 system
are:

a. Monolithic circuits

b. System memory expandable in increments of 65,536 words

c. Memory cycle times of 1.2 microseconds

d. Automatic memory error detection and correction

e. Peripheral units expandable to 256 units

f. 20 peripheral channels for IO operation

g. Data communications processing through the use of optional standard equipment cabinets

h. Reader/sorter subsystem capability through the use of optional standard equipment cabinets

i. Centralized power supplies, with solid metalic bus-bar organization

A unique design concept, developed from years of experience with the B 5500 and B 6700 Information Processing
Systems has resulted in the B 6800 hardware and software design. T'ne hardware and the software w~re simuitaneousiy
designed in a parallel and coordinated process, such that these two parts of the System act to augment, and complement
each other. This method assures that the hardware will contains the logic circuits necessary to implement the concepts
of the software, and also that the software constructs will utilize the hardware circuits in an efficient manner.

The B 6800 system is designed to use the hardware stack concept which was successful in both the B 5 500 and the
B 6700 systems. However, the hardware used in the B 6800 system also represents recent state-of-the-arts improvements
in data processing circuit components. This blending of proven design with modern material results in a more efficient,
and powerful data processing system.

The B 6800 system utilizes the same dynamic storage allocation concept that was utilized in the B 6700 Information
Processing System. This concept utilizes a de~riptor method of segmentation which allows variable length segments of
data to be used. This method is more efficient than "fixed-size" paging concepts.

A new .. look ahead" logical circuit is used in the B 6800 system data processor to fetch program code words from
memory. This circuit virtually eliminates the need to halt the flow of a user program to obtain the next word of pro­
gram code. Th~s new circuit represents an improvement in the way that user programs are executed, and results in more
efficient operation of the hardware system resources.

The use of new, and more compact logical circuit components has allowed the B 6800 system to have a greater degree of
packaging density than was available in the B 6700 system design. This greater packaging density of electronic compo­
nents has resulted in the use of a central processor unit in the B 6800 system. The central processing unit, which is a
single system cabinet, takes the place of 4 cabinets which were required in the B 6700 system. This improvement in
packaging saves space, and reduces operating costs in the B 6800 system, without requiring a loss in data processing
capability.

5001290 xxi

B 6800 System Reference Manual
Introduction

The B 6800 system utilizes a new centralized power supply cabinet. This new centralized power supply eliminates the
need to mount an inverter module in each mainframe cabinet. It collects most power supplies for the B 6800 system
within a single cabinet, and thus makes the power supply subsystem easier to maintain.

The B 6800 system cabinets have a fixed relative location within the mainframe cabinet layout. This fixed location
scheme reduces the complexity of the system installation process, reduces interface cabling requirements, and allows
more efficiency in site planning.

The B 6800 system contains the capability to be interfaced with, and to operate from Global§ memory applications.

xxii

B 6800 System Reference Manual

SECTION 1

SYSTEM DESCRIPTION

GENERAL

This manual explains how the B 6800 Information Processing System achieves flexibility and efficiency through a
comprehensive system approach to problem solving without considering the areas of computer logic or circuit design.
The program-independent modular system ~esign efficiently uses available units to process programs and also permits
system configuration changes without the need to reprogram or recompile. This approach also offers the user the advan­
tages of simplified programming, ease of operation, and a complete freedom of system expansion. The B 6800 is a com­
piler oriented system, designed to accept the high level problem-solving language compilers such as ALGOL, COBOL,
FORTRAN, and PL/I.

The B 6800 system software operates under the control of a Master Control Program (MCP), which automatically handles
memory assignments, program segmentation, and subroutine linkages. The use of the MCP eliminates many arduous pro­
gramming tasks which are likely to produce errors. The compilers are operated under the control of the MCP, as are the
object-programs that result from the use of the compilers. The programs are debugged and corrected in the source
language.

SCOPE OF THIS MANUAL

This manual will describe the major hardware characteristics of the B 6800 system. Because of the strong interdepen~­
ence of the system software and system hardware this manual will discuss both parts of the system design at times.
Wherever a choice is available, to discuss a part of the system in terms of either the hardware or the software, the hard­
ware discussion will be used. Both discussions will be used where insight can be developed by the use of this method.

B 6800 HARDWARE SYSTEM ORGAil\JIZATION

The B 6800 system consists of a series of cabinet types, which are arranged in a specific order.. The ordering of the
cabinets within the system is classed as a minimum configuration B 6800 system, or as an expanded configuration B 6800
system. The arrangement of the cabinets within a B 6800 system is such that a minimum configuration B 6800 may be
upgraded to an expanded configuration by adding additional cabinets. No reorganization of the cabinets within a B 6800
system is required to upgrade an existing system to the expanded configuration class.

There are three standard size cabinets used in the organization of a B 6800 system. Figure 1-1 shows these three cabinet
sizes, and indicates the various dimensions of the cabinets. The cabinets in a B 6800 system are joined together to form
a continuous mainframe appearance. This appearance is enhanced by the use of outer panels that give the illusion of a
single mainframe structure.

Figure 1-2 shows the cabinets in a minimum configuration B 6800 system. The layout of the various cabinets within the
B 6800 system mainframe structure is invariable, and thus the minimum area for the mainframe of a B 6800 system is
also invariable. The minimum area required for a B 6800 system mainframe is 21 feet three inches wide, by 25 feet in
length. This area will allow for the expansion of a minimum configuration B 6800 system into a fully expanded configu­
ration B 6800 system. The area given in this paragraph does not include the area required to contain the peripheral
devices that are connected to the B 6800 system.

Figure 1-3 shows the maximum configuration B 6800 system. This B 6800 system configuration contains two more
cabinets than the minimum system layout. The additional cabinets are so located that they may be added to the system
without causing reorganization of the cabinets in the original system layout.

5001290 1-1

"A"
SIZE

!.IZE CABINm

B 6800 System Reference Manual
System Description

CABINET CENTRAL PROCESSING UNIT
CABINET CENTRAL POWER
CABINET-II PERIPHERAL CONTROL

NOTE:
1. THIS CABINET CAN HOUSE

10 EXCHANGES AND BIC.

MV 1554.

1-2

B SIZE CABINETS

CABINET MAINTENANCE DISPLAY PROCESSOR
CABINET TYPE B MEMORY STORAGE
CABINET INDEPENDENT DATA COMMUNICATIONS
CABIN~T TYPE B FT (NOTE 1)

Figure 1-1. B 6800 Cabinets Sizes

68"

I

1
19"

JUNCTION CABINETS

CABINET 19 x 19 JUNCTION

CABINET
MAINTENANCE
DISPLAY
PROCESSOR

MV 1555

5001290

B 6800 System Reference Manual
System Description

Figure 1-2. B 6800 System (Minimum Cabinets) Layout

1-3

-l

CABINET CENTRAIL POWER

CABINET TYPE B MEMORY STORAGE\

CABINET TYPE B
MEMORY STOHAGE

CABINET 86800 CENTRAL

MV1556

PROCESSOR UNIT

CABINET MAINTENANCE
DISPLAY PROCESSOR

CONSOLE

CABINET PERIPHERAL CONTROL

Figure 1-3. B 6800 System (Maximum Cabinets) Layout

B 6800 System Reference Manual
System Description

B 6800 SYSTEM HARDWARE MODULE ORGANIZATION

The following paragraphs discuss the B 6800 system modules that are located within the system cabinets. A module in
the B 6800 system is defined as a unit of hardware equipment that performs a specific function, or a set of specific
functions. A module of hardware equipment in the B 6800 system is limited to a single system cabinet. Modules in
separate cabinets that perform similar functions are separate modules.

A B 6800 system cabinet is not limited to a single module. The use of new types of logic circuit devices in the B 6800
have made it possible to mount more modules in a cabinet than was possible in the B 6700 system. Figure 1-4 is a
block-diagram of the B 6800 system that shows the relationship of the modules in the B 6800 system.

B 6800 MODULE INTERFACES

Cabinets within the B 6800 system are connected together through a series of interface buses (see figure 1-5). These
buses provide a method for the transfer of information and control data, and power between system modules. The
major buses in the B 6800 system are as follows:

Memory bus

Scan bus

Peripheral bus

Power buses

PCIO

MFIO

5001290

A B 6800 system has up to four modules of local memory and also can interface with one
global memory. A separate interface is req~ired for each memory module. The interface be­
tween a memory module and the central processor is called a memory port. The CPU contains
provisions for a total of five ports.

The scan bus interfaces the CPU with subsystems that are expansions of the 6800 system.
The scan bus is used to transfer control information and data between the CPU, and the sub­
systems. The B 6800 system CPU contains provision for a single scan bus interface.

The peripheral bus interfaces the CPU to the peripheral control cabinets. The peripheral
bus is used to transfer control data, and information between the CPU and either one, or
two peripheral control cabinets. At least one peripheral bus is required, and a second bus
may be used to expand the B 6800 system by adding another peripheral cabinet to the
system.

The power buses are used to connect the cabinets of the B 6800 system to the centralized
power supply cabinet. These buses are used to transfer control signals to the power supply
cabinet, and to distribute the power from the central power supply cabinet to the other
cabinets in the system.

The peripheral control IO is used to interface the maintenance display cabinet to the CPU
cabinet. The PCIO is used to provide a path from the maintenance display processor to
up to four peripheral devices.

The mainframe IO interfaces the maintenance display cabinet to the CPU cabinet. This
interface is used to control and sample the state of flip-flops in the B 6800 system. The
sampled state of a flip-flop is displayed by illuminating an indicator on the display panel.
Control consists of setting, or resetting the state of flip-flops.

1-5

-~

I
I
·I

MV1557

SYSTEM
DISPLAY

MOP

PCC 1

CENTRAL PROCESSING UNIT

LAU HUB

64K
MIN

LOCAL MEMORY -, r--, r--,
I I I I I
I I I I I

_J L
1

_J L-,-J

I I
I I

REQ
1

1+-------' I I
_____ J :
__________ _J

PROC

I 2

r - REQ , -I
2 ~ r-

~ ·1 3

r--,
I I
I I
'-1-.J

I
I
I
I
I
I

MPX I I ~ t-- -I
FAMILY I REQI "Tl I 4

______________ J
t--·-1-.------....---. • 3 I 1--~

r,~ r,~ .: • • 5
-....-- -.J '- 1 .. __ J

------, r-Nth
j_ SYSTEM

I
I
I
I
I
I
I
I
I
I
I

___ J

I
I
I
I
I
I r--1
L I DCP I -·1--1 I

I L __ J

I r---,
L_~ BIC l

L __ .J

r1-G:;;;=:~~=RCE ..,
(MUL Tl-SYSTEMS)

r -...,
I

f---- BIC

EXP I
I IDCP

OR -I I
I I
I MOD 1-

xnth

L __ J

Figure 1-4. B 6800 System Module Block Diagram

B 6800 System Reference Manual
. System Description

INDEPENDENTLY
POWERED
SUBSYSTEMS

BUS DATA
COMMUNICATIONS
PROCESSOR
SUBSYSTEM

INTERFACE
CONTROL
(READER/SORTER)
SUBSYSTEM

MV 1558

SCAN BUS

MEMORY BUS

CENTRAL
PROCESSOR
CABINET

PCIO

MAINTENANCE
DISPLAY
PROCESSOR
CABINET

LOCAL
MEMORY BUS

LOCAL
MEMORY BUS

POWER BUS

PERIPHERAL
BUS

POWER BUS

LOCAL
MEMORY
CABINET
NUMBER 1

LOCAL
MEMORY
CABINET
NUMBER 2

PERIPHERAL
CONTROL
CABINET
NUMBER 0

PERIPHERAL
CONTROL
CABINET
NUMBER 1

Figure 1-5. B 6800 System Busing

B 6800 CENTRAL PROCESSING UNIT CABINET

POWER
BUS

POWER
BUS

POWER
BUS

CENTRAL
POWER
SUPPLY
CABINET

The Central Processing Unit (CPU) is the heart of the B 6800 system. The CPU contains four modules, which are the
data processor module, the IO processor module {also referred to as a multiplexor, or MPX module), the memory
exchange, and the memory tester. The CPU also generates system clock pulses that are distributed to other modules in the
system. The CPU contains logic circuits that operate in conjunction with the maintenance display processor to perform
memory testing. The following pargraphs will discuss the modules that are located within the CPU cabinet.

5001290 1-7

B 6800 System Reference Manual
System Description

The CPU contains the master clock generation circuits for the clock pulses of the system. The master clock frequency of
the B 6800 system is 6.67 megahertz. This clock frequency produces clock pulses that occur each 150 nanoseconds.
These clock pulses are distributed throughout the logic circuits of the system. The clock pulses in the B 6800 system are
used to synchronize the various circuits contained in the modules of the system. In this manner, each circuit operates in
concert with other circuits in the system, in an harmonious, and efficient manner.

DATA PROCESSOR MODULE

The Data Processor (DP) is the key module through which the B 6800 software operating system directs and controls the
resources of the B 6800 system. The DP initiates all operations performed by the other system modules, including the
operation of all peripheral devices. The DP also performs data arithmetic operations, and manipulates data within the
system. The DP contains logic circuits to sense interrupts from other modules, and also within itself. When the DP
senses an interrupt the software operating system becomes aware of the interrupt, and handles the cause of the interrupt.
The DP performs comparisons, and logical operations that allow the software operating system to evaluate conditions,
represented as data, and to make decisions based on the results of the evaluation. Because the software makes decisions,
it provides the capability for altering the future course of programmed operations both within the operating user programs,
and within the MCP itself.

A new feature of the B 6800 system is the use of look-ahead logic in the DP. This new feature fetches words of program
code before the DP is ready to execute the code, and thus virtually eliminates the need for halting a program to fetch
words of program code. The memory accesses that are performed by the look-ahead logic are independent of other mem­
ory cycles performed for the DP, and do not cause delays in obtaining data for normal DP functions. When a new word
of program code is required, the first resource is the buffer circuit of the look-ahead logic. A memory cycle will only be
performed if the look-ahead logic has not already fetched the word of code that is needed, or a branch operator causes a
change in the sequential program code addressing. If the next word of program code is the proper program word, and is
present in the look-ahead logi,c buffer circuit, then that is the source from which the next word will be taken.

The DP of the B 6800 system also contains an improved adder circuit for performing arithmetic functions. The improved
mantissa adder circuit is a double-precision, high-speed adder which is more efficient than the single-precision adder that
was used in the B 6700 system. In addition to using the new adder circuits, the algorithms for double precision arithmetic
operations have been improved to provide more accurate double precision answers to arithmetic problem-solving processes.

The B 6800 DP contains new logic circuits that provide for a retry of a DP operator that fails during its execution. This
retry of failed operators is only applicable up to a predetermined point in the flow of an operator. If an operator fails,
and a retry is possible, then a flag is set to indicate that the· retry can occur. If an operator fails, and a retry is not pos­
sible, then the failure will result in the execution of the interrupt procedure for failed DP operators.

A failed operator retry operation is controlled by the system software. The system hardware indicates whether or not a
retry may be attempted, but the decision to retry a particular operation is made by the software.

The B 6800 DP makes extensive use of RAM, and PROM memory integrated circuit components. Parity testing is per­
formed on these component parts in the DP. When a failurn of one of Li.esc component parts is detected, an entry is
made in the Error register. The error register is decoded, and written in the system log. The log entry will provide such
pertinent data as:

1-8

a. The location of the card package that faiied

b. The J-count sequence number, and OP code of'the DP operatm that was being executed at the time of the
failure

B 6800 System Reference Manual
System Description

The B 6800 system DP performs recursive confidence testing when the DP is in an IDLE condition. The confidence tests
check such circuits as:

a. The top of stack registers

b. Shift paths for data that is placed in the top of stack registers

c. The barrei shifter iogic

d. The mantissa adder logic

e. The exponent adder logic

f. The address adder logic

g. The arithmetic operation algorithms

h. The DP control buses

If an interrupt occurs while the DP is performing a confidence test, the DP will immediately exit from the IDLE state.
If an error caused the exit, the error will be reported in the SYSTEM SUM LOG disk file.

The DP performs residue testing of the contents of the integrated circuit memory address registers. Residue testing is
also performed on literal values that are used as indices to the addresses that are contained in the integrated circuit
address registers. The purpose of residue testing is to increase the integrity of the address adder circuits. Residue testing
is an automatic function that detects addressing errors, and cause the software operating system to make log entries that
identify die nature of the error.

MULTIPLEXOR MODULE (IO PROCESSOR)

The multiplexor module controls the operation of all of the peripheral subsystems except the data communications
processor, and the bus interface control. These two subsystems are operated as separate subsystems, and are controlled
directly from the data processor module.

The data processor module initiates IO operations in the B 6800 system by transmitting command instructions to the
multiplexor via the interface bus. The command instruction information that is transmitted to the multiplexor contains
such data as the unit number of the IO device that is to be initiated, the address of a buffer area in memory that is to be
used for the operation, and the length of the buffer area. The multiplexor stores the command information which it
receives from the DP in scratch pad memory.

From the time that the multiplexor receives data from the DP for an IO operation that is to be performed, until the IO
operation is completed, or is interrupted, the multiplexor operates as an independent module from the DP. When an IO
operation needs access to memory it has priority for the use of the single path to memory that is shared by the DP, and
the multiplexor.

The multiplexor will proceed in an independent manner to control the IO operations until they are completed. When
the operation is completed, the· multiplexor uses an interrupt path to the DP to report that the operation has been
terminated. If the peripheral operation was terminated because of an IO error, then the DP will interrogate the multiplexor
to determine the cause of the error. In this way the operating software system is aware of what IO operations are in process,
or have been completed.

5001290 1-9

B 6800 System Reference Manual
System Description

The multiplexor contains provisions for 2 peripheral bus interfaces. Each peripheral bus interface conducts data and
control information communications for up to 10 peripheral channels. Thus, the multiplexor contains provisions for
either 10 channels, or 20 channels to the IO devices. A maximum of 256 peripheral devices may be controlled by the
multiplexor. The minimum number of IO devices that are used in a B 6800 system is five devices, which are:

a. A TD830 Operators Display

b. A 225 Dual Disk Pack Drive

c. A model V Magnetic Tape Transport Unit

d. An 1100 LPM Train Printer

e. A Card Reader or a Flexible Disk Unit

Any substitutions and/or additions to the peripheral unit list above must be made from the following B 6800 compatible
peripheral unit list.

a. 150/300 CPM 80 Column Card Punch

b. 800/1400 CPM 80 Column Card Reader

c. 300/600/800 CPM 80 Column Card Reader

d. 1 C Disk File

e. SN Disk File

f. Nine Track PE Magnetic Tape Transport Unit

g. Seven Track NRZ Upright Magnetic Tape Transport Unit

h. 400/700 Lines Per Minute Train Printer

i. 206 Disk Pack Subsystem

j. 235 Disk Pack Subsystem

The 15 IO device types listed above, in addition to the B 9137/B 9134 reader/sorter (BIC module) are the standard IO
devices that are utilized in the B 6800 system. When the BIC module is utilized, the reader/sorter units are not con­
sidered as part of the 256 peripheral unit limitation. This limitation is only applicable to the peripheral devices that are
under the control of the IO processor. The reader/sorter subsystem is not controlled by the multiplexor.

MEMORY CONTROL MODULE

The memory control module operates a memory interface exchange that allows three different system rnquestors to access
one of five memory storage modules. The three requestors are as follows:

1-10

a. The look-ahead logic of the data processor module.

b. Either the data processor module, or the multiplexor module. These two modules share a common
requestor path to the memory control exchange, as was defined in the sub-section on the multiplexor.

B 6800 System Reference Manual
System Description

c. The external requestor is utilized for a data comm processor and/or a bus interface control module. This
exiemal requestor path to the memory control module may alternatively be connected to a memory control
expansion module. If a memory control expansion module is utilized then up to four external requestors can
share the single path to a memory storage device, through the memory control module.

The five memory storage modules that may operate as respondents to the three memory control requestors are defined as
follows:

a. The first four modules are each either 64K, or 128K local memory modules (IK = 1024 words).

b. The fifth module is an interface to the global memory of the B 6800 system.

In addition to controlling the interface paths through the memory exchange, the memory control module also performs
memory retries, and memory read data error corrections. A read memory retry consists of detecting an error in the data
fetched from memory, and causing a second memory read strobe pulse to be generated. A read memory retry is not a second
complete memory cycle. A read memory retry will only be performed for a requestor that is internal to the CPU module.

A memory retry is also performed when a memory module detects a parity error on the address data lines. The memory
address error retry will repeat the complete memory cycle operation.

An error correction memory cycle will be performed for a read memory cycle that detects a single bit error in the data that
was stored. If a memory cycle still produces and error in the data after a read memory cycle retry has been performed then
the memory control module will perform an error correction cycle. An error correction cycle can only correct single bit
errors.

External memory requestors operate asynchronously, and internal memory requestors operate synchronously when
requesting access to the memory modules. This condition causes the memory access time for an external requestor to
be greater than the access time for an internal requestor. The memory cycle times for internal requestors, and external
requestors are as follows:

Device
Type

Internal Requestor

External Requestor

Read/Restore
Operation

900 ns

1200 ns

Clear/Write
Operation

900 ns

1200 ns

Read/Modify /Write
Operation

1200 ns

1500 ns

The memory cycle times listed above are based on the assumption that no retry (for an internal requestor), or error
correction cycle is performed. At least two clock periods have been added to the cycle times for external requestors
because of the asynchronous memory interface. If a retry for an internal requestor and/or an error correction cycle is
performed, then one clock period (450 nanoseconds) must be added to the memory read times listed.

The look-ahead logic always yields to any other channel A requestor for priority to access memory. Contention for access
to memory is allowed between the data processor and multiplexor interface {channel A), and the external requestor inter­
face (channel B). Such contention is resolved on a first come first served basis. If both channel A and B memory
requestors request accesses at the same time then channel A interface takes precedence over the channel B interface.

5001290 1-11

B 6800 System Reference Manual
System Description

B 6800 MAINTENANCE DISPLAY PROCESSOR (figure 1-6)

The Maintenance Display Processor (MDP) Cabinet layout is shown in figures 1-3, and 1-4. The MDP performs display and
control functions in the B 6800 system. The leading features and functions of the B 6800 maintenance display Processor
are:

a. The MDP can display the states of up to 4096 logic devices

b. The MDP can write into and verify the code of a PROM device

c. The MDP contains logic card package testing capability, with static go/no go test cases for all non-discrete
logic cards

d. The MDP can opei:ate up to four selectable system IO devices

e. The MDP can be programmed to beam test (at single clock level) and to compare all flip-flops in the
system, as well as any flip-flop that is under test

f. The MDP can be programmed to allow a system operator to test the logic circuits of the system at the single
clock level

g. The MDP can be programmed to dynamically isolate most failures that occur in the hardware elements of
the system

Figure 1-6 shows the major parts .of the MDP cabinet.

The MDP cabinet can be divided into three main parts:

•

a. The upper half of the cabinet contains the displays

b . The lower half of the cabinet contains the micro-processor, the display control logic, five IO controllers,
and a power supply for the micro-processor

c. The upper half of the cabinet is separated from the lower half of the cabinet by a keyboar<l

The keyboard consists of the necessary indicators and switches to perform the following functions:

1-12

a. Provides a means of selecting one of the four register displays for the purpose of manually changing the
state of the data displayed

b. Provides a means of selecting a hexadecimal digit through cursor movement for the purpose of manually
changing the bit pattern of that digit for the selected register display

c. Provides a means of entering a hexadecimal character to alter a selected digit within the selected register
display

d. Provides a means of manually initiating a memory read/write cycle on either the mainframe memory or the
IC memory within the data processor

SYSTEM i.D. LOGO

PROGRAMMERS
DISPLAY

MV 1559

5001290

B 6800 System Reference Manual
System Description

SWING OPEN
MAINTENANCE
DISPLAY

KEYBOARD

---+----DISPLAY
CONTROL
LOGIC

MAINTENANCE PROCESSOR
POWER SUPPLY

MAINTENANCE
PROCESSOR

Figure 1-6. Maintenance Display Processor Cabinet (sheet 1 of 2)

1-13

1-14

B 6800 System Reference Manual
System Description

MAINTENANCE DISPLAY

SWING-OUT DISPLAY COVER

KEYBOARD

MICRO-PROCESSOR

MV1560

SWING OUT ----1-­
DISPLAY
COVER

MP POWER SUPPLY

MP POWER SUPPLY

DISPLAY CONTROL LOGIC

Figure 1-6: Maintenance Display Processor Cabinet (sheet 2 of 2)

B 6800 System Reference Manual
System Description

e. Provides a means of manually adjusting the top of stack registers in the data processor

f. Provides a means of manually inhibiting the start of the next CPU instruction

g. Provides a means of manually initiating a conditional halt to the CPU

h. Provides a means of selecting either hexadecimal display or octal display for display registers one, two,
or three

The displays are divided into the programmers display panel, and the maintenance display panels. The programmers
display is on the upper left-hand side of the MDP cabinet, and is always visible. The maintenance display panels are on
the upper right-hand side of the MDP, and are not always visible. To view the maintenance panels, a swing-out display cover
must be extended. Four maintenance panels are exposed to view when the swing-out cover is extended. A switch panel
is located at the bottom of the maintenance display panel. This switch panel is used to control the operation of the
maintenance processor.

The maintenance processor is the principal operating unit in the MDP cabinet. The maintenance processor operates in
either of two modes, which are; Maintenance Test Routine mode (MTR), and normal mode. These two modes will be
discussed in the following paragraphs.

The PROC ENABLE switch (on the MDP switch panel) is used to place the maintenance processor in the MTR mode.
The MTR mode provides a way of testing the maintenance processor through the use of test-routines that are stored in
PROM memory. The PROM memory is an integral part of the maintenance processor. This PROM memory contains
firmware to:

a. Test the maintenance processor circuits

b. Test the memory interface logic between the maintenance processor and RAM memory which is an integral
part of the Micro-Processor.

c. Test the RAM memory up to a checkerboard test

d. Test the PCIO, CTIO, MFIO controller of the MDP

e. Perform an extensive (Gal pat) test on the RAM memory

f. Load the MTR test-routine program from the selected system peripheral unit to the RAM memory of the
MDP

g. Perform a program branch to the start of the MTR test-routine that was loaded into the RAM memory

h. Handles Interrupt procedures that occur during the operation of the maintenance processor in MTR mode

The same switch that was used to place the maintenance processor in MTR mode (the PROC ENABLE switch) is also
used to select normal mode. The normal mode of operation provides a way to test the B 6800 system through the use
of the MTR test routines that are loaded to the RAM memory. The maintenance processor uses

5001290 1-15

B 6800 System Reference Manual
System Description

the PROM memory to initiate the loading of MTR test-routines into the RAM memory as follows:

a. Sets up peripheral tables for the peripheral units that are to be used

b. Provides a quick confidence check for the peripheral units that are to be used

c. Initializes the RAM memory to receive the data from the IO devices

d. Purges the RAM memory of all parity errors

e. Communicates with the system operator to determine which system IO devices are to be used to load the
system MTR program

f. Loads the system MTR program from the selected IO devices, into the RAM memory

g. Performs a program branch to the start of the system MTR test-routine which is residing in the RAM
memory

h. Handles interrupt procedures during system operation

The micro-processor logic contains two controllers which are the PROM writer controller (PWIO), and the Keyboard/
Switch/Indicator (KSI) eontroller.

The purpose of the KSI contrpller is to interface the micro-processor to the keyboard of the MOP. The keyboard is used
as a source input device by a human operator, to direct that various functions of the MOP be performed. The KSI con­
troller coordinates and synchronizes these human control demands with the normal logical operations of the micro­
processor. The orderly responses of the micro-processor, to a keyboard demand, are returned to the keyboard for display,
by the KSI controller.

The PROM Writer IO controller provides a method of creating a selected bit pattern in a PROM device. In addition, a
PROM device can be verified to have the correct pattern inserted.

The MOP contains three controllers which are as follows:

a. The Mainframe Input Output (MFIO) controller

b. The Peripheral Control Input Output (PCIO) controller

c. The Card Test Input Output (CTIO) controller

The purpose and use of each of these three controllers is defined in the following paragraphs.

The purpose of the Mainframe IO (MFIO) controller is to allow either the micro-processor or the display logic to set and
sample the state of the mainframe flip-flops. In addition, the micro-processor can monitor various conditions within the
controller through the use of status and data transfers. The MFIO controller interfaces the logic of the MDP with one
of two connectors that are identified as normal, and alternate.interfaces~ The PROC ENABLE switch selects either the
micro-processor, or the display logic to control the data lines from the MDP to the CPU cabinet.

The micro-processor uses a set of command words, and fixed format status reports to control the operation of the MFIO
controller. These controller directing commands, and status reports are passed between the micro-processOi and the

1-16

B 6800 System Reference Manual
System Description

MFIO logic over the DIN and DOUT lines of the MFIO interface q,us. The format and use of the MFIO command words,
and the status reports are covered in detail in the B 6800 Maintenance Display Processor Field Engineering Technical
Manual, number 5001340.

When the PROC ENABLE switch is in the ENABLED position (UP) the micro-processor is permitted to control data that
is sent to the CPU cabinet; and therefore, control the setting of mainframe flip-flops. When the PROC ENABLE switch is
in the down position, the display logic controls the data sent to the CPU cabinet; and therefore, the setting of mainframe
flip-flops.

The purpose of the Peripheral Control IO Controller (PCIO) is to provide the maintenance processor with a way to com­
municate with the peripheral units that are attached to the system. The peripheral control IO controller controls the
PCIO bus between the CPU and the MDP. The PCIO controller contains a 1024 byte IC memory buffer that is used to
hold the data that is received from an IO device. The PCIO controller can initiate four different IO devices, but only
one IO operation is allowed to be in process at any one time. Configuration jumpers are used to select which four sys­
tem IO devices the PCIO controller will be allowed to initiate. The maintenance processor uses a set of command words,
and status reports to control the PCIO controller, and the PCIO interface bus to the CPU.

The Card Test IO Controller (CTIO) is used to test logical card-packages from the hardware of the B 6800 system. The
CTIO logic can control the state of each pin of a card-package, both the foreplane, and the backplane pins. The logic of
the CTIO controller can issue clock pulses to any of the six pins that normally receive clock pulse inputs. The logic can
also issue bursts of up to 15 clock pulses. The CTIO controller contains a 120 bit pin state register that is used to con­
tain the state of each pin of a card under test. The maintenance processor controls the operation of the CTIO controller
through a set of command words. The maintenance processor samples the state of the card-package pins, performs com­
parisons against known good results, and isolates failures of the logic on the card-package. The maintenance processor
controls the logic circuits on the cards that are tested because it controls the state of each pin on the card. The testing
of a card-package by the maintenance processor is conducted as a series of test-cases. This method allows a logical failure
on the card-package to be repeated in a recursive manner such that the card-test logic can be used for dynamic trouble0

shooting by engineering personnel.

DISPLAY CONTROL LOGIC

The display control logic (see figure 1-6) is located in the bottom half of the MDP cabinet. The operation of the display
control logic is controlled by the maintenance processor.

B 6800 CENTRAL POWER SUPPLY CABINET

The central power supply cabinet in the B 6800 system is an A size cabinet, which is located near the center of the sys­
tem cabinet complex (refer back to figure 1-2). The Central Power Supply Cabinet (PSC) provides centralized power to
all cabinets within the B 6800 system except for the independently powered cabinets.

Power buses route the power generated in the PSC to other cabinets in the B 6800 system. The source power to the
B 6800 system PSC is discussed in the B 6800 Sy.stem Installation Planning Manual, number 5001308.

The power supplies in the B 6800 system PSC are capable of supplying electrical power to the mainframe cabinets of
the system. The power supplies in the,PSC use constant voltage transformers, that provide sufficient pre-regulation
conditions to ensure constant voltage outputs with a loss of input power of up to 30 percent of normal line supply.
These design characteristics in the PSC provide for continuous system operation during "brown-out" operations. A
"brown-out" is defined as a reduction of up to 15 percent of normal operating line voltage, for an unspecified period
of time.

5001290 1-17

B 6800 System Reference Manual
System Description

Figure 1-7 shows the major parts of the PSC, and the relative location of these parts within the cabinet. Figure i-8
shows the power bus distribution between the PSC, and other cabinets within the B 6800 system mainframe.

B 6800 PERIPHERAL CONTROL CABINET

The B 6800 Peripheral Control Cabinet (PCC) is an A size cabinet that contai..~s three separate logic backplane panels
(refer to figure 1-9). Two of the three panels contain control modules, and the third panel contains control logic for the
peripheral interface between the multiplexor, and the PCC. AB shown in figure 1-9, one of the control mounting panels
accommodates control modules for IO controls of up to 86 card locations. The other control mounting panel can accom­
modate IO controls of up to 36 card locations. A PCC can accommodate a maximum of ten IO controls. The card sizes
of the two IO control mounting panels refers to the number of plug-in card-modules that can be physically plugged into
the backplane of an IO control.

A PCC can accommodate up to ten IO controls. These IO controls can be any combination of large and small controls;
however, a maximum of five large controls may be included in a cabinet.

The peripheral control interface bus that connects a PCC to the multiplexor (see figure 1-10) is connected to the central con­
trol logic panel of the PCC. The B 6800 system utilizes this interface bus to transfer data between the main system modules,
and one of 256 system IO devices. The interface bus is also used to transfer control information from the mainframe system,
to the peripheral controls. Within the PCC, data, and control information is passed to a control module via interframe
jumpers.

Figure 1-10 is a representation of the interface bus that passes between the IO processor, and the PCC. In figure 1-10
there are two cables that go to each of the PCCs. In addition, there are two cables that go to both of the PCCs. The
cables that go to both PCCs are used to pass data, and control information between the IO processor, and a peripheral
control. The two cables that go to a particular PCC are used to select a particular IO control position within the PCC
with which the IO processor will communicate. The IO control positions within a PCC are designated as channels, and
are further identified by a channel numbering system, to distinguish one IO control position from another.

The large control channel numbers within a PCC are zero through four. Channel zero is the lowest large IO control posi­
tion in a PCC, and channel four is the highest large IO control position. The lowest small IO control position in a PCC is
channel number five, and the highest small IO control position in a PCC is channel number nine.

The peripheral control bus cables contain interface signals that identify which channel within a PCC is to communicate
with the IO processor on the peripheral bus, and also in which direction on the bus the information will be passed.

When a single PCC is used in a B 6800 system the channel numbers that may be used are zero through nine. When a
second PCC is used, the channel numbers in the first PCC remain unchanged, but the channel numbers in the second PCC
are channels ten through nineteen. Thus; the value of a channel designation defines the channel position within the PCC,
and also in which of two PCCs the channel is located.

B 6800 System Peripheral Controls

The peripheral controls that may be mounted in a B 6800 PCC are limited to those controls that are compatible with the
B 6800 mainframe system. The lists of those peripheral devices that are compatible with the B 6800 system were pre­
viously identified in the subsection that is titled MULTIPLEXOR MODULE, in this manual.

1-18

B 6800 System Reference Manual
System Description

POWER
CONTROL AND
SEQUENCING ----+-----t-+-~

300VDC BUS

+4. 75V /-2V ---+-----+-1.__ __
BUS BARS

INPUT POWER
CKT BAKR
AND FILTER

MV 1561

Figure 1-7. Central Power Cabinet

5001290

±12 VOLT
SUPPLY

INPUT POWER
CKT BAKR
AND FILTER

1600 A
INVERTER

1-19

r --
I AC

INPUT

I MOD
208 VAC
INPUT I 3 PHASE

I
I
I
I
I MANUAL

ON/OFF
CONTROL

I
L --

MV 15';2

B 6800 System Reference Manual
System Description

-- - -- - - - -- ---,
CENTRAL POWER CABINET I

208 VAC I 3 PHASE AC/DC 1600A
CVT CONV INV +4.75V/

MOD MOO I -2V
OUTPUT

I
AC :t12V I
CONTROL CVT SUPPLY .±12V
MOD MOD OUTPUT

-4.5V/

CVT +20V -4.5V/
SUPPLY +20V POWER MOD I OUTPUT TO

SEO

'3-PHASE AC DISTRIBUTION

PC CAB N0.1 MOD

I &PCCAB N0.2
DISTRIBUTION

- - - -- - - __ J
TO BLOWER MOTORS .- --, r- --., r-- ---.

I I I I
CVT I CVT I CVT I

I
I I I I I I I I I I

+5V/.±15V +5V/.±15V

I MAINT
MEMORY I MEMORY I SUPPLY I SUPPLY SUPPLY

I I I I I
I MEM CAB NO. 1 _J .__ ___

e_PT_!E~!_NO;.!J L-~~..J

Figure 1-8. B 6800 Power Subsystem Distribution Diagram

OUTPUT
VOLTAGE
TO CPU
CAB, PC
CAB N0.1
AND PC
CAB NO. 2

There are 15 different types of peripheral devices that are completely compatible with the B 6800 system mainframe. Nine
of these peripheral types require a small control, and the other five types require a large size control.

A peripheral control is associated with one or more system IO devices. The UNIT NUMBER that is used to identify a
peripheral device, is also associated with the IO control through which the device is operated. UNIT NUMBERs of the
peripheral devices that operate through a single IO control must follow the minterm numbering conventions for periph­
eral devices.

1-20

1x361/0
CONTROL POSITIONS

B 6800 System Reference Manual
System Description

(PANELC)~~~~--t+--+~~~+9~~-

MV 1563

Figure 1-9. Peripheral Control Cabinet

CENTRAL CONTROL
LOGIC (PANEL A)

A 86800 SYSTEM CONTAINS 1 OR 2
PCC CABINETS"". PCC CABINET
NUMBER ZERO CONTAINS
CHANNELS ZERO, THROUGH N!NE:.
PCC CABINET NUMBER ONE
CONTAINS CHANNELS TEN,
THROUGH NINETEEN.

The minterm numbering conventions for the B 6800. system are the same as the conventions that were used for the
B 6700 system. A minterm group consists of a group of one, two, four, eight, ten, sixteen, or twenty peripheral devices.
Within the minterm group, all of the unit numbners are in consecutive numeric sequence. Thus, all of the UNIT NUMBERs
associated with a particular IO control are in consecutive numeric order. The Multiplexor module of the CPU cabinet con­
tains logic circuits that define a particular IO control channel number according to the UNIT NUMBER.

The MCP software operating system constructs UNIT TABLES through which it associates a UNIT NUMBER with a
particular IO device type. The MCP keeps the UNIT TABLES updated so that they contain the current status of each
peripheral device, by unit type, an_d by UNIT NUMBER. In this manner, the software operating system is aware of the
condition and extent of the IO device subsystems at all times.

B 6800 Memory Cabinets

The B 6800 local memory cabinet (refer to figure 1-11) is a B size cabinet that can contain a maximum of 256K words
of local memory. With a maximum of two local memory cabinets in a B 6800 system, a maximum of 5 l 2K words of
local memory is available to the system. Local memory is expandable from 64K words to 5 l 2K words, in increments of
64K words. In the common context, one K of memory is actually 1024 words in length.

5001290 1-21

B 6800 System Reference Manual
System Description

~HMiNEL9r-
~ - -

CHANNELS I
~HANNELJ

PCC1

~ANNELJg r· - I c;:;"AN~L ~
~-- •--~

CHANNEL 18 I PCC2 I CHANNEL~
~-- --.__,,

CHANNEL17 CHANNEL12

~A~Ei:Ts h -r- I ~N~L ~ l---- I n __ ---f
~A!!!E~ y ri ~ ~N!;!;_L !!!..i

·~A~LI! I I I I
I ..;!!A~L~ I I I

~--h CHANNELS

~-­CHANNEL 5

CHANNEL 2 I I
I rl EA~Li:! I I I

~A~L~ I I I I ~--

FOUR
20-CONDUCTOR
CABLES

I I I
I L~~_T~_J

........ __... TWO I I
PC
INTERFACE

20-CON DUCTOR I I
CABLES

CPU

AGOO-+ AG09 CD00~009

AROO-+ AR09 & BUOO-+ BU09

DATA (16 BITS)

CONTROL (13 BITS)

AG10-+ AG19 & co10 .. CD19

AR1Q .. AR19& BU10-+BU19

I I
;::gONOUCTOR I I
CABLES I I

=6= _J J

Figure 1-10. Peripheral Control Interface

Each word of memory consists of 60 bits. These 60 bits are divided to provide 51 bits of data, one parity bit, and eight
bits which are utilized for error detection and correction.

AB 6800 memory interface consists of six cables. Figure 1-12 shows these six cables, and how they operate to provide
the interface between the memory control module of the CPU cabinet, and a B 6800 memory module.

The B 6800 memmy modules are capable of performin.g in any of three types of operations as follows:

a. Read/Restore operation

b. Clea~ /Write operation

~. Read/Modify/Write operation

1-22

B 6800 System Reference Manual
System Description

SINGLE PORT 128K x 60 MEMORY MODULES
OR DUAL PORT 64K x 60 MEMORY MODULES

BLOWER

CARD SIDE VIEW

MEMORY REGULATORS

AC POWER

MEMORY SUPPLY

MV 2565

Figure 1-11 . B 6800 Memory Cabinet

5001290

MEMORY REGULATORS

MEMORY SUPPLY

SINGLE PORT
128K x 60 MEMORY MODULES

OR
DUAL PORT

64K x 60 MEMORY MODULES

BLOWER

PIN SIDE VIEW

1-23

MEMORY CONTROL
MODULE OF CPU CABINET

PORTO CABLE 1

PORTO CABLE 2

PORTO CABLE 3

PORTO CABLE 4

PORTO CABLE 5

PORTO CABLE 6

PORT 1 CABLE 1

PORT 1 CABLE 2

PORT 1 CABLE 3

PORT 1 CABLE 4

PORT 1 CABLE 5

PORT 1 CABLE 6

PORT 2 CABLE 1

PORT 2 CABLE 2

PORT 2 CABLE 3

PORT 2 CABLE 4

PORT 2 CABLE 5

PORT2 CABLE 6

PORT 3 CABLE 1

PORT 3 CABLE 2

PORT 3 CABLE 3

PORT 3 CABLE 4

PORT 3 CABLE 5

PORT 3 CABLE 6 ~

GLOBAL PORT CABLE 1

GLOBAL POAT CABLE 2

GLOBAL PORT CABLE 3

GLOBAL PORT CABLE 4

GLOBAL PORT CABLE 5

GLOBAL PORT CABLE 6

MV 2566

1-24

B 6800 System Reference Manual
System Description

MEMORY CABINET ONE

.., ADDRESS MODULE

I ONE
CONTROL

INFORMATION

- INFORMATION

INFORMATION

INFORMATION

ADDRESS MODULE
TWO

- CONTROL

INFORMATION

- INFORMATION

INFORMATION

INFORMATION

I MEMORY CABINET TWO

L.-1---i ADDRESS MODULE
THREE

CONTROL

...., INFORMATION

INFORMATION

INFORMATION

INFORMATION

ADDRESS MODULE
FOUR

CONTROL

INFORMATION

...., INFORMATION

INFORMATION

...., INFORMATION

Figure 1-12. Memory Controi Interface Bus

I

B 6800 System Reference Manual
System Description

A memory read cycle is completed in 780 nanoseconds, as measured at the cable connection from the memory control inter­
face. This cycie time is the minimum time that must occur between two consecutive Initiate Memory Cycle (IMC) pulses. A
Read/Restore memory operation, or a Clear/Write memory operation m-ay be performed in the time given for a memory read
cycle. A Re_ad/Modify /Write memory cycle requires 1180 nanoseconds memory cycle time -because this opera ti on requires
that both a memory read, and a memory write function must be performed (two IMC pulses are required) to complete a
memory cycle.

The planar core memory utilized in the B 6800 system is destructive read-out memory. That is, when information is read
out of a memory core, the core is magnetized to contain a given specific polarity. Therefore; to preserve data in core
memory, the read data must be written back into the address.

A Read/Modify /Write memory cycle accepts input data, and a memory address from the memory requestor. A memory
cycle is performed on the address specified, and the data that is present at the address is made available to the memory
requestor.

A read/modify/write operation in the memory control may be changed into a read/restore operation under either of the
following conditions:

a. A protected memory operation is in progress, and the data in the word addressed by the read part of the
read/modify /write operation determines that the memory protect 'bit (bit 48) is true. If this condition
exists, the data read out of the memory address is re-written back into the same address, and the memory
protect interrupt is detected by the memory control.

b. A parity error occurs during the read part of the read/modify /write operation. If this condition exists after
a memory retry has been attempted, then the data with the parity error is re-written into the same address,
and the memory parity error interrupt is detected by the requesting function.

If the memory control does not detect a memory protect interrupt, or a parity error interrupt during the read part of a
read/modify/write operation, then the operation continues as follows.

The data that was accepted by the memory module is written into the same address from which the memory read oper­
ation was performed and thus, the original data is destroyed. The B 6800 system uses the Read/Modify /Write mode of
operation to perform normal memory write functions.

A Read/Restore memory cycle accepts an address from the memory requestor, a read memory cycle is performed on the
address specified, and the data that is present at the address is made available to the memory requestor. The same data
that was present in the specified address is written back into the specified address. The B 6800 system uses the Read/
Restore mode of operation to perform normal memory read functions.

A Clear/Write memory cycle accepts an address from the memory requestor, and writes a requestor supplied data word
into the address. The changing of the clear/write operation into a read/restore operation, (for a parity error) is analogous
to that change defined for the read/modify/write operation previously.

B 6800 OPERATORS DISPLAY CONSOLE (ref. figure 1-2)

The purpose of this console is to provide a position where all of the necessary system operating controls are collected in
one physical place. The collection of the normal operating controls into a single central location is efficient, and provides
a logical place for the system operational staff to function.

5001290_ 1-25

B 6800 System Reference Manual
System Description

There are three parts to the operato~s display console {see figure 1-13), in addition to the table-top work area. The three
parts of the console are the TD830 video display, the system control panel, and the keyboard for the video display. The
video display terminal is recessed into the table-top in such a way that the display is visible without distortion {due to
paralax) when the user of the display is either sitting, or standing. The system control panel is mounted flush with the
table-top, and is located immediately in front of the recessed video display. The keyboard for the video display terminal
is mounted at an angle immediately in front of the system control panel. The angle at which the keyboard is mounted
complements the recess angle of the display terminal screen, such that the lettering on the keys of the keyboard are vis­
ible regardless of whether the user is sitting, or standing.

The operators display console contains two separate operator stations. Full control of the system is possible from either
station of the console. A locking device is installed for each operators station. The locking device is a security feature
used for system integrity. When the device is locked, the keyboard is disconnected, and the operators station cannot
communicate with the software operating system. The locking device is activated by the use of a hand key that must be
inserted into the lock, and turned to either open, or lock the operators console station keyboard. The locking device has
no effect on the system control panel, and the controls on the panel may be operated without regard to whether the key­
board is locked, or not.

Figure 1-14 shows the operators system control panel details. This panel contains the operators controls for the video
display portion of the TD830, in addition to the controls for operating the B 6800 system. As shown in figure 1-14, the
controls for the video display are at the top of the control panel, and the controls for the B 6800 system are at the bot­
tom of the drawing.

The controls for the video display consist of a thumbwheel type adjustment, and an ON-OFF switch for the video
display. The purpose, and use of the video display controls are as follows:

a. The ON-OFF switch. This switch controls the power utilized by the video display.

b. The BRIGHTNESS thumbwheel controls the lighting intensity of the video display.

The controls for the B 6800 system consist of seven indicator /switch pushbutton controls shown at the bottom of the
control panel, in figure 1-14. The purpose and use of the B 6800 system controls is as follows:

1-26

a. The ENABLE pushbutton switch allows the use of the HALT, POWER ON, and POWER OFF pushbutton
switches. If the ENABLE pushbutton is not depressed then the three other pushbuttons listed are inoperative,
and have no effect on System operation. If the ENABLE pushbutton is depressed then the other three push­
buttons listed are enabled, and depressing any one of the pushbuttons will cause the circuit corresponding to
the switch to be activated. The purpose of the ENABLE pushbutton is to prevent accidental system operation
caused by inadvertently depressing one of the pushbutton controls listed.

b. The POWER OFF pushbutton is used to remove source power from the circuits of the system that are sup­
plied power from the central power supply cabinet. The POWER OFF pushbutton does not remove power
from circuits that receive their source power from some other source.

MV 2567

5001290

B 6800 System Reference Manual
System Description

/VIDEO DISPLAY

SYSTEM
~CONTROL

', KEYBOARD

I

Figure 1-13. Operators Display Console

KEYBOARD
LOCKING DEVICE

1-27

EJB CARD
LOAD
SELECT

B 6800 System Reference Manual
System Description

BRIGHTNESS

1111111111111111

rNNINGI r:::l
~

o[ati

I ENABLE I

MV 2568

Figure 1-14. Operators System Control Panel

c. The POWER ON pushbutton is used to apply source power to the B 6800 system cabinets that derive their
power input from the central power supply cabinet. The POWER ON pushbutton does not provide a method
for applying source power to cabinets and peripheral units that do not derive their source power from the
central power supply cabinet.

• d. The HALT pushbutton is used to stop the B 6800 system at the end of the current machine language operator
that is in process.

1-28

e. The LOAD pushbutton is used to cause the B 6800 system to initiate a Halt/Load sequence of operations.
When the LOAD pushbutton is depressed the B 6800 system logic is general cleared (Set to the binary zero
condition). When the pushbutton is released the Load operation is initiated. The Halt/Load sequence is a
predetermined set of operations that results in the software operating system being placed in control of the
system hardware.

f. The CARD LOAD SELECT pushbutton is used in conjunction with the LOAD pushbutton, to control the
Halt/Load sequence of operations. If the CARD LOAD SELECT pushbutton is illuminated, and a system
llalt/Load sequence is initiated (by depressing the LOAD pushbutton), then a Load operation proceeds from
the card reader (or flex disk) peripheral device. If the CARD LOAD SELECT pushbutton is not illuminated when
the LOAD pushbutton is depressed then the Load sequence proceeds to perform a load operation from the sys­
tem disk (or pack) peripheral device. The selection of either a card reader device, or a system disk device from
which to perform a system Load operation depends on whether the pushbutton is illuminated, or extinguished.

go The RUNNING indicator lamp is illuminated when the system is operating. The purpose of the RUNNING
indicator is to provide an indication of whether or not the system is capable of responding to certain stimuli
during system operations. The reason why a RUNNING indication is necessary is that under certain condi­
tions there is no other visible way to determine if the system is trapped in a perpetual operating loop.

B 6800 System Reference Manual
System Description

Figure 1-15 shows the keyboard for the operators video display console. This keyboard is used by a system operator to
input commands and data to the oper.ating system. The operators display console and keyboard are commonly referred
to as an Operators Display Terminal (ODT), and also as a Supervisory Printer Output (SPO).

When the security lock mechanism for system integrity is engaged, the keyboard is disabled, and has no effect on system
operations. However, if the keyboard is disabled, but the video display switch (discussed previously in this subsection) is
in the ON position, then the operating system will display status messages, and other pertinent data about current system
operations.

The operators display video screen is used to pass communications between a human operator, and the operating software
system of the B 6800 system. The display screen is similar to a home television receiver, except that the display screen
can only display characters and numbers, and not pictures. The only sound that the display is capable of making is the
bleep tone that is used to gain the operators attention when the software operating system needs a response from the
operator.

When the operator needs to communicate with the operating system, the keyboard is used to write data which is dis­
played on the screen. The screen is capable of displaying 3200 characters, which are arranged in a matrix that consists
of 40 rows of characters. Each row of characters contains 80 character positions. A cursor blinks at the position that
the next character will occupy. If the next character position contains a valid -character then the valid character blinks,
but if the next character position is not occupied then the cursor illuminates the character position, and causes the illu­
minated position to blink. The cursor moves from left to right, and from top to bottom on the screen. The display
screen has automatic line-feed, and carriage-return features so that the operator is not required to control these functions.
When the operator writes data on the screen, the last character written is the End-Of-Text special character. This special
character is used to indicate where the communication is to stop.

0 0 0 0 0 u u
LTAI ERROR

END lmxllFonwllLocALIBEJ

MV2569

Figure 1-15. Operators Keyboard

5001290 1-29

B 6800 System Reference Manual
System Description

B 6800 OPTIONAL UNITS

The B 6800 system may be expanded by adding optional subsystems to an existing B 6800 system. The optional sub­
systems that may be added to a B 6800 system are a data communications subsystem, and/or a bus interface control
(Reader/Sorter control) subsystem. The following paragraphs will discuss these two optional subsystems, and will
describe the manner in which these units are interfaced and controlled by the B 6800 system.

Figure 1-4 shows that the two optional subsystems are interfaced to the system through the use of the scan bus. In addi­
tion, figure 1-4 shows that the two subsystems, when used, are required to be independently powered cabinets.

As shown in figure 1-4, the CPU of the B 6800 system contains a scan bus interface capability, through which the
optional units of the system communicate with the mainframe modules. This scan bus is essentially the same as the scan
bus that is used in the B 6700 system, however; it is reduced in scope because the B 6800 system has a single interface
port through which all of the units that use the scan bus must communicate.

The scan bus used in the B 6800 system consists of 80 lines which are used in the following ways:

1-30

a. 52 lines are used to transfer information between the mainframe of the B 6800 system, and the optional unit.
One of these lines is used to transmit a longitudinal parity bit (odd parity) between the transmitting and
receiving modules.

b. 20 lines are used to transfer a memory address field between the optional module, and the mainframe of the
system.

c. Eight lines of the scan bus are used to control the operation, and direction of transfer of the data that passes
through the scan bus. One of the control lines used for the scan bus is the scan transmission error line (STEX).
The STEX signal is normally at a low (false) logic level.

The STEX signal line is also used to transmit the Scan Address Parity Level (SAPL) signal on the scan bus. SAPL
is used to cause the scan bus address to contain an odd parity. The STEX signal line is only used to transmit the
SAPL signal during the first part of a scan bus operation (when the scan address is transmitted) and thereafter it
is only used to transmit the STEX signal.

During the transmission of the scan address the receiving module tests the parity of the address data received. If
a parity error is detected the receiving module will cause the STEX signal to go from a false level to a true level.
The memory controller logic of the CPU contains logic to detect a ~can bus parity error condition (and therefore
interrupt the scan bus operation) if this condition occurs. ·

During the transmission of data through the scan bus the module that is receiving the data tests the parity of the
data received. If a parity error is detected the receiving module will cause the STEX signal to go from a low
(false) ievel to a high (true) ievel.

The data processor samples the state of the STEX line for all communications on the scan bus. If the STEX
line is a high (true) level the data processor will terminate the scan operation, and will initiate the interrupt
controller to declare the scan error condition.

B 6800 System Reference Manual
System Description

If the STEX line is true during data transmission on the scan bus, and the data processor is the transmitter
module, the scan out alarm interrupt is sensed. Tne scan-in error is sensed if another module is the transmitter
and the data processor is the receiver.

The system software is aware of scan bus failures through the initiation of the alarm type interrupt that is
generated by the data processor.

Ali scan bus operations are initiated by the data processor module of the CPU. The data processor uses the scan bus to
transmit command instructions to the units that are interfaced with the system through the scan bus interface.

The optional units that use the scan bus for system communications also have an interrupt line to.the multiplexor
module of the CPU. When the data processor has initiated some unit by the use of the scan bus the unit that was

initiated proceeds to perform its function until the function is completed, or until it generates an interrupt. Upon finishing
a commanded function, or upon encountering an interrupt, the unit that was initiated through the use of the scan bus will
cause its interrupt line to the multiplexor to become a true level. The multiplexor will identify the optional unit that caused
its interrupt line to be a true level, and will interrupt the data processor. In this way, the software operating system (through
the scan bus, and the interrupt lines to the multiplexor) is aware of the operating conditions of the optional units in the
system. The data processor, upon receiving an interrupt from the multiplexor, will interrogate the unit that caused the in­
terrupt, through use of the scan bus. The unit that caused the interrupt will respond to the interrogation of the data pro­
cessor by providing its status to the CPU through the scan bus. In this manner, the software operating system controls the
operations of the optional units of the system.

All of the optional subsystems that are connected to the B 6800 system share a single memory bus requester path. If
more than a single optional s_ubsystem is connected to the B 6800 system, then the units that are connected must con­
tend for access to the memory resources of the system. In addition, the optional units requestor path of the memory
control exchange module has the lowest priority of the three requester paths. Both the data processor/multiplexor re­
quester path, and the look ahead requester path have a higher priority to the memory resources of the system than does
the optional subsystem path.

As was stated previously, the memory control exchange of the CPU will not perform memory retries for the optional
subsystem requester port. However, in the event that a request from the optional subsystem requester port results in an
error being detected in the read data that is fetched from memory, then the memory control exchange will perform an
error correction cycle upon the data.

The memory bus, through which optional subsystems access memory resources of the system, is an 80 line bus. This bus
is the same as the memory bus used in the B 6700 system, and the 80 lines are used in the same way that the scan bus
lines are used. The scan bus lines were discussed previously in this subsection of this manual.

5001290 1-31

B 6800 System Reference Manual

SECTION 2

DATA REPRESENTATION

GENERAL

All data in the B 6800 System is in binary form. The basic unit of data is the word, (see figure 2-1) which consists of
52 consecutive binary bits. All words of data in the B 6800 system have three distinct parts which are; a parity bit, a
tag field, and the information field. The 52 bits in a word are numbered for identification.

Bit number 51 (the most significant bit in a word) is the parity bit. The parity bit is used to represent the odd parity
of the word. If the number of binary ones present in the tag field, and the information field is an even number then
the parity bit is a binary one value. If the number of binary ones present in the tag field, and the information field is
an odd number, then the parity bit is a binary zero value. The B 6800 system uses the parity bit to monitor the quality
of data in a word. Logic circuits in the B 6800 system count the number of bits in a word, and compare the count
against the parity bit state. If the result of the comparison is not equal, then the B 6800 system recognizes that a
parity error has occurred. The process of parity checking is an automatic feature of the B 6800 system. The parity bit
for a word is not directly available to the user of the system because it is only used when words are transferred from one
module to another. Data that is internal to a module has already been tested for parity.

Bits 50, 49, and 48 are the tag field. The tag field is used to identify the type of interpretation that is to be applied to
the data that is present in the information field of the word. There are eight different values that may be present in the
tag field, and each value specifies a different interpretation to be used. The meaning of the tag field values are as
follows:

51 BITS IN AB 6800 WORD

5 5 4 4 4
1 0 9 8 7 0

Ly--' l

LL BITS 50, 49, AND 48 ARE THE TAG FIELD
(BIT 50 IS MOST SIGNIFICANT)

BIT NUMBER 51 (MOST SIGNIFICANT BIT) IS THE PARITY BIT

[BIT ZERO (LEAST SIGNIFICANT BIT) THROUGH
BIT 47 (MOST SIGNIFICANT BIT) IS THE INFORMATION
FIELD

MV 2570

TAG

(50)

0

5001290

FIELD

(49)

0

BITS

(48)

0

Figure 2-1. B 6800 Word Structure

MEANING

A tag field of zero indicates that single-precision data is present in the information
field of the word.

2-1

TAG

(50)

0

0

0

FIELD

(49)

0

l

0

0

1

BITS

(48)

1

0

0

B 6800 System Reference Manual
Data Representation

MEANING

A tag field of one indicates that the data in the information field is an indirect
address, not data.

A tag field of two indicates that double-precision data is present in the information
field of the word.

A tag field of three indicates that a control word is present in the information field
of the word. There are several different types of control words used in the
B 6800 system. These types of control words are discussed individually, later in
this section of this manual.

A tag field of four normally indicates that a step index word is present. The
meaning and use of a step index word is discussed later in this section of this
manual.

NOTE

A special use for a word that has a tag of four may be invoked
by the MCP when a fault condition is to be handled by a user
program.

The compiler will place a word with a tag of four in the
stack as a flag word. This flag is used to indicate that the
program using the stack is responsible for handling one or more
of the interrupts that may occur when the program is
executed.

This special use for a word with a tag field of four is only
invoked when the programmer of the user program specifies
that the user program is responsible for interrupt handling.
The compilers that utilize this special case are the ALGOL,
FORTRAN, ESPOL, and the PL/I compilers.

0

A tag field of five indicates that a descriptor word is present. The meaning and
use of a descriptor word is discussed later in this section of this manual.

A tag of six indicates that a software control word is present. The meaning and
use of a software control word is discussed later in this section of this manual.

A tag of seven indicates that a program control word is present. The meaning and
use of a program control word is discussed later in this section of this manual.

This manual uses a convention to refer to data bits in a word. The rules of this convention follow:

2-2

a. A data field within a word is represented by two numbers, separated by a colon character, and enclosed in
brackets.

B 6800 System Reference Manual
Data Representation

b. The meaning of the two numbers enclosed in the brackets is as follows:

1. The first (left-most) number identifies the most significant bit in the field of data bits.

2. The second (right-most) number identifies the number of bits that are contained in the field of data
bits (including the most significant bit, which was identified in rule b 1 above).

c. Bits in the tag field are not included in the field unless the most significant bit (rule bl above) is one of the
tag field bits.

d. All bits in the information field are considered to "wrap-around" the word in such a way that the next
least significant bit after bit zero is bit 4 7.

Examples of this convention are as follows:

Bits [50:3] (the tag field) - Beginning with bit 50 for three bits, or bits 50, 49,
and 48.

Bits [06:9] (a data field) Beginning with bit 06 for 9 bits, or bits 06, 05, 04, 03,
02, 01, 00, 47, 46.

Bits [47:48] (a data field) - Beginning with bit 47 for 48 bits, or all of the informa­
tion field.

The convention that was stated in the previous paragraph is used to further define the bits that make up the information
field of the B 6800 system words. There are 48 bits in this field, of which bit 47 is the most significant bit, and bit
zero is the least significant bit.

INTERNAL CHARACTER CODES

The B 6800 uses several different character codes (see figure 2-2). The primary internal code that is used is Extended
Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC is an 8-bit alphanumeric code containing four zone bits,
followed by four numeric bits. Another important internal code that is used in the B 6800 system is the Burroughs
Common Language code (BCL). BCL is a 6-bit alphanumeric code containing two zone bits, followed by four numeric
bits. The primary character code used for Data Communications Subsystems is the American Standard Code for Infor­
mation Interchange (ASCII). ASCII may be either a 6-bit, 7-bit, or 8-bit alphanumeric code. Within the B 6800 system,
EBCDIC, or BCL codes may be compacted. by deleting the zone bits, and retaining the numeric portion of the character.
When data in the B 6800 system is compacted it is said to be packed.

Appendix C of this manual lists the character codes of the character sets that are used in the B 6800 system. Appendix D.
gives the card codes that are required to produce an EBCDIC, or hexadecimal coded character representation.

NUMBER BASES

Number bases used in the B 6800 system are base 10 (decimal), base 16 (hexadecimal), base 2 (binary), and base 8
(octal) (see figure 2-2). Because the system utilizes various of these number bases in performing its functions, it is neces­
sary that the user of the system be familiar with the number bases, and know how to convert a value from one number
base to any of the other number bases. A brief discussion of the number systems used follows.

The decimal numbering system is based on the numeric digits zero through nine, and on the powers of ten. Similarly,
the binary numbering system is based on the numeric lligits zero and one, and on the powers of two. In the case of

5001290 2-3

B 6800 System Reference Manual

Data Representation

CHARACTER FORMATS

NS

N4

MSD ZB N2

ZA N1 LSD

BCL
CHARACTER

MSD ZS NS

Z4 N4

Z2 N2

Z1 N1 LSD

EBCDIC
CHARACTER

NUMBER BASE FORMATS

MSD s

4

2

LSD

HEXADECIMAL
DIGIT

MV 2571

MSD 4

2

LSD

OCTAL
DIGIT

Figure 2-2. Character and Digit Formats

BINARY
DIGIT

the numbering systems described above, it is apparent that a decimal digit may have any value from zero through nine,
and that a binary digit may have· either a value of zero, or one.

The octal numbering system is based on the numeric digits zero through seven, and on the powers of eight. An octal
digit may have any value from zero through seven. Further, two raised to the third power is eight, the base of the octal
numbering system. Therefore, because the octal numbering base is a multiple of the binary number base, an octal
number can be converted to a binary number conveniently, and vice versa.

The hexadecimal numbering system is based on the numeric digits zero through nine, and A through F; where A equals
decimal 10, B equals decimal 11, C equals decimal 12, D equals decimal 13, E equals decimal 14, and F equals decimal
15. Hexadecimal numbering is also based on the powers of sixteen. Two raised to the fourth power is sixteen, the base
of the hexadecimal numbering system. Therefore, because the hexadecimal numbering base is a multiple of the binary
numbering base, a hexadecimal number can be converted to a binary number conveniently, and vice versa.

AB 6800 word contains 48 bits in the value field of the word (refer to figure 2-3). These 48 bits can be converted into
hexadecimal, octal, BCL, or EBCDIC values by arrangement of the 48 bits in the proper order. A hexadecimal digit is
equivalent to four binary digits because 1111 binary is equal to hexadecimal F. Since a hexadecimal digit contai..11s four
binary digits, the value field of a B 6800 word contains 12 complete hexadecimal digits (48/4 = 12). The same value field
can also be considered to contain 16 octal digits (48/3 = 16), or 6 EBCDIC characters (48/8 = 6). BCL character code
(6-bit data) also converts into an equal number of binary digits, and a B 6800 word can contain 8 BCL characters (48/6 = 8).

2-4

OCTAL FORMAT
MSD

50 47 44 41

49 46 43 40

48 45 42 39
j_

PARITY TAG

B 6800 System Reference Manual
Data Representation

38 35 32 29 26 23

37 34 31 28 25 22

36 33 30 27 24 21
l

INFORMATION

20 17 14 11 8 5 2
~

19 16 13 10 7 4 1

18 15 12 9 6 3 0
_i ..l LSD

HEXADECIMAL FORMAT

EBCDIC FORMAT

r---1

B ~
PARITY TAG

BCL FORMAT

B
PARITY

MV2572

5001290

MSD

47 43 39 35 31 27 23 19 15 11 7 3

50 46 42 38 34 30 26 22 18 14 10 6 2

49 45 44 37 33 29 25 21 19 13 9 5 1

48 44 40 36 32 28 24 20 16 12 8 4 0 LSD

PARITY TAG

INFORMATION

MSD

~ 47 43

I 4~ I 4?

'7'31

~ ~ 0

~
~
~

I~ I?~ I
4 GtjLSD

INFORMATION

MSD

~1 ~-5 ~9 ~3 ~7 ~1 ~ 40 34 28 22 16 10 4

-r... . 39 33 27 21 15 9 3

50 44 38 32 26 20 14 8 2

49 43 37 31 25 19 13 7

48 42 36 30 24 18 12 6 0
LSD

TAG

INFORMATION

Figure 2-3. B 6800 Word Formats

2-5

B 6800 System Reference Manual
Data Representation

From the foregoing discussion it is clear that the choice of 48 bits for the value field of a B 6800 word was not a random
choice, but rather was chosen because that number is a multiple of the common character codes, and number bases used
in the B 6800 System.

NUMBER CONVERSION

The B 6800 system normally converts decimal data that is input to the system from decimal notation to EBCDIC or
BCL codes. An exception to this normal mode of operation may occur in the case of the data communications subsys­
tem where input data may be in ASCII coded form. It is also possible to find that the input data has been packed, and
is thus in hexadecimal notation in the System. The user of the system must be familiar with the forms in which the data
can be stored. The user must be able to perform manual conversion of numeric data from one form to another so that
the internal data conversion processes can be assessed for proper operation. The following paragraphs will present
methods for performing manual conversion of numeric data from one form to other forms.

DECIMAL TO NONDECIMAL

Decimal numeric data is converted from base 10 to some other number base by repeatedly dividing the decimal value by
the base number for the numbering system to which it is to be converted. Each time a division is performed, the
remainder becomes the next most significant digit, or bit in the new number base. When no more whole numbers occur
during the division the conversion is complete.

EXAMPLES:

a. Convert the decimal number 1776 to octal (base 10 converted to base 8).

1776/8 = 222 with a remainder of o·
'

222/8 = 27 with a remainder of 6;

27 /8 = 3 with a remainder of 3·
'

3/8 = 0 with a remainder of 3.

1776 decimal= 3360 octal.

b. Convert the decimal number 1776 to hexadecimal (base 10 converted to base 16).

1776/ 16 = 111 with a remainder of O;

111/16 = 6 with a remainder of 15 F (15 decimal = F hex);

6/16 = 0 with a remainder of 6.

1776 decimal value = 6FO hexadecimal.

NONDECIMAL TO DECIMAL

Nondecimai numeric daia is converted to decimal data by multiplying each digit of the numeric value by the value of
the digit position, in decimal values. For example, in the preceding subsection of this manual the decimal number 1776
was converted to octal, and hexadecimal notation. The successively more significant digits of the octal notation are as
follows.

2-6

times
512

decimal

3

I
3 x 512

B 6800 System Reference Manual
Data Representation

times times
64 8 decimal

decimal decimal value

3 6 0

I I I
I i 6 x 8
3 x 64 =

The decimal equivalent value is

By the same logic, a hexadecimal number is converted to decimal as follows:

times times equivalent
256 16 decimal

decimal decimal value

6 F 0

I

0
48

192
1536

1776

0
F x 16 240 (F hex equals 15 decimal)

6 x 256 = ---------------1536

The decimal equivalent value is 1776

Table 2-1 gives the value of each succeeding digit in a number. These values are provided for binary, octal, and hexa­
decimal digit positions. The values in this table are expressed in decimal equivalents for the corresponding digit positions.
There are 16 octal digits in a B 6800 word (refer to figure 2-3) and therefore, table 2-1 gives the place values for
16 octal digits. A B 6800 word contains 12 hexadecimal digits, and therefore table 2-1 gives the place values for
12 hexadecimal places.

Observing table 2-1 while again reading the examples of converting a nondecimal value to a decimal value will show the
origin of the place values that were used to perform the multiplication portions of the examples. The sum of the
multiplications provides the decimal values of the nondecimal numbers used in the examples.

NONDECIMAL TO NONDECIMAL

It is occasionally necessary to convert a hexidecimal number to an octal number, or vice versa. The easiest w::iv to
perform this conversion is to first convert this binary value to the final form.

EXAMPLE:

Convert the hexadecimal value ABCDE to octal notation.

a. Convert hexadecimal ABCDE to binary form as follows:

5001290

An A in the fifth position is 1010 in binary form
A B in tJie fourth position is 1011 in b~ary form

2-7

Digit
Place

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-8

B 6800 System Reference Manual
Data Representation

Table 2-1. Decimal Place Values of Digits in Various Number Bases

Binary Number Octal Number Hexadecimal Number
Place Value Place Value Place Value

1 1 1
2 8 16
4 64 256
8 512 4096

16 4096 65536
32 32768 1048576
64 262144 16777216

128 2097152 268435456
256 16777216 4294967296
512 134217728 68719476736

1024 1073741824 1099511827776
2048 8589934592 17592189244416
4096 68719476736
8192 549755813888

16384 4398047311104
32768 35184378488832
65536

131072
262144
524288

1048576
2097152
4194304
8388608

16777216
33554432
67108864

134217728
268435456
536870912

1073741824
2147483648
4294967296
8589934592

17179869184
34359738368
68719476736

137438953472
274877906944
549755813888

1099511827776
2199023655552
4398047311104
8796094622208

17592189244416
35184378488832
70368756977664

140737513955328

B 6800 System Reference Manual
Data Representation

A C in the third position is 1100 in binary form
A D in the second position is 1 iOi in binary fonn
An E in the first position is 1110 in binary form

The binary representation for the hexadecimal value is

1010 1011 1100 1101 1110.

b. Convert the binary value from step a above, to octal notation as follows:

IO 101 011 110 011 011 110

2 5 3 6 3 3 6

Thus, the octal equivalent for the hexadecimal value ABCDE, is 2536336. Reversing the procedure of the preceding
example converts the octal value to hexadecimal notation.

The example shown works well when the present form of the value to be converted to another form is relatively small.
However, it can be seen that a five digit hexadecimal number converts into a twenty digit binary number (as in the preceding
example), and from this it is evident that larger hexadecimal numbers will become long strings of binary digits. Extremely
long strings of binary digits are cumbersome, and become awkward in performing the conversion. Another method that may
be used to perform cqnversions in this case is as follows:

EXAMPLE:

Convert the hexadecimal value ABCDE to octal notation.

a. Using the values in table 2-1, convert the hexadecimal number to its equivalent decimal value, as follows:

(1) The value of the fifth position in a hexadecimal number (from table 2-1) is 65,536. The fifth
position of the value to be converted is hexadecimal A (A hexadecimal is equal to 10 decimal). There­
fore, the hexadecimal A in the fifth position is equal to IO times 65, 536, or 655,360 decimal.

(2) The fourth position of a hexadecimal number has a value of 4,096 (from table 2-1). The fourth
position of the hexadecimal number to be converted is B (hexadecimal B is equal to 11 decimal).
Decimal 11 times 4,096 is equal to 45,056.

(3) Hexadecimal C times 256 decimal is equal to 3,072.

(4) Hexadecimal D times 16 decimal is equal to 208.

(5) Hexadecimal Eis equal to 14 decimal.

65 5 ,360 hexadecimal Annnn
45,056 hexadecimal nBnnn

3 ,072 hexadecimal nnCnn
208 hexadecimal nnnDn

14 hexadecimal nnnnE

703,710 hexadecimal ABCDE equals 703,710 decimal

5001290 2-9

B 6800 System Reference Manual
Data Representation

b. Convert the decimal number 703,710 (from step a above) to the equivalent octal value, as follows:

703,710/8 = 87,963 with a remainder of 6;

87,9~995 with a remainder of ~\
I0,~,374 with a remainder of 3; \

1,374/8 = 171 with a remainder of 6;

2/2 with a remainder of 5; \

2/8 = O with a remainder of 1\
Hexadecimal ABCDE equals 2 S 3 6 3 3 6 octal.

The procedure for converting nondecimal numbers to nondecimal numbers shown in the preceding example can also be
used to convert an octal number to a hexadecimal equivalent. The only difference is that the place values from
table 2-1 (used in step a of the procedure) must be taken from the octal column instead of from the hexadecimal column.

WORD TYPES AND PHYSICAL WORD LAYOUTS

It was stated previously in this section of this manual that a B 6800 system word consisted of a parity bit, a tag field,
and an information field. The tag field defines an interpretation that is to be applied to the contents of the information
field. This subsection of this manual will define the interpretations that are to be used for the data in the B 6800 sys­
tem, and will present the format of data in the information field of each type of word used in the B 6800 system.

There are two types of data used in the B 6800 system, which are character strings, and operands. The following
paragraphs will define character strings, and operands.

CHARACTER TYPE WORDS

Character type words are used to contain character strings. A character type word has a tag field of zero (a single
precision word) and contains EBCDIC, BCL, or hexadecimal coded data. A string may occupy more than a single word of
character data. However, a stri.~g must have at least one character type word.

The most significant character in a character string occupies the left-most character position, in the first character word
of the string. Each word in a character string will contain 6 EBCDIC character, or 8 BCL character, or 12 hexadecimal
character positions. The final word in a character string may contain less than a full word of characters if the number of
characters in the string is not a multiple of the number of characters in a full word. Figure 2-4 through 2-6 show the
various formats that are used for character type words.

OPERANDS

Operands are words of data that are used to contain numeric values, or logical information. An operand may be either
a single precision woid (tag field of zero), or a double precision word (tag field of two). Single, and double precision
words are used for mathematical operations. Logical information is used for decision making processes, and operations.
The following paragraphs will discuss the uses of operands in the B 6800 system.

2-10

u

0

l p 0

MV 2573

0

0

[p 0

MV 2574

0

0

MV2575

5001290

B 6800 System Reference Manual
Data Representation

B B
I I I I I I I

: I : I : I : I : I : I F I F a B 1-\ I I I '-' l '-' I u I I c c I F F I I

l ! l
A A B I B I c I c D D E E F F

A Al BGttC D D E E F F
l .1

P WORD PARITY VALUE
0 BINARY ZERO VALUES (TAG FIELD)
A ~F 6 EBCDIC CHARACTER FIELDS
A IS THE MOST SIGNIFICANT CHARACTER

Figure 2-4. EBCDIC Character Word Format

A A B c c D E E F G G H

A A B c c D E I E
I

F G G H
l

l Al

I

I
I i I I I

I

I B B l c D D E i F F I G H H
I

I I I

T I B B T c I D T D E T F F l G H H l A l l I l l
P WORD PAR!TY VALUE
0 BINARY ZERO VALUES (TAG FIELD)
A~ H 8 BCL CHARACTER FIELDS
A IS THE MOST SIGNIFICANT CHARACTER

Figure 2-5. BCL Character Word Format

A B c D E F G H J K L M

A B c D E F G H J K L M

A B c D E F G H J K I L M

P WORD PARITY VALUE
0 BINARY ZERO VALUES (TAG FIELD)
A~ M 12 HEXADECIMAL CHARACTERS
A IS THE MOST SIGNIFICANT CHARACTER

Figure 2-6. Hexadecimal Character Word Format

2-11

B 6800 System Reference Manual
Data Representation

Single Precision Operand

A single precision operand is a numeric value that has an exponent part, and a mantissa part. Figure 2-7 shows the
format for a single precision operand. The fields in a single precision operand are as follows:

2-12

bits [50: 3] are the tag field, and are always equal to zero for a single precision operand.

bit 4 7 bit 4 7 is not used in a single precision operand.

bit 46 bit 46 is used as the sign of the mantissa field. If the sign bit is a binary one then the mantissa field
contains a negative value, and if bit 46 is a binary zero then the mantissa contains a positive value.

bit 45 bit 45 is used as the sign of the exponent field. If the sign bit is a binary one then the exponent
field contains a negative value, and if bit 45 is a binary zero then the exponent contains a positive
value.

bits [44:6) are the exponent field. Bit 44 is the most significant bit in the exponent value. The value of the
bits in this field are as follows:

bit 39 value is decimal one

bit 40 value is decimal two

bit 41 value is decimal four

bit 42 value is decimal eight

bit 43 value is decimal sixteen

bit 44 value is decimal thirty-two

,,
E E M M M M M M M M

0 SM E M M M M M M M M M

0 SE E M M M M M M M M I M

1 p 0 E E M M M M M M M M M
44 40 36 32 28 24 20 16 12 8 4

P WORD PARITY VALUE
0 BINARY ZERO VALUES
SM SIGN OF THE MANTISSA BIT
SE SIGN OF THE EXPONENT BIT
E EXPONENT BITS
M = MANTISSA BITS
SHADED BIT IS NOT USED IN A SINGLE PRECISION OPERAND

MV 2576

Figure 2-7. Single Precision Operand Format

M

M

M

M
0 •

OCTAL
POINT

B 6800 System Reference Manual
Data Representation

The maximum value that the exponent field ca...'l contain is dechnal 63. When the exponent is used
in conjunction with the exponent sign bit (45), the range of the exponent value is from +63, to
-63 decimal.

bits [38:39] are the mantissa field. Bit 38 is the most significant bit in the mantissa value. The mantissa is
divided into thirteen octal fields of which bits [38:3] are the most significant octal digit, and bits
"[2:3] are the least significant digit.

An octal point (similar to a decimal point) is always located to the right of bit zero, in the mantissa
field. This point is not displayed in any way and must be assumed to exist.

The software of the B 6800 system classes numeric data into two classes, namely, INTEGER, and REAL. An INTEGER
number is a single precision or double precision numeric value with an exponent value of zero. The maximum value that
an INTEGER may have in the B 6800 system is +7777777777777 octal, or 549,755,813,887 decimal. The miriimum
integer value is -7777777777777 octal. A REAL numeric value is any value that has an exponent that is not equal to zero, or
any value that contains a part value (contains a decimal, or octal point prior to the least significant digit of the value). From
the format given for a single precision operand ii is evident that REAL numbers may not qualify to be expressed as single
precision values. For this reason, REAL numbers are always expressed as double precision values (with floating point)
in the B 6800 system.

Double Precision Operand

A double precision ·value is two consecutive words, with a tag field of two (010 binary). The two words are concatenated
in such a way that they form a single numeric value, with an octal point located between the two words. The most
significant part of the mantissa in a double precision operand is commonly referred to as the most signi~cant part
(MSP) and the least significant part of the mantissa is commonly referred to as the least significant part (LSP). The
octal point that separate.s the MSP from the LSP is used to separate whole values from partial values, with whole values
present in the MSP, and partial values present in the LSP. The format for the MSP of a double precision operand is
identical with the format for a single precision operand, except for the tag field. The LSP of a double precision operand
is an extension of the exponent field, and the mantissa field contained in the· MSP of the word. Figure 2-8 shows the
word format for a double precision operand.

The largest double precision value (type REAL) that can be contained in a B 6800 is 1.94882938205028079124469,
with an exponent value of +29603. The smallest double precision value (type REAL) that can be contained in a B 6800
is 1.9385458571375858335564, with an exponent value of -29581. The value zero, and positve or negative values
between the largest and smallest values given above may be represented in d.ouble precision numbers in the B 6800
system.

When a double precision value is used the exponent extension field is an extension of the high order end of the exponent
field in the upper-half wmd. Bit 39 in the I.SP word is the next bit in sequence after bit 44 of the upper-half: and has
a binary value of 64. Bit 40 in the LSP word is the next bit in sequence after bit 39 of the word, and has a binary value
of 128. This same order is used for all of the bits in the LSP exponent extension field, so that bit 47 of the LSP
becomes the most significant bit in the exponent value. The whole exponent field in a double precision operand is as
follows:

MSP bit 39 is the least significant bit of the exponent, and has a value of 1, decimal.

LSP bit 39 is the next most significant bit in the exponent, and has a value of 64, decimal.

bit 47 is the most significant bit in the exponent, and has a value of 16384, decimal.

5001290 2-13

MSP

[p

LSP

[p

010
SM
SE
E

MV 2577

B 6800 System Reference Manual
Data Representation

E I E IM M M

0 SM E M M M M

1 SE E M M M M

0 E E M M M M
44 40 36 32 28 24

EE EE EE ME ME ME

0 EE EE ME ME ME ME

1 EE EE ME ME ME ME

0 EE EE ME ME ME ME
44 40 36 32 28 24

TAG FIELD= DOUBLE PRECISION
SIGN OF THE MANTISSA BIT
SIGN OF THE EXPONENT BIT
EXPONENT FIELD

SHADED BIT = NOT USED

IM IM

M M

M M

M M
20 16

ME ME

ME ME

ME ME

ME ME
20 1..6

M
EE
ME
p

TM M M IM

M M M M

M M M M

M M M M
12 8 4 0

ME ME ME ME

ME ME ME ME

ME ME ME ME

ME ME ME ME
12 8 4 0

MANTISSA FIELD

•
OCTAL
POINT

EXPONENT EXTENSION FIELD
MANTISSA EXTENSION FIELD
WORD PARITY VALUE

Figure 2-8. Double Precision Operand Format

The maximum size of an exponent in the B 6800 system is 32,767 decimal, and the range of the exponent field is from
+32,767, to -32,767 decimal.

The mantissa extension field in the LSP of the double precision operand contains that portion of the mantissa that is
less than unity. The mantissa extension field is divided into 13 octades, in the same manner as is the mantissa field in
the MSP of the double precision operand. These octal digits are arranged in the same way as the octai digits in the MSP
of the word. The least significant octade of the mantissa extension field is bits [2:3], and the most significant octade is
bits [38: 3].

The B 6800 system utilizes two processes. known as integerization, and normalization, in performing mathematical
operations. Normalization is a process that removes leading zeroes from a single or double precision word. This
process is used to make the operation of the adder logic circuits more efficient. Integerization is a process that alters
the value of a number such that it meets the requirements of an integer, as was defined previously in this section of this
manual.

Normalization is accomplished by adjusting the value of the exponent field of a number in a positive direction until it is
at the maximum value for an exponent, or until there are no leading zeroes in the mantissa of the number. Each time
the exponent is incremented, the mantissa is shifted one octade to the left. There are no more leading zeroes in a
mantissa when the most significant octade of the mantissa is located in bits [38:3] (of the upper-half word).

2-14

B 6800 System Reference Manual
Data Representation

The process of integerization is a two step process. The first step is to adjust the exponent in either a positive, or a
negative direction until the exponent field is equal to zero. Each time the exponent is incremented or decremented,
the mantissa is shifted one octade in the corresponding direction. Octades that fall out of the low order digit of the
mantissa during the adjustment of the exponent are -saved until the exponent is equal to zero. After the exponent has
been adjusted to zero, then that part of the mantissa that is less than unity (located to the right of the octal point) is
either rounded upward to the next whole number, or it is truncated (deleted from the number). The process of rounding,
or truncation is selective in the B 6800 system, and is the second step of the integerization process.

The mathematical operations that are performed in the B 6800 system can be completed regardless of the format of the
operands used. If an arithmetic operation is performed using two single precision operands then the result of the opera­
tion will be in the single precision format. If, however, either operand is in the double precision format then the result
of the operation will be in the double precision format.

Logical Operands

Logical operands are words that result from the performance of either a relational operation, or a logical (boolean) opera­
tion. A relational operation is one that determines the relative merits of two values by means of a comparison process.
A logical operation is one that constructs a result based on the relative merit of each bit in the word when compared to
the corresponding bits in another word.

A relational operation results in either a true, or a false answer. The answer is true if the result of an algebraic compari­
son of two arithmetic values is valid. The answer is false if the result of the algebraic comparison of the two arithmetic
values is not valid. The B 6800 constructs a single precision logical operand (tag field equal to binary zero) each time
that a relational operation is performed. If the answer is valid bit zero is a one in the logical operand, and if the answer
is not valid then bit zero is a zero. All other bits in the answer word logical operand are not used, and are zeroes.

A logical (boolean) operation results in the construction of a different type of logical operand. The constructed logical
operand may contain a number of bits. The reason for this is that a logical operation looks at each bit in two different words,
and places a corresponding bit in the result operand if the conditions of the logical operation are satisfied.

Logical operands are discussed later in this manual.

DATA DESCRIPTORS

Data descriptor words refer to data areas, including input/output buffer areas. The data descriptor defines an area of
memory starting at the base address contained in the descriptor. The size of the memory area in words is contained in
the length field of the descriptor. Data descriptors may directly reference any memory word address from word number
zero through word number 1, 048, 576. The structure of the data descriptor word is illustrated in figure 2-9. The fields
in the data descriptor are as follows:

bits 50:3

bit 47

5001290

Bits 50, 49, and 48 are the tag field, and are always equal to a binary value of 101.

Bit 47 is the presence bit. The presence bit is used to indicate whether or not the information
described by the data descriptor is present in main memory. If the presence bit is equal to a
binary one then the data is present in main memory. If the presence bit is equal to a binary zero
then the data is not in main memory. Attempting to access data with a data descriptor that has
its presence bit equal to a binary zero causes a presence bit interrupt. The B 6800 system uses
the occurrence of a presence bit interrupt as. the preliminary step to start an MCP process which
will move the data describe4 by the data descriptor from system disk, or system pack storage
into the main memory.

2-15

bit 46

bit 45

bit 44

bit 43

2-16

1

0

1

MV 2578

p

c

I

s
44

[50:3]

47
46
45
44
43

40

[42:3]
[39:20]
[19:20]

R

sz

sz

sz

B 6800 System Reference Manual
Data Representation

L L L L L A

L L L L L A

L L L L L A

L L L L L A
36 32 25 24 20 16

THE TAG FIELD.

A A A

A A A

A A A

A A A
12 8 4

THE TAG FIELD FOR A DATA DESCRIPTOR IS
ALWAYS 101 BINARY
PRESENCE BIT
COPY BIT
INDEXED BIT
SEGMENTED BIT
READ ONLY BIT
THE SIZE FIELD
THE LENGTH FIELD
THE ADDRESS FIELD

Figure 2-9. Data Descriptor Format

A

A

A

A
0

Bit 46 is the copy bit. The copy bit indicates whether the data descriptor is the original descriptor
for the data, or is a copy of the original descriptor. If the copy bit is equal to a binary zero then
the data descriptor is the original. If the copy bit is a binary one then the data descriptor is a
copy of the original descriptor. An original data descriptor is commonly referred to as a mother
(or MOM) descriptor and a copy of a mother descriptor is commonly referred to as a copy
descriptor.

Bit 45 is the indexed bit. The indexed bit is used to indicate whether or not an indexing operation
has been performed on the data descriptor. If the index bit is equal to a binary one then the
descriptor has been indexed previously, and the value of the previous index is located in the lengt.i.
field 39:20. If the index bit is equal to binary zero then the data descriptor has never been
indexed before, and such an indexing operation must be performed before the data that is
described by the descriptor can be accessed. The process that causes the indexing operation to be
performed will set the indexed bit, and will store the value of the index in the field 39:20.

Bit 44 is the segmented bit. The segmented bit is used to identify whether or not the data
described by the data descriptor is segmented. If the segmented bit is equal to a binary zero then
the data is not in segments, and this descriptor describes the entire field.

Bit 43 is the read only bit. The read only bit is used to show whether the memory area
described by the data descriptor can be written into or not. if the read oniy bit is equai to a
binary one then the data descriptor describes a memory area that may be read, but may not be
written into. If the read only bit is a binary zero then the data descriptor describes a memory
area that may be written into, or read from. It is possible for a single area in memory to be

bits 42:3

bits 39:20

bits 19:20

5001290

B 6800 System Reference Manual
Data Representation

described by two different data descriptors, one where the read only bit is a binary one, and
another descriptor which has the read only bit equal to a binary zero. The memory area may be
written into by use of the data descriptor that has the read only bit equal to a binary zero, but
may not be written into by use of the data descriptor that has the read only bit equal to a
binary one.

Bits 42, 41, and 40 are used to define the type of data that is contained in the memory area
described by the data descriptor. If bits 42 and 41 are both equal to binary zeroes, then the
data descriptor defines an area in memory in words. A data descriptor that describes a string of
character data is commonly called a string descriptor. If either bit 42, or bit 41 is equal to a
binary one then the descriptor is a string descriptor. Bits 42: 3 may contains several different
binary values and the meaning of the different values that are used have the following meanings:

bit 42
0

0

0

0

bit 41
0

0

0

bit 40
0

0

0

Bits 42, and 41 being equal to zero indicate that the data
descriptor is a word descriptor. Bit 40 being equal to
binary zero indicates that the data described by the
descriptor is in single precision operands.

Bits 42, and 41 being equal to zero indicate that the
data descriptor is a word descriptor. Bit 40 being equal
to binary one indicates that the data described by the
descriptor is in double precision operands.

Bits 42, and 41 not being equal to zero indicates that the
data descriptor is a string descriptor, and bit 41 being a
binary one indicates that the data described contains
hexadecimal (4-bit) data.

Bits 42, and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bits 41, and 40
both being equal to binary ones indicate that the data
described contains BCL data.

Bits 42, and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bit 42 equal to
binary one indicates that the data described contains
EBCDIC (8-bit) data.

Bits 39:20 contain either the length of the memory area (if bit 45 is a binary zero) or an index
value (if bit 45 is a binary one). If bit 45 is equal to binary zero the descriptor has not been
indexed. This field is used for size checking during the indexing operation. If bit 45 is equal to
a binary one the descriptor has been indexed. If the data descriptor is a word descriptor, and
also if bit 40 is a binary one (the word area contains double precision operands) then the index
is doubled after the indexing operation and the size checking operation have been completed. The
doubled index is stored in the index field.

Bits 19:20 contain either a main memory or a disk file address. If the presence bit is equal to a
binary one and the copy bit is also equal to a binary one then the address field contains a main
memory address of the MOM descriptor, of which the current descriptor is a copy. If the
presence bit is equal to a binary one and the copy bit is equal to a binary zero then the address

2-17

B 6800 System Reference Manual
Data Representation

field contains the main memory address of the first word that contains the data described by the
descriptor. If the presence bit is equal to a binary zero, and the copy bit is also equal to a
binary zero then the address field contains a six-bit binary coded decimal disk file address where
the data described by the data descriptor is located.

STEP INDEX WORDS

Step index words are words that are used in conjunction with the step and branch operator in the B 6800 system. The
purpose of the step and branch operator in the B 6800 system is to perform a series of other machine language operators
in a recursive manner, but with control over the number of times the series of operators are executed. The step index
word is used to provide the control part of the function of the step and branch operator.

The step index word (see figure 2-10) contains a tag of four (100 binary), and four other fields, as follows:

47:12 the increment value

35: 16 the final value

19:04 an unused, but value specified field which must be equal to zero

15:16 the current value

Each time the series of machine language operators are performed the value of the increment is added to the value of the
current value field. The step and branch operator then compares the current value field to the final value field. If the
current value field is greater than the finai value field a branch is taken out of the recursive series of operators. If the
current value field is not greater than the final value field then the recursive series of operators are executed.

The increment value, the final value, and the current value are binary values. To determine the number of times a
recursive series of operations will occur binary mathematics must be used, and not decimal mathematics. The unused
but value specified field (19:04) must be equal to zero in the step index word.

l
I

1 I I I F F F F I 0 c c c c

0 I I I F I F F F 0 c c c c

.... I, ,...,,,

TAG 100 - STEP INDEX WORD
I INCREMENT FIELD [47:12]
F FINAL VALUE FIELD [35:16]
C CURRENT VALUE FIELD [15:16]
FIELD [19:4] MUST CONTAIN BINARY ZEROES

MV 2579

Figure 2-10. Step Index WOid Format

2-18

SOFTWARE WORDS

B 6800 System Reference Manual
Data Representation

A software word is a word with a tag field of six (110 binary) that is used by the MCP of the B 6800 system for soft­
ware purposes. The MCP uses the software word for several different purposes, and the format of the word is different
for each purpose. The software word is utilized as a linking word for memory allocation, as a software control word, as
an un-initialized pointer word, and to contain system intrinsics data. Each of these uses for software words causes a
different format to be used for the fields of data that are contained in the word.

The format of the software word when it is used for un-initialized pointers or for intrinsics information are not defined
in this manual. These formats are specialized applications that are properly documented in manuals which deal with the
specific application subjects.

The format of the software word when it is used for a memory link word and for a software control word is given in the
following paragraphs. The specific use of the software word in either of these formats is not covered in this manual.
Like the un-initialized pointer word and the intrinsics information word, these specific uses are specialized applications,
and are more properly documented in manuals that deal with the software system as a specific subject.

The MCP maintains linking words in main memory to show which portions of the memory are in use, and which portions
are not currently in use. A software word is used as the first link word for a portion of memory that is in use. This
word is defined in the memory link system as the LINKA word, and each part of the main memory that is in use
begins with a LINKA word. Memory link words are a mechanism for dynamic storage allocation which will be covered
in more detail later in this manual. Figure 2-11 shows the format of a LINKA. word.

Software control words are used by the software operating system to indicate the existance of memory areas that are
related to the operating stack, but are physically located outside of the operating stack. When the memory area of an
operating stack is deallocated (the stack is cut back), related memory areas must also be deallocated. The software control

5001290

CF

1 CF

1

0
44

TAG
CF [47:2)

s [43:20)
CS (BIT 22)

s

s

s

s
40

AS (BIT 21)

BIT 20
A [19:20)

MV 2580

s s s s ' / A A A A
,,,

s I s s s cs A A A A

s l s
!

s s AS A A A A

s s s s 1 A A A A
36 32 28 24 20 16 12 8 4

6 (110 BINARY)= SOFTWARE CONTROL WORD.
CONTROL FIELD FOR AREA DURING THE
OVERLAY AREA MCP PROCESS.
SIZE OF THE IN-USE AREA IN WORDS.

A

A

A

A
0

CONTROL SAVE FIELD - IF AREA IS TEMPORARILY
SAVED CS=1.
AREA SAVED FIELD - IF AREA IS NON­
OVERLAYABLE (SAVED) AS=1.
IS BINARY 1 FOR A LINKA WORD.
THE CORE MEMORY ADDRESS FOR THE MOM DATA
DESCRIPTOR OF THE AREA CONTENTS

Figure 2-11. Software Control (LINKA) Word

2-19

B 6800 System Reference Manual
Data Representation

word is a mask word that indicates the presence or absence of such related memory areas by the state of the bits in the
mask word. At the time that the stack area is to be deallocated a related memory area is present for each bit that is a
binary one value in the mask field of the software control word. Figure 2-12 shows the format of the software control
word.

INDIRECT REFERENCE WORDS

Indirect reference words (IRW) are µsed in the B 6800 system to reference data that is located within the addressing
environment of the current procedure. The addressing environment of the current procedure includes the current oper­
ating stack, and all stacks (that are a part of the current procedure) at a lower lexicographical level than the current
operating stack level.

Stuffed indirect reference words (SIRW) are used in the B 6800 system to reference data that is located outside of the
addressing environment of the current operating procedure.

2--20

1

1

0

[50:3]
[47:2]
45
24

[23:4]
[19:9]

1
PLM ALM ALM ALM

PC SKF SKF SKF SKF PC

0 PLM I ALM ALM. I PC PC SKF I SKF SKF 1

GOTO

l
. PLMI ALM ALM PC

ABO l I SKF SKF PC PC
RTF _ SKF

i
140

I NOC PLM ALM ALM 1 PC PC I l PBT SKF 1 ~KF SKF l PC
_l 44 36 32 28 24 20 12 8 4 0

TAG FIELD= 110 =SOFTWARE CONTROL WORD

2 SOFTWARE CONTROL WORD (MASK WORD)

1 = GO TO ABORTE

1 = NOCPBIT

PL/I COMPI LEA BLOCKEXIT AND FAULT FIELD
MASK FIELD

19 NOT USED
18 FMT PSUEDO BUFFER FIB-LOCKED

17 NON-LOCAL GOTO

16 DIRECT ARRAY DECLARATION IN BLOCK

15 FAULT IN BLOCK DECLARATION

14 INTERRUPT IN BLOCK DECLARATION

13 FILE IN BLOCK DECLARATION

12 MULTI-DIMENSION ARRAY IN BLOCK DECLARATION

11 SINGLE-DIMENSION ARRAY IN BLOCK DECLARATION
[9: 1 O] = PROCESS COUNT

MV 2581

Figure 2-12. Software Control (MASK) Word

B 6800 System Reference Manual
Data Representation

The fields of an in.direct reference word or a stuffed indirect reference word do not contain data. Instead, the fields
of an indirect reference word or a stuffed indirect reference word contain addressing information that is used to point at
the location of data. The fields of an IRW, or a SIRW are both displayed in figure 2-13. The fields within the IRW and
the SIRW are as follows:

bits 50:3

bit 46

bits 45:10

bits 35:16

5001290

Bits 50:3 are the tag field. The tag field for an IRW is always 001 binary, regardless of whether
the IRW is stuffed, or normal.

Bit 46 is the environment bit. If bit 46 is a binary one the IRW is stuffed. If bit 46 is a binary
zero the IRW is a normal IRW.

Bits 45: 10 are the stack number field. The stack number is not used in a normal IRW and is
equal to binary zero. If bit 46 is a binary one then the value of the stack number field is the
identification number of the stack that is to be referenced.

Bits 35: 16 are the displacement field. The displacement field is not used for a normal IRW and is
equal to binary zero. If bit 46 is a binary one then the displacement field is added to the address
of the base of the stack being referenced to locate a mark stack control word within the referenced
stack area.

SNR SNR D D D D A A A

0 E SNR SNR D D D D A A A

! 0 I SNRI SNR SNRI D D ID ID IA IA

SNR SN R SN R D D D D A A A
44 40 36 32 28 24 20 8 4 0

MV 2582

Figure 2-13. Indirect Reference Word

2-21

bits 12: 13

bits 13: 14

B 6800 System Reference Manual
Data Representation

Bits 12: 13 are the index field. The index field is not used in a normal IRW, however the same
bits are used for a different purpose. If bit 46 is a binary one then the index field is added to
the address of the mark stack control word in the referenced stack. The sum of these values is
the address of the data that is being addressed.

Bits 13:14 are the address couple field. The address couple field is not used in the SIRW, how­
ever the same bits are .used for a different purpose. The address couple field is used in an IRW to
locate data in the addressing environment of the current procedure. The address couple consists
of two separate values each of which are of variable bit length. The most significant part of the
address couple contains the lexicographical level value. The least significant part of the address
couple contains an index value that is added to the address of the mark stack control word that
corresponds to the lexicographical control level. The sum of the address of the mark stack
control word, and the index value is the address of the data referenced by the IRW.

The lexicographical level (program level) of a current procedure may have any value from zero, through thirty-one. The
lexicographical level (LL) part of an address couple is represented by the most significant bits of the address couple.
The LL requires five bits of the address couple to represent the binary value of thirty-one which is the highest LL value
possible. When the LL contains a value of zero or one only one bit is required to represent the binary LL value. The
actual number of binary bits that are used to contain the LL value in an address couple is defined by the level of the cur­
rent operating procedure. Thus, if the current procedure is at lexicographical level seven then the number of bits in the
address couple that are used to indicate LL is three, because three binary bits are required to represent the value of seven
decimal.

The index part of an address couple consists of the bits that are not required to represent the LL value. Thus, if the
lexicographical level of the current procedure is seven, then three binary bits (bits 13, 12, and 11) are required to repre­
sent the LL value, and the remaining bits (bits zetc through ten) are used to represent the index part of the address
couple.

The B 6800 system derives the absolute memory address referred to by an IRW in the following manner:

a. The LL part of the address couple defines the IC memory display register that contains the address of a mark
stack control word in main memory.

b. The index part of the address couple is added to the address of the mark stack control address. This sum is
the absolute address of the data referred to by the IRW.

Since the number of bits in the address couple that are required to contain the LL value is a variable number, the size of
the index value is limited by the number of bits that comprise the index value. Thus, if three bits are required to contain
the LL value, then the size of the index part is limited to an eleven bit binary value (or a maximum index value of
2047 decimal memory words). Table 2-2 shows the maximum number of memory words that may be contained in the
index part of an address couple for any given LL value part of the address couple.

The B 6800 system determines the absolute address referred to by the. SIRW in a different way than is used for deter­
mining the absolute address referred to by an IRW. The method used to determine the absolute address referred to by a
SIRW is as follows:

2-22

a. The stack number field in the SIRW is an index into the segment descriptor index, which is maintained by
the MCP. The se0111ent desciiptor index contains a list of data descriptors that give the absolute memory
addresses of all stacks in main memory. The stack number field of the SIRW identifies the descriptor that
contains the base address of the stack that is to be referenced.

Lexicographical
Level Value

0

2
3
4
5
6
7
8
9

10
11
12
13
14
15

16 through 31

B 6800 System Reference Manual
Data Representation

Table 2-2. Address Couple Value Fields

Number of Bits Bits Available for
Required Index Value

13
1 13
2 12
2 12
3 11
3 11
3 11
3 11
4 10
4 10
4 10
4 10
4 10
4 10
4 10
4 10
5 9

Maximum Index
Value

8191
8191
4095
4095
2047
2047
2047
2047
1023
1023
1023
1023
1023
1023
1023
1023
511

b. The displacement field value of the SIRW is an index on the base address of the stack that is being referenced.
The value of the base address of the stack, plus the value of the displacement field is the absolute memory
address of a mark stack control word in the stack that is being referenced.

c. The index field value of the SIRW is an index on the address of the mark stack control word in the stack
that is being referenced. The sum of the address of the mark stack control word plus the value of the index
field is the address of the value that is being addressed by the SIRW.

PROGRAM CONTROL WORDS

The program control word (PCW) is used by the B 6800 system to point to the program code for a procedure or segment
of a program. The PCW also contains program information about the system environment that is to be used during the
execution of the segment or program.

The use of PCW's provides the flexibility that the software requires to utilize reentrant code techniques, and also dynamic
storage allocation principals. The reentrant code techniques are used in the B 6800 system to provide the software
capability to execute more than one job at a time while using the same machine language code.

Figure 2-14 shows the fields of data that are contained in a PCW. The fields of data in a PCW are used as follows:

bits 50:3

bits 45: 10

5001290

The tag field. The tag field for a PCW is seven (111 binary).

The stack number. The stack number field is used to identify the stack that contains the PCW
(not always the stack that is to be associated with the program code that is to be executed).

The MCP uses stack numbers to identify jobs that are currently being executed, or are scheduled
to be executed. The MCP \ssigns stack numbers for program stacks on a first come first served
basis. Therefore the stack number for a program stack is a dynamic variable that is assigned to
a program at executibn time.

2-23

bits 35:3

bits 32: 13

bit 19

bits 18:5

bit i3: 1

bits i 2: i3

2-24

B 6800 System Reference Manual
Data Representation

SNA SNA PSA I PIA

SNA SNA PSA PIA

PIA PIA IN
I

PIA · PIA LL

LL T SDI SDI
I

LL SDI SDI

SDI

SDI

1 SNA SNA SNA PSA PIA PIA PIA LL SDI SDI SDI SDI

1 SNA SNA SNA PIA PIA PIA PIA LL SDI SDI SDI SDI

MV1583

44 40 36 32 28 24 20 • 16 12 8 4 0

50:3 THE TAG FIELD.

7 IS A PCW TAG
45:10

35:3
32:13

19
18:5

13:14

THE STACK NUMBER FIELD

THE PROGRAM SYLLABLE REGISTER VALUE

THE PROGRAM INDEX REGISTER VALUE

THE NORMAL/CONTROL STATE BIT

THE LEXICOGRAPHICAL LEVEL VALUE
THE SEGMENT DESCRIPTOR INDEX VALUE

Figure 2·14. Program Control Word

The program syllable register (PSR) field. The PSR field is used to indicate the first machine
language operator in the first memory word of a machine language code string. A program code
string is not required to begin at the first machine language operator in a memory word. There
are 6 syllables in a machine language code word, and the PSR value indicates which of the
6 syllables the current string of code. starts in.

The program index register (PIR) value. The PIR field is used to indicate the first word of the
program machine language code string. The combination of the PIR field and the PSR field com·
bine to identify the specific first machine language operator in the program code string. The
PIR value defines the first word address of the string, and the PSR value defines the first syllable
within the first word of the string.

The normal state/ control state bit. The B 6800 system may operate in either of two states, and
the proper state for the current code segment is defined by the normal state/control state bit.
If the normal state/control state bit is a binary one then control state is specified, and normal
state is specified otherwise.

The lexicographical level (LL) field. The LL field is used to specify the lex level at which the
program string is to be executed. The LL value defines one of the 32 IC memory display
registers. The value in the selected IC memory display register is the base address in core memory
of the program stack with which the program code string is associated.

This bii is used to indicate that the DO stack contains the segment descriptor (if 0), or the DI
stack (if 1).

The segment descriptor index {SDI) field. The SDI is used to indicate the location of the segment
descriptor for the program code string in core memory.

B 6800 System Reference Manual
Data Representation

The 13 bits of the SDI field are a binary index value which are added to the base address from
the display register (either DO or DI) to define the absolute core memory address of the segment
descriptor for the machine language code string.

MARK STACK CONTROL WORDS

The mark stack control word (MSCW) is used to define an area within the stack in main memory. The MSCW and the
return control word (RCW) together provide a history of the stack linkage, and a record of the stack operating environ­
ment. The historical links of a stack, and the operating environment record of the stack are key data in the reconstruc­
tion and analysis of program operations.

Figure 2-15 shows the fields of data that are contained in the MSCW. The meaning of the fields of data in the MSCW
are as follows:

bits 50:3

bit 47

5001290

The tag field. The tag for a MSCW is three (011 binary).

The different stack bit. The different stack bit indicates whether the stack number field refers
to the same stack, or to a different stack. If the different stack bit is a binary zero then the
stack number field refers to the same stack. If the different stack bit is a binary one then the
stack number refers to a different stack.

OS SNR SNR OS OS OS OS v LL OF OF OF

0 E SNR SNR OS OS OS OS LL LL OF OF OF

1 SNR SNR SNR OS OS OS OS LL OF OF OF OF

1 4~NR 40
SNR 3~NR OS 2Ps OS OS LL OF OF OF OF

32 24 20 16 12 8 4 0

50:3 TAG FIELD. MARK STACK TAG IS ALWAYS 3
47 DIFFERENT STACK BIT
46 ENVIRONMENT BIT

45:10 STACK NUMBER FIELD
35:i6 DiSPLACEMENT Fi ELD

19 VALUE BIT
18:5 LEXICOGRAPHICAL LEVEL FIELD
13:14 DIFFERENCE FIELD

MV1584

Figure 2-15. Mark Stack Control Word

2-25

bit 46

bits 45:10

bits 35: 16

bit 19

bits 18:5

bits 13: 14

B 6800 System Reference Manual
Data Representation

The entered bit. The entered bit is used to indicate whether the stack is active or not. If the
stack is currently in use (is active) then the bit will be set to a binary one. If the stack is not
currently in use then the bit will be reset to a binary zero. If the entered bit is a binary one
then it indicates that the MSCW is active and was entered into the stack by a procedure entry.
If the entered bit is a binary zero it shows that the MSCW was entered into the stack by the
mark stack machine language operator, and no procedure entry has been made in the stack.
When a procedure entry is made into the stack the environment fields of the MSCW are
completed from the PCW that caused entry, and the entered bit is set to a binary one.

The stack number. The stack number field is completed at procedure entry time, and contains
the stack number value from the PCW that was entered. The stack number is the designation of
the stack that contains the PCW, not the number of the current stack.

The displacement field. The displacement field is used tq link a program together by its lexi·
cographical levels. The value of the displacement field defines the MSCW that represents the
last previous lexicographical level of the procedure. The location of the MSCW that corresponds
to the preceding lexicographical level is determined by adding the value of the displacement field
to the value of BOSR for the stack.

The value bit. The value bit is used to indicate whether or not the operator that caused entry
to the current operator is to be restarted at the beginning of the operator in the procedure that
caused entry. If the value bit is a binary zero then the previous operator must be restarted from
the beginning. If the value bit is a binary one then the previous operator must be continued at
the next operator in sequence.

The lexicographical level field. The value of the lexicographical level field defines the lexico­
graphical level at which the program will run when the procedure is entered.

The difference field. The difference field is used to store the stack history. The value of the
difference field is the number of words between the current MSCW and the previous MSCW
in the stack. Subtracting the value of the difference field from the address of the current MSCW
gives the address of the previous MSCW.

INTERRUPT PARAMETER WORDS

The interrupt controller of the B 6800 data processor recognizes certain types of system interrupts. The DP interrupt
controller fr1terrupts the program. t.liat is running; and causes an entry into the MCP interrupt handling procedures when a

2-26

B 6800 System Reference Manual
Data Representation

system interrupt is sensed. The interrupt handling procedures of the MCP initiate system actions that are required because of
the interrupt condition that exists. At the conclusion of the interrupt handling function, the MCP returns control of the DP
to the program or process that was interrupted when the system interrupt was recognized.

The interrupt controller collects and formats data about the type of interrupt that occurred. This data is placed in a
special stack (see figure 2-16) which the interrupt controller creates for the interrupt handling procedures of the MCP.
After the interrupt controller has created and filled the interrupt handling stack, a program entry is made into the
interrupt handling procedures of the MCP.

Pl Parameter

The format and content of the data that is placed in the interrupt handling stack depends on the type of interrupt that
occurred. There are five types of interrupts that are recognized by the interrupt controller of the DP, which are: Alarm
type, Hardware type, General Control type, External type, and Syllable Dependent type. The first word of data in the
interrupt stack is the Pl parameter. The Pl parameter defines the type of interrupt that was sensed, and indicates the

THE
MCP
STACK

MV 1585

5001290

D

~

TAG
FIELD
=O
TAG
FIELD
=2
TAG
FIELD
=2

I TAG
FIELD
= 1

,.,.....

TAG
FIELD
=3

+ 3 ---
TAG
FIELD - =7

TAG
FIELD
=3

0
--- TAG - FIELD

=3

,.,..

P2 PARAMETER

P3 PARAMETER

P1 PARAMETER

tRrw PnlNTINt: Tn I I RW DO + 3 ' "' ' .. ""' ' ""'
INTERRUPTED STACK)

MSCW

PROGRAM STACK AREA
FOR THE PROGRAM THAT
INITIATED THE INTERRUPT
CONTROLLER FUNCTION

PCW

RCW

MSCW

,.,,,

THIS INTERRUPT STACK IS CON­
STRUCTED BY THE INTERRUPT
CONTROLLER OF THE 86800 DATA
PROCESSOR. THE INTERRUPT PRO­
CEDURE USES THIS STACK TO ANA-

} L YZE INTERRUPTS IN THE SYSTEM.

{

THIS PCW POINTS TO THE MACHINE
LANGUAGE CODE STREAM FOR THE
86800 INTERRUPT PROCEDURES.

Figure 2-16. B 6800 Interrupt Stack Organization

2-27

B 6800 System Reference Manual
Data Representation

cause of the interrupt. Table 2-3 shows the types of interrupts that are defined in the Pl parameter, and also shows the
various causes of each type of interrupt. The Pl parameter is the first half (upper half) of a double precision word. The
last half (lower half) of the double precision word is the P3 parameter. Table 2-4 shows what information about an
interrupt is to be present in the P2, and P3 parameters of the interrupt handling procedure stack.

P3 Parameter

The P3 parameter is the second half of a double precision word in the interrupt handling procedure stack.

The purpose of the P3 parameter is to provide a place to record the hardware operating environment conditions at the
time that an interrupt occurs. The B 6800 system uses the information contained in the P3 parameter to help in the
analysis of the cause of the interrupt.

The information contained in the P3 parameter is also valuable in determining the cause of a hardware failure which
results in an operating system inter~pt. The information that is present in the P3 parameter is recorded in the SYSTEM
SUMLOG file, and thus is available to help maintenance personnel in determining the cause of hardware failures.

The P3 parameter has a variable format that depends on the type of interrupt that has occurred. There are five different
formats, but only one format is used for each type of interrupt. Figure 2-17 shows the formats that are used for Alarm
type, Hardware type, Syllable Dependent type, and General Control type interrupts. Figure 2-18 shows the format that is
used for the P3 parameter when an IO finished interrupt occurs. Table 2-4 shows what data is present in the P3 param­
eter for the specific cause of each of the five types of interrupts.

P2 Parameter

The P2 parameter for the B 6800 typically contains the contents of the top-of-stack register at the time the interrupt
occurred. This context is true for alarm type interrupts with the single exception of the stack underflow interrupt. In
the case of the stack underflow interrupt the value of the S-register will be placed in the P2 parameter word.

The B 6800 system P2 parameter for syllable dependent interrupts contains additional information. The additional
information that is contained in the P2 parameter as follows:

2-28

a. For a sequence error that occurs during a family C operation the P2 parameter will contain the value of the
word that caused the sequence error

b. For an invalid operation interrupt that occurs during a SPLT (9543) operator the word that caused the interrupt
will be reported in the P2 parameter.

c. For an invalid operation interrupt that occurs during a JOIN (9542) operator function the word that caused the
interrupt will be reported in the P2 parameter. If the information in both the A and B registers is bad then the
the word in the A register becomes the P2 parameter data.

VI

8 -N
\0
0

N
I

N
\0

Table 2-3. Pl Paramet~~r Words (Sheet 1 of 2)

Type Cause

Alarm Loop Timer
Alarm Memory Addr Parity
Alarm Scan Bus Parity
Alarm Inv Address-Local
Alarm Stack Underflow
Alarm InV: Program Word
Alarm Memory Address Residue
Alarm Read Data Mult. Error
Alarm Inv. Address Global
Alarm Global Memory Not Ready
Alarm Scan in Info Error
Alarm Scan Out Error
Hardware PROM Card Parity
Hardware RAM Card Parity
Hardware Bus Residue
Hardware Adder Residue
Hardware Compare Residue
Gen. Control Read Data Single Error
Gen. Control Read Data Retry
Gen. Control Read Data Check Bit
Gen. Control Address Retry

NOTES: 1. 1 = BIT is a binary one.
0 = BIT is a binary zero.

46 45 44 39

"' "'
"' "' l/J 0

"' "'

0 = Bit may be either a binary one or a binary zero.
X = State of bit is immaterial.

27 26 25 24

2. Bit 18 indicates whether the operation was a scan or a memory operation.
to the Global Memory:

If bit 18 = 0 it was a memory operath)n.
= 1 it was a scan operation.

23 22 21 20

"'
"'
0
</I
</I
l/J

Parameter Bits

19 18 17 15 14 13 12 11 10 9 8 7 6 5

0 0
l/J 0 0
l/J 0
0 0
0 </I
</J </I
</J

"'
0

0
"'

l/J
0 </I l/J

"' "'
l/J

0

"' "' "'
"' "'
"' "'
"'

</I

"'
l/J

x </I
x

"' x 0
x </I

3. If bit 17 is a binary one it indicates that the data in the P3
parameter is inconsistent.

4. Bit 27 is the B 6800 bit. This bit is true for B 6800 systems.
S. Bit 21 is the memory error during external device operation

(Channel B of memory) bit.

4 3 2 0

1.

N
I
w
0

Table 2-3. Pl Parameter Words (Sheet 2 of 2)

Parameter Bits

Type Cause 46 45 44 39 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 IO 9 8 7 6 5 4 3 2 0

External Status Change
External 1.10 Finished
External DCP
External Scratch Pad Parity
SDI Programmed Operator (/J

SDI Memory Protected

"' SDI Invalid OP (/J

SDI Divide by Zero (/J

SDI Exp. Overflow (/J

SDI Exp. Underflow (/J

SDI Invalid Index (/J

SDI Integer Overflow (/J

SDI Bottom of Stack (/J

SDI Presence Bit RT RT (/J VS
SDI Seq. Error (/J

SDI Segm. Array (/J

SDI Interval Timer (/J

SDI Stack Overflow (/J

SDI Confidence Error (/J

NOTES: I. 1 = Bit is a binary one.
0 = Bit is a binary zero.
</J = Bit may be either a binary one or a binary zero.
X = State of the bit is immaterial.

2. External interrupt from DCP
Bits Unit

6 5 4
() 0 1
() 0
() 1

0 0
0

OCP I
OCP2
OCP3
OCP4
BIC I
BIC 2

3. Bit 27 is the B 6800 bit. This bit is I for B 6800 systems.

x
x
x (See Note 2)
x
(/J

(/J

(/J

(/J

(/J

(/J

(/J

(/J

(/J

1 (/J

(/J (/J </J

(/J
(/J

(/J

x

!

B 6800 System Reference Manual
Data Representation

Table 24. Interrupt Procedure Stack Parameter Contents

Kind of Error

1. Loop Timer
2. Memory Address Parity
3. Scan Bus Parity Address
4. Inv. Address, Local
5. Stack Underflow
6. Inv. Progr. Word
7. Memory Address Residue
8. Read Data Multiple Error
9. Inv. Addr, Global

l 0. Global Memory Not Ready
l l . Scan In Info Error
l 2. Scan Out Error

1. Prom Card Parity
2. RAM Card Parity
3. Bus Residue
4. Adder Residue
5. Compare Residue

1. Read Data Single Error
2. Read Data Retry
3. Read Data Check Bit

1. Unit Status Change
2. 1/0 Finished
3. DCP
4. Scratch Pad Parity

1. Programmed Operator
2. Memory Protected
3. Invalid Op
4. Divide by zero
5. Exponent Overflow
6. Exponent Underflow
7. Invalid Index
8. Integer Overflow
9. Bottom of Stack

10. Presence Bit
11. Seq. Error
12. Segm. Array
13. Interval Timer
14. Stack Overflow
15. Confidence Error

Footnotes: Addr

!
Interrupt Type
Pl Parameter

Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm

Hardware
Hardware
Hardware
Hardware
Hardware

Gen. Cntr.
Gen. Cntr.
Gen. Cntr.
Gen. Cntr.

External
External
External
External

SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI
SDI

!
Contents of the

P2 Parameter

S Register
Word

Word

Word
Word

Status Vector
Result Descriptor

Card #, Channel #

See the text under the
subheading titled P2
Parameter

OP is the Op code

Contents of the
P3 Parameter

Strb, JC, Op
Addr, JC, Strb, Op
Addr, JC, Strb, Op
Addr, JC, Strb, Op
Addr, JC, Strb, Op
JC, Strb, Op
Addr, JC, Strb, Op
Addr, JC, Strb, Op
Addr, Strb, JC, Op
Addr, Strb, JC, Op
Addr, Strb, JC, Op
Addr, Strb, JC, Op

JC, Strb, Op, Card #
JC, Strb, Op, Card #
JC, Strb, Op
JC, Strb, Op
JC, Strb, Op

Addr, Bit#
Addr
Addr, Bit#
A ...l ...l­
rtUUl

Error Conditions

JC, Str, Op
JC, Sfr, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op
JC, Str, Op

Strb
JC

is the Memory or Scanjddress
is the family strobe Card # is the number of the failing card
is the fanily seq. counter count Bit # is the number of the failing bit

5001290 2-31

l

B 6800 System Reference Manual
Data Representation

The B 6800 system external type interrupts provide the following information:

a. Unit status change external interrupts provide the status vector word information in the P2 parameter word.

b. IO finished external interrupts provide the result descriptor data from the IO processor (multiplexer) in the
P2 parameter word.

c. Scratch pad parity external interrupts report the card number, and the channel number of the multiplexer
scratch pad memory word that caused the interrupt in the P2 parameter

Figures 2-19 through 2-21 show the P2 parameter word layouts for the three cases stated in a through c above.
Table 2-4 indicates the data that is present in the P2 word for different types of interrupts in the B 6800 system.

RETURN CONTROL WORDS

A return control word is used in the B 6800 system to provide a method for returning to a previous procedure. The
second entry in an active job stack is always a return control word. The hardware of the B 6800 system automatically
creates the return control word (RCW) for a previous procedure or program when an entry to the new procedure is made.
Prior to the hardware inserting the return control word into the stack, the second word in the stack is either a PCW, or
an IRW. The return control word is substituted for which ever type of word is the second word in the new procedure
stack.

2-32

Vi
0
0
N
\0
0

N
I

VJ
VJ

r-.l'V 1586 A

RES SUM= RESl.DUE OF ADDRESS
VE= VECTOB
TE= TABLE

E =EDIT
V =VARIANT
M =MODE
M = MODE 0 MEANS J-COUNT IS ACTIVE.

1 MEANS µ ADDRESS IS ACTIVE

Figure 2-17. P3 Parameter Configurations

MV1588

0

1

0
44

BITS 17:18
23:6
26:3
32:6
33
35
36
37

MV 1587

40

B 6800 System Reference Manual
Data Representation

ACE ME SE CE CE

ME ARE CE CE

DE GM ME AAE CR UE
NR

--
ov ME ME AAE CE UE

36CE 32 28 24 20 16

UNIT ERROR FIELD
CONTROL ERROR FIELD
ADDRESS ADDER ERROR FIELD
MEMORY ERROR FIELD

UE

UE

I IC:
VL

UE
?2

GLOBAL MEMORY NOT READY BIT

ADDR COMP ERROR

UE UE UE

UE UE UE

UE I IC: I IC:
V'- VL..

UE UE UE
8 " 0

OP CODE OR VARIANT CHARACTER GENERATOR ERROR
DESCRIPTOR ERROR

Figure 2-18. P3 Parameter Contents for IO Finished Interrupt

v v v v v v v v

0 v v v v v v v v

0 v v v v v v v v

0 v v v v v v v
24 20 16 12 8 0

50:3 TAG FIELD, (ALWAYS= 0 FOR P2 PARAMETER)
32:32 VECTOR WORD. EACH BIT IN THE VECTOR WORD

REPRESENTS A UNIT THAT IS REPORTING A
STATUS CHANGE

BITO IS ALWAYS A BINARY ONE

Figure 2-19. P2 Parameter Status Change Fmmat

Figure 2~22 shows the fields of data that are present in the RCW, and defines the meaning of the data in each field. The
combination of data fields that are stored in the RCW indicates what the hardware environment wiH be after the return
to the previous procedure has bee~ made.

PROGRAM WORDS (CODE WORDS)

Program words are B 6800 words that contain the machine language instructions which the data processor executes.
Program code words are grouped into units of words called segments. A segment consists of all the machine language
code for a program or a segment of a program. A program segment may consist of from one program code word, to a

2-34

0

0

0

MV 1589

MV 1590

cc WC

cc WC

cc WC

WC WC
44 40

B 6800 System Reference Manual
Data Representation

WC WC WC u u CH

wc1 wc WC u u CH
I I

WC WCI WC u u CH

WC WC WC u u CH CH
36 32 28 24 20 16 12

50:3 TAG FIELD.

p

p

8 4

(ALWAYS= TO ZERO FOR P2 PARAMETER)

47:3 CHARACTER COUNT
44:17 WORD COUNT
24:8 UNIT NUMBER FIELD
16:5 CHANNEL NUMBER FIELD
11:2 PATH NUMBER FIELD
BIT 1 ATTENTION BIT
BIT 0 ERROR BIT

Figure 2-20. P2 Parameter Result Descriptor Format

CH CH

CH C

CH C

50:3 TAG FIELD.

c
20

(ALWAYS = 0 FOR P2 PARAMETER)
27:5 CHANNEL NUMBER FIELD
22:3 CARD NUMBER FIELD

Figure 2-21. P2 Parameter Scratch Pad Parity Format

A

E
0

maximum of 16,384 words. It is unusual for a program segment to exceed several hundred words. Each segment of
program code in a program is referenced (and located) tprough the segment descriptor index field in the PCW that calls
the segment to be executed by the data processor. A segment of code may call upon the system to execute another

5001290 2-35

0

MV 1591

ES

OF

T

F.
44

50:3

BIT47
BIT46
BIT 45
BIT44
BIT42
BIT 41
35:3
32:13
BIT 19

18:5
13:14

B 6800 System Reference Manual
Data Representation

PSA PIA· PIA PIA N LL SDI SDI · SDI

PSA Pl A PIA PIA LL LL SDI SDI SDI

PSR PIR P!R P!R LL SD! SD! SDI SDI

PIA PIA PIA ~IR LL SDI SDI SDI SDI
32 28 24 20 16 12 8 4 0

TAG FIELD.
(ALWAYS A VALUE OF 3 FOR AN RCW)
EXTERNAL SIGN BIT FLIP-FLOP STATE
OVERFLOW FLIP-FLOP STATE
TRUE/FALSE FLIP-FLOP STATE
FLOAT FLIP-FLOP STATE
TRUE/FALSE FLIP-FLOP OCCUPU::D FLIP-FLOP STATE
COMPARE FLIP-FLOP
VALUE OF PROGRAM SYLLABLE REGISTER FIELD
VALUE OF PROGRAM INDEX REGISTER FIELD
NORMAL/CONTROL STATE FLIP-FLOP STATE;
BINARY ZERO = NORMAL STATE
BINARY ONE = CONTROL STATE
VALUE OF LEXACOGRAPHICAL CEVEL REGISTER
SEGMENT DESCRIPTOR INDEX VALUE

Figure 2-22. Return Control Word

segment of code. At the conclusion of such a called segment, the system will return to the calling segment. The location
of the code for the calling segment is not lost during the execution of the called segment code because the RCW of the
called segment contains the SDI value for the code of the calling procedure. Thus when returning to the calling procedure
the code segment location is known.

PROGRAM SEGMENTS AND THE SEGMENT DESCRIPTOR

The program code that is executed when a program job or task is performed is contained in words of machine language
operator codes. All of the operator codes that comprise the task are grouped together in groups called segments. A segment
may contain all of the machine ianguage operators, or a major group of the operator codes in a program task.

When a program task is to be executed, an ENTER operator causes the PCW for the task to be brought into the stack, and
distributed to the various parts of the operating system. The SDI field of the PCW word (refer to figure 2-14) locates a
segment descriptor (SD) for the program task. A description of the SD (figure 2-23) is as follows:

bits 50:3

bit 47: 1

bit 46: 1

2-36

The tag fieid. The tag for a SD is aiways three (011 binary).

The presence bit. If this bit is binary one then the program code segment is present in local memory.

The copy bit. If this bit is a binary zero then the segment descriptor is the original segment descriptor.
If this bit is a binary one then this descriptor is a copy of an original segment descriptor.

bits 45:6

bits 39:20

bits 19:20

B 6800 System Reference Manual
Data Representation

An unused field. These bits may be either binary ones or zeros because they have no effect upon
the use of the word as a segment descriptor.

The length field. This field specifies the length of the code segment~ in words, in binary notation.

The address field. If the presence bit is a binary one then this field contains the absolute· address
of the first word in the segment. If the presence bit is a binary zero and the copy bit is also a
binary zero then this field contains a five digit binary coded decimal disk address for the code
segment. If the presence bit is a binary zero and the copy bit is a binary one then this field con­
tains the absolute memory address of the original segment descriptor.

A program code segment may call another program segment to be executed. Each of these program code segments (the
calling segment, and the called segment) has a separate segment descriptor. The address (SDI) for the current code segment
is saved in the data processor IC memory registers. The value of the called SDI is saved when the called segment is executed.
However, the SDI for the calling segment is not lost, because this address is saved in the RCW (refer to figure 2-22). Thus,
when a called segment is executed, and a return (or EXIT) to the calling segment is performed, the SDI is always available
for the currently executing program segment.

The use of copy segment descriptors, and the mechanism for saving the SDI values for segments of program code are basic
components used to provide for the concepts of reentrant code. Reentrant code techniques are defined in section 3 of
this manual.

TOP OF STACK CONTROL WORDS

A top of stack control word (refer to figure 2-24) is originated when the data processor executes the move to stack operator.
This word occupies the address in" memory of the lower word boundary for a job or task area. A TOSCW contains the
relative addressing and environment rncord for the progran1 or task. The address of a TOSCW for an operating progra..rn or
task is the same as the value of the BOSR address register. A TOSCW therefore also corresponds to the address of the first
MSCW for a job or task.

The addressing environment for a program or task consists of the values of the BOSR, F, S, and lexicographical level
·registers. The values of these registers are stored in the TOSCW when another program or task is to be executed. Upon
re-entry into the program or task procedures, the proper values from the TOSCW are used to restore the proper addressing
environment for the program or task, in the memory address registers.

The operating environment of a job or task consists of the state of seven flip-flops. These flip-flops are the external sign,
overflow, true/false, float, true/false occupied, compare, and normal/control state flip-flops. The state of these flip-flops
is stored in the TOSCW when another job or task is to be executed. Upon re-entry into the original job or task, the proper
values for operating environment flip-flops are restored from the TOSCW.

The TOSCW for the currently operating program or task does not contain the operating and addressing environment. instead,
the CPU data processor identity (001 for a B 6800 system) is stored in bits 2:3, and the rest of the bits (except the tag
field) are zeros. The presence of a TOSCW which only contains the data processor identity field indicates the address of
the lowest word in the current job or task stack. This word is addressed by the value of the BOSR register.

A program code word is composed of six syllables, and a tag field (see figure 2-25)~ The tag field for a program code
word is always a value of three. The remaining 48 bits of the program word is divided into six 8-bit syllable fields. A
machine language instruction consists of from one to seven syllables. An instruction is not limited to a single code word
but may extend across the boundary of a code word, and into the next word of program code in sequence. For this
reason the contents of a word of machine language code may be portions of two operators, plus from one to four com­
plete operator codes.

5001290 2-37

2-38

p
///////////////////1/1

L

0 c 1
1/11/1///1/1/111/1/i

L

1
1////1///////lll//I////! 1/1/1/l///l//ll/l///l/i

L

1
llllllllllllllll llllll//lllll/lt

L
36

B 6800 System Reference Manual
Data Representation

I L I L L L A A

L L L L A A

L L L L A A

L L L L A A
32 28 24 20 1 6 1 2

A A A

A A A

A A A

A A A
8 4 0

50:3 TAG FIELD.
(ALWAYS A VALUE OF 3 FOR A SEGMENT DESCRIPTOR)

47: 1 PRESENCE BIT, 1 =PRESENT IN MEMORY
0 =PRESENT IN LIBRARY

46: 1 COPY BIT, 1 =COPY OF ORIGINAL SEGMENT DESCRIPTOR
0 =ORIGINAL SEGMENT DESCRIPTOR

39:20 LENGTH FIELD - THE NUMBER OF WORDS IN THE SEGMENT
19:20 ADDRESS FIELD -THE BEGINNING MEMORY ADDRESS IF

(47:1] = 1.
-THE DISK OR PACK ADDRESS IF (47:1] = 0,

AND (46:1] = 0. ,
-THE MEMORY ADDRESS OF THE ORIGINAL
SEGMENT DESCRIPTOR IF (46:1] = 1, AND
(47:1] = 0.

Figure 2-23. Segment Descriptor Word

ES 1/1/lllllllll/1/11111//11//1/1/1/111/fl/ll/fl DSF DSF DSF' OSF N LL OFF OFF j OFF

0 OF ~~ /111/ll///lllllllll DSF OSF OSF OSF LL LL OFF OFF OFF

1 T C ·11111111111111111111. OSF OSF OSF OSF LL OFF OFF OFF OFF

1 ~t ll/1/1/lll/1/1/l/ll/ll////lll/// 3~SF 2~SF 2~SF ~SF l~L l~FF PFF ~FF ~FF

50:3 TAG FIELD.
(ALWAYS A VALUE OF 3 FOR A TOSCW)

47:1 EXTERNAL'SIGN FLIP-FLOP
46:1 OVERFLOW FLIP-FLOP
45: 1 TRUE FALSE FLIP-FLOP
44: 1 FLOAT FLIP-FLOP
42:1 TRUE FALSE OCCUPIED FLIP-FLOP
41 :1 COMPARE FLIP-FLOP
55:16 DELTA $-REGISTER FIELD (VALUE OF THE

$-REGISTER DISPLACEMENTABOVE BOSR)
19:1 NORMAL/CONTROL STATE FLIP-FLOP;

O= NORMAL STATE
1 =CONTROL STATE

18:5 LEXICOGRAPHICAL LEVEL
13:14 DELTA F REGISTER FIELD (VALUE OF THE

F-REGISTER DISPLACEMENT, BELOW THE
VALUE OF THE S-REGISTER)

2:3 THE CPU PROCESSOR ID VALUE (001)
WHEN THE TOSCW IS FOR AN ACTIVE
PROCESS PROGRAM OR TASK

Figure 2-24. TOSCW Word Layout

MV 1592

50
0

48
1

TAG
FIELD

5001290

47 '43

46 42

45 41

144 40

SYLLABLE
0

39 35

38 34

37 33

36 32

SYLLABLE

B 6800 System Reference Manual
Data Representation

31 27

30 . 26

29 ">C

"'"'

28 24

SYLLABLE
2

23 19

22 18

21 17

20 16

SYLLABLE
3

Figure 2-25. Program Word Format

15 11

14 10

13 9

12 8

SYLLABLE
4

7 3

6 2

5 1

4 0

SYLLABLE
5

2-39

B 6800 System Reference Manual

SECTION 3

STACK AND REVERSE POLISH NOTATION

THE STACK

GENERAL

The stack is the memory storage ar~a assigned to a job. The stack provides storage for the basic program and data
references for the job. It also provides for temporary storage of data and job history. When a job is activated., four
high-speed hardware registers (A, X, B, Y) are linked to the memory portion of the job's stack (see figure 3-1). This
linkage is established by the stack pointer register (the S register), which contains the memory address of the last word
placed in the stack. The four hardware top-of-stack registers (A, X, B, Y) extend the stack to provide quick access for
data manipulation. Another stack pointer value (the F register) always points to the last valid MSCW in the stack.

HARDWARE
REGISTERS

STACK
MEMORY
BUFFER
AREA

MV 1593

5001290

INPUT/
OUTPUT
PATH OF DATA
TO STACK

r---TO"P-OF-s-fACKREGtSTER--,

I A x I
I s J

I I
L_ ---------'

STACK AREA
ASSIGNED
TO PROGRAM

WORDntx

TOSWORD

MSCW
LAST VALID MSCW

STACK AREA
CURRENTLY
IN USE I STACK LIMIT REGISTER 1-----LOS F

l-
==d~----__,,~----1----w_o_R_D_n __ ~~~.~ BOS I

l ~TE~ccfRY l L ____ _J
AREA

Figure 3-1. Top-of-Stack and Stack Bounds Registers

3-1

B 6800 System Reference Manual
Stack and Reverse Polish Notation

The number of words in the memory portion of the stack is equal to the difference between the values of the
BOS register, and the S register (S minus BOS). Data are brought into the stack through the top-of-stack registers in such a
manner that the last word placed in the stack (as indicated by the value of the S register) is the first word to be
extracted from the stack (last in first out method). The total capacity of the top-of-stack registers is two words or two
operands. Loading a third word or operand into the top-of-stack registers causes the first word or operand to be pushed
from the top-of-stack registers into the memory portion of the stack. The stack pointer value in the S register is
incremented by one as a word or operand is pushed into the memory portion of the stack, and is decremented by one
when a word or operand is withdrawn from the stack area and placed in the hardware top-of-stack registers. As a
result, the S register continually points to the last word or operand placed into the memory portion of the job stack.

BASE AND LIMIT OF Sf ACK

A job's stack is bounded, for memory protection, by two registers: the base-of-stack register (BOSR) and the limit-of­
stack register (LOSR). The contents of BOSR define the base of the memory portion of the stack, and the contents of
LOSR define the upper limit of the memory portion of the stack. The job is interrupted if the S register is set to a
value that is present in either the BOSR, or the LOSR register. If the S register equals or exceeds the value of the
LOSR register value a stack overflow interrupt occurs.

BI-DIRECTIONAL DATA FLOW IN THE STACK

The contents of the top-of-stack registers are maintained automatically by the data processor to meet the requirements of
the current machine langu~ge operator. If the current operator requires data transfer into the memory portion of the
stack, the top-of-stack registers receive the incoming data, and surplus contents in the top-of-stack registers are pushed
down into the memory portion of the stack. Pushing data into the memory portion of the stack means that the bottom
word or operand in the top-of-stack register is transferred to the next word or operand in sequence, in the memory
portion of the stack. Pushi~g data down into the memory portion of the stack makes room in the top-of-stack· registers
to contain the incoming data that is required by the current machine language operator.

Data are also automatically brought from the memory portion of the stack and placed in the top-of-stack registers when
the machine language operator requires that the top-of-stack registers be filled. This automatic function is the opposite

•of the push function described in the previous paragraph, and is commonly called a push up function. A push up
transfers the last operand or word in the memory portion of the stack into the second word position in the top-of-stack
registers. The word or operand in the memory portion of the stack is then deleted by decrementing the S register. The
automatic maintenance of the top-of-stack registers takes the form of "push down", and "push up" functions which are
described in the following paragraphs.

Stack Push Down

A stack push down occurs when a third word or operand is loaded into the top-of-stack registers, and both the
A register and B register already contain stack words or operands. A push down consists of moving data from the top­
of-stack registers to the local memory portion of the stack. Moving data to the local memory portion of the stack makes
room in the top-of-stack registers so that a third operand may be loaded into the top-of-stack registers.

Stack Push Up

A stack push up occurs when an operand or word is moved from the local memory portion of the stack, to the
top-of-stack register portion of the stack. A push up can only occur when a machine language operator is executed by
the data processor. Tne data processor operator that is to be performed must require that words or operands be present
in the top-of-stack registers, and such words or operands must not be present in the proper top-of-stack registers.

3-2

B 6800 System Reference Manual
Stack and Reverse Polish Notation

DOUBLE PRECISION STACK OPERATION

The top-of-stack registers are operand oriented rather than word oriented. Calling a double precision operand into the
top-of-stack registers causes two memory words to be loaded into the top-of-stack registers. The first word is loaded
into the A register, where it's tag bits are checked. If the value indicates double precision the second word is loaded into
the X register. The A and X registers are concatenated, or linked together, to form the double precision operand. The
B and Y registers concatenate when a double precision operand reverts to single words as it is pushed from the B and Y
registers into the memory portion of the stack. The concatenation is repeated when a double precision operand is
returned from the memory portion of the stack to the top-of-stack registers.

TOP-OF-STACK REGISTER CONDITIONS

Two logical indicators are used to indicate the condition of the top-of-stack register portion of the stack. These two
indicators are AROF (A register is occupied flip-flop), and BROF (B register is occupied flip-flop). The meaning of
these two logical indicators is as follows:

AROF

0 0

0 1

1 0

STACK ADJUSTMENTS

MEANING

Neither the A, or the B register contains valid data. The top word in the stack is
presently located in the local memory address specified by the contents of the
S register.

The B register contains the top word in the stack, and the contents of the A register
are not valid data. The second word in the stack is presently located in the local
memory address specified by the contents of the S register.

The A register contains the top word in the stack, and the contents of the B register
are not valid data. The second word in the stack is presently located in the local
memory address specified by the contents of the S register.

The A register contains the top word in the stack, and the second word in the stack
is presently in the B register. The third word in the stack is in the local memory
address specified by the contents of the S register.

Each machine language operator that is executed by the data processor contains the requirement to adjust the top-of­
stack registers so that their contents provide accomodation for the operation that is to be performed. A convention is
used to show what stack adjustment is required, as follows:

5001290 3-3

CONVENTION NOTATION

(ADJ 0,0)

(ADJ 0,1)

(ADJ 1,0)

(ADJ 1,1)

(ADJ 0,2)

(ADJ 1,2)

(ADJ 1,3)

B 6800 System Reference Manual
Stack and Reverse Polish Notation

MEANING

Both the A and B registers are to be adjusted so that their contents are
not valid. The top word in the stack is to be located in the local memory
address pointed at by the contents of the S register.

The dat~ processor will use the state of the AROF and BROF flip-flops to
determine if the stack must be pushed down to achieve the required adjust­
ment. The 0,0 portion of the convention notation shows what the logical
states of AROF and BROF must be to satisfy the requirements of the
adjustment. The first 0 in the expression of the notation defines what the
logical state of the AROF flip-flop must be at the conclusion of the stack
adjustment. The second 0 in the expression defines what the logical state of
the BROF flip-flop must be at the conclusion of the adjustment. The ADJ
portion of the convention notation reads "adjust the stack until AROF and
BROF meet the logical states".

The A register is to be adjusted so that its contents are not valid. The top
word or operand in the stack is to be present in the B register, and the
second word or operand in the stack is to be located in the local memory
address pointed at by the contents of the S register.

The A register is to be adjusted so that its contents are the top word or
operand in the stack. The B register must not contain valid data. The
second word or operand in the stack is to be located in. the local memory
address pointed at by the contents of the S register.

The A register is to be adjusted so that it contains the top word or operand
in the stack. The B register is to be adjusted so that it contains the second
word or operand in the stack. The third word or operand in the stack is to
be in the local memory address pointed at by the contents of the S register.

The A register is to be adjusted so that its contents are not valid. The B register
condition is immaterial to the operation. The top word in the stack is present
in the B register if BROF is set.

The A register is to be adjusted so that it contains the top word in the stack.
The B register condition is immaterial to the operation. The second word in
the stack is located in the B register if BROF is set.

The A register is adjusted so that it contains the top word in the stack if and
only if the original stack condition is AROF I and BROF I (0,0). If any other
condition than (0,0) is the original condition, then no stack adjustment occurs.

Some machine language operations require that several stack adjustments must be performed during the course of the
operation. Such operations merely pause at the appropriate place until the adjustment is completed, and then continue
the sequence.

Stack push down and/or stack push up (which were defined previously in this section) are intrinsic functions of the stack
adjustments. That is, a push-up or a push-down tlflY be implied because of the current state of the top of stack registers,
and the required stack adjustment. Where a stack push-up or push-down is implied, such operation will be performed as an
integral and automatic function of the stack adjustment procedure.

3-4

DATA ADDRESSING

B 6800 System Reference Manual
Stack and Reverse Polish Notation

The B 6800 data processor provides three methods for addressing data or program code:

a. Data descriptor (DD)/segment descriptor (SD)

b. Indirect reference word (IRW)

c. Stuffed indirect reference word (SIRW)

The data descriptor (DD) and segment descriptor (SD) provide for the addressing of data or program segments located
outside of the job's stack area. The indirect reference word (IRW) and the stuffed indirect reference word (SIRW)
address data located within (IRW), or outside (SIRW) the job's stack. The IRW and SIRW address components are both
relative. The IRW addresses within the immediate environment of the job relative to a display register (described later in
Non-local Addressing). The SIRW addresses beyond the immediate environment of the current procedure, the addressing
being relative to the base of the job's stack. Addressing across stacks is accomplished with an SIRW.

Data Descriptor

In general, the descriptor describes and locates data associated with a given job. The data descriptor (DD) is used to
fetch data to the stack or to store data from the stack into an array located outside the job's stack area. The formats of
the data and segment descriptors were illustrated in section 2. The address field in each of these descriptors is 20 bits in
length; this field contains the absolute address of an array in either local memory or in the disk file, as indicated by
setting of the presence bit (P). The referenced data is in main memory when the presence bit is set.

Presence Bit

A presence bit interrupt occurs when the job references data by means of a descriptor in which the P-bit is equal to O;
i.e., the data is located in a disk file, rather than in local memory. The Master Cop.trol Program (MCP) recognizes the
presence bit interrupt and transfers data from disk file storage to local memory. After the data transfer to local memory
is completed, the MCP marks the descriptor present by setting the P-bit to 1, and places the new local memory address
into. the address field of the de&c;riptor. The interrupted job is then reactivated.

Index Bit

A data descriptor describes either an entire array of data words, or a particular element within an array of data words.
If the descriptor describes the entire array, the index bit (1-bit) in the descriptor is 0, indicating that the descriptor has
not yet been indexed. The length field of the descriptor defines the length of the data array.

Invalid Index

A particular element of an array is described by indexing an array descriptor. Memory protection is ensured during
indexing operations by performing a comparison between the length field of the descriptor and the index value. An
invalid index interrupt results if the index value exceeds the length of the local memory area defined by the descriptor,
or if the index is less than 0.

Valid Index

If the index value is valid, the length field of the descriptor is replaced by the index value, and the I-bit in the descriptor
is set to 1 to indicate that indexing has taken place. The address and index fields are added together to generate the
absolute machine address whenever an indexed data descriptor in which the P-bit is set is used to fetch or store data.

5001290 3-5

B 6800 System Reference Manual
Stack and Reverse Polish Notation

The double-precision bit (D) is used to identify the referenced data as single- or double-precision and directly affects the
indexing operation. The D-bit equal to I signifies double-precision and causes the index value to be doubled before
indexing.

Read-Only Bit

The read-only bit (R) specifies that the local memory area described by the data descriptor is read-only area. If the R-bit
of a descriptor is set to I, and the area referenced by that descriptor is used for storage purposes, an interrupt results.

Copy Bit

The copy bit (C) identifies a descriptor as a copy of a master descriptor and is related to the presence-bit action. The
copy bit links multiple copies of an absent descriptor (i.e., the presence bit is off) to the one master descriptor. The
copy bit mechanism is invoked when a copy is made in the stack. If it is a copy of the original, absent descriptor, the
processor sets the copy bit to I and inserts the address of the master descriptor into the address field. Thus, multiple
copies of absent data descriptors are all linked back to the master descriptor.

REVERSE POLISH NOTATION

GENERAL

Reverse polish notation is an arithmetical or logical notational system using only operands and operators arranged in
sequence or strings, thus eliminating the necessity for defining the boundaries of any terms. Figure 3-2 presents a flow
chart for conversion to reverse polish notation.

SIMPLIFIED RULES FOR GENERATION OF POLISH STRING

The source of expression is as follows:

3-6

Name

Variable or constant

Operator-separator "(" or "["

Arithmetic or Boolean operator and last-entered
delimiter list symbol were as follows:

I. An operator of lower priority.

2. A ieft bracket 'T' or parenthesis "(".

3. A separator.

4. Nothing (delimiter list empty).

Arithmetic or Boolean operator and last-entered
delimiter list symbol were as follows: an operator
of priority equal to or greater than the symbol in
the source.

Action

Place variable or constant in string being built and
examine next symbol.

Place in delimiter list and examine next symbol.

Place operator in the delimiter list and examine next
source symbol.

Remove the operator from the delimiter list and
place it in the siring being built. Then compare
the next symbol in the delimiter list against the
source expression symb.ol.

D. L. = DELIMITER LIST
P. N. S. =POLISH NOTATION STRING

B 6800 System Reference Manual
Stack and Reverse Polish Notation

EXAMINE FIRST
ITEM OF
SOURCE STATE­
MENT STRING

LEFT PARENTHESIS OR
BRACKET

RIGHT PARENTHESIS OR
BRACKET

PLACE
SYMBOL
IN P.N.S.

MV 1594A

"("OR"["

PLACE
"("OR"["
IN TO D.L.

SCAN NEXT
SOURCE ITEM

DELETE
"("OR"["
FROM THE
D.L.

*

")"OR"]"

MOVE LAST
ENTER ED D. L.
SYMBOL FROM
D. L. TO P.N.S.

INSERT
SOURCE
SYMBOL
IN D;L.

PRIORITIES

3

2

0

OPERATOR

OPERATORS

X, I

+,-
>.<.=(BOOLEAN}

: =(REPLACEMENT)

(+, -, x, /,=, >. <l

\...~----""

YES

MOVE LAST
ENTERED D.L.
SYMBOL FROM
D.L. TO P.N.S.

LAST ENTERED
D.L. SYMBOL IS
a) LOWER PRIORITY
bl"(" OR"["
cl D. L. IS EMPTY

NO

MOVE LAST
ENTERED D.L.
SYMBOL (=ROM
D.L. TO P.N.S.

Figure 3-2. Reverse Polish Notation Flow Chart

5001290 3-7

Name

B 6800 System Reference Manual
Stack and Reverse Polish Notation

Action

A right bracket "]" or parenthesis ")". Pull from delimiter list until corresponding left
bracket or parenthesis.

End of expression. Move last-entered delimiter list symbols to Polish
notation string until empty.

POLISH STRING

The essential difference between reverse polish and conventional notation is that operators are written to the right of the
operands instead of between them. For example, the conventional B + C is written BC +in reverse polish notation:
A= 7 x (B + C) becomes A 7 BC+ x :=.

Any expression written in reverse polish notation is called a polish string. In order to fully understand this concept, the
user should know the rules for evaluating a polish string.

RULES FOR EVALUATING A POLISH STRING

The following is the procedure for evaluating a polish string:

a. Scan the string from left to right.

b. Remember the operands and the order in which they occur.

c. When an operator is encountered perform the following:

1. Record the last two operands encountered.

2. Execute the required operation.

3. Disregard the two operands.

4. Consider the result of (b) above as a single operand, the first of the next pair to be operated upon.

Following this rule, the reverse polish string A 7 BC + x :=results in A assuming the value 7 x (B+C) (table 3-1).

NOTE

Because replacement operators vary depending upon the language
used, +-, =, and := are equivalent for this discussion.

SIMPLE STACK OPERATION

All program information must be in the system before it can be used. Input areas are allocated for information entering
the system and output areas are set aside for information exiting the system; array and table areas are also allocated to
store certain types of data. Thus data is stored in several different areas: the input/output areas, data tables (arrays),
and the stack. Since all work is done in the arithmetic registers, all information or data is transferred to the arithmetic
registers and the stack.

3-8

Step
No.

2

3

4

5

6

,.,
I

Symbol
Being

Examined

B

c

+

7

x

A

B 6800 System Reference Manual
Stack and Reverse Polish Notation

Table 3-1. Evaluation of Polish String A 7 B C + x : =

Symbol
Type

Operand

Operand

Add
Operator

Operand

Multiply
Operator

Name

Replace
Operator

Operands Being
Remembered Order of

Occurrence (1 or 2)
Before Operation

1 B

2C
1 B

l(B + C)

2 7
1 x (B + C)

1 7 x (B + C)

2A
1 7 x (B + C)

Occurring
Operation

B+C

7 x (B + C)

A :=7x(B + C)

Operation
Results

(B + C)

7 x (B + C)

A=7x(B + C)

At this point, an ALGOL assignment statement and the reverse polish notation equivalent will be related to the stack
concept of operation. The exam pie is Z:=.Y + 2x{W+V), where := means "is replaced by.'' In terms of a computer pro­
gram, this assignment statement indicates that the value resulting from the evaluation of the arithmetic expression is to
be stored in the location represented by the variable Z.

When Z:=Y + 2x(W+V) is translated to reverse polish notation, the result is ZY2WV+ x +:=. Each element of the exam­
ple expression causes a certain type of syllable to be included in the machine language program when the source problem
is compiled. The following is a de"tailed description of each element of the example, the type of syllable compiled, and
the resulting operation (see figure 3-3 and table 3-2).

In the example statement, Z is to be the recipient of a value, the address of Z must be placed into the stack just prior to
the store command. This is accomplished by a name call syllable which places an indirect reference word (IRW) in the
stack. The IRW contains the address of Z in the form of an "address couple" that references the memory location
reserved in the stack for the variable Z.

Since Y is to be added to a quantity, Y is brought h!to the top of the stack as an operand. This !s accomplished with a
value call (V ALC) syllable that references Y. The value 2 is then brought to the stack, with an eight-bit literal syllable
(LT8). Since Wand V are to be added, the respective variables are brought to the stack with value call syllables. The
ADD operator adds the two top operands and places the sum in the top of stack. This example assumes, for simplicity,
single-precision operands not requiring use of the X and Y registers which are used in double-precision operations.

The multiply operator is the next symbol encountered in the reverse polish string; when executed, it places the product
"2x(W+V)" in the top of the stack. The next symbol, ADD, when executed, leaves the final result "7+2x(W+V)" in the
top of the stack.

5001290 3-9

w
I -0

"A" REGISTER

"B" REGISTER

CORE STACK
AREA

CBIL N+5

CB!L N+4

CBIL N+3

CBIL N+2

CBIL N+1

CBIL N

MV1595

~
~

z

y

w

v

s -

ALGOL STATEMENT

POLISH STRING NOTATION

NAMC

z

IRWZ

~

INV

~-

1--

z 1---"

y

w
i----1

v

VALC LTB

y 2

y B IRWZ

IRWZ

z z

y y

w w

v v

z
z

-

y + 2
y 2 w v

//
VALC

w

w

2

y

IRWZ

z

y

w

v

VALC

v

w

y

IRWZ

z

y

w

v

x
+

ADD

B
B

2

y

IRWZ

z

y

w

v

Figure 3-3. Stack Operation

(W+V) ;

x\~

--

MULT ADD STOD

INV

2x(W+V)

2

y

IRWZ

z

y

w

v

-

VALC
NAMC
LTB
STOD

INV G
G Y+2(W+V)

2 2

y y

IRWZ ~

L
IRWZ

z I- IY + 2(W + v~

y y

w w

v v

SYLLABLE TYPES

VALUE CALL
NAME CALL
LETERAL (8 BIT)
STORE DESTRUCTIVE

Reverse
Polish

Execution Notation
Sequence Element

0

z

2 y

3 2

4 w

5 v

6 +

7 x

8 +

9 -

B 6800 System Reference Manual
Stack and Reverse Polish Notation

Table 3-2. Description of Stack Operation

Syllable
Type Function of Syllable During

Complied Running of the Program

Stack location of program variables illustrated

Name call for Z Build an indirect reference word that contains the address
of Z and place it in the top of the stack

Value call for Y Place the value of Y in the top of the stack

Literal 2 Place a 2 in the top of the stack

Value call for W Place the value of W in the top of the stack

Value call for V Place the value of V in the top of the stack

Operator add Add the two top words in the stack and place the result
in B register as the top of the stack

Operator Multiply the two top-of-the-stack operands. The product
multiply is left in the B register as the top of the stack

Operator add Add the two top words in the stack and leave the result
in the B register as the top of the stack

Operator store Store an item into memory. The address in which to
destructive store is indicated by an indirect reference word or a data

descriptor; the address can be above or below the item
stored

The store syllable completes the execution of the statement Z:=Y + 2x(W+V). The store operation examines the two
top-of-stack operands looking for an IRW or data descriptor. In this example, the IRW addresses the location where the
computed value of Z is to be stored. The stack is empty at the completion of this statement.

PROGRAM STRUCTURE IN LOCAL MEMORY

When a problem is expressed in a source language, portions of the source language fall into one of two categories. One
describes the constants and variables that will be used in the program, and the other the computations that will be exe­
cuted (refer to figure 3-4). When the source program is compiled, variables are assigned locations within the stack whereas
the constants are embedded within the code stream that forms the computational part. A program residing in memory occupies
separately allocated areas. "Separately allocated" means that each part of the program may reside anywhere in memory, and
the actual address is determined by the MCP. In particular, the various areas are not assigned to contiguous memory areas.
Registers within the processor indicate the bases of the various areas during the execution of a program.

5001290 3-11

B 6800 System Reference Manual
Stack and Reverse Polish Notation

LOCAL MEMORY AREA ALLOCATION

The separately allocated areas of a program are as follows:

a. Program Segments: These are sequences of instructions (syllables) that are performed by the processor
in executing the program. Note that there is a distinction between program segments and data areas.
The program segments contain no data, and are not modified by the processor as it executes the program.

b. Segment Dictionary: This is a table containing one word for each program segment. This word tells whether
the program segment is in local memory or on the disk, and gives the corresponding local memory or disk
address of the program segment.

c. Stack Area: This is the pushdown stack storage, which contains all the variables associated with the program,
including control words which indicate the dynamic status of the job as it is being executed.

STACK-HISTORY AND ADDRESSING-ENVIRONMENT LISTS

One very important aspect of the B 6800 is the retention of the dynamic history for the program being processed. Two
lists of program history are maintained in the B 6800 stack, the stack-history list and the addressing-environment list. The
stack-history list is dynamic, varying as the job proceeds along different program paths with changing sets of data. Both
lists are generated and maintained by B 6800 hardware.

MARK STACK CONTROL WORD LINKAGE

The stack history is a list of Mark Stack Control Words (MSCW), linked together by their displacement fields (DF)
(figure 3-5). An MSCW is inserted into the stack as a procedure is entered and is removed as that procedure is exited.
Therefore, the stack history list grows and contracts with the procedural depth of the program. Mark stack control
words identify the portion of the stack related to each procedure. When the procedure is entered, its parameters and
local variables are entered in the stack following the MSCW. When the procedure is executed its parameters and local
variables are referenced by addressing relative to the MSCW.

STACK DELETION

Each MSCW is linked to the prior MSCW through the contents of its DF field in order to identify the point in the stack
where the prior procedure began. When a procedure is exited, its portion of the stack is discarded. This action is
achieved by setting the stack-pointer register (S) to address the memory cell preceding the most recent MSCW {figure 3-6).
This topmost MSCW, addressed by another register (F), is deleted from the stack-history list by changing F to address the
prior MSCW, placing this MSCW at the head of the stack history.

This is an efficient and convenient means of subroutine entry and exit.

RELATIVE-ADDRESSING

Analyzing the structure of an ALGOL program results in a better understanding of the relative-addressing procedures used
in the B 6800 stack. The addressing environment ·of an ALGOL procedure is established when the program is structured
by the programmer and is referred to as the lexicographical ordering of the procedural blocks (figure 3-7). At compile
time, the lexicographical ordering is used to form address couples. An address couple consists of two items:

I. The addressing level (QQ) of the variable

2. A°'l index value (S) used to locate the specific variable within its addressing level

3-i2

MV 1596A

D[4]

D[3]

D(2]

D(1]

0(0]

__.
_.
.....

~

B 6800 System Reference Manual
Stack and Reverse Polish Notation

OBJECT
PROGRAM
STACK
CONTAINING -
VARIABLES -
AND DYNAMIC
-STATUS ...

OBJECT
PROGRAM.
SEGMENT
DICTIONARY .. -
S. D. PROG. ~

S. D. PROG

SEG. DES. 0. B.

MCPSTACK
AND
SEGMENT
DICTIONARY

OBJECT
PROGRAM
CODE
SEGMENT
(n + 1)

OBJECT
PROGRAM
CODE
SEGMENT
(n)

OBJECT
PROGRAM
CODE
OUTER
BLOCK
CODE
SEGMENT

Figure 3-4. Object Program in Memory

The lexicographical ordering of the program remains static as the program is executed, thereby allowing variables to be
referenced via address couples as the program is executed.

Base of Address Level Segment

The B 6800 processor contains an array of D registers {DO through 031). These registers address the base of each
addressing-level segment (figure 3-8). The local variables of all procedures are addressed relative to the D registers.

Absolute Address Conversion

The address couple is converted into an absolute memory address when the variable is referenced. The addressing level
portion of the address couple selects the D register which contains the absolute memory address of the MSCW for the
environment (addressing level) in which the variable is located. The index value of the address couple is added to the
contents of the D register to generate the absolute memory address.

Multiple Variables With Common Address Couples

The address couples assigned to the variables in a program are not unique. This is true because of the ALGOL scope-of­
definition rules, which imply that if there is no procedure which can address both of any two quantities, then these two
quantities may unambiguously have the same address couple. This addressing system works because, whereas two vari­
ables may have the same address couples, there is never any doubt as to which variable is being referenced within any
particular procedure.

5001290 3-13

3-14

MV 1597

B 6800 System Reference Manual
Stack and Reverse Polish Notation

STACK
HISTORY
LIST

Figure 3-5. Stack History and Addressing Environment List

DISCARDED STACK
PORTION HISTORY

s OF STACK LIST

I
F

MV 1598

Figure 3-6. Stack Cut-Back Operation on Procedure Exit

MV 1S99

B 6800 System Reference Manual
Stack and Reverse Polish Notation

BEGIN --------LEXICOGRAPHICAL LEVEL 2

REAL V1; µ= 2, 0 = 2
REAL V2; µ= 2, 0 = 3
PROCEDURE A; µ =: 2, o = 4

I
BEGIN ------ LEXICOGRAPHICAL LEVEL 3

REAL V3; µ = 3, 0 = 2
PROCEDURE B; µ = 3, 0 = 3

L
~ BE~~ :-=-

3

-; - LEXICOGRAPHICAL LEVEL 4

B;
END;

END

V1 := V3;

PROCEDURE C; µ= 2, O = S

BEGIN------ LEXICOGRAPHICAL LEVEL 3

REAL V4; µ = 3 0 =r 2
PROCEDURE D; µ= 3, O = 3

BEGIN --- LEXICOGRAPHICAL LEVEL 4

REAL VS;
V4 := 4;
vs := S;
A;
V2 := V4;

µ= 4, 8 = 2

L
I I-END;

D;
END;

C;
END;

Figure 3-7. ALGOL Program With Lexicographical Structure Indicated

Address Environment Defined

There is a unique MSCW which each D registe1 must address during the execution of any particular procedure. The
D registers must be changed, upon procedure entry or exit, to address the correct MSCWs. The list of MSCWs which the
D registers address is the addressing environment of the procedure.

Mark Stack Control Word Linkage

The addressing environment of the program is maintained automatically by linking the MSCWs together in accordance
with the lexicographical structure of the program. This linkage is the stack number (Stack No.) and displacement (DISP)
fields of the MSCW, and is inserted into the MSCW whenever the procedure is entered. The addressing environment list
is formed by linking each MSCW to the MSCW immediately below the declaration for the procedure being entered. This
forms a tree-structured list which indicates the addressing environment of each procedure (figures 3-8 and 3-9). This list
is used to update the D registers whenever a procedure entry or exit occurs.

5001290 3-15

3-16

B 6800 System Reference Manual
Stack and Reverse Polish Notation

STACK
MEMORY
AREA

TOSWORO~

s ' r"'" I
F l_ -- J
~ MSCW -,...,,]

PCW-B

V3

~ MSCW

ADDRESS
ENVIRONMENT
LIST

~===I=
PROCEDURE B

--------+-1-
PROCEDURE A

D REGISTERS ~=f
I 031

06

D5
D4
D3
02
01

I DO

l
,...,, ,...,,

~ w
,...,, ,...,,

I-"

!-----' PCW-D

1--1 V4

I MSCW

- -
PCW-C.
PCW-A

V2
V1

~ MSCW

""'

PROCEDURE D

=f
PROCEDURE C

~=t
OUTER PROG
BLOCK

DISP _±
MV1600

Figure 3-8. D Registers Indicating Current Addressing Environment

MV 1601

PROCEDURE A

__ \{__ __
OUTER PROiRAM BLOCK

LEXICOGRAPHICAL
LEVEL 3

LEXICOGRAPHICAL
LEVEL 2

Figure 3-9. Addressing Environment Tree of ALGOL Program

STACK HISTORY SUMMARY

B 6800 System Reference Manual
Stack and Reverse Polish Notation

The entry and exit mechanism of the processor hardware automatically maintains both the stack history and address­
environment lists to reflect the current status of the program. Interrupt response is a procedure entry. Therefore, the
system is able to conveniently respond to, and return from, interrupts. Upon recognition of an interrupt condition, the
processor creates a MSCW, inserts an indirect reference word into the stack to address the interrupt-handling procedure,
inserts a literal constant to identify the interrupt condition and two other parameters, and initiates an MCP interrupt­
handling procedure. The D registers are updated upon entry into the interrupt=handling procedure, to display all legiti­
mate variables. Upon return from this procedure, the D registers are updated to display variables of the former
procedure.

MULTIPLE STACKS AND REENTRANT CODE

The B 6800 stack mechanism provides a facility for handling several active stacks, which are organized in a tree structure.
The trunk of this tree structure is a stack containing MCP global quantities.

LEVEL DEFINITION

A program is a set of executable instructions, and a job is a single execution of a program for a particular set of data. As
the MCP is requested to run a job, a level-1 branch of the basic stack is created. This level-1 branch contains the descrip­
tors pointing to the executable code and read-only data segments for the program. Emerging from this level-1 branch is
a level-2 branch, containing the variables and data for this job. Starting from the job's stack and tracing downward
through the tree structure, one finds first the stack containing the variables and data for the job (at level 2), the segment
descriptor to be executed (at level 1), and the MCP's stack at the trunk {level 0).

REENTRANCE

A subsequent request to run another execution of an already-running program requires that only a level-2 branch be
established. This level-2 stack branch emerges from the level-I stack of the already-running program. Thus two jobs
which are different executions of the same program have a common node, at level-I, describing the executable code. It
is in this way that program._code is re-entrant and shared. This results simply from the proper tree-structured organiza­
tion of the various stacks within the machine. All programs within the system are re-entrant, including all user programs
as well as the compilers and the MCP.

JOB-SPLITIING

The B 6800 stack mechanism also provides the facility for a single job to split itself into two independent jobs. A com­
mon use of this facility occurs when there is a point in a job where two relatively large independent processes must be
performed. This splitting can be used to make full use of a multiprocessor configuration, or to reduce elapsed time by
multiprogramming the independent processes.

A split of this type establishes a new limb of the tree-structured stack, with the two independent jobs sharing that part of
the stack which was created before the split was requested. The process is recursively defined and can happen repeatedly
at any level.

STACK DESCRIPTOR

Stack branches are located by an array of descriptors, the stack vector array {figure 3-10). There is a data descriptor in
this array for every stack branch. This data descriptor, the stack descriptor, describes the length of the memory area
assigned to a stack branch and its location in either local memory or disk.

5001290 3-I7

STACK
VECTOR

DDn-1

005

004

DD~

002

001

ODO

MV 1602

B 6800 System Reference Manual
Stack and Reverse Polish Notation

STACK STACK STACK

6d
N0.4 NO. 3

"'It' lit"'

r I cw

- -
TOSCW. MSCW

~
TOSCW - -

TOSCW

SEGMENT
STACK DESCRIPTORS
TRUNK

ptj DD

SD
MSCW

MSCW

TOSCW

Figure 3-10. Multiple Linked Stacks

STACK
N0.2

DISPLAY
REGISTERS

R
05

04

03

02

01

DO

A stack number is assigned to each stack branch. The stack number is the index value of the stack descriptor in the
stack vector array.

STACK VECTOR DESCRIPTOR

The array size of the stack vector and its location in memory is described by the stack vector descriptor, located in a
reserved position of the trunk of the stack (figure 3-10). All references to stack branches are made through the stack
vector descriptor, indexed by the stack number.

PRESENCE BIT INTERRUPT

A presence bit interrupt results when an addressed stack is not present in memory. This presence bit interrupt facility
permits stack overfays and recalls under dynamic conditions. Idle or inactive stacks may be moved from main memory
to disk as the need arises and, when a stack is subsequently referenced, a presence bit interrupt is generated to cause the
MCP to recall the non-present stack from disk.

3-18

B 6800 System Reference Manual

SECTION 4

MAJOR REGISTERS AND CONTROL PANELS

DISPLAY PANELS

The B 6800 system registers and flip flops are displayed on the display section of the MDP cabinet (see figure 4-1). The
display section of the B 6800 MDP cabinet is divided into the programmers display panel and the maintenance display
panel. These two panels occupy that portion of the MDP cabinet that is above the keyboard panel. The programmers
display panel (the left front half of the MDP display section) contains those system controls that are relevant to the
programmers display. The maintenance display panel (the right front half of the MDP display section) contains those
system controls that are relevant to the maintenance display.

PROGRAMMERS DISPLAY PANEL

The programmers display panel (see figure 4-2) is divided into three sections which are the system control panel, the
status display panel, and the register display panel.

System Control Panel

The top row of indicators on the programmers display panel are the system controls (refer to figure 4-2). The system
controls consist of eight combination indicator lamps and/or push button switches. The use and meaning of each of these
system controls is as follows:

HALT switch and indicator

When depressed, causes the system to halt at the end of the current instruction. When the
system is halted; the HALT indicator is illumLriated.

LOAD switch

When depressed, causes a general clear. When released, causes a LOAD signal to be sent to the
mainframe.

CARD LOAD SELECT switch and indicator

When depressed, causes the card load select flip flop in the display control logic to change state. The
output of the flip flop goes to the mainframe and the CARD LOAD SELECT indicator. When true,
card load has been selected and the indicator is on. When false, disk has been selected and the indicator
is off.

RUNNING indicator

This indicates that the system is running.

GENERAL CLEAR switch

When depressed, causes the systems flip flops to be reset.

POWER FAIL indicator

5001290

The power failure lamp illuminates if any over voltage condition is sensed by any of the B 6800 system power
supplies except the MDP power supply. The power failure lamp will also illuminate if 2 regulators in each planar
memory cabinet (one regulator for each of two memory modules) senses an under voltage condition. The B 6800

4-1

t
N

.............. ,,

MV1603

PROGRAMMERS
DISPLAY PANEL

KEYBOARD

MAINTENANCE DISPLAY
(FACING) PANEL

MAINTENANCE PROCESSOR
CONTROL PANEL

Figure 4-1. System Control and Display Registers

MAINTENANCE DISPLAY
(COVER) PANEL

I __ J__,
. .

MV1604A

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

---------.....-I AROF I BI STRA 11STRB11 STRC 11 STRD 11 STREll SHLT II CHECK I ~1~T
BBBI STRG llSTRH IBISTRKIEJI TEST I ~~~·
BEJBBBBBBEJ@J

ooO 010 020 030 040 050 ooO 010 oaO 090
100 110 120 130 140 150 160 170 180 190

I 0l+lcjojEl•IH•lclol+1 I
000~000~

I 0H slcl+HH+H+l I
[;J~GJGJ~GJGJQ

DfLARl~IMARlmPlDr::;:=iD ~~~l...w2.J ~

Figur~4-2. Programmers Display Panel

SYSTEM
CONTROL
PANEL

STATUS
DISPLAY
PANEL

REGISTER
DISPLAY
PANEL

4-3

B 6800 System Reference Manual
Major Registers and Control Panels

system will detect a system over voltage power fault with this condition, even though the actual cause of the
fault is an under voltage condition.

POWER ON switch and indicator

When depressed, this switch initiates a power up sequence. The power on indicator is illuminated
while power is applied to the system.

POWER OFF switch

When depressed, initiates a power down sequence. This indicator is illuminated when power is off, the
main system circuit-breaker is on, and + 10 V de is available in the system.

Status Display Panel

The status display panel (see figure 4-3) consists of a series of 50 individual indicator lamp. These individual indicators
are arranged in a matrix of five rows of ten indicators. Each indicator displays the state of a major control flip-flop within
the B 6800 system. The logical state of the flip-flop is true when the lamp indicator is illuminated, and is false when the
indicator is not illuminated.

The meaning of each indicator on the status display panel is as follows:

4-4

Mnemonic

AROF

BROF

PROF

PSR 2,
PSR l,
PSR 0

STRA, STRB,
STRC, STRD,
STRE, STRF,
STRG, STRH,
STRJ, STRK

VARF

Meaning

fhis indicator is illuminated when the A register contains a valid stack word.

This indicator is illuminated when the B register contains a valid stack word.

This indicator is illuminated when the P register contains a word of program code.

The three-bit program syllable register. This register is used as an index value into the contents
e.f the P register. The P register contains machine language code operators. PSR points to the
first syllable of the next machine language operator to be executed. When the next machine
language operator is executed it will cause PSR to point at a new syllable in the P register. The
initial value of the PSR register comes from a PCW for program entry, or from a RCW for pro­
gram exit, or from the second syllable of a branching operator.

The P register contains six syllables, numbered zero through five. The binary value of PSR selects
a beginning syllable. The PSR = 5 condition, together with a SECL (Syllable Execute Complete
Level), will cause a new word of program code to be placed in the P register, and PSR will be re­
set so that it points at the first syllable of the new program code in the P register.

The ten data processor family strobe indicators. Every machine language operator that is executed
by the data processor belongs to one of the ten DP operator families. When a machine language
operator is executed by the data processor, the proper strobe lamp is illuminated to indicate which
family of the data processor the current operator belongs to. The proper family (strobe) is deter­
mined by decoding the four most significant bits of the operator code (pointed at by PSR) in the
P register.

The variant mode flip flop indicator lamp. Each family of primary operator codes in the
DP can contain a maximum of sixteen specific operators. The VARF flip flop is used to
extend the number of operator codes in a family. The use of variant mode causes an

Vl
0
0
N
\0
0

~
I
Vl

I AROF 11 PSR2 I 1 STRA I [STRB 11 STRC I STRD 11 STRE 11 SHLT I ICHECK 11~N1

I BROF I EJ I STRF I [sTRG 11 STRH I STRJ 11 STRK I B I TEST I l~•NI

I PROF 11 ?SRO 11 VARF I EJ I TEEF 11 VECF I B I LROF I IEVENTI I ~~ I

DOD 010020030 040 050060070080 090
100110120130140150160170180190

MV 1605

Figure 4-3. Systiem Status Indicator Panel

4-6

Mnemonic

VARF
(continued)

EDIT

B 6800 System Reference Manual
Major Registers and Control Panels

Meaning

operator code to use a minimum of two syllables in the P register of the DP. The first
syllable of a variant mode operator must be the VARI {95 hexidecimal) code. The execution
of the VARI {95) primary mode operator causes the VARF flip flop to set, and the indica­
tor lamp to illuminate. The state of the V ARF flip flop identifies either a primary mode
operator (V ARF not), or a variant mode operator {VARF).

A variant mode operator occupies two or more syllables. The first syllable of a variant
mode operator code is the primary mode VARI operator. This operator causes the V ARF
flip flop to be set, and thereby specifies that the next syllable contains a variant mode
operator code. The second syllable in a variant mode operator code specifies the family
strobe for the operation to be performed. and also specifies the specific variant mode opera­
tion that is to be performed.

The VARF flip-flop is reset each time the data processor completes a variant mode operator. If
the next operation to be performed is another variant mode operation, then another VARI operator
must be performed to set the VARF flip-flop.

The data processor detects two consecutive VARI {95) operator codes to be an invalid
program code error condition. This error condition will cause the system to abort the
program that contains the error condition.

The EDIT indicator represents the state of the EDIT flip flop in the data processor. The
EDIT flip flop is used to extend the number of operator codes that a family may contain,
in a manner that is similar to the way that the V ARF flip flop extends the number of
operators in a family. The B 6800 system cannot be in edit mode, and in variant mode at
the same time, except when a variant mode operation is performed by means of a pseudo­
call from an edit mode operation. Edit mode is never pseudo-called by a variant mode
oJ)eration.

There are three data processor machine language operators that directly cause the EDIT
flip flop to be set. These operator codes aer as follows:

EXSD
EXSU
ESPU

Execute Single Micro destructive (code D2).
Execute Single 1'1"Jcro Update {code DA).
Execute Single Micro, Single Pointer Update (code DD).

Each of these three operator codes cause a single edit mode micro operator to be executed
by the data processor, after which the data processor reverts to primary mode. The edit
mode micro that wili be execui.ed is defined in the next syllable of program code following
the Execute Single Micro operator code syllable. The EDIT flip flop is set at the beginning
of the operator code, and is reset at the end of the operator code. Resetting the EDIT flip
flop causes the data processor to revert to primary mode operations.

The EDIT flip flop is also set during the execution of a table of edit mode operators. The
use of a tabie of edit mode micro operators is indicated when the TEEF indicator is
illuminated. When a table of edit mode micro operators are executed the last micro operator
in the table must be the End Edit Micro Operator {EEND). This operator, when executed,
will cause the EDIT flip flop to be reset, returnh1g the data processor to primary mode
operations.

Mnemonic

TEEF

VECF

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

Meaning

The TEEF indicator is illuminated when a table of edit mode micro operators is being
executed. The table of micro operators is fetched from a location in memory in a manner
that is similar to that used to fetch primary mode machine language code. The edit mode
micro code is placed in the P register, and the syllables of micro code are executed the same
as if they were primary mode machine language code.

There are two primary mode machine language code operators that cause the B 6800 data
processor to begin table edit mode operations, and they are:

TEED
TEEU

Table Enter Edit Destructive operator (code DO)
Table Enter Edit Update operator (code D8).

Executing the TEED, or TEEU operator causes the TEEF, and the EDIT flip flops to be
set, placing the data processor in the table edit mode of operations. The last micro operator
in the table must be the ENDE micro operator. The execution of the ENDE micro code
operator causes both the EDIT, and the TEEF flip flops to be reset, and these flip flops
oeing reset returns the data processor to primary mode operations.

The use of table edit mode operations causes a special set of base and index registers to be
used to fetch the micro operators from memory. These IC memory registers are defined and
discussed in section 5.

The VECF flip flop is set, and the indicator is lit when the DP is operating in vector mode.

Two primary mode operators are used to place the B 6800 data processor in vector mode,
and these operators are:

VMES
VMEM

Vector Mode Enter Single (code EF).
Vector Mode Enter Multiple (code E7).

The type of vector mode entry operator used depends on the number of words of vector
operators that are to be executed. If only one word of vector mode operators is to be
executed the VMES operator is used to enter vector mode. If more than one word of vector
mode code is to be executed then the VMEM operator is used to enter vector mode.

The vector mode word may contain primary mode operators from families A, B, C, D, and
E. If a primary operator is executed during vector mode operations, and the primary mode
operator incurs a!'! Ln.te!rupt conditic:l, the data processor will exit from vector mode, and
resume processing in primary mode. The cause of the interrupt in the primary mode
operator will not be remembered, and no indication that a failure occurred will be
maintained.

A word of vector mode machine language coded operators may be executed recursively,
without regard to the type of vector mode entry that is used. The VECF indicator is
illuminated when vector mode operations is entered, and stays illuminated during the time
that the data processor is performing vector mode operations.

4-7

4-8

Mnemonic

VECF
(continued)

UHF

SHLT

ICFF

LROF

B 6800 System Reference Manual
Major Registers and Control Panels

Meaning

There are two vector mode operators that are used to exit vector mode and return to
primary mode. These vector operators are:

VEBR
VMEX

Vector Branch (code EE).
Vector Exit (code E6).

When either of these vector mode operators are executed the VECF flip flop is' reset, the
indicator is extinguished, and the data processor is returned to primary mode.

The data processor will also exit from vector mode and return to primary mode if an
internal interrupt occurs during vector mode operations. External interrupts are disabled
during vector mode interrupts.

The Inhibit External Interrupt flip flop (UHF), when set, prevents an external interrupt from
initiating the interrupt controller logic in the data processor. When reset, UHF allows
external interrupts to initiate the interrupt controller logic. The UHF flip flop is set, and
the indicator is illuminated when the Disable External Interrupt (DEXI, code 9547) variant
mode operator is executed. The UHF flip flop is reset, and the indicator is extinguished
when the Enable External Interrupt (EEXI, code 9546) variant mode operator is executed.

IIHF may also be set or reset upon entry into a new procedure. The state of bit number nineteen
in a PCW that causes entry into a new procedure, conditions the state of IIHF. If bit nineteen (in
the PCW) is true, UHF Will be set.

IIHF is conditioned by the state of bit nineteen in an RCW (during the execution of an EXIT or
RETURN operation) in a similar manner to that of the PCW (during an ENTER operation).

The SHLT indicator shows the state of the Super Halt flip-flop. If the flip-flop is set, the indicator
is illuminated.

The super halt logic is used to prevent stack runaway due to repetitive errors in the interrupt
handling procedure. Stack runaway causes the interrupt controller to destroy the contents
of memory by inserting multiple interrupt handling stacks.

The super halt flip flop is set if the interrupt controlier is initiated four times without per­
forming the normal EXIT operator at the end of the interrupt handling procedure. When the
SHLT flip flop is set the system is halted such that stack runaway is stopped. The SHLT
indicator is illuminated to indicate the reason for stopping the system.

The ICFF indicator shows the state of the Interrupt Controiler Run (ICFF) flip flop.

The ICFF flip flop is used by the interrupt controller to enable the sequence counts of the
controller flow. The ICFF flip flop is set while the interrupt controller is performing its
normal functions, and is reset otherwise.

The LROF flip-flop (Look Ahead Register Occupied) indicates valid code is contained in the look
ahead register.

The LROF flip flop performs a function for the look ahead register that is analogous to the
function the PROF flip flop performs for the P register. If the next word of program code

Mnemonic

LROF
(continued)

CHECK

TEST

EVENT

VOLT MARGIN

CLK MARGIN

IND PWR

00 through 19

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

Meaning

to be executed is present in the look ahead register then LROF is set. If LROF is reset then
the next word of program code is present in- memory at the address specified by the sum of -
the addresses in the PBR, and the PIR IC memory registers, or the LAR (look ahead memory
address) register.

If the P register becomes empty (PROF is reset) and LROF is set, then the contents of
the look ahead register are transferred to the P register to be executed as program code.
Transferring the contents of the look ahead register to the P register will cause the LROF
flip flop to be reset. When LROF is reset the look ahead logic will attempt to perform a
memory cycle and fill the look ahead register with the next word of program code in
sequence.

The CHECK indicator is used to determine when the Maintenance Processor (MP) module has
detected a fault condition during the MP module internal testing.

The TEST indicator is used to indicate whether or not the MDP PROC ENABLE switch is in
the ENABLED position. If the TEST indicator is illuminated the switch is in the ENABLED
position. This indicator also illuminates if the SECL or CHLT pushbuttons on the keyboard
are depressed, or if the CPU LOCAL/REMOTE switch on the maintenance control panel is in
the LOCAL position.

The EVENT indicator is used to indicate whether or not the MDP EVENT switch is in the
ENABLED position. If the EVENT indicator is illuminated the switch is in the ENABLED
position.

The VOLT MARGIN indicator circuit is used to indicate when a voltage margin has been
selected in a power supply.

The CLK MARGIN indicator circuit is used to indicate when a clock margin has been
selected.

The IND PWR indicator circuit is used to indicate when a fault condition has occurred in the
power supply of a planar memory cabinet.

The IND PWR lamp is illuminated for either of the following conditions:

a. Either the +SV or the ±_l SV regulator, or both regulators for one of the memory
modules in a planar memory cabinet detects an UV condition.

b. Either or both MODE switches on the auxiliary sequence control board in a planar
memory cabinet is in the OFF position (that is, disabling the regulators for one or
both of the memory modules).

The twenty indicators numbered 00 through 19 are used to indicate the busy status (or avail­
ability) of peripheral channels in the B 6800 system. Channel 00 through 09 are the ten
channels located in peripheral control cabinet number zero. Channel 10 through 19 are focated
in PCC number one. A peripheral channel is available when its indic~tor is illuminated.

4-9

B 6800 System Reference Manual
Major Registers and Control Panels

Register Display. Panel

Figure 4-2 shows that there are four register displays on the register display panel. Each register can display up to eight
different registers. There are eight pushbutton indicators that are used to select which register in the CPU is displayed
in each of the four displays. When a pushbutton is pressed, the pushbutton illuminates, and remains illuminated, to indicate
which display is selected.

The meaning of the eight register selection indicators for each of the four registers is as follows:

4-10

Register
Number

1, 2, 3

1, 2

3

4

Note one:

Pushbutton

A

B

x

y

c

z

p

L

E

LAR/ADRA

MARB/
ADRB

MAR/MSMR

EXP FLD

STVR

Data Displayed When Pushbutton Illuminated

The contents of the A register of the CPU

The contents of the B register of the CPU

The contents of the X register of the CPU

The contents of the Y register of the CPU

The contents of the C register of the CPU

The contents of the Z register of the CPU

The contents of the P register of the CPU

The contents of the look ahead register of the CPU cabinet

The contents of the external input bus to channel B
of the memory control

The contents of the five hexadecimal digits (twenty bits) of the look ahead logic
memory control address field on the left, and the contents of the five hexadecimal
digits (twenty bits) of the Channel A save memory control address field on the
right.

The contents of the five hexadecimal digits (twenty bits) of the channel B memory
control address field on the left, and the contents of the five hexadecimal digits
(twenty bits) of the channel B save memory address on the right.

The contents of the five hexadecimal digits (twenty bits) of the memory control
address register on the left, and the contents of the five hexadecimal digits (twenty
bits) of the address adder sum register on the right.

See note one below.

The contents of one of four vector status words in the CPU module

When a top-of-stack register is displayed in octal format, the register that is selected to display the
register data contains the 13 octal digits of the mantissa field. The contents of the exponent field
for the selected word are displayed in register number four if the EXP FLD position is selected.

MAINTENANCE DISPLAY PANEL

B 6800 System Reference Manual
Major Registers and Control Panels

The maintenance display panel (refer to figure 4-1) is divided into two sections which are the Maintenance Processor (MP)
control panel and display, and the maintenance displayregisters. The maintenance-display panel-is covered by a hinged panel,
and during normal system operations is not visible. When the hinged panel is opened, two maintenance registers, and the MP
control panel and display are visible on the facing panel (see figure 4-4). Two other maintenance display registers are mounted
on the back of the hinged panel (see figure 4-5). The MP control panel and display are located at the bottom of the
facing panel, and the two maintenance display panels are located above the MP control panel.

Maintenance Display Registers

A maintenance display register consists of 64 indicator lamps, 64 label windows, a thumbwheel selector switch, and a
selector switch display window. The 64 indicator lamps are organized into four bars of 16 indicators. A label window
is located immediately beneath each indicator lamp. A thumbwheel selector switch is located on the right hand side of
the register, and the selector switch display window is located to the left of the thumbwheel selector switch, between the
thumbwheel and the four bars of indicator lamps.

5001290 4-11

MV1606

4-12

'

B 6800 System Reference Manual
Major Registers and Control Panels

SYSTEM
MAINTENANCE
CONTROL
PANEL

Figure 4-4. Maintenance Display (Facing) Panel

MAINTENANCE
DISPLAY

------REGISTER

NUMBER 1

MAINTENANCE
DISPLAY

~--REGISTER

MAINTENANCE
PROCESSOR
CONTROL
PANEL

NUMBER 2

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

CABINET
LABEL DECAL

Figure 4-5. Maintenance Display Panel (Cover)

MAINTENANCE
DiSPLAY
REGISTER
NUMBER 3

MAINTENANCE
CARES BOOK
HOLDER
BRACKET

4-13

B 6800 System Reference Manual
Major Registers and Control Panels

The thumbwheel selector switch selects one of six pages of 64 signals on a panel of the CPU cabinet to be displayed
in a register. The selector switch display window indicates which page and panel are presently selected for display in the
register. The page, panel, and display register correlation is shown in table 4-1. This table also indicates the major circuit
or logical module that is displayed in each of the maintenance display registers, for all settings of the thumbwheel
selector switches.

Maintenance
Display

Register No.

2

3

4

Table 4-1. B 6800 Maintenance Display Panel Register Selection Positions

Thumb wheel
Selector Panel Page Major Circuit or Module
Position Selected Selected Displayed

Pl-0 0 Multiplexer
Pl-1 1 Multiplexer
Pl-2 2 Data Processor
Pl-3 3 Data Processor
Pl-4 4 Data Processor
Pl-5 5 Data Processor

P2-0 2 0 Multiplexer
P2-l 2 1 Multiplexer
P2-2 2 2 Data Processor
P2-3 2 3 Data Processor
P2-4 2 4 Data Processor
P2-5 2 5 Data Processor

P3-0 3 0 Multiplexer
P3-l 3 1 Multiplexer
P3-2 3 2 Data Processor
P3-3 3 3 Data Processor
P3-4 3 4 Data Processor
P3-5 3 5 Data Processor

P4-0 4 0 Maintenance and Event logic
P4-1 4 1 Maintenance and Event logic
P4-2 4 2 Clock Control logic, and Time

of Day logic
P4-3 4 3 Memory Control
P4-4 4 4 Micro Program Logic
P4-5 4 5 Not used

Tables 4-2 through 4-13 show the flip flops or iogic terms ihai are displayed in each bit position of the mainienance
display registers. If the flip flop is set {the logic term is a true logic level) the indicator is illuminated.

4-14

t -VI

Bar

2

3

4

Bar

2

3

4

2

RDAF DREN

MINF CDLF

LSAF DAGL

ADPF RDPR

2

BDPR

Table 4-2. Maintenance Display Register Logic Signals For Register 1, Pages 0 {Top), and 1 {Bottom)

Maintenance Register Number 1 Switch Position (Page) Number Pl-0

Bits

3 4 5 6 7 8 9 10 11 12 13

RDA8 PDB8 PDC8 PDD8 lOCF SCH3 ITP3 IC3F

PDA4 PDB4 PDC4 PDD4 SCF2 STCF J512 SCH2 ITP2 IC2F

PDA2 RDB2 PDC2 PDD2 SCFI SCHI ITPI IC5F IClF

PD Al PD Bl RDCI PDDI SCFO SCH4 SCHO ITPO IC4F ICOF

Maintenance Register Number 1 Switch Position (Page) Number Pl-1

Bits

3 4 5 6 7 8 9 10 11 12 13

BDA8 BDB8 BDC8 BDD8 OUTP BCC3 BCF3 BCH3 LSTC

BDA4 BDB4 BDC4 BDD4 ZWPR BCC2 BCF2 BCH2 MAHF

BDA2 BDB2 BDC2 BDD2 CRPR BCCl BCF5 BCFl BCHl

BDAl BDBl BDCl BDDl BRQF BCCO BCF4 BCFO BCH4 BCHO

14 15 16

ICH3

ICH2

ICHI
~ t;7.;
~. 0\
0 00

ICH4 ICHO
...., 0
:;:o 0
~ 00
~· "<
~~
...., (I>

r.ll s
§ :;:o
0.. (I>

(') ~
14 15 16

0 (I>

:::i :::i
.....+- (') 8 (I>

IOR3 ~
~ p:I

§ :::i
IOR2 ('!) i::

~ e:...

PAVL IORl

IORG IORO

~
I -°'

Bar

2

3

4

Bar

2

3

4

2

TA3F SA3F

TA2F SA2F

TAIF SAIF

TAOF SAOF

2

TC3F JC7F

TC2F JC6F

TCIF JCSF

TCOF JC4F

Table 4-3. Maintenance Display Register Logic Signals For Register 1, Pages 2 (Top), and 3 (Bottom)

Maintenance Register Number 1 Switch Position (Page) Number Pl-2

Bits Bits

3 4 s 6 7 8 9 10 11 12 13

JA7F JA3F EXAI QA7F QA3F SM03 SM04 NLZ3 HRlS

JA6F JA2F KA2F QA6F QA2F SM02 NLZ2 HR14

JASF JAIF KA.IF QASF QAIF SMOI PSCF NLZI HR13

JA4F JAOF KAOF QA4F QAOF SMOO CMPF NLZF NLZO HR12

Maintenance Register Number 1 Switch Position (Page) Number Pl-3

Bits

3 4 s 6 7 8 9 10 11 12 13

JC3F QC8F QC4F CRNCF ACL7 ACL3 TD3F JD7F JD3F

JC2F QC7F QC3F SASG ACL6 ACL2 TD2F JD6F JD2F

JClF QC6F QC2F QCZ2 ACMS ACLS ACLl TDlF JDSF JDlF

JCOF QCSF QCIF QCZl ACM4 ACL4 ACLO TDOF JD4F JDOF

14 lS 16

HRll HR07 HR03

HRlO HR06 HR02

HR08 GROS HROl
~ t:Jj

HR08 HR04 HROO ~. °'
0 00
'""0
~o
('D Cfl ce. '<
tl'l tl'l --('D ('D

~ s
~ ~

14 IS 16
Q.. ('D

(j ~
0 ('II

QD8F QD4F = = - n 8 ('D

QD.tff QD7F QD3F - =::
~~ = = QDAF QD6F QD2F *" e.

QD9F QDSF QDIF

8 Table 4-4. Maintenance Display Register Logic Signals For Register l, Pages 4 (Top), and 5 (Bottom) -8

Maintenance Register Number l Switch Position (Page) Number Pl-4

Bits

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MREZ9 MREZ8 MORSS MZ812 MD RSX MACT8 MPBR MPIR MPDR MBOS MCOUT MZ6T8 LL03

2 MDROC MDRlC MDRF4 MZ812 MSOR2 MSBR MSIR MSNR MLOSR MCZIN MZ6L8 LL02

3 MD ROB MDRlB MDRF3 MZ810 MSORI MDBR MDJR MF MBUF MSUBT MZ6T9 LLOI
a: tx1

.B. 0\
0 00

4 MD ROA MDRlA MDRF2 MZ809 MSORO CRlC MTBR MTIR MS MTEMP MZ6L9 LL04 LLOO
...... 0
:;c 0
Cl> tll

CG. '<
en en

Maintenance Register Number 1 Switch Position (Page) Number Pl-5
~ g-
~ s

Bits.
~ ~
~Cl>

(j ~
Bar 2 3 4 6 7 8 9 10 11 12 13 14 15 16

0 Cl>

= = .-+ (") a Cl>

RDCBA RD REA CKB4A CBIN CKB4B ADREB INA GB CBM3 SClD STAR SCNR SCAN STB2 ADDR EREN7 EREN3 - a:
"ti~

2 ADREA RD SEA CKB3A CBAI CKB3B RDCBB RDMEB GBNTB GNTR INPW STAP RUNl STBl BURE EREN6 EREN2 ~ i=
~ e.

3 STOF CKB6A CKB2A CKB6B CKB2B RDREB INA LB CAM3 INA GA STUF LOPE LOPT STBO RCPE ERENS ERENl

4 SDIS CKBSA CKBIA CKBSB CKBlB RDS EB MP ARB SCOR RDMEA IN ALA LPEN LOOP CMPR PCPE EREN4 ERENO

t --....J

t Table 4-5. Maintenance Display Register Logic Signals For Register 2, Pages 0 {Top), and I (Bottom) -00

Maintenance Register Number 2 Sw!tch Position (Page) Number P2-0

Bits

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CCI9 CCI5 CCII CC07 CC03 PFI9 PF15 PFII PBA7 PBA3 PC19 PC15 PCll PTA? PTA3

2 CCI8 CC14 CCIO CC06 CC02 PF18 PFI4 PFIO PBA6 PBA2 PC18 PC14 PClO PTA6 PTA2

3 CCI? CCI3 CC09 CC05 CCOI PF17 PF13 PIEN PBA5 PBAl PC17 PC13 PC09 PTA5 PT Al
s::: c:;
~.°'
0 00

4 CC16 CC12 CC08 CC04 ccoo PF16 PFI2 PBA8 PBA4 PBAO PC16 PC12 PTA8 PTA4 PTAO
...., 0

"' 0 ~ Cll '<
~ tll

Maintenance Register Number 3 Switch Position (Page) Number P2-l
~ S"
~ s

Bits § "' p.. ~

(") ~
Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 ~ ::s ::s
....+- (") 8 ~

ACI9 AC15 ACII AC07 AC03 PINH MINH BKWD NEAR BTA7 BTA3 BSI9 BS15. BSl I BBA7 rlBA3 -s:::
"'t1 ~
§ ::s

2 AC18 AC14 ACIO AC06 AC02 ASCI XLAT TEST BB=T BTA6 BTA2 BS18 BS14 BSlO BBA6 BBA2 ~ i::
fii" e.

3 AC17 AC13 AC09 AC05 ACOl ATTN FRAM TGCl BIEN BTA5 BT Al BS17 BS13 BOEN BBA5 BB Al

4 AC16 AC12 AC08 AC04 ACOO BINP MPRT TGCO BTA8 BTA4 BTAO BS16 BS12 BBA8 BBA4 BBAO

Table 4-6. Maintenance Display Register Logic Signals For Register 2, Pages 2 (Top), and 3 (Bottom)

Maintenance Register Number 2 Switch Position (Page) Number P2-2

Bits

Bar 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 16

BETB NZTB HRTBl EXSB Bl TB B8TB ADSB SPCI BX02 AX02 YR-3 SC3F SCEF ICR7 ICR3

2 YETB ZDTB HRTB2 ECRI YlTB Y8TB CCNS DPCI BXOl AXOl YR-2 SC2F ICRE ICR6 ICR2

3 AETA NZTA HRTAl AITA A2TA A4TA CCR3 Cl75 BXOO AXOO YR-1 SClF BXSE ICR5 ICRl BDPD s:: °' ~- 0\
0 00

4 XETA ZDTA HRTA2 XITA X2TA X4TA CCL3 DPOV YXOO xxoo XR-1 SCOF DISiX ICR4 ICRO ADPD
"'1 0
~o
('D 00
<e.~
Cl'l Cl'l --Maintenance Register Number 2 Switch Position (Page) Number P2-3
('D ('D

f;l s
Bits

§ ~
(:l... ('D

(j w
Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 ('D

= = -(') 0 ('D

RQTB RQT7 RQT3 RQRB RQR7 RQR3 CSC4 CAF'FE CAP FD CAPFC CAPFB CAPPA ABRF HAR3 - s:: 1\:1 ~
§ = 2 RQTA RQT6 RQT2 RQRA RQR6 RQR2 CSC3 SRM2 SRL2 ATEF MAOF WAIT CARQ HAR2 ('D c::
~ e.

3 RQT9 RQT5 RQTl RQR9 RQR5 RQRl CSC2 SRMl SRLl TRYF RDEF LOG2 MI51R HARi

4 RQT8 RQT4 RQTO RQR8 RQR4 RQRO CSCl SRMO SRLO CNGO CINF LOGl MI48 PTGO HARO

t -\0

lable 4- 7. Maintenance Display Register Logic Signals For Register 2, Pages 4 {Top), and 5 (Bottom)

Maintenance Register Number 2 Switch Position (Page) Number P2-4

Bits

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TU8F EEND RETF JU3F SSZ2 SI08 DI08 QU4F DGSF SOPF TFFF EQVF QUDF

2 TU4F FINI RNTF JU6F JU2F SSZl SI04 DI04 QU3F LHFF UPDF TFOF QUCF

3 TU2F EXSF NVLF JU5F JUlF DSZ2 SI02 DI02 QU'.!F RPZF SPRF OFFF QUBF s:: t:::C
.E. 0\
0 00

4 TUlF EXPF MPOP JU4F JUOF DSZl SIOl DIOl QUlF XROF DPRF FLTF EXTF QUAF
'""1 0
:xi 0
<"D en cs.'<
ti> ti>

Maintenance Register Number 2 Switch Position (Page) Number P2-5 ft ft
~ s

Bits § :xi
p.. ('D

n~
Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 ('D

= = ...+ ('")

BYR19 BYR15 BYRll BYR07 BYR03 MTST JVl CMPE CBPW CB4W CBPR CB4R ITIO IT06 IT02 ECSF
8 ('D

- s::
~§

2 BYR18 BYR14 BYRlO BYR06 BYR02 TV2 JVO TABT WEFW CB3W WEFR CB3R IT09 IT05 ITOl EXTI = c
~ a.

3 BYR17 BYR13 BYR09 BYR05 BYROl TVl ONCK ALTWC CB6W CB2W CB6R CB2R IT08 IT04 ITOO INTV

4 BYR16 BYR12 BYR08 BYR04 BYROO TVO MI51W CB5W CBlW CB5R CBlR IT07 IT03 IMTV INTE

8 Table 4w8, Maintenance Display Register Logic Signals For Register 3, Pages 0 (Top), and 1 (Bottom) -8

Maintenance Register Number 2 Switch Position (Page) Number P3-0

Bits

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SL23 SL21 SLI9 SLI7 SLIS SLI3 SLI 1 SCL9 SCL7 SCLS SCL3 SCLI TOD3

2 SE23 SE21 SE19 SE17 SEIS SEI3 SEI 1 SCE9 SCE7 SCES SCE3 SCEl TOD2

3 SL22 SL20 SLI8 SLI6 SLI4 SL12 SLIO SCL8 SCL6 SCIA SCL2 SCLO TODl a:: tXI
~. °' 0 00

4 "'5E22 SE20 SEI8 SEI6 SE14 SE12 SElO SCE8 SCE6 SCE4 SCE2 SCEO TODO
.... 0
:;;c 0
CD 00 qs, '<
Cll Cll

Maintenance Register Number 3 Switch Position (Page) Number P3-1 ct ct
~ s

Bits
§ :;;c
0.. CD
(".) ;->

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 ~ = = ~ (") 0 G
BAFP4 VALV PC3F SPWF XPCC INM9 INM7 INMS INM3 INMl CSVl SPW3 SPPE2 - a::

""d §
2 BAFP3 BURY PC2F BFWF XACC INR9 INR7 INRS INR3 INRI MER2 CSV4 csvo SPW2 SPPEl

§ i::

~ e.
3 BAFP2 RDEV PCIF XPBA XBBA INM8 INM6 INM4 iNM2 INMO MERI CSV3 MREC SPWl SPRF2

4 BAFPl PBZV PCOF XRDR MPXT INR8 INR6 INR4 INR2 INRO MERO CSV2 SPW4 SPWO SPRFl

t
N -

Table 4-9. Maintenance Display Register Logic Signals For Register 3, Pages 2 (Top), and 3 (Bottom)

Maintenance Register Number 3 Switch Position (Page) Number PJ-2

Bits

Bar 2 3 4 <' -' 6 7 8 9 10 II 12 13 14 IS 16

TEJF .JBCF JEJF QEJF SMVF LC2f SF3F MP3S QE4F T83F JB3F QB4F

2 TE2F .JE6F JE2F QE2F MPYF LClF SF2F DBZF TB2F JB2F QB3F

3 TEIF JESF JEIF QEIF SUBF LCOF SFIF FNWF TBIF JBIF QB2F a:: =
~. °'
0 00

4 TEOF JE4F JEOF QEOF LC3F DPFF SFOF ZROF TBOF JBOF QBIF ~8
0 tl'J

'19. '<
rn rn --Maintenance Register Number 3 Switch Position (Page) Number P3-3 0 0
fl a

Bits 8. ~
('")~

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 lS 16 0 0 ::s ::s - (') ... 0

BZ62 BZ61 YZ62 YZ6I TCA3 TOM3 DIS3 JS4F SOIF g. a::
""Cr»
§ ::s

2 AZ63 CZ63 XZ63 ZZ63 TOA2 TOM2 DIS2 JS3F QS3F 0 i:: ;' e.
3 AZ62 CZ62 XZ62 ZZ62 TOAS TOAi TOMS TOMI DISS DISI JS2F QS2F

4 AZ61 CZ61 XZ61 ZZ6I TOA4 TOAO TOM4 TOMO DIS4 DISO JSIF QSIF

Table 4-10. Maintenance Display Register Logic Signals For Register 3, Pages 4 (Top), and 5 (Bottom)

Maintenance Register Number 3 Switch Position (Page) Number P3-4

Bits

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPA8 ICRF CPIRI cnR SSR2 WPIR QP8F QP4F STMC MPRCB MTEXB MOY4F MATEB MIFSI MBSC3

2 CPA4 ICCF CPI RO CSR2 SSRl SECF QP7F QP3F JP02 MWRCB MAP LB MOY3F MTR.YB MHARB MBSC2

3 CPA2 FWFF WPTF CSRI SSRO QP6F QP2F JPOl MNRFB MAOFB MOY2F MHOLO MCBQF MBSCI s::: °' a.°"
0 00

4 CPAl PRVA WBCF CSRO VSJK QPSF QPlF JPOO MREQB MABXB MOYlF MORYB MROBF MBSCO
"'t 0
~o

J8 r/.l '<
00 00 g

Maintenance Register Number 3 Switch Position (Page) Number P3-S "'t Cl>
00 s

Bits
§ it'
0.. Cl>

(j ~
Bar 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16

0 Cl>
:::i :::i (") a Cl>

LRAP LRIG IML2 ABRl INCT INF+l INFF MPXI OR31 OR27 OR23 OR19 ORIS ORll OR07 OR03 ~
'"t1 §

2 LRIL LRGN IMLI ABEi MEWT SEC+2 ALSB MPXB OR30 OR26 OR22 OR18 OR14 ORIO OR06 OR02
§ i:::

~ e.
3 LRAR LAER IMLO ILDM BOST SEC+l MPXG OR29 OR25 OR21 OR17 OR13 OR09 OROS OROl

4 LROM OPTF GCOS SEIN ABIT AYER RTRY OR28 OR24 OR20 OR16 OR12 OR08 OR04 OROO

Table 4-11. Maintenance Display Register Logic Signals For Register 4, Pages 0 (Top), and 1 (Bottom)

Maintenance Register Number 4 Switch Position (Page) Number P4-0

Bits

Bar 2 3 4 6 7 8 9 10 I I I2 I3 I4 I5 I6

WMMF AMMF JCMP JCS07 JCS03 SRS3 OSR3 VARS

2 PLKI RMMF AIMF JCS IO JCS06 JCS02 SRS2 OSR2 VCTS

3 PLKO WIMF MEXI HALT JSC09 JCS05 JCSOI SRSI OSRI EDTS
s::: tl'

~- °' 0 00

4 PSOR RIMF ARPT JCS08 JCS04 JCSOO SRSO OSRO TEDS
..., 0
:::0 0
~ 00
-· '< v.i v.i

Maintenance Register Number 4 Switch Position (Page) Number P4-I
ct ct
~ s

Bits
§ :::0
0.. ~

n~
Bar 2 3 4 5 6 7 8 9 10 I I I2 I3 I4 I5 I6

0 ~ ::s ::s -(":) 8 ~
EV2I EVI7 EVI3 EV09 EV05 EVOl ECT7 ECT3 ICOR EJCMP EJC07 EJC03 HLTD EST7 EOP3 EVCT -s::: .,, ~

~ ::s
2 EV20 EVI6 EVI2 EV08 EV04 CCSF ECT6 ECT2 MBPI EJClO EJC06 EJC02 ILHD EST6 EOP2 ETED

::s c:
~ e:..

3 EV19 EV15 EVIl EV07 EV03 MEVF ECT5 ECTl MIAI EJC09 EJC05 EJCOl LODS EST5 EOPI EEDT

4 EV18 EV14 EVIO EV06 EV02 HOEF ECT4 ECTO ESTP EJC08 EJC04 EJCOO LAVF EST4 EOPO EVAR

Table 4-12. Maintenance Display Register Logic Signals For Register 4, Pages 2 (Top), and 3 (Bottom)

Maintenance Register Number 4 Switch Position (Page) Number P4-2

Bits

Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPC28 CPC24 CPC20 CPC16 CPC12 CPC08 TD35 TD31 TD27 TD23 TD19 TD15 TDll TD07 TD03

2 CPC27 CPC23 CPC19 CPC15 CPCll CPC07 TD34 TD30 TD26 TD22 TD18 TDI4 TDlO TD06 TD02

3 CPC26 CPC22 CPC18 CPC14 CPClO CPC06 TD33 TD29 TD25 TD21 TD17 TD13 TD09 TD05 TDOl a:: ~
a.°'
0 00

4 CPC25 CPC21 CPC17 CPC13 CPC09 CPC05 TD32 TD28 TD24 TD20 TD16 TD12 TD08 TD04 TDOO ;g
CTI 00 <a. '<
~. ~

Maintenance Register Number 4 Switch Position (Page) Number P4-3 CTI CTI

~ s
Bits

§ :::0
A,. CTI

('")~
Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 CTI = = (')

'"1 CTI

IMCF3 CBOF3 IMCF2 CBOF2 IMCFl CBOFl IM CFO CBOFO MT RIP WSTFO WSTFl GSOF ICNF GT2F GOAF g. a::
'"ti ~

2 PS2F3 CAOF3 PS2F2 CAOF2 PS2Fl CAO Fl PS2FO CAOFO MTMR2 WSTF2 WSTF3 GSlF GRDF GTlF GOBF
§ =
CTI i:::
~ e.

3 PS1F3 WCCF3 PS1F2 WCCF2 PSlFl WCCFl PSlFO WCCFO MTMRl MSPY GS2F GABF GTOF GAOF

4 PSOF3 PEDF3 PSOF2 PEDF2 PSOFl PED Fl PSOFO PEDFO MTMRO MSPX CRFF EGTM

Table 4-B. Maintenance Display Register Logic Signals For Register 4, Pages 4 {Top), and 5 (Bottom)

Maintenance Register Number 4 Switch Position (Page) Number P4-4

Bits

Bar 2 3 4 5 6 7 8 9 10 II 12 13 .14 15 16

MMIE M17F M13F MM2E M27F M23F MM3E M37F M33F MMPD

2 Ml6F Ml2F M26F M22F M36F M32F

J Ml9F M15F MllF M29F M25F M21F M39F M35F M31F a:: tx;
.E. 0\
0 00

4 Ml8F Ml4F MIOF M28F M24F M20F M38F M34F M30F
'"I 0
::0 0
('D (/)

Cf9. '<
en en

Maintenance Register Number 4 Switch Position (Page) Number P4-5 s- s-
~ s

Bits ~ ::0 p. ('D

(j ~
Bar 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 ('D

::s ::s (') 0 ('D ,_. s::
'"'d Q)

2
~ ::s
('D ~
~ e.

3

4

B 6800 System Reference Manual
Major Registers and Control Panels

DISPLAY PANEL ONE, PAGE ZERO LOGIC SIGNALS

Page zero of register number one is used to display the multiplexor functions of the CPU cabinet. The logic signals and flip-flops
that are displayed (refer to table 4-2) are as follows:

RDAF

MINF

LSAF

ADPF

DREN

CDLF

DAGL

PDPR

PDAl, PDA2, PDA4, PDA8
PDBl, PDB2, PDB4, PDB8
PDCl, PDC2, PDC4, PDC8
PDDl, PDD2, PDD4, PDD~

SCFO, SC Fi, SCF2

STCF

IOCF

1512

SCHO, SCHI, SCH2, SCH3
SCH4

ITPO, ITP 1, ITP2, ITP3

ICHO, ICHI, ICH2, ICH3
ICH4

The result descriptor available flip-flop.

The minus flip-flop.

The least significant address flip-flop.

The even character required flip-flop (used for card punch IO devices).

The driver enable flip-flop.

The channel designate level flip-flop.

The access granted level, delayed signal.

The peripheral data register parity bit.

The peripheral data register bits.

T'he service cycle sequence count tlip-flops.

The start channel flip-flop.

The IO complete flip-flop.

The large buff er (512 bytes) indicator.

The scratchpad channel address flip-flops.

The internal unit type flip-flops.

The initiate channel number register.

DISPLAY PANEL ONE, PAGE ONE LOGIC SIGNALS

Page one of register number one is used to display the multiplexor functions of the CPU cabinet. The logic signals and flip­
flops that are displayed (refer to table 4-2) are as follows:

BDPR

BDAl, BDA2, BDA4, BDA8
BDBl, BDB2, BDB4, BDB8
BDC1,BDC2,BDC4,BDC8
BDDI, BDD2, BDD4, BDD8

5001290

The burst data register parity bit.

The burst data register bits.

4-27

OUTP

ZWPR

CRPR

BRQF

BCCO,BCC1,BCC2,BCC3
BCFO, BCFl, BCR2, BCF3

BCF4,BCF5

BCHO, BCHl, BCH2, BCH3
BCH4

LSTC

MAHF

PAVL

IORG

IORO, IORl, IOR2~ IOR3

B 6800 System Reference Manual
Major Registers and Control Panels

The output parity bit.

The Z register word parity bit.

The C register parity bit (even parity).

The burst request flip-flop.

The burst cycle character count flip-flops.

The burst cycle sequence count flip-flops.

The burst channel number register.

The last character logic signal.

The save memory access obtained logic signal.

The path available logic signal.

The IO regulator logic signal.

The IO regulator count register.

DISPLAY PANEL ONE, PAGE TWO LOGIC SIGNALS

Page two of register number one is used to di_splay the status of family A and the arithmetic controller functions of the data
processor, in the CPU cabinet. The logic sigtials and flip-flops that are displayed (refer to table 4-3) are as follows:

4-28

TAOF,TA1F,TA2F,TA3F

SAOF,SA1F,SA2F,SA3F

JAOF, JAi F, JA2F, JA3F
JA4F, JA5F, JA6F, JA7F

EXAI

KAOF, KAlF, KA2F

QAOF, QAlF, QA2F, QA3F
QA4F,QASF,QA6F,QA7F

SM00,01,02,03,04

PSCF

CMPF

The T register flip-flops for family A.

The T value save register for family A.

The family A sequence count register.

The exponent add initiate flip-flop.

The K counter for family A.

Logical flip-flops used within family A.

Steering and mask value register used for generating TOA, TOM, and DIS
values from family A operations.

Psuedo call on family A flip-flop.

Compare flip-flop used for relational operators.

NLZF, NLZO, 1, 2, 3

HROO, 01, 02, 03, 04, 05, 06,
07, 08, 09, 10, 11, 12, 13, 14,
15

B 6800 System Reference Manual
Major Registers and Control Panels

Number of leading zeros register for arithmetic controller.

The arithmetic controller holding register.

DISPLAY PANEL ONE, PAGE THREE LOGIC SIGNALS

Page three of register number one is used to display the status of families C and D of the data processor, in the CPU cabinet.
The logic signals and flip-flops that are displayed (refer to table 4-3) are as follows:

TCOF,TC1F,TC2F,TC3F

JCOF, JClF, JC2F, JC3F,
JC4F, JC5F, JC6F, JC7F

QC1F,QC2F,QC3F,QC4F,
QC5F,QC6F,QC7F,QC8F

CRNCF

SASG

QCZ2

QCZl

ACM4,ACM5

ACLO,l,2,3,4,5,6, 7

TDOF,TD1F,TD2F,TD3F

JDOF, JDIF, JD2F, JD3F,
JD4F, JD5F, JD6F, JD7F

QDlF, QD2F, QD3F, QD4F,
QD5F,QD6F,QD7F,QD8F

PANEL 1, PAGE 4 LOGIC SIGNALS

The T register flip-flops for family C.

The family C sequence count register.

Logical flip-flops used within family C.

The PIR and PBR register values are not consistant flip-flop signal (used by the
interrupt controller).

Save segmented bit flip-flop.

Save size two flip-flop.

Save size one flip-flop.

Most significant two bits of address couple for NAMC operators.

Least significant eight bits of address couple for NAMC operators.

The T register for family D.

The family D sequence count register.

Logical flip-flops used within family D.

Page four in maintenance display register one is used to show the status of the IC memory control, address adder, and sum
register functions of the data processor in the CPU cabinet. The logic signals and flip-flops (refer to table 44) that are dis­
played are as follows:

MREZ9

MDROC

MD ROB

MD ROA

5001290

Residue error on Z9 bus logic signal.

Display address bit 0 (group C cards).

Display addre~s bit 0 (group B cards).

Display address bit 0 (group A cards).

4-29

MREZ8

MDRlC

MDRlB

MDRlA

MORSS

MDRF2,3,4

MZ812

MZ811

MZ810

MZ809

MD RSX

MSOR2

MSOR!

MSORO

MACT8

CRIC

MPBR

MSBR

MDBR

MTBR

MPIR

MSIR

MOIR

MTIR

MPDR

MSNR

MF

4-30

B 6800 System Reference Manual
Major Registers and Control Panels

Residue error on Z8 bus logic signal.

Display address bit 1 (group C cards).

Display address bit 1 (group B cards).

Display address bit 1 (group A cards).

Display memory read enable logic signal.

Display address bits 2, 3, and 4.

Bit 12 index portion of address couple value.

Bit 11 index portion of address couple value.

Bit 10 ind.ex portion of address couple value.

Bit 09 index portion of address couple value.

Bit 08 index portion of address couple value.

The sum of residue bit 2 (address adder).

The sum of residue bit 1 (address adder).

The sum of residue bit 0 (address adder).

Address couple to Z8 register.

Clear IC memory flip-flop.

Program base register read select flip-flop.

Source base register read select flip-flop.

Destination base register read select flip-flop.

Table base register read select flip-flop.

Program index register read select flip-flop.

Source index register read select flip-flop.

Destination index register read select flip-flop.

Table index register read select flip-flop.

Program dictionary register read select flip-flop.

Stack number register read select flip-flop.

F register read select flip-flop.

MS

MBOS

MLOSR

MBUF

MTEMP

MCOUT

MC ZIN

MSUBT

MZ6L9

MZ6T8

MZ6L8

MZ6T9

LL00,01,02,03,04

PANEL I, PAGE 5 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

S register read select flip-flop.

Bottom of stack register read select flip-flop.

Limit of stack register read select flip-flop.

Buf (temp) register read select flip-flop.

Temporary register read select flip-flop.

Address adder carry out flip-flop.

Address adder carry in flip-flop.

Address adder subtract function flip-flop.

Z6 bus (35:16) to Z9 bus (15:16) enable flip-flop.

Z6 bus (19:20) to Z8 bus (19:20) enable flip-flop.

Z6 bus (13:14) to Z8 bus {13:14) enable flip-flop.

Z6 bus (39:20) to Z9 bus (19:20) enable flip-flop.

Lexagographical level register.

Page five display in maintenance display register one is used to show the status of the interrupt controller, memory con­
troller, stack controller,. and scan bus control functions of the data processor in the CPU cabinet. The logic signals and
flip-flops (refer to table 44) that are displayed are as follows:

RDCBA

ADREA

STOF

SDIS

RD REA

RDS EA

CKB1A,CKB2A,CKB3A,
CKB4A,CKB5A,CKB6A

CBIN

CBAI

CKBIB, CKB2B, CKB3B,
CKB4B,CKB5B,CKB6B

5001290

The read data check bit for channel A.

The address retry bit for channel A.

The stack overflow flip-flop.

The syllable dependent interrupt flip-flop.

The read data retry bit for channel A.

The read data single bit for channel A.

The check bits for channel A.

Channel B interrupt being reported logic signal.

Channel B alarm interrupt flip-flop.

The check bits for channel B.

4-31

ADREB

RDCBB

RDREB

RDSEB

INA GB

RDMEB

IN ALB

MP ARB

CBM3

GBNTB

CAM3

SCOR

SClD

GNTR

INAGA

RDMEA

STAR

INPW

STUF

INALA

SCNR

STAP

LOPE

I.PEN

SCAN

RUNI

LOPT

4-32

B 6800 System Reference Manual
Major Registers and Control Panels

The address retry bit for channel B.

The read data check bit for channel B.

The read data retry bit for channel B.

The read data singie bit for channel B.

Invalid address bit-global for channel B.

The read data multiple error bit for channel B.

Invalid address bit-local for channel B.

Memory parity error bit for channel B.

Memory Control error bit for channel B.

Global memory not ready to channel B logic signal.

Memory control error bit for channel A.

Scan out error flip-flop.

Scan in data error flip-flop.

Global memory not ready flip-flop.

Invalid address bit-global for channel A.

Read data multiple error bit for channel A.

Store address residue for channel A.

Invalid program word flip-flop.

Stack underflow flip-flop.

Invalid address-local for channel A.

Scan bus not ready.

Memory address parity for channel A.

Loop timer error flip-flop.

Loop timer enable signal.

Scan command active flip-flop.

Running timer signal.

Loop timer trigger signal.

LOOP

STBO, 1, 2

CMPR

ADDR

BURE

RCPE

PCPE

ERENO, l; 2, 3, 4, 5, 6, 7

PANEL 2, PAGE 0 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

Loop timer multi-timer signal.

Stack register (tells where a read data word was put in the stack).

Compare residue flip-flop.

Address adder residue error flip-flop.

Bus residue error flip-flop.

RAM card parity error flip-flop.

PROM card parity error flip-flop.

Parity error PROM card number register.

Page zero display in maintenance register two is used to show the status of the multiplexor function in the CPU cabinet.
The logic signals and flip-flops (refer to table 4-5) that are displayed are as follows:

CC00,01,02,03,04,
05,06,07,08,09,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19

STVC

PFIO, 11, 12, 13, 14,
15, 16, 17, 18, 19

PIEN

PBAO, 1, 2, 3, 4, 5,
6, 7,8

PC09,10,11,12,13,
14, 15, 16, 17, 18, 19

PTAO, 1, 2, 3, 4, 5, 6,
'7 Q
1,u

The peripheral character counter.

The status vector logic sig.rntl.

The peripheral flag register.

Peripheral input end flip-flop.

Peripheral buffer address register.

Peripheral control register.

Peripheral target address register.

DISPLAY PANEL TWO, PAGE ONE LOGIC SIGNALS

Page one of register number two is used to display the status of the multiplexor burst control function, in the CPU cabinet.
The logic signals and flip-flops (refer to table 4-5) displayed are as follows:

ACOO, ACOl, AC02, AC03,
AC04, AC05, AC06, AC07,
AC08, AC09, ACIO, ACl 1,
AC12, AC13, AC14, AC15,
AC16,AC17,AC18,AC19

5001290

The multiplexor accumulator register.

4-33

PINH

ASCI

ATTN

BINP

MINH

XLAT

FRAM

MPRT

BKWD

TEST

TGCO, TGCI

NEAR

BB=T

BIEN

BTAO, BTAI, BTA2, BTA3,
BTA4, BTAS, BTA6, BTA7
BTA8

BSIO,BS11,BS12,BS13,
BS14,BS15,BS16,BS17,
BS18,BS19

BOEN

BBAO, BBAI, BBA2, BBA3,
BBA4, BBAS, BBA6, BBA7,
BBA8

B 6800 System Reference Manual
Major Registers and Control Panels

The peripheral inhibit logic signal.

The ASCII translate logic signal.

The software attention logic signal.

The burst input logic signal.

The memory inhibit logic signal.

The translate logic signal.

The 8-bit character {frame) size logic signal.

The memory protect logic signal.

The backward operation logic signal.

The test operation logic signal.

The tag field control logic signals.

The buffer address near to burst target address logic signal.

The burst buffer address equal to burst target address logic signal.

The burst input end signal.

The burst target address register.

The burst save register.

The burst output end logic signal.

The burst buff er address register.

DISPLAY PANEL TWO, PAGE TWO LOGIC SIGNALS

Page two of display register number two is used to display the status of the arithmetic controller and family A of the data
processor, in the CPU cabinet. The iogic signals and flip-flops that are displayed (refer to table 4-6) are as follows:

4-34

l>D'T'D
DLJ..U

YETB

AETA

The add B exponent to B input of exponent adder signal.

The add Y exponent to B input of exponent adder signal.

The add A exponent to A input of exponent adder signal.

XETA

NZTB

NDTB

NZTA

NDTA

MRTBl, MRTB2

MRTAl, MRTA2

EXSB

ECRI

AITA

XlTA

Bl TB

YlTB

A2TA

X2TA

B8TB

Y8TB

A4TA

X4TA

ADSB

CCNS

CCR3

CCL3

SPCI

DPCI

Cl75

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

The add X exponent to A input of exponent adder signal.

The add NLZ (number of leading zeros) register output to the B input of the
exponent adder signal.

The add 13 (decimal) to B input of exponent adder signal.

The add NLZ (number of leading zeros) register output to the A input of the
exponent adder signal.

The add 13 (decimal) to A input of exponent adder signal.

The holding register for the B input to the exponent adder.

The holding register for the A input to the exponent adder.

The exponent adder add/subtract control logic signal.

The exponent adder-carry-in/borrow signal.

The A mantissa to A input of mantissa adder signal.

The X mantissa to A input of mantissa adder signal.

The B mantissa to B input of mantissa adder signal.

The Y mantissa to B input of man.tissa adder signal.

The 2 times the value of the A mantissa to A input of mantissa adder signal.

The 2 times the value of the X mantissa to A input of mantissa adder signal.

The 8 times the value of the B mantissa to B input of mantissa adder signal.

The 8 times the value of the Y mantissa to B input of mantissa adder signal.

The 4 times the value of the A mantissa to A input of mantissa adder signal.

The 4 times the value of the X mantissa to A input of mantissa adder signal.

Tne maniissa adder acid/subtract ftip-fiop.

The mantissa output unshifted logic signal.

The mantissa output shifted right 3 bits logic signal.

The mantissa output shifted left 3 bits logic signal.

The single precision carry-in/borrow to mantissa adder logic signal.

The double precision carry-in/borrow to mantissa adder logic signal.

The carry-in to bit 75 of the mantissa adder signal.

4-35

DPOV

Bxoo: BXO 1, BX02

YXOO

AXOO, AXOl, AX02

xxoo

YR-1, YR-2, YR-3

XR-1

SCOF,SC1F,SC2F,SC3F

SCEF

ICRE

BXSE

DISX

ICRO, ICRl, ICR2, !CR3,
ICR4, ICRS, ICR6, ICR7

BDPD

ADPD

B 6800 System Reference Manual
Major Registers and Control Panels

The double precision mantissa adder gating override logic signal.

The B mantissa one octade extension register.

The Y exponent one-bit extension signal.

The A mantissa one octade extension register.

The X exponent one-bit extension signal.

The Y mantissa low-order octade extension register.

The X mantissa low-order bit (input conversion).

The scale count register.

The scale count enable flip-flop.

The input convert register enable flip-flop.

The B side of mantissa adder output logic signal.

The disable extension register flip-flop.

The input convert operation register.

The double precision operand in B register (tag= 010) logic signal.

The double precision operand in A register (tag= 010) logic signal.

DISPLAY PANEL TWO, PAGE THREE LOGIC SIGNALS

Page three of display register number two is used to display the status of the memory control of the CPU cabinet. The logic
signals and flip-flops (refer to table 4-6) that are displayed are as follows:

4-36

RQTO, RQTl, RQT2, RQT3,
RQT4, RQTS, RQT6, RQT7,
RQT8,RQT9,RQTA,RQTB

RQRO, RQRl, RQR2, RQR3,
RQR4, RQR5, RQR6, RQR7,
RQR8,RQR9,RQRA,RQRB

csc1,csc2,csc3,csc4

CAPFA, CAPFB, CAPFC,
CAPFD,CAPFE

SRLO, SRLl, SRL2

SRMO,SRM1,SRM2

The request trap register,

The request register.

The channel A sequence count register.

The memory address register priority over look ahead address register logic signals.

The sum of residue for the address in LAR signals.

The sum of residue for the address in MAR signals.

ATEF

TRYF

CMGO

MAOF

RDFF

CINF

WAIT

LOG1,LOG2

ABRF

CARQ

MISlR

MI48

PTGO

HARO, HARl, HAR2, HAR3

PANEL 2, PAGE 4 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

The address transmission error flip-flop.

The address retry flip-flop.

The channel go (to complete a memory cycle) flip-flop.

The memory access obtained flip-flop.

The read phase control flip-flop.

The clock inhibit control flip-flop.

The general purpose delay flip-flop.

The error control flip-flops.

The abort memory cycle flip-flop.

The channel A request to ports flip-flop.

Memory bit 51 (the multiplexor parity bit).

Memory bit 48 (the memory protect bit).

The port go (to complete a memory cycle) signal.

The hold address fm return {for each port) signals.

Page four in maintenance display register two is used to show the status of string operations (families F, G, H of the data
processor) in the CPU cabinet. The logic signals and flip-flops (refer to table 4-7) that are displayed are as follows:

TU1F,TU2F,TU4F,TU8F

EEND

FINI

EXSF

EXPF

RETF

RNTF

NVLF

MPOP

JUOF, JUI F, JU2F, JU3F,
JU4F, JUSF, JU6F

5001290

The T register for string operation decoding (1, 2, 4, 8 bits).

The end of edit cycle control flip-flop.

The end of the end edit cycle control flip-flop.

Execute single micro operator (Sand D pointers for enter edit). Control flip-flop.

Execute single micro operator (single pointer for enter edit). Control flip-flop.

Return to using operation control flip-flop.

Reentrant from interrupt control flip-flop.

Not valid control flip-flop.

Micro program control flip-flop.

String operations sequence counter flip-flops.

4-37

SSZI, SSZ2

DSZI, DSZ2

SIO I , SI02, SI03, SI04

DIOI, DI02, DI03, DI04

QUIF, QU2F, QU3F, QU4F

DGSF

LHFF

RPZF

XROF

SOPF

UPDF

SPRF

DPRF

TFFF

TFOF

OFFF

FLTF

EQVF

EXTF

QUDF

QUCF

QUBF

QUAF

PANEL 2, PAGES LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

Source size flip-flops.

Destination size flip-flops.

Source input buffer register flip-flops.

Destination input buffer register flip-flops.

Logical flip-flops used for string operations.

Destination greater than source control flip-flop.

Lower half control flip-flop.

String operations control flip-flop.

X register occupied control flip-flop.

Source pointer equals an operand control flip-flop.

Update control flip-flop.

Source pointer read only control flip-flop.

Destination read only control flip-flop.

True false (string operation comparison) control flip-flop.

True false flip-flop occupied control flip-flop.

Overflow control flip-flop.

Float control flip-flop.

Equivalent control flip-flop (sum equal to zero).

External sign bit flag control flip-flop.

Segmented array (QF04) control flip-flop.

Memory protect (QF03) control flip-flop.

Presence bit (QF02) control flip-flop.

Invalid operation (QFOl) control flip-flop.

Page five in maintenance display register two is used to show the status of the memory controller, memory tester logic, and
interrupt controller of the data processor in the CPU cabinet. The logic signals and flip-flops (refer to table 4-7) that are
displayed are as follows:

4-38

BYROO, 01, 02, 03, 04
05,06,07,08,09,10,
11, 12, 13, 14, 15, 16,
17,18,19

MTST

TVO, 1, 2

JVO,JVl

ONCK

CMPE

TABT

ALTWC

M151W

CBPW

WEFW

CBlW, CB2W, CB3W, CB4W
CBSW,BC6W

IT00,01,02,03,04,
05,06,07,08,09,
10

IMTV

ECSF

EXTI

INTV

INTE

B 6800 System Reference Manual
Major Registers and Control Panels

The memory tester bypass register.

The memory test mode control flip-flop.

The memory test type register.

The memory tester sequence counter.

The memory tester compare error control flip-flop.

The memory tester test all bits control flip-flop.

The memory tester alternate worst case control flip-flop.

The write bit 51 memory tester parity bit flip-flop.

The memory tester check bit write parity flip-flop.

The memory tester word parity write bit flip-flop.

The memory tester check bit memory write register.

The interval timer register.

The freeze parameters control flip-flop.

The external interrupt flip-flop.

The interval timer error flip-flop.

The interval timer enable logic signai.

DISPLAY PANEL THREE, PAGE ZERO LOGIC SIGNALS

Page zero of register number three is used to display the status of the family C (scan operations) of the data processor, in
the CPU cabinet. The logic signals and flip-flops (refer to table 4-8) that are displayed are as follows:

SL10,SL11,SL12,SL13,
SL14,SL15,SL16,SL17,
SL18,SL19,SL20,SL21,
SL22, SL23

5001290

The status change levels for units 10, through 23.

4-39

SE10,SE11,SE12,SE13,
SE14,SE15,SE16,SE17,
SE18,SE19,SE20,SE21,
SE22,SE23

SCLO, SCLl, SCL2, SCL3,
SCIA, SCLS, SCL6, SCL7,
SCL8, SCL9

SCEO, SCEl, SCE2, SCE3,
SCE4, SCES, SCE6, SCE7,
SCE8, SCE9

TODO, TODl, TOD2, TOD3

B 6800 System Reference Manual
Major Registers and Control Panels

The status change read levels for units 10 through 23.

The status change levels for units zero through nine.

The status change read levels for units zero through nine.

The four low-order bits of the time of day register.

DISPLAY PANEL THREE, PAGE ONE LOGIC SIGNALS

Page one of register number three is used to display the status of the multiplexor function, and the interrupt controller
function, of the data processor, in the CPU cabinet. The logic signals and flip-flops (refer to table 4-8) that are displayed
are as follows:

4-40

BAFP4

VALV

BURY

RDEV

PBZV

PCOF,PC1F,PC2F,PC3F

SPWF

BFWF

XPBA

XPDR

XPCC

XACC

XBBA

MPXT

INMO, INMl, INM2, INM3,
INM4, INMS, INM6, INM7,
INM8,INM9

The peripheral buff er available for burst logic signals.

The valid vector logic signal.

The burst request vector logic signal.

The result descriptor present vector logic signal.

The pseudo busy vector logic signal.

The priority sequence count register.

The scratch pad write logic signal.

The buff er write logic signal.

The transfer peripheral buffer address logic signal.

The transfer peripheral data register logic signal.

The transfer peripheral character count logic signal.

The transfer accumulator logic signal.

The transfer burst buffer address logic signal.

The multiplexor test logic signal.

The interrupt mask register.

INRO, INRl, INR2, INR3,
INR4, INRS, INR6, INR7,
INR8,INR9

MERO, MERI, MER2

CSVO, CSVI, CSV2, CSV3,
CSV4

MREC

SPWO, SPWI, SPW2, SPW3,
SPW4

SPPEI, SPPE2

SPRFI, SPRF2

B 6800 Sysiem Reference Manual
Major Registers and Control Panels

The interrupt register"

The multiplexor error register.

The channel save register.

The maintenance recycle logic signal (allows repetative IO operations).

The scratchpad word address register.

The scratchpad parity error flip-flops.

The scratchpad read flip-flops.

DISPLAY PANEL THREE, PAGE TWO LOGIC SIGNALS

Page two of register number three is used to display the status of families B and E of the data processor, in the CPU cabinet.
The logic signals and flip-flops that are displayed (refer to table 4-9) are as follows:

TEOF,TEIF,TE2F,TE3F

JBCF

JEOF,JE1F,JE2F,JE3F,
JE4F,JESF,JE6F

QEOF,QEIF,QE2F,QE3F

SMVF

MPYF

SUBF

LCOF,LC1F,LC2F,LC3F

DPFF

SFOF,SFIF,SF2F,SF3F

MP35

DBZF

FNWF

ZROF

5001290

The T register for family E.

The J count bus control flip-flop.

The sequence count register for family E.

The logical flip-flops for family E operations.

The enable scale right PROM (generates TOA, TOM, and DIS values).

The scale right multiply (times ten), raised to the value of the scale factor enable
logic signal.

The last octade (of shift register multiplication) was a subtract logic signal.

The loop c0unt register_

The double precision scale right multiplier flip-flop.

The scale factor register.

The scale right multiplied by 3 or 5 octade logic signal.

The destination bit zero flip-flop.

The fin<ij word flip-flop.

The Z register occupied flip-flop.

4-41

TBOF,TB1F,TB2F,TB3F

JBOF,JB1F,JB2F,JB3F

QB1F,QB2F,QB3F,QB4F

PANEL 3, PAGE 3 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

The T register for family B.

The sequence counter for family B operations.

The logical flip-flops for family B operations.

Page three in maintenance display register three is used to show the status of the stack controller and the transfer controller
of the data processor in the CPU cabinet. The logic signals and flip-flops (refer to table 4-9) that are displayed are as follows:

BZ62

AZ63

AZ62

AZ61

BZ61

CZ63

CZ62

CZ61

YZ62

XZ63

XZ62

XZ61

YZ61

ZZ63

4-42

The gate logic signal to transfer bits 19:20 from the B register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 19:20 from the A register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 39 :20 from the A register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 50: 11 from the A register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 50:3 from the B register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 19:20 from the C register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 39: 20 from the C register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 50: 11 from the C register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 19:20 from the Y register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 19:20 from the X register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 39:20 from the X register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 50: 11 from the X register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 50: 11 from the Y register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 19:20 from the Z register to the Z6 bus, in
the transfer controller.

ZZ62

ZZ61

TOAO, 1, 2, 3, 4, S

TOMO, 1, 2, 3, 4, 5

DISO,l,2,3,4,5

JS1F,2F,3F,4F

SOIF

QSlF, 2F, 3F

PANEL3, PAGE 4 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

The gate logic signal to tnm.sfer bits 39:20 from the Z register to the Z6 bus, in
the transfer controller.

The gate logic signal to transfer bits 50: 11 from the Z register to the Z6 bus, in
the transfer controller.

The top of apperature register.

The top of mask register.

The displacement register.

The stack controller sequence counter.

The stack overflow interrupt flip-flop.

Stack controller logical flip-flops.

Page four in maintenance display register three is used to show the status of the program controller, CPU clock control
logic, and the port control logic for the memory exchange in the CPU cabinet. The logic signals and flip-flops (refer to
table 4-10) that are displayed are as follows:

CPAl, 2, 4, 8 The CPU clock counter low order flip-flop bits.

ICRF The increment CPIR and CTIR remember control flip-flop.

ICCF The increment CPIR and CTIR normal control flip-flop.

FWFF The first word fetch flip-flop.

PRVA The PROF and V ARF valid logic term.

CPIRO, 1 The PIR word boundary crossed counter.

WPTF Write PIR or TIR flip-flop.

WBCF Word boundary crossed flip-flop.

CTIR TIR word boundary crossed flip-flop.

CSRO, 1, 2 Syllable counter for the syllable from which the present operator was strobed.

SSRO, 1, 2 Syllable counter for the syllable that initiated a table enter edit operator.

WPIR Write PIR - return from table mode flip-flop.

SECF Syllable execute complete level save flip-flop.

VSJK Vector strobe fetch or store flip-flop.

5001290 4-43

QP1F,2F,3F,4F,5F,
6F,7F,8F

STMC

JPOO,Oi,02

MPRCB

MWRCB

MNRFB

MREQB

MTEXB

MAP LB

MAOFB

MABXB

MDYlF, 2F, 3F, 4F

MATEB

MTR YB

MHOLD, MDRYB

MIFSl

MHARB

MCBQF

MRDBF

MBSCO, 1, 2, 3

PANEL 3, PAGES LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

Program controller logic flip-flops.

Start memory cycle save flip-flop.

Program controller sequence control rngister.

Protected write logic signal from external subsystem device.

Memory write request signal from external subsystem device.

Memory not ready signal to an external subsystem device.

Memory request signal from external subsystem device.

Memory transmission error signal to external subsystem device.

Memory address parity level from an external subsystem device.

Memory access obtained level to an external subsystem device.

Memory access begun signal to an external subsystem device.

Memory clock delay register for an external subsystem device.

Memory address transmission error signal for an external subsystem device.

Address retry signal to an external subsystem device.

Logical flip-flops used to send an initiate memory cycle (IMC) to a memory port
from an external subsystem device.

Information parity bit for an external subsystem device memory cycle.

Hold address for return for external subsystem.

Channel B request signal to memory exchange port.

Read phase flip-flop for channel B.

Sequence control counter for channel B.

Page five in maintenance display register three is used to show the status of the look ahead logic and other interrupt con­
troller functions, and the display register validity logic of the data processor in the CPU cabinet. The logic signals and flip­
flops {refer to table 4-10) that are displayed are as follows:

LRAP The address parity signal for the lock ahead logic.

LRIL The invalid address-local signal for the look ahead logic.

4-44

LRAR

LRDM

LRIG

LRGN

LAER

OPTF

IMLO, 1, 2

GCOS

ABRI

ABEi

ILOM

SEIN

INCT

MEWT

BOST

ABIT

INF+!

SEC+2

SEC+l

AYER

INFF

ALSB

RTRY

MPXI

MPXB

MPXG

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

The address residue signal for the look ahead logic.

The read data multitimer signal for the look ahead logic.

The invalid address-global signal for the look ahead logic.

The global memory not ready signal for the look ahead logic.

The look ahead logic memory error signal.

The optional adapter test flip-flop (used in MTCE mode).

The consecutive interrupt counter for detection of a superhalt condition.

The general control disable logic signal.

The abort clock save logic signal.

The abort interrupt controller logic signal.

The interrupt load micro-program logic signal.

The syllable execute complete level interrupts enable signal.

The inconsistant P3 parameter logic signal.

The families memory cycle wait logic signal.

The Maintenance Display Processor {MOP) test logic signal.

The abort interrupt logic signal.

The INFF flip-flop delayed by 1 clock pulse logic signal.

The syllable execute complete level delayed by 2 clock pulses logic signal.

The syllable execute complete level delayed by 1 clock pulse logic signal.

The any memory error for event logic signal.

The inhibit operator from P register logic signal.

The allow strobe logic signal.

The retry logic signal.

The multiplexor initiate burst request remembered logic signal.

The multiplexor burst logic signal.

The multip)exor granted for burst logic signal.

4-45

DROO, 01, 02, 03, 04,
05,06,07,08,09,10,
11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22,
23,24,25,26,27,28,
29,30,31

PANEL 4, PAGE 0 LOGIC SIGNA.LS

B 6800 System Reference Manual
Major Registers and Control Panels

The display register valid flip~flops for each of the 32 display registers.

Page zero in maintenance display register four is used to show the status of the maintenance and event logic in the CPU
cabinet. The logic signals and flip-flops (refer to table 4-11) that are displayed are as follows:

PLKl

PLKO

PSOR

WMMF

RMMF

WIMF

RIMF

AMMF

AIMF

MEXI

HALT

4-46

ARPT

JCMP

JCS00,01,02,03,04,
05,06,07,08,09, 10

SRSO, 1, 2, 3

OSRO, 1, 2, 3

VARS

VCTS

EDTS

TEDS

The phase lock two logic signal.

The phase lock one logic signal.

The pseudo OP flip-flop.

The write main memory flip-flop.

The read main memory flip-flop.

The write IC memory flip-flop.

The read IC memory flip-flop.

The access main memory flip-flop.

The access IC memory flip-flop.

The mask external interrupt flip-flop.

The halt flip-flop.

The Anti-repeat flip-flop.

The sequence (J) count micro program select flipeflop.

The sequence (J) count save register.

The strobe save register.

The OP code save register.

The variant bit save flip-flop

The vector save flip-flop.

The edit save flip-flop.

The table save flip-flop.

B 6800 System Reference Manual
Major Registers and Control Panels

DISPLAY PANEL FOURs PAGE ONE LOGIC SIGNALS

Page one of register number four is used to display the status of the maintenance and event logic, of the CPU cabinet. The
logic signals and flip-flops (refer to table 4-11) that are displayed are as follows:

EVOI, EV02, EV03, EV04,
EVOS, EV06, EV07, EV08,
EV09, EVIO, EVIi, EV12,
EV13, EV14, EVIS, EV16,
EVI 7, EVl 8, EVl 9, EV20,
EV21

CCSF

MEVF

HOEF

ECTO, ECTl, ECT2, ECT3,
ECT4,ECT5,ECT6,ECT7

ICOR

MPBI

MIAI

ESTP

EJCMP

EJCOO,EJC01,EJC02,
EJC03,EJC04,EJC05,
EJC06,EJC07,EJC08,
EJC09, EJCIO

HLTD

ILHD

LODS

LAVF

EST4,EST5,EST6,EST7

EOPO, EOPl, EOP2, EOP3

EVCT

ETED

5001290

The event register.

The count clock select flip-flop.

The multiple event flip-flop.

The halt on event flip-flop.

The event counter.

The inhibit memory correction logic signal.

The mask presence bit interrupt logic signal.

The mask invalid address interrupt logic signal.

The event stop logic signal.

The micro program J count select logic signal.

The micro program J counter.

The halted flip-flop.

The inhibit look ahead logic flip-flop.

The load select flip-flop.

The look ahead valid flip-flop.

The strobe event logic signals.

The operator code event logic signals.

The vector event logic signal.

The table edit event logic signal.

4-47

EEDT

EVAR

PANEL 4, PAGE 2 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

The edit event logic signal.

The variant mode event logic signal.

Page two in maintenance display register four is used to show the status of the clock control logic, and the time of day
register of the multiplexor function in the CPU cabinet. The logic signals and flip-flops (refer to table 4-12) that are dis­
played are as follows:

CPC05,06,07,08,09,
10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21,
22,23,24,25,26,27,
28

TDOO, 01, 02, 03, 04,
05,06,07,08,09,10,
11, 12, 13, 14, 15, 16,
17, 18, 19,20,21,22,
23,24,25,26,27,28,
29,30,31,32,33,34,
35

PANEL 4, PAGE 3 LOGIC SIGNALS

The high order twenty-four bits of the CPU timer register.

The high order flip-flops of the time of day register.

Page three in maintenance display register four is used to show the status of the store control memory exchange logic, and
the global memory control logic. The logic signals and flip-flops (refer to table 4-12) that are displayed are as follows:

4-48

PSOFO, 1, 2, 3
PSlFO, 1,2,3
PS2F0,1,2,3

WCCFO, 1, 2, 3
PEDFO, 1, 2, 3
IMCFO, 1, 2, 3

CAOFO, 1, 2, 3

CBOFO, 1, 2, 3

MT RIP

MTMRO, 1,2
WSTFO, 1, 2, 3
MSPY,MSPX

GSOF, iF, 2F, INCF,
GRDF, GABF, CRFF,
GTOF, IF, 2F,
GOAF, GOBF, GAOF, EGTM

The port sequence flip-flops for the four ports of local memory.

Clear write operation flip-flops for the four local memory ports.
Parity error disable flip-flops for the four local memory ports.
Initiate memory cycle flip-flops for the four local memory ports.

Channel A occupying port priority flip-flops for four local memory ports.

Channel B occupying port priority flip-flops for four local memory ports.

The enabie scan timer flip-flop.

The scan not ready timer register.
The memory write strobe for memory port 0, 1, 2, or 3.
Scan control flip-flops.

Giobai memory (or memory control III) control flip-flops.

PANEL 4, PAGE 4 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

Page four in maintenance display register four is used to show the status of the micro program module flip-flops in the
CPU cabinet. The logic signals and flip-flops (refer to table 4-13) that are displayed are as follows:

MMlE

MlOF, llF, 12F, 13F, 14F,
1SF,16F,17F,18F,19F

MM2E

M20F,21F,22F,23F,24F,
2SF,26F,27F,28F,29F

MM3E

M30F,31F,32F,33F,34F,
3SF,36F,37F,38F,39F

MMPD

PANEL 4, PAGE 5 LOGIC SIGNALS

Micro module one enable flip-flop.

Micro module one address flip-flops.

Micro module two enable flip-flop.

Micro module two address flip-flops.

Micro module three enable flip-flop.

Micro module three address flip-flops.

The micro module parity disable for first clock pulse logic signal.

Page five in maintenance display register four is not used, and therefore has no flip-flops specified. This display register
page is reserved for future expansion of the display registers.

Maintenance Processor Control Panel and Display

The maintenance display processor control panel (see figure 4-6) is located below maintenance display register number
two, on the maintenance display register panel. When the hinged maintenance display panel cover is closed the MDP
processor control panel is not visible, and the controls for the processor cannot be exercised. Figure 4-6 shows the
maintenance and display processor controls and indicators, and also shows the system maintenance control panel.

The maintenance display processor control panel consists of the following controls and indicators:

a. The A, B, C, D, and E display indicators. These indicators are driven by the KBIO Controller in the micro­
processor, and are used for operator interface.

b. The INIT (initiate) pushbutton switch. This switch is used to clear and reinitialize the microprocessor.

c. The MTR indicator lamp. This lamp is used to indicate when the microprocessor is running a self diagnostic
test on itself, and/or the MDP. If such a test is being performed the lamp is illuminated. The MTR level is used
to select one of two areas of micro-processor PROM storage.

d. The PWR ON (power on) indicator lamp. This lamp is used to indicate that power is applied to the micro­
processor.

e. The SHIFT (shift) pushbutton switch. Tills pushbutton is used to cause an expansion of the sixteen key
positions of the keyboard. If the SHIFT pushbutton is not depressed, the value of the keyboard selects one
character position in the first set of sixteen characters. If the SHIFT pushbutton is depressed the value of
the keyboard selects one character position in the second set of sixteen characters.

5001290 4-49

A B c
C> 0 0 0 0 0 0
7 3 7 3 7 3 7

() 0 0 0 0 0 0
6 2 6 2 6 2 6

() 0 0 0 0 0 0
5 1 5 1 5 1 5

0 0 0 0 0 0 0
4 0 4 0 4 0 4

I ~ SiSWliS @ I
3 2 1 0

LOOP DIAG STEP CYCLE

r DISPLAY

CPU 0 ALT

LOCAL SWITCJ:I LAMP TEST CONTROL

@
TEST 0 CMPR@
0

REMOTE PAGE NORMAL
ALARM CONTROL

MV 1608

MAINT PROC CONTROL

D E

0 0 0
3 7 3

0 0 0
2 6 2

0 0 0
1 5 1

0 0 0
0 4 0

looool
S3 S2 St SO

LOOP DIA STEP ERR

INIT

00000
S?R 00GG

SHIFT

MAINT CONTROL

'G
MAINTENANCE

EVENT IC
CLOCK

~ PROC TRAIN
ALT DISP ENABLE STOP PULSE PULSE

OFF@ ® 0 @ @ ® 0
NORMAL RUN SINGLE
DISPLAY PULSE

Figure 4·6. Maintenance Display Processor Control Panel

B 6800 System Reference Manual
Major Registers and Control Panels

f. The sixteen key keyboard. The sixteen keys on the keyboard are labeled 0, 1, 2, 3, 4, 5, 6, 7, 8, A, B, C, D, E,
and F. These sixteen keys are used to enter data into the microprocessor.

g. The four SENSE SWITCHES, numbered 0, 1, 2, and 3. These switches are read by the microprocessor, and
provide major function control of the microprocessor.

h. The four indicator lamps, numbered SO, Sl, S2, and 83. These four lamps are used to indicate error conditions,
and other operating conditions while executing MDP programs.

The MAINT CONTROL panel consists of the following controls:

a. The CPU LOCAL/REMOTE selector switch. This switch has two positions which are LOCAL (up), and REMOTE
(down). In the LOCAL position the CPU may only access local memory (global memory and scan bus operations
are disabled). In the REMOTE position the CPU may access either local or global memory.

b. The SWITCH TEST, and PAGE ALARM indicator lamps. The SWITCH TEST lamp is illuminated if any push­
button in the entire MDP is depressed. The PAGE ALARM lamp is illuminated if any of the maintenance display
register thumbwheels are not in the detent (page selected) position.

c. The LAMP TEST pushbutton. This switch when depressed, causes all indicators on the display panel to
illuminate.

d. The ALT /CMPR/NbRMAL CONTROL switch. This switch has three positions which are:

ALT CONTROL (alternate control)
CMPR (comparator)
NORMAL CONTROL

in the up position
LT1 the middle position
in the down posiiion

This switch is used to route control levels from the system control panel and the keyboard to the selected CPU(s).

e. The ALT/OFF/NORMAL display control switch. This switch has three positions which are alternate display (up),
normal display (down), or comparator (middle). This switch is used to select which CPU(s) will be displayed by
the indicators on the MDP panels.

f. The MAINTENANCE switch group. This group has two switches and one pushbutton in it:

1) PROC ENABLE (processor enable) has two positions which are enable (up), and disable (down). This
switch is used to select either the micro-processor or the display logic to control MFlO. The micro pro­
cessor is selected when the switch is up, and the display logic is selected when the switch is down.

2) STOP pushbutton. This switch, when depressed, unconditionally stops the running of the mainframe in
event mode.

3) EVENT switch has two positions which are enabled (up), and disabled (down). This switch enables the
event logic when the PROC ENABLE switch is in the disabled position.

5001290 4-51

B 6800 System Reference Manual
Major Registers and Control Panels

g. The CLOCK switch group. This group has two switches and one pushbutton in it; the clock mode switch has
two positions which are PULSE (up), and RUN (down). In the PULSE position system clock is controlled by
the TRAIN PULSE/SINGLE PULSE switch. In the RUN position the system clock is free running.

The clock select switch has two positions which are TRAIN PULSE (up), and SINGLE PULSE (down).

In the TRAIN PULSE position a train of three clock pulses are emitted when the INITIATE PULSE pushbutton
is depressed. In the SINGLE PULSE position a single clock pulse is emitted.

The clock INITIATE PULSE pushbutton.

This switch causes a pulse train or a single clock pulse to be emitted when the pushbutton is depressed.

Maintenance Processor Programmers Display Keyboard

The MDP programmers keyboard is located immediately beneath the programmers display panel (refer to figure 4-1). The
pushbutton switches and indicators are shown in figure 4-7. The functions of the switches and indicators are as follows.

4-52

MV 1609

B 6800 System Reference Manual
Major Registers and Control Panels

Figure 4-7. Keyboard Pushbuttons and Indicators

<] I>

Register select switches 1, 2, 3, 4.

One of the four register displays are selected. Depressing one of the four switches will cause the selection to
change to that associated register. When a register is selected, the cursor will blink at the leftmost digit of
that register and the associated register select indicator will be on.

HEX DIGITS 0 through F switches

When a hex digit switch is depressed, the four flip-flops indicated by the cursor will take the state of that hex
character. On releasing the switch, the cursor will move one position to the right.

CURSOR LEFT switch (<J)

Depressing this switch causes the cursor to move one position to the left in the selected display register,
(Rl, R2, R3, or R4).

CURSOR RIGHT switch ([>)

Depressi!!g !his switch ca!!ses the cursor to move one position to the rig..ht in the selected display register,
(Rl, R2, R3, or R4).

REG CLR switch

Depressing this switch causes the selected register to be cleared (reset), and the cursor to point to hexadecimal
address number nine of the display register.

BIT RESET switch

5001290

Depressing the switch causes any flip-flop to be reset when its associated switch is depressed. The bit reset
switch must be kept depressed for the et\tire time the flip-flop switch is depressed to ensure the flip-flop is
left in a reset state.

4-53

4-54

SECL switch and indicator

B 6800 System Reference Manual
Major Registers and Control Panels

Depressing the SECL pushbutton causes the state of the SECL flip-flop to change state in the display control
logic. The output of the flip-flop is sent to the indicator and to the mainframe. When false, the indicator
is off and it has no effect on the mainframe. When true, the indicator is on and the CPU finishes its current
instruction ~md is inhibited from starting the next instruction.

CHL T switch and indicator

Depressing CHLT causes the state of the CHLT flip-flop in the display control logic to change state. The
output of the flip flop is sent to the indicator and to the mainframe. When the output is false, the indicator
is off and when a conditional halt operator is executed by the mainframe, it acts as a NOOP. When the out­
put of the CHLT flip-flop is true, the indicator is on and when the conditional halt operator is strobed into
family F, the operator continues to run without ever developing a SECL, thus stopping the system. A loop
timeout interrupt is inhibited when the CHLT flip-flop is set.

STEP switch

The Step switch works in conjunction with the event switch. With the event switch off, the step switch
being depressed causes the CPU to begin execution of the next instruction where the CPU has been stopped
by the HALT or SECL switch. With the EVENT switch on, depressing STEP causes the mainframe flip flops
to go into a normal run condition.

OCT switch and indicator

Depressing the OCT switch causes the OCT flip flop in the display control logic to change state. When the
output of the OCT flip flop is false, the indicator is off and the stack registers are displayed in hexadecimal
format. When the OCT flip flop output is true, the indicator is on• and the stack register mantissa is displayed
in octal format.

MMIC switch and indica~~r

When this switch is depressed, the MMIC flip flop in the Display Control logic changes state. When the flip
flop is reset, the indicator is off and the MMIC interface line to the mainframe is false. In this state, any
memory cycle initiated from the keyboard. will be to IC memory. When the MMIC flip flop is set, the MMIC
indicator is on and the MMIC interface line to the mainframe is true. In this state, any memory cycle
initiated from the keyboard wili be to iocai memory.

WRITE switch

When depressed, a memory write cycle is initiated. If IC is selected, the write will be from the top of the
stack to the IC addressed by the second word in the stack. If local memory is selected, the contents of
the A register is written to the address pointed to by the B registers, {bits 0 through 19).

READ switch

When depressed, a memory read cycle is initiated. If IC is selected, the IC addressed by the top of the
stack will be read into the top of the stack. If memory is selected, the word addressed by the B registers
(0 through 19), will be read into the A register.

ADJI switch

B 6800 System Reference Manual
Major Registers and Control Panels

When depressed, initiates those local memory read cycles necessary to adjust the top of stack into the A and B
registers, (A reg. does not need to be displayed).

ADJO switch

When depressed, initiates those memory write cycles necessary to push top of stack into memory.

Logic Indicator Lamps

Four lamps are mounted flush on the keyboard, adjacent to the CHLT, SECL, MMIC, and OCT pushbuttons. These lamps
indicate the state of the corresponding logical flip flop. For example, when the CHLT lamp is illuminated, the CHLT
flip flop is set, and when the lamp is extinguished, the CHLT flip flop is reset.

5001290 4-55

B 6800 System Reference Manual

SECTION 5

SYSTEM CONCEPT

GENERAL

The B 6800 system consists of a central processing unit, local memory unit(s), a central power cabinet, a maintenance
display processor cabinet, peripheral control cabinet(s), and the associated peripheral equipment for input/output. This
section generally defines the overall system hardware operation.

The central processing unit (CPU) is the heart of system operations in the B 6800 system; and therefore, while other
units of the system will be discussed in this section, the main thrust will be descriptive of the units that are parts of the
CPU cabinet. The three main parts of the CPU cabinet are as follows:

a. The data processor

b. The multiplexor

c. The memory control

DATA PROCESSOR

The data processor part of the CPU produces the objective results of a program by performing the necessary arithmetic
and logical functions of the program flow.

The data processor contains two major divisions: the functional resources and operator algorithms (figure 5-1). The
functional resources are referred to as the "hardcore" of the processor.

The functional resources are the event logic,. the micro-program modules, the top of stack registers, the address adder, the
multiplexor, and six controllers. The operator algorithms are a group of six families of operators. The operator algo­
rithms provide the logic required to control the functional flow of the program.

OPERA TOR FAMILIES

The operator families and functional controllers are linked by 11 busses (bus Zl through Z6, and Z8 through Zl 2).
These busses provide for data movement and signal routing within the processor (see figure 5-2).

A bus is a group of wires used to transmit signals from one place to another. The busses within the transfer controller
are etched on a single card connecting the same bit of all "hard registers" together, i.e., Bit 1 of registers A, B, C, X,
Y and Z are all on the same physical card.

The operators are grouped into six groups called the operator families (figure 5-1). The grouping of related operators
into families minimizes the logic required in the processor. The six families of operators with a brief purpose for each
are:

a. Family A OPS - Arithmetic Operators

b. Family BOPS - Logical Operators

c. Family COPS - Subroutine Operators

d. Family D OPS - B 6800 Word Oriented Operators

5001290 5-1

B 6800 System Reference Manual
System Concept

FUNCTIONAL RESOURCES OPERATOR ALGORITHMS

PROCESSOR ADDA ESS FAMILY A OPERATORS

ARITHMETIC MODULE

CONTROLLER [STROBE A]
[960 B!T !C MEMORY]

[EXPONENT ADDER 16 BITS]
20 BIT ADDRESS

[MANTISSA ADDER 81 BITS] ADDER, AND 3 BIT
RESIDUE ADDER FAMILY B OPERATORS

[STROBE B]

EVENT LOGIC
PROGRAM SEQUENCE
CONTROLLER FAMILY C OPERATORS

[LOOK AHEAD LOGIC] [STROBES C, J, K]

[P, AND L REGISTERS]

MICRO-PROGRAM MODULES
FAMILY D OPERATORS

ST ACK ADJUST
CONTROLLER

[STROBED]

MEMORY CONTRO L:LER

[MEMORY EXCHANGE] INTERRUPT
CONTROLLER FAMILY E OPERATORS

[MEMORY TESTER]
[STROBE E]

[EXTERNAL SCAN BUS J

[GLOBAL MEMORY INTERFACE]

TRANSFER
CONTROLLER FAMILY U OPERATORS

TOP OF STACK REGISTERS

[A, B, C, X, Y, Z REGISTERS]
[STROBES F, G, H .l

[STRING OPERATORS]

[EDIT MODE OPERATORS]

MULTIPLEXOR LOGIC MODULE
[VECTOR MODE OPERATORS]

MV 1610

Figure 5-1. B 6800 CPU Organization

e. Family E OPS - Scaling Operators

f. Families F, G, H, OPS - String Operators

PROGRAM CONTROLLER (SEE FIGURE 5-2)

The program controller controls the program flow in the data processor. The program controller determines when the
P register contains machine language operators to be executed, which syllable of code is to be executed next, when to

5-2

Z1

IAAOFI

ILAOFI

µPADD

J COUNT BUS

MV 1611

DIRECT
TRANSFERS

LOGICAL
TRANSFERS

A

B

x

y

c

z

Z6

TO MEMORY
INTERFACE

FENCE
LOGIC

DISPLAY
SELECT

FAM.C

B 6800 System Reference Manual
System Concept

zg

Z8

ERROR

MEMORY
TESTER

ADDR
ADDER

COUNTER

ERROR
DETECTION &
CORRECTION

ERROR ERROR

SCAN CONTROL (SCAN BUS)

MEMORY CONTROL

!CHANNEL A)

MEMORY

EXTERNAL "4--~~CHANNEL B

MEMORY INTERFACE
BUS

5001290

SCAN
BUS

r----11-..LOCAL
MEMORY

lH-t----+----MINTERFACE 1--~

MOD 1

LOCAL
ri-+-+-..t MEMORY

H--+--+--+---t--9"INTERFACE~-~

MOD2

MOD3

LOCAL
MEMORY

H--t--+---+--+-~INTERFACE

MOD4

GLOBAL
CH---r---+--1~MEMORY

H---~~INTERFACE

Figure 5-2. B 6800 CPU Block Diagram

5-3

B 6800 System Reference Manual
System Concept

replace the contents of the P register and L register, and the source location of the data that is used to replace the
contents of the P register and L register. The P register is considered to contain valid program code only if the Program
Register Occupied Flip-Flop (PROF) is set.

The Program Syllable Register (PSR) serves as a pointer to the next syllable to be executed from the P register.

Look Ahead Logic

A look ahead function is implemented by provision of the L register, and its associated L Register Occupied Flip-flop
(LROF). The function of the look ahead logic is to overlap as far as possible, when fetching code from main memory.
In look ahead mode, L acts as a buffer against the P register, such that code is executed from P while L gets the next
code word. Code addresses are initially formed by adding the value of the Program Base Register (PBR), to the value of
the Program Index Register (PIR). Code addresses are maintained in the look ahead logic, in the Look ahead Address
Register (LAR).

In certain moctes, the normal sequential code execution, as affected by the look ahead logic, is undesirable, and there­
fore inhibited. Such cases are branch instructions, subroutine entries and exits (or returns), and table edit mode opera­
tions. In the first two cases, new values of PBR and PIR are presented to the program controller, and used as described.
In table edit mode, look ahead logic is totally inhibited, and the program controller uses the Table Base Register (TBR)
and the Table Index Register (TIR), to form the table mode edit operator code address .. Only the P register is used to
contain edit mode table operator code (and not the L register). In table edit mode operations, the TIR address register
is updated by the program controller, as required.

Integrated Circuit (IC) Memory

The B 6800 system data processor maintains the procedure addresses of the program that is being executed currently in
the data processor. These procedure addresses are maintained in a group of address registers commonly identified as IC
memory address registers (see figure 5-2). The IC memory address registers are classified as display address, base address,
and index registers.

There are 32 display address registers (labeled DO through D 31) in the data processor. A display register number corre­
sponds to a lexicographical programming level, and locates the absolute local memory base address of the process stack
(the MSCW of the stack) for all current programming levels. The maximum numb~r of programming levels (lexacographi­
cal levels) in a procedure is fixed by the number of display address registers available in the data processor. The number
of programming levels in a procedure is limited to 30, because programming level zero is required for the MCP, and
programming level one is required for the segment descriptor index. The bottom of a stack is identified by the address
located in the BOSR register, which was identified earlier in this manual. The top of a stack is identified by the address
located in the S register which was also identified earlier in this manual (refer to section three in this manual).

There are eight base address registers in the data processor. The eight base address registers are identified as follows:

Base Register
Number

0

2

5001290

Base Register
Name

PBR

SBR

DBR

Register
Usage

The base address of the program code .segment.

The base address of string source data.

The base address of string destination data.

5-5

Base Register
Number

3

4

5

6

7

Base Register
Name

TBR/BUF2

s

SNR

PDR

TEMP

B 6800 System Reference Manual
System Concept

Register Usage

The base address of table program code, or alternatively a temporary
buffer for storing an address value.

The address of the top word in the current stack.

The stack number register. The stack number is used to contain a vec­
tor value for locating the current stack descriptor. The vector value is
an index on the address of the stack vector descriptor, for locating the'
stack descriptor.

The program dictionary register. This register is used to contain the
address of the base of the current program code segment descriptor in
memory.

The temporary register. This register is a general purpose register used
to store addresses temporarily

There are eight index address registers in the data processor. The eight index address registers are as follows:

Index Register
Number

0

2

3

4

5-6

Index Register
Name

PIR

SIR

DIR

TIR/BUF3

LOSR

Register Usage

The program index register. The program index value is an index on
the base address that is contained in the PBR register. The sum of
PBR and PIR is the absolute address of the word of program code that
is presently in the P register.

The source index register. The source index value is an index on the
base address that is contained in the SBR register. The sum of SBR
plus SIR defines the address of a word of source data for string
operations.

The destination index register. The destination index value is an index
on the base destination rngister. The sum of DBR plus DIR defines
the address of a word of destination data for string operations.

The table index register. The table index value is an index on the address
that is contained in the TBR register. The sum of TBR and TIR defines
the address of the word containing the micro operators, in the table code.
When this address register is not being used for table type operations it is
alternatively used (as BUF3) for temporary storage of other address values.

The limit of stack register. This register contains the upper stack
boundary address for the current procedure. This register limits the
size of the stack.

Index Register
Number

Index Register
Name

B 6800 System Reference Manual
System Concept

Register Usage

5 BOSR The bottom of stack register. This register contains the lower boundary
address for the current stack.

6 F

7 BUF

The F register. This register contains the address of the last MSCW for
the current process stack in memory. The F register, and the display
register that corresponds to the present lexagographical level, contain
the identical address value.

The buffer address register. The buffer is used to temporarily store
addresses.

Address Adder and Residue Test Logic (Refer to Figure S-2)

The address adder is a shared mechanism through which all addresses used within the B 6800 system are manipulated.
Figure 5-2 shows this mechanism, together with associated data paths, and data integrity residue generation and check
blocks.

All traffic to and from the IC memory is conducted through the address adder, or the Z8 and Z9 busses to the address
adder. Data integrity within all of these blocks is maintained by modulo three residue checking. This guarantees to
detect any single bit error, and some multiple bit errors that occur in IC memory, or the address adder. An error in the
modulo three residue generation circuit, or in the residue check circuit is also detected.

Any addressing error in the address adder, or in the residue check circuit is a fatal condition, and results in an "abort"
type interrupt condition.

TRANSFER CONTROLLER (REFER TO FIGURE S-2)

The transfer controller has two major sections (see figure 5-3): a hard register section, referred to as stack registers, for
data and program information, and an internal data transfer section. Six busses, Zl through Z6, are used for the normal
data movement to and from the hard registers. Zl, Z2, and Z3 are input busses to these registers, and Z4, ZS, and Z6
are output busses. The capacity of each bus is 51 bits.

Three special busses are used for arithmetic operations (see figures 5-3 and 5-6).

Stack Registers (Refer to Figure 5-3).

Each information register has 51 bit positions. Registers A, B, C, X Y and Z are for information handling during program
flow. Registers P and L contain B 6800 program words. The P and L registers contents are never written into Memory.

The Z3 and Z4 busses provide for bi-directional data flow between the hard registers and memory or the multiplexor.

The A and B registers are the top of stack registers, and X and Y are normally second-word information registers for
double-precision operands. Registers C, and Z are general purpose registers which provide temporary storage during
operator execution.

5001290 5-7

B 6800 System Reference Manual
System Concept

futernal Data Transfer Section (Refer to Figure 5-3)

The internal transfer section permits the following data transfers between stack registers:

a. A direct, full-word transfer path using the ZS and Z2 busses.

b. A logical transfer path to create the results of the Family B (logical) operators, using the Z4 and Z3 busses.
The logical transfer path also provides one additional full word transfer path between registers.

c. A steering Network and Mask network providing a field displacement between stack registers using the Z6
and Zl busses.

d. A transfer path to the address adder via the Z6 to Z8 or Z9 busses. This path extracts one of four fields,
(39:20), (35: 16), (19:20) or (13: 14), from a stack register during execution of operator syllables.

e. A data movement path to and from the high speed adder via the AA, BB, and SL busses.

Mask and Steering

The mask and steering network moves bit fields from register to register, via the Z6 and Zl busses. All bits are trans­
ferred to and from the busses in parallel. Two pointers (TOA/TOM) set up a "window" defining the upper and lower
limit of the bits being transferred to the accepting data register. A displacement register (DIS) shifts the bits to the right,
O to 47 bits from the position previously held in the sending data register. The three controls used to steer and mask
are as follows:

1. TOA - the highest bit position of the accepting field (highest bit of the window).

2. TOM - the highest bit position to be inhibited on the transfer (lowest bit of the window).

3. DIS - a right shift of the bits through the steering matrix.

Registers TOA, TOM, and DIS are set by the operator families or other controllers.

Mask and Steering Example

Assume the C register contains a stuffed indirect reference word (SIRW) and it is necessary to extract the STKNR (stack
number) field (bits 45: 10) and place these bits into the index field of the C register. The logic sets the window
TOA:= 29, TOM:= 19, as shown in figure 5-4. The displacement register is set to 16: DIS:= 16. The actual starting
bit of the field is calculated as: TOA +DIS = 29 + 16 = 45.

All Bits in the C register are gated to the Z6 bus. The bits (except tag) are then shifted 16 places to the right with only
the bits that align with the window appearing on the Zl bus. The Zl bus is then gated to the C register, with the
masked fields destroyed or retained; if the masked field is to be retained, the C register must be gated onto the ZS bus
as "prior content".

If no register is gated on the ZS bus during a Zl bus to Z6 bus transfer, the masked field is cleared.

In the example shown in figure 54, a field of ten bits is transferred from one field location in the C register, to another
field location in this same register. Because the STK.i~R field of the C register lies outside of the receivLTlg field range,
bits 45: 10 is cleared, and bits 29: 10 will contain the STKNR value at the conclusion of the example operation. Bit
fields 47: 18, and 19:20 of the C register are cleared and only 50:03 remain unchanged.

5-8

Z1

SL

MV 1612A

5001290

Z2

MASK
NETWORK

Z3

B 6800 System Reference Manual
System Concept

DIS

STEERING
NETWORK

DIRECT TRANSFER
NETWORK

LOGICAL TRANSFER
NETWORK

EXPONENT
AND MANTISSA
ADDERS

z

c

A

B

x

y

L

p

Figure 5-3. Internal Data Transfer Section

ZS

Z4

ZS

ADDRESS
ADDER
AND
RESIDUE
CIRCUITS

IC MEMORY
REGISTERS

Z6
TO
ZS
OR
Z9
CONTROL

} MEMORY
INTERFACE

5--9

Stack Controller

B 6800 System Reference Manual
System Concept

The B 6800 provides automatic stack adjustment as required by the operators. These requirements are supplied to the
stack controller on the Zl 1 bus from the operator families and other functional controllers.

The stack controller manipulates data between main memory and the A and B registers during both the pop-up and
push-down cycles. The X and Y registers are included in the adjustment cycles when double-precision operands are
involved.

A typical program stack is shown in figure 5-5. The stack controller determines whether a push-up or push-down cycle
will be initiated. All other Controllers remain idle until an adjust complete signal is sent to the controller that
initiated the adjustment.

ARIIBMETIC CONTROLLER (REFER TO FIGURE 5-6)

The arithmetic controller is a functional controller between the stack registers (A, B, C, X, Y and Z) and the exponent
and Mantissa Adders. This controller is enabled by the family A operators and other operator families that require the
use of these facilities.

Exponent and Mantissa Adders

Figure 5-6 shows the logical path of data flow to and from the exponent and mantissa adders. The exponent adder is
composed of a sixteen bit full adder/subtractor circuit, and the mantissa adder is composed of an 81 bit full adder/
subtractor circuit. ~he inputs t.D the two adder circuits, and the outputs from the adder circuits are directed from and
to the stack hardware registers by the arithmetic controller.

The arithmetic controller and the two adder circuits are capable of performing complete double precision mathematics in
one continuous synchronized operation. The arithmetic controller gates both the exponent and mantissa portions of both
halfs of a double precision operand to the two adder circuits in a single operational step. Exponent adder operations are
only performed during multiply or divide functions, and for mantissa alignments.

Each of the two adder circuits consist of an A input (AA), a B input (BB), and a C (SL) resultant output. During a
doubl~ precision ADD (80) operation the A input to the mantissa adder consists of the 78 bits of the mantissa field
from the double precision operand in the A and X registers. The B inputs to the two adders for a double precision ADD
operation is the same as the A inputs but is derived from the B and Y registers. After the inputs to the two adders
have been muted to the adder inputs, by the arithmetic controller, the ADD operation is performed in one step~ After
the ADD algorithm is completed, the resultant sum of the two numbers is routed by the arithmetic controller back to
the proper stack register(s).

INTERRUPT CONTROLLER (FIGURE 5-2)

The interrupt controller provides a method of temporarily interrupting the program flow when a predetermined interrupt
condition arises.

Interrupt Parameters

The controiier sets up the necessary controi words in the stack for entry into the interrupt handling procedure of the
MCP. Three words are placed in the stack by the interrupt controller or the operator that caused entry to the interrupt
controller. These three words were described in section 2 under the subheadings INTERRUPT PARAMETER WORDS,
Pi PARAMETER, P3 PARAMETER, and P2 PARAMETER.

5-10

T
A
G

,~

,,
I

,~

T
A
G

MV1614

45

45

B 6800 System Reference Manual
System Concept

CREG

36
STKNR

+ + + + + +
Z6 BUS

l l
*

l l
*

STEERING (DIS~ 16)

+ +

l l

~ ~ ~~ ~ TOM= 19

~
19

MASK 29 MASK

20
\: J

WINDOW

t t t

Z1 BUS

l l l l l l l l
29 CREG

20
\,, .J -...

STKNR

Figure S-4. Mask and Steering

0

"

There are five different types of interrupts detected by the hardware of the interrupt controller. These five types
are:

a. Syllable dependent interrupts

b. External interrupts

5001290 S-11

AROF· I

BROF I

PUSH _.I
UP I

LOSR

s

F

PUSH _.

1
1

DOWN

MSCW

B 6800 System Reference Manual
System Concept

AREG

BREG

/

SOFTWARE
ALLOCATED
MEMORY
AREA

/
/

/

X REG

YREG

STACK CONTROLLER FUNCTIONS
ADJ(FLOW) RESULT
NOTATION COMMAND OPERATION

·AROF BROF

(0,0) Z110 EMPTY AAND B 0 0
(0,1) Z111 EMPTY A, FILL B 0 1
(1,0) Z112 EMPTY B, FILL A 1 0
(1, 1) Z113 FILL BOTH 1 1
(0,2) Z114 EMPTY A 0 -
(1,2) Z115 FILLA 1 -

*(1,0) Z116 FILLA 1 0

NOTE:
O= UNOCCUPIED
1 =OCCUPIED
- =STATUS WILL NOT BE USED BY

I ~-B-O_S_R .. ~~--------T-S~CW-=-======""""""""'ll
THE OPERATOR CAUSING THE
ADJUSTMENT

* THIS ADJUSTMENT WI LL BE
MADE IF AROF AND BAOF ARE
BOTH FALSE, OTHERWISE NO

MV 1613 ADJUSTMENT WI LL BE MADE.

Figure 5-5. Hardware Stack Adjustment

c. Alarm interrupts

d. General control interrupts

e. Hardware interrupts

5-12

r -,
I STACK REGISTERS I

I --- c

I z I
---- A

- B -
--- x

l - y ~ ...

L - __ _J

MV 1615

B 6800 System Reference Manual
System Concept

AA BUS

--
ARITHMETIC .. CONTROLLER -

- BB BUS ...

--
Figure 5-6. Arithmetic Control

16

-- BIT SL BUS - EXPONENT
ADDER

81 - BIT
t--- MANTISSA

ADDER

The Pl parameter is the portion of an interrupt stack that identifies the type of interrupt that is being processed. There
are five different types of interrupts, and a bit in the Pl parameter identifies which of the five types of interrupt is
present. The following definitions identify the bits in the Pl parameter that show interrupt type, and system type:

Interrupt Parameter Bits

l 27 26 25 24 23 22 21 20
D

x Iden ti fies a B 6800 system

x Identifies a hardware interrupt

x Identifies an alarm interrupt

x Identifies a syllable dependent interrupt

x Identifies a general control interrupt

x Identifies an external interrupt

J

5001290 5-13

B 6800 System Reference Manual
System Concept

The following paragraphs define the five types of interrupts and identify the major causes of the interrupts.

Syllable Dependent Interrupts

Syllable dependent interrupts are sensed by an operator and normally result in a premature termination of the operator
under control of the logic for the operator. The operator inserts data for the Pl, P2, and P3 parameter into the top of
stack registers, and activates the interrupt controller. The values of the PIR and PSR registers are reset to the beginning
of the current operator address, and the interrupted operator is restarted, upon a return from the interrupt handling
procedure of the MCP.

The syllable dependent interrupts are:

a.

b.

c.

d.

e.

f.

0 o·

h.

i.

j.

k.

1.

.,...,
J.j,j.

n.

o.

5-14

Memory protect interrupt

Invalid operand interrupt

Divide by zero interrupt

Exponent overflow interrupt

Exponent underflow interrupt

Invalid index interrupt

Integer overflow interrupt

Bottom of stack interrupt

Presence bit interrupt

Sequence error interrupt

Segmented array interrupt

Programmed operator interrupt

Interval timer interrupt

Stack overflow interrupt

Confidence error interrupt

NOTE

Although the interval timer interrupt and the stack overflow
interrupts are classed here as syllabie dependent interrupts, it
should be pointed out that these two types of interrupts are not
truly syllable dependent. These two interrupts would be more
clearly defined as asynchronous interrupts because they do not
depend on the operator that is in process at the time that the

Memory Protect Interrupt

B 6800 System Reference Manual
System Concept

interrupt is raised. However, the handling of these two
interrupts, with respect to the formation of the P2 parameter,
and the handling of the syllable address, are the same as other
syllable dependent interrupts, and are therefore classed as
syllable dependent.

This interrupt occurs under the following conditions:

a. A store, overwrite, or read/lock or string transfer operation is attempted using a data descriptor that has the
read only bit set (bit 43). The operation is terminated prior to the memory access, leaving the descriptor
word in the A register.

b. A store is attempted into a word in memory that has a tag field representing program code, RCW, MSCW, or
segment descriptor. The memory write is aborted when bit 48 is detected in the "flasback" word. The opera­
tion is terminated leaving the original addressing word in the A register.

MEMORY PROTECT INTERRUPT ID

Invalid Operand Interrupt

This interrupt occurs when operators attempt to use the wrong types of control words or data. When control words and
data are accessed, they are checked to ensure that they meet the necessary requirements of the operator being executed.
When the interrupt occurs, the operator is terminated prematurely.

27 24 1 BIT

I I I I Ix I Ix I I I I I I I I I I I I I I I I; I I
INVALID OPERAND INTERRUPT ID

Divide by Zero Interrupt

This interrupt results when a division operator is attempted with the divisor equal to zero. This interrupt terminates the
operation prematurely, leaves the A register cleared, the interrupt ID in the B register, and PSR and PIR backed up to
point to the initiating operator.

27 24 2 BIT

I I I I lxl H I I I 11 I I I I I I I I lxl I I
DIVIDE BY ZERO INTERRUPT ID

5001290 5-15

B 6800 System Reference Manual
System Concept

Exponent Overflow and Underflow Interrupt

These interrupts occur when the capacity of the exponent field is exceeded for either single- or double-precision
arithmetic results. The interrupt ID is dependent on the exponent sign, and both interrupts clear the A register.

27 24 3 BIT

I I I I Ix I Ix I I I I I I I I I I I I I Ix I I I I
EXPONENT OVERFLOW INTERRUPT ID

I I I I I : I I : I I I I I I I I I I I I I : I I I I j'T
EXPONENT UNDERFLOW INTERRUPT ID

Invalid Index Interrupt

This interrupt is caused by an attempt to index by less than zero or not less than the upper bound (length) in the
operations:

Family

a. Occurs Index (A)

b. Link List Lookup (B)

c. Index (C)

d. Move Stack (C)

e. Display Update (C)

f. Dyna.mic Bra.nch (C)

g. Stuffed IRW (pseudo) (C)

h. Index and Load Name (C)

i. Index and Load Value (C)

INVALID INDEX INTERRUPT ID

5-16

Integer Overflow Interrupt

B 6800 System Reference Manual
System Concept

This interrupt occurs when an attempt is made to integerize operands which have a value greater than maximum integer.
In general, the checking is performed before the operand is converted into an integer by reducing the exponent field.
The following are some of the operators that may invoke this interrupt.

a. Integer Divide (both single and double precision)

b. Integerize Truncated

c. Integerize Rounded

d. Occurs Index

e. Integerize rounded, double precision

If the interrupt is invoked, the operator is terminated.

INTEGER OVERFLOW INTERRUPT ID

Bottom of Stack Interrupt

This interrupt is used to inform the operating system that a return or exit operator has caused the program stack to be
returned to its base. If this condition arises, the operator will terminate with the last accessed RCW (Return Control
Word) left in the A register.

27 23 7 BIT

I I I I !xi I H I I I I I I I Ix! I I I I I I I
BOTTOM OF STACK INTERRUPT ID

Presence Bit Interrupt

This interrupt is used to inform the system that an attempt has been made to access a quantity not present in main
memory. All operators that access memory with descriptors have the ability to set this interrupt. Special consideration
is given to this type of an interrupt for data or procedure-dependent descriptors.

RT RT

46 45 39 24 8 BIT

-1°1-0 1-1-1°1-1-11-1-1~1°1~1-1-11~1-1-1x~11-1~11~F
PRESENCE BIT INTERRUPT ID

5001290 5-17

B 6800 System Reference Manual
System Concept

Special Consideration-Presence Bit Interrupts

There are two classes of presence bit interrupt conditions:

a. Data-Dependent

b. Procedure-Dependent

Each class requires that the PIR and PSR value for the RCW be manipulated differently.

Data-Dependent Presence Bit Interrupt

Data-Dependent Presence Bit. The data-dependent presence bit interrupts are incurred while the processor is seeking data
from within its current procedural environment. Recovery is achieved by re-executing the operator upon return from the
presence bit interrupt-handling procedure.

The presence bit procedure makes the non-present reference present prior to returning to the interrupted program. The
PIR and PSR setting for the current operator are saved in the RCW for data-dependent presence-bit interrupts.

Procedure-Dependent Presence Bit Interrupt

Procedure-Dependent Present Bit. The procedure-dependent presence bit interrupts are incurred when the processor
attempts to enter a new procedural environment or to return to an old procedure. These interrupts occur during display
update and when the processor is trying to access a non-present segment descriptor. Recovery is achieved by the exit
operator mechanism after the presence bit procedure has made the referenced area present. The processor has not yet
fetched the first operator of the new procedure when this presence bit interrupt occurs; therefore, the PIR and PSR set­
tings from the PCW or RCW, depending on whether an entry or exit was being performed, are saved when fabricating the
RCW upon entry into the presence bit interrupt procedure.

Program Restart

Program Restart. In order to restart some operators after a presence bit interrupt, it is necessary for the presence bit
procedure to return either an IRW or Data Descriptor. The "RT-bit" in the presence bit ID (Pl) indicates to the presence
bit procedure whether to perform an exit or return operator when returning to the interrupt program. The "RT-bit" is
manipulated by the hardware prior to honoring the presence bit interrupt. Figure 5-7 (Presence Bit Interrupt Table)
illustrates the (PSR and PIR), exit/return and "RT-bit" relationship to the various presence bit interrupt conditions.

Sequence Error Interrupt

This interrupt is used to inform the system that while attempting to access a Mark Stack Control Word (MSCW), a word
with a tag field value of three was not found. This error implies that the stack linkage or stack history (of the stack that
was being accessed) is in error. A sequence error may occur at different places in an operator sequence, and may occur
before, or after the time in the sequence where PIR, PSR, PBR and PDR are adjusted. If the sequence error occurs after
the required adjustment has been made, then bit 23 of the interrupt parameter will be set to indicate a class two syllable
dependent interrupt. If the sequence error occurs prior to the adjustment then bit 24 of the interrupt parameter will be
set to indicate a class one syllable dependent interrupt. The interrupt parameter for a sequence error is as follows:

5-18

g BIT

I I I I I I l~I :1 I I I I I Ix I I I I I I I I I I
* = EITHER BIT 23, OR BIT 24

WILL BE S~T. BUT NOT BOTH

SEQUENCEERRORINTERRUPTPARAMETER

B 6800 System Reference Manual
System Concept

RT BIT
PRESENCE BIT (3) RETURNING

INTERRUPT CONDITION (BIT46) OPERATOR

STACK VECTOR INT.
STACK VECTOR D.D. l.D.
DURING DATA
REFERENCE (1) IRW

(STUFFED) 0 EXIT

DATA (2) IRW INT. 1 RETURN
DEPENDENT

DATA DESCRIPTOR (1) D.D. INT. 0 EXIT
DURING DATA (COPY) l.D.
REFERENCE l I (2) D.D. INT. 1 RETURN

(COPY) l.D. I
STACK VECTOR D.D. INT. 1 0

1
EXIT

1-STACK VECTOR D.D. (COPY) l.D.

I
DURING DISPLAY

PROCEDUREi UPDATE
I --• -· --··I U'-UIVIL.l'\I I

I
DESCRIPTOR - S.D. INT. 0 EXIT

(COPY) l.D.

(1) VALUE CALL OR ENTER
(2) ALL OPERATORS EXCEPT VALUE CALL, ENTER, OR MOVE STACK
(3) RT BIT IS PACKED IN THE INT. !.D. (P1)
(4) Sn INDICATES THE PIA AND PSR POINT TO CURRENT OPERATOR SYLLABLE
(5) MOVE STACK OPERATORS

MV 1616

Figure 5-7. Presence Bit Interrupt

Segmented Array Interrupt

PIR, PSR SOFTWARE
NEW RCW FUNCTION

MAKE STACK
OR STACK
VECTOR

Sn (4) PRESENT.

Sn (4)

Sn (4) SEARCH ST ACK
FOR COPIES OF
NOT PRESENT

Sn (4) 0;0., MAKE
MOM AND

FROM COPIES PRE-
SENT, RETURN RCW/PCW D.D. WHERE
NOTED.

I
I

FROM LOCATE S.D.
RCW/PCW (MOM) VIA

COPY IN P2,
AD FIELD OF
COPY POINTS
TO MOM

This interrupt is used by the string operators as an upper limit boundary detection. Arrays in main memory may be
segmented into groups of 256 words each, bounded on both ends by memory link words. Each word read from memory
during string operator executions is checked for the presence of bit 48 (memory protect). If the bit is on, the segmented­
array interrupt is set. String operator interrupts leave a special parameter in the A register. This parameter indicates how

5001290 5-19

B 6800 Reference System Manual
System Concept

many words in the stack, below the parameter, will be needed to restart the operation after the new segment of data has
been brought to main memory.

2 1 0 BIT

I • I • I 0 I ~~ ~~.
A-REGISTER PARAMETER

I I I I I:, I :1 I I I I I I :·1 I I I I I I I I I I BIT

SEGMENTED ARRAY INTERRUPT ID

Programed Operator Interrupt

This interrupt is used for the detection of an invalid operator code. Primary code FF is detected and causes this interrupt.
An invalid code not detectable will result in a loop timer interrupt. The programed operator interrupt is used as a com­
municate operator to the system.

27 24 10 0 BIT

11 I I !xi !xi 11111 l+l+l+l+l+H
PROGRAMMED OPERATOR INTERRUPT ID

Interval Timer Interrupt

The interval timer interrupt occurs when the interval timer times out. This timer is used by the MCP for time slicing.
The SINT operator is used to establish an initial value in the interval timer register. The data processor then proceeds to
count 512 micro-second intervals until the number of intervals that have occurred since the SINT operator was executed
is equal to the value that was set in the interval timer register. At this point an interrupt is generated that forces the
data processor to enter the interrupt handling procedure. The presence of the interval timer Pl parameter indicates to
the MCP that it is time to perform some other time sliced procedure.

I I I I I : I I ~I I I I I I :· I I I I I I I I I I I I BIT

INTERVAL TIMER INTERRUPT ID

5-20

Stack ()yerflow Interrupt

B 6800 Reference System Manual
System Concept

The stack overflow interrupt occurs when the S register in the IC memory is equal to the LOSR register. This interrupt
occurs because· the procedure that is being executed has attempted· to· utilize more word space· iri the stack than was
originally allocated for the memory portion of the stack.

STACK OVERFLOW INTERRUPT ID

Confidence Error Interrupt

The confidence error interrupt occurs when the confidence test routine is being executed by the data processor, and an
error is detected as a result of a test failure. The confidence test is automatically initiated when the data processor is not
performing other software procedures. A failure in the confidence test is placed in the system/SUMLOG for maintenance
analysis. The test places data about the nature of the error in the interrupt parameters and the MCP upon recognizing a
confidence error causes the data to be written in the SUMLOG.

I I I I I ~I I =I I I I I I ~ I I I I I I I I I I I I BIT

CONFIDENCE ERROR INTERRUPT ID

OPERA TOR INDEPENDENT INTERRUPTS

These interrupts are induced by conditions outside the operator or processor logic. They are divided into two groups,
external interrupts and alarm interrupts.

EXTERNAL INTERRUPTS

These interrupt conditions are anticipated and inform the system of some change in the external environment. They
normally result in a momentary interruption of a program process which will be continued after handling or recording of
the interrupt condition. The program sequence controller senses the interrupt condition, inhibits activation of the next
operator. The interrupt controller then processes the interrupt. PIR and PSR fields of the RCW address the next opera­
tor syllable so that the program will be restarted with the execution of the next syllable upon continuation. The external
interrupts are as follows:

a. 1/0 finish interrupt

b. Data Communications interrupt

c. General Control Adapter

d. Change of Peripheral Status interrupt

e. Scratch Pad Parity interrupt

5001290 5-21

B 6800 System Reference Manual
System Concept

1/0 Finish, Data Communications, and Status Change Interrupts

1/0 finish, data communications and status change interrupts are handled by the interrupt controller as follows:

1. A hardware branch is made to the multiplexer interrupt routine, in the micro-logic module. The micro­
module contains the necessary logic to place the correct type of interrupt parameters in the interrupt stack
(see Interrupt Parameter Words, in section two).

After the micro-module has assembled the proper interrupt stack parameters in the data processor top of
stack registers, the interrupt controller resumes the automatic interrupt handling process.

2. The normal operation of entry to the MCP interrupt handling procedure is then executed.

27 20 7 6 5 4 3 2 1 0 BIT

I I lx!xl 11 I I 1111 I I I lxl+l+l+l·I
EXTERNAL INTERRUPT PARAMETER

NOTE

Bits 3:4=0001
Bits 7 :4 identify type of interrupt.
1001=1/0 finished
OOOl=OCP #1
OOlO=DCP #2
OOll=OCP #3
OlOO=OCP #4
OllO=BIC #1
011 l=BIC #2
1111 =change of status
1 OOO=scratch pad parity error

Alarm Interrupts

These interrupt conditions are not anticipated and inform the system of some detrimental change in environment. They
normally result from either a programing error or hardware failure. The alarm interrupt conditions are recognized upon
occurrence by the interrupt controller. The interrupt controller assumes control of the machine, clears the activated
operator family, and marks the TOS registers full. In either case (programming error or hardware failure) the current
operator is terminated prematurely. The alarm interrupts are:

a. Loop timer interrupt

b. Memory address parity interrupt

c. Scan bus parity interrupt

d. Invalid address-local interrupt

e. Stack underflow interrupt

5-22

f.

g.

h.

i.

j.

k.

1.

Invalid program word interrupt

B 6800 System Reference Manual
System Concept

Memory address residue interrupt

Read data multiple error interrupt

Invalid address-global interrupt

Global memory not ready interrupt

Scan-Ln Lnformation error interrupt

Scan-out error interrupt

Loop Interrupts

This interrupt is invoked if the Processor hardware fails to provide a SECL (Syllable execute complete level) at least
every 2 seconds. This could occur if an attempt is made to execute an invalid operator. If the interrupt occurs, the ID
remains in the B register, the A register is cleared and PIR is backed up.

27 25 0 BIT

I I I I lxl H I I I I I I I 11 I I I I I I lxl
LOOP INTERRUPT ID

Memory Address Interrupts

This interrupt is invoked if the Memory Controller detects an even number of address and control bits being transmitted
between the Processor and Memory. Should the interrupt occur, the ID is left in the B register, the A register is cleared
and PIR is backed up.

I I I I I ~I I :· 1 I I I I I I I I I I I I I I I x I i"'T
MEMORY ADDRESS PARITY INTERRUPT ID

Scan Bus Parity Interrupts

This interrupt is the same as Memory Address Parity above, except that it is used for transfer of information on the
scan bus interface.

27 25 2 BIT

I I I I !xi !xi I I I I I I I I I I I I I H I I
SCAN BUS PARITY INTERRUPT ID

5001290 5-23

B 6800 System Reference Manual
System Concept

Invalid Address-Local Interrupts

This interrupt is set by the Memory Controller when it fails to obtain an acknowledgement to a local memory request
within eight clock periods. This indicates that an attempt has been made to access a non-existent memory module. The
memory controller initiates the interrupt and the interrupt controller leaves the ID in the B register with the A register
clear and PIR backed up.

27 25 3 BIT

I I I I !xi Ix! I I I I I I I I I I I I H I I I
INVALID ADDRESS LOCAL INTERRUPT ID

Stack Underflow Interrupts

This interrupt is invoked if the stack controller detects an attempt to move the S register to an address less than F during
stack adjustment. If this interrupt occurs, the ID remains in the B register, the A register is cleared and PIR backed up.

V ~ 4 BIT

I I I I H lxl I I I I I 11 I I I I H I I I I
STACK UNDERFLOW INTERRUPT ID

Invalid Program Word Interrupts

This interrupt is invoked if one of the following conditions is encountered:

a. A word with a tag not equal to 3 is placed in the P register for execution (except in Table edit mode).

b. The variant operator syllable (95) is followed by another variant operator syllable (95).

c. The processor is in edit mode and a family strnbe is emitted for another operator farnily. Should the h1terrupt
occur, the ID is left in the B register, the A register is cleared and PIR is backed up.

27 25 5 BIT

I I I I H lxl I I I I 11 I I I I lxl I I I 11
INVALID PROGRAM WORD INTERRUPT ID

Memory Address Residue Interrupts

This interrupt is set when the memory controller,detects an error in the MAR, or LAR address registers. Residue
checking is a method for detecting abnormalities in the address adder and/or the IC memory registers. Any activity of
the address adder that results in the setting of a residue interrupt prevents a memory cycle from occuring.

5-24

B 6800 System Reference Manual
System Concept

27 25 6 BIT

1111Hlxl111111111H111111
MEMORY ADDRESS RESIDUE INTERRUPT ID

Read Data Multiple Error Interrupts

This interrupt is set when the memory controller detects more than a single bit in error during a memory read operation.
Multiple bits in error are not correctable, and thus when such errors are detected the memory controller causes an alarm
interrupt to occur.

I I I I I :' 1 I : I I I I I I I I I I : I I I I I I I I BIT

READ DATA MULTIPLE ERROR INTERRUPT ID

Invalid Address-Global Interrupts

This interrupt is set in the same manner as is the invalid address-local alarm interrupt, except that the invalid address is
for a global memory address instead of for a local address.

27 25 8 BIT

I I I I lxl lxl I I I I 11 I H I I I I I I I I
INVALID ADDRESS-GLOBAL INTERRUPT ID

Global Memory Not Ready Interrupts

This interrupt is set when a memory access is initiated on a memory address in global memory, and the global memory
does not respond properly to the memory controller.

27 25 9 BIT

I I I I Ix I Ix I I I I I I I Ix I I I I I I I I I I
GLOBAL MEMORY NOT READY INTERRUPT ID

Scan-In Infonnation Error Interrupts

This interrupt is set when an external sub-system attempts to communicate with the CPU cabinet through the scan bus
interface, and the memory control detects an even number of data bits on the scan bus information lines.

5001290 5-25

B 6800 System Reference Manual
System Concept

27 25 10 BIT

I I I I Ix I Ix I I I I I I Ix I I I I I I I I I I I
SCAN-IN INFORMATION ERROR INTERRUPT ID

Scan-Out Error Interrupts

This interrupt is the same as the scan-in information error interrupt except that the detection of an error on the scan bus
information lines was made by one of the sub-systems that are connected to the scan bus. The direction of data flow
was from the B 6800 system to the sub-system interface. The sub-system that detected the error responded by making
the scan bus control level STEX a true (high) signal. The CPU initiates the alarm interrupt when this level is a true
signal.

27 25 11 BIT

I I I I !xi !xi I I I I !xi I I I I I I I I I I I
SCAN-OUT ERROR INTERRUPT ID

General Control Interrupts

General control interrupts are used to cause information to be inserted into the System/SUMLOG, about correctable
error conditions during normal system operations. This type of error does not result in an operator or a procedure failure,
but the implication of the errnr is that further deterioration of the hardware may lead to an operator or procedure failure.
A subsequent analysis of the information in the System/SUMLOG ·may be used to identify the nature of the error condi­
tion. By definition such errors are intermittant and/or random, and usually cannot be duplicated for troubleshooting and
maintenance purposes. However, in some cases, knowledge about the frequency of occurance, and simularity of operating
conditions may lead to the solution of otherwise non-solvable problems. The purpose of the general control interrupt is
to produce the data upon which such analysis can be made.

There are four different kinds of general control interrupts as follow:

a. Read data single error interrupt.

b. Read data retry interrupt.

c. Read data check bit interrupt.

d. Address retry interrupt.

Read Data Single Error Interrupts

This interrupt is set when the memory interface error correction circuit detects a singie bit in error during a read from
memory operation. The single bit in error is corrected, and the procedure being executed is not aware that a bit failed
on the memory bus. The memory controller is av1are that a siI1gle bit failed and causes the read data single error interrupt
to occur.

5-26

B 6800 System Reference Manual·
System Concept

v ~ o arr

1111HIIx!1lIll111111111 H
READ DATA SJNGLE BIT ERROR INTERRUPT ID

Read Data Retry Interrupts

The memory controller contains logic that can cause a read strobe to be regenerated if a parity error is detected on the
read data memory interface bus. This retry of a memory read strobe can prevent the occurrence of a memory interface
parity error if the cause of the parity error is a problem in the data signal on the interface bus. A general control inter­
rupt is initiated by the memory controller when a memory retry is performed. The purpose of this interrupt is to cause
the System/SUMLOG to record information about the retry.

27 22 3 BIT

llllHIHIJlllllllllHlll
READ DATA RETRY INTERRUPT ID

Read Data Check Bit Interrupts

The memory controller error detection/correction circuit receives 60 bits of read data for a memory read operation.
These 60 bits inciude 52 bits of data, and eight check bits. The check bits are used to detect errors in the 52 data bits.
The correction circuit corrects any single bit in error in the read data (see the subsection titled READ DATA SINGLE
ERROR). Multiple data bit errors are detectable, but are not correcta_ble (see the subsection titled READ DAT A
MULTIPLE ERROR). A check bit in error is detectable, and, providing that a data bit error does not occur at the same
time as the check bit error, does not result in an alarm interrupt condition. The memory controller reports check bit
errors, and the resulting interrupt causes an entry in the System/SUMLOG to be written which identifies the nature of
the error.

READ DATA CHECK BIT INTERRUPT ID

Address Retry Interrupts

The memory controller holds a memory address for an access on the memory until the memory reports back to the
controller that the address received was correct, or that the address was incorrect. If the memory reports back that the
address was incorrect the controller will strobe the address to the memory a second time, for a retry. If the retry of the
address is correct the memory access is completed for the requesting unit. If the retry of the address was incorrect an
invalid address error is reported to the memory control by the exchange (see alarm type interrupts).

5001290 5-27

B 6800 System Reference Manual
System Concept

The memory exchange reports retries to the memory controller, and the interrupt that is generated as a result of this
report causes the information about the retry to be written in the System/SUMLOG.

27 22 5 BIT

1111HIlxl111111111H11111
ADDRESS RETRY INTERRUPT ID

Hardware Interrupts

Hardware interrupts are abort type interrupts that cause operator and procedure errors. These errors are related to a
hardware device or circuit that can be identified for maintenance analysis. The purpose of the hardware interrupts is to
identify the device and/or cause SYSTEM/SUMLOG entries of other significant data to be written into the System/
SUMLOG, for a subsequent analysis. Th.ere are five hardware interrupts as follows:

a. Prom card parity interrupt

b. Ram card parity interrupt

c. Bus residue interrupt

d. Adder residue interrupt

e. Compare residue interrupt

PROM Card Parity Interrupts

The data processor contains many PROM chip devices that are used to hold pre-selected micro codes and addresses.
Each time that one of the PROM devices are addressed, the output code is tested for parity. If a PROM parity error is
detected, a hardware interrupt is initiated, and the interrupt parameters contain the address of the PROM device that
caused the error. Other information in the interrupt parameters is defined in table 2-4 (section 2).

27 26 0 BIT

I I I I 1+11111111111111111 H
PROM CARD PARITY INTERRUPT ID

RAM Card Parity Interrupts

The multiplexor contains RAM chip devices in the multiplexor buff er. Each time that an address in the buffer is
accessed a parity check of the contents of the buffer address is made. If a parity error in the buffer is detected, a RAM
parity error is reported to the data processor, and ti\is error initiates the interrupt controller. The address of the RAM
device that caused the error is transferred to the data processor interrupt controller and is stored in the interrupt
parameters (see table 2-4 in section 2).

5-28

B 6800 System Reference Manual
System Concept

27 26 BIT

11111+111IIIii11111111 lxl I
RAM CARD PARITY INTERRUPT ID

Bus Residue Interrupts

The residue generator cards in the data processor tests the residue bits from the Z8 and Z9 busses. If an error is detected
in the residue bits from these two busses a bus residue interrupt is initiated, and the residue bits are passed to the
interrupt controller for inclusion in the interrupt parameters (see table 2-4 in section 2).

27 26 2 BIT

I I I I 1+111111111111111H11
BUS RESIDUE INTERRUPT ID

Adder Residue Interrupts

Each time that the residue adder sums two addresses {from the Z8 and Z9 busses) the bits in the two residue values are
tested. An error causes the interrupt controller to be initiated, and the residue bits are passed to the interrupt controller
for inclusion in the interrupt parameters (see table 2-4 in section 2).

27 26 3 BIT

11111+111111111111lIlxl111
ADDER RESIDUE INTERRUPT ID

Compare Residue Interrupts

Each time that the address adder sums two address values a new residue value is generated as a result of the sum of the
two addresses. At the same time that the address adder is summing the two addresses, the residue adder sums the
residue bits from the two addresses. A comparator circuit compares the two sums (one sum from the residue adder and
the other sum from the address adder). If the two sums are not identical, there is a high probability that an IC memory
circuit is at fault. The interrupt controller senses a compare residue error, and passes the value of the residue to the
interrupt handling procedure in the interrupt parameters (see table 2-4 in section 2).

27 26 4 BIT

I I I I Ix Ix I I I I I I I I I I I I I Ix I I I I I
COMPARE RESIDUE INTERRUPT ID

5001290 5-29

STRING OPERATORS

B 6800 System Reference Manual
System Concept

String operators control the character formatting capability of the B 6800 system while the system is operating in primary
mode. The same string operators may also be performed as edit operators while the system is operating in edit mode.
The string operators are comprised of the normal mode operators in the F, G, and H families, which are grouped in a
"super-family", and designated as family U. Family U operators share a common "T" register (operator code register),
a common logical sequence counter, and a common group of logical flip flops.

The most significant advantage from collecting all string operators into a single super-family is that the common logical
functions that all string operators share are not duplicated in each family controller. For instance, all string operators
require a method for accessing local memory, and for addressing the characters of data within a memory word. A
typical string operator must be capable of addressing a number of different words in memory, in order to perform an
editing operation on a string of data characters. Moreover, once the editing has been performed, the word must be
stored in memory, so that the same editing can be performed on other words of data. The logic circuits and operator
functions that are required to perform this type of operation are common, and are thus collected into the single super­
family U in the B 6800 system.

MEMORY CONTROLLER

The memory controller in the CPU (refer to figure 5-2) services requests for access to memory resources of the system
from the data processor, the look ahead logic, and the multiplexor. These three modules are all located within the CPU
cabinet, and share a common path to/from memory. Internal logic circuits of the memory controller establish when
each of these three modules.has priority for accessing system memory resources.

When the multiplexor is processing an IO operation, and a need for a burst cycle exists, the multiplexor has first priority
for a memory access request. This condition causes the data processor to suspend its operation while the multiplexor
obtains access to memory. The data processor will suspend its operation until the multiplexor completes its memory
access. At the conclusion of the multiplexor memory access operation the data processor will continue its operations at
the place where the suspension occured.

the order of priority in accessing memory is multiplexor, processor, and look ahead logic, in that order.

The memory controller logic has the capability to store two requests for access to memory. The storing of access
requests consists of remembering what requests were received over the Zl 2 memory control bus. The memory controller
examines the contents of the two requests to determine which request has the higher priority for the next access to
memory.

The logic mechanism used by the memory controller to remember what memory requestor units require an access to
memory consists of two request registers that are located in the channel A input logic to the memory control. When a
request for a memory access is transmitted to the memory control, the request (bits D: 14 on the Zl2 bus) is stored in
the RQT register (13: 14). Each time that a memory request is to be processed for the CPU cabinet, the memory controller
will examine both the RQT, and the RQR registers, to determine which of two possible requests for access to memory has
the higher priority. As one of the two possible memory requests are performed, the stored request information in the
RQT register (or alternatively the RQR rngistei) is ieset to binary zeroes. This removes a request that is presently being
executed from further contention for an access to memory, and frees the register that was reset to accept a new access
request.

The memory controller also monitors all memory and scan bus requests for errors. If an error condition is detected
during a memory bus or scan bus operation, the memory controller will cause an interrupt to be present in the data

5-30

B 6800 System Reference Manual
System Concept

processor interrupt controller. The memory controller passes parameters that describe the type of interrupt that occured
to the interrupt controller. The interrupt handling procedure of the MCP will cause the interrupt parameters from the
memory controller to be written in the SYSTEM/SUMLOG, thus preserving a record of memory and/or scan bus errors.
The interrupt handling procedure for logging memory errors is also used for memory accesses that originate outside of
the CPU (in a subsystem memory interface, from an external subsystem). The memory controller detects memory
errors that originate in the external subsystem interface to memory, and initiates the interrupt controller to log all such
errors.

CONTROL STATE/NORMAL STATE

A B 6800 data processor has the ability to perform in either normal or control state. In control state, all external
interrupts are inhibited and a few privileged operators are enabled. The Inhibit Interrupt Flip Flop (UHF) must be
set for processing to occur in control state.

The data processor switches to control state upon entering a procedure via a control state program control word (PCW).

MULTIPLEXOR FUNCTION

The multiplexor function in the B 6800 system represents the collection of system IO functions into a semi-independent
functional group. This multiplexor grouping of functions operates at times like a part of family C of the data processor.
At other times it operates in an autonomous manner, independently of the data processor. The multiplexor cannot
initiate an IO function except upon command of the data processor.

The "semi-independent" characteristic of the multiplexor is achieved by the manner in which the data processor and the
multiplexor communicate with each other (see figure 5-8). These two component modules of the CPU cabinet are
linked to each other Ln such a way that they share the Zl and ZS busses. Through sharing these two busses the data
processor and the muliiplexor pass control information and data to each other. In addition to the linkage on the com­
mon busses, the multiplexor controls an interrupt signal line which allows the multiplexor to directly and independently
invoke the interrupt controller function of the data processor.

Two variant mode operator codes (954A, SCAN-IN operator, and 954B, SCAN-OUT operator) are used by the data
processor to cause the multiplexor· to perform one of its functions.

DATA PROCESSOR SCAN-IN FUNCTIONS TO THE MULTIPLEXOR

The functions that the multiplexor performs in response to a data processor SCAN-IN operation are defined by the
contents of the function code field in the multiplexor function word (see figure 5-9). Each of these functions will be
covered in detail later in this section. None of the SCAN-IN operations performed by the multiplexor require an inter­
face to the memory control, because the data generated in the multiplexor is returned to the data processor as a part of
the SCAN-IN operation sequence. If the information that is returned to the data processor is to be subsequently stored
in memory, the data processor will cause the memory storage to occur.

5001290 5-31

U"I
I w

N

MEMORY CONTROL I DATA PROCESSOR

MV 1617

'

Z1 Z3
BUS BUS

!
LOOK
AHEAD
LOGIC

PROGRAM
,.__ CONTROLLER

Z4 Z5
BUS BUS

I
I
I
I
I L REGISTER

P REGISTER
r-=---_J
I TRANSLATE

-"'--·------+--+-,t--f+---t LOGIC

~ A REGISTER 1-t---1-...-..-• -
~ B REGISTER t---1' _., ------

---~ C REGISTER t---1' -
4~ Z REGISTER t---4P ------

I
I
I
I
I
I
I
I
l

i
I

INTERRUPT l
CONTROLLER~~_...--..-..-,1

Z12 BUS ..- MEMORY
....... ...-...--~-+--t--..,_._CONTROLLER

I
l .
I

-~ --
l

INTERRUPT
LOGIC

SCRATCH
PAD
MEMORY

,,

DATA
BUFFER

ADDRESSING
LOGIC

PERIPHERAL
STATUS I
VECTOR
STATUS
LOGIC

Figure 5-8. B 6800 IO Function Block Diagram

MULTIPLEXOR

PERIPHERAL
CONTROL
DATA
INTERFACE

TO
PERIPHERAL
DATA AND
CONTROL
INTERFACE

-- BUS --- -

r~ OP-CODE
AND VARIANT
CHARACTER
GENERATOR

TO
STATUS PERIPHERAL

---~--.. ~6~~~~L. CONTROL
LOGIC ~BUS ~

-

BIT FIELD

50:3

47:29

18:9

9:5

B 6800 System Reference Manual
System Concept

AD' AD F 0

0 AD AD F

0 AD F F

0 F 0
40 . 36

MEANING

TAG FIELD.
THE TAG FIELD IS ALWAYS EQUAL TO ZERO
UNUSED FIELD. THE UNUSED FIELD IS ALWAYS

EQUAL TO ZERO

8 4 0

THE ADDITIONAL DATA FIELD. THIS FIELD IS USED TO
COMMUNICATE ADDITIONAL DATA ABOUT THE
OPERATION THAT IS TO BE PERFORMED

0

THE FUNCTION CODE FIELD. THIS FIELD SPECIFIES WHICH OF THE
VARIOUS MULTIPLEXOR SCAN-IN FUNCTIONS IS TO BE PERFORMED

CODE

00000
00001
00011
00100
00110
01000
01010
01011
01100
01111
10100

FUNCTION

INTERROGATE 10 PATH
INTERROGATE PERIPHERAL STATUS
READ TIME OF DAY REGISTER
READ INTERRUPT REGISTER
INTERROGATE UNIT TYPE
INTERROGATE 10 PATH ADDRESS
READ PROCESSOR TIME COUNTER
READ SCRATCH PAD WORD
INTERROGATE !O PATH ADDRESS OVERRIDE
READ INTERRUPT LITERAL
READ INTERRUPT MASK

4:5 CODE REQUIRED FOR B 6800 SYSTEM IS 00011 BINARY

MV 1618

Figure 5-9. B 6800 Scan-in Function Word

DA TA PROCESSOR SCAN-OUT FUNCTIONS TO THE MULTIPLEXOR

The functions that are performed by the multiplexor in response to a SCAN-OUT command from the data processor
are different from responses to a SCAN-IN command. The data processor uses two words to provide a function word
and the data that is required to perform the function. The function word (or alternatively the initiate IO word) is
passed to the multiplexor in the same way that the SCAN-IN function word was passed. The data word (or alternatively
the IO address word) that is required to perform the function is initially in the second word of the stack (the B register).

5001290 5-33

0

0

0
44 40 36

50:3 TAG FIELD.

B 6800 System Reference Manual
System Concept

0 u

p u

p u

u
32 12

u F 0

u F 0

F F

F 0
8 4 0

THIS FIELD CONTAINS A TAG VALUE OF ZERO FOR SCAN-OUT
OPERATIONS

19:1 AN UNUSED BIT. REQUIRED TO BE A BINARY ZERO IN THE
MULTIPLEXOR FUNCTION WORD

18:2 TrlE PATH FIELD. THIS FIELD IS USED TO INDICATE ONE OF
FOUR PATHS TO BE USED FOR AN 10 OPERATION

16:7 THE UNIT DESIGNATE FIELD. THIS FIELD IS USED TO DES!GNATE
ONE OF 256 PERIPHERAL UNITS TO BE USED FOR AN 10 OPERATION

9:5 THE FUNCTION CODE FIELD. THIS FIELD SPECIFIES WHICH OF THE
VARIOUS MULTIPLEXOR SCAN-OUT FUNCTIONS IS TO BE PERFORMED

00000 INTIATE 10 DEVICE
00011
00100
01110
01000

01100

SET TIME OF DAY
SET INTERRUPT MASK
SET PSUEDO BUSY
INITIATE 10 DEVICE WITH PATH ADDRESS

INITIATE 10 DEVICE WITH PATH ADDRESS OVERRIDE

4:5 CODE REQUIRED FOR B 6800 SYSTEM IS 00011 BINARY

MV 1619

Figure 5-10. B 6800 Scan-Out Function Word

The format of the data word that is present in the B register at the beginning of the SCAN-OUT operation is variable,
depending on the type of function that the multiplexor is to perform. Each of the various functions will be discussed
in detail later in this section, and the format of the data word that is used will be given with the discussion.

The function codes that are used for all SCAN-OUT function words except the initiate IO type operations are shown in
figure 5-10. The function word for the initiate IO type of operations is called the initiate IO word (IIOWD), and this
format will be discussed later in this section, as a part of the IO operations topic.

5-34

B 6800 System Reference Manual
System Concept

DATA PROCESSOR SCAN-OUT FUNCTIONS TO EXTERNAL SUBSYSTEMS

The data processor also uses the SCAN-IN/OUT operators to communicate with the subsystems that may be attached to
the B 6800 system (the data communications processor and/or the bus interface control, which includes the reader sorter
subsystem). The scan function word and scan data word (IOAD) for external subsystems scan bus operations are explained
in sections 12, and 13 of this manual.

An external scan bus operation in the B 6800 system uses the Z4 bus, and is thus similar to a memory operation. The
IOAD word that is pre~ent in the top of stack registers is routed via the Z4 bus to the memory control. The scan-in
(SCNI), and scan-out (SCNO) operators cause bit C of the Z12 bus to be a true level when an external scan bus opera­
tion is performed. Bit C of the Z12 bus is used to identify an external scan bus operation in the memory control. When
bit C of the Z 12 bus is true, the control links the Z4 bus to the external scan bus, instead of to the local or global memory
interface buses.

Figure 5-8 shows that the path from the data processor to the external subsystem interface scan bus is through channel A
of the memory control (through the Z3 and Z4 busses).

MULTIPLEXOR SCAN-IN FUNCTIONS

The B 6800 system multiplexor responds to eleven different SCAN-IN function words. The functions are defined by the
value of the function code, as shown in figure 5-9. The following paragraphs will define the specific fuformation that is
passed to the multiplexor during the execution of a SCAN-IN operation. They also will define the information that is
returned to the data processor as a result of the SCAN-IN operation.

Interrogate Peripheral Status Multiplexor Function

When a SCAN-iN operator passes a function word that contains the interrogate peripherai status function code, the muiti­
plexor responds by returning a peripheral status word to the data processor. The function word and the "returned"
word are shown in figure 5-11.

The status word that is returned to the data processor represents the status vector bits from 32 peripheral devices, out of
the 256 peripheral devices that may be operated by the multiplexor. The 256 peripheral units are arranged into groups of
32 units, or eight groups. Each group is numbered, with peripheral device number zero, through device number 31
reported in status vector word number zero. The ninth status vector word (word number eight) is used for those periph­
eral units that require system action as a result of the status change in the peripheral device, such as system Gonsole
displays. In the ninth status word the 32 bits do not represent 32 consecutive unit numbers, but rather those units that
require system response, fu ascending order, according to all such units in the system.

The status vector field in the function word defines which group of 32 units for which the status word is to be returned.

Bit zero in the returned word is used to indicate that the word is present.

Interrogate IO Path Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate IO path function code, the multiplexor
responds by returning a word to the data processor. The "returned" word identifies whether or not a path is available
to the IO device. The function word, which is transmitted to the multiplexor as a result of the data processor scan-in
operation, is shown in figure 5-12. The Unit number field, of the function word contains the binary unit number of one
of the 256 IO devices that may be connected to the system.

5001290 5-35

B 6800 System Reference Manual
System Concept

FUNCTION WORD

0

0

0

N 0 0

N 0 0

N

0 1
4 0

N =NUMBER OF STATUS VECTOR WORD TO BE RETURNED

RETURNED WORD

0

0

0

MV 1620

[32:32]
X=O
X=1

STATUS

BITS

24 20 16 12

STATUS VECTOR BITS
STATUS WORD NOT PRESENT
STATUS WORD PRESENT

Figure 5-11. Interrogate Peripheral Status

8 4
x

0

Figure 5-12 also shows the format of the returned word, which is the answer from the multiplexor to the data processor
as to whether or not a path is available to the particular IO device. The returned word is placed in the B register of the
data processor, the B register is marked to contain valid data (BROF is set), and the A Register is marked not valid
(AROF is reset).

A path is available to an IO device if:

a. The IO control is in remote

b. The IO control is at sequence count zero

c. The multiplexor channel Psuedo-busy flip-flop is reset

5-36

B 6800 System Reference Manual
System Concept

FUNCTION WORD

···' I 1:· <I
,.

..:

r .:

0
...

~ .. ,·.·
""" 7

0 ·.:

0
44 40 36 32 28 24 20 16 I 2

RETURNED WORD

0

0

I 0 I l I

MV 1621

I l
I

I ! l j

A=1 PATH AVAILABLE
A=O NO PATH AVAILABLE

I

Figure 5-12. Interrogate IO Path

0 0

UNIT 0 0
NO.

0 1

0 0 1
8 4 0

0 0

UNIT 0 0
NO.

0 1

0 0 A I
lo

d. The multiplexor IC memory channel does not contain a result descriptor from a previous operation of the
IO device

e. The multiplexor will not exceed the pre-determined traffic counter value due to initiating the particular IO
device for which path information is requested (high-speed IO devices only)

An available path is not dependent upon the state of an external exchange device, through which the IO control com­
municates with the peripheral device. If two IO controls have the capability to communicate with the particular device
for which path information is required, and one of the two paths is available, the multiplexor will report that a path is
available.

Read Time of Day Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read time of day function code, the multiplexor
responds by returning a word that contains the binary value of the time of day register. The "returned" word contains
36 bits of time of day information. The value of bit zero in the returned word is 2.4 microseconds.

5001290 5-37

B 6800 System Reference Manual
System Concept

Figure 5-13 shows the format of the SC~N-IN read time of day function word, and also the format of the returned
word.

Read Interrupt Register Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read interrupt function code, the multiplexor
responds by returning a word that contains the value of the interrupt register. The "returned" word contains ten bits,
and each bit represents a different interrupt. The returned value is riot treated as a binary value, but rather as a group
of individual values. The meaning of each bit in the returned word is as follows:

Bit Meaning

0 A bit has been set in the status change vector word.

The number one data communications processor has caused its interrupt HEYU line to be a true level.

2 This bit is the same as bit number 1, but originates from data communications processor number two.

FUNCTION WORD

0 0
~

0 1 0

0 1 1

0 0 0 1
44 40 36 32 28 24 20 l6 12 8 4 0

RETURNED WORD

1

l
1
1

1

~0
__ _..i----i------.i-----.1 _ __,,_ Ti ME oF DA v _-+-

1

---+----+----I

1 (BINARY) I I I I ~0-+---4-~-+-+-1 J_·~l-+-!~I~-+-+-~
O 144 J4o 36 · 32 [,s 1,4 ho J16 J12 ls i4 io I

MV 1622
Figure 5-13. · Read Time of Day

5-38

B 6800 System Reference Manual
System Concept

Bit Meaning

3 This bit is the same as bit number one, but originates from data communications processor number
three.

4 This bit is the same as bit number one, but originates from data communications processor number
four.

5 Not used.

6 This bit is the same as bit number one, but originates from bus interface control number one.

7 This bit is the same as bit number one, but originates from bus interface control number two.

8 Multiplexor error.

9 This bit indicates that one of the IO devices which are connected to the multiplexor through the
peripheral control bus has completed an operation. This bit implies that at least one result descriptor
describing a particular IO operation is presently located in the corresponding channel of scratch pad
memory (there may be more than one result descriptor prese"nt).

Figure 5-14 shows the formats of the function word, and the returned word.

Interrogate Unit Type Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate unit type function code, the multiplexor
responds by returning a word that contains a unit type code fieid. Tne Hreturned" word type fieid contains six bits
that identify the type of peripheral device that is assigned to the unit number specified in the function word.

Figure 5-15 shows the format of the function word that is passed to the multiplexor, and also the format of the returned
word. The multiplexor field that is part of the returned word, is 010 (bit 46 on) for the B 6800 multiplexor. The vari­
ous unit type codes, for the corresponding unit types are shown represented in hexadecimal value, as they appear in
the data processor top of stack register.

Interrogate IO Path Add.re~ Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate IO path address function code, the
multiplexor responds by returning a word to the data processor. The "returned" word indicates whether or not a
particular path to a peripheral device is available. This multiplexor function is the same as the interrogate IO path func­
tion except that where the interrogate IO path function is not specific about which path is to be interrogated, the inter­
rogate IO path address function is specific. The path field of the function word defines which specific path is to be
interrogated, and the path field of the "returned" word indicates whether or not the specific path is available.

Figure 5-16 shows the format of the function word, and also the format of the returned word. The path (P) field in
both words is the same as the two low-order bits of the unit modifier code. The binary value of the P field selects one
of four specific channels in a minterm group to be interrogated as follows:

Bit 18

0
0

5001290

Bit 17

0 Channel number four is selected for interrogation.
Channel number three is selected for interrogation.

5-39

Bit 18

B 6800 System Reference Manual
System Concept

FUNCTION WORD

0

0

0
44 40 36 32 28 24 20 16 12

RETURNED WORD

0

0

0
44 40 36 32 28 24 16 12 20

INT REG BIT !!N!.!.

0

0
8 4

I

8 4

0 MPX STATUS CHANGE
1 DCP 1
2 DCP2
3 DCP3
4 DCP4
6 BIC 1
7 BIC2
8 MPX ERROR

MV 1623 9 MPX iiO FINiSH

Figure 5-14. Read Interrupt Register

Bit 17

0 Channel number two is selected for interrogation.
Channel number one is selected for interrogation.

1 0

0 0

0 1

0 1
0

INT --1

REG
I

0

The criteria for determining if the path seiected is available is the s.uue as that specified for the multiplexor L'lterrogate
IO path function. This criteria was listed previously in this section.

5-40

FUNCTION WORD

0

0

0
44 40

RETURNED WORD

0

0 1

0 0

0
44 40

MULTIPLEXOR MODEL FIELD

B 6800 System Reference Manual
System Concept

36 32 28 24 20 16

I !
I

T
36 32 J2a 24 20 16

UNIT
NO.

0
I 2 8

I
I

12 8

BITS 45 46 47

0 0 = B6800 MULTIPLEXOR

UNIT TYPE FIELD

TYPE CODE
TYPE HEX TYPE

NO UNIT ()() TRAIN PRINTER
DISK FILE CONTROL IVA 01 CARD READER
SINGLE LINE CONTROL 02 CARD PUNCH II
BUFFERED LINE PRINTER MT 7-TRACK NAZ

BCL 06 MT 9-TRACK N RZ
EBCDIC 26 MT 9-TRACK PE

CONSOLE II 02 DISK PACK
DISK FILE 5N 19 B 6383

MV 1624

Figuie 5-15. Interrogate Unit Type

5001290

1 0

1 0

0 1

0 1
4 0

T
Y_
p
E

4 0

TYPE CODE
HEX

07
09
OB
OD
OE
OF

31

5-41

B 6800 System Reference Manual
System Concept

FUNCTION WORD

0

0

0
!

144 40 36 32 28

BITS [18:2]

I p
UNIT

.. __, r-
p NO.

I
124 20 16 12 8

PATH = 2 LOW-ORDER
UNIT MODIFIER BITS

1

RETURNED WORD

l I·
I I

I r I I I

0 l .I I l I p
r--· -·-

I I UNIT

I i
0 p NO.

0
I

1
44 40 36 32 28 24 20 16 112 8

A=1 PATH AVAILABLE
A=O NO PATH AVAILABLE

MV 1625

Figure 5-16. Interrogate IO Path Address

Read Processor Time Counter Multiplexor Function

0 0

0 0

0 1

0 1
4 0

0 0

0 0

0 1

0 A
4 0

When a SCAN-IN operator passes a function word that contains the read processor timer function code, the multiplexor
responds by returning a word to the data processor. The "returned" word contains the value of the processor timer
register.

Figure 5-17 shows the format of the function word and the returned word for the read processor timer function. The
purpose of this function is to provide the B 6800 system with a method for counting billing time other than real time in
the data processor. The processor timer is a twenty-four bit register that counts at the rate of 2.4 microseconds per
increment, up to a maximum time count of about 40 seconds. The value that is returned to the data processor is the
state of the processor timer register. Each time that the read processor timer function is executed the processor timer
is reset to a value of zero.

5-42

FUNCTION WORD

0

0

B 6800 System Reference Manual
System Concept

RETURNED WORD

,,.

I

0 I PROCESSOR
l TIME

I I
! VALUE 0 J l

I I

0 12
I I

128 I
44 40 36 24 20 j16 I 2 8

MV 1626

Figure 5-1 7. Read Processor Timer

0 0

0

0
4 0

j

l
I

4 Jo

The processor timer is inhibited from counting any time that either the data processor or the multiplexor is performing
a memory cycle.

Read Scratch Pad Word Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read scratch pad word function code, the multi­
plexor responds by returning a word to the data processor that contains the values from the scratch pad word specified.

Figure 5-18 shows the format of the function word and the returned word. The channel of scratch pad memory is
specified by the value of the channel field and the particular word is specified by the value of the word field.

The values that are present in each word of scratch pad memory are defined later in this section under the subject head­
ing of SCRATCH PAD MEMORY. The first word in a channel of scratch pad memory is word zero, and the last word
in a channel is word fifteen.

5001290 5-43

MV 1627

5-44

FUNCTION WORD

BIT FIELD

50:3

19
18:5

13:5

8:4
4:5

FIELD NAME

TAG

CHANNEL

WORD

FUNCTION

RETURNED WORD

B 6800 System Reference Manual
System Concept

0

c

c

c
6 12

MEANING

c

c

w

w

w 0 0

w ·-o

w

1 0 1
8 4 0

THIS FIELD CONTAINS A TAG VALUE OF ZERO
FOR SCAN-IN OPERATIONS.
THIS BIT MUST BE ZERO TO ADDRESS THE MULTIPLEXOR
THE MULTIPLEXOR SCRATCH PAD CHANNEL ID
FIELD. THIS FIELD IS ONLY USED FOR READ SCRATCH
·PAD WORD TYPE FUNCTIONS. THIS FIELD SPECIFIES
ONE OF TWENTY SCRATCH PAD CHANNELS IN THE
MULTIPLEXOR WHICH IS TO BE READ.
THE SCRATCH PAD CHANNEL WORD HELD. THIS
FIELD IS ONLY USED FOR READ SCRATCH PAD WORD
TYPE FUNCTIONS. THIS FIELD SPECIFIES ONE OF
SIXTEEN WORDS IN A MULTIPLEXOR SCRATCH
PAD CHANNEL WHICH IS TO BE READ.
THE FUNCTION CODE.
REQUIRED CODE FOR B 6800 SYSTEM.

SCRATCH
PAD

MEMORY
WORD

6 12 8 4 0

Figure 5-18. Read Scratch Pad Word

B 6800 System Reference Manual
System Concept

Interrogate IO Path Address Override Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate IO path address override function code
the multiplexor responds by returning a word that identifies whether or not an override path to a peripheral unit is avail­
able. The format of the returned word is identical with that shown in figure 5-16.

The difference between the interrogate IO path address and the interrogate IO path address override functions is that a
path will be available for the overri9e scan operation even if the pseudo-busy flip flop is set. This is not the case for the
interrogate IO path address scan operation.

The use of the override path address method of IO operations allows the multiplexor to exercise IO devices when the
pseudo-busy flip flop is set. The purpose of this form of IO operations is to allow an IO device to be initiated after an
error has caused the pseudo-busy flip flop to be set. Some types of IO devices retain information about why the pseudo­
busy flip flop was set (the cause of the error) but this information is lost if the IO device is initiated in the normal
manner. Therefore, the use of override path operations allows this error data to be recovered.

Read Interrupt Literal Multiplexor Function

When a SCAN-IN operator passes a function word which contains the read interrupt literal function code, the multiplexor
returns a word indicating the highest priority external interrupt that is not masked by the interrupt mask register. Figure
5-19 shows the coded value for each interrupt.

Read Interrupt Mask Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read interrupt mask function code, the multiplexor
responds by returning an interrupt mask word to the data processor. Figure 5-20 shows the format of the function word
and the interrupt mask value \11ord.

The multiplexor has the capability to mask interrupts and prevent them from interrupting the data processor. The
operating system controls the value of the bits in the interrupt mask register, and the capability of reading the value
of the interrupt mask register is part of the method used to provide control over this function. The other part of the
control function is through use ·of a SCAN-OUT function, to set a value in the interrupt register.

MULTIPLEXOR SCAN-OUT FUNCTIONS

The B 6800 system multiplexor performs four functions as a result of the SCAN-OUT operation. The different SCAN­
OUT functions are defined by the value of the function code in the function word. The following paragraphs will define
the specific information that is passed to :the multiplexor when three of the SCAN-OUT operations are executed. These
three definitions will also define the specific information that is returned to the data processor as a result of the SCAN­
OUT operation. The fourth SCAN-OUT function is the initiate IO operation, and will be discussed as a separate subject
late! !n t!iJs section.

5001290 545

B 6800 System Reference Manual
System Concept

The top word in the stack is a function word that defines one of the multiplexor functions which is to be performed.
The second word in the stack contains information or data that is required by the multiplexor in performing the required
function.

Set Time of Day Multiplexor Function

The top word in the stack registers is a function word that defines the set time of day function. The second word in
the data processor top of stack registers is the value that is to be set into the time of day register. Figure 5-21 shows
the format of the two top words in the data processor stack registers when the SCAN-OUT operation is performed.
After the scan-out operation, the top of stack registers in the data processor (the A and B registers) are marked not
valid (AROF and BROF are reset).

Set Interrupt Mask Multiplexor Function

The top word in the data processor stack registers is a function word that defines the set interrupt mask functions. The
second word in the stack is the value that is to be set into the interrupt mask register. The format of the function word
;and the mask register information word are shown in Figure 5-22. After the scan-out operation, the top of stack
registers are marked not valid.

Set Pseudo Busy Multiplexor Function

The top word in the data processor stack registers is a function word that defines the set pseudo busy function. The
second word in the stack is the value that is to be set into the pseudo busy flip-flop, specified by the function word.
The format of the function word and the pseudo busy data word are shown in Figure 5-23. After the scan-out oper­
ation, the top of stack registers are marked not valid.

There is a pseudo busy flip-flop for each multiplexor channel. The unit number field from the function word is used
by the multiplexor in conjunction with the P field to determine which of the twenty pseudo busy flip-flop is to be
set (or reset). For more information about the P field of the function word refer to the discussion of the SCAN-IN
interrogate IO path address operation, which was covered earlier in this section.

SOFTWARE ASPECTS OF IO OPERATIONS IN THE B 6800 SYSTEM

One of the major functions of the MCP in the B 6800 system is to provide control over input/output operations. The
use of the software operating system to perform this function is efficient because the management of peripheral device
operations is a major time consuming consideration of computer system operations. The use of software procedures to
control input/output operations relieves the programming and system operations staffs of this burden.

5-46

5001290

FUNCTION WORD

0

0

B 6800 System Reference Manual
System Concept

0 0 0 0

0 0 0 0

0 0 0

0 0 1 0 1
12 8 4 0

50:05 TAG FIELD, EQUAL TO ZERO
47:28 UNUSED
19:11 UNUSED FIELD THAT MUST CONTAIN ZEROS
08:04 FUNCTION CODE, EQUAL TO F (HEX)
04:05 UNUSED CODE, MUST EQUAL 03 (BINARY) FOR B 6800 SYSTEM

WORD IN "B" REGISTER

-
0

0

0

50:03
47:40
03:04

0

0

0
I

0
~4

0 I 0 1 0 1 0 0 0 0

0 0 0 0 0 of
0 0 0 0 0 0 0

0 I o I 0
l2a

0
1240 120° 0

40 136 132 16

TAG, DOUBLE PRECISION
UNUSED FIELD, EQUAL TO ZERO
REQUIRED BINARY VALUE

I o 0 IT 0

0 0 IT 0

0 0 IT 0

0 0 IT 1
12 8 4 0

07:04 INTERRUPT TYPE
0001 DCP 1
0010 DCP 2
0011 DCP3
0100 DCP4
0110 BIC 1
0111 BIC 2
1000 MPX ERROR
1001 10 FINISH
1111 STATUS CHANGE

MV 1628A

Figure 5-19. Read Interrupt Literal

5-47

S-48

B 6800 System Reference Manual
System Concept

FUNCTION WORD

RETURNED WORD

RETURNED WORD CODING:

MASK BIT UNIT

0 MPX STATUS CHANGE

1 DCP 1
2 DCP2
3 DCP3
4 DCP4
6 SIC 1
7 BIC2
8 MPX ERROR

9 MPX 1/0 FINISH
MV 1629

Figure 5-20. Read Interrupt Mask

0

0 0

0

0
4 0

0

B 6800 System Reference Manual
System Concept

FUNCTION WORD (DATA PROCESSOR A REGISTER)

0

0

0
40 36 28

0
44 32 24 20 16 12 8

0

0
4 0

INFORMATION WORD (DATA PROCESSOR B REGISTER)

I

l l I

I r T
0 VALUE FOR

i i rTIMEOF DAY
I ! I

0 (BINARY) I
I l l i

0
40 36 128 24 16 8 14 lo 44 32 20 12

~.1V 1530

Figure 5-21. Set Time of Day

0

0

To make the operation and control of peripheral devices functional in the B 6800 system, the MCP creates and main­
tains peripheral unit tables and file label tables in local memory. The unit tables in memory contain such information as
unit numbers, unit types, unit status, and unit assignments. The file label tables contain the file labels of files associated
with a peripheral device. All of the information about a particular peripheral device or file label is cross referenced such
that given a unit number, the MCP can determine all of the unit table or file label data. Based on the information that
is maintained in the unit tables, and file label tables, the MCP monitors the operation of system peripheral devices in
such a way that human intervention is kept to a minimum, and efficient input/output operations are maintained at the
maximum.

The control of the input/output subsystems of the B 6800, by the MCP, is through use of the SCAN-IN/OUT operators
of the data processor. However, these operators can only direct that an IO operation be initiated, or that some informa­
tion that is maintained in the multiplexor about a peripheral device is to be "returned" to the MCP {through the data
processor). The MCP also requires information about any change in the status of a peripheral device, when a directed
IO operation is completed, or when the operation is terminated because of an error.

5001290 5-49

READY STATUS

B 6800 System Reference Manual
System Concept

FUNCTION WORD (DATA PROCESSOR A REGISTER)

0
D I I I I I l

0

t I 11°1
0 0 I

0 0 1

0 0 0 1
44 40 36 32 28 24 20 16 12 8 4 0

INFORMATION WORD (DATA PROCESSOR B REGISTER)

0 l l
o .I I

I I MASK
l t

0
T J,s 116 144 ·140 36 32 24 . 20 12 8 4 0

B REGISTER CODING:
BITS [9: 10] =- 1 = MASKED:

BIT INFORMATION

0 STATUS CHANGE
1 DCP1
2 DCP2
3 DCP3
4 DCP4
6 BIC1
7 BIC2
9 liO FINISH

MV 1631

Figure 5-22. Set Interrupt Mask

A change in the status of certain peripherai devices, or the compietion/termination of a directed operation on a
peripheral device causes the multiplexor to interrupt the data processor. The interrupt in the data processor causes
..,.i,._ l.lf""D +,,...., .; ... +-----..... +- +1...,.. """ .. .,"""'"" ,..,.++ha,,,,1+1 1.o....,._..,. .; ... +.0...-............ + n ... rl +h,,.n +h'-" 'lff""D ;,n,.nAo n"·un o -+ _i.,,,, __ '-".n .; ... +"llt..O..-;~h,,...,..,..1
1..11" J.U.'-'.1. 1..v J.u1..c11v5aLc u1v \.<'1Ui>v VJ. 1..11\.< u1uJ.1..J..PJ.'-'Av1 J.J.11..\.<1J.up1.., a.uu u1u;, LJ.J.'-' J.u.'-'.1. J.i> J.ua.u" a.vva.J.'-' v1 \.<.11a.u5'-'., J.J.1 P"'J.J..PJ.L'-'.1'11

units.

5-50

B 6800 System Reference Manual
System Concept

FUNCTiON WORD (DATA PROCESSOR A REGISTER)

j

0 ;
I

l

0 p 1
UNIT

--.:.: -- t---
NO.

0 p

0 1
44 40 36 32 28 24 20 16 12 8 4

1

1

0

0

BITS [18:2] =PATH= 2 LOW-ORDER UNIT MODIFIER BITS

INFORMATION WORD (DATA PROCESSOR B REGISTER)

I I !
I

I
I

0 I

0
l I

!
I

0 136
! I 14 44 40 132 28 '24 '20 i6 12 8

BIT 0=1 - SET BIT O==O - RESET

MV 1632
Figure 5-23. Set Pseudo Busy

0

0

1

1
0

'
I

0

If the peripheral control or unit goes from NOT READY to READY, the MCP will perform different functions depend­
ing on the other data in the unit tables, as follows:

a. If the unit is assigned to a TASK, the unit tables will be updated to show that the unit is READY, and the
data file operation will be resumed from the point where the unit went NOT READY.

5001290 5-51

B 6800 System Reference Manual
System Concept

b. If the unit is not assigned to a TASK, the MCP will read the label record for the data file (rewinding a tape
file if necessary, to get to the label record of the file). The MCP will then initiate a search by all tasks that
are currently waiting for a file, to see if the file is needed currently, or not. If the file is needed by a TASK
that is in progress, the MCP will cause the peripheral unit to be dedicated to the particular JOB (in the unit
tables), and will write the file label data into the unit tables.

If no TASK is in process that requires a file with the data file label, then it will enter the label of the file in
the label tables, for later reference, when a TASK may require the file of data. This label table contains a
reference to the IO device that contains the file, so that the device can be properly dedicated to a TASK,
when the TASK is executed.

The multiplexor maintains information about the status of the system peripheral controls for the IO devices. The MCP
causes the status of the peripheral controls, as it is reported by the multiplexor, to be compared against the data_ in its
unit tables from time to time. If the status of a peripheral unit, as reported by the multiplexor, is not the same as the
data in the MCP unit tables, then the MCP will perform additional operations, as required, to update the data in the unit
tables.

The status of a peripheral control or device that is maintained in the multiplexor only indicates whether or not the
peripheral control or device is available for operation, and whether or not the device is not ready. The comparison of
the current status with the last status that was recorded in the unit tables indicates whether or not there has been a
change in the ready status of the control or device.

A change in the ready status of an IO control or device can occur if:

a. The control or device goes from READY to NOT READY.

b. The control or device goes from NOT READY to READY.

c. The IO device reports a STATUS CHANGE.

If the comparison of the unit tables to the status vector data from the multiplexor shows that a peripheral control or
device has gone from READY to NOT READY, and the unit tables show that the unit is assigned to a software TASK,
the MCP will update the unit tables to show that the unit went NOT READY. The MCP may also inform the operator
of the system that the program {TASK) is waiting for the IO device to be made READY.

STATUS CHANGE

The preceding discussion defined the actions that the MCP takes when there has been a change in the ready status of a
peripheral control or peripheral device in the system. There are two types of peripheral units that report a STATUS
CHANGE, in addition to reporting a change in ready status. These two unit types are disk packs, and operator display
terminals (ODT's). These two units need this additional reporting mechanism because they perform operations that are
asynchronous to the normai directed IO operations.

The disk pack device requires that a write/read head must be positioned properly before the write or read operation can
be performed. At times, the positioning of the write/read head takes so much time that another IO device can be ser­
viced while the write/read head is being positioned. The positioning of a disk pack write/read head is called a SEEK
function. The disk pack device uses the status change reporting mechanism to let the multiplexor (and the MCP) know
that a seek operation is compieted, and the write or read operation to the pack can be performed without further
SEEKing being required.

S-52

B 6800 System Reference Manual
System Concept

The ODT device is used for two-way communications between the system (MCP), and the human operator of the system.
The MCP writes messages upon the CRT screen of the ODT for the operator to observe. This part of the ODT unit
operation is the same as any other IO device that serves as an output for the MCP. However, the human operator must
have some way to cause the MCP to read a message that has. been typed upon the screen of the CRT. _ This capability is
provided by the use of the TRANSMIT key of the ODT device. The TRANSMIT key of an ODT device causes a
STATUS CHANGE condition to be sensed in the multiplexor, and consequently, be known to the MCP. The MCP knows
that the particular device type is an ODT, and will read the message on the face of the ODT screen, when the STATUS
CHANGE condition occurs.

INPUT OUTPUT OPERATIONS

The multiplexor controls the flow of information for the peripheral devices that are connected to the B 6800 system.
The software procedures of the MCP direct that an IO operation is to be performed, through use of the SCAN-OUT
operator in the data processor. Once the multiplexor has been initiated to perform an IO operation, it becomes an
autonomous control unit in the system. When the IO operation is complete the multiplexor causes an interrupt in the
data processor.

The multiplexor is capable of performing up to twenty simultaneous IO operations. Each channel in the multiplexor
has 16 words of scratch pad memory (twenty bits per word), which is used for storing control and status information
about the IO operations for the IO control channel. The multiplexor also has a data buffer for each of the twenty
IO control channels. Twelve of the IO control data buffers are 256 or 512 bytes in length, and the other eight are
128 or 256 bytes in length.

Figure 5-8 shows the path of information flow between the memory control interface bus and the peripheral control
interface bus. This path includes the use of two of the hardware stack registers (the C and Z registers) in the data
processor, the translate logic, and data buffer in the multiplexor.

IO Device Numbering System

The B 6800 system can interface with up to 256 different peripheral devices. Each peripheral device is assigned a unit
number, and the data processor ~ses this unit number to identify which peripheral device the multiplexor is to initiate
(in the SCAN-OUT function word.). The multiplexor groups common peripheral device types into groups in which the
unit numbers of the group are numerically consecutive. A common group of peripheral numbers are assigned to a
channel or channels of the multiplexor scratch pad memory, and to common data buffer(s). Therefore all of the periph­
eral devices that are operated through a channel of scratch pad memory in the multiplexor have common operating
characteristics, they have consecutive unit numbers, and they all use common data buffers in the multiplexor.

5001290 5-53 ·_

Initiate Input Output Operation

B 6800 System Reference Manual
System Concept

The control of an IO device by the multiplexor is divided into two types of multiplexor operations. These two types
of IO operations are identified as the initiate cycle, and the service cycle. An initiate cycle is performed to prepare the
scratch pad memory channel, the data buffer, and the IO control for the operation of the peripheral device. A service
cycle is performed to handle data flow through the data buffer. A modified type of service cycle is performed at the
conclusion of an IO operation to accumulate and format the result descriptor information about how the peripheral
device functioned during the operation.

The multiplexor performs Burst cycles to transfer data between memory and the data buffer.

At the conclusion of the result descriptor service cycle, the multiplexor causes the interrupt line to the data processor
interrupt controller to go to a true level (refer to figure 5-10). This interrupt is the end of the IO operation in the
multiplexor. The result descriptor data that was collected and stored in scratch pad memory is retained until the data
processor answers the interrupt. Removing the result descriptor data from scratch pad memory clears the channel, and
providing that there are no faults in the IO subsystem, prepares the IO device for the next system operation.

The data processor utilizes the SCAN-OUT operator to start an initiate IO cycle in the multiplexor. The format of the
initiate IO word (IIOWD), the IO area descriptor (IOAD), as well as the IO control word (IOCW) are described in the
following paragraphs. These three words are required by the multiplexor to initiate an IO device.

Figure 5-24 shows the formats of the IIOWD, IOAD, and the IOCW. The fields in these words are described in the
following paragraphs.

5-54

llOWD

IOAD

IOCW

INCL Ml
10

0 ASCII TX

0 SA FS

0 RNI MP
44 40

MV 1633

5001290

E

B 6800 System Reference Manual
System Concept

UNIT
NO.

F
8

I AREA

4

F 0

F 0

F

0 1
0

WORD BASE ---+-COUNT ___..__ __ ----4-_ ADDA ESS ___._ __
(ADDRESS

-----~-+-~+-~1----1~--r-OFIOCW)__._ __

BK

T 1 1
UNIT

TT
CONTROL

FT
36 32 28 24 20 16 12 8 4 0

Figure 5-24. Multiplexer Initiate IO Words Format

LOCATED IN
TOP OF STACK
"A" REGISTER

LOCATED IN
TOP OF STACK
"B" REGISTER

LOCATED IN
SYSTEM MEMORY
IN THE WORD
ADDRESSED BY
THE BASE
ADDRESS FROM
THE IOAD WORD

5-55.

IIOWD Format

B 6800 System Reference Manual
System Concept

The IIOWD contains five significant fields as follows:

Bit Field

4:5=00011

8:4

16:8

18:2

IOAD Format

Significance

A fixed value required for B 6800 operations.

The function code field. This field contains a code that identifies which of three initiate
IO functions the multiplexor is to perform.

The unit ID field. The unit ID field is used to specify which IO device is to be initiated.

The path address field. The path address field is used to specify which of several different
paths to an IO device is to be used.

The IOAD contains three significant fields as follows:

Bit Field

19:20

36:17

39:3

IOCW Format

Significance

The base address field. The base address field is used to specify the beginning address of a
buffer in system memory which is used to pass data from/to an IO device. The first word
in the buffer contains the IOCW that describes the type of operation the IO device is to
perform. The rest of the buffer is used to store data that is input or output from/to the
multiplexor data buffer.

The word count field. The word count field is used to specify the number of words in the
buffer. The address of the first word of the buffer in system memory is specified by the
contents of the base address field.

The count extension field. The count extension field is used to specify the number of
characters of data that are present in the last word of the buffer. If the count extension
field is equal to zero the number of characters in the buffer is a multiple of the number of
words in the buffer, (the word count). If the count extension field is not equal to zero the
word count of the buffer is extended by one word and the number of character positions
used in the additional word is equal to the value of the count extension field.

The IOCW word contains data that is used by the multiplexor to determine what kind of operation the IO device is to
perform, and what optional features of the device are to be used during the operation. The IOCW also specifies what
form the data is in, and any translation characteristics that are to be applied to the data as it passes through the multi­
plexor. The data fields in the IOCW are as follows:

Bit Field

BIT 47

5-56.

Significance

Bit 47 is the incomplete IO operation bit. This bit is used as part of the maintenance func­
tions of the MDP. If iliis bit is true (a binary one), information will be moved between
memory and the multiplexor data buffer, but no IO device will be initiated. The IO buffer,
that will have information loaded into it, is the same one that would be used for a completed
initiate IO operation. It is selected by the same process of the multiplexor that is used to

Bii Fieid

BiT 46

BIT 45

BIT 44

BIT 43

BIT 42

BIT 41

BIT 40

BIT 39

BIT 38

5001290

B 6800 System Reference Manual
System Concept

Significa.TJ.ce

select a channel or scratch pad memory for a normal completed IO operation. If this bit is
false a completed IO operation will be performed, and the information that is loaded into
the buffer will be handled as specified by bit 44 of the IOCW.

The ASCII translate bit. If this bit is true, data loaded into the data buffer of the multi­
plexor will be translated to the ASCII code form as it is passed between the data buffer in
the multiplexor, and memory. (See the steering and mask translate logic block in figure 5-8.)
If this bit is false no ASCII translation will occur, and the other translation forms that may
be used will be as specified by the states of bits 41 and 42 of the IOCW.

Bit 45 is the software attention bit. The MCP uses this bit in the IOCW for software retry
capability. This bit is returned in the result descriptor, and when true, forces the result
descriptor exception bit to be true.

The read or write bit. If bit 44 is true, a peripheral read operation is to be performed. If
bit 44 is false, a peripheral write operation is to be performed.

The memory inhibit bit. If this bit is true the multiplexor will initiate the IO device, and
will accept data input from the IO device, but no information is transferred from the multi­
plexor to system memory. If this bit is false the multiplexor will transfer input data from
or to the IO device, to or from system memory.

The translate bit. If this bit is true the multiplexor performs a translation of the data as
it is transferred between system memory and the data buffer. If this bit is false no trans­
lation is performed. If translation is specified (bit 42=1) then bit 41 will define what type
of translation is to be performed.

The eight-bit frame size bit. If this bit is true the translation performed is to eight-bit
characters. If this bit is zero the translation is to six-bit characters.

The memory protect bit. If this bit is true and bit 44 is also true the multiplexor will
perform a protected memory write operation. if the memory protect bit (bit 48 of the
word in memory that is being written into) is true a memory protect interrupt is detected,
and no data is written into memory.

The backward bit. If this bit is true the IO device will be operated in the backward
direction. The data flowing between the data buffer in the multiplexor and the IO control
will be in the reverse order, proceedh1g from the last address in t..lie buff er to the first
address in the buffer. If this bit is false the data flow between the data buffer in the
multiplexor and the IO control will be in the forward direction.

The test operation bit. If this bit is true the multiplexor will cause the IO control to per­
form a test operation upon the device specified. If this bit is false no test operation will
be performed. When this bit is true it overrides the other bits in the unit control field of
the IOCW such that only a test operation will be performed, regardless of the state of the
other bits in the unit control field.

5-51

Bit Field

37:2

35:36

Scratch Pad Memory

B 6800 System Reference Manual
System Concept

Significance

Bit 37 is the transfer tags bit, and bit 36 is the force tags bit. These two bits operate as a
control field to define the type of tag fields that the multiplexor is to use when words of
data from the data buffer are transferred to system memory. The tags that will be used are
as follows:

Bit 37 Bit 36

0 0

0

0

Tag Field

Data words will be transferred with single precision word tags
(000).

Data words will be transferred with program code word tags
(011).

Data words will be transferred with tag fields as specified in the
input data. If eight-bit data is being received every seventh
character position of the input data, beginning with the first
character, will be used to make the tag field that is written
into memory. The tag field will be equal to the value of the
low-order three bits of the character.

If six-bit data is being received every ninth character of the
input data, beginning with the first character, will be used to
make the tag field.

Data words will be transferred with double precision word tags
(010).

The unit control field. The unit control field is used to specify the optional characteristics
that may be used for a peripheral device type. Examples of unit control options are spacing,
skipping, cyclic redundancy characteristics (CRC), code table loading, etc. These characteris­
tics are variable between different types of IO devices, and thus the format of the unit con­
trol field is also variable. The formats of unit control fields are defined in section 11 of this
manual.

Scratch pad memory in the multiplexor (refer to figure 5-8) is used to store control information about IO operations
that are in process, and result descriptor information for IO operations that are completed. This memory is composed
of twenty channels, each with 16 words. The data that is stored in each word of a channel of scratch pad memory is
shown in figure 5-25. Each channel of scratch pad memory corresponds to one of the twenty IO controls that may be
mounted in one of the two possible peripheral control cabinets.

A unit number for an initiate IO cycle is present in the IIOWD. This unit number is decoded to select a channel of the
scratch pad memory. The data fields that were present in the IIOWD and the IOAD are placed in word three and word
seven of the proper IO channel. The multiplexor performs a memory cycle on the base address of the system memory

5-58

19 18 17 16
a:
w

0
u.. !::: w Cl) I- z CD :::iE ::::> (.? <(:::iE- <(a..

<(a: w::C a: z :::iE~ u.. - 1-1-

a:
w 1-w
u.. za:: Cl)

~ uo <CZ
:J Cl I-I-<(

a:~ <(a: w
01- Cl 3: a:

2 PER. CHAR
COUNT

INITIAL
3 CHAR.

EXTENSION

INITIAL
4 CHAR.

EXTENSION

::t u I- a..
c.:~

Cl) I- z <(<(-
5

6

WORDS 7
~
I-

.. ~

8

9

A RESIDUE

°' 131
a..

a: <(a: :::iEC::
uO >a: uo
C/'JC:: c.:W I

.a:
wa:: ca:
ow 00.: <(W

B

a.: 0.:
a: a: ·~a:
~o,0 c -a: -a:
LI. a: ·a:
~w ~w

D

E

F

MV1634

5001290

15

ch .
Zw
<(I-
a:<(
I- ...J

...J
0
a:
1-0
za::
O<C
uu

B 6800 System Reference Manual
System Concept

ONE OF 20 IDENTICAL CHANNELS
BITS

14 131121111 10 9 8 l 7 l 6 l 5 l 4 l 3 l 2 l

INTERNAL ~Cl Cl BURST BUFFER ADDRESS ua:: UNIT TYPE z
<(<(w
co:!: 0

(/)a: a::a::
PER. BUFFER ADDRESS ~o ~o a.. Cl .a: u..a:: 0 z Ua:: ::>a: I- w c.:w CDW Cl) -

PERIPHERAL WORD COUNT

INITIAL WORD COUNT

BURST WORD COUNT

IOCW [47:20]

I- :::iE I- ~ I- a::cn ~Cl)
::t <(<(Cl u VJ WC,? a:(.?

·z ...J a: ·a: <(w LI.<(
fr~ :::iE- x u.. :::iEa.. CD I- XI-

IOCW [27:20]

UNIT IOCW [7:8]

INITIAL BURST ADDRESS

WORKING-BURST ADDRESS

<· .u)
rr ~ ~ I- a: I- ...J 0 <(C:: :i!!W Cl u w 0 <(

.J >- ::::> ·a: W>- 0W wa:a: ::;1~ w a: C::a:: ...J
:!!o (.?

Cl~ ~a:o <(<C . I- · 1- Cl a: 0.. I->- <Cw C/'JC::
·a: >· >~~

:?-0: :::iEo U> iii 0(1) :::iEVJ Zcn J: I- zo
..J . zO ~:> uaa: zO W<(Wa:: :>W Ow ow O::::> ~z

<(a:
(.?Z -<C 19~ffi -..J :::iEa.. :::iEa.. co a: <(a: ua:: UCD f: ffi a: :::iE CDU

CONTROL RESELT DESCRIPTOR

C1 C2 C4 C8 B1 B2 B4 B8 A1 A2 A4 A8

MEMORY WORD [19:20]

MEMORY WORD [39:20]

MEMORY WORD [50:11]

Figure 5-25. Multiplexor Scratch Pad Memory

1 l 0

(.?
z

ffia:: -a:
a::o u..0
:±la: u..a::
I- a: ::>a:
C/'JW CDW

5-59

B 6800 System Reference Manual
System Concept

buffer to fetch the IOCW from memory. The data fields in the IOCW are distributed into words five, six, and seven
of the proper scratch pad channel. The information contained in the IIOWD, IOAD, and IOCW are sufficient to allow
the multiplexor to start the IO operation that is required. If the type of IO operation that is to be performed is an
output operation, then the multiplexor burst logic causes the data buffer in the multiplexor to be filled with output
data from the system memory buffer. The multiplexor then causes the IO control in the peripheral control cabinet
to start the peripheral device. The IO control will pass the data input from the peripherai device into the data buffer,
through the peripheral control interface bus.

Data Buffer Logic

The data buffer in the multiplexor (refer to figure 5-8) consists of 20 channels of static random access memory (RAM).
These 20 buffers are used to accumulate data in the multiplexor that is being passed between the system memory, and a
peripheral unit. The data buffers accumulate and distribute data regardless of the direction of data flow through the
multiplexor.

A data buffer is assigned to be used for each channel of scratch pad memory in the multiplexor. This assignment is
accomplished by hardware configuration of the multiplexor. When a scratch pad memory channel is selected, the use of
a specific data buffer is implied.

Data buffers are either 256 bytes in length, or they are 512 bytes in length. The multiplexor contains 12 data buffers
that are 512 bytes in length, and eight buffers that are 256 bytes in length. Through the configuration of the multiplexor,
a peripheral device may be assigned to operate with either a 256 bytes data buffer, or a 512 byte data buffer.

The number of bits that may be written into (or read from) an address of a data buffer is 16 bits, or two bytes. When
six-bit data (BCL characters) are written into an address of the data buffer, the high-order two bits of each byte are not
used, thus, each buffer address will contain two characters regardless of the size of the characters used.

Peripheral devices that are interfaced with a data buffer are classed as single or double character transfer devices.
High speed IO devices are of the double character transfer type, while most low speed IO devices are of the single
character transfer type.

5-60

OP Code and Variant Chantcter Generator

B 6800 System Reference Manual
System Concept

The multiplexor receives control information about the type of peripheral operation that is to be performed from the
IOCW~- The control field inforriiatioil bits -for an lOCW word were previously defined in this section· of this manual.

During a multiplexor initiate cycle the multiplexor fetches the IOCW from system memory, and places the IO control
information in a channel of scratch pad memory. Subsequently; the multiplexor uses the control information in scratch
pad memory to format command instructions for the type of IO device that is to be initiated. The OP code and variant
character generator logic (see figure 5-8) is used to format IO control commands which are transferred to the IQ control
via the peripheral bus. An IO command format is as follows:

COMMAND CODE, VARIANT CHARACTER ONE, VARIANT CHARACTER TWO, FILE ADDRESS:

Where:

COMMAND CODE

VARIANT DIGIT
ONE AND TWO

VARIANT DIGIT
THREE AND FOUR

FILE ADDRESS

consists of two 4-bit characters that define the particular type of IO
operation that is to be performed (such as a read or write operation) by the
IO device.

consist of two 4-bit code fields that define optional characteristics of the par­
ticular IO device that are to be used/not used for the duration of the current
command execution. These two digits contain the unit number of the peri­
pheral device.

consist of two 4-bit code fields that are used as an extension of the first two
variant digit fields, to define optional characteristics of the IO device for the
current command execution.

consists of a 24-bit field which contains six binary coded decimal numeric
digits. The value of this 6-bit number represents the location of the first
(starting) address to be used by the peripheral device. This number is only
used for disk file or disk pack IO operations on the B 6800 system.

All IO devices do not require all parts of the IO command format. Some devices do not require variant characters to
define optional characteristics because the only variations in the type of operation that may be performed are defined
by the OP (COMMAND) CODE. Some IO devices only require a single variant character because the number of optional
operating characteristics that may be defined is small. Other IO devices do not require a FILE ADDRESS field because
they are not disk type devices.

5001290 S-61

Status Vector Control Circuits

B 6800 System Reference Manual
System Concept

Status vectors are information about the current status of multiplexor channels. Vectors are stored in four 20-bit words
of IC memory in the multiplexor. The four words of IC memory are addressable, and the status information in a word
of the status vector memory may be displayed in register four of the programmers display by operation of pushbuttons
on the keyboard. Each bit in a vector status word represents one bit of status for one of twenty IO paths in the muiti­
plexor.

There are four vector status bits maintained in the status vectors for each PCC channel. The four bits are as follows:

Control Flip-Flop

VALV

BURY

RDEV

PBZF

5-62

Vector
Word Bits

Valid

Burst request

Resuit. Descriptor

Pseudo-busy

Meaning of Terms

The valid bit is true when the data buffer contains valid data for a
peripheral unit (during output operations from the system) and when
the buffer contains space in which data may be stored (during input
operations to the system). The valid bit is false at all other times.

The burst request bit is true when the multiplexor requires access
to main memory. This bit is reset when memory burst is completed,
and remains reset until another memory burst is needed.

The result descriptor bit is set during data input operations w4en the
last data is written from the buffer (to the peripheral device, and the
result descriptor has been returned), and during output operations
when the IO unit result descriptor is written into scratchpad memory.
The result descriptor bit is reset when the interrupt handling proce­
dures clear the peripheral channel by reading the result descriptor
data from scratch pad memory.

The pseudo-busy bit is set when the result descriptor from the control
contains any error bit.

l\.iEMORY ORGA~1ZATION

B 6800 System Reference Manual
System Concept

The memory resources of the B 6800 system (refer back to figure 5-2) are organized so that two storage modules of
memory may be accessed at any one time. The memory resources of the system consist of up to 512 K words of local
memory, and up to 512 K words of global memory. One K is equal to 1024 (decimal) words of memory storage capacity.

A memory wmd consists of 60 parallel bits of data that are present at the memorf exchange port interface. These 60
bits are divided into a parity bit, 51 bits of information, and eight bits of error detection/correction code.

A memory storage module contains 64K (or 128 K) words of continuous memory storage addresses. A 20 bit binary
address field is used to select a memory module and a specific word address within the module (refer to figure 5-26).
The low order 16 bits (17 bits for 128 K word module$) of the 20 bit address field select one word of the 64 K (or
128K) words within a memory module. The high order four bits (3 bits for 128 K word modules) of the 20 bit memory
address field are used to select one of eight local memory modules, or global memory. Any memory address value that
does not select a local memory module, selects global memory by default. A local memory storage module is synonomous
with one of the local memory ports of the memory exchange.

MV 1635

MODULE'
SELECT

1-19 I 15

18 14

17 13

16 12

WORD
SELECT

11 I 7

10 6

9 5

8 4

Figure 5-26. Memory Address Decoding

3

2

1

0

In addition to address and information data, the memory interface bus also transmits control information between the
memory control and the memory module. Th.is control information directs the memory operation that will be performed
by the memory module, such as write or read functions. For local memory modules, the control signals include the
Initiate Memory Cycle (IMC) timing signal, and a three bit memory function code that is comprised of the Read Modify
Write (RMW), and Write Cycle Conditional (WCC), and the Parity Error Disable (PED) control signals. The significance of
these control signals is discussed in the subsection of this manual titled LOCAL MEMORY PORT INTERFACE CONTROL
LOGIC. The control signals that are present at the global memory interface port are discussed in the subsection of this
manual titled GLOBAL MEMORY PORT INTERFACE CONTROL LOGIC.

5001290 5-63

B 6800 System Reference Manual
System Concept

SYSTEM MEMORY INTERFACE

The system memory interface consists of a two-by-five exchange that is used to interface the B 6800 CPU, and the
external subsystem(s) associated with the B 6800 system, to the memory resources of the B 6800 system. The two
requestor inputs are designated as channel A, and channel B. The five memory storage module interfaces are designated
as ports number zero through three (local memory), and' the glObal memory port. Figure 5-27 shows the organization of
the requestor interfaces and the port interfaces to the system memory control.

Control of channel A of the system memory control is via the Z12 (14 bit) bus. Control of channel B to the system
memory is the responsibility of the external subsystem(s) that are interfaced to memory through that channel. Channel
A has priority over channel B for access to the memory resources of the system. However, a channel B access to memory
will not be interrupted to service a request from channel A. The priority is limited to determining which of two simul­
taneous requests for the same memory port will be serviced first. Simultaneous requests to different memory module
ports are allowed.

CHANNEL A MEMORY REQUESTOR

Figure 5-28 shows the paths used in the data processor to access channel A of the system memory control. These paths
are controlled by the memory controller, through use of the Z12 bus. All data that is written into memory from the
data processor or multiplexor is routed to the system memory interface exchange via the Z4 bus. All data that is read
into the data processor, multiplexor, or look ahead logic is routed from the system memory port interface to the
Z3 bus. Address information is routed from the memory address register or look ahead address register via an internal
memory address bus.

Figure 5-29 shows how information, address, and control data are routed internally within channel A of the memory
exchange. This figure also shows how port selection is made within the exchange module, by means of the port select
logic.

Figure 5-29 shows the PACK (port A acknowledge) control bus. This bus has a true level if a local memory port inter­
face is selected by the port select logic. If a local memory port is not selected and a valid request is present in the
channel A requestor logic, then the global memory port is selected by default.

The 14 bits of the memory control Zl 2 bus are identified as follows:

Bit Field

5:6

5-64

Meaning and Usage

The register select field. This field identifies the data processor register that is to receive the data
for a memory read operation, or the data processor register from which data is to be written into
memory for a memory write operation.

Bit zero is used to select register Z

Bit one is used to select register Y

Bit two is used to select register X

. Bit three is used to select register C

Bit four is used to select register B

Bit five is used to select register A

Vi
0
0

N
'-0
0

FROM/TO
PERIPHER
DEVICES

AL

MULTIPLEXOR I
[-- --- --- --- -- --- l

MEMORY BUS
CONTROL
INTERFACE

r---

...........,

~

h ,,
DATA
PROCESSOR

A~

EXTERNAL
SUBSYSTEM
NUMBER
ONE

EXTERNAL
SUBSYSTEM
NUMBER
TWO

-....

1---1

1----t

~

SCAN·BUS INTERFACE

I SYSTEM MEMORY
CONTROL INTERFACE ---

l -
I I -

I LOOK
AHEAD
LOGIC

I
EXTERNAL MEMORY+
CONTROL INTERFACE -~

~r-
I I I ~ I I

l --- _ J __ - GLOBAIL
GLOBAL MEMORY

CHANNEL A
PORT , ...

CONTROL
~ MEMORY --CONTROL

I RE QUESTOR

.. - LOCAL

PORT3 - .J.- MEMOBY -r STORAGE - UNIT -
I_ --

i LOCAL~ -- MEMOHY PORT2 - r STORAGE - UNIT
CHANNEL B

-....

MEMORY -CONTROL -
RE QUESTOR _L (SEE NOTE 1)

.. LOCAL~ --
PORT 1

MEMOFW
- T- STORAGE - UNIT -- I
' __ J __

PORTO
MEMOHY

: -, - STORAGE___ UNIT

y<' EM -EXTERNAL SUBS -~ -,

EXTERNALSUBSY~~ I
EXTERNAL SUBSYSTEM :1 EXPANSION L J

MEMORY

LCONTROL - - - - - J
LOCAL~

EXTERNAL SUBSYSTEM MODULE I
EXTERNALSUBSY~ --- __J

MV 1636

Figure 5-27. Memory Control Block Diagram

NOTE 1. EITHER THE INTERFACE TO THE EXTERNAL
SUBSYSTEMS, OR THE INTERFACE TO AN
EXPANSION MODULE MAY. BE USED, BUT NOT
BOTH. THE CHANNEL B REOUESTOR ONLY
CONTAINS A SINGLE INTERFACE PATH TO
THESE UNITS.

0 LOOK AHEAD ,...., LOGIC
L REG~STER

~ GLOBAL
PORT

4~-- •• EXTERNAL --P REGISTER jsUB- -
jsYSTEM

SCAN
BUS

PROGRAM

4~~
CONTROLLER

Z REGISTER t--4~ EXTERNA~ ~~ LOCAL
SUB- -- PORT -

4~
!SYSTEM

C REGISTER 1-·0

~~
4~., A REGISTER,___ I-

-~
MEMORY CONTROL BUS --CONTROLLER -

4~., B REGISTER ~~ I~
LOCAL
PORT

4~., X REGISTER ~~

4~~
Z4 BUS WHITE DATA [50:51] ---Y REGISTER - MEMORY

CONTROL
Z3 BUS READ DATA [50:51] EXCHANGE ~ LOCAL CHANNEL A PORT

RE QUESTOR

LOOK
AHEAD

i----- ADDRESS SCAN OR
REGISTER MEMORY LOCAL

PROCESSOR ADDRESS - -- PORT -- -IC ADDRESS (19:20) --MEMORY ADDER -
ADDRESS
REGISTERS ---- MEMORY

SCAN
ADDRESS I--- REGIST~=R

ADDRESS -

MV 1637

Figure 5-28.. Data Processor to Memory Control Exchange Transfer Paths

CPU
INTERFACES
TO
CHANNEL A

MV 1638

I

I

--

Z12 BUS [13:14]
MEMORY CONTROLLl::R.., ..

Z4 BUS WAITE
DATA [50:511 ----

ADDRESS [19:20]
....

I

Z3 BUS READ
DATA [50:51]

SCAN BUS OR
MEMORY BUS
ERRORS TO
INTERRUPT
CONTROLLER

BITC
MEMORY
CONTROL
LOGIC CONTROL DATA

WRITE DATA (50:51)

l
CHECK BIT WRITE DAT A [59:9]
GENERATOR
LOGIC .

PORT
SELECT
LOGIC

MEMORY READ DATA [50:51]

I
MEMORYREADDATA[~:OO] -ERROR -

CORRECTION
LOGIC --

j

LOCAL PACK BUS

MEMORY --
ERROR --DETECTION SCAN-BUS ERRORS --LOGIC --- GLOBAL MEMORY ERRORS --

•
RETRY MEMORY RETRY CONTROL
LOGIC

5001290

I

I

B 6800 System Reference Manual
System Concept

..

...... --
_..

--..
...... ----
Ao -

,.....
I~

_.,, ---------__.. -

I I I A.,._ ~ ---------

.. -... -

_.. -
.. .. ---
-----....

.. -
-

SCAN-BUS
INTERFACE

GLOBAL
MEMORY
PORT

LOCAL
MEMORY
PORT
NUMBER
3

LOCAL
MEMORY
PORT
NUMBER
2

LOCAL
MEMORY
PORT
NUMBER
1

LOCAL
MEMORY
PORT
NUMBER
0

EXTERNAL SCAN
BUS INTERFACE · - ---- -

GLOBAL MEMORY
INTERFACE -- --- -

LOCAL MEMORY
STORAGE MODULE 3
INTERFACE -- ---

LOCAL MEMORY
STORAGE MODULE 2
INTERFACE - --- -

LOCAL MEMORY
STORAGE MODULE 1
INTERFACE -- --- ..

LOCAL MEMORY
STORAGE MODULE 0
INTERFACE

-- --- -

Figure 5-29. Memory Exchange Channel A
Functional Block Diagram

5-67

Bit Field

8:3

B 6800 System Reference Manual
System Concept

Meaning and Usage

The request field. This field identifies the type of memory operation that is to be performed.

BIT: 9

0

0

0

0

7

0

0

0

6

1

0

1

0

Operation to be Performed

Protected write with flashback to C register

Clear write

Overwrite with flashback to C register

Read

Protected write with no flashback

A, B The look ahead request field. When bit A is true the request originates in the look ahead logic.

c

D

If bit A is false the request originates in the data processor/multiplexor.

Bit B is used to specify which register in the data processor is to receive the data input from
memory when a look ahead memory cycle is completed. If bit Bis true, the data is to be
placed in the L register of the data processor. If pit B is false, the data is to be placed in the
P register of the data processor.

The scan bit. If bit C is true, the data on the channel A information lines is scan data, and
will be routed by channel A to the external subsystem(s) via the 80 wire scan bus interface,
instead of to the memory storage modules. If bit C is false the operation specified is not
a scan operation.

The global scan. bit. If bit Dis true the operation to be performed through the global memorf
port is a global scan operation instead of a global memory operation. If bit D is false the opera­
tion to be performed is a memory operation instead of a global scan operation.

Memory Error Detection and Correction

Channel A contains error detection/correction logic circuits (refer to figure 5-30). Each time that a local memory write
operation is performed, eight bits of error detection check code are generated by the error detection circuits and appended
to the memory write data. The total number of bits that are written in memory during a local memory write operation
is 60 bits, of which 52 data bits are write data from the CPU, and the other eight bits are the error detection check code.

5001290 5-69

v.
I

-.J
0

,..._,

E
x
T
E
R
N
A
L

R
E
G
I
s
T
E
A

..._.

MV1639

ADDRESS
[19:20] -..

MEMORY READ
DATA [51:521 --

,..

MEMORY WRITE
DATA [51:52) --

MEMOFlY CONTROL -- -DATA - -...

PORT 3 SELECTED

PORT 2 SELECTED
PORT
SELECT PORT 1 SELECTED

LOGIC PORT 0 SELECTED

ADDRESS 19:20

READ DATA [51 :52)

ERROR
READ DATA [59:60] CORRECTION --

LOGIC -- l l SINGLE BIT ERROR ERROR
DETECTION
LOGIC ~

1
RETRY
LOGIC

l

MEMORY
CHECK BIT MEMORY WRITE DATA [59:60]
GENERATOR
CIRCUIT

~ SINGLE BIT ERROR --MEMORY CONTROL DATA (UNIT ERRORS)
CONTROL ---LOGIC

- MULTIPLE BIT ERROR -

Figure 5-30. Channel ;B Functional Block Diagram

-.. --..
--- GLOBAL - MEMORY

..: ..
~

-.. - LOCAL ..
-- MEMORY ... PORT3 -..

-.. -.. -.. LOCAL - MEMORY -- PORT2 ..
t-

- LOCAL ...

MEMORY - PORT 1 -----
~.._

... -.. -.. - LOCAL
MEMORY --

--=-
PORTO .. --

B 6800 System Reference Manual
System Concept

During memory read operations, the error detection check bits (which were written into memory during the memory
write operation) are tested for bit errors in the data word received from the memory storage unit. If a sL11gle bit of a
memory read data word is in error, the error correction circuit will correct the bit in error. If more than a single bit in
the memory read data word is in error, the error is not correctable, but the error detection circuit will detect a multiple
bit data error. All single bit and multiple bit data errors are reported to the data processor interrupt handling procedure,
and are logged in the SYSTEM/SUMLOG.

Memory Retry

The memory control performs memory retry operations under certain conditions.

The memory control will perform a memory retry operation if the memory module detects a parity error in the address
and control data that is transmitted from the CPU cabinet to the memory module cabinet over the port interface. This
retry consists of performing the entire memory cycle over again. If the retry of the memory cycle is successful then the
memory controller will cause the interrupt controller to make an entry in the SYSTEM/SUMLOG that indicates a retry
operation occured, and the memory operation proceeds in a normal manner. If the retry operation is not successful (a
second parity error is detected in the memory address and control data) then the memory cycle is aborted, and the
memory controller causes an alarm interrupt to be recorded in the SYSTEM/SUMLOG. The procedure that caused the
memory cycle which was aborted is terminated because of the memory parity error.

The memory control will also perform a retry operation if the memory control senses a parity error in the read data that
is transmitted from the memory module cabinet to the CPU cabinet. This retry operation consists of causing the read
data in the storage module read latches to be transmitted to the CPU cabinet a second time. A second memory cycle is
not performed by the storage module. The results of successful retry operation is reported in the same way that a suc­
cessful address and control retry is reported.

If the retry operation for a parity errnr in the read data is not successful, then an error correction memory cycle is
initiated. The entries that are made in the SYSTEM/SUMLOG as a result of an error correction memory cycle were
described previously in this section of this manual.

The memory control does not perform retry operations for parity errors in the write data transmitted from the CPU
cabinet to the memory module cabinet.

Only one retry operation will be attempted for each memory operation.

Global Memory

The global memory application is undefined at the present time. This subject will be documented when available.

Scan Bus Operations

Figure 5-27 shows that external subsystems, such as the B 6800 data communications subsystem, are interfaced with the
CPU through a separate scan bus interface. These same external subsystems are interfaced to memory through channel B
of the memory control.

All external subsystems that are controlled by the B 6800 system, such as data communications subsystems and reader/
sorter (BIC) subsystems, share the separate scan bus interface to the CPU. Thus, only one of the subsystems may
receive or transmit information over the scan bus at a time. The identification of a subsystem for scan bus communica­
tions is indicated by the contents of the address lines on the scan bus interface (refer to figure 5-29). Only the sub­
system addressed will respond to data on the scan bus, even though all subsystems connected to the scan bus receive the
same information and address inputs. The subsystems connected to the scan bus do not initiate communications, they
only respond to scan bus inputs from the data processor. Thus, there is never a conflict between the subsystems for use
of the scan bus interface.

5001290 5-71

B 6800 System Reference Manual
System Concept

A scan bus operation is performed by the data processor when the Zl 2 bus bit C is true. When this bit is true the
channel A logic routes the address and data to the external scan bus interface instead of to the memory port inter­
face. The error detection/correction logic, and the retry logic of channel A are bypassed for scan bus operations.
However, scan bus address parity errors, and scan bus data parity errors are reported to channel A of the memory
control. These two types of scan bus errors are subsequently reported to the interrupt handling procedure, an~
logged in the SYSTEM/SUMLOG, in the same way that memory bus errors are reported and logged.

CHANNEL B MEMORY REQUESTOR

The channel B requestor of the memory control is used to interface external subsystems of the B 6800 system to the
memory resources of the B 6800 system. A memory request from channel Bis entirely separate from a request from

channel A.

Several different subsystems may share the channel B requestor input to the memory exchange. Channel B does not
contain logic circuits to queue requests from external subsystems, therefore, only one of the several possible external
subsystems may use channel B requestor at any one time. Priority for the use of the channel B memory requestor,
among the various external subsystems that share the requestor, is a requirement of the external subsystems, and not of
the channel B requestor logic.

If more than two subsystems are connected to the channel B requestor, then an expansion module (shown in dotted
lines in figure 5-27) must be used. An expansion module is essentially a 1 x 5 exchange, that allows five separate sub­
systems to be interfaced with the single channel B requestor interface port.

If an expansion module is used to interface external subsystems to the B 6800 system, then the expansion module must
be mounted in an independently powered cabinet. This independently powered cabinet is not part of the B 6800
system.

MEMORY STORAGE UNIT PORT INTERFACE

There are two different types of port interfaces used to connect the memory control to the units that are remote from
the CPU cabinet. The units that are remote from the CPU cabinet, the type of interface connection used for each type
of unit, and the information that is transmitted on each cable of the interface are as follows:

5-72

Unit(s)

DCP and/or BIC

Type of Interface

Scan Bus 80 wire,
four cable.

Cable Name

Address 19: 20

and information
signals 51 : 12

Cables and Signals

Each cable of the interface contains 20 wires, and each wire
may be used to transmit one logic signal between the memory
exchange and the external unit. Some of the wires are used to
transmit signals in a single direction on the bus, and other
wires are used to transmit signals bidirectionally on the bus.

Signals on the Cable

A twenty bit address field which is transmitted in a single
direction. The field provides for one million (binary)
addresses to be available for use.

control bits. The twelve wires for word information are
bidirectional.

Local memory
unit

5001290

B 6800 System Reference Manual
System Concept

Type of Interface

Cable Name

Information signals
39:20

Information signals
19:20

Type of Interface

Local Memory
264 wire, six cable.

Cable Name

2

3

4

5

6

Cables and Signals

Signals on the Cable

Twenty bits of the word information (39 :20). The twenty
information lines are used bidirectionally.

Twenty bits of the word information (19 :20). The twenty
information lines are used bidirectionally.

Cables and Signals

Six cables are used to interface each of four possible memory
storage units to the memory exchange. Each cable contains
44 wires which may be used to pass information, control, and
address data between the storage unit, and the memory control
port. All signal lines of the local memory interface bus are
single direction lines, and no cable lines are used to pass data
in both directions.

Signals on the Cable

This cable is used to pass a 16 bit address to the memory
storage unit, and is also used to pass a three bit address check
value from the storage unit back to the memory control. The
other lines on this cable are not used.

This cable is used to pass 12 control signals from the storage
unit to the exchange port, or vice versa. The other wires of
this cable are not used.

This cable is used to pass 15 write data signals (14: 15), and
15 read data signals (14: 15) between the storage module and
the exchange port. The other wires of this cable are not
used.

This cable is the same as cable number three, except that it
passes write data bits (29: 15) and read data bits (29: 15).

This cable is the same as cable number three, except that it
p~sses write data bits (44: 15), u:r..d read data bits (44: 15).

This cable is the same as cable number three, except that it
passes write data bits (59: 15), and read data bits (59: 15).

5-73

B 6800 System Reference Manual
System Concept

Local Memory Port Interface Control Logic

An access request to one of the four local memory storage units may originate in channel A, or channel B of the memory
control. Regardless of which channel originates an access request, the logic and control signals of the memory control
port interface are the same. The logical control signals of the port interface (on cable number 2) are as follows:

Signal Name

RMW, wee, PED

IMC

PAR

MPE.

WST

MSW

S-74

Signal Usage

These three signals; RMW (read modify write), WCC (write cycle control), PED
(parity error disable), form a three bit code that is used to define the type of
operation that is to be performed by· the memory storage unit. The types of
operations that are performed by the storage unit are as follows:

RMW wee PED Function

0 1 0 Clear write operation.

0 0 1 Memory read restore operation.

0 Read/Modify/Write.

The initiate memory cycle signal. Two IMC signals are required to perform read
modify write memory operations. The memory control generates both of the
IMC signals, (one for the read portion of the operation, followed by another one
for the write portion of the operation) and transmits them both on the interface
IMC wire. The timing of these two IMC signals is a function of the memory control.

The memory address parity bit. This signal is sent from the memory control to
the memory storage unit, to cause the 17 bit address field, plus the RMW, WCC,
and PED signals to have odd parity. If the number of binary one bits in the ad­
dress field is even, the PAR signal will be true, thus making an odd number. If
the number of binary one bits in the address field is odd, the PAR signal will be
false, thus maintaining the odd parity. This signal is only transmitted during the
clear write operation. For all other types of memory operations this signal is
forced false.

The memory parity even signal. This signal is returned from the memory storage
unit to the memory control, to indicate whether or not memory address even
parity error was detected at the storage unit interface.

The write strobe signal. This signal is the write strobe signal for a memory
write operation. The memory control generates this signal and transmits it to the
memory storage unit which is to perform the write portion of a memory cycle.
The system memory control must generate this signal instead of the memory storage
unit because the write portion of a memory cycle is performed after a possible
retry of the read portion is completed.

The memory select write signai. This signai is used to define whether the read
register or the write register is to be used as the source of data for the write
portion of a ReaA/Modify/Write operation. If the MSW signal is a true level
the write register is the source, otherwise the read register is the source.

PCS (general clear)

HAR

MAY ..

B 6800 System Reference Manual
System Concept

The memory storage unit clear signal. This signal is generated in the memory
control and is used io clear ihe logic circuits of the memory storage ur-Jt.

The hold address for return control signal. This signal is generated in the memory
control, and transmitted to the memory storage unit to cause the storage unit to
hold the memory address by using its address latch circuits. This signal is required
in order to make it possible to single pulse a memory storage unit operation.

The memory available control level. This signal is generated in the memory storage
unit, and a true level is transmitted to the memory control when the storage unit
is powered up.

Scan Bus Port Interface Control Logic

Of the two requestor inputs, only channel A can cause a scan bus operation to be performed. A scan bus operation will
be performed for the input from channel A when bit C of the Z12 bus is a binary one. The control signals that are
generated for a scan bus operation, by the memory control and/or the external subsystem(s) are as follows:

SREQ

RQCW

SAPL/STEX

5001290

The scan bus request logic signal. The memory control causes the SREQ logic level to be true
when bit C is true on the Zl 2 bus. This signal indicates to the subsystems connected to the
scan bus that the CPU is processing a scan bus request. The sub.systems that are connected to
the scan bus are asynchronous with respect to the CPU, and the SREQ signal is used to cause
a subsystem to synchronize with the CPU for the duration of the scan bus interface operaiion.

The scan-out signal. The memory control causes the RQCW logic level to be true if the scan
bus request from the CPU is the result of executing a SCAN-OUT operator in the data
processor.

The scan address parity level. During the initiation of a scan bus operation the SREQ and SWRC
signals, plus a twenty bit address field is transmitted to the subsystem(s) connected to the scan
bus interf~ce. The number of binary one bits in these 22 signals must be an odd number. The
SAPL signal is used to make the number of binary ones odd when the number of binary one bits
is an even number. The subsystem that is addressed on the scan bus tests the number of binary
ones, and if an even number of binary ones is detected, an address parity error is declared to
exist.

5-75

SAOX

SRDY

SISl

B 6800 System Reference Manual
System Concept

The data word on the scan bus must also have an odd number of binary one bits. Control
level SISl is used to make the scan data word have an odd number of bits, in the same way
that the SAPL level is used for the address field. If an even number of bits are detected in the
scan data word, a transmission error is declared to exist.

The STEX control level is true if a scan address parity error, or a scan data transmission error
exists. The SAPL/STEX control signals share a common interface wire on the scan bus
interface.

The scan access obtained logic signal. When the subsystem has accessed the area within the
subsystem that is to be used for the scan bus request, and the area is interfaced to the scan bus
in the subsystem, the SAOX control signal is made a true level. This signal indicates that the
data to be transferred on the scan bus is available on the scan bus interface.

The scan ready signal. When the CPU initiates a scan bus request the subsystem that is
addressed makes its SRDY level true, if the subsystem is powered up, is not inhibited from
performing a scan bus function, and is not performing an internal operation. The CPU of the
B 6800 system does not allow the scan bus operation to delay other channel A functions in
the memory exchange unnecessarily. When a scan bus operation is initiated, a counter in
the CPU counts system clock periods until the SRDY level goes true. If seven clock
periods pass, and the SRDY level does not go true, a "time out" occurs, and the scan bus
operation is aborted. If SRDY goes true, the clock period counter in the CPU is inhibited from
counting. Thus, a subsystem must respond within seven clock periods, or the scan bus operation
will be terminated.

The scan bus word parity bit. This control signal is used to cause the scan bus data word to
have odd parity, in the same way that the SAPL signal is used to cause the address field to
have odd parity.

MEMORY TESTER LOGIC

The B 6800 has memory test logic designed into the hardware circuits of the CPU cabinet. A separate memory tester,
with access to local memory, is not provided. Therefore, when memory tests are to be performed, their execution will
preempt any other system operation. The memory test logic does not use, and cannot test, the channel B logic of the
memory control input requesters.

The memory tester logic is designed to be used with memory test routines that are resident on magnetic tape. The MDP
controls the magnetic tape peripheral device. Memory tests are executed on the B 6800 system through messages on the
system operators console (SPO), under control of the MDP Executive routine. Thus, memory testing is only performed
by system operators, who must mount the memory test tape upon the peripheral device, and then direct the system to
perform memory tests.

5-76

B 6800 System Reference Manual

SECTION 6

PROGRAM OPERATORS

GENERAL

The machine language operators are composed of syllables in a program string. The operators are divided into four
major classes, which are primary mode, varia.pt mode, edit mode, and vector mode operators.

SYLLABLE ADDRESSING AND SYLLABLE IDENTIFICATION

SYLLABLE FORMAT AND ADDRESSING

A machine language program is a string of syllables which are normally executed sequentially. Each program word in
memory contains six eight-bit syllables. The first syllable of a program word is labeled syllable zero, and is formed by
bits 47 through 40 (see figure 6-1).

P AND T REGISTERS

The P register contains the currently active program word. The T registers are the control (instruction) registers. There
is one four-bit T register for each operator family. The T register contains the code for the specific type of operator
that is to be executed by the family, and is usually derived from the four low-order bits of the operator syllable code.
The four high-order bits of the operator syllable code are used to select a family strobe. This family strobe is used to
define which family is to receive the strobe pulse (execute pulse). Figure 6-2 shows how a program operator code in the
P register is decoded to select a family strobe, and a T register value. In the example shown in figure 6-2, a divide
operator (OP code 83 hexadecimal) is in the process of being executed, and this operator caused the family A strobe
(STRA) to be selected. The family A T register contains a value of three (hexadecimal) which is derived from the four
lo\v-order bits of the operator code.

Figure 6-2 also shows an example of how a word of program code is selected to be executed. The addressing mechanism
for program code words, and the way that the controllers of the B 6800 data processor function to provide automatic
program code handling operation is also shown in this example.

In the program code handling example shown in figure 6-2, the program base register (PBR) points at the first word of
program code in the current program code segment. The value of the PBR register is initially established from the seg­
ment descriptor for the current program segment, when the procedure is initiated.

The current word of program code in a program segment that is presently being executed is indicated by the value of the
program index register (PIR). The initial value of the PIR register for a program segment is established from the PCW
word that caused the segment to be executed. The initial value of PIR may also be established from an RCW, if the
program segment is executed as the result of an exit or return from another code segment in the same program.

The first syllable that is to be executed in a program code segment is derived from the PCW (or alternatively the RCW)
that caused entry into the current program segment. In the example shown in figure 6-2, the PSR register is pointing at
syllable four of the P register because the divide operator (in syllable three) is being executed, and the PSR plus one
logic has advanced the value of the PSR register to point at the next syllable that will be executed.

Program code words, in the B 6800 system, are normally fetched from system memory by the look ahead logic. The
look ahead logic fetches the next word of program code while the current word of program code is being executed, and
places it in the L register. When the PSR register indicates by its content value that all of the syllables of program code

5001290 6-1

B 6800 System Reference Manual
Program Operators

SYLLABLE
0

SYLLABLE
1

SYLLABLE
2

SYLLABLE
3

SYLLABLE
4

SYLLABLE
5

·.'

47 43 39 35 31 27 23 19 15 11 7

46 42 38 34 30 26 22 18 14 10 6

45 41 37 33 29 25 21 17 13 9 5

44 40 36 32 28 24 20 16 12 8 4
~

MV 1640

Figure 6-1. Program Word

in the P register have been executed, the program controller causes the next word of program code to be transferred
from the L register, to the P register. The PSR register will point at the first syllable in the new program word.

3

2

1

0

When the next word of program code is transferred from the look ahead logic L register to the P register, the look
ahead module causes the next word of program code to be fetched from memory, and placed in the emptied L register.
The program controller will cause the value of the PIR register to be incremented by one, as the operators are strobed
from the P register. Thus, the PIR register will always point at the code word that the present operator started in.
The look ahead logic uses the look ahead address register (LAR) to address the next word of program code. The LAR
register has an automatic plus one incrementation feature, that causes the LAR register to always point at the memory
address of the next program word (following the program word that is present in the L register).

The dotted lines in figure 6-2 are used to show the origin of a word of program code in the P and L registers, and also
to show what word of the program segment is pointed at by an address register. A dotted line is also used to show that
the value of the PSR register temporarily points at syllable four, when syllable three is being executed by the data
processor.

OPERATION TYPES

Operations are grouped into three classes: name call, value call, and operators. The two high-order bits (bits 7 and 6)
determine whether a syllable begins a value call, name call or operator (figure 6-3).

Name C.all

Name call builds an indirect reference word in the stack (see figure 64). Stack adjustment takes place so that the
A register is empty. The six low-order bits of the first syllable of this operator are concatenated with the eight bits
of the following syllable to form a 14-bit address couple. The address couple is placed, right-justified, into the A register,
with the remainder of the A register filled with O's. The TAG field of the A register is set to 001 and the register is
marked fuii.

6-2

r
I
I
I
I
I
I
I
I
I
I

PROGRAM SEGMENT
IN MEMORY

PROGRAM WORD 3

PROGRAM WORD 2

PROGRAM WORD 1

PROGRAM WORD 0

I
l

B 6800 System Reference Manual
Program Operators

..___..,___---tPROGRAM
INDEX REGISTER

---1
I
I

ADDRESS
ADDER PROGRAM BASE

.... 1"---e-----+-+---11 REGISTER

.,
I
I
I
I

I
I
I
I

LAR +1
LOGIC

LAR

MAR

I
I
I
I
I
I
I
I
I L _________ _J PIR +1

LOGIC

L __ L REGISTER
(PROGRAM WORD 2)

LOOK
AHEAD
LOGIC
MODULE

PSR CLEAR
LOGIC

L __

PROGRAM
CONTROLLER
LOGIC

P REGISTER
(PROGRAM WORD 1)

f
I ________ _J

PSR +1
LOGIC

PROGRAM
SYLLABLE
REGISTER

ISciLISiLI srL J srt:LIS~L I I I ,l __________________ ~
r ...

•fo
010 -- TO OTHER FAMI L -- T REGISTER SELE --ole I

y
CTION
IC AND GATING LOG

,,
FAMILY
STROBE
DECODING
LOGIC

MV 1641

5001290

ol•
'-

·~;;-, 1_. __ _J

·~I~, L __ .J

---1 STRA 1
-L J

•s;;;-1
L---.J
'S'TRc., '---J

""' FAMILY A
T REGISTER ·---, .--, SELECTION

1-2!~.J L...~'!:..~ & GATING
LOGIC .---., ·--,

L~~.J L~~.J
j

ISTR~, r-~~,
L---~ ~--.J r---, ,---, ,...,--,
Ls!!!~J L-~R.!....J L-s~~J

Figure 6-2. Program Word, Syllable Addressing

r 0 I
TA3F

0
TA2F _... - • TA1F

• TAOF

6-3

Value Call

(BITS 7
AND6)
IDENT

00

01

OTHER
THAN
ABOVE

MV 1642

B 6800 System Reference Manual
Program Operators

SYLLABLE NO.OF
TYPE SYLLABLES FUNCTION

VALUE CALL 2 BRINGS AN
OPERAND INTO
THE STACK

NAME CALL 2 BUILDS AN IRW
IN THE STACK

OTHER 1---. 7 PERFORMS THE
OPERATORS SPECIFIED

OPERATION

Figure 6-3. Primary Mode Operator Syllable Decode Table

Value call loads into the top of the stack the operand referenced by the address couple. The operator is formed in the
same manner as in the·name call operator. If the referenced memory location is an indirect reference word or a data
descriptor, additional memory accesses are made until the operand is located. The operand is then placed in the top of
stack registers. The operand may be either single- or double-precision, causing either one or two words to be loaded
into the top of the stack.

Figure 6-5 is an example of how a value call operator (V ALC) is used to cause a word of data located at memory
address D2 plus 4 to be fetched and placed in the top of the D3 stack. The current stack is known to begin at the
MSCW pointed at by the D3 display IC memory register, because the lexicographical level register contains a value of 3
(LLOO, LLOl, LI..02/, LI..03/, LI..04/).

The fence decoding logic defines the number of bits in the address couple that select a display register to provide the base
address portion of the value call operation. The fence decoding logic uses the current programming level of the program
segment to determine which IC memory display register is selected. The highest order bit of the lexicographical level
register that is true in the example is bit LLO 1, which has a value or two. The fence decoding logic will therefore use
the two high order bits of the address couple to select an IC memory display register as the source of the base address.
The bits that are not used by the fence decoding logic, to select a display register, form the index portion of the value
call operation.

Bits 29: 5 are used by the fence decoding logic to select a display register. The value of the bits in this field are
opposite to the word bit number order. That is, bit 29 of the address couple in the example has a binary value of one,
and bit 25 has a binary value of sixteen. The following table equates bits 29:5 to a decimal value, and to the display
registers which they will select.

6-4

0

1

0 0 0 0

0 0 0 0 0

0 0 0 I 0 0

1 O· 0 0 0
44 40 36 32

MV 1643

5001290

0

0

0
28

0

1

0

0

' '\

0

0

I 0

0
28

B 6800 System Reference Manual
Program Operators

0

0

24

0

0

I 1

1

' ' '

0

0

0

0
24

0

0

0

0
20

0

0

I 0

0

' ' '
0

0

0

0
20

1

. 1
16

1

1

1

1

' '

\

'\
0

0

0

0
16

\
\

\
\
\

0

0

0

0
12 8

\

0

0

,
1

\
\

l

\
\
\

0

0

0

0
4

\
\

0

Figure 64. Name Call Operator Function

\
\

1

1

1

1

,

TYPICAL
NAME
CALL
OPERATOR
CODE
IN THE P
REGISTER

THE
ADDRESS
COUPLE
PART OF
THE
NAME
CALL
OPERATOR

THE
RESULTING
IRWTHAT
IS FORMED
INTHE
A REGISTER
AS THE
RESULT
OF THE
NAME CALL
OPERATOR

6-5

B 6800 System Reference Manual
Program Operators

LEXICOGRAPHICAL
REGISTER,
VALUE= 3

0

0

0 0 0 0

0 0 0

0 0 0 0

1 0 0 0
28 24 20 16

I
I

D2 REGISTER SELECTED I
I
I
I
I

,-- ________ ..J

DO
IC
MEMORY
REGISTER

FENCE
LOGIC

0 0

0 0

0

0

TYPICAL
VALUE
CALL
OPERATOR
INTHE
P REGISTER

INDEX
VALUE= 4

t-------,
I
I

I
I
I
I
I
I

,-----------------1
D1 I INDEX VALUE VIA Z10 & zg SUSSES

IC
MEMORY
REGiSTER

I
I
I
LL:!-:

~--------------. ZS BUS •

L ___ I D1·r2 I r----=-
'----~ - v _., I

-- MEMORY ,---+-'
REGISTER I

D3
'" '"' MEMORY

ADDRESS
ADDER

REGISTER
Figure 6-5. Value Call Operator Function

MV1644

6-6

_J l
SUM OF D2 + 4 ----=1 MAR I
ADDRESS TO ~.--------......
MEMORY
ADDRESS
REGISTER

Bit Number

29
28
27
26
25

B 6800 System Reference Manual
Program Operators

Decimal Value

1
2
4
8

16

There are 32 IC memory display registers that may be selected by the fence decoding logic.

Display
Register Selected

2
4
8

16

In the following example, it is possible to see how bit 28 is used to select display register two and thus to provide the
base portion of the value call address.

The index portion of the address couple is treated in the conventional manner, as a binary value. In the example shown
in figure 6-5, bits 16, 17, and 18 have a binary value of 100, which is four decimal.

The absolute memory address that is placed in the memory address register, in the example in figure 6-5, is the sum of
the address from display register two, and the index, which has a value of four (that is, D2 + 4). The word of data in
memory at the absolute memory address will be fetched, and placed in the top of stack register. If the word at D2+4
is an IRW, or a data descriptor, then additional fetches from memory will be made. This process will continue until an
operand, or a data word is placed in the top of stack register. Placing an operand or a data word in the top of stack
register completes the value call operation.

The value call operator detects an invalid operand error condition if a word with a tag code of three, four, or six is
referenced. If a word with a tag of seven is referenced by a value call operator, an accidental program entry into the
procedure described by the PCW is performed. The finai vaiue that is placed in the stack by a vaiue can operator must
have a tag field of zero, or two.

/

An accidental program entry that is caused by a value call operator being executed is treated like a sub-routine of the
procedure that executed the value call operator. The stack of the procedure is marked by an MSCW and an RCW. Then
the sub-routine referenced by the f~W is executed, and terminates by means of a return operator. The return operator
passes a parameter from the sub-routine to the procedure that executed the original value call operator. The program
flow of the procedure is resumed at the next operator in sequence following the original value call operator.

Operators

Operators vary from one to seven syllables in length. The first syllable of each operator determines the number of
additional syllables forming the operator. Upon completion of each operator, the PSR register addresses the first syllable
beyond all of the syllables comprising the operator.

Operators work on data as either full words (48 data bits plus tag bits), or as strings of data characters. Word operators
work with operands (single- or double-precision) in the top of the stack.

String operators are used for transferring, comparing, scanning, and translating strings of digits, characters, or bytes.
In addition, a set of micro-operators provide a means of formatting data for input/output.

5001290 6-7

B 6800 System Reference Manual
Program Operators

The string operators use source and destination pointers which are located in the stack. These pointers are set into the
following hardware registers:

1. Source Base Register - (SBR).

2. Source Index Register - (SIR).

3. Source Index Byte Register - (SIB).

4. Source Size Register - (SSZ).

5. Destination Base Register - (DBR).

6. Destination Index Register - (DIR).

7. Destination Index Byte Register - (DIB).

8. Destination Size Register - (DSZ).

In some of the string operators the source pointer may not be used. In this case, an operand may be in the stack; its
characters are circulated as it is being used.

String operators have an optional update function, that is, producing updated source and destination pointers, and count.
At completion of an operation the source and destination pointers are updated as follows:

•

1. If the source is an operand it remains in the stack.

2. If the pointer is a descriptor, the word index fields and byte index fields are updated from SIR/DIR and
SIB/DIB. The string siZe fields are updated from SSZ/DSZ.

3. If the pointer is a data descriptor or a non-indexed string descriptor, it is converted to an indexed string
descriptor and updated.

If both the source and destination descriptors have size fields equal to 0, the size registers indicate 8-bit character size.
When both a source and destination are required and the size field of one is equal to 0 and the other is not, then the
size field of the non-zero descriptor is used.

If neither size field is equal to 0 and the size fields are not equal and the operator is not translate, the invalid operand
interrupt is set and the operator is terminated. The size field is considered equal to 0 when the source is an operand.

6-8

B 6800 System Reference Manual

SECTION 7

PRL~ARY MODE OPERA.TORS

GENERAL

This section defines the functions of the primary operators. In each case, the name of the operator, corresponding
mnemonic, and hexadecimal code are shown. Appendix A of this manual lists the operators in alphabetic order, and
appendix B lists the operators in numeric order, by mode.

The universal operators are also included in this section.

ARITHMETIC ,OPERATORS

The arithmetic operators usually require two operands in the top of stack registers. These operands are combined by the
arithmetic process specified with the result placed in the top of the. stack. The operands may be either single-precision,
double-precision, or intermixed. The specified arithmetic process adapts automatically to the data environment, with the
single-precision process invoked if both operands are of the single-precision type and the double-precision process invoked
if either operand is of the double-precision type.

Each double-precision operand occupies two words. The second word of the operand is an extension of the first word
of the operand. The mantissa of the first word of the operand contains unit values, and the mantissa of the second
word contains a fractional unit value. An implied octal point separates the mantissa of the first word from the mantissa
of the second word. When the top of stack registers are full, the first word of the first operand is in the A register;
the second word of the first operand occupies the X register. The first word of the second operand resides in the B regis­
ter; the second word of the second operand occupies the Y register. Therefore, double-precision arithmetic processes
operate on four words in the stack, instead of two as in single-precision operations. Double-precision arithmetic leaves a
two-word result in the top of the stack.

Add, subtract, and multiply operations which use two integer operands yield an integer result if no overflow occurs. If
one or both operands are non-integer, or if the result generates an overflow, the result is non-integer.

When an operator has been entered, the hardware stack-adjust function fills or empties the top of stack register as
required by the operator. If either register contains an incorrect word, the operator is terminated by an invalid operand
interrupt.

ADD (ADD) 80

The operands in the A register and the B register are added algebraically, with the sum left in the B register. At the end
of the operation, the A register is marked empty, and the B register is marked full.

If only one of the operands is double-precision, the register (X or Y) associated with the register that contains the single­
precision operand is set to all O's. The B register is marked as a double-precision operand at completion of the operation.

If the mantissa signs and the exponents are equal, the mantissas are added and the sum placed in the B register. If the
sum exceeds 13 single precision (26 double precision) octal digits, the mantissa of the sum is shifted right one octade,
rounded, and the exponent is algebraically increased by one. The meaning of exponents and mantissas were given in -­
section 2 of this manual.

If the exponents are equal but the mantissa signs are unequal, the difference of the mantissas plus the appropriate sign
are placed in the B register.

5001290 7-1

B 6800 System Reference Manual
Primary Mode Operators

If the exponents are unequal, the operands are first aligned. If the alignment causes the smaller operand to be shifted
right 14 single precision (27 double precision) octal places, the larger operand is the result.

If the alignment causes the smaller operand to be shifted right, but less than 14 single precision (27 double precision)
octal places, the digits of the smaller operand shifted out of the register are saved and used to obtain the rounded result.

If the signs of the operands are equal, the mantissas are added and the sum placed in the B register. If the sum does not
exceed 13 single precision (26 double precision) octal digits, the last digit shifted out of the register is used to round the
result. If the sum is 14 single precision (27 double precision) octades, the mantissa in B (Y) is rounded to 13 single
precision (26 double precision) digits.

If the signs of the operands are unequal, an internal subtraction takes place, with the rounded result placed in the
B register.

If the result has an exponent greater than +63 (+32,767), the exponent overflow interrupt is set. If the result has an
exponent less than -63 (-32, 767), the exponent underflow interrupt is set.

SUBTRACT (SUBT) 81

lhe operand in the A register is algebraically subtracted from the operand in the B register with the difference left in the
B register. The operation is the same as for the Add operator except for initial sign comparisons.

MULTIPLY (MULT) 82

Tne operand in the A register is algebraically muitipiied by the operand in the B register. The rounded product is left in
the B register.

If the mantissa of either operand is 0, the B register is set to all O's.

If both mantissas are non-zero, the product of the mantissa is computed. If the product contains more than 13 single
precision (or 26 double precision) digits, it is normalized and rounded to 13 single precision (or 26 double precision)
digits. A mantissa of all sevens is not rounded. Normalization was explained in section 2 of this manual.

If the result has an exponent greater than +63 (+32,767), an exponent overflow interrupt is set. If the result has an
exponent less than -63 (-32,767), an exponent underflow interrupt is set.

EXTENDED MULTIPLY (MULX) SF

The operands in the A and B registers are algebraically multiplied and a double-precision product is placed in the B and
Y registers. The A register is marked empty and the B register marked full.

The actions outlined for Multiply operations also apply to this operator.

If either or both operands are double-precision, then a normal double-precision operation occurs.

DIVIDE (DIVD) 83

The operand in the B register is algebraically divided by the operand in the A register, with the quotient left in the
B register. After the operation the A register is marked empty, and the B register is marked full.

7-2

B 6800 System Reference Manual
Primary Mode Operators

If the mantissa of the B register is 0, the B register is set to all O's. If the A register mantissa is equal to 0, the divide
by zero interrupt is set. In either case the operation is terminated.

If the mantissa of both operands are non-zero, they are normalized and the operand in the B register is divided by the
operand in the A register. The quotient is developed to 14 single precision (or 27 double precision) digits, rounded to
13 single precision (or 26 double precision) digits, and remains in the B register.

If the result has an exponent greater than +63 (32,767) the exponent overflow interrupt is set. If the result has an expo­
nent less than -63 (-32,767) the exponent underflow interrupt is set.

INTEGER DMDE (IDIV) 84

The operand in the B register is algebraically divided by the operand in the A register and the integer part of the quo­
tient is left in the B register. After the operation the A register is marked empty and the B register is marked full.

If the mantissa of the B register is 0, the B register is set to all O's. If the mantissa of the A register is 0, the divide-by­
zero interrupt is set. The operation is terminated in either case.

If the mantissas of both operands are non-zero, they are normalized. If the exponent of the B register is algebraically
less than the exponent of the A register after both operands have been normalized, the B register is set to all O's. If
the exponent of the B register is algebraically equal to or greater than the exponent of the A register, the divide opera­
tion proceeds until an integer quotient or a quotient of 13 single precision (or 26 double precision) significant digits is
calculated.

If an integer quotient is developed, the ·quotient is left in the B register with a 0 exponent for single precision and the
exponent set to i3 for double precision. if a non-integer quotient is developed, the integer overflow interrupt is set.

REMAINDER DIVIDE (RDIV) 85

The operand in the B register is algebraically divided by the operand in the A register to develop an integer quotient.
The remainder of this Division stays in the B register.

If the mantissa of the B register is 0, the B register is set to all O's. If the mantissa of the A register is 0, the divide by
zero interrupt is set. In either case the operation is terminated.

If both mantissas are non-zero, both operands are normalized. If the exponent of the B register is algebraically less
than the exponent of the A register after both operands have been normalized, the operand in the B register is the
result. If the exponent of the B register is algebraically equal to or greater than the exponent in the A register, the
divide operation proceeds until an integer quotient is developed; the remainder is then placed in the B register.

If a non-integer quotient is developed, the integer overflow interrupt is set and the operation is terminated.

INTEGERIZE, TRUNCATED (NTIA) 86

The operand in the B register is converted to integer form without rounding and remains in the B register.

If the operand in the B register cannot be integerized, i.e., the exponent is greater than the number of leading zeros in
the operand, the integer overflow interrupt is set and the operation is terminated.

5001290 7-3

INTEGERIZE, ROUNDED (NTGR) 87

B 6800 System Reference Manual
Primary Mode Operators

The operand in the B register is converted to integer form. Rounding takes place if the absolute value of the fraction is
greater than four. The rounded result is left in the B register.

If the operand in the B register cannot be integerized, i.e., the exponent is greater than the number of the leading zeros
in the operand, the integer overflow interrupt is set and the operation is terminated.

The operand is rounded, if necessary, by adding one to the mantissa. If a non-integer results from this operation, the
integer overflow interrupt is set.

TYPE-TRANSFER OPERA TORS

SET TO SINGLE-PRECISION, TRUNCATED (SNGT) CC

The operand in the top-of-stack register is normalized and set to a single-precision operand; or in the case of a data
descriptor, the double-precision bit is set to 0.

If the word in the top-of-stack register is a non-indexed, double-precision data descriptor, the double-precision bit is
cleared to 0 and the length field multiplied by two.

If the double-precision operand in the top-of-stack register has an exponent greater than +63 after normalization, the
exponent overflow interrupt i~ set. If the exponent is less than -63 after normalization, the exponent underflow inter­
rupt is set, and the operation is terminated.

If the operand in the top-of-stack register is a double-precision operand with an exponent less than +63 or greater than
-63; the operand is normalized, and the tag field in the top-of-stack register is set to single-precision.

If the word in the top-of-stack register is neither an operand nor a Data Descriptor, the invalid operand_interrupt is set
and the operation terminated.

If"l:he operand is single-precision, it is normalized and the operation is terminated.

SET TO SINGLE-PRECISION, ROUNDED (SNGL) CD

The operand in the top-of-stack register is changed to a rounded, single-precision operand.

If the double precision operand in the top-of-stack register has an exponent greater than +63 the exponent overflow inter­
rupt is set. If the exponent is less than -63, the exponent underflow interrupt is set. In either case, the operation is
terminated.

If the operand in the top-of-stack register is a double-precision operand with an exponent less than +63 or greater than
-63, the operand is normalized; the tag field in the top-of-stack register is set to single-precision, the operand in the top­
of-stack register is rounded from the Y register, and the Y register is set to all O's.

If a carry is developed during the rounding operation, the operand is adjusted and the new exponent is checked in the
manner discussed in the preceding paragraph.

If the operand is a single-precision operand, it is normalized and no rounding occurs.

7-4

SET TO DOUBLE-PRECISION (XTND) CE

B 6800 System Reference Manual
Primary Mode Operators

The word in the top-of-stack register is set to a double-precision operand and the Y register is set to all O's. If a single
precision data descriptor is present in the top-of-stack register, the double precision bit is set to one.

If the word in the top-of-stack register is a data descriptor with both the index bit and double-precision bit 0, the
double-precision bit is set to one and the length field is divided by two.

If the operand in the top-of-stack register is a double-precision operand, the operation is complete. If it is a single­
precision operand, the tag field in the top-of-stack register is set to double-precision and the Y is set to all O's.

If the word in the top-of-stack register is neither an operand nor a Data Descriptor, the invalid operand interrupt is set
and the operation terminated.

LOGICAL OPERATORS

For LAND, LOR, or LEQV, if only one of the operands is in double-precision form, the other operand is treated as
double-precision wit~ the least significant 13 octades equal to all O's.

LOGICAL AND (LAND) 90

Each bit of the B operand result, except for the tag bits, is set to one where a one appears in the corresponding bit posi­
tions in both the A operand and the B operand. The other information bits of the B operand result are set to 0. If the
tags of the two operands are identical the tag in the result is that of the B register. If the tags are different, the resultant
tag is double precision.

LOGICAL OR (LOR) 91

Each bit position of the B operand except for the tag bits, is set to one if the corresponding bit position in either the
A operand or the B operand is one, otherwise, the bit is set to 0. The tag bits are set to the value of the second item in
the stack except when the A operand is double-precision; in which case, the B register tag is set to double-precision.

WGICAL NEGATE (LNOT) 92

Each bit in the top word in the stack is complemented except for the tag bits, which remain unchanged. The result is
always stored in the A register.

WGICAL EQUIVALENCE (LEQV) 93

Each bit of the B operand is set to one, except for the tag bits, when the corresponding bits of the A operand and the
B operand are equal. Each bit of the B operand is set to 0 except for the tag bits, when the corresponding bits of the
A and B operands are not equal. The tag field is normally set to the value of the second item in the stack except when
the A operand is double-precision; in that case, the B-register tag is set to double-precision.

RELATIONAL OPERATORS

The relational operators perform an algebraic comparison on the operands in the A register and the B register. The single
precision result is left in the B register and the B register is marked full. The result is an operand in integer form with
the value one if the relationship has been met or an operand with all information bits set to 0 if the relationship was not
met. All relational operations compare the B operand to the A operand.

For all relational operators except equal (EQUL) and not equal (NEQL) the compare flip-flop is set when the relation
is equal. For the equal or not equal operators, the compare flip-flop is set when the relationship is greater than equal.

5001290 7-5

B 6800 System Reference Manual
Primary Mode Operators

The CMPF flip-flop is used in conjunction with the low order bit of the B register {BR[O: 1]) to analyze the result of a
relational operation. The following table shows the states of the CMPF flip-flop and BR[O: 1] for various relational oper­
ations and possible results of relational operations.

Table 7-1. Relational Operator Indications

Relational BR[O: 1) CMPF Comparison Result

EQUAL 0 0 Less than
(8C) {EQUL) 0 1 Greater than

0 Equal
Not applicable

GREATER THAN 0 0 Less than
{8A) {GRTR) 0 1 Equal

0 Greater than
.Not applicable

GREATER THAN 0 0 Less than
OR EQUAL 0 1 Not applicable
(89) (GREQ) 0 Greater than

Equal

LESS THAN 0 0 Greater than
(88) (LESS) 0 Equal

0 Less than
Not applicable

LESS THAN 0 0 Greater than
OR EQUAL 0 1 Not applicable
(8B) (LESQ) 0 Less than

Equal

NOT EQUAL 0 0 Equal
(8D) (NEQL) 0 1 Not applicable

0 Less than
Greater than

GREATER THAN (GRTR) 8A

If the B operand is algebraically greater than the A operand, the B register is set to one, otherwise, the B register is set
to 0. AROF is reset, and BROF is set.

7-6

B 6800 System Reference Manual
Primary Mode Operators

If the result of the algebraic comparison is "equal", the CMPF flip flop is set.

GREATER THAN OR EQUAL (GREQ) S9

If the B operand is algebraically greater than or equal to the A operand, the B register is set to one, otherwise, the B
register is set to 0.

If the result of the algebraic comparison is "equal" the CMPF flip-flop is set. AROF is reset, and BROF is set.

EQUAL (EQUL) SC

If the operands in the B and A registers are algebraically equal, the B register is set to one, otherwise, the B register is
set to 0.

If the result of the algebraic comparison is "greater" the CMPF flip-flop is set. AROF is reset, and BROF is set.

LESS THAN OR EQUAL (LSEQ) SB

If the B operand is algebraically less than or equal to the operand in the A register, the B register is set to one, other­
wise, the B register is set to 0.

If the result of the algebraic comparison is "equal" the CMPF flip-flop is set. AROF is reset, and BROF is set.

LESS THAN (LESS) SS

if the operand in the B register is algebraically less than the operand in the A register, the B register is set to one,
otherwise, the B register is set"to. 0.

If the result of the algebraic comparison is "equal" the CMPF flip-flop is set. AROF is reset, and BROF is set.

N.OT EQUAL (NEQL) SD

If the operand in the B register is not algebraically equal to the operand in the A register, the B register is set to one,
otherwise, the B register is cleared.

If the result of the algebraic comparison is "greater than" the CMPF flip-flop is set. AROF is reset, and BROF is set.

BRANCH OPERATORS

Branch inst!"uctions break the normal sequence of serial i..11str!!~tion fetches. Bra.11chin.g :may be eit.11.er relative to the base
address of the current program segment or to a location in another program segment. Branch operators may be condi­
tional or unconditional.

BRANCH FALSE (BRFL) AO

If the low order bit of the A register is 0, the Program Index Register (PIR) and Program Syllable Register (PSR) are set from
the next two syllables in the program string. Otherwise, PSR is advanced two syllable positions, and PIR is incremented if
necessary.

The two syllables following the actual operator syllable form the new PIR and PSR settings as follows. The three high
order bits are placed into PSR and the next 13 low order bits are placed in the PIR. The Program Register (P) is marked
empty to cause an access to the new program word.

5001290 7-7

BRANCH TRUE (BRTR) Al

B 6800 System Reference Manual
Primary Mode Operators

If the low order bit of the A register is one, the PIR and PSR are set from the next two syllables in the program string.
Otherwise, PSR is advanced two syllable positions and PIR is incremented if necessary. The Branch True Operator uses
the two syllables as described for the Branch False operator (BRFL), above.

BRANCH UNCONDITIONAL (BRUN) A2

The PIR and PSR are set from the next two syllables of the program string. The Branch Unconditional operator uses the
two syllables as described for the Branch False operator (BRFL).

DYNAMIC BRANCH FALSE (DBFL) A8

If the low order bit of the B register is 0 and the word in the A register is a Program Control Word (PCW) or an indirect
reference to one, a branch is made to the specified syllable of that program segment.

If the low order bit of the B register is 0 and the word in the A register is an operand, PIR and PSR are set from this
operand.

If the word in the A register is an operand, it is used in the following manner, The operand is made into an integer. If
it is negative or is greater than 16,384, the invalid index interrupt is set and the operation is terminated. If bit zero of
the operand is 0, PSR is set to 0, otherwise PSR is set to 011. The next higher order 20 bits are placed in the PIR. The
Program Register is then marked empty to cause access to the new program word.

DYNAMIC BRANCH TRUE (DBTR) A9

If the low order bit of the B register is one and the word in the A register is a PCW, or an indirect reference to one, a
branch is made to the specified syllable of the program segment.

If the low order bit of the B register is one and the word in the A register is an operand, PIR and PSR are set from this
operand.

The operand in the A register is used in this operator in the manner described for the Dynamic Branch False operator
(DBFL).

DYNAMIC BRANCH UNCONDITIONAL (DBUN) AA

If the word in the A register is a PCW or an indirect reference to one, a branch is made to the specified syllable of the
program segment.

If the word in the A register is an operand, PIR and PSR are set from this operand.

The operand in the A register is used in this operator in the same manner described for the Dynamic Branch False
operator (DBFL).

STEP AND BRANCH (STBR) A4

The increment field of the step-index word (SIW) addressed by the contents of the A register is added to its current-value
field. If the current-value field is then greater than the final-value field, the PIR and PSR are set from the next two
syllables in the program string. Otherwise, the PIR and the PSR are advanced three syllables. The SIW is replaced in
memory.

7-8

B 6800 System Reference Manual
Primary Mode Operators

If no SIW is in memory, an.d if an operand is found, it is left in the stack. The A register is set to all O's, the PIR and
PSR are advanced and the next operator is executed. If no operand is encountered, the invalid operand interrupt is set.

UNIVERSAL OPERATORS

NO OPERATION (NOOP) FE

No operation takes place when this syllable is encountered. PIR and PSR are advanced to the next operator. This oper­
ator is also valid .in the Variant and Edit modes.

CONDITIONAL HALT (HALT) DF

This operator halts the processor if the CHLT pushbutton on the MDP keyboard is illuminated. If the CHLT pushbutton
is extinguished the operator is treated as a NOOP. This operator is also valid in the Variant and Edit modes.

INVALID OPERATOR (NVLD) FF

This operator sets the invalid operand interrupt. This operator is also valid in Variant and Edit modes.

STORE OPERATORS

Tne store operators use the words in the A register and B register. The operand in the B register is stored in memory at
the location addressed by an Indirect Reference Word (IRW) or a Data Descriptor. If the A register contains an operand,
a hardware interchange takes place so that the operand is transferred to the B register.

STORE DESTRUCTIVE (STOD) BS

If the word in the A register is an operand, the A and B operands are interchanged. The Data Descriptor or IRW in the
A register is the address in memory where the operand in the B register (B, Y registers for double-precision) is stored.
After the operand is stored, the A register and B register are marked empty and the operation is complete.

If the word addressed by the IRW is a Program Control Word, accidental procedure entry occurs. The spontaneously
created Return Control Word (RCW) causes the Store Destructive (STOD) operator to be re-executed upon return from
the procedure.

If the word addressed by the Data Descriptor has the memory protect bit on (bit 48), the memory protect interrupt is
set and the operation is terminated.

If the presence bit in the Data Descriptor is 0, the presence bit interrupt is set. After the information has been made
present, the operation is restarted.

STORE NON-DESTRUCTIVE (STON) B9

This operator functions in virtually the same way as the STOD operator, however, at the completion of this operator, the
BROF remains set, and the operand is retained in the B register.

OVERWRITE DESTRUCTIVE (OVRD) BA

This operator functions in the same way as the STOD operator, except that the OVRD operator overrides memory
protection checks.

5001290 7-9

B 6800 System Reference Manual
Primary Mode Operators

OVERWRITE NON-DESTRUCTIVE (OVRN) BB

This operator functions in the same way as the STON operator, except that the OVRN operator overrides memory
protection checks.

STACK OPERATORS

EXCHANGE(EXCH)B6

The operands in the A register and the B register are exchanged. The A and B registers may contain either operands or
control words. The control words are treated as operands by this operator.

DELETE TOP OF STACK (DLET) BS

This operator marks the Top-of-Stack register empty.

DUPLICATE TOP OF STACK (DUPL) B7

The operand in the B register is copied into the A register, or the operand in the A register is copied into the B register.
At the conclusion of the operation the register that received the copy is marked full.

PUSH DOWN STACK REGISTERS (PUSH) B4

This operator stores the valid w.ord(s) from the A register and/or B register into the memory portion of the stack. The A
and B registers are marked empty.

LITERAL CALL OPERA TORS

LIT CALL ZERO (ZERO) BO

This operator sets the A register to all O's and marks the register full. The result is a single-precision operand.

LIT CALL ONE (ONE) Bl

This operator sets the A register low order bit (bit 0) to one, leaving all other bits set to 0. The A register is marked full.
The result is a single-precision operand.

LIT CALL 8 BITS (LT8) B2

The syllable following the operator is the literal value to be placed in bits 7:8 of the A register. The rest of the A
register is set to all O's, The A register is marked as full and the PSR is set to the syllable following the literal.

LIT CALL 16 BITS (L Tl 6) B3

The next two syllables following the operator are a 16-bit literal value that is placed in bits IS: 16 of the A register. The
rest of the register is set to all O's. The A register is marked full and PSR is advanced past the 16-bit literal.

LIT CALL 48 BITS (LT48) BE

The next program word is placed in the A register, and the A register tag is set to all O's. The A register is marked full,
and the PIR and PSR are advanced to the program syllable following the 48-bit literal value. This operator requires that
the 48 bit literal in the program string be word synchronized. If the operator syllable is in any syllable position other
than syllable five, the intervening syllables are not executed.

7-iO

B 6800 System Reference Manual
Primary Mode Operators

The 48 bit literal word must contain a tag field value of 3 (progra..111 word), otherwise an invalid program word interrupt
will be sensed when the literal word is present in the P (program) register.

MAKE PROGRAM CONTROL WORD (MPCW) BF

This operator performs a "Lit Call 48 Bits" (LT48) as described above; however, the tag is set to a PCW (111) and the
Stack Number Register is placed in bits 45: 10. The A register is marked full.

INDEX AND LOAD OPERATORS

INDEX (INDX) A6

The Index operator places the integerized value of the B register into the 20-bit length/index field of the Descriptor in the
A register. The Descriptor is marked indexed (bit 45 is set to one), and the copy bit is set (bit 46 is set to one).

If the word in the A register is an operand, the A operand is exchanged with the B operand. If the word in the A reg­
ister is neither a Descriptor nor an IRW pointing to a Descriptor, the invalid operand interrupt is set and the operation
is terminated.

If the indexing value is negative or greater than or equal to the length field of the descriptor, the invalid index interrupt
is set and the operation is terminated.

If the descriptor represents an array which is segmented, the index is partitioned into two portions by an approximation
algorithm which is determin.ed by the type of data referenced by the descriptor, double-precision word-128, single­
precision word 256, four-bit· digit-3072, six-bit character-2048, or eight-bit byte-1536). The product of the -approximatior
algorithm is used as an index to the given descriptor to fetch the array-row descriptor. The remain.der is used to index
the row descriptor.

If the double-precision bit (bit 45) in the descriptor is 1, the index value in the B register is doubled. The balance of the
operation is as described in the first paragraph of the description of this operator (INDX).

INDEX AND LOAD NAME (NXLN) AS

This operator performs an index operation; after the word in the A register has been indexed, the Data Descriptor pointed
to by this word is brought into the A register. The copy bit (bit 46) of the Data Descriptor is set to one and the A reg­
ister is marked full. If the presence bit {bit 4 7) is off, the address of the original descriptor is placed in the address field
of the stack copy. If the word accessed by the indexed word in the A register is not a Data Descriptor, the invalid
operand interrupt is set and the operation is terminated.

If the Data Descriptor accessed by the indexed word in the A register has the Index bit (bit 45) set to one, the invalid
operand interrupt is set and the operation is terminated.

INDEX AND LOAD VALUE (NXLV) AD

This operator performs an index operation; after the word in the A register has been indexed the operand pointed to by
this descriptor is brought to the A register. The A register is. marked full.

'If the word accessed is other than an operand, the invalid operand interrupt is set and the operator is terminated.

LOAD(LOAD)BD

The Load operator places the word addressed by an IRW or Indexed Data Descriptor in the A register.

5001290 7-11

B 6800 System Reference Manual
Primary Mode Operators

If at the start of this operator the A register contains other than a Data Descriptor or an IRW pointing at a Data
Descriptor, the invalid operand interrupt is set and the operation is terminated.

If the word pointed at by the Data Descriptor is another Data Descriptor, the latter is marked as a copy (copy bit
(bit 46,] is set to one), and if the presence bit (bit 47) is off, the address of the original is placed in bits 19:20 of the
copy in the stack.

SCALE OPERATORS

Higher-level languages such as COBOL require decimal arithmetic. The Scale Operators provide the means of aligning
decimal points prior to the time that the arithmetic operations are performed. In addition, the Scale Right operators
provide for binary-to-decimal conversions.

SCALE LEFT (SCLF) CO

This operator uses the second syllable as the scale factor. The operand to be scaled is placed in the B register and integer­
ized. The resulting ·integer is then multiplied by 10 raised to the power specified by the scale factor.

If scaling of a single-precision operand results in overflow, the single-precisiqn operand is converted to a double-precision
integer. A double-precision integer is defined as a double-precision operand with an exponent equal to 13.

If scaling of the operand results in an exponent greater than 13, (double-precision operand), the overflow flip flop is
set to one.

DYNAMIC SCALE LEFT (DSLF) Cl

This operator performs virtually the same operation as the Scale Left (SCLF) operator; however, the scale factor is taken
from the A register rather than from the program syllable following the operation syllable. The operand in the A register
is integerized before scaling takes place.

SCALE RIGHT SAVE (SCRS) C4

This operator uses its second syllable as the scale factor. The operand to be scaled is placed in the B register and is then
integerized. The resultant integer is divided by 10 raised to the power specified by the scale factor.

The quotient resulting from the division is left in the A register. The operand in the B register is the remainder which is
converted to decimai (four-bit digits) and is ieft-justified. Tne A and B registers are both marked fuU.

If the scale factor is greater than 12, the invalid operand interrupt is set and the operation is terminated.

DYNAMIC SCALE RIGHT SAVE (DSRS) CS

This operator performs virtually the same operation as the Scale Right Save (SCRS) operator; however, the scale factor is
obtained from the A register rather than from the program syllable following the operation syllable. The operand in the
A register is integerized before being used.

SCALE RIGHT TRUNCATE (ScRT) C2

This operator performs a Scale Right function using its second syllable as the scale factor. The B register is mar~ed as
empty at the· conclusion of this operator.

7-12

B 6800 System Reference Manual
Primary Mode Operators

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) C3

This operator performs the same operation as the Scale Right Truncate except that the scale factor is found in the A
register and is first integerized by the operator.

SCALE RIGHT FINAL (SCRF) C6

This operator performs a Scale Right operation except that the quotient in the A register is deleted by marking the A
register empty. The sign of the quotient is placed in the external sign flip flop.

If the quotient was non-zero at the conclusion of the operation, the overflow flip flop is set.

DYNAMIC SCALE RIGHT FINAL (DSRF) C7

This operator performs a Scale Right Final operation with the scale factor found in the A register which is integerized by
the operator before use.

SCALE RIGHT ROUNDED (SCRR) C8

This operator performs a Scale Right operation and the quotient is rounded by adding one to it if the most-significant
digit of the remainder is equal to or greater than five. The remainder is deleted from the stack by marking the B
register empty.

DYNAMIC SCALE RIGHT ROUND (DSRR) C9

This operator performs a Scale Right Rounded operation using the scale factor found in the A register.

BIT OPERA TORS

The Bit operators are concerned with a specified bit in the A register and/or B register.

BIT SET (BSET) 96

This operator sets a bit in the top of stack register. The bit that is set is specified by the program syllable following the
operation syllable.

If the program syllable defining the bit to be set has a value greater than 47, the invalid-operand interrupt is set and the
operation is terminated.

DYNAMIC BIT SET (DBST) 97

This operator performs a Bit Set Operation upon the bit specified by the operand in the top of stack register. This word
is integerized before it is used as a bit number.

If the word in the top of stack register is not an operand, an invalid operand interrupt is set and the operation is
terminated.

If after being integerized the operand is less than zero or greater than 47, an invalid operand interrupt is set and the
operation is terminated.

5001290 7-13

BIT RESET (BRST) 9E

B 6800 System Reference Manual
Primary Mode Operators

This operator resets a bit in the top of stack register. The bit that is reset is specified by the syllable following the
operation syllable.

If the program syllable defining the bit to be reset has a value greater than 47, an invalid-operaI1d interrupt is set and the
operation is terminated.

DYNAMIC BIT RESET (DBRS) 9F

This operator performs a Bit Reset operation upon the bit specified by the operand in the top-of-stack register.

If the word in the top-of-the-stack register is not an operand, an invalid operand interrupt is set and the operation is
terminated.

If after being integerized the operand is less than zero or greater than 47, an invalid operand interrupt is set and the oper­
and is terminated.

CHANGE SIGN BIT (CHSN) SE

The sign bit (bit 46) of the top-of-stack operand is complemented, i.e., if it is a one, it is set to O; if it is a 0, the bit is
set to one.

TRANSFER OPERA TORS

The Transfer Operators transfer any field of bits from one word in the stack to any field of another word in the stack.

FIELD TRANSFER (FLTR) 98

This operator uses its following three syllables to establish the pointers used in the field transfer. This is done in the
following manner. The second syllable of the operator is K. The third syllable of the operator is G. The fourth syllable
of the operator is L.

The field in the A register, starting at the bit position addressed by G, is transferred into the B register, starting at the
bit position addressed by K. The length of the field in the A and B registers is defined by L. When the specified number
of bits have been transferred, the A register is set to empty, the B register is marked full and the operation is complete.

If the second or third syllables of the operator are found to be greater than 4 7, or the fourth syllable is greater than 48,
the invalid operand interrupt is set and the operation is terminated.

DYNAMIC FIELD TRANSFER (DFTR) 99

This operator performs a Field Transfer operation with the exception that the B register operand is L. The B register is
then reloaded from the stack and this operand is G. The B register is again loaded from the stack and this operand is K.

If any of the three operands is a non-integer, it is first integerized. Each is checked for a value less than equal to zero
or greater than equal to 48, or less than 48, as specified in Field Transfer above. If either of these conditions exists in
any one of the three operands, an invalid operand interrupt is set and the operation is terminated.

7-14

FIELD ISOLATE (ISOL) 9A

B 6800 System Reference Manual
Primary Mode Operators

This operator isolates a field of the word in the A register, placing it right-justified in the top of stack register. The
balance of the top of stack register is cleared to O's. The top of stack register is marked full.

This operator uses its second and third syllables as the BIT pointers. The second syllable of the operator addresses the
starting bit of the field in the A register. The third syllable of the operator specifies the length of the field to be isolated.

If the value of the second syllable is greater than 47 or the value of the third syllable is greater than 48, an invalid oper­
and interrupt is set and the operation is terminated.

DYNAMIC FIELD ISOLATE (DISO) 9B

This operator performs a Field Isolate operation except that the first item in the stack specifies the length of the field to
be isolated. The second operand in the stack addresses the bit in the word of the third item in the stack that is to be
isolated.

If after being integerized the value of the first item in the stack is less than 0 or greater than 47, an invalid operand
interrupt is set and the operation is terminated.

If after being integerized the value of the second item in the stack is less than 0 or greater than 48, an invalid interrupt
is set and the operation is terminated.

FIELD INSERT (INSR) 9C

This operator inserts a field from the A register into the B register word. The field in the A register is right justified with
the length of the field specified by the third syllable of the operator. The second syiiable of the operand addresses the
starting _bit of the field in the B register. At completion the A register is marked empty and the B register is marked full.

If the value of the second syllable of the operator is greater than 47, an invalid operand interrupt is set and the operation
is terminated.

If the value of the third syllable of the operator is greater than 48 an invalid operand interrupt is set and the operation
is terminated.

DYNAMIC FIELD INSERT (DINS) 9D

This operator performs a Field Insert operation except the first item in the stack is used as the insert field data. The
second item in the stack is used to specify the length of the field. The third item in the stack is used to address the
starting bit in the receiving field in the B register. When the operation is complete, the A register is marked empty and
the B register is marked full.

If after being integerized the value of the second item in the stack is less than 0 or greater than 48, an invalid operand
interrupt is set and the operation is terminated.

If after being integerized the value of the third item in the stack is less than 0 or greater than 4 7, an invalid operand
interrupt is set and the operation is terminated.

5001290 7-15

STRING TRANSFER OPERATORS

B 6800 System Reference Manual
Primary Mode Operators

String Transfer operators give the system the ability to transfer characters or words from one location in memory to
another location in memory. The source and destination pointers are set from String Descriptors in the stack.

TRANSFER WORDS, DESTRUCTIVE (TWSD) D3

This operator requires three items in the top-of-the-stack: an operand, a String Descriptor or operand, and a String
Descriptor. The first operand is integerized and used as the count or repeat field. The second item is either the source
data or a descriptor which points at the source string and the third item is used to address the destination string. The
number of words specified by the repeat field are transferred from the source to the destination. At completion of the
operation, the A and the B registers are marked empty.

If the memory protect bit is found on during the execution of the Transfer Words operator, the segmented array interrupt
is set and the operation is terminated.

TRANSFER WORDS, UPDATE (TWSU) DB

This operator performs the Transfer Words operator except that at the completion of the transfer of data, the source and
destination pointers are updated to point to the location in memory where tbe transfer ended. The A and B registers
are both marked full.

TRANSFER WORDS, OVERWRITE DESTRUCTIVE (TWOD) D4

This operator performs a Transfer Words, Destructive operation, except that it overrides the memory protection checks.

TRANSFER WORDS, OVERWRlTE UPDATE (TWOU) DC

This operator performs a Transfer Words, Update operation, except that it overrides the memory protection checks.

TRANSFER WHILE GREATER, DESTRUCTIVE (TGTD) E2

This operator transfers characters from a location in memory pointed to by the source pointer, to a location in memory
pointed to by the destination pointer, until the number of characters specified has been transferred or the comparison fails.
The TFFF flip-flop is used to indicate the results of the comparison. TFFF is set at the beginning of the operator.

The first item in the stack is used as the delimiter, The second item in the stack, bits 19:20, is the maximum number of
characters to be transferred. The third item in the stack is the source data or a source pointer, and the fourth item in
the stack is the destination pointer.

The source and destination strings are checked for memory protection. The source character is compared to the de­
limiter. After each comparison, a decision is made whether the condition has been meL If the condition is met, TFFF
remains set to one, if it is not met it is set to 0. If the result of the comparison is equal then the CMPF flip-flop is set,
and otherwise CMPF is reset.

If the number of characters transferred was equal to the repeat field the TFOF flip-flop is set to one. The A and B
registers are marked empty and the operation is complete.

If the first operand in the stack is not a single-precision operand, an invalid operand interrupt is set and the operation
is terminated.

If either the source or destination word has a memory protect bit on (bit 48= 1), the segmented array interrupt is set and
the operation is terminated.

7-16

B 6800 System Reference Manual
Primary Mode Operators

If the second item in the stack is a descriptor, it is used as the source pointer and the length field or repeat field is set to
1,048,575. All comparisons are binary (EBCDIC collating sequence).

TRANSFER WHILE GREATER UPDATE (TGTU) EA

This operator performs a Transfer While Greater operation and updates the source pointer and destination pointer to point
at the next characters in the source and destination strings. The repeat count is updated to give the number of characters
not transferred. If the operation is terminated because the relationship is not met, the source pointer points at the character
that failed the comparison. If the result of the comparison is equal, then the CMPF flip-flop is set, otherwise CMPF is reset.

TRANSFER WHILE GREATER OR EQUAL, DESTRUCTIVE (TGED) El

This operator performs a Transfer While operation using the relation greater than or equal to for comparison.

TRANSFER WHILE GREATER OR EQUAL, UPDATE (TGEU) E9

This operator performs a Transfer While Greater or Equal operation. The source pointer, destination pointers, and count
are updated at the conclusion of the operation.

TRANSFER WHILE EQUAL, DESTRUCTIVE (TEQD) E4

This operator performs a Transfer While operation with the relation used in the comparison being equal. If the result of
the comparison is greater, then the CMPF flip-flop is set, otherwise CMPF is reset.

TRANSFER WHILE EQUAL, UPDATE (TEQU) EC

T!iis operator performs a Transfer While Equal operation. The source pointer, the destination pointer and count are updated
at the conclusion of the operation. CMPF is set if the result of the comparison is greater, and CMPF is reset otherwise.

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE (TLED) E3

This operator performs a Transfer While operation, using the Less than or Equal comparison.

TRANSFER WHILE LESS OR EQUAL, UPDATE (TLEU) EB

This operator .performs a Transfer While Less or Equal operation. The source pointer, destination pointer and count are
updated at the conclusion of the operation.

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) EO

This operator performs a Transfer While operation using the Less than comparison. If the result of the comparison is equal
then the CMPF flip-flop is set, otherwise CMPF is reset.

TRANSFER WHILE LESS, UPDATE (TLSU) E8

This operator performs a Transfer While Less operation. The source pointer, destination pointer and count are updated
at the conclusion of the operation.

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE (TNED) ES

This operator performs a Transfer While operation, using the not equal comparison. CMPF is not used.

5001290 7-17

B 6800 System Reference Manual
Primary Mode Operators

TRANSFER WHILE NOT EQUAL, UPDATE (TNEU) ED

This operator performs a Transfer While Not Equal operation. The source pointer, the destination pointer and count are
updated at the conclusion of the operation.

TRANSFER UNCONDITIONAL, DESTRUCTNE (TUND) E6

This operator performs a Transfer Characters until the length is equal to zero. No comparisons are made.

TRANSFER UNCONDITIONAL, UPDATE (TUNU) EE

This operator performs a Transfer Unconditional operation. The source pointer and the destination pointer are updated
at the conclusion of the operation.

STRING ISOLATE (SISO) DS

This operator places in the top-of-the-stack, right justified, the number of source characters specified by the repeat field. The
first item in the stack is the number of characters in the repeat field. The second item in the stack is either an operand
or a descriptor used as the source pointer.

If the number of bits to be transferred is greater than 48, the item is double-precision.

If the number of bits is greater than 96, an invalid operand interrupt is set and the operation is terminated.

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation
is terminated.

COMPARE OPERATORS

The compare operators perform the specified comparison of two strings of data. The True False flip flop (TFFF) and
the Compare flip flop (CMPF) are used to indicate the result of the comparison, at the conclusion of the operation.
Table 7-2 shows the significance of the state of TFFF and CMPF at the conclusion of a compare type operator.

COMPARE CHARACTERS GREATER, DESTRUCTIVE (CGTD) F2

This operator compares the value of two character strL11gs, one character at a time. The operator compares characters
until it encounters a pair which are unequal. If the B string character is greater than the A string character, the TFFF
is set, otherwise it is reset. If the length is depleted and the character strings are equal, the CMPF flip-flop is set. If
the characters in the B string are greater than the characters in the A string, the TFFF is set to one. If not, the TFFF
is set to zero.

The first item in the stack is an operand which contains the length of the fields being compared. The second item in
the stack is an operand or a descriptor pointing at the character string to be compared against. The third item in the
stack is a descriptor pointing at the character string to be compared.

If the repeat count is depleted the TFFF is reset.

If either of the data strings has the memory protect bit on (bit 48=1), the segmented array interrupt is set and the oper­
ation is terminated.

All comparisons are by the binary character position in the collating sequence.

7-18

Compare

=I=

>

<

~

~

B 6800 System Reference Manual
Primary Mode Operators

Table 7-2. Compare Type Operator Results

TFFF CMPF

0 0
0 1

0
1

0 0
0 1
1 0

1

0 0
0 1

0
1

0 0
0 1

0
1

0 0
0
1 0
1

0 0
0 1

0
1

COMPARE CHARACTERS GREATER, UPDATE (CGTU) FA

Comparison Result

Less than equal
Greater than equal
Equal
Not applicable

Equal
Not applicable
Less than equal
Greater than equal

Less than equal
Equal
Greater than equal
Not applicable

Greater than equal
Equal
Less than equal
Not applicable

Less than equal
Not applicable
Greater than equal
Equal

Greater than equal
Not applicable
Less than equal
Equal

This operator performs a Compare Characters Greater operation. The source pointer and destination pointer are updated
at the conclusion of the operation.

COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE (CGED) Fi

This operator performs the Compare Characters operation with the comparison being greater than or equal. If the repeat
count ~ 0, the TFFF is set to 1.

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE (CGEU) F9

This operator performs a Compare Character Greater or Equal operation. The source pointer and destination pointer are
updated at the conclusion of the operation.

5001290 7-19

B 6800 System Reference Manual
Primary Mode Operators

COMPARE CHARACTERS EQUAL, DESTRUCTIVE (CEQD) F4

This operator performs the Compare Characters operation using the Equal comparison. If the repeat count~ 0, then
TFFF is set to 1.

COMPARE CHARACTERS EQUAL, UPDATE (CEQU) FC

fhis operator performs a Compare Characters Equal operation. The source pointer and destination pointer are updated
it the conclusion of the operation.

COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE (CLEO) F3

This operator performs the Compare Characters operation with the Less than or Equal comparison. If the repeat
count ~ 0, then TFFF is set to 1.

COMPARE CHARACTERS LESS OR EQUAL, UPDATE (CLEU) FB

This operator performs a Compare Characters Less or Equal operation. The source pointer and destination pointers are
updated at the conclusion of the operation.

COMPARE CHARACTERS LESS, DESTRUCTIVE (CLSD) FO

This operator performs the Compare Characters operation using the Less than comparison. If the repeat count~ 0, the
TFFF is set to 0.

COMPARE CHARACTERS LESs, UPDATE (CLSU) F8

This operator performs a Compare Characters Less operation. The source pointer and the destination pointer are updated
at the conclusion of the operation.

COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE (CNED) FS

This operator performs the Compare Characters operation using the Not equal relation. If the repeat count ~ 0, then
TFFF is set to 0.

COMPARE CHARACTERS NOT EQUAL, UPDATE (CNEU) FD

This operator performs a Compare Characters Not Equal operation. The source pointer and the destination pointer are
updated at the conclusion of the operation.

EDIT OPERATORS

TABLE ENTER EDIT, DESTRUCTIVE (TEED) DO

This operator is used to prepare for edit micro-instructions. These edit micro-instructions are contained in memory as a table
and not as part of the normal program string. W'nen this operator is entered, program execution is transferred to a table
of micro-instructions. The last micro-instruction in this table must be the End Edit operator (see section 9). The table
contains Edit ~1odc operators.

7-20

. B 6800 System Reference Manual
Primary Mode Operators

The first item in the stack is a descriptor pointing to the table of Edit Micro-Instructions. The second item in the stack
is a single-precision operand or a descriptor pointing at the source string. The third item in the stack is descriptor
pointing at the destination.

If the first item in the stack is not a descriptor, the invalid operand interrupt is set and the operation is terminated.

If the second item in the stack is a single-precision operand, it is the source string.

If the third item in the stack is not a descriptor, the invalid operand interrupt is set and the operation is terminated.

TABLE ENTER EDIT, UPDATE (TEEU) D8

This operator performs a Table Enter Edit operation and updates the source pointer and destination pointer at the com­
pletion of the operation.

EXECUTE SINGLE MICRO, DESTRUCTIVE (EXSD) D2

This operator performs the same function as the Table Enter Edit ·operator with the following exceptions: There is only
one micro-operator and it follows this syllable. The first item in the stack is a single-precision operand that defines the
length field.

An end edit operation is performed as an implicit part of the EXSD operator, thus an explicit END EDIT operator (in
program line code) is not required.

EXECUTE SINGLE MICRO, UPDATE (EXSU) DA

T'nis operator performs the same functions as an Execute Single Micro operator, except that it updates the source pointer
and destination pointer at the completion of the edit operator operation.

EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE (EXPU) DD

This operator performs the same functions as an Execute Single Micro Update operator, except that one pointer is used
as both source and destination pointer. The destination pointer is updated at the completion of the operation.

PA'.CK OPERATORS

PACK, DESTRUCTIVE (PACD) Dl

This operator packs data, addressed by the source pointer, into the top of the stack in four-bit (digit) format. The TFFF
is set to one if the source data is negative. A negative number for an eight-bit (byte) format has a zone bit configuration
of i lOi in the least significant byte. T'ne six-bit (BCL) format for a negative number has a configuration of iO in the
least significant character position. The four-bit (digit) format has a 1101 configuration in the most-significant digit posi­
tion. Data is right-justified as it is placed in the top-of-stack.

The operand in the top-of-the-stack is used as the length field. The second item is the source pointer. The operation
then continues until the number of digits specified by the length/repeat field have been packed.

If the length is less than 13, the operand in the top-of-the-stack is a single-precision operand. If the operand is 13 or
greater, the result is a double-precision operand.

If the length is not less than 25, an invalid operand interrupt is set and the operation terminated.

If initial length is zero, TOS is filled with zeros.

5001290 7-21

B 6800 System Reference Manual
Primary Mode Operators

If the second item in the stack is an operand, it is the source string and is comprised of eight-bit bytes.

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation
is terminated.

PACK,UPDATE(PACU)D9

This operator performs a Pack oper-ation, updating the source pointer at the completion of the operation.

INPUT CONVERT OPERA TORS

INPUT CONVERT, DESTRUCTIVE (ICVD) CA

This operator converts either six-bit BCL code, eight-bit EBCDIC or four-bit digit code to an operand for internal arith­
metic operations.

The first item in the stack is an operand that is integerized to form the repeat field. The second item in the stack is a
descriptor used as a source pointer.

The input convert operator converts a string of input EBCDIC or BCL character data into a numeric operand. The
resultant operand may be either single precision or double precision.

The manner in which the conversion of character data into numeric data is performed is as follows:

The four high-order zone bits of the input EBCDIC character (two high-order bits of a BCL input character) are dis·
carded. The remaining four low-order digit bits from the input character form a hexadecimal character, which is placed
in the top of stack register receiving field.

Each time that a source input character is converted, the repeat field is decremented by one. When the repeat field is
equal to zero, all input characters have been converted.

If the repeat field value is 13 (decimal) or less the resultant operand in the top of stack register is a single precision
operand. If the repeat field value is between 13, and 24 (decimal) the resultant operand in the top of stack register is
a double precision operand. If the repeat field is greater than 24, an invalid operator interrupt is set, and the operation
is terminated.

The sign of the converted resultant operand is determined from the zone bits of the least significant character in the
input character string. For EBCDIC input characters the sign is negative if the least significant character zone bits are
equal to 1101 binary, and is positive otherwise. For BCL input characters the sign is negative if the two zone bits equal
10 binary, and is positive otherwise. The detected sign bit for the resultant operand is saved in the TFFF flip flop.

The sign of the converted operand is then set from the TFFF. If the converted operand is a single-precision operand, the
TFFF is then set to 1. If the converted operand is a double-precision operand, the TFFF is set to 0.

At the completion of the operation the B register is marked full. The tag field is set to indicate either a single- or a
double-precision operand.

if after being integerized, the item in ihe top-of-stack is greater than 23, the invaiid operand interrupt is set and the
operation is terminated.

7-22

INPUT CONVERT, UPDATE (ICVU) CB

B 6800 System Reference Manual
Primary Mode Operators

This operator performs an Input Convert operation. The source pointer is updated at the completion of the operation.

READ TRUE FALSE FLIP-FLOP (RTFF) DE

This operator places the status of the TFFF into the low-order bit position of the A register. The rest of the A register
is set to all O's. The A register is marked full at completion of this operation.

SET EXTERNAL SIGN (SXSN) D6

This operator places the mantissa sign of the top word of the stack in the External Sign flip flop. This operand is not
deleted from the stack at the end of the operation.

READ AND CLEAR OVERFLOW FLIP-FLOP (ROFF) D7

This operation places the status of the Overflow flip flop in the least-significant bit of the A register, sets the rest of the
A register to all O's, marks the register full, and sets the Overflow flip flop to 0.

SUBROUTINE OPERATORS

VALUE CALL (V ALC) ·oo ~ 3F

This operator loads into the A register the operand addressed by the address couple formed by the concatenation of the
six low order bits of the first syllable and the eight bits of the following syllable. The A register is marked full.
Figures 7-1 and 7-2 are simplified flow charts of the Value Call operator.

This operator makes multiple memory accesses if the word accessed is either an indexed descriptor, PCW~ or an IRW.

If the word accessed is an indexed data descriptor, the word addressed by the data descriptor is brought to the
top-of-the-stack. If the double-precision bit (bit 50) in the Data Descriptor is equal to one, the other half of the
double-precision operand is brought to the X register.

If the word accessed is a non-indexed word data descriptor, the word is indexed using the second word in the stack for
the index value. The word addressed by the non-indexed Data Descriptor is brought to the top-of-the-stack. If the
double-precision bit (40) in the Data Descriptor is equal to one, the other half of the double-processor operand is
brought to the X register.

If the word accessed by the Data Desciptor is another indexed Data Descriptor, the word addressed by the Data
Descriptor is brought to the top-of-the-stack, and one of the two above paragraphs is repeated.

If a Data Descriptor does not address an operand, SIRW, or a word descriptor or indexed string descriptor, an invalid
operand interrupt is set and the operation is terminated.

If the word accessed by the value call is an Indirect Reference Word (IRW) the word addressed by the IRW is accessed
and evaluated. If the word is an operand, it is placed in the top-of-the-stack.

If the word accessed by the IRW is another IRW, the operation continues as described above.

If the word accessed by the IRW is an indexed or non-indexed Data Descriptor, the operator proceeds as described above
for Data Descriptors.

5001290 7-23

ADJ
(0, 2)

DESC
FIG.
7-2

MV 1645

7-24

REMEMBER
ALL VALUE
CALL DATA

PLACE
OPERAND
IN "A"
REGISTER

YES

B 6800 System Reference Manual
Primary Mode Operators

NO

"ACCIDENTAL
ENTRY"
(CALL ON A
PROCEDURE)

OBTAIN OTHER
HALF OF
OPERAND IN
"X" REGISTER

OP
COMPLETE

Figure 7-1. Flow of Value Call Operator

OBTAIN
WORD
ADDRESSED
BY IRW

YES

MV 1646

5001290

ADJ. 0, 1

INDEX
DESCRIPTOR

...__......--..... 1 .. 1

B 6800 System Reference Manual
Primary Mode Operators

OBTAIN WORD
ADDRESSED
BY DESC

Figure 7-2. Value Call (Descriptor) Operator

OBTAIN
ST ACK VECTOR
DESC

OBTAIN WORD
ADDRESSED
BY
SIRW

7-25

B 6800 System Reference Manual
Primary M0de Operators

If the word accessed by the IRW is a Program Control Word (PCW), an accidental entry into the subroutine addressed by
the PCW is initiated. A Mark Stack Control Word (MSCW) and a Return Control Word (RCW) are placed in the stack and
an entry is made into the program. Upon completion of the program, a return operator will re-enter the flow value call
at the label IRW, (figure 7-1).

NAME CALL (NAMC) 40 => 7F

This operator builds an IRW in the A register. The address couple is formed by concatenating the six low-order bits of
the first syllable and the eight bits of the following syllable. The A register is marked full and the operation is complete.

EXIT OPERATOR (EXIT) A3

This operator returns to a calling procedure from a called procedure resetting all control registers from the RCW and the
MSCW. The Exit operator does not return a value to the calling routine. Figure 7-3 shows a simplified flow chart of the
Exit operator.

RETURN OPERATOR (RETN) A7

This operator performs the same functions as an Exit operator with the exception that an operand or name in the B
register is returned to the calling procedure. If a name is returned, and the V bit (bit 19) in the MSCW is on, the name
is evaluated to yield an operand as described in the V ALC operator. Figure 7 4 shows a simplified flow chart of the
Return operator.

ENTER OPERATOR (ENTR) AB

This operator is used to cause an entry into a procedure from a calling procedure. Entry is to the program segment and
syllable addressed by the PCW. Figure 7-5 shows a simplified flow chart of the Enter operator.

The Enter operator accesses the IRW at F + 1, which points to the PCW {or to the PCW directly, without the use of an
IRW). The operator then builds a RCW into the stack at F + 1.

EVALUATE(EVAL)AC

This operator loads the A register with an indexed Data Descriptor or an IRW that addresses A "target," which may be
an SIW, and Un-Indexed Data Descriptor, a String Descriptor, or an operand. The "target" may be referenced through a
chain of accidental entries, or IRW. In any case memory accesses will continue to be made until the target is located.
The A register is left containing the Data Descriptor or the IRW which addresses the target. Figure 7-6 is a simplified
flow chart of the Evaluate operator.

An indexed Data Descriptor is left in the A register when the target is referenced by an indexed Data Descriptor; a
stuffed IRW is left in the A register when the target is referenced by IRW's.

If the A register does not contain a Data Descriptor or an IRW at the start of this operator, an invalid operand interrupt
is set and the operation is terminated.

MARK STACK OPERA TOR (MKST) AE

This operntor places a Mark Stack Control Word in the B register which contains a pointer to the previous MSCW in the
stack. The F register is updated to point at the address of the MSCW.

This operator is used to mark the stack when entry into a procedure is anticipated.

7-26

MV 1647

5001290

ADJ (0, 0)

OBTAIN
RCW
AT(F+1)

SET UP REGISTERS
TO RETURN TO
PRIOR PROCEDURE,
SAVE BOSA AND
CUT BACK THE
STACK

OBTAIN WORD
ADDRESSED
BY (F)

COMPUTE
ADDRESS OF
PREVIOUS
MSCW

B 6800 System Reference Manual
Primary Mode Operators

OBTAIN PREVIOUS
MSCWAND
SAVE ADDRESS

YES

OBTAiN SEG DESC
ADDRESSED BY
PDR SET PBR TO
ADDA ESS IN S.D. &
CAUSE A FETCH

OPER.
COMPLETE

YES

NO

Figure 7-3. Flow of Exit Operator

OBTAIN NEW
STACK
ADDRESS

UPDATE [1.f]
AND
OBTAIN NEW
MSCW

NO

7-27

MV1648

7-28

ADJ (0, 1)
(SAVE
RETURNED
VALUE)

OBTAIN RCW
AT (F + 1)

SET-UP REGISTERS
TO RETURN TO
PRIOR PROCEDURE,
SAVE BOSR AND
CUT BACK THE
STACK

I

OBTAIN WORD
ADDRESS
BY (F)

COMPUTE ADDRESS
OF PREVIOUS
MSCWAND
SAVE VALUE BIT

I .. I

B 6800 System Reference Manual
Primary Mode Operators

OBTAIN PREVIOUS
MSCW AND
SAVE ADDA ESS

OBTAIN SEQ DESC
ADDRESSED BY
PDR SET PBR TO
ADDRESS IN S.D.
& CAUSE FETCH

OPER
COMP LE: TE

YES

YES

OBTAIN NEW
STACK
ADDRESS

UPDATED [Hl
AND OBTAIN
NEW MSCW

GO TO EVAL
OPERATOR &
SET "T" REG
TOVALCOP

Figure 7-4. Fiow of Return Operator

NO

NO

MV 1649

5001290

ADJ (0, Ol AND
OBTAIN WORD
ADDRESSED BY
(F + 1)

OBTAIN WORD
ADDRESSED
BY IRW

B 6800 System Reference Manual
Primary Mode Operators

SAVE PRESENT
REGISTER
SETTINGS (RCW)

DISTRIBUTE
PCW REGISTER
SETTINGS

STORE RCW
AT (F + 1)

OBTAIN MSCW
AT (Fl

Figure 7-5. Flow of Enter Operator

COMPLETE THE
MSCW AND
STORE IT
BACK AT (F)

OBTAIN WORD
ADDRESSED
BY NEW PDR

PLACE PROGRAM
ADDRESS IN
PBR AND FORCE
A FETCH

OPER
COMPLETE

7-29

I
I ..

ADJ (1, 2)

OBTAIN WORD
ADDRESSED
BY IRW

OBTAIN WORD
ADDRESSED
BY SIRW

I
t

MV 1650

7-30

NO

B 6800 System Reference Manual
Primary Mode Operators

OBTAIN WORD
ADDRESSED
BY SIRW

'

SAVE THE
IRWIN "A"
REGISTER

OPER
COMPLETE

OBTAIN
ST ACK VECTOR
DESCRIPTOR
AT DO+ 2

""""

Figure 7-6. Flow of Evaluate Operator

NO

LEAVE THE
DESCRIPTOR IN
THE "A"
REGISTER

OPERATION
COMPLETE

STUFF ENVIRONMENT (STFF) AF

B 6800 System Reference Manual
Primary Mode Operators

This operator changes a normal IRW to a stuffed IRW so that a quantity may be referenced from a different addressing
environment. The displacement field locates the MSCW below the quantity and the index field locates the quantity rela­
tive to the MSCW. Figure 7-7 shows a simplified flow chart of the Stuff Environment operator.

If the word in the A register at the start of the operation is not an IRW, an invalid operand interrupt is set and the
operation is terminated.

If, when creating this stuffed IRW, other than an MSCW is accessed, a sequence error interrupt is set and the operation
is terminated.

INSERT MARK STACK OPERATOR (IMKS) CF

This operator builds an MSCW and places it below the two top-of-stack quantities.

ENTER VECTOR MODE OPERATORS

There are two different operators used to cause the B 6800 system to enter into the vector mode of operation. The
Vector Mode Enter Single (VMES) operator is used to enter the vector mode of operation when a single word of program
code contains all of the vector mode operators that are to be executed. The Vector Mode Enter Multiple (VMEM) oper­
ator is used to enter into the vector mode of operation when the number of vector mode operators that are to be exe­
cuted uses more than a single word of program code.

A des~riotion of the two methods for entering the vector mode of operation is as follows:

VECTOR MODE ENTER MULTIPLE (VMEM) E7

This operator is used to cause entry into the vector mode of operation in the same way that the VMES operator per­
forllls. The only difference between the operation of the VMES and the VMEM operators is the number of words of
vector mode machine language code that may be used.

If an interrupt occu1.; while entry into vector mode is in process, the entry process is terminated, and processing resumes
with the next normal mode machine language operator in sequence. Since multiple words of vector mode machine lan­
guage operators are used when the VMEM operator causes entry to vector mode, the first word of normal mode opera­
tors may be greatly removed from the VMEM operator code word.

The use of the VMEM operator causes the data processor to retain the address of the next normal mode operator word.
This address is required in the event that the entry into vector mode is terminated. The retention of the next normal
mode operator word address (in IC memory) is the only difference between the VMES and VMEM operators.

VECTOR MODE ENTER SINGLE (VMES) EF

This operator is used to cause entry into the vector mode of operation. Vector mode operations are performed in con­
trol state (UHF flip flop is set). The VMES operator uses a subset of the table enter edit logic to distribute vector mode
parameters in the IC memory address registers of the data processor. The vector mode operator parameters must be on
the top of the data processor stack at the beginning of the VMES operator.

The VMES operator expects to find three data descriptors, and three incrementation parameters present on the top of
the data processor stack. The VMES operator optionally expects that a LENGTH parameter may be present on the top
of the data processor stack.

5001290 7-31

MV 1651

7-32

B 6800 System Reference Manual
Primary Mode Operators

ADJ (1, 2)

OBTAIN WORD
ADDRESSED BY
"D" REGISTER

IS
THE STACK

NUMBER OF THE
MSCW EQUAL

TO SNR AND THE
E BIT OF THE MSCW

EQUAL TO 0
?

SAVE STACK
NUMBER
OF MSCW

OBTAIN WORD
ADDRESSED BY
ADDRESS OF THIS
MSCW-MSCW.DF

OBTAIN STACK
VECTOR AT
[D0+2]

...

COMPUTE DISP
FIELD SET LL
FIELD TO ZERO
AND MARK
AS STUFFED

OPERATION
COMPLETE

Figure 7-7. Flow of Stuff Environment Operator

B 6800 System Reference Manual
Primary Mode Operators

!f the VMES operator does not find the three data descriptors on the top of the data processor stack an invalid opera...'ld
interrupt is detected, and the VMES operator releases control to the interrupt controller.

The VMES operator expects to find that bit 47 (the presence bit) is true in each of the three data descriptors. If any of
the three data descriptors do not have the presence bit true, a presence bit interrupt is detected, and the VMES operator
releases control to the interrupt controller.

The order of occurrence of the three data descriptors and the three increment parameters (and optionally, the LENGTH
parameter) is as follows:

Parameter Word Type

Pointer C Data descriptor

LENGTH SP operand

Pointer A Data descriptor

Pointer B Data descriptor

Increment C SP operand

Increment A SP operand

Increment B SP operand

Word Usage

The top word in the data processor stack.

When a LENGTH parameter is present, it is the second word in
the data processor stack, and its presence is indicated by bit 44 of
pointer C being set. If a LENGTH parameter is not present in the
stack a default length value of FFFFF - 1 (HEX) is used

If a LENGTH parameter is not present in the data processor
stack, pointer A is the second word in the data processor stack.
If a LENGTH parameter is present in the stack, then pointer A
is the third word in the stack.

If a LENGTH parameter is not present in the stack, pointer B is
the third word in the stack. If a LENGTH parameter is present
in the stack, then pointer B is the fourth word in the stack.

The incrementation value that will be used as the incrementation
unit to access data elements of the array pointed at by pointer C.

The incrementation value used for accessing data elements in the
array pointed at by pointer A.

The incrementation value used for accessing data elements in the
array pointed at by pointer B.

If bit 44 {the segmented bit) is true in pointer A or B, an invalid operator interrupt is detected, and the VMES operator
releases control to the interrupt controller.

If pointer A has the read only bit (bit 43) true, a memory protect interrupt is detected, and the VMES operator releases
control to the interrupt controller.

If any of the three types of interrupts described in the preceding paragraphs are detected, the entry into vector mode is
terminated, and the program will be resumed (in normal state) at the next code word following the. vector operator code
word. The use of the VMES operator implies that only one word of vector mode operators is to be used, and the first
vector mode operator to be executed is present in syllable zero of the next program code word in ~equence. Therefore,
the next word of program code (the vector mode code word) is fetched by the program controller and placed in the
P register. If an interrupt occurs during the VMES opera~or, the interrupt controller will fetch another new word of
program code {the word following the vector mode code word). Thus, the VMES operator releases control to the inter­
rupt controller, and the interrupt controller fetches the next word of normal state program code that is to be executed.

5001290 7-33

B 6800 System Reference Manual

SECTION 8

VARIANT MODE OPERATION AND OPERATORS

GENERAL

ESCAPE TO 16-BIT INSTRUCTION {VARI) 95

The variant mode of operati.on extends the number of operation codes. These operators are not used as often and require
two syllables; the first is the "Esc;ape to 16-Bit Instruction" (VARI) operator. When the VARI operator is encountered,
the following syllable is the actual operation and the syllable pointer is positioned beyond the two syllables.. The VARI
operator is valid only for the syllables covered in this section.

Variant codes EO through EF are detected and cause a programed operator interrupt. All other unassigned variant codes
cause no action and result in a loop timer interrupt.

Variant mode operations are both word- and string-oriented operators.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order,
by mode.

VARIANT MODE OPERATORS

SET TWO SINGLES TO DOUBLE (JOIN) 9542

The operands in the A and B registers are combined to form a double-precision operand that is left in the B and Y
registers.

The operand in the A register is placed in the Y register. The A register is marked empty and the B register tag field is
set to double-precision.

SET DOUBLE .TO TWO SINGLES (SPLT) 9543

The SP(DP) operand in the B" register is changed to two single-precision operands which are placed in the A and the B
registers~ both registers are marked full.

If the operand in the B register is a single-precision operand, the A register is set to all O's and the A and B registers are
marked full. Both the A and the B register tag fields. are set to single-precision.

If the operand in the B register is a double-precision operand, the Y register operand is placed in the A register and the
tag fields of both the A and B registers are set to single-precision.

IDLE UNTIL INTERRUPT (IDLE) 9544

This operator suspends processor program execution until the program is restarted by an external interrupt. Inhibit
Interrupt flip flop (IIFF) is unconditionally reset to allow external interrupts.

SET INTERVAL TIMER (SINT) 9545 (CONTROL STATE OPERATOR)

This operator places the 11 low-order bits of the B register into the Interval Timer register, and arms the timer. The
Interval Timer decrements each 512 microseconds. The processor is interrupted when the timer reaches 0 and is still
armed. The Interval Timer is disarmed when the processor is interrupted by an external interrupt.

5001290 8-1

B 6800 System Reference Manual
Variant Mode Operation and Operators

The operand used to set the Interval Timer is integerized before the 11 low-order bits are used. If the operand can not
be integerized, an integer overflow interrupt is set and the operation is terminated.

ENABLE EXTERNAL INTERRUPTS (EEXI) 9546

This operator causes the processor to enter normai state, aliowing it to respond to external interrupts. This is accom­
plished by setting the UHF flip flop to 0.

DISABLE EXTERNAL INTERRUPTS (DEXI) 9547

This operator causes the processor to ignore external interrupts. This is accomplished by setting the IIHF to 1 and
entering control state.

SCAN OPERATORS

The scan operators communicate between the B 6800 data processor and the multiplexor, and between the data
processor and external subsystems of the B 6800 system.

The scan in functions read information from the multiplexor or external subsystem to the top of stack registers in the
data processor. The scan out functions write information from the top of stack registers in the data processor to the
multiplexor or to the external subsystems.

Parity is checked during transmission of both address and information and .a scan-bus parity error interrupt is generated
if the check fails.

Scan In (SCNI) 954A

Scan In uses the A register to specify the type of input required. The input data is placed in the B register. The A
register is empty and the B register full at the completion of the operation. Refer to section S of this manual for the
format of the function and data words for scan-in operations.

Read Time-Of-Day Clock

The read time of day scan-in operation is used to transfer the current value of the time of day register in the multiplexor,
to the data processor. The current value of the multiplexor time of day register is not altered in any way and proceeds
to count upward in the normal manner.

Read Interrupt Mask

This operation is used to transfer the current value of the interrupt mask register to the data processor top-of-stack
register. The current value of the interrupt mask register in the multiplexor register is not changed by this operation.

Read Interrupt Register

This operation is used to transfer the current value of the interrupt register to the data processor top-of-stack register.
The process of transferring the value of the interrupt register from the multiplexor to the data processor resets the
highest priority interrupt.

8-2

Read htterrupt Literal

B 6800 System Reference Manual
Variant Mode Operation and Operators

This operation is used to transfer a word indicating the highest priority interrupt, from the multiplexor to the data
· processor.

Interrogate Peripheral Status

This operation is used to transfer the current value of one of nine status vector words from the multiplexor to the
top-of-stack register in the data processor.

lnten-ogate Peripheral Unit Type

This operation transfers a peripheral unit type word from the multiplexor to the top-of-stack register in the data
processor.

Interrogate IO Path

This operation transfers a word of path availability data from the multiplexor to the top-of-stack register in the data
processor.

Interrogate IO Path Address

This operation transfers a word of path address data from the multiplexor to the top-of-stack register in the data
processor.

Interrogate IO Path Address Override

This operation transfers a word of path address override data from the multiplexor to the top-of-stack register in the
data processor.

Read Scratch Pad Word

11lis operation transfers the contents of one word of scratch pad memory to the top word in the data processor top of stack
register.

Read Proceaor Tlllle Counter

This operation transfers a word containing the current value of the processor time counter to the data processor top-of­
stack register. The value of the processor time counter in the multiplexor is reset to zero.

Sean Out (SCNO) 9S4B

The scan out operation causes the multiplexor to sense a function code in the top-of-stack register of the data processor.
11te micro code of the multiplexor causes other data from the top 2 words in the stack to be transferred to the multi­
plexor logic circuits, through use of the ZS bus. At the conclusion of the scan-out operator the top 2 words of the
stack are deleted from the stack.

5001290 8-3

Set Time of Day

B 6800 System Reference Manual
Variant Mode Operation and Operators

This operation is used to set a value into the time of day register in the multiplexor.

Set Interrupt Mask

This operation is used to set a value into the interrupt mask register of the multiplexor.

Set Pseudo Busy

This operation is used to set/reset the state of one of twenty peripheral control path pseudo busy flip flops.

Initiate IO Device (Control State Only)

This operation causes the multiplexor to initiate an IO device.

Refer to section five of this manual for the format of the IIOWD and IOAD words.

Initiate IO Device Path Address

This scan out operation is similar to the INITIATE IO DEVICE operation which was previously defined in this
section of this manual.

The difference between the INITIATE IO DEVICE, and the INITIATE IO DEVICE PATH ADDRESS is that the multi­
plexor will only initiate the IO device ihrough the specified path.

8-4

Initiate IO Device Path Address Override

B 6800 System Reference Manual
Variant Mode Operation and Operators

This operation is similar to the INITIATE IO DEVICE, and INITIATE IO DEVICE PATH ADDRESS scan out
operations that were defined· previously in this section of this manual.

The difference between the INITIATE IO PATH ADDRESS, and the INITIATE IO PATH ADDRESS OVERRIDE opera­
tions is that the initiate IO device with override will disregard the state of the pseudo busy flip flop.

READ PROCESSOR IDENTIFICATION (WHOI) 954E

This operator places a word containing the value of the processor ID register in the A register of the data processor.

The format of the word that is placed in the A register of the data processor is shown in. figure 8-1. At the conclusion
of the WHOI operator the A register is marked full.

OCCURS INDEX (OCRX) 9585

This operator places the following in the B register: a new index value calculated from the Index Control Word (ICW)
in the A register and the operand in the B register (figure 8-2).

The index word in the B register is integerized. If the index is greater than the maximum integer value
(549,755,813,887), the integer overflow interrupt is set and the operation terminated.

The LENGTH field of the ICW [47:16] is multiplied by the index value [15:16] minus 1, and that value is added to the
OFFSET fieid of the iCW. This iesult is the new index. The A register is marked empty and the B register is marked
full.

If either the ICW or the operand has a value of 0, the invalid index interrupt is set and the operation is terminated.

·If the index value is less than 0 or greater than the SIZE field [31: 16] of the ICW, the invalid index interrupt is set and
the operation is terminated.

INTEGERIZE, ROUNDED, DOUBLE-PRECISION (NTGD) 9587

This operator creates from the operand in the B register a double-precision, rounded integer in the B register. The
B register is marked full. If the word in the B register at the start of this operator is not an operand, the invalid operand
interrupt is set and the operation is terminated.

If the operand in the B register is larger than 8 t 26-1 in absolute value, the integer overflow interrupt is set and the
operation is terminated.

The B register is marked as a double-precision operand (tag bits set to 010) and the exponent is set to 13.

LEADING ONE TEST (WG2) 9588

This operator locates the most significant one-bit of the word in the B register and places the location of that bit into
the B register (bit number + 1).

If a one-bit is not sensed, the B register is set to all O's.

The B register is marked full.

5001290 8-5

0

0

0
44 40

B 6800 System Reference Manual
Variant Mode Operation and Operators

l I uLI I UL

UL UL UL

UL UL UL

UL UL SN
36 32 28 24 20 16 12

I

SN SN! SN

SN SN ID

SN i SN ID

SN SN ID
8 4 0

50:3 TAG FIELD
47:25 NOT USED
22:10 THE UNIT DESIGN (ERL) LEVEL OF THE CPU.

THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM
A FOREPLANE CONFIGURATION PLUG-ON JUMPER.
ADAPTER OF THE CPU

12:10 THE SERIAL NUMBER OF THE CPU.
THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER
OF THE CPU

2:3 THE PROCESSOR ID NUMBER OF THE CPU.

MV 1652

THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER
OF THE CPU.

Figure 8-1. WHOI Operator Returned Word

NORMALIZE (NORM) 958E

This operator performs normalization of the operand in the top of stack. The normalized operand is left in the
B register at the conclusion of the NORM operator, and the B register is marked full. Normalization is defined in
section 2 of this manual.

MOVE TO STACK (MVST) 9SAF

This operator causes the environment of the processor (or addressing space) to be moved from the current stack to the
program stack specified by the operand in the B register.

The operator builds a Top-of-Stack Control Word (TSCW) (Figure 8-3) and places it at the base of the current stack
as addressed by the Base-of-Stack Register.

The operand in the B register is integerized and checked against the stack vector for invalid index. The value in the
B register is added to the address field of the stack vector Descriptor (at D[O] +2), to address the descriptor for the new
stack.

The Data Descriptor for the requested stack is accessed. If the presence bit is "on," the address field is placed into the
Base-of-Stack Register. The TSCW is brought up and the stack is marked "active" by storing the processor ID at the
base of the stack. The TSCW is distributed and the D registers are updated.

8-6

B 6800 System Reference Manual
Variant Mode Operation and Operators

l.NDEX CONTROL WORD (ICX)

1 •·••·•••··· t) fir~:,
··········(/ ·····

< ·< •.• i
.,.. ..

(· ..

< \ > ii
> <(

l1~r F ;
LENGTH)<(SIZE

k ... ><< 1-----'1
·.··••

~i~ I 44 40 36 32 28 24 20 16 I~·.

INDEX WORD

r
I
I ..

~

r----

INDEX
r----

44 40 36 32 28 24 20 16 12

MV 1653

Figure 8-2. Index Control Word {ICW) and Index Word

OFFSET

12 8 4 0

8 4 0

If during the integerization the operand in the B register is too large, the integer overflow interrupt is set and the opera­
tion is terminated.

If the index value is less than 0 or greater than the length field of the Data Descriptor for the stack vector array, an
invalid index interrupt is set and the operation is terminated.

READ COMP ARE FLIP-FLOP (RCMP) 9583

This operator reads the state of the CMPF flip flop, and creates a single-precision word in the data processor A register.
If the CMPF flip flop is in the binary one state, the low order bit (bit zero) of the single precision word in the A register
is set. If the CMPF flip flop is in the binary zero state, the low-order bit of the A register is reset. The A register is
marked full at the conclusion of the operation.

SET TAG FIELD (STAG) 9584

This operator sets the tag field (bits 50:3) in the B register to the value of bits 2:3 of the operand in the A register.
At the completion of the operation, the A register is marked empty and the B register is left full.

5001290 8-7

B 6800 System Reference Manual
Variant Mode Operation and Operators

DSF
OFF

ES
0
T
F

- EXTERNAL SIGN FLIP FLOP DSF - DELTA $-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSA
- OVERFLOW FLIP FLOP N - NORMAL-CONTROL STATE FLIP FLOP
- TOGGLE, TRUE-FALSE FLIP FLOP LL - ADDRESSING LEVEL
- FLOAT FLIP FLOP OFF - DELTA F-REGISTER FIELD; VALUE OF rF RELATIVE TO rS

MV 1654

Figure 8-3. Top-of-Stack Control Word (TSCW)

READ TAG FIELD (RTAG) 95BS

This operator repiaces the word in the A register wiih a single-precision operand equal to the tag field of that word. The
tag bits are placed in bits 2:3. The A register is marked full.

ROTATE STACK UP (RSUP) 95B6

This operator permutes the top three operands of the stack so that the first operand has become the second, the second
has become the third, and the third has become the first (see figure 8-4).

ROTATE STACK OOWN.(RSDN) 95B7

This operator permutes the top three operands of the stack so that the first has become the third, the second has
become the first, and the third has become the second (see figure 8-4).

READ PROCESSOR REGISTER (RPRR) 95B8

This operator reads the contents of one of the eight Base registers, eight Index registers or one of the 32 D registers
into the A register.

The six low order bits of the A register selects the processor register to be read.

The decoding of these six bits is as follows:

8-8

Bits 5:2 = 10
Bits 2:3 = 0,

= I,
= 2,

= Index register
= PIR
=SIR
=DIR

BEFORE ROTATION

rA WORD ONE

rB WORD TWO

s~ WORD THREE

AFTER ROTATION

rA WORD THREE

rB WORD ONE

s- WORD TWO

STACK ROTATION UP

MV 1655

Bits 5:2
Bits 2:3

B 6800 System Reference Manual
Variant Mode Operation and Operators

BEFORE ROTATION

rA WORD ONE

rB WORD TWO

s- WORD THREE

AFTER ROTATION

rA WORD TWO

rB WORD THREE

s- WORD ONE

STACK ROTATION DOWN

Figure 8-4. Rotate Stack Operations

= 3, = TIR, BUF 3
= 4, = LOSR
= 5, = BOSR
= 6, =F
= 7, = BUF
=11 = Base register
= 0, = PBR
= 1, = IBR
= 2, = DBR
= 3, = TBR, BUF 2
= 4, =S
= 5, = SNR
= 6, =PDR
= 7, =TEMP

If bit 5 is 0, bits 4: 5 select the D register equal to the binary value of the bits; i.e., bits 4: 5 = 00101 select D register 5.

At the completion of this operation the A register contains the contents of the selected register, and is marked full.

SET PROCESSOR REGISTER (SPRR) 95B9 •

This operator places the contents of the address field of the A register into one of the eight Base registers, eight Index
registers or 32 D registers selected by the six low-order bits of the word in the B register.

5001290 8-9

B 6800 System Reference Manual
Variant Mode Operation and Operators

The decoding of the six low-order bits is the same as in the Read Processor Register operator (RPRR) discussed under
the previous heading.

The A and B registers are marked empty.

READ WITH LOCK (RDLK) 9SBA

This operator performs the same operation as the Overwrite operator (see section 7), with the exception that the word
which was in memory before the overwriting is left in the A register.

COUNT BINARY ONES (CBON) 95BB

This operator counts the number of one-bits in the single-precision (double-precision) operand in the A register. At the
completion of the operation, the total count is left in the A register with the register marked full.

LOAD TRANSPARENT (LODT) 95BC

This operator performs a Load operator (see section 7) if the word in the A register is a Data Descriptor or an Indirect
Reference Word. If it is neither of these, bits 19:20 of the A register are used as the address to bring an operand to the
A register. Copy bit action does not occur.

LINKED UST LOOKUP (LLLU) 95BD

This operator searches a linked list of words.

The operator starts with an operand in the top Of the stack as the index pointer. The second word in the stack is a
non-indexed Data Descriptor to the array containing the linked list. The third word in the stack is an operand that is
the argument.

The base address of the linked list, the length of the list and the argument value are saved throughout the entire operator
process.

The word addressed by the base address plus the index value are read and checked for a value of 0 in the address (Link)
portion of the word (0 denotes the end of the linked list). If the link is non-zero, bits 47:28 are compared to the
argument value. If the argument of the linked-list word is less than the argument value, the actions described in this
paragraph are repeated using the link as the new index.

When the value of the argument field of the linked-list word is equal to or greater than the argument value, the operation
is complete. The index pointing to the word whose link points to the argument which satisfies the test is left in the
A register and is marked full.

If the value of the link portion of the linked-list word is equal to 0, the A register is set to minus one (-1), and marked
full as the operation is completed.

If the index value in the linked list word is greater than the length value from the descriptor, an invalid index interrupt
is set and the operation is terminated.

When the first word in the stack at the start of this operator is not an operand an invalid-operand interrupt is set and the
operation is terminated.

If the Data Descriptor has bt.-~n indexed, the invalid-operand interrupt is set and the operation is terminated.

8-10

B 6800 System Reference Manual
Variant Mode Operation and Operators

MASKED SEARCH FOR EQUAL (SRCH) 95BE

At the start of this operator, the word in the A register must be a Data Descriptor. The operand in the B register is a
51-bit mask. The Data Descriptor in the A register and the mask in the B register are saved, and the SI-bit argument
word is placed into the B register. If the descriptor is indexable {bit 45 equal to 0), 1 is subtracted from the length
field. If bit 45 is equal to 1, the data descriptor is already indexed; therefore, that index is the starting value.

The word addressed by the descriptor is placed in the A register and ANDed with the mask word. The result of this
AND function is tested to determine if it is identical to the argument word.

If the comparison is not equal, the index field of the descriptor is decreased by 1 and the operation is repeated. If the
index field is equal to 0, the A register is set to a minus one value and marked full. The B register is marked empty.

If an equal comparison is made, the A register contains the index pointing at the last word compared and is marked full.
The B register is marked empty.

UNPACK ABSOLUTE, DESTRUCTIVE (UABD) 95Dl

This operator unpacks a string of four-bit digits into six-bit characters or eight-bit bytes. At the start of the operator,
the word in the A register defines the length of the operand in the B register; i.e., the string of digits to be unpacked.

The third word in the stack is a string descriptor addressing the destination of the string.

As the specified number of digits are transferred to the destination (most significant bit first) zone fill is as follows:

1. If the destination size is six-bit (BCL) format, the characters are transferred to the destination with the
two zone bits set to 0.

2. If the destination size is eight-bit (EBCDIC) format, the bytes are transferred to the destination string with
the four zone bits set to 1111.

3. If the destination size is 0, it is set to eight-bit format and handled as in 2 above.

UNPACK ABSOLUTE, UPDATE(UABU)95D9

This operator performs an Unpack Absolute operation; at the completion of the operation, the destination pointer is
updated and left in the stack.

UNPACK SIGNED, DESTRUCTIVE (USND) 9SDO

This operator performs an Unpack Absolute operation, plus an added function if the External Sign flip-flop is set, then
a zone of 10 is set in the last character for six-bit or a zone of 1101 is set in the last byte for eight-bit.

If the destination size is four-bit, the first digit position of the destination string is set to 1101 provided the External
Sign flip flop is set. If the External Sign flip flop is 0, the first digit is set to 1100.

UNPACK SIGNED, UPDATE (USNU) 95D8

This operator performs an Unpack Signed operation; at the completion of the operation, the destination pointer is
updated.

5001290 8-11

B 6800 System Reference Manual
Variant Mode Operation and Operators

TRANSFER WIDLE TRUE, DESTRUCTIVE (TWTD) 9SD3

This operator transfers characters from the source string to the destination string for the number ~f characters specified
by the length operand while the stated relationship is met. If the relationship is not met, the tran.sfer Is terminated at
that point. The relationship is determined by using the source character to index a table. If the bit indexed is a 1, the
reiationship is true.

The operator uses the top four words in the stack as follows. The top word addresses the table; the second word is the
length of the string to be transferred. The third word in the stack is an operand or a descriptor addressing the source
string or a single-precision operand which is the source string; and the fourth word in the stack is a descriptor pointing at
the destination string.

The table is indexed as follows to obtain the decision bit. The source character is expanded to eight bits, if necessary, by
appending two or four leading 0 bits. The three high-order bits of these eight select a word from the table, indexing the
table pointer. The remaining five bits of the expanded source character select a bit from this word by their value.

TRANSFER WHILE TRUE, UPDATE (TWTU) 9SDB

This operator performs a Transfer While True operation, but updates the source pointer, the destination pointer and
repeat count.

If all the characters specified by the length field are transferred, the True False flip flop (TFFF) is set to 1 (true); other­
wise it is set to 0 (false).

TRANSFER WHILE FALSE, DESTRUCTIVE (TWFD) 9502

This operator performs a Transfer While operation and tests for a zero bit in the table.

TRANSFER WHILE FALSE, UPDATE (TWFU) 9SDA

This operator performs a Transfer While False operation, but updates the source pointer, the destination pointer, and
the repeat count.

If all the characters specified by the length field are transferred, the True/False flip flop (TFFF) is set to 1 (true);
otherwise, it is set to 0 (false).

TRANSLATE (TRNS) 95D7

This operator translates the number of characters specified as they am transfened from the source string to the
destination string.

The translation uses a table containing the translated characters. The word in the top of the stack is a descriptor that
addresses the translation table. The second operand in the stack specifies the length of the string. The third word in

8-12

B 6800 System Reference Manual
Variant Mode Operation and Operators

the stack is a descriptor addressing the source string (or an operand which is the source string), and the fourth word in
the stack is a descriptor addressing the destination string. The source and destination are updated at the end of the
operation.

The translation occurs as follows. The specified string character is used as an index into the table to locate a character.
The located character is transferred to the destination string.

The least significant 32 bits of each table word provide four eight-bit characters. The table sizes are as follows:

I. Four-bit digits provide a 4-word table length.

2. Six-bit characters provide a 16-word table length.

3. Eight-bit bytes provide a 64-word table length.

SCAN WHILE GREATER, DESTRUCTNE (SGTD) 95F2

This operator scans a string while the characters in the source string are greater than a delimiter character or until the
number of characters specified have been scanned.

If all the characters have been scanned at the completion of this operation, TFFF is set to I. If the scan was stopped
by the delimiter test before the end of the string, the TFFF is set to 0.

If the delimiter against which the string is compared is equal to the character from the string then the compare flip-flop
(CMPF) is set. If the character in the string is less than the delimiter then CMPF flip-flop is reset.

At ihe start of this operator the deiimiter character is right justified in the top word of the stack. The length of the
string to be scanned is the second word of the stack. The source pointer is the third word in the stack.

If the second word in the stack is a descriptor, it is the source pointer and the length of the character string is set
to 1,048,575 (length field is all ones).

SCAN WHILE GREATER, UPDATE (SGTU) 95F A

This operator performs a Scan While Greater operation and also updates the count and the source pointer. The updated
source pointer locates the character that stopped the scan. The number of characters not scanned is placed in the
A register, and the register is marked full.

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE (SGED) 95Fl

The operator performs a Scan While operation while the characters in the source string are equal to or greater than the
delimiter character. If all the characters have been scanned at the completion of the operation then the TFFF flip-flop
is set.

SCAN WHILE GREATER OR EQUAL, UPDATE (SGEU) 95F9

This operator performs a Scan While Greater or Equal operation, but also updates the count and the source pointer.

5001290 8-13

B 6800 System Reference Manual
Variant Mode Operation and Operators

SCAN WHILE EQUAL, DESTRUCTNE (SEQD) 9SF4

This operator performs a Scan While operation while the characters in the source string are equal to the delimiter
character. ff all characters are compared then the TFFF flip-flop is set.

If the delimiter against which the string is compared is less than the character from the string then the compare
flip-flop (CMPF) is set.

SCAN WHILE EQUAL, UPDATE (SEQU) 9SFC

This operator performs a Scan While Equal operation, but also updates the count and the source pointer.

SCAN WHILE LESS OR EQUAL, DESTRUCTNE (SLED) 9SF3

This operator performs a Scan While operation while the characters in the source string are equal to or less than the
delimiter character. If all characters are compared then the TFFF flip-flop is set.

SCAN WHILE LESS OR EQUAL, UPDATE (SLED) 9SFB

This operator performs a Scan While Less or Equal operation, but also updates the count and source pointer.

SCAN WHILE LESS, DESTRUCTNE (SLSD) 9SFO

This operator performs a Scan While operation while the characters in the source string are less than the delimiter
character.

SCAN WHILE LESS, UPDATE (SLSU) 9SF8

This operator performs a Scan While Less operation, but also updates the count and the source pointer.

If the character from the table, against which the string is compared, is equal to the character from the string then the
compare flip flop {CMPF) is set.

SCAN WHILE NOT EQUAL, DESTRUCTNE (SNED) 95FS

This operator performs a Scan While operation while the characters in the source string are not equal to the delimiter
character. If all characters are compared then the TFFF flip-flop is set.

8-14

B 6800 System Reference Manual
Variant Mode Operation and Operators

SCAN WHILE NOT EQUAL, UPDATE (SNEU) 95FD

This operator performs a Scan While not Equal operation, but also updates the count and the source pointer.

SCAN WHILE TRUE, DESTRUCTIVE (SWTD) 95D5

This operator uses each source character as an index into a table to locate a bit in the same fashion as the transfer while
True operators. If the bit located contains the value of one, the relationship is true and the scan continues.

The first word in the stack is a descriptor addressing the table. The second and third words in the stack are the same
as for all Scan While operators.

SCAN WHILE TRUE, UPDATE (SWTU) 95DD

This operator performs a Scan While True operation, but also updates the count and the source pointer. The number of
characters not scanned is placed in the A register.

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) 9504

This operator performs a Scan While False operation, except the relation is true if the bit found by indexing into the ~

table contains the value of zero.

SCAN WHILE FALSE, UPDATE (SWFU) 95DC

This operator performs a Scan While False operation, but also updates the count and the source pointer.

5001290 8-15

B 6800 System Reference Manual

SECTION 9

EDIT MODE OPERATION AND OPERATORS

GENERAL

The purpose of the edit mode operators is to perform editing functions on strings of data. The editing functions are those
which are normally involved in preparing information for output. They include such operators as move, insert, and skip,
in the form of micro-operators in either the program string or in a separate table. In the program string, they are single
micro-operators and are entered by use of the execute single micro or single pointer operators (see section 7). If the
micro-operators are in a table, the table becomes the program string that is to be executed. This table is entered by
means of the table enter edit operators (see section 7), and is exited through the end edit micro-operator as defined later
in this section.

If the source or destination data has the memory protect bit (bit 48) equal to one, the segmented-array interrupt is set
and the current micro-operator is terminated.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order,
by mode.

EDIT MODE OPERA TORS

The edit mode operators are described in the following paragraphs of this section.

MOVE CHARACTERS (MCHR) D7

This micro-operator transfers characters from the source string to the destination string.

If this micro-operator is entered by the table enter edit operator (see section 7), the number of characters to be trans­
ferred is specified by the syllable following the operator syllable.

If this micro-operator is entered by the execute single micro operator (see section 7), the number of characters to be
transferred is specified by the operand in the top of the stack.

MOVE NUMERIC UNCONDITIONAL (MVNU) D6

This micro-operator transfers the four low-order bits of the characters of the source string to the destination string. If
the destination string character size is 6 bits (BCL) the zone bits are set to 00. If the destination string character size is
8 bits (EBCDIC), the zone bits are set to 1111.

If this micro-operator was entered by use of the table enter edit operator (see section 7), the number of characters to be
transferred is specified by the syllable following the micro-operator syllable.

If this micro-operator is entered by executing the execute single micro operator (see section 7), the number of characters
to be transferred is specified by the operand in the top of the stack.

MOVE WITH INSERT (MINS) DO

This micro-operator performs a move numeric unconditional or an insert operation under the control of the Float flip flop.

In table edit mode the second syllable is the repeat value and the third syllable is the character to be inserted under
control of the Float flip flop.

5001290 9-1

B 6800 System Reference Manual
Edit Mode Operation and Operators

In execute single micro mode the repeat field value is the top word of the stack and the insert character is in the syllable
following the micro-operator syllable.

If the Float flip flop equals 0 and the numeric portion of the source characters equals zero, the insert character is moved
to the destination string.

If the Float flip flop is reset, and the numeric portion of the source character is not equal to zero, then set the Float
flip flop, and perform a move numeric unconditional operation.

The number of characters transferred from the source string to the destination string is defined by the repeat value.

MOVE WITH FLOAT (MFLT) Dl

In table edit mode the second syllable is the repeat value (the number of characters to transfer). The third, fourth, and
fifth syllables are the three insert characters. In single-micro mode, the three insert characters are in the second, third,
and fourth syllables.

If the Float flip flop equals 0 and the numeric portion of the character in the source string equals 0, the first-insert char·
acter is transferred to the destination string.

If the Float flip flop equals 0 and the numeric portion of the character in the source string is not 0 the Float flip flop
is set. If the External Sign flip flop equals 1, the second-insert character is transferred to the destination string. If the
External Sign flip flop equals 0, the third-insert character is transferred to the destination string. The numeric version of
the source character is then transferred.

If the Float flip flop equals 1, the numeric equivalent of the source character is transferred to the destination.

This operation continues for the number of characters defined by the repeat field value.

This operator can be entered by the Execute Single Micro operator, with the repeat field value in the top word of the
stack.

SKIP FORWARD SOURCE CHARACTERS (SFSC) D2

This micro-operator increments the source pointer registers.

If this micro-operator or any of the following Skip micro-operators is entered by the execution of the Execute Single
Micro operator, the number of characters to be skipped is specified by the operand in the top of the stack. If entry is
by the execution of the Table Enter Edit operators, the number of characters to be skipped is specified by the syllable
following the micro-operator syllable.

SKIP REVERSE SOURCE CHARACTERS (SRSC) D3

This micro-operator decrements the source pointer registers.

Also see Skip Forward Source Characters micro-operator, second paragraph.

SKIP FORWARD DESTINATION CHARACTERS (SFDC) DA

This micro-operator increments the destination pointer registers.

9-2

B 6800 System Reference Manual
Edit Mode Operation and Operators

SKIP REVERSE DESTINATION CHARACTERS (SRDC) DB

This micro-operator decrements the destination pointer registers.

RESET FLOAT (RSTF) D4

JThis micro-operator sets the Float flip flop to 0.

END FLOAT (ENDF) DS

This micro-operator transfers the character in the second syllable of this operator to the destination string if the Float
flip flop contains a 0 and the External Sign flip flop is 1.

If the Float flip flop contains a 0 and the External Sign flip flop also equals 0, then the character in the third syllable of
this operator is transferred.

If the Float flip flop contains a l, then it is reset and no characters are transferred.

INSERT UNCONDITIONAL (INSU) DC

This micro-operator places an insert character into the destination string for the number of times specified by the repeat
value. When entered by a Table Enter Edit operator, the repeat value is in the syllable following the micro-operator
syllable, and the insert character is in the next syllable.

If this micro-operator is entered by an Execute Single Micro operator, the character to be inserted is in the second syllable
and the repeat value is specified by the operand in the top of the stack.

INSERT CONDITIONAL (INSC) DD

This micro-operator inserts a string consisting of one of two characters into the destination string. The length of the
string is given by the repeat value from the table or the stack.

If the Float flip flop contains a 0, the first insert character is inserted into the destination string.

If the Float flip flop contains a 1, the second insert character is inserted into the destination string.

The insert characters follow the repeat value syllable in Table Enter Edit operation or the micro-operator syllable in
Execute Single Micro operations.

INSERT DISPLAY SIGN (INSG) D9

This micro-operator places in the destination string the character defined by the syllable following the micro-operator
syllable, if the External Sign flip flop is equal to 1.

If the External Sign flip flop is equal to 0, this operator places in the destination string the character defined by the
third syllable of this operator.

INSERT OVERPUNCH (INOP) D8

If the External Sign flip flop is equal to 1, this micro-operator places a sign overpunch in the destination string character
of either 0 for BCL or 1101 for EBCDIC.

5001290 9-3

B 6800 System Reference Manual
Edit Mode Operation· and Operators

If the External Sign flip flop is equal to 0, the operator leaves the destination str~ng character unaltered.

END EDIT (ENDE) DE

This operator terminates a string of Edit micro-operators in Table Enter Edit operation mode.

The micro program string in the table must end with the End Edit operator.

9-4

B 6800 System Reference Manual

SECTION 10

VECTOR MODE OPERATORS

GENERAL

The use of Vector Mode provides for an increase in efficiency in the manipulation of arrays. The increase in efficiency
is not an automatic feature that applies to all data processor operations. Vector mode makes it possible for certain soft­
ware compilers, such as ALGOL or FORTRAN, to specify that vector mode rules will apply under controlled conditions.

LIMITATIONS OF VECTOR MODE

Vector mode operations require that the system be operated in control state. This requirement means that a processor
performing vector mode operations cannot be interrupted to service external interrupts.

Vector mode operations do not permit segmentation of the arrays. This occurs because presence bit interrupts are dis­
allowed. This limitation requires that the entire extent of the array /arrays must be present in memory while performing
vector operations.

Vector mode operation allows the use of other modes and operators in the B 6800 operator set, subject to the following
limitations:

a. String operators and edit mode operators are not allowed.

b. No family C operators, except the branching operators (BRTR, BRFL, and so forth) are allowed while
operating in vector mode.

c. No operator that pseudo calls a fai.11ily C operntor is allowed wl1ile operating in vector mode.

d. The LIT 48, and branch operators are not used while performing in single program word vector mode
(VMES) because of the size of the operator codes, in syllables.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order,
by mode.

HARDWARE FUNCTIONS

The Vector Mode hardware does the following:

a. Utilizes registers to hold the actual addresses of array elements that are referenced.

b. Uses additional registers to contain the increment values used for altering the addresses (indexing) to refer­
ence successive array elements.

c. Uses one register to contain a "count" or length that controls the number of iterations.

d. Provides for cycling through one (single-word mode) or more (multiple-word mode) words of code for each
iteration.

e. Introduces new operators for use while in Vector Mode to load and store the top-of-stack, and to control
iterating and exiting from Vector Mode.

f. Provides two primary mode operators used to enter Vector Mode.

5001290 10-1

B 6800 System Reference Manual
Vector Mode Operators

Seven IC memory locations are used as the registers mentioned above to hold the three absolute addresses, the three
corresponding increment values, and the length.

The three addresses are referred to as A, B, and C, respectively.

These registers are loaded automatically from the stack upon execution of either of two Enter Vector Mode operators.

PRIMARY MODE ENTER VECTOR MODE OPERATORS

There are two primary mode operators used for vector operations in the B 6800 Data Processor. These operators are
as follows:

Mnemonic Hexadecimal Code Operator Description

G VMES EF Vector Mode Enter Single

G VMEM E7 Vector Mode Enter Multiple

Both of these operators perform a similar function. They use the string-operator enter edit mode logic procedure to
initialize the data processor for Vector Mode operations. The difference between these two operators is the number of
words of Vector Mode program code that are required. If the Vector Mode operators in the program code-stream con­
sist of one word of program code, then the "VMES" operator is used. If more than one word of program code is
required while in Vector Mode, then the "VMEM" operator is used. The compilers that allow Vector Mode operations
contain code to determine whkh of these two "Enter Vector Mode" operators is to be used.

ENTER VECTOR MODE OPERATION

An entry into Vector Mode operations occurs when the VMES (EF), or VMEM (E7) operator is executed from the pro­
cessor P register. Prior to entering Vector Mode, the processor stack must be properly configured to perform Vector
operators.

The processor registers and the operating stack must have the following format:

A REGISTER DATA DESCRIPTOR (POINTER C)

B REGISTER LENGTH OPERAND (OPTIONAL) }
MEMORY (S REG) DATA DESCRIPTOR (POINTER A)

MEMORY (S-1) DATA DESCRIPTOR (POINTER 8)

MEMORY (S-2) POINTER C INCREMENT OPERAND

MEMORY (S-3) POINTER A INCREMENT OPERAND

MEMORY ($-4) POINTER B INCREMENT OPERAND

10-2

DATA PROCESSOR
TOP-OF-STACK REGISTERS

MEMORY PART OF
PROCESSOR STACK

B 6800 System Reference Manual
Vector Mode Operators

Before entering Vector Mode, the values to be stored in IC memory must be placed in the stack. LENGTH specifies the
number of iterations through the code to be executed while in Vector Mode, usually the number of elements in the
arrays being manipulated. The presence of a LENGTH value in the stack is indicated by bit 44=1 in Pointer C. Should
bit 44=0, a default LENGTH of 220-1 is stored in the LENGTH register. Bit 44 (segmented bit) must be OFF in
Pointer A and Pointer B. The software ascertains that bit 44 is ON in Pointer C before using it to indicate the presence
of a LENGTH value.

The seven parameters are inserted in IC memory as follows:

Register

BRS3

BRS7

BRSl

BRS2

IRS3

!RS!

IRS2

Vector Mode Contents of Register

Pointer C [19:20] (or Pointer C [39:20] plus [19:20] if I* = 1)

LENGTH [19:20] (or 220-1)

Pointer A [19:20] (or Pointer A [39:20) plus [19:20) if I* = 1)

Pointer B [19:20] (or Pointer B [39:20) ** plus [19:20) if I* = 1)

Pointer C increment [19:20]

Pointer A increment [19:20]

Pointer B increment [19:20]

*I is the indexed bit; bit 45 in the descriptor.
**Use [35: 16] if the. size field is not equai to zero.

The Enter Vector Mode operator may be terminated by one of the following interrupts:

Type of Interrupt

a. Invalid Op:

b. Memory Protect:

c. Presence Bit:

5001290

Cause of the Interrupt

Pointer A, B or C not tagged as a data descriptor or Pointer A or B has
bit 44=1.

Pointer A is read only (bit 43=1).

Pointer A, B or Chas bit 47~0.

10-3

B 6800 System Reference Manual
Vector Mode Operators

At the conclusion of the enter Vector Mode flow, the IC memory is configurated as follows:

Register Nam~ Contents of the Register

SIR The value of the "A" increment

DIR The value of the "B" increment

TIR The value of the "C" increment

SBR The base address of pointer "A"

DBR The base address of pointer "B"

TBR The base address of pointer "C"

TEMP The value of the length operand

The word in the P register at the end of the Enter Vector Mode flow contains the Vector Operators that are to be exe­
cuted. The PSR register is equal to zero, and thus specifies that the first Vector Mode operator commences in syllable
zero.

If the entry to Vector Mode is the single-word mode entry VMES operator, the single word of code following that entry
is held in. the P Register (prognm1 word fetching is in.hibited) and executed a number of times equal to the LENGTH
parameter. Each time the word is executed, LENGTH is decremented by one until it becomes zero. Then Vector Mode
is exited and normal operation continues with the next word of code in sequence.

VECTOR STACK OPERATORS

Vector Stack operators are a group of twenty-eight operators with a common syllable format. Variations of this syllable
provide the capabilities of storing or loading the top-of-stack with a single- or double-precision operand and choosing
whether or not to increment the pointer.

P REGISTER

10-4

L D

0 LS A1
14-BIT VECTOR VECTOR VECTOR

1 RA
ADDRESS COUPLE - OPERATOR OPERATOR OPERATOR

AO I

1 RB
4o

1
36 28 44 32 24 20 16 12 8 4 0

!TAG lsvLLABLEISYLLABLElsYLLABLEISYLLABELISYLLABLEISYLLABLEI
0 1 2 3 4 5

LS

RA

RBl

A1

AO

I

A VECTOR OPERATOR OCCUPIES ONE THROUGH
THREE SYLLABLES OF THE P REGISTER. THE VECTOR
BRANCH OPERATOR (VEBR, HEX CODE EE), AND THE
FTCH/STOR OPERATORS USE THREE SYLLABLES.
ALL OTHER VECTOR OPERATORS USE A SINGLE

SYLLABLE

B 6800 System Reference Manual
Vector Mode Operators

The format of the Vector Operator syllable is as follows:

L

LS

RA

RB

D

Al, AO

I

Description

The most significant bit in the Vector Operator, equals one if a length factor is passed to the Vector
Stack upon entering Vector Mode; otherwise, L equals zero.

Bit is OFF (O) for a Top-of-Stack Load operator and ON (1) for a Top-of-Stack Store operator.

If a Memory Protect Interrupt is sensed and no LENGTH is passed to the Vector Mode and RA=O,
the top-of-stack word is deleted. If RA=l, the top-of-stack word is not deleted.

Same as the RA bit except that it governs the action taken on the second word of the stack.

Double-precision bit. If D=O, load or store single-precision operand (Fam G). If D=l, load or store
double-precision operand (Fam H).

Selects the IC Memory Address Register.

0 0 Load from Pointer A (BRSl)

0 Load from Pointer B (BRS2)

0 Load from Pointer C (BRS3)

When I equals 1 ~ the pointer used for the memory address is increased by its corresponding pointer
increment following the load or store operator. When I equals 0, the pointer increment is inhibited.

VECTOR MODE OPERATOR CODES

The twenty-seven Vector Mode operators are identified as follows:

FAMILY 0 1 2 3 4 5 6 7 8 9 A B c D E F

G E LOA LDAI LOB LDBI LDC LOCI VMEX DLA DLAI DLB DLBI DLC DLCI VEBR

H F STA STAI STB STBI STC STCI DSA DSAI DSBI DSC DSCI NOOP NVLD

Two other operators are used to load/store the top-of-stack from/to an address couple. They are enabled only when a
LENGTH is passed by the Vector Mode entry. Their format is as follows:

I 0 I LS I I NEXT SYLLABLE

1~ iJECTOR OPERATOR ~1
ADDRESS· COUPLE ~1

5001290 10-5

B 6800 System Reference Manual
Vector Mode Operators

The address couple is formed from the low-order six-bits of the vector-operator, and the next operator-syllable, which
are concatenated to form a fourteen-bit address-couple.

Where; LS=O then load (FTCH operator), or when
LS=l then store (STOR operator).

The A Register is loaded from (or stored into) the memory location determined by the normal address-couple decoding
convention (same as Value Call).

VECTOR OPERATORS

The following is a list. of Vector Stack operators.

Operator Hex OP-Code

Load A EO

Load B E2

Load C E4

Load A - Increment El

Load B - Increment E3

Load C - Increment ES

Store A FO

Store B F2

Store C F4

Store A - Increment Fl

10-6

Description

The stack is adjusted (0,2) and the single-precision word selected by
Pointer A (BRSI} is loaded into the top-of-stack.

The stack is adjusted (0,2} and the single-precision word selected by
Pointer B (BRS2) is loaded into the top-of-stack.

The stack is adjusted (0,2} and the single-precision word selected by
Pointer C (BRS3} is loaded into the top-of-stack.

The stack is adjusted (0,2) and the single-precision word selected by
Pointer A (BRSl) is loaded into the top-of-stack. Pointer A is
increased by its increment (IRSl} following the transfer.

The stack is adjusted (0,2} and the single-precision word selected by
Pointer B (BRS2) is loaded into the top-of·stack. Pointer B is
increased by its increment (IRS2) following the transfer.

The stack is adjusted (0,2) and the single-precision word selected by
Pointer C (BRS3) is loaded into the top-of-stack. Pointer C is
increased by its increment (IRS3} following the transfer.

The stack is adjusted (1,2) and the single-precision word in the top­
of-stack is stored in the location given by Pointer A (BRS 1).

The stack is. adjusted (1,2) and. the single-precision word in the top­
of-stack is stored in the location given by Pointer B (BRS2}.

The stack is adjusted (1,2) and the single-precision word in the top­
of-stack is stored in the location given by Pointer C (BRS3).

The stack is adjusted (1,2) and the single-precision word in the top­
of-stack is stored in the location given by Pointer A (BRS 1).
Pointer A is increased by its increment (IRSl) following the
transfer.

Operator

Store B - Increment

Store C - Increment

Double Load A

Double Load B

Double Load C

Double Load A -
Increment

Double Load B -
Increment

Double Load C -
Increment

Double Store A

Double Store B

Double Store C

Double Store A -
Increment

Double Store B -
Increment

Double Store C -
Increment

5001290

B 6800 System Reference Manual
Vector Mode Operators

Hex OP-Code Description

F3

FS

E8

EA

EC

E9

EB

ED

F8

FA

FC

F9

FB

FD

The stack is adjusted (1,2) and the single-precision word in the top­
of-stack is stored in the location given by Pointer B (BRS2).
Pointer B is increased by its increment (IRS2) following the transfer.

The stack is adjusted (1,2) and the single-precision word in the top­
of-stack is stored in the location given by Pointer C (BRS3).
Pointer C is increased by its increment (IRS3) following the transfer.

The stack is adjusted (0,2) and the double-precision word selected
by Pointer A (BRSl) is loaded into the top-of-stack.

The stack is adjusted (0,2) and the double-precision word selected
by Pointer B (BRS2) is loaded into the top-of-stack.

The stack is adjusted (0,2) and the double-precision word selected
by Pointer C (BRS3) is loaded into the top-of-stack.

The stack is adjusted (0,2) and the double-precision word selected
by Pointer A (BRSl) is loaded into the top-of-stack. Pointer A is
increased by its increment (IRSl) following the transfer.

The stack is adjusted {0,2) and the double-precision word selected
by Pointer B (BRS2) is loaded into the top-of-stack. Pointer B is
increased by its increment (IRS2) following the transfer.

The stack is adjusted (0,2) and the double-precision word selected
by Pointer C (BRS3) is loaded into the top-of-stack. Pofu.ter C is
increased by its increment {IRS3) following the transfer.

The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer A (BRSl).

The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer B (BRS2).

The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer C {BRS3).

The stack is adjusted {1,2) and the double-precisiori word in the
top-of-stack is stored in the location given by Pointer A (BRSl).
Pointer A is increased by its increment (IRSl) following the transfer.

The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer B (BRS2).
Pointer B is increased by its increment (IRS2) following the transfer.

The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer C (BRS3).
Pointer C is increased by its increment (IRS3) following the transfer.

10-7

Operator

Vector Branch

Vector Mode Exit

B 6800 System Reference Manual
Vector Mode Operators

Hex OP-Code Description

EE

E6

A three-syllable operator where the two syllables following the
operator contain a branch address. If the length count is > 0 the
length count is decremented by one, and the program continues at
the next syllable following the address. If the length is equal to
zero, Vector Mode is exited by fetching the program word specified
by the branch address.

Allows the program to exit from Vector Mode, to Primary Mode.

VECTOR BRANCH AND VECTOR EXIT OPERATORS

When the entry to Vector Mode is the multiple-word type (VMEM operator), whatever code that follows it is executed
under Vector Mode rules. The two Vector Mode operators explained below are used only in conjunction with the
VMEM operator.

10-8

a. Vector Mode Exit operator (VMEX) causes the program to exit from vector mode, and return to normal
mode operations.

b. Vector Branch (VEBR) is a three syllable operator. The two syllables following the operator code contain
the branch address. The Vector Branch operator examines LENGTH. If it is greater than zero, LENGTH is
decremented by one, the next two program syllables containing the branch address are skipped, and the
program is resumed at the following syllable. If the examined LENGTH is zero, Vector Mode is exited, and
normal mode operation commences with the program word located by t.lie branch address.

B 6800 System Reference Manual

SECTION 11

PERIPHERAL DEVICES AND CONTROLS

GENERAL

Section one of this manual defines the types of peripheral devices that are operated as input or output devices of the
B 6800 system. Section five defines the functions of the multiplexor in controlling the operations of the B 6800 system
peripheral devices.

This section will define the unit control field of the IOCW, and the IO descriptor formats that are used by the multi­
plexor to initiate and control IO devices in the B 6800 system. This section will define the IO result descriptor that is
returned to the multiplexor at the conclusion of an IO operation. This section will also indicate how the multiplexor
uses the information from the IO descriptor and the IO result descriptor to format interrupt parameters (Pl, P2, and P3)
which are present in the interrupt stack at the end of an IO operation.

TYPICAL INPUT OUTPUT DEVICE SYSTEM OPERATION

A typical IO operation (refer to figure 11-1) in the B 6800 system is initiated by a SCAN-OUT (initiate IO device)
operation. The scan-out operation passes data to the multiplexor that defines \\-nat IO device is to be initiated,
(IIOWD), and the address of a buffer area in system memory that is to be used for the IO operation (IOAD). The
multiplexor performs a read memory operation, using the address of the first word in the IO buffer area. This word
contains the IOCW. The data contained in the IIOWD, IOAD, and the IOCW, is stored in the multiplexor scratch pad
memory, for use during the remainder of the IO operation.

During an initiate IO cycle an OP code, variant characters and a beginning address, if applicable, are generated by the
multiplexor and passed to a peripheral control unit. The OP code, variant characters, a...11d begin.ning address define
the operation that is to be performed, the optional characteristics of the IO device that are to be used for the operation,
and, in the case of a disk or pack storage device, a beginning file address. After the IO descriptor has been passed to
the IO control, the multiplexor issues a STCB (Start Channel Bus) signal to the IO control, and the initiate IO cycle is
completed.

After the IO control has received the STCB signal, it will request service cycles from the multiplexor when a transfer
of data is required. During a service cycle, the multiplexor will transfer the data to/from its internal data buffer.

Multiplexor burst cycles are performed as needed to transfer data between main memory and the multiplexor data
buffer.

The transfer of data to/from the IO control can be terminated by either the multiplexor, or the IO control.

5001290 11-1

J

B 6800 System Reference Manual
Peripheral Devices and Controls

954B SCAN-OUT OPERATOR
I r------ ,

...I. rn LAST WORD IN THE
BUFFER I

I 1~----,
P REGISTER

UNIT DESiGNATE

J I ~ LAST FULL WORD IN
AND PATH DATA THE BUFFER

A REGISTER (llOWD)

I B6800 SYSTEM ..,iv

I l
,~ 10 BUFFER ...,,.

1 1
AREA

39
: 36:17 19:20 l FIRST WORD IN THE

~
3 I - BUFFER IS THE IOCW
~

B REGISTER (IOAD)

I DAT A PROCESSOR
SYSTEM
MEMORY

HARDWARE REGISTERS _L -- ___ 10 BUF~ -- ---+ ---- ---- ----- ---- ---- ----- r--t--

WORD

0

1

2

3

4_..,

5

6
i...--7--.

8--+
9

A

B

c
D

E
F

TO/FROM 1/0 CONTROL
IN PCC CABINET

4

MV 1656

11-2

MULTIPLEXER
SCRATCH PAD MEMORY AND

SCRATCH PAD DATA BUFFER
MEMORY CHANNEL

J UNITTYPE j BURST BUFFER ADDRESS

j_PERIPHERAL BUFFER ADDRESS

PERIPHERAL WORD & CHAR. COUNT

INITIAL WORD & CHAR. COUNT

BURST WORD & CHAR. COUNT

IOCW [47:2Q] ----
IOCW [27:20] ----

UNIT DESIGNATE l IOCW [7:8] -
INITIAL BURST ADDRESS

CURRENT BURST ADDRESS

MULTIPLEXOR ERROR BITS

UNIT RESULT DESCRIPTOR --- 1 ,, 1~

MULTIPLEXOR
DATA

__J

BUFFER

t

Figure 11-1. Input-Output Operation Cycles

B 6800 System Reference Manual
Peripheral Devices and Controls

Regardless of how an. IO operation is terminated, the IO control always passes an IO result descriptor to the multiplexor
at the end of the IO data transfer. This result descriptor is saved in scratch pad memory. At the conclusion of the
IO operation, the multiplexor raises the external interrupt signal to the interrupt controller.

The interrupt controller initiates an interrupt procedure and the multiplexor places the three interrupt panupeters (Pl,
P2, and P3) in the interrupt procedure stack. After the three parameters are placed in the interrupt stack, the interrupt
controller causes the interrupt procedure of the MCP to be executed. The interrupt procedure analyzes the three param­
eters in the stack, and determines what, if any, action is to be taken. After the interrupt has been handled properly, the
processor returns to performing the procedure that was in progress when the interrupt occurred.

INTERRUPT STACK PARAMETERS

Figure 11-2 shows the order of the three parameters that are left on the top of the data processor stack when an IO
finished interrupt is present. The data in these three parameters is inserted into the data processor hardware registers by
the micro-program logic of the multiplexor. The IO finished interrupt from the multiplexor causes the data processor to
interrupt any procedure that is in process, providing that the data processor is operating in normal state. If the data
processor is not operating in normal state, the interrupt controller will hold the interrupt until the data processor returns
to normal state, at which time the interrupt will be handled.

Pl PARAMETER

Bit 27 of the Pl parameter is true if the operating system is a B 6800. Bit 20; and bit zero of the Pl parameter are
true for an external interrupt.

Bits 7:4 are the interrupt literal value. These bits have the following significance:

Vaiue Meaning

1111 status change interrupt.

0001 interrupt from data communications.

0010 interrupt from data communications
processor number two.

0011 interrupt from data communications
processor number three.

0100 interrupt. from data communications
processor number four.

0110 interrupt from bus interface control
number one.

0111 interrupt from bus interface control
number two.

1000 multiplexor error.

1001 IO finished interrupt.

5001290 11-3

CHARACTER
COUNT

CHN!ACTIOA
COUNT

P2

CHAFIACTal
COUNT

P3

0

0 0

P1

1 0

0 0
MV1111i7

WORD
COUNT

WOAD
COUNT

WORD
COUNT

0

0

0

0

,.

WOAD

B 6800 Sys~em Reference Manual
Peripheral Devices and Controls

WOAD UNIT UNIT
COUNT COUNT NUMBER NUMBER

WORD WORD UNIT UNIT
COUNT COUNT NUMBER NUMBER CHANNEL

WORD WOAD WOAD UNIT UNIT
COUNT COUNT COUNT NUMBER NUMBER

UNIT
NUMBER

READ
DATA MEMORY CONTROL MEMOAY
UMT PROTECT BUSY

ERROR

ADDRESS BUFFER
RESIDUE BUS CHARACTER
LOCAL RESIDUE COUNT
MEMORY PARITY

INVALID
AOORESS ADDER TRANSLATE
LOCAL RESIDUE ERROR
MEMORY

MEMORY ARATOR STEERING
PARITY ESIDUE PARITY

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 1 1 0 0

l2 ,. m_ ,. 12

0

0

0

...l

0 .

Figure 11-2. Finished Interrupt Stack Parameters

INTERRUPT
UTERAL

0

INTEflAUPT 0
LITERAL

~~==~ 0

INTERRUPT
1 LITERAL

IJ.. lo

The Pl parameter is the first word of the two words of a double-precision operand in the data processor stack. The
second word of the two words of the same double-precision word is the P3 parameter. At the end of the interrupt
controller flow, the Pl parameter is present in the data processor B register, and the P3 parameter is present in the
data processor Y register,

The data processor interrupt controller always releases control by performing a pseudo-call on the enter (ENTR, AB)
operator. The ENTR operator causes the interrupt parameters that are present in the top of stack hardware registers to
be pushed down into the memory portion of the stack. After the ENTR operator has been executed, the Pl parameter
is located in the stack, at the address indicated by the value of the S register, minus two.

P3 PARAMETER

The P3 parameter is used to indicate any errors that may have occurred in the multipiexor, peripheral control, or on the
peripheral control bus during the peripheral device operation. The P3 parameter also will indicate any error that was
e---n + ,..,,:a -- •L. _,.., ___ .,. h~wil:'I l"'ll;....,. +k.o.,.,...,........,.,.,. ... '«,. "'A.rl-r.cu:.,11:." 'lrlrior ,...;rl"11~+"" "111,..~nn 'l hnr<:!t 1"''"1'°'
ll""VU.lll.~l\.IU Vil LllC 111C111Vl) vu.., Vl l.lJ. W.1\.1 111\;llllVl] QU.U.J.\.l"tr.> "'""'"""".L ""J..L""U.J.L~, U.U..LJ..1.1.f; V\,Ao.L.,,, ... -J -.L-•

11-4

B 6800 System Refe;rence Manual
Peripheral Devices and Controls

The sigpifi.cance of t.h.e bits in t.h.e P3 parameter are as follows:

Bits

[17:11] and [3:1]

23:6

26:3

32:6

33

35

38:2

P2 PARAMETER

Significance

The unit error field ([17:11]) and the not ready bit [3:1].
Various bit configurations in this field are used by differ­
rent IO control types to indicate an error condition in
the IO device, or in the IO control. This field does not
mean the same thing for all types of peripheral devices,
and therefore must be interpreted according to the type
of device that is connected to the multiplexor channel.

The control error field. Various bits in this field are used
to indicate errors in the control logic of the multiplexor.
Each of the bits in this field is used to represent an error
condition in a major functional group of the multiplexor.

The address adder error field. These three bits are used
to indicate an address adder, residue adder, or IC memory
register error. Any one of these three bits being true
may also indicate that an error exists in the Z8 or Z9
bus, or in the special address bus that passes between
the multiplexor and the data processor.

The memory error field. These six bits are used
to indicate errors that are detected by the memory
controi iogic of the CPU.

The global store not ready bit. This bit is used to show
that a global memory operation was attempted, and the
global memory that was addressed was not ready.

The address compare error. This bit is an extension of
the address adder error field in bits 26:3.

The OP CODE or VARIANT CHARACTER PROM parity
error bit, and the descriptor error bit. These bits are
an extension of the control error field in bits 23:6.

The P2 parameter is used to indicate the unit number of the peripheral device that was utilized. This parameter also
indicates the multiplexor path that was used to access the peripheral device, the length of the IO operation, whether
a software attention bit was set, and whether an exception occurred during the IO operation. The fields of the P2
parameter are as follows:

Bits

0

5001290

Significance

The exception bit. This bit is set if an exception was detected
during the IO operation. The placement of this bit in

11-5

Bits

1

11 :2

16:5

24:8

47:20

11-6

B 6800 System Reference Manual
Peripherai Devices and Controls

Significance

the interrupt stack configuration allows the system
software interrupt handling procedure to determine
if an error occurred during the IO operation.

The software attention bit. If bit number 45 of the
IOCW that was used to initiate the IO device opera-­
tion was set, then the software attention bit is set
in the P2 parameter. The software attention bit is
used to flag certain IO operations for the system
software. Examples of the types of IO operations
that the system software may flag are spacing over
tape records, or changing from one train code to
another train code on train printer devices.

IO path field.

The channel number field. The value of the five bit
channel number (one of twenty multiplexor channels)
is identified in the P2 parameter.

The unit number field. The unit number (one of
256 possible IO device identification numbers) is
identified in the P2 parameter.

The character count and word count field. This field
indicates the amount transferred to/from the peripheral
control.

PERIPHERAL CONTROLS

B 6800 System Reference Manual
Peripheral Devices and Controls

All peripheral devices require a unique peripheral control. These controls are located in the peripheral control cabinet,
and perform an interface function for the multiplexor.

PERIPHERAL CONTROL BUS

Controi and information signals are transferred between the multiplexer and the peripheral control cabinet through a
peripheral control bus.

The peripheral control bus contains sixteen data lines. These sixteen lines transmit two eight-bit characters
of data bidirectionally, between the multiplexor, and the peripheral control cabinet. All peripheral controls in both
of the peripheral control cabinets share the sixteen data lines, and thus, only one peripheral control can communicate with
the multiplexor at any one time. Certain peripheral bus control signals that are common to all peripheral controls (such
as the peripheral bus parity signal, and the Start Channel Signal) are also routed on the information bus lines.

Control signals that are unique to each peripheral control (the access request and access granted signals, the control busy
signal, and the channel designate level signal) do not share common lines on the peripheral bus. These signals have
specific lines on the peripheral bus assigned to them.

The multiplexor initiates an IO by passing an OP code, variant characters, a unit number, and in the case of a disk or
pack device a file address value, to the particular peripheral control that is associated with the IO device. This control
information is generated in the multiplexor by the OP code and variant character generator circuits, and is passed to the
peripheral control cabinet thn~ugh the peripheral bus information lines. The multiplexor can direct the control informa­
tion to a particular IO control because of the four unique signals for each channel (ARL, AGL, BUSY, and CDL).

The transfer of control information from the multiplexor to an IO control is synchronized during the initiate IO cycle
by the multiplexor controlling signals to each IO control. Each IO control contains a sequence counter that steps
through its initial sequence counts in response to control signals from the multiplexor. After the initiation cycle
is completed, the multiplexor will send a Start Channel Bus (STCB) signal to the IO control, and thereafter the
IO control will proceed through its seq_uence counts in a self-initiated manner.

When an IO control requires information exchange with the multiplexor, it initiates a service cycle in the multiplexor
by raising its ARL (Access Request Level) level. The multiplexor will respond to the ARL level by raising the
AGL (Access Granted Level) signal when the IO control is to use the peripheral bus. With the communication link­
age established, the IO control and multiplexor can begin data transfers. The multiplexor knows which IO control
raised its ARL line, and therefore which data buffer to interface with the peripheral control bus.

5001290 11-7

I
00

CENTRAL
PROCESSOR
CABINET

---.....---

-.... --
....

~·~--------------

MV 16'58

INFORMATION AND CONTROL TO PCC1
·-------------~-------· ~

.---------------IN_F_O_R_M __ A_T_IO_N_T_O __ P_c_c_1 __________________________________ ~

.------------B_u_s_Y_IA_R_L __ F_R_O_M_P_c_c_1 __________________________________ -<(
r-________ C_D_L_/A_G_'L __ T_O_P __ c_c_1 _______________________________________ ...

CHANNEL 9 CHANNEL4
(SMALL CONTROL) (LARGE CONTROL)

CHANNELS CHANNEL3
(SMALL CONTROL) (LARGE CONTROL)

CHANNEL 7 CHANNEL 2
(SMALL CONTROL) (LARGE CONTROL)

CHANNELS CHANNEL1
(SMALL CONTROL) (LARGE CONTROL)

CHANNELS CHANNELO
(SMALL CONTROL)

~~ ~~ ~-
(LARGE CONTROL)

INFORMATION AND CONTROL BBHB3

INFORMATION

BUSY/AIR

CDL/ARl

BBHB6

BBHB9

BBHC2

PCCO PERIPHERAL CONTROL CABINET
CARD SIDE VIEW

Figure 11-3. B 6800 Peripheral Controls Organization

l-0 o:;I

g_ ~
"tj 0
~o
>-1 tll e. '<

(IJ

o~
~ 3
5· '° ~ .CD

§ ~
0. g
CJ (")
0 CD

::s ::::
a§
-s::
(IJ e.

B 6800 Sy~tem Reference Manual
Peripheral Devices and Controls

At the conclusion of an IO operation, the IO control assembles an IO result descriptor that describes the IO operation;
and any errors that were encountered. This result descriptor is returned to the multiplexor, along with the proper con­
trol signals to let the multiplexor know that the IO operation is complete.

The multiplexor uses the result descriptor to form a part of the P3 parameter. Bit zero of the P2 parameter will be set
when any error condition occurs during the IO operation.

Signal Name

CDI.nn

BUnn/

5001290

Meaning and Usage

The CDL logic signal is sent from the multiplexor to the IO control and is used by a peripheral
control device to step to the next sequence count in the flow of sequences within the unit control,
during the initialization sequence. For example; the multiplexor sends an OP code to a peri­
pheral control at the beginning of each IO operation that is initiated. The OP code is strobed
onto the peripheral control bus, and the multiplexor raises the CDL control signal level for the
peripheral control channel. The peripheral control will accept the OP code that is present on
the peripheral control bus, and will step to the next sequence count in the operational control
flow.

The busy not logic is used by the multiplexor to determine whether or not a path is available
to the IO control. If busy not is true, a path exists to the IO control, and if busy not is false the
IO control is in use. The busy not signal is used in conjunction with the pseudo busy
flip-flop, which is entirely local to the -multiplexor logic, and has no direct connection to the
peripheral bus signals. The pseudo busy flip-flop may be set by either of two different methods.
The flip-flop can be set by means of a SCAN-OUT operator, as described previously in this
section, to deny the use of the path except by overriding the pseudo busy flip-flop. Pseudo
busy is also set by the multiplexor, when an IO error is detected in the peripheral control
device. This latter method of setting the pseudo busy flip-flop is used to preserve extended
result descriptor status about the error that occured. If a subsequent IO operation is attempted
before the extended status is read from the IO control, the data in the extended status is lost,
and cannot be recovered by the system. If an IO control is in the process of an IO command,
the BUnn/ logic signal will be false, regardless of the state of the pseudo busy flip-flop.

The pseudo busy flip-flop may be reset by means of a SCAN-OUT set pseudo busy operator.
This operator was described previously, in this section of this manual.

11-9

Signal Name

ARLnn

AGLnn

B 6800 System Reference Manual
Peripheral Devices and Controls

Meaning and Usage

The access request control logic level is used by the peripheral control device to notify the
multiplexor that an access to the data buffer is required. During output operations, this level
means that the IO control has processed the last character(s) received from the data buffer, and
consequently requires the next character(s) to be passed through the peripheral bus. During
input operations, this level means that the IO control has placed the next input character(s) in
position .to be transmitted to the data buffer, and consequently requires access to the data
bus so that they can be passed to the multiplexor.

At the conclusion of an IO operation, both input and output types, the IO controi forms a
unit result descriptor which is returned to the multiplexor. The IO control uses the ARL logic
level to notify the multiplexor when the result descriptor is completed and ready to be trans­
mitted to the data buffer.

The AGLnn control signal is used by the multiplexor to respond to an ARLnn control signal
from a peripheral control unit. The multiplexor makes a path from the peripheral data bus to
the data buffer available, and then raises the AGL level to notify the IO control that data may
be passed to or from the buffer through the peripheral data bus.

The multiplexor may be processing several simultaneous IO operations. If an IO control raises
its ARL control level to obtain an access to the data buffer, the multiplexor must determine
which of several possible requests will be granted first access to a data buffer. The multiplexor
will determine this priority between several IO channels on the basis of priority configuration
within- the multiplexor. When a new IO control is installed in a B 6800 system, or an old
control is removed from a B 6800 system, maintenance personnel may alter the priority con­
figuration wires to account for the change in system IO resources.

INPUT OUTPUT DEVICE COMMANDS AND RESULT DESCRIPTORS

The following data will present the types of operations that an IO device can perform, and the "OP" codes that cause
one of these operations to be performed. This data will also show the information that is contained in the P3 interrupt
parameter. Although the P2 parameter is not presented, it is implied that the error bit in the P2 parameter will be set
if any error bit is present in the P3 parameter.

11-10

--I --

SUPERVISORY DISPL.AY CONTROL 11

PERIPHERAL CONTROL BITS

READ EBCDIC

WRITE EBCDIC

TEST

NOTES:

BIT CONFIGURATION:

BITS
37 36

MV 1659

SET SINGLE TAG
SET CODE TAG
SET TRANSFER TAG
SET DOUBLE TAG

0

0

0

0 0

0 0

0 0

Pl Ml

ASC
II

SA

R/W
44

BK

'----r__/ '------· ---,~------
STANDARD UNIT

CONTROL CONTROL
FIELD FIELD

10 CONTROL WORD

A B

0 0 0 MP 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0 0 9 9 0 0 0

Figure 11-4. Supervisory Display Control II IOCW Format

-~

I
UNIT CONTROL

I

32 31 30 29 2B 27

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

11-12

0

1

0

B 6800 System R,eference Manual
Peripheral Devices and Controls

UE

UE

UE

UE

UE

UE

UE UE

UE UE

UE UE

UE UE
44 40 36 32 28 24 20 16 12 8 4

I
I HEXIDECIMAL

UNIT ERROR
ERROR CODE MEANING I CODES

I

UNIT NOT READY 0 0 0 0
10 PARITY ERROR 0 0 A 8
MEMORY ACCESS ERROR 0 0 2 8
DATA PARITY ERROR 0 0 2 0
CONTROL CHARACTER 0 0 4 0
READ OVERFLOW 0 0 8 0
TIMEOUT (INVALID CHARACTER) 0 8· 0 0
INTERNAL PARITY ERROR 0 0 3 0
UNIT ID (TD804!TD830) 0 2 0 0

UNITID (89352) 0 4 0 0
UNITID (89348-34) 0 6 0 0

I I
I I

I I I I I
MV 1660

UE
~

UE

UE

UE
0

I
I
I
I

8
0
0
0
0
0
0
0
0
0
0

I I

Figure llm5. Supervisory Display Control I! Result Descriptor Format

VI

8 -
~

--I -w

SINGLE LINE
CONTROL

IOCW

PERIPHERAL CONTROL BITS

READ EBCDIC

WRITE EBCDIC

TEST

NOTES:

BIT CONFIGURATION:

BITS
37 36

MV 1661

SET SINGLE TAG
SET CODE TAG
SET TRANSFER TAG
SET DOUBLE TAG

0

0

0

Pl

ASC
II

SA

R/W
44

,,_.....---J/ "­
I

STANDARD
CONTROL

FIELD

____________ /
I

UNIT
CONTROL

FIELD

10 CONTROL WORD

UNIT CONTROL

I

47 46 45 44 43 42 41 40 39 38 37 36 N 35 34 33 32 31 30 29 28 27 26
~~~~~--~-+-~~~-+-~~~~~~~~~~~~~,~~~~~~---<! 

A B 

0 0 0 0 0 MP 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 

Figure 11-6. Single Line Control IOCW Format 



11-14 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

-~---~--~-+---+--~-[ ------t------~-~-U~E~:~U~E·~r
1

_u~E~:
1

~u-E~--i--t--+ UE UE UE UE 

1 UE I UE UE I UE UE 

0 UE UE UE UE UE 

MV 166:? 

44 40 36 32 28 24 20 16 12 8 4 0 

ERROR CODE MEANING 

MEMORY ACCESS ERROR 
PARITY ERROR 
CONTROL MESSAGE 
OVERFLOW 
TIMEOUT 
UNIT ID (BIDS) 
UNIT ID (TC500) 

I 
I 
I 
I 

0 
0 
0 
0 
0 
0 
0 

HEXIDECIMAL 
UNIT ERROR 

CODES 

0 
0 
0 
0 
8 
4 
2 

0 
2 
4 
8 
0 
0 
0 

8 
8 
0 
0 
0 
0 
0 

Figure li-7. Singie Line Control Result Descriptor Format 

0 
0 
0 
0 
0 

I 
I 
I 
I 

o I 
0 



VI 

8 -N 

~ 

--I -VI 

CARD PUNCH 

IOCW 

. RIPHERAL CONTROL BITS 

PUNCH BINARY (6-BIT FROM 6-BIT) 

PUNCH EBCDIC (FROM EBCDIC) 

PUNCH BCL (FROM INT BCL) 

PUNCH BCL (FROM EBCDIC) 

TEST 

NOTES: 

BIT CONFIGURATION: 

BITS 
37 36 

MV 1663 

SET SINGLE TAG 
SET CODE TAG 
SET TRANSFER TAC:. 
SET DOUBLE TAG 

47 

0 

0 

0 

0 

0 

0 

0 

Pl 

ASC 
II 

SA 

Ml BK 0 

TX T 

s O RM -2~: 
--~~4_4~_.._4_o __ ~3_6~_.__3_2~_..._2_a~ . ..-24.~i:.::~...;±:~~iz:~.LJL~~L:L~~::'...,;_..;....J 

46 

0 

0 

0 

0 

0 

~_/, __ 
STANDARD 

CONTROL 
FIELD 

45 44 43 42 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 1 

0 0 0 0 

S: STACKER 

O= PRIMARY 

1 =AUXILIARY 

STACKER = [32: 1] 

41 40 39 

0 0 0 

0 0 

0 0 0 

1 0 0 

0 0 0 

38 

0 

0 

0 

0 

r 
UNIT 

CONTROL 
FIELD 

37 36 I 

A 

0 0 

0 0 

0 0 

0 0 2 

0 0 9 

10 CONTROL WORD 

N 35 34 33 

B 

4 0 0 0 

5 0 0 0 

0 0 0 

3 0 0 0 

9 0 0 0 

Figure 11-8. Card Punch IOCW F onnat 

UNIT CONTROL 

I 

32 31 30 

s 0 0 

s 0 0 

s 0 0 

s 0 Q 

0 0 0 

""" 29 28 27 26 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 



0 

1 

0 

I 

I 

MV 1664 

11-16 

T T 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

T T r T 1 1 I I I I l UE I UE UE I UE 
·-

UE UE UE UE 

I UE UE UE UE UE 

UE UE UE UE UE 
44 40 36 32 28 24 20 16 12 8 4 0 

I I 
I HEXIDECIMAL I 
I 

UNIT ERROR I ERROR CODE MEANING CODES 
I I 

NOT READY 0 0 0 0 8 
PUNCH CHECK 0 0 0 8 0 
MEMORY PARITY ERROR 0 0 2 8 0 
MEMORY ACCESS ERROR 0 0 4 8 0 

I 

I 

I I 

I 

I I I 

Figure 11-9. Card Punch Result Descriptor Format 



"" 8 -8 

--I -....J 

CARD READER 

PERIPHERAL CONTROL BITS 

READ BINARY (6-BIT INTO 6-BIT) 

READ EBCDIC (INTO EBCDIC) 

READ BCL (INTO INT BCLI 

READ BCL UNTO EBCDIC) 

TEST 

NOTES: 

BIT CONFIGURATION: 

BITS 
37 36 

SET SINGLE T.~G 
SET CODE TAG 

0 

0 

0 

SET TRANSFER TAG 
SET DOUBLE lrAG 

0 
0 

0 

0 

0 

Pl Ml 

ASC 
TX T II 

SA FS 

R/W MP 
44 40 

' I 
_/'-. __ . ___ ___,/ 

I 
STANDARD 

CONTROL 
FIELD 

0 0 

0 0 

0 0 

0 0 

0 0 0 

0 
0 

0 

0 

0 

UNIT 
CONTROL 

FIELD 

0 0 . MP 0 0 0 

0 

0 

0 0 MP 0 0 

0 MP 0 0 0 0 

MP 0 0 0 0 

0 0 0 Cll 0 0 

10 CONTROL WORD 

2 2 

2 0 

2 0 

9 9 

Figure 11-10. Card Reader IOCW Fonnat 

UN1IT CONTROL 

I 



0 

1 

0 

I 
I 
I 
I 
I 

MV 1666 

11-18 

T 
I 

44 40 36 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

T UE UE I UE 
I 

UE UE UE 

UE UE UE UE 

UE UE UE UE 
32 28 24 20 16 12 8 4 

I 
I HEXIDECIMAL 

UNIT ERROR 
ERROR CODE MEANING I CODES 

I 

NOT READY 0 0 0 0 
MEMORY ACCESS ERROR 0 0 0 8 
VALIDITY CHECK 0 0 2 8 
READ CHECK 0 0 1 0 
READ & VALIDITY CHECK 0 0 3 8 
CONTROL CARD 0 0 4 0 

I 

I 
I 

I I 

I I 

I 
I 

I 

UE 

-
UE 

UE 

UE 
0 

I 
I 
I 
I 

8 
0 
0 
0 
0 
0 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 

I I I I I I 

Figure 11-11. Card Reader Result Descriptor Format 



LINE PRINTER 
Pl Ml BK .SK SP 

0 
ASC TX T SK II 

0 SA FS TT SK 

0 R/W MP FT SK 
114 40 36 32 

' /'-
I I 

STANDARD UNllf 
CONTROL CONTROL 

FIELl:l FIELD 

10 CONTROL WORD 

UNIT CONTROL 

I 

' IOCW 117 46 45 44 43 42 41 40 39 :m 37 36 N 35 34 33 32 31 30 29 28 27 26 

A B 

ERIPHERAL CONTROL BITS 

PRINT BCL (FROM INT BCL) 0 0 0 0 0 0 0 0 () 0 6 0 SK SK SK SK SP SP 0 0 0 0 
PRINT BCL (FROM EBCDIC) I) 0 0 0 0 1 1 0 0 () 0 0 0 SK SK SK SK SP SP 0 0 0 0 
SKIP I) 0 0 0 0 0 0 0 () 0 0 1· SK SK SK SK 0 0 0 0 0 0 
SPACE 0 0 0 0 1 0 0 0 0 () 0 0 1 1 0 0 0 0 SP SP 0 0 0 0 
TEST 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 0 

NOTES: 

BIT CONFIGURATION: CHANNEL [35:4] SK SKIP 

BITS SPACING (35:6] SP SPACE 
37 36 SINGLE SPACE [35:6] 

~ 
SET SINGLE TAG DOUBLE SPACE (35:6] 2 

0 1 SET CODE TAG 
1 0 SET TRANSFER TAG 
1 1 SET DOUBLE TAG 

--I -\0 Figure 11-12. L:ine Printer IOCW Format 



11-20 

0 

1 

0 

""'' 1a:a:o IVIV IUUU 

44 40 36 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

UE UE UE 

UE UE UE 

UE UE UE UE 

UE UE UE UE 
32 28 24 20 16 12 8 4 

I 
I HEXIDECIMAL 

UNIT ERROR 
ERROR CODE MEANING I CODES 

I 

BIT TRANSFER ERROR 0 0 1 8 
BUFFER PARITY ERROR 0 0 2 8 
PRINT CHECK 0 0 4 8 
LOW PAPER 0 0 8 0 
END OF PAGE 0 1 0 0 

UE 
. -! 

UE 

UE 

UE 
0 

I 
I 
I 
I 

0 
0 
0 
0 
0 

I 

I 

I 

I I I I I I 

Figure 11-13. Line Printer Result Descriptor Format 



VI 

8 -N 

8 

--I 
N -

TRAIN PRINTER 

MV 1669 

PERIPHERAL CONTROL BITS 

PRINT BINARY 

PRINT BCL- 6-BIT BINARY 

PRINT BCL- EBCDIC 

PRINT EBCDIC 

SKIP 

SPACE 

LOAD TRANSLATE TABLE2 

TEST 

NOTES: 

BIT CONFIGURATION: 

BITS 
37 36 

SET SINGLE TAG 
SET CODE TAG 
SET TRANSFER TAG 
SET DOUBLE TAG 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Pl Ml 

ASC 
TX T II 

SA FS 

R/W MP 
44 40 , _ ___, __ / '--­

I ·----r-------/ I 

0 

0 

0 

0 

0 

0 

0 

0 

STANDARD 
CONTROL 

FIELD 

/ 

0 

0 

0 

0 

0 

0 

0 

0 

() 

() 

0 

() 

0 

0 

() 

() 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

LTT BIT CONFIGURATION 

BITS 
42 41 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 
0 I) 

0 

0 I) 

UNIT 
CONTROL 

0 

0 

0 

0 

0 

1 

0 

FIELD 

Q 

0 

0 

0 

0 

0 

0 

0 

() 

0 

() 

() 

() 

0 

() 

() 

Em3 LOAD L TT WITH 6-BIT BINARY CHARACTERS 
LOAD L TT WITH 8-BIT EBCC•IC CHARACTERS 
LOAD L TT WITH 6-BIT BCL GH.n.RACTERS 

A 

1 

2 

9 

0 

0 

0 

0 

1 

9 

9 

10 CONTROL WORD 

UNIT CONTROL 

I 

35 34 33 32 31 30 29 

SK SK SK SK SP SP 0 

SK SK SK SK SP SP 0 

SK SK SK SK SP SP 0 

SK SK SK SK SP SP 0 

SK SK SK SK 0 0 0 

0 0 0 0 SP SP 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

SK= SKIP 
SP= SPACE 

Figure 11-14. Train Printer IOCW Fonnat 

28 

0 

0 

0 

0 

0 

0 

0 

0 

27 

0 

0 

0 

0 

0 

0 

0 

0 

26 

0 

0 

0 

0 

0 

0 

0 

0 

--~ 



0 

1 

0 

I 
I 
! 
l 
! 
I 

i 
I 
! 

I 
i 
I 

I 

I 
I 
I 

I 
I 

iviV i670 

11-22 

44 40 36 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

-+ 
UE I UE I UE I UE 

J_ _ _J__-+- -~ 

UE UE UE UE 

UE UE UE UE UE 

132 I UE UE UE 1 UE UE 
J28 24 20 16 12 8 4 0 

I I 
I HEXIDECIMAL I 

UNIT ERROR 
ERROR CODE MEANING I CODES I 

I I 

PRINT CHECK (SYNC) 0 0 1 8 0 
PRINT CHECK (INTERNAL) 0 0 4 8 0 
10 BUS PARITY 0 0 8 8 0 
10 BUS PARITY (INITIATE) 0 0 8 8 0 
END OF PAPER 0 1 0 0 0 
TRAIN IMAGE BUFFER NOT 
LOADED 0 4 0 0 

I 
0 

lf\JCORRECT TRAIN LOADED 0 8 0 0 0 

I 

I 
I 

I 
I 

I I 
I 

I I 
I 

I I 

I I I I I I 

Figure 11-15, Trnin Printer Result Descriptor Format 



MAGNETIC TAPE 

I Pl I Ml I BK I TM I D 
I 

'\.. _ ___, __ / 
I 

STANDARD 
CONTROL 

FIELD 

MV1671 

T B 

UNIT 
CONTROL 

FIELD 

IOCW 

PERIPHERAL CONTROL BITS 

READ BINARY (6-BIT INTO 6-BIT) 

READ BCL (INTO INT BCL) 

READ BCL (INTO EBCDIC) 

6 READ EBCDIC (INTO EBCDIC) 

~ WRITE BINARY (6-BIT FROM 6-BIT) 
I-r:. WRITE BCL (FROM INT BCL) 

WRITE BCL (FROM EBCDIC) 

WRITE EBCDIC (FROM EBCDIC) 

'I ERASE 

6 { READ (8-BIT INTO 8-BIT) 

~ WRITE (8-BIT FROM 8-BIT) 
I-m ERASE 

a: 
w 
:r: 
1-
w 

REWIND 

SPACE 

WRITE TAPEMARK 

TEST 

REPOSITION 

NOTES: 

33 32 31 

0 0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

30 

0 

0 

1 

0 

0 

1 

0 

4 7 46 45 44 43 42 41 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

1 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

40 39 38 37 36 

MP 0 

MP 0 

MP 0 

MP 0 

0 0 

0 0 

0 0 

0 0 

0 0 

MP 0 

0 0 
0 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

N 

A B 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

9 

0 

2 

2 

2 

2 

6 

6 

6 

6 

4 

2 

6 

4 

1 

8 

6 

9 

4 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

10 CONTROL WORD 

UNIT CONTROL 

I 

35 34 33 32 31 30 29 28 27. 26 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Q 

0 

D 

D 

D 

D 

D 

D 

D 

D 

0 

D 

D 

0 

0 

D 

0 

0 

D 

D 

D 

D 

D 

D 

D 

D 

D 

0 

D 

D 

0 

0 

D 

0 

0 

D 

D 

D 

D 

D 

D 

D 

D 

D 

0 

D 

D 

0 

0 

D 

0 

0 

D 

p 

p 

0 
p 

p 

p 

0 
p 

0 

0 

0 
p 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

c 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

T 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

T 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

T 

0 

0 

0 

0 

0 

0 

0 

DENSITY, PARITY (PERIPHERAL CONTROLS) 

UNIT SELECTED, EVEN 

IF c = 1 THEN 28 • 26 = CRC: TRACK IN ERROR TO BE CORRECTED, 

UNIT SELECTED, ODD 

800 BPI, EVEN (7-TRACK ONLY; II) 

800 BPI, ODD (7- OR 9-TRACK; II OR IV) 

556 BPi, EVEN} 
556 BPI, ODD (7-TRACK ONLY; II) 

200 BPI, EVEN 

200 BPI, ODD (7- OR 9-TRACK; II OR IV) 

NONE 

1600 BPI, ODD (9-TRACK P.E. ONLY; V OR VI) 

5001290 

OR TRACK IN ERROR FROM RESULT 
DESCRIPTOR 

23 ~ 16 = BLOCK TO SPACE (IN BCD) 

Figure 11-16. Magnetic Tape IOCW Format 

11-23 





5001290 

0 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

I I I UE I UE I UE I UE 

UE UE UE UE 

UE UE UE UE UE 

0 UE UE UE UE UE 
44 40 36 32 . 28 24 20 I 6 12 8 l; O 

ERROR CODE MEANING 

I 
I 
I 
I 

MEMORY PARITY ERROR 0 
MEMORY ACCESS ERROR 0 
TAPE PARITY ERROR 0 
WRITE LOCKOUT (OR TAPE MARK) 0 
END OF TAPE/BEGINNING 0 
OF TAPE 

SHORT RECORD (1600 BPI TOP) 0 
LONG RECORD (1600 BPI TOP) 0 
BLANK TAPE 0 
MEC NOT READY AFTER TAPE 0 

MOTION 

HEX I DECIMAL 
UNIT ERROR 

CODES 

0 2 
0 0 
0 0 
0 2 
0 1 

0 4 
0 8 
8 0 
0 1 

8 0 
8 0 
8 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 8 

SYSTEM INTERFACE PARITY 
ERROR 

0 0 8 8 0 

SYSTEM INTERFACE PARITY 
ERROR BEFORE TAPE MOTION 

PERIPHERAL INTERFACE 
PARITY ERROR 

PERIPHERAL INTERFACE 
PARITY ERROR BEFORE 
TAPE MOTION 

NONPRESENT OPTION 

0 0 8 8 0 

0 0 4 8 0 

0 0 4 8 0 

0 2 0 0 0 

I 
I 
I 
' 

I I I I I I 
MV 1672 

Figure 11-17. Magnetic Tape Result Descriptor Format 

11-25 



...... HEAD-PER-TRACK ...... 
I DISK FILE Pt Ml 0 DA DA DA DA DA DA N 

°' 
0 

ASC 
TX T 0 DA DA DA DA DA DA II 

0 SA FS DA DA DA DA DA. DA DA 

0 RlW MP DA DA DA DA DA DA 
44 40 20 16 12 8 4 0 

' /' / 
I I 

STANDARD UNIT 
CONTROL CONTROL 

FIELD FIELD 
10 CONTROL WORD 

' I 
UNIT CONTROL 

I 

' IOCW 47 46 45 44 43 42 41 40 39 38 37 36 I N 35 34 33 32 31 30 29 28 27 2G --- A • B 

PERll~CONTROL BITS 

READ 0 0 0 0 0 MP M 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 

READ CHECK 0 0 0 1 0 0 M 0 6 0 5 1 0 0 0 0 0 0 0 0 0 0 

WRITE 0 0 0 0 0 0 1 0 M 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 

TEST 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 0 

NOTE:S: 

BIT CONFIGURATION: M = MAINTENANCE SEGMENT 

BITS 
37 36 BITS 25:26 IS DISK ADDRESS, AND REPR.ESENTS 

~~ 
A SIX DIGIT BINARY CODED DECIMAL DISK 

SET SINGLE "fAG FILE SEGMENT ADDRESS 
SET CODE TAG 
SET TRANSFER TAG 
SET DOUBLE TAG 

MV1673 

Figure 11-18. Head Per Track Disk File IOCW Fonnat 



0 

1 

0 

MV 1674 

5001290 

B 6800 System Refe.rence Manual 
Peripheral Devices and Controls 

1 1 1 1 1 1 1 UE I UE 1 UE I UE 
' ' ' _, 

UE UE UE UE 

UE UE UE I UE UE 

UE UE UE UE UE 
44 40 36 32 28 24 20 16 12 8 4 0 

I I 
I HEXIDECIMAL I 
I 

UNIT ERROR I ERROR CODE MEANING CODES 
I ' NOT READY 0 0 0 0 8 

MEMORY ACCESS ERROR 0 0 0 8 0 
MEM PARITY ERROR 

(READ ERROR) 0 0 2 8 0 

BUSY 0 0 1 0 0 
WRITE LOCKOUT 0 0 2 0 0 
NOT READY DURING OPERATION 0 0 8 0 8 
TIMEOUT 0 8 0 0 0 

I I 
I 

; I 

I I I 

Figure 11-19. Head Per Track Disk File Result Descriptor Format 

11-27 



11-28 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

FLEXIBLE DISK 

0 'SA FS n 

0 l R/W MP FT 112 44 40 36 32 28 24 20 16 8 

' /'-
I I 

STANDARD UNIT 
CONTROL CONTROL 

FIELD FIELD* 

NOTE 
*DATA TO BE SUPPLIED WHEN AVAILABLE 

MV 1675 

Figure 11-20. Flexible Disk IOCW Fonnat 

I 

4 0 

/ 



0 

1 

0 

MV 1676 

5001290 

i 

44 40 136 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

I UE I UE I UE I UE I 
-; 

UE UE UE UE 

UE UE UE UE UE 

UE UE UE UE UE 
132 28 24 20 16 12 8 4 0 

I I 
I HEXIDECIMAL I 

UNIT ERROR 
ERROR CODE MEANING* I CODES* I 

I I 

I 

I I I I I I 
*DATA TO BE SUPPLIED WHEN AVAILABLE 

Figure 11-21. Flexible Disk Result Descriptor Format 

11-29 



--I w 
0 

DISK PACIK 

IOCW 47 

PERIPHERAL CONTROL BITS 

WRITE 

READ 

INITIALIZE 

VERIFY 

RELOCATE 

TEST 

MV1677 

Pl Ml BK 1 V2 SB PA PA PA PA PA PA 
--~-----~+-~---4~~4-~---ll--~-+---------t-~---l~~-1--~~+--~--1-~~+-~-1 

fiSC TX T F1 V1 S4 PA PA PA PA PA PA 0 

0 

0 

46 45 

0 

SA FS TT VS 0 S2 PA PA PA PA PA PA 

R/W MP FT V4 0 
44 40 36 32 28 

S1 
24 

PA PA PA 
20 16 12 

PA 
8 

PA 
4 

PA 
0 , ___ __,/ , ________________ / 

I I 
STANDARD UNIT 

CONTROL 
FIELD 

CONTROL 
FIELD 

10 CONTROL WORD 

UNIT CONTROL 

44 43 42 41 40 39 3B 37 36 N 35 34· 33 32 31 30 29 

A B 

0 0 0 Fl VB 0 

0 Fl V8 V4 V2 Vl 

0 0 Fl 0 V4 V2 Vl 0 

0 0 Fl V8 V4 V2 Vl 

0 Fl 

Vl 

Figure 11-22. Disk Pack IOCW Format 

~ 
2B 27 26 25 24 

SB S4 S2 Sl 

S8 S4 S2 Sl 

0 S'.2 Sl 

0 S4 0 Sl 

0 0 S2 Sl 



OPERATION F1 vs V4 V2 
34 33 32 31 

WRITE 0 0 0 0 
41=1 
37=0 0 0 0 0 

READ 0 0 0 0 
44=1 
41=1 

0 0 0 0 

INITIALIZE 0 0 0 0 
41=1 
35=1 0 0 0 0 

0 0 0 1 

0 0 1 0 

VERIFY 0 0 0 0 
44=1 
41=1 
35=1 .Q 0 0 0 

0 0 0 1 

0 0 0 0 

I I n 1 0 0 u 

RELOCATE 0 0 0 0 
43=1 
41=1 

TEST 3S=1 0 0 0 0 

BIT CONFIGURATION: 

BITS 
37 36 

~ 
I ~ I ~ I 

MV1678 

SET SINGLE TAG 
SET CODE TAG 
SET TRANSFER TAG 
SET DOUBLE TAG 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

V1 SS 
30 29 2S 27 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

S4 S2 S1 
26 25 24 DESCRIPTION 

1 0 0 READ AFTER WRITE OPERATION 

0 0 0 NORMAL WRITE OPERATION 

1 0 0 READ 1 BINARY ADDRESS AS 
INDICATED BY THE FILE ADDRESS 

0 0 0 NORMAL READ OPERATION 

0 0 0 INITIALIZE DESIGNATED CYLINDER 

0 0 0 INITIALIZE ENTIRE PACK 

0 0 0 INITIALIZE DESIGNATED TRACK 

0 0 0 WRITE TEST DATA PATTERN INTO 
EACH SECTOR 

0 0 0 VERIFY DESIGNATED CYLINDER 
AND REPORT ALL ERRORS 

0 0 0 VERIFY ENTIRE PACK AND 
TERMINATE ON FIRST ERROR 

0 0 0 VERIFY DESIGNATED TRACK AND 
REPORT ALL ERRORS 

0 0 0 CHECK PARITY ON DATA, ERROR 
DETECTION, AND COUNT CHECK 
FIELDS 

0 0 0 VERIFY DATA PATTERN WITH 
PATTERN NORMALLY WRITTEN 
DURING INITIALIZATION 

0 0 0 BINARY COUNT INDICATING SPARE 
SECTOR ADDRESS 28 THROUGH 32 

0 0 1 PROGRAMMATIC POWER-DOWN 

NOTES: 

23:24 IS PACK ADDRESS, AND REPRESENTS A 
SIX-DIGIT BINARY CODED DECIMAL DISK 
PACK SEGMENT ADDRESS 

Figure 11-23. Disk Pack IOCW Unit Control Format 

5001290 11-31 



B 6800 Syi;tem Reference Manual . 
Peripheral Devices and Controls 

UE UE UE UE 

·-
0 UE UE UE UE 

.. UE UE UE UE UE I 

0 UE UE UE UE UE 
44 40. 36 32 28 24 20 16 12 8 4 0 

I I 
I HEXIDECIMAL I 
I 

UNIT ERROR I ERROR CODE MEANING CODES 
I I 

MEMORY ACCESS ERROR 0 0 0 8 0 
ADDRESS PARITY ERROR 0 0 1 0 0 
CONTROLLER IN LOCAL 0 0 1 0 0 
DRIVE SEEKING 0 0 2 0 0 
FIRST ACTION WITH DRIVE 0 0 3 0 0 
DRIVE BUSY 0 0 4 0 0 
SPEED ERROR 0 0 5 8 0 

I 
WRITE LOCKOUT 

I 
0 0 5 0 0 

DATA ERROR 0 0 5 8 0 

I 
SEEK ERROR 

I 
0 0 8 0 0 

CONTROLLER MALFUNCTION 0 0 8 0 0 

I 

DATA PARITY 10 0 0 8 8 0 
COMMAND PARITY 0 0 9 8 0 
SECTOR TIMEOUT 0 0 9 0 0 

I 
LINK PARITY (DPDC-TO-HOST) 0 0 9 8 0 
SEEK INITIATED 0 0 A 0 0 
DATA ERROR CORRECTION 0 0 c 0 0 
ADDRESS POSITION ERROR 0 4 1 0 0 
SEEK TIMEOUT 0 8 8 0 0 
DATA PARITY (HTC-TO-DPDC) 0 8 8 8 0 
COMMAND PARITY 0 8 8 8 0 

( HTC-TO-DPDC) 
DATA ERROR RETRY 

I 
0 c 8 0 0 

I 

I I 
I 

I I I I 

MV 1679 

Figure 11-24. Disk Pack Result Descriptor Format 

11-32 



Ul 

8 -N 
\0 
0 

--~ 
~ 

5N DISK FILE 

IOCW 

PERIPHERAL CONTROL BITS 

WRITE 

READ 

CHECK 

TEST 

NOTES: 

BIT CONFIGURATION: 

BITS 
37 36 

My 1680A 

SET SINGLE TAG 
SET CODE TAG 
SET TRANSFER TAG 
SET DOUBLE TAG 

46 

0 0 

o· 0 

0 

0 0 

Pl Ml BK V3-2 

--o-+A-s.,-·c- ~~~--+-·.,._.,_.....__ ·.·.·v--a---~-
11 

1----+--+---·- t----·--t---·-t-.~-j --·· 

SA SA SA 
.,,__ __ t---+-· 

SA SA SA 
-+----~ 

0 SA FS TT V3-8 V:!-2 SA SA SA 
1----+---~·--+----- . ·-·-·-·---'-'"--'4---

0 R/W 
lili 

MP FT V3-4 
lio 36 32 28 

··t-----

SA SA SA 
20 16 12 

SA SA SA 

SA SA SA 

SA SA SA 

SA SA SA 
8 Ii 0 

,.____ _____ __/ '----·----:-______ / 
- I ·1 
STANDARD UNIT 

CONTROL CONTROL 
FIELD FIELD 

10 CONTROL WORD 

/ 

UNIT CONTROL 

I 

45 44 43 42 41 40 39 38 37 36 N 35 34 33 32 31 30 29 28 

A B V3 V3 V3 V3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 

BITS 25 24 35 ~ 24 VARIANT CONTROL FIELD 23 ::;> 0 = 
0 0 = STORAGE UNIT 0 33 V3-8 READ EXTENDED STATUS 

0 1 = STORAGE UNIT 1 32 V3-4 DISABLE EXTRA REVOLUTION 

1 0 = STORAGE UNIT 2 31 V3-2 INHIBIT PERIPHERAL DEVICE 

1 1 = STORAGE UNIT 3 30 V3-1 INHIBIT ERROR CORRECTION 

25 V2-2 } 
Fl LE ADDRESS EXTENSION 

24 V2-1 

Figure l l-2S. SN Disk File IOCW Format 

~ 
27 26 25 24 

V2 V2 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 0 

SEGMENT ADDRESS 
(6 BINARY COOED 
DECIMAL DIGITS, WITH 
THE MSD IN 
BITS23~20l 



0 

1 

0 

MV 1681 

11-34 

I 
I 

I 
I 
I 

I 
I 
I 
I 

I 

I 

44 40 36 

B 6800 System Reference Manual 
Peripheral Devices and Controls 

UE UE UE 

UE UE UE 

UE UE UE UE 

UE UE UE UE 
32 28 24 20 16 12 8 4 

I 
I HEXIDECIMAL 

UNIT ERROR 
ERROR CODE MEANING I CODES 

I 
NOT READY 0 0 0 0 

WARNING 0 0 1 0 
WRITE OPERATION-LOCKOUT } READ OPERATION- DATA 0 0 2 0 

CORRECTED 
DISK EXCHANGE BUSY 0 0 1 0 
EXTRA REVOLUTION } 

I 

I TEST OPERATION - DISK 0 0 8 

I 
0 

EXCHANGE ID I ADDRESS ERROR FROM DISK 0 0 1 8 
EXCHANGE I 

I 
PERIPHERAL BUS PARITY 0 0 2 8 

ERROR (COMMAND) 
TRANSMISSION ERROR 0 0 4 8 
CONTROLLER PARITY 0 4 0 8 
WRITE OPERATION -

~ PERIPHERAL BUS DATA 
PARITY ERROR 

j 
0 8 0 8 

READ OPERATION -
READ ERROR 

I I 

I I 

UE 
. ---
UE 

UE 

UE 
0 

I 
I 
I 
I 

8 
8 

0 

0 
I 
I 

0 

0 

I 
I 0 

I 
I 

0 
0 

I 
I 0 

I 

I I 

L I I I I I I 

Figure 11-26. SN Disk File Result Descriptor Format 



B 6800 System Reference Manual 

SECTION 12 

DATA COMMUNICATIONS SUBSYSTEM 

GENERAL 

The Data Communications Subsystem (DCS) consists of one or more independently powered B or C size cabinets. The DCS 
is not an integral part of the B 6800 operating system, but rather is an optional extension of the B 6800 system 
operating capabilities. Through the use of a data communications subsystem, a B 6800 system can service a network 
with a maximum of 2048 remote terminals, or data communications lines. 

Figure 12-1 shows the various types and the main relationship between the logic modules of the DCS. The logical 
modules of the DCS are as follows: 

a. Data Communications Processor (DCP) 

b. Adapter Cluster II (ACM II) 

c. line Adapter Module (LA) (AC II type) 

d. Local Memory Module(s) (LM) 

e. Planar Core Local Memory 

5001290 

A DCS must contain at least one DCP, and may 
contain up to two DCP modules in a basic B · 6800 
system, or four DCP's in an expanded B 6800 
system (including a memory port (channel B) 
expansion module). 

The ACM II module is used to interface up to 
16 line adpaters to a DCP module. A DCP may 
interface with up to sixteen ACM II modules. 

A DCS requires at least one LA module for each 
line that is interfaced to the DCP module. If the 
remote terminals or lines that are i...11terfaced to 
the DCP are full dupiex, then two LA's (two 
lines) are required. If the remote lines that are 
interfaced to the DCP are half-duplex, or 
simplex, then a single line adapter is used for 
each line. 

A DCS may share the use of B 6800 system memory, 
or it may contain memory that is L11terna! to the 
DCS (not used by the B6800 system). The DCS 
may contain up to four modules of local memory 
(96KB), with each local memory module contain-
ing 24KB of memory. 

A DCS may contain a cabinet of planar core 
local memory instead of local memory modules 
(IM's). A planar core local memory cabinet 
contains 393 KB of storage capacity (minimum). 

12-1 



N 
I 

N 

SCAN BUS 
INTERFACE 
TO 86800 
MAIN 
MEMORY 

B 6359-1 
12KB 

B 6359-1 
12KB ___ ......_..._._ 

INCREMENTS 
1, 2 

(INTERNAL 
TO THE 
DCP, 

06359 
DATA COMM 
PROCESSOR 

B 6359-2 
24KB 

B 6359-2 
24KB 

INCREMENTS 
3, 4, 5 

(EXTERNAL 
TO THE 
DCP) 

*REQUIRED IF B 6353-6 OR 
B 6353-7 IS PRIESENT 

**ANY COMBINATION OF 4 CONTROLS 

MV 1682A 

12 ADDITIONAL AC lls 
OR 

:3 BASIC CONTROLS 

B 6359-2 
24KB 

FROM3 
ADDITIONAL 
BASIC CONTROLS --.............. __ _ 

B 6359-3 
393KB 
LOCAL 
MEMORY 

TODCPMAIN 
MEMORY INTERFACE 

3 ADDITIONAL AC II STRINGS 

B 6359-5 
ADAPTER 
CLUSTER II 

B 6353 
BASIC 
CONTROL 

•• 

86369-5 
ACll 

B 6359-6 
AC II 

B 6353-1 /-2 
BROADBAND 
CONTROL 

B 6353-8 
ADAPTER 
CLUSTER 
Ill 

B 6353-6 
DATA COMM 
TO DISK 
CONTROL 

86353-7 
STORE-TO­
STORE 
CONTROL 

MEMORY BUS INTERFACE 
TO B 6800 MAIN MEMORY 

Figure 12-1. B 6800 Data Communications Subsystem Block Diagram 

B 6359--5 
AC II 

ONE 
HIGH-SPEED 
LINE 

UPTO 
8 LINES 

TO 
SYSTEM 
DISK EXCHANGE 

0 tc 
~ °' 
- 00 ~ 0 
{j 0 
0 ti) 

3 '< 
3 ~ c:: Cl> 

e. s 
~ ~ 
g. ~ 
::s .... 
I'll Cl> 
ti) ::s 
c:: g 
g" a:: 
'< ~ 
~ ::s 
Cl> c:: 
3 e. 



f. Basic Control 

B 6800 System Reference Manual 
Data Communications Subsystem 

The basic control provides an interface between 
DCP and the Front End Controis (FEC). The five 
available FEC's are: 

a. Broadband Binary Syncronous Co_ntrol (BBSC). 

b. Broadband Data Link Control (BDLC). 

c. Adapter Cluster III (ACIII). 

d. Data Comm to Disk Control (DCDC). 

e. Store-to-Store Control (SSC). 

The Basic Control can interface up to 4 FECs to the 
DCP. There is however a limitation in the combination 
of FECs that may be used. The Basic Control can only 
handle one DCDC and one SSC. 

DATA COMMUNICATIONS PROCESSOR 

The Basic Control also provides the path to Planar 
Core for the DCP local memory interface. 

When the Data Communication ·Processor (DCP) is connected to Adapter Cluster·II Modules (B6359-5) the DCP must 
handle all facets of both the transmission and receiving of data. 

The DCP formats the communications that are transmitted to, or received from the lines, and it also formats the communi­
cations that are passed between the main system and the DCP. The DCP makes determinations of priority for the com­
munications lines, conducts line polling operations, detects errors in line data or line discipline, and maintains status 
information about the communications lines connected to the ACMII(s). 

When the DCP is connected to the basic control (B 6353) the DCP, under the direction of system software, sends 
control information to the front end controls. Once a front end control has received the control information it 
performs all controlling operations (disk write or memory write operations, line polling, line selecting, and line 
procedures), independently of the DCP. All priority resolution between requesting units is resolved by the basic 
control. 

The DCP executes special machine language operator codes to perform its functions. The functions described above are 
encoded into groups of these machine language operators, and are stored in the local memory of the DCP. The encoded 
machine language functions are performed by the DCP on an ''as required basis", and are essentially driven into execution 
by the detection of a pre-defined set of conditions. 

The DCP is semi-autonomous in performing its functions. That is, the main system must initiate the operation of the 
DCP, or stop the DCP operation. Once the main system has initiated the DCP, the DCP will perform its normal func­
tions until it receives a stop operation input from the main system, or until the DCP detects a non-recoverable operating 
condition. The detection of a non-recoverable condition will cause the DCP to branch to an error handling procedure 
located in main system memory. The DCP will cause a HEYU interrupt in the multiplexor and the interrupt level in the 
multiplexor will cause the main system to interrogate the DCP condition. In this manner, the main system will handle 
non-recoverable operating conditions in the data communications subsystem. 

5001290 12-3 



TERMINAL DEVICES 

B 6800 System Reference Manual 
Data Communications Subsystem 

A terminal device is a hardware input/output device that is used to conduct two-way communications between itself, and a 
central system, or another terminal device. Terminals adhere to a preselected line discipline while performing their 
two-way communication. A line discipline is a set of hardware and software rules that establish the conditions under 
which communications are conducted between a terminal and the central system, or another terminal. 

The line discipline for a communications line includes the format of the information and control signals that are trans­
mitted through the line, and also the method for transmitting data over the line. The physical characteristics of the 
line, which determines the method that is used to transmit data over the line, are embodied in the hardware construction 
of the line adapter modules, and the adapter clusters. Each line adapter module in the DCS must be selected on the 
basis of the type o.f discipline that is to be practiced in exercising communications. There are five different types of line 
adapters used in an ACM II module, as follows: 

a. Adapter-Data Set Connect. 

b. Adapter-Direct Connect. 

c. Adapter-Auto Call (dial in/out). 

d. Adapter Connector Full-Duplex/Reverse Channel. 

There are three different line adapters that can be used in the AC III module, as follows: 

a. Adapter-Data Set Connect. 

b. Adapter-Direct Connect. 

c. Adapter-Auto Call (dial in/out). 

The selection of a line discipline to be practiced for a data line is a user option. The user of a DCS must specify the 
characteristics of the data line adapters to be used, for each line in the DCS network. 

BASIC CONTROL 

The basic control provides an interface between the front end controls and the data communications processor. It 
connects directly to the DCP for the transfer of control Lr1formation and has a path to the DCP local memory for 
message handling. Each basic control utilizes a cluster interface position within the DCP and will service any combi­
nation of four of the following new controls: 

BROADBAND CONTROL 

Each Broadband Control (BBC) operates asynchronously with the DCP and services one data communications line ranging 
from 19 ,200/BPS to 1,344,000/BPS. The BBC will support either binary synchronous or Burroughs Data Link Control 
line procedures and communicates with the DCP at the message level. 

DATA COMM TO DISK CONTROL 

This control provides the data comm subsystem with the capability to support network continuation, audit and recovery 
through disk tar.king. This allows network message auditing and the reception and accumulation of messages in the 
event of a system failure and is intended to provide this function for a limited time until the central system becomes 
operational again. The Data Comm to Disk Control interfaces to a 23 millisecond head-per-track disk file subsystem shared 
by the main system, thereby providing a common storage area for subsequent system access. 

12-4 



STORE-TO-STORE CONTROL 

B 6800 System Reference Manual 
Data Communications Subsystem 

This control provides high-speed block transfer of messages between the DCP Planar Core local memory dedicated to the 
DCS, and the main system memory independent of DCP operation. This further distribution of message handling increases 
the throughput of the data communications subsystem. 

ADAPTER CLUSTER Ill 

The Model III adapter cluster provides a facility for the asynchronous control of up to eight half-/full-duplex lines at 
speeds of up to 9600 BPS. AC III optimizes line procedures for Burroughs terminal equipment by supporting data trans­
mission according to standard Burroughs line protocols. The AC III communicates with the DCP at the message level. 

DATA COMMUNICATIONS SUBSYSTEM SCAN BUS INTERFACE 

The DCS is a semi-autonomous subsystem. After the B 6800 CPU has initialized the DCS, the subsystem conducts data 
communications operations in an autonomous and independent manner, until the CPU directs that such operations are 
to be terminated. Thus, except for controlling the start and stop operations, the B 6800 CPU does not exercise control 
over the DCS. 

The interface that is used by the B 6800 CPU to communicate control data to the DCS is the external subsystem scan 
bus. This external scan bus is defined and discussed in section five of this manual. The scan bus instructions that are 
passed to a DCS from the B 6800 CPU are as follows: 

19:2 DCP (EXTERNAL) SCAN BUS ADDRESS. 
7:3 DCP SCAN FUNCTION CODE. 
4:3 DCP UNIT ID NUMBER. 

INSTRUCTION 
BASE ADD 
FOR DCP 

8 0 

MV1691 

SCAN OUT INITIALIZE DCP 

The CPU executes the scan out initialize DCP operation to cause the DCS to begin data communications operations. 
The scan function word is present in the top of stack register of the data processor when the SCNO (954B) is executed. 
The data word, which is the second word in the data processor stack registers, specifies the beginning address of the 
DCS instructions, in the B 6800 system main memory. If the DCS contains local DCS memory, the data communications 

5001290 12-S 



B 6800 System Reference Manual 
Data Communi".a.tions Subsystem 

operator code will be transferred from the main memory of the B 6800 system to the DCS local mamory, where the 
DCS will proceed to execute the programmed code. If the DCS does not contain local memory, the DCS will proceed to 
fetch its program code from the main B 6800 system memory, a word at a time, and to execute the program code. 

Once the B 6800 system has caused the DCS to be initialized, the DCS will continue to operate in an autonomous 
manner until an interrupt occurs, or until the CPU directs that the DCS is to stop operations. The CPU executes a scan 
out halt command to the DCS, as follows: 

0 D 

0 0 D 

0 1 
4 0 

19:2 DCP (EXTERNAL) SCAN BUS ADDRESS. 
7:3 DCP SCAN FUNCTION CODE. 
4:3 DCP UNIT ID NUMBER. 

MV1692 

SCAN-OUT HALT DCP 

The DCP halt function word is present in the data processor when the SCNO (954B) instruction is executed by the CPU. 
No data word is used for tfi.is DCS control operation. This command causes the DCP to stop operations at the end of 
the present DCS command, and to respond by causing an interrupt to be present in the externai subsystem interrupt col­
lector logic of the multiplexor. The DCS will not resume operations until the CPU scans out an initialize instruction. 

The B 6800 system has a way to pass information to the DCS without causing the DCS to stop operating, through the 
use of the scan out attention needed instruction. This instruction is executed in the same way as the halt scan out 
command is executed, with the following function word present in the data processor top of stack register. 

1 1 D 

0 1 0 D 

0 0 D 

0 1 
44 40 36 32 28 24 20 16 12 8 4 0 

19:2 DCP (EXTERNAL) SCAN BUS ADDRESS. 
7:3 DCP SCAN FUNCTION CODE. 
4:3 DCP UNIT ID NUMBER. 

iviV1693 

SCAN-OUT SYSTEM ATTENTION NEEDED 

12-6 



B 6800 System Reference Manual 
Data Communications Subsystem 

When the DCS receives the attention needed scan out instruction, it looks in a memory queue (a predetermined location 
in local memory) for the text of the system information. The DCS will handle the information that it finds in the 
memory queue, in the manner specified. 

The Set IBA command is only used within the Enhanced Data Comm environment and is a variation of the initialize 
command. The CPU executes the "Set IBA" only after the B 6800 has been reinitialized after an operational interruption 
(HALT/LOAD). When the DCP detects the B 6800 is not operational, the DCS goes into a special running operation so 
that incoming information is not lost. 

The "Set IBA" command passes a 20-bit Instruction Base Address to the DCP, to indicate where the DCP instruction code 
is located. Unlike the initialize command, the "Set IBA" command does not cause the DCP to fetch mstruction words 
from the system memory. If the DCP is running when the "Set IBA" occurs then the CPU must also issue a system at­
tention needed, so that the DCP will utilize the new IBA. 

11111111111111 •• D 

19:2 DCP (EXTERNAL) SCAN BUS ADDRESS. 

7:3 DCP SCAN FUNCTION CODE. 

3:3 DCP UNIT ID NUMBER. 

:ililii16 
l I I 

INSTRUCTION 

12 

BASE 
ADDRESS 

8 4 

MV1694 

SCAN-OUT SET iBA (ENHANCED DATA COMM ONLY) 

DATA COMMUNICATIONS SUBSYSTEM MEMORY INTERFACE 

-

0 

In addition to the external scan bus interface, the DCS shares a memory interface to channel B of the memory control, 
in the CPU cabinet. If the number of external subsystem units that are connected to channel B of the memory control 
is one or two subsystems, then the subsystems are interfaced directly to the memory control, in parallel. These subsys­
tems contend with each other for access to the main system memory resources. If the number of subsystems that are 
interfaced to the memory control is three or more, then a memory port expansion module must be used to control 
memory access contention between the external subsystems. 

5001290 12-7 



B 6800 System Reference Manual 
Data Communications Subsystem 

If two external subsystems share the channel B interface to main system memory, the two subsystems must control the 
use of the memory bus such that only one subsystem may access memory at any one time. A special memory bus 
control interface is connected between the subsystems that share the memory bus for access to main system memory. 
Whenever one of the two subsystems is accessing memory, a signal on the special memory control bus causes the other 
subsystem to be denied access to memory until the access to memory is completed. If both subsystems attempt to 
access memory at t.l1e same time, then one subsystem will have priority, and will be granted use of the bus, while the 
other subsystem will be forced to wait until the first subsystem has completed its access of memory. 

12-8 



B 6800 System Reference Manual 

SECTION 13 

B 6800 BUS INTERFACE CONTROL (READER/SORTER SUBSYSTEM) 

THE BIC MODULE 

The Bus Interface Control (BIC) is a component of the B 6800 that is used to interface a Reader/Sorter network to the 
main B 6800 system. The BIC is housed in a single independently powered cabinet. A BIC cabinet is not an integral 
part of the B 6800 system, but interfaces an operating subsystem of the B 6800. Through the use of a BIC, the B 6800 
system controls the operations of up to three Reader Sorter Processors (RSP), and indirectly controls the operations of 
up to 12 Reader/Sorter input/output devices that are attached to the RSPs. The RSP has access to the memory resources 
of the B 6800 system through the memory interface of the BIC module. 

The B 6800 system communicates control instructions to a BIC module through use of the external scan bus interface of 
the CPU. A maximum of four external subsystems may share the use of the external scan bus interface to the B 6800. 
These four external subsystems may be a combination of data communications subsystems, and BIC subsystems. How­
ever, multiple BI C's may not be used in the same configuration with multiple data communication subsystems. 

Figure 13-1 shows a single BIC module, and the maximum units (RSP's and Reader/Sorter IO devices) that may be inter­
faced with the B 6800 system through the use of a single BIC module subsystem. Although this figure shows that up to 
three RSP's may be interfaced to a single BIC, typical current installations only interface one or two RSP's to a BIC 
module. 

BUS INTERFACE CONTROL SCAN BUS INTERFACE 

The B 6800 system uses the external scan bus interface of the CPU to pass control information and instructions to the 
BIC subsystem. The control information and instructions that are passed to the BIC on the external scan. bus interface 
originate in the data processOi top of stack registers. The data processor executes a SCNI (954A), or a SCNO (954B) 
operator to cause the external scan bus address lines to assume the value of the top word in the data processor stack registers 
(which is the scan function word). If the operator code that was performed in the data processor was a SCNO operator, the 
second word in the top of stack registers (the scan data word) is also passed to the external scan bus. If the operator 
code that was performed in the data processor was a SCNI operator, the BIC responds by placing a word of data in the 
second word of the top of stack registers in the data processor. 

SCAN OUT FUNCTIONS 

Figure 13-2 shows the format of the scan out function word located in the top of stack register of the data processor at 
the start of a data processor scan out operation. There are six different function codes that may be contained in. the 
scan out function word. 

a. Scan Address Required (set scan address) function. 

b. Set RSP Interrupt function. 

c. Set Bounds Registers function. 

d. Halt RSP function. 

e. Clear-load RSP function. 

f. RSP (Port) Lockout function. 

5001290 13-1 



B 6800 System Reference Manual 
B 6800 Bus Interface Control (Reader/Sorter Subsystem) 

""' 

READER TO READE - SORTER ~ SORTER 10 - R 

PROCESSOR DEVICES 

MEMORY BUS INTERFACE -- .; 

SCAN BUS !NTERFACE 
~ 

l ,, 
READER READER 
SORTER SORTER 

PORT 
10 10 - DEVICE DEVICE 

1 -
J 

INTERRUPT LINE BUS READER - INTERFACE PORT - - SORTER - CONTROL 2 - -- PROCESSOR 

l 
PORT --3 - READER READER 

SORTER SORTER 
10 10 
DEVICE DEVICE 

..... 

READER TO READER - SORTER ~SORTER 10 -- DEVICES PROCESSOR 

MV1683 
.; 

Figure 13-1. BUS Interface Subsystem Modules 

The Set Scan Address function is used by the B 6800 system as part of the subsystem-to-main-system synchronization 
process (hand shaking). The B 6800 system performs extensive synchronization (hand shaking) operations during the 
initialization process because the RSP is a small system processor which operates asynchronously, with respect to the 
B 6800 system. The RSP executes micro-operator code command instructions which are contained in an M memory that 
is internal to the RSP, and cannot be accessed directly by the B 6800 system. The data word that is passed to the BIC 
by this scan out command is controlled by the system software and is not defined by a fixed hardware word format. 

The set RSP interrupt function is used by the B 6800 system software control procedures to pass software control 
.information to the RSP during normal subsystem operations. The software control information is contained in the scan 
out .function word, and no data word is passed to the BIC. 

The set bounds registers function is used to establish the boundries of the area in B 6800 main system memory that may 
be accessed by the BiC. The bounds data word (see figure 13-3) includes both a lower, and an upper address boundry. 
The BIC compares a memory address with the two bounds values, and detects an error condition if the memory address 
is not within the range of addresses specified by the bounds. The bounds function is used to protect the B 6800 system 

. against inadvertent accessing of reserved memory addresses by the BIC. 

13-2 



5001290 

B 6800 System Reference Manual 
B 6800 Bus Interface Control (Reader/Sorter Subsystem) 

SC SC F U 

0 SC RSP F U 

SC RSP F U 

SC F 
12 8 

50:3 TAG FIELD. 
THIS FIELD IS ALWAYS EQUAL TO ZERO. 

19:4 BIC SCAN BUS IDENTIFICATION CODE. THIS FIELD IS ALWAYS 
EQUAL TO A(HEX) FOR BIC SCAN BUS OPERATIONS 

15:5 SOFTWARE CONTROL FIELD. 
00000 WAIT B 6800 MEMORY DUMP IN PROGRESS 
00001 MEMORY DUMP FINISHED 
00010 NORMAL INTERRUPT 
00011 PAUSE. (INSTRUCTS RSP TO WAIT) 
00100 CLEAR 
00101 RSP MEMORY DUMP IN PROGRESS 

10:2 RSP IDENTIFICATION CODE 
00 INVALID CODE 
01 RSP NO. 1 (PORT 1) 
10 RSP NO. 2 {PORT 2) 
11 RSP NO. 3 (PORT 3) 

8:4 BIC FUNCTION CODE FIELD. 
0000 SCAN ADDRESS REOUI RED FUNCTION 
0010 SET RSP INTERRUPT 
0'100 SET BOUNDS REGISTERS 
1000 HALT RSP 
1010 CLEAR-LOAD RSP 
1110 RSP (PORT) LOCKOUT 

3:3 BIC UNIT IDENTIFICATION FIELD. AB 6800 SYSTEM MAY HAVE 
FROM 1 THROUGH 7 BIC UNITS ATTACHED 

000 INVALID CODE 
001 BIC UNIT NO. 1 
010 BIC UNIT NO. 2 
01 'i BiC UNiT NO. 3 
100 BIC UNIT NO. 4 
101 BIC UNIT NO. 5 
110 BIC UN IT NO. 6 
111 BIC UNIT NO. 7 

0:1 THIS BIT IS REQUIRED TO BE A BINARY 1 VALUE 

MV 1684 

Figure 13-2. BIC Scan-Out Function Word 

13-3 



B 6800 System Reference Manual 
B 6800 Bus Interface Control (Reader/Sorter Subsystem) 

< > UB UB UB UB UB LB LB LB LB LB 

0 UB UB UB UB UB LB LB LB LB LB 
-·-· -·--·t--·---< ---- ··---·-- --------·-· r---·---1--···---r-------1 ------

0 UB UB UB UB UB LB LB LB 
1 

LB LB 
------1----+------t----+--- !----+----~---+------

0 <• UB UB UB UB UB LB LB LB LB LB 
36 32 28 24 20 16 12 8 4 0 

UB UPPER BOUNDS LB = LOWER BOUNDS 

MV 1685 

Figure 13-3. Set Bounds Registers Data Word 

The halt RSP function is used to cau~e the RSP to stop processing information from the reader/sorter devices. This 
function is not normally performed because the RSP lockout function accomplishes the same thing, and is utilized instead 
of the halt function. 

The clear-load RSP function is used by the B 6800 system to cause an RSP to begin operations. This function passes a 
data word (see figure 13-4) to the BIC, which contains an address, and a length (word count) field. The address field 
defines the base address of an area in main system memory that contains the RSP program data. The word count field 
specifies how many words of main system memory are used to contain the RSP program data. The BIC accesses the 
program data in main system memory, and loads a copy of the program into the local (S) memory of the RSP, beginning 
in address zero. When the BIC has loaded the control program data into the (S) memory of the RSP, the RSP branches 
to address zero of its S memory and proceeds to execute the instructions which it contains. Thus, the clear-load func­
tion is used to start the RSP into execution of a B 6800 main system directed sequence of operations. 

The RSP lockout function is used to cause the RSP to stop operating. Figure 13-1 shows that the BIC has three ports 
through which an RSP is interfaced to the B 6800 system. When a port lockout function is performed, the port of the 
BIC that is specified (in the RSP field of the function word) is locked out, and the interface path between the main 
B 6800 system and the RSP that is attached to the port is broken. The RSP has no provision for causing the interface 
through a locked out port of the BIC to be resumed, therefore the RSP that is associated with the port is effectively 
eliminated from the subsystem, and has no effect upon the operation of other RSP's (ports) in the subsystem. The data 
word that is passed to the BIC by this scan out command is not specified. 

SCAN IN FUNCTIONS 

Figure 13-5 shows the format of the scan in function word that is located in the top of stack register of the data 
processor at the start of a data processor scan out operation. There are two different function codes that may be con­
tained in the scan in function word, as follow: 

a. Scan Address Required (set scan address) function. 

b. Read BIC Status function. 

The Scan Address function is used by the B 6800 system as a part of the hand shaking procedures, for synchronization 
of the subsystem to the main system, during the initialization process of the start up procedures. When the scan address 

13-4 



5001290 

B 6800 System Reference Manual 
B 6800 Bus Interface Control (Reader/Sorter Subsystem) 

WC WC WC MA MA MAIMA MA 

0 WC WC we --MA MA MA MA MA 

0 WC WC WC MA MA MA MA MA 

0 WC WC WC MA MA MA MA MA 
28 7.4 20 16 12 8 4 0 

WC = WORD COUNT MA = MEMORY ADDRESS 

MV1686 

Figure 13-4. Clear-Load Data Word 

I 1 F u 

0 I I 0 F u I 

0 1 F u 

0 l l ~ ! I I 0 F 1 
flt4 j4o !J6 j32 128 12ii 120 • f16 112 18 I-~ 10 

50:3 TAG FIELD. 
ALWAYSEOUALTOZERO 

19:4 BIC SCAN BUS IDENTIFICATION CODE. THIS FIELD IS 
ALWAYS EQUAL TO A (HEX) FOR BIC SCAN BUS 
OPERATIONS 

8:4 BIC FUNCTION CODE FIELD 
0000 SCAN ADDRESS 
1100 READ BIC STATUS 

3:3 BIC UNIT IDENTIFICATION FIELD 
000 INVALID UNIT IDENTIFICATION 
001 BIC UNIT NO. 1 
010 BIC UNIT NO. 2 
011 BIC UNIT NO. 3 
100 SIC UNIT NO. 4 
101 SIC UNIT NO. 5 
110 SIC UNIT NO. 6 
111 SIC UNIT NO. 7 

MV 1687 

'Figure 13-5. BIC Scan-In Function Word 

13-5 



B 6800 System Reference Manual 
B 6800 Bus Interface Control (Reader/Sorter Subsystem) 

function is performed, the RSP responds by transmitting a data word to the B 6800 system. The form of the data word 
is not specified, because the information contained in the word is only significant to the B 6800 software operating 
system. 

The scan in Read BIC Status function causes the BIC to respond to the B 6800 system by placing a BIC status word in 
the second word of the data processor top of stack registers. The format of the BIC status wmd is sh.O"wn in figure 13-6. 
There are three fields of information that give status information about one or more of the BIC ports. Each port status 
field consists of five bits of data that have the following meaning: 

Pl, P2, P3 

PLI, PL2, PL3 

Tl, T2, T3 

11, I2, 13 

El, E2,E3 

The Pn (RSP powered off) bit is set if the corresponding RSP is powered off. 

The PLn (Port n Locked Out) bit is set if the corresponding port is locked out, or the RSP has 
been halted. (If an RSP is powered off then the corresponding PLn bit will be set.) 

The Tn (RSP Memory Access Timeout) bit is set if a timeout has occurred for the corresponding 
RSP during a memory access. 

The In (Interrupt from RSP number n) bit is set if the corresponding RSP has sent an 
interrupt to the B 6800 system. 

The En (Exception) bit is set if a corresponding PLn, Tn, or In bit is set in this status word 
for a corresponding port status report. 

If any one of the three port adapter cards of the BIC are not installed in the BIC then the corresponding port status 
field in the BIC status response word is not used, and all bits for that port status are reset. 

BUS INTERFACE CONTROL MEMORY INTERFACE 

In addition to the external scan bus interface, the BIC shares a memory interface to channel B of the memory control, in 
the CPU cabinet. If the number of external subsystems that are interfaced to channel B of the memory control is one or 
two subsystems, then the subsystems are interfaced directly to the memory control, in parallel. These subsystems contend 
with each other for access to the main system memory resources. If the number of subsystems that are interfaced to the 
memory control is three or four, then a memory port expansion module is required to control memory access contention 
between the external subsystems. 

The BIC module contains bounds checking logic circuits to protect the B 6800 system against inadvertent overwriting of 
a memory address. This inadvertent overwriting couid otherwise occur because the memory addresses that are accessed 

RSP3 RSP2 RSP1 

PL1 u 

0 T1 u 

0 11 u 

0 0 
4 0 

MV1688 

Figure 13-6. Read BIC Status Response 

13-6 



B 6800 System Reference Manual 
B 6800 Bus Interface Control (Reader/Sorter Subsystem) 

by the BIC are automatically incremented when the memorf transfer is initiated. The bounds checking logic of the 
BIC prevent this condition from occurring. The bounds limits are assigned to a BIC by the B 6800 system MCP, 
and are dynamic in nature. The MCP will determine how much memory a BIC will be able to access, and will 
set the bounds registers of the BIC accordingly. The process of setting the memory bounds within a BIC subsystem 
were defined previously in this section of this manual, in the subsection titled Scan Out Functions. 

If two external subsystems share the cha...11.nel B interface to main memory, Ln parallel, then the two subsystems must con­
trol the use of the memory bus such that only one of the two subsystems may access memory at any one time. A special 
memory control interface bus is connected between the two subsystems that are connected in parallel. Whenever one of 
the two subsystems is accessing memory, a signal. on this special memory control bus causes the other subsystem to be 
denied access to memory. If both of the subsystems try to access memory at the same time, one of the subsystems will 
have priority for the use of the memory bus, and the other subsystem will have to wait until the one that has priority 
has completed its access, before being allowed to access memory. 

5001290 13-7 





B 6800 System Reference Manual 

APPENDIX A 

OPERATORS, ALPHABETICAL LIST 

Hexa-
Decimal 

Name Mnemonic Code 

ADD ADD 80 
BIT RESET BRST 9E 
BIT SET BSET 96 
BRANCH FALSE BRFL AO 
BRANCH TRUE BRTR Al 
BRANCH UNCONDITIONAL BURN A2 
CHANGE SIGN BIT CHSN 8E 
COMPARE CHARACTERS EQUAL DESTRUCTIVE CEQD F4 
COMPARE CHARACTERS EQUAL, UPDATE CEQU FC 
COMPARE CHARACTERS GREATER OR EQUAL, 
DESTRUCTIVE CGED Fl 
COMPARE CHARACTERS GREATER OR EQUAL, 
UPDATE CGEU' F9 
COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD F2 
COMPARE CHARACTERS GREATER, UPDATE CGTU FA 
COMPARE CHARACTERS LESS OR EQUAL, 
DESTRUCTIVE CLED F3 
COMPARE CHARACTERS LESS OR EQUAL, UPDATE CLEU FB 
COMP ARE CHARACTERS LESS, DESTRUCTIVE CLSD FO 
CO~.J> ARE CHARACTERS LESS~ UPDATE CLSU F8 
COMPARE CHARACTERS NOT EQUAL, 
DESTRUCTIVE CNED PS 
COMPARECHARACTERSNOTEQUAL,UPDATE CNEU FD 
CONDITIONAL HALT (all modes) HALT DP 
COUNT BINARY ONES CBON 9SBB 
DELETE TOP OF STACK DLET BS 
DISABLE EXTERNAL INTERRUPT DEXI 9S47 
DIVIDE DIVD 83 
DOUBLE LOAD A DLA EO 
DOUBLE LOAD A INCREMENT DLAI E9 
DOUBLE LOAD B DLB E2 
DOUBLE LOAD B INCREMENT DLBI EB 
DOUBLE LOAD C DLC E4 
DOlJBLE LOAD C INCREMENT DLCI ED 
DOUBLE STORE A DSA F8 
DOUBLE STORE A INCREMENT DSAI F9 
DOUBLE STORE B DSB FA 
DOUBLE STORE B INCREMENT DSBI PB 
DOUBLE STORE C DSC PC 
DOUBLE STORE C INCREMENT DSCI FD 
DUPLICATE TOP OF STACK DUPL B7 
DYNAMIC BIT RESET DBRS 9F 
DYNAMIC BIT SET DBST 97 
DYNAMIC BRANCH FALSE DBFL A8 
DYNAMIC BRANCH TRUE DBTR A9 

S001290 A-1 



B 6800 System Reference Manual 
Operators, Alphabetical List 

Name Mnemonic 

DYNAMIC BRANCH UNCONDITIONAL DBUN 
DYNAMIC FIELD INSERT DINS 
DYNAMIC FIELD ISOLATE DISO 
DYNAMIC FIELD TRANSFER DFTR 
DYNAMIC SCALE LEFT DSLF 
DYNAMIC SCALE RIGHT FINAL DSRF 
DYNAMIC SCALE RIGHT ROUND DSRR 
DYNAMIC SCALE RIGHT SAVE DSRS 
DYNAMIC SCALE RIGHT TRUNCATE DSRT 
ENABLE EXTERNAL INTERRUPTS EEXI 
END EDIT {edit mode) ENDE 
END FLOAT {edit mode) ENDF 
ENTER ENTR 
EQUAL EQUL 
ESCAPE TO 16-BIT INSTRUCTION VARI 
EVALUATE EVAL 
EXCHANGE EXCH 
EXECUTE SINGLE MICRO, SINGLE POINTER 
UPDATE EXPU 
EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD 
EXECUTE SINGLE MICRO, UPDATE EXSU 
EXIT EXIT 
EXTENDED MULTIPLY MULX 
FIELD INSERT INSR 
FIELD ISOLATE ISOL 
FIELD TRANSFER FLTR 
GREATER THAN GRTR 
GREATER THAN OR EQUAL GREQ 
IDLE UNTIL INTERRUPT IDLE 
INDEX INDX 
INDEX AND LOAD NAME NXLN 
INDEX AND LOAD VALUE NXLV 
INPUT CONVERT, DESTRUCTIVE ICVD 
INPUT CONVERT UPDATE ICVU 
INSERT CONDITIONAL {edit mode) INSC 
INSERT DISPLAY SIGN {edit mode) INSG 
INSERT MARK STACK IMKS 
INSERT OVERPUNCH {edit mode) INOP 
INSERT UNCONDITIONAL {edit mode) !NSU 
INTEGER DIVIDE IDIV 
INTEGERIZE, ROUNDED NTGR 
INTEGERIZE, TRUNCATED NTIA 
INTEGERIZE, ROUNDED DOUBLE-PRECISION NTGD 
INV AUD OPERATOR {all modes) NVLD 
LEADING ONE TEST LOG2 
LINKED LIST LOOKUP LLLU 
LESS THAN LESS 
LESS THAN OR EQUAL LSEQ 
LIT CALL ONE ONE 

A-2 

Hex a-
Decimal 
Code 

AA 
9D 
9B 
99 
Cl 
C7 
C9 
cs 
C3 
9546 
DE 
DS 
AB 
8C 
95 
AC 
B6 

DD 
D2 
DA 
A3 
8F 
9C 
9A 
98 
8A 
89 
9544 
A6 
AS 
AD 
CA 
CB 
DD 
D9 
CF 
D8 
DC 
84 
87 
86 
9587 
FF 
958B 
95BD 
88 
8B 
Bl 



Name 

LIT CALL ZERO 
LIT CALL 8 BITS 
LIT CALL 16 BITS 
LIT CALL 48 BITS 
LOAD 
LOAD A 
LOAD A INCREMENT 
LOADB 
LOAD B INCREMENT 
WADC 
LOAD C INCREMENT 
LOAD TRANSPARENT 
LOGICAL AND 
LOGICAL EQUAL 
LOGICAL EQUIVALENCE 
LOGICAL NEGATE 
WGICALOR 
MAKE PROGRAM CONTROL WORD 
MARK STACK 
MASKED SEARCH FOR EQUAL 
MOVE CHARACTERS (edit mo~e) 

B 6800 System Reference Manual 
Operators, Alphabetical List 

Mnemonic 

ZERO 
LT8 
LT16 
LT48 
LOAD 
LOA 
LDAI 
LOB 
LDBI 
LDC 
LOCI 
WDT 
LAND 
SAME 
LEQV 
LNOT 
LOR 
MPCW 
MKST 
SRCH 
MCHR 

MOVE NUMERIC UNCONDITIONAL (edit mode) MVNU 
MOVE TO STACK MVST 
MOVE WITH FLOAT (edit mode) MFLT 
MOVE WITH INSERT (edit mode) MINS 
MULTIPLY MULT 
NAME CALL NAMC 
NO OPERATION {all modes) NOOP 
NORMALIZE NORM 
NOT EQUAL NEQL 
OCCURS INDEX OCRX 
OVERWRITE DESTRUCTIVE OVRD 
OVERWRITE NON-DESTRUCTIVE OVRN 
PACK DESTRUCTIVE PACO 
PACK UPDATE PACU 
PUSH DOWN STACK REGISTERS PUSH 
READ AND CLEAR OVERFLOW FLIP FLOP ROFF 
READ COMP ARE FLIP FLOP RCMP 
READ PROCESSOR IDENTIFICATION WHOI 
READ PROCESSOR REGISTER RPRR 
READ TAG FIELD RTAG 
READ TRUE/FALSE FLIP FLOP RTFF 
READ WITH LOCK RDLK 
REMAINDER DIVIDE RDIV 
RESET FLOAT (edit mode) RSTF 
RETURN RETN 
ROT ATE ST ACK DOWN RSDN 
ROT ATE STACK UP RSVP 

5001290 

Hexa-
Decimal 
Code 

BO 
B2 
B3 
BE 
BD 
EO 
El 
E2 
E3 
E4 
ES 
95BC 
90 
94 
93 
92 
91 
BF 
AE 
95BE 
07 
06 
95AF 
T\1 ...., .. 
DO 
82 
40=*7F 
FE 
958E 
80 
9585 
BA 
BB 
Dl 
09 
B4 
07 
95B3 
954E 
95B8 
95BS 
DE 
95BA 
85 
D4 
A7 
95B7 
95B6 

A-3 



B 6800 System Reference Manual 
Operators, Alphabetical List 

Name Mnemonic 

SCALE LEFT SCLF 
SCALE RIGHT FINAL SCRF 
SCALE RIGHT ROUNDED SCRR 
SCALE RIGHT SA VE SCRS 
SCALE RIGHT TRUNCATE SCRT 
SCAN IN SCNI 
SCAN OUT SCNO 
SCAN WIBLE EQUAL, DESTRUCTIVE SEQD 
SCAN WHILE EQUAL, UPDATE SEQU 
SCAN WHILE FALSE, DESTRUCTIVE SWFD 
SCAN WHILE FALSE, UPDATE SWFU 
SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE SGED 
SCAN WHILE GREATER OR EQUAL, UPDATE SGEU 
SCAN WHILE GREATER, DESTRUCTIVE SGTD 
SCAN WHILE GREATER, UPDATE SGTU 
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE SLED 
SCAN WHILE LESS OR EQUAL, UPDATE SLEU 
SCAN WHILE LESS, DESTRUCTIVE SLSD 
SCAN WHILE LESS, UPDATE SLSU 
SCAN WHILE NOT EQUAL: DESTRUCTIVE SNED 
SCAN WHILE NOT EQUAL, UPDATE SNEU 
SCAN WHILE TRUE, DESTRUCTJVE SWTD 
SCAN WHILE TRUE, UPDATE SWTU 
SET DOUBLE TO TWO SINGLES SPLT 
SET EXTERNAL SIGN SXSN 
SET INTERVAL TIMER SINT 
SET PROCESSOR REGISTER SPRR 
SET TAG FIELD STAG 
SET TO DOUBLE-PRECISION XTND 
SET TO SINGLE-PRECISION, ROUNDED SNGL 
SET TO SINGLE-PRECISION, TRUNCATED SNGT 
SET TWO SINGLES TO DOUBLE JOIN 
SKIP FORWARD DESTINATION 
CHARACTERS (edit mode) SFDC 
SKIP FORWARD SOURCE CHARACTERS {edit mode) SFSC 
SKIP REVERSE DESTINATION 
CHARACTERS {edit mode) SRDC 
SKIP REVERSE SOURCE CHARACTERS (edit mode) SRSC 
STEP AND BRANCH STBR 
STORE A STA 
STORE A INCREMENT STAI 
STORE B STB 
STORE B INCREMENT STBI 
STOREC STC 
STORE C INCREMENT s.,...,..,T 

.l\.,.l 

STORE DESTRUCTIVE STOD 
STORE NON-DESTRUCTIVE STON 
STRING ISOLATE SISO 

A-4 

Hexa-
Decimal 
Code 

co 
C6 
C8 
C4 
C2 
954A 
954B 
95F4 
9SFC 
9504 
95DC 
95Fl 
95F9 
95F2 
95FA 
95F3 
95FB 
95FO 
95F8 
95F5 
95FD 
95D5 
95DD 
9543 
D6 
9545 
95B9 
95B4 
CE 
CD 
cc 
9542 

DA 
D2 

DB 
D3 
A A 

rt'"t 

FO 
Fl 
F2 
F3 
F4 
F5 
B8 
B9 
D5 



B 6800 System Reference Manual 
Operators, Alphabetical List 

Name Mnemonic 

STUFF ENVIRONMENT STFF 
SUBTRACT SUBT 
TABLE ENTER EDIT, DESTRUCTIVE TEED 
TABLE ENTER EDIT, UPDATE TEED 
TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND 
TRANSFER UNCONDITIONAL, UPDATE TUNU 
TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD 
TRANSFER WHILE EQUAL, UPDATE TEQU 
TRANSFER WHILE GREATER OR EQUAL, 
DESTRUCTIVE TGED 
TRANSFER WHILE GREATER OR EQUAL, UPDATE TGEU 
TRANSFER WHILE GREATER, DESTRUCTIVE TGTD 
TRANSFER WHILE GREATER, UPDATE TGTU 
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE TLED 
TRANSFER WHILE FALSE, DESTRUCTIVE TWFD 
TRANSFER WHILE FALSE, UPDATE TWFU 
TRANSFER WHILE TRUE, DESTRUCTIVE TWTD 
TRANSFER WHILE TRUE, UPDATE TWTU 
TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU 
TRANSFER WHILE LESS, DESTRUCTIVE TLSD 
TRANSFER WHILE LESS, UPDATE TLSU 
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED 
TRANSFER WHILE NOT EQUAL, UPDATE TNEU 
TRA ... ""l"SFER WORDS OVERWRITE DESTRUCTIVE 'T'l.llf"\T\ 

J. fl VJ.J 

TRANSFER WORDS OVERWRITE UPDATE TWOU 
TRANSFER WORDS, DESTRUCTIVE TWSD 
TRANSFER WORDS, UPDATE TWSU 
TRANSLATE TRNS 
UNPACK ABSOLUTE, DESTRUCTIVE UABD 
UNPACK ABSOLUTE, UPDATE UABU 
UNPACK SIGNED, DESTRUCTIVE USND 
UNPACK SIGNED, UPDATE USNU 
VALUE CALL VALC 
VECTOR BRANCH VEBR 
VECTOR MODE ENTER MULTIPLE VMEM 
VECTOR MODE ENTER SINGLE VMES 
VECTOR MODE EXIT VMEX 

5001290 

Hexa .. 
Decimal 
Code 

AF 
81 
DO 
D8 
E6 
EE 
E4 
EC 

El 
E9 
E2 
EA 
E3 
95D2 
95DA 
95D3 
95DB 
EB 
EO 
ES 
ES 
ED 
T'\A 
J...r1' 

DC 
D3 
DB 
95D7 
95Dl 
95D9 
95DO 
95D8 
00 => 3F 
EE 
EF 
E7 
E6 

A-5 





B 6800 System Reference Manual 

APPENDIXB 

OPERATORS, NUMERICAL LIST 

Hex a-
Decimal 

Code Name Mnemonic 

PRIMARY MODE 

oo~3F VALUE CALL VALC 
40~7F NAME CALL NAMC 

80 ADD ADD 
81 SUBTRACT SUBT 
82 MULTIPLY MULT 
83 DIVIDE DIVD 
84 INTEGER DIVIDE IDIV 
85 REMAINDER DIVIDE RDIV 
86 INTEGERIZE, TRUNCATED NTIA 
87 INTEGERIZE, ROUNDED NTGR 
88 LESS THAN LESS 
89 GREATER THAN OR EQUAL GREQ 
8A GREATER THAN GRTR 
8B LESS THAN OR EQUAL LSEQ 
8C EQUAL EQUL 
8D NOT EQUAL NEQL 
8E CHANGE SIGN BIT CHSN 
8F EXTENDED MULTIPLY MULX 
90 LOGICAL AND LAND 
91 LOGICAL OR LOR 
92 LOGICAL NEGATE LNOT 
93 LOGICAL EQUIVALENCE LEQV 
94 LOGICAL EQUAL SAME 
95 ESCAPE TO 16-BIT INSTRUCTION VARI 
96 BIT SET BSET 
97 DYNAMIC BIT SET DBST 
98 FIELD TRANSFER FLTR 
99 DYNAMIC FIELD TRANSFER DFTR 
9A FIELD ISOLATE ISOL 
9B DYNAMIC FIELD ISOLATE DISO 
9C FIELD INSERT 1NSR 
9D DYNAMIC FIELD INSERT DINS 
9E BIT RESET BRST 
9F DYNAMIC BIT RESET DBRS 
AO BRANCH FALSE BRFL 
Al BRANCH TRUE BRTR 
A2 BRANCH UNCONDITIONAL BRUN 
A3 EXIT EXIT 
A4 STEP AND BRANCH STBR 
AS INDEX AND LOAD NAME NXLN 
A6 INDEX INDX 
A7 RETURN RETN 
A8 DYNAMIC BRANCH FALSE DBFL 

5001290 B-1 



Hexa-
Decimal 
Code 

A9 
AA 
AB 
AC 
AD 
AE 
AF 
BO 
Bl 
B2 
B3 
B4 
BS 
B6 
B7 
B8 
B9 
BA 
BB 
BD 
BE 
BF 
co 
Cl 
C2 
C3 
C4 
cs 
C6 
C7 
C8 
C9 
CA 
CB 
cc 
CD 
CE 
CF 
DO 
DI 
D2 
D3 
D4 
DS 
D6 
D7 
D8 
D9 

B-2 

B 6800 System Reference Manual 
Operators, Numerical List 

Name 

DYNAMIC BRANCH TRUE 
DYNAMIC BRANCH UNCONDITIONAL 
ENTER 
EVALUATE DESCRIPTOR 
INDEX AND LOAD VALUE 
MARK STACK 
STUFF ENVIRONMENT 
LIT CALL ZERO 
LIT CALL ONE 
LIT CALL 8 BITS 
LIT CALL 16 BITS 
PUSH DOWN ST ACK REGISTERS 
DELETE TOP OF STACK 
EXCHANGE 
DUPLICATE TOP OF STACK 
STORE DESTRUCTIVE 
STORE NON-DESTRUCTIVE 
OVERWRITE DESTRUCTIVE 
OVERWRITE NON-DESTRUCTIVE 
LOAD 
LIT CALL 48 BITS 
MAKE PROGRAM CONTROL WORD 
SCALE LEFT 
DYNAMIC SCALE LEFT 
SCALE RIGHT TRUNCATE 
DYNAMIC SCALE RIGHT RUNCATE 
SCALE RIGHT SAVE 
DYNAMIC SCALE RIGHT SAVE 
SCALE RIGHT FINAL 
DYNAMIC SCALE RIGHT FINAL 
SCALE RIGHT ROUNDED 
DYNAMIC SCALE RIGHT ROUND 
INPUT CONVERT, DESTRUCTIVE 
INPUT CONVERT, UPDATE 
SET TO SINGLE-PRECISION, TRUNCATED 
SET TO SINGLE-PRECISION, ROUNDED 
SET TO DOUBLE-PRECISION 
INSERT MARK STACK 
TABLE ENTER EDIT, DESTRUCTIVE 
PACK DESTRUCTIVE 
EXECUTE SINGLE MICRO, DESTRUCTIVE 
TRANSFER WORDS, DESTRUCTIVE 
TRANSFER WORDS OVERWRITE DESTRUCTIVE 
STRING ISOLATE 
SEi EXiEru~AL SIGN 
READ AND CLEAR OVERFLOW FLIP FLOP 
TABLE ENTER EDIT, UPDATE 
PACK UPDATE 

Mnemonic 

DBTR 
DBUN 
ENTR 
EVAL 
NXLV 
MKST 
STFF 
ZERO 
ONE 
LT8 
LT16 
PUSH 
DLET 
EXCH 
DUPL 
STOD 
STON 
OVRD 
OVRN 
LOAD 
LT48 
MPCW 
SCLF 
DSLF 
SCRT 
DSRT 
SCRS 
DSRS 
SCRF 
DSRF 
SCRR 
DSRR 
ICVD 
ICVU 
SNGT 
SNGL 
XTND 
IMKS 
TEED 
PACD 
EXSD 
TWSD 
TWOD 
SISO 
SXSN 
ROFF 
TEEU 
PACU 



Hexa-
Decimal 

Code 

DA 
DB 
DC 
DD 
DE 
DF 
EO 
El 

E2 
E3 
E4 
ES 
E6 
E7 
E8 
E9 
EA 
EB 
EC 
ED 
EE 
EF 
r.n ru 

Fl 

F2 
F3 

F4 
FS 

F8 
F9 
FA 
FB 
FC 
FD 
FE 
FF 

VARIANT MODE 

9542 
9543 
9544 
9545 
9546 

5001290 

B 6800 System Reference Manual 
Operators, Numerical List 

Name 

EXECUTE SINGLE MICRO, UPDATE 
TRANSFER WORDS, UPDATE 
TRANSFER WORDS OVERWRITE UPDATE 
EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE 
READ TRUE/FALSE FLIP FLOP 
CONDITIONAL HALT 
TRANSFER WHILE LESS, DESTRUCTIVE 
TRANSFER WHILE GREATER OR EQUAL, 
DESTRUCTIVE 
TRANSFER WHILE GREATER, DESTRUCTIVE 
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE 
TRANSFER WHILE EQUAL, DESTRUCTIVE 
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE 
TRANSFER UNCONDITIONAL, DESTRUCTIVE 
VECTOR MODE ENTER SINGLE 
TRANSFER WHILE LESS, UPDATE 
TRANSFER WHILE GREATER OR EQUAL, UPDATE 
TRANSFER WHILE GREATER, UPDATE 
TRANSFER WHILE LESS OR EQUAL, UPDATE 
TRANSFER WHILE EQUAL, UPDATE 
TRANSFER WHILE NOT EQUAL, UPDATE 
TRANSFER UNCONDITIONAL, UPDATE 
VECTOR MODE ENTER MULTIPLE 
COMPARE CHARACTERS LESS, DESTRUCTIVE 
COMP ARE CHARACTERS GREATER OR EQUAL, 
DESTRUCTIVE 
COMPARE CHARACTERS GREATER, DESTRUCTIVE 
COMPARE CHARACTERS LESS OR EQUAL, 
DESTRUCTIVE 
COMPARE CHARACTERS EQUAL, DESTRUCTIVE 
COMPARE CHARACTERS NOT EQUAL, 
DESTRUCTIVE 
COMPARE CHARACTERS LESS, UPDATE 
COMPARE CHARACTERS GREATER OR EQUAL, UPDATE 
COMPARECHARACTERSGREATER,UPDATE 
COMPARE CHARACTERS LESS OR EQUAL, UPDATE 
COMPARECHARACTERSEQUAL, UPDATE 
COMPARE CHARACTERS NOT EQUAL, UPDATE 
NO OPERATION 
INVALID OPERATOR 

SET TWO SINGLES TO DOUBLE 
SET DOUBLE TO TWO SINGLES 
IDLE UNTIL INTERRUPT 
SET INTERVAL TIMER 
ENABLEEXTERNALINTERRUPTS 

Mnemonic 

EXSU 
TWSU 
TWOU 
EXPU 
TRFF 
HALT 
TLSD 

TGED 
TGTD 
TLED 
TEQD 
TNED 
TUND 
VMES 
TLSU 
TGEU 
TGTU 
TLEU 
TEQU 
TNEU 
TUNU 
VMEM 
("'IT<;.:n 
'V.LJl..>.LJ 

CGED 
CGTD 

CLED 
CEQD 

CNED 
CLSU 
CGEU 
CGTU 
CLEU 
CEQU 
CNEU 
NOOP 
NVLD 

JOIN 
SPLT 
IDLE 
SINT 
EEXI 

B--3 



Hexa-
Decimal 

Code 

9547 
954A 
954B 
954E 
9585 
9587 
958B 
958E 
95AF 
95B3 
95B4 
95B5 
95B6 
95B7 
95B8 
95B9 
95BA 
95BB 
95BC 
95BD 
95BE 
9500 
95Dl 
95D2 
95D3 
95D4 
95D5 
95D7 
95D8 
95D9 
95DA 
95DB 
95DC 
95DD 
95DF 
95FO 
95Fl 

95F2 
95F3 
95F4 
95F5 
95F8 
95F9 
95FA 
95FB 
95FC 
95FD 

B-4 

B 6800 System Reference Manual 
Operators, Numerical List 

Name 

DISABLE EXTERNAL INTERRUPTS 
SCAN IN 
SCAN OUT 
READ PROCESSOR IDENTIFICATION 
OCCURS INDEX 
INTEGERIZE, ROUNDED, DOUBLE-PRECISION 
LEADING ONE TEST 
NORMALIZE 
MOVE TO STACK 
READ COMPARE FLIP FLOP 
SET TAG FIELD 
READ TAG FIELD 
ROTATE STACK UP 
ROTATE STACK DOWN 
READ PROCESSOR REGISTER 
SET PROCESSOR REGISTER 
READ WITH WCK 
COUNT BINARY ONES 
LOAD TRANSPARENT 
LINKED LIST LOOKUP 
MASKED SEARCH FOR EQUAL 
UNPACK SIGNED, DESTRUCTIVE 
UNPACK ABSOLUTE, DESTRUCTIVE 
TRANSFER WHILE FALSE, DESTRUCTIVE 
TRANSFER WHILE TRUE, DESTRUCTIVE 
SCAN WHILE FALSE, DESTRUCTIVE 
SCAN WHILE TRUE, DESTRUCTIVE 
TRANSLATE 
UNPACK SIGNED, UPDATE 
UNPACK ABSOLUTE, UPDATE 
TRANSFER WHILE FALSE, UPDATE 
TRANSFER WHILE TRUE, UPDATE 
SCAN WHILE FALSE, UPDATE 
SCAN WHILE TRUE, UPDATE 
CONDITIONAL HALT 
SCAN WHILE LESS, DESTRUCTIVE 
SCAN WIBLE GREATER OR EQUAL, 
DESTRUCTIVE 
SCAN WHILE GREAiER, DESiRUCTIVE 
SCAN WIBLE LESS OR EQUAL, DESTRUCTIVE 
SCAN WHILE EQUAL, DESTRUCTIVE 
SCAN WIBLE NOT EQUAL, DESTRUCTIVE 
SCAN WHILE LESS, UPDATE 
SCAN WHIL~ GREATER OR EQUAL, UPDATE 
SCAN WHiLE GREATER, lJPDATE 
SCAN WHILE LESS OR EQUAL, UPDATE 
SCAN WIBLE EQUAL, UPDATE 
SCAN WHILE NOT EQUAL, UPDATE 

Mnemonic 

DEXI 
SCNI 
SCNO 
WHOI 
OCRX 
NTGD 
LOG2 
NORM 
MYST 
RCMP 
STAG 
RTAG 
RSVP 
RSDN 
RPRR 
SPRR 
RDLK 
CBON 
LODT 
LLLU 
SRCH 
USND 
UABD 
TWFD 
TWTD 
SWFD 
SWTD 
TRNS 
USNU 
UABU 
TWFU 
TWTU 
SWFU 
SWTU 
HALT 
SLSD 

SGED 
SGTD 
SLED 
SEQD 
SNED 
SLSU 
SGEU 
SGTU 
SLEU 
SEQU 
SNEU 



Hexa-
Decimal 

Code 

9SFE 
95FF 

EDIT MODE 

DO 
DI 
02 
03 
D4 
05 
D6 
07 
08 
D9 
DA 
DB 
DC 
DD 
DE 
DF 
FE 
FF 

VECTOR MODE 

EO 
El 
E2 
E3 
E4 
ES 
E6 
E8 
E9 
EA 
EB 
EC 
ED 
EE 
FO 
Fl 
F2 
F3 
F4 
FS 
F8 
F9 

5001290 

NO OPERATION 
INVAUD 

MOVE WITH INSERT 
MOVE WITH FLOAT 

B 6800 System Reference Manual 
Operators, Numerical List 

Name 

SKIP FORWARD SOURCE CHARACTERS 
SKIP REVERSE SOURCE CHARACTERS 
RESET FLOAT 
END FLOAT 
MOVE NUMERIC UNCONDITIONAL 
MOVE CHARACTERS 
INSERT OVERPUNCH 
INSERT DISPLAY SIGN 
SKIP FORWARD DESTINATION CHARACTERS 
SKIP REVERSE DESTINATION CHARACTERS 
INSERT UNCONDITIONAL 
INSERT CONDITIONAL 
END EDIT 
CONDITIONAL HALT 
NO OPERATION 
INVALID 

LOAD A 
LOAD A INCREMENT 
LOADB 
LOAD B INCREMENT 
LOADC 
LOAD C INCREMENT 
VECTOR MODE EXIT 
DOUBLE LOAD A 
DOUBLE LOAD A INCREMENT 
DOUBLE LOAD B 
DOUBLE LOAD B INCREMENT 
DOUBLE LOAD C 
DOUBLE LOAD C INCREMENT 
VECTOR BRANCH 
STORE A 
STORE A INCREMENT 
STOREB 
STORE B INCREMENT 
STOREC 
STORE C INCREMENT 
DOUBLE STORE A 
DOUBLE STORE A INCREMENT 

Mnemonic 

NOOP 
NVLD 

MINS 
MFLT 
SFSC 
SRSC 
RSTF 
ENDF 
MVNU 
MCHR 
INOP 
INSG 
SFDC 
SRDC 
INSU 
INSC 
ENDE 
HALT 
NOOP 
NVLD 

LOA 
LDAI 
LOB 
LDBI 
LDC 
LOCI 
VMEX 
DLA 
DLAI 
DLB 
DLBI 
DLC 
DLCI 
VEBR 
STA 
STAI 
STB 
STBI 
STC 
STCI 
DSA 
DSAI 

B-5 



Hexa­
Decimal 

Code 

FA 
FB 
FC 
FD 

8-6 

DOUBLE STORE B 

B 6800 System Reference Manual 
Operators, Numerical List 

Name 

DOUBLE STORE B INCREMENT 
DOUBLE STORE C 
DOUBLESTORECINCREMENT 

Mnemonic 

DSB 
DSBI 
DSC 
DSCI 



B 6800 System Reference Manual 

APPENDIX C 

DATA REPRESENTATION 

EBCDIC Decimal EBCDIC Hex. EBCDIC BCL BCL BCL 
Graphic BCL Value Internal Graphic Card Code Card Code Octal Internal External 
--
BLANK 64 0100 0000 40 No Punches No Punches 60 11 0000 01 0000 

[ 74 0100 1010 4A 12 8 2 12 8 4 33 01 1011 11 1100 
7S 0100 1011 4B 12 8 3 12 8 3 32 011010 111011 

< 76 0100 1100 4C 12 8 4 12 8 6 36 01 1110 111110 
( 77 0100 1101 4D 12 8 s 12 8 s 3S 01 1101 11 1101 
+ 78 0100 1110 4E 12 8 6 11 1010 

79 0100 1111 4F 12 8 7 12 8 7 37 01 1111 111111 

& 80 0101 0000 so 12 12 34 01 1100 11 0000 
] 90 01011010 SA 11 8 2 0 8 6 76 11 1110 01 1110 
$ 91 0101 1011 SB 11 8 3 11 8 3 S2 10 1010 10 1011 
* 92 0101 1100 SC 11 8 4 11 8 4 S3 10 1011 10 1100 
) 93 0101 1101 SD 11 8 s 11 8 s SS 10 1101 10 1101 

94 01011110 SE 11 8 6 11 8 6 S6 10 1110 10 1110 

< 9S 01011111 SF 11 8 7 11 8 7 S7 10 1111 10 1111 

96 0110 0000 60 11 11 S4 10 1100 10 0000 

I 97 0110 0001 61 0 1 0 1 61 11 0001 01 0001 
l07 0110 1011 6B 0 8 3 0 8 3 72 11 1010 01 1011 

% 108 0110 1100 6C 0 8 4 0 8 4 73 11 1011 01 1100 
109 01101101 6D 0 8 s 0 8 2 74 111100 01 1010 

> 110 OilO 1 HO 6E 0 8 6 8 6 16 00 1110 00 1110 
? 111 0110 1111 6F 0 8 7 * 14 00 1100 00 0000 

122 01111010 7A 8 2 8 s 15 00 1101 00 1101 

# 123 0111 1011 7B 8 3 8 3 12 00 1010 00 1011 
@ 124 0111 1100 7C 8 4 8 4 13 00 1011 00 1100 

12S 01111101 7D 8 s 8 7 17 00 1111 00 1111 
126 01111110 7E 8 6 0 8 s 7S 11 1101 01 1101 

" 127 01111111 7F 8 7 0 8 7 77 111111 01 1111 

(+)PZ + 192 1100 0000 co 12 0 12 0 20 01 0000 111010 
A 193 1100 0001 Cl 12 1 12 1 21 01 0001 11 0001 
B 194 1100 0010 C2 12 2 12 2 22 01 0010 11 0010 
c 19S 1100 0011 C3 12 3 12 3 23 01 0011 11 0011 
D 196 1100 0100 C4 12 4 12 4 24 010100 11 0100 
E 197 1100 0101 cs 12 s 12 s 2S 01 0101 11 0101 

F 198 1100 0110 C6 12 6 12 6 26 01 0110 11 0110 

G 199 1100 0111 C7 12 7 12 7 27 01 0111 11 0111 
H 200 1100 1000 C8 12 8 12 8 30 01 1000 11 1000 

I 201 1100 1001 C9 12 9 12 9 31 01 1001 11 1001 
MULT 

(!)MZ x 208 1101 0000 DO 11 0 11 0 40 10 0000 10 1010 
J 209 1101 0001 Dl 11 1 11 1 41 10 0001 10 0001 

*All other codes 

5001290 C-1 



EBCDIC Decimal 
Graphic BCL Value 

K 210 
L 2ii 
M 212 
N 213 
0 214 
p 215 
Q 216 
R 217 

4 224 
s 226 
T 227 
u 228 
v 229 
w 230 
x 231 
y 232 
z 233 

0 240 
1 241 
2 242 
3 243 
4 244 
5 245 
6 246 
7 247 
8 248 
9 249 

B 6800 System Reference Manual 
Data Representation 

EBCDIC Hex. EBCDIC BCL 
Internal Graphic Card Code Card Code 

1101 0010 D2 11 2 11 2 
iiOi OOii D3 ii 3 il 3 
1101 0100 D4 11 4 11 4 
1101 0101 DS 11 5 11' 5 
11010110 D6 11 6 11 6 
1101 0111 D7 11 7 11 7 
11011000 D8 11 8 11 8 
1101 1001 D9 11 9 11 9 

1110 0000 EO 0 8 2 
1110 0010 E2 0 2 0 2 
1110 0011 E3 0 3 0 3 
11100100 E4 0 4 0 4 
11100101 ES 0 5 0 5 
11100110 E6 0 6 0 6 
11100111 E7 0 7 0 7 
1110 1000 E8 0 8 0 8 
11101001 E9 0 9 0 9 

1111 0000 FO 0 0 
11110001 Fl 1 1 
11110010 F2 2 2 
1111 0011 F3 

.., 
3 .:> 

1111 0100 F4 4 4 
11110101 F5 5 5 
1111 0110 F6 6 6 
11110111 F7 7 7 
1111 1000 F8 8 8 
1111 1001 F9 9 9 

NOTES 

1. EBCDIC 0100 1110 also translates to BCL 11 1010. 

BCL BCL 
Octal Internal External 

42 10 0010 10 0010 
43 iO OOi i iO OOii 
44 10 0100 10 0100 
45 10 0101 10 0101 
46 10 0110 10 0110 
47 10 0111 10 0111 
50 10 1000 10 1000 
51 10 1001 10 1001 

00 0000 
62 11 0010 01 0010 
63 11 0011 01 0011 
64 11 0100 01 0100 
65 11 0101 01 0101 
66 11 0110 01 0110 
67 110111 01 0111 
70 11 1000 01 1000 
71 11 1001 01 1001 

00 00 0000 00 1010 
01 00 0001 00 0001 
02 00 0010 00 0010 
03 00 0011 00 0011 
04 00 0100 00 0100 
05 00 0101 00 0101 
06 00 0110 00 0110 
07 00 0111 00 0111 
10 00 1000 00 1000 
11 · 00 1001 00 1001 

2. EBCDIC 1100 1111 is translated to BCL 00 0000 with an additional flag bit on the most significant bit line 
(8th bit). This function is used by the unbuffered printer to stop scanning. 

3. EBCDIC 1110 0000 is translated to BCL 00 0000 with an additional flag bit on the next to most significant bit 
line (7th bit). As the print drums have 64 grnphics and space this signal ca.'1 be used to print the 64th graphic. 
The 64th graphic is a "CR" for BCL drums and a"¢'' for EBCDIC drums. 

4. The remaining 189 EBCDIC codes are translated to BCL 00 0000 (? code). 
5. The EBCDIC graphics and BCL graphics are the same except as follows: 

BCL EBCDIC 

~ (single quote) 
x (multiply) 

~ I (not) 

* T (underscore) 
-+--

C-2 



VI 
0 
0 -N 
\0 
0 

0 
I 

NUM 

81 

1 

2 

3 

4 

5 

6 

7 

8 

81 

82 

83 

84 

85 

86 

87 

NUM 

z 
0 
N 
E 

HEX 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

HEX 

z 
0 
N 
E 

+ 
-

9 9 

0 1 

NUL DLE 

SOH DC1 

STX DC2 

ETX DC3 

HT 

BS 

DEL 

CAN 
-

EM 

FF FS 

CR GS 

so RS 

SI us 
0 1 

9 9 

I 

-
+ 

J 

+ 

IT~ 0 0 
9 9 9 B 

2 3 4 5 6 7 -SP & -
--

I 
-

SYN 
--
___ _, 

-
LF 

- --
ETB ___ _, 
ESC EQT 

--

-
___ _, 

[ ] l • • -
• $ # I --

DC4 < * % @ 
-

ENO NAK ( ) 
, 

- ---
ACK + I > --

BEL SUB I ---. ? ij, 

2 3 4 5 6 I 7' 

9 9 
0 0 

-

+ 

+ + + + 
- - - -

0 0 0 0 

8 9 A B c ~ E F HEX NUM 
--"' 

tJ -1· 0 . "' 
0 0 81 

a j "-' A. J 1 1 1 

b k s B K s 2 2 2 

c 1 t c L T 3 3 3 
t-----t-· = 

d m u D M u 4 4 4 °"' 00 
e n v E N v 5 51 5 8 tti 

°' 
f 0 w F 0 w 6 6 6 

~--1-· 

g p x G p x 7 7 7 

h q y H a y 8 8 8 

i r z I R z 9 9 9 
r------I-· 

A 82 

B 83 

c 84 

D 85 
~-t----

E 86, 

t'rj 00 
0 = 0 

(') > ~ 0 toi::I 
1-1 toi::I Cl.I ...... 
(') 

~ 
Cl> 

= s 
t'rj 0 ~ >< 1-1 

>< (ti ..., 
(') 0 Cl> 

> = n 
~ Cl> 

0 a: 
(') ~ 
0 s:: 

0 
e. 

t'rj 

F 87 

8 9 A B c 0 E F HEX NUM 

9 9 9 9 
0 0 0 0 0 0 

- - - - - -
+ + + + + + 



B 6800 System Reference Manual 
B 6800 EBCDIC/HEX Card Code 

Use of the B 6800 EBCDIC/HEX Card Code Chart. 

D-2 

a~ Locate the desired EBCDIC graphic code within the table. 

b. The two-part Hexadecimal Code is read as follows: 

1. The first part is found in the vertical column above or below the desired EBCDIC code. 

2. The second part is found in the horizontal row either to the right or left of the desired EBCDIC code. 

(a) Examples: 
SYN 
F 

32 
= C6 

c. The two-part Card Code is found in the same manner as HEX (2) except the zone and numeric bits are 
read from the very outer portion of the table. 

1. Examples: 
SYN = 9 2 
F = + 6 

2. The card code exceptions to the above procedures are enclosed in heavy lines on the chart and are 
defined below: 

(1) 00 = + 0981 (NUL) 
(2) 10 = + -981 (DLE} 
(3) 20 = -0981 
(4) 30 = + -0981 
(5) 40 =BLANK 
(6) 50 = + (&) 
(7) 60 = - (-) 
(8) 70·= + -0 
(9) co = + 0 ( {) (6) 

(10) DO= - 0 (})(o) 
(11) EO = 0 82 (\) 
(12) FO = 0 (0) 
(13) 61 = 0 1 (/) 
(14) El = -09 1 
(15) 6A = + - (:) 



B 6800 System Reference Manual 

Absoiute Address Conversion 
Address Couple 
Adapter Cluster 
Add .... 
Adder, Address 
Adder, Exponent 
Adder, Mantissa . 
Adder, Residue Interrupt 
Address Adder 
Address Environment Defined 
Address Retry Interrupt . . 
Alarm Interrupts . . . . 
American Standard Code for Information Interchange 
Area Descriptor 
A Register . . . . 
ASCII . . . . . 
Arithmetic Controller 
Arithmetic Operators 
AROF ..... 

Base and Limit of Stack 
Base of Address Level Segment . . 
BCL ....... . 
BIC ....... . 
BIC Memory Bus Interface 
BIC Module , , , , 
BIC Scan Bus Interface 
BIC Scan-In Function . 
BIC Scan-Out Function 
Bit Operators 
•Bit Reset 
Bit Reset Dynamic 
Bit Set . . . . 
Bit Set Dynamic 
Bit Sign Change . 
Bottom of Stack Interrupt 
Branch False 
Branch False Dynamic 
Branch Operators 
Bra.1ch True . . . 
Branch True Dynamic 
Branch Unconditional 
Branch Unconditional Dynamic 
BROF .... 
Brownout . . . . . . . 
Buffer, Data (MPX) . . . . 
Burroughs Common Language 
Bus Interface Control (BIC) . 
Bus Interface Control Memory Bus 
Bus Interface Control Module . . 

5001290 

INDEX 

. · 

2-22, 3-13 
2-22 
12-1 

7-1 
5-7 

5-10 
5-10 
5-29 

5-7 
3-15 
5-27 
5-22 

2-3 
5-54, 5-56, 11-1 

4-10 
2-3 

-~ . 5-10 
7-1 

. 3-3, 4-4 

3-2 
3-13 

2-3 
1-30, 13-1 

13-6 
13-1 
13-1 
13-4 
13-1 
7-13 
7-14 
7-14 
7-13 
7-13 
7-14 
5-17 

7-7 
7-8 
7-7 
7-8 
7-8 
7-8 
7-8 

. 3-3, 4-4 
1-17 
11-1 

2-3 
1-31, 13-1 

13-6 
1:31, 13-1 

Index-1 



B 6800 Svstem Reference Manual 

Bus Interface Control Scan Bus 
Bus Interface Cont.col Scan-In Function . 
Bus Interface Control Scan-Out Function 
Bus Residue Interrupts 

Central Power Cabinet 
Central Processor Unit Cabinet 
Change Sign 
Channel A . . 
Channel B . . 
Character Codes, Internal 
Character Translator 
Character Type Data 
Clock Controls 
Clocks . . . . . 
Compare Characters Equal Destructive 
Compare Characters Equal Update 
Compare Characters Greater, Destructive 
Compare Characters Greater or Equal, Destructive 
Compare Characters Greater or Equal Update 
Compare Characters Greater, Update . . . . 
Compare Characters Less Destructive . . . . 
Compare Characters Less or Equal Destructive 
Compare Characters Less or Equal Update 
Compare Characters Less Update . . . 
Compare Characters Not Equal Destructive 
Compare Characters Not Equal Update 
Compare Operators 
Compare Residue Interrupt 
Conditional Halt . . . . 
Confidence Error Interrupt 
Controller, Arithmetic 
Controller, Interrupt 
Controller, Memory 
Controller, Program 
Controller, Stack 
Controller, String Operator 
Controller, Transfer 
Control State/Normal State 
Copy Bit 
Count Binary Ones 
C Register 
CTIO 

Data Addressing 
Data Buff er {MPX) . 
Data Comm Adapter Cluster II 
Data Comm Adapter Cluster III 
Data Comm Basic Control . . 
Data Comm Broadband Control 
Data-Comm-To-Disk Control . 

Index-2 

INDEX (Cont) 

13-1 
134 
13-1 
5-29 

1-17 
1-7 

7-14 
5-64 
5-72 

2-3 
5-53 

2-3, 2-10 
4-52 

1-8 
7-20 
7-20 
7-18 
7-19 
7-19 
7-19 

. 7-20 
7-20 
7-20 
7-20 
7-20 
7-20 
7-18 
5-29 

7-9 
5-21 
5-10 
5-10 
5-30 

5-2 
5-10 
5-30 

5-7 
5-31 

3-6 
8-10 
4-10 
1-17 

3-5 
5-60 
12-1 
12-5 
12-4 
124 
124 



B 6800 System Reference Manual 

Data Comm Store-To.Store Control 
Data Comm Memory Bus Interface . . 
Data Comm Scan Bus Interface . 
Data Communications Adapters . . 
Data Communications Interface 
Data Communications Interrupt 
Data Communications Processor 
Data Communications Subsystem . . 
Data-Dependent Presence Bit . . . . . 
Data Descriptor . . . 
Data Field Convention 
Data Processor 
Data Processor, Scan-In Functions to Multiplexor 
Data Processor Scan-Out Functions to Multiplexor 

INDEX (Cont) 

Data Processor Scan-Out Functions to External Subsystems 
Data Representation . . . . . . 
Data Types and Physical Layout . . . . . . . . 
Decimal to Coded Number Conversion . . 
Decimal and Hexadecimal Table Conversion 
_Delete Top of Stack 
Descriptor Formats, IO . . . 
Disable External Interrupts 
Display Panels 
Display Registers 
Divide . . . . 
Divide by Zero Interrupt 
Double Load A . . . 
Double Load A Increment 
Double Load B . . . . 
Double Load B Increment 
Double Load C . . . . 
Double Load C, Increment 
Double Store A . • . . . 
Double Store A Increment 
Double Store B . . . . 
Double Store B Increment 
Double Store C . . . . 
Double Store C Increment 
Double Precision Operands 
Double Precision Stack OP 
Duplicate Top of Stack 
Dynamic Branch False 
Dynamic Branch True 
Dynamic Branch Unconditional 

EBCDIC 
Edit.Mode Operation 
Edit Mode Operators 
Enable External Interrupts 
End Edit 
End Float 

5001290 

12-5 
12~7 

12-S. 
12-l 
12-l 

. . . . 5-22 
12-3 

. 1-3\l, 12-1 
5-18 
2-15 

2-2 
1-8, 5-1 

5-31 
5-33 
5-35 

2-1 
2-1 
2-6 
2-8 

7-10 
5-61 

8-2 
. . 1-12, 4-1 

4-1 
7-2 

5-15 
10-7 
10-7 
10-7 
10-7 
10-7 
10-7 
10-7 
10-7 
10-7 
10-7 
10-7 
10-7 
2-i3 

3-3 
7-10 

7-8 
7-8 
7-8 

2-3 
9-1 
9-1 
8-2 
9-4 
9-3 

Index-3 



B 6800 System Reference Manual 

Enter Operators 
Enter Vector Mode 
Equal . . . . 
Escape to 16-bit Instruction 
Evaluate . . . . . . 
Exchange . . . . . . .· 
Execute Single Micro Desctructive . 
Execute Single Micro Single Pointer Update 
Execute Single Micro Update 
Executing I/O Descriptors 
Exit· Operator . . . . . 
Exponent Adder . . . . 
Exponent Overflow and Underflow Interrupt 
Extended Binary Coded Decimal Interchange Code 
External Interrupts 

Family A 
Family B 
Family C 
Family D 
Family E 
Family U (F, G, H) 
Field Insert 
Field Insert Dynamic 
Field Isolate . . . 
Field Isolate Dynamic 
Field Transfer 
Field Transfer Dynamic 
Function Word . . . 

General Control Interrupt 
Global Memory . . . . 
Global Memory Not Ready Interrupt . 
Greater Than . . . . 
Greater Than or Equal . 

Hardware Interrupts 
Hexadecimal and Octal Notation 
Hexadecimal to Decimal Table Conversion . 

Idle Confidence Testing 
Idle Until Interrupt . . 
Index . . . . . . 
Index and Load Name , 
Index and Load Operators 
Index and Load Value . 
Index Bit . . 
Index, Invalid 
Index, Valid . 
Indirect Reference Word 
Initiate 1/0 . . . . 

Index-4 

INDEX (Cont) 

7-20, 7-26, 7-31 
7-31 

7-7 
8-1 

7-26 
7-10 
7-21 
7-21 
7-21 
11-1 
7-26 
5-10 
5-16 

2-3 
5-21 

5-1 
5-1 
5-1 
5-1 
5-2 
5-2 

7-15 
7-15 
7-15 
7-15 
7-14 
7-14 
5-33 

5-26 
1-5, 5-71 

5-25 
7-6 
7-7 

5-28 
2-3 
2-8 

i~9 

8-1 
7-11 
7-11 
7-11 
7-11 

3-5 
3-5 
3-5 

2-20 
5-54, 8-4, 11-1 



Initiate 1/0 Word Format 
Input Convert Destructive 
Input Convert Operators . 
Input Convert Update . . 

B 6800 System Reference Manual 

INDEX (Cont) 

Input/Output Area Description (IOAD) Word Format . 
Input/Output Control Word (IOCW) Format 
Input/Output Device Numbering 

5-56 
7-22 
7-22 
7-23 
5-56 
5-56 
5-53 

Input/Output Operations . . . . . 5-53, 11-1 
5-31 
5-22 

9-3 
9-3 

Input/Output Processor (Multiplexor) 
Input/Output Processor Interrupts 
Insert Conditional . . . 
Insert Display Sign . . . 
Insert Mark Stack Operator 
Insert Overpunch 
Insert Unconditional 
Integer Divide 
Integerized Rounded, D.P. 
Integerize Rounded . . . 
Intergerize Truncated . . 
Inter~er Overflow Interrupt 
Integrated Circuit (IC) Memory 
Internal Character Codes . . 

7-31 
9-3 
9-3 
7-3 
8-5 
74 
7-3 

Internal Data Transfer Section 
Interrogate I/O Path; Function 
Interrogate Peripheral Status 

... 
5-17 

5-5 
2-3 
5-8 

Interrogate Peripheral Unit Type 
Interrupt Controller . 
Interrupt Handling . 
Int~rrupt Parameters 
Interrupt System 
Interrupts, Alarm 
Interrupts, External . 
Interrupts, Operator Dependent 
Interrupts, Operator Independent . 
Interval Timer Interrupt . . . . 
Invalid Address Interrupt . . . 
Invalid Address Residue Interrupt 
Invalid Address Local Interrupt . 
Invalid Address Global Interrupt 
Invalid Index Interrupt 
Invalid Operand Interrupt 
Invalid Operator 
Invalid Program Word Interrupt. 
1/0 Control Word . . . . . 
1/0 Finish Interrupts . . . . 
1/0 Operations, Processor Initiated 
1/0 Processor Parity (MPX Parity) 

5001290 

Se35, 5-39, 545, 8e3 
8-3 

5-39, 8-3 
5-10 
2-26 

. 2-26, 5-10 
2-26 
5-22 
5-21 
5-14 
5-21 
5-20 
5-24 
5-24 
5-24 
5-25 

3-5, 5-16 
5-15 

7-9 
5-24 

5-56, 11-1, 11-11, 11-13, 11-15, 11-17, 11-19, 11-21, 11-23, 11-26, 11-28, 11-20, 11-33 
11-3 

549, 11-1 
5-28 

Index-5 



Job-Splitting . . . . 

Keyboard Control Keys 
Keyboard, Maintenance Processors . . 
KSI ..... 

Leading One Test 
Less Than . . . 
Less Than or Equal . 
Level Definition . . 
Lexacographical Level 
Linked List Lookup 
Lit Call Zero . 
Lit Call One . 
Lit Call 8 Bits 
Lit Call 16 Bi ts 
Lit Call 48 Bits 
Literal Call Operators 
Load .... . 
Load A ... . 
Load A Increment 
Load B .... 
Load B Increment 
Load C .... 
Load C Increment 
Load Transparent 
Local Memory Allocation 
Local Memory Interface 
Logical And . . . 
Logical Equal . . . 
Logical Equivalence . 
Logical Negate 
Logical Operands 
Logical Operators 
Logical Or 
Logic Card Testing 
Look Ahead Logic 
Look Ahead Register 
LROF ... 
Loop Interrupt . . 

Maintenance Display Panel 
Maintenance Display Processor 
Maintenance Display Registers 
Maintenance Processor 
Make PCW ..... 
Mantissa Field . . . . 
Mark Stack Control Word. 

Index-6 

B 6800 System Reference Manual 

INDEX (Cont) 

3-17 

1-29, 4-53 
4-49 
1-16 

8-5 
7-7 
7-7 

. 2-22, 3-17 
2-22 
8-10 
7-10 
7-10 
7-10 
7-10 
7-10 
7-10 
7-11 
10.6 
10-6 
10-6 
10-6 
10-6 
10-6 
8-10 

3-12 
5-74 

7-5 
7-7 
7-5 
7-5 

2-15 
7-5 
7=5 

1-17 
5-5 

4-10 
4-8 

5-23 

4-10 
1-12 
4-11 

1-15, 449 
7-ii 
2-12 
2-25 



B 6800 System Reference Manual 

Mark Stack Control Word Linkage 
Mark Stack Operator 
Mask and Steering . . . 
Mask and Steering Example 
Masked Search for Equal 
Master Control Program 
Memory Address 
Memory Address Interrupt 
Memory and Multiplexor Controller. . 
Memory Area Allocation . . 
Memory Bus ..... . 
Memory Cabinet Configuration 
Memory Control . . 
Memory Controller . . . . 
Memory Cycle Times . . . 
Memory Error Detection/Correction 
Memory Interface 
Memory Module . . . 
Memory Organization . 
Memory Parity Interrupt 
Memory Port Interface 
Memory Priority 
Memory Protect Interrupt 
M,,.mnn.1 Prnf,,.,..t1nn 
.LT.&.¥.L.1..1.""..LJ .&..l..""'-"'"""'..l..'-".1..1. • • • • 

Memory Retry . . . . 
Memory Stack Controller . 
Memory Tester 
Memory Testing 
Memory Words 
MFIO Bus .. 
Micro Processor 
Module Definition 
Move Characters . 
Move Numeric Unconditional 
Move to Stack 
Move With Float . . . . 
Move With Insert 
Muitiple Stacks and Re-Entrant Code . 
Multiple Variables (Common Address Couples) 
Multiplexor Function . . . . 
Multiplexor Scan-In Function 
Multiplexor Scan-Out Function . 
Multiply . . . . 
Multiply (Extended) 

Name Call . . 
No Operation 
Normalize . . 

5001290 

INDEX (Cont) 

,• 

3-15 
7-26 

5-8 
5-8 

8-11 
1-1 

5-63 
5-23 
11-1 
3-12 

. 5-64, 5-74 
1-21 
1-10 
5-30 
1-11 

. 1-11, 5-69 
5-64 

1-10 
5-63 
5-23 
5-72 
5-72 
5-15 
C' 1 C' 
J•.l J 

. 1-11, 5-71 
5-10 
5-76 
5-76 
5-63 

1-5, 1-16 
1-16 

1-5 
9-1 
9-1 
8-6 
9-2 
9-1 

3-17 
3-13 
5-31 
5-35 
5-45 

7-2 
7-2 

6-2, 7-26 
7-9 
8-6 

Index-? 



Normal State . 
Not Equal . . 
Number Bases 
Number Conversion . 

Occurs Index . . . 
Octal Notation 
OP Code and Variant Characters 
Operands . . . . . . 
Operation Types 
Operators Control Console 
Operator Dependent Interrupts 
Operator Families . . . . 
Operator Independent Interrupts 
Operator Panel . . . . . 
Operators . . . . . . . 
Overflow FF, Read and Clear 
Overwrite Destructive . . 
Overwrite Non-Destructive 

B 6800 System Reference Manual 

INDEX (Cont) 

5-31 
7-7 
2-3 
2-6 

8-5 
2-3 

5-61 
2-10 

6-2 
1-25 
5-14 

5-1 
5-21 
1-26 
6-7 

7-23 
7-9 

7-10 

Pack Destructive 7-21 
Pack Operators 7-21 
Pack Update . 7-22 
PCIO Bus . . 1-5, 1-15, 1-17 

Peripheral Control Bus 11-7 
Peripheral Control Cabinet 11-7 
Peripheral Control Interface . 1-18, 11-7 
Peripheral Controls 1-10, 1-18, 11-7 
Peripheral Result Descriptor 11-9, 11-12, 11-14, 11-16, 11-18, 11-20, ll-22, 11-25, 11-27, 11-29, 11-32, 11-34 
Peripheral Result Descriptor, Supervisory Display II 11-12 
Peripheral Result Descriptor, Single Line Control . 11-14 
Peripheral Result Descriptor, Card Punch 11-16 
Peripheral Result Descriptor, Card Reader 11-18 
Peripheral Result Descriptor, Line Printer 11-20 
Peripheral Result Descriptor, Train Printer 11-22 
Peripheral Result Descriptor, Magnetic Tape 11-25 
Peripheral Result Descriptor, Head-Per-Track Disk 11-27 
Peripheral Result Descriptor, Flexable Disk 11-29 
Peripheral Result Descriptor, Disk Pack 11-32 
Peripheral Result Descriptor., SN Disk 11-34 
Peripheral Units 1-10 
Polish Notation . . . . . . . 3-6 
·Poli~h String . . . . . . . . 3-8 
Polish String, Rules for Evaluating 3-8 
Polish String, Ruies for Generating 
Power Busses . 
Power Cabinet 
Powei Controls 

lndex-8 

1-7 
1-17 
4-1 



Power Off Switch 
Power On Switch 
Power, System 
P Register . 
Pl Parameter 
P2 Parameter 
P3 Parameter 
Presence Bit 
Presence Bit Interrupt 
Primary Mode Operators . 
Procedure-Dependent Presence Bit . 
Processor . . . . . . . . . 
Processor Initiated 1/0 Operations 
Processor States . . . . 
Processor System Concept 
PROF .... 
Program Control 
Program Controller 
Program Control Word . 
Program Index Register 
Programmed Operator . 
Programmers Display Panel 
Progran1 Operators . . .. 
Program (P) Register 
Program Structure in Memory 
Program Segment 
Program Syllable Register . . 
Program Words . . . . . 
PROM Card Parity Interrupts 
PROM Writer . . . . . 
PWIO ...... . 
Push Down Stack Registers 

Ram Card Parity Interrupts 
Read and Clear Overflow FF 
Read Compare Flip-Flop . . 
Read Data Check Bit Interrupt 
Read Data Multiple Interrupt 
Read Data Retry Interrupt . 
Read Data Single Error, Interrupt 
Read IC Operation . 
Read Interrupt Literal . 
Read Interrupt Mask 
Read Interrupt Register 
Read Main Memory 
Read Only Bit 
Read Processor Identification 
Read Processor Register . . 
Read Processor Time Counter 

5001290 

B 6800 System Reference Manual 

INDEX (Cont) 

4-4 
4-4 

1-17 
6-1 

. 2-27, 11-3 

. 2-28, 11-5 
. . . 2-28, 11-4 

3-5 
. 3-5, 3-18, 5-17 

7-1 
5-18 

.1-7, 5-1 
11-1 
5-31 

5-1 
4-4 
6-1 
5-2 

2-23 
2-24 

5-2 
4-1 
6-1 

4-iO 
3sl l 
3-12 

2-24, 4-4 
2-34 
5-28 
1-16 
1-16 

3-2, 7-10 

5-28 
7-23 

8-7 
5-27 
5-25 
5-27 
5-26 
4-54 

5-45, 8-3 
5-45, 8-2 
5-38, 8-2 

4-54 
3-6 
8-5 

. . . . 8-8 
5-42, 8-3 

Index-9 



B 6800 System Reference Manual 

Read Scratch Pad Word 
Read Tag Field . . . 
Read Time of Day Clock 
Read True False FF. 
Read With Lock 
Ready Status 
Re-Entrace . 
Register, A 
Register, B 
Register, C 
Register,..P 
Register,. X 
Register, Y 
Register, Z 
Registers, Display 
Registers, Maintenance . 
Relational Operators 
Relative-Addressing 
Remainder Divide 
Reset Float 
Residue Adder Testing 
Residue Testing . . . 
Result Descriptor 
Result Descriptor, Card Punch Device 
Result Descriptor, Card Reader Device 
Result Descriptor, Disk-Flexable Device 
Result Descriptor, Disk-Head Per Track Device 
Result Descriptor, Disk-Pack Device 
Result Descriptor, Disk-SN Device . . . 
Result Descriptor, Magnetic Tape Device 
Result Descriptor, Printer-Line Device 
Result Descriptor, Printer-Train Device . 
Result Descriptor, Single Line Control Devices 
Result Descriptor, Supervisory Display II Device 
Return Control Word . 
Return Operator 
Reverse Polish Notation 
Rotate Stack Down 
Rotate Stack Up 
Rules for Generating Polish String, Simplified 
Running Indicator 

Scale Left . ·. . 
Scale Left Dynamic 
Scale Operators . . 
Scale Right Dynamic Final 
Scale Right Dynamic Save 
Scale Right Dynamic Truncate 
Scale Right Final . . . . 

Index-10 

INDEX (Cont) 

5-43, 8-3 
8-8 

5-37, 8-2 
7-23 
8-10 
5-50 
3-17 
4-10 
4-10 
4-10 

4-10, 6-1 
4-10 
4-10 
4-10 
4-10 
4-11 

7-5 
3-12 

7-3 
9-3 
5-7 
5-7 

11-9 
11-16 
11-18 
11-29 
11-27 
11-32 
11-34 
11-25 
11-20 
11-22 
11-14 
11-12 
2-32 
7-26 

3-6 
8-8 
8-8 
3-6 
4-1 

7-12 
7-12 
7-12 
7-13 
7-12 
7-13 
7-13 



Scale Right Round Dynamic 
Scale Right Rounded 
Scale Right Save 
Scale Right Truncate 
Scan Bus . . . . 

B 6800 System Reference Manual 

INDEX (Cont) 

Scan Bus Operations . . . . 
Scan Bus Interface . . . . . . 
Scan Bus Parity Error Interrupt 
Scan In . . . . . . . . 
Scan In Information Error Interrupt . 
Scan Operators . . . 
Scan Out . . . . . . . 
Scan Out Error Interrupt 
Scan While Equal, Destructive 
Scan While Equal, Update 
Scan While False, Destructive 
Scan While False, Update 
Scan While Greater, Destructive 
Scan While Greater, Update . . . 
Scan While Greater or Equal, Destructive 
Scan While Greater or Equal, Update . 
Scan While Less, Destructive 
Scan While Less or Equal, Desctructive . 
Scan While L.ess or Equal, Update . 
Scan 'While Less, Update . . . . 
Scan While Not Equal, Destructive 
Scan While Not Equal, Update 
Scan While True, Destructive 
Scan While True, Update . . 
Scratchpad Memory 
Scratchpad Memory Channel 
Scratchpad Word Layout . 
Segmented Array, Interrupt . 
Segment Descriptor 
Segment Dictionary 
Sequence Error Interrupt 
Set Double to Two Singles . . . . . 
Set External Sign 
Set Interrupt Mask . 
Set Interval Timer . 
Set Processor Register 
Set PSUDO BUSY . 
Set Tag Field 
Set Time of Day Clock 
Set to Double-Precision 
Set to Single Precision Rounded 
Set to Single-Precision Truncated . 
Set Two Singles to Double 
Single Precision Operands 

5001290 

7-13 
7-13 
7-12 
7-12 

1-5, 12-5, 13-1 
5-71 
5-75 
5-23 

8-2 
5-25 
8-2 
8-3 

5-26 
8-14 
8-14 
8-15 
8-15 
8-13 
8-13 
8-13 
8-13 
8-14 
8-14 
8-14 
0 1 A 
O·.l"'t 

8-14 
8-15 
8-15 
8-15 
5-58 
5-58 
5-59 
5-19 
2-36 
3-12 
5-18 

8-1 
7-23 

5-46, 8-4 
8-1 
8-9 

5-46, 8-4 
8-7 

5-46, 8-4 
7-5 
7-4 
7-4 
8-1 

2-12 

Index-11 



B 6800 System Reference Manual 

Skip Forward Destination Characters 
Skip Forward Source Characters 
Skip Reverse Destination Characters 
Skip Reverse Source Characters . . 
Software Aspects of IO Operations 
Software Words . 
Stack . . . . 
Stack Adjustment 
Stack Area . . . 
Stack, Base and Limit 
Stack, Bi-Directional Data Flow 
Stack Controller . 
Stack Deletion 
Stack Descriptor . . . . . . 
Stack, Double-Precision Operation . 
Stack-History and Addressing-Environment Lists . 
Stack History, Summary 
Stack Operation . . . 
Stack Operators . . . 
Stack Overflow Interrupt 
Stack Pushdown 
Stack Pushup 
Stack Registers 
Stack, Simple Operation 
Stack Underflow Interrupt 
Stack Vector Descriptor 
States, Processor . . . 
Status Change 
Status Change Interrupt 
Status Display Panel 
Status Vectors 
Step and Branch . 
Step Index Word 
Store A 
Store A Increment 
Store B 
Store B Increment 
Store C 
Store C, Increment 
Store Destructive 
Store, Non-Destructive 
Store Operators 
String Descriptor 
String Isolate . . 
String Operators 
String Operator Controller 
String Transfer Operators 
Stuff Environment . . . 
Stuffed indirect Reference Word 

Index-12 

INDEX (Cont) 

9-2 
9-2 
9-3 
9-2 

546 
2-19 

3-1 
3-3 

3-12 
3-2 
3-2 

5-10 
3-12 
3-17 

3-3 
3-12 
3-17 

3-1 
7-10 
5-21 

3-2 
3-2 
5-7 
3-8 

5-24 
3-18 
5-31 
5-52 
5-22 

4-4 
5-62 

7-8 
2-18 
10-6 
i0-6 
10-6 
10-7 
10-6 
10-7 
7-9 
7-9 
7-9 

2-17 
7-18 

5-30, 6-8 
5-30 
7-16 
7-31 
2-20 



B 6800 System Reference Manual 

Subroutine Operators 
Subtract . . . . 
Syllable Addressing . 
Syllable Dependent Interrupts 
Syllable Format . . 
Syllable Identification . 
System Clock . 
System Concept . 
System Controls . 
System Description 
System Expansion 
System Memory Interface 
System Options and Requirements 
System Organization 
System Power . . . . . 

Table Enter Edit Destructive 
Table Enter Edit Update 
TD 830 
Terminal Device . . 
Thumbwheel . . . 
Time of Day Register 
Top-Of-Stack Register .• . 
Transfer Controller . 
Transfer Operators . 
Tran sf er Unconditional Destructive 
Transfer Unconditional, Update . 
Transfer While Equal, Destructive 
Tr~sfer While Equal, Update 
Transfer While False, Destructive 
Transfer While False, Update 
Transfer While Greater Destructive 
Transfer While Greater or Equal, Update 
Transfer While Greater Update 
Transfer While Less, Destructive 
Transfer While Less, Update . . 
Transfer While Less or Equal, Destructive 
Transfer While Less or Equal, Update 

.. 

Transfer While Not Equal, Destructive . . . . 
Transfer While Not Equal, Update . 
Transfer While True, Destructive 
Transfer While True, Update 
Transfer Words Destructive . . . 
Transfer Words, Overwrite Destructive 
Transfer Words, Overwrite Update . 
Transfer Words, Update 
Translate . . . . 
T Register . . . . . . 
True False FF, Read 
Type Transfer Operators 

5001290 

INDEX (Cont) 

7-23 
7-2 

. . 2-37, 6-1 
5-14 

2-37' 6-1 
2-37, 6-1 

1-8 
5-1 

1-26, 4-1 
1-1 
1-1 

5-72 
1-1 
1-1 

1-17 

7-20 
. . . . 7-21 

1-26 
12-4 
4-11 
4-48 

. 3-1, 3-3 
5-7 

7-14 
7-18 
7-18 
7-17 
7-17 
8-12 
8-12 
7-16 
7-17 
7-17 
7-17 
7-17 
7-17 
7-17 
7-17 
7-18 
8-12 
8-12 
7-16 
7-16 
7-16 
7-16 
8-12 

6-1 
7-23 

7-4 

Index-13 



Unit Number . . 
Unit of Memory . 
Unit Tables 
Universal Operators 
Unpack Absolute Destructive 
Unpack Absolute Update . . 
Unpack Signed Destructive 

Valid Index 
Value Bit . 
Value Call . 
Variant Mode Operation and Operators 
Vector Mode Branch . . . . . . 
Vector Mode Exit . . . . . . . 
Vector Mode Hardware Functions . . 
Vector Mode Limitations . 
Vector Mode Enter Multiple . 
Vector Mode Enter Single . . 
Vector Mode Operator Codes 

Word Data Descriptor 
Word Definition 
Word Parity 
Word Tag Field . 
Word Wraparound 
Word Data Formats 
Wrap Around 
Write IC Operation . . 
Write Main Memory 

X Register . 

Y Register 

Z Register . 

Index-14 

B 6800 System Reference Manual 

INDEX (Cont) 

1-21 
1-21 
1-21 
7-9 

8-11 
8-11 
8-11 

3-5 
2-26 

6-4, 7-23 
. 4-4, 8-1 

10-8 
10-8 
10-1 
10-1 
7-31 
7-31 

10-1, 10-5, 10-6 

2-15 
2-1 
2-1 
2-1 
2-3 
2-1 
2-3 

4-54 
4-54 

. . 3-1, 4-10, 5-7 

. . 3-1, 4-10, 5-7 

. . . . 4-10, 5-7 



Printed in U.S. America July 1977 5001290 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01
	D-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	xBack

